mputational
gic

Functional Programming

WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science
University of Innsbruck

November 3, 2010


http://cl-informatik.uibk.ac.at

Today's Topics

e |ntroduction to the A-Calculus

e Encoding Data Types



Introduction to the \-Calculus



e search for general framework in which every algorithm can be
defined



e search for general framework in which every algorithm can be
defined

e “universal language” (concerning computation)



e search for general framework in which every algorithm can be
defined

e “universal language” (concerning computation)

e in 1936, Alonzo Church introduced the A\-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345-363



e search for general framework in which every algorithm can be
defined

e “universal language” (concerning computation)

e in 1936, Alonzo Church introduced the A-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345-363

e in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230-265



e search for general framework in which every algorithm can be

defined

“universal language” (concerning computation)

in 1936, Alonzo Church introduced the A-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345-363

in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230-265

later it was shown that both models of computation are
equivalent



e search for general framework in which every algorithm can be
defined

“universal language” (concerning computation)

e in 1936, Alonzo Church introduced the A-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345-363

e in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230-265

e later it was shown that both models of computation are
equivalent

e i.e., Turing-complete is the same as definable in the A-Calculus



e search for general framework in which every algorithm can be
defined

“universal language” (concerning computation)

e in 1936, Alonzo Church introduced the A-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345-363

e in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230-265

e later it was shown that both models of computation are
equivalent

e i.e., Turing-complete is the same as definable in the A-Calculus

e )\-Calculus is underlying much of functional programming



Syntax - A-Terms

® grammar

a
LY

€

X variable
(Ax.t) (lambda) abstraction
(t t)  application

t

o all terms over set of variables V are denoted by 7 (V)



Syntax - A-Terms

® grammar

a
LY

€

X variable
(Ax.t) (lambda) abstraction
(t t)  application

t

o all terms over set of variables V are denoted by 7 (V)

(Ax.y)
(Ax. (A\y.x))
(Ax- (Ay- (Az-((x 2) (v 2)))))
(Ax- ((Ay- (Az-(2 ¥))) %))



Conventions

e to ease writing and reading there are some conventions
e abstraction associates to the right
e application associates to the left

e application binds stronger than abstraction (e.g., Ax.x z is
equal to Ax. (x z) and not to (Ax. x) z)
¢ nested lambdas are combined



Conventions

e to ease writing and reading there are some conventions
e abstraction associates to the right
e application associates to the left

e application binds stronger than abstraction (e.g., Ax.x z is
equal to Ax.(x z) and not to (Ax.x) z)
e nested lambdas are combined

Examples (using Conventions)
AX.y
AXY. X
Axyz.x z (y z)
Ax.(Ayz.z y) x



Conventions

e to ease writing and reading there are some conventions
e abstraction associates to the right
e application associates to the left

e application binds stronger than abstraction (e.g., Ax.x z is
equal to Ax.(x z) and not to (Ax.x) z)
e nested lambdas are combined

Examples (using Conventions)
AX.y
AXY. X
Axyz.x z (y z)
Ax.(Ayz.z y) x

e nested lambdas are “functions with multiple arguments”
e e.g., Axyz.t is a function taking 3 arguments



A-Terms and Haskell

A-Calculus Haskell
e \x.ADD x 1 e (\x -> x+1)
e (Ax.ADD x 1) 2 e (\x —> x+1) 2=3
e [FTRUE1O e if True then 1 else 0=1
e PAIR2 4 e (,) 24=(2,4)

fst (2,4) =2

FST (PAIR 2 4)



A-Terms and Haskell

A-Calculus Haskell
e Mx.ADD x 1 o (\x —> x+1)
e (Ax.ADD x 1) 2 e (\x —> x+1) 2=3
e [FTRUE1O e if True then 1 else 0=1
e PAIR2 4 e (,) 24=1(2,4

fst (2,4) =2

FST (PAIR 2 4)

e in the above
e ‘0", '1", 2", "4, ‘ADD’, 'FST’, ‘IF’, ‘PAIR’, and ‘TRUE’ are
just abbreviations for more complex A-terms

e supposed to “encode” the behavior of 0, 1, 2, 4, (+), ...



