
2007 JavaOneSM Conference | Session TS-2992 |

TS-2992

Tricks and Tips With NIO
Using the Grizzly Framework
Jeanfrancois Arcand, Senior Staff Engineer
Charlie Hunt, Senior Staff Engineer
Scott Oaks, Senior Staff Engineer
SUN Microsystems

YOUR LOGO
HERE

2007 JavaOneSM Conference | Session TS-2992 | 2

Goal of Your Talk

In this session, we discuss tricks and tips we have
learned working on the Project Grizzly NIO Framework.
We will describe how to efficiently manage ByteBuffers,
how to properly handle SelectionKeys, recommend
threading and buffer management techniques, and talk
about an efficient NIO/SSL implementation.

Tricks and Tip with NIO

2007 JavaOneSM Conference | Session TS-2992 | 3

Agenda

Introduction
What Is Project Grizzly
Project Grizzly Performance
Overview of NIO
Tricks and Tips
Summary

2007 JavaOneSM Conference | Session TS-2992 | 4

Agenda

Introduction
What Is Project Grizzly
Project Grizzly Performance
Overview of NIO
Tricks and Tips
Summary

2007 JavaOneSM Conference | Session TS-2992 | 5

Introduction
● Implementing scalable servers in Java™ platform

can be difficult
● Almost impossible prior to Java technology-

based NIO
● Using Java technology-based NIO effectively can

be a challenge
● Project Grizzly eliminates many of these challenges
● In this session we present many of the tips and

tricks we learned while implementing Project Grizzly
to build scalable servers using Java technology-
based NIO

2007 JavaOneSM Conference | Session TS-2992 | 6

What we will talk about in this session
Introduction
● Give a brief history of Project Grizzly

● How Project Grizzly was born
● Current state of Project Grizzly

● Show Project Grizzly’s performance and scalability
● Familiarize ourselves with Java technology-based

NIO package
● Present several of the tips-and-tricks effectively

using Java technology-based NIO as we learned
implementing Project Grizzly

2007 JavaOneSM Conference | Session TS-2992 | 7

Agenda

Introduction
What Is Project Grizzly
Project Grizzly Performance
Overview of NIO
Tricks and Tips
Summary

2007 JavaOneSM Conference | Session TS-2992 | 8

Project Grizzly (current Grizzly Framework)
What Is Project Grizzly
● Uses Java technology-based NIO primitives and

hides the complexity of programming with Java
technology-based NIO

● Easy-to-use high-performance APIs for TCP,
UDP and SSL communications

● Brings non-blocking sockets to the protocol
processing layer

● Utilizes high-performance buffers and buffer
management

● Choice of several different high-performance
thread pools

2007 JavaOneSM Conference | Session TS-2992 | 9

History of Project Grizzly
What Is Project Grizzly
● Project Grizzly was born in 2004 under the

GlassFish™ project, (https://glassfish.dev.java.net)
● Initially built as an HTTP Web Server, replacing

Tomcat’s Coyote Connector and Sun WebServer 6
● Later became known as Grizzly 1.0.

● Grizzly 1.0 shipped with Sun Java System Application
Server 8.1 PE, 8.2 PE/EE and all GlassFish project
distributions, replacing native Sun WebServer
software runtime

2007 JavaOneSM Conference | Session TS-2992 | 10

History of Project Grizzly
What Is Project Grizzly
● Grizzly 1.0 became extremely popular in 2006;

Multiple protocol implementations were built on
top of it

● But Grizzly 1.0 had HTTP protocol specific
implementation details included in its transport logic

● The main class, SelectorThread, contained several
artifacts specific to http such as file caching, request
monitoring, etc.

