Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

October 13, 2010

Today's Topics

- Types and Classes
- Lists
- Patterns, Guards, and More
- Higher-Order Functions

Types and Classes

Basic Concepts

- types are built according to the grammar

$$
\tau \stackrel{\text { def }}{=} \alpha|\tau>\tau| C \tau \ldots \tau
$$

- where α is a type variable (like $\mathrm{a}, \mathrm{b}, \ldots$)
- and C a type constructor (like Bool, Int, [], (,))
- -> associates to the right: $\tau->(\tau->\tau)=\tau->\tau->\tau$
- types denote collections of related values, e.g., Bool $=\{$ True, False $\}$
- e $:: \tau$ means "e is of type τ "

Basic Concepts

- types are built according to the grammar

$$
\tau \stackrel{\text { def }}{=} \alpha|\tau>\tau| C \tau \ldots \tau
$$

- where α is a type variable (like $\mathrm{a}, \mathrm{b}, \ldots$)
- and C a type constructor (like Bool, Int, [], (,))
- -> associates to the right: $\tau->(\tau->\tau)=\tau->\tau->\tau$
- types denote collections of related values, e.g., Bool $=\{$ True, False $\}$
- e $:: \tau$ means "e is of type τ "

Basic Concepts

- types are built according to the grammar

$$
\tau \stackrel{\text { def }}{=} \alpha|\tau>\tau| C \tau \ldots \tau
$$

- where α is a type variable (like $\mathrm{a}, \mathrm{b}, \ldots$)
- and C a type constructor (like Bool, Int, [], (,))
- -> associates to the right: $\tau->(\tau->\tau)=\tau->\tau->\tau$
- types denote collections of related values, e.g., Bool $=\{$ True, False $\}$
- e $:: \tau$ means "e is of type τ "

Basic Types

Basic Types

- Bool - logical values (True, False)

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)
- String - sequences of characters ("abc", "1+2=3")

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)
- String - sequences of characters ("abc", "1+2=3")
- Int - fixed-precision integers (between -2^{31} and $2^{31}-1$; -100, 0, 999)

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)
- String - sequences of characters ("abc", "1+2=3")
- Int - fixed-precision integers (between -2^{31} and $2^{31}-1$; -100, 0, 999)
- Integer - arbitrary-precision integers

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)
- String - sequences of characters ("abc", "1+2=3")
- Int - fixed-precision integers (between -2^{31} and $2^{31}-1$; -100, 0, 999)
- Integer - arbitrary-precision integers
- Float - single-precision floating-point numbers (-12.34, 1.0, 3.14159)

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)
- String - sequences of characters ("abc", "1+2=3")
- Int - fixed-precision integers (between -2^{31} and $2^{31}-1$; -100, 0, 999)
- Integer - arbitrary-precision integers
- Float - single-precision floating-point numbers (-12.34, 1.0, 3.14159)
- Double - double-precision floating-point numbers

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)
- String - sequences of characters ("abc", "1+2=3")
- Int - fixed-precision integers (between -2^{31} and $2^{31}-1$; -100, 0, 999)
- Integer - arbitrary-precision integers
- Float - single-precision floating-point numbers (-12.34, 1.0, 3.14159)
- Double - double-precision floating-point numbers

Note - Show Types in GHCi

Prelude> :set +t

- commonly used commands may be put inside ~/.ghci (read on GHCi startup)

List Types

- type of lists with elements of type τ : [$\tau]$
- all elements are of same type
- no restriction on length of list

List Types

- type of lists with elements of type τ : [$\tau]$
- all elements are of same type
- no restriction on length of list

Tuple Types

- type of tuples with elements of types $\tau_{1}, \ldots, \tau_{n}:\left(\tau_{1}, \ldots, \tau_{n}\right)$
- length: 2 (pair), 3 (triple), 4 (quadruple), \ldots, n (n-tuple), \ldots
- elements may be of different types
- fixed number of elements

List Types

- type of lists with elements of type τ : [$\tau]$
- all elements are of same type
- no restriction on length of list

