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Abstract 
The estimation of the Maximum Likelihood (MLE) is the most robust 
algorithm used in gamma-ray astronomy but, particularly if used in 
conjunction with unbinned analysis, uses a huge amount of computing 
resources.  Typically, the estimation of the maximum is left to a single-
thread minimizer, like MINUIT, running on a CPU while providing a call-
back function that may estimate the likelihood on the GPU.  We propose 
an alternative to the MINUIT package, that leverages Levenberg-
Marquardt algorithm and Dynamic Parallelism and runs entirely on GPUs. 

Maximum Likelihood Approach 
The Maximum Likelihood Approach (MLA) in High-Energy Astrophysics 
allows to estimate the model that most likely produced the data that were 
collected.    The use of a MLA in scientific analysis dates back to the very 
first definition of likelihood by Fisher (1925), as he originally suggested 
that it could be used for parameter estimation.  Neyman & Pearson (1928) 
t h e n  d e v i s e d  t h e  l i k e l i h o o d  r a t i o  t e s t ,  t o  c o m p a r e 
the null hypothesis against an alternative one, but only when 
Wilks (1938) established an analytical expression, asymptotically exact, 
for this ratio, the so-called Wilks’ theorem, the MLA started 
to be widely employed in science.  A comprehensive treatment of the 
likelihood and the MLA may be found, among other, in Edwards (1972). 

The importance of Wilks’ theorem may be appreciated when 
analyzing the data collected by Fermi LAT (Atwood 2009) over 2 years (the 
2FGL catalog: Nolan 2012).  As can be seen in the picture below, Fig. 1, 
photons cluster around candidate sources, whose likelihood can be 
established via Wilks’ theorem.  Given the paucity of high-energy photons 
compared, for instance, to optical ones, data follow Poisson statistics, 
whose behavior in connection with the likelihood was originally described 
by Cash (1979).  The extension to the MLA was first described by Mattox 
(1996), whose approach we follow here.  The likelihood has also been 
used to reconstruct the parameters of the events collected by HESS1 
as described by de Naurois (2009).  As a test case for our implemen-
tation, we will use the MLA used by the Fermi LAT Collaboration2. 

Figure 1.  A plot in galactic coordinates of data collected by Fermi LAT in 
two years. Photons are denser going from blue to red to yellow to white. 

 
1 Info about HESS may be found at http://www.mpi-hd.mpg.de/hfm/HESS 
2 See http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone 

Implementation 
The whole analysis chain of Fermi LAT develops mainly along the lines shown 
in the picture below (Fig. 2). The most time-consuming items, see Fig. 3 (left), 
are the evaluation of the livetime-cube and of the likelihood.  Whereas the 
livetime cube had already been ported under GPU a while ago3, the likelihood 
evaluation was ported to GPU by A. Pigato as a task in his MSc thesis (2013). 
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Figure 3.  Comparison of execution times for the entire Fermi LAT analysis 
chain. CPU only (on the left) compared to the case when the livetime and 
the actual likelihood data sums are computed on the GPU (on the right). 

Figure 2.  The analysis chain of the Fermi LAT Collaboration.  The most time-
consuming items are the livetime cube calculation (item #5) and the evaluation 
of the likelihood, invoked by the external minimizer to evaluate the model 
parameters that best fit the data and to compute the TS of the source (#6). 

3 http://www.nvidia.com/content/cuda/spotlights/gpu-accelerated-astronomy.html 

Levenberg-Marquardt algorithm  
for maximum-likelihood evaluation 

The goal is to find a set of model parameters 𝒙𝒙 = {𝛼𝛼𝑘𝑘} for which the function 
𝐿𝐿 𝒙𝒙  is minimized: 

𝐿𝐿 𝒙𝒙 = − log𝑓𝑓𝑖𝑖(𝒙𝒙)
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𝐽𝐽𝑗𝑗 𝐸𝐸𝑖𝑖; {𝛼𝛼𝑘𝑘}  is the flux densities corresponding to each source 𝑗𝑗, emitting a 
photon of energy 𝐸𝐸𝑖𝑖. To solve the problem we adopted the Levenberg-Marquardt 
algorithm (LMA) which can be thought as a combination of gradient descent and 
Gauss-Newton minimization methods. 

At each iteration it is necessary to solve a linear system to evaluate the step 𝒉𝒉 
needed to converge towards the local minimum following the iteration scheme: 
𝒙𝒙𝑖𝑖+1 = 𝒙𝒙𝑖𝑖 + 𝒉𝒉. The system 

𝑨𝑨 𝒉𝒉 = − 𝒈𝒈 
is solved via Cholesky decomposition which is the best method to solve 
systems with symmetric and positive definite matrices of coefficients. 
Matrix 𝐀𝐀 is defined as: 

𝑨𝑨 = 𝑯𝑯 + 𝜆𝜆 ⋅ diag 𝑯𝑯 ,  where 𝐻𝐻𝑝𝑝,𝑞𝑞 = − 
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The components of the gradient vector 𝒈𝒈(𝒙𝒙) = 𝛻𝛻𝐿𝐿(𝒙𝒙) are: 
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The parameter 𝜆𝜆 is updated (usually increased or decreased by an order of 
magnitude) at each iteration, depending on how well the function 𝐿𝐿 can be 
approximated by a linearized model. Large values of 𝜆𝜆 bring the algorithm 
closer to the gradient descent method whereas small values of 𝜆𝜆 bring it 
closer to the Gauss-Newton one. 
 

Kernel implementations 
We assumed the flux densities to be in the form 𝐽𝐽𝑗𝑗 𝐸𝐸𝑖𝑖; 𝑘𝑘, 𝑏𝑏 = 𝑘𝑘𝐸𝐸−𝑏𝑏 (power 
law). We implemented two kernels to compute the value 𝐿𝐿(𝒙𝒙) and the 
vector gradient 𝒈𝒈(𝒙𝒙). In both kernels we used the strategy to parallelize on 
bins of photons. The inner summation on the sources (index 𝑗𝑗) is done with 
a for-loop inside the kernel, whereas the summation on the photons (index 
𝑖𝑖) is done on the GPU after each thread corresponding to the index 𝑖𝑖 returns 
the value of 𝑓𝑓𝑖𝑖(𝒙𝒙). The kernel implementing LMA launches at each iteration 
the value and the gradient kernels, going forward in the process. This is 
possible by leveraging dynamic parallelism offered by devices of compute 
capability 3.5 or higher. 

Conclusions 
We envisaged two different strategies for implementing the MLA to search 
for the model that best fits collected data: in the first one, we exploit the 
versatility of minimizing package like MINUIT developed at CERN.  MINUIT 
needs two callback functions from the user, the actual function to be 
minimized and its gradient with respect to the parameters array.  Typically, 
the likelihood, actually its logarithm, consists of a huge sum over the events, 
the pixels or some event templates, which could be run in a much faster way 
on a GPU.  In the case of Fermi LAT likelihood computation, this has lead to 
an average execution acceleration of ~20×.  The second strategy is to devise 
our own minimizer that executes directly on the GPU.  It is not as versatile as 
MINUIT, but adapting the Levenberg-Marquardt algorithm to the 
computation of the maximum likelihood has been proven feasible.  The net 
gain should be that the information about the parameters are not sent back 
and forth from the CPU to the GPU, giving us some more room to gain 
further acceleration.  Preliminary tests applied to the case where spectral 
model were fixed to plain power laws showed a further gain of 2-3×.  Further 
studies will be needed, above all in order to check whether the versatility we 
loose is worth the acceleration we obtain.  
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