
Gunrock: A High-Performance Graph Processing Library on the GPU
Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, John D. Owens

University of California, Davis

Objectives

For large-scale graph analytics on the GPU,
the irregularity of data access and control flow
and the complexity of programming GPUs have
been two significant challenges for developing a
programmable high-performance graph library.
we describe Gunrock, our system for graph pro-
cessing on the GPU.Our goal with Gunrock is
to deliver the performance of GPU hardwired
graph primitives with a high-level programming
model that allows programmers to quickly de-
velop new graph primitives.

Introduction

The superior performance, price-performance, and
power-performance capabilities of the modern
GPU over the traditional CPU make it a strong
candidate for data-intensive applications like graph
processing. Previous CPU-based large graph ana-
lytics work either uses a serial or coarse-grained-
parallel programming model (single-node systems)
or has substantial communication cost (distributed
systems). GPU low-level implementations of spe-
cific graph primitives (“hardwired” primitives) re-
quire expert knowledge of GPU programming and
optimization. Existing high-level GPU graph pro-
cessing systems often recapitulate CPU program-
ming models and do not compare favorably in per-
formance with hardwired primitives.
With Gunrock, we design and implement a set of
simple and flexible APIs that significantly reduce
the code size and the development time and ap-
ply to a wide range of graph processing primitives.
We also implement several GPU-specific optimiza-
tion strategies for memory efficiency, load balanc-
ing, and workload saving that together achieve high
performance.

The Gunrock Abstraction

Gunrock targets graph operations that can be ex-
pressed as iterative convergent processes. each step
operates on a frontier of active vertices or edges
in the graph. Steps are bulk-synchronous paral-
lel (BSP): different steps may have dependencies
between them, but individual operations within a
step can be processed in parallel.

- A traverse step generates a new frontier from
the current frontier.
- advance generates a new frontier by visiting the
neighbors of the current frontier; According to the
direction of the edges, advance can perform both
push-style traversal (scatter) and pull-style traversal
(gather).

- filter chooses a subset of the current frontier based on
programmer-specified criteria.

- A computation step defines an operation on
all elements (vertices or edges) in the current
frontier; Gunrock then performs that operation
in parallel across all elements.

Applications

By reusing Gunrock’s efficient operators and com-
bining different functors, users can build new
graph primitives with minimal extra work. Cur-
rently, Gunrock supports graph traversal-based al-
gorithms (Breadth-First Search (BFS) and Single-
Source Shortest Path (SSSP)), node ranking algo-
rithms (Betweenness Centrality (BC), PageRank,
HITS, SALSA, and Twitter’s “Money” [which re-
quires bipartite graph support]), and subgraph-
based algorithms (Connected Component Label-
ing, Minimum Spanning Tree). We are mov-
ing forward to more complex graph primitives as
well as extending our operators within the current
traversal-computation programming model.

Advance Filter

Update
Label Value

Remove
Redundant

Advance Filter

Update
Label Value

Remove
Redundant

Near/Far Pile

Advance Filter

Accumulate
Sigma Value

Remove
Redundant

Advance

Compute
BC Value

Filter

For e=(v1,v2), assign
c[v1] to c[v2]. Remove
e when c[v1]==c[v2]

Filter

For v, assign
c[v] to c[c[v]]. Remove
v when c[v]==c[c[v]]

Advance Filter

Distribute
PR value to
Neighbors

Update PR value.
Remove when

PR value converge

BFS: SSSP:

BC:

CC: PR:

Traversal

Computation

Example: Comparing Abstractions on Single-Source Shortest Path

Enumerate
Neighbors

Compute
New Frontier

Load
Balancing

Update
Label Values

Mark
Valid

Compact

output
frontier

input
frontier

Traversal:Advance Compute Traversal:Filter

Scatter Vertex-Cut Gather+Apply Scatter

GetValue

MutableValue

SendMsgTo

GetOutEdgeIterator VoteToHalt

EdgeMap(including Update) VertexMap(including Reset)

ELIST Combiner VERTEX

Gunrock:

PowerGraph:

Pregel:

 Ligra:

 Medusa:

Figure 1: Operations that make up one iteration of SSSP and their mapping to the Gunrock, PowerGraph (GAS), Pregel, Ligra,
and Medusa abstractions.

Funding

DoD XDATA, STTR ST13B-004; NSF OCI-1032859, CCF-1017399.

Results

Table 1: Gunrock’s runtime comparison with other graph libraries
and hardwired GPU implementations. Ligra’s timings for PageRank
and Gunrock’s one-iteration PageRank are in bold. Hardwired GPU
implementations for each primitive are b40c BFS (Merrill et al.,
PPoPP ’12), deltaStep SSSP (Davidson et al., IPDPS ’14), gpu BC
(Sariyüce et al., GPGPU-6 ’13), and conn connected component
labeling (Soman et al., IPDPSW ’10).

Runtime (ms) [lower is better]
Hardwired

Alg. Dataset BGL PG Medusa MapGraph GPU Ligra Gunrock

B
FS

soc 816 — 75.82 84.08 37.87 57.4 24.37
bitc 480 — 1557 142.4 69.22 94.9 67.79
kron 388 — 46.21 44.29 18.67 13.3 17.28

roadnet 72 — 223.9 53.44 8.18 51.5 17.16

SS
SP

soc 5664 1900 — 225.7 236.7 172 361.6
bitc 2440 1610 7311 250.9 183.6 133 178.8
kron 1268 1000 — 124.8 125.1 16.4 105.2

roadnet 408 5800 1143 76.48 163.7 62.2 140

B
C

soc 2120 — — — 543.8 264 205.3
bitc 4840 — — — 190.2 271 206.6
kron 1456 — — — 156.1 52.6 246.9

roadnet 732 — — — 256.3 129 100.1

Pg
R

an
k soc 49568 9500 — 5431 — 265 1927 · 175

bitc 20400 8600 48156 2471 — 240 651.4 · 79.6
kron 33432 2500 — 5702 — 114 2766 · 212

roadnet 2440 2600 532.8 122.7 — 13.1 63.25 · 4

C
C

soc 2176 12802 — 803.8 72 498 110
bitc 1508 8464 — 612.5 28 6180 58.33
kron 716 5375 — 260 48 1890 67.21

roadnet 232 9995 — 1935 8 1320 21.33

Next Steps

- Scalability to multiple GPUs/nodes;
- Higher-level graph primitives;
- In-depth comparison to GAS and Graph BLAS;
- Support for mutable graph/time-series graph.

Contact Information

• Gunrock Website: http://gunrock.github.io
• Author’s Email: yzhwang@ucdavis.edu

contact Name

Yangzihao Wang: yzhwang@ucdavis.edu
Poster

P5326

Category: Big Data Analytics - BD10

