Aplicación de ejemplo: crear un reloj con Cairo

Ahora que se ha cubierto lo básico acerca del dibujo con Cairo, junte todo y cree una aplicación simple que haga algo de verdad. El siguiente ejemplo usa Cairo para crear un widget Clock personalizado. El reloj tiene una manecilla de segundos, una de minutos, y una de horas; y se actualiza cada segundo.

Código fuente

File: clock.h (For use with gtkmm 3, not gtkmm 2)

#ifndef GTKMM_EXAMPLE_CLOCK_H
#define GTKMM_EXAMPLE_CLOCK_H

#include <gtkmm/drawingarea.h>

class Clock : public Gtk::DrawingArea
{
public:
  Clock();
  virtual ~Clock();

protected:
  //Override default signal handler:
  virtual bool on_draw(const Cairo::RefPtr<Cairo::Context>& cr);

  bool on_timeout();

  double m_radius;
  double m_line_width;

};

#endif // GTKMM_EXAMPLE_CLOCK_H

File: clock.cc (For use with gtkmm 3, not gtkmm 2)

#include <ctime>
#include <cmath>
#include <cairomm/context.h>
#include <glibmm/main.h>
#include "clock.h"

Clock::Clock()
: m_radius(0.42), m_line_width(0.05)
{
  Glib::signal_timeout().connect( sigc::mem_fun(*this, &Clock::on_timeout), 1000 );

  #ifndef GLIBMM_DEFAULT_SIGNAL_HANDLERS_ENABLED
  //Connect the signal handler if it isn't already a virtual method override:
  signal_draw().connect(sigc::mem_fun(*this, &Clock::on_draw), false);
  #endif //GLIBMM_DEFAULT_SIGNAL_HANDLERS_ENABLED
}

Clock::~Clock()
{
}

bool Clock::on_draw(const Cairo::RefPtr<Cairo::Context>& cr)
{
  Gtk::Allocation allocation = get_allocation();
  const int width = allocation.get_width();
  const int height = allocation.get_height();

  // scale to unit square and translate (0, 0) to be (0.5, 0.5), i.e.
  // the center of the window
  cr->scale(width, height);
  cr->translate(0.5, 0.5);
  cr->set_line_width(m_line_width);

  cr->save();
  cr->set_source_rgba(0.337, 0.612, 0.117, 0.9);   // green
  cr->paint();
  cr->restore();
  cr->arc(0, 0, m_radius, 0, 2 * M_PI);
  cr->save();
  cr->set_source_rgba(1.0, 1.0, 1.0, 0.8);
  cr->fill_preserve();
  cr->restore();
  cr->stroke_preserve();
  cr->clip();

  //clock ticks
  for (int i = 0; i < 12; i++)
  {
    double inset = 0.05;

    cr->save();
    cr->set_line_cap(Cairo::LINE_CAP_ROUND);

    if(i % 3 != 0)
    {
      inset *= 0.8;
      cr->set_line_width(0.03);
    }

    cr->move_to(
      (m_radius - inset) * cos (i * M_PI / 6),
      (m_radius - inset) * sin (i * M_PI / 6));
    cr->line_to (
      m_radius * cos (i * M_PI / 6),
      m_radius * sin (i * M_PI / 6));
    cr->stroke();
    cr->restore(); /* stack-pen-size */
  }

  // store the current time
  time_t rawtime;
  time(&rawtime);
  struct tm * timeinfo = localtime (&rawtime);

  // compute the angles of the indicators of our clock
  double minutes = timeinfo->tm_min * M_PI / 30;
  double hours = timeinfo->tm_hour * M_PI / 6;
  double seconds= timeinfo->tm_sec * M_PI / 30;

  cr->save();
  cr->set_line_cap(Cairo::LINE_CAP_ROUND);

  // draw the seconds hand
  cr->save();
  cr->set_line_width(m_line_width / 3);
  cr->set_source_rgba(0.7, 0.7, 0.7, 0.8); // gray
  cr->move_to(0, 0);
  cr->line_to(sin(seconds) * (m_radius * 0.9),
    -cos(seconds) * (m_radius * 0.9));
  cr->stroke();
  cr->restore();

  // draw the minutes hand
  cr->set_source_rgba(0.117, 0.337, 0.612, 0.9);   // blue
  cr->move_to(0, 0);
  cr->line_to(sin(minutes + seconds / 60) * (m_radius * 0.8),
    -cos(minutes + seconds / 60) * (m_radius * 0.8));
  cr->stroke();

  // draw the hours hand
  cr->set_source_rgba(0.337, 0.612, 0.117, 0.9);   // green
  cr->move_to(0, 0);
  cr->line_to(sin(hours + minutes / 12.0) * (m_radius * 0.5),
    -cos(hours + minutes / 12.0) * (m_radius * 0.5));
  cr->stroke();
  cr->restore();

  // draw a little dot in the middle
  cr->arc(0, 0, m_line_width / 3.0, 0, 2 * M_PI);
  cr->fill();

  return true;
}


bool Clock::on_timeout()
{
    // force our program to redraw the entire clock.
    Glib::RefPtr<Gdk::Window> win = get_window();
    if (win)
    {
        Gdk::Rectangle r(0, 0, get_allocation().get_width(),
                get_allocation().get_height());
        win->invalidate_rect(r, false);
    }
    return true;
}

File: main.cc (For use with gtkmm 3, not gtkmm 2)

#include "clock.h"
#include <gtkmm/application.h>
#include <gtkmm/window.h>

int main(int argc, char** argv)
{
   Glib::RefPtr<Gtk::Application> app = Gtk::Application::create(argc, argv, "org.gtkmm.example");

   Gtk::Window win;
   win.set_title("Cairomm Clock");

   Clock c;
   win.add(c);
   c.show();

   return app->run(win);
}

Al igual que antes, casi todo lo interesante se hace en el manejador de señal de dibujo on_draw(). Antes de profundizar en el manejador de señal de dibujo, tenga en cuenta que el constructor del widget Clock conecta una función manejadora on_timeout() a un temporizador con un período de espera de 1000 milisegundos (1 segundo). Esto significa que on_timeout() se llamará una vez por segundo. La única responsabilidad de esta función es invalidar la ventana para que gtkmm se vea forzado a redibujarla.

Ahora, eche un vistazo al código que hace el dibujo en sí. La primera sección del on_draw() ya le debería resultar bastante familiar. Este ejemplo, otra vez, escala el sistema de coordenadas para ser un cuadrado unitario, así es más fácil dibujar el reloj como un porcentaje del tamaño de la ventana para que se escale automáticamente cuando el tamaño de la ventana se ajuste. Además, el sistema de coordenadas se escala de tal manera que la coordinada (0, 0) esté justo en el centro de la ventana.

La función Cairo::Context::paint() se usa aquí para establecer el color de fondo de la ventana. Esta función no toma argumentos y llena la superficie actual (o la porción cortada de la superficie) con el color fuente activo actualmente. Después de haber establecido el color de fondo de la ventana, se dibuja un círculo para el cuerpo del reloj, se rellena con blanco, y luego se marca su contorno en negro. Tenga en cuenta que ambas acciones usan la variante _preserve para preservar el camino actual, y después este mismo camino se recorta para asegurarse de que las próximas líneas no vayan por fuera del reloj.

Después de haber dibujado el contorno, se recorre el reloj dibujando marcas por cada hora, con una marca más grande en la posición de las 12, 3, 6, y 9. Ahora, está finalmente listo para implementar la función del reloj, mostrar la hora, lo que simplemente implica obtener los valores actuales de la hora, minutos, y segundos, y dibujar las manecillas en los ángulos correctos.