Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

October 20, 2010

Today's Topics

- Module Basics
- Lists and Strings
- Recursive Functions
- Example - Printing a Calendar

Module Basics

Structuring Code

- split source code into several files
- separate namespaces for functions and types

Structuring Code

- split source code into several files
- separate namespaces for functions and types

Splitting Source Code

- for each module Module create file Module.hs
- module names always start with uppercase letters
- start module by module header (with optional export list)

module Module (\langle export list \rangle) where

- export list gives functions and types visible outside
- without export list, all functions and types visible

Structuring Code

- split source code into several files
- separate namespaces for functions and types

Splitting Source Code

- for each module Module create file Module.hs
- module names always start with uppercase letters
- start module by module header (with optional export list)

module Module (\langle export list \rangle) where

- export list gives functions and types visible outside
- without export list, all functions and types visible

Structuring Code

- split source code into several files
- separate namespaces for functions and types

Splitting Source Code

- for each module Module create file Module.hs
- module names always start with uppercase letters
- start module by module header (with optional export list)

module Module (\langle export list \rangle) where

- export list gives functions and types visible outside
- without export list, all functions and types visible

Example

```
module Stack (Stack, empty, push, pop) where
type Stack a = [a]
empty = []
push = (:)
pop s = (head s, tail s)
```


Type Synonyms

- type Stack a = [a] is a type synonym
- just gives an alternative name for [a]
- afterwards, both names may be used interchangeably

Type Synonyms

- type Stack a = [a] is a type synonym
- just gives an alternative name for [a]
- afterwards, both names may be used interchangeably

Type Synonyms

- type Stack a = [a] is a type synonym
- just gives an alternative name for [a]
- afterwards, both names may be used interchangeably

Type Signatures

- every function f may be preceded by its type signature $f:$: T, stating that f is of type T
- good for documentation purposes

Type Synonyms

- type Stack a = [a] is a type synonym
- just gives an alternative name for [a]
- afterwards, both names may be used interchangeably

Type Signatures

- every function f may be preceded by its type signature $f:: T$, stating that f is of type T
- good for documentation purposes

Type Synonyms

- type Stack a = [a] is a type synonym
- just gives an alternative name for [a]
- afterwards, both names may be used interchangeably

Type Signatures

- every function f may be preceded by its type signature $f:: T$, stating that f is of type T
- good for documentation purposes

Example

```
push :: a -> Stack a -> Stack a
push = (:)
```

- note the partial application of (:)
- this is equivalent to push $\mathrm{x} \mathrm{s}=\mathrm{x}$: s

Lists and Strings

Strings are Lists

- the type String is just a type synonym for [Char]
- i.e., a string is just a list of characters
- all list functions are applicable to Strings

Strings are Lists

- the type String is just a type synonym for [Char]
- i.e., a string is just a list of characters
- all list functions are applicable to Strings

Some Implications

- [] is the same as "" for strings
- ['h','e','l','l','o'] is the same as "hello" for strings

Strings are Lists

- the type String is just a type synonym for [Char]
- i.e., a string is just a list of characters
- all list functions are applicable to Strings

Some Implications

- [] is the same as "" for strings
- ['h', 'e','l','l','o'] is the same as "hello" for strings

Useful Functions on Strings

- lines :: String -> [String] - breaks string at newlines
- unlines :: [String] -> String - concatenates strings, inserting newlines
- words :: String -> [String] - breaks strings at white space
- unwords :: [String] -> String - concatenates strings, separated by spaces

Interlude - Function Composition

- in mathematics $f \circ g$ usually denotes applying f after g
- i.e., $(f \circ g)(x)=f(g(x))$
- only possible if output of g is compatible with input of f : $f: B \rightarrow C$ and $g: A \rightarrow B$
- in Haskell: (.) :: (b -> c) -> (a -> b) -> (a -> c)
- try ":info (.)" in GHCi

Interlude - Function Composition

- in mathematics $f \circ g$ usually denotes applying f after g
- i.e., $(f \circ g)(x)=f(g(x))$
- only possible if output of g is compatible with input of f : $f: B \rightarrow C$ and $g: A \rightarrow B$
- in Haskell: (.) :: (b -> c) -> (a -> b) -> (a -> c)
- try ":info (.)" in GHCi

Examples

- map (f . g) xs - on every element of xs, first apply g and then f
- equivalent to map f (map gis)
- what's the result of unwords . words?

