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Agenda

• Introduction
• What is Ajax Push (aka Comet)?
• Potential Drawbacks and Pitfalls
• Mixing Apache Derby and Grizzly Comet
• Demo
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What is Comet Request Processing (or 
Ajax Push)

Comet is a programming technique that 
enables web servers to send data to the 

client without having any need for the 
client to request for it. It allows creation of 
event-driven web applications which are 

hosted in the browser.
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• Use it to create highly responsive, event driven applications in a 
browser
> Keep clients up-to-date with data arriving or changing on the server, 

without frequent polling

• Pros
> Lower latency, not dependent on polling frequency
> Server and network do not have to deal with frequent polling requests to 

check for updates

• Example Applications
> GMail and GTalk 
> Meebo
> JotLive 
> KnowNow
> 4homemedia.com 
> Many more …

What is Ajax Push (aka Comet)?
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How does the “Push” to the browser 
works
• Deliver data over a previously opened 

connection
> Always “keep a connection open”; do not 

respond to the initiating request until event 
occurred

> Streaming is an option by sending response 
in multiple parts and not closing the 
connection in between 
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Standard Ajax compared to Ajax Push options

How does “Push” to the browser work?
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Architecture Challenge
• Using blocking, synchronous technology will 

result in a blocked thread for each open 
connection that is “waiting”
> Every blocked thread will consume memory
> This lowers scalability and can affect 

performance
> To get the Java Virtual Machine (JVM™) to 

scale to 10,000 threads and up needs specific 
tuning and is not an efficient way of solving this

• Servlets 2.5 are an example of blocking, 
synchronous technology
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Affect of Blocking threads (default thread stack size)

Architecture Challenges

Stack Memory Requirements 
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Technology Solutions
• Use new I/O (NIO) non-blocking sockets to avoid blocking a 

thread per connection

• Use technology that supports asynchronous request processing
> Release the original request thread while waiting for an event
> May process the event/response on another thread than the original 

request

• Advantages 
> Number of clients is primarily limited by the number of open sockets a 

platform can support
> Could have all clients (e.g. 10’000) “waiting” without any threads 

processing or blocked
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Do Comet enabled Servers exist?

• Yes, more and more servers that support 
Comet request processing are available:
> Grizzly
> GlassFish v2, v3

> Support Grizzly Comet and Jetty Comet.
> Jetty 6
> Ligthttpd 
> Tomcat 6
> ...

• Today we are going to focus on Grizzly's 
Comet support 
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What is Grizzly

• Grizzly is a multi protocol (HTTP, UDP, 
etc.) framework that uses lower level Java 
NIO primitives, and provides high-
performance APIs for socket 
communications.

• In GlassFish, Grizzly is the HTTP front 
end.
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Comet in Grizzly

• Comet support is build on top of Grizzly 
Asynchronous Request Processing (ARP), a 
scalable implementation that doesn't hold one 
thread per connection, and achieve as closer 
as possible the performance of synchronous 
request processing (SRP).
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Goal of Grizzly's Comet

• Hide the complexity of NIO/Asynchronous 
Request Processing.

• Make it available to various technologies 
from AJAX based client, JSF, JSP, Servlet, 
POJO, JavaScript to “traditional” 
technologies such as JMS, EJB, database, 
etc.

• Allow complicated scenarios but also support 
POJO based development.

• Main Goal: Make it simple to use!
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Potential Drawbacks and Pitfall
• Beware of flooding clients with too many events

> Filters (throttles) on the client or server side? Which events 
can be discarded, which can't?

• Firewalls may terminate connections after a certain amount of 
time
> Solution: Re-establish connection after tear-down or at certain intervals

• The HTTP 1.1 specification suggests a limit of 2 simultaneous 
connections from a client to the same host 
> Some use a separate host name for the “Push” connection

• In security terms the attack surface is very similar to standard 
Ajax applications, for denial of service (DoS) the “wait” is a 
consideration

• Possible lost of data when the connection is closed
> Real time updates can still occurs when the application goes offline or 

during re-connection.
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Potential Drawbacks and Pitfall (Cont')
• HTTP Streaming is more challenging

> Portability issue to different browsers and 
XMLHttpRequest (XHR)

● IE, for example, does not make data available until connection close or only if you flush 
2k of white space to make it work)

● Use IFrames instead for portability

> With streaming data will accumulate, release memory 
regularly

> Primitive proxies may buffer data in a way that 
interferes with streaming

• Possible lost of data when the connection is 
closed
> Real time updates can still occurs when the 

application goes offline.
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Solutions: Mixing Derby and Grizzly's 
Comet
• Filtering/Throttling messages can be archived 

locally and asynchronously via Derby and 
processed later, when the server is no longer 
overloaded.
>  Derby runs as an embedded server DB engine

• When disconnected, the server can cache any 
real time update and push them later.

