
Gradle User Guide

Version 2.3



Copyright © 2007-2012 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not

charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.



Table of Contents
1. Introduction

1.1. About this user guide

2. Overview
2.1. Features
2.2. Why Groovy?

3. Tutorials
3.1. Getting Started

4. Installing Gradle
4.1. Prerequisites
4.2. Download
4.3. Unpacking
4.4. Environment variables
4.5. Running and testing your installation
4.6. JVM options

5. Troubleshooting
5.1. Working through problems
5.2. Getting help

6. Build Script Basics
6.1. Projects and tasks
6.2. Hello world
6.3. A shortcut task definition
6.4. Build scripts are code
6.5. Task dependencies
6.6. Dynamic tasks
6.7. Manipulating existing tasks
6.8. Shortcut notations
6.9. Extra task properties
6.10. Using Ant Tasks
6.11. Using methods
6.12. Default tasks
6.13. Configure by DAG
6.14. Where to next?

7. Java Quickstart
7.1. The Java plugin
7.2. A basic Java project
7.3. Multi-project Java build
7.4. Where to next?

8. Dependency Management Basics
8.1. What is dependency management?
8.2. Declaring your dependencies
8.3. Dependency configurations
8.4. External dependencies
8.5. Repositories
8.6. Publishing artifacts
8.7. Where to next?

9. Groovy Quickstart
9.1. A basic Groovy project
9.2. Summary

10. Web Application Quickstart
10.1. Building a WAR file
10.2. Running your web application



10.3. Summary

11. Using the Gradle Command-Line
11.1. Executing multiple tasks
11.2. Excluding tasks
11.3. Continuing the build when a failure occurs
11.4. Task name abbreviation
11.5. Selecting which build to execute
11.6. Obtaining information about your build
11.7. Dry Run
11.8. Summary

12. Using the Gradle Graphical User Interface
12.1. Task Tree
12.2. Favorites
12.3. Command Line
12.4. Setup

13. Writing Build Scripts
13.1. The Gradle build language
13.2. The Project API
13.3. The Script API
13.4. Declaring variables
13.5. Some Groovy basics

14. Tutorial - 'This and That'
14.1. Directory creation
14.2. Gradle properties and system properties
14.3. Configuring the project using an external build script
14.4. Configuring arbitrary objects
14.5. Configuring arbitrary objects using an external script
14.6. Caching

15. More about Tasks
15.1. Defining tasks
15.2. Locating tasks
15.3. Configuring tasks
15.4. Adding dependencies to a task
15.5. Ordering tasks
15.6. Adding a description to a task
15.7. Replacing tasks
15.8. Skipping tasks
15.9. Skipping tasks that are up-to-date
15.10. Task rules
15.11. Finalizer tasks
15.12. Summary

16. Working With Files
16.1. Locating files
16.2. File collections
16.3. File trees
16.4. Using the contents of an archive as a file tree
16.5. Specifying a set of input files
16.6. Copying files
16.7. Using the  taskSync
16.8. Creating archives

17. Using Ant from Gradle
17.1. Using Ant tasks and types in your build
17.2. Importing an Ant build
17.3. Ant properties and references
17.4. API

18. Logging



18.1. Choosing a log level
18.2. Writing your own log messages
18.3. Logging from external tools and libraries
18.4. Changing what Gradle logs

19. The Gradle Daemon
19.1. Enter the daemon
19.2. Reusing and expiration of daemons
19.3. Usage and troubleshooting
19.4. Configuring the daemon

20. The Build Environment
20.1. Configuring the build environment via gradle.properties
20.2. Accessing the web via a proxy

21. Gradle Plugins
21.1. What plugins do
21.2. Types of plugins
21.3. Applying plugins
21.4. Applying plugins with the buildscript block
21.5. Applying plugins with the plugins DSL
21.6. Finding community plugins
21.7. More on plugins

22. Standard Gradle plugins
22.1. Language plugins
22.2. Incubating language plugins
22.3. Integration plugins
22.4. Incubating integration plugins
22.5. Software development plugins
22.6. Incubating software development plugins
22.7. Base plugins
22.8. Third party plugins

23. The Java Plugin
23.1. Usage
23.2. Source sets
23.3. Tasks
23.4. Project layout
23.5. Dependency management
23.6. Convention properties
23.7. Working with source sets
23.8. Javadoc
23.9. Clean
23.10. Resources
23.11. CompileJava
23.12. Incremental Java compilation
23.13. Test
23.14. Jar
23.15. Uploading

24. The Groovy Plugin
24.1. Usage
24.2. Tasks
24.3. Project layout
24.4. Dependency management
24.5. Automatic configuration of groovyClasspath
24.6. Convention properties
24.7. Source set properties
24.8. GroovyCompile

25. The Scala Plugin
25.1. Usage
25.2. Tasks



25.3. Project layout
25.4. Dependency management
25.5. Automatic configuration of scalaClasspath
25.6. Convention properties
25.7. Source set properties
25.8. Fast Scala Compiler
25.9. Compiling in external process
25.10. Incremental compilation
25.11. Eclipse Integration
25.12. IntelliJ IDEA Integration

26. The War Plugin
26.1. Usage
26.2. Tasks
26.3. Project layout
26.4. Dependency management
26.5. Convention properties
26.6. War
26.7. Customizing

27. The Ear Plugin
27.1. Usage
27.2. Tasks
27.3. Project layout
27.4. Dependency management
27.5. Convention properties
27.6. Ear
27.7. Customizing
27.8. Using custom descriptor file

28. The Jetty Plugin
28.1. Usage
28.2. Tasks
28.3. Project layout
28.4. Dependency management
28.5. Convention properties

29. The Checkstyle Plugin
29.1. Usage
29.2. Tasks
29.3. Project layout
29.4. Dependency management
29.5. Configuration

30. The CodeNarc Plugin
30.1. Usage
30.2. Tasks
30.3. Project layout
30.4. Dependency management
30.5. Configuration

31. The FindBugs Plugin
31.1. Usage
31.2. Tasks
31.3. Dependency management
31.4. Configuration

32. The JDepend Plugin
32.1. Usage
32.2. Tasks
32.3. Dependency management
32.4. Configuration

33. The PMD Plugin



33.1. Usage
33.2. Tasks
33.3. Dependency management
33.4. Configuration

34. The JaCoCo Plugin
34.1. Getting Started
34.2. Configuring the JaCoCo Plugin
34.3. JaCoCo Report configuration
34.4. JaCoCo specific task configuration
34.5. Tasks
34.6. Dependency management

35. The Sonar Plugin
35.1. Usage
35.2. Analyzing Multi-Project Builds
35.3. Analyzing Custom Source Sets
35.4. Analyzing languages other than Java
35.5. Setting Custom Sonar Properties
35.6. Configuring Sonar Settings from the Command Line
35.7. Tasks

36. The Sonar Runner Plugin
36.1. Sonar Runner version and compatibility
36.2. Getting started
36.3. Configuring the Sonar Runner
36.4. Specifying the Sonar Runner version
36.5. Analyzing Multi-Project Builds
36.6. Analyzing Custom Source Sets
36.7. Analyzing languages other than Java
36.8. More on configuring Sonar properties
36.9. Setting Sonar Properties from the Command Line
36.10. Controlling the Sonar Runner process
36.11. Tasks

37. The OSGi Plugin
37.1. Usage
37.2. Implicitly applied plugins
37.3. Tasks
37.4. Dependency management
37.5. Convention object
37.6.

38. The Eclipse Plugins
38.1. Usage
38.2. Tasks
38.3. Configuration
38.4. Customizing the generated files

39. The IDEA Plugin
39.1. Usage
39.2. Tasks
39.3. Configuration
39.4. Customizing the generated files
39.5. Further things to consider

40. The ANTLR Plugin
40.1. Usage
40.2. Tasks
40.3. Project layout
40.4. Dependency management
40.5. Convention properties
40.6. Source set properties
40.7. Controlling the ANTLR generator process



41. The Project Report Plugin
41.1. Usage
41.2. Tasks
41.3. Project layout
41.4. Dependency management
41.5. Convention properties

42. The Announce Plugin
42.1. Usage
42.2. Configuration

43. The Build Announcements Plugin
43.1. Usage

44. The Distribution Plugin
44.1. Usage
44.2. Tasks
44.3. Distribution contents
44.4. Publishing distributions

45. The Application Plugin
45.1. Usage
45.2. Tasks
45.3. Convention properties
45.4. Including other resources in the distribution

46. The Java Library Distribution Plugin
46.1. Usage
46.2. Tasks
46.3. Including other resources in the distribution

47. Build Init Plugin
47.1. Tasks
47.2. What to set up
47.3. Build init types

48. Wrapper Plugin
48.1. Usage
48.2. Tasks

49. The Build Dashboard Plugin
49.1. Usage
49.2. Tasks
49.3. Project layout
49.4. Dependency management
49.5. Configuration

50. The Java Gradle Plugin Development Plugin
50.1. Usage

51. Dependency Management
51.1. Introduction
51.2. Dependency Management Best Practices
51.3. Dependency configurations
51.4. How to declare your dependencies
51.5. Working with dependencies
51.6. Repositories
51.7. How dependency resolution works
51.8. Fine-tuning the dependency resolution process
51.9. The dependency cache
51.10. Strategies for transitive dependency management

52. Publishing artifacts
52.1. Introduction
52.2. Artifacts and configurations



52.3. Declaring artifacts
52.4. Publishing artifacts
52.5. More about project libraries

53. The Maven Plugin
53.1. Usage
53.2. Tasks
53.3. Dependency management
53.4. Convention properties
53.5. Convention methods
53.6. Interacting with Maven repositories

54. The Signing Plugin
54.1. Usage
54.2. Signatory credentials
54.3. Specifying what to sign
54.4. Publishing the signatures
54.5. Signing POM files

55. Building native binaries
55.1. Supported languages
55.2. Tool chain support
55.3. Tool chain installation
55.4. Component model
55.5. Building a library
55.6. Building an executable
55.7. Tasks
55.8. Finding out more about your project
55.9. Language support
55.10. Configuring the compiler, assembler and linker
55.11. Windows Resources
55.12. Library Dependencies
55.13. Native Binary Variants
55.14. Tool chains
55.15. Visual Studio IDE integration
55.16. CUnit support

56. The Build Lifecycle
56.1. Build phases
56.2. Settings file
56.3. Multi-project builds
56.4. Initialization
56.5. Configuration and execution of a single project build
56.6. Responding to the lifecycle in the build script

57. Multi-project Builds
57.1. Cross project configuration
57.2. Subproject configuration
57.3. Execution rules for multi-project builds
57.4. Running tasks by their absolute path
57.5. Project and task paths
57.6. Dependencies - Which dependencies?
57.7. Project lib dependencies
57.8. Parallel project execution
57.9. Decoupled Projects
57.10. Multi-Project Building and Testing
57.11. Multi Project and buildSrc
57.12. Property and method inheritance
57.13. Summary

58. Writing Custom Task Classes
58.1. Packaging a task class
58.2. Writing a simple task class



58.3. A standalone project
58.4. Incremental tasks

59. Writing Custom Plugins
59.1. Packaging a plugin
59.2. Writing a simple plugin
59.3. Getting input from the build
59.4. Working with files in custom tasks and plugins
59.5. A standalone project
59.6. Maintaining multiple domain objects

60. Organizing Build Logic
60.1. Inherited properties and methods
60.2. Injected configuration
60.3. Build sources in the  projectbuildSrc
60.4. Running another Gradle build from a build
60.5. External dependencies for the build script
60.6. Ant optional dependencies
60.7. Summary

61. Initialization Scripts
61.1. Basic usage
61.2. Using an init script
61.3. Writing an init script
61.4. External dependencies for the init script
61.5. Init script plugins

62. The Gradle Wrapper
62.1. Configuration
62.2. Unix file permissions

63. Embedding Gradle
63.1. Introduction to the Tooling API
63.2. Tooling API and the Gradle Build Daemon
63.3. Quickstart

64. Comparing Builds
64.1. Definition of terms
64.2. Current Capabilities
64.3. Comparing Gradle Builds

65. Ivy Publishing (new)
65.1. The “ ” Pluginivy-publish
65.2. Publications
65.3. Repositories
65.4. Performing a publish
65.5. Generating the Ivy module descriptor file without publishing
65.6. Complete example
65.7. Future features

66. Maven Publishing (new)
66.1. The “ ” Pluginmaven-publish
66.2. Publications
66.3. Repositories
66.4. Performing a publish
66.5. Publishing to Maven Local
66.6. Generating the POM file without publishing

A. Gradle Samples
A.1. Sample customBuildLanguage
A.2. Sample customDistribution
A.3. Sample customPlugin
A.4. Sample java/multiproject

B. Potential Traps



B.1. Groovy script variables
B.2. Configuration and execution phase

C. The Feature Lifecycle
C.1. States
C.2. Backwards Compatibility Policy

D. Gradle Command Line
D.1. Deprecated command-line options
D.2. Daemon command-line options
D.3. System properties
D.4. Environment variables

E. Existing IDE Support and how to cope without it
E.1. IntelliJ
E.2. Eclipse
E.3. Using Gradle without IDE support

Glossary

List of Examples

6.1. Your first build script

6.2. Execution of a build script

6.3. A task definition shortcut

6.4. Using Groovy in Gradle's tasks

6.5. Using Groovy in Gradle's tasks

6.6. Declaration of task that depends on other task

6.7. Lazy dependsOn - the other task does not exist (yet)

6.8. Dynamic creation of a task

6.9. Accessing a task via API - adding a dependency

6.10. Accessing a task via API - adding behaviour

6.11. Accessing task as a property of the build script

6.12. Adding extra properties to a task

6.13. Using AntBuilder to execute ant.loadfile target

6.14. Using methods to organize your build logic

6.15. Defining a default tasks

6.16. Different outcomes of build depending on chosen tasks

7.1. Using the Java plugin

7.2. Building a Java project

7.3. Adding Maven repository

7.4. Adding dependencies

7.5. Customization of MANIFEST.MF

7.6. Adding a test system property

7.7. Publishing the JAR file

7.8. Eclipse plugin

7.9. Java example - complete build file

7.10. Multi-project build - hierarchical layout

7.11. Multi-project build - settings.gradle file

7.12. Multi-project build - common configuration

7.13. Multi-project build - dependencies between projects

7.14. Multi-project build - distribution file

8.1. Declaring dependencies

8.2. Definition of an external dependency



8.3. Shortcut definition of an external dependency

8.4. Usage of Maven central repository

8.5. Usage of a remote Maven repository

8.6. Usage of a remote Ivy directory

8.7. Usage of a local Ivy directory

8.8. Publishing to an Ivy repository

8.9. Publishing to a Maven repository

9.1. Groovy plugin

9.2. Dependency on Groovy

9.3. Groovy example - complete build file

10.1. War plugin

10.2. Running web application with Jetty plugin

11.1. Executing multiple tasks

11.2. Excluding tasks

11.3. Abbreviated task name

11.4. Abbreviated camel case task name

11.5. Selecting the project using a build file

11.6. Selecting the project using project directory

11.7. Obtaining information about projects

11.8. Providing a description for a project

11.9. Obtaining information about tasks

11.10. Changing the content of the task report

11.11. Obtaining more information about tasks

11.12. Obtaining detailed help for tasks

11.13. Obtaining information about dependencies

11.14. Filtering dependency report by configuration

11.15. Getting the insight into a particular dependency

11.16. Information about properties

12.1. Launching the GUI

13.1. Accessing property of the Project object

13.2. Using local variables

13.3. Using extra properties

13.4. Groovy JDK methods

13.5. Property accessors

13.6. Method call without parentheses

13.7. List and map literals

13.8. Closure as method parameter

13.9. Closure delegates

14.1. Directory creation with mkdir

14.2. Setting properties with a gradle.properties file

14.3. Configuring the project using an external build script

14.4. Configuring arbitrary objects

14.5. Configuring arbitrary objects using a script

15.1. Defining tasks

15.2. Defining tasks - using strings for task names

15.3. Defining tasks with alternative syntax

15.4. Accessing tasks as properties

15.5. Accessing tasks via tasks collection



15.6. Accessing tasks by path

15.7. Creating a copy task

15.8. Configuring a task - various ways

15.9. Configuring a task - with closure

15.10. Defining a task with closure

15.11. Adding dependency on task from another project

15.12. Adding dependency using task object

15.13. Adding dependency using closure

15.14. Adding a 'must run after' task ordering

15.15. Adding a 'should run after' task ordering

15.16. Task ordering does not imply task execution

15.17. A 'should run after' task ordering is ignored if it introduces an ordering cycle

15.18. Adding a description to a task

15.19. Overwriting a task

15.20. Skipping a task using a predicate

15.21. Skipping tasks with StopExecutionException

15.22. Enabling and disabling tasks

15.23. A generator task

15.24. Declaring the inputs and outputs of a task

15.25. Task rule

15.26. Dependency on rule based tasks

15.27. Adding a task finalizer

15.28. Task finalizer for a failing task

16.1. Locating files

16.2. Creating a file collection

16.3. Using a file collection

16.4. Implementing a file collection

16.5. Creating a file tree

16.6. Using a file tree

16.7. Using an archive as a file tree

16.8. Specifying a set of files

16.9. Specifying a set of files

16.10. Copying files using the copy task

16.11. Specifying copy task source files and destination directory

16.12. Selecting the files to copy

16.13. Copying files using the copy() method without up-to-date check

16.14. Copying files using the copy() method with up-to-date check

16.15. Renaming files as they are copied

16.16. Filtering files as they are copied

16.17. Nested copy specs

16.18. Using the Sync task to copy dependencies

16.19. Creating a ZIP archive

16.20. Creation of ZIP archive

16.21. Configuration of archive task - custom archive name

16.22. Configuration of archive task - appendix & classifier

17.1. Using an Ant task

17.2. Passing nested text to an Ant task

17.3. Passing nested elements to an Ant task



17.4. Using an Ant type

17.5. Using a custom Ant task

17.6. Declaring the classpath for a custom Ant task

17.7. Using a custom Ant task and dependency management together

17.8. Importing an Ant build

17.9. Task that depends on Ant target

17.10. Adding behaviour to an Ant target

17.11. Ant target that depends on Gradle task

17.12. Renaming imported Ant targets

17.13. Setting an Ant property

17.14. Getting an Ant property

17.15. Setting an Ant reference

17.16. Getting an Ant reference

18.1. Using stdout to write log messages

18.2. Writing your own log messages

18.3. Using SLF4J to write log messages

18.4. Configuring standard output capture

18.5. Configuring standard output capture for a task

18.6. Customizing what Gradle logs

20.1. Configuring an HTTP proxy

20.2. Configuring an HTTPS proxy

21.1. Applying a script plugin

21.2. Applying a binary plugin

21.3. Applying a binary plugin by type

21.4. Applying a plugin with the buildscript block

21.5. Applying a core plugin

21.6. Applying a community plugin

23.1. Using the Java plugin

23.2. Custom Java source layout

23.3. Accessing a source set

23.4. Configuring the source directories of a source set

23.5. Defining a source set

23.6. Defining source set dependencies

23.7. Compiling a source set

23.8. Assembling a JAR for a source set

23.9. Generating the Javadoc for a source set

23.10. Running tests in a source set

23.11. Filtering tests in the build script

23.12. JUnit Categories

23.13. Grouping TestNG tests

23.14. Creating a unit test report for subprojects

23.15. Customization of MANIFEST.MF

23.16. Creating a manifest object.

23.17. Separate MANIFEST.MF for a particular archive

23.18. Separate MANIFEST.MF for a particular archive

24.1. Using the Groovy plugin

24.2. Custom Groovy source layout

24.3. Configuration of Groovy dependency



24.4. Configuration of Groovy test dependency

24.5. Configuration of bundled Groovy dependency

24.6. Configuration of Groovy file dependency

25.1. Using the Scala plugin

25.2. Custom Scala source layout

25.3. Declaring a Scala dependency for production code

25.4. Declaring a Scala dependency for test code

25.5. Enabling the Fast Scala Compiler

25.6. Adjusting memory settings

25.7. Activating the Zinc based compiler

26.1. Using the War plugin

26.2. Customization of war plugin

27.1. Using the Ear plugin

27.2. Customization of ear plugin

28.1. Using the Jetty plugin

29.1. Using the Checkstyle plugin

30.1. Using the CodeNarc plugin

31.1. Using the FindBugs plugin

32.1. Using the JDepend plugin

33.1. Using the PMD plugin

34.1. Applying the JaCoCo plugin

34.2. Configuring JaCoCo plugin settings

34.3. Configuring test task

34.4. Configuring test task

34.5. Using application plugin to generate code coverage data

34.6. Coverage reports generated by applicationCodeCoverageReport

35.1. Applying the Sonar plugin

35.2. Configuring Sonar connection settings

35.3. Configuring Sonar project settings

35.4. Global configuration in a multi-project build

35.5. Common project configuration in a multi-project build

35.6. Individual project configuration in a multi-project build

35.7. Configuring the language to be analyzed

35.8. Using property syntax

35.9. Analyzing custom source sets

35.10. Analyzing languages other than Java

35.11. Setting custom global properties

35.12. Setting custom project properties

35.13. Implementing custom command line properties

36.1. Applying the Sonar Runner plugin

36.2. Configuring Sonar connection settings

36.3. Configuring Sonar runner version

36.4. Global configuration settings

36.5. Shared configuration settings

36.6. Individual configuration settings

36.7. Skipping analysis of a project

36.8. Analyzing custom source sets

36.9. Analyzing languages other than Java



36.10. setting custom Sonar Runner fork options

37.1. Using the OSGi plugin

37.2. Configuration of OSGi MANIFEST.MF file

38.1. Using the Eclipse plugin

38.2. Using the Eclipse WTP plugin

38.3. Partial Overwrite for Classpath

38.4. Partial Overwrite for Project

38.5. Export Dependencies

38.6. Customizing the XML

39.1. Using the IDEA plugin

39.2. Partial Rewrite for Module

39.3. Partial Rewrite for Project

39.4. Export Dependencies

39.5. Customizing the XML

40.1. Using the ANTLR plugin

40.2. Declare ANTLR version

40.3. setting custom max heap size for ANTLR

42.1. Using the announce plugin

42.2. Configure the announce plugin

42.3. Using the announce plugin

43.1. Using the build announcements plugin

43.2. Using the build announcements plugin from an init script

44.1. Using the distribution plugin

44.2. Adding extra distributions

44.3. Configuring the main distribution

44.4. publish main distribution

45.1. Using the application plugin

45.2. Configure the application main class

45.3. Configure default JVM settings

45.4. Include output from other tasks in the application distribution

45.5. Automatically creating files for distribution

46.1. Using the Java library distribution plugin

46.2. Configure the distribution name

46.3. Include files in the distribution

49.1. Using the Build Dashboard plugin

50.1. Using the Java Gradle Plugin Development plugin

51.1. Definition of a configuration

51.2. Accessing a configuration

51.3. Configuration of a configuration

51.4. Module dependencies

51.5. Artifact only notation

51.6. Dependency with classifier

51.7. Iterating over a configuration

51.8. Client module dependencies - transitive dependencies

51.9. Project dependencies

51.10. File dependencies

51.11. Generated file dependencies

51.12. Gradle API dependencies



51.13. Gradle's Groovy dependencies

51.14. Excluding transitive dependencies

51.15. Optional attributes of dependencies

51.16. Collections and arrays of dependencies

51.17. Dependency configurations

51.18. Dependency configurations for project

51.19. Configuration.copy

51.20. Accessing declared dependencies

51.21. Configuration.files

51.22. Configuration.files with spec

51.23. Configuration.copy

51.24. Configuration.copy vs. Configuration.files

51.25. Declaring a Maven and Ivy repository

51.26. Providing credentials to a Maven and Ivy repository

51.27. Adding central Maven repository

51.28. Adding Bintray's JCenter Maven repository

51.29. Using Bintrays's JCenter with HTTP

51.30. Adding the local Maven cache as a repository

51.31. Adding custom Maven repository

51.32. Adding additional Maven repositories for JAR files

51.33. Accessing password protected Maven repository

51.34. Flat repository resolver

51.35. Ivy repository

51.36. Ivy repository with named layout

51.37. Ivy repository with pattern layout

51.38. Ivy repository with multiple custom patterns

51.39. Ivy repository with Maven compatible layout

51.40. Ivy repository

51.41. Accessing a repository

51.42. Configuration of a repository

51.43. Definition of a custom repository

51.44. Forcing consistent version for a group of libraries

51.45. Using a custom versioning scheme

51.46. Blacklisting a version with a replacement

51.47. Changing dependency group and/or name at the resolution

51.48. Declaring module replacement

51.49. Enabling dynamic resolve mode

51.50. 'Latest' version selector

51.51. Custom status scheme

51.52. Custom status scheme by module

51.53. Ivy component metadata rule

51.54. Rule source component metadata rule

51.55. Component selection rule

51.56. Component selection rule with module target

51.57. Component selection rule with metadata

51.58. Component selection rule using a rule source object

51.59. Dynamic version cache control

51.60. Changing module cache control



52.1. Defining an artifact using an archive task

52.2. Defining an artifact using a file

52.3. Customizing an artifact

52.4. Map syntax for defining an artifact using a file

52.5. Configuration of the upload task

53.1. Using the Maven plugin

53.2. Creating a stand alone pom.

53.3. Upload of file to remote Maven repository

53.4. Upload of file via SSH

53.5. Customization of pom

53.6. Builder style customization of pom

53.7. Modifying auto-generated content

53.8. Customization of Maven installer

53.9. Generation of multiple poms

53.10. Accessing a mapping configuration

54.1. Using the Signing plugin

54.2. Signing a configuration

54.3. Signing a configuration output

54.4. Signing a task

54.5. Signing a task output

54.6. Conditional signing

54.7. Signing a POM for deployment

55.1. Defining a library component

55.2. Defining executable components

55.3. The components report

55.4. The 'cpp' plugin

55.5. C++ source set

55.6. The 'c' plugin

55.7. C source set

55.8. The 'assembler' plugin

55.9. The 'objective-c' plugin

55.10. The 'objective-cpp' plugin

55.11. Settings that apply to all binaries

55.12. Settings that apply to all shared libraries

55.13. Settings that apply to all binaries produced for the 'main' executable component

55.14. Settings that apply only to shared libraries produced for the 'main' library component

55.15. The 'windows-resources' plugin

55.16. Configuring the location of Windows resource sources

55.17. Building a resource-only dll

55.18. Providing a library dependency to the source set

55.19. Providing a library dependency to the binary

55.20. Declaring project dependencies

55.21. Defining build types

55.22. Configuring debug binaries

55.23. Defining platforms

55.24. Defining flavors

55.25. Targeting a component at particular platforms

55.26. Building all possible variants



55.27. Defining tool chains

55.28. Reconfigure tool arguments

55.29. Defining target platforms

55.30. Registering CUnit tests

55.31. Registering CUnit tests

55.32. Running CUnit tests

56.1. Single project build

56.2. Hierarchical layout

56.3. Flat layout

56.4. Modification of elements of the project tree

56.5. Modification of elements of the project tree

56.6. Adding of test task to each project which has certain property set

56.7. Notifications

56.8. Setting of certain property to all tasks

56.9. Logging of start and end of each task execution

57.1. Multi-project tree - water & bluewhale projects

57.2. Build script of water (parent) project

57.3. Multi-project tree - water, bluewhale & krill projects

57.4. Water project build script

57.5. Defining common behavior of all projects and subprojects

57.6. Defining specific behaviour for particular project

57.7. Defining specific behaviour for project krill

57.8. Adding custom behaviour to some projects (filtered by project name)

57.9. Adding custom behaviour to some projects (filtered by project properties)

57.10. Running build from subproject

57.11. Evaluation and execution of projects

57.12. Evaluation and execution of projects

57.13. Running tasks by their absolute path

57.14. Dependencies and execution order

57.15. Dependencies and execution order

57.16. Dependencies and execution order

57.17. Declaring dependencies

57.18. Declaring dependencies

57.19. Cross project task dependencies

57.20. Configuration time dependencies

57.21. Configuration time dependencies - evaluationDependsOn

57.22. Configuration time dependencies

57.23. Dependencies - real life example - crossproject configuration

57.24. Project lib dependencies

57.25. Project lib dependencies

57.26. Fine grained control over dependencies

57.27. Build and Test Single Project

57.28. Partial Build and Test Single Project

57.29. Build and Test Depended On Projects

57.30. Build and Test Dependent Projects

58.1. Defining a custom task

58.2. A hello world task

58.3. A customizable hello world task



58.4. A build for a custom task

58.5. A custom task

58.6. Using a custom task in another project

58.7. Testing a custom task

58.8. Defining an incremental task action

58.9. Running the incremental task for the first time

58.10. Running the incremental task with unchanged inputs

58.11. Running the incremental task with updated input files

58.12. Running the incremental task with an input file removed

58.13. Running the incremental task with an output file removed

58.14. Running the incremental task with an input property changed

59.1. A custom plugin

59.2. A custom plugin extension

59.3. A custom plugin with configuration closure

59.4. Evaluating file properties lazily

59.5. A build for a custom plugin

59.6. Wiring for a custom plugin

59.7. Using a custom plugin in another project

59.8. Applying a community plugin with the plugins DSL

59.9. Testing a custom plugin

59.10. Using the Java Gradle Plugin Development plugin

59.11. Managing domain objects

60.1. Using inherited properties and methods

60.2. Using injected properties and methods

60.3. Custom buildSrc build script

60.4. Adding subprojects to the root buildSrc project

60.5. Running another build from a build

60.6. Declaring external dependencies for the build script

60.7. A build script with external dependencies

60.8. Ant optional dependencies

61.1. Using init script to perform extra configuration before projects are evaluated

61.2. Declaring external dependencies for an init script

61.3. An init script with external dependencies

61.4. Using plugins in init scripts

62.1. Wrapper task

62.2. Wrapper generated files

65.1. Applying the “ivy-publish” plugin

65.2. Publishing a Java module to Ivy

65.3. Publishing additional artifact to Ivy

65.4. customizing the publication identity

65.5. Customizing the module descriptor file

65.6. Publishing multiple modules from a single project

65.7. Declaring repositories to publish to

65.8. Choosing a particular publication to publish

65.9. Publishing all publications via the “publish” lifecycle task

65.10. Generating the Ivy module descriptor file

65.11. Publishing a Java module

65.12. Example generated ivy.xml



66.1. Applying the 'maven-publish' plugin

66.2. Adding a MavenPublication for a Java component

66.3. Adding additional artifact to a MavenPublication

66.4. customizing the publication identity

66.5. Modifying the POM file

66.6. Publishing multiple modules from a single project

66.7. Declaring repositories to publish to

66.8. Publishing a project to a Maven repository

66.9. Publish a project to the Maven local repository

66.10. Generate a POM file without publishing

B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase



Page 22 of 448

1
Introduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build technology

in the Java (JVM) world. Gradle provides:

A very flexible general purpose build tool like Ant.

Switchable, build-by-convention frameworks a la Maven. But we never lock you in!

Very powerful support for multi-project builds.

Very powerful dependency management (based on Apache Ivy).

Full support for your existing Maven or Ivy repository infrastructure.

Support for transitive dependency management without the need for remote repositories or  and pom.xml ivy.xml

files.

Ant tasks and builds as first class citizens.

 build scripts.Groovy

A rich domain model for describing your build.

In  you will find a detailed overview of Gradle. Otherwise, the  are waiting, haveChapter 2, Overview tutorials

fun :)

1.1. About this user guide
This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't documented as

completely as they need to be. Some of the content presented won't be entirely clear or will assume that you

know more about Gradle than you do. We need your help to improve this user guide. You can find out more

about contributing to the documentation at the .Gradle web site

Throughout the user guide, you will find some diagrams that represent dependency relationships between

Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow from

one task to the task that the first task depends on.

http://www.gradle.org/contribute


Page 23 of 448

2
Overview

2.1. Features
Here is a list of some of Gradle's features.

Declarative builds and build-by-convention

At the heart of Gradle lies a rich extensible Domain Specific Language (DSL) based on Groovy. Gradle

pushes declarative builds to the next level by providing declarative language elements that you can assemble

as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi, Web and

Scala projects. Even more, this declarative language is extensible. Add your own new language elements or

enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming

The declarative language lies on top of a general purpose task graph, which you can fully leverage in your

builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structure your build

The suppleness and richness of Gradle finally allows you to apply common design principles to your build.

For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff where

unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs together (e.g. in

your project hierarchy). Avoid smells like shotgun changes or divergent change that turn your build into a

maintenance nightmare. At last you can create a well structured, easily maintained, comprehensible build.

Deep API

From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build execution,

Gradle allows you to monitor and customize its configuration and execution behavior to its very core.

Gradle scales

Gradle scales very well. It significantly increases your productivity, from simple single project builds up to

huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art incremental

build function, this is also true for tackling the performance pain many large enterprise builds suffer from.

Multi-project builds

Gradle's support for multi-project build is outstanding. Project dependencies are first class citizens. We

allow you to model the project relationships in a multi-project build as they really are for your problem

domain. Gradle follows your layout not vice versa.

Gradle provides partial builds. If you build a single subproject Gradle takes care of building all the

subprojects that subproject depends on. You can also choose to rebuild the subprojects that depend on a

particular subproject. Together with incremental builds this is a big time saver for larger builds.



Page 24 of 448

Many ways to manage your dependencies

Different teams prefer different ways to manage their external dependencies. Gradle provides convenient

support for any strategy. From transitive dependency management with remote Maven and Ivy repositories

to jars or directories on the local file system.

Gradle is the first build integration tool

Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well. Gradle

provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at runtime. You can

depend on them from Gradle, you can enhance them from Gradle, you can even declare dependencies on

Gradle tasks in your build.xml. The same integration is provided for properties, paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving

dependencies. Gradle also provides a converter for turning a Maven  into a Gradle script. Runtimepom.xml

imports of Maven projects will come soon.

Ease of migration

Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the same

branch where your production build lives and both can evolve in parallel. We usually recommend to write

tests that make sure that the produced artifacts are similar. That way migration is as less disruptive and as

reliable as possible. This is following the best-practices for refactoring by applying baby steps.

Groovy

Gradle's build scripts are written in Groovy, not XML. But unlike other approaches this is not for simply

exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to maintain

build. The whole design of Gradle is oriented towards being used as a language, not as a rigid framework.

And Groovy is our glue that allows you to tell your individual story with the abstractions Gradle (or you)

provide. Gradle provides some standard stories but they are not privileged in any form. This is for us a major

distinguishing feature compared to other declarative build systems. Our Groovy support is not just sugar

coating. The whole Gradle API is fully Groovy-ized. Adding Groovy results in an enjoyable and productive

experience.

The Gradle wrapper

The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed. This is

useful for example for some continuous integration servers. It is also useful for an open source project to

keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is a zero

administration approach for the client machines. It also enforces the usage of a particular Gradle version

thus minimizing support issues.

Free and open source

Gradle is an open source project, and is licensed under the .ASL

http://www.gradle.org/license


Page 25 of 448

2.2. Why Groovy?
We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when

used in . There are a couple of dynamic languages out there. Why Groovy? The answer lies in thebuild scripts

context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus are

Java projects. In such projects the team members will be very familiar with Java. We think a build should be as

transparent as possible to  team members.all

In that case, you might argue why we don't just use Java as the language for build scripts. We think this is a

valid question. It would have the highest transparency for your team and the lowest learning curve, but because

of the limitations of Java, such a build language would not be as nice, expressive and powerful as it could be. [ ]1

Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as it offers by far

the greatest transparency for Java people. Its base syntax is the same as Java's as well as its type system, its

package structure and other things. Groovy provides much more on top of that, but with the common foundation

of Java.

For Java developers with Python or Ruby knowledge or the desire to learn them, the above arguments don't

apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just

doesn't have the highest priority for us at the moment. We happily support any community effort to create

additional build script engines.

[ ] 1 At  you find an interesting article comparing Ant, XML, Javahttp://www.defmacro.org/ramblings/lisp.html

and Lisp. It's funny that the 'if Java had that syntax' syntax in this article is actually the Groovy syntax.

http://www.defmacro.org/ramblings/lisp.html


Page 26 of 448

3
Tutorials

3.1. Getting Started
The following tutorials introduce some of the basics of Gradle, to help you get started.

Chapter 4, Installing Gradle

Describes how to install Gradle.

Chapter 6, Build Script Basics

Introduces the basic build script elements:  and .projects tasks

Chapter 7, Java Quickstart

Shows how to start using Gradle's build-by-convention support for Java projects.

Chapter 8, Dependency Management Basics

Shows how to start using Gradle's dependency management.

Chapter 9, Groovy Quickstart

Using Gradle's build-by-convention support for Groovy projects.

Chapter 10, Web Application Quickstart

Using Gradle's build-by-convention support for Web applications.



Page 27 of 448

4
Installing Gradle

4.1. Prerequisites
Gradle requires a Java JDK or JRE to be installed, version 6 or higher (to check, use ).java -version

Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing Groovy

installation is ignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the  environmentJAVA_HOME

variable to point to the installation directory of the desired JDK.

4.2. Download
You can download one of the Gradle distributions from the .Gradle web site

4.3. Unpacking
The Gradle distribution comes packaged as a ZIP. The full distribution contains:

The Gradle binaries.

The user guide (HTML and PDF).

The DSL reference guide.

The API documentation (Javadoc and Groovydoc).

Extensive samples, including the examples referenced in the user guide, along with some complete and more

complex builds you can use as a starting point for your own build.

The binary sources. This is for reference only. If you want to build Gradle you need to download the source

distribution or checkout the sources from the source repository. See the  for details.Gradle web site

4.4. Environment variables
For running Gradle, add  to your  environment variable. Usually, this is sufficient/binGRADLE_HOME PATH

to run Gradle.

http://www.gradle.org/downloads
http://www.gradle.org/development


Page 28 of 448

4.5. Running and testing your installation
You run Gradle via the  command. To check if Gradle is properly installed just type . Thegradle gradle -v

output shows the Gradle version and also the local environment configuration (Groovy, JVM version, OS, etc.).

The displayed Gradle version should match the distribution you have downloaded.

4.6. JVM options
JVM options for running Gradle can be set via environment variables. You can use either  or GRADLE_OPTS

, or both.  is by convention an environment variable shared by many JavaJAVA_OPTS JAVA_OPTS

applications. A typical use case would be to set the HTTP proxy in  and the memory options in JAVA_OPTS

. Those variables can also be set at the beginning of the  or  script.GRADLE_OPTS gradle gradlew

Note that it's not currently possible to set JVM options for Gradle on the command line.



Page 29 of 448

5
Troubleshooting

This chapter is currently a work in progress.

When using Gradle (or any software package), you can run into problems. You may not understand how to use a

particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your problems.

5.1. Working through problems
If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New

versions of Gradle are released frequently with bug fixes and new features. The problem you are having may

have been fixed in a new release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line

switch ). More information about troubleshooting the daemon process is located in --no-daemon Chapter 19, 

.The Gradle Daemon

5.2. Getting help
The place to go for help with Gradle is . The Gradle Forums is the place where you canhttp://forums.gradle.org

report problems and ask questions of the Gradle developers and other community members.

If something's not working for you, posting a question or problem report to the forums is the fastest way to get

help. It's also the place to post improvement suggestions or new ideas. The development team frequently posts

news items and announces releases via the forum, making it a great way to stay up to date with the latest Gradle

developments.

http://forums.gradle.org


Page 30 of 448

6
Build Script Basics

6.1. Projects and tasks
Everything in Gradle sits on top of two basic concepts:  and .projects tasks

Every Gradle build is made up of one or more . What a project represents depends on what it is that youprojects

are doing with Gradle. For example, a project might represent a library JAR or a web application. It might

represent a distribution ZIP assembled from the JARs produced by other projects. A project does not necessarily

represent a thing to be built. It might represent a thing to be done, such as deploying your application to staging

or production environments. Don't worry if this seems a little vague for now. Gradle's build-by-convention

support adds a more concrete definition for what a project is.

Each project is made up of one or more . A task represents some atomic piece of work which a buildtasks

performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some

archives to a repository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at

working with multiple projects and more about working with projects and tasks.

6.2. Hello world
You run a Gradle build using the  command. The  command looks for a file called gradle gradle build.gradle

in the current directory.  We call this  file a , although strictly speaking it is a[ ]2 build.gradle build script

build configuration script, as we will see later. The build script defines a project and its tasks.

To try this out, create the following build script named .build.gradle

Example 6.1. Your first build script

build.gradle

task hello {
    doLast {
        println 'Hello world!'
    }
}

In a command-line shell, move to the containing directory and execute the build script with gradle -q hello

:



Page 31 of 448

What does  do?-q

Most of the examples in this user

guide are run with the -q

command-line option. This

suppresses Gradle's log

messages, so that only the output

of the tasks is shown. This keeps

the example output in this user

guide a little clearer. You don't

need to use this option if you

don't want to. See Chapter  18, 

 for more details aboutLogging

the command-line options which

affect Gradle's output.

Example 6.2. Execution of a build script

Output of gradle -q hello

> gradle -q hello
Hello world!

What's going on here? This build script defines a single task, called

, and adds an action to it. When you run ,hello gradle hello

Gradle executes the  task, which in turn executes the actionhello

you've provided. The action is simply a closure containing some

Groovy code to execute.

If you think this looks similar to Ant's targets, you would be right.

Gradle tasks are the equivalent to Ant targets, but as you will see,

they are much more powerful. We have used a different

terminology than Ant as we think the word  is more expressivetask

than the word . Unfortunately this introduces a terminologytarget

clash with Ant, as Ant calls its commands, such as  or javac copy

, tasks. So when we talk about tasks, we  mean Gradle tasks, which are the equivalent to Ant's targets. Ifalways

we talk about Ant tasks (Ant commands), we explicitly say .Ant task

6.3. A shortcut task definition
There is a shorthand way to define a task like our  task above, which is more concise.hello

Example 6.3. A task definition shortcut

build.gradle

task hello << {
    println 'Hello world!'
}

Again, this defines a task called  with a single closure to execute. We will use this task definition stylehello

throughout the user guide.

6.4. Build scripts are code
Gradle's build scripts give you the full power of Groovy. As an appetizer, have a look at this:



Page 32 of 448

Example 6.4. Using Groovy in Gradle's tasks

build.gradle

task upper << {
    String someString = 'mY_nAmE'
    println  + someString"Original: "
    println  + someString.toUpperCase()"Upper case: "
}

Output of gradle -q upper

> gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

or

Example 6.5. Using Groovy in Gradle's tasks

build.gradle

task count << {
    4.times { print  }"$it "
}

Output of gradle -q count

> gradle -q count
0 1 2 3

6.5. Task dependencies
As you probably have guessed, you can declare tasks that depend on other tasks.

Example 6.6. Declaration of task that depends on other task

build.gradle

task hello << {
    println 'Hello world!'
}
task intro(dependsOn: hello) << {
    println "I'm Gradle"
}

Output of gradle -q intro

> gradle -q intro
Hello world!
I'm Gradle

To add a dependency, the corresponding task does not need to exist.



Page 33 of 448

Example 6.7. Lazy dependsOn - the other task does not exist (yet)

build.gradle

task taskX(dependsOn: ) << {'taskY'
    println 'taskX'
}
task taskY << {
    println 'taskY'
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

The dependency of  to  is declared before  is defined. This is very important fortaskX taskY taskY

multi-project builds. Task dependencies are discussed in more detail in Section 15.4, “Adding dependencies to a

.task”

Please notice that you can't use shortcut notation (see ) when referring to a taskSection 6.8, “Shortcut notations”

that is not yet defined.

6.6. Dynamic tasks
The power of Groovy can be used for more than defining what a task does. For example, you can also use it to

dynamically create tasks.

Example 6.8. Dynamic creation of a task

build.gradle

4.times { counter ->
    task  << {"task$counter"
        println "I'm task number $counter"
    }
}

Output of gradle -q task1

> gradle -q task1
I'm task number 1

6.7. Manipulating existing tasks
Once tasks are created they can be accessed via an . For instance, you could use this to dynamically addAPI

dependencies to a task, at runtime. Ant doesn't allow anything like this.



Page 34 of 448

Example 6.9. Accessing a task via API - adding a dependency

build.gradle

4.times { counter ->
    task  << {"task$counter"
        println "I'm task number $counter"
    }
}
task0.dependsOn task2, task3

Output of gradle -q task0

> gradle -q task0
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task.

Example 6.10. Accessing a task via API - adding behaviour

build.gradle

task hello << {
    println 'Hello Earth'
}
hello.doFirst {
    println 'Hello Venus'
}
hello.doLast {
    println 'Hello Mars'
}
hello << {
    println 'Hello Jupiter'
}

Output of gradle -q hello

> gradle -q hello
Hello Venus
Hello Earth
Hello Mars
Hello Jupiter

The calls  and  can be executed multiple times. They add an action to the beginning or thedoFirst doLast

end of the task's actions list. When the task executes, the actions in the action list are executed in order. The <<

operator is simply an alias for .doLast

6.8. Shortcut notations
As you might have noticed in the previous examples, there is a convenient notation for accessing an existing

task. Each task is available as a property of the build script:



Page 35 of 448

Example 6.11. Accessing task as a property of the build script

build.gradle

task hello << {
    println 'Hello world!'
}
hello.doLast {
    println "Greetings from the $hello.name task."
}

Output of gradle -q hello

> gradle -q hello
Hello world!
Greetings from the hello task.

This enables very readable code, especially when using the tasks provided by the plugins, like the compile

task.

6.9. Extra task properties
You can add your own properties to a task. To add a property named , set  tomyProperty ext.myProperty

an initial value. From that point on, the property can be read and set like a predefined task property.

Example 6.12. Adding extra properties to a task

build.gradle

task myTask {
    ext.myProperty = "myValue"
}

task printTaskProperties << {
    println myTask.myProperty
}

Output of gradle -q printTaskProperties

> gradle -q printTaskProperties
myValue

Extra properties aren't limited to tasks. You can read more about them in .Section 13.4.2, “Extra properties”

6.10. Using Ant Tasks
Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply relying

on Groovy. Groovy is shipped with the fantastic . Using Ant tasks from Gradle is as convenientAntBuilder

and more powerful than using Ant tasks from a  file. From the example below, you can learn howbuild.xml

to execute Ant tasks and how to access Ant properties:



Page 36 of 448

Example 6.13. Using AntBuilder to execute ant.loadfile target

build.gradle

task loadfile << {
    def files = file( ).listFiles().sort()'../antLoadfileResources'
    files.each { File file ->
         (file.isFile()) {if
            ant.loadfile(srcFile: file, property: file.name)
            println " *** $file.name ***"
            println "${ant.properties[file.name]}"
        }
    }
}

Output of gradle -q loadfile

> gradle -q loadfile
 *** agile.manifesto.txt ***
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration  over contract negotiation
Responding to change over following a plan
 *** gradle.manifesto.txt ***
Make the impossible possible, make the possible easy and make the easy elegant.
(inspired by Moshe Feldenkrais)

There is lots more you can do with Ant in your build scripts. You can find out more in Chapter 17, Using Ant

.from Gradle

6.11. Using methods
Gradle scales in how you can organize your build logic. The first level of organizing your build logic for the

example above, is extracting a method.



Page 37 of 448

Example 6.14. Using methods to organize your build logic

build.gradle

task checksum << {
    fileList( ).each {File file ->'../antLoadfileResources'
        ant.checksum(file: file, property: )"cs_$file.name"
        println cs_$file.name"$file.name Checksum: ${ant.properties[" "]}"
    }
}

task loadfile << {
    fileList( ).each {File file ->'../antLoadfileResources'
        ant.loadfile(srcFile: file, property: file.name)
        println "I'm fond of $file.name"
    }
}

File[] fileList(String dir) {
    file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()
}

Output of gradle -q loadfile

> gradle -q loadfile
I'm fond of agile.manifesto.txt
I'm fond of gradle.manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build

logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted a

whole chapter to this. See .Chapter 60, Organizing Build Logic

6.12. Default tasks
Gradle allows you to define one or more default tasks for your build.



Page 38 of 448

Example 6.15. Defining a default tasks

build.gradle

defaultTasks , 'clean' 'run'

task clean << {
    println 'Default Cleaning!'
}

task run << {
    println 'Default Running!'
}

task other << {
    println "I'm not a default task!"
}

Output of gradle -q

> gradle -q
Default Cleaning!
Default Running!

This is equivalent to running . In a multi-project build every subproject can have its owngradle clean run

specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent project are

used (if defined).

6.13. Configure by DAG
As we later describe in full detail (see ), Gradle has a configuration phase and anChapter 56, The Build Lifecycle

execution phase. After the configuration phase, Gradle knows all tasks that should be executed. Gradle offers

you a hook to make use of this information. A use-case for this would be to check if the release task is among

the tasks to be executed. Depending on this, you can assign different values to some variables.

In the following example, execution of the  and  tasks results in different value ofdistribution release

the  variable.version



Page 39 of 448

Example 6.16. Different outcomes of build depending on chosen tasks

build.gradle

task distribution << {
    println "We build the zip with version=$version"
}

task release(dependsOn: ) << {'distribution'
    println 'We release now'
}

gradle.taskGraph.whenReady {taskGraph ->
     (taskGraph.hasTask(release)) {if
        version = '1.0'
    }  {else
        version = '1.0-SNAPSHOT'
    }
}

Output of gradle -q distribution

> gradle -q distribution
We build the zip with version=1.0-SNAPSHOT

Output of gradle -q release

> gradle -q release
We build the zip with version=1.0
We release now

The important thing is that  affects the release task  the release task is executed. This workswhenReady before

even when the release task is not the  task (i.e., the task passed to the  command).primary gradle

6.14. Where to next?
In this chapter, we have had a first look at tasks. But this is not the end of the story for tasks. If you want to

jump into more of the details, have a look at .Chapter 15, More about Tasks

Otherwise, continue on to the tutorials in  and Chapter 7, Java Quickstart Chapter 8, Dependency Management

.Basics

[ ] 2 There are command line switches to change this behavior. See )Appendix D, Gradle Command Line



Page 40 of 448

7
Java Quickstart

7.1. The Java plugin
As we have seen, Gradle is a general-purpose build tool. It can build pretty much anything you care to

implement in your build script. Out-of-the-box, however, it doesn't build anything unless you add code to your

build script to do so.

Most Java projects are pretty similar as far as the basics go: you need to compile your Java source files, run

some unit tests, and create a JAR file containing your classes. It would be nice if you didn't have to code all this

up for every project. Luckily, you don't have to. Gradle solves this problem through the use of . A pluginplugins

is an extension to Gradle which configures your project in some way, typically by adding some pre-configured

tasks which together do something useful. Gradle ships with a number of plugins, and you can easily write your

own and share them with others. One such plugin is the . This plugin adds some tasks to yourJava plugin

project which will compile and unit test your Java source code, and bundle it into a JAR file.

The Java plugin is convention based. This means that the plugin defines default values for many aspects of the

project, such as where the Java source files are located. If you follow the convention in your project, you

generally don't need to do much in your build script to get a useful build. Gradle allows you to customize your

project if you don't want to or cannot follow the convention in some way. In fact, because support for Java

projects is implemented as a plugin, you don't have to use the plugin at all to build a Java project, if you don't

want to.

We have in-depth coverage with many examples about the Java plugin, dependency management and

multi-project builds in later chapters. In this chapter we want to give you an initial idea of how to use the Java

plugin to build a Java project.

7.2. A basic Java project
Let's look at a simple example. To use the Java plugin, add the following to your build file:

Example 7.1. Using the Java plugin

build.gradle

apply plugin: 'java'

Note:  The code for this example can be found at  in the ‘-all’ distributionsamples/java/quickstart

of Gradle.



Page 41 of 448

What tasks are
available?

You can use  togradle tasks

list the tasks of a project. This

will let you see the tasks that the

Java plugin has added to your

project.

This is all you need to define a Java project. This will apply the Java plugin to your project, which adds a

number of tasks to your project.

Gradle expects to find your production source code under src/main/java

and your test source code under . In addition,src/test/java

any files under  will be included in thesrc/main/resources

JAR file as resources, and any files under src/test/resources

will be included in the classpath used to run the tests. All output

files are created under the  directory, with the JAR filebuild

ending up in the  directory.build/libs

7.2.1. Building the project

The Java plugin adds quite a few tasks to your project. However,

there are only a handful of tasks that you will need to use to build

the project. The most commonly used task is the  task, which does a full build of the project. When youbuild

run , Gradle will compile and test your code, and create a JAR file containing your maingradle build

classes and resources:

Example 7.2. Building a Java project

Output of gradle build

> gradle build
:compileJava
:processResources
:classes
:jar
:assemble
:compileTestJava
:processTestResources
:testClasses
:test
:check
:build

BUILD SUCCESSFUL

Total time: 1 secs

Some other useful tasks are:

clean

Deletes the  directory, removing all built files.build

assemble

Compiles and jars your code, but does not run the unit tests. Other plugins add more artifacts to this task.

For example, if you use the War plugin, this task will also build the WAR file for your project.

check

Compiles and tests your code. Other plugins add more checks to this task. For example, if you use the checkstyle



Page 42 of 448

plugin, this task will also run Checkstyle against your source code.

7.2.2. External dependencies

Usually, a Java project will have some dependencies on external JAR files. To reference these JAR files in the

project, you need to tell Gradle where to find them. In Gradle, artifacts such as JAR files, are located in a 

. A repository can be used for fetching the dependencies of a project, or for publishing the artifacts ofrepository

a project, or both. For this example, we will use the public Maven repository:

Example 7.3. Adding Maven repository

build.gradle

repositories {
    mavenCentral()
}

Let's add some dependencies. Here, we will declare that our production classes have a compile-time dependency

on commons collections, and that our test classes have a compile-time dependency on junit:

Example 7.4. Adding dependencies

build.gradle

dependencies {
    compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2'
    testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

You can find out more in .Chapter 8, Dependency Management Basics

7.2.3. Customizing the project

The Java plugin adds a number of properties to your project. These properties have default values which are

usually sufficient to get started. It's easy to change these values if they don't suit. Let's look at this for our

sample. Here we will specify the version number for our Java project, along with the Java version our source is

written in. We also add some attributes to the JAR manifest.

Example 7.5. Customization of MANIFEST.MF

build.gradle

sourceCompatibility = 1.5
version = '1.0'
jar {
    manifest {
        attributes : ,'Implementation-Title' 'Gradle Quickstart'
                   : version'Implementation-Version'
    }
}

The tasks which the Java plugin adds are regular tasks, exactly the

same as if they were declared in the build file. This means you can



Page 43 of 448

What properties are
available?

You can use gradle properties

to list the properties of a project.

This will allow you to see the

properties added by the Java

plugin, and their default values.

use any of the mechanisms shown in earlier chapters to customize

these tasks. For example, you can set the properties of a task, add

behaviour to a task, change the dependencies of a task, or replace a

task entirely. In our sample, we will configure the  task,test

which is of type , to add a system property when the tests areTest

executed:

Example 7.6. Adding a test system property

build.gradle

test {
    systemProperties : 'property' 'value'
}

7.2.4. Publishing the JAR file

Usually the JAR file needs to be published somewhere. To do this, you need to tell Gradle where to publish the

JAR file. In Gradle, artifacts such as JAR files are published to repositories. In our sample, we will publish to a

local directory. You can also publish to a remote location, or multiple locations.

Example 7.7. Publishing the JAR file

build.gradle

uploadArchives {
    repositories {
       flatDir {
           dirs 'repos'
       }
    }
}

To publish the JAR file, run .gradle uploadArchives

7.2.5. Creating an Eclipse project

To create the Eclipse-specific descriptor files, like , you need to add another plugin to your build.project

file:

Example 7.8. Eclipse plugin

build.gradle

apply plugin: 'eclipse'

Now execute  command to generate Eclipse project files. More information about the gradle eclipse eclipse

task can be found in .Chapter 38, The Eclipse Plugins

7.2.6. Summary

Here's the complete build file for our sample:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html


Page 44 of 448

Example 7.9. Java example - complete build file

build.gradle

apply plugin: 'java'
apply plugin: 'eclipse'

sourceCompatibility = 1.5
version = '1.0'
jar {
    manifest {
        attributes : ,'Implementation-Title' 'Gradle Quickstart'
                   : version'Implementation-Version'
    }
}

repositories {
    mavenCentral()
}

dependencies {
    compile group: , name: , version: 'commons-collections' 'commons-collections' '3.2'
    testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

test {
    systemProperties : 'property' 'value'
}

uploadArchives {
    repositories {
       flatDir {
           dirs 'repos'
       }
    }
}

7.3. Multi-project Java build
Now let's look at a typical multi-project build. Below is the layout for the project:

Example 7.10. Multi-project build - hierarchical layout

Build layout

multiproject/
  api/
  services/webservice/
  shared/
  services/shared/

Note:  The code for this example can be found at  in the ‘-all’samples/java/multiproject

distribution of Gradle.



Page 45 of 448

Here we have four projects. Project  produces a JAR file which is shipped to the client to provide them aapi

Java client for your XML webservice. Project  is a webapp which returns XML. Project webservice shared

contains code used both by  and . Project  has code that depends onapi webservice services/shared

the  project.shared

7.3.1. Defining a multi-project build

To define a multi-project build, you need to create a . The settings file lives in the root directory ofsettings file

the source tree, and specifies which projects to include in the build. It must be called . Forsettings.gradle

this example, we are using a simple hierarchical layout. Here is the corresponding settings file:

Example 7.11. Multi-project build - settings.gradle file

settings.gradle

include , , , "shared" "api" "services:webservice" "services:shared"

You can find out more about the settings file in .Chapter 57, Multi-project Builds

7.3.2. Common configuration

For most multi-project builds, there is some configuration which is common to all projects. In our sample, we

will define this common configuration in the root project, using a technique called .configuration injection

Here, the root project is like a container and the  method iterates over the elements of thissubprojects

container - the projects in this instance - and injects the specified configuration. This way we can easily define

the manifest content for all archives, and some common dependencies:

Example 7.12. Multi-project build - common configuration

build.gradle

subprojects {
    apply plugin: 'java'
    apply plugin: 'eclipse-wtp'

    repositories {
       mavenCentral()
    }

    dependencies {
        testCompile 'junit:junit:4.11'
    }

    version = '1.0'

    jar {
        manifest.attributes provider: 'gradle'
    }
}

Notice that our sample applies the Java plugin to each subproject. This means the tasks and configuration

properties we have seen in the previous section are available in each subproject. So, you can compile, test, and

JAR all the projects by running  from the root project directory.gradle build



Page 46 of 448

Also note that these plugins are only applied within the  section, not at the root level, so the rootsubprojects

build will not expect to find Java source files in the root project, only in the subprojects.

7.3.3. Dependencies between projects

You can add dependencies between projects in the same build, so that, for example, the JAR file of one project

is used to compile another project. In the  build file we will add a dependency on the  project. Dueapi shared

to this dependency, Gradle will ensure that project  always gets built before project .shared api

Example 7.13. Multi-project build - dependencies between projects

api/build.gradle

dependencies {
    compile project( )':shared'
}

See  for how to disable this functionality.Section 57.7.1, “Disabling the build of dependency projects”

7.3.4. Creating a distribution

We also add a distribution, that gets shipped to the client:

Example 7.14. Multi-project build - distribution file

api/build.gradle

task dist(type: Zip) {
    dependsOn spiJar
    from 'src/dist'
    into( ) {'libs'
        from spiJar.archivePath
        from configurations.runtime
    }
}

artifacts {
   archives dist
}

7.4. Where to next?
In this chapter, you have seen how to do some of the things you commonly need to build a Java based project.

This chapter is not exhaustive, and there are many other things you can do with Java projects in Gradle. You can

find out more about the Java plugin in , and you can find more sample Java projectsChapter 23, The Java Plugin

in the  directory in the Gradle distribution.samples/java

Otherwise, continue on to .Chapter 8, Dependency Management Basics



Page 47 of 448

8
Dependency Management Basics

This chapter introduces some of the basics of dependency management in Gradle.

8.1. What is dependency management?
Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the

things that your project needs to build or run, in order to find them. We call these incoming files the 

 of the project. Secondly, Gradle needs to build and upload the things that your project produces.dependencies

We call these outgoing files the  of the project. Let's look at these two pieces in more detail:publications

Most projects are not completely self-contained. They need files built by other projects in order to be compiled

or tested and so on. For example, in order to use Hibernate in my project, I need to include some Hibernate jars

in the classpath when I compile my source. To run my tests, I might also need to include some additional jars in

the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle allows you to tell it what the dependencies of

your project are, so that it can take care of finding these dependencies, and making them available in your build.

The dependencies might need to be downloaded from a remote Maven or Ivy repository, or located in a local

directory, or may need to be built by another project in the same multi-project build. We call this process 

.dependency resolution

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify

absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names” of your

dependencies, and other layers determine where to get those dependencies from. You can get similar behavior

from Ant by adding Apache Ivy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core requires

several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for your project,

it also needs to find these dependencies and make them available. We call these .transitive dependencies

The main purpose of most projects is to build some files that are to be used outside the project. For example, if

your project produces a Java library, you need to build a jar, and maybe a source jar and some documentation,

and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for you.

You declare the publications of your project, and Gradle take care of building them and publishing them

somewhere. Exactly what “publishing” means depends on what you want to do. You might want to copy the

files to a local directory, or upload them to a remote Maven or Ivy repository. Or you might use the files in

another project in the same multi-project build. We call this process .publication



Page 48 of 448

8.2. Declaring your dependencies
Let's look at some dependency declarations. Here's a basic build script:

Example 8.1. Declaring dependencies

build.gradle

apply plugin: 'java'

repositories {
    mavenCentral()
}

dependencies {
    compile group: , name: , version: 'org.hibernate' 'hibernate-core' '3.6.7.Final'
    testCompile group: , name: , version: 'junit' 'junit' '4.+'
}

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate core

3.6.7.Final is required to compile the project's production source. By implication, Hibernate core and its

dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to

compile the project's tests. It also tells Gradle to look in the Maven central repository for any dependencies that

are required. The following sections go into the details.

8.3. Dependency configurations
In Gradle dependencies are grouped into . A configuration is simply a named set ofconfigurations

dependencies. We will refer to them as . You can use them to declare the externaldependency configurations

dependencies of your project. As we will see later, they are also used to declare the publications of your project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths that

the Java plugin uses. Some are listed below, and you can find more details in Table  23.5, “Java plugin -

.dependency configurations”

compile

The dependencies required to compile the production source of the project.

runtime

The dependencies required by the production classes at runtime. By default, also includes the compile time

dependencies.

testCompile

The dependencies required to compile the test source of the project. By default, also includes the compiled

production classes and the compile time dependencies.

testRuntime

The dependencies required to run the tests. By default, also includes the compile, runtime and test compile

dependencies.



Page 49 of 448

Various plugins add further standard configurations. You can also define your own custom configurations to use

in your build. Please see  for the details of defining and customizingSection 51.3, “Dependency configurations”

dependency configurations.

8.4. External dependencies
There are various types of dependencies that you can declare. One such type is an . This aexternal dependency

dependency on some files built outside the current build, and stored in a repository of some kind, such as Maven

central, or a corporate Maven or Ivy repository, or a directory in the local file system.

To define an external dependency, you add it to a dependency configuration:

Example 8.2. Definition of an external dependency

build.gradle

dependencies {
    compile group: , name: , version: 'org.hibernate' 'hibernate-core' '3.6.7.Final'
}

An external dependency is identified using ,  and  attributes. Depending on which kindgroup name version

of repository you are using,  and  may be optional.group version

The shortcut form for declaring external dependencies looks like “ ”.: :group name version

Example 8.3. Shortcut definition of an external dependency

build.gradle

dependencies {
    compile 'org.hibernate:hibernate-core:3.6.7.Final'
}

To find out more about defining and working with dependencies, have a look at Section 51.4, “How to declare

.your dependencies”

8.5. Repositories
How does Gradle find the files for external dependencies? Gradle looks for them in a . A repository isrepository

really just a collection of files, organized by ,  and . Gradle understands several differentgroup name version

repository formats, such as Maven and Ivy, and several different ways of accessing the repository, such as using

the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use external

dependencies. One option is use the Maven central repository:



Page 50 of 448

Example 8.4. Usage of Maven central repository

build.gradle

repositories {
    mavenCentral()
}

Or a remote Maven repository:

Example 8.5. Usage of a remote Maven repository

build.gradle

repositories {
    maven {
        url "http://repo.mycompany.com/maven2"
    }
}

Or a remote Ivy repository:

Example 8.6. Usage of a remote Ivy directory

build.gradle

repositories {
    ivy {
        url "http://repo.mycompany.com/repo"
    }
}

You can also have repositories on the local file system. This works for both Maven and Ivy repositories.

Example 8.7. Usage of a local Ivy directory

build.gradle

repositories {
    ivy {
        // URL can refer to a local directory
        url "../local-repo"
    }
}

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order they

are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have a look at .Section 51.6, “Repositories”



Page 51 of 448

8.6. Publishing artifacts
Dependency configurations are also used to publish files.  We call these files , or usually[ ]3 publication artifacts

just .artifacts

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do anything

special to tell Gradle what needs to be published. However, you do need to tell Gradle where to publish the

artifacts. You do this by attaching repositories to the  task. Here's an example of publishinguploadArchives

to a remote Ivy repository:

Example 8.8. Publishing to an Ivy repository

build.gradle

uploadArchives {
    repositories {
        ivy {
            credentials {
                username "username"
                password "pw"
            }
            url "http://repo.mycompany.com"
        }
    }
}

Now, when you run , Gradle will build and upload your Jar. Gradle will alsogradle uploadArchives

generate and upload an  as well.ivy.xml

You can also publish to Maven repositories. The syntax is slightly different.  Note that you also need to apply[ ]4

the Maven plugin in order to publish to a Maven repository. when this is in place, Gradle will generate and

upload a .pom.xml

Example 8.9. Publishing to a Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {
    repositories {
        mavenDeployer {
            repository(url: )"file://localhost/tmp/myRepo/"
        }
    }
}

To find out more about publication, have a look at .Chapter 52, Publishing artifacts



Page 52 of 448

8.7. Where to next?
For all the details of dependency resolution, see , and for artifactChapter  51, Dependency Management

publication see .Chapter 52, Publishing artifacts

If you are interested in the DSL elements mentioned here, have a look at , Project.configurations{}

 and .Project.repositories{} Project.dependencies{}

Otherwise, continue on to some of the other .tutorials

[ ] 3 We think this is confusing, and we are gradually teasing apart the two concepts in the Gradle DSL.

[ ] 4 We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)


Page 53 of 448

9
Groovy Quickstart

To build a Groovy project, you use the . This plugin extends the Java plugin to add GroovyGroovy plugin

compilation capabilities to your project. Your project can contain Groovy source code, Java source code, or a

mix of the two. In every other respect, a Groovy project is identical to a Java project, which we have already

seen in .Chapter 7, Java Quickstart

9.1. A basic Groovy project
Let's look at an example. To use the Groovy plugin, add the following to your build file:

Example 9.1. Groovy plugin

build.gradle

apply plugin: 'groovy'

Note:  The code for this example can be found at  in the ‘-all’samples/groovy/quickstart

distribution of Gradle.

This will also apply the Java plugin to the project, if it has not already been applied. The Groovy plugin extends

the  task to look for source files in directory , and the  task tocompile src/main/groovy compileTest

look for test source files in directory . The compile tasks use joint compilation for thesesrc/test/groovy

directories, which means they can contain a mixture of Java and Groovy source files.

To use the Groovy compilation tasks, you must also declare the Groovy version to use and where to find the

Groovy libraries. You do this by adding a dependency to the  configuration. The groovy compile

configuration inherits this dependency, so the Groovy libraries will be included in classpath when compiling

Groovy and Java source. For our sample, we will use Groovy 2.2.0 from the public Maven repository:

Example 9.2. Dependency on Groovy

build.gradle

repositories {
    mavenCentral()
}

dependencies {
    compile 'org.codehaus.groovy:groovy-all:2.3.6'
}



Page 54 of 448

Here is our complete build file:

Example 9.3. Groovy example - complete build file

build.gradle

apply plugin: 'eclipse'
apply plugin: 'groovy'

repositories {
    mavenCentral()
}

dependencies {
    compile 'org.codehaus.groovy:groovy-all:2.3.6'
    testCompile 'junit:junit:4.11'
}

Running  will compile, test and JAR your project.gradle build

9.2. Summary
This chapter describes a very simple Groovy project. Usually, a real project will require more than this. Because

a Groovy project  a Java project, whatever you can do with a Java project, you can also do with a Groovyis

project.

You can find out more about the Groovy plugin in , and you can find moreChapter 24, The Groovy Plugin

sample Groovy projects in the  directory in the Gradle distribution.samples/groovy



Page 55 of 448

Groovy web
applications

You can combine multiple

plugins in a single project, so you

can use the War and Groovy

plugins together to build a

Groovy based web application.

The appropriate Groovy libraries

10
Web Application Quickstart

This chapter is a work in progress.

This chapter introduces the Gradle support for web applications. Gradle provides two plugins for web

application development: the War plugin and the Jetty plugin. The War plugin extends the Java plugin to build a

WAR file for your project. The Jetty plugin extends the War plugin to allow you to deploy your web application

to an embedded Jetty web container.

10.1. Building a WAR file
To build a WAR file, you apply the War plugin to your project:

Example 10.1. War plugin

build.gradle

apply plugin: 'war'

Note:  The code for this example can be found at  in thesamples/webApplication/quickstart

‘-all’ distribution of Gradle.