Tuple Types

- type of tuples with elements of types $\tau_{1}, \ldots, \tau_{n}:\left(\tau_{1}, \ldots, \tau_{n}\right)$
- length: 2 (pair), 3 (triple), 4 (quadruple), \ldots, n (n-tuple), \ldots
- elements may be of different types
- fixed number of elements

Examples

```
['a','b','c','d'] :: [Char]
["One","Two","Three"] :: [String]
[['a','b'],['c','d','e']] :: [[Char]]
(False,True) :: (Bool,Bool)
(False,'a',True) :: (Bool,Char,Bool)
("Yes",True,'a') :: (String,Bool,Char)
```


Function Types

- $\tau_{1}->\tau_{2}$ is type of all functions from inputs of type τ_{1} to outputs of type τ_{2}
- every function takes single argument and returns single value
- simulating multiple arguments: use tuples

Function Types

- $\tau_{1}->\tau_{2}$ is type of all functions from inputs of type τ_{1} to outputs of type τ_{2}
- every function takes single argument and returns single value
- simulating multiple arguments: use tuples

Function Types

- $\tau_{1}->\tau_{2}$ is type of all functions from inputs of type τ_{1} to outputs of type τ_{2}
- every function takes single argument and returns single value
- simulating multiple arguments: use tuples

Examples

```
not :: Bool -> Bool
add :: (Int,Int) -> Int
add (x,y) = x + y
```


Currying

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Currying

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Currying
 "Schönfinkelization"

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Currying

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Example

```
add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: a function adding 10
add10 = add' 10
```


Currying

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Example

```
add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: a function adding 10
add10 = add' 10
```

Anonymous Functions - "Lambda-Abstractions"

- $\backslash x->e$ is function taking x and returning e

Currying

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Example

```
add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: a function adding 10
add10 = add' }1
```

Anonymous Functions - "Lambda-Abstractions"

- $\backslash x \rightarrow e$ is function taking x and returning e

Example

```
add' = \x -> \y -> x + y
```


Basic Functions

- Bool: conjunction (\&\&), disjunction (||), negation not, and otherwise as alias for True

Basic Functions

- Bool: conjunction (\&\&), disjunction (||), negation not, and otherwise as alias for True
- (a, b): choose first f st, choose second snd

Basic Functions

- Bool: conjunction (\&\&), disjunction (||), negation not, and otherwise as alias for True
- (a, b): choose first fst, choose second snd

Examples

```
not True == False
False && x == False
True || x == True
otherwise == True
fst (x, y) == x
snd (x, y) == y
```


Overloaded Types

- support a standard set of operations
- use same name, independent of actual type

Overloaded Types

- support a standard set of operations
- use same name, independent of actual type

Realization - Class Constrains

- syntax: e : : C a => τ
- meaning: "for every type a of class C, the type of e is τ " (where τ does contain a)

Overloaded Types

- support a standard set of operations
- use same name, independent of actual type

Realization - Class Constrains

- syntax: e : : C a => τ
- meaning: "for every type a of class C, the type of e is τ " (where τ does contain a)

Example - Addition

- (+) :: Num a => a -> a -> a
- "for every type a of class Num, addition has type a -> a -> a"
- since, e.g., Int is of class Num, we obtain that addition is of type Int -> Int -> Int, when used on Ints

Overloaded Types

- support a standard set of operations
- use same name, independent of actual type

Realization - Class Constrains

- syntax: e : : C a => τ
- meaning: "for every type a of class C, the type of e is τ " (where τ does contain a)

Example - Addition

(op) turns infix op into prefix

- (+) :: Num a => a -> a -> a
- "for every type a of class Num, addition has type a -> a -> a"
- since, e.g., Int is of class Num, we obtain that addition is of type Int -> Int -> Int, when used on Ints

The Eq Class - Equality

- specification, one of:

$$
\begin{aligned}
& (==):: \text { Eq a }=>\text { a } \rightarrow \text { a } \rightarrow \text { Bool } \\
& (/=):: \text { Eq a }=>\text { a Bool }
\end{aligned}
$$

