
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

October 20, 2010

http://cl-informatik.uibk.ac.at


Today’s Topics

� Module Basics

� Lists and Strings

� Recursive Functions

� Example - Printing a Calendar



Module Basics



Structuring Code

� split source code into several files

� separate namespaces for functions and types

Splitting Source Code

� for each module Module create file Module.hs

� module names always start with uppercase letters

� start module by module header (with optional export list)

module Module (〈export list〉) where

� export list gives functions and types visible outside

� without export list, all functions and types visible

Example

module Stack (Stack, empty, push, pop) where

type Stack a = [a]
empty = []
push = (:)
pop s = (head s, tail s)



Structuring Code

� split source code into several files

� separate namespaces for functions and types

Splitting Source Code

� for each module Module create file Module.hs

� module names always start with uppercase letters

� start module by module header (with optional export list)

module Module (〈export list〉) where

� export list gives functions and types visible outside

� without export list, all functions and types visible

Example

module Stack (Stack, empty, push, pop) where

type Stack a = [a]
empty = []
push = (:)
pop s = (head s, tail s)



Structuring Code

� split source code into several files

� separate namespaces for functions and types

Splitting Source Code

� for each module Module create file Module.hs

� module names always start with uppercase letters

� start module by module header (with optional export list)

module Module (〈export list〉) where

� export list gives functions and types visible outside

� without export list, all functions and types visible

Example

module Stack (Stack, empty, push, pop) where

type Stack a = [a]
empty = []
push = (:)
pop s = (head s, tail s)



Structuring Code

� split source code into several files

� separate namespaces for functions and types

Splitting Source Code

� for each module Module create file Module.hs

� module names always start with uppercase letters

� start module by module header (with optional export list)

module Module (〈export list〉) where

� export list gives functions and types visible outside

� without export list, all functions and types visible

Example

module Stack (Stack, empty, push, pop) where

type Stack a = [a]
empty = []
push = (:)
pop s = (head s, tail s)



Type Synonyms

� type Stack a = [a] is a type synonym

� just gives an alternative name for [a]

� afterwards, both names may be used interchangeably

Type Signatures

� every function f may be preceded by its type signature
f :: T, stating that f is of type T

� good for documentation purposes

Example

push :: a -> Stack a -> Stack a
push = (:)

� note the partial application of (:)

� this is equivalent to push x s = x : s



Type Synonyms

� type Stack a = [a] is a type synonym

� just gives an alternative name for [a]

� afterwards, both names may be used interchangeably

Type Signatures

� every function f may be preceded by its type signature
f :: T, stating that f is of type T

� good for documentation purposes

Example

push :: a -> Stack a -> Stack a
push = (:)

� note the partial application of (:)

� this is equivalent to push x s = x : s



Type Synonyms

� type Stack a = [a] is a type synonym

� just gives an alternative name for [a]

� afterwards, both names may be used interchangeably

Type Signatures

� every function f may be preceded by its type signature
f :: T, stating that f is of type T

� good for documentation purposes

Example

push :: a -> Stack a -> Stack a
push = (:)

� note the partial application of (:)

� this is equivalent to push x s = x : s



Type Synonyms

� type Stack a = [a] is a type synonym

� just gives an alternative name for [a]

� afterwards, both names may be used interchangeably

Type Signatures

� every function f may be preceded by its type signature
f :: T, stating that f is of type T

� good for documentation purposes

Example

push :: a -> Stack a -> Stack a
push = (:)

� note the partial application of (:)

� this is equivalent to push x s = x : s



Type Synonyms

� type Stack a = [a] is a type synonym

� just gives an alternative name for [a]

� afterwards, both names may be used interchangeably

Type Signatures

� every function f may be preceded by its type signature
f :: T, stating that f is of type T

� good for documentation purposes

Example

push :: a -> Stack a -> Stack a
push = (:)

� note the partial application of (:)

� this is equivalent to push x s = x : s



Lists and Strings



Strings are Lists

� the type String is just a type synonym for [Char]

� i.e., a string is just a list of characters

� all list functions are applicable to Strings

Some Implications

� [] is the same as "" for strings

� ['h','e','l','l','o'] is the same as "hello" for strings

Useful Functions on Strings

� lines :: String -> [String] - breaks string at newlines

� unlines :: [String] -> String - concatenates strings,
inserting newlines

� words :: String -> [String] - breaks strings at white
space

� unwords :: [String] -> String - concatenates strings,
separated by spaces



Strings are Lists

� the type String is just a type synonym for [Char]