This also applies the Java plugin to your project. Running  will compile, test and WAR yourgradle build

project. Gradle will look for the source files to include in the WAR file in . Yoursrc/main/webapp

compiled classes and their runtime dependencies are also included in the WAR file, in the WEB-INF/classes

and  directories, respectively.WEB-INF/lib

10.2. Running your web
application

To run your web application, you apply the Jetty plugin to your

project:



Page 56 of 448

will be added to the WAR file for

you.

Example 10.2. Running web application with Jetty plugin

build.gradle

apply plugin: 'jetty'

This also applies the War plugin to your project. Running  will run your web applicationgradle jettyRun

in an embedded Jetty web container. Running  will build the WAR file, and then rungradle jettyRunWar

it in an embedded web container.

TODO: which url, configure port, uses source files in place and can edit your files and reload.

10.3. Summary
You can find out more about the War plugin in  and the Jetty plugin in Chapter 26, The War Plugin Chapter 28, 

. You can find more sample Java projects in the  directory inThe Jetty Plugin samples/webApplication

the Gradle distribution.



Page 57 of 448

11
Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. You run a build using the  command,gradle

which you have already seen in action in previous chapters.

11.1. Executing multiple tasks
You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For example,

the command  will execute the  and  tasks. Gradle will execute thegradle compile test compile test

tasks in the order that they are listed on the command-line, and will also execute the dependencies for each task.

Each task is executed once only, regardless of how it came to be included in the build: whether it was specified

on the command-line, or as a dependency of another task, or both. Let's look at an example.

Below four tasks are defined. Both  and  depend on the  task. Running dist test compile gradle dist test

for this build script results in the  task being executed only once.compile

Figure 11.1. Task dependencies



Page 58 of 448

Example 11.1. Executing multiple tasks

build.gradle

task compile << {
    println 'compiling source'
}

task compileTest(dependsOn: compile) << {
    println 'compiling unit tests'
}

task test(dependsOn: [compile, compileTest]) << {
    println 'running unit tests'
}

task dist(dependsOn: [compile, test]) << {
    println 'building the distribution'
}

Output of gradle dist test

> gradle dist test
:compile
compiling source
:compileTest
compiling unit tests
:test
running unit tests
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

Each task is executed only once, so  is exactly the same as .gradle test test gradle test

11.2. Excluding tasks
You can exclude a task from being executed using the  command-line option and providing the name of the-x

task to exclude. Let's try this with the sample build file above.

Example 11.2. Excluding tasks

Output of gradle dist -x test

> gradle dist -x test
:compile
compiling source
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs



Page 59 of 448

You can see from the output of this example, that the  task is not executed, even though it is a dependencytest

of the  task. You will also notice that the  task's dependencies, such as  are notdist test compileTest

executed either. Those dependencies of  that are required by another task, such as , are stilltest compile

executed.

11.3. Continuing the build when a failure occurs
By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to

complete sooner, but hides other failures that would have occurred. In order to discover as many failures as

possible in a single build execution, you can use the  option.--continue

When executed with , Gradle will execute  task to be executed where all of the--continue every

dependencies for that task completed without failure, instead of stopping as soon as the first failure is

encountered. Each of the encountered failures will be reported at the end of the build.

If a task fails, any subsequent tasks that were depending on it will not be executed, as it is not safe to do so. For

example, tests will not run if there is a compilation failure in the code under test; because the test task will

depend on the compilation task (either directly or indirectly).

11.4. Task name abbreviation
When you specify tasks on the command-line, you don't have to provide the full name of the task. You only

need to provide enough of the task name to uniquely identify the task. For example, in the sample build above,

you can execute task  by running :dist gradle d

Example 11.3. Abbreviated task name

Output of gradle di

> gradle di
:compile
compiling source
:compileTest
compiling unit tests
:test
running unit tests
:dist
building the distribution

BUILD SUCCESSFUL

Total time: 1 secs

You can also abbreviate each word in a camel case task name. For example, you can execute task compileTest

by running  or even gradle compTest gradle cT



Page 60 of 448

Example 11.4. Abbreviated camel case task name

Output of gradle cT

> gradle cT
:compile
compiling source
:compileTest
compiling unit tests

BUILD SUCCESSFUL

Total time: 1 secs

You can also use these abbreviations with the  command-line option.-x

11.5. Selecting which build to execute
When you run the  command, it looks for a build file in the current directory. You can use the  optiongradle -b

to select another build file. If you use  option then  file is not used. Example:-b settings.gradle

Example 11.5. Selecting the project using a build file

subdir/myproject.gradle

task hello << {
    println "using build file '$buildFile.name' in '$buildFile.parentFile.name'."
}

Output of gradle -q -b subdir/myproject.gradle hello

> gradle -q -b subdir/myproject.gradle hello
using build file 'myproject.gradle' in 'subdir'.

Alternatively, you can use the  option to specify the project directory to use. For multi-project builds you-p

should use  option instead of  option.-p -b

Example 11.6. Selecting the project using project directory

Output of gradle -q -p subdir hello

> gradle -q -p subdir hello
using build file 'build.gradle' in 'subdir'.

11.6. Obtaining information about your build
Gradle provides several built-in tasks which show particular details of your build. This can be useful for

understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the  to add tasks to yourproject report plugin

project which will generate these reports.



Page 61 of 448

11.6.1. Listing projects

Running  gives you a list of the sub-projects of the selected project, displayed in agradle projects

hierarchy. Here is an example:

Example 11.7. Obtaining information about projects

Output of gradle -q projects

> gradle -q projects

------------------------------------------------------------
Root project
------------------------------------------------------------

Root project 'projectReports'
+--- Project ':api' - The shared API for the application
\--- Project ':webapp' - The Web application implementation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

The report shows the description of each project, if specified. You can provide a description for a project by

setting the  property:description

Example 11.8. Providing a description for a project

build.gradle

description = 'The shared API for the application'

11.6.2. Listing tasks

Running  gives you a list of the main tasks of the selected project. This report shows thegradle tasks

default tasks for the project, if any, and a description for each task. Below is an example of this report:



Page 62 of 448

Example 11.9. Obtaining information about tasks

Output of gradle -q tasks

> gradle -q tasks

------------------------------------------------------------
All tasks runnable from root project
------------------------------------------------------------

Default tasks: dists

Build tasks
-----------
clean - Deletes the build directory (build)
dists - Builds the distribution
libs - Builds the JAR

Build Setup tasks
-----------------
init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks
----------
components - Displays the components produced by root project 'projectReports'. [incubating]
dependencies - Displays all dependencies declared in root project 'projectReports'.
dependencyInsight - Displays the insight into a specific dependency in root project 'projectReports'.
help - Displays a help message.
projects - Displays the sub-projects of root project 'projectReports'.
properties - Displays the properties of root project 'projectReports'.
tasks - Displays the tasks runnable from root project 'projectReports' (some of the displayed tasks may belong to subprojects).

To see all tasks and more detail, run gradle tasks --all

To see more detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group. You can do this by

setting the  property for the task. You can also set the  property, to provide a descriptiongroup description

to be included in the report.

Example 11.10. Changing the content of the task report

build.gradle

dists {
    description = 'Builds the distribution'
    group = 'build'
}

You can obtain more information in the task listing using the  option. With this option, the task report--all

lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an example:



Page 63 of 448

Example 11.11. Obtaining more information about tasks

Output of gradle -q tasks --all

> gradle -q tasks --all

------------------------------------------------------------
All tasks runnable from root project
------------------------------------------------------------

Default tasks: dists

Build tasks
-----------
clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp:clean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:libs]
    docs - Builds the documentation
api:libs - Builds the JAR
    api:compile - Compiles the source files
webapp:libs - Builds the JAR [api:libs]
    webapp:compile - Compiles the source files

Build Setup tasks
-----------------
init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks
----------
components - Displays the components produced by root project 'projectReports'. [incubating]
api:components - Displays the components produced by project ':api'. [incubating]
webapp:components - Displays the components produced by project ':webapp'. [incubating]
dependencies - Displays all dependencies declared in root project 'projectReports'.
api:dependencies - Displays all dependencies declared in project ':api'.
webapp:dependencies - Displays all dependencies declared in project ':webapp'.
dependencyInsight - Displays the insight into a specific dependency in root project 'projectReports'.
api:dependencyInsight - Displays the insight into a specific dependency in project ':api'.
webapp:dependencyInsight - Displays the insight into a specific dependency in project ':webapp'.
help - Displays a help message.
api:help - Displays a help message.
webapp:help - Displays a help message.
projects - Displays the sub-projects of root project 'projectReports'.
api:projects - Displays the sub-projects of project ':api'.
webapp:projects - Displays the sub-projects of project ':webapp'.
properties - Displays the properties of root project 'projectReports'.
api:properties - Displays the properties of project ':api'.
webapp:properties - Displays the properties of project ':webapp'.
tasks - Displays the tasks runnable from root project 'projectReports' (some of the displayed tasks may belong to subprojects).
api:tasks - Displays the tasks runnable from project ':api'.
webapp:tasks - Displays the tasks runnable from project ':webapp'.

11.6.3. Show task usage details

Running  gives you detailed information about a specific task orgradle help --task someTask

multiple tasks matching the given task name in your multiproject build. Below is an example of this detailed

information:



Page 64 of 448

Example 11.12. Obtaining detailed help for tasks

Output of gradle -q help --task libs

> gradle -q help --task libs
Detailed task information for libs

Paths
     :api:libs
     :webapp:libs

Type
     Task (org.gradle.api.Task)

Description
     Builds the JAR

Group
     build

This information includes the full task path, the task type, possible commandline options and the description of

the given task.

11.6.4. Listing project dependencies

Running  gives you a list of the dependencies of the selected project, broken downgradle dependencies

by configuration. For each configuration, the direct and transitive dependencies of that configuration are shown

in a tree. Below is an example of this report:



Page 65 of 448

Example 11.13. Obtaining information about dependencies

Output of gradle -q dependencies api:dependencies webapp:dependencies

> gradle -q dependencies api:dependencies webapp:dependencies

------------------------------------------------------------
Root project
------------------------------------------------------------

No configurations

------------------------------------------------------------
Project :api - The shared API for the application
------------------------------------------------------------

compile
\--- org.codehaus.groovy:groovy-all:2.3.6

testCompile
\--- junit:junit:4.11
     \--- org.hamcrest:hamcrest-core:1.3

------------------------------------------------------------
Project :webapp - The Web application implementation
------------------------------------------------------------

compile
+--- project :api
|    \--- org.codehaus.groovy:groovy-all:2.3.6
\--- commons-io:commons-io:1.2

testCompile
No dependencies

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration. This

is achieved with the optional  parameter:--configuration

Example 11.14. Filtering dependency report by configuration

Output of gradle -q api:dependencies --configuration testCompile

> gradle -q api:dependencies --configuration testCompile

------------------------------------------------------------
Project :api - The shared API for the application
------------------------------------------------------------

testCompile
\--- junit:junit:4.11
     \--- org.hamcrest:hamcrest-core:1.3

11.6.5. Getting the insight into a particular dependency

Running  gives you an insight into a particular dependency (orgradle dependencyInsight

dependencies) that match specified input. Below is an example of this report:



Page 66 of 448

Example 11.15. Getting the insight into a particular dependency

Output of gradle -q webapp:dependencyInsight --dependency groovy --configuration compile

> gradle -q webapp:dependencyInsight --dependency groovy --configuration compile
org.codehaus.groovy:groovy-all:2.3.6
\--- project :api
     \--- compile

This task is extremely useful for investigating the dependency resolution, finding out where certain

dependencies are coming from and why certain versions are selected. For more information please see the 

 class in the API documentation.DependencyInsightReportTask

The built-in dependencyInsight task is a part of the 'Help' tasks group. The task needs to configured with the

dependency and the configuration. The report looks for the dependencies that match the specified dependency

spec in the specified configuration. If Java related plugin is applied, the dependencyInsight task is

pre-configured with 'compile' configuration because typically it's the compile dependencies we are interested in.

You should specify the dependency you are interested in via the command line '--dependency' option. If you

don't like the defaults you may select the configuration via '--configuration' option. For more information see the

 class in the API documentation.DependencyInsightReportTask

11.6.6. Listing project properties

Running  gives you a list of the properties of the selected project. This is a snippetgradle properties

from the output:

Example 11.16. Information about properties

Output of gradle -q api:properties

> gradle -q api:properties

------------------------------------------------------------
Project :api - The shared API for the application
------------------------------------------------------------

allprojects: [project ':api']
ant: org.gradle.api.internal.project.DefaultAntBuilder@12345
antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler_Decorated@12345
asDynamicObject: org.gradle.api.internal.ExtensibleDynamicObject@12345
baseClassLoaderScope: org.gradle.api.internal.initialization.DefaultClassLoaderScope@12345
buildDir: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build
buildFile: /home/user/gradle/samples/userguide/tutorial/projectReports/api/build.gradle

11.6.7. Profiling a build

The  command line option will record some useful timing information while your build is running--profile

and write a report to the  directory. The report will be named using the timebuild/reports/profile

when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times for

configuration and task execution are sorted with the most expensive operations first. The task execution results

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html


Page 67 of 448

also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the buildSrc/build

directory.

11.7. Dry Run
Sometimes you are interested in which tasks are executed in which order for a given set of tasks specified on the

command line, but you don't want the tasks to be executed. You can use the  option for this. For example, if-m

you run “ ”, you'll see all the tasks that would be executed as part of the gradle -m clean compile clean

and  tasks. This is complementary to the  task, which shows you the tasks which are availablecompile tasks

for execution.

11.8. Summary
In this chapter, you have seen some of the things you can do with Gradle from the command-line. You can find

out more about the  command in .gradle Appendix D, Gradle Command Line



Page 68 of 448

12
Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. This is a

stand alone user interface that can be launched with the  option.--gui

Example 12.1. Launching the GUI

gradle --gui

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run this as

a background task ( )gradle --gui&

If you run this from your Gradle project working directory, you should see a tree of tasks.



Page 69 of 448

Figure 12.1. GUI Task Tree

It is preferable to run this command from your Gradle project directory so that the settings of the UI will be

stored in your project directory. However, you can run it then change the working directory via the Setup tab in

the UI.

The UI displays 4 tabs along the top and an output window along the bottom.

12.1. Task Tree
The Task Tree shows a hierarchical display of all projects and their tasks. Double clicking a task executes it.

There is also a filter so that uncommon tasks can be hidden. You can toggle the filter via the Filter button.

Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.

Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:



Page 70 of 448

Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a

option).

Add tasks to the favorites (see Favorites tab)

Hide the selected tasks. This adds them to the filter.

Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have .gradle files

associated in your OS.

12.2. Favorites
The Favorites tab is a good place to store commonly-executed commands. These can be complex commands

(anything that's legal to Gradle) and you can provide them with a display name. This is useful for creating, say,

a custom build command that explicitly skips tests, documentation, and samples that you could call “fast build”.

You can reorder favorites to your liking and even export them to disk so they can imported by others. If you edit

them, you are given options to “Always Show Live Output”. This only applies if you have “Only Show Output

When Errors Occur”. This override always forces the output to be shown.

12.3. Command Line
The Command Line tab is where you can execute a single Gradle command directly. Just enter whatever you

would normally enter after 'gradle' on the command line. This also provides a place to try out commands before

adding them to favorites.

12.4. Setup
The Setup tab allows configuration of some general settings.



Page 71 of 448

Figure 12.2. GUI Setup

Current Directory

Defines the root directory of your Gradle project (typically where build.gradle is located).

Stack Trace Output

This determines how much information to write out in stack traces when errors occur. Note: if you specify a

stack trace level on either the Command Line or Favorites tab, it will override this stack trace level.

Only Show Output When Errors Occur

Enabling this option hides any output when a task is executed unless the build fails.

Use Custom Gradle Executor - Advanced feature

This provides you with an alternate way to launch Gradle commands. This is useful if your project requires

some extra setup that is done inside another batch file or shell script (such as specifying an init script).



Page 72 of 448

Getting help writing
build scripts

Don't forget that your build script

is simply Groovy code that drives

the Gradle API. And the 

 interface is yourProject

starting point for accessing

everything in the Gradle API. So,

if you're wondering what 'tags'

are available in your build script,

you can start with the

documentation for the Project

interface.

13
Writing Build Scripts

This chapter looks at some of the details of writing a build script.

13.1. The Gradle build language
Gradle provides a , or DSL, for describing builds. This build language is based ondomain specific language

Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element.  Gradle assumes that each build script is encoded[ ]5

using UTF-8.

13.2. The Project API
In the tutorial in  we used, for example, the  method. Where does thisChapter 7, Java Quickstart apply()

method come from? We said earlier that the build script defines a project in Gradle. For each project in the

build, Gradle creates an object of type  and associates this  object with the build script. AsProject Project

the build script executes, it configures this  object:Project

Any method you call in your build script which is not defined

in the build script, is delegated to the  object.Project

Any property you access in your build script, which is not

 in the build script, is delegated to the  object.defined Project

Let's try this out and try to access the  property of the name

 object.Project

Example 13.1. Accessing property of the Project object

build.gradle

println name
println project.name

Output of gradle -q check

> gradle -q check
projectApi
projectApi

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html


Page 73 of 448

Both  statements print out the same property. The first uses auto-delegation to the  object,println Project

for properties not defined in the build script. The other statement uses the  property available to anyproject

build script, which returns the associated  object. Only if you define a property or a method which hasProject

the same name as a member of the  object, would you need to use the  property.Project project

13.2.1. Standard project properties

The  object provides some standard properties, which are available in your build script. The followingProject

table lists a few of the commonly used ones.

Table 13.1. Project Properties

Name Type Default Value

project Project The  instanceProject

name String The name of the project directory.

path String The absolute path of the project.

description String A description for the project.

projectDir File The directory containing the build script.

buildDir File /buildprojectDir

group Object unspecified

version Object unspecified

ant AntBuilder An  instanceAntBuilder

13.3. The Script API
When Gradle executes a script, it compiles the script into a class which implements . This means thatScript

all of the properties and methods declared by the  interface are available in your script.Script

13.4. Declaring variables
There are two kinds of variables that can be declared in a build script: local variables and extra properties.

13.4.1. Local variables

Local variables are declared with the  keyword. They are only visible in the scope where they have beendef

declared. Local variables are a feature of the underlying Groovy language.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Script.html


Page 74 of 448

Example 13.2. Using local variables

build.gradle

def dest = "dest"

task copy(type: Copy) {
    from "source"
    into dest
}

13.4.2. Extra properties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is not

limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning object's ext

property. Alternatively, an  block can be used to add multiple properties at once.ext

Example 13.3. Using extra properties

build.gradle

apply plugin: "java"

ext {
    springVersion = "3.1.0.RELEASE"
    emailNotification = "build@master.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {
    main {
        purpose = "production"
    }
    test {
        purpose = "test"
    }
    plugin {
        purpose = "production"
    }
}

task printProperties << {
    println springVersion
    println emailNotification
    sourceSets.matching { it.purpose ==  }.each { println it.name }"production"
}

Output of gradle -q printProperties

> gradle -q printProperties
3.1.0.RELEASE
build@master.org
main
plugin



Page 75 of 448

In this example, an  block adds two extra properties to the  object. Additionally, a propertyext project

named  is added to each source set by setting  to  (  is a permissiblepurpose ext.purpose null null

value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a

(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be accessed

from anywhere their owning object can be accessed, giving them a wider scope than local variables. Extra

properties on a project are visible from its subprojects.

For further details on extra properties and their API, see the  class in the APIExtraPropertiesExtension

documentation.

13.5. Some Groovy basics
Groovy provides plenty of features for creating DSLs, and the Gradle build language takes advantage of these.

Understanding how the build language works will help you when you write your build script, and in particular,

when you start to write custom plugins and tasks.

13.5.1. Groovy JDK

Groovy adds lots of useful methods to the standard Java classes. For example,  gets an Iterable each

method, which iterates over the elements of the :Iterable

Example 13.4. Groovy JDK methods

build.gradle

// Iterable gets an each() method
configurations.runtime.each { File f -> println f }

Have a look at  for more details.http://groovy.codehaus.org/groovy-jdk/

13.5.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Example 13.5. Property accessors

build.gradle

// Using a getter method
println project.buildDir
println getProject().getBuildDir()

// Using a setter method
project.buildDir = 'target'
getProject().setBuildDir( )'target'

13.5.3. Optional parentheses on method calls

Parentheses are optional for method calls.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html
http://groovy.codehaus.org/groovy-jdk/


Page 76 of 448

Example 13.6. Method call without parentheses

build.gradle

test.systemProperty , 'some.prop' 'value'
test.systemProperty( , )'some.prop' 'value'

13.5.4. List and map literals

Groovy provides some shortcuts for defining  and  instances. Both kinds of literals areList Map

straightforward, but map literals have some interesting twists.

For instance, the “ ” method (where you typically apply plugins) actually takes a map parameter.apply

However, when you have a line like “ ”, you aren't actually using a map literal,apply plugin:'java'

you're actually using “named parameters”, which have almost exactly the same syntax as a map literal (without

the wrapping brackets). That named parameter list gets converted to a map when the method is called, but it

doesn't start out as a map.

Example 13.7. List and map literals

build.gradle

// List literal
test.includes = [ , ]'org/gradle/api/**' 'org/gradle/internal/**'

List<String> list =  ArrayList<String>()new
list.add( )'org/gradle/api/**'
list.add( )'org/gradle/internal/**'
test.includes = list

// Map literal.
Map<String, String> map = [key1: , key2: ]'value1' 'value2'

// Groovy will coerce named arguments
// into a single map argument
apply plugin: 'java'

13.5.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. You can find out more about closures . When the lasthere

parameter of a method is a closure, you can place the closure after the method call:

Example 13.8. Closure as method parameter

build.gradle

repositories {
    println "in a closure"
}
repositories() { println  }"in a closure"
repositories({ println  })"in a closure"

http://groovy.codehaus.org/Closures


Page 77 of 448

13.5.6. Closure delegate

Each closure has a  object, which Groovy uses to look up variable and method references which aredelegate

not local variables or parameters of the closure. Gradle uses this for , where the configuration closures delegate

object is set to the object to be configured.

Example 13.9. Closure delegates

build.gradle

dependencies {
    assert delegate == project.dependencies
    testCompile( )'junit:junit:4.11'
    delegate.testCompile( )'junit:junit:4.11'
}

[ ] 5 Any language element except for statement labels.



Page 78 of 448

14
Tutorial - 'This and That'

14.1. Directory creation
There is a common situation where multiple tasks depend on the existence of a directory. Of course you can

deal with this by adding a  to the beginning of those tasks, but it's almost always a bad idea to repeat amkdir

sequence of code that you only need once (Look up the  principle). A better solution would use the DRY

 relationship between tasks to reuse the task to create the directory:dependsOn

Example 14.1. Directory creation with mkdir

build.gradle

def classesDir =  File( )new 'build/classes'

task resources << {
    classesDir.mkdirs()
    // do something
}
task compile(dependsOn: ) << {'resources'
     (classesDir.isDirectory()) {if
        println 'The class directory exists. I can operate'
    }
    // do something
}

Output of gradle -q compile

> gradle -q compile
The class directory exists. I can operate

14.2. Gradle properties and system properties
Gradle offers a variety of ways to add properties to your build. With the  command line option you can pass a-D

system property to the JVM which runs Gradle. The  option of the  command has the same effect as-D gradle

the  option of the  command.-D java

You can also add properties to your project objects using properties files. You can place a gradle.properties

file in the Gradle user home directory (defined by the “ ” environment variable, which ifGRADLE_USER_HOME

not set defaults to ) or in your project directory. For multi-project builds you can place/.gradleUSER_HOME

 files in any subproject directory. The properties set in a  filegradle.properties gradle.properties

can be accessed via the project object. The properties file in the user's home directory has precedence over

property files in the project directories.



Page 79 of 448

You can also add properties directly to your project object via the  command line option.-P

Gradle can also set project properties when it sees specially-named system properties or environment variables.

This feature is very useful when you don't have admin rights to a continuous integration server and you need to

set property values that should not be easily visible, typically for security reasons. In that situation, you can't use

the  option, and you can't change the system-level configuration files. The correct strategy is to change the-P

configuration of your continuous integration build job, adding an environment variable setting that matches an

expected pattern. This won't be visible to normal users on the system. [ ]6

If the environment variable name looks like , then Gradle willORG_GRADLE_PROJECT_ =somevalueprop

set a  property on your project object, with the value of . Gradle also supports this for systemprop somevalue

properties, but with a different naming pattern, which looks like .org.gradle.project.prop

You can also set system properties in the  file. If a property name in such a file has thegradle.properties

prefix “ ”, like “ ”, then the property and its value will be set as asystemProp. systemProp.propName

system property, without the prefix. In a multi project build, “ ” properties set in any projectsystemProp.

except the root will be ignored. That is, only the root project's  file will be checked forgradle.properties

properties that begin with the “ ” prefix.systemProp.

Example 14.2. Setting properties with a gradle.properties file

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
sysProp=shouldBeOverWrittenBySysProp
envProjectProp=shouldBeOverWrittenByEnvProp
systemProp.system=systemValue

build.gradle

task printProps << {
    println commandLineProjectProp
    println gradlePropertiesProp
    println systemProjectProp
    println envProjectProp
    println System.properties[ ]'system'
}

Output of gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps

> gradle -q -PcommandLineProjectProp=commandLineProjectPropValue -Dorg.gradle.project.systemProjectProp=systemPropertyValue printProps
commandLineProjectPropValue
gradlePropertiesValue
systemPropertyValue
envPropertyValue
systemValue



Page 80 of 448

14.2.1. Checking for project properties

You can access a project property in your build script simply by using its name as you would use a variable. If

this property does not exist, an exception will be thrown and the build will fail. If your build script relies on

optional properties the user might set, perhaps in a  file, you need to check forgradle.properties

existence before you access them. You can do this by using the method hasProperty('propertyName')

which returns  or .true false

14.3. Configuring the project using an external
build script

You can configure the current project using an external build script. All of the Gradle build language is

available in the external script. You can even apply other scripts from the external script.

Example 14.3. Configuring the project using an external build script

build.gradle

apply from: 'other.gradle'

other.gradle

println "configuring $project"
task hello << {
    println 'hello from other script'
}

Output of gradle -q hello

> gradle -q hello
configuring root project 'configureProjectUsingScript'
hello from other script

14.4. Configuring arbitrary objects
You can configure arbitrary objects in the following very readable way.



Page 81 of 448

Example 14.4. Configuring arbitrary objects

build.gradle

task configure << {
    def pos = configure(  java.text.FieldPosition( )) {new 10
        beginIndex = 1
        endIndex = 5
    }
    println pos.beginIndex
    println pos.endIndex
}

Output of gradle -q configure

> gradle -q configure
1
5

14.5. Configuring arbitrary objects using an
external script

You can also configure arbitrary objects using an external script.

Example 14.5. Configuring arbitrary objects using a script

build.gradle

task configure << {
    def pos =  java.text.FieldPosition( )new 10
    // Apply the script
    apply from: , to: pos'other.gradle'
    println pos.beginIndex
    println pos.endIndex
}

other.gradle

// Set properties.
beginIndex = 1
endIndex = 5

Output of gradle -q configure

> gradle -q configure
1
5



Page 82 of 448

14.6. Caching
To improve responsiveness Gradle caches all compiled scripts by default. This includes all build scripts,

initialization scripts, and other scripts. The first time you run a build for a project, Gradle creates a .gradle

directory in which it puts the compiled script. The next time you run this build, Gradle uses the compiled script,

if the script has not changed since it was compiled. Otherwise the script gets compiled and the new version is

stored in the cache. If you run Gradle with the  option, the cached script is--recompile-scripts

discarded and the script is compiled and stored in the cache. This way you can force Gradle to rebuild the cache.

[ ] 6 , , or  are some CI servers which offer this functionality.Jenkins Teamcity Bamboo



Page 83 of 448

15
More about Tasks

In the introductory tutorial ( ) you learned how to create simple tasks. You alsoChapter 6, Build Script Basics

learned how to add additional behavior to these tasks later on, and you learned how to create dependencies

between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further. Gradle supports 

, which are tasks that have their own properties and methods. This is really different from whatenhanced tasks

you are used to with Ant targets. Such enhanced tasks are either provided by you or built into Gradle.

15.1. Defining tasks
We have already seen how to define tasks using a keyword style in . There are aChapter 6, Build Script Basics

few variations on this style, which you may need to use in certain situations. For example, the keyword style

does not work in expressions.

Example 15.1. Defining tasks

build.gradle

task(hello) << {
    println "hello"
}

task(copy, type: Copy) {
    from(file( ))'srcDir'
    into(buildDir)
}

You can also use strings for the task names:

Example 15.2. Defining tasks - using strings for task names

build.gradle

task( ) <<'hello'
{
    println "hello"
}

task( , type: Copy) {'copy'
    from(file( ))'srcDir'
    into(buildDir)
}



Page 84 of 448

There is an alternative syntax for defining tasks, which you may prefer to use:

Example 15.3. Defining tasks with alternative syntax

build.gradle

tasks.create(name: ) << {'hello'
    println "hello"
}

tasks.create(name: , type: Copy) {'copy'
    from(file( ))'srcDir'
    into(buildDir)
}

Here we add tasks to the  collection. Have a look at  for more variations of the tasks TaskContainer create()

method.

15.2. Locating tasks
You often need to locate the tasks that you have defined in the build file, for example, to configure them or use

them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a property of

the project, using the task name as the property name:

Example 15.4. Accessing tasks as properties

build.gradle

task hello

println hello.name
println project.hello.name

Tasks are also available through the  collection.tasks

Example 15.5. Accessing tasks via tasks collection

build.gradle

task hello

println tasks.hello.name
println tasks[ ].name'hello'

You can access tasks from any project using the task's path using the  method. You cantasks.getByPath()

call the  method with a task name, or a relative path, or an absolute path.getByPath()

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskContainer.html


Page 85 of 448

Example 15.6. Accessing tasks by path

build.gradle

project( ) {':projectA'
    task hello
}

task hello

println tasks.getByPath( ).path'hello'
println tasks.getByPath( ).path':hello'
println tasks.getByPath( ).path'projectA:hello'
println tasks.getByPath( ).path':projectA:hello'

Output of gradle -q hello

> gradle -q hello
:hello
:hello
:projectA:hello
:projectA:hello

Have a look at  for more options for locating tasks.TaskContainer

15.3. Configuring tasks
As an example, let's look at the  task provided by Gradle. To create a  task for your build, you canCopy Copy

declare in your build script:

Example 15.7. Creating a copy task

build.gradle

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see ). TheCopy

following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “ ”, but it is of  “ ”. You can have multiplemyCopy type Copy

tasks of the same , but with different names. You'll find this gives you a lot of power to implementtype

cross-cutting concerns across all tasks of a particular type.

Example 15.8. Configuring a task - various ways

build.gradle

Copy myCopy = task(myCopy, type: Copy)
myCopy.from 'resources'
myCopy.into 'target'
myCopy.include( , , )'**/*.txt' '**/*.xml' '**/*.properties'

This is similar to the way we would configure objects in Java. You have to repeat the context ( ) in themyCopy

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html


Page 86 of 448

Don't forget about the
build phases

A task has both configuration and

actions. When using the , you<<

are simply using a shortcut to

define an action. Code defined in

the configuration section of your

task will get executed during the

configuration phase of the build

regardless of what task was

targeted. See Chapter  56, The

 for more detailsBuild Lifecycle

about the build lifecycle.

configuration statement every time. This is a redundancy and not very nice to read.

There is another way of configuring a task. It also preserves the context and it is arguably the most readable. It

is usually our favorite.

Example 15.9. Configuring a task - with closure

build.gradle

task myCopy(type: Copy)

myCopy {
   from 'resources'
   into 'target'
   include( , , )'**/*.txt' '**/*.xml' '**/*.properties'
}

This works for  task. Line 3 of the example is just a shortcut for the  method. It isany tasks.getByName()

important to note that if you pass a closure to the  method, this closure is applied to getByName() configure

the task, not when the task executes.

You can also use a configuration closure when you define a task.

Example 15.10. Defining a task with closure

build.gradle

task copy(type: Copy) {
   from 'resources'
   into 'target'
   include( , , )'**/*.txt' '**/*.xml' '**/*.properties'
}

15.4. Adding dependencies to a
task

There are several ways you can define the dependencies of a task.

In  you were introduced toSection  6.5, “Task dependencies”

defining dependencies using task names. Task names can refer to

tasks in the same project as the task, or to tasks in other projects.

To refer to a task in another project, you prefix the name of the

task with the path of the project it belongs to. The following is an

example which adds a dependency from  to projectA:taskX projectB:taskY

:



Page 87 of 448

Example 15.11. Adding dependency on task from another project

build.gradle

project( ) {'projectA'
    task taskX(dependsOn: ) << {':projectB:taskY'
        println 'taskX'
    }
}

project( ) {'projectB'
    task taskY << {
        println 'taskY'
    }
}

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

Instead of using a task name, you can define a dependency using a  object, as shown in this example:Task

Example 15.12. Adding dependency using task object

build.gradle

task taskX << {
    println 'taskX'
}

task taskY << {
    println 'taskY'
}

taskX.dependsOn taskY

Output of gradle -q taskX

> gradle -q taskX
taskY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is

passed the task whose dependencies are being calculated. The closure should return a single  or collectionTask

of  objects, which are then treated as dependencies of the task. The following example adds a dependencyTask

from  to all the tasks in the project whose name starts with :taskX lib



Page 88 of 448

Example 15.13. Adding dependency using closure

build.gradle

task taskX << {
    println 'taskX'
}

taskX.dependsOn {
    tasks.findAll { task -> task.name.startsWith( ) }'lib'
}

task lib1 << {
    println 'lib1'
}

task lib2 << {
    println 'lib2'
}

task notALib << {
    println 'notALib'
}

Output of gradle -q taskX

> gradle -q taskX
lib1
lib2
taskX

For more information about task dependencies, see the  API.Task

15.5. Ordering tasks

Task ordering is an  feature. Please be aware that this feature may change in later Gradleincubating

versions.

In some cases it is useful to control the  in which 2 tasks will execute, without introducing an explicitorder

dependency between those tasks. The primary difference between a task  and a task  is thatordering dependency

an ordering rule does not influence which tasks will be executed, only the order in which they will be executed.

Task ordering can be useful in a number of scenarios:

Enforce sequential ordering of tasks: eg. 'build' never runs before 'clean'.

Run build validations early in the build: eg. validate I have the correct credentials before starting the work

for a release build.

Get feedback faster by running quick verification tasks before long verification tasks: eg. unit tests should

run before integration tests.

A task that aggregates the results of all tasks of a particular type: eg. test report task combines the outputs of

all executed test tasks.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html


Page 89 of 448

There are two ordering rules available: “ ” and “ ”.must run after should run after

When you use the “must run after” ordering rule you specify that  must always run after ,taskB taskA

whenever both  and  will be run. This is expressed as . ThetaskA taskB taskB.mustRunAfter(taskA)

“should run after” ordering rule is similar but less strict as it will be ignored in two situations. Firstly if using

that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of a task

have been satisfied apart from the “should run after” task, then this task will be run regardless of whether its

“should run after” dependencies have been run or not. You should use “should run after” where the ordering is

helpful but not strictly required.

With these rules present it is still possible to execute  without  and vice-versa.taskA taskB

Example 15.14. Adding a 'must run after' task ordering

build.gradle

task taskX << {
    println 'taskX'
}
task taskY << {
    println 'taskY'
}
taskY.mustRunAfter taskX

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

Example 15.15. Adding a 'should run after' task ordering

build.gradle

task taskX << {
    println 'taskX'
}
task taskY << {
    println 'taskY'
}
taskY.shouldRunAfter taskX

Output of gradle -q taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute  without causing  to run:taskY taskX



Page 90 of 448

Example 15.16. Task ordering does not imply task execution

Output of gradle -q taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the 

 and  methods. These methods accept a taskTask.mustRunAfter() Task.shouldRunAfter()

instance, a task name or any other input accepted by .Task.dependsOn()

Note that “ ” or “ ” does not imply any executionB.mustRunAfter(A) B.shouldRunAfter(A)

dependency between the tasks:

It is possible to execute tasks  and  independently. The ordering rule only has an effect when both tasksA B

are scheduled for execution.

When run with , it is possible for  to execute in the event that  fails.--continue B A

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Example 15.17. A 'should run after' task ordering is ignored if it introduces an ordering cycle

build.gradle

task taskX << {
    println 'taskX'
}
task taskY << {
    println 'taskY'
}
task taskZ << {
    println 'taskZ'
}
taskX.dependsOn taskY
taskY.dependsOn taskZ
taskZ.shouldRunAfter taskX

Output of gradle -q taskX

> gradle -q taskX
taskZ
taskY
taskX

15.6. Adding a description to a task
You can add a description to your task. This description is displayed when executing .gradle tasks

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])


Page 91 of 448

Example 15.18. Adding a description to a task

build.gradle

task copy(type: Copy) {
   description 'Copies the resource directory to the target directory.'
   from 'resources'
   into 'target'
   include( , , )'**/*.txt' '**/*.xml' '**/*.properties'
}

15.7. Replacing tasks
Sometimes you want to replace a task. For example, if you want to exchange a task added by the Java plugin

with a custom task of a different type. You can achieve this with:

Example 15.19. Overwriting a task

build.gradle

task copy(type: Copy)

task copy(overwrite: true) << {
    println( )'I am the new one.'
}

Output of gradle -q copy

> gradle -q copy
I am the new one.

This will replace a task of type  with the task you've defined, because it uses the same name. When youCopy

define the new task, you have to set the  property to true. Otherwise Gradle throws an exception,overwrite

saying that a task with that name already exists.

15.8. Skipping tasks
Gradle offers multiple ways to skip the execution of a task.

15.8.1. Using a predicate

You can use the  method to attach a predicate to a task. The task's actions are only executed if theonlyIf()

predicate evaluates to true. You implement the predicate as a closure. The closure is passed the task as a

parameter, and should return true if the task should execute and false if the task should be skipped. The

predicate is evaluated just before the task is due to be executed.



Page 92 of 448

Example 15.20. Skipping a task using a predicate

build.gradle

task hello << {
    println 'hello world'
}

hello.onlyIf { !project.hasProperty( ) }'skipHello'

Output of gradle hello -PskipHello

> gradle hello -PskipHello
:hello SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

15.8.2. Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the 

. If this exception is thrown by an action, the further execution of this action asStopExecutionException

well as the execution of any following action of this task is skipped. The build continues with executing the next

task.

Example 15.21. Skipping tasks with StopExecutionException

build.gradle

task compile << {
    println 'We are doing the compile.'
}

compile.doFirst {
    // Here you would put arbitrary conditions in real life.
    // But this is used in an integration test so we want defined behavior.
     (true) {   StopExecutionException() }if throw new
}
task myTask(dependsOn: ) << {'compile'
   println 'I am not affected'
}

Output of gradle -q myTask

> gradle -q myTask
I am not affected

This feature is helpful if you work with tasks provided by Gradle. It allows you to add  execution ofconditional

the built-in actions of such a task. [ ]7

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/StopExecutionException.html


Page 93 of 448

15.8.3. Enabling and disabling tasks

Every task has an  flag which defaults to . Setting it to  prevents the execution of any ofenabled true false

the task's actions.

Example 15.22. Enabling and disabling tasks

build.gradle

task disableMe << {
    println 'This should not be printed if the task is disabled.'
}
disableMe.enabled = false

Output of gradle disableMe

> gradle disableMe
:disableMe SKIPPED

BUILD SUCCESSFUL

Total time: 1 secs

15.9. Skipping tasks that are up-to-date
If you are using one of the tasks that come with Gradle, such as a task added by the Java plugin, you might have

noticed that Gradle will skip tasks that are up-to-date. This behaviour is also available for your tasks, not just for

built-in tasks.

15.9.1. Declaring a task's inputs and outputs

Let's have a look at an example. Here our task generates several output files from a source XML file. Let's run it

a couple of times.



Page 94 of 448

Example 15.23. A generator task

build.gradle

task transform {
    ext.srcFile = file( )'mountains.xml'
    ext.destDir =  File(buildDir, )new 'generated'
    doLast {
        println "Transforming source file."
        destDir.mkdirs()
        def mountains =  XmlParser().parse(srcFile)new
        mountains.mountain.each { mountain ->
            def name = mountain.name[ ].text()0
            def height = mountain.height[ ].text()0
            def destFile =  File(destDir, )new "${name}.txt"
            destFile.text = "$name -> ${height}\n"
        }
    }
}

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Notice that Gradle executes this task a second time, and does not skip the task even though nothing has changed.

Our example task was defined using an action closure. Gradle has no idea what the closure does and cannot

automatically figure out whether the task is up-to-date or not. To use Gradle's up-to-date checking, you need to

declare the inputs and outputs of the task.

Each task has an  and  property, which you use to declare the inputs and outputs of the task.inputs outputs

Below, we have changed our example to declare that it takes the source XML file as an input and produces

output to a destination directory. Let's run it a couple of times.



Page 95 of 448

Example 15.24. Declaring the inputs and outputs of a task

build.gradle

task transform {
    ext.srcFile = file( )'mountains.xml'
    ext.destDir =  File(buildDir, )new 'generated'
    inputs.file srcFile
    outputs.dir destDir
    doLast {
        println "Transforming source file."
        destDir.mkdirs()
        def mountains =  XmlParser().parse(srcFile)new
        mountains.mountain.each { mountain ->
            def name = mountain.name[ ].text()0
            def height = mountain.height[ ].text()0
            def destFile =  File(destDir, )new "${name}.txt"
            destFile.text = "$name -> ${height}\n"
        }
    }
}

Output of gradle transform

> gradle transform
:transform
Transforming source file.

Output of gradle transform

> gradle transform
:transform UP-TO-DATE

Now, Gradle knows which files to check to determine whether the task is up-to-date or not.

The task's  property is of type . The task's  property is of type inputs TaskInputs outputs TaskOutputs

.

A task with no defined outputs will  be considered up-to-date. For scenarios where the outputs of a tasknever

are not files, or for more complex scenarios, the  method allows you toTaskOutputs.upToDateWhen()

calculate programmatically if the tasks outputs should be considered up to date.

A task with only outputs defined will be considered up-to-date if those outputs are unchanged since the previous

build.

15.9.2. How does it work?

Before a task is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the set

of input files and a hash of the contents of each file. Gradle then executes the task. If the task completes

successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files and a hash of

the contents of each file. Gradle persists both snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If the

new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and skips

the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for the next time the

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskOutputs.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)


Page 96 of 448

task is executed.

Note that if a task has an output directory specified, any files added to that directory since the last time it was

executed are ignored and will NOT cause the task to be out of date. This is so unrelated tasks may share an

output directory without interfering with each other. If this is not the behaviour you want for some reason,

consider using TaskOutputs.upToDateWhen()

15.10. Task rules
Sometimes you want to have a task whose behavior depends on a large or infinite number value range of

parameters. A very nice and expressive way to provide such tasks are task rules:

Example 15.25. Task rule

build.gradle

tasks.addRule( ) { String taskName ->"Pattern: ping<ID>"
     (taskName.startsWith( )) {if "ping"
        task(taskName) << {
            println  + (taskName - )"Pinging: " 'ping'
        }
    }
}

Output of gradle -q pingServer1

> gradle -q pingServer1
Pinging: Server1

The String parameter is used as a description for the rule, which is shown with .gradle tasks

Rules are not only used when calling tasks from the command line. You can also create dependsOn relations on

rule based tasks:

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)


Page 97 of 448

Example 15.26. Dependency on rule based tasks

build.gradle

tasks.addRule( ) { String taskName ->"Pattern: ping<ID>"
     (taskName.startsWith( )) {if "ping"
        task(taskName) << {
            println  + (taskName - )"Pinging: " 'ping'
        }
    }
}

task groupPing {
    dependsOn pingServer1, pingServer2
}

Output of gradle -q groupPing

> gradle -q groupPing
Pinging: Server1
Pinging: Server2

If you run “ ” you won't find a task named “ ” or “ ”, butgradle -q tasks pingServer1 pingServer2

this script is executing logic based on the request to run those tasks.

15.11. Finalizer tasks

Finalizers tasks are an  feature (see ).incubating Section C.1.2, “Incubating”

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Example 15.27. Adding a task finalizer

build.gradle

task taskX << {
    println 'taskX'
}
task taskY << {
    println 'taskY'
}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

Finalizer tasks will be executed even if the finalized task fails.



Page 98 of 448

Example 15.28. Task finalizer for a failing task

build.gradle

task taskX << {
    println 'taskX'
      RuntimeException()throw new
}
task taskY << {
    println 'taskY'
}

taskX.finalizedBy taskY

Output of gradle -q taskX

> gradle -q taskX
taskX
taskY

On the other hand, finalizer tasks are not executed if the finalized task didn't do any work, for example if it is

considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up regardless of

the build failing or succeeding. An example of such a resource is a web container that is started before an

integration test task and which should be always shut down, even if some of the tests fail.

To specify a finalizer task you use the  method. This method accepts a task instance,Task.finalizedBy()

a task name, or any other input accepted by .Task.dependsOn()

15.12. Summary
If you are coming from Ant, an enhanced Gradle task like  seems like a cross between an Ant target and anCopy

Ant task. Although Ant's tasks and targets are really different entities, Gradle combines these notions into a

single entity. Simple Gradle tasks are like Ant's targets, but enhanced Gradle tasks also include aspects of Ant

tasks. All of Gradle's tasks share a common API and you can create dependencies between them. These tasks

are much easier to configure than an Ant task. They make full use of the type system, and are more expressive

and easier to maintain.

[ ] 7 You might be wondering why there is neither an import for the  nor do weStopExecutionException

access it via its fully qualified name. The reason is, that Gradle adds a set of default imports to your script.

These imports are customizable (see ).Appendix E, Existing IDE Support and how to cope without it

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])


Page 99 of 448

16
Working With Files

Most builds work with files. Gradle adds some concepts and APIs to help you achieve this.

16.1. Locating files
You can locate a file relative to the project directory using the  method.Project.file()

Example 16.1. Locating files

build.gradle

// Using a relative path
File configFile = file( )'src/config.xml'

// Using an absolute path
configFile = file(configFile.absolutePath)

// Using a File object with a relative path
configFile = file(  File( ))new 'src/config.xml'

You can pass any object to the  method, and it will attempt to convert the value to an absolute file() File

object. Usually, you would pass it a  or  instance. If this path is an absolute path, it is used toString File

construct a  instance. Otherwise, a  instance is constructed by prepending the project directory pathFile File

to the supplied path. The  method also understands URLs, such as .file() file:/some/path.xml

Using this method is a useful way to convert some user provided value into an absolute . It is preferable toFile

using , as  always evaluates the supplied path relative to the projectnew File(somePath) file()

directory, which is fixed, rather than the current working directory, which can change depending on how the

user runs Gradle.

16.2. File collections
A  is simply a set of files. It is represented by the  interface. Many objects infile collection FileCollection

the Gradle API implement this interface. For example,  implement dependency configurations FileCollection

.

One way to obtain a  instance is to use the  method. You can passFileCollection Project.files()

this method any number of objects, which are then converted into a set of  objects. The  methodFile files()

accepts any type of object as its parameters. These are evaluated relative to the project directory, as per the file()

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])


Page 100 of 448

method, described in . You can also pass collections, iterables, maps and arrays toSection 16.1, “Locating files”

the  method. These are flattened and the contents converted to  instances.files() File

Example 16.2. Creating a file collection

build.gradle

FileCollection collection = files( ,'src/file1.txt'
                                   File( ),new 'src/file2.txt'
                                  [ , ])'src/file3.txt' 'src/file4.txt'

A file collection is iterable, and can be converted to a number of other types using the  operator. You can alsoas

add 2 file collections together using the  operator, or subtract one file collection from another using the + -

operator. Here are some examples of what you can do with a file collection.

Example 16.3. Using a file collection

build.gradle

// Iterate over the files in the collection
collection.each {File file ->
    println file.name
}

// Convert the collection to various types
Set set = collection.files
Set set2 = collection as Set
List list = collection as List
String path = collection.asPath
File file = collection.singleFile
File file2 = collection as File

// Add and subtract collections
def union = collection + files( )'src/file3.txt'
def different = collection - files( )'src/file3.txt'

You can also pass the  method a closure or a  instance. This is called when the contents offiles() Callable

the collection are queried, and its return value is converted to a set of  instances. The return value can beFile

an object of any of the types supported by the  method. This is a simple way to 'implement' the files()

 interface.FileCollection



Page 101 of 448

Example 16.4. Implementing a file collection

build.gradle

task list << {
    File srcDir

    // Create a file collection using a closure
    collection = files { srcDir.listFiles() }

    srcDir = file( )'src'
    println "Contents of $srcDir.name"
    collection.collect { relativePath(it) }.sort().each { println it }

    srcDir = file( )'src2'
    println "Contents of $srcDir.name"
    collection.collect { relativePath(it) }.sort().each { println it }
}

Output of gradle -q list

> gradle -q list
Contents of src
src/dir1
src/file1.txt
Contents of src2
src2/dir1
src2/dir2

Some other types of things you can pass to :files()

FileCollection

These are flattened and the contents included in the file collection.

Task

The output files of the task are included in the file collection.

TaskOutputs

The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of a file collection is evaluated lazily, when it is needed. This means you

can, for example, create a  that represents files which will be created in the future by, say,FileCollection

some task.

16.3. File trees
A  is a collection of files arranged in a hierarchy. For example, a file tree might represent a directoryfile tree

tree or the contents of a ZIP file. It is represented by the  interface. The  interfaceFileTree FileTree

extends , so you can treat a file tree exactly the same way as you would a file collection.FileCollection

Several objects in Gradle implement the  interface, such as .FileTree source sets

One way to obtain a  instance is to use the  method. This creates a FileTree Project.fileTree() FileTree

defined with a base directory, and optionally some Ant-style include and exclude patterns.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)


Page 102 of 448

Example 16.5. Creating a file tree

build.gradle

// Create a file tree with a base directory
FileTree tree = fileTree(dir: )'src/main'

// Add include and exclude patterns to the tree
tree.include '**/*.java'
tree.exclude '**/Abstract*'

// Create a tree using path
tree = fileTree( ).include( )'src' '**/*.java'

// Create a tree using closure
tree = fileTree( ) {'src'
    include '**/*.java'
}

// Create a tree using a map
tree = fileTree(dir: , include: )'src' '**/*.java'
tree = fileTree(dir: , includes: [ , ])'src' '**/*.java' '**/*.xml'
tree = fileTree(dir: , include: , exclude: )'src' '**/*.java' '**/*test*/**'

You use a file tree in the same way you use a file collection. You can also visit the contents of the tree, and

select a sub-tree using Ant-style patterns:

Example 16.6. Using a file tree

build.gradle

// Iterate over the contents of a tree
tree.each {File file ->
    println file
}

// Filter a tree
FileTree filtered = tree.matching {
    include 'org/gradle/api/**'
}

// Add trees together
FileTree sum = tree + fileTree(dir: )'src/test'

// Visit the elements of the tree
tree.visit {element ->
    println "$element.relativePath => $element.file"
}

16.4. Using the contents of an archive as a file tree
You can use the contents of an archive, such as a ZIP or TAR file, as a file tree. You do this using the 

 and  methods. These methods return a  instanceProject.zipTree() Project.tarTree() FileTree

which you can use like any other file tree or file collection. For example, you can use it to expand the archive by

copying the contents, or to merge some archives into another.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)


Page 103 of 448

Example 16.7. Using an archive as a file tree

build.gradle

// Create a ZIP file tree using path
FileTree zip = zipTree( )'someFile.zip'

// Create a TAR file tree using path
FileTree tar = tarTree( )'someFile.tar'

//tar tree attempts to guess the compression based on the file extension
//however if you must specify the compression explicitly you can:
FileTree someTar = tarTree(resources.gzip( ))'someTar.ext'

16.5. Specifying a set of input files
Many objects in Gradle have properties which accept a set of input files. For example, the  taskJavaCompile

has a  property, which defines the source files to compile. You can set the value of this property usingsource

any of the types supported by the  method, which was shown above. This means you can set the propertyfiles()

using, for example, a , , collection,  or even a closure. Here are someFile String FileCollection

examples:

Example 16.8. Specifying a set of files

build.gradle

// Use a File object to specify the source directory
compile {
    source = file( )'src/main/java'
}

// Use a String path to specify the source directory
compile {
    source = 'src/main/java'
}

// Use a collection to specify multiple source directories
compile {
    source = [ , ]'src/main/java' '../shared/java'
}

// Use a FileCollection (or FileTree in this case) to specify the source files
compile {
    source = fileTree(dir: ).matching { include  }'src/main/java' 'org/gradle/api/**'
}

// Using a closure to specify the source files.
compile {
    source = {
        // Use the contents of each zip file in the src dir
        file( ).listFiles().findAll {it.name.endsWith( )}.collect { zipTree(it) }'src' '.zip'
    }
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html


Page 104 of 448

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this

method accepts any of the types supported by the  method.files()

Example 16.9. Specifying a set of files

build.gradle

compile {
    // Add some source directories use String paths
    source , 'src/main/java' 'src/main/groovy'

    // Add a source directory using a File object
    source file( )'../shared/java'

    // Add some source directories using a closure
    source { file( ).listFiles() }'src/test/'
}

16.6. Copying files
You can use the  task to copy files. The copy task is very flexible, and allows you to, for example, filterCopy

the contents of the files as they are copied, and map to the file names.

To use the  task, you must provide a set of source files to copy, and a destination directory to copy theCopy

files to. You may also specify how to transform the files as they are copied. You do all this using a . Acopy spec

copy spec is represented by the  interface. The  task implements this interface. You specify theCopySpec Copy

source files using the  method. To specify the destination directory, use the CopySpec.from()

 method.CopySpec.into()

Example 16.10. Copying files using the copy task

build.gradle

task copyTask(type: Copy) {
    from 'src/main/webapp'
    into 'build/explodedWar'
}

The  method accepts any of the arguments that the  method does. When an argument resolves to afrom() files()

directory, everything under that directory (but not the directory itself) is recursively copied into the destination

directory. When an argument resolves to a file, that file is copied into the destination directory. When an

argument resolves to a non-existing file, that argument is ignored. If the argument is a task, the output files (i.e.

the files the task creates) of the task are copied and the task is automatically added as a dependency of the Copy

task. The  accepts any of the arguments that the  method does. Here is another example:into() file()

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)


Page 105 of 448

Example 16.11. Specifying copy task source files and destination directory

build.gradle

task anotherCopyTask(type: Copy) {
    // Copy everything under src/main/webapp
    from 'src/main/webapp'
    // Copy a single file
    from 'src/staging/index.html'
    // Copy the output of a task
    from copyTask
    // Copy the output of a task using Task outputs explicitly.
    from copyTaskWithPatterns.outputs
    // Copy the contents of a Zip file
    from zipTree( )'src/main/assets.zip'
    // Determine the destination directory later
    into { getDestDir() }
}

You can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 16.12. Selecting the files to copy

build.gradle

task copyTaskWithPatterns(type: Copy) {
    from 'src/main/webapp'
    into 'build/explodedWar'
    include '**/*.html'
    include '**/*.jsp'
    exclude { details -> details.file.name.endsWith( ) &&'.html'
                         details.file.text.contains( ) }'staging'
}

You can also use the  method to copy files. It works the same way as the task with someProject.copy()

major limitations though. First, the  is not incremental (see copy() Section  15.9, “Skipping tasks that are

).up-to-date”

Example 16.13. Copying files using the copy() method without up-to-date check

build.gradle

task copyMethod << {
    copy {
        from 'src/main/webapp'
        into 'build/explodedWar'
        include '**/*.html'
        include '**/*.jsp'
    }
}

Secondly, the  method can not honor task dependencies when a task is used as a copy source (i.e. as ancopy()

argument to ) because it's a method and not a task. As such, if you are using the  method asfrom() copy()

part of a task action, you must explicitly declare all inputs and outputs in order to get the correct behavior.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(groovy.lang.Closure)


Page 106 of 448

Example 16.14. Copying files using the copy() method with up-to-date check

build.gradle

task copyMethodWithExplicitDependencies{
    // up-to-date check for inputs, plus add copyTask as dependency
    inputs.file copyTask
    outputs.dir  'some-dir' // up-to-date check for outputs
    doLast{
        copy {
            // Copy the output of copyTask
            from copyTask
            into 'some-dir'
        }
    }
}

It is preferable to use the  task wherever possible, as it supports incremental building and task dependencyCopy

inference without any extra effort on your part. The  method can be used to copy files as  of acopy() part

task's implementation. That is, the copy method is intended to be used by custom tasks (see Chapter 58, Writing

) that need to copy files as part of their function. In such a scenario, the custom task shouldCustom Task Classes

sufficiently declare the inputs/outputs relevant to the copy action.

16.6.1. Renaming files

Example 16.15. Renaming files as they are copied

build.gradle

task rename(type: Copy) {
    from 'src/main/webapp'
    into 'build/explodedWar'
    // Use a closure to map the file name
    rename { String fileName ->
        fileName.replace( , )'-staging-' ''
    }
    // Use a regular expression to map the file name
    rename , '(.+)-staging-(.+)' '$1$2'
    rename(/(.+)-staging-(.+)/, )'$1$2'
}



Page 107 of 448

16.6.2. Filtering files

Example 16.16. Filtering files as they are copied

build.gradle

import org.apache.tools.ant.filters.FixCrLfFilter
 org.apache.tools.ant.filters.ReplaceTokensimport

task filter(type: Copy) {
    from 'src/main/webapp'
    into 'build/explodedWar'
    // Substitute property tokens in files
    expand(copyright: , version: )'2009' '2.3.1'
    expand(project.properties)
    // Use some of the filters provided by Ant
    filter(FixCrLfFilter)
    filter(ReplaceTokens, tokens: [copyright: , version: ])'2009' '2.3.1'
    // Use a closure to filter each line
    filter { String line ->
        "[$line]"
    }
}

A “token” in a source file that both the “expand” and “filter” operations look for, is formatted like

“@tokenName@” for a token named “tokenName”.

16.6.3. Using the  classCopySpec

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns, copy

actions, name mappings and filters.

Example 16.17. Nested copy specs

build.gradle

task nestedSpecs(type: Copy) {
    into 'build/explodedWar'
    exclude '**/*staging*'
    from( ) {'src/dist'
        include '**/*.html'
    }
    into( ) {'libs'
        from configurations.runtime
    }
}



Page 108 of 448

Why are you using
the Java plugin?

The Java plugin adds a number

of default values for the archive

tasks. You can use the archive

tasks without using the Java

plugin, if you like. You will need

to provide values for some

additional properties.

16.7. Using the  taskSync
The  task extends the  task. When it executes, it copies the source files into the destination directory,Sync Copy

and then removes any files from the destination directory which it did not copy. This can be useful for doing

things such as installing your application, creating an exploded copy of your archives, or maintaining a copy of

the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the build/libs

directory.

Example 16.18. Using the Sync task to copy dependencies

build.gradle

task libs(type: Sync) {
    from configurations.runtime
    into "$buildDir/libs"
}

16.8. Creating archives
A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to your

project. Archives are created using the various archive tasks: , , , , and . They all work theZip Tar Jar War Ear

same way, so let's look at how you create a ZIP file.

Example 16.19. Creating a ZIP archive

build.gradle

apply plugin: 'java'

task zip(type: Zip) {
    from 'src/dist'
    into( ) {'libs'
        from configurations.runtime
    }
}

The archive tasks all work exactly the same way as the  task,Copy

and implement the same  interface. As with the CopySpec Copy

task, you specify the input files using the  method, andfrom()

can optionally specify where they end up in the archive using the into()

method. You can filter the contents of file, rename files, and all the

other things you can do with a copy spec.

16.8.1. Archive naming

The format of  is used for- .projectName version type

generated archive file names. For example:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html


Page 109 of 448

Example 16.20. Creation of ZIP archive

build.gradle

apply plugin: 'java'

version = 1.0

task myZip(type: Zip) {
    from 'somedir'
}

println myZip.archiveName
println relativePath(myZip.destinationDir)
println relativePath(myZip.archivePath)

Output of gradle -q myZip

> gradle -q myZip
zipProject-1.0.zip
build/distributions
build/distributions/zipProject-1.0.zip

This adds a  archive task with the name  which produces ZIP file . It isZip myZip zipProject-1.0.zip

important to distinguish between the name of the archive task and the name of the archive generated by the

archive task. The default name for archives can be changed with the  project property.archivesBaseName

The name of the archive can also be changed at any time later on.

There are a number of properties which you can set on an archive task. These are listed below in Table 16.1,

. You can, for example, change the name of the archive:“Archive tasks - naming properties”

Example 16.21. Configuration of archive task - custom archive name

build.gradle

apply plugin: 'java'
version = 1.0

task myZip(type: Zip) {
    from 'somedir'
    baseName = 'customName'
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
customName-1.0.zip

You can further customize the archive names:



Page 110 of 448

Example 16.22. Configuration of archive task - appendix & classifier

build.gradle

apply plugin: 'java'
archivesBaseName = 'gradle'
version = 1.0

task myZip(type: Zip) {
    appendix = 'wrapper'
    classifier = 'src'
    from 'somedir'
}

println myZip.archiveName

Output of gradle -q myZip

> gradle -q myZip
gradle-wrapper-1.0-src.zip



Page 111 of 448

Table 16.1. Archive tasks - naming properties

Property name Type Default value Description

archiveName String - - - .baseName appendix version classifier extension

If any of these properties is empty the trailing  is-

not added to the name.

The base file

name of the

generated

archive

archivePath File /destinationDir archiveName The absolute

path of the

generated

archive.

destinationDir File Depends on the archive type. JARs and WARs go

into . ZIPs/librariesproject.buildDir

and TARs go into /distributionsproject.buildDir

.

The

directory to

generate the

archive into

baseName String project.name The base

name portion

of the

archive file

name.

appendix String null The

appendix

portion of

the archive

file name.

version String project.version The version

portion of

the archive

file name.

classifier String null The

classifier

portion of

the archive

file name,

extension String Depends on the archive type, and for TAR files, the

compression type as well: , , , , zip jar war tar tgz

or .tbz2

The

extension of

the archive

file name.

16.8.2. Sharing content between multiple archives

You can use the  method to share content between archives.Project.copySpec()

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(groovy.lang.Closure)


Page 112 of 448

Often you will want to publish an archive, so that it is usable from another project. This process is described in 

Chapter 52, Publishing artifacts



Page 113 of 448

17
Using Ant from Gradle

Gradle provides excellent integration with Ant. You can use individual Ant tasks or entire Ant builds in your

Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build

script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task scripting

tool.

Ant can be divided into two layers. The first layer is the Ant language. It provides the syntax for the build.xml

file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything except

the Ant tasks and types. Gradle understands this language, and allows you to import your Ant build.xml

directly into a Gradle project. You can then use the targets of your Ant build as if they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like ,  or . For this layer Gradlejavac copy jar

provides integration simply by relying on Groovy, and the fantastic .AntBuilder

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process. Your

build script may contain statements like: . "ant clean compile".execute() [ ]8

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example, you

could start by importing your existing Ant build. Then you could move your dependency declarations from the

Ant script to your build file. Finally, you could move your tasks across to your build file, or replace them with

some of Gradle's plugins. This process can be done in parts over time, and you can have a working Gradle build

during the entire process.

17.1. Using Ant tasks and types in your build
In your build script, a property called  is provided by Gradle. This is a reference to an ant AntBuilder

instance. This  is used to access Ant tasks, types and properties from your build script. There is aAntBuilder

very simple mapping from Ant's  format to Groovy, which is explained below.build.xml

You execute an Ant task by calling a method on the  instance. You use the task name as theAntBuilder

method name. For example, you execute the Ant  task by calling the  method. Theecho ant.echo()

attributes of the Ant task are passed as Map parameters to the method. Below is an example of the  task.echo

Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html


Page 114 of 448

Example 17.1. Using an Ant task

build.gradle

task hello << {
    String greeting = 'hello from Ant'
    ant.echo(message: greeting)
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we pass

the message for the  task as nested text:echo

Example 17.2. Passing nested text to an Ant task

build.gradle

task hello << {
    ant.echo( )'hello from Ant'
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] hello from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as tasks,

by calling a method with the same name as the element we want to define.

Example 17.3. Passing nested elements to an Ant task

build.gradle

task zip << {
    ant.zip(destfile: ) {'archive.zip'
        fileset(dir: ) {'src'
            include(name: )'**.xml'
            exclude(name: )'**.java'
        }
    }
}



Page 115 of 448

You can access Ant types in the same way that you access tasks, using the name of the type as the method

name. The method call returns the Ant data type, which you can then use directly in your build script. In the

following example, we create an Ant  object, then iterate over the contents of it.path

Example 17.4. Using an Ant type

build.gradle

task list << {
    def path = ant.path {
        fileset(dir: , includes: )'libs' '*.jar'
    }
    path.list().each {
        println it
    }
}

More information about  can be found in 'Groovy in Action' 8.4 or at the AntBuilder Groovy Wiki

17.1.1. Using custom Ant tasks in your build

To make custom tasks available in your build, you can use the  (usually easier) or  Anttaskdef typedef

task, just as you would in a  file. You can then refer to the custom Ant task as you would a built-inbuild.xml

Ant task.

Example 17.5. Using a custom Ant task

build.gradle

task check << {
    ant.taskdef(resource: ) {'checkstyletask.properties'
        classpath {
            fileset(dir: , includes: )'libs' '*.jar'
        }
    }
    ant.checkstyle(config: ) {'checkstyle.xml'
        fileset(dir: )'src'
    }
}

You can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To do this,

you need to define a custom configuration for the classpath, then add some dependencies to the configuration.

This is described in more detail in .Section 51.4, “How to declare your dependencies”

Example 17.6. Declaring the classpath for a custom Ant task

build.gradle

configurations {
    pmd
}

dependencies {
    pmd group: , name: , version: 'pmd' 'pmd' '4.2.5'
}

http://groovy.codehaus.org/Using+Ant+from+Groovy


Page 116 of 448

To use the classpath configuration, use the  property of the custom configuration.asPath

Example 17.7. Using a custom Ant task and dependency management together

build.gradle

task check << {
    ant.taskdef(name: ,'pmd'
                classname: ,'net.sourceforge.pmd.ant.PMDTask'
                classpath: configurations.pmd.asPath)
    ant.pmd(shortFilenames: ,'true'
            failonruleviolation: ,'true'
            rulesetfiles: file( ).toURI().toString()) {'pmd-rules.xml'
        formatter(type: , toConsole: )'text' 'true'
        fileset(dir: )'src'
    }
}

17.2. Importing an Ant build
You can use the  method to import an Ant build into your Gradle project. When youant.importBuild()

import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and execute the

Ant targets in exactly the same way as Gradle tasks.

Example 17.8. Importing an Ant build

build.gradle

ant.importBuild 'build.xml'

build.xml

<project>
     =<target name "hello">
        Hello, from Ant<echo> </echo>
    </target>
</project>

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

You can add a task which depends on an Ant target:



Page 117 of 448

Example 17.9. Task that depends on Ant target

build.gradle

ant.importBuild 'build.xml'

task intro(dependsOn: hello) << {
    println 'Hello, from Gradle'
}

Output of gradle intro

> gradle intro
:hello
[ant:echo] Hello, from Ant
:intro
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

Or, you can add behaviour to an Ant target:

Example 17.10. Adding behaviour to an Ant target

build.gradle

ant.importBuild 'build.xml'

hello << {
    println 'Hello, from Gradle'
}

Output of gradle hello

> gradle hello
:hello
[ant:echo] Hello, from Ant
Hello, from Gradle

BUILD SUCCESSFUL

Total time: 1 secs

It is also possible for an Ant target to depend on a Gradle task:



Page 118 of 448

Example 17.11. Ant target that depends on Gradle task

build.gradle

ant.importBuild 'build.xml'

task intro << {
    println 'Hello, from Gradle'
}

build.xml

<project>
     =  =<target name "hello" depends "intro">
        Hello, from Ant<echo> </echo>
    </target>
</project>

Output of gradle hello

> gradle hello
:intro
Hello, from Gradle
:hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision

with existing Gradle tasks. To do this, use the  method.AntBuilder.importBuild()

Example 17.12. Renaming imported Ant targets

build.gradle

ant.importBuild( ) { antTargetName ->'build.xml'
     + antTargetName'a-'
}

build.xml

<project>
     =<target name "hello">
        Hello, from Ant<echo> </echo>
    </target>
</project>

Output of gradle a-hello

> gradle a-hello
:a-hello
[ant:echo] Hello, from Ant

BUILD SUCCESSFUL

Total time: 1 secs

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)


Page 119 of 448

Note that while the second argument to this method should be a , when programming in GroovyTransformer

we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy's support for

.automatically coercing closures to single-abstract-method types

17.3. Ant properties and references
There are several ways to set an Ant property, so that the property can be used by Ant tasks. You can set the

property directly on the  instance. The Ant properties are also available as a Map which you canAntBuilder

change. You can also use the Ant  task. Below are some examples of how to do this.property

Example 17.13. Setting an Ant property

build.gradle

ant.buildDir = buildDir
ant.properties.buildDir = buildDir
ant.properties[ ] = buildDir'buildDir'
ant.property(name: , location: buildDir)'buildDir'

build.xml

<echo>buildDir = ${buildDir}</echo>

Many Ant tasks set properties when they execute. There are several ways to get the value of these properties.

You can get the property directly from the  instance. The Ant properties are also available as aAntBuilder

Map. Below are some examples.

