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Overview
H2O Driverless AI is an artificial intelligence (AI) platform that automates
some of the most difficult data science and machine learning workflows such
as feature engineering, model validation, model tuning, model selection and
model deployment. It aims to achieve highest predictive accuracy, comparable
to expert data scientists, but in much shorter time thanks to end-to-end automa-
tion. Driverless AI also offers automatic visualizations and machine learning
interpretability (MLI). Especially in regulated industries, model transparency
and explanation are just as important as predictive performance.

Driverless AI runs on commodity hardware. It was also specifically designed
to take advantage of graphical processing units (GPUs), including multi-GPU
workstations and servers such as the NVIDIA DGX-1 for order-of-magnitude
faster training.

This document describes how to use H2O Driverless AI and is updated pe-
riodically. To view the latest Driverless AI User Guide, please go to http:
//docs.h2o.ai.

For more information about Driverless AI, please see https://www.h2o.
ai/driverless-ai/. For a third-party review, please see https://www.
infoworld.com/article/3236048/machine-learning/review-
h2oai-automates-machine-learning.html.

Citation

To cite this booklet, use the following: Hall, P., Kurka, M., and Bartz, A. (Jan
2018). Using H2O Driverless AI. http://docs.h2o.ai

Have Questions?

If you have questions about using Driverless AI, post them on Stack Overflow us-
ing the driverless-ai tag at http://stackoverflow.com/questions/
tagged/driverless-ai.

Installing and Upgrading Driverless AI
Installation and upgrade steps are provided in the Driverless AI User Guide. For
the best (and intended-as-designed) experience, install Driverless AI on modern
data center hardware with GPUs and CUDA support. Use Pascal or Volta GPUs
with maximum GPU memory for best results. (Note the older K80 and M60
GPUs available in EC2 are supported and very convenient, but not as fast.)

http://docs.h2o.ai
http://docs.h2o.ai
https://www.h2o.ai/driverless-ai/
https://www.h2o.ai/driverless-ai/
https://www.infoworld.com/article/3236048/machine-learning/review-h2oai-automates-machine-learning.html
https://www.infoworld.com/article/3236048/machine-learning/review-h2oai-automates-machine-learning.html
https://www.infoworld.com/article/3236048/machine-learning/review-h2oai-automates-machine-learning.html
http://docs.h2o.ai
http://stackoverflow.com/questions/tagged/driverless-ai
http://stackoverflow.com/questions/tagged/driverless-ai
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/index.html
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Driverless AI requires 10 GB of free disk space to run and will stop running if
less than 10 GB is available. You should have lots of system CPU memory (64
GB or more) and free disk space (at least 30 GB and/or 10x your dataset size)
available.

To simplify cloud installation, Driverless AI is provided as an AMI. To simplify
local installation, Driverless AI is provided as a Docker image. For the best per-
formance, including GPU support, use nvidia-docker. For a lower-performance
experience without GPUs, use regular docker (with the same docker image).

Driverless AI supports HDFS and S3 access using either run-time options or by
specifying a config.toml file. More information is available in the Driverless AI
User Guide.

Driverless AI also supports basic, LDAP, and PAM authentication, which
admins can configure via a config.toml file. More information is available in the
Driverless AI User Guide.

The installation steps vary based on your platform. Refer to the following tables
to find the right setup instructions for your environment. Note that each of
these installation steps assumes that you have a license key for Driverless AI.
For information on how to purchase a license key for Driverless AI, contact
sales@h2o.ai.

Installation Tables by Environment

Use the following tables for Cloud, Server, and Desktop to find the right setup
instructions for your environment. The Refer to Section column describes the
section in the Driverless AI User Guide that contains the relevant instructions.

Cloud

Provider Instance Type Num GPUs Suitable for Refer to Section

NVIDIA GPU Cloud Serious use Install on NVIDIA GPU/DGX

p2.xlarge 1 Experimentation
p2.8xlarge 8 Serious use

AWS p2.16xlarge 16 Serious use Install on AWS
p3.2xlarge 1 Experimentation
p3.8xlarge 4 Serious use
p3.16xlarge 8 Serious use
g3.4xlarge 1 Experimentation
g3.8xlarge 2 Experimentation
g3.16xlarge 4 Serious use

Standard NV6 1 Experimentation
Standard NV12 2 Experimentation

Azure Standard NV24 4 Serious use Install on Azure
Standard NC6 1 Experimentation
Standard NC12 2 Experimentation
Standard NC24 4 Serious use

Google Compute with GPUs Install on Google Compute with GPUs

Google Compute with CPUs Install on Google Compute with CPUs

Server

Operating System GPUs? Min Mem Refer to Section

http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/index.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/index.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/index.html
sales@h2o.ai
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/install/nvidia-dgx.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/install/aws.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/install/azure.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/install/google-compute.html#install-on-google-compute-with-gpus
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/install/google-compute.html#install-on-google-compute-with-cpus
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NVIDIA DGX-1 Yes 128 GB Install on NVIDIA GPU/DGX
Ubuntu 16.0.4 Yes 64 GB Install on Ubuntu with GPUs
Ubuntu with CPUs No 64 GB Install on Ubuntu with CPUs
RHEL with GPUs Yes 64 GB Install on RHEL with GPUs
RHEL with CPUs No 64 GB Install on RHEL with CPUs
IBM Power (Minsky) Yes 64 GB Contact sales@h2o.ai

Desktop

Operating System GPUs? Min Mem Suitable for Refer to Section

NVIDIA DGX Station Yes 64 GB Serious use Install on NVIDIA GPU/DGX
Mac OS X No 16 GB Experimentation Install on Mac OS X
Windows 10 Pro No 16 GB Experimentation Install on Windows 10 Pro
Linux See Server table

Running an Experiment

1. After Driverless AI is installed and started, open a browser (Chrome recom-
mended) and navigate to <driverless-ai-host-machine>:12345.

2. The first time you log in to Driverless AI, you will be prompted to read
and accept the Evaluation Agreement. You must accept the terms before
continuing. Review the agreement, then click I agree to these terms
to continue.

3. Log in by entering unique credentials. For example:

Username: h2oai
Password: h2oai

Note that these credentials do not restrict access to Driverless AI; they are
used to tie experiments to users. If you log in with different credentials,
for example, then you will not see any previously run experiments.

4. As with accepting the Evaluation Agreement, the first time you log in,
you will be prompted to enter your License Key. Paste the License Key
into the License Key entry field, and then click Save to continue. This
license key will be saved in the host machine’s /license folder.

Note: Contact sales@h2o.ai for information on how to purchase a Driver-
less AI license.

5. The Home page appears, showing all datasets that have been imported.
Note that the first time you log in, this list will be empty.

http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/install/nvidia-dgx.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html#install-on-ubuntu-with-gpus
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html#install-on-ubuntu
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html#install-on-rhel-with-gpus
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html#install-on-rhel
mailto:sales@h2o.ai
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/install/nvidia-dgx.html
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html#install-on-mac-os-x
http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html#install-on-windows
mailto:sales@h2o.ai
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Add datasets using one of the following methods:

• Drag and drop files from your local machine directly onto this page.
Note that this method currently works for files that are less than 10
GB.

or

(a) Click the Add Dataset button. Note that if Driverless AI was
started with data connectors enabled for HDFS and/or S3, then
a dropdown will appear allowing you to specify where to begin
browsing for the dataset. Refer to the Driverless AI User Guide for
more information.

(b) In the Explore File System field, type the location for the dataset.
Driverless AI autofills the browse line as type in the file location.
When you locate the folder that includes your datasets, you can
specify to import the folder or to import one or more files.

Notes:

• When importing a folder, the entire folder and all of its contents
are read into Driverless AI as a single file.

• When importing a folder, all of the files in the folder must have
the same columns.

http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/installing.html
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6. After importing your data, you can run an experiment by selecting [Click
for Actions] button beside the dataset that you want to use. This opens
a submenu that allows you to Visualize or Predict a dataset. (Note:
You can delete an unused dataset by hovering over it and clicking the X
button, and then confirming the delete. You cannot delete a dataset that
was used in an active experiment. You have to delete the experiment
first.) Click Predict to begin an experiment.

7. The Experiment Settings form displays and auto-fills with the selected
dataset. Optionally specify a validation dataset and/or a test dataset.

• The validation set is used to tune parameters (models, features, etc.).
If a validation dataset is not provided, the training data is used (with
holdout splits). If a validation dataset is provided, training data is not
used for parameter tuning - only for training. A validation dataset
can help to improve the generalization performance on shifting data
distributions.

• The test dataset is used for the final stage scoring and is the
dataset for which model metrics will be computed against. Test
set predictions will be available at the end of the experiment. This
dataset is not used during training of the modeling pipeline.

Keep in mind that these datasets must have the same number of columns
as the training dataset. Also note that if provided, the validation set is not
sampled down, so it can lead to large memory usage, even if accuracy=1
(which reduces the train size).
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8. Specify the target (response) column. Note that not all explanatory
functionality will be available for multinomial classification scenarios
(scenarios with more than two outcomes).

When the target column is selected, Driverless AI automatically provides
the target column type and the number of rows. If this is a classification
problem, then the UI shows unique and frequency statistics for numerical
columns. If this is a regression problem, then the UI shows the dataset
mean and standard deviation values. At this point, you can configure the
following experiment settings.

Notes Regarding Frequency:

• For data imported in versions <= 1.0.19, TARGET FREQ and
MOST FREQ both represent the count of the least frequent class
for numeric target columns and the count of the most frequent class
for categorical target columns.

• For data imported in versions 1.0.20-1.0.22, TARGET FREQ and
MOST FREQ both represent the frequency of the target class
(second class in lexicographic order) for binomial target columns;
the count of the most frequent class for categorical multinomial
target columns; and the count of the least frequent class for numeric
multinomial target columns.

• For data imported in version 1.0.23 (and later), TARGET FREQ
is the frequency of the target class for binomial target columns,
and MOST FREQ is the most frequent class for multinomial target
columns.

9. The next step is to set the parameters and settings for the experiment.
(Refer to the Experiment Settings section that follows for more information
about these settings.) You can set the parameters individually, or you
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can let Driverless AI infer the parameters and then override any that you
disagree with. Available parameters and settings include the following:

• Dropped Columns: The columns we do not want to use as predictors
such as ID columns, columns with data leakage, etc.

• Weight Column: The column that indicates the per row observation
weights. If ”None” is specified, each row will have an observation
weight of 1.

• Fold Column: The column that indicates the fold. If ”None” is
specified, the folds will be determined by Driverless AI.

• Time Column: The column that provides a time order, if applicable.
If ”AUTO” is specified, Driverless AI will auto-detect a potential
time order. If ”OFF” is specified, auto-detection is disabled.

• Desired relative accuracy from 1 to 10

• Desired relative time from 1 to 10

• Desired relative interpretability from 1 to 10

• Specify the scorer to use for this experiment. If not selected, Driver-
less AI will select one based on the dataset and experiment. Available
scorers include:

– Regression: GINI, R2, MSE, RMSE, RMSLE, RMSPE, MAE,
MAPE, SMAPE

– Classification: GINI, MCC, F1, Logloss, AUC, AUCPR

Additional settings:

• If this is a classification problem, then click the Classification button.
Note that Driverless AI determines the problem type based on the
response column. Though not recommended, you can override this
setting and specify whether this is a classification or regression
problem.

• Click the Reproducible button to build this with a random seed.

• Specify whether to enable GPUs. (Note that this option is ignored
on CPU-only systems.)
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10. Click Launch Experiment to start the experiment.

The experiment launches with a randomly generated experiment name.
You can change this name at anytime during or after the experiment.
Mouse over the name of the experiment to view an edit icon, then type
in the desired name.

