
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

October 27, 2010

http://cl-informatik.uibk.ac.at

Today’s Topics

� Intermediate Wrap-Up

� User-Defined Types / Trees

� Input and Output

Intermediate Wrap-Up

Prelude Functions You Should Know

� infix operators and special syntax

(<=), (<), (==), (>=), (>), (||), (-), (,), (:),
(/=), (.), (*), (&&), (+), [], [〈m〉..〈n〉]

� other Prelude functions
abs, compare, concat, const, div, drop, error,
even, filter, foldr, fromInteger, fst, head,
init, last, length, lines, map, max, min, mod,
negate, not, null, otherwise, product,
putStrLn, read, replicate, reverse, show,
signum, snd, splitAt, sum, tail, take, unlines,
unwords, words, zip, zipWith

Syntax You Should Recognize

� anonymous functions / functions without names

(\x -> 2*x) -- an anonymous function for doubling
� infix operators and sections

(+) = (\x y -> x + y) infix to prefix

x `f` y = f x y prefix to infix

(a>) = (\x -> a > x) argument smaller than a?

(>b) = (\x -> x > b) argument greater than b?

� patterns and guards

headIfPositive xs = case xs of

x:_ | x > 0 -> x
� list comprehensions

filter p xs == [x | x <- xs, p x]
map f xs == [f x | x <- xs]
concat (map f xs) == [y | x <- xs, y <- f x]
map (\x -> map ((,)x) ys) xs ==
[(x,y) | x <- xs, y <- ys]

Syntax You Should Recognize

� anonymous functions / functions without names

(\x -> 2*x) -- an anonymous function for doubling
� infix operators and sections

(+) = (\x y -> x + y) infix to prefix

x `f` y = f x y prefix to infix

(a>) = (\x -> a > x) argument smaller than a?

(>b) = (\x -> x > b) argument greater than b?

� patterns and guards

headIfPositive xs = case xs of

x:_ | x > 0 -> x
� list comprehensions

filter p xs == [x | x <- xs, p x]
map f xs == [f x | x <- xs]
concat (map f xs) == [y | x <- xs, y <- f x]
map (\x -> map ((,)x) ys) xs ==
[(x,y) | x <- xs, y <- ys]

Syntax You Should Recognize

� anonymous functions / functions without names

(\x -> 2*x) -- an anonymous function for doubling
� infix operators and sections

(+) = (\x y -> x + y) infix to prefix

x `f` y = f x y prefix to infix

(a>) = (\x -> a > x) argument smaller than a?

(>b) = (\x -> x > b) argument greater than b?

� patterns and guards

headIfPositive xs = case xs of

x:_ | x > 0 -> x
� list comprehensions

filter p xs == [x | x <- xs, p x]
map f xs == [f x | x <- xs]
concat (map f xs) == [y | x <- xs, y <- f x]
map (\x -> map ((,)x) ys) xs ==
[(x,y) | x <- xs, y <- ys]

Syntax You Should Recognize

� anonymous functions / functions without names

(\x -> 2*x) -- an anonymous function for doubling
� infix operators and sections

(+) = (\x y -> x + y) infix to prefix

x `f` y = f x y prefix to infix

(a>) = (\x -> a > x) argument smaller than a?

(>b) = (\x -> x > b) argument greater than b?

� patterns and guards

headIfPositive xs = case xs of

x:_ | x > 0 -> x
� list comprehensions

filter p xs == [x | x <- xs, p x]
map f xs == [f x | x <- xs]
concat (map f xs) == [y | x <- xs, y <- f x]
map (\x -> map ((,)x) ys) xs ==
[(x,y) | x <- xs, y <- ys]

Syntax You Should Recognize

� anonymous functions / functions without names

(\x -> 2*x) -- an anonymous function for doubling
� infix operators and sections

(+) = (\x y -> x + y) infix to prefix

x `f` y = f x y prefix to infix

(a>) = (\x -> a > x) argument smaller than a?

(>b) = (\x -> x > b) argument greater than b?