Example 17.14. Getting an Ant property

build.xml

<property =  =name "antProp" value "a property defined in an Ant build"/>

build.gradle

println ant.antProp
println ant.properties.antProp
println ant.properties[ ]'antProp'

There are several ways to set an Ant reference:

Example 17.15. Setting an Ant reference

build.gradle

ant.path(id: , location: )'classpath' 'libs'
ant.references.classpath = ant.path(location: )'libs'
ant.references[ ] = ant.path(location: )'classpath' 'libs'

build.xml

<path =refid "classpath"/>

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html


Page 120 of 448

There are several ways to get an Ant reference:

Example 17.16. Getting an Ant reference

build.xml

<path =  =id "antPath" location "libs"/>

build.gradle

println ant.references.antPath
println ant.references[ ]'antPath'

17.4. API
The Ant integration is provided by .AntBuilder

[ ] 8 In Groovy you can execute Strings. To learn more about executing external processes with Groovy have a

look in 'Groovy in Action' 9.3.2 or at the Groovy wiki

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/AntBuilder.html


Page 121 of 448

18
Logging

The log is the main 'UI' of a build tool. If it is too verbose, real warnings and problems are easily hidden by this.

On the other hand you need relevant information for figuring out if things have gone wrong. Gradle defines 6

log levels, as shown in . There are two Gradle-specific log levels, in addition to theTable 18.1, “Log levels”

ones you might normally see. Those levels are  and . The latter is the default, and is used toQUIET LIFECYCLE

report build progress.

Table 18.1. Log levels

Level Used for

ERROR Error messages

QUIET Important information messages

WARNING Warning messages

LIFECYCLE Progress information messages

INFO Information messages

DEBUG Debug messages

18.1. Choosing a log level
You can use the command line switches shown in  to chooseTable 18.2, “Log level command-line options”

different log levels. In  you find the command line switchesTable  18.3, “Stacktrace command-line options”

which affect stacktrace logging.

Table 18.2. Log level command-line options

Option Outputs Log Levels

no logging options LIFECYCLE and higher

 or -q --quiet QUIET and higher

 or -i --info INFO and higher

 or -d --debug DEBUG and higher (that is, all log messages)



Page 122 of 448

Table 18.3. Stacktrace command-line options

Option Meaning

No stacktrace options No stacktraces are printed to the console in case of a build error (e.g. a

compile error). Only in case of internal exceptions will stacktraces be printed.

If the  log level is chosen, truncated stacktraces are always printed.DEBUG

 or -s --stacktrace Truncated stacktraces are printed. We recommend this over full stacktraces.

Groovy full stacktraces are extremely verbose (Due to the underlying dynamic

invocation mechanisms. Yet they usually do not contain relevant information

for what has gone wrong in  code.)your

 or -S --full-stacktraceThe full stacktraces are printed out.

18.2. Writing your own log messages
A simple option for logging in your build file is to write messages to standard output. Gradle redirects anything

written to standard output to it's logging system at the  log level.QUIET

Example 18.1. Using stdout to write log messages

build.gradle

println 'A message which is logged at QUIET level'

Gradle also provides a  property to a build script, which is an instance of . This interfacelogger Logger

extends the SLF4J  interface and adds a few Gradle specific methods to it. Below is an example of howLogger

this is used in the build script:

Example 18.2. Writing your own log messages

build.gradle

logger.quiet( )'An info log message which is always logged.'
logger.error( )'An error log message.'
logger.warn( )'A warning log message.'
logger.lifecycle( )'A lifecycle info log message.'
logger.info( )'An info log message.'
logger.debug( )'A debug log message.'
logger.trace( )'A trace log message.'

You can also hook into Gradle's logging system from within other classes used in the build (classes from the buildSrc

directory for example). Simply use an SLF4J logger. You can use this logger the same way as you use the

provided logger in the build script.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/Logger.html


Page 123 of 448

Example 18.3. Using SLF4J to write log messages

build.gradle

import org.slf4j.Logger
 org.slf4j.LoggerFactoryimport

Logger slf4jLogger = LoggerFactory.getLogger( )'some-logger'
slf4jLogger.info( )'An info log message logged using SLF4j'

18.3. Logging from external tools and libraries
Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging output

into the Gradle logging system. There is a 1:1 mapping from the Ant/Ivy log levels to the Gradle log levels,

except the Ant/Ivy  log level, which is mapped to Gradle  log level. This means the defaultTRACE DEBUG

Gradle log level will not show any Ant/Ivy output unless it is an error or a warning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects standard

output to the  log level and standard error to the  level. This behavior is configurable. The projectQUIET ERROR

object provides a , which allows you to change the log levels that standard out or error areLoggingManager

redirected to when your build script is evaluated.

Example 18.4. Configuring standard output capture

build.gradle

logging.captureStandardOutput LogLevel.INFO
println 'A message which is logged at INFO level'

To change the log level for standard out or error during task execution, tasks also provide a 

.LoggingManager

Example 18.5. Configuring standard output capture for a task

build.gradle

task logInfo {
    logging.captureStandardOutput LogLevel.INFO
    doFirst {
        println 'A task message which is logged at INFO level'
    }
}

Gradle also provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging

toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to

Gradle's logging system.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/logging/LoggingManager.html


Page 124 of 448

18.4. Changing what Gradle logs
You can replace much of Gradle's logging UI with your own. You might do this, for example, if you want to

customize the UI in some way - to log more or less information, or to change the formatting. You replace the

logging using the  method. This is accessible from a build script, or an init script, orGradle.useLogger()

via the embedding API. Note that this completely disables Gradle's default output. Below is an example init

script which changes how task execution and build completion is logged.

Example 18.6. Customizing what Gradle logs

init.gradle

useLogger(  CustomEventLogger())new

 CustomEventLogger  BuildAdapter  TaskExecutionListener {class extends implements

      beforeExecute(Task task) {public void
        println "[$task.name]"
    }

      afterExecute(Task task, TaskState state) {public void
        println()
    }
   
      buildFinished(BuildResult result) {public void
        println 'build completed'
         (result.failure != null) {if
            result.failure.printStackTrace()
        }
    }
}

Output of gradle -I init.gradle build

> gradle -I init.gradle build
[compile]
compiling source

[testCompile]
compiling test source

[test]
running unit tests

[build]

build completed

Your logger can implement any of the listener interfaces listed below. When you register a logger, only the

logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched. You

can find out more about the listener interfaces in .Section 56.6, “Responding to the lifecycle in the build script”

BuildListener

ProjectEvaluationListener

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/BuildListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/ProjectEvaluationListener.html


Page 125 of 448

TaskExecutionGraphListener

TaskExecutionListener

TaskActionListener

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskActionListener.html


Page 126 of 448

19
The Gradle Daemon

19.1. Enter the daemon
The Gradle daemon  (sometimes referred as ) aims to improve the startup and execution timethe build daemon

of Gradle.

We came up with several use cases where the daemon is very useful. For some workflows, the user invokes

Gradle many times to execute a small number of relatively quick tasks. For example:

When using test driven development, where the unit tests are executed many times.

When developing a web application, where the application is assembled many times.

When discovering what a build can do, where  is executed a number of times.gradle tasks

For these workflows, it is important that the startup cost of invoking Gradle is as small as possible.

In addition, user interfaces can provide some interesting features if the Gradle model can be built relatively

quickly. For example, the daemon might be useful for the following scenarios:

Content assistance in the IDE

Live visualisation of the build in a GUI

Tab completion in a CLI

In general, snappy behavior of the build tool is always handy. If you try using the daemon for your local builds,

you won't want to go back.

The Tooling API (see ) uses the daemon all the time, e.g. you cannot officiallyChapter 63, Embedding Gradle

use the Tooling API without the daemon. This means that whenever you are using the STS Gradle plugin for

Eclipse or the Gradle support in Intellij IDEA, you're already using the Gradle Daemon.

In the future, there are plans for more features in the daemon:

Snappy up-to-date checks: use native file system change notifications (e.g. via jdk7 nio.2) to preemptively

perform up-to-date analysis.

Even faster builds: preemptively evaluate projects, so that the model is ready when the user next invokes

Gradle.

Did we mention faster builds? The daemon can potentially preemptively download dependencies or check

for new versions of snapshot dependencies.

Utilize a pool of reusable processes available for compilation and testing. For example, both the Groovy and

Scala compilers have a large startup cost. The build daemon could maintain a process with Groovy and/or

Scala already loaded.



Page 127 of 448

Preemptive execution of certain tasks, for example compilation. Quicker feedback.

Fast and accurate bash tab completion.

Periodically garbage collect the Gradle caches.

19.2. Reusing and expiration of daemons
The basic idea is that the Gradle command forks a daemon process, which performs the actual build. Subsequent

invocations of the Gradle command will reuse the daemon, avoiding the startup costs. Sometimes we cannot use

an existing daemon because it is busy or its Java version or jvm arguments are different. For exact details on

when exactly a new daemon process is forked read the dedicated section below. The daemon process

automatically expires after 3 hours of idle time.

Here are all situations in which we fork a new daemon process:

If the daemon process is currently busy running some job, a brand new daemon process will be started.

We fork a separate daemon process per Java home. So even if there is some idle daemon waiting for build

requests but you happen to run a build with a different Java home then a brand new daemon will be forked.

We fork a separate daemon process if the jvm arguments for the build are sufficiently different. For example

we will not fork a new daemon if a some system property has changed. However if the -Xmx memory

setting changed or some fundamental immutable system property changed (e.g. file.encoding) then a new

daemon will be forked.

At the moment the daemon is coupled with a particular version of Gradle. This means that even if some

daemon is idle but you are running the build with a different version of Gradle, a new daemon will be

started. This also has a consequence for the  command line instruction: this command will only stop--stop

daemons that were started with Gradle version that is executing .--stop

We plan to improve the functionality of managing and pooling the daemons in the future.

19.3. Usage and troubleshooting
For command line usage, look at the dedicated section in . If you are tiredAppendix D, Gradle Command Line

of using the same command line options again and again, take a look at Section 20.1, “Configuring the build

. This section contains information on how to configure certain behavior ofenvironment via gradle.properties”

the daemon (including turning on the daemon by default) in a more 'persistent' way.

Some ways of troubleshooting the Gradle daemon:

If you have a problem with your build, try temporarily disabling the daemon (you can pass the command

line switch ).--no-daemon

Occasionally, you may want to stop the daemons either via the  command line option or in a more--stop

forceful way.

There is a daemon log file, which by default is located in the Gradle user home directory.

You may want to start the daemon in  mode to observe how the build is executed.--foreground



Page 128 of 448

19.4. Configuring the daemon
Some daemon settings, such as JVM arguments, memory settings or the Java home, can be configured. Please

find more information in Section 20.1, “Configuring the build environment via gradle.properties”



Page 129 of 448

20
The Build Environment

20.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute your

build. While it's possible to configure these in your local environment via GRADLE_OPTS or JAVA_OPTS,

certain settings like JVM memory settings, Java home, daemon on/off can be more useful if they can be

versioned with the project in your VCS so that the entire team can work with a consistent environment. Setting

up a consistent environment for your build is as simple as placing these settings into a gradle.properties

file. The configuration is applied in following order (if an option is configured in multiple locations the last one

wins):

from  in project build dir.gradle.properties

from  in .gradle.properties gradle user home

from system properties, e.g. when  is set on the command line.-Dsome.property

The following properties can be used to configure the Gradle build environment:

org.gradle.daemon

When set to  the Gradle daemon is used to run the build. For local developer builds this is our favoritetrue

property. The developer environment is optimized for speed and feedback so we nearly always run Gradle

jobs with the daemon. We don't run CI builds with the daemon (i.e. a long running process) as the CI

environment is optimized for consistency and reliability.

org.gradle.java.home

Specifies the Java home for the Gradle build process. The value can be set to either a  or  location,jdk jre

however, depending on what your build does,  is safer. A reasonable default is used if the setting isjdk

unspecified.

org.gradle.jvmargs

Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking memory

settings. At the moment the default settings are pretty generous with regards to memory.

org.gradle.configureondemand

Enables new incubating mode that makes Gradle selective when configuring projects. Only relevant projects

are configured which results in faster builds for large multi-projects. See Section 57.1.1.1, “Configuration on

.demand”

org.gradle.parallel



Page 130 of 448

When configured, Gradle will run in incubating parallel mode.

20.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new JVM

for the build process. This means that Gradle must launch a separate JVM process to execute the build after

parsing the various  files. When running with the daemon, a JVM with the correctgradle.properties

parameters is started once and reused for each daemon build execution. When Gradle is executed without the

daemon, then a new JVM must be launched for every build execution, unless the JVM launched by the Gradle

start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which is why if you are setting

either  or  we highly recommend that you use theorg.gradle.java.home org.gradle.jvmargs

Gradle Daemon. See  for more details.Chapter 19, The Gradle Daemon

20.2. Accessing the web via a proxy
Configuring an HTTP proxy (for downloading dependencies, for example) is done via standard JVM system

properties. These properties can be set directly in the build script; for example, setting the proxy host would be

done with . Alternatively,System.setProperty('http.proxyHost', 'www.somehost.org')

the properties can be specified in a gradle.properties file, either in the build's root directory or in the Gradle

home directory.

Example 20.1. Configuring an HTTP proxy

gradle.properties

systemProp.http.proxyHost=www.somehost.org
systemProp.http.proxyPort=8080
systemProp.http.proxyUser=userid
systemProp.http.proxyPassword=password
systemProp.http.nonProxyHosts=*.nonproxyrepos.com|localhost   

There are separate settings for HTTPS.

Example 20.2. Configuring an HTTPS proxy

gradle.properties

systemProp.https.proxyHost=www.somehost.org
systemProp.https.proxyPort=8080
systemProp.https.proxyUser=userid
systemProp.https.proxyPassword=password
systemProp.https.nonProxyHosts=*.nonproxyrepos.com|localhost

We could not find a good overview for all possible proxy settings. One place to look are the constants in a file

from the Ant project. Here's a to the Subversion view. The other is a from thelink Networking Properties page 

JDK docs. If anyone knows of a better overview, please let us know via the mailing list.

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html


Page 131 of 448

20.2.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as the

username and password. There are 2 ways that you can provide the domain for authenticating to a NTLM proxy:

Set the  system property to a value like .http.proxyUser /domain username

Provide the authentication domain via the  system property.http.auth.ntlm.domain



Page 132 of 448

21
Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like the

ability to compile Java code, are added by . Plugins add new tasks (e.g. ), domainplugins JavaCompile

objects (e.g. ), conventions (e.g. Java source is located at ) as well as extendingSourceSet src/main/java

core objects and objects from other plugins.

In this chapter we will discuss how to use plugins and the terminology and concepts surrounding plugins.

21.1. What plugins do
Applying a plugin to a project allows the plugin to extend the project's capabilities. It can do things such as:

Extend the Gradle model (e.g. add new DSL elements that can be configured)

Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)

Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.

Applying plugins:

Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects

Allows a higher degree of modularization, enhancing comprehensibility and organization

Encapsulates imperative logic and allows build scripts to be as declarative as possible

21.2. Types of plugins
There are two general types of plugins in Gradle,  plugins and  plugins. Script plugins arescript binary

additional build scripts that further configure the build and usually implement a declarative approach to

manipulating the build. They are typically used within a build although they can be externalized and accessed

from a remote location. Binary plugins are classes that implement the  interface and adopt aPlugin

programmatic approach to manipulating the build. Binary plugins can reside within a build script, within the

project hierarchy or externally in a plugin jar.

21.3. Applying plugins
Plugins are said to be , which is done via the  method. The application of pluginsapplied Project.apply()

is . That is, the same plugin can be applied multiple times. If the plugin has previously been applied,idempotent

any further applications are safe and will have no effect.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:apply(java.util.Map)


Page 133 of 448

21.3.1. Script plugins

Example 21.1. Applying a script plugin

build.gradle

apply from: 'other.gradle'

Script plugins can be applied from a script on the local filesystem or at a remote location. Filesystem locations

are relative to the project directory, while remote script locations are specified with an HTTP URL. Multiple

script plugins (of either form) can be applied to a given build.

21.3.2. Binary plugins

Example 21.2. Applying a binary plugin

build.gradle

apply plugin: 'java'

Plugins can be applied using a . The plugin id serves as a unique identifier for a given plugin. Coreplugin id

plugins register a short name that can be used as the plugin id. In the above case, we are using the short name ‘java

’ to apply the . Community plugins, on the other hand, use a fully qualified form for the plugin idJavaPlugin

(e.g. ), although some legacy plugins may still utilize a short, unqualified form.com.github.foo.bar

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the plugin:

Example 21.3. Applying a binary plugin by type

build.gradle

apply plugin: JavaPlugin

The  symbol in the above sample refers to the the . This class does not strictlyJavaPlugin JavaPlugin

need to be imported as the  package is automatically imported in all buildorg.gradle.api.plugins

scripts (see ). Furthermore, it is not necessary toAppendix E, Existing IDE Support and how to cope without it

append  to identify a class literal in Groovy as it is in Java..class

21.3.2.1. Locations of binary plugins

A plugin is simply any class that implements the  interface. Gradle provides the core plugins as part ofPlugin

its distribution so simply applying the plugin as above is all you need to do. However, non-core binary plugins

need to be available to the build classpath before they can be applied. This can be achieved in a number of ways,

including:

Defining the plugin as an inline class declaration inside a build script.

Defining the plugin as a source file under the buildSrc directory in the project (see Section 60.3, “Build

).sources in the  project”buildSrc

Including the plugin from an external jar defined as a buildscript dependency (see Section 21.4, “Applying

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html


Page 134 of 448

).plugins with the buildscript block”

Including the plugin from the plugin portal using the plugins DSL (see Section 21.5, “Applying plugins with

).the plugins DSL”

For more on defining your own plugins, see .Chapter 59, Writing Custom Plugins

21.4. Applying plugins with the buildscript block
Binary plugins that have been published as external jar files can be added to a project by adding the plugin to

the build script classpath and then applying the plugin. External jars can be added to the build script classpath

using the  block as described in .buildscript {} Section 60.5, “External dependencies for the build script”

Example 21.4. Applying a plugin with the buildscript block

build.gradle

buildscript {
    repositories {
        jcenter()
    }
    dependencies {
        classpath "com.jfrog.bintray.gradle:gradle-bintray-plugin:0.4.1"
    }
}

apply plugin: "com.jfrog.bintray"

21.5. Applying plugins with the plugins DSL

The plugins DSL is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The new plugins DSL provides a more succinct and convenient way to declare plugin dependencies. It works

with the new  to provide easy access to both core and community plugins. The pluginsGradle plugin portal

script block configures an instance of .PluginDependenciesSpec

To apply a core plugin, the short name can be used:

Example 21.5. Applying a core plugin

build.gradle

plugins {
    id 'java'
}

To apply a community plugin from the portal, the fully qualified plugin id must be used:

http://plugins.gradle.org
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html


Page 135 of 448

Example 21.6. Applying a community plugin

build.gradle

plugins {
    id  version "com.jfrog.bintray" "0.4.1"
}

No further configuration is necessary. Specifically, there is no need to configure the buildscript classpath.

Gradle will resolve the plugin in the plugin portal, locate it, and make it available to the build.

See  for more information on using the Plugin DSL.PluginDependenciesSpec

21.5.1. Limitations of the plugins DSL

The new way to add plugins to a project is much more than a more convenient syntax. The new DSL is

processed very differently to the old one. The new mechanism allows Gradle to determine the plugins in use

very early and very quickly. This allows Gradle to do smart things such as:

Optimize the loading and reuse of plugin classes.

Allow different plugins to use different versions of dependencies.

Provide editors detailed information about the potential properties and values in the buildscript for editing

assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing the

rest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional”  methodapply()

mechanism. There are also some constraints, some of which are temporary limitations while the mechanism is

still being developed and some are inherent to the new approach.

21.5.1.1. Constrained Syntax

The new  block does not support arbitrary Groovy code. It is constrained, in order to beplugins {}

idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any time).

The form is:

plugins {
    id «plugin id» version «plugin version»
}
                

Where  and  must be constant, literal, strings. No other statements are«plugin version» «plugin id»

allowed; their presence will cause a compilation error.

The  block must also be a top level statement in the buildscript. It cannot be nested inside anotherplugins {}

construct (e.g. an if-statement or for-loop).

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html


Page 136 of 448

21.5.1.2. Can only be used in build scripts

The  block can currently only be used in a project's build script. It cannot be used in scriptplugins {}

plugins, the settings.gradle file or init scripts.

Future versions of Gradle will remove this restriction.

21.5.1.3. Cannot be used in conjunction with subprojects {}, allprojects {}, etc

It is not possible to use the familiar pattern of applying a plugin to multiple projects at once using 

, etc at the moment. There is currently no mechanism for applying a plugin to multiplesubprojects {}

projects at once. At the moment, each project that requires a plugin must declare so in the  blockplugins {}

in its buildscript.

Future versions of Gradle will remove this restriction.

If the restrictions of the new syntax are prohibitive, the recommended approach is to apply plugins using the buildscript {} block

.

21.6. Finding community plugins
Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of capabilities.

The Gradle  provides an interface for searching and exploring community plugins.plugin portal

21.7. More on plugins
This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more information

on the inner workings of plugins, see .Chapter 59, Writing Custom Plugins

http://plugins.gradle.org


Page 137 of 448

22
Standard Gradle plugins

There are a number of plugins included in the Gradle distribution. These are listed below.

22.1. Language plugins
These plugins add support for various languages which can be compiled for and executed in the JVM.

Table 22.1. Language plugins

Plugin

Id

Automatically

applies

Works

with

Description

java java-base - Adds Java compilation, testing and bundling capabilities to a

project. It serves as the basis for many of the other Gradle

plugins. See also .Chapter 7, Java Quickstart

groovy java, groovy-base- Adds support for building Groovy projects. See also Chapter 9,

.Groovy Quickstart

scala java, scala-base- Adds support for building Scala projects.

antlr java - Adds support for generating parsers using .Antlr

22.2. Incubating language plugins
These plugins add support for various languages:

http://www.antlr.org/


Page 138 of 448

Table 22.2. Language plugins

Plugin Id Automatically

applies

Works

with

Description

assembler - - Adds native assembly language capabilities to

a project.

c - - Adds C source compilation capabilities to a

project.

cpp - - Adds C++ source compilation capabilities to a

project.

objective-c - - Adds Objective-C source compilation

capabilities to a project.

objective-cpp - - Adds Objective-C++ source compilation

capabilities to a project.

windows-resources - - Adds support for including Windows

resources in native binaries.

22.3. Integration plugins
These plugins provide some integration with various runtime technologies.



Page 139 of 448

Table 22.3. Integration plugins

Plugin Id Automatically

applies

Works

with

Description

application java - Adds tasks for running and bundling a Java project as a

command-line application.

ear - java Adds support for building J2EE applications.

jetty war - Deploys your web application to a Jetty web container

embedded in the build. See also Chapter  10, Web

.Application Quickstart

maven - java,

war

Adds support for publishing artifacts to Maven

repositories.

osgi java-base java Adds support for building OSGi bundles.

war java - Adds support for assembling web application WAR files.

See also .Chapter 10, Web Application Quickstart

22.4. Incubating integration plugins
These plugins provide some integration with various runtime technologies.



Page 140 of 448

Table 22.4. Incubating integration plugins

Plugin Id Automatically

applies

Works

with

Description

distribution - - Adds support for building ZIP

and TAR distributions.

java-library-distribution java, distribution- Adds support for building ZIP

and TAR distributions for a Java

library.

ivy-publish - java,

war

This plugin provides a new DSL

to support publishing artifacts to

Ivy repositories, which improves

on the existing DSL.

maven-publish - java,

war

This plugin provides a new DSL

to support publishing artifacts to

Maven repositories, which

improves on the existing DSL.

22.5. Software development plugins
These plugins provide help with your software development process.

Table 22.5. Software development plugins

Plugin Id Automatically

applies

Works

with

Description

announce - - Publish messages to your favourite

platforms, such as Twitter or Growl.

build-announcements announce - Sends local announcements to your

desktop about interesting events in

the build lifecycle.

checkstyle java-base - Performs quality checks on your

project's Java source files using 

 and generates reportsCheckstyle

from these checks.

http://checkstyle.sourceforge.net/index.html


Page 141 of 448

codenarc groovy-base - Performs quality checks on your

project's Groovy source files using 

 and generates reportsCodeNarc

from these checks.

eclipse - java,groovy

, scala

Generates files that are used by 

, thus making it possibleEclipse IDE

to import the project into Eclipse.

See also .Chapter 7, Java Quickstart

eclipse-wtp - ear, war Does the same as the eclipse plugin

plus generates eclipse WTP (Web

Tools Platform) configuration files.

After importing to eclipse your

war/ear projects should be

configured to work with WTP. See

also .Chapter 7, Java Quickstart

findbugs java-base - Performs quality checks on your

project's Java source files using 

 and generates reportsFindBugs

from these checks.

idea - java Generates files that are used by 

, thus making itIntellij IDEA IDE

possible to import the project into

IDEA.

jdepend java-base - Performs quality checks on your

project's source files using JDepend

and generates reports from these

checks.

pmd java-base - Performs quality checks on your

project's Java source files using 

 and generates reports fromPMD

these checks.

project-report reporting-base - Generates reports containing useful

information about your Gradle build.

signing base - Adds the ability to digitally sign

built files and artifacts.

http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net


Page 142 of 448

sonar - java-base,

java,

jacoco

Provides integration with the Sonar

code quality platform. Superceeded

by the  plugin.sonar-runner

22.6. Incubating software development plugins
These plugins provide help with your software development process.

Table 22.6. Software development plugins

Plugin Id Automatically

applies

Works

with

Description

build-dashboard reporting-base - Generates build dashboard report.

build-init wrapper - Adds support for initializing a new Gradle

build. Handles converting a Maven build to

a Gradle build.

cunit - - Adds support for running  tests.CUnit

jacoco reporting-base java Provides integration with the  codeJaCoCo

coverage library for Java.

sonar-runner - java-base,

java,

jacoco

Provides integration with the  codeSonar

quality platform. Supersedes the sonar

plugin.

visual-studio - native

language

plugins

Adds integration with Visual Studio.

wrapper - - Adds a  task for generatingWrapper

Gradle wrapper files.

java-gradle-plugin java Assists with development of Gradle plugins

by providing standard plugin build

configuration and validation.

http://www.sonarsource.org
http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.sonarsource.org
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html


Page 143 of 448

22.7. Base plugins
These plugins form the basic building blocks which the other plugins are assembled from. They are available for

you to use in your build files, and are listed here for completeness. However, be aware that they are not yet

considered part of Gradle's public API. As such, these plugins are not documented in the user guide. You might

refer to their API documentation to learn more about them.

Table 22.7. Base plugins

Plugin Id Description

base Adds the standard lifecycle tasks and configures reasonable defaults for the archive tasks:

adds build  tasks. Those tasks assemble the artifactsConfigurationName

belonging to the specified configuration.

adds upload  tasks. Those tasks assemble and upload theConfigurationName

artifacts belonging to the specified configuration.

configures reasonable default values for all archive tasks (e.g. tasks that inherit from 

). For example, the archive tasks are tasks of types: , AbstractArchiveTask Jar

, . Specifically, ,  and  propertiesTar Zip destinationDir baseName version

of the archive tasks are preconfigured with defaults. This is extremely useful because

it drives consistency across projects; the consistency regarding naming conventions of

archives and their location after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.

groovy-base Adds the Groovy source sets concept to the project.

scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

22.8. Third party plugins
You can find a list of external plugins at the .Gradle Plugins site

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/


Page 144 of 448

23
The Java Plugin

The Java plugin adds Java compilation along with testing and bundling capabilities to a project. It serves as the

basis for many of the other Gradle plugins.

23.1. Usage
To use the Java plugin, include the following in your build script:

Example 23.1. Using the Java plugin

build.gradle

apply plugin: 'java'

23.2. Source sets
The Java plugin introduces the concept of a . A source set is simply a group of source files which aresource set

compiled and executed together. These source files may include Java source files and resource files. Other

plugins add the ability to include Groovy and Scala source files in a source set. A source set has an associated

compile classpath, and runtime classpath.

One use for source sets is to group source files into logical groups which describe their purpose. For example,

you might use a source set to define an integration test suite, or you might use separate source sets to define the

API and implementation classes of your project.

The Java plugin defines two standard source sets, called  and . The  source set contains yourmain test main

production source code, which is compiled and assembled into a JAR file. The  source set contains yourtest

test source code, which is compiled and executed using JUnit or TestNG. These can be unit tests, integration

tests, acceptance tests, or any combination that is useful to you.

23.3. Tasks
The Java plugin adds a number of tasks to your project, as shown below.

Table 23.1. Java plugin - tasks

Task name Depends on Type Description



Page 145 of 448

compileJava All tasks which produce the

compile classpath. This

includes the  task forjar

project dependencies

included in the compile

configuration.

JavaCompile Compiles

production Java

source files using

javac.

processResources - Copy Copies production

resources into the

production classes

directory.

classes The  task andcompileJava

the processResources

task. Some plugins add

additional compilation tasks.

Task Assembles the

production classes

directory.

compileTestJava , plus all taskscompile

which produce the test

compile classpath.

JavaCompile Compiles test Java

source files using

javac.

processTestResources - Copy Copies test

resources into the

test classes

directory.

testClasses  taskcompileTestJava

and processTestResources

task. Some plugins add

additional test compilation

tasks.

Task Assembles the test

classes directory.

jar compile Jar Assembles the JAR

file

javadoc compile Javadoc Generates API

documentation for

the production Java

source, using

Javadoc

test , ,compile compileTest

plus all tasks which produce

the test runtime classpath.

Test Runs the unit tests

using JUnit or

TestNG.

uploadArchives The tasks which produce the

artifacts in the archives

configuration, including .jar

Upload Uploads artifacts in

the archives

configuration,

including the JAR

file.

clean - Delete Deletes the project

build directory.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Upload.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html


Page 146 of 448

cleanTaskName - Delete Deletes files

created by specified

task. cleanJar

will delete the JAR

file created by the jar

task, and cleanTest

will delete the test

results created by

the  task.test

For each source set you add to the project, the Java plugin adds the following compilation tasks:

Table 23.2. Java plugin - source set tasks

Task name Depends on Type Description

compile JavaSourceSetAll tasks which produce the source set's compile

classpath.

JavaCompile Compiles

the given

source set's

Java source

files using

javac.

process ResourcesSourceSet- Copy Copies the

given

source set's

resources

into the

classes

directory.

ClassessourceSet The  task and the compile JavaSourceSet process ResourcesSourceSet

task. Some plugins add additional compilation tasks

for the source set.

Task Assembles

the given

source set's

classes

directory.

The Java plugin also adds a number of tasks which form a lifecycle for the project:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html


Page 147 of 448

Table 23.3. Java plugin - lifecycle tasks

Task name Depends on Type Description

assemble All archive tasks in the project,

including . Some plugins addjar

additional archive tasks to the

project.

Task Assembles all the archives in

the project.

check All verification tasks in the

project, including . Sometest

plugins add additional verification

tasks to the project.

Task Performs all verification

tasks in the project.

build  and check assemble Task Performs a full build of the

project.

buildNeeded  and  tasksbuild buildNeeded

in all project lib dependencies of

the  configuration.testRuntime

Task Performs a full build of the

project and all projects it

depends on.

buildDependents  and build buildDependents

tasks in all projects with a project

lib dependency on this project in a testRuntime

configuration.

Task Performs a full build of the

project and all projects which

depend on it.

buildConfigName The tasks which produce the

artifacts in configuration 

.ConfigName

Task Assembles the artifacts in the

specified configuration. The

task is added by the Base

plugin which is implicitly

applied by the Java plugin.

uploadConfigName The tasks which uploads the

artifacts in configuration 

.ConfigName

Upload Assembles and uploads the

artifacts in the specified

configuration. The task is

added by the Base plugin

which is implicitly applied by

the Java plugin.

The following diagram shows the relationships between these tasks.

Figure 23.1. Java plugin - tasks

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Upload.html


Page 148 of 448

23.4. Project layout
The Java plugin assumes the project layout shown below. None of these directories need exist or have anything

in them. The Java plugin will compile whatever it finds, and handles anything which is missing.

Table 23.4. Java plugin - default project layout

Directory Meaning

src/main/java Production Java source

src/main/resources Production resources

src/test/java Test Java source

src/test/resources Test resources

src/ /javasourceSet Java source for the given source set

src/ /resourcessourceSet Resources for the given source set

23.4.1. Changing the project layout

You configure the project layout by configuring the appropriate source set. This is discussed in more detail in

the following sections. Here is a brief example which changes the main Java and resource source directories.

Example 23.2. Custom Java source layout

build.gradle

sourceSets {
    main {
        java {
            srcDir 'src/java'
        }
        resources {
            srcDir 'src/resources'
        }
    }
}

23.5. Dependency management
The Java plugin adds a number of dependency configurations to your project, as shown below. It assigns those

configurations to tasks such as  and .compileJava test



Page 149 of 448

Table 23.5. Java plugin - dependency configurations

Name Extends Used by tasks Meaning

compile - compileJava Compile time dependencies

runtime compile - Runtime dependencies

testCompile compile compileTestJava Additional dependencies for compiling tests.

testRuntime runtime,

testCompile

test Additional dependencies for running tests only.

archives - uploadArchives Artifacts (e.g. jars) produced by this project.

default runtime - The default configuration used by a project

dependency on this project. Contains the artifacts and

dependencies required by this project at runtime.

Figure 23.2. Java plugin - dependency configurations

For each source set you add to the project, the Java plugins adds the following dependency configurations:

Table 23.6. Java plugin - source set dependency configurations

Name Extends Used by tasks Meaning

CompilesourceSet - compile JavaSourceSet Compile time dependencies for the

given source set

RuntimesourceSet CompilesourceSet - Runtime dependencies for the given

source set

23.6. Convention properties
The Java plugin adds a number of convention properties to the project, shown below. You can use these

properties in your build script as though they were properties of the project object (see ).???

Table 23.7. Java plugin - directory properties

Property name Type Default value Description



Page 150 of 448

reportsDirName String reports The name of the

directory to

generate reports

into, relative to the

build directory.

reportsDir File

(read-only)

/buildDir reportsDirName The directory to

generate reports

into.

testResultsDirName String test-results The name of the

directory to

generate test result

.xml files into,

relative to the

build directory.

testResultsDir File

(read-only)

/buildDir testResultsDirNameThe directory to

generate test result

.xml files into.

testReportDirName String tests The name of the

directory to

generate the test

report into, relative

to the reports

directory.

testReportDir File

(read-only)

/reportsDir testReportDirNameThe directory to

generate the test

report into.

libsDirName String libs The name of the

directory to

generate libraries

into, relative to the

build directory.

libsDir File

(read-only)

/buildDir libsDirName The directory to

generate libraries

into.

distsDirName String distributions The name of the

directory to

generate

distributions into,

relative to the

build directory.

distsDir File

(read-only)

/buildDir distsDirName The directory to

generate

distributions into.



Page 151 of 448

docsDirName String docs The name of the

directory to

generate

documentation

into, relative to the

build directory.

docsDir File

(read-only)

/buildDir docsDirName The directory to

generate

documentation

into.

dependencyCacheDirName String dependency-cache The name of the

directory to use to

cache source

dependency

information,

relative to the

build directory.

dependencyCacheDir File

(read-only)

/buildDir dependencyCacheDirNameThe directory to

use to cache

source dependency

information.



Page 152 of 448

Table 23.8. Java plugin - other properties

Property name Type Default value Description

sourceSets SourceSetContainer

(read-only)

Not null Contains the

project's

source sets.

sourceCompatibility JavaVersion. Can also

set using a String or a

Number, e.g.  or '1.5' 1.5

.

version of the current JVM

in use

Java version

compatibility

to use when

compiling

Java source.

targetCompatibility JavaVersion. Can also

set using a String or

Number, e.g.  or '1.5' 1.5

.

sourceCompatibility Java version

to generate

classes for.

archivesBaseName String projectName The

basename to

use for

archives,

such as JAR

or ZIP files.

manifest Manifest an empty manifest The manifest

to include in

all JAR files.

These properties are provided by convention objects of type , and JavaPluginConvention

.BasePluginConvention

23.7. Working with source sets
You can access the source sets of a project using the  property. This is a container for thesourceSets

project's source sets, of type . There is also a  script block,SourceSetContainer sourceSets { }

which you can pass a closure to configure the source set container. The source set container works pretty much

the same way as other containers, such as .tasks

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/SourceSetContainer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/JavaVersion.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.JavaPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.BasePluginConvention.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/SourceSetContainer.html


Page 153 of 448

Example 23.3. Accessing a source set

build.gradle

// Various ways to access the main source set
println sourceSets.main.output.classesDir
println sourceSets[ ].output.classesDir'main'
sourceSets {
    println main.output.classesDir
}
sourceSets {
    main {
        println output.classesDir
    }
}

// Iterate over the source sets
sourceSets.all {
    println name
}

To configure an existing source set, you simply use one of the above access methods to set the properties of the

source set. The properties are described below. Here is an example which configures the main Java and

resources directories:

Example 23.4. Configuring the source directories of a source set

build.gradle

sourceSets {
    main {
        java {
            srcDir 'src/java'
        }
        resources {
            srcDir 'src/resources'
        }
    }
}

23.7.1. Source set properties

The following table lists some of the important properties of a source set. You can find more details in the API

documentation for .SourceSet

Table 23.9. Java plugin - source set properties

Property name Type Default value Description

name  (read-only)String Not null The name of the

source set, used

to identify it.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.SourceSet.html


Page 154 of 448

output SourceSetOutput

(read-only)

Not null The output files

of the source set,

containing its

compiled classes

and resources.

output.classesDir File /classes/buildDir nameThe directory to

generate the

classes of this

source set into.

output.resourcesDir File /resources/buildDir nameThe directory to

generate the

resources of this

source set into.

compileClasspath FileCollection compileSourceSet

configuration.

The classpath to

use when

compiling the

source files of

this source set.

runtimeClasspath FileCollection  + output runtimeSourceSet

configuration.

The classpath to

use when

executing the

classes of this

source set.

java SourceDirectorySet

(read-only)

Not null The Java source

files of this

source set.

Contains only .java

files found in the

Java source

directories, and

excludes all

other files.

java.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[ /src/ /java]projectDir nameThe source

directories

containing the

Java source files

of this source

set.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.SourceSetOutput.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html


Page 155 of 448

resources SourceDirectorySet

(read-only)

Not null The resources of

this source set.

Contains only

resources, and

excludes any .java

files found in the

resource source

directories.

Other plugins,

such as the

Groovy plugin,

exclude

additional types

of files from this

collection.

resources.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[ /src/ /resources]projectDir nameThe source

directories

containing the

resources of this

source set.

allJava SourceDirectorySet

(read-only)

java All  files.java

of this source

set. Some

plugins, such as

the Groovy

plugin, add

additional Java

source files to

this collection.

allSource SourceDirectorySet

(read-only)

resources + java All source files

of this source

set. This include

all resource files

and all Java

source files.

Some plugins,

such as the

Groovy plugin,

add additional

source files to

this collection.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html


Page 156 of 448

23.7.2. Defining new source sets

To define a new source set, you simply reference it in the  block. Here's an example:sourceSets { }

Example 23.5. Defining a source set

build.gradle

sourceSets {
    intTest
}

When you define a new source set, the Java plugin adds some dependency configurations for the source set, as

shown in . You can use these configurations toTable 23.6, “Java plugin - source set dependency configurations”

define the compile and runtime dependencies of the source set.

Example 23.6. Defining source set dependencies

build.gradle

sourceSets {
    intTest
}

dependencies {
    intTestCompile 'junit:junit:4.11'
    intTestRuntime 'org.ow2.asm:asm-all:4.0'
}

The Java plugin also adds a number of tasks which assemble the classes for the source set, as shown in 

. For example, for a source set called , compiling theTable 23.2, “Java plugin - source set tasks” intTest

classes for this source set is done by running .gradle intTestClasses

Example 23.7. Compiling a source set

Output of gradle intTestClasses

> gradle intTestClasses
:compileIntTestJava
:processIntTestResources
:intTestClasses

BUILD SUCCESSFUL

Total time: 1 secs

23.7.3. Some source set examples

Adding a JAR containing the classes of a source set:



Page 157 of 448

Example 23.8. Assembling a JAR for a source set

build.gradle

task intTestJar(type: Jar) {
    from sourceSets.intTest.output
}

Generating Javadoc for a source set:

Example 23.9. Generating the Javadoc for a source set

build.gradle

task intTestJavadoc(type: Javadoc) {
    source sourceSets.intTest.allJava
}

Adding a test suite to run the tests in a source set:

Example 23.10. Running tests in a source set

build.gradle

task intTest(type: Test) {
    testClassesDir = sourceSets.intTest.output.classesDir
    classpath = sourceSets.intTest.runtimeClasspath
}

23.8. Javadoc
The  task is an instance of . It supports the core Javadoc options and the options of thejavadoc Javadoc

standard doclet described in the  of the Javadoc executable. For a complete list ofreference documentation

supported Javadoc options consult the API documentation of the following classes: CoreJavadocOptions

and .StandardJavadocDocletOptions

Table 23.10. Java plugin - Javadoc properties

Task Property Type Default Value

classpath FileCollection sourceSets.main.output + sourceSets.main.compileClasspath

source FileTree. Can set using

anything described in 

Section 16.5, “Specifying a set

.of input files”

sourceSets.main.allJava

destinationDir File /javadocdocsDir

title String The name and version of the project

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/javadoc.html#referenceguide
http://www.gradle.org/docs/2.3/javadoc/org/gradle/external/javadoc/CoreJavadocOptions.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/external/javadoc/StandardJavadocDocletOptions.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html


Page 158 of 448

23.9. Clean
The  task is an instance of . It simply removes the directory denoted by its  property.clean Delete dir

Table 23.11. Java plugin - Clean properties

Task Property Type Default Value

dir File buildDir

23.10. Resources
The Java plugin uses the  task for resource handling. It adds an instance for each source set in the project.Copy

You can find out more about the copy task in .Section 16.6, “Copying files”

Table 23.12. Java plugin - ProcessResources properties

Task Property Type Default Value

srcDirs Object. Can set using anything described in 

.Section 16.5, “Specifying a set of input files”

.resourcessourceSet

destinationDir File. Can set using anything described in 

.Section 16.1, “Locating files”

.output.resourcesDirsourceSet

23.11. CompileJava
The Java plugin adds a  instance for each source set in the project. Some of the most commonJavaCompile

configuration options are shown below.

Table 23.13. Java plugin - Compile properties

Task Property Type Default Value

classpath FileCollection .compileClasspathsourceSet

source FileTree. Can set using anything described in 

.Section 16.5, “Specifying a set of input files”

.javasourceSet

destinationDir File. .output.classesDirsourceSet

By default, the Java compiler runs in the Gradle process. Setting  to  causes compilationoptions.fork true

to occur in a separate process. In the case of the Ant javac task, this means that a new process will be forked for

each compile task, which can slow down compilation. Conversely, Gradle's direct compiler integration (see

above) will reuse the same compiler process as much as possible. In both cases, all fork options specified with options.forkOptions

will be honored.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html


Page 159 of 448

23.12. Incremental Java compilation
Starting with Gradle 2.1, it is possible to compile Java incrementally. This feature is still incubating. See the 

 task for information on how to enable it.JavaCompile

Main goals for incremental compilations are:

Avoid wasting time compiling source classes that don't have to be compiled. This means faster builds,

especially when a change to a source class or a jar does not incur recompilation of many source classes that

depend on the changed input.

Change as few output classes as possible. Classes that don't need to be recompiled remain unchanged in the

output directory. An example scenario when this is really useful is using JRebel - the fewer output classes

are changed the quicker the jvm can use refreshed classes.

The incremental compilation at a high level:

The detection of the correct set of stale classes is reliable at some expense of speed. The algorithm uses

bytecode analysis and deals gracefully with compiler optimizations (inlining of non-private constants),

transitive class dependencies, etc. Example: When a class with a public constant changes, we eagerly

compile everything to avoid problems with constants inlined by the compiler. Down the road we will tune

the algorithm and caching so that incremental Java compilation can be a default setting for every compile

task.

To make incremental compilation fast, we cache class analysis results and jar snapshots. The initial

incremental compilation can be slower due to the cold caches.

23.13. Test
The  task is an instance of . It automatically detects and executes all unit tests in the  sourcetest Test test

set. It also generates a report once test execution is complete. JUnit and TestNG are both supported. Have a look

at  for the complete API.Test

23.13.1. Test execution

Tests are executed in a separate JVM, isolated from the main build process. The  task's API allows youTest

some control over how this happens.

There are a number of properties which control how the test process is launched. This includes things such as

system properties, JVM arguments, and the Java executable to use.

You can specify whether or not to execute your tests in parallel. Gradle provides parallel test execution by

running multiple test processes concurrently. Each test process executes only a single test at a time, so you

generally don't need to do anything special to your tests to take advantage of this. The maxParallelForks

property specifies the maximum number of test processes to run at any given time. The default is 1, that is, do

not execute the tests in parallel.

The test process sets the  system property to a unique identifier for that testorg.gradle.test.worker

process, which you can use, for example, in files names or other resource identifiers.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html


Page 160 of 448

You can specify that test processes should be restarted after it has executed a certain number of test classes. This

can be a useful alternative to giving your test process a very large heap. The  property specifies theforkEvery

maximum number of test classes to execute in a test process. The default is to execute an unlimited number of

tests in each test process.

The task has an  property to control the behavior when tests fail. The  task alwaysignoreFailures Test

executes every test that it detects. It stops the build afterwards if  is false and there areignoreFailures

failing tests. The default value of  is false.ignoreFailures

The  property allows you to configure which test events are going to be logged and at whichtestLogging

detail level. By default, a concise message will be logged for every failed test. See 

 for how to tune test logging to your preferences.TestLoggingContainer

23.13.2. Debugging

The test task provides a  property that can be set to launch to make the JVM wait for aTest.getDebug()

debugger to attach to port 5005 before proceeding with test execution.

This can also be enabled at invocation time via the  task option (since Gradle 1.12).--debug-jvm

23.13.3. Test filtering

Starting with Gradle 1.10, it is possible to include only specific tests, based on the test name pattern. Filtering is

a different mechanism than test class inclusion / exclusion that will be described in the next few paragraphs (-Dtest.single

,  and friends). The latter is based on files, e.g. the physical location of the test implementationtest.include

class. File-level test selection does not support many interesting scenarios that are possible with test-level

filtering. Some of them Gradle handles now and some will be satisfied in future releases:

Filtering at the level of specific test methods; executing a single test method

Filtering based on custom annotations (future)

Filtering based on test hierarchy; executing all tests that extend ceratain base class (future)

Filtering based on some custom runtime rule, e.g. particular value of a system property or some static state

(future)

Test filtering feature has following characteristic:

Fully qualified class name or fully qualified method name is supported, e.g. “org.gradle.SomeTest”,

“org.gradle.SomeTest.someMethod”

Wildcard '*' is supported for matching any characters

Command line option “--tests” is provided to conveniently set the test filter. Especially useful for the classic

'single test method execution' use case. When the command line option is used, the inclusion filters declared

in the build script are ignored.

Gradle tries to filter the tests given the limitations of the test framework API. Some advanced, synthetic tests

may not be fully compatible with filtering. However, the vast majority of tests and use cases should be

handled neatly.

Test filtering supersedes the file-based test selection. The latter may be completely replaced in future. We

will grow the the test filtering api and add more kinds of filters.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.logging.TestLoggingContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:debug


Page 161 of 448

Example 23.11. Filtering tests in the build script

build.gradle

test {
    filter {
        //include specific method in any of the tests
        includeTestsMatching "*UiCheck"

        //include all tests from package
        includeTestsMatching "org.gradle.internal.*"

        //include all integration tests
        includeTestsMatching "*IntegTest"
    }
}

For more details and examples please see the  reference.TestFilter

Some examples of using the command line option:

gradle test --tests org.gradle.SomeTest.someSpecificFeature

gradle test --tests *SomeTest.someSpecificFeature

gradle test --tests *SomeSpecificTest

gradle test --tests all.in.specific.package*

gradle test --tests *IntegTest

gradle test --tests *IntegTest*ui*

gradle someTestTask --tests *UiTest someOtherTestTask --tests *WebTest*ui

23.13.4. Single test execution via System Properties

This mechanism has been superseded by 'Test Filtering', described above.

Setting a system property of  =  will only execute tests that matchtaskName.single testNamePattern

the specified . The  can be a full multi-project path like “:sub1:sub2:test” ortestNamePattern taskName

just the task name. The  will be used to form an include pattern oftestNamePattern

“**/testNamePattern*.class”;. If no tests with this pattern can be found an exception is thrown. This is to shield

you from false security. If tests of more than one subproject are executed, the pattern is applied to each

subproject. An exception is thrown if no tests can be found for a particular subproject. In such a case you can

use the path notation of the pattern, so that the pattern is applied only to the test task of a specific subproject.

Alternatively you can specify the fully qualified task name to be executed. You can also specify multiple

patterns. Examples:

gradle -Dtest.single=ThisUniquelyNamedTest test

gradle -Dtest.single=a/b/ test

gradle -DintegTest.single=*IntegrationTest integTest

gradle -Dtest.single=:proj1:test:Customer build

gradle -DintegTest.single=c/d/ :proj1:integTest

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/testing/TestFilter.html


Page 162 of 448

23.13.5. Test detection

The  task detects which classes are test classes by inspecting the compiled test classes. By default it scansTest

all  files. You can set custom includes / excludes, only those classes will be scanned. Depending on the.class

test framework used (JUnit / TestNG) the test class detection uses different criteria.

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following criteria match, the class is

considered to be a JUnit test class:

Class or a super class extends  or TestCase GroovyTestCase

Class or a super class is annotated with @RunWith

Class or a super class contain a method annotated with @Test

When using TestNG, we scan for methods annotated with .@Test

Note that abstract classes are not executed. Gradle also scans up the inheritance tree into jar files on the test

classpath.

If you don't want to use test class detection, you can disable it by setting  to false.scanForTestClasses

This will make the test task only use includes / excludes to find test classes. If  isscanForTestClasses

false and no include / exclude patterns are specified, the defaults are “ ”, “**/*Tests.class **/*Test.class

” and “ ” for include and exclude, respectively.**/Abstract*.class

23.13.6. Test grouping

JUnit and TestNG allows sophisticated groupings of test methods.

For grouping JUnit test classes and methods JUnit 4.8 introduces the concept of categories.  The  task[ ]9 test

allows the specification of the JUnit categories you want to include and exclude.

Example 23.12. JUnit Categories

build.gradle

test {
    useJUnit {
        includeCategories 'org.gradle.junit.CategoryA'
        excludeCategories 'org.gradle.junit.CategoryB'
    }
}

The TestNG framework has a quite similar concept. In TestNG you can specify different test groups.  The[ ]10

test groups that should be included or excluded from the test execution can be configured in the test task.



Page 163 of 448

Example 23.13. Grouping TestNG tests

build.gradle

test {
    useTestNG {
        excludeGroups 'integrationTests'
        includeGroups 'unitTests'
    }
}

23.13.7. Test reporting

The  task generates the following results by default.Test

An HTML test report.

The results in an XML format that is compatible with the Ant JUnit report task. This format is supported by

many other tools, such as CI servers.

Results in an efficient binary format. The task generates the other results from these binary results.

There is also a stand-alone  task type which can generate the HTML test report from the binaryTestReport

results generated by one or more  task instances. To use this task type, you need to define a Test destinationDir

and the test results to include in the report. Here is a sample which generates a combined report for the unit tests

from subprojects:

Example 23.14. Creating a unit test report for subprojects

build.gradle

subprojects {
    apply plugin: 'java'

    // Disable the test report for the individual test task
    test {
        reports.html.enabled = false
    }
}

task testReport(type: TestReport) {
    destinationDir = file( )"$buildDir/reports/allTests"
    // Include the results from the `test` task in all subprojects
    reportOn subprojects*.test
}

You should note that the  type combines the results from multiple test tasks and needs toTestReport

aggregate the results of individual test classes. This means that if a given test class is executed by multiple test

tasks, then the test report will include executions of that class, but it can be hard to distinguish individual

executions of that class and their output.

23.13.7.1. TestNG parameterized methods and reporting

TestNG supports , allowing a particular test method to be executed multiple timesparameterizing test methods

with different inputs. Gradle includes the parameter values in its reporting of the test method execution.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.TestReport.html
http://testng.org/doc/documentation-main.html#parameters


Page 164 of 448

Given a parameterized test method named  that takes two parameters, it will be reported withaTestMethod

the name: . This makesaTestMethod(toStringValueOfParam1, toStringValueOfParam2)

identifying the parameter values for a particular iteration easy.

23.13.8. Convention values

Table 23.14. Java plugin - test properties

Task Property Type Default Value

testClassesDir File sourceSets.test.output.classesDir

classpath FileCollection sourceSets.test.runtimeClasspath

testResultsDir File testResultsDir

testReportDir File testReportDir

testSrcDirs List<File> sourceSets.test.java.srcDirs

23.14. Jar
The  task creates a JAR file containing the class files and resources of the project. The JAR file is declaredjar

as an artifact in the  dependency configuration. This means that the JAR is available in the classpatharchives

of a dependent project. If you upload your project into a repository, this JAR is declared as part of the

dependency descriptor. You can learn more about how to work with archives in Section  16.8, “Creating

 and artifact configurations in .archives” Chapter 52, Publishing artifacts

23.14.1. Manifest

Each jar or war object has a  property with a separate instance of . When the archive ismanifest Manifest

generated, a corresponding  file is written into the archive.MANIFEST.MF

Example 23.15. Customization of MANIFEST.MF

build.gradle

jar {
    manifest {
        attributes( : ,"Implementation-Title" "Gradle"
                   : version)"Implementation-Version"
    }
}

You can create stand alone instances of a . You can use that for example, to share manifestManifest

information between jars.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html


Page 165 of 448

Example 23.16. Creating a manifest object.

build.gradle

ext.sharedManifest = manifest {
    attributes( : ,"Implementation-Title" "Gradle"
               : version)"Implementation-Version"
}
task fooJar(type: Jar) {
    manifest = project.manifest {
        from sharedManifest
    }
}

You can merge other manifests into any  object. The other manifests might be either described by aManifest

file path or, like in the example above, by a reference to another  object.Manifest

Example 23.17. Separate MANIFEST.MF for a particular archive

build.gradle

task barJar(type: Jar) {
    manifest {
        attributes key1: 'value1'
        from sharedManifest, 'src/config/basemanifest.txt'
        from( ,'src/config/javabasemanifest.txt'
             ) {'src/config/libbasemanifest.txt'
            eachEntry { details ->
                 (details.baseValue != details.mergeValue) {if
                    details.value = baseValue
                }
                 (details.key == ) {if 'foo'
                    details.exclude()
                }
            }
        }
    }
}

Manifests are merged in the order they are declared by the  statement. If the base manifest and the mergedfrom

manifest both define values for the same key, the merged manifest wins by default. You can fully customize the

merge behavior by adding  actions in which you have access to a eachEntry ManifestMergeDetails

instance for each entry of the resulting manifest. The merge is not immediately triggered by the from statement.

It is done lazily, either when generating the jar, or by calling  or writeTo effectiveManifest

You can easily write a manifest to disk.

Example 23.18. Separate MANIFEST.MF for a particular archive

build.gradle

jar.manifest.writeTo( )"$buildDir/mymanifest.mf"

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/ManifestMergeDetails.html


Page 166 of 448

23.15. Uploading
How to upload your archives is described in .Chapter 52, Publishing artifacts

[ ] 9 The JUnit wiki contains a detailed description on how to work with JUnit categories: 

.https://github.com/junit-team/junit/wiki/Categories

[ ] 10 The TestNG documentation contains more details about test groups: 

.http://testng.org/doc/documentation-main.html#test-groups

https://github.com/junit-team/junit/wiki/Categories
http://testng.org/doc/documentation-main.html#test-groups


Page 167 of 448

24
The Groovy Plugin

The Groovy plugin extends the Java plugin to add support for Groovy projects. It can deal with Groovy code,

mixed Groovy and Java code, and even pure Java code (although we don't necessarily recommend to use it for

the latter). The plugin supports , which allows you to freely mix and match Groovy and Javajoint compilation

code, with dependencies in both directions. For example, a Groovy class can extend a Java class that in turn

extends a Groovy class. This makes it possible to use the best language for the job, and to rewrite any class in

the other language if needed.

24.1. Usage
To use the Groovy plugin, include the following in your build script:

Example 24.1. Using the Groovy plugin

build.gradle

apply plugin: 'groovy'

24.2. Tasks
The Groovy plugin adds the following tasks to the project.

Table 24.1. Groovy plugin - tasks

Task name Depends on Type Description

compileGroovy compileJava GroovyCompile Compiles production

Groovy source files.

compileTestGroovy compileTestJava GroovyCompile Compiles test Groovy

source files.

compile GroovySourceSet compile JavaSourceSet GroovyCompile Compiles the given source

set's Groovy source files.

groovydoc - Groovydoc Generates API

documentation for the

production Groovy source

files.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html


Page 168 of 448

The Groovy plugin adds the following dependencies to tasks added by the Java plugin.

Table 24.2. Groovy plugin - additional task dependencies

Task name Depends on

classes compileGroovy

testClasses compileTestGroovy

sourceSetClasses compile GroovySourceSet

Figure 24.1. Groovy plugin - tasks

24.3. Project layout
The Groovy plugin assumes the project layout shown in . All theTable 24.3, “Groovy plugin - project layout”

Groovy source directories can contain Groovy  Java code. The Java source directories may only containand

Java source code.  None of these directories need to exist or have anything in them; the Groovy plugin will[ ]11

simply compile whatever it finds.



Page 169 of 448

Table 24.3. Groovy plugin - project layout

Directory Meaning

src/main/java Production Java

source

src/main/resources Production

resources

src/main/groovy Production Groovy sources. May also contain Java

sources for joint compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/groovy Test Groovy sources. May also contain Java sources

for joint compilation.

src/ /javasourceSet Java source for the

given source set

src/ /resourcessourceSet Resources for the

given source set

src/ /groovysourceSet Groovy sources for the given source set. May also

contain Java sources for joint compilation.

24.3.1. Changing the project layout

Just like the Java plugin, the Groovy plugin allows you to configure custom locations for Groovy production

and test sources.

Example 24.2. Custom Groovy source layout

build.gradle

sourceSets {
    main {
        groovy {
            srcDirs = [ ]'src/groovy'
        }
    }

    test {
        groovy {
            srcDirs = [ ]'test/groovy'
        }
    }
}



Page 170 of 448

24.4. Dependency management
Because Gradle's build language is based on Groovy, and parts of Gradle are implemented in Groovy, Gradle

already ships with a Groovy library (2.3.3 as of Gradle 2.0). Nevertheless, Groovy projects need to explicitly

declare a Groovy dependency. This dependency will then be used on compile and runtime class paths. It will

also be used to get hold of the Groovy compiler and Groovydoc tool, respectively.

If Groovy is used for production code, the Groovy dependency should be added to the  configuration:compile

Example 24.3. Configuration of Groovy dependency

build.gradle

repositories {
    mavenCentral()
}

dependencies {
    compile 'org.codehaus.groovy:groovy-all:2.3.6'
}

If Groovy is only used for test code, the Groovy dependency should be added to the testCompile

configuration:

Example 24.4. Configuration of Groovy test dependency

build.gradle

dependencies {
    testCompile "org.codehaus.groovy:groovy:2.3.6"
}

To use the Groovy library that ships with Gradle, declare a  dependency. Note that differentlocalGroovy()

Gradle versions ship with different Groovy versions; as such, using  is less safe thenlocalGroovy()

declaring a regular Groovy dependency.

Example 24.5. Configuration of bundled Groovy dependency

build.gradle

dependencies {
    compile localGroovy()
}

The Groovy library doesn't necessarily have to come from a remote repository. It could also come from a local lib

directory, perhaps checked in to source control:



Page 171 of 448

Example 24.6. Configuration of Groovy file dependency

build.gradle

repositories {
    flatDir { dirs  }'lib'
}

dependencies {
    compile module( ) {'org.codehaus.groovy:groovy:1.6.0'
        dependency( )'asm:asm-all:2.2.3'
        dependency( )'antlr:antlr:2.7.7'
        dependency( )'commons-cli:commons-cli:1.2'
        module( ) {'org.apache.ant:ant:1.9.3'
            dependencies( ,'org.apache.ant:ant-junit:1.9.3@jar'
                         )'org.apache.ant:ant-launcher:1.9.3'
        }
    }
}

The “ ” reference may be new to you. See  for more informationmodule Chapter 51, Dependency Management

about this and other information about dependency management.

24.5. Automatic configuration of groovyClasspath
The  and  tasks consume Groovy code in two ways: on their , andGroovyCompile Groovydoc classpath

on their . The former is used to locate classes referenced by the source code, and willgroovyClasspath

typically contain the Groovy library along with other libraries. The latter is used to load and execute the Groovy

compiler and Groovydoc tool, respectively, and should only contain the Groovy library and its dependencies.

Unless a task's  is configured explicitly, the Groovy (base) plugin will try to infer it fromgroovyClasspath

the task's . This is done as follows:classpath

If a  Jar is found on , that jar will be added to .groovy-all(-indy) classpath groovyClasspath

If a  jar is found on , and the project has at least one repository declared, agroovy(-indy) classpath

corresponding  repository dependency will be added to .groovy(-indy) groovyClasspath

Otherwise, execution of the task will fail with a message saying that  could not begroovyClasspath

inferred.

Note that the “ ” variation of each jar refers to the version with  support.-indy invokedynamic

24.6. Convention properties
The Groovy plugin does not add any convention properties to the project.

24.7. Source set properties
The Groovy plugin adds the following convention properties to each source set in the project. You can use these

properties in your build script as though they were properties of the source set object (see ).???



Page 172 of 448

Table 24.4. Groovy plugin - source set properties

Property name Type Default value Description

groovy SourceDirectorySet

(read-only)

Not null The Groovy source files of this

source set. Contains all .groovy

and  files found in the.java

Groovy source directories, and

excludes all other types of files.

groovy.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[ /src/ /groovy]projectDir nameThe source directories containing

the Groovy source files of this

source set. May also contain Java

source files for joint compilation.

allGroovy  (read-only)FileTree Not null All Groovy source files of this

source set. Contains only the .groovy

files found in the Groovy source

directories.

These properties are provided by a convention object of type .GroovySourceSet

The Groovy plugin also modifies some source set properties:

Table 24.5. Groovy plugin - source set properties

Property name Change

allJava Adds all  files found in the Groovy source directories..java

allSource Adds all source files found in the Groovy source directories.

24.8. GroovyCompile
The Groovy plugin adds a  task for each source set in the project. The task type extends the GroovyCompile JavaCompile

task (see ). The  task supports most configuration options ofSection 23.11, “CompileJava” GroovyCompile

the official Groovy compiler.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.GroovySourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.compile.GroovyCompile.html


Page 173 of 448

Table 24.6. Groovy plugin - GroovyCompile properties

Task Property Type Default Value

classpath FileCollection .compileClasspathsourceSet

source FileTree. Can set using anything

described in Section 16.5, “Specifying a

.set of input files”

.groovysourceSet

destinationDir File. .output.classesDirsourceSet

groovyClasspath FileCollection groovy configuration if

non-empty; Groovy library found on

 otherwiseclasspath

[ ] 11 We are using the same conventions as introduced by Russel Winder's Gant tool ( ).http://gant.codehaus.org

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileCollection.html
http://gant.codehaus.org


Page 174 of 448

25
The Scala Plugin

The Scala plugin extends the Java plugin to add support for Scala projects. It can deal with Scala code, mixed

Scala and Java code, and even pure Java code (although we don't necessarily recommend to use it for the latter).

The plugin supports , which allows you to freely mix and match Scala and Java code, withjoint compilation

dependencies in both directions. For example, a Scala class can extend a Java class that in turn extends a Scala

class. This makes it possible to use the best language for the job, and to rewrite any class in the other language if

needed.

25.1. Usage
To use the Scala plugin, include the following in your build script:

Example 25.1. Using the Scala plugin

build.gradle

apply plugin: 'scala'

25.2. Tasks
The Scala plugin adds the following tasks to the project.

Table 25.1. Scala plugin - tasks

Task name Depends on Type Description

compileScala compileJava ScalaCompile Compiles production Scala

source files.

compileTestScala compileTestJava ScalaCompile Compiles test Scala source

files.

compile ScalaSourceSet compile JavaSourceSet ScalaCompile Compiles the given source set's

Scala source files.

scaladoc - ScalaDoc Generates API documentation

for the production Scala source

files.

The Scala plugin adds the following dependencies to tasks added by the Java plugin.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaCompile.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.scala.ScalaDoc.html


Page 175 of 448

Table 25.2. Scala plugin - additional task dependencies

Task name Depends on

classes compileScala

testClasses compileTestScala

ClassessourceSet compile ScalaSourceSet

Figure 25.1. Scala plugin - tasks

25.3. Project layout
The Scala plugin assumes the project layout shown below. All the Scala source directories can contain Scala 

 Java code. The Java source directories may only contain Java source code. None of these directories needand

to exist or have anything in them; the Scala plugin will simply compile whatever it finds.

Table 25.3. Scala plugin - project layout

Directory Meaning

src/main/java Production Java

source

src/main/resources Production

resources

src/main/scala Production Scala sources. May also contain Java

sources for joint compilation.

src/test/java Test Java source

src/test/resources Test resources

src/test/scala Test Scala sources. May also contain Java sources

for joint compilation.

src/ /javasourceSet Java source for the

given source set

src/ /resourcessourceSet Resources for the

given source set

src/ /scalasourceSet Scala sources for the given source set. May also

contain Java sources for joint compilation.



Page 176 of 448

25.3.1. Changing the project layout

Just like the Java plugin, the Scala plugin allows you to configure custom locations for Scala production and test

sources.

Example 25.2. Custom Scala source layout

build.gradle

sourceSets {
    main {
        scala {
            srcDirs = [ ]'src/scala'
        }
    }
    test {
        scala {
            srcDirs = [ ]'test/scala'
        }
    }
}

25.4. Dependency management
Scala projects need to declare a  dependency. This dependency will then be used on compilescala-library

and runtime class paths. It will also be used to get hold of the Scala compiler and Scaladoc tool, respectively. [12

]

If Scala is used for production code, the  dependency should be added to the scala-library compile

configuration:

Example 25.3. Declaring a Scala dependency for production code

build.gradle

repositories {
    mavenCentral()
}

dependencies {
    compile 'org.scala-lang:scala-library:2.11.1'
}

If Scala is only used for test code, the  dependency should be added to the scala-library testCompile

configuration:



Page 177 of 448

Example 25.4. Declaring a Scala dependency for test code

build.gradle

dependencies {
    testCompile "org.scala-lang:scala-library:2.11.1"
}

25.5. Automatic configuration of scalaClasspath
The  and  tasks consume Scala code in two ways: on their , and onScalaCompile ScalaDoc classpath

their . The former is used to locate classes referenced by the source code, and will typicallyscalaClasspath

contain  along with other libraries. The latter is used to load and execute the Scala compilerscala-library

and Scaladoc tool, respectively, and should only contain the  library and its dependencies.scala-compiler

Unless a task's  is configured explicitly, the Scala (base) plugin will try to infer it from thescalaClasspath

task's . This is done as follows:classpath

If a  Jar is found on , and the project has at least one repository declared, ascala-library classpath

corresponding  repository dependency will be added to .scala-compiler scalaClasspath

Otherwise, execution of the task will fail with a message saying that  could not bescalaClasspath

inferred.

25.6. Convention properties
The Scala plugin does not add any convention properties to the project.

25.7. Source set properties
The Scala plugin adds the following convention properties to each source set in the project. You can use these

properties in your build script as though they were properties of the source set object (see ).???



Page 178 of 448

Table 25.4. Scala plugin - source set properties

Property name Type Default value Description

scala SourceDirectorySet

(read-only)

Not null The Scala source files of this

source set. Contains all .scala

and  files found in the.java

Scala source directories, and

excludes all other types of files.

scala.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[ /src/ /scala]projectDir nameThe source directories containing

the Scala source files of this

source set. May also contain Java

source files for joint compilation.

allScala  (read-only)FileTree Not null All Scala source files of this

source set. Contains only the .scala

files found in the Scala source

directories.

These convention properties are provided by a convention object of type .ScalaSourceSet

The Scala plugin also modifies some source set properties:

Table 25.5. Scala plugin - source set properties

Property name Change

allJava Adds all  files found in the Scala source directories..java

allSource Adds all source files found in the Scala source directories.

25.8. Fast Scala Compiler
The Scala plugin includes support for , the Fast Scala Compiler.  runs in a separate daemon process andfsc fsc

can speed up compilation significantly.

Example 25.5. Enabling the Fast Scala Compiler

build.gradle

compileScala {
    scalaCompileOptions.useCompileDaemon = true

    // optionally specify host and port of the daemon:
    scalaCompileOptions.daemonServer = "localhost:4243"
}

Note that  expects to be restarted whenever the  of its compile class path change. (It does detectfsc contents

changes to the compile class path itself.) This makes it less suitable for multi-project builds.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/FileTree.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.ScalaSourceSet.html
http://www.scala-lang.org/docu/files/tools/fsc.html


Page 179 of 448

25.9. Compiling in external process
When  is set to , compilation will take place in an external process.scalaCompileOptions.fork true

The Ant based compiler ( ) will fork a new process for everyscalaCompileOptions.useAnt = true

invocation of the  task, and does not fork by default. The Zinc based compiler (ScalaCompile scalaCompileOptions.useAnt = false

) will leverage the Gradle compiler daemon, and does so by default.

