
2006 JavaOneSM Conference | Session 2116 |

BOF-0520

Customizing the “Grizzly”
NIO Framework
Jean-Francois Arcand, Staff Engineer
Sreeram Duvur, Senior Staff Engineer
Andreas Egloff, Staff Engineer
Sun Microsystems
http://www.sun.com

2006 JavaOneSM Conference | BOF 0520 2

Customizing the “Grizzly” NIO
Framework

This presentation covers some new projects
involving Grizzly NIO Framework, such as
customizable request processing, Asynchronous
Request Processing and Resource Consumption
Management.

2006 JavaOneSM Conference | BOF 0520 3

Agenda

Introduction

Grizzly Framework

Resource Consumption Management
Features in GlassFish

OpenESB HTTP SOA features in SJSAS 9.0

Q&A

2006 JavaOneSM Conference | BOF 0520 4

Agenda

Introduction

Grizzly Framework

Resource Consumption Management
Features in Glassfish

OpenESB HTTP SOA features in SJSAS 9.0

Q&A

2006 JavaOneSM Conference | BOF 0520 5

Introduction

● Grizzly is an NIO Framework used in several Sun
product: SJSAS 8.2/9.0 PE, Tango, etc.

● Grizzly is not tied to HTTP and can be used as a
generic NIO Framework.

● This presentation will give an overview of the
Grizzly Framework, and the we will discuss two
extensions, Application Resource Allocation and
JBI.

●Source: Please add the source of your data here

2006 JavaOneSM Conference | BOF 0520 6

Agenda

Introduction

Grizzly Framework

Resource Consumption Management
features in GlassFish

OpenESB HTTP SOA features in SJSAS 9.0

Q&A

2006 JavaOneSM Conference | BOF 0520 7

Grizzly Framework
● What Is the Grizzly Framework?

● Grizzly is a multi protocols (HTTP, UDP, etc.)
framework that uses lower level Java NIO primitives,
and provides high-performance APIs for socket
communications.

● Grizzly can be extended in several places, from
the management of low level byte buffer to thread
management.

● Next couple of slides will describe where and how
you can extend Grizzly.

2006 JavaOneSM Conference | BOF 0520 8

Source: Please add the source of your data here

Grizzly Main Components

SelectorThread

StreamAlgorithmTask

Handler

Pipeline

TCP requests

2006 JavaOneSM Conference | BOF 0520 9

Definitions

● SelectorThread: java.nio.channels.Selector
implementation.

● Pipeline: An execution queue. Most of the time
implemented as a wrapper around a thread pool.

● Task: An execution token which handles the life
cycle of the SocketChannel

● StreamAlgorithm: The strategy used to pull out
bytes from SocketChannel (when and how)

2006 JavaOneSM Conference | BOF 0520 10

SelectorThread

● Main entry point in Grizzly.
● Handles NIO low level events:

● SelectionKey events: OP_ACCEPT, OP_READ
● SelectionKey registration/de-registration with the

java.nio.channels.Selector.

● Handles the allocation and life cycle of Pipelines,
Tasks, StreamAlgorithms and Handlers.

● Can be embedded in any products.Can be embedded in any products.

2006 JavaOneSM Conference | BOF 0520 11

 Pipeline

● Responsible of the execution of a Task. The
Pipeline can execute using the caller thread or
create its own thread pool.

● Grizzly ships by default with three:
● LinkedListPipeline: thread pool based on a linked list
● ThreadPoolExecutorPipeline: thread pool based on

java.util.concurrent.ThreadPoolExecutor
● ExecutorServicePipeline: based on

java.util.concurrent.Executors

2006 JavaOneSM Conference | BOF 0520 12

StreamAlgorithm

● Implement the strategy of deciding:
● The ByteBuffer type (direct, heap or view)
● Deciding when we start/stop reading bytes from the

SocketChannel.
● The registration/de-registration on the SelectionKey

with the main Selector (SelectorThread) or using a
temporary Selector.

● Ship with three implementation.

2006 JavaOneSM Conference | BOF 0520 13

Tasks

● Execution token that can be executed by a thread
pool (implement java.lang.Runnable).

● Configurable using via the StreamAlgorithm.
● The SelectorThread will handle the life cycle of

Tasks.
● Usualy implement the request logic operations.

2006 JavaOneSM Conference | BOF 0520 14

Tasks (Cont.)