As the experiment runs, a running status displays in the upper middle por-
tion of the UI. First Driverless AI figures out the backend and determines
whether GPUs are running. Then it starts parameter tuning, followed by
feature engineering. Finally, Driverless AI builds the scoring pipeline.

In addition to the status, the UI also displays details about the dataset,
the iteration score (internal validation) for each cross validation fold
along with any specified scorer value, the variable importance values,
CPU/Memory information, and a toggle between an ROC curve, Lift
chart, Gains chart, and GPU Usage information (if GPUs are available).
Upon completion, an Experiment Summary section will populate in the
lower right section. In this section, you can toggle between the Experiment
Summary, ROC curve, Lift chart, and Gains chart.

You can stop experiments that are currently running. Click the Finish
button to stop the experiment. This jumps the experiment to the end
and completes the ensembling and the deployment package. You can
also click Abort to terminate the experiment. (You will be prompted to
confirm the abort.) Note that aborted experiments will not display on
the Experiments page.
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Experiment Settings

This section describes the settings that are available when running an experiment.

Dropped Columns

Dropped columns are columns that you do not want to be used as predictors in
the experiment.

Validation Dataset

The validation dataset is used for tuning the modeling pipeline. If provided, the
entire training data will be used for training, and validation of the modeling
pipeline is performed with only this validation dataset. This is not generally
recommended, but can make sense if the data are non-stationary. In such a
case, the validation dataset can help to improve the generalization performance
on shifting data distributions.

This dataset must have the same number of columns (and column types) as the
training dataset. Also note that if provided, the validation set is not sampled
down, so it can lead to large memory usage, even if accuracy=1 (which reduces
the train size).

Test Dataset

The test dataset is used for testing the modeling pipeline and creating test
predictions. The test set is never used during training of the modeling pipeline.
(Results are the same whether a test set is provided or not.) If a test dataset is
provided, then test set predictions will be available at the end of the experiment.

Weight Column

Optional: Column that indicates the observation weight (a.k.a. sample or row
weight), if applicable. This column must be numeric with values >= 0. Rows
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with higher weights have higher importance. The weight affects model training
through a weighted loss function, and affects model scoring through weighted
metrics. The weight column is not used when making test set predictions (but
scoring of the test set predictions can use the weight).

Fold Column

Optional: Column to use to create stratification folds during (cross-)validation,
if applicable. Must be of integer or categorical type. Rows with the same
value in the fold column represent cohorts, and each cohort is assigned to
exactly one fold. This can help to build better models when the data is grouped
naturally. If left empty, the data is assumed to be i.i.d. (identically and
independently distributed). For example, when viewing data for a pneumonia
dataset, person id would be a good Fold Column. This is because the data
may include multiple diagnostic snapshots per person, and we want to ensure
that the same person’s characteristics show up only in either the training or
validation frames, but not in both to avoid data leakage. Note that a fold
column cannot be specified if a validation set is used.

Time Column

Optional: Column that provides a time order, if applicable. Can improve model
performance and model validation accuracy for problems where the target values
are auto-correlated with respect to the ordering. Each observationś time stamp
is used to order the observations in a causal way (generally, to avoid training
on the future to predict the past).

The values in this column must be a datetime format understood by pan-
das.to datetime(), like ”2017-11-29 00:30:35” or ”2017/11/29”. If [AUTO] is
selected, all string columns are tested for potential date/datetime content and
considered as potential time columns. The natural row order of the training
data is also considered in case no date/datetime columns are detected. If the
data is (nearly) identically and independently distributed (i.i.d.), then no time
column is needed. If [OFF] is selected, no time order is used for modeling,
and data may be shuffled randomly (any potential temporal causality will be
ignored). Note that a Time Column cannot be specified if a validation set is
used.

Accuracy

The following table describes how the Accuracy value affects a Driverless AI
experiment.
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Note: A check for a shift in the distribution between train and test is done for
accuracy >= 5.

The list below includes more information about the parameters that are used
when calculating accuracy.

• Max Rows: the maximum number of rows to use in model training.

– For classification, stratified random sampling is performed

– For regression, random sampling is performed

• Ensemble Level: The level of ensembling done for the final model

– 0: single final model

– 1: 2 4-fold final models ensembled together

– 2: 5 5-fold final models ensembled together

– 3: 8 5-fold final models ensembled together

• Target Transformation: Try target transformations and choose the
transformation that has the best score.

– Possible transformations: identity, unit box, log, square, square root,
inverse, Anscombe, logit, sigmoid

• Parameter Tuning Level: The level of parameter tuning done

– 0: no parameter tuning

– 1: 8 different parameter settings

– 2: 16 different parameter settings
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– 3: 32 different parameter settings

– Optimal model parameters are chosen based on a combination of
the model’s accuracy, training speed, and complexity.

• Num Individuals: The number of individuals in the population for the
genetic algorithms

– Each individual is a gene. The more genes, the more combinations
of features are tried.

– The number of individuals is automatically determined and can
depend on the number of GPUs. Typical values are between 4 and
16.

• Num Folds: The number of internal validation splits done for each
pipeline

– If the problem is a classification problem, then stratified folds are
created.

• Only First Fold Model: Whether to only use the first fold split for
internal validation to save time

– Example: Setting Num Folds to 3 and Only First Fold Model =
True means you are splitting the data into 67% training and 33%
validation.

• Early Stopping Rounds: Time-based means based upon the Time table
below.

• Distribution Check: Checks whether validation or test data are drawn
from the same distribution as the training data. Note that this is purely
informative to the user. Driverless AI does not take information from the
test set into consideration during training.

• Strategy Feature selection strategy (to prune-away features that do not
clearly give improvement to model score). Feature selection is triggered
by interpretability. Strategy = ”FS” if interpretability >= 6; otherwise
strategy is None.

Time

This specifies the relative time for completing the experiment (i.e., higher
settings take longer). Early stopping will take place if the experiment doesn’t
improve the score for the specified amount of iterations.
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Note: See the Accuracy table for cases when not based upon time.

Interpretability

**Interpretability# - [lost transformers] explains which transformers are lost by going up by 1

to that interpretability.

** Exception - NumToCatWeightOfEvidenceMonotonic removed for interpretability <= 6.

** For interpretability <= 10, i.e. only [Filter for numeric, Frequent for categorical, DateTime

for Date+Time, Date for dates, and Text for text]

• Target Transformers:

For regression, applied on target before any other transformations.
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• Monotonicity Constraints:

If enabled, the model will satisfy knowledge about monotonicity in the
data and monotone relationships between the predictors and the target
variable. For example, in house price prediction, the house price should
increase with lot size and number of rooms, and should decrease with crime
rate in the area. If enabled, Driverless AI will automatically determine if
monotonicity is present and enforce it in its modeling pipelines.

• Date Types Detected

– categorical

– date

– datetime

– numeric

– text

• Transformers used on raw features to generate new features:
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** Default N-way interactions are up to 8-way except:

– BulkInteractions are always 2-way.

– Frequent is set to 1-way if interpretability=10.

– Interactions are minimal-way (for example, 1-way for CvTargetEncoding)

• Variable Importance Threshold in Below which Features are Re-
moved

Interpreting a Model

There are two methods you can use for interpreting models:
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• Using the Interpret this Model button on a completed experiment page
to interpret a Driverless AI model.

• Using the MLI link in the upper right corner of the UI to interpret either
a Driverless AI model or an external model.

Interpret this Model button

After the status changes from RUNNING to COMPLETE, the UI provides you
with several options:

• Interpret this Model on Original Features

• Interpret this Model on Transformed Features

• Score on Another Dataset (Refer to the Score on Another Dataset section.)

• Transform Another Dataset (Refer to the Transform Another Dataset
section.)

• Download (Holdout) Training Predictions (in csv format, available if a
validation set was NOT used)

• Download Validation Predictions (in csv format, available if a validation
set was used)

• Download Test Predictions (in csv format, available if a test dataset is
used)

• Download Scoring Pipeline (A standalone Python scoring pipeline for
H2O Driverless AI. Refer to The Scoring Pipelines section.)

• Download Experiment Summary (a zip file containing a summary of the
experiment and the features along with their relative importance)

• Download Logs

• View Notifications/Warnings (if any existed)
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Click one of the Interpret this Model buttons to launch the Model Inter-
pretation page. This page provides several visual explanations of the trained
Driverless AI model and its results.

Model Interpretation on Driverless AI Models

This method allows you to run model interpretation on a Driverless AI model.
This method is similar to clicking one of the Interpret This Model buttons
on an experiment summary page.

1. Click the MLI link in the upper-right corner of the UI to view a list of
interpreted models.

2. Click the New Interpretation button.

3. Select the dataset that was used to train the model that you will use for
interpretation..

4. Specify the Driverless AI model that you want to use for the interpretation.

5. Specify the column of the target variable (the column of actuals for MLI).

6. Optionally specify weight and dropped columns.

7. Optionally specify a clustering column and whether to use the original
features.
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8. Optionally specify the number of cross-validation folds to use in k-LIME.
This defaults to 0, and the maximum value is 10.

9. Click the Launch MLI button.

Model Interpretation on External Models

Model Interpretation does not need to be run on a Driverless AI experiment. You
can train an external model and run Model Interpretability on the predictions.

1. Click the MLI link in the upper-right corner of the UI to view a list of
interpreted models.

2. Click the New Interpretation button.

3. Select the dataset that you want to use for the model interpretation. This
must include a prediction column that was generated by the external
model. If the dataset does not have predictions, then you can join the
external predictions. An example showing how to do this using Python is
available in the Run Model Interpretation on External Model Predictions
section.



24 | Interpreting a Model

Note: When running interpretations on an external model, leave the
Select Model option empty. That option is for selecting a Driverless AI
model.

4. Specify a Target Column (actuals) and the Prediction Column (scores
from the model).

5. Optionally specify weight and dropped columns.

6. Optionally specify a clustering column.

7. Optionally specify the number of cross-validation folds to use in k-LIME.
This defaults to 0, and the maximum value is 10.

8. Click the Launch MLI button.

The Model Interpretation Page

The Model Interpretation page includes the following information:

• Global interpretable model explanation plot

• Variable importance

• Decision tree surrogate model

• Partial dependence and individual conditional expectation plots

Each of these plots and techniques provide different types of insights and
explanations regarding a model and its results.
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K-LIME

The K-LIME Technique

K -LIME is a variant of the LIME technique proposed by Ribeiro at al [9]. K -
LIME generates global and local explanations that increase the transparency of
the Driverless AI model, and allow model behavior to be validated and debugged
by analyzing the provided plots, and comparing global and local explanations
to one-another, to known standards, to domain knowledge, and to reasonable
expectations.

K -LIME creates one global surrogate GLM on the entire training data and
also creates numerous local surrogate GLMs on samples formed from k-means
clusters in the training data. All penalized GLM surrogates are trained to model
the predictions of the Driverless AI model. The number of clusters for local
explanations is chosen by a grid search in which the R2 between the Driverless
AI model predictions and all of the local K -LIME model predictions is maximized.
The global and local linear model’s intercepts, coefficients, R2 values, accuracy,
and predictions can all be used to debug and develop explanations for the
Driverless AI model’s behavior.

The parameters of the global K -LIME model give an indication of overall linear
variable importance and the overall average direction in which an input variable
influences the Driverless AI model predictions. The global model is also used
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to generate explanations for very small clusters (N < 20) where fitting a local
linear model is inappropriate.