Memory settings for the external process default to the defaults of the JVM. To adjust memory settings,

configure the  property as needed:scalaCompileOptions.forkOptions

Example 25.6. Adjusting memory settings

build.gradle

tasks.withType(ScalaCompile) {
    configure(scalaCompileOptions.forkOptions) {
        memoryMaximumSize = '1g'
        jvmArgs = [ ]'-XX:MaxPermSize=512m'
    }
}

25.10. Incremental compilation
By compiling only classes whose source code has changed since the previous compilation, and classes affected

by these changes, incremental compilation can significantly reduce Scala compilation time. It is particularly

effective when frequently compiling small code increments, as is often done at development time.

The Scala plugin now supports incremental compilation by integrating with , a standalone version of 'sZinc sbt

incremental Scala compiler. To switch the  task from the default Ant based compiler to theScalaCompile

new Zinc based compiler, set  to :scalaCompileOptions.useAnt false

Example 25.7. Activating the Zinc based compiler

build.gradle

tasks.withType(ScalaCompile) {
    scalaCompileOptions.useAnt = false
}

Except where noted in the , the Zinc based compiler supports exactly the same configurationAPI documentation

options as the Ant based compiler. Note, however, that the Zinc compiler requires Java 6 or higher to run. This

means that Gradle itself has to be run with Java 6 or higher.

The Scala plugin adds a configuration named  to resolve the Zinc library and its dependencies. Gradle willzinc

have a default version of the Zinc library, but if you want to override the Zinc version that Gradle uses, add an

explicit dependency like . Regardless of which Zinc version is“com.typesafe.zinc:zinc:0.1.4”

used, Zinc will always use the Scala compiler found on the  configuration.scalaTools

Just like Gradle's Ant based compiler, the Zinc based compiler supports joint compilation of Java and Scala

https://github.com/typesafehub/zinc
https://github.com/harrah/xsbt
http://gradle.org/docs/current/dsl/org.gradle.api.tasks.scala.ScalaCompile.html


Page 180 of 448

code. By default, all Java and Scala code under  will participate in joint compilation. Withsrc/main/scala

the Zinc based compiler, even Java code will be compiled incrementally.

Incremental compilation requires dependency analysis of the source code. The results of this analysis are stored

in the file designated by  (which hasscalaCompileOptions.incrementalOptions.analysisFile

a sensible default). In a multi-project build, analysis files are passed on to downstream  tasksScalaCompile

to enable incremental compilation across project boundaries. For  tasks added by the ScalaScalaCompile

plugin, no configuration is necessary to make this work. For other  tasks that you might add,ScalaCompile

the property  needs to bescalaCompileOptions.incrementalOptions.publishedCode

configured to point to the classes folder or Jar archive by which the code is passed on to compile class paths of

downstream  tasks. Note that if  is not set correctly, downstream tasks mayScalaCompile publishedCode

not recompile code affected by upstream changes, leading to incorrect compilation results.

Due to the overhead of dependency analysis, a clean compilation or a compilation after a larger code change

may take longer than with the Ant based compiler. For CI builds and release builds, we currently recommend to

use the Ant based compiler.

Note that Zinc's Nailgun based daemon mode is not supported. Instead, we plan to enhance Gradle's own

compiler daemon to stay alive across Gradle invocations, reusing the same Scala compiler. This is expected to

yield another significant speedup for Scala compilation.

25.11. Eclipse Integration
When the Eclipse plugin encounters a Scala project, it adds additional configuration to make the project work

with Scala IDE out of the box. Specifically, the plugin adds a Scala nature and dependency container.

25.12. IntelliJ IDEA Integration
When the IDEA plugin encounters a Scala project, it adds additional configuration to make the project work

with IDEA out of the box. Specifically, the plugin adds a Scala facet and a Scala compiler library that matches

the Scala version on the project's class path.

[ ] 12 See .Section 25.5, “Automatic configuration of scalaClasspath”



Page 181 of 448

26
The War Plugin

The War plugin extends the Java plugin to add support for assembling web application WAR files. It disables

the default JAR archive generation of the Java plugin and adds a default WAR archive task.

26.1. Usage
To use the War plugin, include the following in your build script:

Example 26.1. Using the War plugin

build.gradle

apply plugin: 'war'

26.2. Tasks
The War plugin adds the following tasks to the project.

Table 26.1. War plugin - tasks

Task name Depends on Type Description

war compile War Assembles the application WAR file.

The War plugin adds the following dependencies to tasks added by the Java plugin.

Table 26.2. War plugin - additional task dependencies

Task name Depends on

assemble war

Figure 26.1. War plugin - tasks

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html


Page 182 of 448

26.3. Project layout
Table 26.3. War plugin - project layout

Directory Meaning

src/main/webapp Web application sources

26.4. Dependency management
The War plugin adds two dependency configurations named  and .providedCompile providedRuntime

Those two configurations have the same scope as the respective  and  configurations,compile runtime

except that they are not added to the WAR archive. It is important to note that those  configurationsprovided

work transitively. Let's say you add  to any of thecommons-httpclient:commons-httpclient:3.0

provided configurations. This dependency has a dependency on . Because this is acommons-codec

“provided” configuration, this means that neither of these dependencies will be added to your WAR, even if the commons-codec

library is an explicit dependency of your  configuration. If you don't want this transitive behavior,compile

simply declare your  dependencies like provided commons-httpclient:commons-httpclient:3.0@jar

.

26.5. Convention properties
Table 26.4. War plugin - directory properties

Property name Type Default value Description

webAppDirName String src/main/webapp The name of the web application source

directory, relative to the project directory.

webAppDir File

(read-only)

/projectDir webAppDirNameThe web application source directory.

These properties are provided by a  convention object.WarPluginConvention

26.6. War
The default behavior of the War task is to copy the content of  to the root of the archive.src/main/webapp

Your  directory may of course contain a  sub-directory, which may contain a  file.webapp WEB-INF web.xml

Your compiled classes are compiled to . All the dependencies of the  WEB-INF/classes runtime [ ]13

configuration are copied to .WEB-INF/lib

The  class in the API documentation has additional useful information.War

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.WarPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html


Page 183 of 448

26.7. Customizing
Here is an example with the most important customization options:

Example 26.2. Customization of war plugin

build.gradle

configurations {
   moreLibs
}

repositories {
   flatDir { dirs  }"lib"
   mavenCentral()
}

dependencies {
    compile module( ) {":compile:1.0"
        dependency ":compile-transitive-1.0@jar"
        dependency ":providedCompile-transitive:1.0@jar"
    }
    providedCompile "javax.servlet:servlet-api:2.5"
    providedCompile module( ) {":providedCompile:1.0"
        dependency ":providedCompile-transitive:1.0@jar"
    }
    runtime ":runtime:1.0"
    providedRuntime ":providedRuntime:1.0@jar"
    testCompile "junit:junit:4.11"
    moreLibs ":otherLib:1.0"
}

war {
    from  'src/rootContent' // adds a file-set to the root of the archive
    webInf { from  } 'src/additionalWebInf' // adds a file-set to the WEB-INF dir.
    classpath fileTree( ) 'additionalLibs' // adds a file-set to the WEB-INF/lib dir.
    classpath configurations.moreLibs // adds a configuration to the WEB-INF/lib dir.
    webXml = file( ) 'src/someWeb.xml' // copies a file to WEB-INF/web.xml
}

Of course one can configure the different file-sets with a closure to define excludes and includes.

[ ] 13 The  configuration extends the  configuration.runtime compile



Page 184 of 448

27
The Ear Plugin

The Ear plugin adds support for assembling web application EAR files. It adds a default EAR archive task. It

doesn't require the Java plugin, but for projects that also use the Java plugin it disables the default JAR archive

generation.

27.1. Usage
To use the Ear plugin, include the following in your build script:

Example 27.1. Using the Ear plugin

build.gradle

apply plugin: 'ear'

27.2. Tasks
The Ear plugin adds the following tasks to the project.

Table 27.1. Ear plugin - tasks

Task

name

Depends on Type Description

ear  (only if the Java plugin is alsocompile

applied)

Ear Assembles the application EAR

file.

The Ear plugin adds the following dependencies to tasks added by the base plugin.

Table 27.2. Ear plugin - additional task dependencies

Task name Depends on

assemble ear

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html


Page 185 of 448

27.3. Project layout
Table 27.3. Ear plugin - project layout

Directory Meaning

src/main/application Ear resources, such as a META-INF directory

27.4. Dependency management
The Ear plugin adds two dependency configurations:  and . All dependencies in the deploy earlib deploy

configuration are placed in the root of the EAR archive, and are  transitive. All dependencies in the not earlib

configuration are placed in the 'lib' directory in the EAR archive and  transitive.are

27.5. Convention properties
Table 27.4. Ear plugin - directory properties

Property name Type Default value Description

appDirName String src/main/application The name of the application source

directory, relative to the project

directory.

libDirName String lib The name of the lib directory inside

the generated EAR.

deploymentDescriptor org.gradle.plugins.

ear.descriptor.

DeploymentDescriptor

A deployment descriptor with

sensible defaults named application.xml

Metadata to generate a deployment

descriptor file, e.g. application.xml

. If this file already exists in the appDirName/META-INF

then the existing file contents will

be used and the explicit

configuration in the ear.deploymentDescriptor

will be ignored.

These properties are provided by a  convention object.EarPluginConvention

27.6. Ear
The default behavior of the Ear task is to copy the content of  to the root of thesrc/main/application

archive. If your  directory doesn't contain a  deploymentapplication META-INF/application.xml

descriptor then one will be generated for you.

The  class in the API documentation has additional useful information.Ear

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.EarPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html


Page 186 of 448

27.7. Customizing
Here is an example with the most important customization options:

Example 27.2. Customization of ear plugin

build.gradle

apply plugin: 'ear'
apply plugin: 'java'

repositories { mavenCentral() }

dependencies {
    // The following dependencies will be the ear modules and
    // will be placed in the ear root
    deploy project( )':war'

    // The following dependencies will become ear libs and will
    // be placed in a dir configured via the libDirName property
    earlib group: , name: , version: , ext: 'log4j' 'log4j' '1.2.15' 'jar'
}

ear {
    appDirName   'src/main/app' // use application metadata found in this folder
    // put dependent libraries into APP-INF/lib inside the generated EAR
    libDirName 'APP-INF/lib'
    deploymentDescriptor {  // custom entries for application.xml:
//      fileName = "application.xml"  // same as the default value
//      version = "6"  // same as the default value
        applicationName = "customear"
        initializeInOrder = true
        displayName =   "Custom Ear" // defaults to project.name
        // defaults to project.description if not set
        description = "My customized EAR for the Gradle documentation"
//      libraryDirectory = "APP-INF/lib"  // not needed, above libDirName setting does this
//      module("my.jar", "java")  // won't deploy as my.jar isn't deploy dependency
//      webModule("my.war", "/")  // won't deploy as my.war isn't deploy dependency
        securityRole "admin"
        securityRole "superadmin"
        withXml { provider -> // add a custom node to the XML
            provider.asNode().appendNode( , )"data-source" "my/data/source"
        }
    }
}

You can also use customization options that the  task provides, such as  and .Ear from metaInf

27.8. Using custom descriptor file
You may already have appropriate settings in a  file and want to use that instead ofapplication.xml

configuring the  section of the build script. To accommodate that goal, placeear.deploymentDescriptor

the  in the right place inside your source folders (see the META-INF/application.xml appDirName

property). The file contents will be used and the explicit configuration in the ear.deploymentDescriptor

will be ignored.

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html


Page 187 of 448

28
The Jetty Plugin

The Jetty plugin extends the War plugin to add tasks which allow you to deploy your web application to a Jetty

web container embedded in the build.

28.1. Usage
To use the Jetty plugin, include the following in your build script:

Example 28.1. Using the Jetty plugin

build.gradle

apply plugin: 'jetty'

28.2. Tasks
The Jetty plugin defines the following tasks:

Table 28.1. Jetty plugin - tasks

Task name Depends

on

Type Description

jettyRun compile JettyRun Starts a Jetty instance and deploys the exploded web

application to it.

jettyRunWar war JettyRunWar Starts a Jetty instance and deploys the WAR to it.

jettyStop - JettyStop Stops the Jetty instance.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyRun.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyRunWar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyStop.html


Page 188 of 448

Figure 28.1. Jetty plugin - tasks

28.3. Project layout
The Jetty plugin uses the same layout as the War plugin.

28.4. Dependency management
The Jetty plugin does not define any dependency configurations.

28.5. Convention properties
The Jetty plugin defines the following convention properties:

Table 28.2. Jetty plugin - properties

Property name Type Default value Description

contextPath String WAR file base

name

The application deployment location within the

Jetty container.

httpPort Integer 8080 The TCP port which Jetty should listen for HTTP

requests on.

stopPort Integer null The TCP port which Jetty should listen for admin

requests on.

stopKey String null The key to pass to Jetty when requesting it to stop.

These properties are provided by a  convention object.JettyPluginConvention

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.jetty.JettyPluginConvention.html


Page 189 of 448

29
The Checkstyle Plugin

The Checkstyle plugin performs quality checks on your project's Java source files using  andCheckstyle

generates reports from these checks.

29.1. Usage
To use the Checkstyle plugin, include the following in your build script:

Example 29.1. Using the Checkstyle plugin

build.gradle

apply plugin: 'checkstyle'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

29.2. Tasks
The Checkstyle plugin adds the following tasks to the project:

Table 29.1. Checkstyle plugin - tasks

Task name Depends on Type Description

checkstyleMain classes Checkstyle Runs Checkstyle against the production

Java source files.

checkstyleTest testClasses Checkstyle Runs Checkstyle against the test Java

source files.

checkstyleSourceSet ClassessourceSet Checkstyle Runs Checkstyle against the given source

set's Java source files.

The Checkstyle plugin adds the following dependencies to tasks defined by the Java plugin.

http://checkstyle.sourceforge.net/index.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Checkstyle.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Checkstyle.html


Page 190 of 448

Table 29.2. Checkstyle plugin - additional task dependencies

Task name Depends on

check All Checkstyle tasks, including  and .checkstyleMain checkstyleTest

29.3. Project layout
The Checkstyle plugin expects the following project layout:

Table 29.3. Checkstyle plugin - project layout

File Meaning

config/checkstyle/checkstyle.xml Checkstyle configuration file

29.4. Dependency management
The Checkstyle plugin adds the following dependency configurations:

Table 29.4. Checkstyle plugin - dependency configurations

Name Meaning

checkstyle The Checkstyle libraries to use

29.5. Configuration
See the  class in the API documentation.CheckstyleExtension

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html


Page 191 of 448

30
The CodeNarc Plugin

The CodeNarc plugin performs quality checks on your project's Groovy source files using  andCodeNarc

generates reports from these checks.

30.1. Usage
To use the CodeNarc plugin, include the following in your build script:

Example 30.1. Using the CodeNarc plugin

build.gradle

apply plugin: 'codenarc'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

30.2. Tasks
The CodeNarc plugin adds the following tasks to the project:

Table 30.1. CodeNarc plugin - tasks

Task name Depends

on

Type Description

codenarcMain - CodeNarc Runs CodeNarc against the production Groovy

source files.

codenarcTest - CodeNarc Runs CodeNarc against the test Groovy source files.

codenarcSourceSet- CodeNarc Runs CodeNarc against the given source set's

Groovy source files.

The CodeNarc plugin adds the following dependencies to tasks defined by the Groovy plugin.

http://codenarc.sourceforge.net/index.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarc.html


Page 192 of 448

Table 30.2. CodeNarc plugin - additional task dependencies

Task name Depends on

check All CodeNarc tasks, including  and .codenarcMain codenarcTest

30.3. Project layout
The CodeNarc plugin expects the following project layout:

Table 30.3. CodeNarc plugin - project layout

File Meaning

config/codenarc/codenarc.xml CodeNarc configuration file

30.4. Dependency management
The CodeNarc plugin adds the following dependency configurations:

Table 30.4. CodeNarc plugin - dependency configurations

Name Meaning

codenarc The CodeNarc libraries to use

30.5. Configuration
See the  class in the API documentation.CodeNarcExtension

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.CodeNarcExtension.html


Page 193 of 448

31
The FindBugs Plugin

The FindBugs plugin performs quality checks on your project's Java source files using  and generatesFindBugs

reports from these checks.

31.1. Usage
To use the FindBugs plugin, include the following in your build script:

Example 31.1. Using the FindBugs plugin

build.gradle

apply plugin: 'findbugs'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

31.2. Tasks
The FindBugs plugin adds the following tasks to the project:

Table 31.1. FindBugs plugin - tasks

Task name Depends on Type Description

findbugsMain classes FindBugs Runs FindBugs against the production Java

source files.

findbugsTest testClasses FindBugs Runs FindBugs against the test Java source

files.

findbugsSourceSet ClassessourceSet FindBugs Runs FindBugs against the given source set's

Java source files.

The FindBugs plugin adds the following dependencies to tasks defined by the Java plugin.

http://findbugs.sourceforge.net
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugs.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugs.html


Page 194 of 448

Table 31.2. FindBugs plugin - additional task dependencies

Task name Depends on

check All FindBugs tasks, including  and .findbugsMain findbugsTest

31.3. Dependency management
The FindBugs plugin adds the following dependency configurations:

Table 31.3. FindBugs plugin - dependency configurations

Name Meaning

findbugs The FindBugs libraries to use

31.4. Configuration
See the  class in the API documentation.FindBugsExtension

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.FindBugsExtension.html


Page 195 of 448

32
The JDepend Plugin

The JDepend plugin performs quality checks on your project's source files using  and generates reportsJDepend

from these checks.

32.1. Usage
To use the JDepend plugin, include the following in your build script:

Example 32.1. Using the JDepend plugin

build.gradle

apply plugin: 'jdepend'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

32.2. Tasks
The JDepend plugin adds the following tasks to the project:

Table 32.1. JDepend plugin - tasks

Task name Depends on Type Description

jdependMain classes JDepend Runs JDepend against the production Java

source files.

jdependTest testClasses JDepend Runs JDepend against the test Java source files.

jdependSourceSet ClassessourceSet JDepend Runs JDepend against the given source set's

Java source files.

The JDepend plugin adds the following dependencies to tasks defined by the Java plugin.

Table 32.2. JDepend plugin - additional task dependencies

Task name Depends on

check All JDepend tasks, including  and .jdependMain jdependTest

http://clarkware.com/software/JDepend.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDepend.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDepend.html


Page 196 of 448

32.3. Dependency management
The JDepend plugin adds the following dependency configurations:

Table 32.3. JDepend plugin - dependency configurations

Name Meaning

jdepend The JDepend libraries to use

32.4. Configuration
See the  class in the API documentation.JDependExtension

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.JDependExtension.html


Page 197 of 448

33
The PMD Plugin

The PMD plugin performs quality checks on your project's Java source files using  and generates reportsPMD

from these checks.

33.1. Usage
To use the PMD plugin, include the following in your build script:

Example 33.1. Using the PMD plugin

build.gradle

apply plugin: 'pmd'

The plugin adds a number of tasks to the project that perform the quality checks. You can execute the checks by

running .gradle check

33.2. Tasks
The PMD plugin adds the following tasks to the project:

Table 33.1. PMD plugin - tasks

Task name Depends on Type Description

pmdMain - Pmd Runs PMD against the production Java source files.

pmdTest - Pmd Runs PMD against the test Java source files.

pmdSourceSet - Pmd Runs PMD against the given source set's Java source files.

The PMD plugin adds the following dependencies to tasks defined by the Java plugin.

Table 33.2. PMD plugin - additional task dependencies

Task name Depends on

check All PMD tasks, including  and .pmdMain pmdTest

http://pmd.sourceforge.net
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Pmd.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.Pmd.html


Page 198 of 448

33.3. Dependency management
The PMD plugin adds the following dependency configurations:

Table 33.3. PMD plugin - dependency configurations

Name Meaning

pmd The PMD libraries to use

33.4. Configuration
See the  class in the API documentation.PmdExtension

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.quality.PmdExtension.html


Page 199 of 448

34
The JaCoCo Plugin

The JaCoCo plugin is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The JaCoCo plugin provides code coverage metrics for Java code via integration with .JaCoCo

34.1. Getting Started
To get started, apply the JaCoCo plugin to the project you want to calculate code coverage for.

Example 34.1. Applying the JaCoCo plugin

build.gradle

apply plugin: "jacoco"

If the Java plugin is also applied to your project, a new task named  is created thatjacocoTestReport

depends on the  task. The report is available at . By default, atest /reports/jacoco/test$buildDir

HTML report is generated.

34.2. Configuring the JaCoCo Plugin
The JaCoCo plugin adds a project extension named  of type , whichjacoco JacocoPluginExtension

allows configuring defaults for JaCoCo usage in your build.

Example 34.2. Configuring JaCoCo plugin settings

build.gradle

jacoco {
    toolVersion = "0.7.1.201405082137"
    reportsDir = file( )"$buildDir/customJacocoReportDir"
}

http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.plugins.JacocoPluginExtension.html


Page 200 of 448

Table 34.1. Gradle defaults for JaCoCo properties

Property Gradle default

reportsDir “ /reports/jacoco”$buildDir

34.3. JaCoCo Report configuration
The  task can be used to generate code coverage reports in different formats. It implements theJacocoReport

standard Gradle type  and exposes a report container of type .Reporting JacocoReportsContainer

Example 34.3. Configuring test task

build.gradle

jacocoTestReport {
    reports {
        xml.enabled false
        csv.enabled false
        html.destination "${buildDir}/jacocoHtml"
    }
}

34.4. JaCoCo specific task configuration
The JaCoCo plugin adds a  extension to all tasks of type . This extensionJacocoTaskExtension Test

allows the configuration of the JaCoCo specific properties of the test task.

http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.Reporting.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/testing/jacoco/tasks/JacocoReportsContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.plugins.JacocoTaskExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html


Page 201 of 448

Example 34.4. Configuring test task

build.gradle

test {
    jacoco {
        append = false
        destinationFile = file( )"$buildDir/jacoco/jacocoTest.exec"
        classDumpFile = file( )"$buildDir/jacoco/classpathdumps"
    }
}

Table 34.2. Default values of the JaCoCo Task extension

Property Gradle default

enabled true

destPath $buildDir/jacoco

append true

includes []

excludes []

excludeClassLoaders []

sessionId auto-generated

dumpOnExit true

output Output.FILE

address -

port -

classDumpPath -

jmx false

While all tasks of type  are automatically enhanced to provide coverage information when the Test java

plugin has been applied, any task that implements  can be enhanced by the JaCoCoJavaForkOptions

plugin. That is, any task that forks Java processes can be used to generate coverage information.

For example you can configure your build to generate code coverage using the  plugin.application

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.testing.Test.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/process/JavaForkOptions.html


Page 202 of 448

Example 34.5. Using application plugin to generate code coverage data

build.gradle

apply plugin: "application"
apply plugin: "jacoco"

mainClassName = "org.gradle.MyMain"

jacoco {
    applyTo run
}

task applicationCodeCoverageReport(type:JacocoReport){
    executionData run
    sourceSets sourceSets.main
}

Note:  The code for this example can be found at  in thesamples/testing/jacoco/application

‘-all’ distribution of Gradle.

Example 34.6. Coverage reports generated by applicationCodeCoverageReport

Build layout

application/
  build/
    jacoco/
      run.exec
    reports/jacoco/applicationCodeCoverageReport/html/
      index.html

34.5. Tasks
For projects that also apply the Java Plugin, The JaCoCo plugin automatically adds the following tasks:

Table 34.3. JaCoCo plugin - tasks

Task name Depends

on

Type Description

jacocoTestReport - JacocoReport Generates code coverage report for the test

task.

34.6. Dependency management
The JaCoCo plugin adds the following dependency configurations:

http://www.gradle.org/docs/2.3/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html


Page 203 of 448

Table 34.4. JaCoCo plugin - dependency configurations

Name Meaning

jacocoAnt The JaCoCo Ant library used for running the  and JacocoReport JacocoMerge

tasks.

jacocoAgent The JaCoCo agent library used for instrumenting the code under test.



Page 204 of 448

35
The Sonar Plugin

You may wish to use the new  instead of this plugin. In particular, only the SonarSonar Runner Plugin

Runner plugin supports Sonar 3.4 and higher.

The Sonar plugin provides integration with , a web-based platform for monitoring code quality. TheSonar

plugin adds a  task that analyzes the project to which the plugin is applied, as well as itssonarAnalyze

subprojects. The results are stored in the Sonar database. The plugin is based on the  and requiresSonar Runner

Sonar 2.11 or higher.

The  task is a standalone task that needs to be executed explicitly and doesn't depend on anysonarAnalyze

other tasks. Apart from source code, the task also analyzes class files and test result files (if available). For best

results, it is therefore recommended to run a full build before the analysis. In a typical setup, analysis would be

performed once per day on a build server.

35.1. Usage
At a minimum, the Sonar plugin has to be applied to the project.

Example 35.1. Applying the Sonar plugin

build.gradle

apply plugin: "sonar"

Unless Sonar is run locally and with default settings, it is necessary to configure connection settings for the

Sonar server and database.

http://www.sonarsource.org
http://docs.codehaus.org/display/SONAR/Analyzing+with+Sonar+Runner


Page 205 of 448

Example 35.2. Configuring Sonar connection settings

build.gradle

sonar {
    server {
        url = "http://my.server.com"
    }
    database {
        url = "jdbc:mysql://my.server.com/sonar"
        driverClassName = "com.mysql.jdbc.Driver"
        username = "Fred Flintstone"
        password = "very clever"
    }
}

Alternatively, some or all connection settings can be set from the command line (see Section 35.6, “Configuring

).Sonar Settings from the Command Line”

Project settings determine how the project is going to be analyzed. The default configuration works well for

analyzing standard Java projects and can be customized in many ways.

Example 35.3. Configuring Sonar project settings

build.gradle

sonar {
    project {
        coberturaReportPath = file( )"$buildDir/cobertura.xml"
    }
}

The , , , and  blocks in the examples above configure objects of type sonar server database project

, , , and , respectively. See their APISonarRootModel SonarServer SonarDatabase SonarProject

documentation for further information.

35.2. Analyzing Multi-Project Builds
The Sonar plugin is capable of analyzing a whole project hierarchy at once. This yields a hierarchical view in

the Sonar web interface with aggregated metrics and the ability to drill down into subprojects. It is also faster

than analyzing each project separately.

To analyze a project hierarchy, the Sonar plugin needs to be applied to the top-most project of the hierarchy.

Typically (but not necessarily) this will be the root project. The  block in that project configures ansonar

object of type . It holds all global configuration, most importantly server and databaseSonarRootModel

connection settings.

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarServer.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarDatabase.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html


Page 206 of 448

Example 35.4. Global configuration in a multi-project build

build.gradle

apply plugin: "sonar"

sonar {
    server {
        url = "http://my.server.com"
    }
    database {
        url = "jdbc:mysql://my.server.com/sonar"
        driverClassName = "com.mysql.jdbc.Driver"
        username = "Fred Flintstone"
        password = "very clever"
    }
}

Each project in the hierarchy has its own project configuration. Common values can be set from a parent build

script.

Example 35.5. Common project configuration in a multi-project build

build.gradle

subprojects {
    sonar {
        project {
            sourceEncoding = "UTF-8"
        }
    }
}

The  block in a subproject configures an object of type .sonar SonarProjectModel

Projects can also be configured individually. For example, setting the  property to  prevents a projectskip true

(and its subprojects) from being analyzed. Skipped projects will not be displayed in the Sonar web interface.

Example 35.6. Individual project configuration in a multi-project build

build.gradle

project( ) {":project1"
    sonar {
        project {
            skip = true
        }
    }
}

Another typical per-project configuration is the programming language to be analyzed. Note that Sonar can only

analyze one language per project.

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProjectModel.html


Page 207 of 448

Example 35.7. Configuring the language to be analyzed

build.gradle

project( ) {":project2"
    sonar {
        project {
            language = "groovy"
        }
    }
}

When setting only a single property at a time, the equivalent property syntax is more succinct:

Example 35.8. Using property syntax

build.gradle

project( ).sonar.project.language = ":project2" "groovy"

35.3. Analyzing Custom Source Sets
By default, the Sonar plugin will analyze the production sources in the  source set and the test sources inmain

the  source set. This works independent of the project's source directory layout. Additional source sets cantest

be added as needed.

Example 35.9. Analyzing custom source sets

build.gradle

sonar.project {
    sourceDirs += sourceSets.custom.allSource.srcDirs
    testDirs += sourceSets.integTest.allSource.srcDirs
}

35.4. Analyzing languages other than Java
To analyze code written in a language other than Java, install the corresponding , and set Sonar plugin sonar.project.language

accordingly:

Example 35.10. Analyzing languages other than Java

build.gradle

sonar.project {
    language =  "grvy" // set language to Groovy
}

As of Sonar 3.4, only one language per project can be analyzed. You can, however, set a different language for

each project in a multi-project build.

http://www.sonarsource.com/products/plugins/languages/


Page 208 of 448

35.5. Setting Custom Sonar Properties
Eventually, most configuration is passed to the Sonar code analyzer in the form of key-value pairs known as

Sonar properties. The  annotations in the API documentation show how properties of theSonarProperty

plugin's object model get mapped to the corresponding Sonar properties. The Sonar plugin offers hooks to

post-process Sonar properties before they get passed to the code analyzer. The same hooks can be used to add

additional properties which aren't covered by the plugin's object model.

For global Sonar properties, use the  hook on :withGlobalProperties SonarRootModel

Example 35.11. Setting custom global properties

build.gradle

sonar.withGlobalProperties { props ->
    props[ ] = "some.global.property" "some value"
    // non-String values are automatically converted to Strings
    props[ ] = [ , , ]"other.global.property" "foo" "bar" "baz"
}

For per-project Sonar properties, use the  hook on :withProjectProperties SonarProject

Example 35.12. Setting custom project properties

build.gradle

sonar.project.withProjectProperties { props ->
    props[ ] = "some.project.property" "some value"
    // non-String values are automatically converted to Strings
    props[ ] = [ , , ]"other.project.property" "foo" "bar" "baz"
}

A list of available Sonar properties can be found in the . Note that for most of theseSonar documentation

properties, the Sonar plugin's object model has an equivalent property, and it isn't necessary to use a 

 or  hook. For configuring a third-party SonarwithGlobalProperties withProjectProperties

plugin, consult the plugin's documentation.

35.6. Configuring Sonar Settings from the
Command Line

The following properties can alternatively be set from the command line, as task parameters of the sonarAnalyze

task. A task parameter will override any corresponding value set in the build script.

server.url

database.url

database.driverClassName

database.username

database.password

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProperty.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarRootModel.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/api/plugins/sonar/model/SonarProject.html
http://docs.codehaus.org/display/SONAR/Analysis+Parameters


Page 209 of 448

showSql

showSqlResults

verbose

forceAnalysis

Here is a complete example:

gradle sonarAnalyze --server.url=http://sonar.mycompany.com

--database.password=myPassword --verbose

If you need to set other properties from the command line, you can use system properties to do so:

Example 35.13. Implementing custom command line properties

build.gradle

sonar.project {
    language = System.getProperty( , )"sonar.language" "java"
}

However, keep in mind that it is usually best to keep configuration in the build script and under source control.

35.7. Tasks
The Sonar plugin adds the following tasks to the project.

Table 35.1. Sonar plugin - tasks

Task name Depends

on

Type Description

sonarAnalyze - SonarAnalyze Analyzes a project hierarchy and stores the results

in the Sonar database.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.sonar.SonarAnalyze.html


Page 210 of 448

36
The Sonar Runner Plugin

The Sonar Runner plugin is currently . Please be aware that the DSL and other configurationincubating

may change in later Gradle versions.

It is intended that this plugin will replace the older  in a future Gradle version.Sonar Plugin

The Sonar Runner plugin provides integration with , a web-based platform for monitoring code quality. ItSonar

is based on the , a Sonar client component that analyzes source code and build outputs, and storesSonar Runner

all collected information in the Sonar database. Compared to using the standalone Sonar Runner, the Sonar

Runner plugin offers the following benefits:

Automatic provisioning of Sonar Runner

The ability to execute the Sonar Runner via a regular Gradle task makes it available anywhere Gradle is

available (developer build, CI server, etc.), without the need to manually download, setup, and maintain a

Sonar Runner installation.

Dynamic configuration from Gradle build scripts

All of Gradle's scripting features can be leveraged to configure Sonar Runner as needed.

Extensive configuration defaults

Gradle already has much of the information needed for Sonar Runner to successfully analyze a project. By

preconfiguring the Sonar Runner based on that information, the need for manual configuration is reduced

significantly.

36.1. Sonar Runner version and compatibility
The default version of the Sonar Runner used by the plugin is 2.3, which makes it compatible with Sonar 3.0

and higher. For compatibility with Sonar versions earlier than 3.0, you can configure the use of an earlier Sonar

Runner version (see ).Section 36.4, “Specifying the Sonar Runner version”

36.2. Getting started
To get started, apply the Sonar Runner plugin to the project to be analyzed.

http://www.sonarsource.org
http://docs.codehaus.org/display/SONAR/Analyzing+with+SonarQube+Runner


Page 211 of 448

Example 36.1. Applying the Sonar Runner plugin

build.gradle

apply plugin: "sonar-runner"

Assuming a local Sonar server with out-of-the-box settings is up and running, no further mandatory

configuration is required. Execute  and wait until the build has completed, then opengradle sonarRunner

the web page indicated at the bottom of the Sonar Runner output. You should now be able to browse the

analysis results.

Before executing the  task, all tasks producing output to be analysed by Sonar need to besonarRunner

executed. Typically, these are compile tasks, test tasks, and code coverage tasks. To meet these needs, the

plugins adds a task dependency from  on  if the  plugin is applied. Further tasksonarRunner test java

dependencies can be added as needed.

36.3. Configuring the Sonar Runner
The Sonar Runner plugin adds a  extension to the project and a SonarRunnerRootExtension

 extension to its subprojects, which allows you to configure the Sonar Runner viaSonarRunnerExtension

key/value pairs known as . A typical base line configuration includes connection settings forSonar properties

the Sonar server and database.

Example 36.2. Configuring Sonar connection settings

build.gradle

sonarRunner {
    sonarProperties {
        property , "sonar.host.url" "http://my.server.com"
        property , "sonar.jdbc.url" "jdbc:mysql://my.server.com/sonar"
        property , "sonar.jdbc.driverClassName" "com.mysql.jdbc.Driver"
        property , "sonar.jdbc.username" "Fred Flintstone"
        property , "sonar.jdbc.password" "very clever"
    }
}

Alternatively, Sonar properties can be set from the command line. See Section  35.6, “Configuring Sonar

 for more information.Settings from the Command Line”

For a complete list of standard Sonar properties, consult the . If you happen to useSonar documentation

additional Sonar plugins, consult their documentation.

In addition to set Sonar properties, the  extension allows the configuration ofSonarRunnerRootExtension

the Sonar Runner version and the  of the forked Sonar Runner process.JavaForkOptions

The Sonar Runner plugin leverages information contained in Gradle's object model to provide smart defaults for

many of the standard Sonar properties. The defaults are summarized in the tables below. Notice that additional

defaults are provided for projects that have the  or  plugin applied. For some propertiesjava-base java

(notably server and database connection settings), determining a suitable default is left to the Sonar Runner.

http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://docs.codehaus.org/display/SONAR/Analysis+Parameters
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/process/JavaForkOptions.html


Page 212 of 448

Table 36.1. Gradle defaults for standard Sonar properties

Property Gradle default

sonar.projectKey “$project.group:$project.name” (for root project of analysed hierarchy; left to

Sonar Runner otherwise)

sonar.projectName project.name

sonar.projectDescription project.description

sonar.projectVersion project.version

sonar.projectBaseDir project.projectDir

sonar.working.directory “$project.buildDir/sonar”

sonar.dynamicAnalysis “reuseReports”

Table 36.2. Additional defaults when  plugin is appliedjava-base

Property Gradle default

sonar.java.source project.sourceCompatibility

sonar.java.target project.targetCompatibility

Table 36.3. Additional defaults when  plugin is appliedjava

Property Gradle default

sonar.sources sourceSets.main.allSource.srcDirs (filtered to only include existing

directories)

sonar.tests sourceSets.test.allSource.srcDirs (filtered to only include existing directories)

sonar.binaries sourceSets.main.runtimeClasspath (filtered to only include directories)

sonar.libraries sourceSets.main.runtimeClasspath (filtering to only include files; rt.jar

added if necessary)

sonar.surefire.reportsPath test.testResultsDir (if the directory exists)

sonar.junit.reportsPath test.testResultsDir (if the directory exists)

Table 36.4. Additional defaults when  plugin is appliedjacoco

Property Gradle default

sonar.jacoco.reportPath jacoco.destinationFile



Page 213 of 448

36.4. Specifying the Sonar Runner version
By default, version 2.3 of the Sonar Runner is used. To specify an alternative version, set the 

 property of the  extension of theSonarRunnerRootExtension.getToolVersion() sonarRunner

project the plugin was applied to to the desired version. This will result in the Sonar Runner dependency org.codehaus.sonar.runner:sonar-runner-dist:«toolVersion»

being used as the Sonar Runner.

Example 36.3. Configuring Sonar runner version

build.gradle

sonarRunner {
    toolVersion =  '2.3' // default
}

36.5. Analyzing Multi-Project Builds
The Sonar Runner is capable of analyzing whole project hierarchies at once. This yields a hierarchical view in

the Sonar web interface, with aggregated metrics and the ability to drill down into subprojects. Analyzing a

project hierarchy also takes less time than analyzing each project separately.

To analyze a project hierarchy, apply the Sonar Runner plugin to the root project of the hierarchy. Typically

(but not necessarily) this will be the root project of the Gradle build. Information pertaining to the analysis as a

whole, like server and database connections settings, have to be configured in the  block of thissonarRunner

project. Any Sonar properties set on the command line also apply to this project.

Example 36.4. Global configuration settings

build.gradle

sonarRunner {
    sonarProperties {
        property , "sonar.host.url" "http://my.server.com"
        property , "sonar.jdbc.url" "jdbc:mysql://my.server.com/sonar"
        property , "sonar.jdbc.driverClassName" "com.mysql.jdbc.Driver"
        property , "sonar.jdbc.username" "Fred Flintstone"
        property , "sonar.jdbc.password" "very clever"
    }
}

Configuration shared between subprojects can be configured in a  block.subprojects

http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerRootExtension.html#org.gradle.sonar.runner.SonarRunnerRootExtension:toolVersion


Page 214 of 448

Example 36.5. Shared configuration settings

build.gradle

subprojects {
    sonarRunner {
        sonarProperties {
            property , "sonar.sourceEncoding" "UTF-8"
        }
    }
}

Project-specific information is configured in the  block of the corresponding project.sonarRunner

Example 36.6. Individual configuration settings

build.gradle

project( ) {":project1"
    sonarRunner {
        sonarProperties {
            property , "sonar.language" "grvy"
        }
    }
}

To skip Sonar analysis for a particular subproject, set  to .sonarRunner.skipProject true

Example 36.7. Skipping analysis of a project

build.gradle

project( ) {":project2"
    sonarRunner {
        skipProject = true
    }
}

36.6. Analyzing Custom Source Sets
By default, the Sonar Runner plugin passes on the project's  source set as production sources, and themain

project's  source set as test sources. This works regardless of the project's source directory layout.test

Additional source sets can be added as needed.

Example 36.8. Analyzing custom source sets

build.gradle

sonarRunner {
    sonarProperties {
        properties[ ] += sourceSets.custom.allSource.srcDirs"sonar.sources"
        properties[ ] += sourceSets.integTest.allSource.srcDirs"sonar.tests"
    }
}



Page 215 of 448

36.7. Analyzing languages other than Java
To analyze code written in a language other than Java, you'll need to set sonar.project.language

accordingly. However, note that your Sonar server has to have the  that handles that programmingSonar plugin

language.

Example 36.9. Analyzing languages other than Java

build.gradle

sonarRunner {
    sonarProperties {
        property ,  "sonar.language" "grvy" // set language to Groovy
    }
}

As of Sonar 3.4, only one language per project can be analyzed. It is, however, possible to analyze a different

language for each project in a multi-project build.

36.8. More on configuring Sonar properties
Let's take a closer look at the  block. As we have already seen insonarRunner.sonarProperties {}

the examples, the  method allows you to set new properties or override existing ones.property()

Furthermore, all properties that have been configured up to this point, including all properties preconfigured by

Gradle, are available via the  accessor.properties

Entries in the  map can be read and written with the usual Groovy syntax. To facilitate theirproperties

manipulation, values still have their “idiomatic” type ( , , etc.). After the sonarProperties block hasFile List

been evaluated, values are converted to Strings as follows: Collection values are (recursively) converted to

comma-separated Strings, and all other values are converted by calling their  method.toString()

Because the  block is evaluated lazily, properties of Gradle's object model can be safelysonarProperties

referenced from within the block, without having to fear that they have not yet been set.

36.9. Setting Sonar Properties from the Command
Line

Sonar Properties can also be set from the command line, by setting a system property named exactly like the

Sonar property in question. This can be useful when dealing with sensitive information (e.g. credentials),

environment information, or for ad-hoc configuration.

gradle sonarRunner -Dsonar.host.url=http://sonar.mycompany.com -Dsonar.jdbc.password=myPassword -Dsonar.verbose=true

While certainly useful at times, we do recommend to keep the bulk of the configuration in a (versioned)

http://www.sonarsource.com/products/plugins/languages/


Page 216 of 448

build script, readily available to everyone.

A Sonar property value set via a system property overrides any value set in a build script (for the same

property). When analyzing a project hierarchy, values set via system properties apply to the root project of the

analyzed hierarchy. Each system property starting with "  will taken into account for the sonar runner"sonar."

setup.

36.10. Controlling the Sonar Runner process
The Sonar Runner is executed in a forked process. This allows fine grained control over memory settings,

system properties etc. just for the Sonar Runner process. The  property of the forkOptions sonarRunner

extension of the project that applies the  plugin (Usually the  but notsonar-runner rootProject

necessarily) allows the process configuration to be specified. This property is not available in the 

 extension applied to the subprojects.SonarRunnerExtension

Example 36.10. setting custom Sonar Runner fork options

build.gradle

sonarRunner {
    forkOptions {
        maxHeapSize = '512m'
    }
}

For a complete reference about the available options, see .JavaForkOptions

36.11. Tasks
The Sonar Runner plugin adds the following tasks to the project.

Table 36.5. Sonar Runner plugin - tasks

Task name Depends

on

Type Description

sonarRunner - SonarRunner Analyzes a project hierarchy and stores the results in

the Sonar database.

http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.SonarRunnerExtension.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/process/JavaForkOptions.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.sonar.runner.tasks.SonarRunner.html


Page 217 of 448

37
The OSGi Plugin

The OSGi plugin provides a factory method to create an  object.  extends OsgiManifest OsgiManifest

. To learn more about generic manifest handling, see . If the JavaManifest Section  23.14.1, “Manifest”

plugins is applied, the OSGi plugin replaces the manifest object of the default jar with an OsgiManifest

object. The replaced manifest is merged into the new one.

The OSGi plugin makes heavy use of Peter Kriens .BND tool

37.1. Usage
To use the OSGi plugin, include the following in your build script:

Example 37.1. Using the OSGi plugin

build.gradle

apply plugin: 'osgi'

37.2. Implicitly applied plugins
Applies the Java base plugin.

37.3. Tasks
This plugin does not add any tasks.

37.4. Dependency management
TBD

37.5. Convention object
The OSGi plugin adds the following convention object: OsgiPluginConvention

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/java/archives/Manifest.html
http://www.aqute.biz/Code/Bnd
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.osgi.OsgiPluginConvention.html


Page 218 of 448

37.5.1. Convention properties

The OSGi plugin does not add any convention properties to the project.

37.5.2. Convention methods

The OSGi plugin adds the following methods. For more details, see the API documentation of the convention

object.

Table 37.1. OSGi methods

Method Return Type Description

osgiManifest() OsgiManifest Returns an OsgiManifest object.

osgiManifest(Closure

cl)

OsgiManifest Returns an OsgiManifest object configured by the

closure.

The classes in the classes dir are analyzed regarding their package dependencies and the packages they expose.

Based on this the  and the  values of the OSGi Manifest are calculated. If theImport-Package Export-Package

classpath contains jars with an OSGi bundle, the bundle information is used to specify version information for

the  value. Beside the explicit properties of the  object you can addImport-Package OsgiManifest

instructions.

Example 37.2. Configuration of OSGi MANIFEST.MF file

build.gradle

jar {
    manifest { // the manifest of the default jar is of type OsgiManifest
        name = 'overwrittenSpecialOsgiName'
        instruction ,'Private-Package'
                ,'org.mycomp.package1'
                'org.mycomp.package2'
        instruction , 'Bundle-Vendor' 'MyCompany'
        instruction , 'Bundle-Description' 'Platform2: Metrics 2 Measures Framework'
        instruction , 'Bundle-DocURL' 'http://www.mycompany.com'
    }
}
task fooJar(type: Jar) {
    manifest = osgiManifest {
        instruction ,    'Bundle-Vendor' 'MyCompany'
    }
}

The first argument of the instruction call is the key of the property. The other arguments form the value. To

learn more about the available instructions have a look at the .BND tool

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/osgi/OsgiManifest.html
http://www.aqute.biz/Code/Bnd


Page 219 of 448

38
The Eclipse Plugins

The Eclipse plugins generate files that are used by the , thus making it possible to import the projectEclipse IDE

into Eclipse (  -  - ). Both external dependencies (includingFile Import... Existing Projects into Workspace

associated source and Javadoc files) and project dependencies are considered.

Since version 1.0-milestone-4 of Gradle, the WTP-generating code was refactored into a separate plugin called eclipse-wtp

. So if you are interested in WTP integration then only apply the  plugin. Otherwise applyingeclipse-wtp

the  plugin is enough. This change was requested by Eclipse users who take advantage of the  or eclipse war ear

plugins, but who don't use Eclipse WTP. Internally, the  plugin also applies the eclipse-wtp eclipse

plugin so you don't need to apply both of those plugins.

What exactly the  plugin generates depends on which other plugins are used:eclipse

Table 38.1. Eclipse plugin behavior

Plugin Description

None Generates minimal  file..project

Java Adds Java configuration to . Generates  and JDT settings file..project .classpath

Groovy Adds Groovy configuration to  file..project

Scala Adds Scala support to  and  files..project .classpath

War Adds web application support to  file..project

Ear Adds ear application support to  file..project

However, the  plugin  generates all WTP settings files and enhances the eclipse-wtp always .project

file. If a  or  is applied,  will be extended to get a proper packaging structure for thisJava War .classpath

utility library or web application project.

Both Eclipse plugins are open to customization and provide a standardized set of hooks for adding and

removing content from the generated files.

38.1. Usage
To use either the Eclipse or the Eclipse WTP plugin, include one of the lines in your build script:

http://eclipse.org


Page 220 of 448

Example 38.1. Using the Eclipse plugin

build.gradle

apply plugin: 'eclipse'

Example 38.2. Using the Eclipse WTP plugin

build.gradle

apply plugin: 'eclipse-wtp'

Note: Internally, the  plugin also applies the  plugin so you don't need to apply both.eclipse-wtp eclipse

Both Eclipse plugins add a number of tasks to your projects. The main tasks that you will use are the eclipse

and  tasks.cleanEclipse

38.2. Tasks
The Eclipse plugins add the tasks shown below to a project.

Table 38.2. Eclipse plugin - tasks

Task name Depends on Type Description

eclipse all Eclipse

configuration

file

generation

tasks

Task Generates all Eclipse configuration files

cleanEclipse all Eclipse

configuration

file clean

tasks

Delete Removes all Eclipse configuration files

cleanEclipseProject - Delete Removes the  file..project

cleanEclipseClasspath - Delete Removes the  file..classpath

cleanEclipseJdt - Delete Removes the .settings/org.eclipse.jdt.core.prefs

file.

eclipseProject - GenerateEclipseProject Generates the  file..project

eclipseClasspath - GenerateEclipseClasspath Generates the  file..classpath

eclipseJdt - GenerateEclipseJdt Generates the .settings/org.eclipse.jdt.core.prefs

file.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseClasspath.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseJdt.html


Page 221 of 448

Table 38.3. Eclipse WTP plugin - additional tasks

Task name Depends

on

Type Description

cleanEclipseWtpComponent - Delete Removes the  file..settings/org.eclipse.wst.common.component

cleanEclipseWtpFacet - Delete Removes the .settings/org.eclipse.wst.common.project.facet.core.xml

file.

eclipseWtpComponent - GenerateEclipseWtpComponent Generates the  file..settings/org.eclipse.wst.common.component

eclipseWtpFacet - GenerateEclipseWtpFacet Generates the .settings/org.eclipse.wst.common.project.facet.core.xml

file.

38.3. Configuration
Table 38.4. Configuration of the Eclipse plugins

Model Reference name Description

EclipseModel eclipse Top level element that enables

configuration of the Eclipse plugin in a

DSL-friendly fashion.

EclipseProject eclipse.project Allows configuring project information

EclipseClasspath eclipse.classpath Allows configuring classpath

information.

EclipseJdt eclipse.jdt Allows configuring jdt information

(source/target Java compatibility).

EclipseWtpComponent eclipse.wtp.component Allows configuring wtp component

information only if eclipse-wtp

plugin was applied.

EclipseWtpFacet eclipse.wtp.facet Allows configuring wtp facet

information only if eclipse-wtp

plugin was applied.

38.4. Customizing the generated files
The Eclipse plugins allow you to customize the generated metadata files. The plugins provide a DSL for

configuring model objects that model the Eclipse view of the project. These model objects are then merged with

the existing Eclipse XML metadata to ultimately generate new metadata. The model objects provide lower level

hooks for working with domain objects representing the file content before and after merging with the model

configuration. They also provide a very low level hook for working directly with the raw XML for adjustment

before it is persisted, for fine tuning and configuration that the Eclipse and Eclipse WTP plugins do not model.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpComponent.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.GenerateEclipseWtpFacet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseModel.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html


Page 222 of 448

1.  

2.  

3.  

4.  

5.  

6.  

38.4.1. Merging

Sections of existing Eclipse files that are also the target of generated content will be amended or overwritten,

depending on the particular section. The remaining sections will be left as-is.

38.4.1.1. Disabling merging with a complete rewrite

To completely rewrite existing Eclipse files, execute a clean task together with its corresponding generation

task, like “ ” (in that order). If you want to make this the defaultgradle cleanEclipse eclipse

behavior, add “ ” to your build script. This makes ittasks.eclipse.dependsOn(cleanEclipse)

unnecessary to execute the clean task explicitly.

This strategy can also be used for individual files that the plugins would generate. For instance, this can be done

for the “ ” file with “ ”..classpath gradle cleanEclipseClasspath eclipseClasspath

38.4.2. Hooking into the generation lifecycle

The Eclipse plugins provide objects modeling the sections of the Eclipse files that are generated by Gradle. The

generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The  hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in

the eclipse DSL

The  hook is executed with a domain object representing contents of the file to be persistedwhenMerged

The  hook is executed with a raw representation of the XML that will be persistedwithXml

The final XML is persisted

The following table lists the domain object used for each of the Eclipse model types:

Table 38.5. Advanced configuration hooks

Model beforeMerged { arg -> }

argument type

whenMerged { arg -> }

argument type

withXml { arg -> }

argument type

EclipseProject Project Project XmlProvider

EclipseClasspath Classpath Classpath XmlProvider

EclipseJdt Jdt Jdt -

EclipseWtpComponent WtpComponent WtpComponent XmlProvider

EclipseWtpFacet WtpFacet WtpFacet XmlProvider

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseProject.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/Classpath.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseJdt.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/plugins/ide/eclipse/model/Jdt.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpComponent.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpComponent.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.eclipse.model.EclipseWtpFacet.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/eclipse/model/WtpFacet.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html


Page 223 of 448

38.4.2.1. Partial overwrite of existing content

A  causes all existing content to be discarded, thereby losing any changes made directly incomplete overwrite

the IDE. Alternatively, the  hook makes it possible to overwrite just certain parts of thebeforeMerged

existing content. The following example removes all existing dependencies from the  domainClasspath

object:

Example 38.3. Partial Overwrite for Classpath

build.gradle

eclipse.classpath.file {
    beforeMerged { classpath ->
        classpath.entries.removeAll { entry -> entry.kind ==  || entry.kind ==  }'lib' 'var'
    }
}

The resulting  file will only contain Gradle-generated dependency entries, but not any other.classpath

dependency entries that may have been present in the original file. (In the case of dependency entries, this is

also the default behavior.) Other sections of the  file will be either left as-is or merged. The same.classpath

could be done for the natures in the  file:.project

Example 38.4. Partial Overwrite for Project

build.gradle

eclipse.project.file.beforeMerged { project ->
    project.natures.clear()
}

38.4.2.2. Modifying the fully populated domain objects

The  hook allows to manipulate the fully populated domain objects. Often this is the preferredwhenMerged

way to customize Eclipse files. Here is how you would export all the dependencies of an Eclipse project:

Example 38.5. Export Dependencies

build.gradle

eclipse.classpath.file {
    whenMerged { classpath ->
        classpath.entries.findAll { entry -> entry.kind ==  }*.exported = false'lib'
    }
}



Page 224 of 448

38.4.2.3. Modifying the XML representation

The hook allows to manipulate the in-memory XML representation just before the file gets written towithXml

disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than manipulating

the domain objects. In return, you get total control over the generated file, including sections not modeled by the

domain objects.

Example 38.6. Customizing the XML

build.gradle

apply plugin: 'eclipse-wtp'

eclipse.wtp.facet.file.withXml { provider ->
    provider.asNode().fixed.find { it.  ==  }.  = @facet 'jst.java' @facet 'jst2.java'
}



Page 225 of 448

39
The IDEA Plugin

The IDEA plugin generates files that are used by , thus making it possible to open the project fromIntelliJ IDEA

IDEA (  - ). Both external dependencies (including associated source and Javadoc files) andFile Open Project

project dependencies are considered.

What exactly the IDEA plugin generates depends on which other plugins are used:

Table 39.1. IDEA plugin behavior

Plugin Description

None Generates an IDEA module file. Also generates an IDEA project and workspace file if the

project is the root project.

Java Adds Java configuration to the module and project files.

One focus of the IDEA plugin is to be open to customization. The plugin provides a standardized set of hooks

for adding and removing content from the generated files.

39.1. Usage
To use the IDEA plugin, include this in your build script:

Example 39.1. Using the IDEA plugin

build.gradle

apply plugin: 'idea'

The IDEA plugin adds a number of tasks to your project. The main tasks that you will use are the  and idea cleanIdea

tasks.

39.2. Tasks
The IDEA plugin adds the tasks shown below to a project. Notice that the  task does not depend on the clean cleanIdeaWorkspace

task. This is because the workspace typically contains a lot of user specific temporary data and it is not desirable

to manipulate it outside IDEA.

http://www.jetbrains.com/idea/


Page 226 of 448

Table 39.2. IDEA plugin - Tasks

Task name Depends on Type Description

idea ideaProject, ideaModule

, ideaWorkspace

- Generates all

IDEA

configuration

files

cleanIdea cleanIdeaProject

, cleanIdeaModule

Delete Removes all

IDEA

configuration

files

cleanIdeaProject - Delete Removes the

IDEA project

file

cleanIdeaModule - Delete Removes the

IDEA

module file

cleanIdeaWorkspace - Delete Removes the

IDEA

workspace

file

ideaProject - GenerateIdeaProject Generates

the .ipr

file. This

task is only

added to the

root project.

ideaModule - GenerateIdeaModule Generates

the .iml

file

ideaWorkspace - GenerateIdeaWorkspace Generates

the .iws

file. This

task is only

added to the

root project.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Delete.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.GenerateIdeaProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.GenerateIdeaModule.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.GenerateIdeaWorkspace.html


Page 227 of 448

1.  

2.  

3.  

4.  

39.3. Configuration
Table 39.3. Configuration of the idea plugin

Model Reference name Description

IdeaModel idea Top level element that enables configuration of the idea

plugin in a DSL-friendly fashion

IdeaProject idea.project Allows configuring project information

IdeaModule idea.module Allows configuring module information

IdeaWorkspace idea.workspace Allows configuring the workspace XML

39.4. Customizing the generated files
The IDEA plugin provides hooks and behavior for customizing the generated content. The workspace file can

effectively only be manipulated via the  hook because its corresponding domain object is essentiallywithXml

empty.

The tasks recognize existing IDEA files, and merge them with the generated content.

39.4.1. Merging

Sections of existing IDEA files that are also the target of generated content will be amended or overwritten,

depending on the particular section. The remaining sections will be left as-is.

39.4.1.1. Disabling merging with a complete overwrite

To completely rewrite existing IDEA files, execute a clean task together with its corresponding generation task,

like “ ” (in that order). If you want to make this the default behavior, add “gradle cleanIdea idea

” to your build script. This makes it unnecessary to execute thetasks.idea.dependsOn(cleanIdea)

clean task explicitly.

This strategy can also be used for individual files that the plugin would generate. For instance, this can be done

for the “ ” file with “ ”..iml gradle cleanIdeaModule ideaModule

39.4.2. Hooking into the generation lifecycle

The plugin provides objects modeling the sections of the metadata files that are generated by Gradle. The

generation lifecycle is as follows:

The file is read; or a default version provided by Gradle is used if it does not exist

The  hook is executed with a domain object representing the existing filebeforeMerged

The existing content is merged with the configuration inferred from the Gradle build or defined explicitly in

the eclipse DSL

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaModel.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html


Page 228 of 448

4.  

5.  

6.  

The  hook is executed with a domain object representing contents of the file to be persistedwhenMerged

The  hook is executed with a raw representation of the XML that will be persistedwithXml

The final XML is persisted

The following table lists the domain object used for each of the model types:

Table 39.4. Idea plugin hooks

Model beforeMerged { arg -> }

argument type

whenMerged { arg -> }

argument type

withXml { arg -> }

argument type

IdeaProject Project Project XmlProvider

IdeaModule Module Module XmlProvider

IdeaWorkspace Workspace Workspace XmlProvider

39.4.2.1. Partial rewrite of existing content

A  causes all existing content to be discarded, thereby losing any changes made directly in thecomplete rewrite

IDE. The  hook makes it possible to overwrite just certain parts of the existing content. ThebeforeMerged

following example removes all existing dependencies from the  domain object:Module

Example 39.2. Partial Rewrite for Module

build.gradle

idea.module.iml {
    beforeMerged { module ->
        module.dependencies.clear()
    }
}

The resulting module file will only contain Gradle-generated dependency entries, but not any other dependency

entries that may have been present in the original file. (In the case of dependency entries, this is also the default

behavior.) Other sections of the module file will be either left as-is or merged. The same could be done for the

module paths in the project file:

Example 39.3. Partial Rewrite for Project

build.gradle

idea.project.ipr {
    beforeMerged { project ->
        project.modulePaths.clear()
    }
}

39.4.2.2. Modifying the fully populated domain objects

The  hook allows you to manipulate the fully populated domain objects. Often this is thewhenMerged

preferred way to customize IDEA files. Here is how you would export all the dependencies of an IDEA module:

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaProject.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaModule.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Module.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ide.idea.model.IdeaWorkspace.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/ide/idea/model/Workspace.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/XmlProvider.html


Page 229 of 448

Example 39.4. Export Dependencies

build.gradle

idea.module.iml {
    whenMerged { module ->
        module.dependencies*.exported = true
    }
}

39.4.2.3. Modifying the XML representation

The hook allows you to manipulate the in-memory XML representation just before the file getswithXml

written to disk. Although Groovy's XML support makes up for a lot, this approach is less convenient than

manipulating the domain objects. In return, you get total control over the generated file, including sections not

modeled by the domain objects.

Example 39.5. Customizing the XML

build.gradle

idea.project.ipr {
    withXml { provider ->
        provider.node.component
                .find { it.  ==  }@name 'VcsDirectoryMappings'
                .mapping.  = @vcs 'Git'
    }
}

39.5. Further things to consider
The paths of dependencies in the generated IDEA files are absolute. If you manually define a path variable

pointing to the Gradle dependency cache, IDEA will automatically replace the absolute dependency paths with

this path variable. you can configure this path variable via the “ ” property, so that itidea.pathVariables

can do a proper merge without creating duplicates.



Page 230 of 448

40
The ANTLR Plugin

The ANTLR plugin extends the Java plugin to add support for generating parsers using .ANTLR

The ANTLR plugin supports ANTLR version 2, 3 and 4.

40.1. Usage
To use the ANTLR plugin, include the following in your build script:

Example 40.1. Using the ANTLR plugin

build.gradle

apply plugin: 'antlr'

40.2. Tasks
The ANTLR plugin adds a number of tasks to your project, as shown below.

Table 40.1. ANTLR plugin - tasks

Task name Depends

on

Type Description

generateGrammarSource - AntlrTask Generates the source files for all

production ANTLR grammars.

generateTestGrammarSource - AntlrTask Generates the source files for all

test ANTLR grammars.

generate GrammarSourceSourceSet - AntlrTask Generates the source files for all

ANTLR grammars for the given

source set.

The ANTLR plugin adds the following dependencies to tasks added by the Java plugin.

http://www.antlr.org/
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html


Page 231 of 448

Table 40.2. ANTLR plugin - additional task dependencies

Task name Depends on

compileJava generateGrammarSource

compileTestJava generateTestGrammarSource

compile JavaSourceSet generate GrammarSourceSourceSet

40.3. Project layout
Table 40.3. ANTLR plugin - project layout

Directory Meaning

src/main/antlr Production ANTLR grammar files.

src/test/antlr Test ANTLR grammar files.

src/ /antlrsourceSet ANTLR grammar files for the given source set.

40.4. Dependency management
The ANTLR plugin adds an  dependency configuration which provides the ANTLR implementation toantlr

use. The following example shows how to use ANTLR version 3.

Example 40.2. Declare ANTLR version

build.gradle

repositories {
    mavenCentral()
}

dependencies {
    antlr  "org.antlr:antlr:3.5.2" // use ANTLR version 3
}

If no dependency is declared,  will be used as the default. To use a different ANTLRantlr:antlr:2.7.7

version add the appropriate dependency to the  dependency configuration as above.antlr

40.5. Convention properties
The ANTLR plugin does not add any convention properties.

40.6. Source set properties
The ANTLR plugin adds the following properties to each source set in the project.



Page 232 of 448

Table 40.4. ANTLR plugin - source set properties

Property name Type Default value Description

antlr SourceDirectorySet

(read-only)

Not null The ANTLR grammar files of this

source set. Contains all  files.g

found in the ANTLR source

directories, and excludes all other

types of files.

antlr.srcDirs . Can setSet<File>

using anything described

in Section 16.5,

“Specifying a set of input

.files”

[ /src/ /antlr]projectDir nameThe source directories containing

the ANTLR grammar files of this

source set.

40.7. Controlling the ANTLR generator process
The ANTLR tool is executed in a forked process. This allows fine grained control over memory settings for the

ANTLR process. To set the heap size of a ANTLR process, the  property of  canmaxHeapSize AntlrTask

be used.

Example 40.3. setting custom max heap size for ANTLR

build.gradle

generateGrammarSource {
    maxHeapSize = "64m"
}

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/SourceDirectorySet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.antlr.AntlrTask.html


Page 233 of 448

41
The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful information

about your build. These tasks generate the same content that you get by executing the , tasks dependencies

, and  tasks from the command line (see ).properties Section 11.6, “Obtaining information about your build”

In contrast to the command line reports, the report plugin generates the reports into a file. There is also an

aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional ones in future releases of Gradle.

41.1. Usage
To use the Project report plugin, include the following in your build script:

apply plugin: 'project-report'

41.2. Tasks
The project report plugin defines the following tasks:



Page 234 of 448

Table 41.1. Project report plugin - tasks

Task name Depends on Type Description

dependencyReport - DependencyReportTask Generates

the project

dependency

report.

htmlDependencyReport - HtmlDependencyReportTask Generates

an HTML

dependency

and

dependency

insight

report for

the project

or a set of

projects.

propertyReport - PropertyReportTask Generates

the project

property

report.

taskReport - TaskReportTask Generates

the project

task report.

projectReport , dependencyReport propertyReport

, , taskReport htmlDependencyReport

Task Generates

all project

reports.

41.3. Project layout
The project report plugin does not require any particular project layout.

41.4. Dependency management
The project report plugin does not define any dependency configurations.

41.5. Convention properties
The project report defines the following convention properties:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html


Page 235 of 448

Table 41.2. Project report plugin - convention properties

Property name Type Default value Description

reportsDirName String reports The name of the

directory to

generate reports

into, relative to

the build

directory.

reportsDir  (read-only)File /buildDir reportsDirNameThe directory to

generate reports

into.

projects Set<Project> A one element set with the

project the plugin was

applied to.

The projects to

generate the

reports for.

projectReportDirName String project The name of the

directory to

generate the

project report

into, relative to

the reports

directory.

projectReportDir  (read-only)File /reportsDir projectReportDirNameThe directory to

generate the

project report

into.

These convention properties are provided by a convention object of type 

.ProjectReportsPluginConvention

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html


Page 236 of 448

42
The Announce Plugin

The Gradle announce plugin allows you to send custom announcements during a build. The following

notification systems are supported:

Twitter

notify-send (Ubuntu)

Snarl (Windows)

Growl (Mac OS X)

42.1. Usage
To use the announce plugin, apply it to your build script:

Example 42.1. Using the announce plugin

build.gradle

apply plugin: 'announce'

Next, configure your notification service(s) of choice (see table below for which configuration properties are

available):

Example 42.2. Configure the announce plugin

build.gradle

announce { 
  username = 'myId'
  password = 'myPassword'
}

Finally, send announcements with the  method:announce

http://twitter.com
http://manpages.ubuntu.com/manpages/gutsy/man1/notify-send.1.html
https://sites.google.com/site/snarlapp/home
http://growl.info/


Page 237 of 448

Example 42.3. Using the announce plugin

build.gradle

task helloWorld << { 
    println "Hello, world!"
} 

helloWorld.doLast { 
    announce.announce( , )"helloWorld completed!" "twitter"
    announce.announce( , )"helloWorld completed!" "local"
}

The  method takes two String arguments: The message to be sent, and the notification service to beannounce

used. The following table lists supported notification services and their configuration properties.

Table 42.1. Announce Plugin Notification Services

Notification

Service

Operating

System

Configuration

Properties

Further Information

twitter Any username,

password

snarl Windows

growl Mac OS X

notify-send Ubuntu Requires the notify-send package to be installed. Use sudo apt-get install libnotify-bin

to install it.

local Windows,

Mac OS X,

Ubuntu

Automatically chooses between snarl, growl, and

notify-send depending on the current operating

system.

42.2. Configuration
See the  class in the API documentation.AnnouncePluginExtension

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.announce.AnnouncePluginExtension.html


Page 238 of 448

43
The Build Announcements Plugin

The build announcements plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The build announcements plugin uses the  plugin to send local announcements on important events inannounce

the build.

43.1. Usage
To use the build announcements plugin, include the following in your build script:

Example 43.1. Using the build announcements plugin

build.gradle

apply plugin: 'build-announcements'

That's it. If you want to tweak where the announcements go, you can configure the  plugin to changeannounce

the local announcer.

You can also apply the plugin from an init script:

Example 43.2. Using the build announcements plugin from an init script

init.gradle

rootProject {
    apply plugin: 'build-announcements'
}



Page 239 of 448

44
The Distribution Plugin

The distribution plugin is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The distribution plugin facilitates building archives that serve as distributions of the project. Distribution

archives typically contain the executable application and other supporting files, such as documentation.

44.1. Usage
To use the distribution plugin, include the following in your build script:

Example 44.1. Using the distribution plugin

build.gradle

apply plugin: 'distribution'

The plugin adds an extension named “ ” of type  to thedistributions DistributionContainer

project. It also creates a single distribution in the distributions container extension named “ ”. If your buildmain

only produces one distribution you only need to configure this distribution (or use the defaults).

You can run “ ” to package the main distribution as a ZIP, or “ ” togradle distZip gradle distTar

create a TAR file. To build both types of archives just run . The files will be createdgradle assembleDist

at “ ”./distributions/ - .$buildDir $project.name $project.version «ext»

You can run “ ” to assemble the uncompressed distribution into “gradle installDist /install/$buildDir main

”.

44.2. Tasks
The Distribution plugin adds the following tasks to the project:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.distribution.DistributionContainer.html


Page 240 of 448

Table 44.1. Distribution plugin - tasks

Task name Depends

on

Type Description

distZip - Zip Creates a ZIP archive of the distribution contents

distTar - Tar Creates a TAR archive of the distribution contents

assembleDist - Task Creates ZIP and TAR archives with the distribution contents

installDist - Sync Assembles the distribution content and installs it on the

current machine

For each extra distribution set you add to the project, the distribution plugin adds the following tasks:

Table 44.2. Multiple distributions - tasks

Task name Depends

on

Type Description

DistZip${distribution.name} - Zip Creates a ZIP archive of the

distribution contents

DistTar${distribution.name} - Tar Creates a TAR archive of the

distribution contents

install Dist${distribution.name.capitalize()}- Sync Assembles the distribution

content and installs it on the

current machine

Example 44.2. Adding extra distributions

build.gradle

apply plugin: 'distribution'

version = '1.2'
distributions {
    custom {}
}

This will add following tasks to the project:

customDistZip

customDistTar

installCustomDist

Given that the project name is “ ” and version “ ”, running “ ” willmyproject 1.2 gradle customDistZip

produce a ZIP file named “ ”.myproject-custom-1.2.zip

Running “ ” will install the distribution contents into “gradle installCustomDist /install/custom$buildDir

”.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Task.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html


Page 241 of 448

44.3. Distribution contents
All of the files in the “ ” directory will automatically be included in thesrc/ /dist$distribution.name

distribution. You can add additional files by configuring the  object that is part of theDistribution

container.

