
Introduction

In 2004, Google published a research paper on the MapReduce
framework they developed for their internal data processing needs.
In simple, approachable terms, the paper describes how Google
developers harness massively parallel clusters of computers to
analyze some of the largest datasets ever collected. Since that
paper was published, there has been ongoing discussion about the
role of this technology outside the walls of Google. Excitement
about MapReduce has spread quickly in the computing industry,
particularly in young and forward-looking firms. But there is
confusion and controversy about how the technology fits into
the larger ecosystem of information technology, especially with
respect to other “big data” solutions like massively parallel SQL
database engines.

In this whitepaper, we provide a technical context for that
discussion. In a nutshell, we present SQL and MapReduce as
two different programming paradigms that are implemented via
a common engine architecture: parallel dataflow. Seen in these
terms, MapReduce can be viewed as a new programming interface
to traditional data-parallel computing.

After presenting this context, we introduce Greenplum MapReduce:
a seamless integration of MapReduce and relational database
functionality unified in one massively parallel dataflow engine. We
describe how Greenplum allows MapReduce programs and SQL
to interoperate, efficiently and flexibly processing data in both
standard files and database tables.

History: Three Revolutions

To understand Greenplum’s MapReduce implementation, it is
helpful to see it in the context of three historical shifts in the
technology behind large-scale data management: the Relational
Database revolution, the rise of shared-nothing parallelism,
and the popularization of the MapReduce parallel programming
paradigm.

A Unified Engine for RDBMS and
MapReduce Inside this Whitepaper

• Introduction

• History: Three
Revolutions

• Technical common
ground: Parallel
Dataflow

• Introducing Greenplum
MapReduce

• Conclusion

• References

Program, query, and analyze petabytes of data in a
new way

Page 2

Relational Revolution (1970s-present)

Relational Database Systems (RDBMSs) were a radical idea when
they were introduced, and they revolutionized the way that
enterprises manage their records. The birth of relational technology
in research is well documented. In 1970, IBM researcher Ted
Codd published his first paper on the relational model of data
[Codd70], which proposed representing data in tables of rows
and columns, and querying the data using a high-level declarative
language that formed the foundation for what we now know
as SQL. Some 5 years later, Jim Gray and colleagues at IBM
research proposed ACID transactions as a model for correctness
of concurrent updates in a database [Gray78]. Codd and Gray
both received the Turing award (the “Nobel prize of computer
science”) for this work. By the mid-1970’s, researchers at IBM
and UC Berkeley were hard at work on the two key prototype
systems – System R and Ingres – that gave birth to the modern
relational database industry. Both of these systems developed
query optimizer technology that compiles declarative queries and
passes the result to a dataflow processing engine, which direct
streams of data through operations like filters, index lookups,
joins, grouping and aggregation.

Relational databases remain the workhorses of modern
record keeping 30 years later, and for good reason. Modern
implementations of ACID transactions ensure dependable,
consistent management of data storage. The declarative nature
of SQL enables data analysis via ad hoc queries, and ensures that
data-centric applications continue to work correctly even as data
layouts and database hardware evolves. Beneath all this, the
simple elegance of the relational model helps provide discipline
needed for sound, long-term database design.

“Shared Nothing” Parallelism (1980’s-present)

As relational database systems were becoming a commercial
reality in the 1980’s, efforts were afoot to accelerate database
performance via custom hardware known then as “database
machines”. However, it quickly became clear that economies of
scale favored commodity hardware over custom solutions: the
latest version of a commodity computer invariably provides a
better price/performance point than last year’s custom-designed

The Relational
Database Revolution
• Relational Data Model
- Simple, general table

abstraction
- Encourages disciplined

database design for
reuse over time

• ACID Transactions
- All updates of a

transaction either
written together to
stable storage, or rolled
back

- Database and query
results guaranteed
consistent even in the
face of concurrent
updates

• Declarative Language
(SQL)

- High-level queries
specify “What” data to
get, not “How” to get it

- Hardware and disk
layouts can change
without modification
to apps (“data
independence”)

- Query optimizer
translates from
declarative SQL to a
dataflow execution
graph

• Dataflow Processing
Engine

- Efficient processing of
big data sets

- Data streamed off disk,
piped through a graph of
dataflow operators

Page 3

machine, negating the performance benefits of customization.
As a result, the main early efforts toward database machines
were deemed a failure by the researchers and entrepreneurs who
pioneered the area [BoralDeWitt83].

