WEEGONE
10

JAVAPOLIS

Project Grizzly:

Jean-Francois Arcand

Senior Staff Engineer
Sun Microsystems

* Introduction
» What is Grizzly 1.0

* Introduction to Grizzly.Next
* Framework
« HTTP

- Asynchronous Request Processing
> Comet

* Performance
* Q&A

. What is Grizzly 1.0

. Grizzl)(1.0 is a TCP framework that uses
lower level Java NIO primitives, and
provides high-performance APls for
socket communications.

* Grizzly 1.0 was ori inaIIIy part of
GlassFish and SJSAS. It was mainly used
to build a HTTP Web Server, replacing
Tomcat's Coyote Connector and Sun
WebServer 6.1.

» Developed in 2004, it became more and
more used as a WebServer outside
GlassFish. It also started getting
extended to su q_ort other Sun’s products
(Ct)p)enESB, WSIT stack, Jersey, Phobos,
etc.

=~ \What is Grizzl

» 1.0 evolved to a generic framework but

was polluted with H

P concepts and

GlassFish specific interfaces

« The main class, SelectorThread, contains
several reference to http like file caching,
request monitoring, etc.

« Several classes needed to be extended Iin
order to use the framework

- JettySelectorThread extends SelectorThread
« SSLSelectorThread extends SelectorThread

* The Framework mixed ‘extension’ and

‘implementation’.

=~ \What is Grizzl

- Still, Grizzly 1.0 was still a good choice for
any TCP/HTTP based protocol. Several
implementation successfully extended the
framework:

* JRuby On Grizzly

* Alaska’s HTTP BC component

* GlassFish v3 micro kernel

* Phobos in Netbeans

» SOAP over TCP integration in GlassFish
+ Comet/Cometd

* AsyncWeb on Grizzly

* GlassFish v2

* Hence it was.extremely important to avoid
breaking 1.0 implementation.

Project Grizzly and its Extensions

A-=-
A A

Adapter
A

Synchronous Processing Asynchronous Processing

A U
A A A | A

Grizzly Framework

» |Introduction to Grizzly.

» Grizzly.Next and up is a tentative to fix 1.0
limitations.

* The goals are:
* Remove all dependencies to HTTP and/or GlassFish
» 1.0 Applications must still works with 1.5

. Su;??ort all tricks and ’[IES learned during development of 1.0
ormance, NIO workaround, etc.)

* Keep it simple!!

Controller

- Main entry point when using the Grizzly
Framework. A Controller is Composed “of

> Handlers
> SelectorHandler
> SelectionKeyHandler
> InstanceHandler
> ProtocolChain
> Pipeline.
» All of those components are configurable
by client using the Grizzly Framework.

Example 1 - TCP

» By default, the Grizzly Framework bundle
défault implementation for TCP and UPD
transport. The TCPSelectorHandler is
iInstanciated by default.

* As an example su!oportm g the TCP
protocol should only consist of adding the
appropriate ProtocoIFllter like:

10

Example — 1 TCP (Cont.)

Controller con = new Controller();
con.setlnstanceHandler(new DefaultinstanceHandler(){
public ProtocolChain poll() {
ProtocolChain protocolChain = protocolChains.poll();
if (protocolChain == null){
protocolChain = new DefaultProtocolChain();
protocolChain.addFilter(new ReadFilter());
protocolChain.addFilter(new HTTPParserFilter());

return protocolChain;

}
});

11

Example — 2 UDP

Controller con = new Controller();
con.setlnstanceHandler(new DefaultinstanceHandler(){
public ProtocolChain poll() {
ProtocolChain protocolChain = protocolChains.poll();
if (protocolChain == null){
protocolChain = new DefaultProtocolChain();
protocolChain.addFilter(new ReadFilter());
pliotocoIChain.addFiIter(new UDPParserFilter());

return protocolChain;

}

con.addSelectorHandler(new UDPSelectorHandler());

});

12

Main Concepts — 1.5 Class Diagram

ReadFilter
O DefaultProtocolChain
SelectionKeyHandler ProtocplFilter
DefaultSelectionkeyHandler ProtocolChain
Controller I'?

O

/ InstanceHand|er
Pipgline Q

Pm— SelectoHandler
DefaulchpeIme ¥

TCPSelectorHandler UDPSelectorHandler DefaultinstanceHandler

13

InstanceHandler

* An InstanceHandler is where one or
several ProtocolChain are created and
cached.

* An InstanceHandler decide if a stateless
or st?tgfull ProtocolChain needs to be
created.

14

Pipeline

* An interface used as a wrapper around
any kind of thread pool.

15

ProtocolChain

* A ProtocolChain implement the "Chain of
Responsibility" pattern (for more info, take
a look at the classic "Gang of Four”
design patterns book).