Example 44.3. Configuring the main distribution

build.gradle

apply plugin: 'distribution'

distributions {
    main {
        baseName = 'someName'
        contents {
            from {  }'src/readme'
        }
    }
}

apply plugin:'maven'

uploadArchives {
    repositories {
        mavenDeployer {
            repository(url: )"file://some/repo"
        }
    }
}

In the example above, the content of the “ ” directory will be included in the distribution (alongsrc/readme

with the files in the “ ” directory which are added by default).src/dist/main

The “ ” property has also been changed. This will cause the distribution archives to be created with abaseName

different name.

44.4. Publishing distributions
The distribution plugin adds the distribution archives as candidate for default publishing artifacts. With the maven

plugin applied the distribution zip file will be published when running uploadArchives if no other default

artifact is configured

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/distribution/Distribution.html


Page 242 of 448

Example 44.4. publish main distribution

build.gradle

apply plugin:'maven'

uploadArchives {
    repositories {
        mavenDeployer {
            repository(url: )"file://some/repo"
        }
    }
}



Page 243 of 448

45
The Application Plugin

The Gradle application plugin extends the language plugins with common application related tasks. It allows

running and bundling applications for the jvm by creating a jvm application .Distribution

45.1. Usage
To use the application plugin, include the following in your build script:

Example 45.1. Using the application plugin

build.gradle

apply plugin:'application'

To define the main-class for the application you have to set the  property as shown belowmainClassName

Example 45.2. Configure the application main class

build.gradle

mainClassName = "org.gradle.sample.Main"

Then, you can run the application by running . Gradle will take care of building the applicationgradle run

classes, along with their runtime dependencies, and starting the application with the correct classpath. You can

launch the application in debug mode with  (see ).gradle run --debug-jvm JavaExec.setDebug()

The plugin can also build a distribution for your application. The  will package up the runtimeDistribution

dependencies of the application along with some OS specific start scripts. All files stored in  will besrc/dist

added to the root of the distribution. You can run  to create an image of thegradle installDist

application in . You can run  to create a ZIPbuild/install/projectName gradle distZip

containing the distribution,  to create an application TAR or  to buildgradle distTar gradle assemble

both.

If your Java application requires a specific set of JVM settings or system properties, you can configure the applicationDefaultJvmArgs

property. These JVM arguments are applied to the  task and also considered in the generated start scripts ofrun

your distribution.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/distribution/Distribution.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/JavaExec.html#setDebug(boolean)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/distribution/Distribution.html


Page 244 of 448

Example 45.3. Configure default JVM settings

build.gradle

applicationDefaultJvmArgs = [ ]"-Dgreeting.language=en"

45.2. Tasks
The Application plugin adds the following tasks to the project.

Table 45.1. Application plugin - tasks

Task name Depends on Type Description

run classes JavaExec Starts the application.

startScripts jar CreateStartScripts Creates OS specific scripts to run

the project as a JVM application.

installDist , jar startScriptsSync Installs the application into a

specified directory.

distZip , jar startScriptsZip Creates a full distribution ZIP

archive including runtime

libraries and OS specific scripts.

distTar , jar startScriptsTar Creates a full distribution TAR

archive including runtime

libraries and OS specific scripts.

45.3. Convention properties
The application plugin adds some properties to the project, which you can use to configure its behaviour. See

the  class in the API documentation.Project

45.4. Including other resources in the distribution
One of the convention properties added by the plugin is  which is a applicationDistribution

. This specification is used by the  and  tasks as the specification of whatCopySpec installDist distZip

is to be included in the distribution. In addition to copying the start scripts to the  dir and necessary jars to bin lib

in the distribution, all of the files from the  directory are also copied. To include any static files insrc/dist

the distribution, simply arrange them in the  directory.src/dist

If your project generates files to be included in the distribution, e.g. documentation, you can add these files to

the distribution by adding to the  copy spec.applicationDistribution

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.JavaExec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.application.CreateStartScripts.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/file/CopySpec.html


Page 245 of 448

Example 45.4. Include output from other tasks in the application distribution

build.gradle

task createDocs {
    def docs = file( )"$buildDir/docs"
    outputs.dir docs
    doLast {
        docs.mkdirs()
         File(docs, ).write( )new "readme.txt" "Read me!"
    }
}

applicationDistribution.from(createDocs) {
    into "docs"
}

By specifying that the distribution should include the task's output files (see Section 15.9.1, “Declaring a task's

), Gradle knows that the task that produces the files must be invoked before the distributioninputs and outputs”

can be assembled and will take care of this for you.

Example 45.5. Automatically creating files for distribution

Output of gradle distZip

> gradle distZip
:createDocs
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:startScripts
:distZip

BUILD SUCCESSFUL

Total time: 1 secs



Page 246 of 448

46
The Java Library Distribution Plugin

The Java library distribution plugin is currently . Please be aware that the DSL and otherincubating

configuration may change in later Gradle versions.

The Java library distribution plugin adds support for building a distribution ZIP for a Java library. The

distribution contains the JAR file for the library and its dependencies.

46.1. Usage
To use the Java library distribution plugin, include the following in your build script:

Example 46.1. Using the Java library distribution plugin

build.gradle

apply plugin: 'java-library-distribution'

To define the name for the distribution you have to set the  property as shown below:baseName

Example 46.2. Configure the distribution name

build.gradle

distributions {
    main{
        baseName = 'my-name'
    }
}

The plugin builds a distribution for your library. The distribution will package up the runtime dependencies of

the library. All files stored in  will be added to the root of the archive distribution. You cansrc/main/dist

run “ ” to create a ZIP file containing the distribution.gradle distZip

46.2. Tasks
The Java library distribution plugin adds the following tasks to the project.



Page 247 of 448

Table 46.1. Java library distribution plugin - tasks

Task name Depends on Type Description

distZip jar Zip Creates a full distribution ZIP archive including runtime libraries.

46.3. Including other resources in the distribution
All of the files from the  directory are copied. To include any static files in the distribution, simplysrc/dist

arrange them in the  directory, or add them to the content of the distribution.src/dist

Example 46.3. Include files in the distribution

build.gradle

distributions {
    main {
        baseName = 'my-name'
        contents {
            from {  }'src/dist'
        }
    }
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html


Page 248 of 448

47
Build Init Plugin

The Build Init plugin is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports

creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven

build) to be Gradle builds.

Gradle plugins typically need to be  to a project before they can be used (see applied Section 21.3, “Applying

). The Build Init plugin is an automatically applied plugin, which means you do not need to apply itplugins”

explicitly. To use the plugin, simply execute the task named  where you would like to create the Gradleinit

build. There is no need to create a “stub”  file in order to apply the plugin.build.gradle

It also leverages the  task from the Wrapper plugin (see ), which meanswrapper Chapter 48, Wrapper Plugin

that the Gradle Wrapper will also be installed into the project.

47.1. Tasks
The plugin adds the following tasks to the project:

Table 47.1. Build Init plugin - tasks

Task name Depends on Type Description

init wrapper InitBuild Generates a Gradle project.

wrapper - Wrapper Generates Gradle wrapper files.

47.2. What to set up
The  supports different build setup . The type is specified by supplying a  argument value.init types --type

For example, to create a Java library project simply execute: .gradle init --type java-library

If a  parameter is not supplied, Gradle will attempt to infer the type from the environment. For--type

example, it will infer a type value of “ ” if it finds a  to convert to a Gradle build.pom pom.xml

If the type could not be inferred, the type “ ” will be used.basic

http://www.gradle.org/docs/2.3/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html


Page 249 of 448

All build setup types include the setup of the Gradle Wrapper.

47.3. Build init types

As this plugin is currently , only a few build init types are currently supported. More types willincubating

be added in future Gradle releases.

47.3.1. “ ” (Maven conversion)pom

The “ ” type can be used to convert an Apache Maven build to a Gradle build. This works by converting thepom

POM to one or more Gradle files. It is only able to be used if there is a valid “ ” file in the directorypom.xml

that the  task is invoked in. This type will be automatically inferred if such a file exists.init

The Maven conversion implementation was inspired by the  that was originally developed bymaven2gradle tool

Gradle community members.

The conversion process has the following features:

Uses effective POM and effective settings (support for POM inheritance, dependency management,

properties)

Supports both single module and multimodule projects

Supports custom module names (that differ from directory names)

Generates general metadata - id, description and version

Applies maven, java and war plugins (as needed)

Supports packaging war projects as jars if needed

Generates dependencies (both external and inter-module)

Generates download repositories (inc. local Maven repository)

Adjusts Java compiler settings

Supports packaging of sources and tests

Supports TestNG runner

Generates global exclusions from Maven enforcer plugin settings

47.3.2. “ ”java-library

The “ ” build init type is not inferable. It must be explicitly specified.java-library

It has the following features:

Uses the “ ” pluginjava

Uses the “ ” dependency repositorymavenCentral

Uses  for testingJUnit

Has directories in the conventional locations for source code

Contains a sample class and unit test, if there are no existing source or test files

https://github.com/jbaruch/maven2gradle
http://junit.org


Page 250 of 448

47.3.3. “ ”scala-library

The “ ” build init type is not inferable. It must be explicitly specified.scala-library

It has the following features:

Uses the “ ” pluginscala

Uses the “ ” dependency repositorymavenCentral

Uses Scala 2.10

Uses  for testingScalaTest

Has directories in the conventional locations for source code

Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test

files

47.3.4. “ ”groovy-library

The “ ” build init type is not inferable. It must be explicitly specified.groovy-library

It has the following features:

Uses the “ ” plugingroovy

Uses the “ ” dependency repositorymavenCentral

Uses Groovy 2.x

Uses  for testingSpock testing framework

Has directories in the conventional locations for source code

Contains a sample Groovy class and an associated Spock specification, if there are no existing source or test

files

47.3.5. “basic”

The “ ” build init type is useful for creating a fresh new Gradle project. It creates a sample basic build.gradle

file, with comments and links to help get started.

This type is used when no type was explicitly specified, and no type could be inferred.

http://www.scalatest.org
http://code.google.com/p/spock/


Page 251 of 448

48
Wrapper Plugin

The wrapper plugin is currently . Please be aware that the DSL and other configuration mayincubating

change in later Gradle versions.

The Gradle wrapper plugin allows the generation of Gradle wrapper files by adding a  task, thatWrapper

generates all files needed to run the build using the Gradle Wrapper. Details about the Gradle Wrapper can be

found in .Chapter 62, The Gradle Wrapper

48.1. Usage
Without modifying the  file, the wrapper plugin can be auto-applied to the root project of thebuild.gradle

current build by running “ ” from the command line. This applies the plugin if no taskgradle wrapper

named  is already defined in the build.wrapper

48.2. Tasks
The wrapper plugin adds the following tasks to the project:

Table 48.1. Wrapper plugin - tasks

Task name Depends on Type Description

wrapper - Wrapper Generates Gradle wrapper files.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html


Page 252 of 448

49
The Build Dashboard Plugin

The build dashboard plugin is currently . Please be aware that the DSL and other configurationincubating

may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point of

access to all of the reports generated by a build.

49.1. Usage
To use the Build Dashboard plugin, include the following in your build script:

Example 49.1. Using the Build Dashboard plugin

build.gradle

apply plugin: 'build-dashboard'

Applying the plugin adds the  task to your project. The task aggregates the reports for allbuildDashboard

tasks that implement the  interface from  in the build. It is typically only applied to theReporting all projects

root project.

The  task does not depend on any other tasks. It will only aggregate the reporting tasks thatbuildDashboard

are independently being executed as part of the build run. To generate the build dashboard, simply include this

task in the list of tasks to execute. For example, “ ” will generate agradle buildDashboard build

dashboard for all of the reporting tasks that are dependents of the  task.build

49.2. Tasks
The Build Dashboard plugin adds the following task to the project:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.Reporting.html


Page 253 of 448

Table 49.1. Build Dashboard plugin - tasks

Task name Depends

on

Type Description

buildDashboard - GenerateBuildDashboard Generates build dashboard

report.

49.3. Project layout
The Build Dashboard plugin does not require any particular project layout.

49.4. Dependency management
The Build Dashboard plugin does not define any dependency configurations.

49.5. Configuration
You can influence the location of build dashboard plugin generation via .ReportingExtension

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.reporting.ReportingExtension.html


Page 254 of 448

50
The Java Gradle Plugin Development Plugin

The Java Gradle plugin development plugin is currently . Please be aware that the DSL andincubating

other configuration may change in later Gradle versions.

The Java Gradle Plugin development plugin can be used to assist in the development of Gradle plugins. It

automatically applies the  plugin, adds the  dependency to the compile configuration andJava gradleApi()

performs validation of plugin metadata during  task execution.jar

50.1. Usage
To use the Java Gradle Plugin Development plugin, include the following in your build script:

Example 50.1. Using the Java Gradle Plugin Development plugin

build.gradle

apply plugin: 'java-gradle-plugin'

Applying the plugin automatically applies the  plugin and adds the  dependency to theJava gradleApi()

compile configuration. It also decorates the  task with validations.jar

The following validations are performed:

There is a plugin descriptor defined for the plugin.

The plugin descriptor contains an  property.implementation-class

The  property references a valid class file in the jar.implementation-class

Any failed validations will result in a warning message.



Page 255 of 448

51
Dependency Management

51.1. Introduction
Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering

first-class dependency management that is both easy to understand and compatible with a wide variety of

approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn that

Gradle is fully compatible with both approaches in addition to being flexible enough to support

fully-customized approaches.

Here are the major highlights of Gradle's support for dependency management:

Transitive dependency management: Gradle gives you full control of your project's dependency tree.

Support for non-managed dependencies : If your dependencies are simply files in version control or a shared

drive, Gradle provides powerful functionality to support this.

Support for custom dependency definitions. : Gradle's Module Dependencies give you the ability to describe

the dependency hierarchy in the build script.

A fully customizable approach to Dependency Resolution : Gradle provides you with the ability to customize

resolution rules making dependency substitution easy.

Full Compatibility with Maven and Ivy : If you have defined dependencies in a Maven POM or an Ivy file,

Gradle provides seamless integration with a range of popular build tools.

Integration with existing dependency management infrastructure : Gradle is compatible with both Maven

and Ivy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all

repository formats.

With hundreds of thousands of interdependent open source components each with a range of versions and

incompatibilities, dependency management has a habit of causing problems as builds grow in complexity. When

a build's dependency tree becomes unwieldy, your build tool shouldn't force you to adopt a single, inflexible

approach to dependency management. A proper build system has to be designed to be flexible, and Gradle can

handle any situation.



Page 256 of 448

51.1.1. Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to another.

If you are migrating from a tool like Ant or Maven to Gradle, you may be faced with some difficult situations.

For example, one common pattern is an Ant project with version-less jar files stored in the filesystem. Other

build systems require a wholesale replacement of this approach before migrating. With Gradle, you can adapt

your new build to any existing source of dependencies or dependency metadata. This makes incremental

migration to Gradle much easier than the alternative. On most large projects, build migrations and any change to

development process is incremental because most organizations can't afford to stop everything and migrate to a

build tool's idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse .classpath

file as master data for dependency management, it is very easy to write a Gradle plugin to use this data in

Gradle. For migration purposes this is a common technique with Gradle. (But, once you've migrated, it might be

a good idea to move away from a .classpath file and use Gradle's dependency management features directly.)

51.1.2. Dependency management and Java

It is ironic that in a language known for its rich library of open source components that Java has no concept of

libraries or versions. In Java, there is no standard way to tell the JVM that you are using version 3.0.5 of

Hibernate, and there is no standard way to say that  depends on . This has led tofoo-1.0.jar bar-2.0.jar

external solutions often based on build tools. The most popular ones at the moment are Maven and Ivy. While

Maven provides a complete build system, Ivy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular jar.

Both also use repositories where the actual jars are placed together with their descriptor files, and both offer

resolution for conflicting jar versions in one form or the other. Both have emerged as standards for solving

dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency management.

Gradle has replaced this direct dependency on Ivy with a native Gradle dependency resolution engine which

supports a range of approaches to dependency resolution including both POM and Ivy descriptor files.

51.2. Dependency Management Best Practices
While Gradle has strong opinions on dependency management, the tool gives you a choice between two options:

follow recommended best practices or support any kind of pattern you can think of. This section outlines the

Gradle project's recommended best practices for managing dependencies.

No matter what the language, proper dependency management is important for every project. From a complex

enterprise application written in Java depending on hundreds of open source libraries to the simplest Clojure

application depending on a handful of libraries, approaches to dependency management vary widely and can

depend on the target technology, the method of application deployment, and the nature of the project. Projects

bundled as reusable libraries may have different requirements than enterprise applications integrated into much

larger systems of software and infrastructure. Despite this wide variation of requirements, the Gradle project

recommends that all projects follow this set of core rules:



Page 257 of 448

51.2.1. Put the Version in the Filename (Version the jar)

The version of a library must be part of the filename. While the version of a jar is usually in the Manifest file, it

isn't readily apparent when you are inspecting a project. If someone asks you to look at a collection of 20 jar

files, which would you prefer? A collection of files with names like  or acommons-beanutils-1.3.jar

collection of files with names like ? If dependencies have file names with version numbers youspring.jar

can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might be a

project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of Hibernate on

her machine to fix a critical security bug but forgets to notify others in the team of this change. She may address

the security bug successfully, but she also may have introduced subtle bugs into a codebase that was using a

now-deprecated feature from Hibernate. Weeks later there is an exception on the integration machine which

can't be reproduced on anyone's machine. Multiple developers then spend days on this issue only finally

realising that the error would have easy to uncover if they knew that Hibernate had been upgraded from 2.5 to

3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This

practice also reduces the potential for error.

51.2.2. Manage transitive dependencies

Transitive dependency management is a technique that enables your project to depend on libraries which, in

turn, depend on other libraries. This recursive pattern of transitive dependencies results in a tree of dependencies

including your project's first-level dependencies, second-level dependencies, and so on. If you don't model your

dependencies as a hierarchical tree of first-level and second-level dependencies it is very easy to quickly lose

control over an assembled mess of unstructured dependencies. Consider the Gradle project itself, while Gradle

only has a few direct, first-level dependencies, when Gradle is compiled it needs more than one hundred

dependencies on the classpath. On a far larger scale, Enterprise projects using Spring, Hibernate, and other

libraries, alongside hundreds or thousands of internal projects, can result in very large dependency trees.

When these large dependency trees need to change, you'll often have to solve some dependency version

conflicts. Say one open source library needs one version of a logging library and a another uses an alternative

version. Gradle and other build tools all have the ability to resolve conflicts, but what differentiates Gradle is the

control it gives you over transitive dependencies and conflict resolution.

While you could try to manage this problem manually, you will quickly find that this approach doesn't scale. If

you want to get rid of a first level dependency you really can't be sure which other jars you should remove. A

dependency of a first level dependency might also be a first level dependency itself, or it might be a transitive

dependency of yet another first level dependency. If you try to manage transitive dependencies yourself, the end

of the story is that your build becomes brittle: no one dares to change your dependencies because the risk of

breaking the build is too high. The project classpath becomes a complete mess, and, if a classpath problem

arises, hell on earth invites you for a ride.

NOTE:In one project, we found a mystery LDAP related jar in the classpath. No code referenced this jar

and there was no connection to the project. No one could figure out what the jar was for, until it was

removed from the build and the application suffered massive performance problems whenever it



Page 258 of 448

attempted to authenticate to LDAP. This mystery jar was a necessary transitive, fourth-level dependency

that was easy to miss because no one had bothered to use managed transitive dependencies.

Gradle offers you different ways to express first-level and transitive dependencies. With Gradle you can mix

and match approaches; for example, you could store your jars in an SCM without XML descriptor files and still

use transitive dependency management.

51.2.3. Resolve version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you don't

use transitive dependency management, version conflicts are undetected and the often accidental order of the

classpath will determine what version of a dependency will win. On a large project with many developers

changing dependencies, successful builds will be few and far between as the order of dependencies may directly

affect whether a build succeeds or fails (or whether a bug appears or disappears in production).

If you haven't had to deal with the curse of conflicting versions of jars on a classpath, here is a small anecdote of

the fun that awaits you. In a large project with 30 submodules, adding a dependency to a subproject changed the

order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build continued to work,

developers were starting to notice all sorts of surprising (and surprisingly awful) bugs in production. Worse yet,

this unintentional downgrade of Spring introduced several security vulnerabilities into the system, which now

required a full security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You

might also want to learn where conflicting versions are used and consolidate on a particular version of a

dependency across your organization. With a good conflict reporting tool like Gradle, that information can be

used to communicate with the entire organization and standardize on a single version. If you think version

 It is very common for different first-level dependencies to rely on aconflicts don't happen to you, think again.

range of different overlapping versions for other dependencies, and the JVM doesn't yet offer an easy way to

have different versions of the same jar in the classpath (see Section 51.1.2, “Dependency management and Java”

).

Gradle offers the following conflict resolution strategies:

Newest: The newest version of the dependency is used. This is Gradle's default strategy, and is often an

appropriate choice as long as versions are backwards-compatible.

Fail: A version conflict results in a build failure. This strategy requires all version conflicts to be resolved

explicitly in the build script. See  for details on how to explicitly choose aResolutionStrategy

particular version.

While the strategies introduced above are usually enough to solve most conflicts, Gradle provides more

fine-grained mechanisms to resolve version conflicts:

Configuring a first level dependency as . This approach is useful if the dependency in conflict isforced

already a first level dependency. See examples in .DependencyHandler

Configuring any dependency (transitive or not) as . This approach is useful if the dependency inforced

conflict is a transitive dependency. It also can be used to force versions of first level dependencies. See

examples in ResolutionStrategy

Dependency resolve rules are an  feature introduced in Gradle 1.4 which give you fine-grainedincubating

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html


Page 259 of 448

control over the version selected for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such

reports are another feature of dependency management.

51.2.4. Use Dynamic Versions and Changing Modules

There are many situations when you want to use the latest version of a particular dependency, or the latest in a

range of versions. This can be a requirement during development, or you may be developing a library that is

designed to work with a range of dependency versions. You can easily depend on these constantly changing

dependencies by using a . A dynamic version can be either a version range (e.g. ) or it candynamic version 2.+

be a placeholder for the latest version available (e.g. ).latest.integration

Alternatively, sometimes the module you request can change over time, even for the same version. An example

of this type of  is a Maven  module, which always points at the latest artifactchanging module SNAPSHOT

published. In other words, a standard Maven snapshot is a module that never stands still so to speak, it is a

“changing module”.

The main difference between a  and a  is that when you resolve a dynamic version changing module dynamic

, you'll get the real, static version as the module name. When you resolve a , theversion changing module

artifacts are named using the version you requested, but the underlying artifacts may change over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the default

cache modes using . You can change the cache expiry times in your build using thecommand line options

resolution strategy (see ).Section 51.9.3, “Fine-tuned control over dependency caching”

51.3. Dependency configurations
In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other

properties, and they can extend each other. Many Gradle plugins add pre-defined configurations to your project.

The Java plugin, for example, adds some configurations to represent the various classpaths it needs. see 

 for details. Of course you can add custom configurations on top ofSection 23.5, “Dependency management”

that. There are many use cases for custom configurations. This is very handy for example for adding

dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be shipped with

your distribution).

A project's configurations are managed by a  object. The closure you pass to theconfigurations

configurations object is applied against its API. To learn more about this API have a look at 

.ConfigurationContainer

To define a configuration:

Example 51.1. Definition of a configuration

build.gradle

configurations {
    compile
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ConfigurationContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ConfigurationContainer.html


Page 260 of 448

To access a configuration:

Example 51.2. Accessing a configuration

build.gradle

println configurations.compile.name
println configurations[ ].name'compile'

To configure a configuration:

Example 51.3. Configuration of a configuration

build.gradle

configurations {
    compile {
        description = 'compile classpath'
        transitive = true
    }
    runtime {
        extendsFrom compile
    }
}
configurations.compile {
    description = 'compile classpath'
}

51.4. How to declare your dependencies
There are several different types of dependencies that you can declare:

Table 51.1. Dependency types

Type Description

External module dependency A dependency on an external module in some repository.

Project dependency A dependency on another project in the same build.

File dependency A dependency on a set of files on the local filesystem.

Client module dependency A dependency on an external module, where the artifacts are located in

some repository but the module meta-data is specified by the local build.

You use this kind of dependency when you want to override the meta-data

for the module.

Gradle API dependency A dependency on the API of the current Gradle version. You use this kind

of dependency when you are developing custom Gradle plugins and task

types.

Local Groovy dependency A dependency on the Groovy version used by the current Gradle version.

You use this kind of dependency when you are developing custom Gradle

plugins and task types.



Page 261 of 448

51.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external

repository.

Example 51.4. Module dependencies

build.gradle

dependencies {
    runtime group: , name: , version: 'org.springframework' 'spring-core' '2.5'
    runtime ,'org.springframework:spring-core:2.5'
            'org.springframework:spring-aop:2.5'
    runtime(
        [group: , name: , version: ],'org.springframework' 'spring-core' '2.5'
        [group: , name: , version: ]'org.springframework' 'spring-aop' '2.5'
    )
    runtime( ) {'org.hibernate:hibernate:3.0.5'
        transitive = true
    }
    runtime group: , name: , version: , transitive: true'org.hibernate' 'hibernate' '3.0.5'
    runtime(group: , name: , version: ) {'org.hibernate' 'hibernate' '3.0.5'
        transitive = true
    }
}

See the  class in the API documentation for more examples and a complete reference.DependencyHandler

Gradle provides different notations for module dependencies. There is a string notation and a map notation. A

module dependency has an API which allows further configuration. Have a look at 

 to learn all about the API. This API provides properties and configurationExternalModuleDependency

methods. Via the string notation you can define a subset of the properties. With the map notation you can define

all properties. To have access to the complete API, either with the map or with the string notation, you can

assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a module descriptor file (  or ) in thepom.xml ivy.xml

repositories. If such a module descriptor file exists, it is parsed and the artifacts of this module (e.g. hibernate-3.0.5.jar

) as well as its dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle looks

for a file called  to retrieve. In Maven, a module can have one and only one artifact.hibernate-3.0.5.jar

In Gradle and Ivy, a module can have multiple artifacts. Each artifact can have a different set of dependencies.

51.4.1.1. Depending on modules with multiple artifacts

As mentioned earlier, a Maven module has only one artifact. Hence, when your project depends on a Maven

module, it's obvious what its artifact is. With Gradle or Ivy, the case is different. Ivy's dependency descriptor (ivy.xml

) can declare multiple artifacts. For more information, see the Ivy reference for . In Gradle, when youivy.xml

declare a dependency on an Ivy module, you actually declare a dependency on the  configuration ofdefault

that module. So the actual set of artifacts (typically jars) you depend on is the set of artifacts that are associated

with the  configuration of that module. Here are some situations where this matters:default

The  configuration of a module contains undesired artifacts. Rather than depending on the wholedefault

configuration, a dependency on just the desired artifacts is declared.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html


Page 262 of 448

The desired artifact belongs to a configuration other than . That configuration is explicitly nameddefault

as part of the dependency declaration.

There are other situations where it is necessary to fine-tune dependency declarations. Please see the 

 class in the API documentation for examples and a complete reference for declaringDependencyHandler

dependencies.

51.4.1.2. Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of the

module. But sometimes, even if the repository contains module descriptors, you want to download only the

artifact jar, without the dependencies.  And sometimes you want to download a zip from a repository, that[ ]14

does not have module descriptors. Gradle provides an  notation for those use cases - simply prefixartifact only

the extension that you want to be downloaded with  sign:'@'

Example 51.5. Artifact only notation

build.gradle

dependencies {
    runtime "org.groovy:groovy:2.2.0@jar"
    runtime group: , name: , version: , ext: 'org.groovy' 'groovy' '2.2.0' 'jar'
}

An artifact only notation creates a module dependency which downloads only the artifact file with the specified

extension. Existing module descriptors are ignored.

51.4.1.3. Classifiers

The Maven dependency management has the notion of classifiers.  Gradle supports this. To retrieve[ ]15

classified dependencies from a Maven repository you can write:

Example 51.6. Dependency with classifier

build.gradle

compile "org.gradle.test.classifiers:service:1.0:jdk15@jar"
otherConf group: , name: , version: , classifier: 'org.gradle.test.classifiers' 'service' '1.0' 'jdk14'

As can be seen in the first line above, classifiers can be used together with the artifact only notation.

It is easy to iterate over the dependency artifacts of a configuration:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html


Page 263 of 448

Example 51.7. Iterating over a configuration

build.gradle

task listJars << {
    configurations.compile.each { File file -> println file.name }
}

Output of gradle -q listJars

> gradle -q listJars
hibernate-core-3.6.7.Final.jar
antlr-2.7.6.jar
commons-collections-3.1.jar
dom4j-1.6.1.jar
hibernate-commons-annotations-3.2.0.Final.jar
hibernate-jpa-2.0-api-1.0.1.Final.jar
jta-1.1.jar
slf4j-api-1.6.1.jar

51.4.2. Client module dependencies

Client module dependencies allow you to declare  dependencies directly in the build script. They are atransitive

replacement for a module descriptor in an external repository.

Example 51.8. Client module dependencies - transitive dependencies

build.gradle

dependencies {
    runtime module( ) {"org.codehaus.groovy:groovy:2.3.6"
        dependency( ) {"commons-cli:commons-cli:1.0"
            transitive = false
        }
        module(group: , name: , version: ) {'org.apache.ant' 'ant' '1.9.3'
            dependencies ,"org.apache.ant:ant-launcher:1.9.3@jar"
                         "org.apache.ant:ant-junit:1.9.3"
        }
    }
}

This declares a dependency on Groovy. Groovy itself has dependencies. But Gradle does not look for an XML

descriptor to figure them out but gets the information from the build file. The dependencies of a client module

can be normal module dependencies or artifact dependencies or another client module. Also look at the API

documentation for the  class.ClientModule

In the current release client modules have one limitation. Let's say your project is a library and you want this

library to be uploaded to your company's Maven or Ivy repository. Gradle uploads the jars of your project to the

company repository together with the XML descriptor file of the dependencies. If you use client modules the

dependency declaration in the XML descriptor file is not correct. We will improve this in a future release of

Gradle.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ClientModule.html


Page 264 of 448

51.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the same

multi-project build. For the latter you can declare .Project Dependencies

Example 51.9. Project dependencies

build.gradle

dependencies {
    compile project( )':shared'
}

For more information see the API documentation for .ProjectDependency

Multi-project builds are discussed in .Chapter 57, Multi-project Builds

51.4.4. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a

repository. This can be useful if you cannot, or do not want to, place certain files in a repository. Or if you do

not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a  as a dependency:file collection

Example 51.10. File dependencies

build.gradle

dependencies {
    runtime files( , )'libs/a.jar' 'libs/b.jar'
    runtime fileTree(dir: , include: )'libs' '*.jar'
}

File dependencies are not included in the published dependency descriptor for your project. However, file

dependencies are included in transitive project dependencies within the same build. This means they cannot be

used outside the current build, but they can be used with the same build.

You can declare which tasks produce the files for a file dependency. You might do this when, for example, the

files are generated by the build.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ProjectDependency.html


Page 265 of 448

Example 51.11. Generated file dependencies

build.gradle

dependencies {
    compile files( ) {"$buildDir/classes"
        builtBy 'compile'
    }
}

task compile << {
    println 'compiling classes'
}

task list(dependsOn: configurations.compile) << {
    println "classpath = ${configurations.compile.collect {File file -> file.name}}"
}

Output of gradle -q list

> gradle -q list
compiling classes
classpath = [classes]

51.4.5. Gradle API Dependency

You can declare a dependency on the API of the current version of Gradle by using the 

 method. This is useful when you are developing custom GradleDependencyHandler.gradleApi()

tasks or plugins.

Example 51.12. Gradle API dependencies

build.gradle

dependencies {
    compile gradleApi()
}

51.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the 

 method. This is useful when you are developing custom GradleDependencyHandler.localGroovy()

tasks or plugins in Groovy.

Example 51.13. Gradle's Groovy dependencies

build.gradle

dependencies {
    compile localGroovy()
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()


Page 266 of 448

51.4.7. Excluding transitive dependencies

You can exclude a  dependency either by configuration or by dependency:transitive

Example 51.14. Excluding transitive dependencies

build.gradle

configurations {
    compile.exclude module: 'commons'
    all*.exclude group: , module: 'org.gradle.test.excludes' 'reports'
}

dependencies {
    compile( ) {"org.gradle.test.excludes:api:1.0"
        exclude module: 'shared'
    }
}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered for all

dependencies when resolving this configuration or any inheriting configuration. If you want to exclude a

transitive dependency from all your configurations you can use the Groovy spread-dot operator to express this

in a concise way, as shown in the example. When defining an exclude, you can specify either only the

organization or only the module name or both. Also look at the API documentation of the  and Dependency

 classes.Configuration

Not every transitive dependency can be excluded - some transitive dependencies might be essential for correct

runtime behavior of the application. Generally, one can exclude transitive dependencies that are either not

required by runtime or that are guaranteed to be available on the target environment/platform.

Should you exclude per-dependency or per-configuration? It turns out that in the majority of cases you want to

use the per-configuration exclusion. Here are some typical reasons why one might want to exclude a transitive

dependency. Bear in mind that for some of these use cases there are better solutions than exclusions!

The dependency is undesired due to licensing reasons.

The dependency is not available in any remote repositories.

The dependency is not needed for runtime.

The dependency has a version that conflicts with a desired version. For that use case please refer to 

 and the documentation on  for aSection 51.2.3, “Resolve version conflicts” ResolutionStrategy

potentially better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This way

the dependency declaration is more explicit. It is also more accurate because a per-dependency exclude rule

does not guarantee the given transitive dependency does not show up in the configuration. For example, some

other dependency, which does not have any exclude rules, might pull in that unwanted transitive dependency.

Other examples of dependency exclusions can be found in the reference for the  or ModuleDependency

 classes.DependencyHandler

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.Configuration.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html


Page 267 of 448

51.4.8. Optional attributes

All attributes for a dependency are optional, except the name. Which attributes are required for actually finding

dependencies in the repository will depend on the repository type. See . ForSection  51.6, “Repositories”

example, if you work with Maven repositories, you need to define the group, name and version. If you work

with filesystem repositories you might only need the name or the name and the version.

Example 51.15. Optional attributes of dependencies

build.gradle

dependencies {
    runtime , ":junit:4.10" ":testng"
    runtime name: 'testng'
}

You can also assign collections or arrays of dependency notations to a configuration:

Example 51.16. Collections and arrays of dependencies

build.gradle

List groovy = [ ,"org.codehaus.groovy:groovy-all:2.3.6@jar"
               ,"commons-cli:commons-cli:1.0@jar"
               ]"org.apache.ant:ant:1.9.3@jar"
List hibernate = [ ,'org.hibernate:hibernate:3.0.5@jar'
                  ]'somegroup:someorg:1.0@jar'
dependencies {
    runtime groovy, hibernate
}

51.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different configurations). If

you don't specify anything explicitly, Gradle uses the default configuration of the dependency. For dependencies

from a Maven repository, the default configuration is the only possibility anyway. If you work with Ivy

repositories and want to declare a non-default configuration for your dependency you have to use the map

notation and declare:

Example 51.17. Dependency configurations

build.gradle

dependencies {
    runtime group: , name: , version: , configuration: 'org.somegroup' 'somedependency' '1.0' 'someConfiguration'
}

To do the same for project dependencies you need to declare:



Page 268 of 448

Example 51.18. Dependency configurations for project

build.gradle

dependencies {
    compile project(path: , configuration: )':api' 'spi'
}

51.4.10. Dependency reports

You can generate dependency reports from the command line (see Section  11.6.4, “Listing project

). With the help of the Project report plugin (see ) such adependencies” Chapter 41, The Project Report Plugin

report can be created by your build.

Since Gradle 1.2 there is also a new programmatic API to access the resolved dependency information. The

dependency reports (see the previous paragraph) are using this API under the covers. The API lets you walk the

resolved dependency graph and provides information about the dependencies. In future releases the API will

grow to provide more information about the resolution result. For more information about the API please refer

to the Javadocs on . Potential usages of the ResolvableDependencies.getResolutionResult()

 API:ResolutionResult

Creation of advanced dependency reports tailored to your use case.

Enabling the build logic to make decisions based on the content of the dependency graph.

51.5. Working with dependencies
For the examples below we have the following dependencies setup:

Example 51.19. Configuration.copy

build.gradle

configurations {
    sealife
    alllife
}

dependencies {
    sealife , , "sea.mammals:orca:1.0" "sea.fish:shark:1.0" "sea.fish:tuna:1.0"
    alllife configurations.sealife
    alllife "air.birds:albatross:1.0"
}

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult()
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html


Page 269 of 448

You can use the configuration to access the declared dependencies or a subset of those:

Example 51.20. Accessing declared dependencies

build.gradle

task dependencies << {
    configurations.alllife.dependencies.each { dep -> println dep.name }
    println()
    configurations.alllife.allDependencies.each { dep -> println dep.name }
    println()
    configurations.alllife.allDependencies.findAll { dep -> dep.name !=  }'orca'
        .each { dep -> println dep.name }
}

Output of gradle -q dependencies

> gradle -q dependencies
albatross

albatross
orca
shark
tuna

albatross
shark
tuna

The  task returns only the dependencies belonging explicitly to the configuration. The dependencies

 task includes the dependencies from extended configurations.allDependencies

To get the library files of the configuration dependencies you can do:

Example 51.21. Configuration.files

build.gradle

task allFiles << {
    configurations.sealife.files.each { file ->
        println file.name
    }
}

Output of gradle -q allFiles

> gradle -q allFiles
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar
herring-1.0.jar
seal-2.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single

dependency).



Page 270 of 448

Example 51.22. Configuration.files with spec

build.gradle

task files << {
    configurations.sealife.files { dep -> dep.name ==  }.each { file ->'orca'
        println file.name
    }
}

Output of gradle -q files

> gradle -q files
orca-1.0.jar
seal-2.0.jar

The  method always retrieves all artifacts of the  configuration. It then filtersConfiguration.files whole

the retrieved files by specified dependencies. As you can see in the example, transitive dependencies are

included.

You can also copy a configuration. You can optionally specify that only a subset of dependencies from the

original configuration should be copied. The copying methods come in two flavors. The  method copiescopy

only the dependencies belonging explicitly to the configuration. The  method copies all thecopyRecursive

dependencies, including the dependencies from extended configurations.

Example 51.23. Configuration.copy

build.gradle

task copy << {
    configurations.alllife.copyRecursive { dep -> dep.name !=  }'orca'
        .allDependencies.each { dep -> println dep.name }
    println()
    configurations.alllife.copy().allDependencies
        .each { dep -> println dep.name }
}

Output of gradle -q copy

> gradle -q copy
albatross
shark
tuna

albatross

It is important to note that the returned files of the copied configuration are often but not always the same than

the returned files of the dependency subset of the original configuration. In case of version conflicts between

dependencies of the subset and dependencies not belonging to the subset the resolve result might be different.



Page 271 of 448

Example 51.24. Configuration.copy vs. Configuration.files

build.gradle

task copyVsFiles << {
    configurations.sealife.copyRecursive { dep -> dep.name ==  }'orca'
        .each { file -> println file.name }
    println()
    configurations.sealife.files { dep -> dep.name ==  }'orca'
        .each { file -> println file.name }
}

Output of gradle -q copyVsFiles

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal-2.0.jar

In the example above,  has a dependency on  whereas  has a dependency onorca seal-1.0 shark

. The original configuration has therefore a version conflict which is resolved to the newer seal-2.0

 version. The  method therefore returns  as a transitive dependency of . Theseal-2.0 files seal-2.0 orca

copied configuration only has  as a dependency and therefore there is no version conflict and orca seal-1.0

is returned as a transitive dependency.

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies will

cause an exception. You can always copy a resolved configuration. The copied configuration is in the

unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the API documentation: .Configuration

51.6. Repositories
Gradle repository management, based on Apache Ivy, gives you a lot of freedom regarding repository layout

and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured

repositories.

You may configure any number of repositories, each of which is treated independently by Gradle. If Gradle

finds a module descriptor in a particular repository, it will attempt to download all of the artifacts for that

module from . Although module meta-data and module artifacts must be located in the samethe same repository

repository, it is possible to compose a single repository of multiple URLs, giving multiple locations to search for

meta-data files and jar files.

There are several different types of repositories you can declare:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.Configuration.html


Page 272 of 448

Table 51.2. Repository types

Type Description

Maven central repository A pre-configured repository that looks for dependencies in Maven Central.

Maven JCenter repository A pre-configured repository that looks for dependencies in Bintray's JCenter.

Maven local repository A pre-configured repository that looks for dependencies in the local Maven

repository.

Maven repository A Maven repository. Can be located on the local filesystem or at some remote

location.

Ivy repository An Ivy repository. Can be located on the local filesystem or at some remote

location.

Flat directory repository A simple repository on the local filesystem. Does not support any meta-data

formats.

51.6.1. Supported repository transport protocols

Maven and Ivy repositories support the use of various transport protocols. At the moment the following

protocols are supported:

Table 51.3. Repository transport protocols

Type Authentication schemes

file none

http username/password

https username/password

sftp username/password

To define a repository use the  configuration block. Within the  closure, arepositories repositories

Maven repository is declared with . An Ivy repository is declared with . The transport protocol ismaven ivy

part of the URL definition for a repository. The following build script demonstrates how to create a

HTTP-based Maven and Ivy repository:

Example 51.25. Declaring a Maven and Ivy repository

build.gradle

repositories {
    maven {
        url "http://repo.mycompany.com/maven2"
    }

    ivy {
        url "http://repo.mycompany.com/repo"
    }
}



Page 273 of 448

If authentication is required for a repository, the relevant credentials can be provided. The following example

shows how to provide username/password-based authentication for SFTP repositories:

Example 51.26. Providing credentials to a Maven and Ivy repository

build.gradle

repositories {
    maven {
        url "sftp://repo.mycompany.com:22/maven2"
        credentials {
            username 'user'
            password 'password'
        }
    }

    ivy {
        url "sftp://repo.mycompany.com:22/repo"
        credentials {
            username 'user'
            password 'password'
        }
    }
}

51.6.2. Maven central repository

To add the central Maven 2 repository ( ) simply add this to your build script:http://repo1.maven.org/maven2

Example 51.27. Adding central Maven repository

build.gradle

repositories {
    mavenCentral()
}

Now Gradle will look for your dependencies in this repository.

 Be aware that the central Maven 2 repository is HTTP only and HTTPS is not supported. If you needWarning:

a public HTTPS enabled central repository, you can use the  public repository (see JCenter Section  51.6.3,

).“Maven JCenter repository”

51.6.3. Maven JCenter repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts published

directly to Bintray.

To add the JCenter Maven repository ( ) simply add this to your build script:https://jcenter.bintray.com

http://repo1.maven.org/maven2
http://jcenter.bintray.com
http://bintray.com
https://jcenter.bintray.com


Page 274 of 448

Example 51.28. Adding Bintray's JCenter Maven repository

build.gradle

repositories {
    jcenter()
}

Now Gradle will look for your dependencies in the JCenter repository.  uses HTTPS to connect to thejcenter()

repository. If you want to use HTTP you can configure :jcenter()

Example 51.29. Using Bintrays's JCenter with HTTP

build.gradle

repositories {
    jcenter {
        url "http://jcenter.bintray.com/"
    }
}

51.6.4. Local Maven repository

To use the local Maven cache as a repository you can do:

Example 51.30. Adding the local Maven cache as a repository

build.gradle

repositories {
    mavenLocal()
}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If a local repository

location is defined in a , this location will be used. The  in settings.xml settings.xml /.m2USER_HOME

takes precedence over the  in . If no  is available, Gradlesettings.xml /confM2_HOME settings.xml

uses the default location ./.m2/repositoryUSER_HOME

51.6.5. Maven repositories

For adding a custom Maven repository you can do:

Example 51.31. Adding custom Maven repository

build.gradle

repositories {
    maven {
        url "http://repo.mycompany.com/maven2"
    }
}

Sometimes a repository will have the POMs published to one location, and the JARs and other artifacts



Page 275 of 448

published at another location. To define such a repository, you can do:

Example 51.32. Adding additional Maven repositories for JAR files

build.gradle

repositories {
    maven {
        // Look for POMs and artifacts, such as JARs, here
        url "http://repo2.mycompany.com/maven2"
        // Look for artifacts here if not found at the above location
        artifactUrls "http://repo.mycompany.com/jars"
        artifactUrls "http://repo.mycompany.com/jars2"
    }
}

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact URLs

are used to look for JARs.

51.6.5.1. Accessing password protected Maven repositories

To access a Maven repository which uses basic authentication, you specify the username and password to use

when you define the repository:

Example 51.33. Accessing password protected Maven repository

build.gradle

repositories {
    maven {
        credentials {
            username 'user'
            password 'password'
        }
        url "http://repo.mycompany.com/maven2"
    }
}

It is advisable to keep your username and password in  rather than directly in the buildgradle.properties

file.

51.6.6. Flat directory repository

If you want to use a (flat) filesystem directory as a repository, simply type:



Page 276 of 448

Example 51.34. Flat repository resolver

build.gradle

repositories {
    flatDir {
        dirs 'lib'
    }
    flatDir {
        dirs , 'lib1' 'lib2'
    }
}

This adds repositories which look into one or more directories for finding dependencies. If you only work with

flat directory resolvers you don't need to set all attributes of a dependency. See Section  51.4.8, “Optional

attributes”

51.6.7. Ivy repositories

51.6.7.1. Defining an Ivy repository with a standard layout

Example 51.35. Ivy repository

build.gradle

repositories {
    ivy {
        url "http://repo.mycompany.com/repo"
    }
}

51.6.7.2. Defining a named layout for an Ivy repository

You can specify that your repository conforms to the Ivy or Maven default layout by using a named layout.

Example 51.36. Ivy repository with named layout

build.gradle

repositories {
    ivy {
        url "http://repo.mycompany.com/repo"
        layout "maven"
    }
}

Valid named layout values are  (the default),  and . See 'gradle' 'maven' 'ivy'

 in the API documentation for details of these named layouts.IvyArtifactRepository.layout()

51.6.7.3. Defining custom pattern layout for an Ivy repository

To define an Ivy repository with a non-standard layout, you can define a 'pattern' layout for the repository:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)


Page 277 of 448

Example 51.37. Ivy repository with pattern layout

build.gradle

repositories {
    ivy {
        url "http://repo.mycompany.com/repo"
        layout , {"pattern"
            artifact "[module]/[revision]/[type]/[artifact].[ext]"
        }
    }
}

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can define separate

patterns to use to locate the Ivy files and artifacts:

Each  or  specified for a repository adds an  pattern to use. The patterns are used inartifact ivy additional

the order that they are defined.

Example 51.38. Ivy repository with multiple custom patterns

build.gradle

repositories {
    ivy {
        url "http://repo.mycompany.com/repo"
        layout , {"pattern"
            artifact "3rd-party-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
            artifact "company-artifacts/[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
            ivy "ivy-files/[organisation]/[module]/[revision]/ivy.xml"
        }
    }
}

Optionally, a repository with pattern layout can have its 'organisation' part laid out in Maven style, with forward

slashes replacing dots as separators. For example, the organisation  would then be represented as my.company my/company

.

Example 51.39. Ivy repository with Maven compatible layout

build.gradle

repositories {
    ivy {
        url "http://repo.mycompany.com/repo"
        layout , {"pattern"
            artifact "[organisation]/[module]/[revision]/[artifact]-[revision].[ext]"
            m2compatible = true
        }
    }
}



Page 278 of 448

51.6.7.4. Accessing password protected Ivy repositories

To access an Ivy repository which uses basic authentication, you specify the username and password to use

when you define the repository:

Example 51.40. Ivy repository

build.gradle

repositories {
    ivy {
        url 'http://repo.mycompany.com'
        credentials {
            username 'user'
            password 'password'
        }
    }
}

51.6.8. Working with repositories

To access a repository:

Example 51.41. Accessing a repository

build.gradle

println repositories.localRepository.name
println repositories[ ].name'localRepository'

To configure a repository:

Example 51.42. Configuration of a repository

build.gradle

repositories {
    flatDir {
        name 'localRepository'
    }
}
repositories {
    localRepository {
        dirs 'lib'
    }
}
repositories.localRepository {
    dirs 'lib'
}

51.6.9. More about Ivy resolvers

Gradle, thanks to Ivy under its hood, is extremely flexible regarding repositories:



Page 279 of 448

There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh, sftp

...)

The protocol sftp currently only supports username/password-based authentication.

Each repository can have its own layout.

Let's say, you declare a dependency on the  library. Now how does Gradle find it in thejunit:junit:3.8.2

repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven, where

this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here are some

examples: [ ]16

// Maven2 layout (if a repository is marked as Maven2 compatible, the organization (group) is split into subfolders according to the dots.)
someroot/[organisation]/[module]/[revision]/[module]-[revision].[ext]

// Typical layout for an Ivy repository (the organization is not split into subfolder)
someroot/[organisation]/[module]/[revision]/[type]s/[artifact].[ext]

// Simple layout (the organization is not used, no nested folders.)
someroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Example 51.43. Definition of a custom repository

build.gradle

repositories {
    ivy {
        ivyPattern "$projectDir/repo/[organisation]/[module]-ivy-[revision].xml"
        artifactPattern "$projectDir/repo/[organisation]/[module]-[revision](-[classifier]).[ext]"
    }
}

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found . With Gradle youhere

just don't configure them via XML but directly via their API.

51.7. How dependency resolution works
Gradle takes your dependency declarations and repository definitions and attempts to download all of your

dependencies by a process called . Below is a brief outline of how this process works.dependency resolution

Given a required dependency, Gradle first attempts to resolve the  for that dependency. Eachmodule

repository is inspected in order, searching first for a  file (POM or Ivy file) that indicatesmodule descriptor

the presence of that module. If no module descriptor is found, Gradle will search for the presence of the

primary  file indicating that the module exists in the repository.module artifact

If the dependency is declared as a dynamic version (like ), Gradle will resolve this to the newest1.+

available static version (like ) in the repository. For Maven repositories, this is done using the 1.2 maven-metadata.xml

file, while for Ivy repositories this is done by directory listing.

If the module descriptor is a POM file that has a parent POM declared, Gradle will recursively attempt to

resolve each of the parent modules for the POM.

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html


Page 280 of 448

Once each repository has been inspected for the module, Gradle will choose the 'best' one to use. This is

done using the following criteria:

For a dynamic version, a 'higher' static version is preferred over a 'lower' version.

Modules declared by a module descriptor file (Ivy or POM file) are preferred over modules that have an

artifact file only.

Modules from earlier repositories are preferred over modules in later repositories.

When the dependency is declared by a static version and a module descriptor file is found in a repository,

there is no need to continue searching later repositories and the remainder of the process is short-circuited.

All of the artifacts for the module are then requested from the  that was chosen in thesame repository

process above.

51.8. Fine-tuning the dependency resolution
process

In most cases, Gradle's default dependency management will resolve the dependencies that you want in your

build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your build

receives exactly the right dependencies.

There are a number of ways that you can influence how Gradle resolves dependencies.

51.8.1. Forcing a particular module version

Forcing a module version tells Gradle to always use a specific version for given dependency (transitive or not),

overriding any version specified in a published module descriptor. This can be very useful when tackling

version conflicts - for more information see .Section 51.2.3, “Resolve version conflicts”

Force versions can also be used to deal with rogue metadata of transitive dependencies. If a transitive

dependency has poor quality metadata that leads to problems at dependency resolution time, you can force

Gradle to use a newer, fixed version of this dependency. For an example, see the ResolutionStrategy

class in the API documentation. Note that 'dependency resolve rules' (outlined below) provide a more powerful

mechanism for replacing a broken module dependency. See Section 51.8.2.3, “Blacklisting a particular version

.with a replacement”

51.8.2. Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for manipulating

a requested dependency prior to that dependency being resolved. This feature is , but currently offersincubating

the ability to change the group, name and/or version of a requested dependency, allowing a dependency to be

substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and can be

used to implement all sorts of advanced patterns in dependency management. Some of these patterns are

outlined below. For more information and code samples see the  class in the APIResolutionStrategy

documentation.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html


Page 281 of 448

51.8.2.1. Modelling releaseable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested and

published together. These libraries form a 'releasable unit', designed and intended to be used as a whole. It does

not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

module-a depends on releasable-unit:part-one:1.0

module-b depends on releasable-unit:part-two:1.1

A build depending on both  and  will obtain different versions of libraries within themodule-a module-b

releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine a releasable unit

defined by all libraries that have 'org.gradle' group. We can force all of these libraries to use a consistent

version:

Example 51.44. Forcing consistent version for a group of libraries

build.gradle

configurations.all {
    resolutionStrategy.eachDependency { DependencyResolveDetails details ->
         (details.requested.group == ) {if 'org.gradle'
            details.useVersion '1.4'
        }
    }
}

51.8.2.2. Implement a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is maintained

and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

In the build script, the developer declares dependencies with the module group and name, but uses a

placeholder version, for example: ' '.default

The 'default' version is resolved to a specific version via a dependency resolve rule, which looks up the

version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across all builds within

the organisation.



Page 282 of 448

Example 51.45. Using a custom versioning scheme

build.gradle

configurations.all {
    resolutionStrategy.eachDependency { DependencyResolveDetails details ->
         (details.requested.version == ) {if 'default'
            def version = findDefaultVersionInCatalog(details.requested.group, details.requested.name)
            details.useVersion version
        }
    }
}

def findDefaultVersionInCatalog(String group, String name) {
    //some custom logic that resolves the default version into a specific version
    "1.0"
}

51.8.2.3. Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and

providing a replacement version. This can be useful if a certain dependency version is broken and should not be

used, where a dependency resolve rule causes this version to be replaced with a known good version. One

example of a broken module is one that declares a dependency on a library that cannot be found in any of the

public repositories, but there are many other reasons why a particular module version is unwanted and a

different version is preferred.

In example below, imagine that version  contains important fixes and should always be used in1.2.1

preference to . The rule provided will enforce just this: any time version  is encountered it will be1.2 1.2

replaced with . Note that this is different from a forced version as described above, in that any other1.2.1

versions of this module would not be affected. This means that the 'newest' conflict resolution strategy would

still select version  if this version was also pulled transitively.1.3

Example 51.46. Blacklisting a version with a replacement

build.gradle

configurations.all {
    resolutionStrategy.eachDependency { DependencyResolveDetails details ->
         (details.requested.group ==  && details.requested.name ==  && details.requested.version == ) {if 'org.software' 'some-library' '1.2'
            //prefer different version which contains some necessary fixes
            details.useVersion '1.2.1'
        }
    }
}

51.8.2.4. Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.

Examples include using ' ' in place of ' ', or using ' ' instead of 'groovy groovy-all log4j-over-slf4j log4j

'. Starting with Gradle 1.5 you can make these substitutions using dependency resolve rules:



Page 283 of 448

Example 51.47. Changing dependency group and/or name at the resolution

build.gradle

configurations.all {
    resolutionStrategy.eachDependency { DependencyResolveDetails details ->
         (details.requested.name == ) {if 'groovy-all'
            //prefer 'groovy' over 'groovy-all':
            details.useTarget group: details.requested.group, name: , version: details.requested.version'groovy'
        }
         (details.requested.name == ) {if 'log4j'
            //prefer 'log4j-over-slf4j' over 'log4j', with fixed version:
            details.useTarget "org.slf4j:log4j-over-slf4j:1.7.7"
        }
    }
}

51.8.2.5. Declaring that a legacy library is replaced by a new one

A good example when a new library replaced a legacy one is the "google-collections" -> "guava" migration. The

team that created google-collections decided to change the module name from

"com.google.collections:google-collections" into "com.google.guava:guava". This a legal scenario in the

industry: teams need to be able to change the names of products they maintain, including the module

coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the "google-collections" -> "guava" scenario. It may

happen that both libraries are pulled into the same dependency graph. For example, "our" project depends on

guava but some of our dependencies pull in a legacy version of google-collections. This can cause runtime

errors, for example during test or application execution. Gradle does not automatically resolve the

google-collections VS guava conflict because it is not considered as a "version conflict". It's because the module

coordinates for both libraries are completely different and conflict resolution is activated when "group" and

"name" coordinates are the same but there are different versions available in the dependency graph (for more

info, please refer to the section on conflict resolution). Traditional remedies to this problem are:

Declare exclusion rule to avoid pulling in "google-collections" to graph. It is probably the most popular

approach.

Avoid dependencies that pull in legacy libraries.

Upgrade the dependency version if the new version no longer pulls in a legacy library.

Downgrade to "google-collections". It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve the

google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is possible to

declare that certain module was replaced by other. This enables organisations to include the information about

module replacement in the corporate plugin suite and resolve the problem holistically for all Gradle-powered

projects in the enterprise.



Page 284 of 448

Example 51.48. Declaring module replacement

build.gradle

dependencies {
    modules {
        module( ) {"com.google.collections:google-collections"
            replacedBy( )"com.google.guava:guava"
        }
    }
}

For more examples and detailed API, please refer to the DSL reference for .ComponentMetadataHandler

What happens when we declare that "google-collections" are replaced by "guava"? Gradle can use this

information for conflict resolution. Gradle will consider every version of "guava" newer/better than any version

of "google-collections". Also, Gradle will ensure that only guava jar is present in the classpath / resolved file

list. Please note that if only "google-collections" appears in the dependency graph (e.g. no "guava") Gradle will

not eagerly replace it with "guava". Module replacement is an information that Gradle uses for resolving

conflicts. If there is no conflict (e.g. only "google-collections" or only "guava" in the graph) the replacement

information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is

possible to declare that multiple modules are replaced by a single module.

51.8.3. Enabling Ivy dynamic resolve mode

Gradle's Ivy repository implementations support the equivalent to Ivy's dynamic resolve mode. Normally,

Gradle will use the  attribute for each dependency definition included in an  file. In dynamicrev ivy.xml

resolve mode, Gradle will instead prefer the  attribute over the  attribute for a givenrevConstraint rev

dependency definition. If the  attribute is not present, the  attribute is used instead.revConstraint rev

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A couple

of examples are shown below. Note that dynamic resolve mode is only available for Gradle's Ivy repositories. It

is not available for Maven repositories, or custom Ivy  implementations.DependencyResolver

Example 51.49. Enabling dynamic resolve mode

build.gradle

// Can enable dynamic resolve mode when you define the repository
repositories {
    ivy {
        url "http://repo.mycompany.com/repo"
        resolve.dynamicMode = true
    }
}

// Can use a rule instead to enable (or disable) dynamic resolve mode for all repositories
repositories.withType(IvyArtifactRepository) {
    resolve.dynamicMode = true
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html


Page 285 of 448

51.8.4. Component metadata rules

Each module (also called ) has metadata associated with it, such as its group, name, version,component

dependencies, and so on. This metadata typically originates in the module's descriptor. Metadata rules allow

certain parts of a module's metadata to be manipulated from within the build script. They take effect after a

module's descriptor has been downloaded, but before it has been selected among all candidate versions. This

makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module's . This concept, also knownstatus scheme

from Ivy, models the different levels of maturity that a module transitions through over time. The default status

scheme, ordered from least to most mature status, is , , . Apart from aintegration milestone release

status scheme, a module also has a (current) , which must be one of the values in its status scheme. If notstatus

specified in the (Ivy) descriptor, the status defaults to  for Ivy modules and Maven snapshotintegration

modules, and  for Maven modules that aren't snapshots.release

A module's status and status scheme are taken into consideration when a  version selector is resolved.latest

Specifically,  will resolve to the highest module version that has status latest.someStatus someStatus

or a more mature status. For example, with the default status scheme in place,  willlatest.integration

select the highest module version regardless of its status (because  is the least mature status),integration

whereas  will select the highest module version with status . Here is what thislatest.release release

looks like in code:

Example 51.50. 'Latest' version selector

build.gradle

dependencies {
    config1 "org.sample:client:latest.integration"
    config2 "org.sample:client:latest.release"
}

task listConfigs << {
    configurations.config1.each { println it.name }
    println()
    configurations.config2.each { println it.name}
}

Output of gradle -q listConfigs

> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates  selectors based on a custom status scheme declared in a componentlatest

metadata rule that applies to all modules:



Page 286 of 448

Example 51.51. Custom status scheme

build.gradle

dependencies {
    config3 "org.sample:api:latest.silver"
    components {
        all { ComponentMetadataDetails details ->
             (details.id.group ==  && details.id.name == ) {if "org.sample" "api"
                details.statusScheme = [ , , , ]"bronze" "silver" "gold" "platinum"
            }
        }
    }
}

Component metadata rules can be applied to a specified module. Modules must be specified in the form of

"group:module".

Example 51.52. Custom status scheme by module

build.gradle

dependencies {
    config4 "org.sample:lib:latest.prod"
    components {
        withModule( ) { ComponentMetadataDetails details ->'org.sample:lib'
            details.statusScheme = [ , , ]"int" "rc" "prod"
        }
    }
}

Gradle can also create component metadata rules utilizing Ivy-specific metadata for modules resolved from an

Ivy repository. Values from the Ivy descriptor are made available via the  interface.IvyModuleDescriptor

Example 51.53. Ivy component metadata rule

build.gradle

dependencies {
    config6 "org.sample:lib:latest.rc"
    components {
        withModule( ) { ComponentMetadataDetails details, IvyModuleDescriptor ivyModule ->"org.sample:lib"
             (ivyModule.branch == ) {if 'testing'
                details.status = "rc"
            }
        }
    }
}

Note that any rule that declares specific arguments must  include a always ComponentMetadataDetails

argument as the first argument. The second Ivy metadata argument is optional.

Component metadata rules can also be defined using a  object. A rule source object is any object thatrule source

contains exactly one method that defines the rule action and is annotated with .@Mutate

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html


Page 287 of 448

This method:

must return void.

must have  as the first argument.ComponentMetadataDetails

may have an additional parameter of type .IvyModuleDescriptor

Example 51.54. Rule source component metadata rule

build.gradle

dependencies {
    config5 "org.sample:api:latest.gold"
    components {
        withModule( ,  CustomStatusRule())'org.sample:api' new
    }
}

 CustomStatusRule {class
    @Mutate
     setStatusScheme(ComponentMetadataDetails details) {void
        details.statusScheme = [ , , , ]"bronze" "silver" "gold" "platinum"
    }
}

51.8.5. Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple versions

are available that match a version selector. Rules are applied against every available version and allow the

version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that does not

satisfy conditions set by the rule. Examples include:

For a dynamic version like '1.+' certain versions may be explicitly rejected from selection

For a static version like '1.4' an instance may be rejected based on extra component metadata such as the Ivy

branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the  object. Each rule configured will be called withComponentSelectionRules

a  object as an argument which contains information about the candidate versionComponentSelection

being considered. Calling  causes the given candidate version to beComponentSelection.reject()

explicitly rejected, in which case the candidate will not be considered for the selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic

version to choose the next best candidate.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)


Page 288 of 448

Example 51.55. Component selection rule

build.gradle

configurations {
    rejectConfig {
        resolutionStrategy {
            componentSelection {
                // Accept the highest version matching the requested version that isn't '1.5'
                all { ComponentSelection selection ->
                     (selection.candidate.group ==  && selection.candidate.module ==  && selection.candidate.version == ) {if 'org.sample' 'api' '1.5'
                        selection.reject( )"version 1.5 is broken for 'org.sample:api'"
                    }
                }
            }
        }
    }
}

dependencies {
    rejectConfig "org.sample:api:1.+"
}

Note that version selection is applied starting with the highest version first. The version selected will be the first

version found that all component selection rules accept. A version is considered accepted no rule explicitly

rejects it.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of "group:module".

Example 51.56. Component selection rule with module target

build.gradle

configurations {
    targetConfig {
        resolutionStrategy {
            componentSelection {
                withModule( ) { ComponentSelection selection ->"org.sample:api"
                     (selection.candidate.version == ) {if "1.5"
                        selection.reject( )"version 1.5 is broken for 'org.sample:api'"
                    }
                }
            }
        }
    }
}

Component selection rules can also consider component metadata when selecting a version. Possible metadata

arguments that can be considered are  and .ComponentMetadata IvyModuleDescriptor

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html


Page 289 of 448

Example 51.57. Component selection rule with metadata

build.gradle

configurations {
    metadataRulesConfig {
        resolutionStrategy {
            componentSelection {
                // Reject any versions with a status of 'experimental'
                all { ComponentSelection selection, ComponentMetadata metadata ->
                     (selection.candidate.group ==  && metadata.status == ) {if 'org.sample' 'experimental'
                        selection.reject( )"don't use experimental candidates from 'org.sample'"
                    }
                }
                // Accept the highest version with either a "release" branch or a status of 'milestone'
                withModule( ) { ComponentSelection selection, IvyModuleDescriptor descriptor, ComponentMetadata metadata ->'org.sample:api'
                     (descriptor.branch !=  && metadata.status != ) {if "release" 'milestone'
                        selection.reject( )"'org.sample:api' must have testing branch or milestone status"
                    }
                }
            }
        }
    }
}

Note that a  argument is  required as the first parameter when declaring aComponentSelection always

component selection rule with additional Ivy metadata parameters, but the metadata parameters can be declared

in any order.

Lastly, component selection rules can also be defined using a  object. A rule source object is anyrule source

object that contains exactly one method that defines the rule action and is annotated with .@Mutate

This method:

must return void.

must have  as the first argument.ComponentSelection

may have additional parameters of type  and/or .ComponentMetadata IvyModuleDescriptor

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html


Page 290 of 448

Example 51.58. Component selection rule using a rule source object

build.gradle

class RejectTestBranch {
    @Mutate
     evaluateRule(ComponentSelection selection, IvyModuleDescriptor ivy) {void
         (ivy.branch == ) {if "test"
            selection.reject( )"reject test branch"
        }
    }
}

configurations {
    ruleSourceConfig {
        resolutionStrategy {
            componentSelection {
                all  RejectTestBranch()new
            }
        }
    }
}

51.9. The dependency cache
Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the number of

remote requests made in dependency resolution, while striving to guarantee that the results of dependency

resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded meta-data

like POM files and Ivy files. The storage path for a downloaded artifact includes the SHA1 checksum,

meaning that 2 artifacts with the same name but different content can easily be cached.

A binary store of resolved module meta-data, including the results of resolving dynamic versions, module

descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very powerful

things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult to

debug behavior that has been a challenge with many build tools. This new behavior is implemented in a

bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.



Page 291 of 448

51.9.1. Key features of the Gradle dependency cache

51.9.1.1. Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache. The

information stored in the metadata cache includes:

The result of resolving a dynamic version (e.g. ) to a concrete version (e.g. ).1.+ 1.2

The resolved module metadata for a particular module, including module artifacts and module dependencies.

The resolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

The  of a particular module or artifact in a particular repository, eliminating repeated attempts toabsence

access a resource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well as a

timestamp that can be used for cache expiry.

51.9.1.2. Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its

URL, type and layout. If a module or artifact has not been previously resolved from , Gradle willthis repository

attempt to resolve the module against the repository. This will always involve a remote lookup on the

repository, however in many cases no download will be required (see , below).Section 51.9.1.3, “Artifact reuse”

Dependency resolution will fail if the required artifacts are not available in any repository specified by the build,

even if the local cache has a copy of this artifact which was retrieved from a different repository. Repository

independence allows builds to be isolated from each other in an advanced way that no build tool has done

before. This is a key feature to create builds that are reliable and reproducible in any environment.

51.9.1.3. Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by downloading

the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not downloaded if an

artifact already exists with the same id and checksum. If the checksum cannot be retrieved from the remote

server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse

artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle

will use this artifact if it can be verified to match the checksum declared by the remote server.

51.9.1.4. Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact

identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact which is

republished without changing it's identifier. By caching artifacts based on their SHA1 checksum, Gradle is able

to maintain multiple versions of the same artifact. This means that when resolving against one repository Gradle

will never overwrite the cached artifact file from a different repository. This is done without requiring a separate

artifact file store per repository.



Page 292 of 448

51.9.1.5. Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple Gradle

processes concurrently. The lock is held whenever the binary meta-data store is being read or written, but is

released for slow operations such as downloading remote artifacts.

51.9.2. Command line options to override caching

51.9.2.1. Offline

The  command line switch tells Gradle to always use dependency modules from the cache,--offline

regardless if they are due to be checked again. When running with offline, Gradle will never attempt to access

the network to perform dependency resolution. If required modules are not present in the dependency cache,

build execution will fail.

51.9.2.2. Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured repositories.

Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was published

incorrectly. To refresh all dependencies in the dependency cache, use the --refresh-dependencies

option on the command line.

The  option tells Gradle to ignore all cached entries for resolved modules and--refresh-dependencies

artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions

recalculated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the

previously downloaded artifacts are valid before downloading again. This is done by comparing published

SHA1 values in the repository with the SHA1 values for existing downloaded artifacts.

51.9.3. Fine-tuned control over dependency caching

You can fine-tune certain aspects of caching using the  for a configuration.ResolutionStrategy

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the resolved

version for a dynamic version, use:

Example 51.59. Dynamic version cache control

build.gradle

configurations.all {
    resolutionStrategy.cacheDynamicVersionsFor , 10 'minutes'
}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the meta-data

and artifacts for a changing module, use:



Page 293 of 448

Example 51.60. Changing module cache control

build.gradle

configurations.all {
    resolutionStrategy.cacheChangingModulesFor , 4 'hours'
}

For more details, take a look at the API documentation for .ResolutionStrategy

51.10. Strategies for transitive dependency
management

Many projects rely on the . This is not without problems.Maven Central repository

The Maven Central repository can be down or can be slow to respond.

