
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

November 3, 2010

http://cl-informatik.uibk.ac.at

Today’s Topics

� Introduction to the λ-Calculus

� Encoding Data Types

Introduction to the λ-Calculus

Origin

� search for general framework in which every algorithm can be
defined

� “universal language” (concerning computation)

� in 1936, Alonzo Church introduced the λ-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345–363

� in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230–265

� later it was shown that both models of computation are
equivalent

� i.e., Turing-complete is the same as definable in the λ-Calculus

� λ-Calculus is underlying much of functional programming

Origin

� search for general framework in which every algorithm can be
defined

� “universal language” (concerning computation)

� in 1936, Alonzo Church introduced the λ-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345–363

� in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230–265

� later it was shown that both models of computation are
equivalent

� i.e., Turing-complete is the same as definable in the λ-Calculus

� λ-Calculus is underlying much of functional programming

Origin

� search for general framework in which every algorithm can be
defined

� “universal language” (concerning computation)

� in 1936, Alonzo Church introduced the λ-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345–363

� in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230–265

� later it was shown that both models of computation are
equivalent

� i.e., Turing-complete is the same as definable in the λ-Calculus

� λ-Calculus is underlying much of functional programming

Origin

� search for general framework in which every algorithm can be
defined

� “universal language” (concerning computation)

� in 1936, Alonzo Church introduced the λ-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345–363

� in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230–265

� later it was shown that both models of computation are
equivalent

� i.e., Turing-complete is the same as definable in the λ-Calculus

� λ-Calculus is underlying much of functional programming

Origin

� search for general framework in which every algorithm can be
defined

� “universal language” (concerning computation)

� in 1936, Alonzo Church introduced the λ-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345–363

� in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230–265

� later it was shown that both models of computation are
equivalent

� i.e., Turing-complete is the same as definable in the λ-Calculus

� λ-Calculus is underlying much of functional programming

Origin

� search for general framework in which every algorithm can be
defined

� “universal language” (concerning computation)

� in 1936, Alonzo Church introduced the λ-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345–363

� in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230–265

� later it was shown that both models of computation are
equivalent

� i.e., Turing-complete is the same as definable in the λ-Calculus

� λ-Calculus is underlying much of functional programming

Origin

� search for general framework in which every algorithm can be
defined

� “universal language” (concerning computation)

� in 1936, Alonzo Church introduced the λ-Calculus in his paper
An Unsolvable Problem of Elementary Number Theory, AJM
58(2), pages 345–363

� in 1937, Alan Turing introduced Turing Machines in his paper
On Computable Numbers with an Application to the
Entscheidungsproblem, LMS, 42(2), pages 230–265

� later it was shown that both models of computation are
equivalent

� i.e., Turing-complete is the same as definable in the λ-Calculus

� λ-Calculus is underlying much of functional programming

Syntax - λ-Terms

� grammar

t
def
= x variable
| (λx . t) (lambda) abstraction
| (t t) application

� all terms over set of variables V are denoted by T (V)

Examples

(λx . y)

(λx . (λy . x))

(λx . (λy . (λz . ((x z) (y z)))))

(λx . ((λy . (λz . (z y))) x))

Syntax - λ-Terms

� grammar

t
def
= x variable
| (λx . t) (lambda) abstraction
| (t t) application

� all terms over set of variables V are denoted by T (V)

Examples

(λx . y)

(λx . (λy . x))

(λx . (λy . (λz . ((x z) (y z)))))

(λx . ((λy . (λz . (z y))) x))

Conventions

� to ease writing and reading there are some conventions

� abstraction associates to the right

� application associates to the left

� application binds stronger than abstraction (e.g., λx . x z is
equal to λx . (x z) and not to (λx . x) z)

� nested lambdas are combined

Examples (using Conventions)

λx . y

λxy . x

λxyz . x z (y z)

λx . (λyz . z y) x

Note

� nested lambdas are “functions with multiple arguments”

� e.g., λxyz . t is a function taking 3 arguments

Conventions

� to ease writing and reading there are some conventions

� abstraction associates to the right

� application associates to the left

� application binds stronger than abstraction (e.g., λx . x z is
equal to λx . (x z) and not to (λx . x) z)

� nested lambdas are combined

Examples (using Conventions)

λx . y

λxy . x

λxyz . x z (y z)

λx . (λyz . z y) x

Note

� nested lambdas are “functions with multiple arguments”

