
Introduction

In 2004, Google published a research paper on the MapReduce 
framework they developed for their internal data processing needs. 
In simple, approachable terms, the paper describes how Google 
developers harness massively parallel clusters of computers to 
analyze some of the largest datasets ever collected.  Since that 
paper was published, there has been ongoing discussion about the 
role of this technology outside the walls of Google.  Excitement 
about MapReduce has spread quickly in the computing industry, 
particularly in young and forward-looking firms.  But there is 
confusion and controversy about how the technology fits into 
the larger ecosystem of information technology, especially with 
respect to other “big data” solutions like massively parallel SQL 
database engines.

In this whitepaper, we provide a technical context for that 
discussion.  In a nutshell, we present SQL and MapReduce as 
two different programming paradigms that are implemented via 
a common engine architecture: parallel dataflow.  Seen in these 
terms, MapReduce can be viewed as a new programming interface 
to traditional data-parallel computing.

After presenting this context, we introduce Greenplum MapReduce: 
a seamless integration of MapReduce and relational database 
functionality unified in one massively parallel dataflow engine.  We 
describe how Greenplum allows MapReduce programs and SQL 
to interoperate, efficiently and flexibly processing data in both 
standard files and database tables.

History: Three Revolutions

To understand Greenplum’s MapReduce implementation, it is 
helpful to see it in the context of three historical shifts in the 
technology behind large-scale data management: the Relational 
Database revolution, the rise of shared-nothing parallelism, 
and the popularization of the MapReduce parallel programming 
paradigm.
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Relational Revolution (1970s-present)

Relational Database Systems (RDBMSs) were a radical idea when 
they were introduced, and they revolutionized the way that 
enterprises manage their records.  The birth of relational technology 
in research is well documented.  In 1970, IBM researcher Ted 
Codd published his first paper on the relational model of data 
[Codd70], which proposed representing data in tables of rows 
and columns, and querying the data using a high-level declarative 
language that formed the foundation for what we now know 
as SQL.  Some 5 years later, Jim Gray and colleagues at IBM 
research proposed ACID transactions as a model for correctness 
of concurrent updates in a database [Gray78]. Codd and Gray 
both received the Turing award (the “Nobel prize of computer 
science”) for this work.  By the mid-1970’s, researchers at IBM 
and UC Berkeley were hard at work on the two key prototype 
systems – System R and Ingres – that gave birth to the modern 
relational database industry. Both of these systems developed 
query optimizer technology that compiles declarative queries and 
passes the result to a dataflow processing engine, which direct 
streams of data through operations like filters, index lookups, 
joins, grouping and aggregation.

Relational databases remain the workhorses of modern 
record keeping 30 years later, and for good reason.  Modern 
implementations of ACID transactions ensure dependable, 
consistent management of data storage.  The declarative nature 
of SQL enables data analysis via ad hoc queries, and ensures that 
data-centric applications continue to work correctly even as data 
layouts and database hardware evolves.  Beneath all this, the 
simple elegance of the relational model helps provide discipline 
needed for sound, long-term database design.

“Shared Nothing” Parallelism (1980’s-present)

As relational database systems were becoming a commercial 
reality in the 1980’s, efforts were afoot to accelerate database 
performance via custom hardware known then as “database 
machines”. However, it quickly became clear that economies of 
scale favored commodity hardware over custom solutions: the 
latest version of a commodity computer invariably provides a 
better price/performance point than last year’s custom-designed 
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machine, negating the performance benefits of customization. 
As a result, the main early efforts toward database machines 
were deemed a failure by the researchers and entrepreneurs who 
pioneered the area [BoralDeWitt83].

Out of the ashes of the work on database machines, a new idea 
rose: database software could be parallelized to leverage multiple 
commodity processors in a network to deliver increased scalability 
and performance.  The failed history of custom database machines 
led to a particular interest in building parallel databases using 
commodity computers.  The term “shared-nothing” parallelism 
was coined for these computing clusters, to distinguish them from 
the shared-memory multiprocessors that were being designed at 
the time for scientific applications. 