The Eq Class - Equality

- specification, one of:

$$
\begin{aligned}
& (==): \text { Eq } a=>\text { a } \rightarrow \text { a } \rightarrow \text { Bool } \\
& (/=): \text { Eq a }=>\text { a } \rightarrow \text { Bool }
\end{aligned}
$$

The Ord Class - Orders

- prerequisite: Eq
- specification, one of:

$$
\begin{array}{ll}
\text { compare }: \text { : Ord } a=>a->a->\text { Ordering } \\
(<=) & : \text { Ord } a=>a->a->\text { Bool }
\end{array}
$$

- where Ordering $=\{\mathrm{LT}, \mathrm{EQ}, \mathrm{GT}\}$
- additional functions: (<), (>=), (>), min, max

The Eq Class - Equality

- specification, one of:

$$
\begin{aligned}
& (==): \text { Eq } a=\text { a } \rightarrow \text { a Bool } \\
& (/=): \text { Eq a } \Rightarrow \text { a } \rightarrow \text { a Bool }
\end{aligned}
$$

The Ord Class - Orders

- prerequisite: Eq
- specification, one of:

$$
\begin{array}{ll}
\text { compare }: \text { : Ord } a=>\mathrm{a}->\mathrm{a}->\text { Ordering } \\
(<=) & : \text { : Ord a }=>\mathrm{a} \rightarrow \mathrm{a} \rightarrow \text { Bool }
\end{array}
$$

- where Ordering $=\{\mathrm{LT}, \mathrm{EQ}, \mathrm{GT}\}$
- additional functions: (<), (>=), (>), min, max

The Read Class - "from string"

- useful functions:

$$
\text { read : : Read a => String } \rightarrow \text { a }
$$

The Show Class - "to string"

- specification, one of:
show : Show a $=>$ a $->$ String
showsPrec: : Show a $=>$ Int $->$ a $->$ String $->$ String
- additional functions: showList

The Show Class - "to string"

- specification, one of:

```
show :: Show a => a -> String
showsPrec:: Show a => Int -> a -> String -> String
```

- additional functions: showList

The Num Class - Numeric Types

- prerequisites: Eq and Show
- specification, all of:

- additional functions: negate

The Show Class - "to string"

- specification, one of:

```
show :: Show a => a -> String
showsPrec:: Show a => Int -> a -> String -> String
```

- additional functions: showList

The Num Class - Numeric Types

- prerequisites: Eq and Show
- specification, all of:

(+)	: : Num a => a $->\mathrm{a}$-> a
(*)	: :Num a $=>\mathrm{a} \rightarrow$ a $\mathrm{a} \rightarrow \mathrm{a}$
(-)	: $:$ Num a ${ }^{\text {a }}$ a $\mathrm{a}^{\text {a }} \mathrm{a} \rightarrow$ a
abs	: : Num a $=>\mathrm{a} \rightarrow$ a
signum	: : Num a => a $->\mathrm{a}$
fromInteger	: : Num a => Integer $->$ a

- additional functions: negate

Visit: http://haskell.org \rightarrow Standard libraries \rightarrow Haskell 98 Prelude

Lists

Constructing Lists

- [a] $\stackrel{\text { def }}{=}[] \mid a:[a]$
- for given list, exactly two cases: either empty ([]), or contains at least one element x and a remaining list $x s$ ($x: x s$)
- $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ abbreviates $x_{1}:\left(x_{2}:\left(\cdots:\left(x_{n}:[]\right) \cdots\right)\right)$
- (:) is right-associative, hence $x_{1}:\left(x_{2}: x s\right)=x_{1}: x_{2}: x s$

Constructing Lists

- [a] $\stackrel{\text { def }}{=}[] \mid a:[a]$
- for given list, exactly two cases: either empty ([]), or contains at least one element x and a remaining list $x s$ ($x: x s$)
- $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ abbreviates $x_{1}:\left(x_{2}:\left(\cdots:\left(x_{n}:[]\right) \cdots\right)\right)$
- (:) is right-associative, hence $x_{1}:\left(x_{2}: x s\right)=x_{1}: x_{2}: x s$

