The joy of Clean Data!

San Francisco Big Data Science Meetup 15 Dec 2015 Matt Dowle

Overview

- For beginners
- Examples from my background
- Tools along the way
- Live demo of "80% munging"
- How H2O fits in
- Q & A

1996 - Lehman Brothers

- Just graduated Applied Maths & Computing
- Dividend claims
- Cleaning at source; e.g. data entry typos
- Estimate cash flows, alerts etc
- Nothing fancy
- Tools: VB & Sybase
- How I accidentally created messy data

1999 - Salomon Brothers

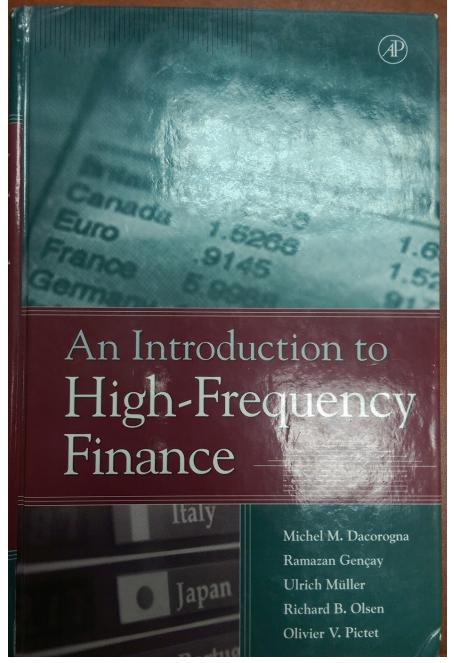
- Equity risk model
 - Multiple time series regression (10 year)
 - DEM proxy for EUR prior to 1 Jan 1999
 - IPOs get their sector's median; e.g. France Telecom
 - Abbey National X0004455
 - 90% of the lines of code was not the regression

2002 - Citigroup

- Pairs Trading
- 200 most liquid stocks
- $200 \times 199 / 2 = 19,900$ pairs
- Stock splits, id changes
- Dickey Fuller test for stationarity
- Bollinger bands => buy/sell signal
- Excel spreadsheet to clients with embedded S-PLUS plot, daily, 50 custom variants
- Rebalance => orphan & surrogate pairs

2004 moved to fund management

Bigger data e.g. 25TB



ADAPTIVE DATA CLEANING

		- CLEANING	
4.1	Introdu	action: Using a Filter to Clean the Data	82
4.2	Data a	nd Data Errors	84
	4.2.1	Time Series of Ticks	84
	4.2.2	Data Error Types	85
4.3	Genera	al Overview of the Filter	86
	4.3.1	The Functionality of the Filter	86
	4.3.2	Overview of the Filtering Algorithm and Its Structure	88
4.4	Basic l	Filtering Elements and Operations	88
	4.4.1	Credibility and Trust Capital	89
	4.4.2	Filtering of Single Scalar Quotes: The Level Filter	91
	4.4.3	Pair Filtering: The Credibility of Returns	93
	4.4.4	Computing the Expected Volatility	96
	4.4.5	Pair Filtering: Comparing Quote Origins	98
	4.4.6	A Time Scale for Filtering	100
4.5	The Sc	calar Filtering Window	103
	4.5.1	Entering a New Quote in the Scalar Filtering Window	104
	4.5.2	The Trust Capital of a New Scalar Quote	104
	4.5.3	Updating the Scalar Window	106
	4.5.4	Dismissing Quotes from the Scalar Window	107
	4.5.5	Updating the Statistics with Credible Scalar Quotes	108
	4.5.6	A Second Scalar Window for Old Valid Quotes	108
4.6	The Fu	Ill-Quote Filtering Window	109
	4.6.1	Quote Splitting Depending on the Instrument Type	110
	4.6.2	The Basic Validity Test	110
	4.6.3	Transforming the Filtered Variable	112
4.7	Univar	iate Filtering	113

Over cleaning

1. I queried for intra-day auctions select from quote where bid>ask No results; i.e. all bid<ask. Asked data provider Grrrr