2007 JavaOneSM Conference | Session TS-2992 | 11

History of Project Grizzly
What Is Project Grizzly
● Several classes needed to be extended in

order to use the framework
● Example: JettySelectorThread extends

SelectorThread
● Example: SSLSelectorThread extends

SelectorThread
● The Grizzly 1.0 mixed ‘extension’ and

‘implementation’

2007 JavaOneSM Conference | Session TS-2992 | 12

History of Project Grizzly
What Is Project Grizzly
● But, Grizzly 1.0 was still a good choice for nearly all

TCP/HTTP-based protocols
● Projects successfully utilizing Grizzly 1.0:

● JRuby On Grizzly
● Project Alaska’s HTTP BC component
● GlassFish build v3 micro kernel
● Phobos in NetBeans™ software
● SOAP over TCP integration in GlassFish project
● Comet / Cometd
● AsyncWeb on Grizzly
● GlassFish build v2
● Sun Web 2.0 Developer pack (REST HTTP Server)

2007 JavaOneSM Conference | Session TS-2992 | 13

Open Source Grizzly
What Is Project Grizzly
● Grizzly 1.5 began development in 2006
● Grizzly 1.5 objectives

● Remove all dependencies on HTTP and/or GlassFish project
● All 1.0 applications must still work with 1.5
● Support all tricks and tips learned during development of

Grizzly 1.0 (performance, NIO performance gotchas, etc.)
● Keep it simple!!

● Grizzly 1.5 Open Sourced February 6, 2007,
https://grizzly.dev.java.net

● Grizzly 1.5 officially released as of 2007
JavaOneSM Conference!!

2007 JavaOneSM Conference | Session TS-2992 | 14

Who’s looking at Grizzly 1.5 ?
What Is Project Grizzly
● Sun JDK™ Software ORB
● GlassFish Project ORB
● Sun Java System Message Queue Software
● Sun Labs Project(s)
● Several enterprise/middleware companies
● …and many more (subscribe to Project Grizzly’s

mailing list to learn who!!!)

2007 JavaOneSM Conference | Session TS-2992 | 15

Where to find Project Grizzly
What Is Project Grizzly
● Open Source Project on java.net,

(https://grizzly.dev.java.net)
● Open Sourced under CDDL license
● Very open community policy

● All project communications are done on Project Grizzly
mailing list; No internal, off mailing list conversations

● Project meetings open to anyone, (public conference call)
● Project decisions are made by project member vote

● No project member has more voting power than any other
project member

2007 JavaOneSM Conference | Session TS-2992 | 16

Agenda

Introduction
What Is Project Grizzly
Project Grizzly Performance
Overview of NIO
Tricks and Tips
Summary

2007 JavaOneSM Conference | Session TS-2992 | 17

Project Grizzly Performance
● Client load generated via faban

● faban.sunsource.net
● Two modes of measurement

● Throughput
● Limited # of clients
● No Think Time

● Scalability
● Max # of clients with 90% response time metric
● Think time

How did we performance test?

2007 JavaOneSM Conference | Session TS-2992 | 18

Comparing Project Grizzly to Apache MINA both
running AsyncWeb

Project Grizzly Performance

● What is MINA?
● Apache MINA (Multipurpose Infrastructure for Network

Applications) is a network application framework which
helps users develop high performance and high scalability
network applications easily

● What is AsyncWeb?
● AsyncWeb is a high-throughput, non-blocking Java

platform HTTP engine—Designed throughout to support
asynchronous request processing; AsyncWeb is built
on top of MINA

2007 JavaOneSM Conference | Session TS-2992 | 19

Project Grizzly vs. Apache MINA
Both Running AsyncWeb

Source: Internal Benchmark Tests

Total Throughput Scalability
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Grizzly
Mina

Higher is better, normalized to Grizzly score

2007 JavaOneSM Conference | Session TS-2992 | 20

GlassFish vs. Tomcat

Source: Internal Benchmark Tests

Total Throughput Scalability
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

GlassFish
Tomcat

Higher is better, normalized to Grizzly score

2007 JavaOneSM Conference | Session TS-2992 | 21

Project Grizzly Performance

Tested against a benchmark designed to:
● Measure scalability, specifically to measure how

many concurrent clients can be supported with:
● Average client think time of 8 seconds
● 90% response time within 3 seconds
● Error rate < 0.1%

Project Grizzly HTTP performance

2007 JavaOneSM Conference | Session TS-2992 | 22

Project Grizzly HTTP
vs. Other HTTP Servers

2 CPU 6 CPU 16 CPU
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000 Traditional I/O

C-Based Server
C-Based Server
Grizzly

%
 o

f T
ra

di
tio

na
l I

/O
 S

co
re

Higher is better

2007 JavaOneSM Conference | Session TS-2992 | 23

Agenda

Introduction
What Is Project Grizzly
Project Grizzly Performance
Overview of NIO
Tricks and Tips
Summary