Examples

```
1 : (2 : (3 : (4 : []))) == 1 : 2 : 3 : 4 : []
1 : 2 : 3 : 4 : [] == [1,2,3,4]
1 : [2,3,4] == [1,2,3,4]
```


Accessing List Elements - Selectors

- head :: [a] -> a, extract first element (fail on empty list)
- tail : : [a] -> [a], drop first element (fail on empty list)

Accessing List Elements - Selectors

- head :: [a] -> a, extract first element (fail on empty list)
- tail : : [a] -> [a], drop first element (fail on empty list)

A Polymorphic List Function

- polymorphic means "having many forms"
- definition
myReplicate n x $=$ if $\mathrm{n}<=0$
then []
else x : myReplicate (n-1) x
- myReplicate has type Int -> a -> [a], i.e., it can construct lists of arbitrary type a

Accessing List Elements - Selectors

- head :: [a] -> a, extract first element (fail on empty list)
- tail : : [a] -> [a], drop first element (fail on empty list)

A Polymorphic List Function

- polymorphic means "having many forms"
- definition
myReplicate n x $=$ if $\mathrm{n}<=0$
then []
else x : myReplicate (n-1) x
- myReplicate has type Int -> a -> [a], i.e., it can construct lists of arbitrary type a

Accessing List Elements - Selectors

- head : : [a] -> a, extract first element (fail on empty list)
- tail : : [a] -> [a], drop first element (fail on empty list)

A Polymorphic List Function

- polymorphic means "having many forms"
- definition
myReplicate n x $=$ if $\mathrm{n}<=0$
then []
else x : myReplicate ($\mathrm{n}-1$) x
- myReplicate has type Int -> a -> [a], i.e., it can construct lists of arbitrary type a

Exercise

use equational reasoning to evaluate myReplicate 2 ' c'

Testing for Emptiness

- null :: [a] -> Bool, True iff argument is empty list

Testing for Emptiness

- null :: [a] -> Bool, True iff argument is empty list

Functions on Integer Lists

```
range m n = if m > n then []
    else m : range (m+1) n
mySum xs = if null xs then 0
    else head xs + mySum (tail xs)
prod xs = if null xs then 1
    else head xs * prod (tail xs)
```

$$
\begin{aligned}
& \text { range } 13=[1,2,3] \\
& \text { range } 32=[]
\end{aligned}
$$

$$
\begin{aligned}
\text { mySum }[1,2,3] & =1+2+3+0 \\
\operatorname{mySum}[] & =0
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{prod}[1,2,3] & =1 * 2 * 3 * 1 \\
\operatorname{prod}[] & =1
\end{aligned}
$$

mySum (range $1 n$) $=\sum_{i=1}^{n} i$

Patterns, Guards, and More

Patterns

- used to match specific cases

Patterns

- used to match specific cases
- defined by

$$
\begin{array}{l|ll}
\langle p a t\rangle & \stackrel{\text { def }}{=} & - \\
& x & \text { wildcard } \\
& x @\langle p a t\rangle & \text { variable pattern } \\
& {[\langle p a t\rangle, \ldots,\langle p a t\rangle]} & \text { "as" pattern } \\
& (\langle p a t\rangle, \ldots,\langle p a t\rangle) & \text { list pattern } \\
& C\langle p a t\rangle \ldots\langle p a t\rangle & \text { tuple pattern } \\
& & \text { constructor pattern }
\end{array}
$$

Patterns

- used to match specific cases
- defined by

$\langle p a t\rangle \stackrel{\text { def }}{=}$	-	wildcard
	x	variable pattern
	$x @\langle p a t\rangle$	"as" pattern
	[$\langle p a t\rangle$,	list pattern
	($\langle p a t\rangle$,	tuple pattern
	C \langle pat \rangle	constructor pattern

