
2007 JavaOneSM Conference | BOF 4989 | 1

BOF-4989

Embedding the Grizzly Framework

Jeanfrancois Arcand
Jerome Dochez
Senior Staff Engineers
SUN Microsystems
www.sun.com

YOUR LOGO
HERE

2007 JavaOneSM Conference | BOF 4989 | 2

Goal of Your Talk

Grizzly is a flexible and very high performance Java
technology-based new I/O (NIO) framework. This
session will describe how the Grizzly Framework is
designed, how it is used in several prject and how to
create your own customizations of this scalable and
extensible architecture.

Learn about the Grizzly Framework

2007 JavaOneSM Conference | BOF 4989 | 3

Agenda

Introduction
What is Project Grizzly
Architecture
Glassfish V3
Demo
Q&A

2007 JavaOneSM Conference | BOF 4989 | 4

Agenda

Introduction
What is Project Grizzly
Architecture
GlassFish V3
Q&A

Sun Microsystems, Inc 5

Introduction

• In this presentation we will:
> describe Project Grizzly
> giving a brief history of Grizzly
> provide a architecture overview of Grizzly
> tell you who is already using Grizzly, who is looking

at Grizzly
> Introduce GlassFish V3 project.

2007 JavaOneSM Conference | BOF 4989 | 6

Agenda

Introduction
What is Project Grizzly
Architecture
GlassFish V3
Q&A

Sun Microsystems, Inc 7

Grizzly History
● Grizzly was born in 2004 under the GlassFish

project, (https://glassfish.dev.java.net). This later
became known as Grizzly 1.0

● HTTP over TCP/SSL was the first implementation
● Grizzly 1.0 shipped with Sun Java System

Application Server 8.1 PE, 8.2 PE/EE and all
GlassFish distributions, replacing native Sun
WebServer runtime.

● Initially used to build an HTTP Web Server,
replacing Tomcat’s Coyote Connector and Sun
WebServer 6.1

Sun Microsystems, Inc 8

Grizzly History
● Grizzly 1.0 became extremely popular in 2006.

Multiple protocol implementations were built on
top of it

● But Grizzly 1.0 had HTTP protocol specific
implementation details included in its transport
logic

● The main class, SelectorThread, contained
several artifacts specific to http such as file
caching, request monitoring, etc

Sun Microsystems, Inc 9

Grizzly History
● Several classes needed to be extended in order

to use the framework
● Example: JettySelectorThread extends

SelectorThread
● Example: SSLSelectorThread extends

SelectorThread
● The Grizzly 1.0 mixed ‘extension’ and

‘implementation’

Sun Microsystems, Inc 10

Grizzly History
● But, Grizzly 1.0 was still a good choice for nearly all

TCP/HTTP based protocols.
● Several projects successfully utilized Grizzly 1.0:

• JRuby On Grizzly
• Alaska’s HTTP BC component (OpenESB)
• GlassFish v3/hk2
• Phobos in NetBeans
• Project Tango
• Comet/Cometd
• AsyncWeb on Grizzly
• GlassFish v2
• Sun Web 2.0 Developer pack (REST HTTP Server)

Sun Microsystems, Inc 11

Grizzly History
● Grizzly 1.5 began development in 2006
● Currently under review and will release very soon
● Grizzly 1.5 objectives

• Remove all dependencies to HTTP and/or GlassFish
• All 1.0 applications must still work with 1.5
• Support all tricks and tips learned during development of

Grizzly 1.0 (performance, NIO performance traps, etc.)
• Keep it simple!!

● Open Source Grizzly occurred February 6, 2007!
● Grizzly 1.5 started community release last week!

2007 JavaOneSM Conference | BOF 4989 | 12

Agenda

Introduction
What is Project Grizzly
Architecture
GlassFish V3
Q&A

Sun Microsystems, Inc 13

Architecture

Grizzly Framework[1]Grizzly Framework

HTTP

Adapter

AsyncWeb Phobos JRuby

Jetty Restlet

Comet

Asynchronous Processing

RealTime

SWDP
Rest

GlassFish
v2

Cometd

Synchronous Processing

GlassFish
V3

Netbeans
6Derby???

