Embedding the Grizzly Framework

Jeanfrancois Arcand
Jerome Dochez
Senior Staff Engineers
SUN Microsystems
WWW.SUN.Com

BOF-4989

2007 JavaOne®SM Conference | BOF 4989 | 1

java.sun.com/javaone/sf

JavaOne

Goal of Your Talk

Learn about the Grizzly Framework

Grizzly is a flexible and very high performance Java
technology-based new |/O (NIO) framework. This
session will describe how the Grizzly Framework is
designed, how it is used in several prject and how to
create your own customizations of this scalable and
extensible architecture.

@ Sun 2007 JavaOne® Conference | BOF 4989 | 2

JavaOne

Agenda

Introduction

What is Project Grizzly
Architecture

Glassfish V3

Demo

Q&A

QSI;.?E 2007 JavaOne®™ Conference | BOF 4989 | 3 java.sun.com /javaone

JavaOne

Agenda

Introduction

What is Project Grizzly
Architecture

GlassFish V3

Q&A

QSJ{{E 2007 JavaOne®™ Conference | BOF 4989 | 4 java.sun.com /javaone

JavaOne

Introduction

* In this presentation we will:
> describe Project Grizzly
> giving a brief history of Grizzly
> provide a architecture overview of Grizzly

> tell you who is already using Grizzly, who is looking
at Grizzly

> Introduce GlassFish V3 project.

@ Sun java.sun.com/javaone

JavaOne

Agenda

Introduction

What is Project Grizzly
Architecture

GlassFish V3

Q&A

QSIQ_E 2007 JavaOne®™ Conference | BOF 4989 | 6 java.sun.com /javaone

"G rizzly History

@ Sun

* Grizzly was born in 2004 under the GlassFish
project, (https://glassfish.dev.java.net). This later
became known as Grizzly 1.0

 HTTP over TCP/SSL was the first implementation

* Grizzly 1.0 shipped with Sun Java System
Application Server 8.1 PE, 8.2 PE/EE and all
GlassFish distributions, replacing native Sun
WebServer runtime.

* |nitially used to build an HTTP Web Server,
replacing Tomcat's Coyote Connector and Sun
WebServer 6.1

JavaOne

Grizzly History

* Grizzly 1.0 became extremely popular in 20006.
Multiple protocol implementations were built on
top of it

» But Grizzly 1.0 had HTTP protocol specific
implementation details included in its transport
logic

* The main class, SelectorThread, contained
several artifacts specific to http such as file
caching, request monitoring, etc

@ Sun

JavaOne

Grizzly History
e Several classes needed to be extended in order

to use the framework

» Example: JettySelectorThread extends
SelectorThread

» Example: SSLSelectorThread extends
SelectorThread

* The Grizzly 1.0 mixed ‘extension’ and
Implementation’

@ Sun

JavaOne

Grizzly History

 But, Grizzly 1.0 was still a good choice for nearly all
TCP/HTTP based protocaols.

 Several projects successfully utilized Grizzly 1.0:
* JRuby On Grizzly

* Alaska’s HTTP BC component (OpenESB)

* GlassFish v3/hk2

* Phobos in NetBeans

* Project Tango

* Comet/Cometd

* AsyncWeb on Grizzly

* GlassFish v2

* Sun Web 2.0 Developer pack (REST HTTP Server)

@ Sun java.sun.com/javaone

JavaOne

Grizzly History
* Grizzly 1.5 began development in 2006

e Currently under review and will release very soon

* Grizzly 1.5 objectives
* Remove all dependencies to HTTP and/or GlassFish
* All 1.0 applications must still work with 1.5

* Support all tricks and tips learned during development of
Grizzly 1.0 (performance, NIO performance traps, etc.)

* Keep it simple!!

* Open Source Grizzly occurred February 6, 2007!
 Grizzly 1.5 started community release last week!

@.?ﬂﬁ java.sun.com/javaone

JavaOne

Agenda

Introduction

What is Project Grizzly
Architecture

GlassFish V3

Q&A

QSJ{{E 2007 JavaOne®™ Conference | BOF 4989 | 12 java.sun.com /javaone

JavaOne

Architecture

JavaOne

Architecture - Grizzly Framework

Adapter
A A
Synchronous Processing Asynchronous Processing
i i

HTTP

Gﬂfﬁi java.sun.com/javaone

JavaOne

Grizzly Class Diagram

ReadFilter
O DefaultProtocolChain
SelectionKeyHandler ProtocplFilter
DefaultSelectionkeyHandler ProtocolChain
Controller f\\

O

/ InstanceHandler

Pipéline O

mr— SelectoHandler
Defaulth’lpelme 4

TCP5SelectorHandler UDPSelectorHandler DefaultinstanceHandler

05}'{.{3 java.sun.com/javaone

JavaOne

Controller

* Main entry point when using the Grizzly
Framework -- Controller

e A Controller is composed of
> SelectorHandler
> SelectionKeyHandler
> ProtocolChainlnstanceHandler
> ProtocolChain
> Pipeline

* All of these components are configurable
using the Grizzly Framework

@ Sun

java.sun.com/javaone

JavaOne

SelectorHandler

. A SelectorHandler handles all
jJava.nio.channels.Selector operations.
One or more instance of a Selector are
nandled by SelectorHandler.