Computation

e manipulate terms to “compute” some “result”
e what are the rules?

e it turns out that a single rule is enough



Computation

e manipulate terms to “compute” some “result”
e what are the rules?
e it turns out that a single rule is enough

The (-Rule (“informal” definition)

e intuition: apply a “function” to an “argument”

e in the A\-Calculus, “functions” as well as “arguments” are just
A-terms

e the rule

(Ax.s) t  —g  s{x/t}

e in words: when applying the function (Ax.s) to the input t,
Jjust replace every occurrence of x in the body of the function
(which is s) by t



(Ax. x) (Ax.x)

(Axy.y) (Ax.x)
(Axyz.x z (y z)) (Ax.x)

(Ax.x x) (Ax.x x)

AX. X

—p
B
B

—p



(Ax.x) (Ax.x) —p Ax.x
(Mxy.y) (Ax.x)  —g
(Axyz.x z (y z)) (Ax.x) —p
(Ax.x x) (Ax.x x) —g

AX. X



(Ax. x) (Ax.x)

(Axy.y) (Ax.x)
(Axyz.x z (y z)) (Ax.x)

(Ax.x x) (Ax.x x)

AX. X

—p
B
B

—p

AX. X

Ay.y



(Ax. x) (Ax.x)

(Axy.y) (Ax.x)
(Axyz.x z (y z)) (Ax.x)

(Ax.x x) (Ax.x x)

AX. X

—p
B
B

—p

AX. X

AY-y
Ayz. (Ax.x) z (y z)



(Ax. x) (Ax.x)

(Axy.y) (Ax.x)

(Axyz.x z (y z)) (Ax.x)
(Ax. x x) (Ax. x x)

AX. X

—p
B
B

—p

AX. X
Ay.y
Ayz. (Ax.x) z (y z)
(Ax.x x) (Ax.x x)



(Ax. x) (Ax.x)

(Axy.y) (Ax.x)

(Axyz.x z (y z)) (Ax.x)
(Ax. x x) (Ax. x x)

AX. X

—p
B
B

—p

AX. X
AY-y
Ayz. (Ax.x) z (y z)
(Ax.x x) (Ax.x x)

no 3-step possible



(Free and Bound) Variables of a Term

e set of variables of a term

{t} if t =x

Var(t) £ { {x} U Var(u) if t=MAx.u
Var(u)UVar(v) ift=uv



(Free and Bound) Variables of a Term

e set of variables of a term

{t} if t =x

Var(t) £ { {x} U Var(u) if t=MAx.u
Var(u)UVar(v) ift=uv

e set of free variables of a term

{t} if t =x
FVar(t) = { Fyar(u)\ {x} if t=MAx.u
FVar(u) UFVar(v) ift=uv



(Free and Bound) Variables of a Term

e set of variables of a term
{t} if t =x
Var(t) £ { {x} UVar(u)  ift=Xx.u
Var(u)UVar(v) ift=uv

e set of free variables of a term

{t} if t =x
Far(t) = { Fhar(u) \ {x} if t=MAx.u
FVar(u) UFVar(v) ift=uv

e set of bound variables of a term
& if t =x

BVar(t) £ { {x} U BVar(u) if t = Ax.u
BVar(u)UBVar(v) ift=uv



term t Var(t) FVar(t) BVar(t)

AX. X
Xy
(Ax.x) x
AX.X Yy Z




term t Var(t) FVar(t) BVar(t)
AX. X {x}

xy

(Ax.x) x

AX.X Yy Z




term t Var(t) FVar(t) BVar(t)
AX. X {x} %]