● Several implementations:
● ReadTask: handle the SocketChannel operations and

decide what to do next using its associated
StreamAlgorithm

● ProcessorTask: HTTP processing implementation.
Parse the HTTP request header and body.

● AsyncReadTask: Same as ReadTask but can handle
asynchronous requests.

2006 JavaOneSM Conference | BOF 0520 15

Source: Please add the source of your data here

Example: Grizzly in GlassFish

SelectorThread StreamAlgorithm

ReadTask

Pipeline ProcessorTask

Requests

Execute

Handle SocketChannel

Execute

2006 JavaOneSM Conference | BOF 0520 16

Grizzly makes GlassFish FAST!

● Benchmarked Grizzly vs Tomcat
5.5 with an application that
contains complex Servlet, JSP
and Database transaction.

● The benchmark measures the
maximum number of users that
the website can handle assuming
that 90% of the responses must
come back within 2 seconds and
that the average think time of the
users is 8 seconds.

2006 JavaOneSM Conference | BOF 0520 17

Agenda

Introduction

Grizzly Framework

Resource Consumption Management
Features in GlassFish

OpenESB HTTP SOA features in SJSAS 9.0

Q&A

2006 JavaOneSM Conference | BOF 0520 18

Resource Management Problem

Source: Please add the source of your data here

● What Operating systems have done for decades
● Fair share or real-time class scheduling
● Fair access to memory, disk and network resources
● Isolate process failures, more

● In Enterprise Java Execution Environment
● How to isolate component failures?
● How to ensure fair access to Data sources?
● How to execute all requests within a reasonable time?
● How to isolate rogue applications (memory leaks,

connection leaks, connection hogs,....)

2006 JavaOneSM Conference | BOF 0520 19

Some example requirements

● Application does not consume more than 20% of
CPU and 30% of memory

● All response times are under XX milliseconds
● Ensure that a service does not consume

resources at the expense of others (ceilings)

2006 JavaOneSM Conference | BOF 0520 20

Service Isolation is one answer

Source: Please add the source of your data here

● Pros
● Provides fine grained management control
● Each service is individually tunable for service quality
● Rogue applications do not hurt (no co-residents)

● Cons
● Many containers to manage
● Resource under-utilization is a bigger issue

● Many Administrators prefer consolidation
● Choice may vary however, based on other criteria

2006 JavaOneSM Conference | BOF 0520 21

Typical Isolated Deployment Strategy

Load Balancer

Data Sources

Instance

A1

App 1 App 2

Instance

A2Machine A

Instance

B1

App 1 App 2

Instance

B2Machine B

32 32 32 32 32 32 32 32

2006 JavaOneSM Conference | BOF 0520 22

Can we do better?

Source: Please add the source of your data here

● App Server Containers have “perfect” information
● Know the component being invoked
● Know the identity of invoker
● Know the resource being requested

● Questions of Policy
● What ? Ceiling (max) and Quota (reserve)
● When ?

● Fine grained: Apply policy at every resource request
● Coarse grained: Apply policy at request dispatch time

2006 JavaOneSM Conference | BOF 0520 23

Our project with Grizzly
● Test a coarse grained approach
● Implemented ceilings and quotas in Http

Request handling path
● Ceiling: Never allow more than x% of request threads

to be allocated for requests to App-1
● Leave at least (100-x)% of “processing capacity” to other apps
● Consume “< x%” of resources (like database connections)

● Quota: If we reserve x% of thread capacity to App-1
● Better chance that threads that will respond quickly to App-1
● May deprive or delay other co-resident applications

2006 JavaOneSM Conference | BOF 0520 24

Source: Please add the source of your data here

Example:

SelectorThread StreamAlgorithm

ReadTask

IsolatedPipeline

ProcessorTask

Requests

Execute

Handle SocketChannel
Execute

RuleExecutor ContextRootStreamAlgorithm

Rule(s)
Execute

setPipeline

2006 JavaOneSM Conference | BOF 0520 25

Grizzly Details

● Added a new Pipeline:
● Intercept the requests until the policy engine has

determined the request execution conditions.

● Added the a new StreamAlgorithm:
● Read the request lines (first 8k bytes) and try to

determine the HTTP request context root.

2006 JavaOneSM Conference | BOF 0520 26

Grizzly Details

● Added a new rule based Policy Engine
● Rules can be added on the fly. The Rule is responsible

for determining which policy apply to the request
(context root). More than one rule can be applied to the
same request.