� e.g., λxyz . t is a function taking 3 arguments

Conventions

� to ease writing and reading there are some conventions

� abstraction associates to the right

� application associates to the left

� application binds stronger than abstraction (e.g., λx . x z is
equal to λx . (x z) and not to (λx . x) z)

� nested lambdas are combined

Examples (using Conventions)

λx . y

λxy . x

λxyz . x z (y z)

λx . (λyz . z y) x

Note

� nested lambdas are “functions with multiple arguments”

� e.g., λxyz . t is a function taking 3 arguments

λ-Terms and Haskell

λ-Calculus

� λx .ADD x 1

� (λx .ADD x 1) 2

� IF TRUE 1 0

� PAIR 2 4

� FST (PAIR 2 4)

Haskell

� (\x -> x+1)

� (\x -> x+1) 2 = 3

� if True then 1 else 0 = 1

� (,) 2 4 = (2,4)

� fst (2,4) = 2

Remark

� in the above

� ‘0’, ‘1’, ‘2’, ‘4’, ‘ADD’, ‘FST’, ‘IF’, ‘PAIR’, and ‘TRUE’ are
just abbreviations for more complex λ-terms

� supposed to “encode” the behavior of 0, 1, 2, 4, (+), . . .

λ-Terms and Haskell

λ-Calculus

� λx .ADD x 1

� (λx .ADD x 1) 2

� IF TRUE 1 0

� PAIR 2 4

� FST (PAIR 2 4)

Haskell

� (\x -> x+1)

� (\x -> x+1) 2 = 3

� if True then 1 else 0 = 1

� (,) 2 4 = (2,4)

� fst (2,4) = 2

Remark

� in the above

� ‘0’, ‘1’, ‘2’, ‘4’, ‘ADD’, ‘FST’, ‘IF’, ‘PAIR’, and ‘TRUE’ are
just abbreviations for more complex λ-terms

� supposed to “encode” the behavior of 0, 1, 2, 4, (+), . . .

Computation

� manipulate terms to “compute” some “result”

� what are the rules?

� it turns out that a single rule is enough

The β-Rule (“informal” definition)

� intuition: apply a “function” to an “argument”

� in the λ-Calculus, “functions” as well as “arguments” are just
λ-terms

� the rule
(λx . s) t →β s{x/t}

� in words: when applying the function (λx . s) to the input t,
just replace every occurrence of x in the body of the function
(which is s) by t

Computation

� manipulate terms to “compute” some “result”

� what are the rules?

� it turns out that a single rule is enough

The β-Rule (“informal” definition)

� intuition: apply a “function” to an “argument”

� in the λ-Calculus, “functions” as well as “arguments” are just
λ-terms

� the rule
(λx . s) t →β s{x/t}

� in words: when applying the function (λx . s) to the input t,
just replace every occurrence of x in the body of the function
(which is s) by t

Examples

(λx . x) (λx . x) →β

λx . x

(λxy . y) (λx . x) →β

λy . y

(λxyz . x z (y z)) (λx . x) →β

λyz . (λx . x) z (y z)

(λx . x x) (λx . x x) →β

(λx . x x) (λx . x x)

λx . x

no β-step possible

Examples

(λx . x) (λx . x) →β λx . x

(λxy . y) (λx . x) →β

λy . y

(λxyz . x z (y z)) (λx . x) →β

λyz . (λx . x) z (y z)

(λx . x x) (λx . x x) →β

(λx . x x) (λx . x x)

λx . x

no β-step possible

Examples

(λx . x) (λx . x) →β λx . x

(λxy . y) (λx . x) →β λy . y

(λxyz . x z (y z)) (λx . x) →β

λyz . (λx . x) z (y z)

(λx . x x) (λx . x x) →β

(λx . x x) (λx . x x)

λx . x

no β-step possible

Examples

(λx . x) (λx . x) →β λx . x

(λxy . y) (λx . x) →β λy . y

(λxyz . x z (y z)) (λx . x) →β λyz . (λx . x) z (y z)

(λx . x x) (λx . x x) →β

(λx . x x) (λx . x x)

λx . x

no β-step possible

Examples

(λx . x) (λx . x) →β λx . x

(λxy . y) (λx . x) →β λy . y

(λxyz . x z (y z)) (λx . x) →β λyz . (λx . x) z (y z)

(λx . x x) (λx . x x) →β (λx . x x) (λx . x x)

λx . x

no β-step possible

Examples

(λx . x) (λx . x) →β λx . x

(λxy . y) (λx . x) →β λy . y

(λxyz . x z (y z)) (λx . x) →β λyz . (λx . x) z (y z)