� i.e., a string is just a list of characters

� all list functions are applicable to Strings

Some Implications

� [] is the same as "" for strings

� ['h','e','l','l','o'] is the same as "hello" for strings

Useful Functions on Strings

� lines :: String -> [String] - breaks string at newlines

� unlines :: [String] -> String - concatenates strings,
inserting newlines

� words :: String -> [String] - breaks strings at white
space

� unwords :: [String] -> String - concatenates strings,
separated by spaces



Strings are Lists

� the type String is just a type synonym for [Char]

� i.e., a string is just a list of characters

� all list functions are applicable to Strings

Some Implications

� [] is the same as "" for strings

� ['h','e','l','l','o'] is the same as "hello" for strings

Useful Functions on Strings

� lines :: String -> [String] - breaks string at newlines

� unlines :: [String] -> String - concatenates strings,
inserting newlines

� words :: String -> [String] - breaks strings at white
space

� unwords :: [String] -> String - concatenates strings,
separated by spaces



Interlude - Function Composition

� in mathematics f ◦ g usually denotes applying f after g

� i.e., (f ◦ g)(x) = f (g(x))

� only possible if output of g is compatible with input of f :
f : B → C and g : A→ B

� in Haskell: (.) :: (b -> c) -> (a -> b) -> (a -> c)

� try “:info (.)” in GHCi

Examples

� map (f . g) xs - on every element of xs, first apply g and
then f

� equivalent to map f (map g xs)

� what’s the result of unwords . words?



Interlude - Function Composition

� in mathematics f ◦ g usually denotes applying f after g

� i.e., (f ◦ g)(x) = f (g(x))

� only possible if output of g is compatible with input of f :
f : B → C and g : A→ B

� in Haskell: (.) :: (b -> c) -> (a -> b) -> (a -> c)

� try “:info (.)” in GHCi

Examples

� map (f . g) xs - on every element of xs, first apply g and
then f

� equivalent to map f (map g xs)

� what’s the result of unwords . words?



List Comprehensions - Generators

� in mathematics set comprehensions can be used to construct
new sets from existing sets

� e.g., {x2 | x ∈ {1, . . . , 5}} produces {1, 4, 9, 16, 25}
� in Haskell [x^2 | x <- [1..5]]

� here, x <- [1..5] is called a generator

� there may be more than one generator, e.g.,
[(x,y) | x <- xs, y <- xs] (all pairs over elements from
xs)

� order is important: rightmost generators are evaluated first

Examples

� concat xss = [x | xs <- xss, x <- xs]

� firsts ps = [x | (x,_) <- ps]

� length xs = sum [1 | _ <- xs]



List Comprehensions - Generators

� in mathematics set comprehensions can be used to construct
new sets from existing sets

� e.g., {x2 | x ∈ {1, . . . , 5}} produces {1, 4, 9, 16, 25}
� in Haskell [x^2 | x <- [1..5]]

� here, x <- [1..5] is called a generator

� there may be more than one generator, e.g.,
[(x,y) | x <- xs, y <- xs] (all pairs over elements from
xs)

� order is important: rightmost generators are evaluated first

Examples

� concat xss = [x | xs <- xss, x <- xs]

� firsts ps = [x | (x,_) <- ps]

� length xs = sum [1 | _ <- xs]



List Comprehensions - Generators

� in mathematics set comprehensions can be used to construct
new sets from existing sets

� e.g., {x2 | x ∈ {1, . . . , 5}} produces {1, 4, 9, 16, 25}
� in Haskell [x^2 | x <- [1..5]]

� here, x <- [1..5] is called a generator

� there may be more than one generator, e.g.,
[(x,y) | x <- xs, y <- xs] (all pairs over elements from
xs)

� order is important: rightmost generators are evaluated first

Examples

� concat xss = [x | xs <- xss, x <- xs]

� firsts ps = [x | (x,_) <- ps]

� length xs = sum [1 | _ <- xs]



List Comprehensions - Generators

� in mathematics set comprehensions can be used to construct
new sets from existing sets

� e.g., {x2 | x ∈ {1, . . . , 5}} produces {1, 4, 9, 16, 25}
� in Haskell [x^2 | x <- [1..5]]

� here, x <- [1..5] is called a generator

� there may be more than one generator, e.g.,
[(x,y) | x <- xs, y <- xs] (all pairs over elements from
xs)

� order is important: rightmost generators are evaluated first

Examples

� concat xss = [x | xs <- xss, x <- xs]