In order to harness the power of a cluster, query processing 
software had to evolve to take advantage of multiple disks, 
processors, and network links operating in parallel.  To achieve 
this, the rows of a table were partitioned across multiple machines 
with separate disks, enabling parallel I/O scans of big tables. 
Basic relational query operators like selection, join, grouping 
and aggregation were reinvented to run in parallel via similar 
partitioning schemes: the operations undertaken by each node in 
the cluster are the same, but the data being pumped through the 
fabric is automatically partitioned to allow each node to work on its 
piece of the operator independently.  Finally, these architectures 
allowed multiple relational operators to operate at the same 
time, allowing pipeline parallelism in which an operator producing 
a data stream runs in parallel with the operator consuming it. 
The resulting shared-nothing parallel RDBMSs were explored in 
research prototypes like Gamma and Bubba, and commercialized 
early on by Teradata and Tandem.

Shared-nothing architectures enabled relational databases 
to scale to unprecedented levels.  This changed the way that 
many businesses approached the value of data: in addition to 
keeping the current books correct, analytic applications could be 
built over historical records to provide new business efficiencies. 
In the 1990’s, WalMart famously utilized parallel databases to 
gain radical efficiencies in supply chain management via item-
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level inventory and historical sales information.  In recent years, 
virtually every sizable enterprise has realized the importance of 
scalable solutions for data warehousing and analytics.

Parallel Programming with MapReduce (2000-present)

In the last decade, the importance of shared-nothing clusters 
was rediscovered in the design of web services like search 
engine infrastructure and messaging [Brewer01].  However, the 
implementation of those early web services was done by small 
teams of expert developers, much as the early parallel database 
systems were built.  In this context, Google was differentiating 
itself as a company by developing a data-driven culture, in which 
employees are explicitly encouraged to (a) develop innovative 
solutions by analyzing the company’s data assets, and (b) gain 
project approval from colleagues by using data analysis to overcome 
“conventional wisdom” and other institutional arguments against 
innovation [Kaushik06].  The growth of Google’s data-driven 
culture was facilitated by getting the right analytic tools into the 
hands of employees: tools that could allow software developers 
to conveniently explore and analyze some of the largest data sets 
ever assembled.

The key tools that Google 
built for their developers were 
the MapReduce programming 
paradigm, and a proprietary 
runtime engine for internal use at 
Google [DeanGhemawat08].  At 
heart, MapReduce is a very simple 
dataflow programming model that 
passes data items through simple 
user-written code fragments. 
Google’s MapReduce programs 
start with a large datafile that is 
broken into contiguous pieces called 
“splits”.  Each split is converted 
via user-defined parsing code into 
(key, value) pairs that are sent 
to a Map module, which invokes 
a usersupplied Map function on 
each pair, producing a new key 
and list of output values.  Each 
(key, output_list) pair is passed 
to a Reduce module (possibly on 
another machine) that gathers 
them together, assembles them 
into groups by key, and then calls 
a user-supplied Reduce function 
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to produce one reduced output list per group of mapped (key, 
output_list) pairs.  Both the Map and Reduce modules utilize 
partition parallelism to enable many Map tasks (and many Reduce 
tasks) to run in parallel.

MapReduce has become very popular within Google for everything 
from the construction of their core web index, to simple programs 
written by a single developer in a half hour [DeanGhemawat08]1. 
The MapReduce programming model has become available to 
programmers outside of Google as well, via the Hadoop open-
source runtime.  MapReduce is particularly attractive to developers 
for two main reasons:

•  Data accessibility: Data is accessed from standard files, with no 
need for a priori definition of schemas or file formats, and no 
need to configure and load a database before getting answers. 
This allows developers to “wrangle” any file format that they 
have at hand; at a company like Google this includes web 
crawls (HTML), term occurrence data, clickstream logs, and 
advertising revenue history.  The focus on standard files also 
means that developers can typically get work done without 
requesting permission from the “Keepers of the Data” that 
guard traditional IT shops.