Out of the ashes of the work on database machines, a new idea
rose: database software could be parallelized to leverage multiple
commodity processors in a network to deliver increased scalability
and performance. The failed history of custom database machines
led to a particular interest in building parallel databases using
commodity computers. The term “shared-nothing” parallelism
was coined for these computing clusters, to distinguish them from
the shared-memory multiprocessors that were being designed at
the time for scientific applications.

In order to harness the power of a cluster, query processing
software had to evolve to take advantage of multiple disks,
processors, and network links operating in parallel. To achieve
this, the rows of a table were partitioned across multiple machines
with separate disks, enabling parallel I/O scans of big tables.
Basic relational query operators like selection, join, grouping
and aggregation were reinvented to run in parallel via similar
partitioning schemes: the operations undertaken by each node in
the cluster are the same, but the data being pumped through the
fabric is automatically partitioned to allow each node to work on its
piece of the operator independently. Finally, these architectures
allowed multiple relational operators to operate at the same
time, allowing pipeline parallelism in which an operator producing
a data stream runs in parallel with the operator consuming it.
The resulting shared-nothing parallel RDBMSs were explored in
research prototypes like Gamma and Bubba, and commercialized
early on by Teradata and Tandem.

Shared-nothing architectures enabled relational databases
to scale to unprecedented levels. This changed the way that
many businesses approached the value of data: in addition to
keeping the current books correct, analytic applications could be
built over historical records to provide new business efficiencies.
In the 1990’s, WalMart famously utilized parallel databases to
gain radical efficiencies in supply chain management via item-

The Basics of Shared-
Nothing Parallelism
• Hardware Economics
- Commodity machines

and network switches
- Scale out systems

incrementally;

• Parallel Dataflow
- Tables partitioned by row

across disks
- Work partitioned by

running replicas of each
dataflow operator on
multiple machines

- Partitioned parallelism:
dataflows partitioned
across parallel workers,
with each row in a
dataflow delivered to
one worker

- Pipelined parallelism:
while one operator is
producing a dataflow,
another operator can
be consuming and
processing it in parallel

Page 4

level inventory and historical sales information. In recent years,
virtually every sizable enterprise has realized the importance of
scalable solutions for data warehousing and analytics.

Parallel Programming with MapReduce (2000-present)

In the last decade, the importance of shared-nothing clusters
was rediscovered in the design of web services like search
engine infrastructure and messaging [Brewer01]. However, the
implementation of those early web services was done by small
teams of expert developers, much as the early parallel database
systems were built. In this context, Google was differentiating
itself as a company by developing a data-driven culture, in which
employees are explicitly encouraged to (a) develop innovative
solutions by analyzing the company’s data assets, and (b) gain
project approval from colleagues by using data analysis to overcome
“conventional wisdom” and other institutional arguments against
innovation [Kaushik06]. The growth of Google’s data-driven
culture was facilitated by getting the right analytic tools into the
hands of employees: tools that could allow software developers
to conveniently explore and analyze some of the largest data sets
ever assembled.