Xy

(Ax.x) x

AX.X Yy Z




term t Var(t) FVar(t) BVar(t)
AX. X {x} %) {x}
xy

(Ax.x) x

AX.X Yy Z




term t Var(t) FVar(t) BVar(t)
AX. X {x} %) {x}
Xy {xy}

(Ax.x) x

AX.X Yy Z




term t Var(t) BVar(t)
AX. X {x} {x}
Xy {xy}

(Ax.x) x

AX.X Yy Z




term t Var(t) BVar(t)
AX. X {x} {x}
Xy {x:y} 2
(Ax.x) x

AX.X Yy Z




term t Var(t) FVar(t) BVar(t)
AX. X {x} 1} {x}
Xy {xy} {xy} @
(Ax.x) x {x}

AX.X Yy Z




term t Var(t) FVar(t) BVar(t)
AX. X {x} 1} {x}
Xy {xy} {xy} @
(Ax.x) x {x} {x}

AX.X Yy Z




term t Var(t) FVar(t)
AX. X {x} %)
Xy {xy} {xy}
(Ax.x) x {x} {x}

AX.X Yy Z




term t Var(t) FVar(t)
AX. X {x} %)
Xy {xy} {xy}
(Ax.x) x {x} {x}

AX. XYy z {x,y,z}




term t Var(t) FVar(t) BVar(t)
AX. X {x} %) {x}
Xy {xy} {xy} @
(Ax. x) x {x} {x} {x}

M.xyz  {xy,z} {y,z}




term t Var(t) FVar(t)
AX. X {x} %)
Xy {xy} {xy}
(Ax.x) x {x} {x}

M.xyz  {xy,z} {y,z}




Substitutions

e a substitution (for terms) is a function from variables to terms
o:V—-T(V)

¢ we only need substitutions replacing a single variable

¢ hence, we can always write {x/t} for the substitution
replacing x by t and leaving all other variables unchanged



Substitutions

e a substitution (for terms) is a function from variables to terms
o:V—-T(V)

¢ we only need substitutions replacing a single variable

¢ hence, we can always write {x/t} for the substitution
replacing x by t and leaving all other variables unchanged

e consider o = {x/Ax. x}

e then o(x) = Ax.x and

e o(y)=y forally # x



Applying Substitutions to Terms (first try)

e applying substitution o = {x/s} to term t is denoted by to



Applying Substitutions to Terms (first try)

e applying substitution o = {x/s} to term t is denoted by to
e and defined by

s if t =x
y ift=y#x
to =3 (uo) (vo) ift=uv
AX. U if t=Ax.u
(Ay. (uo) ift=Ay.uwithx#y



Applying Substitutions to Terms (first try)

e applying substitution o = {x/s} to term t is denoted by to
e and defined by

s if t =x
y ift=y#x
to =3 (uo) (vo) ift=uv
AX. U if t=Ax.u
(Ay. (uo) ift=Ay.uwithx#y

e i.e., bound variables are not substituted



Applying Substitutions to Terms (first try)

e applying substitution o = {x/s} to term t is denoted by to
e and defined by

s if t =x
y ift=y#x
to =3 (uo) (vo) ift=uv
AX. U if t=Ax.u
(Ay. (uo) ift=Ay.uwithx#y

e i.e., bound variables are not substituted

e 0 ={x/Ax.x}
® X0 = AX.X
[ ] yo':y

¢ (Ax.x)o = Ax.x



Contexts and Subterms

e contexts are special terms, having a single occurrence of the
special symbol “hole” [



Contexts and Subterms

e contexts are special terms, having a single occurrence of the
special symbol “hole” [

o definedby C=Z0|Mx.C|Ct|tC



Contexts and Subterms

e contexts are special terms, having a single occurrence of the
special symbol “hole” [

o definedby C=Z0|Mx.C|Ct|tC

o (C[t] denotes replacing O by t in C (result is a term, since no
“hole” anymore)



Contexts and Subterms

contexts are special terms, having a single occurrence of the
special symbol “hole” [

defined by CEZ 0 [ Ax.C|Ct|t C

C[t] denotes replacing [J by t in C (result is a term, since no
“hole” anymore)

we say that term s is a subterm of the term t, whenever there
is some context C, s.t., t = C[s]