•  Language Familiarity: Most of the MapReduce programmer’s 
work is done in familiar programming languages used by 
developers: Google’s MapReduce uses C++, and Hadoop uses 
Java. This exposes massive data parallelism to developers within 
the context of their familiar development environment: editors, 
debuggers, and so on.  By contrast, relatively few developers 
work with data-centric languages like SQL on a daily basis, and 
SQL experts tend to inhabit a different ecosystem (training, job 
title) than typical software developers.

Technical common ground: Parallel Dataflow

The MapReduce revolution is so recent that the dust has yet to 
settle on the new regime – there is still plenty of debate about 
how MapReduce and parallel RDBMSs fit together in a data-
centric organization.  Some database leaders have argued 
publicly that the MapReduce phenomenon is not a technical 
revolution at all – they characterize it as a reinvention of well-
known parallel database techniques that is missing key database 
functionality (ACID storage, indexes, query optimization, etc.) 
[DeWittStonebraker08].  The MapReduce proponents argue 
that they neither need nor want a heavyweight database for 

1 In September 2007 alone, Google’s MapReduce installation processed over 
2,000 jobs that churned through 403,000 Terabytes of data. Perhaps more 
interesting than the data volume is the diversity of code that was written: that 
workload included over 4,000 unique Map functions, and over 2,400 unique 
Reduce functions [DeanGhemawat08].
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many tasks, and they have no interest in coding in SQL. From 
their standpoint, MapReduce has revolutionized the developer 
ecosystem, providing them with easy access to parallelism over 
their own data, in their own language framework. 

Both these arguments have merit.  But the disconnect between 
these viewpoints can lead to inefficiencies and confusion in an 
organization trying to instill a broad data-driven culture. Consider 
what happens if the traditionally cautious IT department requires 
the use of a full RDBMS feature stack, and the maverick developers 
focus on the lightweight and programmer-friendly MapReduce 
framework.  Data assets get partitioned across teams, as do 
in-house program for data analysis.  Worse, two separate data 
cultures evolve within the organization, leading to destructive 
“data ownership” politics, and arguments over tools rather than 
solutions.

Despite the differences in programming interfaces and software 
philosophy, RDBMSs and MapReduce engines both are brought 
alive by the same “beating heart”: a massively parallel dataflow 
engine, pumping data across a parallel network mesh, through 
high-performance bulk operations (join, map, reduce, etc.).  Is 
it possible to take that core dataflow component, and provide 
interfaces for both ecosystems?  In principle, this should be entirely 
natural.  The main barriers come from software engineering 
realities.  The tried-and-true parallel RDBMS engines were built in 
the 1980’s and 90’s with the dataflow engine embedded deep into 
the relational codebase.  It is a tall order to extract the “beating 
heart” from those systems for reuse elsewhere. By contrast, 
MapReduce implementations like Hadoop provide none of the key 
features required of a DBMS.  They have a lot of “heart”, but the 
body-building required to replicate a full-featured RDBMS would 
take years. 

Greenplum enters this arena from a unique direction. Greenplum 
began in the “heart transplant” business: its core technology 
effort was to take PostgreSQL, the best-of-breed open-source 
RDBMS, and insert a massively parallel dataflow engine into its 
core. Based on that success, Greenplum is now able to offer the 
first commercial implementation of MapReduce, built on that 
same core parallel technology.  Because Greenplum’s RDBMS 
and MapReduce share the same core engine, they are uniquely 
interoperable.

Introducing Greenplum MapReduce

Greenplum MapReduce provides a convenient, easy-to-program 
platform for massive data-parallelism.  It implements a harness 
for parallel Map and Reduce functions, along with flexible data 
access to files, database records, and system services.
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Greenplum allows developers to write Map and Reduce functions 
in a variety of popular scripting languages: the list currently 
includes Python and Perl. Support for these popular languages 
includes access to entire ecosystems of open-source packages 
via the Python Package Index (PyPi) and the Comprehensive Perl 
Archive Network (CPAN). This includes a host of features not 
usually found in an RDBMS: free-text analysis, statistical toolkits, 
graph algorithms, HTML and XML parsing, web connectivity (SOAP, 
REST, HTTP), and many more. 

