
Jeanfrancois Arcand
Francois Orsini
Senior Staff Engineers
Sun Microsystems

Real-Time RIA's
with Apache Derby

and
Grizzly Comet

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 2

Agenda

• Introduction
• What is Ajax Push (aka Comet)?
• Potential Drawbacks and Pitfalls
• Mixing Apache Derby and Grizzly Comet
• Demo

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 3

What is Comet Request Processing (or
Ajax Push)

Comet is a programming technique that
enables web servers to send data to the

client without having any need for the
client to request for it. It allows creation of
event-driven web applications which are

hosted in the browser.

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 4

• Use it to create highly responsive, event driven applications in a
browser
> Keep clients up-to-date with data arriving or changing on the server,

without frequent polling

• Pros
> Lower latency, not dependent on polling frequency
> Server and network do not have to deal with frequent polling requests to

check for updates

• Example Applications
> GMail and GTalk
> Meebo
> JotLive
> KnowNow
> 4homemedia.com
> Many more …

What is Ajax Push (aka Comet)?

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 5

How does the “Push” to the browser
works
• Deliver data over a previously opened

connection
> Always “keep a connection open”; do not

respond to the initiating request until event
occurred

> Streaming is an option by sending response
in multiple parts and not closing the
connection in between

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 6

Standard Ajax compared to Ajax Push options

How does “Push” to the browser work?

Browser Server

Ajax (Polling)

request

response

request

response

event

Server

Ajax Push (Long Poll)

request

response

request

Browser Server

Ajax Push (Streaming)

request

response part

Browser

response part

event event

event

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 7

Architecture Challenge
• Using blocking, synchronous technology will

result in a blocked thread for each open
connection that is “waiting”
> Every blocked thread will consume memory
> This lowers scalability and can affect

performance
> To get the Java Virtual Machine (JVM™) to

scale to 10,000 threads and up needs specific
tuning and is not an efficient way of solving this

• Servlets 2.5 are an example of blocking,
synchronous technology

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 8

Affect of Blocking threads (default thread stack size)

Architecture Challenges

Stack Memory Requirements

0

5

10

15

20

10
00

30
00

50
00

70
00

90
00

11
,0

00

13
,0

00

15
,0

00

17
,0

00

19
,0

00

Number of Threads

G
ig

a
b

y
te

s

64bit 1.6 JVM
Machine

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 9

Technology Solutions
• Use new I/O (NIO) non-blocking sockets to avoid blocking a

thread per connection

• Use technology that supports asynchronous request processing
> Release the original request thread while waiting for an event
> May process the event/response on another thread than the original

request

• Advantages
> Number of clients is primarily limited by the number of open sockets a

platform can support
> Could have all clients (e.g. 10’000) “waiting” without any threads

processing or blocked

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 10

Do Comet enabled Servers exist?

• Yes, more and more servers that support
Comet request processing are available:
> Grizzly
> GlassFish v2, v3

> Support Grizzly Comet and Jetty Comet.
> Jetty 6
> Ligthttpd
> Tomcat 6
> ...

• Today we are going to focus on Grizzly's
Comet support

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 11

What is Grizzly

• Grizzly is a multi protocol (HTTP, UDP,
etc.) framework that uses lower level Java
NIO primitives, and provides high-
performance APIs for socket
communications.

• In GlassFish, Grizzly is the HTTP front
end.

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 12

Comet in Grizzly

• Comet support is build on top of Grizzly
Asynchronous Request Processing (ARP), a
scalable implementation that doesn't hold one
thread per connection, and achieve as closer
as possible the performance of synchronous
request processing (SRP).

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 13

Goal of Grizzly's Comet

• Hide the complexity of NIO/Asynchronous
Request Processing.

• Make it available to various technologies
from AJAX based client, JSF, JSP, Servlet,
POJO, JavaScript to “traditional”
technologies such as JMS, EJB, database,
etc.

• Allow complicated scenarios but also support
POJO based development.

