H₂O.di

Distributed GLM

Tom Kraljevic January 27, 2015 Atlanta, GA @ Polygon

Outline for today's talk

About H2O.ai (the company) (5 minutes)

About H2O (the software) (10 minutes)

H2O's Distributed GLM (30 minutes)

Demo of GLM (15 minutes)

Q & A (up to 30 minutes)

Content for today's talk can be found at:

https://github.com/h2oai/h2o-meetups/tree/master/2015_01_27_GLM

H2O.ai Overview

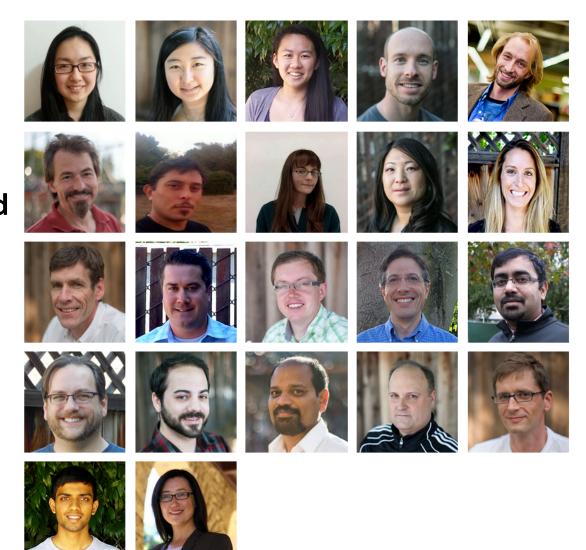
Founded: 2011 venture-backed, debuted in 2012

Product: H2O open source in-memory prediction engine

• Team: 30

HQ: Mountain View, CA

- SriSatish Ambati CEO & Co-founder (Founder Platfora, DataStax; Azul)
- Cliff Click CTO & Co-founder (Creator Hotspot, Azul, Sun, Motorola, HP)
- Tom Kraljevic VP of Engineering (CTO & Founder Luminix, Azul, Chromatic)



Distributed
Systems
Engineers
Making
ML Scale!

Stephen Boyd

Professor of EE Engineering Stanford University

Rob Tibshirani

Professor of Health Research and Policy, and Statistics Stanford University

Trevor Hastie

Professor of Statistics Stanford University

What is H2O?

Math Platform

Open source in-memory prediction engine

- Parallelized and distributed algorithms making the most use out of multithreaded systems
- GLM, Random Forest, GBM, PCA, etc.

API

Easy to use and adopt

- Written in Java perfect for Java Programmers
- REST API (JSON) drives H2O from R, Python, Excel, Tableau

Big Data

More data? Or better models? BOTH

- Use all of your data model without down sampling
- Run a simple GLM or a more complex GBM to find the best fit for the data
- More Data + Better Models = Better Predictions

Algorithms on H₂O

Supervised Learning

Statistical Analysis

Ensembles

Deep Neural Networks

- Generalized Linear Models: Binomial, Gaussian, Gamma, Poisson and Tweedie
- Cox Proportional Hazards Models
- Naïve Bayes
- Distributed Random Forest: Classification or regression models
- Gradient Boosting Machine: Produces an ensemble of decision trees with increasing refined approximations
- Deep learning: Create multi-layer feed forward neural networks starting with an input layer followed by multiple layers of nonlinear transformations

Algorithms on H₂O

Unsupervised Learning

Clustering

• **K-means**: Partitions observations into k clusters/groups of the same spatial size

Dimensionality Reduction

 Principal Component Analysis: Linearly transforms correlated variables to independent components

Anomaly Detection

 Autoencoders: Find outliers using a nonlinear dimensionality reduction using deep learning