� firsts ps = [x | (x,_) <- ps]

� length xs = sum [1 | _ <- xs]



List Comprehensions - Generators

� in mathematics set comprehensions can be used to construct
new sets from existing sets

� e.g., {x2 | x ∈ {1, . . . , 5}} produces {1, 4, 9, 16, 25}
� in Haskell [x^2 | x <- [1..5]]

� here, x <- [1..5] is called a generator

� there may be more than one generator, e.g.,
[(x,y) | x <- xs, y <- xs] (all pairs over elements from
xs)

� order is important: rightmost generators are evaluated first

Examples

� concat xss = [x | xs <- xss, x <- xs]

� firsts ps = [x | (x,_) <- ps]

� length xs = sum [1 | _ <- xs]



List Comprehensions - Guards

� filter values before generating result

� e.g., {x2 | x ∈ N, x > 5}
� in Haskell: [x^2 | x <- xs, x > 5]; square every number

in xs that is greater than 5

Examples

� [x | x <- [1..10], even x]

� find k t = [v | (k', v) <- t, k == k']

� factors n = [x | x <- [1..n], n `mod` x == 0]

� primes = [n | n <- [1..], factors n == [1,n]]



List Comprehensions - Guards

� filter values before generating result

� e.g., {x2 | x ∈ N, x > 5}
� in Haskell: [x^2 | x <- xs, x > 5]; square every number

in xs that is greater than 5

Examples

� [x | x <- [1..10], even x]

� find k t = [v | (k', v) <- t, k == k']

� factors n = [x | x <- [1..n], n `mod` x == 0]

� primes = [n | n <- [1..], factors n == [1,n]]



Recursive Functions



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions

1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)
5. generalize and simplify (e.g.,

product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions

1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)
5. generalize and simplify (e.g.,

product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions

1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)
5. generalize and simplify (e.g.,

product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions

1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)
5. generalize and simplify (e.g.,

product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions
1. define the type (e.g., product :: [Int] -> Int)

2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)
5. generalize and simplify (e.g.,

product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions
1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)

3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)
5. generalize and simplify (e.g.,

product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions
1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)

4. define the other cases (e.g.,
product (x:xs) = x * product xs)

5. generalize and simplify (e.g.,
product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions
1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)

5. generalize and simplify (e.g.,
product :: Num a => [a] -> a and
product = foldr (*) 1)



Basic Concepts

� functions may be defined in terms of other functions

factorial :: Int -> Int
factorial n = product [1..n]

� or in terms of themselves (i.e., recursive)

factorial n | n <= 1 = 1
| otherwise = n * factorial (n-1)

� Note that factorial does not loop forever, since at some
point its argument will be 1 or smaller (its termination
condition)

� steps when defining recursive functions
1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and x:xs)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

product (x:xs) = x * product xs)
5. generalize and simplify (e.g.,

product :: Num a => [a] -> a and
product = foldr (*) 1)



Example - drop

� define type: drop :: Int -> [a] -> [a]

� enumerate cases:
drop 0 [] =
drop 0 (x:xs) =
drop n [] =
drop n (x:xs) =

� define simple cases:

drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []

� define other cases:

drop n (x:xs) = drop (n-1) xs
� generalize and simplify:

drop :: Integer -> [a] -> [a]
drop n xs | n <= 0 = xs
drop n [] = []
drop n (_:xs) = drop (n-1) xs



Example - drop

� define type: drop :: Int -> [a] -> [a]

� enumerate cases:
drop 0 [] =
drop 0 (x:xs) =
drop n [] =
drop n (x:xs) =

� define simple cases:

drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []

� define other cases:

drop n (x:xs) = drop (n-1) xs
� generalize and simplify:

drop :: Integer -> [a] -> [a]
drop n xs | n <= 0 = xs
drop n [] = []
drop n (_:xs) = drop (n-1) xs



Example - drop

� define type: drop :: Int -> [a] -> [a]

� enumerate cases:
drop 0 [] =
drop 0 (x:xs) =
drop n [] =
drop n (x:xs) =

� define simple cases:

drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []

� define other cases:

drop n (x:xs) = drop (n-1) xs
� generalize and simplify:

drop :: Integer -> [a] -> [a]
drop n xs | n <= 0 = xs
drop n [] = []
drop n (_:xs) = drop (n-1) xs



Example - drop

� define type: drop :: Int -> [a] -> [a]