In terms of data access, Greenplum MapReduce provides developers 
with the familiar flexibility to access their data “where it lives”: in 
files, websites, or even via arbitrary operating system commands. 
Greenplum provides this data without any of the overheads that 
developers often associate with traditional RDBMSs: no locking, 
logging or distributed “commit” protocols. On the other hand, for 
data that does need to be protected by a full-featured RDBMS, 
Greenplum MapReduce offers efficient native access to database 
records: it pushes MapReduce programs down into Greenplum’s 
parallel database engine, without the cost of going “out-of-box” 
to get data from a separate DBMS over narrow client interfaces.

The Power of Synergy

Greenplum is unique in offering a commercial-grade implementation 
of MapReduce, providing a robust implementation of the open 
interfaces that enable and encourage developers to work with 
massive data sets.  But the biggest advantage of Greenplum’s 
implementation comes from its shared technology core, which 
unifies MapReduce and RDBMS functionality within a single parallel 
dataflow engine.
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This unique architecture allows developers to mix and match 
data sources and programming styles.  Greenplum’s solution is 
also able to make MapReduce programs visible to SQL queries 
and vice-versa.  This set of features enables a number of natural 
design patterns that are unique to Greenplum:

•  MapReduce programs over high-performance database tables. 
Access to database data is trivial in Greenplum MapReduce: 
the MapReduce program simply specifies the database table 
name as its input.  Because Greenplum database tables are 
partitioned across multiple machines, the initial Map phase is 
executed in the database engine directly on the local partition, 
providing fully parallel I/O with computation “pushed” to the 
data.  By contrast, a standalone MapReduce engine would 
require the programmer to write data access routines into 
their MapReduce script.  That extra programmer code would 
then access a remote database server via a connectivity 
protocol like JDBC, and pull the database records over to Map 
workers.

• SQL over external data sources. Greenplum’s “External 
Table” facility allows files and data-producing programs to be 
registered as read-only tables in the database, and queried 
in SQL alongside database tables.  External data is accessed 
and converted to records on the fly during query processing. 
Because these external tables can be stored or generated on 
an arbitrary number of nodes in the cluster, data access and 
conversion is a massively parallel process.

• Durable storage of MapReduce outputs.  Many MapReduce 
programs run for hours, and provide important analytic results. 
Like standalone MapReduce implementations, Greenplum can 
store these results in a filesystem. But it is equally easy to 
store the results of Greenplum MapReduce in a Greenplum 
database, with full ACID durability guarantees, and the option 
to subsequently analyze those outputs via Business Intelligence 
tools, SQL queries, and other enterprise analytic software 
designed for databases.  Again, because the MapReduce code 
runs in the same engine as the database, writing of output 
tables is fully parallelized and requires no remote connectivity 
overheads.

• Rich integration of MapReduce and SQL code. Greenplum’s 
unique architecture removes barriers between code written in 
the MapReduce framework, and code written in SQL.  Because 
Greenplum MapReduce scripts can be configured to flexibly 
access the database, they can use arbitrary SQL queries as 
input.  In the other direction, Greenplum MapReduce scripts 
can be registered as “views” in the database, and used as 
virtual tables within SQL statements: the MapReduce job is 
run on the fly as part of the SQL query processing, and its 
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outputs are pipelined directly into the relational query plan. 
Greenplum’s engine executes all code – SQL, Map functions, 
Reduce functions – on the same cluster of machines where the 
database is stored.  This integration allows SQL and MapReduce 
developers to share code freely without performance penalties 
or the need to work with “adapter” software.  This flexibility 
removes the overhead of cultural and political debates about 
the “right” programming framework within an organization.

MapReduce in Use

MapReduce supports simple, easy-to-program dataflows: a single 
data source piped into a chain of customizable Map and Reduce 
operators. As a result, MapReduce is especially well suited for 
parallelizing custom tasks over a single dataset.

Data extraction and transformation tasks fit this model well. 
Consider the example of an e-commerce website with free-text 
descriptions of products.  As a first phase in categorizing products, 
we would like to automatically extract keywords from the HTML 
description text for each product. That is, we want to convert each 
free text description into a set of pairs of the form (productID, 
keyword).