« Towards that end, the Chain APl models a
computation as a series of "protocol filter"
twhat_ can be combined into a "protocol
chain".

16

ProtocolFilter

* A ProtocolFilter encapsulates a unit of
processing work to be performed, whose
purpose is to examine and/or modify the
state of a transaction that is represented
by a ProtocolContext.

 Individual ProtocolFilter can be _
assembled into a ProtocolChain, which
allows them to either ComPIete the
required processing or delegate further
Processmg to the next ProtocolFilter in
he ProtocolChain.

17

Architecture — HT TP layer

. A-=
A | A ‘

Adapter
A A
Synchronous Processing Asynchronous Processing

A-A

Grizzly Framework

18

Grizzly HTTP layer

» Lightweight HTTP 1.0/1.1 based server
- Extremely easy to embed.

» Small footprint.

» Performance is extremely good

. rf I h
gfr?&'?gné’ﬁg‘ﬁ%’é’e%%?n’é taonlgl0 synchronous
ocessing

19

Architecture — Adapter

A
Synchronous Processing Asynchronous Processing
A

y
A A A \ A

Grizzly Framework

20

Grizzly HTTP layer

AR ERs IRl QR p interact

. \é\ér%?sﬁﬂ.g?iglzﬁ%e(:%tﬂic?anpgr class.

TGP Ias and e program that embed
Grizzly.

" FaRR P AR EgpiggelFiter t

21

Architecture - Adapter

Main entry point for most of HTTP based server

* Most Grizzly 1.0 implementation write their own
Com.sun.gr%ézly.tcp.r,)é\dapteralm;glementat?on.

> Project Phobos in Netbeans
> Jersey
> JRuby on Grizzly

- Simple Interface

public void service(Request req,Response res);

* Request contains all HT TP information like:
> Method: GET/POST/TRACE
> Headers: content-length, content-type, etc.

* Works at the bytes level.

Source: Please add the source of your data here
22

Example — StaticResourceAdapter

public void service(Request req, final Response res) {
MessageBytes mb = req.requestURI();
ByteChunk requestURI = mb.getByteChunk();
String uri = req.requestURI().toString();

res.setStatus(200);
res.setContentType(ct);
res.sendHeaders();

res.doWrite(chunk);
res.finish()

23

Example

SelectorThread selectorThread = new SelectorThread();
selectorThread.setPort(port);

selectorThread.setAdapter(

new StaticResourcesAdapter());
Il OR

selectorThread.setAdapter(
new GlassFishAdapter());

selectorThread.setWebAppRootPath(folder);
selectorThread.listen();

24

Architecture - Adapter

» But this approach is problematic if ou need to
em eddegpmore thariu) one http ba gy
rap ementatjon ecause gou needs one
adapter per implementati

> One for PHP
> One for Comet
> One for JRuby on Rail

* They cannot listen to the same http port!
- Adapter notes cannot be shared.
» Solution: GlassFish V3 project!

Source: Please add the source of your data here
25

Architecture — GlassFish V3

aalachchs

Synchronous Processing Asynchronous Processing

A
HTTP

A A I

Grizzly Framework

26

» Same performance

- Same port, different context

- Adapter Notes management (caching)

» ThreadLocal storage management
Comn]on administration : deploy,

Contalner loading/unloading
» Adapter boilerplate reduced
* Intra-adapter communication

27

* |In GlassFish V3., each application can
regclaster ﬁs adapter. PP

- Adapter have context root

 Requests are dispatched based on the
reg(ﬂstered conteﬁ roots

» Registratign/Unregistration of Adapter
E%%rr%%es?s auto at?catllquanﬁle by the

» GlassFish has no knowledge of the target
container type,%\dapter IS t%e?nterefaceg

28

Asynchronous Request Processing

. {‘Ac\:lgonv’}/ir];arat%ar'\r’k Iaﬂ%hg Fgaﬂgg%;parggggs?gg level

- The goplis.a s abledo bl onian oL gl
olne read per.connec IOH’ and achieve as
closer as possible the perfo

synchronous request rocesr,rsrfﬁa%%lg\;).

* Ex: OpenESB (ex: SeeBeyond) HTTP BC
omponent.

29

Example — Asynchronous Request
Processing

SelectorThread selectorThread = new SelectorThread();
selectorThread.setPort(port);
selectorThread.setWebAppRootPath(folder);
selectorThread.setAdapter(

new JRubyAdapter());

AsyncHandler asyncHandler = new DefaultAsyncHandler();
asyncHandler.addAsyncFilter(new CometAsyncFilter());

selectorThread.setAsyncHandler(asyncHandler);

selectorThread.listen();

30

hat s Comet Request Processing (or
jax us%(g 44 ng (

Comet is a programming technique that
N ﬁ S % rvers togsend dqt tc% t?m
.C |?n without having any need for the
client to. request for it."|t allows creation of
event-drl\ﬁ nw at;?]p ilcations which are
osted in the browser.