(λx . x x) (λx . x x) →β (λx . x x) (λx . x x)

λx . x no β-step possible

(Free and Bound) Variables of a Term

� set of variables of a term

Var(t)
def
=

{t} if t = x

{x} ∪ Var(u) if t = λx . u

Var(u) ∪ Var(v) if t = u v

� set of free variables of a term

FVar(t)
def
=

{t} if t = x

FVar(u) \ {x} if t = λx . u

FVar(u) ∪ FVar(v) if t = u v

� set of bound variables of a term

BVar(t)
def
=

∅ if t = x

{x} ∪ BVar(u) if t = λx . u

BVar(u) ∪ BVar(v) if t = u v

(Free and Bound) Variables of a Term

� set of variables of a term

Var(t)
def
=

{t} if t = x

{x} ∪ Var(u) if t = λx . u

Var(u) ∪ Var(v) if t = u v

� set of free variables of a term

FVar(t)
def
=

{t} if t = x

FVar(u) \ {x} if t = λx . u

FVar(u) ∪ FVar(v) if t = u v

� set of bound variables of a term

BVar(t)
def
=

∅ if t = x

{x} ∪ BVar(u) if t = λx . u

BVar(u) ∪ BVar(v) if t = u v

(Free and Bound) Variables of a Term

� set of variables of a term

Var(t)
def
=

{t} if t = x

{x} ∪ Var(u) if t = λx . u

Var(u) ∪ Var(v) if t = u v

� set of free variables of a term

FVar(t)
def
=

{t} if t = x

FVar(u) \ {x} if t = λx . u

FVar(u) ∪ FVar(v) if t = u v

� set of bound variables of a term

BVar(t)
def
=

∅ if t = x

{x} ∪ BVar(u) if t = λx . u

BVar(u) ∪ BVar(v) if t = u v

Examples

term t Var(t) FVar(t) BVar(t)

λx . x

{x} ∅ {x}

x y

{x , y} {x , y} ∅

(λx . x) x

{x} {x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x}

∅ {x}

x y

{x , y} {x , y} ∅

(λx . x) x

{x} {x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅

{x}

x y

{x , y} {x , y} ∅

(λx . x) x

{x} {x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y

{x , y} {x , y} ∅

(λx . x) x

{x} {x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y}

{x , y} ∅

(λx . x) x

{x} {x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y}

∅

(λx . x) x

{x} {x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y} ∅
(λx . x) x

{x} {x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y} ∅
(λx . x) x {x}

{x} {x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y} ∅
(λx . x) x {x} {x}

{x}

λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y} ∅
(λx . x) x {x} {x} {x}
λx . x y z

{x , y , z} {y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y} ∅
(λx . x) x {x} {x} {x}
λx . x y z {x , y , z}

{y , z} {x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y} ∅
(λx . x) x {x} {x} {x}
λx . x y z {x , y , z} {y , z}

{x}

Examples

term t Var(t) FVar(t) BVar(t)

λx . x {x} ∅ {x}
x y {x , y} {x , y} ∅
(λx . x) x {x} {x} {x}
λx . x y z {x , y , z} {y , z} {x}

Substitutions

� a substitution (for terms) is a function from variables to terms

σ : V → T (V)

� we only need substitutions replacing a single variable

� hence, we can always write {x/t} for the substitution
replacing x by t and leaving all other variables unchanged

Example

� consider σ = {x/λx . x}
� then σ(x) = λx . x and

� σ(y) = y for all y 6= x

Substitutions

� a substitution (for terms) is a function from variables to terms

σ : V → T (V)

� we only need substitutions replacing a single variable

� hence, we can always write {x/t} for the substitution
replacing x by t and leaving all other variables unchanged

Example

� consider σ = {x/λx . x}
� then σ(x) = λx . x and

� σ(y) = y for all y 6= x

Applying Substitutions to Terms (first try)

� applying substitution σ = {x/s} to term t is denoted by tσ

� and defined by

tσ
def
=

s if t = x

y if t = y 6= x

(uσ) (vσ) if t = u v

λx . u if t = λx . u

λy . (uσ) if t = λy . u with x 6= y

� i.e., bound variables are not substituted

Examples

� σ = {x/λx . x}
� xσ = λx . x

� yσ = y

� (λx . x)σ = λx . x

Applying Substitutions to Terms (first try)