• When disconnected, the client can cache any 
update and push them later.
> Derby can be accessed via JavaScript and Java.
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Main Characteristics

● Complete Multi-User relational database engine
● Embeddable and client/server database
● Easy to use, zero maintenance
● Small footprint (2MB)
● Standards-based [Java DataBase Connectivity 

(JDBC™) software, SQL92/99/2003]
● Compact, secure, mature and robust
● 100% Java technology (write once, run anywhere)
●               is Sun’s supported distribution of Apache 

Derby
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Complete Relational Engine

● Multi-user, transactions, isolation levels, deadlock 
detection, crash recovery

● Fully ACID compliant
● Complete SQL Engine including:

● views, triggers, stored procedures, functions
● Foreign keys, check constraints, cost based optimizer

● Data caching, statement caching, write ahead 
logging, group commit

● Online backup/restore
● Database encryption, authentication, authorization
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Embeddable Multi-User Database

● Database engine may run in application’s 
virtual machine
● No additional process
● Database requests are method calls within the Java Virtual 

Machine (JVM™)
● Startup and shutdown controlled by application
● Just one Java Archive (JAR) file
● Invisible to the user
● Easy to use, zero maintenance
● Can also run as a standalone database server
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Client-Server Database

● Database engine can run in a client-server 
configuration
● Standalone server
● Server runtime management tool

● Secure and support for various network connection 
mechanisms

● Easy to use, zero maintenance
● Can also run embedded in other server frameworks
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The Multi-Tier DB

● Client tier
● Embeddable storage in standalone client applications and web 

2.0 RIA applications (demo)
● Read-only DB in JAR file
● Java DB on a memory stick

● Middle tier
● Embeddable middle tier database engine (e.g. in GlassFish)
● Can act as front-end cache for back-end enterprise DB's
● Persistent cache for middleware frameworks

● Back-end tier
● Standalone departmental server database
● Can support large number of concurrent users
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Data Synchronization

● Not always required
● Depends on the application

● Conflicts resolution is the biggest problem
● At the application level

● Zimbra desktop
● Offline Derby Google Calendar (demo part of Derby)
● Real-time synchronization with Comet

● Database level
● Daffodil Replicator w/ Java DB

http://sourceforge.net/projects/daffodilreplica/
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Data Replication

● Not always required
● Depends on the application

● Several open source initiatives
● Fault-tolerant, fail-over & load-balancing
● Support Java DB (Apache Derby)
● Sequoia (formerly C-JDBC)

● Apache 2.0 license
● HA-JDBC

● LGPL

http://sequoia.continuent.org/HomePage
http://ha-jdbc.sourceforge.net/
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JDBC

● WCS service access via 
JavaScript technology

● Asynchronous capability
● Embedded Apache Derby
● ACID compliant
● Fast
● Zero administration

Database(s)
on disk

Web Browser

WCS 
Service

Apache Derby

Web Client Store Service

JS to Java
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Local Client Service via 
JavaScript Technology
● Interact with local service directly via JavaScript technology

● No new syntax or else–All JavaScript technology 

● Local service installed as a Java Plug-in software extension
● Trusted, runs in Java platform Sandbox
● Automatically installed on client host
● Service versioning management handling

● http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/ex
tensions.html

● LiveConnect to interact transparently with core service 
implementation in Java technology

● JavaScript technology to Java technology and vice-versa
● Browser agnostic
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Demo—Things to Remember

● Ease of deployment over a large user base 
(e.g. consumer desktops)

● Transparent–embeddable and zero–administration
● invisible to the end user

● ACID RDBMS–high levels of durability and 
consistency to prevent data loss

● Ease of upgrade (using Firefox or Java Web Start 
software)

● Small footprint
● Highly secure to ensure desktop data is safe
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Derby Integration
● Apache ActiveMQ
● Apache JPA
● Apache Roller
● Apache Cocoon
● Apache Geronimo
● Apache JDO
● Apache Xalan
● Daffodil Replicator
● Data Direct SequeLink
● DB Visual Architect
● Eclipse
● Project Glassfish
● Hibernate
● IBM DB2 Everyplace

● IBM DB2 JDBC 
Universal Driver

● IBM WebSphere App 
Server

● ISQL-Viewer
● Java DB
● JBoss
● JPOX
● Jython
● Kodo 3.3.3
● Maven
● NetBeans Software
● Zimbra
● Red Hat Application 

Server

● AntHill Pro
● Sequoia (C-JDBC)
● SQuirreL SQL
● Sun Java Enterprise 

System
● Sun Java System 

Portal Server
● Sun Java Studio 

software
● Sun Java Platform, 

Enterprise Edition
● Sun Java System 

Service Registry
● SUSE Linux 9.3
● Zend core for IBM 
● Tomcat
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Next Release Features (10.4)

● Additional security improvements
● SQL Roles
● SQL OLAP functionality

● e.g. LIMIT()
● More Performance Improvements
● Basic replication
● Table Functions (VTI)
● JMX management interface
● More info at:

● http://wiki.apache.org/db-derby/DerbyTenFourRelease

http://wiki.apache.org/db-derby/DerbyTenFourRelease
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● Additional Demo's & Information publicly available at
http://developers.sun.com/javadb/

● Working with Apache Derby
http://wiki.apache.org/db-derby/WorkingWithDerby

● Uses of Apache Derby
http://wiki.apache.org/db-derby/UsesOfDerby

● Grizzly 
http://grizzly.dev.java.net

● Comet and Grizzlet

Demo & Use Cases: More Information

http://weblogs.java.net/blog/jfarcand/

http://developers.sun.com/javadb/
http://wiki.apache.org/db-derby/WorkingWithDerby
http://wiki.apache.org/db-derby/UsesOfDerby
http://grizzly/
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Conclusion

• Pushing data to the web client can form a 
crucial tool in the developer’s arsenal when 
latency is important 

• Loosing data when disconnected is a show 
stopper for any applications that wants to 
implement Comet based application.

Solution:

Grizzly + Apache Derby!!!
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