
1

Jean-Francois Arcand

Senior Staff Engineer
Sun Microsystems

Project Grizzly:

3

Agenda

• Introduction
• What is Grizzly 1.0
• Introduction to Grizzly.Next

• Framework
• HTTP
• Asynchronous Request Processing

> Comet

• Performance
• Q&A

4

What is Grizzly 1.0

• Grizzly 1.0 is a TCP framework that uses
lower level Java NIO primitives, and
provides high-performance APIs for
socket communications.

• Grizzly 1.0 was originally part of
GlassFish and SJSAS. It was mainly used
to build a HTTP Web Server, replacing
Tomcat’s Coyote Connector and Sun
WebServer 6.1.

• Developed in 2004, it became more and
more used as a WebServer outside
GlassFish. It also started getting
extended to support other Sun’s products
(OpenESB, WSIT stack, Jersey, Phobos,
etc.)

5

What is Grizzly 1.0 (Cont.)

• 1.0 evolved to a generic framework but
was polluted with HTTP concepts and
GlassFish specific interfaces
• The main class, SelectorThread, contains

several reference to http like file caching,
request monitoring, etc.

• Several classes needed to be extended in
order to use the framework
• JettySelectorThread extends SelectorThread
• SSLSelectorThread extends SelectorThread

• The Framework mixed ‘extension’ and
‘implementation’.

6

What is Grizzly 1.0 (Cont.)

• Still, Grizzly 1.0 was still a good choice for
any TCP/HTTP based protocol. Several
implementation successfully extended the
framework:
• JRuby On Grizzly
• Alaska’s HTTP BC component
• GlassFish v3 micro kernel
• Phobos in Netbeans
• SOAP over TCP integration in GlassFish
• Comet/Cometd
• AsyncWeb on Grizzly
• GlassFish v2

• Hence it was extremely important to avoid
breaking 1.0 implementation.

7

Project Grizzly and its Extensions

Grizzly Framework[1]Grizzly Framework

HTTP

Adapter

AsyncWeb Phobos JRuby

Jetty Pogo.com
(EA)

Comet

Asynchronous Processing

RealTime/
Sailfin

Jersey GlassFish
v2

Cometd

Synchronous Processing

GlassFish
V3

PHP

8

Introduction to Grizzly.Next

• Grizzly.Next and up is a tentative to fix 1.0
limitations.

• The goals are:
• Remove all dependencies to HTTP and/or GlassFish
• 1.0 Applications must still works with 1.5
• Support all tricks and tips learned during development of 1.0

(performance, NIO workaround, etc.)
• Keep it simple!!

9

Controller

• Main entry point when using the Grizzly
Framework. A Controller is composed of
> Handlers

> SelectorHandler
> SelectionKeyHandler
> InstanceHandler

> ProtocolChain
> Pipeline.

• All of those components are configurable
by client using the Grizzly Framework.

10

Example 1 - TCP

• By default, the Grizzly Framework bundle
default implementation for TCP and UPD
transport. The TCPSelectorHandler is
instanciated by default.

• As an example, supporting the TCP
protocol should only consist of adding the
appropriate ProtocolFilter like:

11

Example – 1 TCP (Cont.)

 Controller con = new Controller();
 con.setInstanceHandler(new DefaultInstanceHandler(){
 public ProtocolChain poll() {
 ProtocolChain protocolChain = protocolChains.poll();
 if (protocolChain == null){
 protocolChain = new DefaultProtocolChain();
 protocolChain.addFilter(new ReadFilter());
 protocolChain.addFilter(new HTTPParserFilter());

 }
 return protocolChain;
 }
 });

12

Example – 2 UDP

 Controller con = new Controller();
 con.setInstanceHandler(new DefaultInstanceHandler(){
 public ProtocolChain poll() {
 ProtocolChain protocolChain = protocolChains.poll();
 if (protocolChain == null){
 protocolChain = new DefaultProtocolChain();
 protocolChain.addFilter(new ReadFilter());
 protocolChain.addFilter(new UDPParserFilter());

 }
 return protocolChain;
 }

 con.addSelectorHandler(new UDPSelectorHandler());
 });

13

Main Concepts – 1.5 Class Diagram

14

InstanceHandler

• An InstanceHandler is where one or
several ProtocolChain are created and
cached.

• An InstanceHandler decide if a stateless
or statefull ProtocolChain needs to be
created.

15

Pipeline

• An interface used as a wrapper around
any kind of thread pool.

16

ProtocolChain

• A ProtocolChain implement the "Chain of
Responsibility" pattern (for more info, take
a look at the classic "Gang of Four"
design patterns book).