2007 JavaOneSM Conference | Session TS-2992 | 24

Blocking or non-blocking?
Overview of NIO

● Traditional java.net.Sockets are blocking—
They block, wait/sleep for data

● NIO Channels can be blocking or non-blocking
● Non-blocking Channels never put the invoking thread to

sleep; Operations either complete right away or return a
result indicating nothing was done

● Non-blocking makes it easy to manage many channels
simultaneously

● Blocking channels encourages “one thread per connection”
paradigm

● NIO Channels must be configured, blocking or
non-blocking

2007 JavaOneSM Conference | Session TS-2992 | 25

Selector—Basic abstraction to enable multiplexed I/O
Overview of NIO

● Register one or more ‘selectable’ channels (i/o)
● Relationship between channel and selector

represented by a selection key (SelectionKey)
● Selection key remembers the events you are

interested in
● Selector’s select() method updates the keys which

are “ready”
● Service each channel by iterating over the keys

which are “ready”

2007 JavaOneSM Conference | Session TS-2992 | 26

Buffer and ByteBuffer
Overview of NIO

● Containers for handling data
● Work very well together with Channels
● High performing if done right!
● To use Buffers, you must understand

● Capacity—Max number of elements
● Limit—Count of “live” elements, don’t read/write beyond
● Position—Index of next element to read/write
● Mark—A remembered position
● 0 ← mark ← position ← limit ← capacity

2007 JavaOneSM Conference | Session TS-2992 | 27

Two Flavors of ByteBuffers
Overview of NIO

● ByteBuffers—two flavors
● Direct ByteBuffer and non-direct ByteBuffer
● Non-direct ByteBuffer

● Underlying storage maintained in a Java platform byte[]
● Implemented in JDK™ software for Java HotSpot™

technology class libraries as HeapByteBuffer
● Direct ByteBuffer

● Underlying storage maintained in native code, not in
the Java platform heap

● Implemented in JDK software for Java HotSpot
technology class libraries as DirectByteBuffer

2007 JavaOneSM Conference | Session TS-2992 | 28

NIO Myths
Overview of NIO

● Using NIO SocketChannels and
ByteBuffers is easy

2007 JavaOneSM Conference | Session TS-2992 | 29

NIO Myths
Overview of NIO

● Using NIO SocketChannels and
ByteBuffers is easy
● TRUE

2007 JavaOneSM Conference | Session TS-2992 | 30

NIO Myths
Overview of NIO

● Using NIO SocketChannels and
ByteBuffers is easy
● TRUE

● Building a high performing and highly scalable
application with NIO is easy

2007 JavaOneSM Conference | Session TS-2992 | 31

NIO Myths
Overview of NIO

● Using NIO SocketChannels and
ByteBuffers is easy
● TRUE

● Building a high performing and highly scalable
application with NIO is easy
● FALSE

2007 JavaOneSM Conference | Session TS-2992 | 32

NIO Myths
Overview of NIO

● Using NIO SocketChannels and
ByteBuffers is easy
● TRUE

● Building a high performing and highly scalable
application with NIO is easy
● FALSE

● Non-blocking NIO is for server-side
applications only

2007 JavaOneSM Conference | Session TS-2992 | 33

NIO Myths
Overview of NIO

● Using NIO SocketChannels and
ByteBuffers is easy
● TRUE

● Building a high performing and highly scalable
application with NIO is easy
● FALSE

● Non-blocking NIO is for server-side
applications only
● FALSE

2007 JavaOneSM Conference | Session TS-2992 | 34

Agenda

Introduction
What Is Project Grizzly
Project Grizzly Performance
Overview of NIO
Tricks and Tips
Summary

2007 JavaOneSM Conference | Session TS-2992 | 35

Tip #1: Use of SelectionKey.attach()

● SelectionKey(s) are a token representing the
registration of a SelectableChannel
(i.e. SocketChannel) with a Selector

● A SelectionKey is created each time a
SocketChannel is registered with a Selector and
remains valid until it is cancelled