List Comprehensions - Generators

- in mathematics set comprehensions can be used to construct new sets from existing sets
- e.g., $\left\{x^{2} \mid x \in\{1, \ldots, 5\}\right\}$ produces $\{1,4,9,16,25\}$
- in Haskell [$x^{\wedge} 2 \mid x<-$ [1..5]]
- here, x <- [1..5] is called a generator
- there may be more than one generator, e.g., $[(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}<-\mathrm{xs}, \mathrm{y}<-\mathrm{xs}]$ (all pairs over elements from $\mathrm{xs})$
- order is important: rightmost generators are evaluated first

List Comprehensions - Generators

- in mathematics set comprehensions can be used to construct new sets from existing sets
- e.g., $\left\{x^{2} \mid x \in\{1, \ldots, 5\}\right\}$ produces $\{1,4,9,16,25\}$
- in Haskell [$x^{\wedge} 2 \mid x<-$ [1..5]]
- here, x <- [1..5] is called a generator
- there may be more than one generator, e.g.,
$[(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}<-\mathrm{xs}, \mathrm{y}<-\mathrm{xs}]$ (all pairs over elements from xs)
- order is important: rightmost generators are evaluated first

List Comprehensions - Generators

- in mathematics set comprehensions can be used to construct new sets from existing sets
- e.g., $\left\{x^{2} \mid x \in\{1, \ldots, 5\}\right\}$ produces $\{1,4,9,16,25\}$
- in Haskell [x^2 | $x<-$ [1..5]]
- here, x <- [1..5] is called a generator
- there may be more than one generator, e.g.,
$[(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}<-\mathrm{xs}, \mathrm{y}<-\mathrm{xs}]$ (all pairs over elements from xs)
- order is important: rightmost generators are evaluated first

List Comprehensions - Generators

- in mathematics set comprehensions can be used to construct new sets from existing sets
- e.g., $\left\{x^{2} \mid x \in\{1, \ldots, 5\}\right\}$ produces $\{1,4,9,16,25\}$
- in Haskell [$x^{\wedge} 2 \mid x<-$ [1..5]]
- here, x <- [1..5] is called a generator
- there may be more than one generator, e.g., $[(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}<-\mathrm{xs}, \mathrm{y}<-\mathrm{xs}]$ (all pairs over elements from $\mathrm{xs})$
- order is important: rightmost generators are evaluated first

List Comprehensions - Generators

- in mathematics set comprehensions can be used to construct new sets from existing sets
- e.g., $\left\{x^{2} \mid x \in\{1, \ldots, 5\}\right\}$ produces $\{1,4,9,16,25\}$
- in Haskell [$x^{\wedge} 2 \mid x<-$ [1..5]]
- here, $\mathrm{x}<-$ [1..5] is called a generator
- there may be more than one generator, e.g., $[(x, y) \mid x<-x s, y<-x s]$ (all pairs over elements from $\mathrm{xs})$
- order is important: rightmost generators are evaluated first

Examples

- concat xss $=[\mathrm{x} \mid \mathrm{xs}<-\mathrm{xss}, \mathrm{x}<-\mathrm{xs}]$
- firsts ps = [x | (x,_) <- ps]
- length xs $=$ sum [1 | _ <- xs]

List Comprehensions - Guards

- filter values before generating result
- e.g., $\left\{x^{2} \mid x \in \mathbb{N}, x>5\right\}$
- in Haskell: [$\left.x^{\wedge} 2 \mid x<-x s, x>5\right]$; square every number in xs that is greater than 5