� patterns and guards

headIfPositive xs = case xs of

x:_ | x > 0 -> x
� list comprehensions

filter p xs == [x | x <- xs, p x]
map f xs == [f x | x <- xs]
concat (map f xs) == [y | x <- xs, y <- f x]
map (\x -> map ((,)x) ys) xs ==
[(x,y) | x <- xs, y <- ys]

Types and Classes

� type signatures, annotate functions by types

range :: Int -> Int -> [Int]
range m n | m > n = []

| otherwise = m : range (m+1) n
� type synonyms, mnemonic names for types

type Height = Int
type Width = Int

� type classes and class constraints - for every function f,
specific to class C, type inference adds a C-constraint to type

Example - Type Constraints

� without type signature, we get

ghci> :t range
range :: (Ord a, Num a) => a -> a -> [a]

� m > n, hence m and n of class Ord and m and n of same type

� m+1, hence m of class Num

� m and n of same type, hence n of class Num

Types and Classes

� type signatures, annotate functions by types

range :: Int -> Int -> [Int]
range m n | m > n = []

| otherwise = m : range (m+1) n
� type synonyms, mnemonic names for types

type Height = Int
type Width = Int

� type classes and class constraints - for every function f,
specific to class C, type inference adds a C-constraint to type

Example - Type Constraints

� without type signature, we get

ghci> :t range
range :: (Ord a, Num a) => a -> a -> [a]

� m > n, hence m and n of class Ord and m and n of same type

� m+1, hence m of class Num

� m and n of same type, hence n of class Num

Types and Classes

� type signatures, annotate functions by types

range :: Int -> Int -> [Int]
range m n | m > n = []

| otherwise = m : range (m+1) n
� type synonyms, mnemonic names for types

type Height = Int
type Width = Int

� type classes and class constraints - for every function f,
specific to class C, type inference adds a C-constraint to type

Example - Type Constraints

� without type signature, we get

ghci> :t range
range :: (Ord a, Num a) => a -> a -> [a]

� m > n, hence m and n of class Ord and m and n of same type

� m+1, hence m of class Num

� m and n of same type, hence n of class Num

Types and Classes

� type signatures, annotate functions by types

range :: Int -> Int -> [Int]
range m n | m > n = []

| otherwise = m : range (m+1) n
� type synonyms, mnemonic names for types

type Height = Int
type Width = Int

� type classes and class constraints - for every function f,
specific to class C, type inference adds a C-constraint to type

Example - Type Constraints

� without type signature, we get

ghci> :t range
range :: (Ord a, Num a) => a -> a -> [a]

� m > n, hence m and n of class Ord and m and n of same type

� m+1, hence m of class Num

� m and n of same type, hence n of class Num

Types and Classes

� type signatures, annotate functions by types

range :: Int -> Int -> [Int]
range m n | m > n = []

| otherwise = m : range (m+1) n
� type synonyms, mnemonic names for types

type Height = Int
type Width = Int

� type classes and class constraints - for every function f,
specific to class C, type inference adds a C-constraint to type

Example - Type Constraints

� without type signature, we get

ghci> :t range
range :: (Ord a, Num a) => a -> a -> [a]

� m > n, hence m and n of class Ord and m and n of same type

� m+1, hence m of class Num

� m and n of same type, hence n of class Num

Equational Reasoning

� a function definition in Haskell is a (set of conditional)
equation(s)

� if conditions are met, we may “replace equals by equals”

� in this way we may evaluate function calls by applying
equations stepwise, until we reach final result

Kinds of Conditions

� “if 〈b〉 then 〈t〉 else 〈e〉” is 〈t〉, when 〈b〉 is true; and 〈e〉,
otherwise

� “case 〈e〉 of { 〈p1〉 -> 〈e1〉; . . . ;〈pn〉 -> 〈en〉 }” is 〈ei 〉, if
〈e〉 first matches 〈pi 〉

Primitive Operations

� for primitive operations (like (+), (*), . . .), we assume
predefined equations

� e.g., 1 + 2 = 3, 0 * 10 = 0, . . .

Equational Reasoning

� a function definition in Haskell is a (set of conditional)
equation(s)

� if conditions are met, we may “replace equals by equals”

� in this way we may evaluate function calls by applying
equations stepwise, until we reach final result

Kinds of Conditions

� “if 〈b〉 then 〈t〉 else 〈e〉” is 〈t〉, when 〈b〉 is true; and 〈e〉,
otherwise

� “case 〈e〉 of { 〈p1〉 -> 〈e1〉; . . . ;〈pn〉 -> 〈en〉 }” is 〈ei 〉, if
〈e〉 first matches 〈pi 〉

Primitive Operations

� for primitive operations (like (+), (*), . . .), we assume
predefined equations

� e.g., 1 + 2 = 3, 0 * 10 = 0, . . .

