CATEGORY: BIG DATA ANALYTICS - BD10

TECHNOLOGY

GP

CONFERENCE

Gunrock: A High-Performance Graph Processing Library on the GPU

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, John D. Owens

University of California, Davis

Objectives

For large-scale graph analytics on the GPU,
the irregularity of data access and control flow
and the complexity of programming GPUs have
been two significant challenges for developing a
programmable high-performance graph library:.

we describe Gunrock, our system for graph pro-
cessing on the GPU.Our goal with Gunrock is
to deliver the performance of GPU hardwired
oraph primitives with a high-level programming
model that allows programmers to quickly de-

velop new graph primitives.

Introduction

The superior performance, price-performance, and
power-performance capabilities of the modern
GPU over the traditional CPU make it a strong
candidate for data-intensive applications like graph
processing. Previous CPU-based large graph ana-
Iytics work either uses a serial or coarse-grained-
parallel programming model (single-node systems)
or has substantial communication cost (distributed
systems). GPU low-level implementations of spe-
cific graph primitives (“hardwired” primitives) re-
quire expert knowledge of GPU programming and
optimization. Existing high-level GPU graph pro-
cessing systems often recapitulate CPU program-

ming models and do not compare favorably in per-
formance with hardwired primitives.

With Gunrock, we design and implement a set of
simple and flexible APIs that significantly reduce
the code size and the development time and ap-
ply to a wide range of graph processing primitives.
We also implement several GPU-specific optimiza-
tion strategies for memory efficiency, load balanc-
ing, and workload saving that together achieve high
performance.

The Gunrock Abstraction

Gunrock targets graph operations that can be ex-
pressed as iterative convergent processes. each step
operates on a frontier of active vertices or edges
in the graph. Steps are bulk-synchronous paral-
lel (BSP): different steps may have dependencies
between them, but individual operations within a

step can be processed in parallel.

- A traverse step generates a new frontier from

the current frontier.

- advance generates a new frontier by visiting the
neighbors of the current frontier; According to the
direction of the edges, advance can perform both
push-style traversal (scatter) and pull-style traversal
(gather).

- filter chooses a subset of the current frontier based on
programmer-specified criteria.

- A computation step defines an operation on
all elements (vertices or edges) in the current
frontier; Gunrock then performs that operation

in parallel across all elements.

Applications

By reusing Gunrock’s efficient operators and com-
bining different functors, users can build new
oraph primitives with minimal extra work. Cur-
rently, Gunrock supports graph traversal-based al-
gorithms (Breadth-First Search (BFS) and Single-
Source Shortest Path (SSSP)), node ranking algo-
rithms (Betweenness Centrality (BC), PageRank,
HITS, SALSA, and Twitter's “Money” [which re-
quires bipartite graph support|), and subgraph-
based algorithms (Connected Component Label-
We are mov-
ing forward to more complex graph primitives as
well as extending our operators within the current
traversal-computation programming model.

ing, Minimum Spanning Tree).

Advance Filter Advance Filter
BFS: > Update Remove | SSSP: L Update Remove Near/Far Pile —
Label Value = Redundant Label Value = Redundant
BC: Advance Filter L Advance J Traversal
' Accumulate Remove = | Compute Computation

Sigma Value = Redundant BC Value

Filter Filter Advance Filter
CC: For e:(v‘| ,V2), assign For V, assign PR Distribute Update PR value.
PR value to Remove when

c[v1] to c[v2]. Remove c[v] to c[c[v]]. Remove _
e when c[v1]==c[v2] v when c[v]==c[c[V]] Neighbors PR value converge

Example: Comparing Abstractions on Single-Source Shortest Path

4>

Gunrock: Traversal:Advance

Compute

PowerGraph: _ Vertex-Cut Gather+Apply
GetValue
Pregel: GetOutEdgelterator MutableValue
SendMsgTo
Ligra: EdgeMap(including Update)
Medusa: ELIST Combiner

Figure 1. Operations that make up one iteration of SSSP and their mapping to the Gunrock, PowerGraph (GAS), Pregel, Ligra,

and Medusa abstractions.

Funding

DoD XDATA, STTR ST13B-004; NSF OCI-1032859, CCF-1017399.

Results

Table 1: Gunrock’s runtime comparison with other graph libraries
and hardwired GPU implementations. Ligra’s timings for PageRank
and Gunrock’s one-iteration PageRank are in bold. Hardwired GPU
implementations for each primitive are b40c BFS (Merrill et al.,
PPoPP ’12), deltaStep SSSP (Davidson et al., IPDPS ’14), gpu_BC
(Sariytice et al., GPGPU-6 ’13), and conn connected component
labeling (Soman et al., IPDPSW ’10).

Runtime (ms) [lower is better]

Hardwired
Alg. Dataset BGL PG Medusa MapGraph GPU Ligra Gunrock

soc 816 — 75.82 84.08 37.87 574 24.37

r, bitc 480 — 1557 142.4 69.22 949 67.79
A kron 388 — 46.21 44.29 18.67 13.3 17.28
roadnet 72 — 2239 53.44 8.18 51.5 17.16

soc 5664 1900 — 225.7 236.7 172 361.6
bitc 2440 1610 7311 250.9 183.6 133 178.8
kron 1268 1000 — 124.8 125.1 164 105.2

roadnet 408 5800 1143 76.48 163.7 62.2 140

SSSP

soc 2120 — — _ 543.8 264 2053
O bitc 4840 — — _ 1902 271 206.6
R kron 1456 — — — 156.1 526 2469
roadnet 732 — — — 256.3 129 100.1
o« soc 49568 9500 — 5431 — 265 1927 - 175
S bitc 20400 8600 48156 2471 — 240 651.4 -79.6
~ kron 33432 2500 — 5702 _ 114 2766 - 212
£ roadnet 2440 2600 532.8 122.7 — 13.1 6325-4
soc 2176 12802 — 803.8 72 498 110
O bitc 1508 8464 «— 612.5 28 6180 58.33
O kron 716 5375 — 260 48 1890 67.21
roadnet 232 9995 — 1935 8 1320 21.33
Next Steps

- Scalability to multiple GPUs/nodes;

- Higher-level graph primitives;

- In-depth comparison to GAS and Graph BLAS;
- Support for mutable graph /time-series graph.

» Gunrock Website: http://gunrock.github.io

« Author’s Email: yzhwang@Quecdavis.edu

524 UCDAVIS

" .. I/ COLLEGE of ENGINEERING

[m] 7. [m]

;

[=]

(-