31

What is Ajax Push (aka Comet)?

» Use it to create highly responsive, event driven applications in a browser
> Kel?p clients up-to-date with data arriving or changing on the server, without frequent
polling
* Pros
> Lower latency, not dependent on polling frequency
> Server and network do not have to deal with frequent polling requests to check for
updates
 Example Applications
GMail and GTalk
Meebo
JotLive
WebMc (OSS WebEX developped by ICESoft.com)
4homemedia.com (build on top of GlassFish's Comet)

>
>
>
>
>
> Many more ...

32

How does “Push’ to the browser
work?

Standard Ajax compared to Ajax Push options

Ajax (Polling) Ajax Push (Long Poll) Ajax Push (Streaming)
Browser Server Browser Server Browser Server

' request | ' request | ' request |

= — = ———" e

| response | t : | avent : :

| 1 even ' response ' i 1 event
| | I ——————————— ,<_|'<_
| | '!Tuesr: rresponse part:
request | | : : . event
| : : I |——
' response | | | 'response part!

33

How does the “Push’ to the browser
works

» Deliver data over a previously opened connection

> Always “keep a connection open’; do not respond to the
initiating request until event occurred

> Streaming is an option by sending response in multiple
parts and not closing the connection in between

Technology Solutions

* Use new I/O (NIO) non-blocking sockets to avoid blocking a thread per
connection (Cool this is exactly what Grizzly does!)

» Use technology that supports asynchronous request processing
> Release the original request thread while waiting for an event
> May process the event/response on another thread than the original request

* Advantages

> Number of clients is primarily limited by the number of open sockets a platform can
support

> Could have all clients (e.g. 10'000) “waiting” without any threads processing or blocked

35

Grizzly Comet supports:

» Asynchronous Content Handlers
> Allow handling asynchronous read and write

» Suspendable Requests
> suspend/resume requests/response

- Container managed server Push
> push data from one connection to another

36

Grizzly Comet Framework details

» Grizzly offer three solutions:

> Grizzly Comet: Comet framework for Servlet/JSP deployed
in GlassFish or Jetty. Support suspendable request,
asynchronous content handler and container managed
server push.

> Grizzlet: simple POJO object deployed on top of Grizzly
WebServer. Support suspendable request and container
managed server push.

> Grizzly Continuation: Simple API for suspending/resuming
a connection. Support suspendable request.

Project Grizzly Performance
Comparing Project Grizzly to Apache MINA both running Async\Web

. What IS MINA?
> INA I\/IuIt| urgose Infrale(‘.truct re for

eworkp\m\ aa S ug net evel Bph ?;“On

ance an sca a ity ne wo
ppllca lons ea

* What is V,s\sg/r;cWeb’?th ocking |
Q%XP &?—I | Igr?r%?ne i SI CP 81nrou0% m?t ava

Syncve on top ot fiRigCessihe

38

Project Grizzly Performance

How did we performance test?

» Client load generated via faban
> faban.sunsource.net

 Two modes of measurement
> Throughput
> Limited # of clients
> No Think Time
> Scalability
> Max # of clients with 90% response time metric
> Think time

39

Proj ect rlzzl [)sus Apache MINA both

runh ing syn

Higher is better, normalized to Grizzly score

100.00%
90.00%
80.00%
70.00%
60.00% : ﬁir:f:'y
50.00%
40.00%
30.00%
20.00%
10.00%
0.00% ‘ —

Total Throughput Scalability

Source: Internal Benchmark Tests

40

Project Grizzly Performance

» Tested against a benchmark designed to:

 Measure scalability, specifically to measure how many concurrent
clients can be supported with:
* Average client think time of 8 seconds
* 90% response time within 3 seconds
o Error rate < 0.1%

41

Pro ect Erizzly HI'TP vs other HI'TP

ers

Higher is better

3000 B Traditional I/0O
2750 — [l C-Based Server
2500 — C-Based Server
2250 — [l Grizzly

2000 -

1750 o

1500 -

1250
1000

750

500

= 11
0 | . f-

2 CPU 6 CPU 16 CPU

% of Traditional I/O Score

42

Summary

* Grizzly 1.0 migration to 1.5 is simple.

> Ex: Grizzly 1.0 HTTP based application will
works without any changes using module/http

» 1.5 make it simple to extends and isolate
concept.

SuPport out-of-the-box TCP, UDP, TLS via
SelectorHandler implementation.

- Extremely simple to implement your own
http extension.

43

Q&A
Project Grizzly

http://grizzly.dev.java.net
jeanfrancois.arcand@sun.com

http://grizzly.dev.java.net/