� applying substitution σ = {x/s} to term t is denoted by tσ

� and defined by

tσ
def
=

s if t = x

y if t = y 6= x

(uσ) (vσ) if t = u v

λx . u if t = λx . u

λy . (uσ) if t = λy . u with x 6= y

� i.e., bound variables are not substituted

Examples

� σ = {x/λx . x}
� xσ = λx . x

� yσ = y

� (λx . x)σ = λx . x

Applying Substitutions to Terms (first try)

� applying substitution σ = {x/s} to term t is denoted by tσ

� and defined by

tσ
def
=

s if t = x

y if t = y 6= x

(uσ) (vσ) if t = u v

λx . u if t = λx . u

λy . (uσ) if t = λy . u with x 6= y

� i.e., bound variables are not substituted

Examples

� σ = {x/λx . x}
� xσ = λx . x

� yσ = y

� (λx . x)σ = λx . x

Applying Substitutions to Terms (first try)

� applying substitution σ = {x/s} to term t is denoted by tσ

� and defined by

tσ
def
=

s if t = x

y if t = y 6= x

(uσ) (vσ) if t = u v

λx . u if t = λx . u

λy . (uσ) if t = λy . u with x 6= y

� i.e., bound variables are not substituted

Examples

� σ = {x/λx . x}
� xσ = λx . x

� yσ = y

� (λx . x)σ = λx . x

Contexts and Subterms

� contexts are special terms, having a single occurrence of the
special symbol “hole” �

� defined by C
def
= � | λx .C | C t | t C

� C [t] denotes replacing � by t in C (result is a term, since no
“hole” anymore)

� we say that term s is a subterm of the term t, whenever there
is some context C , s.t., t = C [s]

� if moreover C 6= � (i.e., context is nonempty), then s is a
proper subterm of t

Examples

� consider C1 = �, C2 = x �, and C3 = λx .� x

� C1[λx . x] = λx . x

� C2[y] = x y

� C3[λxy . x] = λx . (λxy . x) x

Contexts and Subterms

� contexts are special terms, having a single occurrence of the
special symbol “hole” �

� defined by C
def
= � | λx .C | C t | t C

� C [t] denotes replacing � by t in C (result is a term, since no
“hole” anymore)

� we say that term s is a subterm of the term t, whenever there
is some context C , s.t., t = C [s]

� if moreover C 6= � (i.e., context is nonempty), then s is a
proper subterm of t

Examples

� consider C1 = �, C2 = x �, and C3 = λx .� x

� C1[λx . x] = λx . x

� C2[y] = x y

� C3[λxy . x] = λx . (λxy . x) x

Contexts and Subterms

� contexts are special terms, having a single occurrence of the
special symbol “hole” �

� defined by C
def
= � | λx .C | C t | t C

� C [t] denotes replacing � by t in C (result is a term, since no
“hole” anymore)

� we say that term s is a subterm of the term t, whenever there
is some context C , s.t., t = C [s]

� if moreover C 6= � (i.e., context is nonempty), then s is a
proper subterm of t

Examples

� consider C1 = �, C2 = x �, and C3 = λx .� x

� C1[λx . x] = λx . x

� C2[y] = x y

� C3[λxy . x] = λx . (λxy . x) x

Contexts and Subterms

� contexts are special terms, having a single occurrence of the
special symbol “hole” �

� defined by C
def
= � | λx .C | C t | t C

� C [t] denotes replacing � by t in C (result is a term, since no
“hole” anymore)

� we say that term s is a subterm of the term t, whenever there
is some context C , s.t., t = C [s]

� if moreover C 6= � (i.e., context is nonempty), then s is a
proper subterm of t

Examples

� consider C1 = �, C2 = x �, and C3 = λx .� x

� C1[λx . x] = λx . x

� C2[y] = x y

� C3[λxy . x] = λx . (λxy . x) x

Contexts and Subterms

� contexts are special terms, having a single occurrence of the
special symbol “hole” �

� defined by C
def
= � | λx .C | C t | t C

� C [t] denotes replacing � by t in C (result is a term, since no
“hole” anymore)

� we say that term s is a subterm of the term t, whenever there
is some context C , s.t., t = C [s]

� if moreover C 6= � (i.e., context is nonempty), then s is a
proper subterm of t

Examples

� consider C1 = �, C2 = x �, and C3 = λx .� x

� C1[λx . x] = λx . x

� C2[y] = x y

� C3[λxy . x] = λx . (λxy . x) x

Contexts and Subterms

� contexts are special terms, having a single occurrence of the
special symbol “hole” �

� defined by C
def
= � | λx .C | C t | t C

� C [t] denotes replacing � by t in C (result is a term, since no
“hole” anymore)

� we say that term s is a subterm of the term t, whenever there
is some context C , s.t., t = C [s]