List Comprehensions - Guards

- filter values before generating result
- e.g., $\left\{x^{2} \mid x \in \mathbb{N}, x>5\right\}$
- in Haskell: [$x \wedge 2 \mid x<-x s, x>5]$; square every number in xs that is greater than 5

Examples

- $[\mathrm{x} \mid \mathrm{x}<-$ [1..10], even x$]$
- find k t = [v | (k', v) <- t, k == k']
- factors $\mathrm{n}=[\mathrm{x} \mid \mathrm{x}<-\quad[1 . . \mathrm{n}]$, n `mod` $\mathrm{x}==0]$
- primes $=[\mathrm{n} \mid \mathrm{n}<-$ [1..], factors $\mathrm{n}==[1, \mathrm{n}]$]

Recursive Functions

Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```


Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
    | otherwise = n * factorial (n-1)
```


Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
    | otherwise = n * factorial (n-1)
```

- Note that factorial does not loop forever, since at some point its argument will be 1 or smaller (its termination condition)

Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
otherwise = n * factorial (n-1)
```

- Note that factorial does not loop forever, since at some point its argument will be 1 or smaller (its termination condition)
- steps when defining recursive functions

Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
otherwise = n * factorial (n-1)
```

- Note that factorial does not loop forever, since at some point its argument will be 1 or smaller (its termination condition)
- steps when defining recursive functions

1. define the type (e.g., product :: [Int] -> Int)

Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
otherwise = n * factorial (n-1)
```

- Note that factorial does not loop forever, since at some point its argument will be 1 or smaller (its termination condition)
- steps when defining recursive functions

1. define the type (e.g., product : : [Int] -> Int)
2. enumerate the cases (e.g., [] and $\mathrm{x}: \mathrm{xs}$)

Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
otherwise = n * factorial (n-1)
```

- Note that factorial does not loop forever, since at some point its argument will be 1 or smaller (its termination condition)
- steps when defining recursive functions

1. define the type (e.g., product : : [Int] -> Int)
2. enumerate the cases (e.g., [] and $\mathrm{x}: \mathrm{xs}$)
3. define the simple cases (e.g., product [] = 1)

Basic Concepts

- functions may be defined in terms of other functions

```
factorial :: Int -> Int
factorial n = product [1..n]
```

- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
otherwise = n * factorial (n-1)
```

- Note that factorial does not loop forever, since at some point its argument will be 1 or smaller (its termination condition)
- steps when defining recursive functions

1. define the type (e.g., product : : [Int] -> Int)
2. enumerate the cases (e.g., [] and $\mathrm{x}: \mathrm{xs}$)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g.,

$$
\text { product (} \mathrm{x}: \mathrm{xs} \text {) }=\mathrm{x} * \text { product } \mathrm{xs})
$$

Basic Concepts

- functions may be defined in terms of other functions
factorial :: Int -> Int
factorial $\mathrm{n}=$ product [1..n]
- or in terms of themselves (i.e., recursive)

```
factorial n | n <= 1 = 1
    otherwise = n * factorial (n-1)
```

- Note that factorial does not loop forever, since at some point its argument will be 1 or smaller (its termination condition)
- steps when defining recursive functions

1. define the type (e.g., product :: [Int] -> Int)
2. enumerate the cases (e.g., [] and $\mathrm{x}: \mathrm{xs}$)
3. define the simple cases (e.g., product [] = 1)
4. define the other cases (e.g., product ($\mathrm{x}: \mathrm{xs}$) $=\mathrm{x} *$ product xs)
5. generalize and simplify (e.g.,
product :: Num a => [a] -> a and
product $=$ foldr (*) 1)

Example - drop

- define type: drop : : Int -> [a] -> [a]

Example - drop

- define type: drop :: Int -> [a] -> [a]
- enumerate cases:

drop 0[]$=$
drop $0(x: x s)=$
drop $n[]$
drop $n(x: x s)$

Example - drop

- define type: drop :: Int -> [a] -> [a]
- enumerate cases:

drop 0	[]
drop $0(x: x s)$	$=$
drop n	[]
drop $n(x: x s)$	$=$

- define simple cases:

```
drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []
```


Example - drop

- define type: drop :: Int -> [a] -> [a]
- enumerate cases:

drop 0[]	$=$
drop $0(x: x s)$	$=$
drop $n[]$	$=$
drop $n(x: x s)$	$=$

- define simple cases:

```
drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []
```

- define other cases:

```
drop n (x:xs) = drop (n-1) xs
```


Example - drop

- define type: drop :: Int -> [a] -> [a]
- enumerate cases:

drop 0	[]
drop $0(x: x s)$	$=$
drop n	$=$
drop $n(x: x s)$	$=$

- define simple cases:

```
drop 0 [] = []
drop 0 (x:xs) = x : xs
drop n [] = []
```

- define other cases:

```
drop n (x:xs) = drop (n-1) xs
```

- generalize and simplify:

```
drop :: Integer -> [a] -> [a]
drop n xs | n <= 0 = xs
drop n [] = []
drop n (_:xs) = drop (n-1) xs
```

Example - init

- define type: init :: [a] -> [a]

Example - init

- define type: init :: [a] -> [a]
- enumerate cases:
init (x:xs) =

Example - init

- define type: init :: [a] -> [a]
- enumerate cases:
init (x:xs) =
- define simple cases:
init (x:xs) | null xs = []

Example - init

- define type: init :: [a] -> [a]
- enumerate cases:
init (x:xs) =
- define simple cases:
init (x:xs) | null xs = []
- define other cases:
| otherwise = x : init xs

Example - init

- define type: init :: [a] -> [a]
- enumerate cases:
init (x:xs) =
- define simple cases:
init (x:xs) | null xs = []
- define other cases:
| otherwise = x : init xs
- generalize and simplify

```
init :: [a] -> [a]
init [_] = []
init (x:xs) = x : init xs
```


Example - Printing a Calendar

Printing a Calendar

- given a month and a year, print the corresponding calendar
- separate construction phase (computing of days, leap year, ...) from printing
- we concentrate on printing, assuming machinery for construction

Printing a Calendar

- given a month and a year, print the corresponding calendar
- separate construction phase (computing of days, leap year, ...) from printing
- we concentrate on printing, assuming machinery for construction

Example - October 2010

October 2010
Su Mo Tu We Th Fr Sa

3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

31

The Picture Analogon

pictures:

- atomic part: pixel
- height and width
- white pixel
strings:
- atomic part: character
- rows and columns
- blank character

The Picture Analogon

pictures:

- atomic part: pixel
- height and width
- white pixel
strings:
- atomic part: character
- rows and columns
- blank character

The Picture Analogon

pictures:

- atomic part: pixel
- height and width
- white pixel
strings:
- atomic part: character
- rows and columns
- blank character

The Picture Analogon

pictures:

- atomic part: pixel
- height and width
- white pixel
strings:
- atomic part: character
- rows and columns
- blank character

The Picture Analogon

pictures:

- atomic part: pixel
- height and width
- white pixel
strings:
- atomic part: character
- rows and columns
- blank character

Auxiliary Types

```
type Height = Int
type Width = Int
type Picture = (Height, Width, [[Char]])
```


Stacking 2 Pictures Above Each Other

Stacking 2 Pictures Above Each Other

above

above :: Picture -> Picture -> Picture
(h,w,css) `above` (h', w', css')
| w == w' = (h+h', w, css ++ css')
| otherwise = error "above: different widths"

Stacking Several Pictures Above Each Other

```
stack :: [Picture] -> Picture
stack = foldr1 above
```


Stacking Several Pictures Above Each Other

```
stack :: [Picture] -> Picture
stack = foldr1 above
```


Notes

- error : : String $->$ a, indicates a runtime error, given as string
- foldr1 - special version of foldr, without base value (this implies that it does not work on empty lists)