The key tools that Google
built for their developers were
the MapReduce programming
paradigm, and a proprietary
runtime engine for internal use at
Google [DeanGhemawat08]. At
heart, MapReduce is a very simple
dataflow programming model that
passes data items through simple
user-written code fragments.
Google’s MapReduce programs
start with a large datafile that is
broken into contiguous pieces called
“splits”. Each split is converted
via user-defined parsing code into
(key, value) pairs that are sent
to a Map module, which invokes
a usersupplied Map function on
each pair, producing a new key
and list of output values. Each
(key, output_list) pair is passed
to a Reduce module (possibly on
another machine) that gathers
them together, assembles them
into groups by key, and then calls
a user-supplied Reduce function

The MapReduce
Programming Model
• Open data access
- Any data source can be

used for input
- Input data can be in any

format (the developer
provides code to parse
out simple records)

• Traditional code
- Developers use familiar

programming languages
- Focus on simple single-

node logic: dataflow
operators to process
individual records (Map)
and groups of records
(Reduce)

- Programmer specifies an
explicit pipeline of Map
and Reduce operators.

• Partitioned parallel
dataflow engine

- Runs copies of each
Mapper and Reducer on
multiple nodes

- Dataflows partitioned
across parallel workers,
with each record (Map)
or group (Reduce)
routed to a single node

Page 5

to produce one reduced output list per group of mapped (key,
output_list) pairs. Both the Map and Reduce modules utilize
partition parallelism to enable many Map tasks (and many Reduce
tasks) to run in parallel.

MapReduce has become very popular within Google for everything
from the construction of their core web index, to simple programs
written by a single developer in a half hour [DeanGhemawat08]1.
The MapReduce programming model has become available to
programmers outside of Google as well, via the Hadoop open-
source runtime. MapReduce is particularly attractive to developers
for two main reasons:

• Data accessibility: Data is accessed from standard files, with no
need for a priori definition of schemas or file formats, and no
need to configure and load a database before getting answers.
This allows developers to “wrangle” any file format that they
have at hand; at a company like Google this includes web
crawls (HTML), term occurrence data, clickstream logs, and
advertising revenue history. The focus on standard files also
means that developers can typically get work done without
requesting permission from the “Keepers of the Data” that
guard traditional IT shops.

• Language Familiarity: Most of the MapReduce programmer’s
work is done in familiar programming languages used by
developers: Google’s MapReduce uses C++, and Hadoop uses
Java. This exposes massive data parallelism to developers within
the context of their familiar development environment: editors,
debuggers, and so on. By contrast, relatively few developers
work with data-centric languages like SQL on a daily basis, and
SQL experts tend to inhabit a different ecosystem (training, job
title) than typical software developers.

Technical common ground: Parallel Dataflow

The MapReduce revolution is so recent that the dust has yet to
settle on the new regime – there is still plenty of debate about
how MapReduce and parallel RDBMSs fit together in a data-
centric organization. Some database leaders have argued
publicly that the MapReduce phenomenon is not a technical
revolution at all – they characterize it as a reinvention of well-
known parallel database techniques that is missing key database
functionality (ACID storage, indexes, query optimization, etc.)
[DeWittStonebraker08]. The MapReduce proponents argue
that they neither need nor want a heavyweight database for

1 In September 2007 alone, Google’s MapReduce installation processed over
2,000 jobs that churned through 403,000 Terabytes of data. Perhaps more
interesting than the data volume is the diversity of code that was written: that
workload included over 4,000 unique Map functions, and over 2,400 unique
Reduce functions [DeanGhemawat08].

Page 6

many tasks, and they have no interest in coding in SQL. From
their standpoint, MapReduce has revolutionized the developer
ecosystem, providing them with easy access to parallelism over
their own data, in their own language framework.

Both these arguments have merit. But the disconnect between
these viewpoints can lead to inefficiencies and confusion in an
organization trying to instill a broad data-driven culture. Consider
what happens if the traditionally cautious IT department requires
the use of a full RDBMS feature stack, and the maverick developers
focus on the lightweight and programmer-friendly MapReduce
framework. Data assets get partitioned across teams, as do
in-house program for data analysis. Worse, two separate data
cultures evolve within the organization, leading to destructive
“data ownership” politics, and arguments over tools rather than
solutions.