Sun Microsystems, Inc 14

Architecture - Grizzly Framework

Grizzly Framework[1]Grizzly Framework

HTTP

Adapter

AsyncWeb Phobos JRuby

Jetty Restlet

Comet

Asynchronous Processing

RealTime

SWDP
Rest

GlassFish
v2

Cometd

Synchronous Processing

GlassFish
V3

Netbeans
6Derby???

15

JGDGrizzly Class Diagram

16

JGDController
● Main entry point when using the Grizzly

Framework -- Controller
● A Controller is composed of

> SelectorHandler

> SelectionKeyHandler

> ProtocolChainInstanceHandler

> ProtocolChain

> Pipeline

● All of these components are configurable
using the Grizzly Framework

17

JGDSelectorHandler

● A SelectorHandler handles all
java.nio.channels.Selector operations.
One or more instance of a Selector are
handled by SelectorHandler.

● The logic for processing of SelectionKey
interest (OP_ACCEPT,OP_READ, etc.)
is usually defined using an instance of
SelectorHandler.

● This is where the decision of attaching an
object to SelectionKey occurs.

18

JGDSelectionKeyHandler
● A SelectionKeyHandler is used to handle

the life cycle of a SelectionKey.
● Operations likes cancelling, registering

or closing of SelectionKeys are handled
by a SelectionKeyHandler.

19

JGD

InstanceHandler
● An InstanceHandler is where one or

several ProtocolChain(s) are
created and cached.

● An InstanceHandler decides if a
stateless or stateful ProtocolChain
needs to be created.

● Note: InstanceHandler is being
renamed to a
ProtocolChainInstanceHandler for
improved clarity

20

JGD

Pipeline

● An interface used as a wrapper
around any kind of thread pool.

● There are several implementation of
Pipelines in Grizzly 1.5.

● The best performing implementation
is the default configured Pipeline.

21

JGD

ProtocolChain
● A ProtocolChain implements the

"Chain of Responsibility" pattern (for
more info, take a look at the classic
"Gang of Four" design patterns
book).

● The ProtocolChain API models a
computation as a series of "protocol
filter" that can be combined into a
"protocol chain".

22

JGDProtocolFilter
● A ProtocolFilter encapsulates a unit of

processing work to be performed, whose
purpose is to examine and/or modify the
state of a transaction that is represented
by a ProtocolContext.

● Individual ProtocolFilter(s) can be
assembled into a ProtocolChain.

23

JGDProtocolFilter
● The API for ProtocolFilter consists of a

two methods:

 execute(Context)

 postExecute(Context)
● which are passed a "protocol context"

containing the dynamic state of the
computation

24

JGD

Example 1 - TCP

● By default, the Grizzly Framework
bundles default implementation for TCP
and UPD transport. The
TCPSelectorHandler is instantiated by
default.

● As an example, supporting the TCP
protocol should only consist of adding
the appropriate ProtocolFilter like:

25

JGD

Example – 1 TCP (Cont.)
 Controller con = new Controller();
 con.setInstanceHandler(new DefaultInstanceHandler(){
 public ProtocolChain poll() {
 ProtocolChain protocolChain = protocolChains.poll();
 if (protocolChain == null){
 protocolChain = new DefaultProtocolChain();
 protocolChain.addFilter(new ReadFilter());
 protocolChain.addFilter(new LogFilter());

}
 return protocolChain;
 }
 });

Sun Microsystems, Inc 26

Architecture – HTTP layer

Grizzly Framework[1]Grizzly Framework

HTTP

Adapter

AsyncWeb Phobos JRuby

Jetty Restlet

Comet

Asynchronous Processing

RealTime

SWDP
Rest

GlassFish
v2

Cometd

Synchronous Processing

Glassfish
V3

Netbeans
6Derby???

