

Agenda

* Introduction
* Whatis Project Gnizzly
* Gnzzly Perfonmance

» Hstory of

Guzzly

* Gnzzly Architecture
* Who 1s using Guizzly

* Where to

d nore mformmation

Sun Mcrosystens, Inc

Agenda

* Introduction
* Whatis Project Gnizzly
* Gnzzly Perfonmance

» Hstory of

Guzzly

* Gnzzly Architecture
* Who 1s using Guizzly

* Where to

d nore mformmation

Sun Mcrosystens, Inc

Introduction

Writing scalable server applications in Java has always been
difficult.

Before the advent of Java NIO, thread management issues
made it impossible for a server to scale to thousands of
users. But using Java NIO presents its own problems in
terms of program design and implementation. Project Grizzly
removes these problems by providing a framework to free
you of the performance traps many developers have
encountered using Java NIO

In this session, we discuss Project Grizzly which we
developed and how use it to build scalable, robust server
applications.

Sun Mcrosystens, Inc

What we will talk about

* Inthis presentation we wilk
> descnbe Project Grizzly
> show1ts perfonmance
> gving a bnef history of Gnzzly
> provide a architecture overview of Gnzzly
> tell you who 1s already usmg Gnizzly, who 1s looking at
Gnzzly
> where to find additional mformation on Gnzzly

Sun Mcrosysterrs, Inc

Agenda

* Introduction
* What1s Poject Gnzzly
* Gnzzly Perfonmance

» Hstory of

Guzzly

* Gnzzly Architecture
* Who 1s using Guizzly

* Where to

d nore mformmation

Sun Mcrosystens, Inc

What is Project Grizzly

* Open Source Project on java.net,

(htt

os://gnzzly.dev.java.net)

* Open Sourced under CDDLIcense

* Very open comnunty policy

e All project commumications are done on Gnzzly mailng
hst. No mtemal, off mailng hist conversations

* Project meetngs open to anyone, (public conference call)
* Poject decisions are made by project member vote

* Nb project member has nmore votmg power than any
other project member

Sun Microsystens, Inc

What is Project Grizz

* Uses Java NIO pnnatives and hides the complexity

programning with Java NIO

ly

* Kasy-to-use high peformmance APIs for TCP, UDP

and SSLcomtmnicaﬁons

* Brangs non-blockmg sockets to the protocol

processing layer

 Utihzes high pefomant b

fers and b

managenment

€ &

er

* Choice of several different high peformance thread

pools

Sun Microsystens, Inc

Agenda

 Infroduction
* Whatis Project Gnizzly

* Guzzly Peformance

» Hstory of

Guzzly

* Gnzzly Architecture
* Who 1s using Guizzly

* Where to

d nore mformmation

Sun Mcrosystens, Inc

Grizzly Performance

* Compamng Guzzly to Apache MINA on
AsyncWeb

* What s MINA?

* Apache MINA (Multipurpose Infrastructure for Network
Applications) 1s a network application framework which
helps users develop high perfomlame and high

scalability network applications easily.

* Whatis AsyncWeb?

* AsyncWeb is a high-throughput, non blockng Java HI'TP
engine - designed thioughout to support asynchronous
request processmg. AsyncWeb 1s build on top of IVINA

Sun Microsystens, Inc

Grizzly versus Apache MINA

Higher is better, normalized to Grizzly score

100.00% -
90.00% -
80.00% -
70.00% -
B Grizzly
60.00% - B Min

50.00%
40.00% -
30.00%
20.00% -
10.00% -

Total Throughput Scalability

0.00%

Sun Mcrosystens, Inc 1

Grizzly HTTP Performance
* Intermally developed benchmark

* Designed to measure scalabih

* Fow many concurrent chents can we suppoit:
 Avg. chent thmk time, 8 seconds

* 90% response time withn 3 seconds
* Knorrate <.1%

Sun Mcrosysterrs, Inc

Grizzly HTTP vs other HTTP Servers

Higher is better

3000 B Traditional 1/0
2750 — | C-Based Server
2500 — C-Based Server
g 2250 — W Grizzly
? 2000 -
= 1750 —
(4]
& 1500 *
8 1250 -
|_
« 1000 *
R 750 — .
500 — -
s B B
077- f- f- L
2 CPU 6 CPU 16 CPU

Sun Mcrosystens, Inc 13

Agenda

* Introduction
* Whatis Project Gnizzly
* Gnzzly Perfonmance

* Hstory of

Guzzly

* Gnzzly Architecture
* Who 1s using Guizzly

* Where to

d nore mformmation

Sun Mcrosystens, Inc

Grizzly History
* Guzzly was bom m 2004 under the GlassFish,

project, (https://glassfish.devjava.net). This later
becane known as Gnzzly 1.0

» HI'TP over TCP/SSLwas the first mplementation

o Guzzly 1.0 shn

oped wit

N Sun Java System

Application Server 8.1 PE 8.2 PEHEE and all
GlassFHish distnbutions, replacing native Sun
WebServer nintine.

