
Jeanfrancois Arcand
Senior Staff Engineer
Sun Microsystems

Asynchronous Ajax
(aka Comet)
using the
Grizzly Comet Framework

JGD

2

Agenda

• Introduction
• What is Ajax Push (aka Comet)?
• Potential Drawbacks and Pitfalls
• Grizzly Comet Technicals Details
• Demo

> Ajax Counter
> DWR Battleship
> JMaki
> ICEFaces

JGD

3

What is Comet Request Processing (or
Ajax Push)

Comet is a programming technique that
enables web servers to send data to the

client without having any need for the
client to request for it. It allows creation of
event-driven web applications which are

hosted in the browser.

4

• Use it to create highly responsive, event driven applications in a
browser
> Keep clients up-to-date with data arriving or changing on the server,

without frequent polling

• Pros
> Lower latency, not dependent on polling frequency
> Server and network do not have to deal with frequent polling requests to

check for updates

• Example Applications
> GMail and GTalk
> Meebo
> JotLive
> KnowNow
> 4homemedia.com (build on top of GlassFish's Comet)
> Many more …

What is Ajax Push (aka Comet)?

5

How does the “Push” to the browser
works

• Deliver data over a previously opened
connection
> Always “keep a connection open”; do not

respond to the initiating request until event
occurred

> Streaming is an option by sending response
in multiple parts and not closing the
connection in between

6

Standard Ajax compared to Ajax Push options

How does “Push” to the browser work?

Browser Server

Ajax (Polling)

request

response

request

response

event

Server

Ajax Push (Long Poll)

request

response

request

Browser Server

Ajax Push (Streaming)

request

response part

Browser

response part

event event

event

7

Architecture Challenge

• Using blocking, synchronous technology will
result in a blocked thread for each open
connection that is “waiting”
> Every blocked thread will consume memory
> This lowers scalability and can affect

performance
> To get the Java Virtual Machine (JVM™) to

scale to 10,000 threads and up needs specific
tuning and is not an efficient way of solving this

• Servlets 2.5 are an example of blocking,
synchronous technology

8

Affect of Blocking threads (default thread stack size)
Architecture Challenges

Stack Memory Requirements

0

5

10

15

20

10
00

30
00

50
00

70
00

90
00

11
,0

00

13
,0

00

15
,0

00

17
,0

00

19
,0

00

Number of Threads

G
ig

a
b

y
te

s

64bit 1.6 JVM
Machine

9

Technology Solutions

• Use new I/O (NIO) non-blocking sockets to avoid blocking a
thread per connection

• Use technology that supports asynchronous request processing
> Release the original request thread while waiting for an event
> May process the event/response on another thread than the original

request

• Advantages
> Number of clients is primarily limited by the number of open sockets a

platform can support
> Could have all clients (e.g. 10’000) “waiting” without any threads

processing or blocked

JGD

10

Do Comet enabled Servers exist?

• Yes, more and more servers that support
Comet request processing are available:
> GlassFish v2, V3
> Jetty
> Ligthttpd
> Grizzly WebServer
> ...

• Today we are going to focus on Grizzly's
Comet support (standalone and in
GlassFish).

JGD

11

What is Grizzly

• Grizzly is a multi protocol (HTTP, UDP,
etc.) framework that uses lower level Java
NIO primitives, and provides high-
performance APIs for socket
communications.

• In GlassFish, Grizzly is the HTTP front
end.

JGD

12

Comet in Grizzly

• Comet support is build on top of Grizzly
Asynchronous Request Processing (ARP), a
scalable implementation that doesn't hold one
thread per connection, and achieve as closer
as possible the performance of synchronous
request processing (SRP).

JGD

13

Goal of Grizzly's Comet

• Hide the complexity of NIO/Asynchronous
Request Processing.

• Make it available to various technologies
from AJAX based client, JSF, JSP, Servlet,
POJO, JavaScript to “traditional”
technologies such as JMS, EJB, database,
etc.

• Allow complicated scenarios but also support
POJO based development.

• Main Goal: Make it simple to use!

14

Clients/Server Considerations

• To handle the “wait” for an event in Ajax
Push, choose a Web Server / language that
does not have to block

• Some inherently do not block
> Traditional Web Server (like Apache, Tomcat, and

GlassFish v1) are blocking.