• Main Goal: Make it simple to use!

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 14

Potential Drawbacks and Pitfall
• Beware of flooding clients with too many events

> Filters (throttles) on the client or server side? Which events
can be discarded, which can't?

• Firewalls may terminate connections after a certain amount of
time
> Solution: Re-establish connection after tear-down or at certain intervals

• The HTTP 1.1 specification suggests a limit of 2 simultaneous
connections from a client to the same host
> Some use a separate host name for the “Push” connection

• In security terms the attack surface is very similar to standard
Ajax applications, for denial of service (DoS) the “wait” is a
consideration

• Possible lost of data when the connection is closed
> Real time updates can still occurs when the application goes offline or

during re-connection.

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 15

Potential Drawbacks and Pitfall (Cont')
• HTTP Streaming is more challenging

> Portability issue to different browsers and
XMLHttpRequest (XHR)

● IE, for example, does not make data available until connection close or only if you flush
2k of white space to make it work)

● Use IFrames instead for portability

> With streaming data will accumulate, release memory
regularly

> Primitive proxies may buffer data in a way that
interferes with streaming

• Possible lost of data when the connection is
closed
> Real time updates can still occurs when the

application goes offline.

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 16

Solutions: Mixing Derby and Grizzly's
Comet
• Filtering/Throttling messages can be archived

locally and asynchronously via Derby and
processed later, when the server is no longer
overloaded.
> Derby runs as an embedded server DB engine

• When disconnected, the server can cache any
real time update and push them later.

• When disconnected, the client can cache any
update and push them later.
> Derby can be accessed via JavaScript and Java.

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 17

Main Characteristics

● Complete Multi-User relational database engine
● Embeddable and client/server database
● Easy to use, zero maintenance
● Small footprint (2MB)
● Standards-based [Java DataBase Connectivity

(JDBC™) software, SQL92/99/2003]
● Compact, secure, mature and robust
● 100% Java technology (write once, run anywhere)
● is Sun’s supported distribution of Apache

Derby

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 18

Complete Relational Engine

● Multi-user, transactions, isolation levels, deadlock
detection, crash recovery

● Fully ACID compliant
● Complete SQL Engine including:

● views, triggers, stored procedures, functions
● Foreign keys, check constraints, cost based optimizer

● Data caching, statement caching, write ahead
logging, group commit

● Online backup/restore
● Database encryption, authentication, authorization

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 19

Embeddable Multi-User Database

● Database engine may run in application’s
virtual machine
● No additional process
● Database requests are method calls within the Java Virtual

Machine (JVM™)
● Startup and shutdown controlled by application
● Just one Java Archive (JAR) file
● Invisible to the user
● Easy to use, zero maintenance
● Can also run as a standalone database server

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 20

Client-Server Database

● Database engine can run in a client-server
configuration
● Standalone server
● Server runtime management tool

● Secure and support for various network connection
mechanisms

● Easy to use, zero maintenance
● Can also run embedded in other server frameworks

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 21

The Multi-Tier DB

● Client tier
● Embeddable storage in standalone client applications and web

2.0 RIA applications (demo)
● Read-only DB in JAR file
● Java DB on a memory stick

● Middle tier
● Embeddable middle tier database engine (e.g. in GlassFish)
● Can act as front-end cache for back-end enterprise DB's
● Persistent cache for middleware frameworks

● Back-end tier
● Standalone departmental server database
● Can support large number of concurrent users

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 22

Data Synchronization

● Not always required
● Depends on the application

● Conflicts resolution is the biggest problem
● At the application level

● Zimbra desktop
● Offline Derby Google Calendar (demo part of Derby)
● Real-time synchronization with Comet

● Database level
● Daffodil Replicator w/ Java DB

http://sourceforge.net/projects/daffodilreplica/

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 23

Data Replication

● Not always required
● Depends on the application

● Several open source initiatives
● Fault-tolerant, fail-over & load-balancing
● Support Java DB (Apache Derby)
● Sequoia (formerly C-JDBC)