 Intially used to build an HI'TP Web Server,
replacmg Toncats Coyote Connector and Sun
WebServer 6.1

Sun Microsystens, Inc

Grizzly History

o Gizzly 1.0 becanme extremely popular m 2006.
Multiple protocol mplementations were built on

topof it

* But Gnzzly 1.0 had HI'TP protocol specific

1mplementation details meluded mits
logic

e The mam class, Selectoﬂhxead, contau

transpoit

amned

several artitacts specific to http such as file

caching, request nmonitoring, etc

Sun Microsystens, Inc

Grizzly History
e Several classes needed to be extended m order

to use the framework

» Exanple: JettySelectorThread extends
SelectorThread

o Exanmple: SSLSelectorThread extends
SelectorThread

* The Gnzzly 1.0 mixed ‘extension and
‘Implenmentation’

Sun Mcrosysterrs, Inc

Grizzly History

» But, Gnzzly 1.0 was still a good choice fornearly
all TCP/HI'TP based protocols.

» Several projects successtully utiized Guzzly 1.0:
* JRuby On Guzzly
* Alaska’s HI'TP BC conponent
* (lassHish v3 micro kemel
* Phobos m NetBeans
* SOAP over TCP mtegration m GlassFish
* Comret/ Cometd
* AsyncWeb on Giizzly
* (GlassKshv2
* Sun Web 2.0 Developer pack (REST HI'TP Server)

Sun Mcrosysterrs, Inc

Grizzly History

» Guizzly 1.5 began development m 2006
 Cunently under review and will release very soon

» Gnzzly 1.5 objectives
* Renowve all dependencies to HI'TP and/or GlassHFish
* All 1.0 applications nust still work with 1.5

* Support all tnicks and tips leamed durnng development of
(hzzly 1.0 (performance, NIO performance traps, etc.)

* Keep it sinyple!!

* Open Source Gnzzly occunred February 6, 2007
with Gnzzly 1.5 and 1t1s under fmal code review

I]OW

Sun Microsystens, Inc

Agenda

* Introduction
* Whatis Project Gnizzly
* Gnzzly Perfonmance

» Hstory of

Guzzly

* Gnzzly Architecture
* Who 1s using Guizzly

* Where to

d nore mformmation

Sun Mcrosystens, Inc

Grizzly Architecture
o (Gnzzly 1.5 project1s now under

https://gnzzly.dev.java.net

* [kes Subversion (svn) mstead of cvs for source
code control

e Uses Maven2 instead of Ant

* Multiple modules mstead of a smgle (large) one
* grizzly

° conet

* cometd
* hitp

* http-utils

Sun Mcrosysterrs, Inc

https://grizzly.dev.java.net/

Grizzly Architecture

* The entire Gnzzly framework source code classes
are located under the nodules/gnzzly folder

* 'The gnzzly module only contams the framework
classes, without any dependencies on third party
code or contamns an protocol specifics

» The Gnzzly WebServeris located under the http
nodule. The http nodule exposes the sane

nterfaces as Grizzly 1.0. Hence all http based on
Gizzly 1.0 mmplementation continue o work
without any nodifications.

Grizzly Class Diagram

ReadFilter
O DefaultProtocolChain
SelectionKeyHandler ProtocplFilter
DefaultSelectionkeyHandler ProtocolChain
Controller f\\

O

/ InstanceHandler

Pipéline O

mr— SelectoHandler
Defaulth’lpelme 4

TCP5SelectorHandler UDPSelectorHandler DefaultinstanceHandler

23

Controller

* Main entry point when using the Grizzly
Framework -- Controller

e A Controller is composed of
> Selectortbndler
> Selectionkeythndler
> ProtocolChamnstance Handler
> ProtocolCham
> Pipelne
* All of these components are configurable
using the Grizzly Framework

SelectorHandler

* A SelectorHandler handles alll
jJava.nio.channels.Selector operations.
One or more instance of a Selector are
nandled by SelectorHandler.

* The logic for processing of SelectionKey
interest (OP_ACCEPT,OP_READ, etc.)
Is usually defined using an Linstance of
SelectorHandler.

* This is where the decision of attaching an
object to SelectionKey occurs.

25

SelectorHandler (Cont.)

e
* This method is guaranteed to always be called before

* Selector.select().

*/

public void preSelect(Context controllerCtx) throws IOException;;
[

* Invoke the Selector.select() method.

*/

Publlc Set<SeIect|onKey> select(Context controllerCtx) throws
Exception;

* ThIS method is guaranteed to always be called after
* Selector.select().
*/
public void postSelect(Context controllerCtx) throws IOException;
26

SelectionKeyHandler

* A SelectionKeyHandler is used to
handle the life cycle of a SelectionKey.