2. Negative prices can be correct

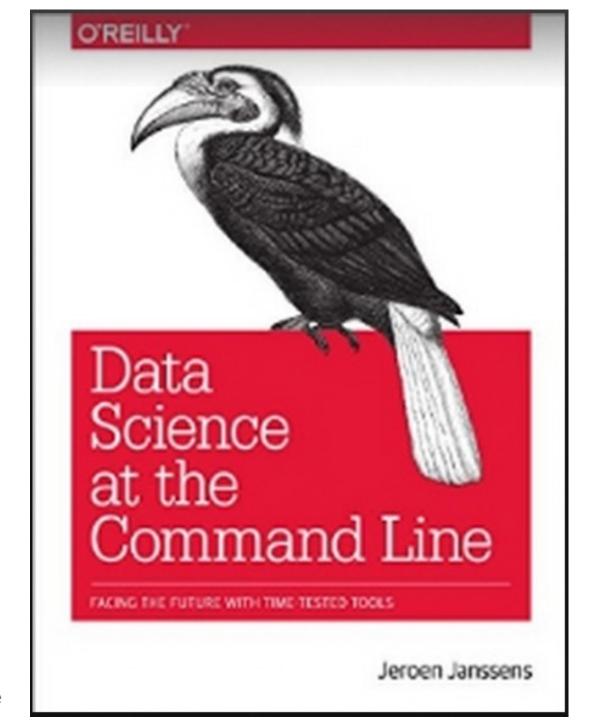
Tools

KDB http://kx.com/

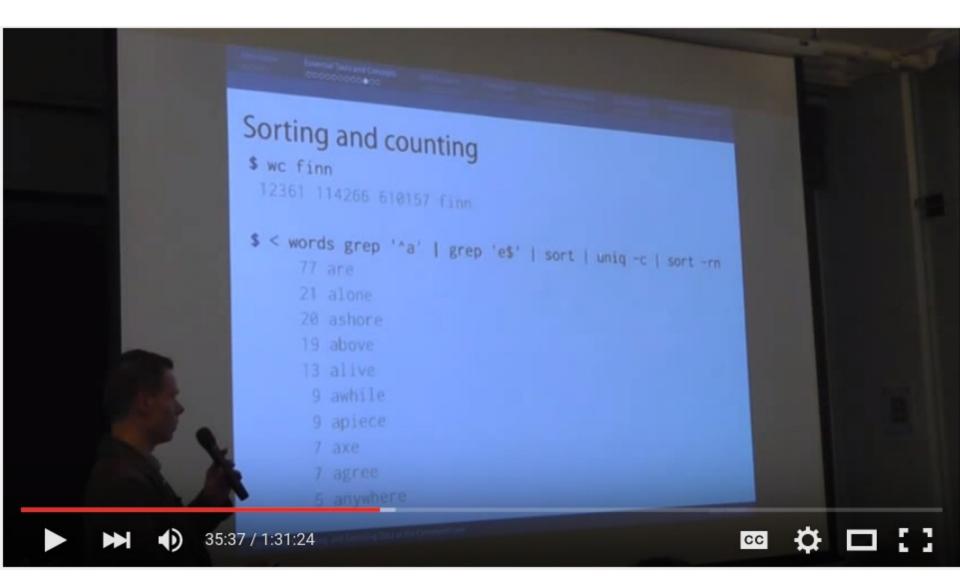
@kxsystems

OneTick https://www.onetick.com/

@OneMarketData



https://www.youtube.com/watch?v=QxpOKbv-KQU



alias	csvsql	json2csv	shuf
awk	csvstack	less	sort
aws	csvstat	parallel	split
bc	curl	paste	sql2csv
bigmler	cut	pbc	tail
body	dseq	python, R and r	tapkee
cat	find	Rio	tee
cols	for	Rio-scatter	tr
csvcut	grep	run_experiment	tree
csvgrep	head	sample	uniq
csvjoin	header	scrape	WC
csvlook	in2csv	sed	weka
csvsort	jq	seq	xml2json

- Can be faster than loading the whole file into R or Python
- Can be faster workflow
- Pre-processing before loading into R or Python

tidyr by Hadley Wickham

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html

- Untidy data defined as:
 - Column headers are values, not variable names.
 - Multiple variables are stored in one column.
 - Variables are stored in both rows and columns.
 - Multiple types of observational units stored in the same table.
 - A single observational unit is stored in multiple tables.
- Solves by: gathering, separating and spreading
- That's the shape of the data. Yes, good, but not the kind of messy data I'm talking about in this presentation.

To illustrate

- In June 2013, RStudio made available download logs from their CRAN mirror http://blog.rstudio.org/2013/06/10/rstudio-cran-mirror/
- R-Bloggers search "CRAN download stats" 154 results; e.g.

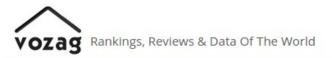
http://www.r-bloggers.com/finally-tracking-cran-packages-downloads/

