Building a Smarter WebApp with
a Generated POJO Model

H20.ai
Tom Kraljevic
September 17, 2015



Target Audience

e JavaScript WebApp developer who wants to
incorporate machine learning

e More code, less PowerPoint



Building a Smarter Application

* Q: What is a smarter application?

* A: An app that learns from data
[From rules-based to model-based]



Software Pieces

* Front-end
— Web browser
— JavaScript application (run in the browser)

* Back-end
— Jetty servlet container
— H20-generated model POJO (hosted by servlet container)

e Qut-of-band
— H20



Step 1:
Step 2:
Step 3:
Step 4.
Step 5:
Step 6:
Step 7:
Step 8:

Overview

Picking the question you want your model to answer
Using your data to build a model

Exporting the generated model as a Java POJO
Compiling the model

Hosting the model in a servlet container

Running the JavaScript app in a browser

Using a REST API to make predictions

Incorporating the prediction into your application



Resources

This meetup

— https://github.com/h20ai/h20-meetups/tree/master/
2015 09 17 PojoWebApp

H20-3 Slater Release

— http://h2o-release.s3.amazonaws.com/h2o/rel-slater/1/
index.html

Generated POJO Model Javadoc

— http://h2o-release.s3.amazonaws.com/h2o/rel-slater/1/
docs-website/h20-genmodel/javadoc/index.html

POJO REST API Example

— https://github.com/h20ai/h20-world-2015-training/tree/
master/tutorials/pojo_webapp



Demonstration



Next Steps for a Real Use Case

Scoring (judging how good the predictions really are)
— Need to get the correct answers from somewhere
Storing predictions (and the correct answers)
— Often Hadoop. Seems easy, but this can be real work to organize
Model update frequency
— From the stored data above
— Need depends on the problem
— Hourly, daily, monthly?
— Cost of training the model becomes a factor
Hot swapping the model
— Separating front-end and back-end makes this easier
— Java reflection for in-process hot-swap
— Load balancer for servlet container hot-swap