Equational Reasoning

� a function definition in Haskell is a (set of conditional)
equation(s)

� if conditions are met, we may “replace equals by equals”

� in this way we may evaluate function calls by applying
equations stepwise, until we reach final result

Kinds of Conditions

� “if 〈b〉 then 〈t〉 else 〈e〉” is 〈t〉, when 〈b〉 is true; and 〈e〉,
otherwise

� “case 〈e〉 of { 〈p1〉 -> 〈e1〉; . . . ;〈pn〉 -> 〈en〉 }” is 〈ei 〉, if
〈e〉 first matches 〈pi 〉

Primitive Operations

� for primitive operations (like (+), (*), . . .), we assume
predefined equations

� e.g., 1 + 2 = 3, 0 * 10 = 0, . . .

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

Examples - Equational Reasoning

� definition
zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

� evaluate zip [1,2,3] ['a','b']

� definition
factorial n | n <= 1 = 1

| otherwise = n * factorial (n-1)

� evaluate factorial 3

� definition

head xs = case xs of x:_ -> x

� evaluate head "ab"

� definition
prod xs = if null xs then 1

else head xs * prod (tail xs)

� evaluate prod [5,6]

User-Defined Types / Trees

Data Declarations / Algebraic Data Types

� new types are introduced by

data 〈T 〉 α1 · · · αn = 〈C1〉 τ11 · · · τ1m1

|
...

| 〈Ck〉 τk1 · · · τkmk

� where 〈T 〉 is the name of the new type (starting with a
capital letter) taking n type parameters α1 to αn

� and 〈Ci 〉 is the name of the i-th (data) constructor, taking mi

arguments of types τi1 to τimi
(which may contain only type

variables among α1 to αn)

Examples

� data Bool = False | True

� data List a = Nil | Cons a (List a)

� data Pair a b = Pair a b constructors and type names
live in different name spaces

Data Declarations / Algebraic Data Types

� new types are introduced by

data 〈T 〉 α1 · · · αn = 〈C1〉 τ11 · · · τ1m1

|
...

| 〈Ck〉 τk1 · · · τkmk

� where 〈T 〉 is the name of the new type (starting with a
capital letter) taking n type parameters α1 to αn

� and 〈Ci 〉 is the name of the i-th (data) constructor, taking mi

arguments of types τi1 to τimi
(which may contain only type

variables among α1 to αn)

Examples

� data Bool = False | True

� data List a = Nil | Cons a (List a)

� data Pair a b = Pair a b constructors and type names
live in different name spaces

Automatically Deriving Type Class Instances

� for some type classes it is possible to automatically derive
instances for algebraic data types

� e.g.,

data List a = Nil | Cons a (List a)
deriving (Eq, Show, Read)

� now, we are able to use (==), show, and read for Lists

Examples

ghci> Nil == Cons 1 Nil
False
ghci> show (Cons 1 (Cons 2 Nil))
"Cons 1 (Cons 2 Nil)"
ghci> read it :: List Int
Cons 1 (Cons 2 Nil)

Automatically Deriving Type Class Instances

� for some type classes it is possible to automatically derive
instances for algebraic data types

� e.g.,

data List a = Nil | Cons a (List a)
deriving (Eq, Show, Read)

� now, we are able to use (==), show, and read for Lists

Examples

ghci> Nil == Cons 1 Nil
False
ghci> show (Cons 1 (Cons 2 Nil))
"Cons 1 (Cons 2 Nil)"
ghci> read it :: List Int
Cons 1 (Cons 2 Nil)

Definition - Tree

� (rooted) tree T = (N,E)

� with set of nodes N

� and set of edges/vertices E ⊆ N × N

� unique root of T (root(T) ∈ N) without predecessor

� all other nodes have exactly one predecessor

Example

� N = {A,B,C ,D,E ,F ,G}
� E = {(A,B), (A,C), (A,E), (C ,D), (E ,F), (E ,G)}
� root(T) = A

� T = A

B C

D

E

F G

Definition - Tree

� (rooted) tree T = (N,E)