The in-cluster linear model parameters can be used to profile the local region,
to give an average description of the important variables in the local region,
and to understand the average direction in which an input variable affects the
Driverless AI model predictions. For a point within a cluster, the sum of the local
linear model intercept and the products of each coefficient with their respective
input variable value are the K -LIME prediction. By disaggregating the K -LIME
predictions into individual coefficient and input variable value products, the
local linear impact of the variable can be determined. This product is sometimes
referred to as a reason code and is used to create explanations for the Driverless
AI model’s behavior.

In the following example, reason codes are created by evaluating and disaggre-
gating a local linear model.

Given the row of input data with its corresponding Driverless AI and K -LIME
predictions:

And the local linear model:

yK -LIME = 0.1 + 0.01 ∗ debt to income ratio + 0.0005 ∗ credit score + 0.0002 ∗ savings account balance

It can be seen that the local linear contributions for each variable are:

• debt to income ratio: 0.01 * 30 = 0.3

• credit score: 0.0005 * 600 = 0.3

• savings acct balance: 0.0002 * 1000 = 0.2

Each local contribution is positive and thus contributes positively to the Driver-
less AI model’s prediction of 0.85 for H2OAI predicted default. By taking into
consideration the value of each contribution, reason codes for the Driverless AI
decision can be derived. debt to income ratio and credit score would be the
two largest negative reason codes, followed by savings acct balance.

The local linear model intercept and the products of each coefficient and
corresponding value sum to the K -LIME prediction. Moreover it can be seen
that these linear explanations are reasonably representative of the nonlinear
model’s behavior for this individual because the K -LIME predictions are within
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5.5% of the Driverless AI model prediction. This information is encoded into
English language rules which can be viewed by clicking the Explanations button.

Like all LIME explanations based on linear models, the local explanations are
linear in nature and are offsets from the baseline prediction, or intercept, which
represents the average of the penalized linear model residuals. Of course, linear
approximations to complex non-linear response functions will not always create
suitable explanations and users are urged to check the K -LIME plot, the local
model R2, and the accuracy of the K -LIME prediction to understand the validity
of the K -LIME local explanations. When K -LIME accuracy for a given point
or set of points is quite low, this can be an indication of extremely nonlinear
behavior or the presence of strong or high-degree interactions in this local region
of the Driverless AI response function. In cases where K -LIME linear models are
not fitting the Driverless AI model well, nonlinear LOCO variable importance
values may be a better explanatory tool for local model behavior. As K -LIME
local explanations rely on the creation of k-means clusters, extremely wide input
data or strong correlation between input variables may also degrade the quality
of K -LIME local explanations.

The Global Interpretable Model Explanation Plot

This plot is in the upper-left quadrant of the UI. It shows Driverless AI model
predictions and K -LIME model predictions in sorted order by the Driverless AI
model predictions. This graph is interactive. Hover over the Model Prediction,
K-LIME Model Prediction, or Actual Target radio buttons to magnify the
selected predictions. Or click those radio buttons to disable the view in the
graph. You can also hover over any point in the graph to view K -LIME reason
codes for that value. By default, this plot shows information for the global
K -LIME model, but you can change the plot view to show local results from
a specific cluster. The K -LIME plot also provides a visual indication of the
linearity of the Driverless AI model and the trustworthiness of the K -LIME
explanations. The closer the local linear model approximates the Driverless
AI model predictions, the more linear the Driverless AI model and the more
accurate the explanation generated by the K -LIME local linear models.
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Global and Local Variable Importance

Variable importance measures the effect that a variable has on the predictions
of a model. Global and local variable importance values enable increased
transparency in the Driverless AI model and enable validating and debugging of
the Driverless AI model by comparing global model behavior to the local model
behavior, and by comparing to global and local variable importance to known
standards, domain knowledge, and reasonable expectations.

Global Variable Importance Technique

Global variable importance measures the overall impact of an input variable on
the Driverless AI model predictions while taking nonlinearity and interactions
into consideration. Global variable importance values give an indication of
the magnitude of a variable’s contribution to model predictions for all rows.
Unlike regression parameters, they are often unsigned and typically not directly
related to the numerical predictions of the model. The reported global variable
importance values are calculated by aggregating the improvement in the split-
criterion for a variable across all the trees in an ensemble. The aggregated
feature importance values are then scaled between 0 and 1, such that the most
important feature has an importance value of 1.

Local Variable Importance Technique

Local variable importance describes how the combination of the learned model
rules or parameters and an individual row’s attributes affect a model’s prediction
for that row while taking nonlinearity and interactions into effect. Local variable
importance values reported here are based on a variant of the leave-one-covariate-
out (LOCO) method (Lei et al, 2017 [8]).
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In the LOCO-variant method, each local variable importance is found by re-
scoring the trained Driverless AI model for each feature in the row of interest,
while removing the contribution to the model prediction of splitting rules that
contain that variable throughout the ensemble. The original prediction is then
subtracted from this modified prediction to find the raw, signed importance
for the feature. All local feature importance values for the row are then scaled
between 0 and 1 for direct comparison with global variable importance values.

Given the row of input data with its corresponding Driverless AI and K -LIME
predictions:

Taking the Driverless AI model as F(X), LOCO-variant variable importance
values are calculated as follows.

First, the modified predictions are calculated:

F debt to income ratio = F (NA, 600, 1000) = 0.99

F credit score = F (30, NA, 1000) = 0.73

F savings acct balance = F (30, 600, NA) = 0.82

Second, the original prediction is subtracted from each modified prediction to
generate the unscaled local variable importance values:

LOCOdebt to income ratio = F debt to income ratio − 0.85 = 0.99 −
0.85 = 0.14

LOCOcredit score = F credit score − 0.85 = 0.73− 0.85 = −0.12

LOCOsavings acct balance = F savings acct balance − 0.85 = 0.82 −
0.85 = −0.03

Finally LOCO values are scaled between 0 and 1 by dividing each value for the
row by the maximum value for the row and taking the absolute magnitude of
this quotient.

Scaled(LOCOdebt to income ratio) = Abs(LOCO debt to income ratio/0.14) =
1

Scaled(LOCOcredit score) = Abs(LOCO credit score/0.14) = 0.86

Scaled(LOCOsavings acct balance) = Abs(LOCO savings acct balance/0.14) =
0.21
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One drawback to these LOCO-variant variable importance values is, unlike
K -LIME, it is difficult to generate a mathematical error rate to indicate when
LOCO values may be questionable.

The Variable Importance Plot

The upper-right quadrant of the Model Interpretation page shows the scaled
global variable importance values for the features in the model. Hover over each
bar in the graph to view the scaled global importance value for that feature.
When a specific row is selected, scaled local variable importance values are
shown alongside scaled global variable importance values for comparison.

Decision Tree Surrogate Model

The Decision Tree Surrogate Model Technique

The decision tree surrogate model increases the transparency of the Driverless
AI model by displaying an approximate flow-chart of the complex Driverless
AI model’s decision making process. The decision tree surrogate model also
displays the most important variables in the Driverless AI model and the most
important interactions in the Driverless AI model. The decision tree surrogate
model can be used for visualizing, validating, and debugging the Driverless AI
model by comparing the displayed decision-process, important variables, and
important interactions to known standards, domain knowledge, and reasonable
expectations.

A surrogate model is a data mining and engineering technique in which a
generally simpler model is used to explain another, usually more complex, model
or phenomenon. The decision tree surrogate is known to date back at least
to 1996 (Craven and Shavlik, [2]). The decision tree surrogate model here
is trained to predict the predictions of the more complex Driverless AI model
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using the of original model inputs. The trained surrogate model enables a
heuristic understanding (i.e.,not a mathematically precise understanding) of the
mechanisms of the highly complex and nonlinear Driverless AI model.

The Decision Tree Surrogate Model Plot

The lower-left quadrant shows a decision tree surrogate for the generated model.
The highlighted row shows the path to the highest probability leaf node and
indicates the globally important variables and interactions that influence the
Driverless AI model prediction for that row.

Partial Dependence and Individual Conditional Ex-
pectation (ICE)

The Partial Dependence Technique

Partial dependence is a measure of the average model prediction with respect
to an input variable. Partial dependence plots display how machine-learned
response functions change based on the values of an input variable of interest,
while taking nonlinearity into consideration and averaging out the effects of all
other input variables. Partial dependence plots are well-known and described in
the Elements of Statistical Learning (Hastie et all, 2001 [3]). Partial dependence
plots enable increased transparency in Driverless AI models and the ability to
validate and debug Driverless AI models by comparing a variable’s average
predictions across its domain to known standards, domain knowledge, and
reasonable expectations.

The ICE Technique

Individual conditional expectation (ICE) plots, a newer and less well-known
adaptation of partial dependence plots, can be used to create more localized



32 | Interpreting a Model

explanations for a single individual using the same basic ideas as partial depen-
dence plots. ICE Plots were described by Goldstein et al (2015 [4]). ICE values
are simply disaggregated partial dependence, but ICE is also a type of nonlinear
sensitivity analysis in which the model predictions for a single row are measured
while a variable of interest is varied over its domain. ICE plots enable a user
to determine whether the model’s treatment of an individual row of data is
outside one standard deviation from the average model behavior, whether the
treatment of a specific row is valid in comparison to average model behavior,
known standards, domain knowledge, and reasonable expectations, and how a
model will behave in hypothetical situations where one variable in a selected
row is varied across its domain.

Given the row of input data with its corresponding Driverless AI and K -LIME
predictions:

Taking the Driverless AI model as F(X), assuming credit scores vary from 500
to 800 in the training data, and that increments of 30 are used to plot the ICE
curve, ICE is calculated as follows:

ICEcredit score,500 = F (30, 500, 1000)

ICEcredit score,530 = F (30, 530, 1000)

ICEcredit score,560 = F (30, 560, 1000)

...

ICEcredit score,800 = F (30, 800, 1000)

The one-dimensional partial dependence plots displayed here do not take inter-
actions into account. Large differences in partial dependence and ICE are an
indication that strong variable interactions may be present. In this case partial
dependence plots may be misleading because average model behavior may not
accurately reflect local behavior.

The Partial Dependence and Individual Conditional Expec-
tation Plot

Overlaying ICE plots onto partial dependence plots allow the comparison of
the Driverless AI model’s treatment of certain examples or individuals to the
model’s average predictions over the domain of an input variable of interest.
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The lower-right quadrant shows the partial dependence for a selected variable
and the ICE values when a specific row is selected. Users may select a point on
the graph to see the specific value at that point. By default, this graph shows
the partial dependence values for the top feature. Change this view by selecting
a different feature in the feature drop-down. Note that this graph is available
for the top five features.

General Considerations

Machine Learning and Approximate Explanations

For years, common sense has deemed the complex, intricate formulas created by
training machine learning algorithms to be uninterpretable. While great advances
have been made in recent years to make these often nonlinear, non-monotonic,
and non-continuous machine-learned response functions more understandable
(Hall et al, 2017 [6]), it is likely that such functions will never be as directly or
universally interpretable as more traditional linear models.

Why consider machine learning approaches for inferential purposes? In general,
linear models focus on understanding and predicting average behavior, whereas
machine-learned response functions can often make accurate, but more difficult
to explain, predictions for subtler aspects of modeled phenomenon. In a sense,
linear models create very exact interpretations for approximate models. The
approach here seeks to make approximate explanations for very exact models.
It is quite possible that an approximate explanation of an exact model may
have as much, or more, value and meaning than the exact interpretations of
an approximate model. Moreover, the use of machine learning techniques for
inferential or predictive purposes does not preclude using linear models for
interpretation (Ribeiro et al, 2016 [9]).
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The Multiplicity of Good Models in Machine Learning

It is well understood that for the same set of input variables and prediction
targets, complex machine learning algorithms can produce multiple accurate
models with very similar, but not exactly the same, internal architectures
(Brieman, 2001 [1]). This alone is an obstacle to interpretation, but when using
these types of algorithms as interpretation tools or with interpretation tools it is
important to remember that details of explanations will change across multiple
accurate models.