● Apache 2.0 license
● HA-JDBC

● LGPL

http://sequoia.continuent.org/HomePage
http://ha-jdbc.sourceforge.net/

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 24

JDBC

● WCS service access via
JavaScript technology

● Asynchronous capability
● Embedded Apache Derby
● ACID compliant
● Fast
● Zero administration

Database(s)
on disk

Web Browser

WCS
Service

Apache Derby

Web Client Store Service

JS to Java

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 25

Local Client Service via
JavaScript Technology
● Interact with local service directly via JavaScript technology

● No new syntax or else–All JavaScript technology

● Local service installed as a Java Plug-in software extension
● Trusted, runs in Java platform Sandbox
● Automatically installed on client host
● Service versioning management handling

● http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/ex
tensions.html

● LiveConnect to interact transparently with core service
implementation in Java technology

● JavaScript technology to Java technology and vice-versa
● Browser agnostic

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 26

Demo—Things to Remember

● Ease of deployment over a large user base
(e.g. consumer desktops)

● Transparent–embeddable and zero–administration
● invisible to the end user

● ACID RDBMS–high levels of durability and
consistency to prevent data loss

● Ease of upgrade (using Firefox or Java Web Start
software)

● Small footprint
● Highly secure to ensure desktop data is safe

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 27

Derby Integration
● Apache ActiveMQ
● Apache JPA
● Apache Roller
● Apache Cocoon
● Apache Geronimo
● Apache JDO
● Apache Xalan
● Daffodil Replicator
● Data Direct SequeLink
● DB Visual Architect
● Eclipse
● Project Glassfish
● Hibernate
● IBM DB2 Everyplace

● IBM DB2 JDBC
Universal Driver

● IBM WebSphere App
Server

● ISQL-Viewer
● Java DB
● JBoss
● JPOX
● Jython
● Kodo 3.3.3
● Maven
● NetBeans Software
● Zimbra
● Red Hat Application

Server

● AntHill Pro
● Sequoia (C-JDBC)
● SQuirreL SQL
● Sun Java Enterprise

System
● Sun Java System

Portal Server
● Sun Java Studio

software
● Sun Java Platform,

Enterprise Edition
● Sun Java System

Service Registry
● SUSE Linux 9.3
● Zend core for IBM
● Tomcat

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 28

Next Release Features (10.4)

● Additional security improvements
● SQL Roles
● SQL OLAP functionality

● e.g. LIMIT()
● More Performance Improvements
● Basic replication
● Table Functions (VTI)
● JMX management interface
● More info at:

● http://wiki.apache.org/db-derby/DerbyTenFourRelease

http://wiki.apache.org/db-derby/DerbyTenFourRelease

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 29

● Additional Demo's & Information publicly available at
http://developers.sun.com/javadb/

● Working with Apache Derby
http://wiki.apache.org/db-derby/WorkingWithDerby

● Uses of Apache Derby
http://wiki.apache.org/db-derby/UsesOfDerby

● Grizzly
http://grizzly.dev.java.net

● Comet and Grizzlet

Demo & Use Cases: More Information

http://weblogs.java.net/blog/jfarcand/

http://developers.sun.com/javadb/
http://wiki.apache.org/db-derby/WorkingWithDerby
http://wiki.apache.org/db-derby/UsesOfDerby
http://grizzly/

JGD

 ApacheCon US 2007 – RIAs with Apache Derby and Grizzly Comet 30

Conclusion

• Pushing data to the web client can form a
crucial tool in the developer’s arsenal when
latency is important

• Loosing data when disconnected is a show
stopper for any applications that wants to
implement Comet based application.

Solution:

Grizzly + Apache Derby!!!

Jeanfrancois Arcand
Francois Orsini
Senior Staff Engineers
Sun Microsystems

Real-Time RIAs
with Apache Derby

and
Grizzly Comet