Contexts and Subterms

contexts are special terms, having a single occurrence of the
special symbol “hole” [

defined by CEZ 0 [ Ax.C|Ct|t C

C[t] denotes replacing [J by t in C (result is a term, since no
“hole” anymore)

we say that term s is a subterm of the term t, whenever there
is some context C, s.t., t = C[s]

if moreover C # [ (i.e., context is nonempty), then s is a
proper subterm of t



Contexts and Subterms

e contexts are special terms, having a single occurrence of the
special symbol “hole” [

o definedby C=Z0|Mx.C|Ct|tC

o (C[t] denotes replacing O by t in C (result is a term, since no
“hole” anymore)

e we say that term s is a subterm of the term t, whenever there
is some context C, s.t., t = C[s]

e if moreover C # [J (i.e., context is nonempty), then s is a
proper subterm of t

e consider (; =0, G =x0, and (3 = Ax.O x
o Gi[Ax.x] = Ax. x

c Glyl=xy

o G3[Axy.x] = Ax. (Axy. x) x



The (-Rule (formal definition)
e term s ((J-)reduces to term t in one step iff

3C x uv.s = C[(Ax.u) v] At = Clu{x/v}]



The (-Rule (formal definition)
e term s ((-)reduces to term t in one step iff
3C x uv.s = C[(Ax.u) v] At = Clu{x/v}]

e in words: if s has a subterm of the form (Ax.u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a (3-step



The (-Rule (formal definition)
e term s ((-)reduces to term t in one step iff
3C x uv.s = C[(Ax.u) v] At = Clu{x/v}]

e in words: if s has a subterm of the form (Ax.u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a (3-step

e we call (Ax. u) v a redex (short for reducible expression), and



The (-Rule (formal definition)
e term s ((-)reduces to term t in one step iff
3C x uv.s = C[(Ax.u) v] At = Clu{x/v}]

e in words: if s has a subterm of the form (Ax.u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a (3-step

e we call (Ax. u) v a redex (short for reducible expression), and

e u{x/v} the contractum



The (-Rule (formal definition)
e term s ((-)reduces to term t in one step iff
3C x uv.s = C[(Ax.u) v] At = Clu{x/v}]

e in words: if s has a subterm of the form (Ax.u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a (3-step

e we call (Ax. u) v a redex (short for reducible expression), and

e u{x/v} the contractum

e s —>2 t denotes a sequence s =t; —gtr =g - —gt, =1t
with n > 0 (s (/-)reduces to t)



The (-Rule (formal definition)
e term s ((-)reduces to term t in one step iff
3C x uv.s = C[(Ax.u) v] At = Clu{x/v}]

e in words: if s has a subterm of the form (Ax.u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a (3-step

e we call (Ax. u) v a redex (short for reducible expression), and

e u{x/v} the contractum

e s —>2 t denotes a sequence s =t; —g tr) —g - —gt, =t
with n > 0 (s (-)reduces to t)
+

¢ a nonempty sequence (i.e., n > 0) is denoted by s —5t



Exercise

o consider Q = (Ax.x x) (Ax. x x),
def

o K= Axy.x,

def

Ky = Axy.y, and

| &

AX. X

reduce the following A-terms

K Q
K. Q
1 Q



Problem - Variable Capture

e consider Axy. x



Problem - Variable Capture

e consider Axy. x

e behavior: take 2 arguments, ignore second, return first



Problem - Variable Capture

e consider Axy. x
e behavior: take 2 arguments, ignore second, return first

e consider t = (Axy.x) y z



Problem - Variable Capture

e consider Axy. x

e behavior: take 2 arguments, ignore second, return first
e consider t = (Axy.x) y z

e we want y as result, but get t =3 (A\y.y) z —p z



Problem - Variable Capture

e consider Axy.x

e behavior: take 2 arguments, ignore second, return first
e consider t = (Axy.x) y z

e we want y as result, but get t =3 (A\y.y) z —p z

e clearly not intended (the problem was that the free y was
bound when substituting for x



Problem - Variable Capture

e consider Axy.x

e behavior: take 2 arguments, ignore second, return first
e consider t = (Axy.x) y z

e we want y as result, but get t =3 (A\y.y) z —p z

e clearly not intended (the problem was that the free y was
bound when substituting for x

e modify definition of applying substitutions to terms

e rename bound variables to avoid capture of free variables



Applying Substitutions to Terms

o let 0 = {x/s}

e new definition

s if t =x
y ift=y#x
ro & (uo) (vo) ft=uv
AX. U if t=2Ax.u
Ay. (uo) if t =MAy.uwith x #y and y ¢ FVar(s)
Az.(u{y/z}o) if t = Ay.uwith x # y and y € FVar(s)