Expectations for Consistency Between Explanatory Tech-
niques

• The decision tree surrogate is a global, nonlinear description of the
Driverless AI model behavior. Variables that appear in the tree should
have a direct relationship with variables that appear in the global variable
importance plot. For certain, more linear Driverless AI models, variables
that appear in the decision tree surrogate model may also have large
coefficients in the global K -LIME model.

• K -LIME explanations are linear, do not consider interactions, and represent
offsets from the local linear model intercept. LOCO importance values
are nonlinear, do consider interactions, and do not explicitly consider
a linear intercept or offset. LIME explanations and LOCO importance
values are not expected to have a direct relationship but can align roughly
as both are measures of a variable’s local impact on a model’s predictions,
especially in more linear regions of the Driverless AI model’s learned
response function.

• ICE is a type of nonlinear sensitivity analysis which has a complex relation-
ship to LOCO variable importance values. Comparing ICE to LOCO can
only be done at the value of the selected variable that actually appears
in the selected row of the training data. When comparing ICE to LOCO
the total value of the prediction for the row, the value of the variable
in the selected row, and the distance of the ICE value from the average
prediction for the selected variable at the value in the selected row must
all be considered.

• ICE curves that are outside the standard deviation of partial dependence
would be expected to fall into less populated decision paths of the decision
tree surrogate; ICE curves that lie within the standard deviation of partial
dependence would be expected to belong to more common decision paths.
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• Partial dependence takes into consideration nonlinear, but average, behav-
ior of the complex Driverless AI model without considering interactions.
Variables with consistently high partial dependence or partial dependence
that swings widely across an input variable’s domain will likely also have
high global importance values. Strong interactions between input variables
can cause ICE values to diverge from partial dependence values.

Viewing Explanations

Note: Not all explanatory functionality is available for multinomial classification
scenarios.

Driverless AI provides easy-to-read explanations for a completed model. You
can view these by clicking the Explanations button in the upper-right corner
of the Model Interpretation page. Note that this button is only available for
completed experiments. Click Close when you are done to return to the Model
Interpretations page.

The UI allows you to view global, cluster-specific, and local reason codes.

• Global Reason Codes: To view global reason codes, select the Global
plot from the Plot dropdown.

With Global selected, click the Explanations button in the upper-right corner.

• Cluster Reason Codes: To view reason codes for a specific cluster,
select a cluster from the Plot dropdown.
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With a cluster selected, click the Explanations button in the upper-right corner.

• Local Reason Codes: To view local reason codes, select a point on the
graph or type a value in the Value field.

With a value selected, click the Explanations button in the upper-right
corner.
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Score on Another Dataset

After you generate a model, you can use that model to make predictions on
another dataset.

1. Click the Experiments link in the top menu and select the experiment
that you want to use.

2. On the Experiments page, click the Score on Another Dataset button.

3. Locate the new dataset that you want to score on. Note that this new
dataset must include the same columns as the dataset used in selected
experiment.

4. Click Select at the top of the screen. This immediately starts the scoring
process.

5. Click the Download Predictions button after scoring is complete.

Transform Another Dataset

When a training dataset is used in an experiment, Driverless AI transforms the
data into an improved, feature engineered dataset. (Refer to About Driverless
AI Transformations for more information about the transformations that are
provided in Driverless AI.) But what happens when new rows are added to your
dataset? In this case, you can specify to transform the new dataset after adding
it to Driverless AI. The new rows will then get transformed into the original
dataset.

Follow these steps to transform another dataset. Note that this assumes the
new dataset has been added to Driverless AI already.
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1. On the completed experiment page for the original dataset, click the
Transform Another Dataset button.

2. Select the new training dataset that you want to transform. Note that
this must have the same number columns as the original dataset.

3. In the Select drop down, specify a validation dataset to use with this
dataset, or specify to split the training data. If you specify to split the
data, then you also specify the split value (defaults to 25 percent) and
the seed (defaults to 1234).

4. Optionally specify a test dataset. If specified, then the output also include
the final test dataset for final scoring.

5. Click Launch Transformation.

The following datasets will be available for download upon successful completion:

• Training dataset (not for cross validation)

• Validation dataset for parameter tuning

• Test dataset for final scoring. This option is available if a test dataset
was used.

The Scoring Pipelines
Scoring Pipelines are available for productionizing models and for obtaining
reason codes on interpreted models for a given row of data.
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Driverless AI Standalone Scoring Pipeline

As indicated earlier, a scoring pipeline is available after a successfully completed
experiment. This package contains an exported model and Python 3.6 source
code examples for productionizing models built using H2O Driverless AI.

The files in this package allow you to transform and score on new data in a
couple of different ways:

• From Python 3.6, you can import a scoring module, and then use the
module to transform and score on new data.

• From other languages and platforms, you can use the TCP/HTTP scoring
service bundled with this package to call into the scoring pipeline module
through remote procedure calls (RPC).

Scoring Pipeline Files

The scoring-pipeline folder includes the following notable files:

• example.py: An example Python script demonstrating how to import
and score new records.

• run example.sh: Runs example.py (also sets up a virtualenv with pre-
requisite libraries).

• tcp server.py: A standalone TCP server for hosting scoring services.

• http server.py: A standalone HTTP server for hosting scoring services.

• run tcp server.sh: Runs TCP scoring service (runs server.py).

• run http server.sh: Runs HTTP scoring service (runs server.py).

• example client.py: An example Python script demonstrating how to
communicate with the scoring server.

• run tcp client.sh: Demonstrates how to communicate with the scoring
service via TCP (runs example client.py).

• run http client.sh: Demonstrates how to communicate with the scoring
service via HTTP (using curl).

Prerequisites

The following are required in order to run the downloaded scoring pipeline.

• Linux x86 64 environment
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• Python 3.6 (Note that Anaconda Python 3.6 distribution is not supported
at this point in time.)

• libopenblas-dev (required for H2O4GPU)

• Apache Thrift (to run the TCP scoring service)

• Internet access to download and install packages. Note that depending
on your environment, you may also need to set up proxy.

The scoring pipeline has been tested on Ubuntu 16.04 and on 16.10+. Examples
of how to install these prerequisites are below:

Installing Python 3.6 and OpenBlas Ubuntu 16.10+

$ sudo apt install python3.6 python3.6-dev python3-pip python3-dev \
python-virtualenv python3-virtualenv libopenblas-dev

Installing Python 3.6 and OpenBLAS on Ubuntu 16.4

$ sudo add-apt-repository ppa:deadsnakes/ppa
$ sudo apt-get update
$ sudo apt-get install python3.6 python3.6-dev python3-pip python3-dev \

python-virtualenv python3-virtualenv libopenblas-dev

Installing the Thrift Compiler

Thrift is required to run the scoring service in TCP mode, but it is not re-
quired to run the scoring module. The following steps are available on the
Thrift documentation site at: https://thrift.apache.org/docs/
BuildingFromSource.

$ sudo apt-get install automake bison flex g++ git libevent-dev \
libssl-dev libtool make pkg-config libboost-all-dev ant

$ wget https://github.com/apache/thrift/archive/0.10.0.tar.gz
$ tar -xvf 0.10.0.tar.gz
$ cd thrift-0.10.0
$ ./bootstrap.sh
$ ./configure
$ make
$ sudo make install

Run the following to refresh the runtime shared after installing Thrift:

$ sudo ldconfig /usr/local/lib

Quickstart

Before running these examples, be sure that the scoring pipeline is already
downloaded and unzipped:

https://thrift.apache.org/docs/BuildingFromSource
https://thrift.apache.org/docs/BuildingFromSource
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1. On the completed Experiment page, click on the Download Scoring
Pipeline button to download the scorer.zip file for this experiment onto
your local machine.

2. Unzip the scoring pipeline.

After the pipeline is downloaded and unzipped, you will be able to run the
scoring module and the scoring service.

Score from a Python Program

If you intend to score from a Python program, run the scoring module example.
(Requires Linux x86 64 and Python 3.6.)

$ bash run_example.sh

Score Using a Web Service

If you intend to score using a web service, run the HTTP scoring server example.
(Requires Linux x86 64 and Python 3.6.)

$ bash run_http_server.sh
$ bash run_http_client.sh

Score Using a Thrift Service

If you intend to score using a Thrift service, run the TCP scoring server example.
(Requires Linux x86 64, Python 3.6 and Thrift.)

$ bash run_tcp_server.sh
$ bash run_tcp_client.sh

Note: If you experience errors while running any of the above scripts, please
check to make sure your system has a properly installed and configured Python
3.6 installation. Refer to the Troubleshooting Python Environment Issues section
at the end of this chapter to see how to set up and test the scoring module
using a cleanroom Ubuntu 16.04 virtual machine.
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The Scoring Module

The scoring module is a Python module bundled into a standalone wheel file
(name scoring *.whl). All the prerequisites for the scoring module to work
correctly are listed in the requirements.txt file. To use the scoring module, all
you have to do is create a Python virtualenv, install the prerequisites, and then
import and use the scoring module as follows:

# See ’example.py’ for complete example.
from scoring_487931_20170921174120_b4066 import Scorer
scorer = Scorer() # Create instance.
score = scorer.score([ # Call score()

7.416, # sepal_len
3.562, # sepal_wid
1.049, # petal_len
2.388, # petal_wid

])

The scorer instance provides the following methods (and more):

• score(list): Score one row (list of values).

• score batch(df): Score a Pandas dataframe.

• fit transform batch(df): Transform a Pandas dataframe.

• get target labels(): Get target column labels (for classification problems).

The process of importing and using the scoring module is demonstrated by the
bash script run example.sh, which effectively performs the following steps:

# See ’run_example.sh’ for complete example.
$ virtualenv -p python3.6 env
$ source env/bin/activate
$ pip install -r requirements.txt
$ python example.py

The Scoring Service

The scoring service hosts the scoring module as an HTTP or TCP service.
Doing this exposes all the functions of the scoring module through remote
procedure calls (RPC). In effect, this mechanism allows you to invoke scoring
functions from languages other than Python on the same computer or from
another computer on a shared network or on the Internet.

The scoring service can be started in two ways:

• In TCP mode, the scoring service provides high-performance RPC calls
via Apache Thrift (https://thrift.apache.org/) using a binary
wire protocol.

https://thrift.apache.org/
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• In HTTP mode, the scoring service provides JSON-RPC 2.0 calls served
by Tornado (http://www.tornadoweb.org).

Scoring operations can be performed on individual rows (row-by-row) or in
batch mode (multiple rows at a time).

Scoring Service - TCP Mode (Thrift)

The TCP mode allows you to use the scoring service from any language supported
by Thrift, including C, C++, C#, Cocoa, D, Dart, Delphi, Go, Haxe, Java,
Node.js, Lua, perl, PHP, Python, Ruby and Smalltalk.

To start the scoring service in TCP mode, you will need to generate the Thrift
bindings once, then run the server:

# See ’run_tcp_server.sh’ for complete example.
$ thrift --gen py scoring.thrift
$ python tcp_server.py --port=9090

Note that the Thrift compiler is only required at build-time. It is not a run time
dependency, i.e. once the scoring services are built and tested, you do not need
to repeat this installation process on the machines where the scoring services
are intended to be deployed.

To call the scoring service, simply generate the Thrift bindings for your language
of choice, then make RPC calls via TCP sockets using Thrift’s buffered transport
in conjunction with its binary protocol.