• Continuations are another options
> E.g. JavaScript™ technology “continuation” in the

“Rhino” open source implementation

15

Potential Drawbacks and Pitfall

• Beware of flooding clients with too many events
> Filters (throttles) on the client or server side? Which events

can be discarded, which can't?

• Firewalls may terminate connections after a certain amount of
time
> Solution: Re-establish connection after tear-down or at certain intervals

• The HTTP 1.1 specification suggests a limit of 2 simultaneous
connections from a client to the same host
> Some use a separate host name for the “Push” connection

• In security terms the attack surface is very similar to standard
Ajax applications, for denial of service (DoS) the “wait” is a
consideration

• Possible lost of data when the connection is closed
> Real time updates can still occurs when the application goes offline or

during re-connection.

16

Potential Drawbacks and Pitfall (Cont')

• HTTP Streaming is more challenging
> Portability issue to different browsers and

XMLHttpRequest (XHR)
● IE, for example, does not make data available until connection close
● Use IFrames instead for portability

> With streaming data will accumulate, release memory
regularly

> Primitive proxies may buffer data in a way that
interferes with streaming

• Possible lost of data when the connection is
closed
> Real time updates can still occurs when the

application goes offline.

17

Comet support in Grizzly: Details

• Implemented on top of the Grizzly
Asynchronous Request Processing (heavily
used in OpenESB HTTP BC Components).

• Hide the complexity of NIO/Asynchronous
Request Processing.

• Support clean and ssl connection.
• Make it available to JSF, JSP, Servlet,

POJO, JavaScript (Phobos)
• Main Goal: Make it simple!

18

Grizzly Comet supports:

• Asynchronous Content Handlers
> Allow handling asynchronous read and write

• Suspendable Requests
> suspend/resume requests/response

• Container managed server Push
> push data from one connection to another

19

Grizzly Comet Framework details

• Grizzly offer three solutions:
> Grizzly Comet: Comet framework for Servlet/JSP

deployed in GlassFish or Jetty. Support
suspendable request, asynchronous content
handler and container managed server push.

> Grizzlet: simple POJO object deployed on top of
Grizzly WebServer. Support suspendable request
and container managed server push.

> Grizzly Continuation: Simple API for
suspending/resuming a connection. Support
suspendable request.

JGD

20

First, let's start with Grizzly Comet
Framework

• CometContext: A shareable “space” to which
applications may subscribe and from which
they receive updates.

• CometEvent: An object containing the state
of the Comet Context (content updated, client
connected/disconnected, etc.).

• CometHandler: The interface an application
must implement in order to be part of one or
several CometContext.

JGD

21

Step 1: Create new Comet Context or
register to existing one

Application
(server side)

Shareable
Space

(Comet Context)

Shareable
Comet Context

create

register

JGD

22

Server side: At Startup

public void init(ServletConfig config){
 ServletContext context =
 config.getServletContext();
 contextPath = context.getContextPath() + "/comet";

 CometEngine engine = CometEngine.getEngine();
 CometContext cometContext =
 engine.register(contextPath);
• Ex: Requests to “ /myApp/Comet” will be considered

as Comet request.

JGD

23

Step 2: Create one Handler per long
polled connection (optional)

Servlet

Shareable
Space

handler

Add CometHandler

Client request

JGD

24

Client Server

 GET /...
Comet Request

Remember you can only open two
connections from the Browser.

POST /

POST /

Push

JGD

25

Step 3: Open a connection

var counter = {
 'poll' : function() {
 new Ajax.Request('/myApp/comet', {
 method : 'GET',
 onSuccess : counter.update
 });
 },
● This connection enables Comet Request

Processing (long lived connection).

JGD

26

Server side: CometHandler.onEvent()

private class CounterHandler
 implements CometHandler<HttpServletResponse>{

 public void onEvent(CometEvent event) {
 PrintWriter writer = response.getWriter();
 writer.
 write("<text>Pushing data: success</text>");
 writer.flush();

JGD

27

Now all connections are parked.

client

client

client

client

Shareable
Space

handler

handler

handler

handler

GET /myApp/Comet
Long lived connections.