• Towards that end, the Chain API models a
computation as a series of "protocol filter"
that can be combined into a "protocol
chain".

17

ProtocolFilter

• A ProtocolFilter encapsulates a unit of
processing work to be performed, whose
purpose is to examine and/or modify the
state of a transaction that is represented
by a ProtocolContext.

• Individual ProtocolFilter can be
assembled into a ProtocolChain, which
allows them to either complete the
required processing or delegate further
processing to the next ProtocolFilter in
the ProtocolChain.

18

Architecture – HTTP layer

Grizzly Framework[1]Grizzly Framework

HTTP

Adapter

AsyncWeb Phobos JRuby

Jetty Restlet

Comet

Asynchronous Processing

RealTime
Sailfin

SWDP
Rest

GlassFish
v2

Cometd

Synchronous Processing

Glassfish
V3

Derby

19

Grizzly HTTP layer

• Lightweight HTTP 1.0/1.1 based server
• Extremely easy to embed.
• Small footprint.
• Performance is extremely good
• Good performance apply to both

Synchronous processing and Asynchronous
Processing

20

Architecture – Adapter

Grizzly Framework[1]Grizzly Framework

HTTP

Adapter

AsyncWeb Phobos JRuby

Jetty Restlet

Comet

Asynchronous Processing

RealTime

SWDP
Rest

GlassFish
v2

Cometd

Synchronous Processing

GlassFish
V3

Netbeans
6Derby

21

Grizzly HTTP layer

• Easy to embedded. Only have to interact
with one object: SelectorThread

• Write an implementation of
com.sun.grizzly.tcp.Adapter class.

• The Adapter is the glue code between the
HTTP layer and the program that embed
Grizzly.

• Easy to inject your own ProtocolFilter to
manipulate the HTTP Request

22

Main entry point for most of HTTP based server

Architecture - Adapter

• Most Grizzly 1.0 implementation write their own
com.sun.grizzly.tcp.Adapter implementation.
> Project Phobos in Netbeans
> Jersey
> JRuby on Grizzly

• Simple Interface
 public void service(Request req,Response res);

• Request contains all HTTP information like:
> Method: GET/POST/TRACE
> Headers: content-length, content-type, etc.

• Works at the bytes level.

Source: Please add the source of your data here

23

Example – StaticResourceAdapter
 public void service(Request req, final Response res) {
 MessageBytes mb = req.requestURI();
 ByteChunk requestURI = mb.getByteChunk();
 String uri = req.requestURI().toString();

 res.setStatus(200);
 res.setContentType(ct);
 res.sendHeaders();

 res.doWrite(chunk);
 res.finish()
 }

24

Example

 SelectorThread selectorThread = new SelectorThread();
 selectorThread.setPort(port);

 selectorThread.setAdapter(
 new StaticResourcesAdapter());

 // OR
 selectorThread.setAdapter(
 new GlassFishAdapter());

 selectorThread.setWebAppRootPath(folder);
 selectorThread.listen();

25

Architecture - Adapter

• But this approach is problematic if you need to
embedded more than one http based
implementation because you needs one
adapter per implementation
> One for PHP
> One for Comet
> One for JRuby on Rail

• They cannot listen to the same http port!
• Adapter notes cannot be shared.
• Solution: GlassFish V3 project!

Source: Please add the source of your data here

26

Architecture – GlassFish V3

Grizzly Framework[1]Grizzly Framework

HTTP

Phobos JRuby

Jetty Pogo.com
(EA)

Comet

Asynchronous Processing

RealTime/
Sailfin

SWDP
Rest

Synchronous Processing

GlassFish V3

PHPTomcat 6

27

Advantages

• Same performance
• Same port, different context
• Adapter Notes management (caching)
• ThreadLocal storage management
• Common administration : deploy,

undeploy...
• Container loading/unloading
• Adapter boilerplate reduced
• Intra-adapter communication

28

Application adapter

• In GlassFish V3, each application can
register its adapter.

• Adapter have context root
• Requests are dispatched based on the

registered context roots
• Registration/Unregistration of Adapter

instances is automatically handled by the
runtime

• GlassFish has no knowledge of the target
container type, Adapter is the interface

29

Asynchronous Request Processing

• Allow for “parking” a request; a type of
“continuation” at the request processing level

• The goal is to be able to build, on top of Grizzly,
a scalable ARP implementation that doesn't hold
one thread per connection, and achieve as
closer as possible the performance of
synchronous request processing (SRP).

• Ex: OpenESB (ex: SeeBeyond) HTTP BC
Component.