```
foldr1 :: (a -> a -> a) -> [a] -> a
    foldr1 f [x] = x
    foldr1 f (x:xs) = x `f` foldr1 f xs
```


Spreading 2 Pictures Beside Each Other

Spreading 2 Pictures Beside Each Other

beside

beside :: Picture -> Picture -> Picture
(h,w,css) `beside` (h', w', css')
| h == h' = (h, w+w', zipWith (++) css css')
| otherwise = error "beside: different heights"

Spreading 2 Pictures Beside Each Other

beside
beside :: Picture -> Picture -> Picture
(h,w,css) `beside` (h', w', css')
| h == h' = (h, w+w', zipWith (++) css css') | otherwise = error "beside: different heights"

Spreading Several Pictures Beside Each Other

spread : : [Picture] -> Picture
spread = foldr1 beside

Combining 2 Lists via a Function

- zipWith : : (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith $f\left[x_{1}, \ldots, x_{m}\right]\left[y_{1}, \ldots, y_{n}\right]=$ $\left[x_{1}{ }^{`} \mathrm{f}^{\prime} y_{1}, \ldots, x_{\min \{m, n\}}{ }^{`} \mathrm{f}{ }^{\prime} y_{\min \{m, n\}}\right]$
- specialization zip : : [a] -> [b] $->[(a, b)]$,

$$
\text { zip }=\text { zipWith (,) }
$$

Combining 2 Lists via a Function

- zipWith : : (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith $f\left[x_{1}, \ldots, x_{m}\right]\left[y_{1}, \ldots, y_{n}\right]=$ $\left[x_{1}{ }^{`} \mathrm{f}^{`} y_{1}, \ldots, x_{\min \{m, n\}}{ }^{`} \mathrm{f}^{\prime} y_{\min \{m, n\}}\right]$
- specialization zip : : [a] -> [b] -> [(a,b)],
zip = zipWith (,)

Examples

- $\operatorname{zip}[1,2,3]\left[{ }^{\prime} a^{\prime}, ' b '\right]=[(1, ' a '),(2, ' b ')]$
- zipWith (*) $[1,2][3,4,5]=[1 * 3,2 * 4]=[3,8]$
- zipWith drop [1,0] ["a","b"] = [drop 1 "a",drop 0 "b"] = ["","b"]

Creating Pictures

- single pixels

```
pixel :: Char -> Picture
pixel c = (1,1,[[c]])
```


Creating Pictures

- single pixels

```
pixel :: Char -> Picture
pixel c = (1,1,[[c]])
```

- rows
row : : String \rightarrow Picture
row $=$ spread . map pixel

Creating Pictures

- single pixels

$$
\begin{aligned}
& \text { pixel : : Char }->\text { Picture } \\
& \text { pixel c }=(1,1,[[c]])
\end{aligned}
$$

- rows
row : : String $->$ Picture
row $=$ spread . map pixel
- blank

```
blank = (Int,Int) -> Picture
blank = stack . map row . blanks
    where blanks (h,w) =
        replicate h (replicate w ' ')
```


Constructing a Month

- assume function monthInfo :: Int -> Int -> (Int, Int), returning the first weekday of the month together with the number of days for the month
- where days are 0 (Sunday), 1 (Monday), ...
- e.g., monthInfo $102010=(5,31)$, meaning that the first weekday of October 2010 is a Friday and the month has 31 days

```
daysOfMonth :: (Month,Year) -> [Picture]
daysOfMonth (m,y) =
    map (row . rjustify 3 . pic) [1-d..42-d]
    where (d,t) = monthInfo m y
        pic n = if 1 <= n && n <= t then show n
                                    else ""
```

month : : (Month, Year) -> Picture
month $=$ tile . group 7 . daysOfMonth

Missing Functions

- rjustify - right-justify given text inside box of given width

