Distributed GLM

Tom Kraljevic
January 27, 2015
Atlanta, GA @ Polygon

Outline for today’s talk

About H20.ai (the company) (5 minutes)
About H20 (the software) (10 minutes)

H20O’s Distributed GLM (30 minutes)
Demo of GLM (15 minutes)
Q&A (up to 30 minutes)

Content for today’s talk can be found at:

https://github.com/h20ai/h20-meetups/tree/master/2015 01 _27 GLM

.ai
Intelligence

H20.ai Overview

* Founded: 2011 venture-backed, debuted in 2012

* Product: H20 open source in-memory prediction engine

* Team: 30

* HQ: Mountain View, CA

e SriSatish Ambati — CEO & Co-founder (Founder Platfora, DataStax; Azul)

e Cliff Click — CTO & Co-founder (Creator Hotspot, Azul, Sun, Motorola, HP)
 Tom Kraljevic — VP of Engineering (CTO & Founder Luminix, Azul, Chromatic)

.ai
Intelligence

Distributed
Systems

Engineers
Making
ML Scale!

.ai
Intelligence

& cientific Advisory Council

Stephen Boyd Rob Tibshirani Trevor Hastie
Professor of EE Engineering Professor of Health Research Professor of Statistics
Stanford University and Policy, and Statistics Stanford University

Stanford University

.ai
Intelligence

|
What is H20?
VEILGRLELGIIE Open source in-memory prediction engine

¢ Parallelized and distributed algorithms making the most use out of
multithreaded systems

e GLM, Random Forest, GBM, PCA, etc.

API Easy to use and adopt

e Written in Java — perfect for Java Programmers
e REST API (JSON) — drives H20 from R, Python, Excel, Tableau

Big Data More data? Or better models? BOTH

e Use all of your data — model without down sampling
e Run a simple GLM or a more complex GBM to find the best fit for the data
e More Data + Better Models = Better Predictions

.ai
Intelligence

Algorithms on H20

Supervised Learning

 Generalized Linear Models: Binomial,
Gaussian, Gamma, Poisson and Tweedie

Statistical Analysis « Cox Proportional Hazards Models
* Naive Bayes

* Distributed Random Forest: Classification or
regression models

Ensembles - Gradient Boosting Machine: Produces an
ensemble of decision trees with increasing
refined approximations

» Deep learning: Create multi-layer feed
forward neural networks starting with an input
layer followed by multiple layers of nonlinear
transformations

Deep Neural Networks

.ai
Intelligence

Algorithms on H20

Unsupervised Learning

: K-means: Partitions observations into k
Clustering clusters/groups of the same spatial size

* Principal Component Analysis: Linearly
Dimensionality Reduction transforms correlated variables to independent
components

« Autoencoders: Find outliers using a nonlinear
dimensionality reduction using deep learning

Anomaly Detection

.ai
Intelligence

Python
JSON
A
Scala
Java
Tableau
Excel

H,O Prediction Engine

On Premise

On Hadoop & Spark
On EC2

SDK / API

Rapids Query R-engine Nano Fast Scoring Engine

In-Mem Map Reduce Deep Learning

Distributed fork/join Per Node

pA\Y/ Row ingest/sec

SOM Row Regression/sec

Classify
Regression
Boosting

Memory Manager

) 750M Row Aggregates / sec
Columnar Compression

.ai
Intelligence HDFS SQL

Distributed GLM

Distributed Data Taxonomy

Vector

.ai
Intelligence

Distributed Data Taxonomy

Vector

The vector may be very large
(billions of rows)

- Stored as a compressed column (often 4x)

- Access as Java primitives with
on-the-fly decompression

- Support fast Random access

- Modifiable with Java memory semantics

.ai
Intelligence

Distributed Data Taxonomy

Vector Large vectors must be distributed
over multiple JVMs

.ai
Intelligence

Vector is split into chunks
Chunk is a unit of parallel access
Each chunk ~ 1000 elements
Per-chunk compression

Homed to a single node

Can be spilled to disk

GC very cheap

Distributed Data Taxonomy

age gender zip_code ID Distributed data frame

A row of data is always
stored in a single JVM

- Similar to R data frame

- Adding and removing
columns is cheap

0 .ai

Machine Intelligence

Distributed Fork/Join

Task is distributed in a
tree pattern

- Results are reduced
at each inner node

- Returns with a single
result when all
subtasks done

.ai
Intelligence

Distributed Fork/Join

JIVM
task

On each node the task is parallelized using Fork/Join

0 .ai

Machine Intelligence

H20’s GLM Fit

mé” %Iog_likelihood(family, ﬁﬂ+[7x(oc B, + LTaﬁzﬂ)

Classic GLM Regularization

penalty

E(y) = link(Bg + P1X; + PrXy + ... BX,)

Model interpretability

.ai
Intelligence

Features of H2O’s GLM

Support for various GLM families
— Gaussian (numeric regression)
— Binomial (binary classification / logistic regression)
— Poisson
— Gamma
Regularization
— L1 (Lasso) (+ Strong rules)
— L2 (Ridge regression)
— Elastic-net
Automatic and efficient handling of categorical variables
Efficient distributed n-fold cross validation
Grid search over elastic-net parameter a
Lambda search for best model

Upper and lower bounds for coefficients

.ai
Intelligence

Input Parameters:
Predictors, Response and Family

df = iris
df$is_setosa = df$Species == 'setosa'

library(h2o)
h = h2o.1init()
h2odf = as.h2o(h, df)

#Y is a T/F value
y 'is_setosa'
x = c("Sepal.Length", "Sepal.Width",
"Petal.Length", "Petal.Width")
binary_classification_model =
h2o.glm(data = h2odf, y =y, x = x, family = "binomial")