https://github.com/metacran/cranlogs

http://www.r-bloggers.com/working-with-the-rstudio-cran-logs/

http://www.r-bloggers.com/cran-download-statistics-of-any-packages-rstats/

http://www.r-bloggers.com/my-r-packages-worldmap-of-downloads/



About Us

March 2015

Top 100 R Packages by Downloads

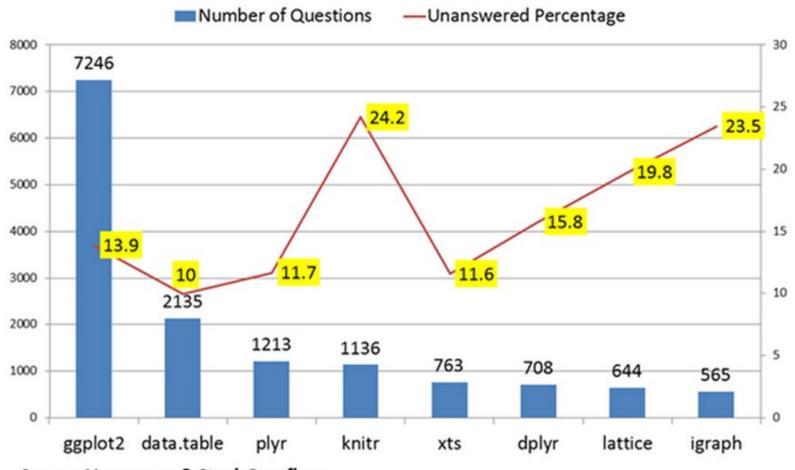
We analyzed data from Cran daily download data to understand the top R packages that were downloaded. Here is the list based on download data for a single day: Feb 28th 2015.

Get Research By Email

Rank	Package	No. of Downloads
1	Rcpp	1960
2	ggplot2	1785
3	digest	1709
4	reshape2	1651
5	plyr	1634
6	rJava	1577
7	stringr	1549
8	RColorBrewer	1497
9	colorspace	1372
10	manipulate	1363

April 2015

Number of Questions Asked & Unanswered for Top R Packages



Source: Vozag.com & Stack Overflow

- Comparing the top downloaded packages with the most discussed packages shows little correlations between them. For Instance, ggplot2 has the most questions asked & is the second highest downloaded package but data.table package (the second highest ranked R package for questions asked) is not even in the top 100 packages downloaded. Knitr is another example which is in the top 5 questions asked, but is 27th ranked in downloaded packages.
- So- does the R community need to focus on packages that have the highest questions to resolve their issues rather than the ones with the most downloads?

Let's look at the data!

Live demo of munging

Observations and comments on meetup video recording

https://youtu.be/4VWQEvYIfV8

(~ 22 mins in)

"Big data"

- 1. Data > 240GB needle-in-haystack e.g. fraud
- 2. Data < 240GB compute intensive, parallel 100's cores
- 3. Data < 240GBfeature engineering > 240GBSpeed for i) <u>production</u> and ii) <u>interaction</u>

NB: 240GB is currently largest available on EC2

http://yourdatafitsinram.com/

YES, your data fits in RAM.

	My data is:		
6		TiB	•

Dell PowerEdge R920 60 core

```
(4 * Intel® Xeon® E7-8880L 2.2GHz, 37.5M Cache, 15 Core)
with 1.5TB RAM $60k (96 * 16GB)
with 6TB $150k-$200k? (96 * 64GB)
But, still "only" 60 cores
```

In the office here we already have 2.5TB RAM and 320 cores on 10 machines.

So do many businesses.

- data.table's radix join
- Now parallel and distributed
- e.g. high cardinality 1bn/1bn/1bn row join

data.table 10 min

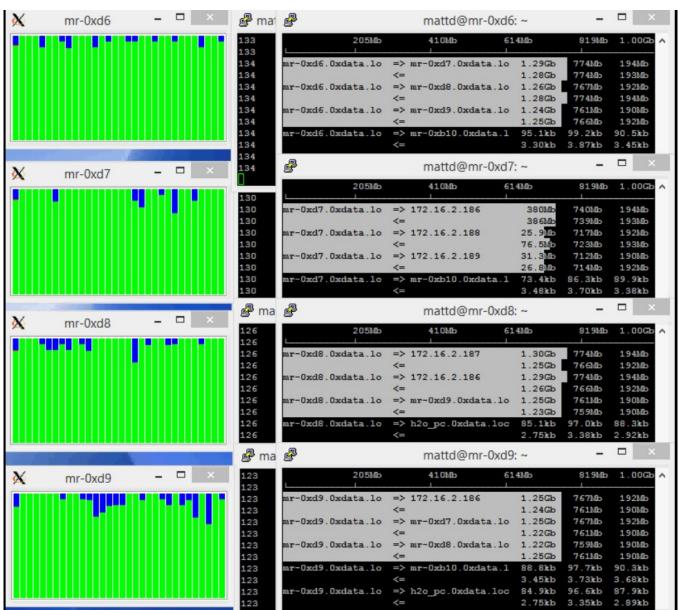
H2O 1 node 32 core 3.5 min

H2O 4 node 128 core 1.5 min => **demo**

H2O 10 node 320 core 2.0 min

Known improvements to be made

https://www.youtube.com/watch?v=8VpzNibOme0



Thank you.

Q&A