H₂O.ai Machine Intelligence

Python JSON Scala Java Tableat Excel

H₂O Prediction Engine

SDK / API

Rapids Query R-engine

Nano Fast Scoring Engine

Deep Learning

Cluster
Classify
Regression
Trees
Boosting
Forests
Solvers
Gradients

Ensembles

On Premise
On Hadoop & Spark
On EC2

Per Node

2M Row ingest/sec

50M Row Regression/sec

750M Row Aggregates / sec

Memory Manager Columnar Compression

In-Mem Map Reduce

Distributed fork/join

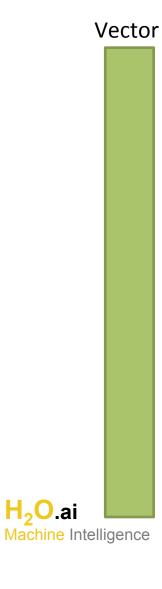
H₂O.ai Machine Intelligence

HDFS

S3

NoSQL

Distributed GLM



Vector

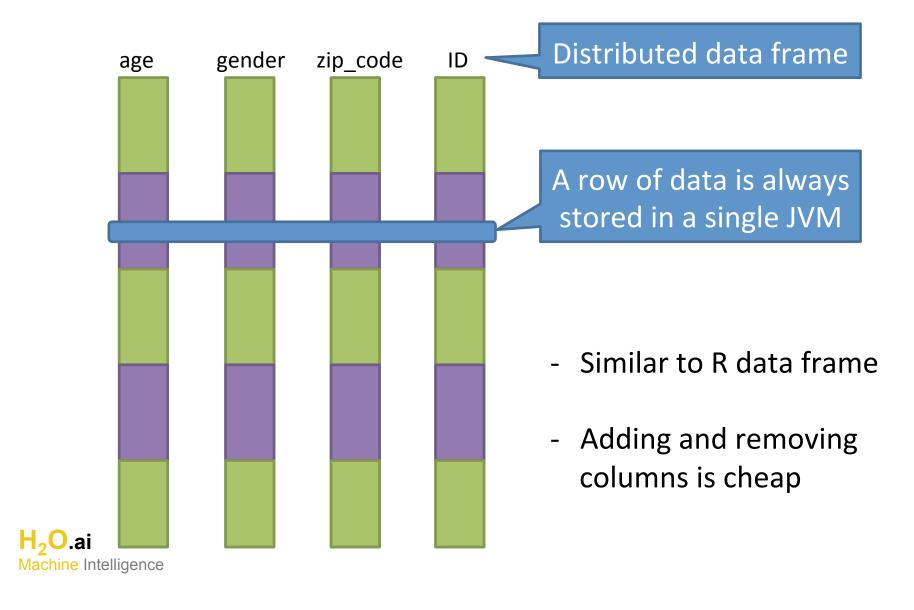
The vector may be very large (billions of rows)

- Stored as a compressed column (often 4x)
- Access as Java primitives with on-the-fly decompression
- Support fast Random access
- Modifiable with Java memory semantics

