
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

October 13, 2010

http://cl-informatik.uibk.ac.at


Today’s Topics

� Types and Classes

� Lists

� Patterns, Guards, and More

� Higher-Order Functions



Types and Classes



Basic Concepts

� types are built according to the grammar

τ
def
= α | τ -> τ | C τ . . . τ

� where α is a type variable (like a, b, . . . )

� and C a type constructor (like Bool, Int, [], (,))

� -> associates to the right: τ -> (τ -> τ) = τ -> τ -> τ

� types denote collections of related values, e.g.,
Bool = {True, False}

� e :: τ means “e is of type τ”
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Basic Types

� Bool - logical values (True, False)

� Char - single characters ('a', '\n', . . . )

� String - sequences of characters ("abc", "1+2=3")

� Int - fixed-precision integers (between −231 and 231 − 1;
-100, 0, 999)

� Integer - arbitrary-precision integers

� Float - single-precision floating-point numbers (-12.34, 1.0,
3.14159)

� Double - double-precision floating-point numbers

Note - Show Types in GHCi

� Prelude> :set +t

� commonly used commands may be put inside ~/.ghci (read
on GHCi startup)
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List Types

� type of lists with elements of type τ : [τ]

� all elements are of same type

� no restriction on length of list

Tuple Types

� type of tuples with elements of types τ1, . . . , τn: (τ1, . . . ,τn)

� length: 2 (pair), 3 (triple), 4 (quadruple), . . . , n (n-tuple), . . .

� elements may be of different types

� fixed number of elements

Examples

['a','b','c','d'] :: [Char]
["One","Two","Three"] :: [String]
[['a','b'],['c','d','e']] :: [[Char]]
(False,True) :: (Bool,Bool)
(False,'a',True) :: (Bool,Char,Bool)
("Yes",True,'a') :: (String,Bool,Char)
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Function Types

� τ1 -> τ2 is type of all functions from inputs of type τ1 to
outputs of type τ2

� every function takes single argument and returns single value

� simulating multiple arguments: use tuples

Examples

not :: Bool -> Bool

add :: (Int,Int) -> Int
add (x,y) = x + y
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Currying

� transform function taking tuple as input into function
returning another function as output

� in presence of partial application, curried functions are more
versatile than uncurried functions

“Schönfinkelization”

Example

add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: a function adding 10
add10 = add' 10

Anonymous Functions - “Lambda-Abstractions”

� \x -> e is function taking x and returning e

Example

add' = \x -> \y -> x + y
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Basic Functions

� Bool: conjunction (&&), disjunction (||), negation not, and
otherwise as alias for True

� (a,b): choose first fst, choose second snd

Examples

not True == False
False && x == False
True || x == True
otherwise == True

fst (x, y) == x
snd (x, y) == y
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Overloaded Types

� support a standard set of operations

� use same name, independent of actual type

Realization - Class Constrains

� syntax: e :: C a => τ

� meaning: “for every type a of class C , the type of e is τ”
(where τ does contain a)

Example - Addition

� (+) :: Num a => a -> a -> a

� “for every type a of class Num, addition has type
a -> a -> a”

� since, e.g., Int is of class Num, we obtain that addition is of
type Int -> Int -> Int, when used on Ints

(op) turns infix op into prefix
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The Eq Class - Equality

� specification, one of:

(==) :: Eq a => a -> a -> Bool
(/=) :: Eq a => a -> a -> Bool

The Ord Class - Orders

� prerequisite: Eq

� specification, one of:

compare :: Ord a => a -> a -> Ordering
(<=) :: Ord a => a -> a -> Bool

� where Ordering = {LT, EQ, GT}
� additional functions: (<), (>=), (>), min, max

The Read Class - “from string”

� useful functions:

read :: Read a => String -> a
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The Show Class - “to string”

� specification, one of:

show :: Show a => a -> String
showsPrec:: Show a => Int -> a -> String -> String

� additional functions: showList

The Num Class - Numeric Types

� prerequisites: Eq and Show

� specification, all of:

(+) :: Num a => a -> a -> a
(*) :: Num a => a -> a -> a
(-) :: Num a => a -> a -> a
abs :: Num a => a -> a
signum :: Num a => a -> a
fromInteger :: Num a => Integer -> a

� additional functions: negate

Visit: http://haskell.org → Standard libraries → Haskell 98 Prelude

http://haskell.org
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Lists



Constructing Lists

� [a]
def
= [] | a : [a]

� for given list, exactly two cases: either empty ([]), or contains
at least one element x and a remaining list xs (x : xs)

� [x1,x2, . . . ,xn] abbreviates x1 : (x2 : (· · · : (xn : []) · · · ))

� (:) is right-associative, hence x1 : (x2 : xs) = x1 : x2 : xs

Examples

1 : (2 : (3 : (4 : []))) == 1 : 2 : 3 : 4 : []
1 : 2 : 3 : 4 : [] == [1,2,3,4]
1 : [2,3,4] == [1,2,3,4]
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Accessing List Elements - Selectors

� head :: [a] -> a, extract first element (fail on empty list)

� tail :: [a] -> [a], drop first element (fail on empty list)

A Polymorphic List Function

� polymorphic means “having many forms”

� definition
myReplicate n x = if n <= 0
then []
else x : myReplicate (n-1) x

� myReplicate has type Int -> a -> [a], i.e., it can
construct lists of arbitrary type a