» Operations likes cancelling, registering
or closing of SelectionKeys are handled
by a SelectionKeyHandler.

27

SelectionKeyHandler (Cont.)

e
* Expire a SelectionKey.
*/
public void expire(SelectionKey key);
e
* Cancel a SelectionKey and close its Channel.
*/
public void cancel(SelectionKey key);
e
* Close the SelectionKey's channel input or output, but keep alive
* the SelectionKey.
*/
public void close(SelectionKey key);

JGD

InstanceHandler

 An InstanceHandler is where one or
several ProtocolChain(s) are
created and cached.

 An InstanceHandler decides if a
stateless or stateful ProtocolChain
needs to be created.

* Note: InstanceHandler is being
renamed to a
ProtocolChainlnstanceHandler for
improved clarity

29

InstanceHandler (Cont.)

e
* Return an instance of ProtocolChain.

*/

public ProtocolChain poll();

e

* Pool an instance of ProtocolChain.

*/

public boolean offer(ProtocolChain instance);

Pipeline

* An interface used as a wrapper
around any kind of thread pool.

* There are several implementation
of Pipelines in Grizzly 1.5.

* The best performing implementation
Is the default configured Pipeline.

31

ProtocolChain

* A ProtocolChain implements the
"Chain of Responsibility" pattern
(for more info, take a look at the
classic "Gang of Four" design
patterns book).

* The ProtocolChain APl models a
computation as a series of "protocol
filter" that can be combined into a
"protocol chain".

32

ProtocolChain (Cont.)

* Important: The owning ProtocolChain

must call the postExectute() method of
each ProtocolFilter in a ProtocolChain in
reverse order of the invocation of their

execute() methods

33

ProtocolChain (Cont.)

e
* Add a ProtocolFilter to the list. ProtocolFilter

* will be invoked in the order they have been added.

*/

public boolean addFilter(ProtocolFilter protocolFilter);

o

* Remove the <code>ProtocolFilter</code> from this chain.
*/

public boolean removeFilter(ProtocolFilter theFilter);

public void addFilter(int pos, ProtocolFilter protocolFilter);

JGD

ProtocolFilter

 The API for ProtocolFilter consists of a
two methods:

execute(Context)
postExecute(Context)

* which are passed a "protocol context"
containing the dynamic state of the
computation

35

ProtocolFilter

* A ProtocolFilter encapsulates a unit of
processing work to be performed, whose
purpose is to examine and/or modify the
state of a transaction that is represented
by a ProtocolContext.

* Individual ProtocolFilter(s) can be
assembled into a ProtocolChain.

36

ProtocolFilter

* \When using the default ProtocolChain,
ProtocolFilter implementations should be
designed in a thread-safe manner

* In general, this implies that ProtocolFilter
classes should not maintain state
information in instance variables.

37

ProtocolFilter (Cont.)

 Instead of maintaining state information
in a ProtocolFilter, state information
should be maintained via suitable
modifications to the attributes of the
ProtocolContext which are passed to the
execute() and postExecute() methods.

ProtocolFilter (Cont.)
o

* Execute a unit of processing work to be performed. This ProtocolFilter
* may either complete the required processing and return false,

* or delegate remaining processing to the next ProtocolFilter in a

* ProtocolChain containing this ProtocolFilter by returning true.

*/

public boolean execute(Context ctx) throws |IOException;

e

* Execute any cleanup activities, such as releasing resources that were
* acquired during the execute() method of this ProtocolFilter instance.
*/

public boolean postExecute(Context ctx) throws |IOException;

39

Example 1 -TCP

» By default, the Grizzly Framework
bundles default implementation for TCP
and UPD transport. The
TCPSelectorHandler is instantiated by

default.

* As an example, supporting the TCP
protocol should only consist of adding
the appropriate ProtocolFilter like:

Example — 1 TCP (Cont.)

Controller con = new Controller();
con.setlnstanceHandler(new DefaultinstanceHandler(){
public ProtocolChain pol() {
ProtocolChain protocolChain = protocolChains.poll();
if (protocolChain == null){
protocolChain =new DefaultProtocolChain();
protocolChain.addFilter(new ReadFilter());
protocolChain.addFilter(new HTTPParserFilter());

return protocolChain;

}
});

41

JGD

Pipeline

microsystems

. SelectorHandler

. SelectionkeyHandler

ProtocolChain

4 new

- InstanceHandler

5 addProtacalFilter])
6 addPratocolFilter()