● The last rule executed decide which Pipeline will be
associated with the Task (hence the request).

2006 JavaOneSM Conference | BOF 0520 27

Configuration Example

<jvm-options>

-Dcom.sun.enterprise.web.ara.rules=

 com.sun.enterprise.web.ara.rules.ThreadRatioRule

 com.sun.enterprise.web.ara.rules.HeapRatioRule

 -Dcom.sun.enterprise.web.ara.allocationPolicy=reserve

 -Dcom.sun.enterprise.web.ara.allocationRatio=appA|0.5,appB|0.4

</jvm-options>

2006 JavaOneSM Conference | BOF 0520 28

Consolidated Deployment with ARA

Load Balancer

Data Sources

Instance

A1

App 1 App 2

Machine A

Instance

B1

App 1 App 2

Machine B

3232 32 32

40% 40%

2006 JavaOneSM Conference | BOF 0520 29

Conclusions
● For similar application types

● Thread ratios result in roughly proportional CPU
utilization and roughly same ratio of resource usage as
thread ratio

● For non-similar co-resident it is possible to get the
ratios right, after tweaking

● BENEFIT: We allocate fewer resource
connections than with perfect isolation
● Do not have to provision each application for peak

2006 JavaOneSM Conference | BOF 0520 30

Other Approaches

Source: Please add the source of your data here

● At JVM Level
● Isolates (JSR-121) and Sun MVM Project
● Services execute as separate Isolates in one VM
● Resource Management is orthogonal (JSR-284)
● Not in mainstream JVMs, yet

● Leverage OS Capabilities
● e.g: Solaris Zones and Resource Management
● Specify CPU, Disk, Memory and Network quotas per

project or zone
● Not aware of application or identity

2006 JavaOneSM Conference | BOF 0520 31

Agenda

Introduction

Grizzly Framework

Resource Consumption Management
Features in GlassFish

OpenESB HTTP SOA features in SJSAS
9.0

Q&A

2006 JavaOneSM Conference | BOF 0520 32

A crash course in OpenESB and JBI
● What is JBI?

● The JBI 1.0 (JSR 208) specification is an industry-wide
initiative to create a standardized integration platform
for Java and business applications

● JBI addresses service-oriented architecture (SOA)
needs in integration

2006 JavaOneSM Conference | BOF 0520 33

A crash course in OpenESB and JBI
(Cont.)

● OpenESB is based on JBI
● Extends the reference implementation (RI), adding

additional binding components, service engines, tools,
management and monitoring

● Available in Java EE 5 SDK SOA Starter Kit Preview
http://java.sun.com/javaee/downloads

● Source code and further information available at
http://java.sun.com/integration

http://java.sun.com/javaee/downloads
http://java.sun.com/integration

2006 JavaOneSM Conference | BOF 0520 34

JBI Basics
● Messaging based, plug-in architecture

● Plug-in components into a standard infrastructure;
allow them to discover and interoperate with each other

● Key components
● Service Engines (SE) – pluggable business logic

(e.g. BPEL SE, XSLT SE)
● Binding Components (BC) – pluggable external

connectivity (e.g. HTTP SOAP BC, JMS BC, File BC)
● Normalized message router (NMR) – the messaging

based bus through which the components
communicate

2006 JavaOneSM Conference | BOF 0520 35

JBI High Level Architecture

Source: JBI 1.0 (JSR 208) specification

2006 JavaOneSM Conference | BOF 0520 36

Example Business Process (BP)

● Shows a request/reply
web service
implementation

● HTTP SOAP BC
listens for and handles
requests

● BPEL SE executes the
BP logic

2006 JavaOneSM Conference | BOF 0520 37

HTTP SOAP BC
● Has to efficiently support many 1000s of concurrent

requests, including request/reply
● Support web services on ports that are not serviced

by the application server
● Makes use of the standard WSDL SOAP extensions to

define external communication details

● Implements the WSDL 1.1 SOAP binding and
SOAP 1.1

● Follows WS-I 1.0 conventions and adds additional
support for non-conforming components

2006 JavaOneSM Conference | BOF 0520 38

What are some of the challenges?
● Business Processes are user defined

● Processing time for requests can be considerable and
vary widely

● SOA involves orchestration of services
● typically a business process might invoke several other

services and might “wait” for replies (I/O) before it
completes / replies itself

● JBI components are loosely coupled
● Typically they do not share threads
● They interact through an asynchronous message bus

● => We do not want to block a thread per request

2006 JavaOneSM Conference | BOF 0520 39

Our Approach
● Use embedded Grizzly instances

● Gives us NIO, non-blocking sockets
● Comes with all the features such as efficient buffer

handling, temporary selectors if the main selector gets
overloaded etc.