The POM files of many popular projects specify dependencies or other configuration that are just plain

wrong (for instance, the POM file of the “ ” module declares JUnit as acommons-httpclient-3.0

runtime dependency).

For many projects there is not one right set of dependencies (as more or less imposed by the POM format).

If your project relies on the Maven Central repository you are likely to need an additional custom repository,

because:

You might need dependencies that are not uploaded to Maven Central yet.

You want to deal properly with invalid metadata in a Maven Central POM file.

You don't want to expose people to the downtimes or slow response of Maven Central, if they just want to

build your project.

It is not a big deal to set-up a custom repository,  but it can be tedious to keep it up to date. For a new[ ]17

version, you always have to create the new XML descriptor and the directories. Your custom repository is

another infrastructure element which might have downtimes and needs to be updated. To enable historical

builds, you need to keep all the past libraries, not to mention a backup of these. It is another layer of indirection.

Another source of information you have to lookup. All this is not really a big deal but in its sum it has an

impact. Repository managers like Artifactory or Nexus make this easier, but most open source projects don't

usually have a host for those products. This is changing with new services like  that let developers hostBintray

and distribute their release binaries using a self-service repository platform. Bintray also supports sharing

approved artifacts though the  public repository to provide a single resolution address for all popularJCenter

OSS Java artifacts (see ).Section 51.6.3, “Maven JCenter repository”

This is a common reason why many projects prefer to store their libraries in their version control system. This

approach is fully supported by Gradle. The libraries can be stored in a flat directory without any XML module

descriptor files. Yet Gradle offers complete transitive dependency management. You can use either client

module dependencies to express the dependency relations, or artifact dependencies in case a first level

dependency has no transitive dependencies. People can check out such a project from your source code control

system and have everything necessary to build it.

If you are working with a distributed version control system like Git you probably don't want to use the version

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://repo1.maven.org/maven2
http://bintray.com
http://jcenter.bintray.com


Page 294 of 448

control system to store libraries as people check out the whole history. But even here the flexibility of Gradle

can make your life easier. For example, you can use a shared flat directory without XML descriptors and yet

you can have full transitive dependency management, as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the POM file and maintaining

custom XML descriptors, then  offer an alternative. However, you can still use a Maven2 repo orClient Modules

your custom repository as a repository for  and still enjoy  dependency management. Or youjars only transitive

can only provide client modules for POMs with bad metadata. For the jars and the correct POMs you still use

the remote repository.

51.10.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies  XML descriptor files. You can do this withwithout

Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with other build

tools.

The trick is to use only artifact dependencies and group them in lists. This will directly express your first level

dependencies and your transitive dependencies (see ). The problem withSection 51.4.8, “Optional attributes”

this is that Gradle dependency management will see this as specifying all dependencies as first level

dependencies. The dependency reports won't show your real dependency graph and the  task uses allcompile

dependencies, not just the first level dependencies. All in all, your build is less maintainable and reliable than it

could be when using client modules, and you don't gain anything.

[ ] 14 Gradle supports partial multiproject builds (see ).Chapter 57, Multi-project Builds

[ ] 15 http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html

[ ] 16 At  you can learn more about ivy patterns.http://ant.apache.org/ivy/history/latest-milestone/concept.html

[ ] 17 If you want to shield your project from the downtimes of Maven Central things get more complicated. You

probably want to set-up a repository proxy for this. In an enterprise environment this is rather common. For an

open source project it looks like overkill.

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html


Page 295 of 448

52
Publishing artifacts

This chapter describes the  publishing mechanism available in Gradle 1.0: in Gradle 1.3 a neworiginal

mechanism for publishing was introduced. While this new mechanism is  and not yet complete,incubating

it introduces some new concepts and features that do (and will) make Gradle publishing even more

powerful.

You can read about the new publishing plugins in  and Chapter 65, Ivy Publishing (new) Chapter 66, 

. Please try them out and give us feedback.Maven Publishing (new)

52.1. Introduction
This chapter is about how you declare the outgoing artifacts of your project, and how to work with them (e.g.

upload them). We define the artifacts of the projects as the files the project provides to the outside world. This

might be a library or a ZIP distribution or any other file. A project can publish as many artifacts as it wants.

52.2. Artifacts and configurations
Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts

and dependencies at the same time.

For each configuration in your project, Gradle provides the tasks  and uploadConfigurationName buildConfigurationName

.  Execution of these tasks will build or upload the artifacts belonging to the respective configuration.[ ]18

Table 23.5, “Java plugin - dependency configurations” shows the configurations added by the Java plugin. Two

of the configurations are relevant for the usage with artifacts. The  configuration is the standardarchives

configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to this

configuration. We will talk more about the  configuration in runtime Section  52.5, “More about project

. As with dependencies, you can declare as many custom configurations as you like and assign artifactslibraries”

to them.



Page 296 of 448

52.3. Declaring artifacts

52.3.1. Archive task artifacts

You can use an archive task to define an artifact:

Example 52.1. Defining an artifact using an archive task

build.gradle

task myJar(type: Jar)

artifacts {
    archives myJar
}

It is important to note that the custom archives you are creating as part of your build are not automatically

assigned to any configuration. You have to explicitly do this assignment.

52.3.2. File artifacts

You can also use a file to define an artifact:

Example 52.2. Defining an artifact using a file

build.gradle

def someFile = file( )'build/somefile.txt'

artifacts {
    archives someFile
}

Gradle will figure out the properties of the artifact based on the name of the file. You can customize these

properties:

Example 52.3. Customizing an artifact

build.gradle

task myTask(type:  MyTaskType) {
    destFile = file( )'build/somefile.txt'
}

artifacts {
    archives(myTask.destFile) {
        name 'my-artifact'
        type 'text'
        builtBy myTask
    }
}



Page 297 of 448

There is a map-based syntax for defining an artifact using a file. The map must include a  entry thatfile

defines the file. The map may include other artifact properties:

Example 52.4. Map syntax for defining an artifact using a file

build.gradle

task generate(type:  MyTaskType) {
    destFile = file( )'build/somefile.txt'
}

artifacts {
    archives file: generate.destFile, name: , type: , builtBy: generate'my-artifact' 'text'
}

52.4. Publishing artifacts
We have said that there is a specific upload task for each configuration. Before you can do an upload, you have

to configure the upload task and define where to publish the artifacts to. The repositories you have defined (as

described in ) are not automatically used for uploading. In fact, some of thoseSection  51.6, “Repositories”

repositories only allow downloading artifacts, not uploading. Here is an example of how you can configure the

upload task of a configuration:

Example 52.5. Configuration of the upload task

build.gradle

repositories {
    flatDir {
        name "fileRepo"
        dirs "repo"
    }
}

uploadArchives {
    repositories {
        add project.repositories.fileRepo
        ivy {
            credentials {
                username "username"
                password "pw"
            }
            url "http://repo.mycompany.com"
        }
    }
}

As you can see, you can either use a reference to an existing repository or create a new repository. As described

in , you can use all the Ivy resolvers suitable for the purpose ofSection 51.6.9, “More about Ivy resolvers”

uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading each

file. By default, Gradle will upload to the pattern defined by the  parameter, combined with the optional url layout



Page 298 of 448

parameter. If no  parameter is supplied, then Gradle will use the first defined  forurl artifactPattern

uploading, or the first defined  for uploading Ivy files, if this is set.ivyPattern

Uploading to a Maven repository is described in .Section 53.6, “Interacting with Maven repositories”

52.5. More about project libraries
If your project is supposed to be used as a library, you need to define what are the artifacts of this library and

what are the dependencies of these artifacts. The Java plugin adds a  configuration for this purpose,runtime

with the implicit assumption that the  dependencies are the dependencies of the artifact you want toruntime

publish. Of course this is fully customizable. You can add your own custom configuration or let the existing

configurations extend from other configurations. You might have a different group of artifacts which have a

different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the

dependency to depend on. A Gradle dependency offers the  property to declare this. If this isconfiguration

not specified, the  configuration is used (see ). Usingdefault Section 51.4.9, “Dependency configurations”

your project as a library can either happen from within a multi-project build or by retrieving your project from a

repository. In the latter case, an  descriptor in the repository is supposed to contain all the necessaryivy.xml

information. If you work with Maven repositories you don't have the flexibility as described above. For how to

publish to a Maven repository, see the section .Section 53.6, “Interacting with Maven repositories”

[ ] 18 To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the Java

plugin.



Page 299 of 448

53
The Maven Plugin

This chapter is a work in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

53.1. Usage
To use the Maven plugin, include the following in your build script:

Example 53.1. Using the Maven plugin

build.gradle

apply plugin: 'maven'

53.2. Tasks
The Maven plugin defines the following tasks:

Table 53.1. Maven plugin - tasks

Task

name

Depends

on

Type Description

install All tasks

that build

the

associated

archives.

Upload Installs the associated artifacts to the local Maven cache,

including Maven metadata generation. By default the install task

is associated with the  configuration. Thisarchives

configuration has by default only the default jar as an element. To

learn more about installing to the local repository, see: 

Section 53.6.3, “Installing to the local repository”

53.3. Dependency management
The Maven plugin does not define any dependency configurations.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.Upload.html


Page 300 of 448

53.4. Convention properties
The Maven plugin defines the following convention properties:

Table 53.2. Maven plugin - properties

Property name Type Default value Description

pomDirName String poms The path of the

directory to

write the

generated

POMs, relative

to the build

directory.

pomDir File (read-only) /buildDir pomDirNameThe directory

where the

generated POMs

are written to.

conf2ScopeMappings Conf2ScopeMappingContainer n/a Instructions for

mapping Gradle

configurations

to Maven

scopes. See 

Section 53.6.4.2,

“Dependency

.mapping”

These properties are provided by a  convention object.MavenPluginConvention

53.5. Convention methods
The maven plugin provides a factory method for creating a POM. This is useful if you need a POM without the

context of uploading to a Maven repo.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.MavenPluginConvention.html


Page 301 of 448

Example 53.2. Creating a stand alone pom.

build.gradle

task writeNewPom << {
    pom {
        project {
            inceptionYear '2008'
            licenses {
                license {
                    name 'The Apache Software License, Version 2.0'
                    url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
                    distribution 'repo'
                }
            }
        }
    }.writeTo( )"$buildDir/newpom.xml"
}

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the

Gradle Maven POM object, see . See also: MavenPom MavenPluginConvention

53.6. Interacting with Maven repositories

53.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This

includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's deployment is

100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a POM. Fortunately Gradle can generate

this POM for you using the dependency information it has.

53.6.2. Deploying to a Maven repository

Let's assume your project produces just the default jar file. Now you want to deploy this jar file to a remote

Maven repository.

Example 53.3. Upload of file to remote Maven repository

build.gradle

apply plugin: 'maven'

uploadArchives {
    repositories {
        mavenDeployer {
            repository(url: )"file://localhost/tmp/myRepo/"
        }
    }
}

That is all. Calling the  task will generate the POM and deploys the artifact and the POM touploadArchives

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.MavenPluginConvention.html


Page 302 of 448

the specified repository.

There is more work to do if you need support for protocols other than . In this case the native Maven codefile

we delegate to needs additional libraries. Which libraries are needed depends on what protocol you plan to use.

The available protocols and the corresponding libraries are listed in Table  53.3, “Protocol jars for Maven

 (those libraries have transitive dependencies which have transitive dependencies).  Fordeployment” [ ]19

example, to use the ssh protocol you can do:

Example 53.4. Upload of file via SSH

build.gradle

configurations {
    deployerJars
}

repositories {
    mavenCentral()
}

dependencies {
    deployerJars "org.apache.maven.wagon:wagon-ssh:2.2"
}

uploadArchives {
    repositories.mavenDeployer {
        configuration = configurations.deployerJars
        repository(url: ) {"scp://repos.mycompany.com/releases"
            authentication(userName: , password: )"me" "myPassword"
        }
    }
}

There are many configuration options for the Maven deployer. The configuration is done via a Groovy builder.

All the elements of this tree are Java beans. To configure the simple attributes you pass a map to the bean

elements. To add bean elements to its parent, you use a closure. In the example above  and repository

 are such bean elements.  lists theauthentication Table 53.4, “Configuration elements of the MavenDeployer”

available bean elements and a link to the Javadoc of the corresponding class. In the Javadoc you can see the

possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is defined,

releases and snapshots are both deployed to the  element. Otherwise snapshots are deployed torepository

the  element.snapshotRepository



Page 303 of 448

Table 53.3. Protocol jars for Maven deployment

Protocol Library

http org.apache.maven.wagon:wagon-http:2.2

ssh org.apache.maven.wagon:wagon-ssh:2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external:2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2

webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2

file -

Table 53.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDeployer

repository org.apache.maven.artifact.ant.RemoteRepository

authentication org.apache.maven.artifact.ant.Authentication

releases org.apache.maven.artifact.ant.RepositoryPolicy

snapshots org.apache.maven.artifact.ant.RepositoryPolicy

proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

53.6.3. Installing to the local repository

The Maven plugin adds an  task to your project. This task depends on all the archives task of the install archives

configuration. It installs those archives to your local Maven repository. If the default location for the local

repository is redefined in a Maven , this is considered by this task.settings.xml

53.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The ,groupId

,  and  elements used for the POM default to the values shown in theartifactId version packaging

table below. The  elements are created from the project's dependency declarations.dependency

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Authentication.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/Proxy.html
http://maven.apache.org/ant-tasks/apidocs/org/apache/maven/artifact/ant/RemoteRepository.html


Page 304 of 448

Table 53.5. Default Values for Maven POM generation

Maven

Element

Default Value

groupId project.group

artifactId uploadTask.repositories.mavenDeployer.pom.artifactId (if set) or

archiveTask.baseName.

version project.version

packaging archiveTask.extension

Here,  and  refer to the tasks used for uploading and generating the archive,uploadTask archiveTask

respectively (for example  and ).  defaults to uploadArchives jar archiveTask.baseName project.archivesBaseName

which in turn defaults to .project.name

When you set the “ ” property to a value other than the default, you'll alsoarchiveTask.baseName

have to set  to the sameuploadTask.repositories.mavenDeployer.pom.artifactId

value. Otherwise, the project at hand may be referenced with the wrong artifact ID from generated POMs

for other projects in the same build.

Generated POMs can be found in . They can be further customized via the <buildDir>/poms MavenPom

API. For example, you might want the artifact deployed to the Maven repository to have a different version or

name than the artifact generated by Gradle. To customize these you can do:

Example 53.5. Customization of pom

build.gradle

uploadArchives {
    repositories {
        mavenDeployer {
            repository(url: )"file://localhost/tmp/myRepo/"
            pom.version = '1.0Maven'
            pom.artifactId = 'myMavenName'
        }
    }
}

To add additional content to the POM, the  builder can be used. With this builder, any elementpom.project

listed in the  can be added.Maven POM reference

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html


Page 305 of 448

Example 53.6. Builder style customization of pom

build.gradle

uploadArchives {
    repositories {
        mavenDeployer {
            repository(url: )"file://localhost/tmp/myRepo/"
            pom.project {
                licenses {
                    license {
                        name 'The Apache Software License, Version 2.0'
                        url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
                        distribution 'repo'
                    }
                }
            }
        }
    }
}

Note: , , , and  should always be set directly on the  object.groupId artifactId version packaging pom

Example 53.7. Modifying auto-generated content

build.gradle

def installer = install.repositories.mavenInstaller
def deployer = uploadArchives.repositories.mavenDeployer

[installer, deployer]*.pom*.whenConfigured {pom ->
    pom.dependencies.find {dep -> dep.groupId ==  && dep.artifactId ==  }.optional = true'group3' 'runtime'
}

If you have more than one artifact to publish, things work a little bit differently. See Section 53.6.4.1, “Multiple

.artifacts per project”

To customize the settings for the Maven installer (see ), youSection 53.6.3, “Installing to the local repository”

can do:

Example 53.8. Customization of Maven installer

build.gradle

install {
    repositories.mavenInstaller {
        pom.version = '1.0Maven'
        pom.artifactId = 'myName'
    }
}



Page 306 of 448

53.6.4.1. Multiple artifacts per project

Maven can only deal with one artifact per project. This is reflected in the structure of the Maven POM. We

think there are many situations where it makes sense to have more than one artifact per project. In such a case

you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you want to

publish to a Maven repository. The  and the MavenInstaller both provide an API for this:MavenDeployer

Example 53.9. Generation of multiple poms

build.gradle

uploadArchives {
    repositories {
        mavenDeployer {
            repository(url: )"file://localhost/tmp/myRepo/"
            addFilter( ) {artifact, file ->'api'
                artifact.name == 'api'
            }
            addFilter( ) {artifact, file ->'service'
                artifact.name == 'service'
            }
            pom( ).version = 'api' 'mySpecialMavenVersion'
        }
    }
}

You need to declare a filter for each artifact you want to publish. This filter defines a boolean expression for

which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn

more about this have a look at  and its associated classes.PomFilterContainer

53.6.4.2. Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and

War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this

section. The mapping works like the following. You can map a configuration to one and only one scope.

Different configurations can be mapped to one or different scopes. You can also assign a priority to a particular

configuration-to-scope mapping. Have a look at  to learn more. To accessConf2ScopeMappingContainer

the mapping configuration you can say:

Example 53.10. Accessing a mapping configuration

build.gradle

task mappings << {
    println conf2ScopeMappings.mappings
}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the Gradle

exclude rule the group as well as the module name is specified (as Maven needs both in contrast to Ivy).

Per-configuration excludes are also included in the Maven POM, if they are convertible.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html


Page 307 of 448

[ ] 19 It is planned for a future release to provide out-of-the-box support for this



Page 308 of 448

54
The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then be

used to prove who built the artifact the signature is attached to as well as other information such as when the

signature was generated.

The signing plugin currently only provides support for generating  (which is the signature formatPGP signatures

).required for publication to the Maven Central Repository

54.1. Usage
To use the Signing plugin, include the following in your build script:

Example 54.1. Using the Signing plugin

build.gradle

apply plugin: 'signing'

54.2. Signatory credentials
In order to create PGP signatures, you will need a key pair (instructions on creating a key pair using the GnuPG

 can be found in the ). You need to provide the signing plugin with your key information,tools GnuPG HOWTOs

which means three things:

The public key ID (an 8 character hexadecimal string).

The absolute path to the secret key ring file containing your private key.

The passphrase used to protect your private key.

These items must be supplied as the values of properties , signing.keyId signing.secretKeyRingFile

, and  respectively. Given the personal and private nature of these values, a goodsigning.password

practice is to store them in the user  file (described in gradle.properties Section 14.2, “Gradle properties

).and system properties”

signing.keyId=24875D73
signing.password=secret
signing.secretKeyRingFile=/Users/me/.gnupg/secring.gpg
        

http://www.pgpi.org/
https://docs.sonatype.org/display/Repository/Central+Sync+Requirements
http://www.gnupg.org/
http://www.gnupg.org/
http://www.gnupg.org/documentation/howtos.html


Page 309 of 448

If specifying this information in the user  file is not feasible for your environment, yougradle.properties

can source the information however you need to and set the project properties manually.

import org.gradle.plugins.signing.Sign

gradle.taskGraph.whenReady { taskGraph ->
    if (taskGraph.allTasks.any { it instanceof Sign }) {
        // Use Java 6's console to read from the console (no good for
        // a CI environment)
        Console console = System.console()
        console.printf "\n\nWe have to sign some things in this build." +
                       "\n\nPlease enter your signing details.\n\n"

        def id = console.readLine("PGP Key Id: ")
        def file = console.readLine("PGP Secret Key Ring File (absolute path): ")
        def password = console.readPassword("PGP Private Key Password: ")

        allprojects { ext."signing.keyId" = id }
        allprojects { ext."signing.secretKeyRingFile" = file }
        allprojects { ext."signing.password" = password }

        console.printf "\nThanks.\n\n"
    }
}
        

54.3. Specifying what to sign
As well as configuring how things are to be signed (i.e. the signatory configuration), you must also specify what

is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or configurations

that should be signed.

54.3.1. Signing Configurations

It is common to want to sign the artifacts of a configuration. For example, the  configures a jar toJava plugin

build and this jar artifact is added to the  configuration. Using the Signing DSL, you can specify thatarchives

all of the artifacts of this configuration should be signed.

Example 54.2. Signing a configuration

build.gradle

signing {
    sign configurations.archives
}

This will create a task (of type ) in your project named “ ”, that will build any Sign signArchives archives

artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the

artifacts being signed.

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.signing.Sign.html


Page 310 of 448

Example 54.3. Signing a configuration output

Output of gradle signArchives

> gradle signArchives
:compileJava
:processResources
:classes
:jar
:signArchives

BUILD SUCCESSFUL

Total time: 1 secs

54.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can directly

sign the task that produces the artifact to sign.

Example 54.4. Signing a task

build.gradle

task stuffZip (type: Zip) {
    baseName = "stuff"
    from "src/stuff"
}

signing {
    sign stuffZip
}

This will create a task (of type ) in your project named “ ”, that will build the input task'sSign signStuffZip

archive (if needed) and then sign it. The signature file will be placed alongside the artifact being signed.

Example 54.5. Signing a task output

Output of gradle signStuffZip

> gradle signStuffZip
:stuffZip
:signStuffZip

BUILD SUCCESSFUL

Total time: 1 secs

For a task to be “signable”, it must produce an archive of some type. Tasks that do this are the , , , Tar Zip Jar

 and  tasks.War Ear

http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html


Page 311 of 448

54.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not wish

to sign artifacts for non release versions. To achieve this, you can specify that signing is only required under

certain conditions.

Example 54.6. Conditional signing

build.gradle

version = '1.0-SNAPSHOT'
ext.isReleaseVersion = !version.endsWith( )"SNAPSHOT"

signing {
    required { isReleaseVersion && gradle.taskGraph.hasTask( ) }"uploadArchives"
    sign configurations.archives
}

In this example, we only want to require signing if we are building a release version and we are going to publish

it. Because we are inspecting the task graph to determine if we are going to be publishing, we must set the signing.required

property to a closure to defer the evaluation. See  for moreSigningExtension.setRequired()

information.

54.4. Publishing the signatures
When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically

added to the  and  dependency configurations. This means that if you want to uploadsignatures archives

your signatures to your distribution repository along with the artifacts you simply execute the uploadArchives

task as normal.

54.5. Signing POM files
When deploying signatures for your artifacts to a Maven repository, you will also want to sign the published

POM file. The signing plugin adds a  (see: )signing.signPom() SigningExtension.signPom()

method that can be used in the  block in your upload task configuration.beforeDeployment()

Example 54.7. Signing a POM for deployment

build.gradle

uploadArchives {
    repositories {
        mavenDeployer {
            beforeDeployment { MavenDeployment deployment -> signing.signPom(deployment) }
        }
    }
}

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no credentials

http://www.gradle.org/docs/2.3/groovydoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)


Page 312 of 448

for signing) then the  method will silently do nothing.signPom()



Page 313 of 448

55
Building native binaries

The Gradle support for building native binaries is currently . Please be aware that the DSL andincubating

other configuration may change in later Gradle versions.

The various native binary plugins add support for building native software components, such as executables or

shared libraries, from code written in C++, C and other languages. While many excellent build tools exist for

this space of software development, Gradle offers developers its trademark power and flexibility together with

dependency management practices more traditionally found in the JVM development space.

55.1. Supported languages
The following source languages are currently supported:

C

C++

Objective-C

Objective-C++

Assembly

Windows resources

55.2. Tool chain support
Gradle offers the ability to execute the same build using different tool chains. When you build a native binary,

Gradle will attempt to locate a tool chain installed on your machine that can build the binary. You can fine tune

exactly how this works, see  for details.Section 55.14, “Tool chains”

The following tool chains are supported:



Page 314 of 448

Operating

System

Tool Chain Notes

Linux GCC

Linux Clang

Mac OS X XCode Uses the Clang tool chain bundled with XCode.

Windows Visual C++ Windows XP and later, Visual C++ 2010 and later.

Windows GCC with Cywin

32

Windows XP and later.

Windows GCC with MinGW Windows XP and later.  is currently notMingw-w64

supported.

The following tool chains are unofficially supported. They generally work fine, but are not tested continuously:

Operating System Tool Chain Notes

Mac OS X GCC from Macports

Mac OS X Clang from Macports

Windows GCC with Cywin 64 Windows XP and later.

UNIX-like GCC

UNIX-like Clang

55.3. Tool chain installation

Note that if you are using GCC then you currently need to install support for C++, even if you are not

building from C++ source. This caveat will be removed in a future Gradle version.

To build native binaries, you will need to have a compatible tool chain installed:

55.3.1. Windows

To build on Windows, install a compatible version of Visual Studio. The native plugins will discover the Visual

Studio installations and select the latest version. There is no need to mess around with environment variables or

batch scripts. This works fine from a Cygwin shell or the Windows command-line.

Alternatively, you can install Cygwin with GCC or MinGW. Clang is currently not supported.

55.3.2. OS X

To build on OS X, you should install XCode. The native plugins will discover the XCode installation using the

system PATH.

http://gcc.gnu.org/
http://clang.llvm.org
http://www.microsoft.com/visualstudio/en-us
http://gcc.gnu.org/
http://cygwin.com
http://cygwin.com
http://gcc.gnu.org/
http://www.mingw.org/
http://mingw-w64.sourceforge.net
http://gcc.gnu.org/
http://clang.llvm.org
http://gcc.gnu.org/
http://cygwin.com
http://gcc.gnu.org/
http://clang.llvm.org


Page 315 of 448

The native plugins also work with GCC and Clang bundled with Macports. To use one of the Macports tool

chains, you will need to make the tool chain the default using the  command and add Macportsport select

to the system PATH.

55.3.3. Linux

To build on Linux, install a compatible version of GCC or Clang. The native plugins will discover GCC or

Clang using the system PATH.

55.4. Component model
To build native binaries using Gradle, your project should define one or more . Eachnative components

component represents either an executable or a library that Gradle should build. A project can define any

number of components. Gradle does not define any components by default.

For each component, Gradle defines a  for each language that the component can be built from. Asource set

source set is essentially just a set of source directories containing source files. For example, when you apply the c

plugin and define a library called , Gradle will define, by default, a source set containing the Chelloworld

source files in the  directory. It will use these source files to build the src/helloworld/c helloworld

library. This is described in more detail below.

For each component, Gradle defines one or more  as output. To build a binary, Gradle will take thebinaries

source files defined for the component, compile them as appropriate for the source language, and link the result

into a binary file. For an executable component, Gradle can produce executable binary files. For a library

component, Gradle can produce both static and shared library binary files. For example, when you define a

library called  and build on Linux, Gradle will, by default, produce  and helloworld libhelloworld.so libhelloworld.a

binaries.

In many cases, more than one binary can be produced for a component. These binaries may vary based on the

tool chain used to build, the compiler/linker flags supplied, the dependencies provided, or additional source files

provided. Each native binary produced for a component is referred to as . Binary variants are discussedvariant

in detail below.

55.5. Building a library
To build either a static or shared native library, you define a library component in the  container.components

The following sample defines a library called :hello

Example 55.1. Defining a library component

build.gradle

model {
    components {
        hello(NativeLibrarySpec)
    }
}



Page 316 of 448

A library component is represented using . Each library component can produce atNativeLibrarySpec

least one shared library binary ( ) and at least one static library binary (SharedLibraryBinarySpec

).StaticLibraryBinarySpec

55.6. Building an executable
To build a native executable, you define an executable component in the  container. Thecomponents

following sample defines an executable called :main

Example 55.2. Defining executable components

build.gradle

model {
    components {
        main(NativeExecutableSpec) {
            sources {
               c.lib library: "hello"
            }
        }
    }
}

An executable component is represented using . Each executable component canNativeExecutableSpec

produce at least one executable binary ( ).NativeExecutableBinarySpec

For each component defined, Gradle adds a  with the same name. Each of theseFunctionalSourceSet

functional source sets will contain a language-specific source set for each of the languages supported by the

project.

55.7. Tasks
For each  that can be produced by a build, a single  is constructed that canNativeBinarySpec lifecycle task

be used to create that binary, together with a set of other tasks that do the actual work of compiling, linking or

assembling the binary.

Component Type Native Binary Type Lifecycle task Location of created binary

NativeExecutableSpec NativeExecutableBinarySpec Executable${component.name} /binaries/ Executable/${project.buildDir} ${component.name} ${component.name}

NativeLibrarySpec SharedLibraryBinarySpec SharedLibrary${component.name} /binaries/ SharedLibrary/lib .so${project.buildDir} ${component.name} ${component.name}

NativeLibrarySpec StaticLibraryBinarySpec StaticLibrary${component.name} /binaries/ StaticLibrary/ .a${project.buildDir} ${component.name} ${component.name}

55.7.1. Working with shared libraries

For each executable binary produced, the  plugin provides an  task, whichcpp install${binary.name}

creates a development install of the executable, along with the shared libraries it requires. This allows you to run

the executable without needing to install the shared libraries in their final locations.

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/language/base/FunctionalSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.SharedLibraryBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.StaticLibraryBinarySpec.html


Page 317 of 448

55.8. Finding out more about your project
Gradle provides a report that you can run from the command-line that shows some details about the components

and binaries that your project produces. To use this report, just run . Below is angradle components

example of running this report for one of the sample projects:



Page 318 of 448

Example 55.3. The components report

Output of gradle components

> gradle components
:components

------------------------------------------------------------
Root project
------------------------------------------------------------

Native library 'hello'
----------------------

Source sets
    C++ source 'hello:cpp'
        src/hello/cpp

Binaries
    Shared library 'hello:sharedLibrary'
        build using task: :helloSharedLibrary
        platform: current
        build type: debug
        flavor: default
        tool chain: Tool chain 'clang' (Clang)
        shared library file: build/binaries/helloSharedLibrary/libhello.dylib
    Static library 'hello:staticLibrary'
        build using task: :helloStaticLibrary
        platform: current
        build type: debug
        flavor: default
        tool chain: Tool chain 'clang' (Clang)
        static library file: build/binaries/helloStaticLibrary/libhello.a

Native executable 'main'
------------------------

Source sets
    C++ source 'main:cpp'
        src/main/cpp

Binaries
    Executable 'main:executable'
        build using task: :mainExecutable
        install using task: :installMainExecutable
        platform: current
        build type: debug
        flavor: default
        tool chain: Tool chain 'clang' (Clang)
        executable file: build/binaries/mainExecutable/main

Note: currently not all plugins register their components, so some components may not be visible here.

BUILD SUCCESSFUL

Total time: 1 secs



Page 319 of 448

55.9. Language support
Presently, Gradle supports building native binaries from any combination of source languages listed below. A

native binary project will contain one or more named  instances (eg 'main', 'test',FunctionalSourceSet

etc), each of which can contain s containing source files, one for each language.LanguageSourceSet

C

C++

Objective-C

Objective-C++

Assembly

Windows resources

55.9.1. C++ sources

C++ language support is provided by means of the  plugin.'cpp'

Example 55.4. The 'cpp' plugin

build.gradle

apply plugin: 'cpp'

C++ sources to be included in a native binary are provided via a , which defines a set of C++CppSourceSet

source files and optionally a set of exported header files (for a library). By default, for any named component

the  contains  source files in , and header files in CppSourceSet .cpp src/${name}/cpp src/${name}/headers

.

While the  plugin defines these default locations for each , it is possible to extend orcpp CppSourceSet

override these defaults to allow for a different project layout.

Example 55.5. C++ source set

build.gradle

sources {
    cpp {
        source {
            srcDir "src/source"
            include "**/*.cpp"
        }
    }
}

For a library named 'main', header files in  are considered the “public” or “exported”src/main/headers

headers. Header files that should not be exported should be placed inside the  directorysrc/main/cpp

(though be aware that such header files should always be referenced in a manner relative to the file including

them).

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.cpp.CppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.cpp.CppSourceSet.html


Page 320 of 448

55.9.2. C sources

C language support is provided by means of the  plugin.'c'

Example 55.6. The 'c' plugin

build.gradle

apply plugin: 'c'

C sources to be included in a native binary are provided via a , which defines a set of C sourceCSourceSet

files and optionally a set of exported header files (for a library). By default, for any named component the 

 contains  source files in , and header files in .CSourceSet .c src/${name}/c src/${name}/headers

While the  plugin defines these default locations for each , it is possible to extend or overridec CSourceSet

these defaults to allow for a different project layout.

Example 55.7. C source set

build.gradle

sources {
    c {
        source {
            srcDir "src/source"
            include "**/*.c"
        }
        exportedHeaders {
            srcDir "src/include"
        }
    }
}

For a library named 'main', header files in  are considered the “public” or “exported”src/main/headers

headers. Header files that should not be exported should be placed inside the  directory (thoughsrc/main/c

be aware that such header files should always be referenced in a manner relative to the file including them).

55.9.3. Assembler sources

Assembly language support is provided by means of the  plugin.'assembler'

Example 55.8. The 'assembler' plugin

build.gradle

apply plugin: 'assembler'

Assembler sources to be included in a native binary are provided via a , whichAssemblerSourceSet

defines a set of Assembler source files. By default, for any named component the AssemblerSourceSet

contains  source files under ..s src/${name}/asm

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.assembler.AssemblerSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.assembler.AssemblerSourceSet.html


Page 321 of 448

55.9.4. Objective-C sources

Objective-C language support is provided by means of the  plugin.'objective-c'

Example 55.9. The 'objective-c' plugin

build.gradle

apply plugin: 'objective-c'

Objective-C sources to be included in a native binary are provided via a , whichObjectiveCSourceSet

defines a set of Objective-C source files. By default, for any named component the ObjectiveCSourceSet

contains  source files under ..m src/${name}/objectiveC

55.9.5. Objective-C++ sources

Objective-C++ language support is provided by means of the  plugin.'objective-cpp'

Example 55.10. The 'objective-cpp' plugin

build.gradle

apply plugin: 'objective-cpp'

Objective-C++ sources to be included in a native binary are provided via a ,ObjectiveCppSourceSet

which defines a set of Objective-C++ source files. By default, for any named component the 

 contains  source files under .ObjectiveCppSourceSet .mm src/${name}/objectiveCpp

55.10. Configuring the compiler, assembler and
linker

Each binary to be produced is associated with a set of compiler and linker settings, which include command-line

arguments as well as macro definitions. These settings can be applied to all binaries, an individual binary, or

selectively to a group of binaries based on some criteria.

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivec.ObjectiveCSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.objectivecpp.ObjectiveCppSourceSet.html


Page 322 of 448

Example 55.11. Settings that apply to all binaries

build.gradle

binaries.all {
    // Define a preprocessor macro for every binary
    cppCompiler.define "NDEBUG"

    // Define toolchain-specific compiler and linker options
     (toolChain in Gcc) {if
        cppCompiler.args , "-O2" "-fno-access-control"
        linker.args , "-Xlinker" "-S"
    }
     (toolChain in VisualCpp) {if
        cppCompiler.args "/Zi"
        linker.args "/DEBUG"
    }
}

Each binary is associated with a particular , allowing settings to be targeted based on thisNativeToolChain

value.

It is easy to apply settings to all binaries of a particular type:

Example 55.12. Settings that apply to all shared libraries

build.gradle

// For any shared library binaries built with Visual C++,
// define the DLL_EXPORT macro
binaries.withType(SharedLibraryBinarySpec) {
     (toolChain in VisualCpp) {if
        cCompiler.args "/Zi"
        cCompiler.define "DLL_EXPORT"
    }
}

Furthermore, it is possible to specify settings that apply to all binaries produced for a particular executable

or  component:library

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html


Page 323 of 448

Example 55.13. Settings that apply to all binaries produced for the 'main' executable component

build.gradle

model {
    components {
        main(NativeExecutableSpec) {
            targetPlatform "x86"
            binaries.all {
                 (toolChain in VisualCpp) {if
                    sources {
                        platformAsm(AssemblerSourceSet) {
                            source.srcDir "src/main/asm_i386_masm"
                        }
                    }
                    assembler.args "/Zi"
                }  {else
                    sources {
                        platformAsm(AssemblerSourceSet) {
                            source.srcDir "src/main/asm_i386_gcc"
                        }
                    }
                    assembler.args "-g"
                }
            }
        }
    }
}

The example above will apply the supplied configuration to all  binaries built.executable

Similarly, settings can be specified to target binaries for a component that are of a particular type: eg all shared

libraries for the main library component.

Example 55.14. Settings that apply only to shared libraries produced for the 'main' library component

build.gradle

model {
    components {
        main(NativeLibrarySpec) {
            binaries.withType(SharedLibraryBinarySpec) {
                // Define a preprocessor macro that only applies to shared libraries
                cppCompiler.define "DLL_EXPORT"
            }
        }
    }
}

55.11. Windows Resources
When using the  tool chain, Gradle is able to compile Window Resource ( ) files and link themVisualCpp rc

into a native binary. This functionality is provided by the  plugin.'windows-resources'

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html


Page 324 of 448

Example 55.15. The 'windows-resources' plugin

build.gradle

apply plugin: 'windows-resources'

Windows resources to be included in a native binary are provided via a , whichWindowsResourceSet

defines a set of Windows Resource source files. By default, for any named component the 

 contains  source files under .WindowsResourceSet .rc src/${name}/rc

As with other source types, you can configure the location of the windows resources that should be included in

the binary.

Example 55.16. Configuring the location of Windows resource sources

build-resource-only-dll.gradle

sources {
    rc {
        source {
            srcDirs "src/hello/rc"
        }
        exportedHeaders {
            srcDirs "src/hello/headers"
        }
    }
}

You are able to construct a resource-only library by providing Windows Resource sources with no other

language sources, and configure the linker as appropriate:

Example 55.17. Building a resource-only dll

build-resource-only-dll.gradle

model {
    components {
        helloRes(NativeLibrarySpec) {
            binaries.all {
                rcCompiler.args "/v"
                linker.args , "/noentry" "/machine:x86"
            }
            sources {
                rc {
                    source {
                        srcDirs "src/hello/rc"
                    }
                    exportedHeaders {
                        srcDirs "src/hello/headers"
                    }
                }
            }
        }
    }
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.rc.WindowsResourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.rc.WindowsResourceSet.html


Page 325 of 448

The example above also demonstrates the mechanism of passing extra command-line arguments to the resource

compiler. The  extension is of type .rcCompiler PreprocessingTool

55.12. Library Dependencies
Dependencies for native components are binary libraries that export header files. The header files are used

during compilation, with the compiled binary dependency being used during linking and execution.

55.12.1. Dependencies within the same project

A set of sources may depend on header files provided by another binary component within the same project. A

common example is a native executable component that uses functions provided by a separate native library

component.

Such a library dependency can be added to a source set associated with the  component:executable

Example 55.18. Providing a library dependency to the source set

build.gradle

sources {
    cpp {
        lib library: "hello"
    }
}

Alternatively, a library dependency can be provided directly to the  for the NativeExecutableBinary executable

.

http://www.gradle.org/docs/2.3/dsl/org.gradle.language.PreprocessingTool.html


Page 326 of 448

Example 55.19. Providing a library dependency to the binary

build.gradle

model {
    components {
        hello(NativeLibrarySpec) {
            sources {
                c {
                    source {
                        srcDir "src/source"
                        include "**/*.c"
                    }
                    exportedHeaders {
                        srcDir "src/include"
                    }
                }
            }
        }
        main(NativeExecutableSpec) {
            sources {
                cpp {
                    source {
                        srcDir "src/source"
                        include "**/*.cpp"
                    }
                }
            }
            binaries.all {
                // Each executable binary produced uses the 'hello' static library binary
                lib library: , linkage: 'hello' 'static'
            }
        }
    }
}

55.12.2. Project Dependencies

For a component produced in a different Gradle project, the notation is similar.



Page 327 of 448

Example 55.20. Declaring project dependencies

build.gradle

project( ) {":lib"
    apply plugin: "cpp"
    model {
        components {
            main(NativeLibrarySpec)
        }
    }
    // For any shared library binaries built with Visual C++,
    // define the DLL_EXPORT macro
    binaries.withType(SharedLibraryBinarySpec) {
         (toolChain in VisualCpp) {if
            cppCompiler.define "DLL_EXPORT"
        }
    }
}

project( ) {":exe"
    apply plugin: "cpp"

    model {
        components {
            main(NativeExecutableSpec) {
                sources {
                    cpp {
                        lib project: , library: ':lib' 'main'
                    }
                }
            }
        }
    }
}

55.13. Native Binary Variants
For each executable or library defined, Gradle is able to build a number of different native binary variants.

Examples of different variants include debug vs release binaries, 32-bit vs 64-bit binaries, and binaries produced

with different custom preprocessor flags.

Binaries produced by Gradle can be differentiated on , , and . For each of these 'variantbuild type platform flavor

dimensions', it is possible to specify a set of available values as well as target each component at one, some or

all of these. For example, a plugin may define a range of support platforms, but you may choose to only target

Windows-x86 for a particular component.

55.13.1. Build types

A  determines various non-functional aspects of a binary, such as whether debug information isbuild type

included, or what optimisation level the binary is compiled with. Typical build types are 'debug' and 'release',

but a project is free to define any set of build types.



Page 328 of 448

Example 55.21. Defining build types

build.gradle

model {
    buildTypes {
        debug
        release
    }
}

If no build types are defined in a project, then a single, default build type called 'debug' is added.

For a build type, a Gradle project will typically define a set of compiler/linker flags per tool chain.

Example 55.22. Configuring debug binaries

build.gradle

binaries.all {
     (toolChain in Gcc && buildType == buildTypes.debug) {if
        cppCompiler.args "-g"
    }
     (toolChain in VisualCpp && buildType == buildTypes.debug) {if
        cppCompiler.args '/Zi'
        cppCompiler.define 'DEBUG'
        linker.args '/DEBUG'
    }
}

At this stage, it is completely up to the build script to configure the relevant compiler/linker flags for each

build type. Future versions of Gradle will automatically include the appropriate debug flags for any

'debug' build type, and may be aware of various levels of optimisation as well.

55.13.2. Platform

An executable or library can be built to run on different operating systems and cpu architectures, with a variant

being produced for each platform. Gradle defines each OS/architecture combination as a ,NativePlatform

and a project may define any number of platforms. If no platforms are defined in a project, then a single, default

platform 'current' is added.

Presently, a  consists of a defined operating system and architecture. As we continue toPlatform

develop the native binary support in Gradle, the concept of Platform will be extended to include things

like C-runtime version, Windows SDK, ABI, etc. Sophisticated builds may use the extensibility of Gradle

to apply additional attributes to each platform, which can then be queried to specify particular includes,

preprocessor macros or compiler arguments for a native binary.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/platform/NativePlatform.html


Page 329 of 448

Example 55.23. Defining platforms

build.gradle

model {
    platforms {
        x8  {6
            architecture "x86"
        }
        x6  {4
            architecture "x86_64"
        }
        itanium {
            architecture "ia-64"
        }
    }
}

For a given variant, Gradle will attempt to find a  that is able to build for the targetNativeToolChain

platform. Available tool chains are searched in the order defined. See the  section below for moretool chains

details.

55.13.3. Flavor

Each component can have a set of named , and a separate binary variant can be produced for eachflavors

flavor. While the  and  variant dimensions have a defined meaning inbuild type target platform

Gradle, each project is free to define any number of flavors and apply meaning to them in any way.

An example of component flavors might differentiate between 'demo', 'paid' and 'enterprise' editions of the

component, where the same set of sources is used to produce binaries with different functions.

Example 55.24. Defining flavors

build.gradle

model {
    flavors {
        english
        french
    }
    components {
        hello(NativeLibrarySpec) {
            binaries.all {
                 (flavor == flavors.french) {if
                    cppCompiler.define "FRENCH"
                }
            }
        }
    }
}

In the example above, a library is defined with a 'english' and 'french' flavor. When compiling the 'french'

variant, a separate macro is defined which leads to a different binary being produced.

If no flavor is defined for a component, then a single default flavor named 'default' is used.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html


Page 330 of 448

55.13.4. Selecting the build types, platforms and flavors for a component

For a default component, Gradle will attempt to create a native binary variant for each and every combination of

,  and  defined for the project. It is possible to override this on abuildType platform flavor

per-component basis, by specifying the set of ,  and/or targetBuildTypes targetPlatform targetFlavors

.

Example 55.25. Targeting a component at particular platforms

build.gradle

model {
    components {
        hello(NativeLibrarySpec) {
            targetPlatform "x86"
            targetPlatform "x64"
        }
        main(NativeExecutableSpec) {
            targetPlatform "x86"
            targetPlatform "x64"
            sources {
                cpp.lib library: , linkage: 'hello' 'static'
            }
        }
    }
}

Here you can see that the  method is used to specifyTargetedNativeComponent.targetPlatform()

a platform that the  named  should be built for.NativeExecutableSpec main

A similar mechanism exists for selecting  and TargetedNativeComponent.targetBuildTypes()

.TargetedNativeComponent.targetFlavors()

55.13.5. Building all possible variants

When a set of build types, target platforms, and flavors is defined for a component, a NativeBinarySpec

model element is created for every possible combination of these. However, in many cases it is not possible to

build a particular variant, perhaps because no tool chain is available to build for a particular platform.

If a binary variant cannot be built for any reason, then the  associated with that variantNativeBinarySpec

will not be . It is possible to use this property to create a task to generate all possible variants on abuildable

particular machine.

Example 55.26. Building all possible variants

build.gradle

task buildAllExecutables {
    dependsOn binaries.withType(NativeExecutableBinary).matching {
        it.buildable
    }
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetPlatform(java.lang.String)
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetBuildTypes(java.lang.String[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.TargetedNativeComponent.html#org.gradle.nativeplatform.TargetedNativeComponent:targetFlavors(java.lang.String[])
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html


Page 331 of 448

55.14. Tool chains
A single build may utilize different tool chains to build variants for different platforms. To this end, the core

'native-binary' plugins will attempt to locate and make available supported tool chains. However, the set of tool

chains for a project may also be explicitly defined, allowing additional cross-compilers to be configured as well

as allowing the install directories to be specified.

55.14.1. Defining tool chains

The supported tool chain types are:

Gcc

Clang

VisualCpp

Example 55.27. Defining tool chains

build.gradle

model {
    toolChains {
        visualCpp(VisualCpp) {
            // Specify the installDir if Visual Studio cannot be located
            // installDir "C:/Apps/Microsoft Visual Studio 10.0"
        }
        gcc(Gcc) {
            // Uncomment to use a GCC install that is not in the PATH
            // path "/usr/bin/gcc"
        }
        clang(Clang)
    }
}

Each tool chain implementation allows for a certain degree of configuration (see the API documentation for

more details).

55.14.2. Using tool chains

It is not necessary or possible to specify the tool chain that should be used to build. For a given variant, Gradle

will attempt to locate a  that is able to build for the target platform. Available tool chainsNativeToolChain

are searched in the order defined.

When a platform does not define an architecture or operating system, the default target of the tool chain is

assumed. So if a platform does not define a value for , Gradle will find the firstoperatingSystem

available tool chain that can build for the specified .architecture

The core Gradle tool chains are able to target the following architectures out of the box. In each case, the tool

chain will target the current operating system. See the next section for information on cross-compiling for other

operating systems.

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Clang.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/toolchain/NativeToolChain.html


Page 332 of 448

Tool Chain Architectures

GCC x86, x86_64

Clang x86, x86_64

Visual C++ x86, x86_64, ia-64

So for GCC running on linux, the supported target platforms are 'linux/x86' and 'linux/x86_64'. For GCC

running on Windows via Cygwin, platforms 'windows/x86' and 'windows/x86_64' are supported. (The Cygwin

POSIX runtime is not yet modelled as part of the platform, but will be in the future.)

If no target platforms are defined for a project, then all binaries are built to target a default platform named

'current'. This default platform does not specify any  or  value, hencearchitecture operatingSystem

using the default values of the first available tool chain.

Gradle provides a  that allows the build author to control the exact set of arguments passed to a tool chainhook

executable. This enables the build author to work around any limitations in Gradle, or assumptions that Gradle

makes. The arguments hook should be seen as a 'last-resort' mechanism, with preference given to truly

modelling the underlying domain.

Example 55.28. Reconfigure tool arguments

build.gradle

model {
    toolChains {
        visualCpp(VisualCpp) {
            eachPlatform {
                cppCompiler.withArguments { args ->
                    args << "-DFRENCH"
                }
            }
        }
        clang(Clang) {
            eachPlatform {
                cCompiler.withArguments { args ->
                    Collections.replaceAll(args, , )"CUSTOM" "-DFRENCH"
                }
                linker.withArguments { args ->
                    args.remove "CUSTOM"
                }
                staticLibArchiver.withArguments { args ->
                    args.remove "CUSTOM"
                }
            }
        }
    }
}

55.14.3. Cross-compiling with GCC

Cross-compiling is possible with the  and  tool chains, by adding support for additional targetGcc Clang

platforms. This is done by specifying a target platform for a toolchain. For each target platform a custom

configuration can be specified.

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Gcc.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.toolchain.Clang.html


Page 333 of 448

Example 55.29. Defining target platforms

build.gradle

model {
    toolChains {
        gcc(Gcc) {
            target( ){"arm"
                cppCompiler.withArguments { args ->
                    args << "-m32"
                }
                linker.withArguments { args ->
                    args << "-m32"
                }
            }
            target( )"sparc"
        }
    }
    platforms {
        arm {
            architecture "arm"
        }
        sparc {
            architecture "sparc"
        }
    }
    components {
        main(NativeExecutableSpec) {
            targetPlatform "arm"
            targetPlatform "sparc"
        }
    }
}

55.15. Visual Studio IDE integration
Gradle has the ability to generate Visual Studio project and solution files for the native components defined in

your build. This ability is added by the  plugin. For a multi-project build, all projects withvisual-studio

native components should have this plugin applied.

When the  plugin is applied, a task name  isvisual-studio ${component.name}VisualStudio

created for each defined component. This task will generate a Visual Studio Solution file for the named

component. This solution will include a Visual Studio Project for that component, as well as linking to project

files for each depended-on binary.

The content of the generated visual studio files can be modified via API hooks, provided by the visualStudio

extension. Take a look at the 'visual-studio' sample, or see VisualStudioExtension.getProjects()

and  in the API documentation for more details.VisualStudioExtension.getSolutions()

http://www.gradle.org/docs/2.3/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:projects
http://www.gradle.org/docs/2.3/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html#org.gradle.ide.visualstudio.VisualStudioExtension:solutions


Page 334 of 448

55.16. CUnit support
The Gradle  plugin provides support for compiling and executing CUnit tests in your native-binarycunit

project. For each  and  defined in your project, GradleNativeExecutableSpec NativeLibrarySpec

will create a matching  component, named .CUnitTestSuiteSpec ${component.name}Test

55.16.1. CUnit sources

Gradle will create a  named 'cunit' for each  component in the project.CSourceSet CUnitTestSuiteSpec

This source set should contain the cunit test files for the component sources. Source files can be located in the

conventional location ( ) or can be configured like any othersrc/${component.name}Test/cunit

source set.

Gradle initialises the CUnit test registry and executes the tests, utilising some generated CUnit launcher sources.

Gradle will expect and call a function with the signature  that you canvoid gradle_cunit_register()

use to configure the actual CUnit suites and tests to execute.

Example 55.30. Registering CUnit tests

suite_operators.c

#include <CUnit/Basic.h>
#include "gradle_cunit_register.h"
#include "test_operators.h"

int suite_init(void) {
    return 0;
}

int suite_clean(void) {
    return 0;
}

void gradle_cunit_register() {
    CU_pSuite pSuiteMath = CU_add_suite("operator tests", suite_init, suite_clean);
    CU_add_test(pSuiteMath, "test_plus", test_plus);
    CU_add_test(pSuiteMath, "test_minus", test_minus);
}

Due to this mechanism, your CUnit sources may not contain a  method since this will clash with themain

method provided by Gradle.

55.16.2. Building CUnit executables

A  component has an associated  or CUnitTestSuiteSpec NativeExecutableSpec

 component. For each  configured for the main component, aNativeLibrarySpec NativeBinarySpec

matching  will be configured on the test suite component. These test suiteCUnitTestSuiteBinarySpec

binaries can be configured in a similar way to any other binary instance:

http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.language.c.CSourceSet.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.test.cunit.CUnitTestSuiteSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeExecutableSpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeLibrarySpec.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.nativeplatform.NativeBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html


Page 335 of 448

Example 55.31. Registering CUnit tests

build.gradle

binaries.withType(CUnitTestSuiteBinarySpec) {
    lib library: , linkage: "cunit" "static"

     (flavor == flavors.failing) {if
        cCompiler.define "PLUS_BROKEN"
    }
}

Both the CUnit sources provided by your project and the generated launcher require the core CUnit

headers and libraries. Presently, this library dependency must be provided by your project for each 

.CUnitTestSuiteBinarySpec

55.16.3. Running CUnit tests

For each , Gradle will create a task to execute this binary, which will run allCUnitTestSuiteBinarySpec

of the registered CUnit tests. Test results will be found in the  directory./test-results${build.dir}

http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/nativeplatform/test/cunit/CUnitTestSuiteBinarySpec.html


Page 336 of 448

Example 55.32. Running CUnit tests

build.gradle

apply plugin: "c"
apply plugin: "cunit"

model {
    flavors {
        passing
        failing
    }
    platforms {
        x8  {6
            architecture "x86"
        }
    }
    repositories {
        libs(PrebuiltLibraries) {
            cunit {
                headers.srcDir "lib/cunit/2.1-2/include"
                binaries.withType(StaticLibraryBinary) {
                    staticLibraryFile =
                        file(  +"lib/cunit/2.1-2/lib/"
                             findCUnitLibForPlatform(targetPlatform))
                }
            }
        }
    }
    components {
        operators(NativeLibrarySpec) {
            targetPlatform "x86"
        }
    }
}
binaries.withType(CUnitTestSuiteBinarySpec) {
    lib library: , linkage: "cunit" "static"

     (flavor == flavors.failing) {if
        cCompiler.define "PLUS_BROKEN"
    }
}

Note:  The code for this example can be found at  in the ‘-all’samples/native-binaries/cunit

distribution of Gradle.

Output of gradle -q runFailingOperatorsTestCUnitExe

> gradle -q runFailingOperatorsTestCUnitExe

There were test failures:
  1. /home/user/gradle/samples/native-binaries/cunit/src/operatorsTest/c/test_plus.c:6  - plus(0, -2) == -2
  2. /home/user/gradle/samples/native-binaries/cunit/src/operatorsTest/c/test_plus.c:7  - plus(2, 2) == 4

The current support for CUnit is quite rudimentary. Plans for future integration include:



Page 337 of 448

Allow tests to be declared with Javadoc-style annotations.

Improved HTML reporting, similar to that available for JUnit.

Real-time feedback for test execution.

Support for additional test frameworks.



Page 338 of 448

56
The Build Lifecycle

We said earlier that the core of Gradle is a language for dependency based programming. In Gradle terms this

means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks are

executed in the order of their dependencies, and that each task is executed only once. These tasks form a 

. There are build tools that build up such a dependency graph as they execute their tasks.Directed Acyclic Graph

Gradle builds the complete dependency graph  any task is executed. This lies at the heart of Gradle andbefore

makes many things possible which would not be possible otherwise.

Your build scripts configure this dependency graph. Therefore they are strictly speaking build configuration

.scripts

56.1. Build phases
A Gradle build has three distinct phases.

Initialization

Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which

projects are going to take part in the build, and creates a  instance for each of these projects.Project

Configuration

During this phase the project objects are configured. The build scripts of  projects which are part of theall

build are executed. Gradle 1.4 introduced an  opt-in feature called . Inincubating configuration on demand

this mode, Gradle configures only relevant projects (see ).Section 57.1.1.1, “Configuration on demand”

Execution

Gradle determines the subset of the tasks, created and configured during the configuration phase, to be

executed. The subset is determined by the task name arguments passed to the  command and thegradle

current directory. Gradle then executes each of the selected tasks.

56.2. Settings file
Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a

naming convention. The default name for this file is . Later in this chapter we explainsettings.gradle

how Gradle looks for a settings file.

The settings file is executed during the initialization phase. A multiproject build must have a settings.gradle

file in the root project of the multiproject hierarchy. It is required because the settings file defines which projects

are taking part in the multi-project build (see ). For a single-project build, aChapter 57, Multi-project Builds

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html


Page 339 of 448

settings file is optional. Besides defining the included projects, you might need it to add libraries to your build

script classpath (see ). Let's first do some introspection with a single projectChapter 60, Organizing Build Logic

build:

Example 56.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.'

build.gradle

println 'This is executed during the configuration phase.'

task configured {
    println 'This is also executed during the configuration phase.'
}

task test << {
    println 'This is executed during the execution phase.'
}

task testBoth {
    doFirst {
      println 'This is executed first during the execution phase.'
    }
    doLast {
      println 'This is executed last during the execution phase.'
    }
    println 'This is executed during the configuration phase as well.'
}

Output of gradle test testBoth

> gradle test testBoth
This is executed during the initialization phase.
This is executed during the configuration phase.
This is also executed during the configuration phase.
This is executed during the configuration phase as well.
:test
This is executed during the execution phase.
:testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL

Total time: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property

access and method calls within the settings file is delegated to a settings object. Look at the  class inSettings

the API documentation for more information.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.initialization.Settings.html


Page 340 of 448

56.3. Multi-project builds
A multi-project build is a build where you build more than one project during a single execution of Gradle. You

have to declare the projects taking part in the multiproject build in the settings file. There is much more to say

about multi-project builds in the chapter dedicated to this topic (see ).Chapter 57, Multi-project Builds

56.3.1. Project locations

Multi-project builds are always represented by a tree with a single root. Each element in the tree represents a

project. A project has a path which denotes the position of the project in the multi-project build tree. In most

cases the project path is consistent with the physical location of the project in the file system. However, this

behavior is configurable. The project tree is created in the  file. By default it is assumedsettings.gradle

that the location of the settings file is also the location of the root project. But you can redefine the location of

the root project in the settings file.

56.3.2. Building the tree

In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical layouts

get special support.

56.3.2.1. Hierarchical layouts

Example 56.2. Hierarchical layout

settings.gradle

include , , 'project1' 'project2:child' 'project3:child1'

The  method takes project paths as arguments. The project path is assumed to be equal to the relativeinclude

physical file system path. For example, a path 'services:api' is mapped by default to a folder 'services/api'

(relative from the project root). You only need to specify the leaves of the tree. This means that the inclusion of

the path 'services:hotels:api' will result in creating 3 projects: 'services', 'services:hotels' and 'services:hotels:api'.

56.3.2.2. Flat layouts

Example 56.3. Flat layout

settings.gradle

includeFlat , 'project3' 'project4'

The  method takes directory names as an argument. These directories need to exist as siblingsincludeFlat

of the root project directory. The location of these directories are considered as child projects of the root project

in the multi-project tree.



Page 341 of 448

56.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called . You can modifyproject descriptors

these descriptors in the settings file at any time. To access a descriptor you can do:

Example 56.4. Modification of elements of the project tree

settings.gradle

println rootProject.name
println project( ).name':projectA'

Using this descriptor you can change the name, project directory and build file of a project.

Example 56.5. Modification of elements of the project tree

settings.gradle

rootProject.name = 'main'
project( ).projectDir =  File(settingsDir, )':projectA' new '../my-project-a'
project( ).buildFileName = ':projectA' 'projectA.gradle'

Look at the  class in the API documentation for more information.ProjectDescriptor

56.4. Initialization
How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from a

directory with a settings file, things are easy. But Gradle also allows you to execute the build from within any

subproject taking part in the build.  If you execute Gradle from within a project with no [ ]20 settings.gradle

file, Gradle looks for a  file in the following way:settings.gradle

It looks in a directory called  which has the same nesting level as the current dir.master

If not found yet, it searches parent directories.

If not found yet, the build is executed as a single project build.

If a  file is found, Gradle checks if the current project is part of the multiprojectsettings.gradle

hierarchy defined in the found  file. If not, the build is executed as a single projectsettings.gradle

build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a subproject of

a multiproject build or not. Of course, if it is a subproject, only the subproject and its dependent projects are

built, but Gradle needs to create the build configuration for the whole multiproject build (see Chapter  57, 

). You can use the  command line option to tell Gradle not to look in the parent hierarchyMulti-project Builds -u

for a  file. The current project is then always built as a single project build. If the currentsettings.gradle

project contains a  file, the  option has no meaning. Such a build is always executed as:settings.gradle -u

a single project build, if the  file does not define a multiproject hierarchysettings.gradle

a multiproject build, if the  file does define a multiproject hierarchy.settings.gradle

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/initialization/ProjectDescriptor.html


Page 342 of 448

The automatic search for a  file only works for multi-project builds with a physicalsettings.gradle

hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described above

(“ ”). Gradle supports arbitrary physical layouts for a multiproject build, but for such arbitrary layoutsmaster

you need to execute the build from the directory where the settings file is located. For information on how to run

partial builds from the root see .Section 57.4, “Running tasks by their absolute path”

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are the

projects specified in the Settings object (plus the root project). Each project object has by default a name equal

to the name of its top level directory, and every project except the root project has a parent project. Any project

may have child projects.

56.5. Configuration and execution of a single
project build

For a single project build, the workflow of the  phases are pretty simple. The build script isafter initialization

executed against the project object that was created during the initialization phase. Then Gradle looks for tasks

with names equal to those passed as command line arguments. If these task names exist, they are executed as a

separate build in the order you have passed them. The configuration and execution for multi-project builds is

discussed in .Chapter 57, Multi-project Builds

56.6. Responding to the lifecycle in the build script
Your build script can receive notifications as the build progresses through its lifecycle. These notifications

generally take two forms: You can either implement a particular listener interface, or you can provide a closure

to execute when the notification is fired. The examples below use closures. For details on how to use the listener

interfaces, refer to the API documentation.

56.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do things

like performing additional configuration once all the definitions in a build script have been applied, or for some

custom logging or profiling.

Below is an example which adds a  task to each project which has a  property value of true.test hasTests



Page 343 of 448

Example 56.6. Adding of test task to each project which has certain property set

build.gradle

allprojects {
    afterEvaluate { project ->
         (project.hasTests) {if
            println "Adding test task to $project"
            project.task( ) << {'test'
                println "Running tests for $project"
            }
        }
    }
}

projectA.gradle

hasTests = true

Output of gradle -q test

> gradle -q test
Adding test task to project ':projectA'
Running tests for project ':projectA'

This example uses method  to add a closure which is executed after theProject.afterEvaluate()

project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some custom

logging of project evaluation. Notice that the  notification is received regardless of whetherafterProject

the project evaluates successfully or fails with an exception.

Example 56.7. Notifications

build.gradle

gradle.afterProject {project, projectState ->
     (projectState.failure) {if
        println "Evaluation of $project FAILED"
    }  {else
        println "Evaluation of $project succeeded"
    }
}

Output of gradle -q test

> gradle -q test
Evaluation of root project 'buildProjectEvaluateEvents' succeeded
Evaluation of project ':projectA' succeeded
Evaluation of project ':projectB' FAILED

You can also add a  to the  to receive these events.ProjectEvaluationListener Gradle

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.invocation.Gradle.html


Page 344 of 448

56.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some

default values or add behaviour before the task is made available in the build file.

The following example sets the  property of each task as it is created.srcDir

Example 56.8. Setting of certain property to all tasks

build.gradle

tasks.whenTaskAdded { task ->
    task.ext.srcDir = 'src/main/java'
}

task a

println "source dir is $a.srcDir"

Output of gradle -q a

> gradle -q a
source dir is src/main/java

You can also add an  to a  to receive these events.Action TaskContainer

56.6.3. Task execution graph ready

You can receive a notification immediately after the task execution graph has been populated. We have seen this

already in .Section 6.13, “Configure by DAG”

You can also add a  to the  to receive theseTaskExecutionGraphListener TaskExecutionGraph

events.

56.6.4. Task execution

You can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the  notification isafterTask

received regardless of whether the task completes successfully or fails with an exception.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraph.html


Page 345 of 448

Example 56.9. Logging of start and end of each task execution

build.gradle

task ok

task broken(dependsOn: ok) << {
      RuntimeException( )throw new 'broken'
}

gradle.taskGraph.beforeTask { Task task ->
    println "executing $task ..."
}

gradle.taskGraph.afterTask { Task task, TaskState state ->
     (state.failure) {if
        println "FAILED"
    }
     {else
        println "done"
    }
}

Output of gradle -q broken

> gradle -q broken
executing task ':ok' ...
done
executing task ':broken' ...
FAILED

You can also use a  to the  to receive these events.TaskExecutionListener TaskExecutionGraph

[ ] 20 Gradle supports partial multiproject builds (see ).Chapter 57, Multi-project Builds

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/execution/TaskExecutionGraph.html


Page 346 of 448

57
Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the most

intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have

subprojects.

57.1. Cross project configuration
While each subproject could configure itself in complete isolation of the other subprojects, it is common that

subprojects share common traits. It is then usually preferable to share configurations among projects, so the

same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the

projects don't have to be Java projects. Our first examples are about marine life.

57.1.1. Configuration and execution

Section 56.1, “Build phases” describes the phases of every Gradle build. Let's zoom into the configuration and

execution phases of a multi-project build. Configuration here means executing the  file of abuild.gradle

project, which implies e.g. downloading all plugins that were declared using ' '. By default, theapply plugin

configuration of all projects happens before any task is executed. This means that when a single task, from a

single project is requested,  projects of multi-project build are configured first. The reason every projectall

needs to be configured is to support the flexibility of accessing and changing any part of the Gradle project

model.

57.1.1.1. Configuration on demand

The  feature and access to the complete project model are possible because every projectConfiguration injection

is configured before the execution phase. Yet, this approach may not be the most efficient in a very large

multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The configuration time

of huge multi-project builds may become noticeable. Scalability is an important requirement for Gradle. Hence,

starting from version 1.4 a new incubating 'configuration on demand' mode is introduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e. it

only executes the  file of projects that are participating in the build. This way, thebuild.gradle

configuration time of a large multi-project build can be reduced. In the long term, this mode will become the

default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is

incubating so not every build is guaranteed to work correctly. The feature should work very well for



Page 347 of 448

multi-project builds that have decoupled projects ( ). In “configuration onSection 57.9, “Decoupled Projects”

demand” mode, projects are configured as follows:

The root project is always configured. This way the typical common configuration is supported (allprojects

or subprojects script blocks).

The project in the directory where the build is executed is also configured, but only when Gradle is executed

without any tasks. This way the default tasks behave correctly when projects are configured on demand.

The standard project dependencies are supported and makes relevant projects configured. If project A has a

compile dependency on project B then building A causes configuration of both projects.

The task dependencies declared via task path are supported and cause relevant projects to be configured.

Example: someTask.dependsOn(":someOtherProject:someOtherTask")

A task requested via task path from the command line (or Tooling API) causes the relevant project to be

configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Section 20.1, “Configuring

. To configure on demand just for a given build please see the build environment via gradle.properties”

.Appendix D, Gradle Command Line

57.1.2. Defining common behavior

Let's look at some examples with the following project tree. This is a multi-project build with a root project

named  and a subproject named .water bluewhale

Example 57.1. Multi-project tree - water & bluewhale projects

Build layout

water/
  build.gradle
  settings.gradle
  bluewhale/

Note:  The code for this example can be found at samples/userguide/multiproject/firstExample/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include 'bluewhale'

And where is the build script for the  project? In Gradle build scripts are optional. Obviously for abluewhale

single project build, a project without a build script doesn't make much sense. For multiproject builds the

situation is different. Let's look at the build script for the  project and execute it:water



Page 348 of 448

Example 57.2. Build script of water (parent) project

build.gradle

Closure cl = { task -> println  }"I'm $task.project.name"
task hello << cl
project( ) {':bluewhale'
    task hello << cl
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale

Gradle allows you to access any project of the multi-project build from any build script. The Project API

provides a method called , which takes a path as an argument and returns the Project object for thisproject()

path. The capability to configure a project build from any build script we call .cross project configuration

Gradle implements this via .configuration injection

We are not that happy with the build script of the  project. It is inconvenient to add the task explicitly forwater

every project. We can do better. Let's first add another project called  to our multi-project build.krill

Example 57.3. Multi-project tree - water, bluewhale & krill projects

Build layout

water/
  build.gradle
  settings.gradle
  bluewhale/
  krill/

Note:  The code for this example can be found at samples/userguide/multiproject/addKrill/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'bluewhale' 'krill'

Now we rewrite the  build script and boil it down to a single line.water



Page 349 of 448

Example 57.4. Water project build script

build.gradle

allprojects {
    task hello << { task -> println  }"I'm $task.project.name"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
I'm krill

Is this cool or is this cool? And how does this work? The Project API provides a property allprojects

which returns a list with the current project and all its subprojects underneath it. If you call allprojects

with a closure, the statements of the closure are delegated to the projects associated with . Youallprojects

could also do an iteration via , but that would be more verbose.allprojects.each

Other build systems use inheritance as the primary means for defining common behavior. We also offer

inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of

defining common behavior. We think it provides a very powerful and flexible way of configuring multiproject

builds.

Another possibilty for sharing configuration is to use a common external script. See Section 14.3, “Configuring

 for more information.the project using an external build script”

57.2. Subproject configuration
The Project API also provides a property for accessing the subprojects only.

57.2.1. Defining common behavior

Example 57.5. Defining common behavior of all projects and subprojects

build.gradle

allprojects {
    task hello << {task -> println  }"I'm $task.project.name"
}
subprojects {
    hello << {println }"- I depend on water"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
I'm krill
- I depend on water



Page 350 of 448

You may notice that there are two code snippets referencing the “ ” task. The first one, which uses the “hello task

” keyword, constructs the task and provides it's base configuration. The second piece doesn't use the “ ”task

keyword, as it is further configuring the existing “ ” task. You may only construct a task once in ahello

project, but you may any number of code blocks providing additional configuration.

