Real-Time RIA's
with Apache Derby
and
Grizzly Comet

Jeanfrancois Arcand

Francois Orsini
Senior Staff Engineers
Sun Microsystems

of Open Source

Agenda

* Introduction

» What is Ajax Push (aka Comet)?

- Potential Drawbacks and Pitfalls

» Mixing Apache Derby and Grizzly Comet
- Demo

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet

What is Comet Request Processing (or
Ajax Push)

Comet is a programming technique that
enables web servers to send data to the
client without having any need for the
client to request for it. It allows creation of
event-driven web applications which are
hosted in the browser.

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet

What IS Ajax Push (aka Comet)?

- Use it to create highly responsive, event driven applications in a
browser

> Keep clients up-to-date with data arriving or changing on the server,
without frequent polling
* Pros
> Lower latency, not dependent on polling frequency
> Server and network do not have to deal with frequent polling requests to
check for updates
+ Example Applications
> GMail and GTalk
> Meebo
> JotlLive
> KnowNow
> 4homemedia.com
> Many more ...

ApacheCon US 2007 — RIAs with Apache Derby and Grizzly Comet 4

How ds the “Push” to the browser
WOrks

- Deliver data over a previously opened
connection
> Always “keep a connection open”; do not

respond to the initiating request until event
occurred

> Streaming is an option by sending response
In multiple parts and not closing the
connection in between

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 5

JGD

How does “Push’ to the browser work?

Standard Ajax compared to Ajax Push options

Ajax (Polling) Ajax Push (Long Poll) Ajax Push (Streaming)
Browser Server Browser Server Browser Server

| | | | | |

' request | ' request | ' request |
——— B e

| response | t : | o : :

: I even : response 1 eve : 1 event
| | I ——————————— ,__
i | '!Tuesr: rresponse part:
request | | : : . event
| : : : |——
' response | | | 'response part!

ApacheCon US 2007 — RIAs with Apache Derby and Grizzly Comet 6

Archltecture Challenge

 Using blocking, synchronous technology will
result in a blocked thread for each open
connection that is “waiting”

> Every blocked thread will consume memory

> This lowers scalability and can affect
performance

> To get the Java Virtual Machine (JVM™) to
scale to 10,000 threads and up needs specific
tuning and is not an efficient way of solving this

» Servlets 2.5 are an example of blocking,
synchronous technology

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 7

JGD

Archltecture Challenges
Affect of Blocking threads (default thread stack size)

Stack Memory Requirements

20 -
w 15 -
9
2 10 - W 64bit 1.6 JVM
(4v]
o Machine
O 5-

O _

QO O O O OSSO LD
QQ QQ %QQ /\QQ QQ QQ QQ QQ Q QQ

Number of Threads

ApacheCon US 2007 — RIAs with Apache Derby and Grizzly Comet 8

R e D

Technology Solutions

» Use new /O (NIO) non-blocking sockets to avoid blocking a
thread per connection

JGD

» Use technology that supports asynchronous request processing
> Release the original request thread while waiting for an event
> May process the event/response on another thread than the original
request
- Advantages

> Number of clients is primarily limited by the number of open sockets a
platform can support

> Could have all clients (e.g. 10'000) “waiting” without any threads
processing or blocked

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 9

Do Comet enabled Servers exist?

* Yes, more and more servers that support
Comet request processing are available:

> Grizzly
> GlassFish v2, v3
> Support Grizzly Comet and Jetty Comet.
> Jetty 6
> Ligthttpd
> Tomcat 6
>

- Today we are tgoing to focus on Grizzly's
Comet suppor

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 10

Bty S

What is Grizzly

» Grizzly is a multi protocol 1HTTP, UDP,
etc.) framework that uses lower level Java
NIO primitives, and provides high-
performance APls for socket
communications.

* In ((jBIassFish, Grizzly is the HTTP front
end.

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet

Comet in Grizzly

» Comet support is build on top of_GrizzK
Asynchronous Request Processing %A P), a
scalable implementation that doesn't hold one
thread per connection, and achieve as closer
as possible the performance of synchronous
request processing (SRP).

