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group 3 Friday 9:15 – 10:00 SR 12
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� grading: 2 tests + weekly exercises
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Schedule

week 1 October 6 week 8 November 24
week 2 October 13 week 9 December 1
week 3 October 20 week 10 December 15
week 4 October 27 week 11 January 12
week 5 November 3 week 12 January 19
week 6 November 10 week 13 January 26
week 7 November 17 week 14 February 2



Schedule

week 1 October 6 November 26: 1st test
week 2 October 13 week 9 December 1
week 3 October 20 week 10 December 15
week 4 October 27 week 11 January 12
week 5 November 3 January 21: 2nd test
week 6 November 10 week 13 January 26
week 7 November 17 February 2: 1st exam



Practical Topics

� lists

� strings

� trees

� sets

� combinator parsing

� lazy lists

� monads

� . . .

Theoretical Topics

� λ-calculus

� evaluation strategies

� induction

� reasoning about programs

� efficiency

� type checking/inference

� . . .



Today’s Topics

� Historical Overview

� Notions

� A Taste of Haskell

� First Steps
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Notions



State

a state is the “content” of a certain “region in memory”

Example - Assignment

after x := 10, the region called “x” has state 10

Side Effects

a function or expression has side effects if it modifies some state

Example -
∑n

i=0 i

count := 0
total := 0
while count < n

count := count + 1
total := total + count
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Example -
∑n

i=0 i

the Haskell way of summing up the numbers from 0 to n is

sum [1..n]

� [1..4] generates the list [1,2,3,4]

� sum is a predefined function, summing up the elements of a
list

Self-Made Definitions

� [m..n] computes the range of numbers from m to n

range m n = if m > n then []
else m : range (m+1) n

� sum xs computes the sum of all elements in xs

mySum [] = 0
mySum (x:xs) = x + mySum xs
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Pure Functions

a function is pure if it

� evaluates the same result, given the same arguments; and

� does not have side effects

Example - Random Numbers

The function rand (producing random numbers) is not pure

rand() = 0
rand() = 10
rand() = 42

sometimes called referential transparent
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Immutable Data

data whose state does not change after the initial creation

Example - Linked Lists

consider 2 linked lists
xs = [1,2]
ys = [3,4]

xs

1

2

ys

3

4

after concatenation
zs = xs ++ ys

zs

1

2

append elements of ys to xs

copiedcopied



Immutable Data

data whose state does not change after the initial creation

Example - Linked Lists

consider 2 linked lists
xs = [1,2]
ys = [3,4]

xs

1

2

ys

3

4

after concatenation
zs = xs ++ ys

zs

1

2

append elements of ys to xs

copiedcopied



Immutable Data

data whose state does not change after the initial creation

Example - Linked Lists

consider 2 linked lists
xs = [1,2]
ys = [3,4]

xs

1

2

ys

3

4

after concatenation
zs = xs ++ ys

zs

1

2

append elements of ys to xs

copiedcopied



Immutable Data

data whose state does not change after the initial creation

Example - Linked Lists

consider 2 linked lists
xs = [1,2]
ys = [3,4]

xs

1

2

ys

3

4

after concatenation
zs = xs ++ ys

zs

1

2

append elements of ys to xs

copiedcopied



Immutable Data

data whose state does not change after the initial creation

Example - Linked Lists

consider 2 linked lists
xs = [1,2]
ys = [3,4]

xs

1

2

ys

3

4

after concatenation
zs = xs ++ ys

zs

1

2

append elements of ys to xs

copiedcopied



Immutable Data

data whose state does not change after the initial creation

Example - Linked Lists

consider 2 linked lists
xs = [1,2]
ys = [3,4]

xs

1

2

ys

3

4

after concatenation
zs = xs ++ ys

zs

1

2

append elements of ys to xs

copiedcopied



Recursion

a function is recursive if it is used in its own definition

Example - Factorial Numbers

factorial n =
if n < 2
then 1
else n * factorial (n - 1)
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Evaluating Functions by Hand (aka Equational Reasoning)

� functions are defined by equations and pattern matching

� general idea: “replace equals by equals”

Example - mySum

given the following two equations for mySum

mySum [] = 0 (1)

mySum (x :xs) = x + mySum xs (2)

empty list

list with “head” x and “tail” xs

we evaluate mySum [1, 2, 3] like

mySum [1, 2, 3] = 1 + mySum [2, 3] using (2)
= 1 + (2 + mySum [3]) using (2)
= 1 + (2 + (3 + mySum [])) using (2)
= 1 + (2 + (3 + 0)) using (1)
= 6 by def. of +
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A Taste of Haskell



Haskell

� is a pure (hence, also no side effects) language

� functions are defined by equations and pattern matching

Example - qsort

� sort list of elements smaller than or equal to x

� sort list of elements larger than x

� insert x in between

qsort [] = []
qsort (x:xs) = qsort leq ++ [x] ++ qsort gt

where

leq = [a | a <- xs, a <= x]
gt = [b | b <- xs, b > x]
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First Steps