Exercise

use equational reasoning to evaluate myReplicate 2 'c'
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Testing for Emptiness

� null :: [a] -> Bool, True iff argument is empty list

Functions on Integer Lists

range m n = if m > n then []
else m : range (m+1) n

mySum xs = if null xs then 0
else head xs + mySum (tail xs)

prod xs = if null xs then 1
else head xs * prod (tail xs)
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Examples

range 1 3 = [1,2,3]

range 3 2 = []

mySum [1,2,3] = 1 + 2 + 3 + 0

mySum [] = 0

prod [1,2,3] = 1 * 2 * 3 * 1

prod [] = 1

mySum (range 1 n) =
n∑

i=1

i



Patterns, Guards, and More



Patterns

� used to match specific cases

� defined by

〈pat〉 def
= _ wildcard
| x variable pattern
| x@〈pat〉 “as” pattern
| [〈pat〉, . . . ,〈pat〉] list pattern
| (〈pat〉, . . . ,〈pat〉) tuple pattern
| C 〈pat〉 . . . 〈pat〉 constructor pattern

� _ matches everything and ignores the result

� x matches everything and binds the result to x

� x@〈pat〉 matches the same as 〈pat〉 and binds result to x

� constructor patterns match the described application of a type
constructor (example type constructors: (:) and [] for lists,
True and False for Boolean values, . . . )

� patterns may be used in arguments of function definitions and
together with the case-construct
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� _ matches everything and ignores the result

� x matches everything and binds the result to x
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The case Construct

case e of 〈pat1〉 -> e1
...

〈patn〉 -> en

� checks 〈pat1〉 to 〈patn〉 top to bottom

� if 〈pati 〉 is first match, ei is evaluated

Pattern Matching Examples

mySum [] = ...-- constructor pattern
fst (x, _) = x -- patterns: tuple, variable, wildcard
case xs of [x] -> ...-- patterns: list, variable

_ -> ...-- wildcard
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Pattern Guards

� a pattern may be followed by a guard b

� 〈pat〉 | b

� where b is a Boolean expression

Examples

f1 (x, _) | x >= 0 = x -- only if x non-negative
f2 (x:xs) | null xs = ...-- same as [x]
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Refined Definitions

head (x:_) = x
tail (_:xs) = xs

myReplicate n x | n <= 0 = []
| otherwise = x : myReplicate (n-1) x

null [] = True
null _ = False

range m n | m > n = []
| otherwise = m : range (m+1) n

mySum [] = 0
mySum (x:xs) = x + mySum xs

prod [] = 1
prod (x:xs) = x * prod xs



Higher-Order Functions



Definition

a function is of higher-order if

� it takes functions as arguments and/or

� returns a function

Examples

twice f x = f (f x) -- apply f twice to x

Sections

� abbreviation for partially applied infix operators

� (x `op`) abbreviates (\y -> x `op` y)

� (`op` y) abbreviates (\x -> x `op` y)

Examples

ghci> twice (*2) 10
40
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Processing Lists - map

� possible definition

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

� syntactic sugar map f xs = [f x | x <- xs]

Examples

ghci> map (+1) [1,3,5,7]
[2,4,6,8]
ghci> import Data.Char
ghci> map isDigit [’a’,’1’,’b’,’2’]
[False,True,False,True]
ghci> map reverse ["abc","def","ghi"]
["cba","fed","ihg"]
ghci> map (map (+1)) [[1,2,3],[4,5]]
[[2,3,4],[5,6]]
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Processing Lists - filter

� possible definition

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

� syntactic sugar filter p xs = [x | x <- xs, p x]

Examples

ghci> filter even [1..10]
[2,4,6,8,10]
ghci> filter (>5) [1..10]
[6,7,8,9,10]
ghci> filter (/= ’ ’) "abc def ghi"
"abcdefghi"
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“Fold Right” - A Very Expressive Function

� possible definition

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = x `f` (foldr f b xs)

� b is ‘base value‘

� f combining function (binary)

� intuitively foldr f b [x1,x2, . . . ,xn]

= foldr f b (x1 : (x2 : · · · (xn : []) · · · ))
= (x1 `f` (x2 `f` . . . (xn `f` b ) . . .))

This Pattern is Very General

� take (+) for f and 0 for b: foldr (+) 0 = sum

� take (*) for f and 1 for b: foldr (*) 1 = product

� take const(+1) for f and 0 for b:
foldr (const(+1)) 0 = length (where const f _ = f)

add dummy argument
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Exercises (for October 22nd)

1. read chapters 1 and 2 of Real World Haskell

2. work through lessons 4 to 6 on http://tryhaskell.org/

3. Give the types (and class constraints) for each of:

second xs = head (tail xs)
swap (x,y) = (y,x)
pair x y = (x,y)
double x = x*2
palindrome xs = reverse xs == xs
twice f x = f (f x)

4. Use equational reasoning to compute the result of
map (+1) [1,2,3] (on paper). Give all intermediate steps.

5. Using foldr, give alternative definitions of two of the
functions we have seen so far (not including those that have
already been defined via foldr).

6. Define a function concat :: [[a]] -> [a] that
concatenates a list of lists, e.g.,
concat [[1],[],[2,3]] = [1,2,3].

http://book.realworldhaskell.org/read/
http://tryhaskell.org/