- _ matches everything and ignores the result

Patterns

- used to match specific cases
- defined by

$$
\begin{array}{rll}
\langle p a t\rangle & \stackrel{\text { def }}{=} & \\
& \left.\right|^{-} & \text {wildcard } \\
& x @\langle p a t\rangle & \text { variable pattern } \\
& {[\langle p a t\rangle, \ldots,\langle p a t\rangle]} & \text { "as" pattern } \\
& \text { list pattern } \\
& (\langle p a t\rangle, \ldots,\langle p a t\rangle) & \text { tuple pattern } \\
& C\langle p a t\rangle \ldots\langle p a t\rangle & \text { constructor pattern }
\end{array}
$$

- _ matches everything and ignores the result
- x matches everything and binds the result to x

Patterns

- used to match specific cases
- defined by

$$
\begin{array}{rll}
\langle p a t\rangle & \stackrel{\text { def }}{=} & \\
& \left.\right|^{-} & \text {wildcard } \\
& x @\langle p a t\rangle & \text { variable pattern } \\
& {[\langle p a t\rangle, \ldots,\langle p a t\rangle]} & \text { "as" pattern } \\
& \text { list pattern } \\
& (\langle p a t\rangle, \ldots,\langle p a t\rangle) & \text { tuple pattern } \\
& C\langle p a t\rangle \ldots\langle p a t\rangle & \text { constructor pattern }
\end{array}
$$

- _ matches everything and ignores the result
- x matches everything and binds the result to x
- $x @\langle p a t\rangle$ matches the same as $\langle p a t\rangle$ and binds result to x

Patterns

- used to match specific cases
- defined by

$$
\begin{array}{r|ll}
\langle p a t\rangle & \stackrel{\text { def }}{=} & \\
& x & \text { wildcard } \\
& x @\langle p a t\rangle & \text { variable pattern } \\
& \quad \begin{array}{ll}
\text { "as" pattern } \\
& {[\langle p a t\rangle, \ldots,\langle p a t\rangle]}
\end{array} & \text { list pattern } \\
& (\langle p a t\rangle, \ldots,\langle p a t\rangle) & \text { tuple pattern } \\
& C\langle p a t\rangle \ldots\langle p a t\rangle & \text { constructor pattern }
\end{array}
$$

- _ matches everything and ignores the result
- x matches everything and binds the result to x
- $x @\langle p a t\rangle$ matches the same as $\langle p a t\rangle$ and binds result to x
- constructor patterns match the described application of a type constructor (example type constructors: (:) and [] for lists, True and False for Boolean values, ...)

Patterns

- used to match specific cases
- defined by

$$
\begin{array}{r|ll}
\langle p a t\rangle & \stackrel{\text { def }}{=} & \\
& \left.\right|^{-} & \text {wildcard } \\
& x @\langle p a t\rangle & \text { variable pattern } \\
& {[\langle p a t\rangle, \ldots,\langle p a t\rangle]} & \text { "as" pattern } \\
& \text { list pattern } \\
& (\langle p a t\rangle, \ldots,\langle p a t\rangle) & \text { tuple pattern } \\
& C\langle p a t\rangle \ldots\langle p a t\rangle & \text { constructor pattern }
\end{array}
$$

- _ matches everything and ignores the result
- x matches everything and binds the result to x
- $x @\langle p a t\rangle$ matches the same as $\langle p a t\rangle$ and binds result to x
- constructor patterns match the described application of a type constructor (example type constructors: (:) and [] for lists, True and False for Boolean values, ...)
- patterns may be used in arguments of function definitions and together with the case-construct

The case Construct

$$
\begin{array}{ccc}
\text { case e of }\left\langle p a t_{1}\right\rangle & -> & e_{1} \\
\vdots & & \\
\left\langle p a t_{n}\right\rangle & -> & e_{n}
\end{array}
$$

- checks $\left\langle p a t_{1}\right\rangle$ to $\left\langle p a t_{n}\right\rangle$ top to bottom
- if $\left\langle p a t_{i}\right\rangle$ is first match, e_{i} is evaluated