30

Example – Asynchronous Request
Processing

 SelectorThread selectorThread = new SelectorThread();
 selectorThread.setPort(port);
 selectorThread.setWebAppRootPath(folder);
 selectorThread.setAdapter(
 new JRubyAdapter());

 AsyncHandler asyncHandler = new DefaultAsyncHandler();
 asyncHandler.addAsyncFilter(new CometAsyncFilter());
 selectorThread.setAsyncHandler(asyncHandler);

 selectorThread.listen();

31

What is Comet Request Processing (or
Ajax Push)

Comet is a programming technique that
enables web servers to send data to the

client without having any need for the
client to request for it. It allows creation of
event-driven web applications which are

hosted in the browser.

32

• Use it to create highly responsive, event driven applications in a browser
> Keep clients up-to-date with data arriving or changing on the server, without frequent

polling

• Pros
> Lower latency, not dependent on polling frequency
> Server and network do not have to deal with frequent polling requests to check for

updates

• Example Applications
> GMail and GTalk
> Meebo
> JotLive
> WebMc (OSS WebEX developped by ICESoft.com)
> 4homemedia.com (build on top of GlassFish's Comet)
> Many more …

What is Ajax Push (aka Comet)?

33

Standard Ajax compared to Ajax Push options

How does “Push” to the browser
work?

Browser Server

Ajax (Polling)

request

response

request

response

event

Server

Ajax Push (Long Poll)

request

response

request

Browser Server

Ajax Push (Streaming)

request

response part

Browser

response part

event event

event

34

How does the “Push” to the browser
works

• Deliver data over a previously opened connection
> Always “keep a connection open”; do not respond to the

initiating request until event occurred
> Streaming is an option by sending response in multiple

parts and not closing the connection in between

35

Technology Solutions

• Use new I/O (NIO) non-blocking sockets to avoid blocking a thread per
connection (Cool this is exactly what Grizzly does!)

• Use technology that supports asynchronous request processing
> Release the original request thread while waiting for an event
> May process the event/response on another thread than the original request

• Advantages
> Number of clients is primarily limited by the number of open sockets a platform can

support
> Could have all clients (e.g. 10’000) “waiting” without any threads processing or blocked

36

Grizzly Comet supports:

• Asynchronous Content Handlers
> Allow handling asynchronous read and write

• Suspendable Requests
> suspend/resume requests/response

• Container managed server Push
> push data from one connection to another

37

Grizzly Comet Framework details

• Grizzly offer three solutions:
> Grizzly Comet: Comet framework for Servlet/JSP deployed

in GlassFish or Jetty. Support suspendable request,
asynchronous content handler and container managed
server push.

> Grizzlet: simple POJO object deployed on top of Grizzly
WebServer. Support suspendable request and container
managed server push.

> Grizzly Continuation: Simple API for suspending/resuming
a connection. Support suspendable request.

38

Comparing Project Grizzly to Apache MINA both running AsyncWeb

Project Grizzly Performance

• What is MINA?
> Apache MINA (Multipurpose Infrastructure for

Network Applications) is a network application
framework which helps users develop high
performance and high scalability network
applications easily.

• What is AsyncWeb?
> AsyncWeb is a high-throughput, non blocking Java

platform HTTP engine - designed throughout to
support asynchronous request processing.
AsyncWeb is build on top of MINA.

39

Project Grizzly Performance

• Client load generated via faban
> faban.sunsource.net

• Two modes of measurement
> Throughput

> Limited # of clients
> No Think Time

> Scalability
> Max # of clients with 90% response time metric
> Think time

How did we performance test?

40

Project Grizzly versus Apache MINA both
running AsyncWeb

Source: Internal Benchmark Tests

Total Throughput Scalability
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Grizzly

Mina

Higher is better, normalized to Grizzly score

41

Project Grizzly Performance

● Tested against a benchmark designed to:

● Measure scalability, specifically to measure how many concurrent
clients can be supported with:
● Average client think time of 8 seconds
● 90% response time within 3 seconds
● Error rate < 0.1%

42

Project Grizzly HTTP vs other HTTP
Servers

2 CPU 6 CPU 16 CPU
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000 Traditional I/O

C-Based Server

C-Based Server

Grizzly

%
 o

f T
ra

di
tio

na
l I

/O
 S

co
re

Higher is better

43

Summary

• Grizzly 1.0 migration to 1.5 is simple.
> Ex: Grizzly 1.0 HTTP based application will

works without any changes using module/http
• 1.5 make it simple to extends and isolate

concept.
• Support out-of-the-box TCP, UDP, TLS via

SelectorHandler implementation.
• Extremely simple to implement your own

http extension.

44

Q&A

Project Grizzly

http://grizzly.dev.java.net
jeanfrancois.arcand@sun.com

http://grizzly.dev.java.net/