� enumerate cases:
drop 0 [] =
drop 0 (x:xs) =
drop n [] =
drop n (x:xs) =

� define simple cases:

drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []

� define other cases:

drop n (x:xs) = drop (n-1) xs

� generalize and simplify:

drop :: Integer -> [a] -> [a]
drop n xs | n <= 0 = xs
drop n [] = []
drop n (_:xs) = drop (n-1) xs



Example - drop

� define type: drop :: Int -> [a] -> [a]

� enumerate cases:
drop 0 [] =
drop 0 (x:xs) =
drop n [] =
drop n (x:xs) =

� define simple cases:

drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []

� define other cases:

drop n (x:xs) = drop (n-1) xs
� generalize and simplify:

drop :: Integer -> [a] -> [a]
drop n xs | n <= 0 = xs
drop n [] = []
drop n (_:xs) = drop (n-1) xs



Example - init

� define type: init :: [a] -> [a]

� enumerate cases:

init (x:xs) =

� define simple cases:

init (x:xs) | null xs = []

� define other cases:

| otherwise = x : init xs

� generalize and simplify

init :: [a] -> [a]
init [_] = []
init (x:xs) = x : init xs



Example - init

� define type: init :: [a] -> [a]

� enumerate cases:

init (x:xs) =

� define simple cases:

init (x:xs) | null xs = []

� define other cases:

| otherwise = x : init xs

� generalize and simplify

init :: [a] -> [a]
init [_] = []
init (x:xs) = x : init xs



Example - init

� define type: init :: [a] -> [a]

� enumerate cases:

init (x:xs) =

� define simple cases:

init (x:xs) | null xs = []

� define other cases:

| otherwise = x : init xs

� generalize and simplify

init :: [a] -> [a]
init [_] = []
init (x:xs) = x : init xs



Example - init

� define type: init :: [a] -> [a]

� enumerate cases:

init (x:xs) =

� define simple cases:

init (x:xs) | null xs = []

� define other cases:

| otherwise = x : init xs

� generalize and simplify

init :: [a] -> [a]
init [_] = []
init (x:xs) = x : init xs



Example - init

� define type: init :: [a] -> [a]

� enumerate cases:

init (x:xs) =

� define simple cases:

init (x:xs) | null xs = []

� define other cases:

| otherwise = x : init xs

� generalize and simplify

init :: [a] -> [a]
init [_] = []
init (x:xs) = x : init xs



Example - Printing a Calendar



Printing a Calendar

� given a month and a year, print the corresponding calendar

� separate construction phase (computing of days, leap year, ...)
from printing

� we concentrate on printing, assuming machinery for
construction

Example - October 2010

October 2010
Su Mo Tu We Th Fr Sa

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31



Printing a Calendar

� given a month and a year, print the corresponding calendar

� separate construction phase (computing of days, leap year, ...)
from printing

� we concentrate on printing, assuming machinery for
construction

Example - October 2010

October 2010
Su Mo Tu We Th Fr Sa

1 2
3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31



The Picture Analogon

pictures:

� atomic part: pixel

� height and width

� white pixel

strings:

� atomic part: character

� rows and columns

� blank character

Auxiliary Types

type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])



The Picture Analogon

pictures:

� atomic part: pixel

� height and width

� white pixel

strings:

� atomic part: character

� rows and columns

� blank character

Auxiliary Types

type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])



The Picture Analogon

pictures:

� atomic part: pixel

� height and width

� white pixel

strings:

� atomic part: character

� rows and columns

� blank character

Auxiliary Types

type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])



The Picture Analogon

pictures:

� atomic part: pixel

� height and width

� white pixel

strings:

� atomic part: character

� rows and columns

� blank character

Auxiliary Types

type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])



The Picture Analogon

pictures:

� atomic part: pixel

� height and width

� white pixel

strings:

� atomic part: character

� rows and columns

� blank character

Auxiliary Types

type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])



Stacking 2 Pictures Above Each Other

above

above :: Picture -> Picture -> Picture
(h,w,css) `above` (h',w',css')

| w == w' = (h+h',w,css ++ css')
| otherwise = error "above: different widths"



Stacking 2 Pictures Above Each Other

above

above :: Picture -> Picture -> Picture
(h,w,css) `above` (h',w',css')

| w == w' = (h+h',w,css ++ css')
| otherwise = error "above: different widths"