* The logic for processing of SelectionKey
interest (OP_ACCEPT,OP_READ, etc.)
Is usually defined using an “instance of
SelectorHandler.

* This is where the decision of attaching an
object to SelectionKey occurs.

@ Sun

JavaOne

* A SelectionKeyHandler is used to handle
the life cycle of a SelectionKey.

» Operations likes cancelling, registering
or closing of SelectionKeys are handled
by a SelectionKeyHandler.

@ Sun

JavaOne

InstanceHandler

 An InstanceHandler is where one or
several ProtocolChain(s) are
created and cached.

 An InstanceHandler decides if a
stateless or stateful ProtocolChain
needs to be created.

* Note: InstanceHandler is being
renamed to a
ProtocolChainlnstanceHandler for
improved clarity

@ Sun

Pipeline

* An interface used as a wrapper
around any kind of thread pool.

* There are several implementation of
Pipelines in Grizzly 1.5.

* The best performing implementation
Is the default configured Pipeline.

@ Sun

JavaOne

* A ProtocolChain implements the
"Chain of Responsibility" pattern (for
more info, take a look at the classic

"Gang of Four" design patterns
book).

* The ProtocolChain APl models a
computation as a series of "protocol
filter" that can be combined into a
"protocol chain”.

@ Sun

JavaOne

* A ProtocolFilter encapsulates a unit of
processing work to be performed, whose
purpose is to examine and/or modify the
state of a transaction that is represented
by a ProtocolContext.

* Individual ProtocolFilter(s) can be
assembled into a ProtocolChain.

@ Sun

JavaOne

 The API for ProtocolFilter consists of a
two methods:

execute(Context)
postExecute(Context)

* which are passed a "protocol context"
containing the dynamic state of the
computation

@ Sun

JavaOne

Example 1-TCP

* By default, the Grizzly Framework
bundles default implementation for TCP
and UPD transport. The
TCPSelectorHandler is instantiated by
default.

* As an example, supporting the TCP
protocol should only consist of adding
the appropriate ProtocolFilter like:

@ Sun

JavaOne

Example - 1 TCP (Cont.)

Controller con = new Controller();
con.setinstanceHandler(new DefaultinstanceHandler(){
public ProtocolChain poll() {
ProtocolChain protocolChain = protocolChains.poll(
if (protocolChain == null){
protocolChain = new DefaultProtocolChain();
protocolChain.addFilter(new ReadFilter());
protocolChain.addFilter(new LogFilter());

return protocolChain;

}
});

@.THH java.sun.com/javaone

JavaOne

Architecture — HTTP layer

JavaOne

Grizzly HTTP layer

» Lightweight HTTP 1.0/1.1 based server
* Extremely easy to embed.
» Small footprint.

» Performance is extremely good, but to see it you
need to come to:

> Session TS-2992 Tricks and Tips with NIO, Using the
Grizzly Framework

> Free Grizzly T-shirt!!!

» Good performance apply to both Synchronous
processing and Asynchronous Processing

@ Sun java.sun.com/javaone

JavaOne

Example: Grizzly Web Server

Requests l
Grizzly Framework *

©Sun

aaaaaaaaaaa Jjavaone

JavaOne

- Easy to embedded. Only have to interact with
one object: SelectorThread

» Write an implementation of
com.sun.grizzly.tcp.Adapter class.

* The Adapter is the glue code between the
HTTP layer and the program that embed
Grizzly.

* In the following example, the default
StaticResourcesAdapter is used

@ Sun

JavaOne

Example - 1 Static Resource Web
Server

SelectorThread selectorThread = new SelectorThread();
selectorThread.setPort(port);
selectorThread.setAdapter(

new StaticResourcesAdapter());
selectorThread.setWebAppRootPath(folder);
selectorThread.initEndpoint();
selectorThread.startEndpoint();

@ Sun java.sun.com/javaone

Asynchronous Request
Processing

* Allow for “parking” a request; a type of “continuation’
at the request processing level

» The goal is to be able to build, on top of Grizzly, a
scalable ARP implementation that doesn't hold one
thread per connection, and achieve as closer as
possible the performance of synchronous request
processing (SRP).

@ Sun

JavaOne

Example - 2 Asynchonous Request
Processing

@ St

SelectorThread selectorThread = new SelectorThread();
selectorThread.setPort(port);
selectorThread.setWebAppRootPath(folder);
selectorThread.setAdapter(

new StaticResourcesAdapter());
AsyncHandler asyncHandler = new DefaultAsyncHandler()
asyncHandler.addAsyncFilter(new CometAsyncFilter());
selectorThread.setAsyncHandler(asyncHandler);
selectorThread.initEndpoint();
selectorThread.startEndpoint();

java.sun.com/javaone

JavaOne

Architecture — Adapter

JavaOne

Architecture - Adapter
Main entry point for most of HT TP based server

* Most Grizzly 1.0 implementation write their own
com.sun.grizzly.tcp.Adapter implementation.