57.2.2. Adding specific behavior

You can add specific behavior on top of the common behavior. Usually we put the project specific behavior in

the build script of the project where we want to apply this specific behavior. But as we have already seen, we

don't have to do it this way. We could add project specific behavior for the  project like this:bluewhale

Example 57.6. Defining specific behaviour for particular project

build.gradle

allprojects {
    task hello << {task -> println  }"I'm $task.project.name"
}
subprojects {
    hello << {println }"- I depend on water"
}
project( ).hello << {':bluewhale'
    println "- I'm the largest animal that has ever lived on this planet."
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water

As we have said, we usually prefer to put project specific behavior into the build script of this project. Let's

refactor and also add some project specific behavior to the  project.krill



Page 351 of 448

Example 57.7. Defining specific behaviour for project krill

Build layout

water/
  build.gradle
  settings.gradle
  bluewhale/
    build.gradle
  krill/
    build.gradle

Note:  The code for this example can be found at samples/userguide/multiproject/spreadSpecifics/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'bluewhale' 'krill'

bluewhale/build.gradle

hello.doLast {
  println "- I'm the largest animal that has ever lived on this planet."
}

krill/build.gradle

hello.doLast {
  println "- The weight of my species in summer is twice as heavy as all human beings."
}

build.gradle

allprojects {
    task hello << {task -> println  }"I'm $task.project.name"
}
subprojects {
    hello << {println }"- I depend on water"
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.

57.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called  and addtropicalFish

more behavior to the build via the build script of the  project.water



Page 352 of 448

57.2.3.1. Filtering by name

Example 57.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

water/
  build.gradle
  settings.gradle
  bluewhale/
    build.gradle
  krill/
    build.gradle
  tropicalFish/

Note:  The code for this example can be found at samples/userguide/multiproject/addTropical/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

build.gradle

allprojects {
    task hello << {task -> println  }"I'm $task.project.name"
}
subprojects {
    hello << {println }"- I depend on water"
}
configure(subprojects.findAll {it.name != }) {'tropicalFish'
    hello << {println }'- I love to spend time in the arctic waters.'
}

Output of gradle -q hello

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I love to spend time in the arctic waters.
- I'm the largest animal that has ever lived on this planet.
I'm krill
- I depend on water
- I love to spend time in the arctic waters.
- The weight of my species in summer is twice as heavy as all human beings.
I'm tropicalFish
- I depend on water

The  method takes a list as an argument and applies the configuration to the projects in this list.configure()

57.2.3.2. Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See Section 13.4.2,

 for more information on extra properties.)“Extra properties”



Page 353 of 448

Example 57.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

water/
  build.gradle
  settings.gradle
  bluewhale/
    build.gradle
  krill/
    build.gradle
  tropicalFish/
    build.gradle

Note:  The code for this example can be found at samples/userguide/multiproject/tropicalWithProperties/water

in the ‘-all’ distribution of Gradle.

settings.gradle

include , , 'bluewhale' 'krill' 'tropicalFish'

bluewhale/build.gradle

ext.arctic = true
hello.doLast {
  println "- I'm the largest animal that has ever lived on this planet."
}

krill/build.gradle

ext.arctic = true
hello.doLast {
    println "- The weight of my species in summer is twice as heavy as all human beings."
}

tropicalFish/build.gradle

ext.arctic = false

build.gradle

allprojects {
    task hello << {task -> println  }"I'm $task.project.name"
}
subprojects {
    hello {
        doLast {println }"- I depend on water"
        afterEvaluate { Project project ->
             (project.arctic) { doLast {if
                println  }'- I love to spend time in the arctic waters.'
            }
        }
    }
}

Output of gradle -q hello



Page 354 of 448

> gradle -q hello
I'm water
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

In the build file of the  project we use an  notification. This means that the closure wewater afterEvaluate

are passing gets evaluated  the build scripts of the subproject are evaluated. As the property  is setafter arctic

in those build scripts, we have to do it this way. You will find more on this topic in Section 57.6, “Dependencies

- Which dependencies?”

57.3. Execution rules for multi-project builds
When we executed the  task from the root project dir, things behaved in an intuitive way. All the hello hello

tasks of the different projects were executed. Let's switch to the  dir and see what happens if webluewhale

execute Gradle from there.

Example 57.10. Running build from subproject

Output of gradle -q hello

> gradle -q hello
I'm bluewhale
- I depend on water
- I'm the largest animal that has ever lived on this planet.
- I love to spend time in the arctic waters.

The basic rule behind Gradle's behavior is simple. Gradle looks down the hierarchy, starting with the current

, for tasks with the name  and executes them. One thing is very important to note. Gradle dir hello always

evaluates  project of the multi-project build and creates all existing task objects. Then, according to theevery

task name arguments and the current dir, Gradle filters the tasks which should be executed. Because of Gradle's

cross project configuration  project has to be evaluated before  task gets executed. We will have aevery any

closer look at this in the next section. Let's now have our last marine example. Let's add a task to bluewhale

and .krill



Page 355 of 448

Example 57.11. Evaluation and execution of projects

bluewhale/build.gradle

ext.arctic = true
hello << { println  }"- I'm the largest animal that has ever lived on this planet."

task distanceToIceberg << {
    println '20 nautical miles'
}

krill/build.gradle

ext.arctic = true
hello << {
    println "- The weight of my species in summer is twice as heavy as all human beings."
}

task distanceToIceberg << {
    println '5 nautical miles'
}

Output of gradle -q distanceToIceberg

> gradle -q distanceToIceberg
20 nautical miles
5 nautical miles

Here's the output without the  option:-q

Example 57.12. Evaluation and execution of projects

Output of gradle distanceToIceberg

> gradle distanceToIceberg
:bluewhale:distanceToIceberg
20 nautical miles
:krill:distanceToIceberg
5 nautical miles

BUILD SUCCESSFUL

Total time: 1 secs

The build is executed from the  project. Neither  nor  have a task with the namewater water tropicalFish

. Gradle does not care. The simple rule mentioned already above is: Execute all tasksdistanceToIceberg

down the hierarchy which have this name. Only complain if there is  such task!no

57.4. Running tasks by their absolute path
As we have seen, you can run a multi-project build by entering any subproject dir and execute the build from

there. All matching task names of the project hierarchy starting with the current dir are executed. But Gradle

also offers to execute tasks by their absolute path (see also ):Section 57.5, “Project and task paths”



Page 356 of 448

Example 57.13. Running tasks by their absolute path

Output of gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello
I'm water
I'm krill
- I depend on water
- The weight of my species in summer is twice as heavy as all human beings.
- I love to spend time in the arctic waters.
I'm tropicalFish
- I depend on water

The build is executed from the  project. We execute the  tasks of the , the tropicalFish hello water krill

and the  project. The first two tasks are specified by their absolute path, the last task istropicalFish

executed using the name matching mechanism described above.

57.5. Project and task paths
A project path has the following pattern: It starts with an optional colon, which denotes the root project. The

root project is the only project in a path that is not specified by its name. The rest of a project path is a

colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of a task is simply its project path plus the task name, like “ ”. Within a project:bluewhale:hello

you can address a task of the same project just by its name. This is interpreted as a relative path.

Originally Gradle used the  character as a natural path separator. With the introduction of directory tasks'/'

(see ) this was no longer possible, as the name of the directory task containsSection 14.1, “Directory creation”

the  character.'/'

57.6. Dependencies - Which dependencies?
The examples from the last section were special, as the projects had no . They had onlyExecution Dependencies

. The following sections illustrate the differences between these two types ofConfiguration Dependencies

dependencies.



Page 357 of 448

57.6.1. Execution dependencies

57.6.1.1. Dependencies and execution order

Example 57.14. Dependencies and execution order

Build layout

messages/
  settings.gradle
  consumer/
    build.gradle
  producer/
    build.gradle

Note:  The code for this example can be found at samples/userguide/multiproject/dependencies/firstMessages/messages

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action << {
    println( )"Consuming message: ${rootProject.producerMessage}"
}

producer/build.gradle

task action << {
    println "Producing message:"
    rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q action

> gradle -q action
Consuming message: null
Producing message:

This didn't quite do what we want. If nothing else is defined, Gradle executes the task in alphanumeric order.

Therefore, Gradle will execute “ ” before “ ”. Let's try to solve:consumer:action :producer:action

this with a hack and rename the producer project to “ ”.aProducer



Page 358 of 448

Example 57.15. Dependencies and execution order

Build layout

messages/
  settings.gradle
  aProducer/
    build.gradle
  consumer/
    build.gradle

settings.gradle

include , 'consumer' 'aProducer'

aProducer/build.gradle

task action << {
    println "Producing message:"
    rootProject.producerMessage = 'Watch the order of execution.'
}

consumer/build.gradle

task action << {
    println( )"Consuming message: ${rootProject.producerMessage}"
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

We can show where this hack doesn't work if we now switch to the  dir and execute the build.consumer

Example 57.16. Dependencies and execution order

Output of gradle -q action

> gradle -q action
Consuming message: null

The problem is that the two “ ” tasks are unrelated. If you execute the build from the “ ”action messages

project Gradle executes them both because they have the same name and they are down the hierarchy. In the last

example only one “ ” task was down the hierarchy and therefore it was the only task that was executed.action

We need something better than this hack.



Page 359 of 448

57.6.1.2. Declaring dependencies

Example 57.17. Declaring dependencies

Build layout

messages/
  settings.gradle
  consumer/
    build.gradle
  producer/
    build.gradle

Note:  The code for this example can be found at samples/userguide/multiproject/dependencies/messagesWithDependencies/messages

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'consumer' 'producer'

consumer/build.gradle

task action(dependsOn: ) << {":producer:action"
    println( )"Consuming message: ${rootProject.producerMessage}"
}

producer/build.gradle

task action << {
    println "Producing message:"
    rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

Running this from the  directory gives:consumer

Example 57.18. Declaring dependencies

Output of gradle -q action

> gradle -q action
Producing message:
Consuming message: Watch the order of execution.

This is now working better because we have declared that the “ ” task in the “ ” project hasaction consumer

an  on the “ ” task in the “ ” project.execution dependency action producer



Page 360 of 448

57.6.1.3. The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's change

the naming of our tasks and execute the build.

Example 57.19. Cross project task dependencies

consumer/build.gradle

task consume(dependsOn: ) << {':producer:produce'
    println( )"Consuming message: ${rootProject.producerMessage}"
}

producer/build.gradle

task produce << {
    println "Producing message:"
    rootProject.producerMessage = 'Watch the order of execution.'
}

Output of gradle -q consume

> gradle -q consume
Producing message:
Consuming message: Watch the order of execution.

57.6.2. Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter  land. We add a property toJava

the “ ” project and create a configuration time dependency from “ ” to “ ”.producer consumer producer

Example 57.20. Configuration time dependencies

consumer/build.gradle

def message = rootProject.producerMessage

task consume << {
    println(  + message)"Consuming message: "
}

producer/build.gradle

rootProject.producerMessage = 'Watch the order of evaluation.'

Output of gradle -q consume

> gradle -q consume
Consuming message: null

The default  order of projects is alphanumeric (for the same nesting level). Therefore the “evaluation consumer

” project is evaluated before the “ ” project and the “ ” value is set  it isproducer producerMessage after

read by the “ ” project. Gradle offers a solution for this.consumer



Page 361 of 448

Example 57.21. Configuration time dependencies - evaluationDependsOn

consumer/build.gradle

evaluationDependsOn( )':producer'

def message = rootProject.producerMessage

task consume << {
    println(  + message)"Consuming message: "
}

Output of gradle -q consume

> gradle -q consume
Consuming message: Watch the order of evaluation.

The use of the “ ” command results in the evaluation of the “ ” project evaluationDependsOn producer

 the “ ” project is evaluated. This example is a bit contrived to show the mechanism. In before consumer this

case there would be an easier solution by reading the key property at execution time.

Example 57.22. Configuration time dependencies

consumer/build.gradle

task consume << {
    println( )"Consuming message: ${rootProject.producerMessage}"
}

Output of gradle -q consume

> gradle -q consume
Consuming message: Watch the order of evaluation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies are

between projects whereas execution dependencies are always resolved to task dependencies. Also note that all

projects are always configured, even when you start the build from a subproject. The default configuration order

is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “ ”evaluationDependsOnChildren()

method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common use

case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin). If you

declare with  a  between different projects, the default behavior of thisdependsOn execution dependency

method is to also create a  dependency between the two projects. Therefore it is likely that youconfiguration

don't have to define configuration dependencies explicitly.

57.6.3. Real life examples

Gradle's multi-project features are driven by real life use cases. One good example consists of two web

application projects and a parent project that creates a distribution including the two web applications.  For[ ]21

the example we use only one build script and do .cross project configuration



Page 362 of 448

Example 57.23. Dependencies - real life example - crossproject configuration

Build layout

webDist/
  settings.gradle
  build.gradle
  date/
    src/main/java/
      org/gradle/sample/
        DateServlet.java
  hello/
    src/main/java/
      org/gradle/sample/
        HelloServlet.java

Note:  The code for this example can be found at samples/userguide/multiproject/dependencies/webDist

in the ‘-all’ distribution of Gradle.

settings.gradle

include , 'date' 'hello'

build.gradle

allprojects {
    apply plugin: 'java'
    group = 'org.gradle.sample'
    version = '1.0'
}

subprojects {
    apply plugin: 'war'
    repositories {
        mavenCentral()
    }
    dependencies {
        compile "javax.servlet:servlet-api:2.5"
    }
}

task explodedDist(dependsOn: assemble) << {
    File explodedDist = mkdir( )"$buildDir/explodedDist"
    subprojects.each {project ->
        project.tasks.withType(Jar).each {archiveTask ->
            copy {
                from archiveTask.archivePath
                into explodedDist
            }
        }
    }
}

We have an interesting set of dependencies. Obviously the  and  projects have a date hello configuration

dependency on , as all the build logic for the webapp projects is injected by . The webDist webDist execution

dependency is in the other direction, as  depends on the build artifacts of  and . There iswebDist date hello

even a third dependency.  has a  dependency on  and  because it needs towebDist configuration date hello



Page 363 of 448

know the . But it asks for this information at . Therefore we have no circulararchivePath execution time

dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system does

not support these patterns, you either can't solve your problem or you need to do ugly hacks which are hard to

maintain and massively impair your productivity as a build master.

57.7. Project lib dependencies
What if one project needs the jar produced by another project in its compile path, and not just the jar but also the

transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project builds. As

already mentioned in , Gradle offers project lib dependencies for this.Section 51.4.3, “Project dependencies”

Example 57.24. Project lib dependencies

Build layout

java/
  settings.gradle
  build.gradle
  api/
    src/main/java/
      org/gradle/sample/
        api/
          Person.java
        apiImpl/
          PersonImpl.java
  services/personService/
    src/
      main/java/
        org/gradle/sample/services/
          PersonService.java
      test/java/
        org/gradle/sample/services/
          PersonServiceTest.java
  shared/
    src/main/java/
      org/gradle/sample/shared/
        Helper.java

Note:  The code for this example can be found at samples/userguide/multiproject/dependencies/java

in the ‘-all’ distribution of Gradle.

We have the projects “ ”, “ ” and “ ”. The “ ” project has a libshared api personService personService

dependency on the other two projects. The “ ” project has a lib dependency on the “ ” project. api shared [ ]22



Page 364 of 448

Example 57.25. Project lib dependencies

settings.gradle

include , , 'api' 'shared' 'services:personService'

build.gradle

subprojects {
    apply plugin: 'java'
    group = 'org.gradle.sample'
    version = '1.0'
    repositories {
        mavenCentral()
    }
    dependencies {
        testCompile "junit:junit:4.11"
    }
}

project( ) {':api'
    dependencies {
        compile project( )':shared'
    }
}

project( ) {':services:personService'
    dependencies {
        compile project( ), project( )':shared' ':api'
    }
}

All the build logic is in the “ ” file of the root project.  A “ ” dependency is a specialbuild.gradle [ ]23 lib

form of an execution dependency. It causes the other project to be built first and adds the jar with the classes of

the other project to the classpath. It also adds the dependencies of the other project to the classpath. So you can

enter the “ ” directory and trigger a “ ”. First the “ ” project is built and then theapi gradle compile shared

“ ” project is built. Project dependencies enable partial multi-project builds.api

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers this to you:



Page 365 of 448

Example 57.26. Fine grained control over dependencies

build.gradle

subprojects {
    apply plugin: 'java'
    group = 'org.gradle.sample'
    version = '1.0'
}

project( ) {':api'
    configurations {
        spi
    }
    dependencies {
        compile project( )':shared'
    }
    task spiJar(type: Jar) {
        baseName = 'api-spi'
        dependsOn classes
        from sourceSets.main.output
        include( )'org/gradle/sample/api/**'
    }
    artifacts {
        spi spiJar
    }
}

project( ) {':services:personService'
    dependencies {
        compile project( )':shared'
        compile project(path: , configuration: )':api' 'spi'
        testCompile , project( )"junit:junit:4.11" ':api'
    }
}

The Java plugin adds per default a jar to your project libraries which contains all the classes. In this example we

create an  library containing only the interfaces of the “ ” project. We assign this library to a new additional api

. For the person service we declare that the project should be compiled only againstdependency configuration

the “ ” interfaces but tested with all classes from “ ”.api api

57.7.1. Disabling the build of dependency projects

Sometimes you don't want depended on projects to be built when doing a partial build. To disable the build of

the depended on projects you can run Gradle with the  option.-a

57.8. Parallel project execution
With more and more CPU cores available on developer desktops and CI servers, it is important that Gradle is

able to fully utilise these processing resources. More specifically, the parallel execution attempts to:

Reduce total build time for a multi-project build where execution is IO bound or otherwise does not

consume all available CPU resources.

Provide faster feedback for execution of small projects without awaiting completion of other projects.



Page 366 of 448

Although Gradle already offers parallel test execution via  the featureTest.setMaxParallelForks()

described in this section is parallel execution at a project level. Parallel execution is an incubating feature.

Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in

parallel (see also: ). While parallel execution does not strictly requireSection  57.9, “Decoupled Projects”

decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be

available for fully decoupled projects. Such features include:

Section 57.1.1.1, “Configuration on demand”.

Configuration of projects in parallel.

Re-use of configuration for unchanged projects.

Project-level up-to-date checks.

Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use the parallel mode. You can use the

command line argument ( ) or configure your build environment (Appendix  D, Gradle Command Line

). Unless you provide a specific numberSection 20.1, “Configuring the build environment via gradle.properties”

of parallel threads Gradle attempts to choose the right number based on available CPU cores. Every parallel

worker exclusively owns a given project while executing a task. This means that 2 tasks from the same project

are never executed in parallel. Therefore only multi-project builds can take advantage of parallel execution.

Task dependencies are fully supported and parallel workers will start executing upstream tasks first. Bear in

mind that the alphabetical scheduling of decoupled tasks, known from the sequential execution, does not really

work in parallel mode. You need to make sure the task dependencies are declared correctly to avoid ordering

issues.

57.9. Decoupled Projects
Gradle allows any project to access any other project during both the configuration and execution phases. While

this provides a great deal of power and flexibility to the build author, it also limits the flexibility that Gradle has

when building those projects. For instance, this effectively prevents Gradle from correctly building multiple

projects in parallel, configuring only a subset of projects, or from substituting a pre-built artifact in place of a

project dependency.

Two projects are said to be  if they do not directly access each other's project model. Decoupleddecoupled

projects may only interact in terms of declared dependencies: project dependencies (Section 51.4.3, “Project

) and/or task dependencies ( ). Any other form of projectdependencies” Section  6.5, “Task dependencies”

interaction (i.e. by modifying another project object or by reading a value from another project object) causes

the projects to be coupled. The consequence of coupling during the configuration phase is that if gradle is

invoked with the 'configuration on demand' option, the result of the build can be flawed in several ways. The

consequence of coupling during execution phase is that if gradle is invoked with the parallel option, one project

task runs too late to influence a task of a project building in parallel. Gradle does not attempt to detect coupling

and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (Section 57.1, “Cross project

). It may not be immediately apparent, but using key Gradle features like the  andconfiguration” allprojects

 keywords automatically cause your projects to be coupled. This is because these keywords aresubprojects

used in a  file, which defines a project. Often this is a “root project” that does nothing morebuild.gradle

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks(int)


Page 367 of 448

than define common configuration, but as far as Gradle is concerned this root project is still a fully-fledged

project, and by using  that project is effectively coupled to all other projects. Coupling of theallprojects

root project to subprojects does not impact 'configuration on demand', but using the  and allprojects subprojects

in any subproject's  file will have an impact.build.gradle

This means that using any form of shared build script logic or configuration injection ( , allprojects subprojects

, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide

features that take advantage of decoupled projects, we will also introduce new features to help you to solve

common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and

'configuration on demand' options, follow these recommendations:

Avoid a subproject's  referencing other subprojects; prefering cross configuration from thebuild.gradle

root project.

Avoid changing the configuration of other projects at execution time.

57.10. Multi-Project Building and Testing
The  task of the Java plugin is typically used to compile, test, and perform code style checks (if thebuild

CodeQuality plugin is used) of a single project. In multi-project builds you may often want to do all of these

tasks across a range of projects. The  and  tasks can help with this.buildNeeded buildDependents

Look at . In this example, the “ ”Example 57.25, “Project lib dependencies” :services:personservice

project depends on both the “ ” and “ ” projects. The “ ” project also depends on the “:api :shared :api :shared

” project.

Assume you are working on a single project, the “ ” project. You have been making changes, but have not:api

built the entire project since performing a clean. You want to build any necessary supporting jars, but only

perform code quality and unit tests on the project you have changed. The  task does this.build



Page 368 of 448

Example 57.27. Build and Test Single Project

Output of gradle :api:build

> gradle :api:build
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build

BUILD SUCCESSFUL

Total time: 1 secs

While you are working in a typical development cycle repeatedly building and testing changes to the “ ”:api

project (knowing that you are only changing files in this one project), you may not want to even suffer the

expense of building “ ” to see what has changed in the “ ” project. Adding the “:shared:compile :shared -a

” option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to re-build the

depended on projects.

Example 57.28. Partial Build and Test Single Project

Output of gradle -a :api:build

> gradle -a :api:build
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build

BUILD SUCCESSFUL

Total time: 1 secs

If you have just gotten the latest version of source from your version control system which included changes in

other projects that “ ” depends on, you might want to not only build all the projects you depend on, but test:api

them as well. The  task also tests all the projects from the project lib dependencies of thebuildNeeded

testRuntime configuration.



Page 369 of 448

Example 57.29. Build and Test Depended On Projects

Output of gradle :api:buildNeeded

> gradle :api:buildNeeded
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build
:shared:assemble
:shared:compileTestJava
:shared:processTestResources
:shared:testClasses
:shared:test
:shared:check
:shared:build
:shared:buildNeeded
:api:buildNeeded

BUILD SUCCESSFUL

Total time: 1 secs

You also might want to refactor some part of the “ ” project that is used in other projects. If you make:api

these types of changes, it is not sufficient to test just the “ ” project, you also need to test all projects that:api

depend on the “ ” project. The  task also tests all the projects that have a project lib:api buildDependents

dependency (in the testRuntime configuration) on the specified project.



Page 370 of 448

Example 57.30. Build and Test Dependent Projects

Output of gradle :api:buildDependents

> gradle :api:buildDependents
:shared:compileJava
:shared:processResources
:shared:classes
:shared:jar
:api:compileJava
:api:processResources
:api:classes
:api:jar
:api:assemble
:api:compileTestJava
:api:processTestResources
:api:testClasses
:api:test
:api:check
:api:build
:services:personService:compileJava
:services:personService:processResources
:services:personService:classes
:services:personService:jar
:services:personService:assemble
:services:personService:compileTestJava
:services:personService:processTestResources
:services:personService:testClasses
:services:personService:test
:services:personService:check
:services:personService:build
:services:personService:buildDependents
:api:buildDependents

BUILD SUCCESSFUL

Total time: 1 secs

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder

will cause that same named task to be run on all the children. So you can just run “ ” to buildgradle build

and test all projects.

57.11. Multi Project and buildSrc
 tells us that we can place build logic to be compiledSection 60.3, “Build sources in the  project”buildSrc

and tested in the special  directory. In a multi project build, there can only be one buildSrc buildSrc

directory which must be located in the root directory.

57.12. Property and method inheritance
Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to

configuration injection. But we think that the model of inheritance does not reflect the problem space of

multi-project builds very well. In a future edition of this user guide we might write more about this.



Page 371 of 448

Method inheritance might be interesting to use as Gradle's  does not support methodsConfiguration Injection

yet (but will in a future release).

You might be wondering why we have implemented a feature we obviously don't like that much. One reason is

that it is offered by other tools and we want to have the check mark in a feature comparison :). And we like to

offer our users a choice.

57.13. Summary
Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for this

chapter is that multi-project builds with Gradle are usually  difficult. There are five elements you need tonot

remember: , , , allprojects subprojects evaluationDependsOn evaluationDependsOnChildren

and project lib dependencies.  With those elements, and keeping in mind that Gradle has a distinct[ ]24

configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory

Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[ ] 21 The real use case we had, was using , where you need a separate war for eachhttp://lucene.apache.org/solr

index you are accessing. That was one reason why we have created a distribution of webapps. The Resin servlet

container allows us, to let such a distribution point to a base installation of the servlet container.

[ ] 22 “ ” is also a project, but we use it just as a container. It has no build script and gets nothingservices

injected by another build script.

[ ] 23 We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the build

script of the respective projects.

[ ] 24 So we are well in the range of the :)7 plus 2 Rule 

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two


Page 372 of 448

58
Writing Custom Task Classes

Gradle supports two types of task. One such type is the simple task, where you define the task with an action

closure. We have seen these in . For this type of task, the action closureChapter  6, Build Script Basics

determines the behaviour of the task. This type of task is good for implementing one-off tasks in your build

script.

The other type of task is the enhanced task, where the behaviour is built into the task, and the task provides

some properties which you can use to configure the behaviour. We have seen these in Chapter 15, More about

. Most Gradle plugins use enhanced tasks. With enhanced tasks, you don't need to implement the taskTasks

behaviour as you do with simple tasks. You simply declare the task and configure the task using its properties.

In this way, enhanced tasks let you reuse a piece of behaviour in many different places, possibly across different

builds.

The behaviour and properties of an enhanced task is defined by the task's class. When you declare an enhanced

task, you specify the type, or class of the task.

Implementing your own custom task class in Gradle is easy. You can implement a custom task class in pretty

much any language you like, provided it ends up compiled to bytecode. In our examples, we are going to use

Groovy as the implementation language, but you could use, for example, Java or Scala. In general, using

Groovy is the easiest option, because the Gradle API is designed to work well with Groovy.

58.1. Packaging a task class
There are several places where you can put the source for the task class.

Build script

You can include the task class directly in the build script. This has the benefit that the task class is

automatically compiled and included in the classpath of the build script without you having to do anything.

However, the task class is not visible outside the build script, and so you cannot reuse the task class outside

the build script it is defined in.

 projectbuildSrc

You can put the source for the task class in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the task class and making it available on the

classpath of the build script. The task class is visible to every build script used by the build. However, it is

not visible outside the build, and so you cannot reuse the task class outside the build it is defined in. Using

the  project approach separates the task declaration - that is, what the task should do - from thebuildSrc

task implementation - that is, how the task does it.



Page 373 of 448

See  for more details about the  project.Chapter 60, Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your task class. This project produces and publishes a JAR which you

can then use in multiple builds and share with others. Generally, this JAR might include some custom

plugins, or bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the task class in the build script, to keep things simple. Then we will look at

creating a standalone project.

58.2. Writing a simple task class
To implement a custom task class, you extend .DefaultTask

Example 58.1. Defining a custom task

build.gradle

class GreetingTask  DefaultTask {extends
}

This task doesn't do anything useful, so let's add some behaviour. To do so, we add a method to the task and

mark it with the  annotation. Gradle will call the method when the task executes. You don't haveTaskAction

to use a method to define the behaviour for the task. You could, for instance, call  or doFirst() doLast()

with a closure in the task constructor to add behaviour.

Example 58.2. A hello world task

build.gradle

task hello(type: GreetingTask)

 GreetingTask  DefaultTask {class extends
    @TaskAction
    def greet() {
        println 'hello from GreetingTask'
    }
}

Output of gradle -q hello

> gradle -q hello
hello from GreetingTask

Let's add a property to the task, so we can customize it. Tasks are simply POGOs, and when you declare a task,

you can set the properties or call methods on the task object. Here we add a  property, and set thegreeting

value when we declare the  task.greeting

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.DefaultTask.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/tasks/TaskAction.html


Page 374 of 448

Example 58.3. A customizable hello world task

build.gradle

// Use the default greeting
task hello(type: GreetingTask)

// Customize the greeting
task greeting(type: GreetingTask) {
    greeting = 'greetings from GreetingTask'
}

 GreetingTask  DefaultTask {class extends
    String greeting = 'hello from GreetingTask'

    @TaskAction
    def greet() {
        println greeting
    }
}

Output of gradle -q hello greeting

> gradle -q hello greeting
hello from GreetingTask
greetings from GreetingTask

58.3. A standalone project
Now we will move our task to a standalone project, so we can publish it and share it with others. This project is

simply a Groovy project that produces a JAR containing the task class. Here is a simple build script for the

project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

Example 58.4. A build for a custom task

build.gradle

apply plugin: 'groovy'

dependencies {
    compile gradleApi()
    compile localGroovy()
}

Note:  The code for this example can be found at  in the ‘-all’samples/customPlugin/plugin

distribution of Gradle.

We just follow the convention for where the source for the task class should go.



Page 375 of 448

Example 58.5. A custom task

src/main/groovy/org/gradle/GreetingTask.groovy

package org.gradle

 org.gradle.api.DefaultTaskimport
 org.gradle.api.tasks.TaskActionimport

 GreetingTask  DefaultTask {class extends
    String greeting = 'hello from GreetingTask'

    @TaskAction
    def greet() {
        println greeting
    }
}

58.3.1. Using your task class in another project

To use a task class in a build script, you need to add the class to the build script's classpath. To do this, you use a

 block, as described in . Thebuildscript { } Section 60.5, “External dependencies for the build script”

following example shows how you might do this when the JAR containing the task class has been published to a

local repository:

Example 58.6. Using a custom task in another project

build.gradle

buildscript {
    repositories {
        maven {
            url uri( )'../repo'
        }
    }
    dependencies {
        classpath group: , name: ,'org.gradle' 'customPlugin'
                  version: '1.0-SNAPSHOT'
    }
}

task greeting(type: org.gradle.GreetingTask) {
    greeting = 'howdy!'
}

58.3.2. Writing tests for your task class

You can use the  class to create  instances to use when you test your task class.ProjectBuilder Project

http://www.gradle.org/docs/2.3/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html


Page 376 of 448

Example 58.7. Testing a custom task

src/test/groovy/org/gradle/GreetingTaskTest.groovy

class GreetingTaskTest {
    @Test
      canAddTaskToProject() {public void
        Project project = ProjectBuilder.builder().build()
        def task = project.task( , type: GreetingTask)'greeting'
        assertTrue(task  GreetingTask)instanceof
    }
}

58.4. Incremental tasks

Incremental tasks are an  feature.incubating

Since the introduction of the implementation described above (early in the Gradle 1.6 release cycle),

discussions within the Gradle community have produced superior ideas for exposing the information

about changes to task implementors to what is described below. As such, the API for this feature will

almost certainly change in upcoming releases. However, please do experiment with the current

implementation and share your experiences with the Gradle community.

The feature incubation process, which is part of the Gradle feature lifecycle (see Appendix  C, The

), exists for this purpose of ensuring high quality final implementations throughFeature Lifecycle

incorporation of early user feedback.

With Gradle, it's very simple to implement a task that gets skipped when all of it's inputs and outputs are up to

date (see ). However, there are times when only a few inputSection 15.9, “Skipping tasks that are up-to-date”

files have changed since the last execution, and you'd like to avoid reprocessing all of the unchanged inputs.

This can be particularly useful for a transformer task, that converts input files to output files on a 1:1 basis.

If you'd like to optimise your build so that only out-of-date inputs are processed, you can do so with an 

.incremental task

58.4.1. Implementing an incremental task

For a task to process inputs incrementally, that task must contain an . This is a taskincremental task action

action method that contains a single  parameter, which indicates to Gradle thatIncrementalTaskInputs

the action will process the changed inputs only.

The incremental task action may supply an  action forIncrementalTaskInputs.outOfDate()

processing any input file that is out-of-date, and a  action thatIncrementalTaskInputs.removed()

executes for any input file that has been removed since the previous execution.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)


Page 377 of 448

Example 58.8. Defining an incremental task action

build.gradle

class IncrementalReverseTask  DefaultTask {extends
    @InputDirectory
    def File inputDir

    @OutputDirectory
    def File outputDir

    @Input
    def inputProperty

    @TaskAction
     execute(IncrementalTaskInputs inputs) {void
        println inputs.incremental ? "CHANGED inputs considered out of date"
                                   : "ALL inputs considered out of date"
        inputs.outOfDate { change ->
            println "out of date: ${change.file.name}"
            def targetFile =  File(outputDir, change.file.name)new
            targetFile.text = change.file.text.reverse()
        }

        inputs.removed { change ->
            println "removed: ${change.file.name}"
            def targetFile =  File(outputDir, change.file.name)new
            targetFile.delete()
        }
    }
}

Note:  The code for this example can be found at samples/userguide/tasks/incrementalTask

in the ‘-all’ distribution of Gradle.

For a simple transformer task like this, the task action simply needs to generate output files for any out-of-date

inputs, and delete output files for any removed inputs.

A task may only contain a single incremental task action.

58.4.2. Which inputs are considered out of date?

When Gradle has history of a previous task execution, and the only changes to the task execution context since

that execution are to input files, then Gradle is able to determine which input files need to be reprocessed by the

task. In this case, the  action will be executed for any input fileIncrementalTaskInputs.outOfDate()

that was  or , and the  action will be executed foradded modified IncrementalTaskInputs.removed()

any  input file.removed

However, there are many cases where Gradle is unable to determine which input files need to be reprocessed.

Examples include:

There is no history available from a previous execution.

You are building with a different version of Gradle. Currently, Gradle does not use task history from a

different version.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)


Page 378 of 448

An  criteria added to the task returns .upToDateWhen false

An input property has changed since the previous execution.

One or more output files have changed since the previous execution.

In any of these cases, Gradle will consider all of the input files to be . The outOfDate

 action will be executed for every input file, and the IncrementalTaskInputs.outOfDate()

 action will not be executed at all.IncrementalTaskInputs.removed()

You can check if Gradle was able to determine the incremental changes to input files with 

.IncrementalTaskInputs.isIncremental()

58.4.3. An incremental task in action

Given the incremental task implementation , we can explore the various change scenarios by example.above

Note that the various mutation tasks ('updateInputs', 'removeInput', etc) are only present for demonstration

purposes: these would not normally be part of your build script.

First, consider the  executed against a set of inputs for the first time. In thisIncrementalReverseTask

case, all inputs will be considered “out of date”:

Example 58.9. Running the incremental task for the first time

build.gradle

task incrementalReverse(type: IncrementalReverseTask) {
    inputDir = file( )'inputs'
    outputDir = file( )"$buildDir/outputs"
    inputProperty = project.properties[ ] ?: 'taskInputProperty' "original"
}

Build layout

incrementalTask/
  build.gradle
  inputs/
    1.txt
    2.txt
    3.txt

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse
ALL inputs considered out of date
out of date: 1.txt
out of date: 2.txt
out of date: 3.txt

Naturally when the task is executed again with no changes, then the entire task is up to date and no files are

reported to the task action:

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:incremental


Page 379 of 448

Example 58.10. Running the incremental task with unchanged inputs

Output of gradle -q incrementalReverse

> gradle -q incrementalReverse

When an input file is modified in some way or a new input file is added, then re-executing the task results in

those files being reported to :IncrementalTaskInputs.outOfDate()

Example 58.11. Running the incremental task with updated input files

build.gradle

task updateInputs() << {
    file( ).text = 'inputs/1.txt' "Changed content for existing file 1."
    file( ).text = 'inputs/4.txt' "Content for new file 4."
}

Output of gradle -q updateInputs incrementalReverse

> gradle -q updateInputs incrementalReverse
CHANGED inputs considered out of date
out of date: 1.txt
out of date: 4.txt

When an existing input file is removed, then re-executing the task results in that file being reported to 

:IncrementalTaskInputs.removed()

Example 58.12. Running the incremental task with an input file removed

build.gradle

task removeInput() << {
    file( ).delete()'inputs/3.txt'
}

Output of gradle -q removeInput incrementalReverse

> gradle -q removeInput incrementalReverse
CHANGED inputs considered out of date
removed: 3.txt

When an output file is deleted (or modified), then Gradle is unable to determine which input files are out of

date. In this case,  input files are reported to the  action, andall IncrementalTaskInputs.outOfDate()

no input files are reported to the  action:IncrementalTaskInputs.removed()

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)


Page 380 of 448

Example 58.13. Running the incremental task with an output file removed

build.gradle

task removeOutput() << {
    file( ).delete()"$buildDir/outputs/1.txt"
}

Output of gradle -q removeOutput incrementalReverse

> gradle -q removeOutput incrementalReverse
ALL inputs considered out of date
out of date: 1.txt
out of date: 2.txt
out of date: 3.txt

When a task input property is modified, Gradle is unable to determine how this property impacted the task

outputs, so all input files are assumed to be out of date. So similar to the changed output file example,  inputall

files are reported to the  action, and no input files are reportedIncrementalTaskInputs.outOfDate()

to the  action:IncrementalTaskInputs.removed()

Example 58.14. Running the incremental task with an input property changed

Output of gradle -q -PtaskInputProperty=changed incrementalReverse

> gradle -q -PtaskInputProperty=changed incrementalReverse
ALL inputs considered out of date
out of date: 1.txt
out of date: 2.txt
out of date: 3.txt

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:outOfDate(org.gradle.api.Action)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.incremental.IncrementalTaskInputs.html#org.gradle.api.tasks.incremental.IncrementalTaskInputs:removed(org.gradle.api.Action)


Page 381 of 448

59
Writing Custom Plugins

A Gradle plugin packages up reusable pieces of build logic, which can be used across many different projects

and builds. Gradle allows you to implement your own custom plugins, so you can reuse your build logic, and

share it with others.

You can implement a custom plugin in any language you like, provided the implementation ends up compiled as

bytecode. For the examples here, we are going to use Groovy as the implementation language. You could use

Java or Scala instead, if you want.

59.1. Packaging a plugin
There are several places where you can put the source for the plugin.

Build script

You can include the source for the plugin directly in the build script. This has the benefit that the plugin is

automatically compiled and included in the classpath of the build script without you having to do anything.

However, the plugin is not visible outside the build script, and so you cannot reuse the plugin outside the

build script it is defined in.

 projectbuildSrc

You can put the source for the plugin in the /buildSrc/src/main/groovyrootProjectDir

directory. Gradle will take care of compiling and testing the plugin and making it available on the classpath

of the build script. The plugin is visible to every build script used by the build. However, it is not visible

outside the build, and so you cannot reuse the plugin outside the build it is defined in.

See  for more details about the  project.Chapter 60, Organizing Build Logic buildSrc

Standalone project

You can create a separate project for your plugin. This project produces and publishes a JAR which you can

then use in multiple builds and share with others. Generally, this JAR might include some custom plugins,

or bundle several related task classes into a single library. Or some combination of the two.

In our examples, we will start with the plugin in the build script, to keep things simple. Then we will look at

creating a standalone project.



Page 382 of 448

59.2. Writing a simple plugin
To create a custom plugin, you need to write an implementation of . Gradle instantiates the plugin andPlugin

calls the plugin instance's  method when the plugin is used with a project. The projectPlugin.apply()

object is passed as a parameter, which the plugin can use to configure the project however it needs to. The

following sample contains a greeting plugin, which adds a  task to the project.hello

Example 59.1. A custom plugin

build.gradle

apply plugin: GreetingPlugin

 GreetingPlugin  Plugin<Project> {class implements
     apply(Project project) {void
        project.task( ) << {'hello'
            println "Hello from the GreetingPlugin"
        }
    }
}

Output of gradle -q hello

> gradle -q hello
Hello from the GreetingPlugin

One thing to note is that a new instance of a given plugin is created for each project it is applied to. Also note

that the  class is a generic type. This example has it receiving the  type as a type parameter. It'sPlugin Plugin

possible to write unusual custom plugins that take different type parameters, but this will be unlikely (until

someone figures out more creative things to do here).

59.3. Getting input from the build
Most plugins need to obtain some configuration from the build script. One method for doing this is to use 

. The Gradle  has an associated  object that helps keepextension objects Project ExtensionContainer

track of all the settings and properties being passed to plugins. You can capture user input by telling the

extension container about your plugin. To capture input, simply add a Java Bean compliant class into the

extension container's list of extensions. Groovy is a good language choice for a plugin because plain old Groovy

objects contain all the getter and setter methods that a Java Bean requires.

Let's add a simple extension object to the project. Here we add a  extension object to the project,greeting

which allows you to configure the greeting.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/plugins/ExtensionContainer.html


Page 383 of 448

Example 59.2. A custom plugin extension

build.gradle

apply plugin: GreetingPlugin

greeting.message = 'Hi from Gradle'

 GreetingPlugin  Plugin<Project> {class implements
     apply(Project project) {void
        // Add the 'greeting' extension object
        project.extensions.create( , GreetingPluginExtension)"greeting"
        // Add a task that uses the configuration
        project.task( ) << {'hello'
            println project.greeting.message
        }
    }
}

 GreetingPluginExtension {class
    def String message = 'Hello from GreetingPlugin'
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example,  is a plain old Groovy object with a field called .GreetingPluginExtension message

The extension object is added to the plugin list with the name . This object then becomes availablegreeting

as a project property with the same name as the extension object.

Oftentimes, you have several related properties you need to specify on a single plugin. Gradle adds a

configuration closure block for each extension object, so you can group settings together. The following

example shows you how this works.



Page 384 of 448

Example 59.3. A custom plugin with configuration closure

build.gradle

apply plugin: GreetingPlugin

greeting {
    message = 'Hi'
    greeter = 'Gradle'
}

 GreetingPlugin  Plugin<Project> {class implements
     apply(Project project) {void
        project.extensions.create( , GreetingPluginExtension)"greeting"
        project.task( ) << {'hello'
            println "${project.greeting.message} from ${project.greeting.greeter}"
        }
    }
}

 GreetingPluginExtension {class
    String message
    String greeter
}

Output of gradle -q hello

> gradle -q hello
Hi from Gradle

In this example, several settings can be grouped together within the  closure. The name of thegreeting

closure block in the build script ( ) needs to match the extension object name. Then, when thegreeting

closure is executed, the fields on the extension object will be mapped to the variables within the closure based

on the standard Groovy closure delegate feature.

59.4. Working with files in custom tasks and
plugins

When developing custom tasks and plugins, it's a good idea to be very flexible when accepting input

configuration for file locations. To do this, you can leverage the  method to resolve valuesProject.file()

to files as late as possible.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)


Page 385 of 448

Example 59.4. Evaluating file properties lazily

build.gradle

class GreetingToFileTask  DefaultTask {extends

    def destination

    File getDestination() {
        project.file(destination)
    }

    @TaskAction
    def greet() {
        def file = getDestination()
        file.parentFile.mkdirs()
        file.write "Hello!"
    }
}

task greet(type: GreetingToFileTask) {
    destination = { project.greetingFile }
}

task sayGreeting(dependsOn: greet) << {
    println file(greetingFile).text
}

ext.greetingFile = "$buildDir/hello.txt"

Output of gradle -q sayGreeting

> gradle -q sayGreeting
Hello!

In this example, we configure the  task  property as a closure, which is evaluated withgreet destination

the  method to turn the return value of the closure into a file object at the last minute. YouProject.file()

will notice that in the example above we specify the  property value after we have configuredgreetingFile

to use it for the task. This kind of lazy evaluation is a key benefit of accepting any value when setting a file

property, then resolving that value when reading the property.

59.5. A standalone project
Now we will move our plugin to a standalone project, so we can publish it and share it with others. This project

is simply a Groovy project that produces a JAR containing the plugin classes. Here is a simple build script for

the project. It applies the Groovy plugin, and adds the Gradle API as a compile-time dependency.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)


Page 386 of 448

Example 59.5. A build for a custom plugin

build.gradle

apply plugin: 'groovy'

dependencies {
    compile gradleApi()
    compile localGroovy()
}

Note:  The code for this example can be found at  in the ‘-all’samples/customPlugin/plugin

distribution of Gradle.

So how does Gradle find the  implementation? The answer is you need to provide a properties file inPlugin

the jar's  directory that matches the id of your plugin.META-INF/gradle-plugins

Example 59.6. Wiring for a custom plugin

src/main/resources/META-INF/gradle-plugins/org.samples.greeting.properties

implementation-class=org.gradle.GreetingPlugin

Notice that the properties filename matches the plugin id and is placed in the resources folder, and that the implementation-class

property identifies the  implementation class.Plugin

59.5.1. Creating a plugin id

Plugin ids are fully qualified in a manner similar to Java packages (i.e. a reverse domain name). This helps to

avoid collisions and provides a way to group plugins with similar ownership.

Your plugin id should be a combination of components that reflect namespace (a reasonable pointer to you or

your organization) and the name of the plugin it provides. For example if you had a Github account named

“foo” and your plugin was named “bar”, a suitable plugin id might be . Similarly, ifcom.github.foo.bar

the plugin was developed at the baz organization, the plugin id might be .org.baz.bar

Plugin ids should conform to the following:

May contain any alphanumeric character, '.', and '-'.

Must contain at least one '.' character separating the namespace from the name of the plugin.

Conventionally use a lowercase reverse domain name convention for the namespace.

Conventionally use only lowercase characters in the name.

org.gradle and  namespaces may not be used.com.gradleware

Cannot start or end with a '.' character.

Cannot contain consecutive '.' characters (i.e. '..').

Although there are conventional similarities between plugin ids and package names, package names are

generally more detailed than is necessary for a plugin id. For instance, it might seem reasonable to add “gradle”

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html


Page 387 of 448

as a component of your plugin id, but since plugin ids are only used for Gradle plugins, this would be

superfluous. Generally, a namespace that identifies ownership and a name are all that are needed for a good

plugin id.

59.5.2. Publishing your plugin

If you are publishing your plugin internally for use within your organization, you can publish it like any other

code artifact. See the  and  chapters on publishing artifacts.ivy maven

If you are interested in publishing your plugin to be used by the wider Gradle community, you can publish it to

the . This site provides the ability to search for and gather information about pluginsGradle plugin portal

contributed by the Gradle community. See the instructions  on how to make your plugin available on thishere

site.

59.5.3. Using your plugin in another project

To use a plugin in a build script, you need to add the plugin classes to the build script's classpath. To do this,

you use a “ ” block, as described in buildscript { } Section 21.4, “Applying plugins with the buildscript

. The following example shows how you might do this when the JAR containing the plugin has beenblock”

published to a local repository:

Example 59.7. Using a custom plugin in another project

build.gradle

buildscript {
    repositories {
        maven {
            url uri( )'../repo'
        }
    }
    dependencies {
        classpath group: , name: ,'org.gradle' 'customPlugin'
                  version: '1.0-SNAPSHOT'
    }
}
apply plugin: 'org.samples.greeting'

Alternatively, if your plugin is published to the plugin portal, you can use the incubating plugins DSL (see 

) to apply the plugin:Section 21.5, “Applying plugins with the plugins DSL”

Example 59.8. Applying a community plugin with the plugins DSL

build.gradle

plugins {
    id  version "com.jfrog.bintray" "0.4.1"
}

59.5.4. Writing tests for your plugin

You can use the  class to create  instances to use when you test your pluginProjectBuilder Project

implementation.

http://plugins.gradle.org
http://plugins.gradle.org/submit
http://www.gradle.org/docs/2.3/javadoc/org/gradle/testfixtures/ProjectBuilder.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html


Page 388 of 448

Example 59.9. Testing a custom plugin

src/test/groovy/org/gradle/GreetingPluginTest.groovy

class GreetingPluginTest {
    @Test
      greeterPluginAddsGreetingTaskToProject() {public void
        Project project = ProjectBuilder.builder().build()
        project.pluginManager.apply 'org.samples.greeting'

        assertTrue(project.tasks.hello  GreetingTask)instanceof
    }
}

59.5.5. Using the Java Gradle Plugin development plugin

You can use the incubating  to eliminate some of the boilerplateJava Gradle Plugin development plugin

declarations in your build script and provide some basic validations of plugin metadata. This plugin will

automatically apply the , add the  dependency to the compile configuration, andJava plugin gradleApi()

perform plugin metadata validations as part of the  task execution.jar

Example 59.10. Using the Java Gradle Plugin Development plugin

build.gradle

apply plugin: 'java-gradle-plugin'

59.6. Maintaining multiple domain objects
Gradle provides some utility classes for maintaining collections of objects, which work well with the Gradle

build language.



Page 389 of 448

Example 59.11. Managing domain objects

build.gradle

apply plugin: DocumentationPlugin

books {
    quickStart {
        sourceFile = file( )'src/docs/quick-start'
    }
    userGuide {

    }
    developerGuide {

    }
}

task books << {
    books.each { book ->
        println "$book.name -> $book.sourceFile"
    }
}

 DocumentationPlugin  Plugin<Project> {class implements
     apply(Project project) {void
        def books = project.container(Book)
        books.all {
            sourceFile = project.file( )"src/docs/$name"
        }
        project.extensions.books = books
    }
}

 Book {class
     String namefinal
    File sourceFile

    Book(String name) {
        .name = namethis
    }
}

Output of gradle -q books

> gradle -q books
developerGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/developerGuide
quickStart -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/quick-start
userGuide -> /home/user/gradle/samples/userguide/organizeBuildLogic/customPluginWithDomainObjectContainer/src/docs/userGuide

The  methods create instances of , that haveProject.container() NamedDomainObjectContainer

many useful methods for managing and configuring the objects. In order to use a type with any of the project.container

methods, it MUST expose a property named “ ” as the unique, and constant, name for the object. The name project.container(Class)

variant of the container method creates new instances by attempting to invoke the constructor of the class that

takes a single string argument, which is the desired name of the object. See the above link for project.container

method variants that allow custom instantiation strategies.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:container(java.lang.Class)
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.NamedDomainObjectContainer.html


Page 390 of 448

60
Organizing Build Logic

Gradle offers a variety of ways to organize your build logic. First of all you can put your build logic directly in

the action closure of a task. If a couple of tasks share the same logic you can extract this logic into a method. If

multiple projects of a multi-project build share some logic you can define this method in the parent project. If

the build logic gets too complex for being properly modeled by methods then you likely should implement your

logic with classes to encapsulate your logic.  Gradle makes this very easy. Just drop your classes in a certain[ ]25

directory and Gradle automatically compiles them and puts them in the classpath of your build script.

Here is a summary of the ways you can organise your build logic:

POGOs. You can declare and use plain old Groovy objects (POGOs) directly in your build script. The build

script is written in Groovy, after all, and Groovy provides you with lots of excellent ways to organize code.

Inherited properties and methods. In a multi-project build, sub-projects inherit the properties and methods of

their parent project.

Configuration injection. In a multi-project build, a project (usually the root project) can inject properties and

methods into another project.

 projectbuildSrc . Drop the source for your build classes into a certain directory and Gradle automatically

compiles them and includes them in the classpath of your build script.

Shared scripts. Define common configuration in an external build, and apply the script to multiple projects,

possibly across different builds.

Custom tasks. Put your build logic into a custom task, and reuse that task in multiple places.

Custom plugins. Put your build logic into a custom plugin, and apply that plugin to multiple projects. The

plugin must be in the classpath of your build script. You can achieve this either by using build sources

or by adding an  that contains the plugin.external library

Execute an external build. Execute another Gradle build from the current build.

External libraries. Use external libraries directly in your build file.

60.1. Inherited properties and methods
Any method or property defined in a project build script is also visible to all the sub-projects. You can use this

to define common configurations, and to extract build logic into methods which can be reused by the

sub-projects.



Page 391 of 448

Example 60.1. Using inherited properties and methods

build.gradle

// Define an extra property
ext.srcDirName = 'src/java'

// Define a method
def getSrcDir(project) {
     project.file(srcDirName)return
}

child/build.gradle

task show << {
    // Use inherited property
    println  + srcDirName'srcDirName: '

    // Use inherited method
    File srcDir = getSrcDir(project)
    println  + rootProject.relativePath(srcDir)'srcDir: '
}

Output of gradle -q show

> gradle -q show
srcDirName: src/java
srcDir: child/src/java

60.2. Injected configuration
You can use the configuration injection technique discussed in  and Section 57.1, “Cross project configuration”

 to inject properties and methods into various projects. This is generallySection 57.2, “Subproject configuration”

a better option than inheritance, for a number of reasons: The injection is explicit in the build script, You can

inject different logic into different projects, And you can inject any kind of configuration such as repositories,

plug-ins, tasks, and so on. The following sample shows how this works.



Page 392 of 448

Example 60.2. Using injected properties and methods

build.gradle

subprojects {
    // Define a new property
    ext.srcDirName = 'src/java'

    // Define a method using a closure as the method body
    ext.srcDir = { file(srcDirName) }

    // Define a task
    task show << {
        println  + project.path'project: '
        println  + srcDirName'srcDirName: '
        File srcDir = srcDir()
        println  + rootProject.relativePath(srcDir)'srcDir: '
    }
}

// Inject special case configuration into a particular project
project( ) {':child2'
    ext.srcDirName = "$srcDirName/legacy"
}

child1/build.gradle

// Use injected property and method. Here, we override the injected value
srcDirName = 'java'
def dir = srcDir()

Output of gradle -q show

> gradle -q show
project: :child1
srcDirName: java
srcDir: child1/java
project: :child2
srcDirName: src/java/legacy
srcDir: child2/src/java/legacy

60.3. Build sources in the  projectbuildSrc
When you run Gradle, it checks for the existence of a directory called . Gradle then automaticallybuildSrc

compiles and tests this code and puts it in the classpath of your build script. You don't need to provide any

further instruction. This can be a good place to add your custom tasks and plugins.

For multi-project builds there can be only one  directory, which has to be in the root projectbuildSrc

directory.

Listed below is the default build script that Gradle applies to the  project:buildSrc



Page 393 of 448

Figure 60.1. Default buildSrc build script

apply plugin: 'groovy'
dependencies {
    compile gradleApi()
    compile localGroovy()
}

This means that you can just put your build source code in this directory and stick to the layout convention for a

Java/Groovy project (see ).Table 23.4, “Java plugin - default project layout”

If you need more flexibility, you can provide your own . Gradle applies the default build scriptbuild.gradle

regardless of whether there is one specified. This means you only need to declare the extra things you need.

Below is an example. Notice that this example does not need to declare a dependency on the Gradle API, as this

is done by the default build script:

Example 60.3. Custom buildSrc build script

buildSrc/build.gradle

repositories {
    mavenCentral()
}

dependencies {
    testCompile 'junit:junit:4.11'
}

The  project can be a multi-project build, just like any other regular multi-project build. However,buildSrc

all of the projects that should be on the classpath of the actual build must be  dependencies of the rootruntime

project in . You can do this by adding this to the configuration of each project you wish to export:buildSrc

Example 60.4. Adding subprojects to the root buildSrc project

buildSrc/build.gradle

rootProject.dependencies {
  runtime project(path)
}

Note:  The code for this example can be found at  in the ‘-all’samples/multiProjectBuildSrc

distribution of Gradle.

60.4. Running another Gradle build from a build
You can use the  task. You can use either of the  or  properties to specifyGradleBuild dir buildFile

which build to execute, and the  property to specify which tasks to execute.tasks

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.GradleBuild.html


Page 394 of 448

Example 60.5. Running another build from a build

build.gradle

task build(type: GradleBuild) {
    buildFile = 'other.gradle'
    tasks = [ ]'hello'
}

other.gradle

task hello << {
    println "hello from the other build."
}

Output of gradle -q build

> gradle -q build
hello from the other build.

60.5. External dependencies for the build script
If your build script needs to use external libraries, you can add them to the script's classpath in the build script

itself. You do this using the  method, passing in a closure which declares the build scriptbuildscript()

classpath.

Example 60.6. Declaring external dependencies for the build script

build.gradle

buildscript {
    repositories {
        mavenCentral()
    }
    dependencies {
        classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'
    }
}

The closure passed to the  method configures a  instance. You declare thebuildscript() ScriptHandler

build script classpath by adding dependencies to the  configuration. This is the same way youclasspath

declare, for example, the Java compilation classpath. You can use any of the dependency types described in 

, except project dependencies.Section 51.4, “How to declare your dependencies”

Having declared the build script classpath, you can use the classes in your build script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the build

script classpath.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html


Page 395 of 448

Example 60.7. A build script with external dependencies

build.gradle

import org.apache.commons.codec.binary.Base64

buildscript {
    repositories {
        mavenCentral()
    }
    dependencies {
        classpath group: , name: , version: 'commons-codec' 'commons-codec' '1.2'
    }
}

task encode << {
    def [] encodedString =  Base6 ().encode( .getBytes())byte new 4 'hello world\n'
    println  String(encodedString)new
}

Output of gradle -q encode

> gradle -q encode
aGVsbG8gd29ybGQK

For multi-project builds, the dependencies declared in the a project's build script, are available to the build

scripts of all sub-projects.

60.6. Ant optional dependencies
For reasons we don't fully understand yet, external dependencies are not picked up by Ant's optional tasks. But

you can easily do it in another way. [ ]26



Page 396 of 448

Example 60.8. Ant optional dependencies

build.gradle

configurations {
    ftpAntTask
}

dependencies {
    ftpAntTask( ) {"org.apache.ant:ant-commons-net:1.9.3"
        module( ) {"commons-net:commons-net:1.4.1"
            dependencies "oro:oro:2.0.8:jar"
        }
    }
}

task ftp << {
    ant {
        taskdef(name: ,'ftp'
                classname: ,'org.apache.tools.ant.taskdefs.optional.net.FTP'
                classpath: configurations.ftpAntTask.asPath)
        ftp(server: , userid: , password: ) {"ftp.apache.org" "anonymous" "me@myorg.com"
            fileset(dir: )"htdocs/manual"
        }
    }
}

This is also a good example for the usage of client modules. The POM file in Maven Central for the

ant-commons-net task does not provide the right information for this use case.

60.7. Summary
Gradle offers you a variety of ways of organizing your build logic. You can choose what is right for your

domain and find the right balance between unnecessary indirections, and avoiding redundancy and a hard to

maintain code base. It is our experience that even very complex custom build logic is rarely shared between

different builds. Other build tools enforce a separation of this build logic into a separate project. Gradle spares

you this unnecessary overhead and indirection.

[ ] 25 Which might range from a single class to something very complex.

[ ] 26 In fact, we think this is a better solution. Only if your buildscript and Ant's optional task need the same

library would you have to define it twice. In such a case it would be nice if Ant's optional task would

automatically pick up the classpath defined in the “ ” file.gradle.settings



Page 397 of 448

61
Initialization Scripts

Gradle provides a powerful mechanism to allow customizing the build based on the current environment. This

mechanism also supports tools that wish to integrate with Gradle.

Note that this is completely different from the “ ” task provided by the “ ” incubating plugininit build-init

(see ).Chapter 47, Build Init Plugin

61.1. Basic usage
Initialization scripts (a.k.a. ) are similar to other scripts in Gradle. These scripts, however, are runinit scripts

before the build starts. Here are several possible uses:

Set up enterprise-wide configuration, such as where to find custom plugins.

Set up properties based on the current environment, such as a developer's machine vs. a continuous

integration server.

Supply personal information about the user that is required by the build, such as repository or database

authentication credentials.

Define machine specific details, such as where JDKs are installed.

Register build listeners. External tools that wish to listen to Gradle events might find this useful.

Register build loggers. You might wish to customize how Gradle logs the events that it generates.

One main limitation of init scripts is that they cannot access classes in the  project (see buildSrc Section 60.3,

 for details of this feature).“Build sources in the  project”buildSrc

61.2. Using an init script
There are several ways to use an init script:

Specify a file on the command line. The command line option is  or  followed by the-I --init-script

path to the script. The command line option can appear more than once, each time adding another init script.

Put a file called  in the  directory.init.gradle /.gradle/USER_HOME

Put a file that ends with  in the  directory..gradle /.gradle/init.d/USER_HOME

Put a file that ends with  in the  directory, in the Gradle distribution..gradle /init.d/GRADLE_HOME

This allows you to package up a custom Gradle distribution containing some custom build logic and plugins.

You can combine this with the  as a way to make custom logic available to all builds in yourGradle wrapper

enterprise.



Page 398 of 448

If more than one init script is found they will all be executed, in the order specified above. Scripts in a given

directory are executed in alphabetical order. This allows, for example, a tool to specify an init script on the

command line and the user to put one in their home directory for defining the environment and both scripts will

run when Gradle is executed.

61.3. Writing an init script
Similar to a Gradle build script, an init script is a Groovy script. Each init script has a  instanceGradle

associated with it. Any property reference and method call in the init script will delegate to this Gradle

instance.

Each init script also implements the  interface.Script

61.3.1. Configuring projects from an init script

You can use an init script to configure the projects in the build. This works in a similar way to configuring

projects in a multi-project build. The following sample shows how to perform extra configuration from an init

script  the projects are evaluated. This sample uses this feature to configure an extra repository to be usedbefore

only for certain environments.

Example 61.1. Using init script to perform extra configuration before projects are evaluated

build.gradle

repositories {
    mavenCentral()
}

task showRepos << {
    println "All repos:"
    println repositories.collect { it.name }
}

init.gradle

allprojects {
    repositories {
        mavenLocal()
    }
}

Output of gradle --init-script init.gradle -q showRepos

> gradle --init-script init.gradle -q showRepos
All repos:
[MavenLocal, MavenRepo]

61.4. External dependencies for the init script
In  it was explained how to add external dependenciesSection 60.5, “External dependencies for the build script”

to a build script. Init scripts can also declare dependencies. You do this with the  method,initscript()

passing in a closure which declares the init script classpath.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Script.html


Page 399 of 448

Example 61.2. Declaring external dependencies for an init script

init.gradle

initscript {
    repositories {
        mavenCentral()
    }
    dependencies {
        classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'
    }
}

The closure passed to the  method configures a  instance. You declare theinitscript() ScriptHandler

init script classpath by adding dependencies to the  configuration. This is the same way youclasspath

declare, for example, the Java compilation classpath. You can use any of the dependency types described in 

, except project dependencies.Section 51.4, “How to declare your dependencies”

Having declared the init script classpath, you can use the classes in your init script as you would any other

classes on the classpath. The following example adds to the previous example, and uses classes from the init

script classpath.

Example 61.3. An init script with external dependencies

init.gradle

import org.apache.commons.math.fraction.Fraction

initscript {
    repositories {
        mavenCentral()
    }
    dependencies {
        classpath group: , name: , version: 'org.apache.commons' 'commons-math' '2.0'
    }
}

println Fraction.ONE_FIFTH.multiply( )2

Output of gradle --init-script init.gradle -q doNothing

> gradle --init-script init.gradle -q doNothing
2 / 5

61.5. Init script plugins
Similar to a Gradle build script or a Gradle settings file, plugins can be applied on init scripts.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html


Page 400 of 448

Example 61.4. Using plugins in init scripts

init.gradle

apply plugin:EnterpriseRepositoryPlugin

 EnterpriseRepositoryPlugin  Plugin<Gradle> {class implements

      String ENTERPRISE_REPOSITORY_URL = private static "https://repo.gradle.org/gradle/repo"

     apply(Gradle gradle) {void
        // ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
        gradle.allprojects{ project ->
            project.repositories {

                // Remove all repositories not pointing to the enterprise repository url
                all { ArtifactRepository repo ->
                     (!(repo  MavenArtifactRepository) ||if instanceof
                          repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {
                        project.logger.lifecycle "Repository ${repo.url} removed. Only $ENTERPRISE_REPOSITORY_URL is allowed"
                        remove repo
                    }
                }

                // add the enterprise repository
                maven {
                    name "STANDARD_ENTERPRISE_REPO"
                    url ENTERPRISE_REPOSITORY_URL
                }
            }
        }
    }
}

build.gradle

repositories{
    mavenCentral()
}

 task showRepositories << {
    repositories.each{
        println "repository: ${it.name} ('${it.url}')"
    }
}

Output of gradle -q -I init.gradle showRepositories

> gradle -q -I init.gradle showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo')

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin instance's 

 method. The  object is passed as a parameter, which can be used to configure allPlugin.apply() gradle

aspects of a build. Of course, the applied plugin can be resolved as an external dependency as described in 

Section 61.4, “External dependencies for the init script”

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Plugin.html#apply(T)


Page 401 of 448

62
The Gradle Wrapper

The Gradle Wrapper (henceforth referred to as the “wrapper”) is the preferred way of starting a Gradle build.

The wrapper is a batch script on Windows, and a shell script for other operating systems. When you start a

Gradle build via the wrapper, Gradle will be automatically downloaded and used to run the build.

The wrapper is something you  check into version control. By distributing the wrapper with your project,should

anyone can work with it without needing to install Gradle beforehand. Even better, users of the build are

guaranteed to use the version of Gradle that the build was designed to work with. Of course, this is also great for

 servers (i.e. servers that regularly build your project) as it requires no configuration oncontinuous integration

the server.

You install the wrapper into your project by adding and configuring a  task in your build script, andWrapper

then executing it.

Example 62.1. Wrapper task

build.gradle

task wrapper(type: Wrapper) {
    gradleVersion = '2.0'
}

After such an execution you find the following new or updated files in your project directory (in case the default

configuration of the wrapper task is used).

Example 62.2. Wrapper generated files

Build layout

simple/
  gradlew
  gradlew.bat
  gradle/wrapper/
    gradle-wrapper.jar
    gradle-wrapper.properties

All of these files  be submitted to your version control system. This only needs to be done once. Aftershould

these files have been added to the project, the project should then be built with the added  command.gradlew

The  command can be used  the same way as the  command.gradlew exactly gradle

If you want to switch to a new version of Gradle you don't need to rerun the wrapper task. It is good enough to

change the respective entry in the  file, but if you want to take advantagegradle-wrapper.properties

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html


Page 402 of 448

of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper files.

62.1. Configuration
If you run Gradle with , the wrapper checks if a Gradle distribution for the wrapper is available. If so, itgradlew

delegates to the  command of this distribution with all the arguments passed originally to the gradle gradlew

command. If it didn't find a Gradle distribution, it will download it first.

When you configure the  task, you can specify the Gradle version you wish to use. The Wrapper gradlew

command will download the appropriate distribution from the Gradle repository. Alternatively, you can specify

the download URL of the Gradle distribution. The  command will use this URL to download thegradlew

distribution. If you specified neither a Gradle version nor download URL, the  command will downloadgradlew

whichever version of Gradle was used to generate the wrapper files.

For the details on how to configure the wrapper, see the  class in the API documentation.Wrapper

If you don't want any download to happen when your project is built via , simply add the Gradlegradlew

distribution zip to your version control at the location specified by your wrapper configuration. A relative URL

is supported - you can specify a distribution file relative to the location of gradle-wrapper.properties

file.

If you build via the wrapper, any existing Gradle distribution installed on the machine is ignored.

62.2. Unix file permissions
The Wrapper task adds appropriate file permissions to allow the execution of the  *NIX command.gradlew

Subversion preserves this file permission. We are not sure how other version control systems deal with this.

What should always work is to execute “ ”.sh gradlew

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.wrapper.Wrapper.html


Page 403 of 448

63
Embedding Gradle

63.1. Introduction to the Tooling API
The 1.0 milestone 3 release brought a new API called the tooling API, which you can use for embedding Gradle

into your own custom software. This API allows you to execute and monitor builds, and to query Gradle about

the details of a build. The main audience for this API will be IDEs, CI servers, other UI authors, or integration

testing of your Gradle plugins. However, it is open for anyone who needs to embed Gradle in their application.

A fundamental characteristic of the tooling API is that it operates in a version independent way. This means that

you can use the same API to work with different target versions of Gradle. The tooling API is Gradle wrapper

aware and, by default, uses the same target Gradle version as that used by the wrapper-powered project.

Some features that the tooling API provides today:

You can query Gradle for the details of a build, including the project hierarchy and the project dependencies,

external dependencies (including source and Javadoc jars), source directories and tasks of each project.

You can execute a build and listen to stdout and stderr logging and progress (e.g. the stuff shown in the

'status bar' when you run on the command line).

Tooling API can download and install the appropriate Gradle version, similar to the wrapper. Bear in mind

that the tooling API is wrapper aware so you should not need to configure a Gradle distribution directly.

The implementation is lightweight, with only a small number of dependencies. It is also a well-behaved

library, and makes no assumptions about your classloader structure or logging configuration. This makes the

API easy to bundle in your application.

In the future we may support other interesting features:

Performance. The API gives us the opportunity to do lots of caching, static analysis and preemptive work, to

make things faster for the user.

Better progress monitoring and build cancellation. For example, allowing test execution to be monitored.

Notifications when things in the build change, so that UIs and models can be updated. For example, your

Eclipse or IDEA project will update immediately, in the background.

Validating and prompting for user supplied configuration.

Prompting for and managing user credentials.



Page 404 of 448

63.2. Tooling API and the Gradle Build Daemon
Please take a look at . The Tooling API uses the daemon all the time. In fact,Chapter 19, The Gradle Daemon

you cannot officially use the Tooling API without the daemon. This means that subsequent calls to the Tooling

API, be it model building requests or task executing requests can be executed in the same long-living process. 

 contains more details about the daemon, specifically information on situationsChapter 19, The Gradle Daemon

when new daemons are forked.