� with set of nodes N

� and set of edges/vertices E ⊆ N × N

� unique root of T (root(T) ∈ N) without predecessor

� all other nodes have exactly one predecessor

Example

� N = {A,B,C ,D,E ,F ,G}
� E = {(A,B), (A,C), (A,E), (C ,D), (E ,F), (E ,G)}
� root(T) = A

� T = A

B C

D

E

F G

Trees in Haskell

� possible type for trees with arbitrary nodes

data Tree a = Empty | Node a [Tree a]

� a tree is either empty (0 nodes) or there is at least one node
with content of type a and an arbitrary number of successor
trees

Examples

Empty

1

2

Node 1 [Node 2 []]

1

Node 1 []

1

2 3

Node 1 [Node 2 [],Node 3 []]

Trees in Haskell

� possible type for trees with arbitrary nodes

data Tree a = Empty | Node a [Tree a]

� a tree is either empty (0 nodes) or there is at least one node
with content of type a and an arbitrary number of successor
trees

Examples

Empty

1

2

Node 1 [Node 2 []]

1

Node 1 []

1

2 3

Node 1 [Node 2 [],Node 3 []]

Binary Trees

� restrict number of successors (maximal 2)

� type

data BTree a = Empty | Node a (BTree a) (BTree a)
deriving (Eq, Show, Read)

Functions on Binary Trees

� computing the number of nodes

size :: BTree a -> Integer
size Empty = 0
size (Node _ l r) = size l + size r + 1

� height - length of longest path from root to some leaf plus one

height :: BTree a -> Integer
height Empty = 0
height(Node _ l r) = max (height l) (height r) + 1

Binary Trees

� restrict number of successors (maximal 2)

� type

data BTree a = Empty | Node a (BTree a) (BTree a)
deriving (Eq, Show, Read)

Functions on Binary Trees

� computing the number of nodes

size :: BTree a -> Integer
size Empty = 0
size (Node _ l r) = size l + size r + 1

� height - length of longest path from root to some leaf plus one

height :: BTree a -> Integer
height Empty = 0
height(Node _ l r) = max (height l) (height r) + 1

Creating Trees from List

� the easy way

fromList [] = Empty
fromList (x:xs) = Node x Empty (fromList xs)

� the fair way

make [] = Empty
make xs = Node z (make ys) (make zs)
where m = length xs `div` 2

(ys,z:zs) = splitAt m xs

� ordered
searchTree = foldr insert Empty
where insert x Empty = Node x Empty Empty

insert x (Node y l r)
| x < y = Node y (insert x l) r
| otherwise = Node y l (insert x r)

Transforming Trees into Lists

flatten Empty = []
flatten (Node x l r) = flatten l ++ [x] ++ flatten r

A Sorting Algorithm for Lists

sort = flatten . searchTree

Transforming Trees into Lists

flatten Empty = []
flatten (Node x l r) = flatten l ++ [x] ++ flatten r

A Sorting Algorithm for Lists

sort = flatten . searchTree

Input and Output

An Initial Example

� write the file welcomeIO.hs
main = do

putStrLn "Greetings! What's your name?"
name <- getLine
putStrLn (

"Welcome to Haskell's IO, " ++ name ++ "!")

� compile it with GHC via

$ ghc --make welcomeIO.hs

� and run it
$./welcomeIO
Greetings! What’s your name?

Notes

� putStrLn prints a string + newline

� getLine reads a line from standard input

� new: do and <-

An Initial Example

� write the file welcomeIO.hs
main = do

putStrLn "Greetings! What's your name?"
name <- getLine
putStrLn (

"Welcome to Haskell's IO, " ++ name ++ "!")

� compile it with GHC via

$ ghc --make welcomeIO.hs

� and run it
$./welcomeIO
Greetings! What’s your name?