JGD

28

Server side: Servlet.doGet(..)

protected void doGet(HttpServletRequest req,
HttpServletResponse res){

 CounterHandler handler = new CounterHandler();
 handler.attach(res);
 CometEngine engine = CometEngine.getEngine();
 CometContext context =

 engine.getCometContext(contextPath);
 context.addCometHandler(handler);

JGD

29

Client side: OnClick

var counter = {
...
 'increment' : function() {
 new Ajax.Request('/myApp/Notify', {
 method : 'POST'
 });
 },

JGD

30

As one client pushes data, all other
clients are updated without polling for
data.

client

client

client

client

Shareable
Comet Context

handler

handler

handler

handler

Server push

Server push

Server push

Client push

POST /myApp/Notify

JGD

31

Server side: doPost(..)

protected void doPost(HttpServletRequest
req,HttpServletResponse res) {

 CometEngine engine =
 CometEngine.getEngine();

 CometContext<?> context =

engine.getCometContext(contextPath);

 context.notify(“<text>Hello</text>”);

JGD

32

The push does not have to come
from a TCP client. *Any* change to
the CometContext causes the clients
to be updated.

client

client

client

client

Shareable
Comet Context

handler

handler

handler

handler
handler

Web Service or a
Database Update

33

What is a Grizzlet

• Simple interface build on top of the
Grizzly Comet Framework:

> public void onRequest(AsyncConnection
asyncConnection)

> public void onPush(AsyncConnection
 asyncConnection)

• Implement that interface, deploy your
POJO in Grizzly Web Server. Boom it
works!

34

Grizzly Continuation

• Simple API to resume/suspend requests:
GrizzlyContinuation continuation =

Continuation.getContinuation();
continuation.suspend(timeout);

....

continuation.resume();

• Used in Servlet/JSP.

35

Another simple example!
Four simple steps

• Adding Comet support to an existing
application is simple (no big re-factoring).

• The next four slides will describe how to
do it.

• More details can be found:
http://weblogs.java.net/blog/jfarcand/

36

Step 1 - Registration

• First, register to a new or existing Comet
context. The context are usually created
using a context path (but not mandatory)

 CometEngine cometEngine =
 CometEngine.getEngine();
 CometContext context =
 cometEngine.register(contextPath);

37

Step 2- Define your Comet handler

• The Comet handler interface is simple:

 public void attach(E attachment);
 public void onEvent(CometEvent event)
 public void onInitialize(CometEvent event)
 public void onTerminate(CometEvent event)
 public void onInterrupt(CometEvent event)

38

Step 3- Adding Comet handler to the
context

• Next, instantiate your Comet request
handler and add it to the context

 MyCometHandler handler =
 new MyCometHandler();

cometContext.addCometHandler(handler)

39

Step 4 – Advertise changes.

• Once the Comet handler has been added to the
Context, you can start pushing events. You can
notify the context when the client push data or
when something external has changed (ex: a
database):

 cometContext.notify(“Comet is cool”);

40

Comet handler example.

• For a Servlet, you will most probably implement
the CometHandler using the
HttpServletResponse:

 public class CometResponseHandler implements
 CometHandler{

 public void attach(HttpServletResponse
 httpServletResponse){
 this.httpServletResponse =
 httpServletResponse;

41

Comet handler example.
• And the onEvent method will most probably

looks like:

 public void onEvent(CometEvent event) throws IOException{

 try{

 PrintWriter printWriter = httpServletResponse.getWriter();

 printWriter.println(event.attachment());

 printWriter.flush();

 } catch (Throwable t){

 t.printStackTrace();

 }

42

Demos
• You can download the demo from:

jMaki:
http://weblogs.java.net/blog/jfarcand/archive/2007/03/jmaki_come

t_orb_1.html
IceFaces:

http://weblogs.java.net/blog/jfarcand/archive/2007/10/the_arctic_g
riz.html

DWR:
http://weblogs.java.net/blog/jfarcand/archive/2007/11/grizzly_atta

ck.html
JavaScripts:

http://weblogs.java.net/blog/jfarcand/archive/2007/06/new_advent
ures_3.html

43

Thanks to!

• Andreas Egloff for his Comet Introduction
slides!

44

Help Improve This Presentation

The copyright of this speech is licensed under a creative commons
license. Some rights are reserved. © 2008 JeanFrancois Arcand

See http://creativecommons.org/licenses/by-nc-sa/2.5/

If you want to contribute, keep attribution and maintain license. We
would also appreciate notifying us of the changes.

More related presentations are kept at the Presentations page of the
GlassFish Wiki.

http://www.glassfishwiki.org/gfwiki/Wiki.jsp?page=Presentations

http://creativecommons.org/licenses/by-nc-sa/2.5/

jeanfrancois.arcand@sun.com