Stacking Several Pictures Above Each Other

stack :: [Picture] -> Picture
stack = foldr1 above

Notes

� error :: String -> a, indicates a runtime error, given as
string

� foldr1 - special version of foldr, without base value (this
implies that it does not work on empty lists)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = x `f` foldr1 f xs



Stacking Several Pictures Above Each Other

stack :: [Picture] -> Picture
stack = foldr1 above

Notes

� error :: String -> a, indicates a runtime error, given as
string

� foldr1 - special version of foldr, without base value (this
implies that it does not work on empty lists)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = x `f` foldr1 f xs



Spreading 2 Pictures Beside Each Other

beside

beside :: Picture -> Picture -> Picture
(h,w,css) `beside` (h', w', css')

| h == h' = (h, w+w', zipWith (++) css css')
| otherwise = error "beside: different heights"

Spreading Several Pictures Beside Each Other

spread :: [Picture] -> Picture
spread = foldr1 beside



Spreading 2 Pictures Beside Each Other

beside

beside :: Picture -> Picture -> Picture
(h,w,css) `beside` (h', w', css')

| h == h' = (h, w+w', zipWith (++) css css')
| otherwise = error "beside: different heights"

Spreading Several Pictures Beside Each Other

spread :: [Picture] -> Picture
spread = foldr1 beside



Spreading 2 Pictures Beside Each Other

beside

beside :: Picture -> Picture -> Picture
(h,w,css) `beside` (h', w', css')

| h == h' = (h, w+w', zipWith (++) css css')
| otherwise = error "beside: different heights"

Spreading Several Pictures Beside Each Other

spread :: [Picture] -> Picture
spread = foldr1 beside



Combining 2 Lists via a Function

� zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

� zipWith f [x1, . . . ,xm] [y1, . . . ,yn] =
[x1 `f` y1, . . . ,xmin{m,n} `f` ymin{m,n}]

� specialization zip :: [a] -> [b] -> [(a,b)],

zip = zipWith (,)

Examples

� zip [1,2,3] ['a','b'] = [(1,'a'),(2,'b')]

� zipWith (*) [1,2] [3,4,5] = [1*3,2*4] = [3,8]

� zipWith drop [1,0] ["a","b"] =
[drop 1 "a",drop 0 "b"] = ["","b"]



Combining 2 Lists via a Function

� zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

� zipWith f [x1, . . . ,xm] [y1, . . . ,yn] =
[x1 `f` y1, . . . ,xmin{m,n} `f` ymin{m,n}]

� specialization zip :: [a] -> [b] -> [(a,b)],

zip = zipWith (,)

Examples

� zip [1,2,3] ['a','b'] = [(1,'a'),(2,'b')]

� zipWith (*) [1,2] [3,4,5] = [1*3,2*4] = [3,8]

� zipWith drop [1,0] ["a","b"] =
[drop 1 "a",drop 0 "b"] = ["","b"]



Creating Pictures

� single pixels

pixel :: Char -> Picture
pixel c = (1,1,[[c]])

� rows
row :: String -> Picture
row = spread . map pixel

� blank
blank = (Int,Int) -> Picture
blank = stack . map row . blanks
where blanks (h,w) =

replicate h (replicate w ' ')



Creating Pictures

� single pixels

pixel :: Char -> Picture
pixel c = (1,1,[[c]])

� rows
row :: String -> Picture
row = spread . map pixel

� blank
blank = (Int,Int) -> Picture
blank = stack . map row . blanks
where blanks (h,w) =

replicate h (replicate w ' ')



Creating Pictures

� single pixels

pixel :: Char -> Picture
pixel c = (1,1,[[c]])

� rows
row :: String -> Picture
row = spread . map pixel

� blank
blank = (Int,Int) -> Picture
blank = stack . map row . blanks
where blanks (h,w) =

replicate h (replicate w ' ')



Constructing a Month

� assume function
monthInfo :: Int -> Int -> (Int,Int), returning the
first weekday of the month together with the number of days
for the month

� where days are 0 (Sunday), 1 (Monday), . . .