Sun Microsystems, Inc 27

Grizzly HTTP layer

• Lightweight HTTP 1.0/1.1 based server
• Extremely easy to embed.
• Small footprint.
• Performance is extremely good, but to see it you

need to come to:
> Session TS-2992 Tricks and Tips with NIO, Using the

Grizzly Framework
> Free Grizzly T-shirt!!!

• Good performance apply to both Synchronous
processing and Asynchronous Processing

Sun Microsystems, Inc 28

Example: Grizzly Web Server

SelectorThread

Grizzly Framework

ProtocolParser

HTTP
Requests

StaticResourceAdapter

HTTPProtocolFilter

Sun Microsystems, Inc 29

Grizzly HTTP layer

• Easy to embedded. Only have to interact with
one object: SelectorThread

• Write an implementation of
com.sun.grizzly.tcp.Adapter class.

• The Adapter is the glue code between the
HTTP layer and the program that embed
Grizzly.

• In the following example, the default
StaticResourcesAdapter is used

30

JGD

Example – 1 Static Resource Web
Server

 SelectorThread selectorThread = new SelectorThread();
 selectorThread.setPort(port);
 selectorThread.setAdapter(
 new StaticResourcesAdapter());
 selectorThread.setWebAppRootPath(folder);
 selectorThread.initEndpoint();
 selectorThread.startEndpoint();

Sun Microsystems, Inc 31

Asynchronous Request
Processing

• Allow for “parking” a request; a type of “continuation”
at the request processing level

• The goal is to be able to build, on top of Grizzly, a
scalable ARP implementation that doesn't hold one
thread per connection, and achieve as closer as
possible the performance of synchronous request
processing (SRP).

32

JGD

Example – 2 Asynchonous Request
Processing

 SelectorThread selectorThread = new SelectorThread();
 selectorThread.setPort(port);
 selectorThread.setWebAppRootPath(folder);
 selectorThread.setAdapter(
 new StaticResourcesAdapter());
 AsyncHandler asyncHandler = new DefaultAsyncHandler();
 asyncHandler.addAsyncFilter(new CometAsyncFilter());
 selectorThread.setAsyncHandler(asyncHandler);
 selectorThread.initEndpoint();
 selectorThread.startEndpoint();

Sun Microsystems, Inc 33

Architecture – Adapter

Grizzly Framework[1]Grizzly Framework

HTTP

Adapter

AsyncWeb Phobos JRuby

Jetty Restlet

Comet

Asynchronous Processing

RealTime

SWDP
Rest

GlassFish
v2

Cometd

Synchronous Processing

GlassFish
V3

Netbeans
6Derby???

2007 JavaOneSM Conference | BOF 4989 | 34

Main entry point for most of HTTP based server
Architecture - Adapter

● Most Grizzly 1.0 implementation write their own
com.sun.grizzly.tcp.Adapter implementation.
● Project Phobos in Netbeans
● Netbeans 6 Embedded Web Server
● JRuby on Grizzly

● Simple Interface
 public void service(Request req,Response res);

● Request contains all HTTP information like:
● Method: GET/POST/TRACE
● Headers: content-length, content-type, etc.

● Works at the bytes level.
Source: Please add the source of your data here

35

JGD

Example – StaticResourceAdapter
 public void service(Request req, final Response res) {
 MessageBytes mb = req.requestURI();
 ByteChunk requestURI = mb.getByteChunk();
 String uri = req.requestURI().toString();

 res.setStatus(200);
 res.setContentType(ct);
 res.sendHeaders();

 res.doWrite(chunk);
 res.finish()
 }

2007 JavaOneSM Conference | BOF 4989 | 36

Architecture - Adapter

● But this approach is problematic if you need to
embedded more than one http based
implementation because you needs one adapter
per implementation
● One for Phobos
● One for Comet
● One for JRuby on Rail

● They cannot listen to the same http port!
● Adapter notes cannot be shared.
● Solution: GlassFish V3 project!