� if moreover C 6= � (i.e., context is nonempty), then s is a
proper subterm of t

Examples

� consider C1 = �, C2 = x �, and C3 = λx .� x

� C1[λx . x] = λx . x

� C2[y] = x y

� C3[λxy . x] = λx . (λxy . x) x

The β-Rule (formal definition)

� term s (β-)reduces to term t in one step iff

∃C x u v . s = C [(λx . u) v] ∧ t = C [u{x/v}]

� in words: if s has a subterm of the form (λx . u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a β-step

� we call (λx . u) v a redex (short for reducible expression), and

� u{x/v} the contractum

� s →∗
β t denotes a sequence s = t1 →β t2 →β · · · →β tn = t

with n ≥ 0 (s (β-)reduces to t)

� a nonempty sequence (i.e., n > 0) is denoted by s →+
β t

The β-Rule (formal definition)

� term s (β-)reduces to term t in one step iff

∃C x u v . s = C [(λx . u) v] ∧ t = C [u{x/v}]

� in words: if s has a subterm of the form (λx . u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a β-step

� we call (λx . u) v a redex (short for reducible expression), and

� u{x/v} the contractum

� s →∗
β t denotes a sequence s = t1 →β t2 →β · · · →β tn = t

with n ≥ 0 (s (β-)reduces to t)

� a nonempty sequence (i.e., n > 0) is denoted by s →+
β t

The β-Rule (formal definition)

� term s (β-)reduces to term t in one step iff

∃C x u v . s = C [(λx . u) v] ∧ t = C [u{x/v}]

� in words: if s has a subterm of the form (λx . u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a β-step

� we call (λx . u) v a redex (short for reducible expression), and

� u{x/v} the contractum

� s →∗
β t denotes a sequence s = t1 →β t2 →β · · · →β tn = t

with n ≥ 0 (s (β-)reduces to t)

� a nonempty sequence (i.e., n > 0) is denoted by s →+
β t

The β-Rule (formal definition)

� term s (β-)reduces to term t in one step iff

∃C x u v . s = C [(λx . u) v] ∧ t = C [u{x/v}]

� in words: if s has a subterm of the form (λx . u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a β-step

� we call (λx . u) v a redex (short for reducible expression), and

� u{x/v} the contractum

� s →∗
β t denotes a sequence s = t1 →β t2 →β · · · →β tn = t

with n ≥ 0 (s (β-)reduces to t)

� a nonempty sequence (i.e., n > 0) is denoted by s →+
β t

The β-Rule (formal definition)

� term s (β-)reduces to term t in one step iff

∃C x u v . s = C [(λx . u) v] ∧ t = C [u{x/v}]

� in words: if s has a subterm of the form (λx . u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a β-step

� we call (λx . u) v a redex (short for reducible expression), and

� u{x/v} the contractum

� s →∗
β t denotes a sequence s = t1 →β t2 →β · · · →β tn = t

with n ≥ 0 (s (β-)reduces to t)

� a nonempty sequence (i.e., n > 0) is denoted by s →+
β t

The β-Rule (formal definition)

� term s (β-)reduces to term t in one step iff

∃C x u v . s = C [(λx . u) v] ∧ t = C [u{x/v}]

� in words: if s has a subterm of the form (λx . u) v (an
abstraction/function applied to an argument), then replacing
this subterm by u{x/v} is a β-step

� we call (λx . u) v a redex (short for reducible expression), and

� u{x/v} the contractum

� s →∗
β t denotes a sequence s = t1 →β t2 →β · · · →β tn = t

with n ≥ 0 (s (β-)reduces to t)

� a nonempty sequence (i.e., n > 0) is denoted by s →+
β t

Exercise

� consider Ω
def
= (λx . x x) (λx . x x),

� K
def
= λxy . x ,

� K∗
def
= λxy . y , and

� I
def
= λx . x

� reduce the following λ-terms

K Ω

K∗ Ω

I Ω

Problem - Variable Capture

� consider λxy . x

� behavior: take 2 arguments, ignore second, return first

� consider t = (λxy . x) y z

� we want y as result, but get t →β (λy . y) z →β z

� clearly not intended (the problem was that the free y was
bound when substituting for x

Solution

� modify definition of applying substitutions to terms

� rename bound variables to avoid capture of free variables

Problem - Variable Capture

� consider λxy . x

� behavior: take 2 arguments, ignore second, return first

� consider t = (λxy . x) y z

� we want y as result, but get t →β (λy . y) z →β z

� clearly not intended (the problem was that the free y was
bound when substituting for x