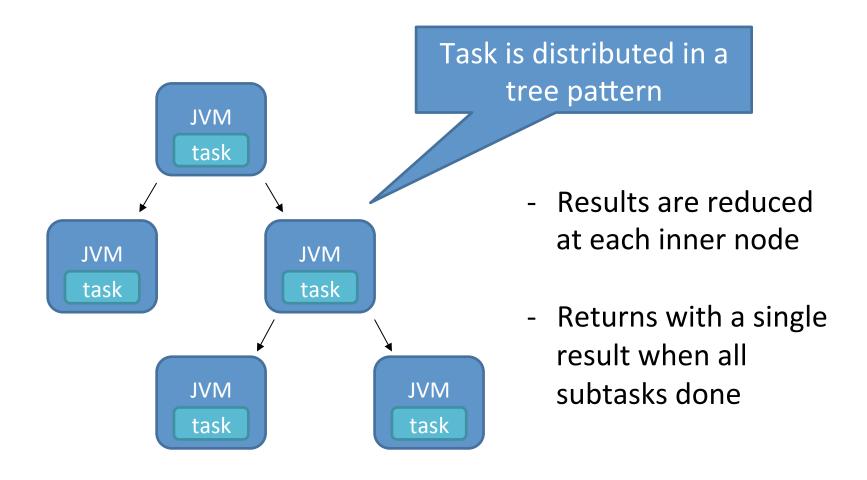
Vector

Large vectors must be distributed over multiple JVMs

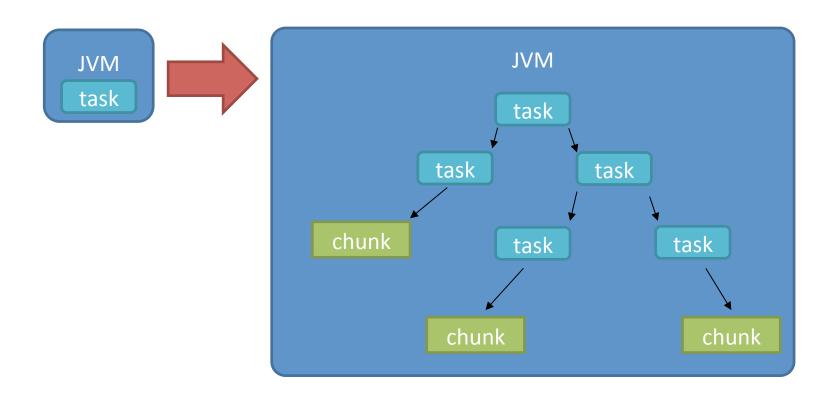
- Vector is split into chunks
- Chunk is a unit of parallel access
- Each chunk ~ 1000 elements
- Per-chunk compression
- Homed to a single node
- Can be spilled to disk
- GC very cheap



Distributed Fork/Join



Distributed Fork/Join



On each node the task is parallelized using Fork/Join

H2O's GLM Fit

$$\min_{\beta} \left(\frac{1}{N} \log_{\text{likelihood(family, }\beta)} + \left(\frac{1}{N} \alpha \|\beta\|_{1} + \frac{1-\alpha}{2} \|\beta\|_{2} \right) \right)$$

Classic GLM

Regularization penalty

$$E(y) = link^{-1}(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_n x_n)$$

Model interpretability

Features of H2O's GLM

- Support for various GLM families
 - Gaussian (numeric regression)
 - Binomial (binary classification / logistic regression)
 - Poisson
 - Gamma
- Regularization
 - L1 (Lasso) (+ Strong rules)
 - L2 (Ridge regression)
 - Elastic-net
- Automatic and efficient handling of categorical variables
- Efficient distributed n-fold cross validation
- Grid search over elastic-net parameter α
- Lambda search for best model
- Upper and lower bounds for coefficients

Input Parameters: Predictors, Response and Family

```
df = iris
df$is setosa = df$Species == 'setosa'
library(h2o)
h = h2o.init()
h2odf = as.h2o(h, df)
# Y is a T/F value
v = 'is setosa'
x = c("Sepal.Length", "Sepal.Width",
      "Petal.Length", "Petal.Width")
binary classification model =
  h2o.glm(data = h2odf, y = y, x = x, family = "binomial")
# Y is a real value
y = 'Sepal.Length'
x = c("Sepal.Width",
      "Petal.Length", "Petal.Width")
numeric regression model =
  h2o.glm(data = h2odf, y = y, x = x, family = "gaussian")
```

H₂O.ai
Machine Intelligence

Input Parameters: Number of iterations

```
# Specify maximum number of IRLSM iterations
# (default is 100)
h2o.glm(..., iter.max = 50)
```


Input Parameters: Regularization

```
# Enable lambda_search
h2o.glm(..., lambda_search = TRUE)

# Enable strong_rules (requires lambda_search)
h2o.glm(..., lambda_search = TRUE, strong_rules = TRUE)

# Specify max_predictors (requires lambda_search)
h2o.glm(..., lambda_search = TRUE, max_predictors = 100)

# Grid search over alpha
h2o.glm(..., alpha = c(0.05, 0.5, 0.95))

# Turn off regularization entirely
h2o.glm(..., lambda = 0)
```


Input Parameters: Cross validation

```
# Specify 5-fold cross validation

model_with_5folds = h2o.glm(data = h2odf, y = y, x = x,
family = "binomial", nfolds = 5)

print(model_with_5folds@model$auc)
print(model_with_5folds@xval[[1]]@model$auc)
print(model_with_5folds@xval[[2]]@model$auc)
print(model_with_5folds@xval[[3]]@model$auc)
print(model_with_5folds@xval[[4]]@model$auc)
print(model_with_5folds@xval[[5]]@model$auc)
```

Outputs

- Coefficients
- Normalized coefficients (variable importance)

```
Coefficients:
        Dest.ABQ
                   Dest.ACY
                               Dest.ALB
                                           Dest.AMA
                                                      Dest.ANC
         0.80322
                   -0.06288
                                0.13333
                                            0.14092
                                                       0.92581
        Dest.AT
                   Dest.AUS
                               Dest.AVL
                                           Dest.AVP
                                                      Dest.BDL
        -0.21849
                    0.78392
                               -0.34974
                                           -0.31825
                                                       0.38924
        DayofMonth
                               CRSDepTime CRSArrTime FlightNum
                    DayOfWeek
        -0.03087
                     0.02110
                                0.00029
                                            0.00027
                                                       0.00007
        Distance
                    Intercept
```