� e.g., monthInfo 10 2010 = (5,31), meaning that the first
weekday of October 2010 is a Friday and the month has 31
days

daysOfMonth :: (Month,Year) -> [Picture]
daysOfMonth (m,y) =

map (row . rjustify 3 . pic) [1-d..42-d]
where (d,t) = monthInfo m y

pic n = if 1 <= n && n <= t then show n
else ""

month :: (Month,Year) -> Picture
month = tile . group 7 . daysOfMonth



Missing Functions

� rjustify - right-justify given text inside box of given width

rjustify :: Int -> String -> String
rjustify n xs =
replicate (n - length xs) ' ' ++ xs

� group - split list into sublists of given length

group :: Int -> [a] -> [[a]]
group n xs = if null ys then []

else ys : group n zs
where (ys,zs) = splitAt n xs

� tile - tile a list of lists of pictures

tile :: [[Picture]] -> Picture
tile = stack . map spread



Missing Functions

� rjustify - right-justify given text inside box of given width

rjustify :: Int -> String -> String
rjustify n xs =
replicate (n - length xs) ' ' ++ xs

� group - split list into sublists of given length

group :: Int -> [a] -> [[a]]
group n xs = if null ys then []

else ys : group n zs
where (ys,zs) = splitAt n xs

� tile - tile a list of lists of pictures

tile :: [[Picture]] -> Picture
tile = stack . map spread



Missing Functions

� rjustify - right-justify given text inside box of given width

rjustify :: Int -> String -> String
rjustify n xs =
replicate (n - length xs) ' ' ++ xs

� group - split list into sublists of given length

group :: Int -> [a] -> [[a]]
group n xs = if null ys then []

else ys : group n zs
where (ys,zs) = splitAt n xs

� tile - tile a list of lists of pictures

tile :: [[Picture]] -> Picture
tile = stack . map spread



Printing a Month

� transform a Picture into a String

showPic :: Picture -> String
showPic (_,_,css) = unlines css

� print result of month m y

printMonth = putStrLn . showPic . month

� putting it all together

module Main where

import System
. . .
main = do

args <- getArgs
case args of

[m,y] -> printMonth (read m,read y)
_ -> error "expecting month and year"



Printing a Month

� transform a Picture into a String

showPic :: Picture -> String
showPic (_,_,css) = unlines css

� print result of month m y

printMonth = putStrLn . showPic . month

� putting it all together

module Main where

import System
. . .
main = do

args <- getArgs
case args of

[m,y] -> printMonth (read m,read y)
_ -> error "expecting month and year"



Printing a Month

� transform a Picture into a String

showPic :: Picture -> String
showPic (_,_,css) = unlines css

� print result of month m y

printMonth = putStrLn . showPic . month

� putting it all together

module Main where

import System
. . .
main = do

args <- getArgs
case args of

[m,y] -> printMonth (read m,read y)
_ -> error "expecting month and year"



Exercise Preparation - Caesar Cipher

� Caesar Cipher encodes text by replacing each letter by another
one, some fixed positions (the key) down the alphabet

� e.g., encoding hello with a key of 2, yields jgnnq.

� in the following we restrict to lowercase letters

� approximate letter frequency list for English

tableEn = [8.2,1.5,2.8,4.3,12.7,2.2,2.0,6.1,7.0,
0.2,0.8,4.0,2.4,6.7,7.5,1.9,0.1,6.0,
6.3,9.1,2.8,1.0,2.4,0.2,2.0,0.1]

� chi-square statistic

n−1∑
i=0

(osi − esi )
2

esi

� where os is list of observed frequencies

� and es list of expected frequencies (e.g., tableEn for English)

� the lower chi-square, the better the match between os and es

http://en.wikipedia.org/wiki/Caesar_cipher


Exercises (for October 29th)

1. read chapter 3 of Real World Haskell
2. Implement a function rotate :: Int -> [a] -> [a] that

rotates the elements of a list to the left (wrapping around at
the start of the list). E.g.,
rotate 3 [1,2,3,4,5] = [4,5,1,2,3].

3. Implement a function
encode :: Int -> String -> String that applies the
Caesar cipher, e.g., encode 2 "hello" = "jgnnq". (Note
that decoding is just encoding with the negated key.)

4. Implement a function freqs :: String -> [Float] that
produces a frequency list for the 26 lowercase letters. E.g.,
freqs "aaab" = [75.0,25.0,0.0, . . . ,0.0].

5. Implement the chi-square statistic by a function
chisqr :: [Float] -> [Float] -> Float, taking two
frequency lists.

6. Implement a function crack :: String -> String that is
able to break the ciphertext "rhn vktvdxw max vhwx". You
may use all the previous functions and tableEn.

http://book.realworldhaskell.org/read/


Hints

� a function f from module M, will be denoted by M.f

� in order to use f you need import M at start of file

� converting between integers and characters
� Data.Char.chr :: Int -> Char
� Data.Char.ord :: Char -> Int

� converting from integer to float fromIntegral