Solution

� modify definition of applying substitutions to terms

� rename bound variables to avoid capture of free variables

Problem - Variable Capture

� consider λxy . x

� behavior: take 2 arguments, ignore second, return first

� consider t = (λxy . x) y z

� we want y as result, but get t →β (λy . y) z →β z

� clearly not intended (the problem was that the free y was
bound when substituting for x

Solution

� modify definition of applying substitutions to terms

� rename bound variables to avoid capture of free variables

Problem - Variable Capture

� consider λxy . x

� behavior: take 2 arguments, ignore second, return first

� consider t = (λxy . x) y z

� we want y as result, but get t →β (λy . y) z →β z

� clearly not intended (the problem was that the free y was
bound when substituting for x

Solution

� modify definition of applying substitutions to terms

� rename bound variables to avoid capture of free variables

Problem - Variable Capture

� consider λxy . x

� behavior: take 2 arguments, ignore second, return first

� consider t = (λxy . x) y z

� we want y as result, but get t →β (λy . y) z →β z

� clearly not intended (the problem was that the free y was
bound when substituting for x

Solution

� modify definition of applying substitutions to terms

� rename bound variables to avoid capture of free variables

Problem - Variable Capture

� consider λxy . x

� behavior: take 2 arguments, ignore second, return first

� consider t = (λxy . x) y z

� we want y as result, but get t →β (λy . y) z →β z

� clearly not intended (the problem was that the free y was
bound when substituting for x

Solution

� modify definition of applying substitutions to terms

� rename bound variables to avoid capture of free variables

Applying Substitutions to Terms

� let σ = {x/s}
� new definition

tσ
def
=

s if t = x

y if t = y 6= x

(uσ) (vσ) if t = u v

λx . u if t = λx . u

λy . (uσ) if t = λy . u with x 6= y and y /∈ FVar(s)

λz . (u{y/z}σ) if t = λy . u with x 6= y and y ∈ FVar(s)

� where z is assumed to be fresh (i.e., it is unequal to x and y ,
and does neither occur in u nor in s)

What are the Results of Computations?

� we do only have λ-terms

� i.e., we have to express “functions” and “values” as λ-terms

� as long as β-steps are applicable, terms are not “stable”

� thus, we define values to be terms, for which no β-step is
applicable (so called “normal forms”; abbreviation NF)

Examples

� λx . x is in NF

� (λx . x) y is not in NF, since (λx . x) y →β y (where y , in
turn, is in NF)

What are the Results of Computations?

� we do only have λ-terms

� i.e., we have to express “functions” and “values” as λ-terms

� as long as β-steps are applicable, terms are not “stable”

� thus, we define values to be terms, for which no β-step is
applicable (so called “normal forms”; abbreviation NF)

Examples

� λx . x is in NF

� (λx . x) y is not in NF, since (λx . x) y →β y (where y , in
turn, is in NF)

What are the Results of Computations?

� we do only have λ-terms

� i.e., we have to express “functions” and “values” as λ-terms

� as long as β-steps are applicable, terms are not “stable”

� thus, we define values to be terms, for which no β-step is
applicable (so called “normal forms”; abbreviation NF)

Examples

� λx . x is in NF

� (λx . x) y is not in NF, since (λx . x) y →β y (where y , in
turn, is in NF)

What are the Results of Computations?

� we do only have λ-terms

� i.e., we have to express “functions” and “values” as λ-terms

� as long as β-steps are applicable, terms are not “stable”

� thus, we define values to be terms, for which no β-step is
applicable (so called “normal forms”; abbreviation NF)

Examples

� λx . x is in NF

� (λx . x) y is not in NF, since (λx . x) y →β y (where y , in
turn, is in NF)

What are the Results of Computations?

� we do only have λ-terms

� i.e., we have to express “functions” and “values” as λ-terms

� as long as β-steps are applicable, terms are not “stable”

� thus, we define values to be terms, for which no β-step is
applicable (so called “normal forms”; abbreviation NF)

Examples

� λx . x is in NF

� (λx . x) y is not in NF, since (λx . x) y →β y (where y , in
turn, is in NF)

Encoding Data Types

Booleans and Conditionals

� in Haskell: True, False, and if b then t else e

� in the λ-Calculus:

TRUE
def
= λxy . x “ignore second argument”

FALSE
def
= λxy . y “ignore first argument”