\

e where z is assumed to be fresh (i.e., it is unequal to x and y,
and does neither occur in u nor in s)



What are the Results of Computations?

e we do only have A-terms



What are the Results of Computations?

e we do only have A-terms

e i.e., we have to express “functions” and ‘“values” as A-terms



What are the Results of Computations?

e we do only have A-terms
e i.e., we have to express “functions” and ‘“values” as A-terms

e as long as [(-steps are applicable, terms are not “stable”



What are the Results of Computations?

e we do only have A-terms
e i.e., we have to express “functions” and ‘“values” as A-terms
e as long as [(-steps are applicable, terms are not “stable”

e thus, we define values to be terms, for which no (-step is
applicable (so called “normal forms”; abbreviation NF)



What are the Results of Computations?

e we do only have A-terms
e i.e., we have to express “functions” and ‘“values” as A-terms
e as long as [(-steps are applicable, terms are not “stable”

e thus, we define values to be terms, for which no [3-step is
applicable (so called “normal forms”; abbreviation NF)

e Mx.x is in NF

e (Ax.x) y is not in NF, since (Ax.x) y —3 y (where y, in
turn, is in NF)



Encoding Data Types



Booleans and Conditionals

e in Haskell: True, False, and if b then t else e
e in the A-Calculus:
TRUE & AXy. X “ignore second argument”
FALSE & AXy.y “ignore first argument”
IF < AXyz. Xy z



Booleans and Conditionals

e in Haskell: True, False, and if b then t else ¢

e in the \-Calculus:

TRUE & AXy. X “ignore second argument”
FALSE & AXy.y “ignore first argument”
IF < AXyz. Xy z

IF TRUE x y
IF FALSE x y



Booleans and Conditionals

e in Haskell: True, False, and if b then t else ¢

e in the \-Calculus:

TRUE & AXy. X “ignore second argument”
FALSE & AXy.y “ignore first argument”
IF < AXyz. Xy z

IFTRUExy —} TRUExy
IF FALSE x y



Booleans and Conditionals

e in Haskell: True, False, and if b then t else ¢

e in the \-Calculus:

TRUE & AXy. X “ignore second argument”
FALSE & AXy.y “ignore first argument”
IF < AXyz. Xy z

IF TRUE x y —>2§ TRUE x y —>E X
IF FALSE x y



Booleans and Conditionals

e in Haskell: True, False, and if b then t else ¢
e in the M\-Calculus:

TRUE & AXy. X “ignore second argument”

FALSE & A\xy.y

def

IF=Mxyz.xy z

IFTRUExy —} TRUExy —3}
+
8

“ignore first argument”

X

IF FALSE x y —+ FALSE x y



Booleans and Conditionals

e in Haskell: True, False, and if b then t else ¢
e in the M\-Calculus:

TRUE & AXy. X “ignore second argument”

FALSE & A\xy.y

def

IF=Mxyz.xy z

IFTRUExy —} TRUExy —3}
5 8

“ignore first argument”

X
IFFALSExy —/ FALSExy —& y



Natural Numbers

e define n-fold application of “function”

O &y

st = s (s" 1)
e Church numerals represent numbers
e the number n is represented by the term Afx. f" x (i.e., a

function that applies its first argument f, n-times to its
second argument x)



Natural Numbers

e define n-fold application of “function”
SOty
st = s (s" 1)
e Church numerals represent numbers
e the number n is represented by the term Afx. f" x (i.e., a
function that applies its first argument f, n-times to its
second argument x)

Haskell vs. A-Calculus

def

0 0= Afx.x
1E A\ f x
n N & Af. 7 x

(+)  ADD E Amnfx.m f (n f x)
(%) MUL £ Xmnf.m (n f)
@) EXP < Amn.n m




Pairs - Haskell vs. A-Calculus

def

) PAIR = Axyf.f x y
def

fst  FST = \p.p TRUE
snd  SND £ X\p. p FALSE




Pairs - Haskell vs. A-Calculus

def

) PAIR = Axyf.f x y
def

fst  FST = \p.p TRUE
snd  SND £ X\p. p FALSE

Lists - Haskell vs. A\-Calculus

(:) CONS £ \xy. PAIR FALSE (PAIR x y)
head  HEAD = \z.FST (SND z)
tail  TAIL = \z.SND (SND z)

def

[] NIL = Mx. x

def

null NULL = FST




Recursion

e Haskell function
length x = if null x then
else 1 + length (tail x)