63.3. Quickstart
As the tooling API is an interface for developers, the Javadoc is the main documentation for it. This is exactly

our intention - we don't expect this chapter to grow very much. Instead we will add more code samples and

improve the Javadoc documentation. The main entry point to the tooling API is the . YouGradleConnector

can navigate from there to find code samples and other instructions. Another very important set of resources are

the  that live in “ ”. These samples also specify all of thesamples $gradleHome/samples/toolingApi

required dependencies for the Tooling API, along with the suggested repositories to obtain the jars from.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/tooling/GradleConnector.html


Page 405 of 448

64
Comparing Builds

Build comparison support is an  feature. This means that it is incomplete and not yet at regularincubating

Gradle production quality. This also means that this Gradle User Guide chapter is a work in progress.

Gradle provides support for comparing the  (e.g. the produced binary archives) of two builds. Thereoutcomes

are several reasons why you may want to compare the outcomes of two builds. You may want to compare:

A build with a newer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something else

(i.e. migrating to Gradle).

The same Gradle build, with the same version, before and after a change to the build (i.e. testing build

changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade, migration

to Gradle or build change by understanding the differences in the outcomes. The comparison process produces a

HTML report outlining which outcomes were found to be identical and identifying the differences between

non-identical outcomes.

64.1. Definition of terms
The following are the terms used for build comparison and their definitions.

“Build”

In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable

“process” that produces observable “outcomes”. At least one of the builds in a comparison will be a Gradle

build.

“Build Outcome”

Something that happens in an observable manner during a build, such as the creation of a zip file or test

execution. These are the things that are compared.

“Source Build”

The build that comparisons are being made against, typically the build in its “current” state. In other words,

the left hand side of the comparison.

“Target Build”

The build that is being compared to the source build, typically the “proposed” build. In other words, the



Page 406 of 448

right hand side of the comparison.

“Host Build”

The Gradle build that executes the comparison process. It may be the same project as either the “target” or

“source” build or may be a completely separate project. It does not need to be the same Gradle version as the

“source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”

Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are

therefore meaningfully comparable.

“Uncompared Build Outcome”

A build outcome is uncompared if a logical equivalent from the other build cannot be found (e.g. a build

produces a zip file that the other build does not).

“Unknown Build Outcome”

A build outcome that cannot be understood by the host build. This can occur when the source or target build

is a newer Gradle version than the host build and that Gradle version exposes new outcome types. Unknown

build outcomes can be compared in so far as they can be identified to be logically equivalent to an unknown

build outcome in the other build, but no meaningful comparison of what the build outcome actually is can be

performed. Using the latest Gradle version for the host build will avoid encountering unknown build

outcomes.

64.2. Current Capabilities
As this is an  feature, a limited set of the eventual functionality has been implemented at this time.incubating

64.2.1. Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must

execute with Gradle newer or equal to version . The host build must be at least version .1.0 1.2

Future versions will provide support for executing builds from other build systems such as Apache Ant or

Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

64.2.2. Supported build outcomes

Only support for comparing build outcomes that are  archives is supported at this time. This includes , zip jar war

and  archives.ear

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were

executed, which tests failed, etc.)



Page 407 of 448

64.3. Comparing Gradle Builds
The  plugin can be used to facilitate a comparison between two Gradle builds.compare-gradle-builds

The plugin adds a  task named “ ” to the project. TheCompareGradleBuilds compareGradleBuilds

configuration of this task specifies what is to be compared. By default, it is configured to compare the current

build with itself using the current Gradle version by executing the tasks: “ ”.clean assemble

apply plugin: 'compare-gradle-builds'

This task can be configured to change what is compared.

compareGradleBuilds {
    sourceBuild {
        projectDir "/projects/project-a"
        gradleVersion "1.1"
    }
    targetBuild {
        projectDir "/projects/project-b"
        gradleVersion "1.2"
    }
}
        

The example above specifies a comparison between two different projects using two different Gradle versions.

64.3.1. Trying Gradle upgrades

You can use the build comparison functionality to very quickly try a new Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the  ofbuild.gradle

the .root project

apply plugin: 'compare-gradle-builds'

compareGradleBuilds {
    targetBuild.gradleVersion = "«gradle version»"
}
            

Then simply execute the  task. You will see the console output of the “source” andcompareGradleBuilds

“target” builds as they are executing.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html


Page 408 of 448

64.3.2. The comparison “result”

If there are any differences between the , the task will fail. The location of the HTML reportcompared outcomes

providing insight into the comparison will be given. If all compared outcomes are found to be identical, and

there are no uncompared outcomes, and there are no unknown build outcomes, the task will succeed.

You can configure the task to not fail on compared outcome differences by setting the ignoreFailures

property to true.

compareGradleBuilds {
    ignoreFailures = true
}
            

64.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives configuration.

Take a look at  for more information on how to configure and add artifacts.Chapter 52, Publishing artifacts

The archive must also have been produced by a , , ,  task. Future versions of Gradle willZip Jar War Ear

support increased flexibility in this area.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.plugins.ear.Ear.html


Page 409 of 448

65
Ivy Publishing (new)

This chapter describes the new  Ivy publishing support provided by the “ ”incubating ivy-publish

plugin. Eventually this new publishing support will replace publishing via the  task.Upload

If you are looking for documentation on the original Ivy publishing support using the  task pleaseUpload

see .Chapter 52, Publishing artifacts

This chapter describes how to publish build artifacts in the  format, usually to a repository forApache Ivy

consumption by other builds or projects. What is published is one or more artifacts created by the build, and an

Ivy  (normally ) that describes the artifacts and the dependencies of the artifacts, ifmodule descriptor ivy.xml

any.

A published Ivy module can be consumed by Gradle (see ) and other toolsChapter 51, Dependency Management

that understand the Ivy format.

65.1. The “ ” Pluginivy-publish
The ability to publish in the Ivy format is provided by the “ ” plugin.ivy-publish

The “ ” plugin creates an extension on the project named “ ” of type publishing publishing

. This extension provides a container of named publications and a container ofPublishingExtension

named repositories. The “ ” plugin works with  publications and ivy-publish IvyPublication

 repositories.IvyArtifactRepository

Example 65.1. Applying the “ivy-publish” plugin

build.gradle

apply plugin: 'ivy-publish'

Applying the “ ” plugin does the following:ivy-publish

Applies the “ ” pluginpublishing

Establishes a rule to automatically create a  task for each GenerateIvyDescriptor

 added (see ).IvyPublication Section 65.2, “Publications”

Establishes a rule to automatically create a  task for the combination ofPublishToIvyRepository

http://ant.apache.org/ivy/
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html


Page 410 of 448

each  added (see ), with each IvyPublication Section 65.2, “Publications”

 added (see ).IvyArtifactRepository Section 65.3, “Repositories”

65.2. Publications

If you are not familiar with project artifacts and configurations, you should read Chapter 52, Publishing

, which introduces these concepts. This chapter also describes “publishing artifacts” using aartifacts

different mechanism than what is described in this chapter. The publishing functionality described here

will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are published

to repositories via tasks, and the configuration of the publication object determines exactly what is published.

All of the publications of a project are defined in the PublishingExtension.getPublications()

container. Each publication has a unique name within the project.

For the “ ” plugin to have any effect, an  must be added to the set ofivy-publish IvyPublication

publications. This publication determines which artifacts are actually published as well as the details included in

the associated Ivy module descriptor file. A publication can be configured by adding components, customizing

artifacts, and by modifying the generated module descriptor file directly.

65.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to an Ivy repository is to specify a  toSoftwareComponent

publish. The components presently available for publication are:

Table 65.1. Software Components

Name Provided By Artifacts Dependencies

java Java Plugin Generated jar file Dependencies from 'runtime' configuration

web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the `java` component, which is

added by the .Java Plugin

Example 65.2. Publishing a Java module to Ivy

build.gradle

publications {
    ivyJava(IvyPublication) {
        from components.java
    }
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/component/SoftwareComponent.html


Page 411 of 448

65.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly

supplied as raw files, or as instances of  (e.g. Jar, Zip).AbstractArchiveTask

For each custom artifact, it is possible to specify the , , ,  and name extension type classifier conf

values to use for publication. Note that each artifacts must have a unique name/classifier/extension combination.

Configure custom artifacts as follows:

Example 65.3. Publishing additional artifact to Ivy

build.gradle

task sourceJar(type: Jar) {
    from sourceSets.main.java
    classifier "source"
}
publishing {
    publications {
        ivy(IvyPublication) {
            from components.java
            artifact(sourceJar) {
                type "source"
                conf "runtime"
            }
        }
    }
}

See the  class in the API documentation for more detailed information on how artifacts canIvyPublication

be customized.

65.2.3. Identity values for the published project

The generated Ivy module descriptor file contains an  element that identifies the module. The default<info>

identity values are derived from the following:

organisation - Project.getGroup()

module - Project.getName()

revision - Project.getVersion()

status - Project.getStatus()

branch - (not set)

Overriding the default identity values is easy: simply specify the ,  or organisation module revision

attributes when configuring the . The  and  attributes can be set via the IvyPublication status branch descriptor

property (see ). The  property can also be used to addIvyModuleDescriptorSpec descriptor

additional custom elements as children of the  element.<info>

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html


Page 412 of 448

Certain repositories are not able

to handle all supported

characters. For example, the ':'

character cannot be used as an

identifier when publishing to a

filesystem-backed repository on

Windows.

Example 65.4. customizing the publication identity

build.gradle

publishing {
    publications {
        ivy(IvyPublication) {
            organisation 'org.gradle.sample'
            module 'project1-sample'
            revision '1.1'
            descriptor.status = 'milestone'
            descriptor.branch = 'testing'
            descriptor.extraInfo , , 'http://my.namespace' 'myElement' 'Some value'

            from components.java
        }
    }
}

Gradle will handle any valid Unicode character for organisation,

module and revision (as well as artifact name, extension and

classifier). The only values that are explicitly prohibited are ' ', ' '\ /

and any ISO control character. The supplied values are validated

early during publication.

65.2.4. Modifying the generated module
descriptor

At times, the module descriptor file generated from the project

information will need to be tweaked before publishing. The “ ” plugin provides a hook to allowivy-publish

such modification.

Example 65.5. Customizing the module descriptor file

build.gradle

publications {
    ivyCustom(IvyPublication) {
        descriptor.withXml {
            asNode().info[ ].appendNode( ,0 'description'
                                        )'A demonstration of ivy descriptor customization'
        }
    }
}

In this example we are simply adding a 'description' element to the generated Ivy dependency descriptor, but

this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the

version range for a dependency with the actual version used to produce the build.

See  in the API documentation for more information.IvyModuleDescriptorSpec.withXml()

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it is

also possible to modify the descriptor in such a way that it is no longer a valid Ivy module descriptor, so care

must be taken when using this feature.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)


Page 413 of 448

The identifier (organisation, module, revision) of the published module is an exception; these values cannot be

modified in the descriptor using the `withXML` hook.

65.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle

subproject. An example is publishing a separate API and implementation jar for your library. With Gradle this is

simple:

Example 65.6. Publishing multiple modules from a single project

build.gradle

task apiJar(type: Jar) {
    baseName "publishing-api"
    from sourceSets.main.output
    exclude '**/impl/**'
}
publishing {
    publications {
        impl(IvyPublication) {
            organisation 'org.gradle.sample.impl'
            module 'project2-impl'
            revision '2.3'

            from components.java
        }
        api(IvyPublication) {
            organisation 'org.gradle.sample'
            module 'project2-api'
            revision '2'
        }
    }
}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories. Each

publication must be given a unique identity as described above.

65.3. Repositories
Publications are published to repositories. The repositories to publish to are defined by the 

 container.PublishingExtension.getRepositories()

Example 65.7. Declaring repositories to publish to

build.gradle

repositories {
    ivy {
        // change to point to your repo, e.g. http://my.org/repo
        url "$buildDir/repo"
    }
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories


Page 414 of 448

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for

dependencies ( ). However, in the context of Ivy publication only the repositoriesRepositoryHandler

created by the  methods can be used as publication destinations. You cannot publish an ivy() IvyPublication

to a Maven repository for example.

65.4. Performing a publish
The “ ” plugin automatically creates a  task for each ivy-publish PublishToIvyRepository

 and  combination in the IvyPublication IvyArtifactRepository publishing.publications

and  containers respectively.publishing.repositories

The created task is named “ ”, which ispublish« »PublicationTo« »RepositoryPUBNAME REPONAME

“ ” for this example. This task is of type publishIvyJavaPublicationToIvyRepository

.PublishToIvyRepository

Example 65.8. Choosing a particular publication to publish

build.gradle

apply plugin: 'java'
apply plugin: 'ivy-publish'

group = 'org.gradle.sample'
version = '1.0'

publishing {
    publications {
        ivyJava(IvyPublication) {
            from components.java
        }
    }
    repositories {
        ivy {
            // change to point to your repo, e.g. http://my.org/repo
            url "$buildDir/repo"
        }
    }
}

Output of gradle publishIvyJavaPublicationToIvyRepository

> gradle publishIvyJavaPublicationToIvyRepository
:generateDescriptorFileForIvyJavaPublication
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar
:publishIvyJavaPublicationToIvyRepository

BUILD SUCCESSFUL

Total time: 1 secs

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html


Page 415 of 448

65.4.1. The “ ” lifecycle taskpublish

The “ ” plugin (that the “ ” plugin implicitly applies) adds a lifecycle task that can bepublish ivy-publish

used to publish all publications to all applicable repositories named “ ”.publish

In more concrete terms, executing this task will execute all  tasks in the project.PublishToIvyRepository

This is usually the most convenient way to perform a publish.

Example 65.9. Publishing all publications via the “publish” lifecycle task

Output of gradle publish

> gradle publish
:generateDescriptorFileForIvyJavaPublication
:compileJava UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:jar
:publishIvyJavaPublicationToIvyRepository
:publish

BUILD SUCCESSFUL

Total time: 1 secs

65.5. Generating the Ivy module descriptor file
without publishing

At times it is useful to generate the Ivy module descriptor file (normally ) without publishing yourivy.xml

module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very easy to

do.

The “ ” plugin creates one  task for each registered ivy-publish GenerateIvyDescriptor

, named “ ”, which willIvyPublication generateDescriptorFileFor« »PublicationPUBNAME

be “ ” for the previous example of the “generateDescriptorFileForIvyJavaPublication ivyJava

” publication.

You can specify where the generated Ivy file will be located by setting the  property on thedestination

generated task. By default this file is written to “ ”.build/publications/« »/ivy.xmlPUBNAME

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.IvyPublication.html


Page 416 of 448

Example 65.10. Generating the Ivy module descriptor file

build.gradle

model {
    tasks.generateDescriptorFileForIvyCustomPublication {
        destination = file( )"$buildDir/generated-ivy.xml"
    }
}

Output of gradle generateDescriptorFileForIvyCustomPublication

> gradle generateDescriptorFileForIvyCustomPublication
:generateDescriptorFileForIvyCustomPublication

BUILD SUCCESSFUL

Total time: 1 secs

The “ ” plugin leverages some experimental support for late plugin configuration, and the ivy-publish GenerateIvyDescriptor

task will not be constructed until the publishing extension is configured. The simplest way to ensure that

the publishing plugin is configured when you attempt to access the  task isGenerateIvyDescriptor

to place the access inside a  block, as the example above demonstrates.model

The same applies to any attempt to access publication-specific tasks like PublishToIvyRepository

. These tasks should be referenced from within a  block.model

65.6. Complete example
The following example demonstrates publishing with a multi-project build. Each project publishes a Java

component and a configured additional source artifact. The descriptor file is customized to include the project

description for each project.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html


Page 417 of 448

Example 65.11. Publishing a Java module

build.gradle

subprojects {
    apply plugin: 'java'
    apply plugin: 'ivy-publish'

    version = '1.0'
    group = 'org.gradle.sample'

    repositories {
        mavenCentral()
    }
    task sourceJar(type: Jar) {
        from sourceSets.main.java
        classifier "source"
    }
}

project( ) {":project1"
    description = "The first project"

    dependencies {
       compile , project( )'junit:junit:4.11' ':project2'
    }
}

project( ) {":project2"
    description = "The second project"

    dependencies {
       compile 'commons-collections:commons-collections:3.1'
    }
}

subprojects {
    publishing {
        repositories {
            ivy {
                // change to point to your repo, e.g. http://my.org/repo
                url "${rootProject.buildDir}/repo"
            }
        }
        publications {
            ivy(IvyPublication) {
                from components.java
                artifact(sourceJar) {
                    type "source"
                    conf "runtime"
                }
                descriptor.withXml {
                    asNode().info[ ].appendNode( , description)0 'description'
                }
            }
        }
    }
}

The result is that the following artifacts will be published for each project:



Page 418 of 448

Note that «PUBLICATION-TIME-STAMP»

in this example Ivy module

descriptor will be the timestamp

of when the descriptor was

generated.

The Ivy module descriptor file: “ ”.ivy-1.0.xml

The primary “jar” artifact for the Java component: “ ”.project1-1.0.jar

The source “jar” artifact that has been explicitly configured: “ ”.project1-1.0-source.jar

When  is published, the module descriptor (i.e. the  file) that is produced will look like:project1 ivy.xml

Example 65.12. Example generated ivy.xml

output-ivy.xml

<?xml version="1.0" encoding="UTF-8"?>
 =<ivy-module version "2.0">

   =  =  =  =  =<info organisation "org.gradle.sample" module "project1" revision "1.0" status "integration" publication "«PUBLICATION-TIME-STAMP»">
    The first project<description> </description>
  </info>
  <configurations>
     =  =  =<conf name "default" visibility "public" extends "runtime"/>
     =  =<conf name "runtime" visibility "public"/>
  </configurations>
  <publications>
     =  =  =  =<artifact name "project1" type "jar" ext "jar" conf "runtime"/>
     =  =  =  =  =  =<artifact name "project1" type "source" ext "jar" conf "runtime" m:classifier "source" xmlns:m "http://ant.apache.org/ivy/maven"/>
  </publications>
  <dependencies>
     =  =  =  =<dependency org "junit" name "junit" rev "4.11" conf "runtime-&gt;default"/>
     =  =  =  =<dependency org "org.gradle.sample" name "project2" rev "1.0" conf "runtime-&gt;default"/>
  </dependencies>
</ivy-module>

65.7. Future features
The “ ” plugin functionality as described above is incomplete, as the feature is still .ivy-publish incubating

In upcoming Gradle releases, the functionality will be expanded to include (but not limited to):

Convenient customization of module attributes ( ,  etc.)module organisation

Convenient customization of dependencies reported in .module descriptor

Multiple discrete publications per project



Page 419 of 448

66
Maven Publishing (new)

This chapter describes the new  Maven publishing support provided by the “incubating maven-publish

” plugin. Eventually this new publishing support will replace publishing via the  task.Upload

If you are looking for documentation on the original Maven publishing support using the  taskUpload

please see .Chapter 52, Publishing artifacts

This chapter describes how to publish build artifacts to an  Repository. A module published to aApache Maven

Maven repository can be consumed by Maven, Gradle (see ) and otherChapter 51, Dependency Management

tools that understand the Maven repository format.

66.1. The “ ” Pluginmaven-publish
The ability to publish in the Maven format is provided by the “ ” plugin.maven-publish

The “ ” plugin creates an extension on the project named “ ” of type publishing publishing

. This extension provides a container of named publications and a container ofPublishingExtension

named repositories. The “ ” plugin works with  publications and maven-publish MavenPublication

 repositories.MavenArtifactRepository

Example 66.1. Applying the 'maven-publish' plugin

build.gradle

apply plugin: 'maven-publish'

Applying the “ ” plugin does the following:maven-publish

Applies the “ ” pluginpublishing

Establishes a rule to automatically create a  task for each GenerateMavenPom MavenPublication

added (see ).Section 66.2, “Publications”

Establishes a rule to automatically create a  task for the combination ofPublishToMavenRepository

each  added (see ), with each MavenPublication Section 66.2, “Publications”

 added (see ).MavenArtifactRepository Section 66.3, “Repositories”

Establishes a rule to automatically create a  task for each PublishToMavenLocal

 added (see ).MavenPublication Section 66.2, “Publications”

http://maven.apache.org/
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html


Page 420 of 448

66.2. Publications

If you are not familiar with project artifacts and configurations, you should read the Chapter  52, 

 that introduces these concepts. This chapter also describes “publishing artifacts”Publishing artifacts

using a different mechanism than what is described in this chapter. The publishing functionality described

here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are published

to repositories via tasks, and the configuration of the publication object determines exactly what is published.

All of the publications of a project are defined in the PublishingExtension.getPublications()

container. Each publication has a unique name within the project.

For the “ ” plugin to have any effect, a  must be added to the set ofmaven-publish MavenPublication

publications. This publication determines which artifacts are actually published as well as the details included in

the associated POM file. A publication can be configured by adding components, customizing artifacts, and by

modifying the generated POM file directly.

66.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to a Maven repository is to specify a  toSoftwareComponent

publish. The components presently available for publication are:

Table 66.1. Software Components

Name Provided By Artifacts Dependencies

java Chapter 23, The Java Plugin Generated jar file Dependencies from 'runtime' configuration

web Chapter 26, The War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the `java` component, which is

added by the .Java Plugin

Example 66.2. Adding a MavenPublication for a Java component

build.gradle

publishing {
    publications {
        mavenJava(MavenPublication) {
            from components.java
        }
    }
}

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/component/SoftwareComponent.html


Page 421 of 448

66.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly

supplied as raw files, or as instances of  (e.g. Jar, Zip).AbstractArchiveTask

For each custom artifact, it is possible to specify the  and  values to use forextension classifier

publication. Note that only one of the published artifacts can have an empty classifier, and all other artifacts

must have a unique classifier/extension combination.

Configure custom artifacts as follows:

Example 66.3. Adding additional artifact to a MavenPublication

build.gradle

task sourceJar(type: Jar) {
    from sourceSets.main.allJava
}

publishing {
    publications {
        mavenJava(MavenPublication) {
            from components.java

            artifact sourceJar {
                classifier "sources"
            }
        }
    }
}

See the  class in the API documentation for more information about how artifacts can beMavenPublication

customized.

66.2.3. Identity values in the generated POM

The attributes of the generated  file will contain identity values derived from the following projectPOM

properties:

groupId - Project.getGroup()

artifactId - Project.getName()

version - Project.getVersion()

Overriding the default identity values is easy: simply specify the ,  or groupId artifactId version

attributes when configuring the .MavenPublication

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version


Page 422 of 448

Certain repositories will not be

able to handle all supported

characters. For example, the ':'

character cannot be used as an

identifier when publishing to a

filesystem-backed repository on

Windows.

Example 66.4. customizing the publication identity

build.gradle

publishing {
    publications {
        maven(MavenPublication) {
            groupId 'org.gradle.sample'
            artifactId 'project1-sample'
            version '1.1'

            from components.java
        }
    }
}

Maven restricts 'groupId' and 'artifactId' to a limited character set ([A-Za-z0-9_\\-.]+

) and Gradle enforces this restriction. For 'version' (as well as

artifact 'extension' and 'classifier'), Gradle will handle any valid

Unicode character.

The only Unicode values that are explicitly prohibited are ' ', ' '\ /

and any ISO control character. Supplied values are validated early

in publication.

66.2.4. Modifying the generated POM

The generated POM file may need to be tweaked before publishing. The “ ” plugin provides amaven-publish

hook to allow such modification.

Example 66.5. Modifying the POM file

build.gradle

publications {
    mavenCustom(MavenPublication) {
        pom.withXml {
            asNode().appendNode( ,'description'
                                )'A demonstration of maven POM customization'
        }
    }
}

In this example we are adding a 'description' element for the generated POM. With this hook, you can modify

any aspect of the POM. For example, you could replace the version range for a dependency with the actual

version used to produce the build.

See  in the API documentation for more information.MavenPom.withXml()

It is possible to modify virtually any aspect of the created POM should you need to. This means that it is also

possible to modify the POM in such a way that it is no longer a valid Maven Pom, so care must be taken when

using this feature.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPom.html#org.gradle.api.publish.maven.MavenPom:withXml(org.gradle.api.Action)


Page 423 of 448

The identifier (groupId, artifactId, version) of the published module is an exception; these values cannot be

modified in the POM using the `withXML` hook.

66.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate Gradle

subproject. An example is publishing a separate API and implementation jar for your library. With Gradle this is

simple:

Example 66.6. Publishing multiple modules from a single project

build.gradle

task apiJar(type: Jar) {
    baseName "publishing-api"
    from sourceSets.main.output
    exclude '**/impl/**'
}

publishing {
    publications {
        impl(MavenPublication) {
            groupId 'org.gradle.sample.impl'
            artifactId 'project2-impl'
            version '2.3'

            from components.java
        }
        api(MavenPublication) {
            groupId 'org.gradle.sample'
            artifactId 'project2-api'
            version '2'

            artifact apiJar
        }
    }
}

If a project defines multiple publications then Gradle will publish each of these to the defined repositories. Each

publication must be given a unique identity as described above.

66.3. Repositories
Publications are published to repositories. The repositories to publish to are defined by the 

 container.PublishingExtension.getRepositories()

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories


Page 424 of 448

Example 66.7. Declaring repositories to publish to

build.gradle

publishing {
    repositories {
        maven {
            // change to point to your repo, e.g. http://my.org/repo
            url "$buildDir/repo"
        }
    }
}

The DSL used to declare repositories for publication is the same DSL that is used to declare repositories to

consume dependencies from, . However, in the context of Maven publication only RepositoryHandler

 repositories can be used for publication.MavenArtifactRepository

66.4. Performing a publish
The “ ” plugin automatically creates a  task for each maven-publish PublishToMavenRepository

 and  combination in the MavenPublication MavenArtifactRepository publishing.publications

and  containers respectively.publishing.repositories

The created task is named “ ”.publish« »PublicationTo« »RepositoryPUBNAME REPONAME

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.artifacts.repositories.MavenArtifactRepository.html


Page 425 of 448

Example 66.8. Publishing a project to a Maven repository

build.gradle

apply plugin: 'java'
apply plugin: 'maven-publish'

group = 'org.gradle.sample'
version = '1.0'

publishing {
    publications {
        mavenJava(MavenPublication) {
            from components.java
        }
    }
}
publishing {
    repositories {
        maven {
            // change to point to your repo, e.g. http://my.org/repo
            url "$buildDir/repo"
        }
    }
}

Output of gradle publish

> gradle publish
:generatePomFileForMavenJavaPublication
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:publishMavenJavaPublicationToMavenRepository
:publish

BUILD SUCCESSFUL

Total time: 1 secs

In this example, a task named “ ” is created,publishMavenJavaPublicationToMavenRepository

which is of type . This task is wired into the  lifecycle task.PublishToMavenRepository publish

Executing “ ” builds the POM file and all of the artifacts to be published, and transfers themgradle publish

to the repository.

66.5. Publishing to Maven Local
For integration with a local Maven installation, it is sometimes useful to publish the module into the local .m2

repository. In Maven parlance, this is referred to as 'installing' the module. The “ ” pluginmaven-publish

makes this easy to do by automatically creating a  task for each PublishToMavenLocal

 in the  container. Each of these tasks is wired into theMavenPublication publishing.publications

 lifecycle task. You do not need to have `mavenLocal` in yourpublishToMavenLocal

`publishing.repositories` section.

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/publish/maven/tasks/PublishToMavenLocal.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.MavenPublication.html


Page 426 of 448

The created task is named “ ”.publish« »PublicationToMavenLocalPUBNAME

Example 66.9. Publish a project to the Maven local repository

Output of gradle publishToMavenLocal

> gradle publishToMavenLocal
:generatePomFileForMavenJavaPublication
:compileJava
:processResources UP-TO-DATE
:classes
:jar
:publishMavenJavaPublicationToMavenLocal
:publishToMavenLocal

BUILD SUCCESSFUL

Total time: 1 secs

The resulting task in this example is named “ ”. ThispublishMavenJavaPublicationToMavenLocal

task is wired into the  lifecycle task. Executing “publishToMavenLocal gradle publishToMavenLocal

” builds the POM file and all of the artifacts to be published, and “installs” them into the local Maven

repository.

66.6. Generating the POM file without publishing
At times it is useful to generate a Maven POM file for a module without actually publishing. Since POM

generation is performed by a separate task, it is very easy to do so.

The task for generating the POM file is of type , and it is given a name based on theGenerateMavenPom

name of the publication: “ ”. So in the example below,generatePomFileFor« »PublicationPUBNAME

where the publication is named “ ”, the task will be named “mavenCustom generatePomFileForMavenCustomPublication

”.

Example 66.10. Generate a POM file without publishing

build.gradle

model {
    tasks.generatePomFileForMavenCustomPublication {
        destination = file( )"$buildDir/generated-pom.xml"
    }
}

Output of gradle generatePomFileForMavenCustomPublication

> gradle generatePomFileForMavenCustomPublication
:generatePomFileForMavenCustomPublication

BUILD SUCCESSFUL

Total time: 1 secs

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.GenerateMavenPom.html


Page 427 of 448

All details of the publishing model are still considered in POM generation, including `, custom components artifacts

, and any modifications made via .pom.withXml

The “ ” plugin leverages some experimental support for late plugin configuration, andmaven-publish

any  tasks will not be constructed until the publishing extension is configured.GenerateMavenPom

The simplest way to ensure that the publishing plugin is configured when you attempt to access the GenerateMavenPom

task is to place the access inside a  block, as the example above demonstrates.model

The same applies to any attempt to access publication-specific tasks like 

. These tasks should be referenced from within a  block.PublishToMavenRepository model

http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html
http://www.gradle.org/docs/2.3/dsl/org.gradle.api.publish.maven.tasks.PublishToMavenRepository.html


Page 428 of 448

A
Gradle Samples

Listed below are some of the stand-alone samples which are included in the Gradle distribution. You can find these

samples in the  directory of the distribution./samplesGRADLE_HOME

Table A.1. Samples included in the distribution

Sample Description

announce A project which uses the announce plugin

application A project which uses the application plugin

buildDashboard A project which uses the build-dashboard plugin

codeQuality A project which uses the various code quality plugins.

customBuildLanguage This sample demonstrates how to add some custom

elements to the build DSL. It also demonstrates the use of

custom plug-ins to organize build logic.

customDistribution This sample demonstrates how to create a custom Gradle

distribution and use it with the Gradle wrapper.

customPlugin A set of projects that show how to implement, test,

publish and use a custom plugin and task.

ear/earCustomized/ear Web application ear project with customized contents

ear/earWithWar Web application ear project

groovy/customizedLayout Groovy project with a custom source layout

groovy/mixedJavaAndGroovy Project containing a mix of Java and Groovy source

groovy/multiproject Build made up of multiple Groovy projects. Also

demonstrates how to exclude certain source files, and the

use of a custom Groovy AST transformation.



Page 429 of 448

groovy/quickstart Groovy quickstart sample

java/base Java base project

java/customizedLayout Java project with a custom source layout

java/multiproject This sample demonstrates how an application can be

composed using multiple Java projects.

java/quickstart Java quickstart project

java/withIntegrationTests This sample demonstrates how to use a source set to add

an integration test suite to a Java project.

javaGradlePlugin This example demonstrates the use of the java gradle

plugin development plugin. By applying the plugin, the

java plugin is automatically applied as well as the

gradleApi() dependency. Furthermore, validations are

performed against the plugin metadata during jar

execution.

maven/pomGeneration Demonstrates how to deploy and install to a Maven

repository. Also demonstrates how to deploy a javadoc

JAR along with the main JAR, how to customize the

contents of the generated POM, and how to deploy

snapshots and releases to different repositories.

maven/quickstart Demonstrates how to deploy and install artifacts to a

Maven repository.

osgi A project which builds an OSGi bundle

scala/customizedLayout Scala project with a custom source layout

scala/fsc Scala project using the Fast Scala Compiler (fsc).

scala/mixedJavaAndScala A project containing a mix of Java and Scala source.

scala/quickstart Scala quickstart project

scala/zinc Scala project using the Zinc based Scala compiler.



Page 430 of 448

testing/testReport Generates an HTML test report that includes the test

results from all subprojects.

toolingApi/customModel A sample of how a plugin can expose its own custom

tooling model to tooling API clients.

toolingApi/eclipse An application that uses the tooling API to build the

Eclipse model for a project.

toolingApi/idea An application that uses the tooling API to extract

information needed by IntelliJ IDEA.

toolingApi/model An application that uses the tooling API to build the

model for a Gradle build.

toolingApi/runBuild An application that uses the tooling API to run a Gradle

task.

userguide/distribution A project which uses the distribution plugin

userguide/javaLibraryDistribution A project which uses the Java library distribution plugin

webApplication/customized Web application with customized WAR contents.

webApplication/quickstart Web application quickstart project

A.1. Sample customBuildLanguage
This sample demonstrates how to add some custom elements to the build DSL. It also demonstrates the use of

custom plug-ins to organize build logic.

The build is composed of 2 types of projects. The first type of project represents a product, and the second

represents a product module. Each product includes one or more product modules, and each product module may be

included in multiple products. That is, there is a many-to-many relationship between these products and product

modules. For each product, the build produces a ZIP containing the runtime classpath for each product module

included in the product. The ZIP also contains some product-specific files.

The custom elements can be seen in the build script for the product projects (for example, basicEdition/build.gradle

). Notice that the build script uses the  element. This is a custom element.product { }

The build scripts of each project contain only declarative elements. The bulk of the work is done by 2 custom

plug-ins found in .buildSrc/src/main/groovy



Page 431 of 448

A.2. Sample customDistribution
This sample demonstrates how to create a custom Gradle distribution and use it with the Gradle wrapper.

This sample contains the following projects:

The  directory contains the project that implements a custom plugin, and bundles the plugin into aplugin

custom Gradle distribution.

The  directory contains the project that uses the custom distribution.consumer

A.3. Sample customPlugin
A set of projects that show how to implement, test, publish and use a custom plugin and task.

This sample contains the following projects:

The  directory contains the project that implements and publishes the plugin.plugin

The  directory contains the project that uses the plugin.consumer

A.4. Sample java/multiproject
This sample demonstrates how an application can be composed using multiple Java projects.

This build creates a client-server application which is distributed as 2 archives. First, there is a client ZIP which

includes an API JAR, which a 3rd party application would compile against, and a client runtime. Then, there is a

server WAR which provides a web service.



Page 432 of 448

B
Potential Traps

B.1. Groovy script variables
For Gradle users it is important to understand how Groovy deals with script variables. Groovy has two types of

script variables. One with a local scope and one with a script-wide scope.



Page 433 of 448

Example B.1. Variables scope: local and script wide

scope.groovy

String localScope1 = 'localScope1'
def localScope2 = 'localScope2'
scriptScope = 'scriptScope'

println localScope1
println localScope2
println scriptScope

closure = {
    println localScope1
    println localScope2
    println scriptScope
}

def method() {
     {try
        localScope1
    }  (MissingPropertyException e) {catch
        println 'localScope1NotAvailable'
    }
     {try
        localScope2
    } (MissingPropertyException e) {catch
        println 'localScope2NotAvailable'
    }
    println scriptScope
}

closure.call()
method()

Output of gradle

> gradle
localScope1
localScope2
scriptScope
localScope1
localScope2
scriptScope
localScope1NotAvailable
localScope2NotAvailable
scriptScope

Variables which are declared with a type modifier are visible within closures but not visible within methods. This is

a heavily discussed behavior in the Groovy community. [ ]27

B.2. Configuration and execution phase
It is important to keep in mind that Gradle has a distinct configuration and execution phase (see Chapter 56, The

).Build Lifecycle



Page 434 of 448

Example B.2. Distinct configuration and execution phase

build.gradle

def classesDir = file( )'build/classes'
classesDir.mkdirs()
task clean(type: Delete) {
    delete 'build'
}
task compile(dependsOn: ) << {'clean'
     (!classesDir.isDirectory()) {if
        println 'The class directory does not exist. I can not operate'
        // do something
    }
    // do something
}

Output of gradle -q compile

> gradle -q compile
The class directory does not exist. I can not operate

As the creation of the directory happens during the configuration phase, the  task removes the directoryclean

during the execution phase.

[ ]  2 7 O n e  o f  t h o s e  d i s c u s s i o n s  c a n  b e  f o u n d  h e r e :  

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html

http://groovy.329449.n5.nabble.com/script-scoping-question-td355887.html


Page 435 of 448

C
The Feature Lifecycle

Gradle is under constant development and improvement. New versions are delivered on a regular and frequent basis

(approximately every 6 weeks). Continuous improvement combined with frequent delivery allows new features to

be made available to users early and for invaluable real world feedback to be incorporated into the development

process. Getting new functionality into the hands of users regularly is a core value of the Gradle platform. At the

same time, API and feature stability is taken very seriously and is also considered a core value of the Gradle

platform. This is something that is engineered into the development process by design choices and automated

testing, and is formalised by .Section C.2, “Backwards Compatibility Policy”

The Gradle  has been designed to meet these goals. It also serves to clearly communicate to users offeature lifecycle

Gradle what the state of a feature is. The term  typically means an API or DSL method or property in thisfeature

context, but it is not restricted to this definition. Command line arguments and modes of execution (e.g. the Build

Daemon) are two examples of other kinds of features.

C.1. States
Features can be in one of 4 states:

Internal

Incubating

Public

Deprecated

C.1.1. Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself. They can change

in any way at any point in time without any notice. Therefore, we recommend avoiding the use of such features.

Internal features are not documented. If it appears in this User Guide, the DSL Reference or the API Reference

documentation then the feature is not internal.

Internal features may evolve into public features.

C.1.2. Incubating

Features are introduced in the  state to allow real world feedback to be incorporated into the featureincubating

before it is made public and locked down to provide backwards compatibility. It also gives users who are willing to

accept potential future changes early access to the feature so they can put it into use immediately.

A feature in an incubating state may change in future Gradle versions until it is no longer incubating. Changes to

incubating features for a Gradle release will be highlighted in the release notes for that release. The incubation



Page 436 of 448

period for new features varies depending on the scope, complexity and nature of the feature.

Features in incubation are clearly indicated to be so. In the source code, all methods/properties/classes that are

incubating are annotated with , which is also used to specially mark them in the DSL and APIIncubating

references. If an incubating feature is discussed in this User Guide, it will be explicitly said to be in the incubating

state.

C.1.3. Public

The default state for a non-internal feature is . Anything that is documented in the User Guide, DSLpublic

Reference or API references that is not explicitly said to be incubating or deprecated is considered public. Features

are said to be  from an incubating state to public. The release notes for each release indicate whichpromoted

previously incubating features are being promoted by the release.

A public feature will  be removed or intentionally changed without undergoing deprecation. All publicnever

features are subject to the backwards compatibility policy.

C.1.4. Deprecated

Some features will become superseded or irrelevant due to the natural evolution of Gradle. Such features will

eventually be removed from Gradle after being . A deprecated feature will  be changed, until it isdeprecated never

finally removed according to the backwards compatibility policy.

Deprecated features are clearly indicated to be so. In the source code, all methods/properties/classes that are

deprecated are annotated with “ ” which is reflected in the DSL and API references.@java.lang.Deprecated

In most cases, there is a replacement for the deprecated element, and this will be described in the documentation.

Using a deprecated feature will also result in a runtime warning in Gradle's output.

Use of deprecated features should be avoided. The release notes for each release indicate any features that are being

deprecated by the release.

C.2. Backwards Compatibility Policy
Gradle provides backwards compatibility across major versions (e.g. , , etc.). Once a public feature is1.x 2.x

introduced or promoted in a Gradle release it will remain indefinitely or until it is deprecated. Once deprecated, it

may be removed in the next major release. Deprecated features may be supported across major releases, but this is

not guaranteed.

http://www.gradle.org/docs/2.3/javadoc/org/gradle/api/Incubating.html


Page 437 of 448

D
Gradle Command Line

The  command has the following usage:gradle

gradle [option...] [task...]

The command-line options available for the  command are listed below:gradle

, , -? -h --help

Shows a help message.

, -a --no-rebuild

Do not rebuild project dependencies.

--all

Shows additional detail in the task listing. See .Section 11.6.2, “Listing tasks”

, -b --build-file

Specifies the build file. See .Section 11.5, “Selecting which build to execute”

, -c --settings-file

Specifies the settings file.

--console

Specifies which type of console output to generate.

Set to  to generate plain text only. This option disables all color and other rich output in the consoleplain

output.

Set to  (the default) to enable color and other rich output in the console output when the build process isauto

attached to a console, or to generate plain text only when not attached to a console.

Set to  to enable color and other rich output in the console output, regardless of whether the build processrich

is not attached to a console. When not attached to a console, the build output will use ANSI control characters to

generate the rich output.

--continue

Continues task execution after a task failure.

--configure-on-demand (incubating)

Only relevant projects are configured in this build run. This means faster builds for large multi-projects. See 

.Section 57.1.1.1, “Configuration on demand”



Page 438 of 448

, -D --system-prop

Sets a system property of the JVM, for example . See -Dmyprop=myvalue Section 14.2, “Gradle properties

.and system properties”

, -d --debug

Log in debug mode (includes normal stacktrace). See .Chapter 18, Logging

, -g --gradle-user-home

Specifies the Gradle user home directory. The default is the  directory in the user's home directory..gradle

--gui

Launches the Gradle GUI. See .Chapter 12, Using the Gradle Graphical User Interface

, -I --init-script

Specifies an initialization script. See .Chapter 61, Initialization Scripts

, -i --info

Set log level to info. See .Chapter 18, Logging

, -m --dry-run

Runs the build with all task actions disabled. See .Section 11.7, “Dry Run”

--offline

Specifies that the build should operate without accessing network resources. See Section 51.9.2, “Command line

.options to override caching”

, -P --project-prop

Sets a project property of the root project, for example . See -Pmyprop=myvalue Section  14.2, “Gradle

.properties and system properties”

, -p --project-dir

Specifies the start directory for Gradle. Defaults to current directory. See Section 11.5, “Selecting which build

.to execute”

--parallel (incubating)

Build projects in parallel. Gradle will attempt to determine the optimal number of executor threads to use. This

option should only be used with decoupled projects (see ).Section 57.9, “Decoupled Projects”

--parallel-threads (incubating)

Build projects in parallel, using the specified number of executor threads. For example--parallel-threads=3

. This option should only be used with decoupled projects (see ).Section 57.9, “Decoupled Projects”

--profile

Profiles build execution time and generates a report in the  directory. See /reports/profilebuildDir

.Section 11.6.7, “Profiling a build”

--project-cache-dir

Specifies the project-specific cache directory. Default value is  in the root project directory. See .gradle

.Section 14.6, “Caching”



Page 439 of 448

, -q --quiet

Log errors only. See .Chapter 18, Logging

--recompile-scripts

Specifies that cached build scripts are skipped and forced to be recompiled. See .Section 14.6, “Caching”

--refresh-dependencies

Refresh the state of dependencies. See .Section 51.9.2, “Command line options to override caching”

--rerun-tasks

Specifies that any task optimization is ignored.

, -S --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See .Chapter 18, Logging

, -s --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See .Chapter 18, Logging

, -u --no-search-upwards

Don't search in parent directories for a  file.settings.gradle

, -v --version

Prints version info.

, -x --exclude-task

Specifies a task to be excluded from execution. See .Section 11.2, “Excluding tasks”

The above information is printed to the console when you execute .gradle -h

D.1. Deprecated command-line options
--no-color

Do not use color in the console output. This option has been replaced by the  option.--console plain

D.2. Daemon command-line options
The  contains more information about the daemon. For example it includesChapter  19, The Gradle Daemon

information how to turn on the daemon by default so that you can avoid using  all the time.--daemon

--daemon

Uses the Gradle daemon to run the build. Starts the daemon if not running or existing daemon busy. Chapter 19, 

 contains more detailed information when new daemon processes are started.The Gradle Daemon

--foreground

Starts the Gradle daemon in the foreground. Useful for debugging or troubleshooting because you can easily

monitor the build execution.



Page 440 of 448

--no-daemon

Do not use the Gradle daemon to run the build. Useful occasionally if you have configured Gradle to always run

with the daemon by default.

--stop

Stops the Gradle daemon if it is running. You can only stop daemons that were started with the Gradle version

you use when running .--stop

D.3. System properties
The following system properties are available for the  command. Note that command-line options takegradle

precedence over system properties.

gradle.user.home

Specifies the Gradle user home directory.

The  contains specific information aboutSection 20.1, “Configuring the build environment via gradle.properties”

Gradle configuration available via system properties.

D.4. Environment variables
The following environment variables are available for the  command. Note that command-line options andgradle

system properties take precedence over environment variables.

GRADLE_OPTS

Specifies command-line arguments to use to start the JVM. This can be useful for setting the system properties

to use for running Gradle. For example you could set GRADLE_OPTS="-Dorg.gradle.daemon=true"

to use the Gradle daemon without needing to use the  option every time you run Gradle. --daemon

 contains more information about waysSection 20.1, “Configuring the build environment via gradle.properties”

of configuring the daemon without using environmental variables, e.g. in more maintainable and explicit way.

GRADLE_USER_HOME

Specifies the Gradle user home directory (which defaults to “ ” if not set).USER_HOME/.gradle

JAVA_HOME

Specifies the JDK installation directory to use.



Page 441 of 448

E
Existing IDE Support and how to cope

without it

E.1. IntelliJ
Gradle has been mainly developed with Idea IntelliJ and its very good Groovy plugin. Gradle's build script  has[ ]28

also been developed with the support of this IDE. IntelliJ allows you to define any filepattern to be interpreted as a

Groovy script. In the case of Gradle you can define such a pattern for  and .build.gradle settings.gradle

This will already help very much. What is missing is the classpath to the Gradle binaries to offer content assistance

for the Gradle classes. You might add the Gradle jar (which you can find in your distribution) to your project's

classpath. It does not really belong there, but if you do this you have a fantastic IDE support for developing Gradle

scripts. Of course if you use additional libraries for your build scripts they would further pollute your project

classpath.

We hope that in the future  files get special treatment by IntelliJ and you will be able to define a specific*.gradle

classpath for them.

E.2. Eclipse
There is a Groovy plugin for eclipse. We don't know in what state it is and how it would support Gradle. In the next

edition of this user guide we can hopefully write more about this.

E.3. Using Gradle without IDE support
What we can do for you is to spare you typing things like throw new org.gradle.api.tasks.StopExecutionException()

and just type  instead. We do this by automatically adding a setthrow new StopExecutionException()

of import statements to the Gradle scripts before Gradle executes them. Listed below are the imports added to each

script.

Figure E.1. gradle-imports

import org.gradle.*
import org.gradle.api.*
import org.gradle.api.artifacts.*
import org.gradle.api.artifacts.cache.*
import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*
import org.gradle.api.artifacts.ivy.*
import org.gradle.api.artifacts.maven.*
import org.gradle.api.artifacts.query.*
import org.gradle.api.artifacts.repositories.*



Page 442 of 448

import org.gradle.api.artifacts.result.*
import org.gradle.api.component.*
import org.gradle.api.distribution.*
import org.gradle.api.distribution.plugins.*
import org.gradle.api.dsl.*
import org.gradle.api.execution.*
import org.gradle.api.file.*
import org.gradle.api.initialization.*
import org.gradle.api.initialization.dsl.*
import org.gradle.api.invocation.*
import org.gradle.api.java.archives.*
import org.gradle.api.logging.*
import org.gradle.api.plugins.*
import org.gradle.api.plugins.announce.*
import org.gradle.api.plugins.antlr.*
import org.gradle.api.plugins.buildcomparison.gradle.*
import org.gradle.api.plugins.jetty.*
import org.gradle.api.plugins.osgi.*
import org.gradle.api.plugins.quality.*
import org.gradle.api.plugins.scala.*
import org.gradle.api.plugins.sonar.*
import org.gradle.api.plugins.sonar.model.*
import org.gradle.api.publish.*
import org.gradle.api.publish.ivy.*
import org.gradle.api.publish.ivy.plugins.*
import org.gradle.api.publish.ivy.tasks.*
import org.gradle.api.publish.maven.*
import org.gradle.api.publish.maven.plugins.*
import org.gradle.api.publish.maven.tasks.*
import org.gradle.api.publish.plugins.*
import org.gradle.api.reporting.*
import org.gradle.api.reporting.components.*
import org.gradle.api.reporting.dependencies.*
import org.gradle.api.reporting.plugins.*
import org.gradle.api.resources.*
import org.gradle.api.specs.*
import org.gradle.api.tasks.*
import org.gradle.api.tasks.ant.*
import org.gradle.api.tasks.application.*
import org.gradle.api.tasks.bundling.*
import org.gradle.api.tasks.compile.*
import org.gradle.api.tasks.diagnostics.*
import org.gradle.api.tasks.incremental.*
import org.gradle.api.tasks.javadoc.*
import org.gradle.api.tasks.scala.*
import org.gradle.api.tasks.testing.*
import org.gradle.api.tasks.testing.junit.*
import org.gradle.api.tasks.testing.testng.*
import org.gradle.api.tasks.util.*
import org.gradle.api.tasks.wrapper.*
import org.gradle.buildinit.plugins.*
import org.gradle.buildinit.tasks.*
import org.gradle.external.javadoc.*
import org.gradle.ide.cdt.*
import org.gradle.ide.cdt.tasks.*
import org.gradle.ide.visualstudio.*
import org.gradle.ide.visualstudio.plugins.*
import org.gradle.ide.visualstudio.tasks.*
import org.gradle.ivy.*
import org.gradle.jvm.*
import org.gradle.jvm.platform.*



Page 443 of 448

import org.gradle.jvm.plugins.*
import org.gradle.jvm.tasks.*
import org.gradle.jvm.toolchain.*
import org.gradle.language.*
import org.gradle.language.assembler.*
import org.gradle.language.assembler.plugins.*
import org.gradle.language.assembler.tasks.*
import org.gradle.language.base.*
import org.gradle.language.base.artifact.*
import org.gradle.language.base.plugins.*
import org.gradle.language.c.*
import org.gradle.language.c.plugins.*
import org.gradle.language.c.tasks.*
import org.gradle.language.coffeescript.*
import org.gradle.language.cpp.*
import org.gradle.language.cpp.plugins.*
import org.gradle.language.cpp.tasks.*
import org.gradle.language.java.*
import org.gradle.language.java.artifact.*
import org.gradle.language.java.plugins.*
import org.gradle.language.java.tasks.*
import org.gradle.language.javascript.*
import org.gradle.language.jvm.*
import org.gradle.language.jvm.plugins.*
import org.gradle.language.jvm.tasks.*
import org.gradle.language.nativeplatform.*
import org.gradle.language.nativeplatform.tasks.*
import org.gradle.language.objectivec.*
import org.gradle.language.objectivec.plugins.*
import org.gradle.language.objectivec.tasks.*
import org.gradle.language.objectivecpp.*
import org.gradle.language.objectivecpp.plugins.*
import org.gradle.language.objectivecpp.tasks.*
import org.gradle.language.rc.*
import org.gradle.language.rc.plugins.*
import org.gradle.language.rc.tasks.*
import org.gradle.language.scala.*
import org.gradle.language.scala.plugins.*
import org.gradle.language.scala.tasks.*
import org.gradle.language.scala.toolchain.*
import org.gradle.maven.*
import org.gradle.model.*
import org.gradle.nativeplatform.*
import org.gradle.nativeplatform.platform.*
import org.gradle.nativeplatform.plugins.*
import org.gradle.nativeplatform.tasks.*
import org.gradle.nativeplatform.test.*
import org.gradle.nativeplatform.test.cunit.*
import org.gradle.nativeplatform.test.cunit.plugins.*
import org.gradle.nativeplatform.test.cunit.tasks.*
import org.gradle.nativeplatform.test.plugins.*
import org.gradle.nativeplatform.test.tasks.*
import org.gradle.nativeplatform.toolchain.*
import org.gradle.nativeplatform.toolchain.plugins.*
import org.gradle.platform.base.*
import org.gradle.platform.base.binary.*
import org.gradle.platform.base.component.*
import org.gradle.platform.base.test.*
import org.gradle.play.*
import org.gradle.play.platform.*
import org.gradle.play.plugins.*



Page 444 of 448

import org.gradle.play.tasks.*
import org.gradle.play.toolchain.*
import org.gradle.plugin.use.*
import org.gradle.plugins.ear.*
import org.gradle.plugins.ear.descriptor.*
import org.gradle.plugins.ide.api.*
import org.gradle.plugins.ide.eclipse.*
import org.gradle.plugins.ide.idea.*
import org.gradle.plugins.javascript.base.*
import org.gradle.plugins.javascript.coffeescript.*
import org.gradle.plugins.javascript.envjs.*
import org.gradle.plugins.javascript.envjs.browser.*
import org.gradle.plugins.javascript.envjs.http.*
import org.gradle.plugins.javascript.envjs.http.simple.*
import org.gradle.plugins.javascript.jshint.*
import org.gradle.plugins.javascript.rhino.*
import org.gradle.plugins.javascript.rhino.worker.*
import org.gradle.plugins.signing.*
import org.gradle.plugins.signing.signatory.*
import org.gradle.plugins.signing.signatory.pgp.*
import org.gradle.plugins.signing.type.*
import org.gradle.plugins.signing.type.pgp.*
import org.gradle.process.*
import org.gradle.sonar.runner.*
import org.gradle.sonar.runner.plugins.*
import org.gradle.sonar.runner.tasks.*
import org.gradle.testing.jacoco.plugins.*



Page 445 of 448

import org.gradle.testing.jacoco.tasks.*
import org.gradle.util.*

[ ] 28 Gradle is built with Gradle



Gradle User Guide
A

Artifact

??

B

Build Script

??

C

Configuration

See .Dependency Configuration

Configuration Injection

??

D

DAG

See .Directed Acyclic Graph

Dependency

See .External Dependency

See .Project Dependency

??

Dependency Configuration

??

Dependency Resolution

??

Directed Acyclic Graph

A directed acyclic graph is a directed graph that contains no cycles. In Gradle each task to execute represents a

node in the graph. A dependsOn relation to another task will add this other task as a node (if it is not in the

graph already) and create a directed edge between those two nodes. Any dependsOn relation will be validated

for cycles. There must be no way to start at certain node, follow a sequence of edges and end up at the original

node.

Domain Specific Language



A domain-specific language is a programming language or specification language dedicated to a particular

problem domain, a particular problem representation technique, and/or a particular solution technique. The

concept isn't new—special-purpose programming languages and all kinds of modeling/specification languages

have always existed, but the term has become more popular due to the rise of domain-specific modeling.

DSL

See .Domain Specific Language

E

External Dependency

??

Extension Object

??

I

Init Script

A script that is run before the build itself starts, to allow customization of Gradle and the build.

Initialization Script

See .Init Script

P

Plugin

??

Project

??

Project Dependency

??

Publication

??

R

Repository

??

S

Source Set

??

T



Task

??

Transitive Dependency

??


	Chapter 1. Introduction
	1.1. About this user guide

	Chapter 2. Overview
	2.1. Features
	2.2. Why Groovy?

	Chapter 3. Tutorials
	3.1. Getting Started

	Chapter 4. Installing Gradle
	4.1. Prerequisites
	4.2. Download
	4.3. Unpacking
	4.4. Environment variables
	4.5. Running and testing your installation
	4.6. JVM options

	Chapter 5. Troubleshooting
	5.1. Working through problems
	5.2. Getting help

	Chapter 6. Build Script Basics
	6.1. Projects and tasks
	6.2. Hello world
	6.3. A shortcut task definition
	6.4. Build scripts are code
	6.5. Task dependencies
	6.6. Dynamic tasks
	6.7. Manipulating existing tasks
	6.8. Shortcut notations
	6.9. Extra task properties
	6.10. Using Ant Tasks
	6.11. Using methods
	6.12. Default tasks
	6.13. Configure by DAG
	6.14. Where to next?

	Chapter 7. Java Quickstart
	7.1. The Java plugin
	7.2. A basic Java project
	7.3. Multi-project Java build
	7.4. Where to next?

	Chapter 8. Dependency Management Basics
	8.1. What is dependency management?
	8.2. Declaring your dependencies
	8.3. Dependency configurations
	8.4. External dependencies
	8.5. Repositories
	8.6. Publishing artifacts
	8.7. Where to next?

	Chapter 9. Groovy Quickstart
	9.1. A basic Groovy project
	9.2. Summary

	Chapter 10. Web Application Quickstart
	10.1. Building a WAR file
	10.2. Running your web application
	10.3. Summary

	Chapter 11. Using the Gradle Command-Line
	11.1. Executing multiple tasks
	11.2. Excluding tasks
	11.3. Continuing the build when a failure occurs
	11.4. Task name abbreviation
	11.5. Selecting which build to execute
	11.6. Obtaining information about your build
	11.7. Dry Run
	11.8. Summary

	Chapter 12. Using the Gradle Graphical User Interface
	12.1. Task Tree
	12.2. Favorites
	12.3. Command Line
	12.4. Setup

	Chapter 13. Writing Build Scripts
	13.1. The Gradle build language
	13.2. The Project API
	13.3. The Script API
	13.4. Declaring variables
	13.5. Some Groovy basics

	Chapter 14. Tutorial - 'This and That'
	14.1. Directory creation
	14.2. Gradle properties and system properties
	14.3. Configuring the project using an external build script
	14.4. Configuring arbitrary objects
	14.5. Configuring arbitrary objects using an external script
	14.6. Caching

	Chapter 15. More about Tasks
	15.1. Defining tasks
	15.2. Locating tasks
	15.3. Configuring tasks
	15.4. Adding dependencies to a task
	15.5. Ordering tasks
	15.6. Adding a description to a task
	15.7. Replacing tasks
	15.8. Skipping tasks
	15.9. Skipping tasks that are up-to-date
	15.10. Task rules
	15.11. Finalizer tasks
	15.12. Summary

	Chapter 16. Working With Files
	16.1. Locating files
	16.2. File collections
	16.3. File trees
	16.4. Using the contents of an archive as a file tree
	16.5. Specifying a set of input files
	16.6. Copying files
	16.7. Using the Sync task
	16.8. Creating archives

	Chapter 17. Using Ant from Gradle
	17.1. Using Ant tasks and types in your build
	17.2. Importing an Ant build
	17.3. Ant properties and references
	17.4. API

	Chapter 18. Logging
	18.1. Choosing a log level
	18.2. Writing your own log messages
	18.3. Logging from external tools and libraries
	18.4. Changing what Gradle logs

	Chapter 19. The Gradle Daemon
	19.1. Enter the daemon
	19.2. Reusing and expiration of daemons
	19.3. Usage and troubleshooting
	19.4. Configuring the daemon

	Chapter 20. The Build Environment
	20.1. Configuring the build environment via gradle.properties
	20.2. Accessing the web via a proxy

	Chapter 21. Gradle Plugins
	21.1. What plugins do
	21.2. Types of plugins
	21.3. Applying plugins
	21.4. Applying plugins with the buildscript block
	21.5. Applying plugins with the plugins DSL
	21.6. Finding community plugins
	21.7. More on plugins

	Chapter 22. Standard Gradle plugins
	22.1. Language plugins
	22.2. Incubating language plugins
	22.3. Integration plugins
	22.4. Incubating integration plugins
	22.5. Software development plugins
	22.6. Incubating software development plugins
	22.7. Base plugins
	22.8. Third party plugins

	Chapter 23. The Java Plugin
	23.1. Usage
	23.2. Source sets
	23.3. Tasks
	23.4. Project layout
	23.5. Dependency management
	23.6. Convention properties
	23.7. Working with source sets
	23.8. Javadoc
	23.9. Clean
	23.10. Resources
	23.11. CompileJava
	23.12. Incremental Java compilation
	23.13. Test
	23.14. Jar
	23.15. Uploading

	Chapter 24. The Groovy Plugin
	24.1. Usage
	24.2. Tasks
	24.3. Project layout
	24.4. Dependency management
	24.5. Automatic configuration of groovyClasspath
	24.6. Convention properties
	24.7. Source set properties
	24.8. GroovyCompile

	Chapter 25. The Scala Plugin
	25.1. Usage
	25.2. Tasks
	25.3. Project layout
	25.4. Dependency management
	25.5. Automatic configuration of scalaClasspath
	25.6. Convention properties
	25.7. Source set properties
	25.8. Fast Scala Compiler
	25.9. Compiling in external process
	25.10. Incremental compilation
	25.11. Eclipse Integration
	25.12. IntelliJ IDEA Integration

	Chapter 26. The War Plugin
	26.1. Usage
	26.2. Tasks
	26.3. Project layout
	26.4. Dependency management
	26.5. Convention properties
	26.6. War
	26.7. Customizing

	Chapter 27. The Ear Plugin
	27.1. Usage
	27.2. Tasks
	27.3. Project layout
	27.4. Dependency management
	27.5. Convention properties
	27.6. Ear
	27.7. Customizing
	27.8. Using custom descriptor file

	Chapter 28. The Jetty Plugin
	28.1. Usage
	28.2. Tasks
	28.3. Project layout
	28.4. Dependency management
	28.5. Convention properties

	Chapter 29. The Checkstyle Plugin
	29.1. Usage
	29.2. Tasks
	29.3. Project layout
	29.4. Dependency management
	29.5. Configuration

	Chapter 30. The CodeNarc Plugin
	30.1. Usage
	30.2. Tasks
	30.3. Project layout
	30.4. Dependency management
	30.5. Configuration

	Chapter 31. The FindBugs Plugin
	31.1. Usage
	31.2. Tasks
	31.3. Dependency management
	31.4. Configuration

	Chapter 32. The JDepend Plugin
	32.1. Usage
	32.2. Tasks
	32.3. Dependency management
	32.4. Configuration

	Chapter 33. The PMD Plugin
	33.1. Usage
	33.2. Tasks
	33.3. Dependency management
	33.4. Configuration

	Chapter 34. The JaCoCo Plugin
	34.1. Getting Started
	34.2. Configuring the JaCoCo Plugin
	34.3. JaCoCo Report configuration
	34.4. JaCoCo specific task configuration
	34.5. Tasks
	34.6. Dependency management

	Chapter 35. The Sonar Plugin
	35.1. Usage
	35.2. Analyzing Multi-Project Builds
	35.3. Analyzing Custom Source Sets
	35.4. Analyzing languages other than Java
	35.5. Setting Custom Sonar Properties
	35.6. Configuring Sonar Settings from the Command Line
	35.7. Tasks

	Chapter 36. The Sonar Runner Plugin
	36.1. Sonar Runner version and compatibility
	36.2. Getting started
	36.3. Configuring the Sonar Runner
	36.4. Specifying the Sonar Runner version
	36.5. Analyzing Multi-Project Builds
	36.6. Analyzing Custom Source Sets
	36.7. Analyzing languages other than Java
	36.8. More on configuring Sonar properties
	36.9. Setting Sonar Properties from the Command Line
	36.10. Controlling the Sonar Runner process
	36.11. Tasks

	Chapter 37. The OSGi Plugin
	37.1. Usage
	37.2. Implicitly applied plugins
	37.3. Tasks
	37.4. Dependency management
	37.5. Convention object
	37.6. 

	Chapter 38. The Eclipse Plugins
	38.1. Usage
	38.2. Tasks
	38.3. Configuration
	38.4. Customizing the generated files

	Chapter 39. The IDEA Plugin
	39.1. Usage
	39.2. Tasks
	39.3. Configuration
	39.4. Customizing the generated files
	39.5. Further things to consider

	Chapter 40. The ANTLR Plugin
	40.1. Usage
	40.2. Tasks
	40.3. Project layout
	40.4. Dependency management
	40.5. Convention properties
	40.6. Source set properties
	40.7. Controlling the ANTLR generator process

	Chapter 41. The Project Report Plugin
	41.1. Usage
	41.2. Tasks
	41.3. Project layout
	41.4. Dependency management
	41.5. Convention properties

	Chapter 42. The Announce Plugin
	42.1. Usage
	42.2. Configuration

	Chapter 43. The Build Announcements Plugin
	43.1. Usage

	Chapter 44. The Distribution Plugin
	44.1. Usage
	44.2. Tasks
	44.3. Distribution contents
	44.4. Publishing distributions

	Chapter 45. The Application Plugin
	45.1. Usage
	45.2. Tasks
	45.3. Convention properties
	45.4. Including other resources in the distribution

	Chapter 46. The Java Library Distribution Plugin
	46.1. Usage
	46.2. Tasks
	46.3. Including other resources in the distribution

	Chapter 47. Build Init Plugin
	47.1. Tasks
	47.2. What to set up
	47.3. Build init types

	Chapter 48. Wrapper Plugin
	48.1. Usage
	48.2. Tasks

	Chapter 49. The Build Dashboard Plugin
	49.1. Usage
	49.2. Tasks
	49.3. Project layout
	49.4. Dependency management
	49.5. Configuration

	Chapter 50. The Java Gradle Plugin Development Plugin
	50.1. Usage

	Chapter 51. Dependency Management
	51.1. Introduction
	51.2. Dependency Management Best Practices
	51.3. Dependency configurations
	51.4. How to declare your dependencies
	51.5. Working with dependencies
	51.6. Repositories
	51.7. How dependency resolution works
	51.8. Fine-tuning the dependency resolution process
	51.9. The dependency cache
	51.10. Strategies for transitive dependency management

	Chapter 52. Publishing artifacts
	52.1. Introduction
	52.2. Artifacts and configurations
	52.3. Declaring artifacts
	52.4. Publishing artifacts
	52.5. More about project libraries

	Chapter 53. The Maven Plugin
	53.1. Usage
	53.2. Tasks
	53.3. Dependency management
	53.4. Convention properties
	53.5. Convention methods
	53.6. Interacting with Maven repositories

	Chapter 54. The Signing Plugin
	54.1. Usage
	54.2. Signatory credentials
	54.3. Specifying what to sign
	54.4. Publishing the signatures
	54.5. Signing POM files

	Chapter 55. Building native binaries
	55.1. Supported languages
	55.2. Tool chain support
	55.3. Tool chain installation
	55.4. Component model
	55.5. Building a library
	55.6. Building an executable
	55.7. Tasks
	55.8. Finding out more about your project
	55.9. Language support
	55.10. Configuring the compiler, assembler and linker
	55.11. Windows Resources
	55.12. Library Dependencies
	55.13. Native Binary Variants
	55.14. Tool chains
	55.15. Visual Studio IDE integration
	55.16. CUnit support

	Chapter 56. The Build Lifecycle
	56.1. Build phases
	56.2. Settings file
	56.3. Multi-project builds
	56.4. Initialization
	56.5. Configuration and execution of a single project build
	56.6. Responding to the lifecycle in the build script

	Chapter 57. Multi-project Builds
	57.1. Cross project configuration
	57.2. Subproject configuration
	57.3. Execution rules for multi-project builds
	57.4. Running tasks by their absolute path
	57.5. Project and task paths
	57.6. Dependencies - Which dependencies?
	57.7. Project lib dependencies
	57.8. Parallel project execution
	57.9. Decoupled Projects
	57.10. Multi-Project Building and Testing
	57.11. Multi Project and buildSrc
	57.12. Property and method inheritance
	57.13. Summary

	Chapter 58. Writing Custom Task Classes
	58.1. Packaging a task class
	58.2. Writing a simple task class
	58.3. A standalone project
	58.4. Incremental tasks

	Chapter 59. Writing Custom Plugins
	59.1. Packaging a plugin
	59.2. Writing a simple plugin
	59.3. Getting input from the build
	59.4. Working with files in custom tasks and plugins
	59.5. A standalone project
	59.6. Maintaining multiple domain objects

	Chapter 60. Organizing Build Logic
	60.1. Inherited properties and methods
	60.2. Injected configuration
	60.3. Build sources in the buildSrc project
	60.4. Running another Gradle build from a build
	60.5. External dependencies for the build script
	60.6. Ant optional dependencies
	60.7. Summary

	Chapter 61. Initialization Scripts
	61.1. Basic usage
	61.2. Using an init script
	61.3. Writing an init script
	61.4. External dependencies for the init script
	61.5. Init script plugins

	Chapter 62. The Gradle Wrapper
	62.1. Configuration
	62.2. Unix file permissions

	Chapter 63. Embedding Gradle
	63.1. Introduction to the Tooling API
	63.2. Tooling API and the Gradle Build Daemon
	63.3. Quickstart

	Chapter 64. Comparing Builds
	64.1. Definition of terms
	64.2. Current Capabilities
	64.3. Comparing Gradle Builds

	Chapter 65. Ivy Publishing (new)
	65.1. The “ivy-publish” Plugin
	65.2. Publications
	65.3. Repositories
	65.4. Performing a publish
	65.5. Generating the Ivy module descriptor file without publishing
	65.6. Complete example
	65.7. Future features

	Chapter 66. Maven Publishing (new)
	66.1. The “maven-publish” Plugin
	66.2. Publications
	66.3. Repositories
	66.4. Performing a publish
	66.5. Publishing to Maven Local
	66.6. Generating the POM file without publishing

	Appendix A. Gradle Samples
	A.1. Sample customBuildLanguage
    
	A.2. Sample customDistribution
    
	A.3. Sample customPlugin
    
	A.4. Sample java/multiproject
    

	Appendix B. Potential Traps
	B.1. Groovy script variables
	B.2. Configuration and execution phase

	Appendix C. The Feature Lifecycle
	C.1. States
	C.2. Backwards Compatibility Policy

	Appendix D. Gradle Command Line
	D.1. Deprecated command-line options
	D.2. Daemon command-line options
	D.3. System properties
	D.4. Environment variables

	Appendix E. Existing IDE Support and how to cope without it
	E.1. IntelliJ
	E.2. Eclipse
	E.3. Using Gradle without IDE support


