

Massively Parallel Resolution of Combinatorial Problems on MultiGPU Clusters

J Loiseau, Ch Jaillet, F Alin, M Krajecki

University of Reims Champagne-Ardenne FRANCE + CReSTIC

Motivations

Solve combinatorial problems on mutli-GPU clusters

- Choose most appropriate library and technologies
- → Use the whole computation power

Optimize CUDA threads placement with blocks, grids and streams

Use NVIDIA tools to optimize the resolution and Cuda code

Langford Problem as a Benchmark

- → Huge combinatorial explosion
- \Rightarrow Challenge for the next record => L(2,27)

Combinatorial Problems Generic Representation

CSP = Constraint Satisfaction Problem:

- Consist of a set of variables, a domain of values for each variable and a set of constraints
- → 3-uple (X,D,C)

CUDA" RESEARCH

CENTER

Combinatorial problems representation:

- → NP-complete => SAT formalism => CSP formalism
- Resolution method (our choice)
 - Tree representation with a static order of the variables and of their values
 - Backtracking traversal of the search tree
- → Parallel resolution
 - Tasks generation = search space partitioning
 - FIIT: Finite number of Independent and Irregular Tasks
 - Our choice: develop to a given depth, avoiding inconsistent assigments

team

Langford Problem

Origin: C Dudley Langford observed his son playing with colored cubes, and he noticed a singular cubes arrangement:

- two cubes of a given color separated by 1 other cube
- two cubes of another color separated by 2 cubes

<u>Description:</u> *n* pairs of cubes => count the arrangements such that the distances between the two cubes of the different pairs are 1,2, ... n

L(2,n) represents the number of these solutions, up to reversal

Formalism: a Langford sequence of order *n* is composed of *2n* integers, *L*₁, ... *L*_{2n}

 $\forall i \in \llbracket 1,2n \rrbracket \ L_i \in \llbracket 1,n \rrbracket$ such that $\{\forall k \in [1,n] \exists ! (i,j), i < j, L_i = L_j = k\}$ $\forall k \in [1,n] L_i = L_j = k, i < j => j-i = k+1$

Some results: $L(2,n) \neq 0 \Leftrightarrow n = 4k \text{ or } n = 4k-1 \text{ } k > 0$

ESUITS: $L(2,n) \neq 0 \Leftrightarrow n = 4k \text{ or } n = 4k-1, k > 0$			
	n	L(2,n)	method
		•••	Miller algorithm
	15	39,809,640	
	16	326,721,800	
	19	256,814,891,280	2.5 y (1999) DEC Alpha
			Godfrey algorithm
	20	2,636,337,861,200	1 w (2002) AMD/Pentium
	23	3,799,455,942,515,488	distributed, 4 d (2004) ≈70 processors
	24	46,845,158,056,515,936	distributed, 3 m (2004) ≈12 processors

Generic Distribution and Computation Scheme, with GPU Regularized Tree Traversal

Cluster view:

- Cluster as distributed nodes aggregation
- Client-Server repartition of the tasks
- Nodes: GPU coupled with CPU

Problem: GPUs suffer from threads divergence when branching

Proposition: Create regularized GPU tasks

Tasks generation

- Generate tasks to a given level and prepare work for GPUs
- → GPUs tasks are vectorized : exhaustive computation of the last few levels

Method:

- A task is a consistent arrangement of placed pairs represented by a mask that reports the free places
- ⇒ Each part place a defined number of pairs and generate binary representation called *masks*

- → Limitation due to the number of registers: 5 pairs on GPU => 57 registers/threads
- ⇒ Using streams for the memory/computation overlapping

→ Adding OpenMP to generate data for the GPU

Results (Vectorized resolution on GPUs):

Romeo HPC Tesla Cluster

Multi-level parallelization

CUDA K20X GPUs

Regularized algorithm

for variable

MPI communications

cores repartition

Bull Cool Cabinet Door 151th 254.9 Tflops

260 NVIDIA Tesla **K20X**

260 INTEL lvy Bridge E5-2650 v2 (NetApp), 57 To home, 100 To

Big Data, on-demand and remote

VirtualGL technology servers Quadro 6000 & 5800

NVIDIA GRID + Citrix Virtualisation

NVIDIA VGX K2

Scalable Graphics 3D cloud solution **NVIDIA K6000**

Massive Hybrid Backtrack Scheme for the Langford Problem : experimental results

Cluster view:

Same representation as the Vectorized method Client-Server repartition

Method: Miller algorithm

- use Backtrack directly on GPU and don't care about lost of threads synchronisation
- → Generate tasks to a given level and generate work for CPU/GPU
- Tasks spread between CPU cores and GPUs (static repartition)

Results (Backtrack only with trust in GPU scheduler):

GPU scheduler efficiancy + scalable resolution scheme up to 100% of the ROMEO supercomputer

1 server + 128 nodes for solving => 256 CPU+GPU clients

time (seconds) 6.506 29.847 290.052 3197.526 20 39479.630 ≅ 11h 21 118512.420 ≅ 33h Previous limit of the Miller algorithm was L(2,19) and took 2.5y computation L(2,20)L(2,21)

Conclusions & Prospects

A massive parallel resolution scheme for combinatorial problems

- Generic resolution scheme
- Multi-level CPU-GPU parallelization
- GPU vectorized resolution *vs* native backtrack
- Further work: adapt to combinatorial optimization problems

Langford benchmark

- Proof of the resolution scheme
- L(2,21): previous Miller algorithm limit exceeded
- New ways with the algrebraic Godfrey's method:
 - + natively regular; faster - high GPU porting effort

Benchmark proposal for hybrid HPC cluster architectures

The exascale objective requires new hardware and algorithmic approaches. In this context the *Linpack* is disputed and new benchmarks should be proposed.

Some benchmark as the *Graph500* are becoming increasingly important. In a more general way, combinatorial problems should represent new benchmarks for HPC architectures. We aim at proposing new ways to solve them efficiently.