Recursion

e Haskell function
length x = if null x then
else 1 + length (tail x)

e in A-Calculus: first try

def

LENGTH £ Ax. IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))



Recursion

e Haskell function
length x = if null x then
else 1 + length (tail x)

e in A-Calculus: first try

def

LENGTH £ Ax. IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

e problem: LENGTH is not allowed to occur on right-hand side



Recursion

e Haskell function
length x = if null x then
else 1 + length (tail x)

e in A-Calculus: first try

def

LENGTH £ Ax. IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

e problem: LENGTH is not allowed to occur on right-hand side
e try to cope by adding additional argument

LENGTH £ Afx. IF (NULL x) 0 (ADD 1 (f (TAIL x)))



Recursion

e Haskell function
length x = if null x then
else 1 + length (tail x)

e in A-Calculus: first try

def

LENGTH £ Ax. IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

e problem: LENGTH is not allowed to occur on right-hand side
e try to cope by adding additional argument

LENGTH £ Afx. IF (NULL x) 0 (ADD 1 (f (TAIL x)))

e idea: at some point f should be replaced by LENGTH again



Recursion

e Haskell function
length x = if null x then
else 1 + length (tail x)

e in A-Calculus: first try

def

LENGTH £ Ax. IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

e problem: LENGTH is not allowed to occur on right-hand side
e try to cope by adding additional argument

LENGTH £ Afx. IF (NULL x) 0 (ADD 1 (f (TAIL x)))

e idea: at some point f should be replaced by LENGTH again

e partial solution:

LENGTH £ v (AA. IF (NULL x) 0 (ADD 1 (f (TAIL x))))



Recursion

e Haskell function
length x = if null x then
else 1 + length (tail x)

e in A-Calculus: first try

def

LENGTH £ Ax. IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

e problem: LENGTH is not allowed to occur on right-hand side
e try to cope by adding additional argument

LENGTH £ Afx. IF (NULL x) 0 (ADD 1 (f (TAIL x)))

e idea: at some point f should be replaced by LENGTH again

e partial solution:
LENGTH Y (AMx.IF (NULL x) 0 (ADD 1 (f (TAIL x))))

e missing: find appropriate Y



The Y-Combinator

e note: a combinator is a A-term without free variables
e Haskell Curry found a combinator Y, satisfying

Ytept(Yie)

for every term t
e this is called the fixed point property
e the definition is somewhat complicated

Y EAF. (Ax. F (x x)) (Ax. f (x x))



The Y-Combinator

e note: a combinator is a A-term without free variables
e Haskell Curry found a combinator Y, satisfying

Ytept(Yie)
for every term t

e this is called the fixed point property

e the definition is somewhat complicated
Y EAF. (Ax. F (x x)) (Ax. f (x x))

Example - Length

e recall that LENGTH =Y g with
g = Mx.IF (NULL x) 0 (ADD 1 (f (TAIL x)))

e by the fixed point property we obtain
LENGTH <—>E g LENGTH, which takes care of replacing the
additional parameter f in g by the definition of LENGTH



Exercises (for November 12th)

1. Read the lecture notes about the lambda-calculus.

2. Use the conventions to simplify Ax. (Ay. (Az. ((z (x y)) x))).
Drop the conventions in the term Aabcd.a b ¢ d.

3. Consider the term t = Ax.f (x x), find all possible contexts C
and terms s, s.t., t = C[s] (those are the subterms of t).

4. Consider F € Afxy. f y x. What does F do? What does
F (Axy.x) do? Reduce F (Axy.x) to NF.

5. Using the type
data Term = Var String | Lab String Term

| App Term Term

implement functions vars, freeVars, boundVars (all of type
Term -> [String]), computing the respective lists of
variables.

6. Implement a function
applySubst :: String -> Term -> Term -> Term,
where applySubst x s t computes t{x/s}.