Despite the differences in programming interfaces and software
philosophy, RDBMSs and MapReduce engines both are brought
alive by the same “beating heart”: a massively parallel dataflow
engine, pumping data across a parallel network mesh, through
high-performance bulk operations (join, map, reduce, etc.). Is
it possible to take that core dataflow component, and provide
interfaces for both ecosystems? In principle, this should be entirely
natural. The main barriers come from software engineering
realities. The tried-and-true parallel RDBMS engines were built in
the 1980’s and 90’s with the dataflow engine embedded deep into
the relational codebase. It is a tall order to extract the “beating
heart” from those systems for reuse elsewhere. By contrast,
MapReduce implementations like Hadoop provide none of the key
features required of a DBMS. They have a lot of “heart”, but the
body-building required to replicate a full-featured RDBMS would
take years.

Greenplum enters this arena from a unique direction. Greenplum
began in the “heart transplant” business: its core technology
effort was to take PostgreSQL, the best-of-breed open-source
RDBMS, and insert a massively parallel dataflow engine into its
core. Based on that success, Greenplum is now able to offer the
first commercial implementation of MapReduce, built on that
same core parallel technology. Because Greenplum’s RDBMS
and MapReduce share the same core engine, they are uniquely
interoperable.

Introducing Greenplum MapReduce

Greenplum MapReduce provides a convenient, easy-to-program
platform for massive data-parallelism. It implements a harness
for parallel Map and Reduce functions, along with flexible data
access to files, database records, and system services.

Page 7

Greenplum allows developers to write Map and Reduce functions
in a variety of popular scripting languages: the list currently
includes Python and Perl. Support for these popular languages
includes access to entire ecosystems of open-source packages
via the Python Package Index (PyPi) and the Comprehensive Perl
Archive Network (CPAN). This includes a host of features not
usually found in an RDBMS: free-text analysis, statistical toolkits,
graph algorithms, HTML and XML parsing, web connectivity (SOAP,
REST, HTTP), and many more.

In terms of data access, Greenplum MapReduce provides developers
with the familiar flexibility to access their data “where it lives”: in
files, websites, or even via arbitrary operating system commands.
Greenplum provides this data without any of the overheads that
developers often associate with traditional RDBMSs: no locking,
logging or distributed “commit” protocols. On the other hand, for
data that does need to be protected by a full-featured RDBMS,
Greenplum MapReduce offers efficient native access to database
records: it pushes MapReduce programs down into Greenplum’s
parallel database engine, without the cost of going “out-of-box”
to get data from a separate DBMS over narrow client interfaces.

The Power of Synergy

Greenplum is unique in offering a commercial-grade implementation
of MapReduce, providing a robust implementation of the open
interfaces that enable and encourage developers to work with
massive data sets. But the biggest advantage of Greenplum’s
implementation comes from its shared technology core, which
unifies MapReduce and RDBMS functionality within a single parallel
dataflow engine.

Page 8

This unique architecture allows developers to mix and match
data sources and programming styles. Greenplum’s solution is
also able to make MapReduce programs visible to SQL queries
and vice-versa. This set of features enables a number of natural
design patterns that are unique to Greenplum:

• MapReduce programs over high-performance database tables.
Access to database data is trivial in Greenplum MapReduce:
the MapReduce program simply specifies the database table
name as its input. Because Greenplum database tables are
partitioned across multiple machines, the initial Map phase is
executed in the database engine directly on the local partition,
providing fully parallel I/O with computation “pushed” to the
data. By contrast, a standalone MapReduce engine would
require the programmer to write data access routines into
their MapReduce script. That extra programmer code would
then access a remote database server via a connectivity
protocol like JDBC, and pull the database records over to Map
workers.

• SQL over external data sources. Greenplum’s “External
Table” facility allows files and data-producing programs to be
registered as read-only tables in the database, and queried
in SQL alongside database tables. External data is accessed
and converted to records on the fly during query processing.
Because these external tables can be stored or generated on
an arbitrary number of nodes in the cluster, data access and
conversion is a massively parallel process.