* Project Phobos in Netbeans
- Netbeans 6 Embedded Web Server
* JRuby on Grizzly

» Simple Interface

public void service(Request req,Response res);

» Request contains all HT TP information like:
« Method: GET/POST/TRACE
* Headers: content-length, content-type, etc.

+ Works at the bx:tees level.

Source: Please add the source of your data

@-VHH 2007 JavaOnesM Conference | BOF 4989 | 34 java.sun.com/javaone

JavaOne

Example - StaticResourceAdapter

public void service(Request req, final Response res) {
MessageBytes mb = req.requestURI();
ByteChunk requestURI = mb.getByteChunk();
String uri = req.requestURI().toString();

res.setStatus(200);
res.setContentType(ct);
res.sendHeaders();

res.doWrite(chunk);
res.finish()

}

@ Sun java.sun.com/javaone

JavaOne

Architecture - Adapter

- But this approach is problematic if you need to
embedded more than one http based
Implementation because you needs one adapter
per implementation

* One for Phobos
* One for Comet
* One for JRuby on Rail

» They cannot listen to the same http port!
- Adapter notes cannot be shared.
» Solution: GlassFish V3 project!

Source: Please add the source of your data here

@ Sun 2007 JavaOne®™ Conference | BOF 4989 | 36 java.sun.com/javaone

JavaOne

Agenda

Introduction

What is Project Grizzly
Architecture

GlassFish V3

Q&A

QSJ{{E 2007 JavaOne®™ Conference | BOF 4989 | 37 java.sun.com /javaone

JavaOne

Architecture — GlassFish V3

aalilchch

Synchronous Processing Asynchronous Processing
A __—
A A

Grizzly Framework

QSE;.?._’ java.sun.com/javaone

JavaOne

Advantages

- Same performance

- Same port, different context

- Adapter Notes management (caching)

» ThreadLocal storage management

= Common administration : deploy, undeploy...
- Container loading/unloading

» Adapter boilerplate reduced

* Intra-adapter communication

@ Sun

JavaOne

Application adapter

» In GlassFish V3, each application can register its
adapter.

» Adapter have context root

» Requests are dispatched based on the registered
context roots

» Registration/Unregistration of Adapter instances is
automatically handled by the runtime

» GlassFish has no knowledge of the target container
type, Adapter is the interface

@ Sun

JavaOne

GlassFish V3 Adapter

@Contract
public interface Adapter extends com.sun.grizzly.tcp.Adapter {

i
* Returns the context root for this adapter
* @return context root
"
public String getContextRoot();

}

QSIEL?._’ java.sun.com/javaone

JavaOne

Containers

- Containers are the runtime for application.

- Each application type has a corresponding
container

* Implementation of a container are discovered by
GlassFish through
META-

INF/services/com.sun.enterprise.v3.api.Container

» If using HK2 and maven 2, packaging is greatly
simplified.

@ Sun

JavaOne

Container

public @interface Container {
i
* Defines the short name for the container type.
* @return the container type
"
String type();
i
* @return the deployer class name
*
String deployerimpl();

@Sf{f} java.sun.com/javaone

JavaOne

Example : RoR

@Service

@Container(type="jruby",
deployerimpl="com.sun.enterprise.rails.RailsDeploy
er', infoSite="http://jruby.dev.java.net")

public class RailsContainer implements
ContractProvider, PostConstruct, PreDestroy {

@ Sun

JavaOne

Rails Adapfter

* Thanks to Naoto Takai !

import com.sun.grizzly.rails.RailsAdapter;
import com.sun.grizzly.rails.RubyObjectPool;

public class RailsApplication extends RailsAdapter
implements ApplicationContainer {

public String getContextRoof() ...
}

@ Sun

JavaOne

Summary

» The Project Grizzly is extendable:
* At the TCP/UDP level
* Atthe HTTP level

- Easy to embed

* Less that 10 lines.
» Small footprint (~500k)

« Can support multiple extension via the h2k
project.

QSIL?-‘ 2007 JavaOne®™ Conference | BOF 4989 | 46 java.sun.com/javaone

JavaOne

Call to Action

* Download HK2/GlassFish v3 and experience the
fastest web container on the planet

» Join Project Grizzly and be added to Project
Grizzly mailing lists

* Join Project HK2 and be added to Project HK2
mailing lists

@ Sun

Where to find more information

* Project Grizzly home page
https://grizzly.dev.java.net

* Project HK2 home page
https://hk2.dev.java.net/

» Jeanfrancois Arcand's blog
http://weblogs.java.net/blog/jfarcand

* Jerome Dochez's blog
http://blogs.sun.com/dochez/

* Project Grizzly mailing lists,
dev@grizzly.dev.java.net and/or
users@dev.grizzly.java.net

@ Sun

https://grizzly.dev.java.net/
http://weblogs.java.net/blog/jfarcand
mailto:dev@grizzly.dev.java.net
mailto:users@dev.grizzly.java.net

JavaOne

Q&A

Optional Speaker Names Here

2007 JavaOne®" Conference | BOF 4989 | 49 java.sun.com/javaone/sf