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet

Goal of Grizzly's Comet

- Hide the complexity of NIO/Asynchronous
Request Processing.

- Make it available to various technologies
from AJAX based client, JSF, JSP, Servlet,
POJO, JavaScript to “traditional”
tetchnologles such as JMS, EJB, database,
etc.

» Allow complicated scenarios but also support
POJO based development.

- Main Goal: Make it simple to use!

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet

Potential Drawbacks and Pitfal

JGD

Beware of flooding clients with too many events

> Filters (throttles) on the client or server side”? Which events
can be discarded, which can't?

Firewalls may terminate connections after a certain amount of

time

> Solution: Re-establish connection after tear-down or at certain intervals

The HTTP 1.1 specification suggests a limit of 2 simultaneous
connections from a client to the same host

> Some use a separate host name for the “Push” connection

In security terms the attack surface is very similar to standard
Ajax applications, for denial of service (DoS) the “wait” is a
consideration

Possible lost of data when the connection is closed

> Real time updates can still occurs when the application goes offline or
during re-connection.

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 14

Potentlal Drawbacks and Pitfall (Cont')

- HTTP Streaming is more challenging

> Portability issue to different browsers and
XMLHttpRequest (XHR)

|E, for example, does not make data available until connection close or only if you flush
2k of white space to make it work)

Use IFrames instead for portability

> With streaming data will accumulate, release memory
regularly

> Primitive proxies may buffer data in a way that
interferes with streaming

* Possible lost of data when the connection is
closed

> Real time updates can still occurs when the
application goes offline.

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 15

Ii e i)

Soltis: Mixing Derby and Grizzly's
Comet

» Filtering/Throttling messages can be archived
locally and asynchronously via Derby and
processed later, when the server is no longer
overloaded.

> Derby runs as an embedded server DB engine

- When disconnected, the server can cache any
real time update and push them later.

* When disconnected, the client can cache any
update and push them later.

> Derby can be accessed via JavaScript and Java.

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 16

apache Derby 8= NMain Characteristics

Complete Multi-User relational database engine
Embeddable and client/server database

Easy to use, zero maintenance

Small footprint (2MB)

Standards-based [Java DataBase Connectivity
(JDBC™) software, SQL92/99/2003]

Compact, secure, mature and robust
100% Java technology (write once, run anywhere)

Java DB is Sun’s supported distribution of Apache
Derby

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 17

Complete Relational Engine

Multi-user, transactions, isolation levels, deadlock
detection, crash recovery

Fully ACID compliant
Complete SQL Engine including:

views, triggers, stored procedures, functions
Foreign keys, check constraints, cost based optimizer

Data caching, statement caching, write ahead
logging, group commit

Online backup/restore
Database encryption, authentication, authorization

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 18

Embeddable Multi-User Database

Database engine may run in application’s
virtual machine

No additional process

Database requests are method calls within the Java Virtual
Machine (JVM™)

Startup and shutdown controlled by application
Just one Java Archive (JAR) file

Invisible to the user

Easy to use, zero maintenance

Can also run as a standalone database server

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 19

Client-Server Database

Database engine can run in a client-server
configuration

» Standalone server
 Server runtime management tool

Secure and support for various network connection
mechanisms

Easy to use, zero maintenance
Can also run embedded in other server frameworks

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 20

s - S
S ;
R s L w
e i

The Multi-Tier DB

» Client tier

- Embeddable storage in standalone client applications and web
2.0 RIA applications (demo)

* Read-only DB in JAR file
- Java DB on a memory stick

* Middle tier

- Embeddable middle tier database engine (e.g. in GlassFish)
» Can act as front-end cache for back-end enterprise DB's
 Persistent cache for middleware frameworks

- Back-end tier
« Standalone departmental server database
« Can support large number of concurrent users

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 21

Data Synchronization

* Not always required
* Depends on the application

» Conflicts resolution is the biggest problem

» At the application level
* Zimbra desktop
+ Offline Derby Google Calendar (demo part of Derby)
» Real-time synchronization with Comet

Database level

« Daffodil Replicator w/ Java DB
http://sourceforge.net/projects/daffodilreplica/