IF
def
= λxyz . x y z

Examples

IF TRUE x y

→+
β TRUE x y →+

β x

IF FALSE x y

→+
β FALSE x y →+

β y

Booleans and Conditionals

� in Haskell: True, False, and if b then t else e

� in the λ-Calculus:

TRUE
def
= λxy . x “ignore second argument”

FALSE
def
= λxy . y “ignore first argument”

IF
def
= λxyz . x y z

Examples

IF TRUE x y

→+
β TRUE x y →+

β x

IF FALSE x y

→+
β FALSE x y →+

β y

Booleans and Conditionals

� in Haskell: True, False, and if b then t else e

� in the λ-Calculus:

TRUE
def
= λxy . x “ignore second argument”

FALSE
def
= λxy . y “ignore first argument”

IF
def
= λxyz . x y z

Examples

IF TRUE x y →+
β TRUE x y

→+
β x

IF FALSE x y

→+
β FALSE x y →+

β y

Booleans and Conditionals

� in Haskell: True, False, and if b then t else e

� in the λ-Calculus:

TRUE
def
= λxy . x “ignore second argument”

FALSE
def
= λxy . y “ignore first argument”

IF
def
= λxyz . x y z

Examples

IF TRUE x y →+
β TRUE x y →+

β x

IF FALSE x y

→+
β FALSE x y →+

β y

Booleans and Conditionals

� in Haskell: True, False, and if b then t else e

� in the λ-Calculus:

TRUE
def
= λxy . x “ignore second argument”

FALSE
def
= λxy . y “ignore first argument”

IF
def
= λxyz . x y z

Examples

IF TRUE x y →+
β TRUE x y →+

β x

IF FALSE x y →+
β FALSE x y

→+
β y

Booleans and Conditionals

� in Haskell: True, False, and if b then t else e

� in the λ-Calculus:

TRUE
def
= λxy . x “ignore second argument”

FALSE
def
= λxy . y “ignore first argument”

IF
def
= λxyz . x y z

Examples

IF TRUE x y →+
β TRUE x y →+

β x

IF FALSE x y →+
β FALSE x y →+

β y

Natural Numbers

� define n-fold application of “function”

s0 t
def
= t

sn+1 t
def
= s (sn t)

� Church numerals represent numbers
� the number n is represented by the term λfx . f n x (i.e., a

function that applies its first argument f , n-times to its
second argument x)

Haskell vs. λ-Calculus

0 0
def
= λfx . x

1 1
def
= λfx . f x

n N
def
= λfx . f n x

(+) ADD
def
= λmnfx .m f (n f x)

(*) MUL
def
= λmnf .m (n f)

(^) EXP
def
= λmn. n m

Natural Numbers

� define n-fold application of “function”

s0 t
def
= t

sn+1 t
def
= s (sn t)

� Church numerals represent numbers
� the number n is represented by the term λfx . f n x (i.e., a

function that applies its first argument f , n-times to its
second argument x)

Haskell vs. λ-Calculus

0 0
def
= λfx . x

1 1
def
= λfx . f x

n N
def
= λfx . f n x

(+) ADD
def
= λmnfx .m f (n f x)

(*) MUL
def
= λmnf .m (n f)

(^) EXP
def
= λmn. n m

Pairs - Haskell vs. λ-Calculus

(,) PAIR
def
= λxyf . f x y

fst FST
def
= λp. p TRUE

snd SND
def
= λp. p FALSE

Lists - Haskell vs. λ-Calculus

(:) CONS
def
= λxy .PAIR FALSE (PAIR x y)

head HEAD
def
= λz .FST (SND z)

tail TAIL
def
= λz .SND (SND z)

[] NIL
def
= λx . x

null NULL
def
= FST

Pairs - Haskell vs. λ-Calculus

(,) PAIR
def
= λxyf . f x y

fst FST
def
= λp. p TRUE

snd SND
def
= λp. p FALSE

Lists - Haskell vs. λ-Calculus

(:) CONS
def
= λxy .PAIR FALSE (PAIR x y)

head HEAD
def
= λz .FST (SND z)

tail TAIL
def
= λz . SND (SND z)

[] NIL
def
= λx . x

null NULL
def
= FST

Recursion

� Haskell function
length x = if null x then 0

else 1 + length (tail x)

� in λ-Calculus: first try

LENGTH
def
= λx . IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

� problem: LENGTH is not allowed to occur on right-hand side

� try to cope by adding additional argument

LENGTH
def
= λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� idea: at some point f should be replaced by LENGTH again

� partial solution:

LENGTH
def
= Y (λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x))))

� missing: find appropriate Y

Recursion

� Haskell function
length x = if null x then 0

else 1 + length (tail x)