• Durable storage of MapReduce outputs. Many MapReduce
programs run for hours, and provide important analytic results.
Like standalone MapReduce implementations, Greenplum can
store these results in a filesystem. But it is equally easy to
store the results of Greenplum MapReduce in a Greenplum
database, with full ACID durability guarantees, and the option
to subsequently analyze those outputs via Business Intelligence
tools, SQL queries, and other enterprise analytic software
designed for databases. Again, because the MapReduce code
runs in the same engine as the database, writing of output
tables is fully parallelized and requires no remote connectivity
overheads.

• Rich integration of MapReduce and SQL code. Greenplum’s
unique architecture removes barriers between code written in
the MapReduce framework, and code written in SQL. Because
Greenplum MapReduce scripts can be configured to flexibly
access the database, they can use arbitrary SQL queries as
input. In the other direction, Greenplum MapReduce scripts
can be registered as “views” in the database, and used as
virtual tables within SQL statements: the MapReduce job is
run on the fly as part of the SQL query processing, and its

Page 9

outputs are pipelined directly into the relational query plan.
Greenplum’s engine executes all code – SQL, Map functions,
Reduce functions – on the same cluster of machines where the
database is stored. This integration allows SQL and MapReduce
developers to share code freely without performance penalties
or the need to work with “adapter” software. This flexibility
removes the overhead of cultural and political debates about
the “right” programming framework within an organization.

MapReduce in Use

MapReduce supports simple, easy-to-program dataflows: a single
data source piped into a chain of customizable Map and Reduce
operators. As a result, MapReduce is especially well suited for
parallelizing custom tasks over a single dataset.

Data extraction and transformation tasks fit this model well.
Consider the example of an e-commerce website with free-text
descriptions of products. As a first phase in categorizing products,
we would like to automatically extract keywords from the HTML
description text for each product. That is, we want to convert each
free text description into a set of pairs of the form (productID,
keyword).

MapReduce makes this easy. We configure it to route product
pages (which may be in files, a database, or even on the Web)
to a cluster of Greenplum servers, each running a Python Map
operator. The Python Map code on each node repeatedly gets
a product page, splits the product description text into a list of
potential keywords, and then loops through the resulting list and

Page 10

outputs (productID, keyword) pairs2. These can be routed to
Python Reduce operators running on the cluster, which can gather
up and count these pairs to produce outputs of the form (productID,
keyword, occurrences), where the last field captures the number
of times each keyword occurs in each product description. This
output can be stored in a database table for use in subsequent
tasks. For example, using this table, products can be “auto-
categorized” by a simple SQL query that joins the MapReduce
output with a table of keywords and product categories. As a very
different example, the New York Times used a simple MapReduce
program to convert years of scanned newspaper articles into
digital text. The approach is to use parallel dataflow to “kick off”
parallel computation. To do this in Greenplum, a list of image
filenames can be piped into a cluster of Greenplum Map operators
written in Perl. Each Map operator uses Perl’s system command
to execute an Optical Character Recognition program (e.g. the
open source Tesseract tool) to convert the image file into text.
No Reduce phase is required; the results of the OCR program can
be written to text files, or loaded as text fields into a database
table.

Both of these examples do information extraction, transformation
and loading, often called ETL in the data warehousing business.
Some database engines advertise the ability to do ELT: loading the
data into the database before transforming it, to allow subsequent
transformations to run in SQL. Greenplum’s flexibility makes the
reordering of the “L” phase completely fluid: data can be stored
inside or outside the database, and accessed in either case by
massively parallel code written in either MapReduce or SQL. So
Greenplum easily enables either ETL or ELT, along with options
like ET (in which the data is always stored outside the database)
and LET (in which the raw form of the information is stored in
the database.) This is the kind of flexibility that comes from
decoupling the parallel dataflow engine, allowing it to interoperate
with various storage and language interfaces.