# See ’run_tcp_client.sh’ for complete example.
$ thrift --gen py scoring.thrift

# See ’example_client.py’ for complete example.
socket = TSocket.TSocket(’localhost’, 9090)
transport = TTransport.TBufferedTransport(socket)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = ScoringService.Client(protocol)
transport.open()
row = Row()
row.sepalLen = 7.416 # sepal_len
row.sepalWid = 3.562 # sepal_wid
row.petalLen = 1.049 # petal_len
row.petalWid = 2.388 # petal_wid
scores = client.score(row)
transport.close()

You can reproduce the exact same result from other languages, e.g. Java:

$ thrift --gen java scoring.thrift

// Dependencies:
// commons-codec-1.9.jar
// commons-logging-1.2.jar
// httpclient-4.4.1.jar
// httpcore-4.4.1.jar
// libthrift-0.10.0.jar
// slf4j-api-1.7.12.jar

http://www.tornadoweb.org


44 | The Scoring Pipelines

import ai.h2o.scoring.Row;
import ai.h2o.scoring.ScoringService;
import org.apache.thrift.TException;
import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.transport.TSocket;
import org.apache.thrift.transport.TTransport;
import java.util.List;

public class Main {
public static void main(String[] args) {
try {
TTransport transport = new TSocket("localhost", 9090);
transport.open();

ScoringService.Client client = new ScoringService.Client(
new TBinaryProtocol(transport));

Row row = new Row(7.642, 3.436, 6.721, 1.020);
List<Double> scores = client.score(row);
System.out.println(scores);

transport.close();
} catch (TException ex) {
ex.printStackTrace();

}
}

}

Scoring Service - HTTP Mode (JSON-RPC 2.0)

The HTTP mode allows you to use the scoring service using plaintext JSON-
RPC calls. This is usually less performant compared to Thrift, but has the
advantage of being usable from any HTTP client library in your language of
choice, without any dependency on Thrift.

For JSON-RPC documentation, see http://www.jsonrpc.org/specification.

To start the scoring service in HTTP mode:

# See ’run_http_server.sh’ for complete example.
$ python http_server.py --port=9090

To invoke scoring methods, compose a JSON-RPC message and make a HTTP
POST request to http://host:port/rpc as follows:

# See ’run_http_client.sh’ for complete example.
$ curl http://localhost:9090/rpc \
--header "Content-Type: application/json" \
--data @- <<EOF

{
"id": 1,
"method": "score",
"params": {
"row": [ 7.486, 3.277, 4.755, 2.354 ]

}
}
EOF

http://www.jsonrpc.org/specification
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Similarly, you can use any HTTP client library to reproduce the above result.
For example, from Python, you can use the requests module as follows:

import requests
row = [7.486, 3.277, 4.755, 2.354]
req = dict(id=1, method=’score’, params=dict(row=row))
res = requests.post(’http://localhost:9090/rpc’, data=req)
print(res.json()[’result’])

Troubleshooting Python Environment Issues

The following instructions describe how to set up a cleanroom Ubuntu 16.04
virtual machine to test that this scoring pipeline works correctly.

Prerequisites:

• Install Virtualbox: sudo apt-get install virtualbox

• Install Vagrant: https://www.vagrantup.com/downloads.html

1. Create configuration files for Vagrant.

• bootstrap.sh: contains commands to set up Python 3.6 and Open-
BLAS.

• Vagrantfile: contains virtual machine configuration instructions for
Vagrant and VirtualBox.

----- bootstrap.sh -----

#!/usr/bin/env bash

sudo apt-get -y update
sudo apt-get -y install apt-utils build-essential python-software-

properties software-properties-common zip libopenblas-dev
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt-get update -yqq
sudo apt-get install -y python3.6 python3.6-dev python3-pip python3-dev

python-virtualenv python3-virtualenv

# end of bootstrap.sh

----- Vagrantfile -----

# -*- mode: ruby -*-
# vi: set ft=ruby :

Vagrant.configure(2) do |config|
config.vm.box = "ubuntu/xenial64"
config.vm.provision :shell, path: "bootstrap.sh", privileged: false
config.vm.hostname = "h2o"
config.vm.provider "virtualbox" do |vb|
vb.memory = "4096"

end
end

# end of Vagrantfile
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2. Launch the VM and SSH into it. Note that we are also placing the scoring
pipeline in the same directory so that we can access it later inside the
VM.

cp /path/to/scorer.zip .
vagrant up
vagrant ssh

3. Test the scoring pipeline inside the virtual machine.

cp /vagrant/scorer.zip .
unzip scorer.zip
cd scoring-pipeline/
bash run_example.sh

At this point, you should see scores printed out on the terminal. If not, contact
us at support@h2o.ai.

Driverless AI MLI Standalone Scoring Package

This package contains an exported model and Python 3.6 source code examples
for productionizing models built using H2O Driverless AI Machine Learning
Interpretability (MLI) tool. This is only available for interpreted models.

The files in this package allow you to obtain reason codes for a given row of
data a couple of different ways:

- From Python 3.6, you can import a scoring module, and then use the module
to transform and score on new data. - From other languages and platforms,
you can use the TCP/HTTP scoring service bundled with this package to call
into the scoring pipeline module through remote procedure calls (RPC).

MLI Scoring Package Files

The scoring-pipeline-mli folder includes the following notable files:

• example.py: An example Python script demonstrating how to import
and interpret new records.

• run example.sh: Runs example.py (This also sets up a virtualenv with
prerequisite libraries.)

• tcp server.py: A standalone TCP server for hosting MLI services.

• http server.py: A standalone HTTP server for hosting MLI services.

• run tcp server.sh: Runs the TCP scoring service (specifically, tcp server.py).

• run http server.sh: Runs HTTP scoring service (runs http server.py).
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• example client.py: An example Python script demonstrating how to
communicate with the MLI server.

• run tcp client.sh: Demonstrates how to communicate with the MLI
service via TCP (runs example client.py).

• run http client.sh: Demonstrates how to communicate with the MLI
service via HTTP (using curl).

Prerequisites

• The scoring module and scoring service are supported only on Linux
x86 64 with Python 3.6.

• Apache Thrift (to run the scoring service in TCP mode)

• The scoring module and scoring service needs access to Internet to
download and install packages. Depending on your environment, you may
also need to set up proxy.

Installing Python 3.6

Installing Python3.6 on Ubuntu 16.10+:

$ sudo apt install python3.6 python3.6-dev python3-pip python3-dev \
python-virtualenv python3-virtualenv

Installing Python3.6 on Ubuntu 16.04

$ sudo add-apt-repository ppa:deadsnakes/ppa
$ sudo apt-get update
$ sudo apt-get install python3.6 python3.6-dev python3-pip python3-dev \

python-virtualenv python3-virtualenv

Installing the Thrift Compiler

Refer to Thrift documentation at https://thrift.apache.org/docs/
BuildingFromSource for more information.

$ sudo apt-get install automake bison flex g++ git libevent-dev \
libssl-dev libtool make pkg-config libboost-all-dev ant

$ wget https://github.com/apache/thrift/archive/0.10.0.tar.gz
$ tar -xvf 0.10.0.tar.gz
$ cd thrift-0.10.0
$ ./bootstrap.sh
$ ./configure
$ make
$ sudo make install

Run the following to refresh the runtime shared after installing Thrift.

$ sudo ldconfig /usr/local/lib

https://thrift.apache.org/docs/BuildingFromSource
https://thrift.apache.org/docs/BuildingFromSource
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Quickstart

Before running the quickstart examples, be sure that the MLI Scoring Package
is already downloaded and unzipped.

1. On the MLI page, click the Scoring Pipeline button.

2. Unzip the scoring pipeline, and run the following examples in the scoring-
pipeline-mli folder.

Run the scoring module example. (This requires Linux x86 64 and Python 3.6.)

$ bash run_example.sh

Run the TCP scoring server example. Use two terminal windows. (This requires
Linux x86 64, Python 3.6 and Thrift.)

$ bash run_tcp_server.sh
$ bash run_tcp_client.sh

Run the HTTP scoring server example. Use two terminal windows. (This
requires Linux x86 64, Python 3.6 and Thrift.)

$ bash run_http_server.sh
$ bash run_http_client.sh

MLI Scoring Module

The MLI scoring module is a Python module bundled into a standalone wheel
file (name scoring *.whl). All the prerequisites for the scoring module to work
correctly are listed in the requirements.txt file. To use the scoring module, all
you have to do is create a Python virtualenv, install the prerequisites, and then
import and use the scoring module as follows:

----- See ’example.py’ for complete example. -----
from scoring_487931_20170921174120_b4066 import Scorer
scorer = KLimeScorer() # Create instance.
score = scorer.score_reason_codes([ # Call score_reason_codes()

7.416, # sepal_len
3.562, # sepal_wid
1.049, # petal_len
2.388, # petal_wid

])

The scorer instance provides the following methods:
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• score reason codes(list): Get KLime reason codes for one row
(list of values).

• score reason codes batch(dataframe): Takes and outputs a
Pandas Dataframe

• get column names(): Get the input column names

• get reason code column names(): Get the output column names

The process of importing and using the scoring module is demonstrated by the
bash script run example.sh, which effectively performs the following steps:

----- See ’run_example.sh’ for complete example. -----
$ virtualenv -p python3.6 env
$ source env/bin/activate
$ pip install -r requirements.txt
$ python example.py

MLI Scoring Service Overview

The MLI scoring service hosts the scoring module as a HTTP or TCP service.
Doing this exposes all the functions of the scoring module through remote
procedure calls (RPC).

In effect, this mechanism allows you to invoke scoring functions from languages
other than Python on the same computer, or from another computer on a
shared network or the internet.

The scoring service can be started in two ways:

• In TCP mode, the scoring service provides high-performance RPC calls via
Apache Thrift (https://thrift.apache.org/) using a binary wire protocol.

• In HTTP mode, the scoring service provides JSON-RPC 2.0 calls served
by Tornado (http://www.tornadoweb.org).

Scoring operations can be performed on individual rows (row-by-row) or in
batch mode (multiple rows at a time).

MLI Scoring Service - TCP Mode (Thrift)

The TCP mode allows you to use the scoring service from any language supported
by Thrift, including C, C++, C#, Cocoa, D, Dart, Delphi, Go, Haxe, Java,
Node.js, Lua, perl, PHP, Python, Ruby and Smalltalk.

To start the scoring service in TCP mode, you will need to generate the Thrift
bindings once, then run the server:
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----- See ’run_tcp_server.sh’ for complete example. -----
$ thrift --gen py scoring.thrift
$ python tcp_server.py --port=9090

Note that the Thrift compiler is only required at build-time. It is not a run time
dependency, i.e. once the scoring services are built and tested, you do not need
to repeat this installation process on the machines where the scoring services
are intended to be deployed.

To call the scoring service, simply generate the Thrift bindings for your language
of choice, then make RPC calls via TCP sockets using Thrift’s buffered transport
in conjunction with its binary protocol.