MapReduce makes this easy.  We configure it to route product 
pages (which may be in files, a database, or even on the Web) 
to a cluster of Greenplum servers, each running a Python Map 
operator.  The Python Map code on each node repeatedly gets 
a product page, splits the product description text into a list of 
potential keywords, and then loops through the resulting list and 
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outputs (productID, keyword) pairs2.  These can be routed to 
Python Reduce operators running on the cluster, which can gather 
up and count these pairs to produce outputs of the form (productID, 
keyword, occurrences), where the last field captures the number 
of times each keyword occurs in each product description. This 
output can be stored in a database table for use in subsequent 
tasks.  For example, using this table, products can be “auto-
categorized” by a simple SQL query that joins the MapReduce 
output with a table of keywords and product categories.  As a very 
different example, the New York Times used a simple MapReduce 
program to convert years of scanned newspaper articles into 
digital text.  The approach is to use parallel dataflow to “kick off” 
parallel computation.  To do this in Greenplum, a list of image 
filenames can be piped into a cluster of Greenplum Map operators 
written in Perl.  Each Map operator uses Perl’s system command 
to execute an Optical Character Recognition program (e.g. the 
open source Tesseract tool) to convert the image file into text.  
No Reduce phase is required; the results of the OCR program can 
be written to text files, or loaded as text fields into a database 
table. 

Both of these examples do information extraction, transformation 
and loading, often called ETL in the data warehousing business. 
Some database engines advertise the ability to do ELT: loading the 
data into the database before transforming it, to allow subsequent 
transformations to run in SQL. Greenplum’s flexibility makes the 
reordering of the “L” phase completely fluid: data can be stored 
inside or outside the database, and accessed in either case by 
massively parallel code written in either MapReduce or SQL.  So 
Greenplum easily enables either ETL or ELT, along with options 
like ET (in which the data is always stored outside the database) 
and LET (in which the raw form of the information is stored in 
the database.)  This is the kind of flexibility that comes from 
decoupling the parallel dataflow engine, allowing it to interoperate 
with various storage and language interfaces.

The previous examples focused on data extraction and 
transformation, but MapReduce is also useful for deeper data 
mining and analytics. Many companies employ experts in statistics 
and finance, who increasingly want to run complex mathematical 
models over large volumes of data. Recently, there have been 
a number of tutorials and papers on easily implementing 
popular data mining techniques in parallel using MapReduce 
[KimballMichelsBisciglia07, ChuEtAl06]. A variety of sophisticated 

2 An important detail in handling free text is to canonicalize multiple forms of 
the same word: e.g. “driver”, “drivers”, and “driving” should all be converted 
to “drive” so they will match. Because Greenplum MapReduce provides access 
to Perl and Python’s open-source libraries, we can use Python’s nltk toolkit for 
Natural Language Processing to do this task – a two-line addition to the basic 
Map program sketched above.
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data mining and machine learning algorithms have been expressed 
in this framework, including popular techniques for classification, 
clustering, regression, and dimensionality reduction.  And in the 
Greenplum context, these algorithms can be flexibly combined 
with SQL and run over both database tables and files.

Conclusion

MapReduce and SQL are two useful interfaces that enable software 
developers to take advantage of parallel processing over big data 
sets.  Until recently, SQL was targeted at enterprise application 
programmers accessing transactional records, and MapReduce 
was targeted at more general software developers manipulating 
files.  This distinction was mostly an artifact of the limitations of 
systems in the marketplace, but has led to significant confusion 
and slowed the adoption of MapReduce as a programming model 
in traditional data-rich settings in the business world. 

Greenplum’s technical core competency is parallel data technology. 
By applying that expertise to both MapReduce and SQL programs, 
Greenplum has changed the landscape for parallel data processing, 
removing arbitrary barriers between programming styles and 
usage scenarios.  The resulting Greenplum engine is a uniquely 
flexible and scalable data processing system, allowing flexible 
combinations of SQL and MapReduce, database tables and files.

Contact
Greenplum 
1900 S. Norfolk Drive,
Suite 224
San Mateo, CA 94403
United States
+1 650 286 8012 (ph)
+1 650 286 8010 (fax)
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