The previous examples focused on data extraction and
transformation, but MapReduce is also useful for deeper data
mining and analytics. Many companies employ experts in statistics
and finance, who increasingly want to run complex mathematical
models over large volumes of data. Recently, there have been
a number of tutorials and papers on easily implementing
popular data mining techniques in parallel using MapReduce
[KimballMichelsBisciglia07, ChuEtAl06]. A variety of sophisticated

2 An important detail in handling free text is to canonicalize multiple forms of
the same word: e.g. “driver”, “drivers”, and “driving” should all be converted
to “drive” so they will match. Because Greenplum MapReduce provides access
to Perl and Python’s open-source libraries, we can use Python’s nltk toolkit for
Natural Language Processing to do this task – a two-line addition to the basic
Map program sketched above.

Page 11

data mining and machine learning algorithms have been expressed
in this framework, including popular techniques for classification,
clustering, regression, and dimensionality reduction. And in the
Greenplum context, these algorithms can be flexibly combined
with SQL and run over both database tables and files.

Conclusion

MapReduce and SQL are two useful interfaces that enable software
developers to take advantage of parallel processing over big data
sets. Until recently, SQL was targeted at enterprise application
programmers accessing transactional records, and MapReduce
was targeted at more general software developers manipulating
files. This distinction was mostly an artifact of the limitations of
systems in the marketplace, but has led to significant confusion
and slowed the adoption of MapReduce as a programming model
in traditional data-rich settings in the business world.

Greenplum’s technical core competency is parallel data technology.
By applying that expertise to both MapReduce and SQL programs,
Greenplum has changed the landscape for parallel data processing,
removing arbitrary barriers between programming styles and
usage scenarios. The resulting Greenplum engine is a uniquely
flexible and scalable data processing system, allowing flexible
combinations of SQL and MapReduce, database tables and files.

Contact
Greenplum
1900 S. Norfolk Drive,
Suite 224
San Mateo, CA 94403
United States
+1 650 286 8012 (ph)
+1 650 286 8010 (fax)

Page 12

References
[Codd70] E. F. Codd: A Relational Model of Data for Large Shared
Data Banks. Commun. ACM 13(6): 377-387 (1970)

[Gray78] Jim Gray: Notes on Data Base Operating Systems. In
Michael J. Flynn, et al. (Eds.): Operating Systems, An Advanced
Course. Lecture Notes in Computer Science 60. Springer, 1978:
393-481.

[BoralDeWitt83] Haran Boral, David J. DeWitt: Database Machines:
An Idea Whose Time Passed? A Critique of the Future of Database
Machines. International Workshop on Database Machines (IWDM)
1983: 166-187

[Brewer01] Eric A. Brewer: Lessons from Giant-Scale Services.
IEEE Internet Computing 5(4): 46-55 (2001)

[Kaushik06] Avinash Kaushik. Web Analytics: An Hour a Day.
Sybex Publishers, 2007.

[DeanGhemawat08] Jeffrey Dean, Sanjay Ghemawat:
MapReduce:simplified data processing on large clusters. Commun.
ACM 51(1): 107-113 (2008)

[DeWittStonebraker08] David J. DeWitt and Michael Stonebraker.
MapReduce: A Major Step Backwards. The Database Column
(weblog). January 17, 2008. http://www.databasecolumn.
com/2008/01/mapreduce-a-major-step-back.html

[KimballMichelsBisciglia07] Aaron Kimball, Sierra Michels-Slettvet,
and Christophe Bisciglia. Cluster Computing and MapReduce.
Google Code University (website). Summer, 2007.

[ChuEtAl06] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan
Yu, Gary Bradski, Andrew Ng, and Kunle Olukotun. MapReduce for
Machine Learning on Multicore. Advances in Neural Information
Processing Systems (NIPS), December, 2006. Revision 1. August
2008.