Notes

� putStrLn prints a string + newline

� getLine reads a line from standard input

� new: do and <-

IO and the Type System

� consider
ghci> :load welcomeIO.hs
ghci> :t putStrLn
putStrLn :: String -> IO ()
ghci> :t getLine
getLine :: IO String
ghci> :t main
main :: IO ()

� IO a is the type of IO actions delivering results of type a (in
addition to their IO operations)

Examples

� String -> IO () - after supplying a string, we obtain an IO
action (in the case of putStrLn, “printing”)

� IO () - just IO (in the case of main, run our program)

� IO String - do some IO and deliver a string (in the case of
getLine, the user-input)

IO and the Type System

� consider
ghci> :load welcomeIO.hs
ghci> :t putStrLn
putStrLn :: String -> IO ()
ghci> :t getLine
getLine :: IO String
ghci> :t main
main :: IO ()

� IO a is the type of IO actions delivering results of type a (in
addition to their IO operations)

Examples

� String -> IO () - after supplying a string, we obtain an IO
action (in the case of putStrLn, “printing”)

� IO () - just IO (in the case of main, run our program)

� IO String - do some IO and deliver a string (in the case of
getLine, the user-input)

Further Notes
� IO actions (everything of type IO a) are just descriptions of

what should be done; nothing is actually done at time of
specification

� only main may start execution of IO actions

� inside IO actions, order is important; IO actions are executed
in order of appearance (once execution starts); the result of a
sequence of IO actions is the result of the last action

� inside IO actions, x <- action (where action :: IO a)
may be used to bind the result value of action (which has
type a) to the name x (but seriously, this is actually only
done, once execution starts)

� 〈x〉 <- 〈a〉 is not available outside IO actions

Implications

� once we are inside an IO action, we cannot escape

� strict separation between purely functional code and IO

� when IO a does not appear inside type signature, we can be
absolutely sure that no IO (“side-effect”) is performed

Further Notes
� IO actions (everything of type IO a) are just descriptions of

what should be done; nothing is actually done at time of
specification

� only main may start execution of IO actions

� inside IO actions, order is important; IO actions are executed
in order of appearance (once execution starts); the result of a
sequence of IO actions is the result of the last action

� inside IO actions, x <- action (where action :: IO a)
may be used to bind the result value of action (which has
type a) to the name x (but seriously, this is actually only
done, once execution starts)

� 〈x〉 <- 〈a〉 is not available outside IO actions

Implications

� once we are inside an IO action, we cannot escape

� strict separation between purely functional code and IO

� when IO a does not appear inside type signature, we can be
absolutely sure that no IO (“side-effect”) is performed

Further Notes
� IO actions (everything of type IO a) are just descriptions of

what should be done; nothing is actually done at time of
specification

� only main may start execution of IO actions

� inside IO actions, order is important; IO actions are executed
in order of appearance (once execution starts); the result of a
sequence of IO actions is the result of the last action

� inside IO actions, x <- action (where action :: IO a)
may be used to bind the result value of action (which has
type a) to the name x (but seriously, this is actually only
done, once execution starts)

� 〈x〉 <- 〈a〉 is not available outside IO actions

Implications

� once we are inside an IO action, we cannot escape

� strict separation between purely functional code and IO

� when IO a does not appear inside type signature, we can be
absolutely sure that no IO (“side-effect”) is performed

Further Notes
� IO actions (everything of type IO a) are just descriptions of

what should be done; nothing is actually done at time of
specification

� only main may start execution of IO actions

� inside IO actions, order is important; IO actions are executed
in order of appearance (once execution starts); the result of a
sequence of IO actions is the result of the last action

� inside IO actions, x <- action (where action :: IO a)
may be used to bind the result value of action (which has
type a) to the name x (but seriously, this is actually only
done, once execution starts)

� 〈x〉 <- 〈a〉 is not available outside IO actions

Implications

� once we are inside an IO action, we cannot escape

� strict separation between purely functional code and IO

� when IO a does not appear inside type signature, we can be
absolutely sure that no IO (“side-effect”) is performed

Further Notes
� IO actions (everything of type IO a) are just descriptions of

what should be done; nothing is actually done at time of
specification

� only main may start execution of IO actions

� inside IO actions, order is important; IO actions are executed
in order of appearance (once execution starts); the result of a
sequence of IO actions is the result of the last action

� inside IO actions, x <- action (where action :: IO a)
may be used to bind the result value of action (which has
type a) to the name x (but seriously, this is actually only
done, once execution starts)

� 〈x〉 <- 〈a〉 is not available outside IO actions

Implications

� once we are inside an IO action, we cannot escape

� strict separation between purely functional code and IO

� when IO a does not appear inside type signature, we can be
absolutely sure that no IO (“side-effect”) is performed