----- See ’run_tcp_client.sh’ for complete example. -----
$ thrift --gen py scoring.thrift

----- See ’example_client.py’ for complete example. -----
socket = TSocket.TSocket(’localhost’, 9090)
transport = TTransport.TBufferedTransport(socket)
protocol = TBinaryProtocol.TBinaryProtocol(transport)
client = ScoringService.Client(protocol)
transport.open()
row = Row()
row.sepalLen = 7.416 # sepal_len
row.sepalWid = 3.562 # sepal_wid
row.petalLen = 1.049 # petal_len
row.petalWid = 2.388 # petal_wid
scores = client.score_reason_codes(row)
transport.close()

You can reproduce the exact same result from other languages, e.g. Java:

$ thrift --gen java scoring.thrift

// Dependencies:
// commons-codec-1.9.jar
// commons-logging-1.2.jar
// httpclient-4.4.1.jar
// httpcore-4.4.1.jar
// libthrift-0.10.0.jar
// slf4j-api-1.7.12.jar

import ai.h2o.scoring.Row;
import ai.h2o.scoring.ScoringService;
import org.apache.thrift.TException;
import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.transport.TSocket;
import org.apache.thrift.transport.TTransport;
import java.util.List;

public class Main {
public static void main(String[] args) {
try {
TTransport transport = new TSocket("localhost", 9090);
transport.open();

ScoringService.Client client = new ScoringService.Client(
new TBinaryProtocol(transport));
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Row row = new Row(7.642, 3.436, 6.721, 1.020);
List<Double> scores = client.score_reason_codes(row);
System.out.println(scores);

transport.close();
} catch (TException ex) {
ex.printStackTrace();

}
}

}

Scoring Service - HTTP Mode (JSON-RPC 2.0)

The HTTP mode allows you to use the scoring service using plaintext JSON-
RPC calls. This is usually less performant compared to Thrift, but has the
advantage of being usable from any HTTP client library in your language of
choice, without any dependency on Thrift.

For JSON-RPC documentation, see http://www.jsonrpc.org/specification .

To start the scoring service in HTTP mode:

----- See ’run_http_server.sh’ for complete example. -----
$ python http_server.py --port=9090

To invoke scoring methods, compose a JSON-RPC message and make a HTTP
POST request to http://host:port/rpc as follows:

----- See ’run_http_client.sh’ for complete example. -----
$ curl http://localhost:9090/rpc \
--header "Content-Type: application/json" \
--data @- <<EOF
{
"id": 1,
"method": "score_reason_codes",
"params": {
"row": [ 7.486, 3.277, 4.755, 2.354 ]

}
}
EOF

Similarly, you can use any HTTP client library to reproduce the above result.
For example, from Python, you can use the requests module as follows:

import requests
row = [7.486, 3.277, 4.755, 2.354]
req = dict(id=1, method=’score_reason_codes’, params=dict(row=row))
res = requests.post(’http://localhost:9090/rpc’, data=req)
print(res.json()[’result’])

Viewing Experiments
The upper-right corner of the Driverless AI UI includes an Experiments link.
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Click this link to open the Experiments page. From this page, you can rename
an experiment, select and view previous experiments, and you can begin a new
experiment.

Rerunning Experiments

To rerun an experiment, or run a new experiment using an existing experiment’s
settings, hover over the experiment that you want to use. A ”rerun” icon
displays. Clicking this icon opens the selected experiment’s settings.

From the settings page, you can rerun the experiment using the original settings,
or you can specify to use new data and/or specify different experiment settings.
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Deleting Experiments

To delete an experiment, hover over the experiment that you want to delete.
An ”X” option displays. Click this to delete the experiment. A confirmation
message will display asking you to confirm the delete. Click OK to delete the
experiment or Cancel to return to the experiments page without deleting.

Visualizing Datasets

While viewing experiments, click the Datasets link in the upper-right corner.

The Datasets Overview page shows a list of the datasets that you’ve imported.
Select the [Click for Actions] button beside the dataset that you want to view
and then click Visualize from the submenu that appears.
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The Visualization page shows all available graphs for the selected dataset. Note
that the graphs on the Visualization page can vary based on the information in
your dataset.

The following is a complete list of available graphs.

• Clumpy Scatterplots: Clumpy scatterplots are 2D plots with evident
clusters. These clusters are regions of high point density separated from
other regions of points. The clusters can have many different shapes and
are not necessarily circular. All possible scatterplots based on pairs of
features (variables) are examined for clumpiness. The displayed plots are
ranked according to the RUNT statistic. Note that the test for clumpiness
is described in Hartigan, J. A. and Mohanty, S. (1992), ”The RUNT
test for multimodality,” Journal of Classification, 9, 63–70 ([7]). The
algorithm implemented here is described in Wilkinson, L., Anand, A., and
Grossman, R. (2005), ”Graph-theoretic Scagnostics,” in Proceedings of
the IEEE Information Visualization 2005, pp. 157–164 ([11]).

• Correlated Scatterplots: Correlated scatterplots are 2D plots with large
values of the squared Pearson correlation coefficient. All possible scatter-
plots based on pairs of features (variables) are examined for correlations.
The displayed plots are ranked according to the correlation. Some of
these plots may not look like textbook examples of correlation. The only
criterion is that they have a large value of Pearson’s r. When modeling
with these variables, you may want to leave out variables that are perfectly
correlated with others.
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• Unusual Scatterplots: Unusual scatterplots are 2D plots with features
not found in other 2D plots of the data. The algorithm implemented
here is described in Wilkinson, L., Anand, A., and Grossman, R. (2005),
”Graph-theoretic Scagnostics,” in Proceedings of the IEEE Information
Visualization 2005, pp. 157-164. Nine scagnostics (”Outlying”, ”Skewed”,
”Clumpy”, ”Sparse”, ”Striated”, ”Convex”, ”Skinny”, ”Stringy”, ”Corre-
lated”) are computed for all pairs of features. The scagnostics are then
examined for outlying values of these scagnostics and the corresponding
scatterplots are displayed.

• Spikey Histograms: Spikey histograms are histograms with huge spikes.
This often indicates an inordinate number of single values (usually zeros)
or highly similar values. The measure of ”spikeyness” is a bin frequency
that is ten times the average frequency of all the bins. You should
be careful when modeling (particularly regression models) with spikey
variables.

• Skewed Histograms: Skewed histograms are ones with especially large
skewness (asymmetry). The robust measure of skewness is derived from
Groeneveld, R.A. and Meeden, G. (1984), ”Measuring Skewness and
Kurtosis.” The Statistician, 33, 391-399 ([5]). Highly skewed variables
are often candidates for a transformation (e.g., logging) before use in
modeling. The histograms in the output are sorted in descending order
of skewness.

• Varying Boxplots: Varying boxplots reveal unusual variability in a feature
across the categories of a categorical variable. The measure of variabil-
ity is computed from a robust one-way analysis of variance (ANOVA).
Sufficiently diverse variables are flagged in the ANOVA. A boxplot is
a graphical display of the fractiles of a distribution. The center of the
box denotes the median, the edges of a box denote the lower and upper
quartiles, and the ends of the ”whiskers” denote that range of values.
Sometimes outliers occur, in which case the adjacent whisker is shortened
to the next lower or upper value. For variables (features) having only a few
values, the boxes can be compressed, sometimes into a single horizontal
line at the median.

• Heteroscedastic Boxplots: Heteroscedastic boxplots reveal unusual
variability in a feature across the categories of a categorical variable.
Heteroscedasticity is calculated with a Brown-Forsythe test: Brown, M.
B. and Forsythe, A. B. (1974), ”Robust tests for equality of variances.”
Journal of the American Statistical Association, 69, 364-367. Plots
are ranked according to their heteroscedasticity values. A boxplot is a
graphical display of the fractiles of a distribution. The center of the
box denotes the median, the edges of a box denote the lower and upper
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quartiles, and the ends of the ”whiskers” denote that range of values.
Sometimes outliers occur, in which case the adjacent whisker is shortened
to the next lower or upper value. For variables (features) having only a few
values, the boxes can be compressed, sometimes into a single horizontal
line at the median.

• Biplots: A Biplot is an enhanced scatterplot that uses both points and
vectors to represent structure simultaneously for rows and columns of a
data matrix. Rows are represented as points (scores), and columns are
represented as vectors (loadings). The plot is computed from the first two
principal components of the correlation matrix of the variables (features).
You should look for unusual (non-elliptical) shapes in the points that
might reveal outliers or non-normal distributions. And you should look for
purple vectors that are well-separated. Overlapping vectors can indicate
a high degree of correlation between variables.

• Outliers: Variables with anomalous or outlying values are displayed as
red points in a dot plot. Dot plots are constructed using an algorithm
in Wilkinson, L. (1999). ”Dot plots.” The American Statistician, 53,
276–281 ([10]). Not all anomalous points are outliers. Sometimes the
algorithm will flag points that lie in an empty region (i.e., they are not
near any other points). You should inspect outliers to see if they are
miscodings or if they are due to some other mistake. Outliers should
ordinarily be eliminated from models only when there is a reasonable
explanation for their occurrence.

• Correlation Graph: The correlation network graph is constructed from all
pairwise squared correlations between variables (features). For continuous-
continuous variable pairs, the statistic used is the squared Pearson corre-
lation. For continuous-categorical variable pairs, the statistic is based on
the squared intraclass correlation (ICC). This statistic is computed from
the mean squares from a one-way analysis of variance (ANOVA). The
formula is (MSbetween - MSwithin)/(MSbetween + (k - 1)MSwithin),
where k is the number of categories in the categorical variable. For
categorical-categorical pairs, the statistic is computed from Cramer’s V
squared. If the first variable has k1 categories and the second variable has
k2 categories, then a k1 x k2 table is created from the joint frequencies
of values. From this table, we compute a chi-square statistic. Cramer’s
V squared statistic is then (chi-square / n) / min(k1,k2), where n is the
total of the joint frequencies in the table. Variables with large values of
these respective statistics appear near each other in the network diagram.
The color scale used for the connecting edges runs from low (blue) to
high (red). Variables connected by short red edges tend to be highly
correlated.
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• Radar Plot: A Radar Plot is a 2D graph that is used for comparing
multiple variables. Each variable has its own axis that starts from the
center of the graph. The data are standardized on each variable between
0 and 1 so that values can be compared across variables. Each profile,
which usually appears in the form of a star, connects the values on the
axes for a single observation. Multivariate outliers are represented by
red profiles. The Radar Plot is the polar version of the popular Parallel
Coordinates plot. The polar layout enables us to represent more variables
in a single plot.

• Data Heatmap: The heatmap graphic is constructed from the transposed
data matrix. Rows of the heatmap represent variables, and columns
represent cases (instances). The data are standardized before display so
that small values are blue-ish and large values are red-ish. The rows and
columns are permuted via a singular value decomposition (SVD) of the
data matrix so that similar rows and similar columns are near each other.

• Missing Values Heatmap: The missing values heatmap graphic is
constructed from the transposed data matrix. Rows of the heatmap
represent variables and columns represent cases (instances). The data are
coded into the values 0 (missing) and 1 (nonmissing). Missing values are
colored red and nonmissing values are left blank (white). The rows and
columns are permuted via a singular value decomposition (SVD) of the
data matrix so that similar rows and similar columns are near each other.

The images on this page are thumbnails. You can click on any of the graphs to
view and download a full-scale image.
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Launching H2O Flow
If you opened port 54321 when starting Driverless AI, then you can launch H2O
Flow from within Driverless AI. Click the H2O-3 link in the top menu.

This launches Flow on port 54321.

About Driverless AI Transformations
Transformations in Driverless AI are applied to columns in the data. The
transformers create the engineered features. Driverless AI provides the following
transformers:

• Filter Transformer: The Filter Transformer counts each numeric value
in the dataset.

• Frequent Transformer: The Frequent Transformer counts each categor-
ical value in the dataset. This count can be either the raw count or the
normalized count.

• Bulk Interactions Transformer: The Bulk Interactions Transformer will
add, divide, multiply, and subtract two columns in the data.

• Truncated SVD Numeric Transformer: Truncated SVD trains on a
selected numeric of columns in the data. The components of the truncated
SVD will be new features.

• Cross Validation Target Encoding: Cross validation target encoding is
done on a categorical column.



About Driverless AI Transformations | 59

• Cross Validation Categorical to Numeric Encoding: This transformer
converts a categorical column to a numeric column. Cross validation
target encoding is done on the categorical column.