Y is a real value
y 'Sepal.Length’
x = c("Sepal.wWidth",
"Petal.Length", "Petal.Width")
numeric_regression_model =
h2o.glm(data = h2odf, vy =y, x = x, family = "gaussian")

.ai
Intelligence

Input Parameters:
Number of iterations

Specify maximum number of IRLSM iterations
(default is 100)

h2o.glm(.., iter.max = 50)

.ai
Intelligence

Input Parameters:
Regularization

Enable lambda_search
h2o.glm(.., lambda_search = TRUE)

Enable strong_rules (requires lambda_search)
h2o.glm(.., lambda_search = TRUE, strong_rules = TRUE)

Specify max_predictors (requires lambda_search)
h2o.glm(.., lambda_search = TRUE, max_predictors = 100)

Grid search over alpha
h2o0.glm(.., alpha = c(0.05, 0.5, 0.95))

Turn off regularization entirely
h20.glm(.., lambda = 0)

.ai
Intelligence

Input Parameters:
Cross validation

Specify 5-fold cross validation

model_with_5folds = h2o.glm(data = h2odf, vy =y, x = X,
family = "binomial", nfolds = 5)

print(model_with_5folds@model$auc)

print(model_with_5folds@xvall[1]]@model$auc)
print(model with_5folds@xvall[2]]J@model$auc)
print(model_with_5folds@xvall[3]]@model$auc)
print(model with 5folds@xvall[4]]@model$auc)
print(model with_5folds@xvall[5]]J@model$auc)

.ai
Intelligence

Outputs

e Coefficients
 Normalized coefficients (variable importance)

Coefficients:
Dest.ABQ Dest.ACY Dest.ALB Dest.AMA Dest.ANC
0.80322 -0.06288 0.13333 0.14092 0.92581
Dest.AT Dest.AUS Dest.AVL Dest.AVP Dest.BDL
-0.21849 0.78392 -0.34974 -0.31825 0.38924

DayofMonth DayOfWeek CRSDepTime CRSArrTime FlightNum

-0.03087 0.02110 0.00029 0.00027 0.00007
Distance Intercept
0.00024 136.69614

.ai
Intelligence

Outputs

* Null deviance, residual deviance
* AIC (Akaike information criterion)
* Deviance explained

Degrees of Freedom: 43942 Total (i.e. Null); 43668 Residual
Null Deviance: 60808

Residual Deviance: 54283 AIC: 54833

Deviance Explained: 0.10731

.ai
Intelligence

Outputs

e Confusion matrix (for logistic regression)
* AUC (for logistic regression)

Confusion Matrix:
Predicted
Actual false true Error
false 6747 14126 0.67676
true 2490 20580 ©0.10793
Totals 9237 34706 ©0.37813

AUC = 0.7166454 (on train)

.ai
Intelligence

GLM Lifecycle

Start (1) Calc gradient of null model (mean)

(2) Get next A

(3) Calc active predictors

/
Iterative (4) Calc Gram Matrix (XTX)
Reweighted

Least Squares
Method
to compute

(5) ADMM + Cholesky decomposition [l

&

(6) Calc gradient on all predictors

(7) KKT checks

ai
Intelligence Done

GLM Runtime Cost

CPU

Memory

M * N2
oM™ N*) T'om * N) + O(NZ * p * n)

P

5T 2

.ai
Intelligence

N3
ADMM + Cholesky O(
decomposition p

(the training data)

O(N?)

Number of rows in the training data
Number of predictors in the training data
Number of CPUs per node

Number of nodes in the cluster

Best Practices

GLM works best on tall and skinny datasets

— But if you have a wide dataset, use L1 penalty and Strong Rules
to eliminate columns from the model

Give lambda search a shot

— But specify strong_rules and/or max_predictors if it is taking too
long

— 90% of the time is spent on the larger models with the small
lambdas, so specifying max_predictors helps a lot

Keep a little bit of L2 for numerical stability (i.e. don’t use
alpha 1.0, use 0.95 instead)

Use symmetric nodes in your cluster
Bigger nodes can help the ADMM / Cholesky run faster
Impute if you need to before running GLM

.ai
Intelligence

Things to Watch Out for

Look for suspiciously different cross-validation results between
folds
Look for explained deviance

— Too close to 0: model doesn’t predict well

— Too close to 1: model predicts “too” well (one of your input cols is
cheating)

Same for AUC
— Too close to 0.5: model doesn’t predict well
— Too close to 1: model predicts “too” well

See if GLM stops early for a particular lambda that interests you
(performing all the iterations probably means the solution isn’t
good)

Too many N/As in your data (GLM discards rows with N/A values)

— If you have a really bad column, you might accidentally be losing all
your rows.

.ai
Intelligence

H20 Billion Row Machine Learning Benchmark

GLM Logistic Regression

Hadoop/Mahout

34.9 sec, 3 iterations
numerical and categorical

H20 16 EC2 nodes 16.5 sec, 2 iterations
numerical

14.2 sec, 3 iterations
numerical and categorical

H20 16 EC2 nodes

H20 48 EC2 nodes

H20 48 EC2 nodes 5.6 sec, 2 iterations
numerical

H,O

Compute Hardware: AWS EC2 c3.2xlarge - 8 cores and 15 GB per node, 1 GbE interconnect

Airline Dataset 1987-2013, 42 GB CSV, 1 billion rows, 12 input columns, 1 outcome column
9 numerical features, 3 categorical features with cardinalities 30, 376 and 380

.ai
Intelligence

.ai
Intelligence

Demonstration

Q&A

Thanks for attending!

Content for today’s talk can be found at:

https://github.com/h20ai/h20-meetups/tree/master/2015 01 27 GLM

.ai
Intelligence