� in λ-Calculus: first try

LENGTH
def
= λx . IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

� problem: LENGTH is not allowed to occur on right-hand side

� try to cope by adding additional argument

LENGTH
def
= λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� idea: at some point f should be replaced by LENGTH again

� partial solution:

LENGTH
def
= Y (λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x))))

� missing: find appropriate Y

Recursion

� Haskell function
length x = if null x then 0

else 1 + length (tail x)

� in λ-Calculus: first try

LENGTH
def
= λx . IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

� problem: LENGTH is not allowed to occur on right-hand side

� try to cope by adding additional argument

LENGTH
def
= λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� idea: at some point f should be replaced by LENGTH again

� partial solution:

LENGTH
def
= Y (λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x))))

� missing: find appropriate Y

Recursion

� Haskell function
length x = if null x then 0

else 1 + length (tail x)

� in λ-Calculus: first try

LENGTH
def
= λx . IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

� problem: LENGTH is not allowed to occur on right-hand side

� try to cope by adding additional argument

LENGTH
def
= λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� idea: at some point f should be replaced by LENGTH again

� partial solution:

LENGTH
def
= Y (λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x))))

� missing: find appropriate Y

Recursion

� Haskell function
length x = if null x then 0

else 1 + length (tail x)

� in λ-Calculus: first try

LENGTH
def
= λx . IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

� problem: LENGTH is not allowed to occur on right-hand side

� try to cope by adding additional argument

LENGTH
def
= λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� idea: at some point f should be replaced by LENGTH again

� partial solution:

LENGTH
def
= Y (λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x))))

� missing: find appropriate Y

Recursion

� Haskell function
length x = if null x then 0

else 1 + length (tail x)

� in λ-Calculus: first try

LENGTH
def
= λx . IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

� problem: LENGTH is not allowed to occur on right-hand side

� try to cope by adding additional argument

LENGTH
def
= λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� idea: at some point f should be replaced by LENGTH again

� partial solution:

LENGTH
def
= Y (λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x))))

� missing: find appropriate Y

Recursion

� Haskell function
length x = if null x then 0

else 1 + length (tail x)

� in λ-Calculus: first try

LENGTH
def
= λx . IF (NULL x) 0 (ADD 1 (LENGTH (TAIL x)))

� problem: LENGTH is not allowed to occur on right-hand side

� try to cope by adding additional argument

LENGTH
def
= λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� idea: at some point f should be replaced by LENGTH again

� partial solution:

LENGTH
def
= Y (λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x))))

� missing: find appropriate Y

The Y-Combinator

� note: a combinator is a λ-term without free variables

� Haskell Curry found a combinator Y, satisfying

Y t ↔∗
β t (Y t)

for every term t

� this is called the fixed point property

� the definition is somewhat complicated

Y
def
= λf . (λx . f (x x)) (λx . f (x x))

Example - Length

� recall that LENGTH = Y g with
g = λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� by the fixed point property we obtain
LENGTH↔∗

β g LENGTH, which takes care of replacing the
additional parameter f in g by the definition of LENGTH

The Y-Combinator

� note: a combinator is a λ-term without free variables

� Haskell Curry found a combinator Y, satisfying

Y t ↔∗
β t (Y t)

for every term t

� this is called the fixed point property

� the definition is somewhat complicated

Y
def
= λf . (λx . f (x x)) (λx . f (x x))

Example - Length

� recall that LENGTH = Y g with
g = λfx . IF (NULL x) 0 (ADD 1 (f (TAIL x)))

� by the fixed point property we obtain
LENGTH↔∗

β g LENGTH, which takes care of replacing the
additional parameter f in g by the definition of LENGTH

Exercises (for November 12th)

1. Read the lecture notes about the lambda-calculus.

2. Use the conventions to simplify λx . (λy . (λz . ((z (x y)) x))).
Drop the conventions in the term λabcd . a b c d .

3. Consider the term t = λx . f (x x), find all possible contexts C
and terms s, s.t., t = C [s] (those are the subterms of t).

4. Consider F
def
= λfxy . f y x . What does F do? What does

F (λxy . x) do? Reduce F (λxy . x) to NF.

5. Using the type

data Term = Var String | Lab String Term
| App Term Term

implement functions vars, freeVars, boundVars (all of type
Term -> [String]), computing the respective lists of
variables.

6. Implement a function
applySubst :: String -> Term -> Term -> Term,
where applySubst x s t computes t{x/s}.

