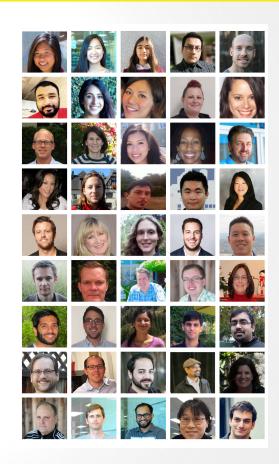
Using H2O Random Grid Search for Hyper-parameters Optimization

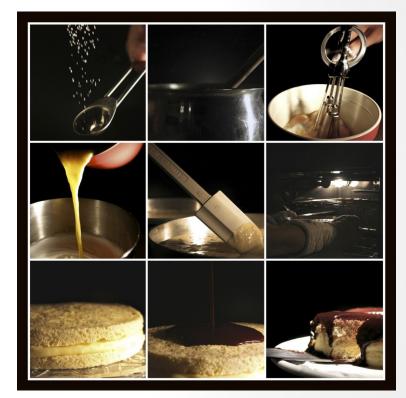

Jo-fai (Joe) Chow
Data Scientist
joe@h2o.ai

WHO AM I

- Customer Data Scientist at H2O.ai
- Background
 - Telecom (Virgin Media)
 - Data Science Platform (Domino Data Lab)
 - Water Engineering + Machine Learning Research (STREAM Industrial Doctorate Centre)

ABOUT H20

- Company
 - Team: 50 (45 shown)
 - Founded in 2012, Mountain View, California.
 - Venture capital backed
- Products
 - Open-source machine learning platform.
 - Flow (Web), R, Python, Spark, Hadoop interfaces.



ABOUT THIS TALK

- Story of a baker and a data scientist
 - Why you should care
- Hyper-parameters optimization
 - Common techniques
 - H2O Python API
- Other H2O features for streamlining workflow

STORY OF A BAKER

- Making a cake
 - Source
 - Ingredients
 - o Process:
 - Mixing
 - Baking
 - Decorating
 - End product
 - A nice looking cake

Credit: www.dphotographer.co.uk/image/201305/baking_a_cake

STORY OF A DATA SCIENTIST

- Making a data product
 - Source
 - Raw data
 - o Process:
 - Data munging
 - Analyzing/ Modeling
 - Reporting
 - End product
 - Apps, graphs or reports

Credit: www.simranjindal.com

BAKER AND DATA SCIENTIST

- What do they have in common?
 - Process is important to bakers and data scientists.
 Yet, most customers do not appreciate the effort.
 - Most customers only care about raw materials quality and end products.

WHY YOU SHOULD CARE

- We can use machine/software to automate some laborious tasks.
- We can spend more time on quality assurance and presentation.
- This talk is about making one specific task, hyper-parameters tuning, more efficient.

HYPER-PARAMETERS OPTIMISATION

Overview

- Optimizing an algorithm's performance.
 - e.g. Random Forest, Gradient Boosting Machine (GBM)
- Trying different sets of hyper-parameters within a defined search space.
- No rules of thumb.

HYPER-PARAMETERS OPTIMISATION

- Example of hyper-parameters in H2O
 - O Random Forest:
 - No. of trees, depth of trees, sample rate ...
 - Gradient Boosting Machine (GBM):
 - No. of trees, depth of trees, learning rate, sample rate ...
 - O Deep Learning:
 - Activation, hidden layer sizes, L1, L2, dropout ratios ...

COMMON TECHNIQUES

- Manual search
 - Tuning by hand inefficient
 - Expert opinion (not always reliable)
- Grid search
 - Automated search within a defined space
 - Computationally expensive
- Random grid search
 - More efficient than manual / grid search
 - Equal performance in less time

RANDOM GRID SEARCH – DOES IT WORK?

- Random Search for Hyper-Parameter Optimization
 - Journal of Machine Learning Research (2012)
 - James Bergstra and Yoshua Bengio
 - "Compared with deep belief networks configured by a thoughtful combination of manual search and grid search, purely random search found statistically equal performance on four of seven data sets, and superior performance on one of seven."

RELATED FEATURE - EARLY STOPPING

- A technique for regularization.
- Avoid over-fitting the training set.
- Useful when combined with hyper-parameter search:
 - Additional controls (e.g. time constraint, tolerance)

H2O RANDOM GRID SEARCH

- Objectives
 - Optimize model performance based on evaluation metric.
 - Explore the defined search space randomly.
 - Use early-stopping for regularization and additional controls.

RANDOM GRID SEARCH (PYTHON API)

```
# Define search space for hyper-parameters
hyper_parameters = {'ntrees':[10,50,100,200,500], 'max_depth':[5,10,15,20,25]}
# Define search criteria
search_criteria =
  "strategy": "RandomDiscrete",
  "max_runtime_secs": 600,
  "max models": 10.
  "stopping_metric": "AUTO",
  "stopping_tolerance": 0.00001,
  "stopping_rounds": 5,
  "seed": 123456
# Set up random grid search for Random Forest
grid_search = H20GridSearch(H20RandomForestEstimator, hyper_parameters, search_criteria)
grid search.train(x=["x1", "x2"], y="y", training frame=train)
# Show the search results
grid search.show()
```

RANDOM GRID SEARCH

- Outputs
 - Best model based on metric
 - A set of hyper-parameters for the best model
- Other APIs
 - o R, REST, Java (see documentation on GitHub)

OTHER H2O FEATURES

- h2oEnsemble
 - Better predictive performance
- Sparkling Water = Spark + H2O
- Plain Old Java Object (POJO)
 - Productionize H2O models

CONCLUSIONS

- Most people only care about the end product.
- Use H2O random grid search to save time on hyper-parameters tuning.
- Spend more time on quality assurance and presentation.

CONCLUSIONS

- H2O Random Grid Search
 - An efficient way to tune hyper-parameters
 - APIs for Python, R, Java, REST
 - Do check out the code examples on GitHub
- Combine with other H2O features
 - Streamline data science workflow

ACKNOWLEDGEMENTS

- GoDataDriven
- Conference sponsors
- My colleagues at H2O.ai

THANK YOU

- Resources
 - Slides + code github.com/h2oai/h2o-meetups
 - Download H2O www.h2o.ai
 - Documentation www.h2o.ai/docs/
 - o joe@h2o.ai
- We are hiring www.h2o.ai/careers/