• Dates Transformer: The Dates Transformer retrieves any date values,
including:

– Year

– Quarter

– Month

– Day

– Day of year

– Week

– Week day

– Hour

– Minute

– Second

• Date Polar Transformer: The Date Polar Transformer expands the date
using polar coordinates. The Date Transformer will only expand the
date into different units, for example month. This does not capture the
similarity between the months December and January (12 and 1) or the
hours 23 and 0. The polar coordinates capture the similarities between
these cases by representing the unit of the date as a point in a cycle.
For example, the polar coordinates of: get minute in hour, would be the
minute hand position on a clock.

• Text Transformer: The Text Transform transforms a text column using
TFIDF (term frequency-inverse document frequency) or count (count
of the word). This may be followed by dimensionality reduction using
truncated SVD.

• Numeric to Categorical Target Encoding Transformer: This trans-
former converts a numeric column to categorical by binning. Cross
validation target encoding is done on the binned column.

• Cluster Target Encoding Transformer: Selected columns in the data
are clustered, and target encoding is done on the cluster ID.

• Cluster Distance Transformer: Selected columns in the data are clus-
tered, and the distance to a chosen cluster center is calculated.
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• Weight of Evidence: Creates likelihood type of features using the
Weights Of Evidence (WOE) transformation method. The weight of
evidence tells the predictive power of an independent variable in relation to
the dependent variable, for example, the measurement of good customers
in relations to bad customers.

This only works with a binary target variable. The likelihood needs to be
created within a stratified kfold if a fit transform method is used. More
information can be found here: http://ucanalytics.com/blogs/
information-value-and-weight-of-evidencebanking-case/.

• Numeric To Categorical Weight of Evidence Transformer: This
transformer converts a numeric column to categorical by binning and then
creates the likelihood type of features using the WOE transformation
method.

Example Transformations

In this section, we will describe the transformations using the example of
predicting house prices on the example dataset.

Frequent Transformer

• the count of each categorical value in the dataset

• the count can be either the raw count or the normalized count

There are 4,500 properties in this dataset with state = NY.

http://ucanalytics.com/blogs/information-value-and-weight-of-evidencebanking-case/
http://ucanalytics.com/blogs/information-value-and-weight-of-evidencebanking-case/
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Bulk Interactions Transformer

• add, divide, multiply, and subtract two columns in the data

There is one more bedroom than there are number of bathrooms for this
property.

Truncated SVD Numeric Transformer

• truncated SVD trained on selected numeric columns of the data

• the components of the truncated SVD will be new features

The first component of the truncated SVD of the columns Price, Number of
Beds, Number of Baths.

Dates Transformer

• get year, get quarter, get month, get day, get day of year, get week, get
week day, get hour, get minute, get second

The home was built in the month January.

Date Polar Transformer

• get hour in day, get minute in hour, get day in month, get day in year,
get quarter in year, get month in year, get week in year, get week day in
week
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The polar coordinates of the month January in year is (0.5, 1). This allows
the model to catch the similarities between January and December. This
information was not captured in the simple Date Transformer.

Text Transformer

• transform text column using methods: TFIDF or count (count of the
word)

• this may be followed by dimensionality reduction using truncated SVD

Categorical Target Encoding Transformer

• cross validation target encoding done on a categorical column

The average price of properties in NY state is $550,000*.

*In order to prevent overfitting, Driverless AI calculates this average on out-of-
fold data using cross validation.

Numeric to Categorical Target Encoding Transformer

• numeric column converted to categorical by binning

• cross validation target encoding done on the binned numeric column

The column Square Footage has been bucketed into 10 equally populated
bins. This property lies in the Square Footage bucket 1,572 to 1,749. The
average price of properties with this range of square footage is $345,000*.

*In order to prevent overfitting, Driverless AI calculates this average on out-of-
fold data using cross validation.
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Cluster Target Encoding Transformer

• selected columns in the data are clustered

• target encoding is done on the cluster ID

The columns: Num Beds, Num Baths, Square Footage have been seg-
mented into 4 clusters. The average price of properties in the same cluster as
the selected property is $450,000*.

*In order to prevent overfitting, Driverless AI calculates this average on out-of-
fold data using cross validation.

Cluster Distance Transformer

• selected columns in the data are clustered

• the distance to a chosen cluster center is calculated

The columns: Num Beds, Num Baths, Square Footage have been seg-
mented into 4 clusters. The difference from this record to Cluster 1 is 0.83.

Using the Driverless AI Python Client
This section describes how to run Driverless AI using the Python client.

Notes:

• This is an early release of the Driverless AI Python client.

• Python 3.6 is the only supported version.

• You must install the h2oai client wheel to your local Python. This is
available from the PY CLIENT link in the top menu of the UI.
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Running an Experiment using the Python Client

1. After the h2oai client wheel is installed, import the required modules and
log in.

import h2oai_client
import numpy as np
import pandas as pd
import requests
import math
from h2oai_client import Client, ModelParameters, InterpretParameters

address = ’http://ip_where_driverless_is_running:12345’
username = ’username’
password = ’password’
h2oai = Client(address = address, username = username, password =

password)
# Be sure to use the same credentials that you use when signing in
# through the GUI

2. Upload training, testing, and validation datasets from the Driverless AI
/data folder. The validation and testing dataset are optional. This
example shows how to add a validation dataset, but the experiment will
only specify training and testing datasets.

train_path = ’/data/CreditCard/CreditCard-train.csv’
test_path = ’/data/CreditCard/CreditCard-test.csv’
valid_path = ’/data/CreditCard/CreditCard-valid.csv’

train = h2oai.create_dataset_sync(train_path)
test = h2oai.create_dataset_sync(test_path)
valid = h2oai.create_dataset_sync(valid_path)

3. Set experiment parameters for the experiment. Some of the parameters
include:

• Target Column: The column we are trying to predict.

• Dropped Columns: The columns we do not want to use as predictors
such as ID columns, columns with data leakage, etc.

• Weight Column: The column that indicates the per row observation
weights. If ”None”, each row will have an observation weight of 1.

• Fold Column: The column that indicates the fold. If ”None”, the
folds will be determined by Driverless AI. This is set to ”Disabled”
if a validation set is used.

• Time Column: The column that provides a time order, if applicable.
If ”AUTO”, Driverless AI will auto-detect a potential time order. If
”OFF”, auto-detection is disabled. This is set to ”Disabled” if a
validation set is used.
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For this example, we will be predicting default payment next month.
We can set the parameters by hand or let Driverless AI infer the parameters
and override any we disagree with. In this case, we will let Driverless AI
suggest the best parameters for our experiment.

# let Driverless suggest parameters for experiment
target="default payment next month"
params = h2oai.get_experiment_tuning_suggestion(dataset_key = train.key

, target_col = target)

params.dump()
{’accuracy’: 7,
’cols_to_drop’: [],
’dataset_key’: ’corulege’,
’enable_gpus’: True,
’fold_col’: ’’,
’interpretability’: 7,
’is_classification’: True,
’scorer’: ’’,
’seed’: False,
’target_col’: ’default payment next month’,
’testset_key’: ’’,
’time’: 3,
’time_col’: ’’,
’validset_key’: ’’,
’weight_col’: ’’}

Driverless AI has found that the best parameters are to set accuracy =
7, time = 3, and interpretability = 7. We will add our test
data to the parameters, set the scorer to AUC, and add a seed to make
the experiment reproducible.

4. Specify the experiment settings. Refer to the Experiment Settings for
more information about these settings.

params.testset_key = test.key
params.scorer = "AUC"
params.seed = 1234

5. Launch the experiment to run feature engineering and final model training.
In addition to the settings previously defined, be sure to also specify the
imported training dataset. Adding a test dataset is optional, but a
validation dataset is not.

experiment = h2oai.start_experiment_sync(params)

6. Examine the final model score for the validation and test datasets. When
feature engineering is complete, an ensemble model can be built depending
on the accuracy setting. The experiment object also contains the score
on the validation and test data for this ensemble model.

print("Final Model Score on Validation Data: " + str(round(experiment.
train_score, 3)))
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print("Final Model Score on Test Data: " + str(round(experiment.
test_score, 3)))

Final Model Score on Validation Data: 0.779
Final Model Score on Test Data: 0.802

The experiment object also contains the scores calculated for each iteration
on bootstrapped samples on the validation data. In the iteration graph
in the UI, we can see the mean performance for the best model (yellow
dot) and +/- 1 standard deviation of the best model performance (yellow
bar).

This information is saved in the experiment object.

import matplotlib.pyplot as plt

iterations = list(map(lambda iteration: iteration.iteration, experiment
.iteration_data))

scores_mean = list(map(lambda iteration: iteration.score_mean,
experiment.iteration_data))

scores_sd = list(map(lambda iteration: iteration.score_sd, experiment.
iteration_data))

plt.figure()
plt.errorbar(iterations, scores_mean, yerr=scores_sd, color = "y",

ecolor=’yellow’, fmt = ’--o’, elinewidth = 4, alpha = 0.5)
plt.xlabel("Iteration")
plt.ylabel(scorer_str)
plt.show();

7. We will show an example of downloading the test predictions below. Note
that equivalent commands can also be run for downloading the train
(holdout) predictions.

h2oai.download(src_path=experiment.test_predictions_path, dest_dir=".")
’./test_preds.csv’

test_preds = pd.read_csv("./test_preds.csv")
test_preds.head()
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8. We can also download and examine the features and their importance for
the final model.

# Download Summary
import subprocess
summary_path = h2oai.download(src_path=experiment.summary_path,

dest_dir=".")
dir_path = "./h2oai_experiment_summary_" + experiment.key
subprocess.call([’unzip’, ’-o’, summary_path, ’-d’, dir_path], shell=

False)

The table below shows the feature name, its relative importance, and a
description. Some features will be engineered by Driverless AI and some
can be the original feature.

# View Features
features = pd.read_table(dir_path + "/features.txt", sep=’,’,

skipinitialspace=True)
features.head(n = 10)

Access an Experiment Object that was Run through
the Web UI

It is also possible to use the Python API to examine an experiment that was
started through the Web UI using the experiment key.
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You can get a pointer to the experiment by referencing the experiment key in
the Web UI.

# Get a list of experiments
experiment_list = list(map(lambda x: x.key, h2oai.list_models(offset=0, limit

=100)))
experiment_list
[’fapudage’, ’cunegacu’, ’hamasida’]

# Get pointer to experiment
experiment = h2oai.get_model_job(experiment_list[0]).entity

Score on New Data

You can use the Python API to score on new data. This is equivalent to the
SCORE ON ANOTHER DATASET button in the Web UI. The example
below scores on the test data and then downloads the predictions.

Pass in any dataset that has the same columns as the original training set. If you
passed a test set during the H2OAI model building step, the predictions already
exist. Its path can be found with experiment.test predictions path.

The following shows the predicted probability of default for each record in the
test.

prediction = h2oai.make_prediction_sync(experiment.key, test_path,
output_margin = False, pred_contribs = False)

pred_path = h2oai.download(prediction.predictions_csv_path, ’.’)
pred_table = pd.read_csv(pred_path)
pred_table.head()

We can also get the contribution each feature had to the final prediction by
setting pred contribs = True. This will give us an idea of how each
feature effects the predictions.

prediction_contributions = h2oai.make_prediction_sync(experiment.key,
test_path, output_margin = False, pred_contribs = True)

pred_contributions_path = h2oai.download(prediction_contributions.
predictions_csv_path, ’.’)

pred_contributions_table = pd.read_csv(pred_contributions_path)
pred_contributions_table.head()
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We will examine the contributions for our first record more closely.

contrib = pd.DataFrame(pred_contributions_table.iloc[0][1:], columns = ["
contribution"])

contrib["abs_contribution"] = contrib.contribution.abs()
contrib.sort_values(by="abs_contribution", ascending=False)[["contribution"

]].head()

This customer’s PAY 0 value had the greatest impact on their prediction.
Because the contribution is positive, we know that it increases the prediction
that they will default.

