Example Application: Creating a Clock with Cairo

Now that we've covered the basics of drawing with Cairo, let's try to put it all together and create a simple application that actually does something. The following example uses Cairo to create a custom Clock widget. The clock has a second hand, a minute hand, and an hour hand, and updates itself every second.

Source Code

File: clock.h (For use with gtkmm 3, not gtkmm 2)

#ifndef GTKMM_EXAMPLE_CLOCK_H
#define GTKMM_EXAMPLE_CLOCK_H

#include <gtkmm/drawingarea.h>

class Clock : public Gtk::DrawingArea
{
public:
  Clock();
  virtual ~Clock();

protected:
  //Override default signal handler:
  virtual bool on_draw(const Cairo::RefPtr<Cairo::Context>& cr);

  bool on_timeout();

  double m_radius;
  double m_line_width;

};

#endif // GTKMM_EXAMPLE_CLOCK_H

File: clock.cc (For use with gtkmm 3, not gtkmm 2)

#include <ctime>
#include <cmath>
#include <cairomm/context.h>
#include <glibmm/main.h>
#include "clock.h"

Clock::Clock()
: m_radius(0.42), m_line_width(0.05)
{
  Glib::signal_timeout().connect( sigc::mem_fun(*this, &Clock::on_timeout), 1000 );

  #ifndef GLIBMM_DEFAULT_SIGNAL_HANDLERS_ENABLED
  //Connect the signal handler if it isn't already a virtual method override:
  signal_draw().connect(sigc::mem_fun(*this, &Clock::on_draw), false);
  #endif //GLIBMM_DEFAULT_SIGNAL_HANDLERS_ENABLED
}

Clock::~Clock()
{
}

bool Clock::on_draw(const Cairo::RefPtr<Cairo::Context>& cr)
{
  Gtk::Allocation allocation = get_allocation();
  const int width = allocation.get_width();
  const int height = allocation.get_height();

  // scale to unit square and translate (0, 0) to be (0.5, 0.5), i.e.
  // the center of the window
  cr->scale(width, height);
  cr->translate(0.5, 0.5);
  cr->set_line_width(m_line_width);

  cr->save();
  cr->set_source_rgba(0.337, 0.612, 0.117, 0.9);   // green
  cr->paint();
  cr->restore();
  cr->arc(0, 0, m_radius, 0, 2 * M_PI);
  cr->save();
  cr->set_source_rgba(1.0, 1.0, 1.0, 0.8);
  cr->fill_preserve();
  cr->restore();
  cr->stroke_preserve();
  cr->clip();

  //clock ticks
  for (int i = 0; i < 12; i++)
  {
    double inset = 0.05;

    cr->save();
    cr->set_line_cap(Cairo::LINE_CAP_ROUND);

    if(i % 3 != 0)
    {
      inset *= 0.8;
      cr->set_line_width(0.03);
    }

    cr->move_to(
      (m_radius - inset) * cos (i * M_PI / 6),
      (m_radius - inset) * sin (i * M_PI / 6));
    cr->line_to (
      m_radius * cos (i * M_PI / 6),
      m_radius * sin (i * M_PI / 6));
    cr->stroke();
    cr->restore(); /* stack-pen-size */
  }

  // store the current time
  time_t rawtime;
  time(&rawtime);
  struct tm * timeinfo = localtime (&rawtime);

  // compute the angles of the indicators of our clock
  double minutes = timeinfo->tm_min * M_PI / 30;
  double hours = timeinfo->tm_hour * M_PI / 6;
  double seconds= timeinfo->tm_sec * M_PI / 30;

  cr->save();
  cr->set_line_cap(Cairo::LINE_CAP_ROUND);

  // draw the seconds hand
  cr->save();
  cr->set_line_width(m_line_width / 3);
  cr->set_source_rgba(0.7, 0.7, 0.7, 0.8); // gray
  cr->move_to(0, 0);
  cr->line_to(sin(seconds) * (m_radius * 0.9),
    -cos(seconds) * (m_radius * 0.9));
  cr->stroke();
  cr->restore();

  // draw the minutes hand
  cr->set_source_rgba(0.117, 0.337, 0.612, 0.9);   // blue
  cr->move_to(0, 0);
  cr->line_to(sin(minutes + seconds / 60) * (m_radius * 0.8),
    -cos(minutes + seconds / 60) * (m_radius * 0.8));
  cr->stroke();

  // draw the hours hand
  cr->set_source_rgba(0.337, 0.612, 0.117, 0.9);   // green
  cr->move_to(0, 0);
  cr->line_to(sin(hours + minutes / 12.0) * (m_radius * 0.5),
    -cos(hours + minutes / 12.0) * (m_radius * 0.5));
  cr->stroke();
  cr->restore();

  // draw a little dot in the middle
  cr->arc(0, 0, m_line_width / 3.0, 0, 2 * M_PI);
  cr->fill();

  return true;
}


bool Clock::on_timeout()
{
    // force our program to redraw the entire clock.
    Glib::RefPtr<Gdk::Window> win = get_window();
    if (win)
    {
        Gdk::Rectangle r(0, 0, get_allocation().get_width(),
                get_allocation().get_height());
        win->invalidate_rect(r, false);
    }
    return true;
}

File: main.cc (For use with gtkmm 3, not gtkmm 2)

#include "clock.h"
#include <gtkmm/application.h>
#include <gtkmm/window.h>

int main(int argc, char** argv)
{
   Glib::RefPtr<Gtk::Application> app = Gtk::Application::create(argc, argv, "org.gtkmm.example");

   Gtk::Window win;
   win.set_title("Cairomm Clock");

   Clock c;
   win.add(c);
   c.show();

   return app->run(win);
}

As before, almost all of the interesting stuff is done in the draw signal handler on_draw(). Before we dig into the draw signal handler, notice that the constructor for the Clock widget connects a handler function on_timeout() to a timer with a timeout period of 1000 milliseconds (1 second). This means that on_timeout() will get called once per second. The sole responsibility of this function is to invalidate the window so that gtkmm will be forced to redraw it.

Now let's take a look at the code that performs the actual drawing. The first section of on_draw() should be pretty familiar by now. This example again scales the coordinate system to be a unit square so that it's easier to draw the clock as a percentage of window size so that it will automatically scale when the window size is adjusted. Furthermore, the coordinate system is scaled over and down so that the (0, 0) coordinate is in the very center of the window.

The function Cairo::Context::paint() is used here to set the background color of the window. This function takes no arguments and fills the current surface (or the clipped portion of the surface) with the source color currently active. After setting the background color of the window, we draw a circle for the clock outline, fill it with white, and then stroke the outline in black. Notice that both of these actions use the _preserve variant to preserve the current path, and then this same path is clipped to make sure that our next lines don't go outside the outline of the clock.

After drawing the outline, we go around the clock and draw ticks for every hour, with a larger tick at 12, 3, 6, and 9. Now we're finally ready to implement the time-keeping functionality of the clock, which simply involves getting the current values for hours, minutes and seconds, and drawing the hands at the correct angles.