The case Construct

$$
\begin{array}{ccc}
\text { case e of }\left\langle p a t_{1}\right\rangle & -> & e_{1} \\
\vdots & & \\
\left\langle p a t_{n}\right\rangle & -> & e_{n}
\end{array}
$$

- checks $\left\langle\right.$ pat $\left.t_{1}\right\rangle$ to $\left\langle p a t_{n}\right\rangle$ top to bottom
- if $\left\langle p a t_{i}\right\rangle$ is first match, e_{i} is evaluated

Pattern Matching Examples

```
mySum [] = ...-- constructor pattern
fst (x, _) = x -- patterns: tuple, variable, wildcard
case xs of [x] -> ...-- patterns: list, variable
    -> ...-- wildcard
```


Pattern Guards

- a pattern may be followed by a guard b

Pattern Guards

- a pattern may be followed by a guard b
- 〈pat〉|b

Pattern Guards

- a pattern may be followed by a guard b
- 〈pat〉|b
- where b is a Boolean expression

Pattern Guards

- a pattern may be followed by a guard b
- 〈pat〉|b
- where b is a Boolean expression

Examples

```
f1 (x, _) | x >= 0 = x -- only if x non-negative
f2 (x:xs) | null xs = ...-- same as [x]
```


Refined Definitions

```
head (x:_) = x
tail (_:xs) = xs
```

myReplicate n x $\mid \mathrm{n}<=0$ []
| otherwise = x : myReplicate (n-1) x
null [] = True
null _ = False
range $m \mathrm{n} \mid \mathrm{m}>\mathrm{n}=[]$
| otherwise $=m$: range $(m+1) n$
mySum [] $=0$
mySum (x:xs) $=x+$ mySum xs
prod [] $=1$
prod (x:xs) $=\mathrm{x} * \operatorname{prod} \mathrm{xs}$

Higher-Order Functions

Definition

a function is of higher-order if

- it takes functions as arguments and/or
- returns a function

Definition

a function is of higher-order if

- it takes functions as arguments and/or
- returns a function

Examples

Definition

a function is of higher-order if

- it takes functions as arguments and/or
- returns a function

Examples

twice $f x=f(f x)$-- apply f twice to x

Sections

- abbreviation for partially applied infix operators
- (x `op`) abbreviates ($\backslash \mathrm{y}$-> x `op` y)
- (`op` y) abbreviates ($\backslash x$-> x `op` y)

Definition

a function is of higher-order if

- it takes functions as arguments and/or
- returns a function

Examples

twice $\mathrm{f}=\mathrm{f}(\mathrm{f} \mathrm{x})$-- apply f twice to x

Sections

- abbreviation for partially applied infix operators
- (x `op`) abbreviates ($\backslash y ~->~ x ~ ` o p ` ~ y) ~$
- (`op` y) abbreviates ($\backslash x \rightarrow x$ `op` y)

Examples

```
ghci> twice (*2) 10
4 0
```


Processing Lists - map

- possible definition

- syntactic sugar map f xs $=[\mathrm{f} \mathrm{x} \mid \mathrm{x}$ <- xs]

Processing Lists - map

- possible definition

$$
\begin{aligned}
& \operatorname{map}::(\mathrm{a}->\mathrm{b})->[\mathrm{a}]->[\mathrm{b}] \\
& \operatorname{map} \mathrm{f}[] \\
& \operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{f} x: \operatorname{map} \mathrm{f} x \mathrm{x}
\end{aligned}
$$

- syntactic sugar map f xs $=[\mathrm{f} \mathrm{x} \mid \mathrm{x}<-\mathrm{xs}]$

Examples

```
ghci> map (+1) [1,3,5,7]
[2,4,6,8]
```

ghci> import Data.Char
ghci> map isDigit ['a','1','b','2']
[False, True, False, True]
ghci> map reverse ["abc","def","ghi"]
["cba", "fed","ihg"]
ghci> map (map (+1)) [[1,2,3], [4,5]]
$[[2,3,4],[5,6]]$

Processing Lists - filter

- possible definition

```
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs
otherwise = filter p xs
```