136,69614

0.00024

Outputs

- Null deviance, residual deviance
- AIC (Akaike information criterion)
- Deviance explained

Degrees of Freedom: 43942 Total (i.e. Null); 43668 Residual

Null Deviance: 60808

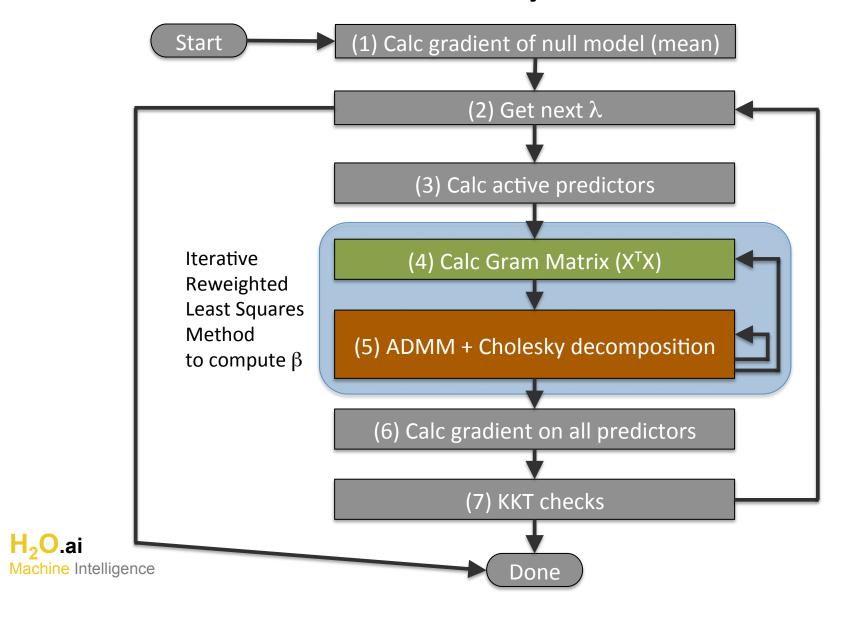
Residual Deviance: 54283 AIC: 54833

Deviance Explained: 0.10731

Outputs

- Confusion matrix (for logistic regression)
- AUC (for logistic regression)

GLM Lifecycle



GLM Runtime Cost

CPU

Memory

Calc Gram Matrix (X^TX)

$$O(\frac{M * N^2}{p * n})$$

$$O(M * N) + O(N^2 * p * n)$$
(the training data)

ADMM + Cholesky decomposition

$$O(\frac{N^3}{p})$$

 $O(N^2)$

- M Number of rows in the training data
- N Number of predictors in the training data
- p Number of CPUs per node
- n Number of nodes in the cluster

Best Practices

- GLM works best on tall and skinny datasets
 - But if you have a wide dataset, use L1 penalty and Strong Rules to eliminate columns from the model
- Give lambda search a shot
 - But specify strong_rules and/or max_predictors if it is taking too long
 - 90% of the time is spent on the larger models with the small lambdas, so specifying max_predictors helps a lot
- Keep a little bit of L2 for numerical stability (i.e. don't use alpha 1.0, use 0.95 instead)
- Use symmetric nodes in your cluster
- Bigger nodes can help the ADMM / Cholesky run faster
- Impute if you need to before running GLM

Things to Watch Out for

- Look for suspiciously different cross-validation results between folds
- Look for explained deviance
 - Too close to 0: model doesn't predict well
 - Too close to 1: model predicts "too" well (one of your input cols is cheating)
- Same for AUC
 - Too close to 0.5: model doesn't predict well
 - Too close to 1: model predicts "too" well
- See if GLM stops early for a particular lambda that interests you (performing all the iterations probably means the solution isn't good)
- Too many N/As in your data (GLM discards rows with N/A values)
 - If you have a really bad column, you might accidentally be losing all your rows.

H2O Billion Row Machine Learning BenchmarkGLM Logistic Regression

Compute Hardware: AWS EC2 c3.2xlarge - 8 cores and 15 GB per node, 1 GbE interconnect Airline Dataset 1987-2013, 42 GB CSV, 1 billion rows, 12 input columns, 1 outcome column 9 numerical features, 3 categorical features with cardinalities 30, 376 and 380

Demonstration

Q & A

Thanks for attending!

Content for today's talk can be found at:

https://github.com/h2oai/h2o-meetups/tree/master/2015_01_27_GLM