ProtocalFilter

Controller
2 Ihew
i

13: setPipeline()
14: start

lication

1: new
10: setSelectoHandler].1)
setSelectionkKeyHandler()

u

12- setinstanceHandler

fu

11

: GrizzlyA

Creating a Controller

Sun

m:(rosystems
I g JGD
- GrizzhyApplication - Controller - Default Pipeline - SelectorHandler - ProtocolContext - InstanceHandler o
ProtocolChain
: 1: start() ; ; i i i ;
I_I 2- initPipeline | : :
3: startPipeline H H H
4:|doSelaect() . ' ' '
: e : : : : :
: : 5: new : : : :
G: preSelect(Fi’rotocolContex‘t} ‘/-|:|
¥: elector.open() : :
G- Selec:t(F'ri:JtDc:DICDntext} H
9- onAcceptinterest() u H
10: (gerver.accept() H H
11: onReadinterest() H H
12 keylinterest Ops()
13: DnWriteInterest(} H H
14: DHCDHFE'IBCHHTBFBSU:} |—|
158 new u
i i 16:ipoll() |—| ’ i
17 new
18: return FrotocolChain
19: att:ac:hCDntext(F'rotDCDICDE:ﬂext} L
20q: executeFrDtDcolChaﬂ} Ewecuie on @ new Thread IL| :

Worker Thread execution

- Pipeline

1: viait FordoTask()

PEE—

2- callf)

. ProtocolChain

- ProtocolFilter

. ProtocolContext

: Controller

[execute()
m—— s s 5
4 s s

5: fpiEach: executeFrntncnlCnnt‘:Em} D
G- return {cpntinue? true: false)

7- lpbstExecute()
m— : s |

8- foriEdch: postExecute(ProtocolCantext)
i 9 return {cpntinue? true: false)

i < i i

JGD

Example — 2 UDP

Controller con = new Controller();
con.setlnstanceHandler(new DefaultinstanceHandler(){
public ProtocolChain pol() {
ProtocolChain protocolChain = protocolChains.poll();
if (protocolChain = null){
protocolChain = new DefaultProtocolChain();
protocolChain.addFilter(new UDPReadFilter());
protocolChain.addFilter{new ParserFilter());

return protocolChain;

}
});

con.setSelectorHandler(new UDPSelectorHandler());

Agenda

* Introduction
* Whatis Project Gnizzly
* Gnzzly Perfonmance

» Hstory of

Guzzly

* Gnzzly Architecture
* Who 1s using Guizzly

* Where to

d nore mformmation

Sun Mcrosystens, Inc

Who is using Grizzly

° Jetty

* Alaska — SeeBeyond (Open ESB)

* Tango — Mcrosoft Web Services Interoperability

* JRuby on Giizzly

* PHP on Guzzly

* Project Phobos m NetBeans

* (lassHsh v2 (Hip Server), v3 micro kemel, Port Unification
Conret/ Cometd

Nng (Guzzly Asynchronous Request Processing)

Sun Mcrosysterrs, Inc

Who is looking at / investigating
Grizzly

* Sundava System Message Queue

* SunJDKORB

* (Glassksh ORB

* Derby/ Java DB

* Mpjor enterpnse players and middleware comparnies

* ...and many nore (subscnbe to our mailng st to
leam who!!!)

Sun Mcrosysterrs, Inc 48

Agenda

 Infroduction
* Whatis Project Gnizzly

* Hstory of

Guzzly

* Gnzzly Acchitecture
* Guzzly Peformance
* Who 1s using Gnizzly

* Where to

md more mformmation

Sun Mcrosystens, Inc

mig I'GS:,'SH.“IT\S

Call to Action

» Dovwnload GlassFsh and expenence the fastest
web contamer on the p]anet

* Project GlassKsh hone pa,
http: // olassfish.dev,java. net

* Download Gnzzly source code

https://gnzzly.dev.java.net

* Jom Project Gnzzly and be added to Project
Grzzly ma]]mg hsts

Sun Mcrosysterrs, Inc

http://glassfish.dev.java.net/
https://grizzly.dev.java.net/

Where to find more information

* Project Gnzzly honre page

h

ps://gnzzly.devjava.net

* Jeanfrancois Arcand's blog

h

p://weblogs Javamﬂblogljfalcarld

* Chartie Hint's blog

h

p://blogs. smcordChaﬂ]erovm

* Poject Gnzzly mailing lists,
dev@ gnzzly.dev.java.net and/or
users@ dev.gnzzly.java.net

e Jom us atJavaOne 2007 fora session and a BOF
on Gnzzly!

Sun Mcrosysterrs, Inc

mig I'Gs:f'it ems

https://grizzly.dev.java.net/
http://weblogs.java.net/blog/jfarcand
http://blogs.sun.com/CharlieBrown
mailto:dev@grizzly.dev.java.net
mailto:users@dev.grizzly.java.net

mailto:jeanfrancois.arcand@sun.com
mailto:charlie.hunt@sun.com