● A SelectionKey has “interest ops” which indicate
when a SocketChannel is “ready” for type of
operation operation, (i.e. read, write, accept,
connect)

Use care when attaching an object

2007 JavaOneSM Conference | Session TS-2992 | 36

Use care when attaching an object
Tip #1: Use of SelectionKey.attach()

● The SelectionKey API also provides the ability to
attach an object using SelectionKey.attach(Object
obj), and later retrieve that object using Object
SelectionKey.attachment()

● This is very convenient construct to use on a
SelectionKey to pass or hold state information
between “interest op” operations

● But, use care when using this construct

2007 JavaOneSM Conference | Session TS-2992 | 37

Use care when attaching an object
Tip #1: Use of SelectionKey.attach()

● What you are attaching to the SelectionKey
could lead to unintended consequences

● Why? Because there is some probability that
your SelectionKey might never return to a
ready-operation state, leaving the SelectionKey
and its attachment forever inside the Selector
key set

● But what’s the point, nobody will ever do that!
We are all very talented engineers, and we
always take special care in managing our
SelectionKey(s), right?

2007 JavaOneSM Conference | Session TS-2992 | 38

Use care when attaching an object
Tip #1: Use of SelectionKey.attach()

● In a software architecture where your (NIO)
framework needs to handle thousands of
connections, and you need to keep-alive those
connections for a very long time (from 60
seconds to 5 minutes)

● Most frameworks (and unfortunately a lot of
tutorials, articles and presentations) attach their
framework object to the SelectionKey (Reactor
pattern)

2007 JavaOneSM Conference | Session TS-2992 | 39

Can lead to a memory leak
Tip #1: Use of SelectionKey.attach()

● Those framework objects will likely include
one or more of the following:
● A ByteBuffer
● Some keep-alive object (let’s assume a Long)
● A SocketChannel
● A Framework Handler (like the Reactor pattern)
● etc.

2007 JavaOneSM Conference | Session TS-2992 | 40

Can lead to a memory leak
Tip #1: Use of SelectionKey.attach()

● So you can end up with thousand of objects
taking vacations, enjoying idle time inside the
Selector key set

● If you did not implement any mechanism to take
a periodic look inside the Selector key set, then
you may end up with a memory leak (or your
framework performance will be impacted)

● Worse, you might never notice the problem

2007 JavaOneSM Conference | Session TS-2992 | 41

Common misuse
Tip #1: Use of SelectionKey.attach()
● How do I retrieve the SocketChannel if I don’t

attach it to my framework objects?
● Most existing frameworks include inside their

framework objects, a SocketChannel associated
with the SelectionKey; This is not needed because
a SocketChannel can always be retrieved using
SelectionKey.channel()

2007 JavaOneSM Conference | Session TS-2992 | 42

Common misuse
Tip #1: Use of SelectionKey.attach()
● How do I deal with incomplete

SocketChannel read?
● When you do non-blocking SocketChannel.read(),

you can never predict when all bytes are read from
the socket buffer

● Common practice is to register the SelectionKey
back with the Selector and attach the incomplete
ByteBuffer to the SelectionKey

● Instead, I would recommend you use a temporary
Selector, (next trick)

2007 JavaOneSM Conference | Session TS-2992 | 43

Recommendations
Tip #1: Use of SelectionKey.attach()

● If you are building a framework, try to avoid
attaching anything to the SelectionKey.attach()

● Allow the user of the framework to use
SelectionKey.attach(). But, be sure to educate
your users about potential pitfalls
● Possible memory leak(s)
● Performance throughput and/or scalability degradation

● Tip #2 helps with one case of wanting to use
SelectionKey.attach()

2007 JavaOneSM Conference | Session TS-2992 | 44

Avoiding Thread context switching
Tip #2: Using Temporary Selectors

● Using multiple Selectors instances can
significantly improve performance

● Why? Remember that Selectors detect when
channels are ready for some operation of
interest; When Selectors detect these “ready”
operations, the operations themselves are
usually carried out or dispatched to some other
thread which results in a thread context switch

● Thread context switching can be expensive

2007 JavaOneSM Conference | Session TS-2992 | 45

Solution
Tip #2: Using Temporary Selectors

● Most implementations or frameworks utilize a
single Selector where SocketChannels register a
SelectionKey; Let’s call this the “main” Selector