Run Model Interpretation

Once we have completed an experiment, we can interpret our H2OAI model.
Model Interpretability is used to provide model transparency and explanations.
You can run model interpretation on raw data and on external model predictions.

Run Model Interpretation on Raw Data

We can run the model interpretation in the Python client as shown below. By
setting the parameter, use raw features to True, we are interpreting the
model using only the raw features in the data. This will not use the engineered
features we saw in our final model’s features to explain the data. If you set
use raw features to False, the model will be interpreted using the features
used in the final model (raw and engineered).
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Note that you can also specify the number of cross-validation folds to use in
K-LIME. This defaults to 0.

mli_experiment = h2oai.run_interpretation_sync(
InterpretParameters(dai_model_key=experiment.key,

dataset_key=train.key,
target_col=target,
prediction_col = "",
use_raw_features=True, # show interpretation based on the

original columns
klime_cluster_col=’’,
nfolds = 0 # number of folds used for k-lime
))

You can also see the list of interpretations using the Python client.

# Get list of interpretations
mli_list = list(map(lambda x: x.key, h2oai.list_interpretations(offset=0,

limit=100)))
mli_list

[’wekature’, ’bawamoci’]

Run Model Interpretation on External Model Predictions

Model Interpretation does not need to be run on a Driverless AI experiment. You
can train an external model and run Model Interpretability on the predictions.
In this next section, we will walk through the steps to interpret an external
model.

Train External Model

We will begin by training a model with scikit-learn. Our end goal is to use
Driverless AI to interpret the predictions made by our scikit-learn model.

# Dataset must be located where python client is running
train_pd = pd.read_csv(train_path)

from sklearn.ensemble import GradientBoostingClassifier

predictors = list(set(train_pd.columns) - set([target]))

gbm_model = GradientBoostingClassifier(random_state=10)
gbm_model.fit(train_pd[predictors], train_pd[target])
GradientBoostingClassifier(criterion=’friedman_mse’, init=None,

learning_rate=0.1, loss=’deviance’, max_depth=3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
presort=’auto’, random_state=10, subsample=1.0, verbose=0,
warm_start=False)

predictions = gbm_model.predict_proba(train_pd[predictors])
predictions[0:5]
array([[ 0.38111179, 0.61888821],
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[ 0.44396186, 0.55603814],
[ 0.91738328, 0.08261672],
[ 0.88780536, 0.11219464],
[ 0.80028008, 0.19971992]])

Interpret on External Predictions

Now that we have the predictions from our scikit-learn GBM model, we can
call Driverless AI’s 2o ai.run interpretation sync to create the inter-
pretation screen.

train_gbm_path = "./CreditCard-train-gbm_pred.csv"
predictions = pd.concat([train_pd, pd.DataFrame(predictions[:, 1], columns =

["p1"])], axis = 1)
predictions.to_csv(path_or_buf=train_gbm_path, index = False)

train_gbm_pred = h2oai.upload_dataset(train_gbm_path)

mli_external = h2oai.run_interpretation_sync(
InterpretParameters(dai_model_key="",

dataset_key=train_gbm_pred.strip("\""),
target_col=target,
prediction_col = "p1",
use_raw_features=True, # not relevant since we are

interpreting our external model
klime_cluster_col=’’,
nfolds = 0 # number of folds used for k-lime
))

FAQ
How can I change my username and password?

The username and password is tied to the experiments you have created. For
example, if I log in with the username/password: megan/megan and start an
experiment, then I would need to log back in with the same username and
password to see those experiments. The username and password, however, does
not limit your access to Driverless AI. If you want to use a new user name and
password, you can log in again with a new username and password, but keep in
mind that you won’t see your old experiments.

How can I upgrade to a newer version of Driverless AI?

H2O provides the following set of commands that can you can run on the
machine that’s running Driverless AI. Note that these commands only work on
Linux environments. These commands are not available for Mac and Windows
installations.

h2oai stop (Stop all instances)
h2oai start (Start an instance)
h2oai restart (Restart instance)
h2oai clean (Removes old containers)
h2oai purge (Removes old containers and purges tmp and log)
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h2oai upgrade (Upgrades image to Developer latest *unstable*)
h2oai update (Upgrades image to latest Release)
h2oai ssh (Attaches to running docker)
h2oai log (Tails the running server log)
h2oai jupyter (Fetch the Jupyter URL with token)

To upgrade to the latest version, stop Driverless AI, then run the h2oai
update command.

What kind of authentication is supported in Driverless AI?

Driverless AI supports basic, LDAP, and PAM authentication. This can be
configured by setting the appropriate environment variables in the config.toml
file or by specifying the environment variables when starting Driverless AI. (Refer
to the Driverless AI User Guide for installation and starting instructions.)

#Authentication
#authentication_method: available options are "none", "basic", "pam", "ldap"
authentication_method = "basic"

#Ldap Settings
ldap_server = ""
ldap_port = ""
ldap_dc = ""

# Configurations for a HDFS data source
# Path of hdfs coresite.xml
core_site_xml_path = ""
# Path of the dai principal key tab file
key_tab_path = ""

# HDFS connector
# Auth type can be Principal/keytab/keytabPrincipal
# Specify HDFS Auth Type, allowed options are described below
# Principal : Authenticate with HDFS with a principal user
# Keytab : Authenticate with a Key tab, preferably the keytab is created

for the dai application
# Impersonate with Keytab : Login with Impersonation using a dai keytab
hdfs_auth_type = "keytab"
# DAI recomends a user to be created in kerberos for the driverless ai

application
# specificy the kerberos app principal user below
hdfs_app_principal_user = ""
# Specify the user id of the current user here as user@realm
hdfs_app_login_user = ""
#
hdfs_app_jvm_args = ""

#S3 Connector credentials
aws_access_key_id = ""
aws_secret_access_key = ""

Can I set up SSL on Driverless AI?

Yes, you can set up HTTPS/SSL on Driverless AI running in an AWS envi-
ronment. HTTPS/SSL needs to be configured on the host machine, and the
necessary ports will need to be opened on the AWS side. You will need to have
your own SSL cert or you can create a self signed cert for yourself.

http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/index.html
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The following is a very simple example showing how to configure HTTPS
with a proxy pass to the port on the container 12345 with the keys placed in
/etc/nginx/. Replace <server name> below with your server name.

server {
listen 80;
return 301 https://$host$request_uri;

}

server {
listen 443;

# Specify your server name here
server_name <server_name>;

ssl_certificate /etc/nginx/cert.crt;
ssl_certificate_key /etc/nginx/cert.key;
ssl on;
ssl_session_cache builtin:1000 shared:SSL:10m;
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers HIGH:!aNULL:!eNULL:!EXPORT:!CAMELLIA:!DES:!MD5:!PSK:!RC4;
ssl_prefer_server_ciphers on;

access_log /var/log/nginx/dai.access.log;

location / {
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

# Fix the ?It appears that your reverse proxy set up is broken" error.
proxy_pass http://localhost:12345;
proxy_read_timeout 90;

# Specify your server name for the redirect
proxy_redirect http://localhost:12345 https://<server_name>;

}
}

More information about SSL for Nginx in Ubuntu 16.04 can be found here:
https://www.digitalocean.com/community/tutorials/how-
to-create-a-self-signed-ssl-certificate-for-nginx-in-
ubuntu-16-04.

Is there a file size limit for datasets?

The file size for datasets is limited by GPU memory, but we continue to make
optimizations for getting more data into an experiment.

How does Driverless AI detect the ID column?

The ID column logic is that the column is named ’id’, ’Id’, ’ID’ or ’iD’ exactly.
(It does not check the number of unique values.) For now, if you want to ensure
that your ID column is downloaded with the predictions, then you would want
to name it one of those names.

Can Driverless AI handle data with missing values/nulls?

https://www.digitalocean.com/community/tutorials/how-to-create-a-self-signed-ssl-certificate-for-nginx-in-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-self-signed-ssl-certificate-for-nginx-in-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-create-a-self-signed-ssl-certificate-for-nginx-in-ubuntu-16-04
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Yes, data that is imported into Driverless AI can include missing values. Feature
engineering is fully aware of missing values, and missing values are treated as
information - either as a special categorical level or as a special number. So for
target encoding, for example, rows with a certain missing feature will belong
to the same group; for clustering, we impute missing values; for frequency
encoding, we count the number of rows that have a certain missing feature.

If I drop several columns from the Train dataset, will Driveless AI under-
stand that it needs to drop the same columns from the Test dataset?

If you drop columns from the dataset, Driverless AI will do the same on the
test dataset.

Which algorithms are used in Driverless AI?

Currently we only use XGBoost GPU for building models and testing the
engineered features. Additional GPU algorithms will be added at a later date.

Does Driverless AI perform internal or external validation?

Driverless AI does internal validation when only training data is provided. It
does external validation when training and validation data are provided. In
either scenario, the validation data is used for all parameter tuning (models
and features), not just for feature selection. Parameter tuning includes target
transformation, model selection, feature engineering, feature selection, stacking,
etc.

Specifically:

• Internal validation (only training data given):

– Ideal when data is close to iid

– Internal holdouts are used for parameter tuning

– Will do the full spectrum from single holdout split to 5-fold CV,
depending on accuracy settings

– No need to split training data manually

– Final models are trained using CV on the training data

• External validation (training + validation data given):

– Ideal when there?s drift in the data

– No training data wasted during training since training data not used
for parameter tuning

– Entire validation set used for parameter tuning
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– No CV possible, since we explicitly do not want to overfit on the
training data

Tip: If you want both training and validation data to be used for parameter
tuning (the training process), just concatenate the datasets together and
turn them both into training data for the internal validation method.

How does Driverless AI prevent overfitting?

Driverless AI performs a number of checks to prevent overfitting. For example,
during certain transformations, Driverless AI calculates the average on out-of-
fold data using cross validation. Driverless AI also performs early stopping,
ensuring that the model build will stop when it ceases to improve. And additional
steps to prevent overfitting include checking for IID and avoiding leakage during
feature engineering.

A blog post describing Driverless AI overfitting protection in greater detail is
currently in development.

What can I do if my training and validation data points are not identical?

If you feel that training and validation data points are not identical, you can
optionally provide an observation weights column (such as exponential weighting
in time, different weights for valid vs train, etc.). All of our algorithms and
metrics in Driverless AI support observation weights.

How does Driverless AI handle fold assignments for weighted data?

Currently, Driverless AI does not take the weights into account during fold
creation, but you can provide a fold column to enforce your own grouping, i.e.,
to keep rows that belong to the same group together (either in train or valid).
The fold column has to be a categorical column (integers ok) that assigns a
group ID to each row. (It needs to have at least 5 groups, since we do up to
5-fold CV.)

Where can I get details of the various transformations performed in an
experiment?

Inside the /tmp folder, you will see a folder with your experiment ID, and within
that folder is a *logs <experiment>.zip file. This zip file includes summary
information, log information, and a gene summary.txt file with details of the
transformations used in the experiment.

How can I download the predictions onto the machine where Driverless
AI is running?

When you select Score on Another Dataset the predictions will be automati-
cally downloaded to the machine where Driverless AI is running. It will be saved
in the following locations:
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• Training Data Predictions: tmp/experiment name/train preds.csv

• Testing Data Predictions: tmp/experiment name/test preds.csv

• New Data Predictions: tmp/experiment name/automatically generated name.
Note that the automatically generated name will match the name of the
file downloaded to your local computer.
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