The Haskell Platform

� available from http://hackage.haskell.org/platform/

� ships with the most widely used Haskell compiler: GHC

� and its interpreter GHCi

Starting the Interpreter (GHCi)

$ ghci
GHCi, version 6.12.1: http://www.haskell.org/ghc/
:? for help
...
Prelude>

http://hackage.haskell.org/platform/
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The Standard Prelude

� on startup GHCi loads the file Prelude.hs, importing many
standard functions

Examples

� arithmetic: +, -, *, /, ^, mod, div

� lists

drop drop the first n elements from a list
head extract the first element from a list
length number of elements in a list
reverse reverse the order of elements in a list
sum sum up the elements of a list
tail obtain the list without its first element
take take the first n elements from a list

� note: in code examples Prelude functions are denoted
like this and others like this
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Function Application

� in mathematics: function application is denoted by enclosing
the arguments in parenthesis, whereas multiplication of two
arguments is often implicit (by juxtaposition)

� in Haskell: reflecting its primary status, function application is
denoted silently (by juxtaposition), whereas multiplication is
denoted explicitly by *

Examples

Mathematics Haskell

f (x) f x
f (x , y) f x y
f (g(x)) f (g x)
f (x , g(y)) f x (g y)
f (x) g(y) f x * g y
f (a, b) + c d f a b + c*d
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Haskell Scripts

� define new functions inside scripts

� text file containing definitions

� common suffix .hs

My First Script - test.hs

� set editor from inside GHCi :set editor vim

� start editor :edit test.hs and type

double x = x + x
quadruple x = double (double x)

� load script

Prelude> :load test.hs
[1 of 1] Compiling Main ( test.hs, interpreted )
Ok, modules loaded: Main.
*Main>
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Interpreter Commands

Command Meaning

:load 〈name〉 load script 〈name〉
:reload reload current script
:edit 〈name〉 edit script 〈name〉
:edit edit current script
:type 〈expr〉 show type of 〈expr〉
:set 〈prop〉 change various settings
:show 〈info〉 show various information
:! 〈cmd〉 execute 〈cmd〉 in shell
:? show help text
:quit bye-bye!



Example Session

> :load test.hs
> quadruple 10
40
> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]
> :edit test.hs

factorial n = product [1..n]
average ns = sum ns `div` length ns

> :reload
> factorial 10
3628800
> average [1,2,3,4,5]
3

enclosing a function in `. . . ` turns it infix
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Naming Requirements

names of functions and their arguments have to conform to the
following syntax

〈lower〉 def
= a | . . . | z | _

〈upper〉 def
= A | . . . | Z

〈digit〉 def
= 0 | . . . | 9

〈name〉 def
= 〈lower〉(〈lower〉 | 〈upper〉 | 〈digit〉 | ')∗

choice

zero ore more times

Reserved Names

case class data default deriving do else foreign

if import in infix infixl infixr instance let

module newtype of then type where _

Examples

myFun fun1 arg_2 x'
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The Layout Rule

� items that start in the same column are grouped together
� by increasing indentation, items may span multiple lines
� groups end at EOF or when indentation decreases
� ignore layout: enclosing groups in braces ({,}) and separating

items by semicolons (;)
� the content of a script is a group, nested groups are started by

one of where, let, do, and of

Examples

main =
let x = 1

y = 1
in

putStrLn (take
(x+y) (zs++us))
where

zs = []
us = "abc"

without using layout

main =
let {x = 1; y = 1} in

putStrLn (take (x+y) (zs++us))
where {zs = []; us = "abc"}
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Comments

there are two kinds of comments

� single-line comments: starting with -- and extending to EOL

� multi-line comments: enclosed in {- and -}

Examples

-- Factorial of a positive integer:
factorial n = product [1..n]

-- Average of a list of integers:
average ns = sum ns `div` length ns

{- currently not used
double x = x + x
quadruple x = double (double x)
-}
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Exercises (for October 15th)

1. read
http://haskell.org/haskellwiki/Functional_programming
http://haskell.org/haskellwiki/Haskell_in_5_steps

2. work through lessons 1 to 3 on http://tryhaskell.org/
3. explain and correct the 3 syntactic errors in the script:

N = a 'div' length xs
where

a = 10
xs = [1,2,3,4,5]

4. Show how the library function last (selecting the last
element of a non-empty list) could be defined in terms of the
Prelude functions used in this lecture. Can you think of
another possible definition?

5. Show two possible definitions of the library function init
(removing the last element from a list) in terms of the
functions introduced so far.

6. Use recursion to define a function gcd, computing the
greatest common divisor of two given integers.

http://haskell.org/haskellwiki/Functional_programming
http://haskell.org/haskellwiki/Haskell_in_5_steps
http://tryhaskell.org/