● When you are expecting to read or write more
bytes from a SocketChannel, instead of
registering the SocketChannel’s SelectionKey
back with the “main” Selector, create a temporary
Selctor, register the SelectionKey with it along
with enabling your read or write interest op

● Then, read or write more bytes using the
temporary Selector

2007 JavaOneSM Conference | Session TS-2992 | 46

Tip #2: Using Temporary Selectors
int bytesRead = socketChannel.read(byteBuffer);
if (bytesRead == 0) {
 readSelector = SelectorFactory.getSelector();
 tmpKey = socketChannel.register
 (readSelector,SelectionKey.OP_READ);
 tmpKey.interestOps(tmpKey.interestOps() |
 SelectionKey.OP_READ);
 int code = readSelector.select(readTimeout);
 tmpKey.interestOps(tmpKey.interestOps() &
 (~SelectionKey.OP_READ));
 if (code == 0){
 return 0;
 }
 do {
 bytesRead = socketChannel.read(byteBuffer);
 while (bytesRead > 0 && byteBuffer.hasRemaining());
...

2007 JavaOneSM Conference | Session TS-2992 | 47

Avoiding 100% CPU consumption
Tip #3: Handling the OP_WRITE

● Handling OP_ACCEPT and OP_READ has
been well documented in many NIO tutorials

● However, OP_WRITE is often times not
described

● Not handling OP_WRITE correctly can greatly
impact your server performance, and on Win32
it can severely impact performance as a result
of 100% CPU

2007 JavaOneSM Conference | Session TS-2992 | 48

Tip #3: Handling the OP_WRITE (Cont.)

Many NIO frameworks or applications will write to
a non-blocking SocketChannel by doing something
very similar if not exactly like:
 while (byteBuffer.hasRemaining()) {
 int len = socketChannel.write(byteBuffer);
 if (len < 0){
 throw new EOFException();
 }
 }

2007 JavaOneSM Conference | Session TS-2992 | 49

Tip #3: Handling the OP_WRITE (Cont.)
● Under a light load, this code may work just fine
● But under heavy load, doing socketChannel.write(..)

might return 0 on many write() operations
● That means the socket’s outgoing buffer is full, hence

all future writes will return 0 until the remote client
reads them

● Since SocketChannel.write is returning 0, the CPU(s)
will be consumed, looping over and over

● Side note: Socket send buffer can be increased

2007 JavaOneSM Conference | Session TS-2992 | 50

Solution
Tip #3: Handling the OP_WRITE (Cont.)

● Register an OP_WRITE interest opt to a
temporary Selector and wait for the temporary
Selector to tell you when the SocketChannel is
ready for a write operation

● Using a temporary Selector to complete the write
operation can significantly improve performance
under load, especially on Win32

2007 JavaOneSM Conference | Session TS-2992 | 51

Tip #3: Handling the OP_WRITE (Cont.)

while (byteBuffer.hasRemaining()) {
 int len = socketChannel.write(byteBuffer);
 if (len == 0) {
 if (writeSelector == null){
 writeSelector = SelectorFactory.getSelector();
 }
 key = socketChannel.register
 (writeSelector, key.OP_WRITE);

 if (writeSelector.select(30 * 1000) == 0) {
 throw new IOException("Client disconnected");
 }
 }
 }

2007 JavaOneSM Conference | Session TS-2992 | 52

Can significantly improve performance
Tip #4: Choosing the Right ByteBuffer
● There are three choices of ByteBuffer:

● Direct ByteBuffer [ByteBuffer.allocateDirect()]: Given a
direct ByteBuffer, the Virtual Machine for the Java platform
(JVM™ machine) will make a best effort to perform native
I/O operations directly upon it

● Non-direct ByteBuffer [ByteBuffer.allocate()]: A non-direct
ByteBuffer backed by a Java platform byte array

● View ByteBuffer [ByteBuffer.slice()]: a ByteBuffer whose
content is a shared subsequence of direct or non-direct
ByteBuffer’s content