```
rjustify :: Int -> String -> String
rjustify n xs =
    replicate (n - length xs) ' ' ++ xs
```


Missing Functions

- rjustify - right-justify given text inside box of given width

```
rjustify :: Int -> String -> String
rjustify n xs =
    replicate (n - length xs) ' ' ++ xs
```

- group - split list into sublists of given length

```
group :: Int -> [a] -> [[a]]
group n xs = if null ys then []
    else ys : group n zs
```

 where (ys,zs) = splitAt n xs

Missing Functions

- rjustify - right-justify given text inside box of given width rjustify : : Int -> String -> String rjustify n xs $=$ replicate (n - length xs) ' ' ++ xs
- group - split list into sublists of given length

```
group :: Int -> [a] -> [[a]]
group n xs = if null ys then []
                                    else ys : group n zs
```

where (ys,zs) = splitAt n xs

- tile - tile a list of lists of pictures

```
tile :: [[Picture]] -> Picture
tile = stack . map spread
```


Printing a Month

- transform a Picture into a String

```
showPic :: Picture -> String
showPic (_,_,css) = unlines css
```


Printing a Month

- transform a Picture into a String

```
    showPic :: Picture -> String
    showPic (_,_,css) = unlines css
```

- print result of month m y
printMonth $=$ putStrLn . showPic . month

Printing a Month

- transform a Picture into a String
showPic :: Picture -> String
showPic (_,_,css) = unlines css
- print result of month m y

```
printMonth = putStrLn . showPic . month
```

- putting it all together
module Main where
import System
main $=$ do
args <- getArgs
case args of
[m,y] -> printMonth (read m,read y)
-> error "expecting month and year"

Exercise Preparation - Caesar Cipher

- Caesar Cipher encodes text by replacing each letter by another one, some fixed positions (the key) down the alphabet
- e.g., encoding hello with a key of 2 , yields jgnnq.
- in the following we restrict to lowercase letters
- approximate letter frequency list for English

$$
\begin{aligned}
\text { tableEn }= & {[8.2,1.5,2.8,4 \cdot 3,12 \cdot 7,2 \cdot 2,2 \cdot 0,6 \cdot 1,7.0,} \\
& 0.2,0.8,4.0,2 \cdot 4,6 \cdot 7,7.5,1.9,0.1,6.0, \\
& 6.3,9.1,2.8,1.0,2.4,0.2,2 \cdot 0,0.1]
\end{aligned}
$$

- chi-square statistic

$$
\sum_{i=0}^{n-1} \frac{\left(o s_{i}-e s_{i}\right)^{2}}{e s_{i}}
$$

- where os is list of observed frequencies
- and es list of expected frequencies (e.g., tableEn for English)
- the lower chi-square, the better the match between os and es

Exercises (for October 29th)

1. read chapter 3 of Real World Haskell
2. Implement a function rotate : : Int -> [a] -> [a] that rotates the elements of a list to the left (wrapping around at the start of the list). E.g.,
rotate $3[1,2,3,4,5]=[4,5,1,2,3]$.
3. Implement a function
encode :: Int -> String -> String that applies the Caesar cipher, e.g., encode 2 "hello" $=$ "jgnnq". (Note that decoding is just encoding with the negated key.)
4. Implement a function freqs : : String -> [Float] that produces a frequency list for the 26 lowercase letters. E.g., freqs "aaab" $=[75.0,25.0,0.0, \ldots, 0.0]$.
5. Implement the chi-square statistic by a function chisqr :: [Float] -> [Float] -> Float, taking two frequency lists.
6. Implement a function crack : : String -> String that is able to break the ciphertext "rhn vktvdxw max vhwx". You may use all the previous functions and tableEn.

Hints

- a function f from module M, will be denoted by M.f
- in order to use f you need import M at start of file
- converting between integers and characters
- Data.Char.chr :: Int -> Char
- Data.Char.ord :: Char -> Int
- converting from integer to float fromIntegral