Source: Please add the source of your data here

2007 JavaOneSM Conference | BOF 4989 | 37

Agenda

Introduction
What is Project Grizzly
Architecture
GlassFish V3
Q&A

Sun Microsystems, Inc 38

Architecture – GlassFish V3

Grizzly Framework[1]Grizzly Framework

HTTP

Phobos JRuby

Jetty Restlet

Comet

Asynchronous Processing

RealTime

SWDP
Rest

Synchronous Processing

GlassFish V3

Netbeans
6

Tomcat 6

Sun Microsystems, Inc 39

Advantages

• Same performance
• Same port, different context
• Adapter Notes management (caching)
• ThreadLocal storage management
• Common administration : deploy, undeploy...
• Container loading/unloading
• Adapter boilerplate reduced
• Intra-adapter communication

Sun Microsystems, Inc 40

Application adapter

• In GlassFish V3, each application can register its
adapter.

• Adapter have context root
• Requests are dispatched based on the registered

context roots
• Registration/Unregistration of Adapter instances is

automatically handled by the runtime
• GlassFish has no knowledge of the target container

type, Adapter is the interface

Sun Microsystems, Inc 41

GlassFish V3 Adapter

@Contract

public interface Adapter extends com.sun.grizzly.tcp.Adapter {

 /**

 * Returns the context root for this adapter

 * @return context root

 */

 public String getContextRoot();

}

Sun Microsystems, Inc 42

Containers

• Containers are the runtime for application.
• Each application type has a corresponding

container
• Implementation of a container are discovered by

GlassFish through :
META-
INF/services/com.sun.enterprise.v3.api.Container

• If using HK2 and maven 2, packaging is greatly
simplified.

Sun Microsystems, Inc 43

Container

public @interface Container {

 /**

 * Defines the short name for the container type.

 * @return the container type

 */

 String type();

 /**

 * @return the deployer class name

 */

 String deployerImpl();

}

Sun Microsystems, Inc 44

Example : RoR

@Service
@Container(type="jruby",

deployerImpl="com.sun.enterprise.rails.RailsDeploy
er", infoSite="http://jruby.dev.java.net")

public class RailsContainer implements
ContractProvider, PostConstruct, PreDestroy {

...
}

Sun Microsystems, Inc 45

Rails Adapter

• Thanks to Naoto Takai !

import com.sun.grizzly.rails.RailsAdapter;
import com.sun.grizzly.rails.RubyObjectPool;

public class RailsApplication extends RailsAdapter
implements ApplicationContainer {

public String getContextRoot() ...
}

2007 JavaOneSM Conference | BOF 4989 | 46

Summary

● The Project Grizzly is extendable:
● At the TCP/UDP level
● At the HTTP level

● Easy to embed
● Less that 10 lines.
● Small footprint (~500k)

● Can support multiple extension via the h2k
project.

Sun Microsystems, Inc 47

Call to Action
● Download HK2/GlassFish v3 and experience the

fastest web container on the planet
● Join Project Grizzly and be added to Project

Grizzly mailing lists
● Join Project HK2 and be added to Project HK2

mailing lists

Sun Microsystems, Inc 48

Where to find more information
● Project Grizzly home page

https://grizzly.dev.java.net
● Project HK2 home page

https://hk2.dev.java.net/
● Jeanfrancois Arcand's blog

http://weblogs.java.net/blog/jfarcand
● Jerome Dochez's blog

http://blogs.sun.com/dochez/
● Project Grizzly mailing lists,

dev@grizzly.dev.java.net and/or
users@dev.grizzly.java.net

https://grizzly.dev.java.net/
http://weblogs.java.net/blog/jfarcand
mailto:dev@grizzly.dev.java.net
mailto:users@dev.grizzly.java.net

2007 JavaOneSM Conference | BOF 4989 | 49

Q&A
Optional Speaker Names Here