Further Notes
� IO actions (everything of type IO a) are just descriptions of

what should be done; nothing is actually done at time of
specification

� only main may start execution of IO actions

� inside IO actions, order is important; IO actions are executed
in order of appearance (once execution starts); the result of a
sequence of IO actions is the result of the last action

� inside IO actions, x <- action (where action :: IO a)
may be used to bind the result value of action (which has
type a) to the name x (but seriously, this is actually only
done, once execution starts)

� 〈x〉 <- 〈a〉 is not available outside IO actions

Implications

� once we are inside an IO action, we cannot escape

� strict separation between purely functional code and IO

� when IO a does not appear inside type signature, we can be
absolutely sure that no IO (“side-effect”) is performed

Using Pure Code Inside IO Actions

� consider the program reply.hs

reply :: String -> String
reply name =
"Pleased to meet you, " ++ name ++ ".\n" ++
"Your name contains " ++ n ++ " characters."
where n = show (length name)

main :: IO ()
main = do

putStrLn "Greetings again. What's your name?"
name <- getLine
let niceReply = reply name
putStrLn niceReply

� i.e., we may use let 〈x〉 = 〈f 〉 (there is no in here!) to bind
the result of the pure function 〈f 〉 to the name 〈x〉

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Some Simple IO Functions

� return :: a -> IO a - turn anything into an IO action

� getArgs :: IO [String] get command line arguments

� putChar :: Char -> IO () - print character

� putStr :: String -> IO () - print string

� putStrLn :: String -> IO () - print string + newline

� getChar :: IO Char - read single character from stdin

� getLine :: IO String - read line (excluding newline)

� interact :: (String -> String) -> IO () - use
function that gets input as string and produces output as
string

� type FilePath = String

� readFile :: FilePath -> IO String - read file content

� writeFile :: FilePath -> String -> IO ()

� appendFile :: FilePath -> String -> IO ()

Examples - Imitating Some GNU Commands

� cat.hs - print file contents

main = do

[file] <- getArgs
s <- readFile file
putStr s

� wc.hs - count newlines/words/bytes in input

count s = ns ++ " " ++ ws ++ " " ++ bs ++ "\n"
where ns = show (length (lines s))

ws = show (length (words s))
bs = show (length s)

main = interact count

� uniq.hs - omit repeated lines of input

main = interact (unlines . nub . lines)

� sort.hs - sort input

main = interact (unlines . sort . lines)

Notes

� getArgs :: IO [String] is in System.Environment

� nub :: Eq a => [a] -> [a] is in Data.List; eliminates
duplicates

� sort :: Ord a => [a] -> [a] is in Data.List; sorts a list

Do Some IO Action for Each Argument

�

foreach :: [a] -> (a -> IO ()) -> IO ()
foreach [] io = return ()
foreach (a:as) io = do {io a; foreach as io}

� better cat.hs
main = do

files <- getArgs
foreach files readAndPrint
where readAndPrint file = do

s <- readFile file
putStr s

Notes

� getArgs :: IO [String] is in System.Environment

� nub :: Eq a => [a] -> [a] is in Data.List; eliminates
duplicates

� sort :: Ord a => [a] -> [a] is in Data.List; sorts a list

Do Some IO Action for Each Argument

�

foreach :: [a] -> (a -> IO ()) -> IO ()
foreach [] io = return ()
foreach (a:as) io = do {io a; foreach as io}

� better cat.hs
main = do

files <- getArgs
foreach files readAndPrint
where readAndPrint file = do

s <- readFile file
putStr s

Exercises (for November 5th)

1. read chapter 7 of Real World Haskell

2. evaluate the two function calls foldr (-) 0 [1,2,3] and
foldl (-) 0 [1,2,3] by equational reasoning (using the
definitions from the standard Prelude)

3. implement the predicate
isSorted :: Ord a => BTree a -> Bool, checking
whether the given tree is a search tree

4. write a program Grep.hs that, given a string, echos every line
of its standard input, containing this string

5. modify Grep.hs to also print line numbers of matching lines

6. implement a function
showBTree :: Show a => BTree a -> String that prints
a nice ASCII version of a binary tree

http://book.realworldhaskell.org/read/