- syntactic sugar filter p xs $=[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}]$

Processing Lists - filter

- possible definition

- syntactic sugar filter $\mathrm{p} x \mathrm{x}=[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}]$

Examples

```
ghci> filter even [1..10]
[2,4,6,8,10]
ghci> filter (>5) [1..10]
[6,7,8,9,10]
ghci> filter (/= , ') "abc def ghi"
"abcdefghi"
```


"Fold Right" - A Very Expressive Function

- possible definition

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = x `f` (foldr f b xs)
```

- b is 'base value'
- f combining function (binary)
- intuitively foldr f b $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

$$
\begin{aligned}
& \left.=\text { foldr f b (} x_{1}:\left(x_{2}: \cdots \quad\left(x_{n}:[]\right) \cdots\right)\right) \\
& =\quad\left(x_{1}{ }^{\prime} f^{\prime}\left(x_{2} \mathrm{f}^{\prime} \ldots\left(x_{n} \mathrm{f}^{\prime} \quad b\right) \ldots\right)\right)
\end{aligned}
$$

"Fold Right" - A Very Expressive Function

- possible definition

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f b [] = b } \\
& \text { foldr f b (x:xs) = x `f` (foldr f b xs) }
\end{aligned}
$$

- b is 'base value'
- f combining function (binary)
- intuitively foldr f b $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

$$
\begin{aligned}
& \left.=\text { foldr f b (} x_{1}:\left(x_{2}: \cdots \quad\left(x_{n}:[]\right) \cdots\right)\right) \\
& =\quad\left(x_{1}{ }^{\prime} f^{\wedge}\left(x_{2}{ }^{\prime} f^{`} \ldots\left(x_{n} f^{\prime} b\right) \ldots\right)\right)
\end{aligned}
$$

This Pattern is Very General

- take (+) for f and 0 for b: foldr (+) $0=$ sum
- take (*) for f and 1 for b: foldr (*) $1=$ product
- take const $(+1)$ for f and 0 for b :
foldr (const (+1)) $0=$ length (where const f _ = f)

"Fold Right" - A Very Expressive Function

- possible definition

$$
\begin{aligned}
& \text { foldr :: (a -> b -> b) -> b -> [a] -> b } \\
& \text { foldr f b [] = b } \\
& \text { foldr f b (x:xs) = x `f` (foldr f b xs) }
\end{aligned}
$$

- b is 'base value'
- f combining function (binary)
- intuitively foldr f b $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

$$
\begin{aligned}
& \left.=\text { foldr f b (} x_{1}:\left(x_{2}: \cdots \quad\left(x_{n}:[]\right) \cdots\right)\right) \\
& =\quad\left(x_{1}{ }^{\prime} f^{\wedge}\left(x_{2}{ }^{\prime} f^{`} \ldots\left(x_{n} f^{\prime} b\right) \ldots\right)\right)
\end{aligned}
$$

This Pattern is Very General

- take (+) for f and 0 for b: foldr (+) $0=$ sum
- take (*) for f and 1 for b: foldr (*) $1=$ product
- take const (+1) for f and 0 for b : foldr (const (+1)) $0=$ length (where const f _ = f)

Exercises (for October 22nd)

1. read chapters 1 and 2 of Real World Haskell
2. work through lessons 4 to 6 on http://tryhaskell.org/
3. Give the types (and class constraints) for each of:

second $x s$	$=$ head (tail $x s)$
swap (x, y)	$=(y, x)$
pair $x y$	$=(x, y)$
double x	$=x * 2$
palindrome $x s$	$=$ reverse $x s=x$
twice $f x$	$=f(f x)$

4. Use equational reasoning to compute the result of map (+1) [1, 2,3] (on paper). Give all intermediate steps.
5. Using foldr, give alternative definitions of two of the functions we have seen so far (not including those that have already been defined via foldr).
6. Define a function concat : : [[a]] -> [a] that concatenates a list of lists, e.g., concat $[[1],[],[2,3]]=[1,2,3]$.