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-2992 | 53

Can significantly improve performance
Tip #4: Choosing the Right ByteBuffer

● Choosing the right one can significantly improve
performance

● In some cases, the view buffers from a non-
direct ByteBuffer (HeapByteBuffer) can perform
better than view buffers from a direct ByteBuffer
(DirectByteBuffer)

● Highly recommend you performance test both;
Performance may change from JDK release to
JDK release and from workload to workload

2007 JavaOneSM Conference | Session TS-2992 | 54

Tip #4: Choosing the Right ByteBuffer

● Some of the workloads we tested to measure
scalability and throughput showed some
interesting differences in ByteBuffer performance,
non-direct ByteBuffer, direct ByteBuffer and
“view” buffers using non-direct ByteBuffer

● Some of these workloads tended do a large
amount of copying of Java platform heap data,
(i.e. Strings) from a byte array into buffers

Buffer performance

2007 JavaOneSM Conference | Session TS-2992 | 55

Tip #4: Choosing the Right ByteBuffer

Total Throughput Scalability GC Time
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

120.00%

Heap Buffers
Direct Buffers
Heap Views

Source: Internal Benchmarks

Lower is betterHigher is betterHigher is better

Normalized to non-direct ByteBuffer performance

2007 JavaOneSM Conference | Session TS-2992 | 56

Tip #4: Choosing the Right ByteBuffer

● The ‘real’ issue illustrated here is ‘copying bytes’
performance, not poor DirectByteBuffer
performance

● Underscores the need to understand what is
being tested in your workload(s)

● And, to continuously monitor Buffer performance
and scalability with updated releases of the
JDK software and JVM machine

Buffer performance

2007 JavaOneSM Conference | Session TS-2992 | 57

Far from simple…
Tip #5: Implementing Non Blocking SSL

● The entry point when using SSL is the
SSLEngine

● The SSLEngine is associated with the lifetime
of the SocketChannel, so you need to take
care of re-using the same SSLEngine between
registration(s) of a SelectionKey

● For HTTP, it means you will most likely use
SelectionKey.attach() for managing this
association

2007 JavaOneSM Conference | Session TS-2992 | 58

Far from simple…
Tip #5: Implementing Non Blocking SSL
● That means we would attach something like the

following to a SelectionKey:
 public class Attachment {

 protected SSLEngine sslEngine;
 protected long keepAliveTime;
 protected ByteBuffer byteByffer;
 }

● You will likely pool the Attachment object to avoid
creating a new instance every time you need to
register a SelectionKey with a Selector

2007 JavaOneSM Conference | Session TS-2992 | 59

Far from simple...
Tip #5: Implementing Non Blocking SSL
● Having 10,000 connections will possibly mean

10,000 Attachment objects active, and leading to
the potential issues described in Tip #1

● Fortunately, instead of creating Attachment objects,
you can directly attach the SSLEngine to the
SelectionKey and use the SSLSession object:
((SSLEngine)selectionKey.attachment()).getSession(

).putValue((EXPIRE_TIME,
System.currentTimeMillis());

2007 JavaOneSM Conference | Session TS-2992 | 60

Far from simple…
Tip #5: Implementing Non Blocking SSL

● Notice that we are using SSLEngine.getSession()
to store the data structure

● You don’t have to synchronize on a pool and/or
create your own data structure

2007 JavaOneSM Conference | Session TS-2992 | 61

When to use Threads
Tip #6: To Thread or not to Thread
● Any Selector event can be executed on a thread

(OP_READ, OP_WRITE, OP_ACCEPT)
● When we started working on Project Grizzly, we

designed the framework with the flexibility to easily
add a thread pool mostly anywhere during request
processing

● At the time when we started Project Grizzly, we
made no recommendations on which events were
better to delegate to another thread

● So, we decided to make it configurable!!