2006 JavaOneSM Conference | BOF 0520 40

Our Approach (Cont.)
● Use Grizzly asynchronous extensions

● Matches up well with the JBI asynchronous message bus;
when a reply is received from the NMR we “wake up” the
response processing instead of blocking a thread until
then

● We have tested the HTTP SOAP BC with a single
inbound thread to service all concurrent requests without
an issue

2006 JavaOneSM Conference | BOF 0520 41

Grizzly Asynchronous Extensions
● Allow for “parking” a request; a type of

“continuation” at the request processing level
● Enable via configuration or programmatically

SelectorThread selThread = protocolHandler.selectorThread();
DefaultAsyncHandler asyncHandler = new
com.sun.enterprise.web.connector.grizzly.async.DefaultAsyncHandler();
selThread.setAsyncHandler(asyncHandler);
selThread.setEnableAsyncExecution(true);

● Implement and add an “async” filter
com.sun.enterprise.web.connector.grizzly.AsyncFilter filter = new
 com.sun.jbi.httpsoapbc.embedded.JBIGrizzlyAsyncFilter();
asyncHandler.addAsyncFilter(filter);

● Once a reply is available continue response processing
AsyncHandler asyncHandler = task.getAsyncHandler();
asyncHandler.handle(asyncProcessorTask);

2006 JavaOneSM Conference | BOF 0520 42

Using an Embedded Grizzly
● Currently Grizzly does not package a facade /

helpers for embedded use; either use the
glassfish implementations or provide your own
● Create a connector

org.apache.catalina.Connector connector =
 GrizzlyEmbeddedWebContainer.createConnector(address, port, protocol);
BCCoyoteConnector bcCon = (BCCoyoteConnector) connector;

● Create your own adapter implementation if desired
org.apache.coyote.Adapter adapter = new GrizzlyRequestProcessor(bcCon);
bcCon.setAdapter(adapter);

● Set the protocol handler
protocolHandler = new
 com.sun.enterprise.web.connector.grizzly.GrizzlyHttpProtocol();
bcCon.setProtocolHandler(protocolHandler);

● Configure and start the Grizzly connector
bcCon.setMaxReadWorkerThreads(3);
bcCon.start();

2006 JavaOneSM Conference | BOF 0520 43

Source: Please add the source of your data here

Example:

SelectorThread

ReadTask

Pipeline

ProcessorTask

Requests

Execute

AsyncHandler

AsyncExecutor

AsyncProcessorTask

Execute

AsyncFilter

ReadTask

Delegate

Execute

ApplyFilter

2006 JavaOneSM Conference | BOF 0520 44

Summary

Grizzly Everywhere!

● Don't miss James Gosling keynote for another
Grizzly extension!!

2006 JavaOneSM Conference | BOF 0520 45

What's Next

● Grizzly
● An “embedded” grizzly controller class out of the box to

simplify instantiation and configuration
● Grizzly download out of GlassFish

● JAX-WS / Sun WS-* stack
● Incorporate NIO non-blocking and allow asynchronous

request processing (w/o blocking threads) client and
server side

2006 JavaOneSM Conference | BOF 0520 46

Additional Resources

● Binaries and Sources for OpenESB (including the
HTTP SOAP BC) can be downloaded from
https://open-esb.dev.java.net/public/downloads.html

● Grizzly available in GlassFish
https://glassfish.dev.java.net

● Grizzly day to day news
http://weblogs.java.net/blog/jfarcand/

https://open-esb.dev.java.net/public/downloads.html
https://glassfish.dev.java.net/

2006 JavaOneSM Conference | Session XXXX | 47

Q&A

2006 JavaOneSM Conference | Session 2116 |

BOF-0520

Customizing the “Grizzly”
NIO Framework
Jean-Francois Arcand, Staff Engineer
Sreeram Duvur, Senior Staff Engineer
Andreas Egloff, Staff Engineer
Sun Microsystems
http://www.sun.com