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 22

Data Replication

* Not always required
* Depends on the application

» Several open source initiatives
* Fault-tolerant, fail-over & load-balancing
» Support Java DB (Apache Derby)
» Sequoia (formerly C-JDBC)

* Apache 2.0 license

- HA-JDBC
- LGPL

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet

23

http://sequoia.continuent.org/HomePage
http://ha-jdbc.sourceforge.net/

Web Browser

WCS service access via

JavaScript technology
Asynchronous capability
JS to Java

Embedded Apache Derby I

ACID compliant
Fast
Zero administration

JDBC

Database(s) &
on disk

ApacheCon US 2007 — RIAs with Apache Derby and Grizzly Comet

M R
""" R e ——
A i G e S \'ﬁﬁ

Local Client Service via
JavaScript Technology

 Interact with local service directly via JavaScript technology
* No new syntax or else—All JavaScript technology

» Local service installed as a Java Plug-in software extension
* Trusted, runs in Java platform Sandbox
* Automatically installed on client host
* Service versioning management handling

* http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/ex
tensions.html

» LiveConnect to interact transparently with core service
implementation in Java technology

« JavaScript technology to Java technology and vice-versa
* Browser agnostic

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 25

Demo—Things to Remember

Ease of deployment over a large user base
(e.g. consumer desktops)

Transparent—embeddable and zero—administration
Invisible to the end user

ACID RDBMS-high levels of durability and
consistency to prevent data loss

Ease of upgrade (using Firefox or Java Web Start
software)

Small footprint
Highly secure to ensure desktop data is safe

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 26

Derby Integration

« Apache ActiveMQ

* Apache JPA

* Apache Roller

* Apache Cocoon

« Apache Geronimo

* Apache JDO

« Apache Xalan

- Daffodil Replicator

« Data Direct SequelLink
- DB Visual Architect

« Eclipse

* Project Glassfish

* Hibernate

- IBM DB2 Everyplace

IBM DB2 JDBC
Universal Driver

IBM WebSphere App
Server

ISQL-Viewer

Java DB

JBoss

JPOX

Jython

Kodo 3.3.3

Maven

NetBeans Software
Zimbra

Red Hat Application
Server

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet

27

AntHill Pro
Sequoia (C-JDBC)
SQuirreL SQL

Sun Java Enterprise
System

Sun Java System
Portal Server

Sun Java Studio
software

Sun Java Platform,
Enterprise Edition

Sun Java System
Service Registry

SUSE Linux 9.3
Zend core for IBM

Tomcat

Next Release Features (10.4)

» Additional security improvements
- SQL Roles

- SQL OLAP functionality
* e.g. LIMIT()

* More Performance Improvements
» Basic replication

» Table Functions (VTI)

- JMX management interface

* More info at:
 http://wiki.apache.org/db-derby/DerbyTenFourRelease

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 28

http://wiki.apache.org/db-derby/DerbyTenFourRelease

Demo & Use Cases: More Information

- Additional Demo's & Information publicly available at
http://developers.sun.com/javadb/

» Working with Apache Derby
http://wiki.apache.org/db-derby/WorkingWithDerby

» Uses of Apache Derby
http://wiki.apache.org/db-derby/UsesOfDerby

» Grizzly
http://grizzly.dev.java.net

» Comet and Grizzlet
http://weblogs.java.net/blog/jfarcand/

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 29

http://developers.sun.com/javadb/
http://wiki.apache.org/db-derby/WorkingWithDerby
http://wiki.apache.org/db-derby/UsesOfDerby
http://grizzly/

Conclusion

* Pushing data to the web client can form a
crucial tool in the developer’'s arsenal when
latency is important

* Loosing data when disconnected is a show
stopper for any applications that wants to
implement Comet based application.

Solution:
Grizzly + Apache Derby!!!

ApacheCon US 2007 - RIAs with Apache Derby and Grizzly Comet 30

s

& Real-Time RIAs
@ with Apache Derby
) and

Grizzly Comet
O Jeanfrancois Arcand

O Francois Orsini

-~

Senior Staff Engineers
Sun Microsystems

Leading the Wavé
of Open Source