2007 JavaOneSM Conference | Session TS-2992 | 62

When to use Threads
Tip #6: To Thread or not to Thread
● First, let’s restrict the discussion to OP_ACCEPT

and OP_READ
● We have the following options:

A) Execute OP_ACCEPT and OP_READ on separate
threads as the Selector thread

B) Execute OP_ACCEPT and OP_READ on a separate
thread as the Selector thread

C)Execute OP_ACCEPT using the Selector thread and
OP_READ on a separate thread

D)Execute OP_READ using the Selector thread and
OP_ACCEPT on a separate thread

Source: Please add the source of your data here

2007 JavaOneSM Conference | Session TS-2992 | 63

Tip #6: To Thread or not to Thread

 myExecutor = Executors.newFixedThreadPool(maxThreads);
 try{
 selectorState = selector.select(selectorTimeout);
 } catch (CancelledKeyException ex){
 ;
 }
 iterator = selector.selectedKeys().iterator();
 while (iterator.hasNext()) {
 key = iterator.next();
 if (key.isAcceptable()) {
 myExecutor.execute(getAcceptHandler(key));
 } else if (key.isReadable()) {
 myExecutor.execute(getReadHandler(key));

Option A

2007 JavaOneSM Conference | Session TS-2992 | 64

Tip #6: To Thread or not to Thread

 myExecutor = Executors.newFixedThreadPool(maxThreads);
 [...]
 iterator = selector.selectedKeys().iterator();
 while (iterator.hasNext()) {
 key = iterator.next();
 myExecutor.execute(new Runnable(){
 public void run()
 if (key.isAcceptable()) {
 getAcceptHandler(key);
 } else if (key.isReadable()) {
 getReadHandler(key);
 });

Option B

2007 JavaOneSM Conference | Session TS-2992 | 65

Tip #6: To Thread or not to Thread

 myExecutor = Executors.newFixedThreadPool(maxThreads);
 try{
 selectorState = selector.select(selectorTimeout);
 } catch (CancelledKeyException ex){
 ;
 }
 iterator = selector.selectedKeys().iterator();
 while (iterator.hasNext()) {
 key = iterator.next();
 if (key.isAcceptable()) {
 getAcceptHandler(key).run();
 } else if (key.isReadable()) {
 myExecutor.execute(getReadHandler(key));

Option C

2007 JavaOneSM Conference | Session TS-2992 | 66

Tip #6: To Thread or not to Thread

 myExecutor = Executors.newFixedThreadPool(maxThreads);
 try{
 selectorState = selector.select(selectorTimeout);
 } catch (CancelledKeyException ex){
 ;
 }
 iterator = selector.selectedKeys().iterator();
 while (iterator.hasNext()) {
 key = iterator.next();
 if (key.isAcceptable()) {
 myExecutor.execute(getAcceptHandler(key));
 } else if (key.isReadable()) {
 getReadHandler(key).run();

Option D

2007 JavaOneSM Conference | Session TS-2992 | 67

When to use Threads
Tip #6: To Thread or not to Thread
● We’ve benchmarked all of the above options and

found that the one that perform the best is option C:
● Execute OP_ACCEPT using the Selector thread and

OP_READ on a separate thread
● Reason: OP_ACCEPT is a fast operation, and the

overhead of spawning a thread, or context switching
to a worker thread significantly increases the time
required to execute the accept operation

● Simply a matter of cloning/returning a socket

2007 JavaOneSM Conference | Session TS-2992 | 68

Agenda

Introduction
What Is Project Grizzly
Project Grizzly Performance
Overview of NIO
Tricks and Tips
Summary

2007 JavaOneSM Conference | Session TS-2992 | 69

Summary

Writing scalable server applications can be a difficult
proposition and using Java technology-based NIO
effectively presents its own challenges.

As a result of the tips-and-tricks we have shared with you
as a result of implementing Project Grizzly we hope you
will be able to realize some of the same performance and
scalability we have realized with Project Grizzly.

And, you can always just use Project Grizzly directly if it
fits your needs.

2007 JavaOneSM Conference | Session TS-2992 | 70

For More Information

● Project Grizzly
● https://grizzly.dev.java.net
● Project Grizzly mailing list

● And our regular blogs
● http://weblogs.java.net/blog/jfarcand/
● http://weblogs.java.net/blog/sdo/
● http://blogs.sun.com/charliebrown/

2007 JavaOneSM Conference | Session TS-2992 |

TS-2992

Tricks and Tips With NIO
Using the Grizzly Framework
Jeanfrancois Arcand, Senior Staff Engineer
Charlie Hunt, Senior Staff Engineer
Scott Oaks, Senior Staff Engineer
SUN Microsystems

YOUR LOGO
HERE

