Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

November 3, 2010

Today's Topics

- Introduction to the λ-Calculus
- Encoding Data Types

Introduction to the λ-Calculus

Origin

- search for general framework in which every algorithm can be defined

Origin

- search for general framework in which every algorithm can be defined
- "universal language" (concerning computation)

Origin

- search for general framework in which every algorithm can be defined
- "universal language" (concerning computation)
- in 1936, Alonzo Church introduced the λ-Calculus in his paper An Unsolvable Problem of Elementary Number Theory, AJM 58(2), pages 345-363

Origin

- search for general framework in which every algorithm can be defined
- "universal language" (concerning computation)
- in 1936, Alonzo Church introduced the λ-Calculus in his paper An Unsolvable Problem of Elementary Number Theory, AJM 58(2), pages 345-363
- in 1937, Alan Turing introduced Turing Machines in his paper On Computable Numbers with an Application to the Entscheidungsproblem, LMS, 42(2), pages 230-265

Origin

- search for general framework in which every algorithm can be defined
- "universal language" (concerning computation)
- in 1936, Alonzo Church introduced the λ-Calculus in his paper An Unsolvable Problem of Elementary Number Theory, AJM 58(2), pages 345-363
- in 1937, Alan Turing introduced Turing Machines in his paper On Computable Numbers with an Application to the Entscheidungsproblem, LMS, 42(2), pages 230-265
- later it was shown that both models of computation are equivalent

Origin

- search for general framework in which every algorithm can be defined
- "universal language" (concerning computation)
- in 1936, Alonzo Church introduced the λ-Calculus in his paper An Unsolvable Problem of Elementary Number Theory, AJM 58(2), pages 345-363
- in 1937, Alan Turing introduced Turing Machines in his paper On Computable Numbers with an Application to the Entscheidungsproblem, LMS, 42(2), pages 230-265
- later it was shown that both models of computation are equivalent
- i.e., Turing-complete is the same as definable in the λ-Calculus

Origin

- search for general framework in which every algorithm can be defined
- "universal language" (concerning computation)
- in 1936, Alonzo Church introduced the λ-Calculus in his paper An Unsolvable Problem of Elementary Number Theory, AJM 58(2), pages 345-363
- in 1937, Alan Turing introduced Turing Machines in his paper On Computable Numbers with an Application to the Entscheidungsproblem, LMS, 42(2), pages 230-265
- later it was shown that both models of computation are equivalent
- i.e., Turing-complete is the same as definable in the λ-Calculus
- λ-Calculus is underlying much of functional programming

Syntax - λ-Terms

- grammar

$$
\begin{array}{lll}
t \stackrel{\text { def }}{=} & x & \text { variable } \\
\mid & (\lambda x \cdot t) & \text { (lambda) abstraction } \\
\mid & (t t) & \text { application }
\end{array}
$$

- all terms over set of variables \mathcal{V} are denoted by $\mathcal{T}(\mathcal{V})$

Syntax - λ-Terms

- grammar

$$
\begin{array}{lll}
t \stackrel{\text { def }}{=} & x & \text { variable } \\
\mid & (\lambda x . t) & \text { (lambda) abstraction } \\
\mid & (t t) & \text { application }
\end{array}
$$

- all terms over set of variables \mathcal{V} are denoted by $\mathcal{T}(\mathcal{V})$

Examples

$$
\begin{gathered}
(\lambda x \cdot y) \\
(\lambda x \cdot(\lambda y \cdot x)) \\
(\lambda x \cdot(\lambda y \cdot(\lambda z \cdot((x z)(y z))))) \\
(\lambda x \cdot((\lambda y \cdot(\lambda z \cdot(z y))) x))
\end{gathered}
$$

Conventions

- to ease writing and reading there are some conventions
- abstraction associates to the right
- application associates to the left
- application binds stronger than abstraction (e.g., $\lambda x . x z$ is equal to $\lambda x .(x z)$ and not to $(\lambda x . x) z)$
- nested lambdas are combined

Conventions

- to ease writing and reading there are some conventions
- abstraction associates to the right
- application associates to the left
- application binds stronger than abstraction (e.g., $\lambda x . x z$ is equal to $\lambda x .(x z)$ and not to $(\lambda x . x) z)$
- nested lambdas are combined

Examples (using Conventions)

$$
\begin{gathered}
\lambda x \cdot y \\
\lambda x y \cdot x \\
\lambda x y z \cdot x z(y z) \\
\lambda x \cdot(\lambda y z \cdot z y) x
\end{gathered}
$$

Conventions

- to ease writing and reading there are some conventions
- abstraction associates to the right
- application associates to the left
- application binds stronger than abstraction (e.g., $\lambda x . x z$ is equal to $\lambda x .(x z)$ and not to $(\lambda x . x) z)$
- nested lambdas are combined

Examples (using Conventions)

$$
\begin{gathered}
\lambda x \cdot y \\
\lambda x y \cdot x \\
\lambda x y z \cdot x z(y z) \\
\lambda x \cdot(\lambda y z \cdot z y) x
\end{gathered}
$$

Note

- nested lambdas are "functions with multiple arguments"
- e.g., $\lambda x y z . t$ is a function taking 3 arguments

λ-Terms and Haskell

λ-Calculus

- λx. ADD $x 1$
- $(\lambda x$. ADD $x 1) 2$
- IF TRUE 10
- PAIR 24
- FST (PAIR 24)

Haskell

- ($\backslash x$-> $x+1$)
- ($\backslash x$-> $x+1$) $2=3$
- if True then 1 else $0=1$
- (,) $24=(2,4)$
- fst $(2,4)=2$

λ-Terms and Haskell

λ-Calculus

- λx. ADD $x 1$
- $(\lambda x . A D D \times 1) 2$
- IF TRUE 10
- PAIR 24
- FST (PAIR 24)

Haskell

- ($\backslash x$-> $x+1$)
- ($\backslash \mathrm{x}$-> $\mathrm{x}+1$) $2=3$
- if True then 1 else $0=1$
- (,) $24=(2,4)$
- fst $(2,4)=2$

Remark

- in the above
- '0', '1', '2', '4', ‘ADD', ‘FST', 'IF', ‘PAIR', and ‘TRUE’ are just abbreviations for more complex λ-terms
- supposed to "encode" the behavior of $0,1,2,4,(+), \ldots$

Computation

- manipulate terms to "compute" some "result"
- what are the rules?
- it turns out that a single rule is enough

Computation

- manipulate terms to "compute" some "result"
- what are the rules?
- it turns out that a single rule is enough

The β-Rule ("informal" definition)

- intuition: apply a "function" to an "argument"
- in the λ-Calculus, "functions" as well as "arguments" are just λ-terms
- the rule

$$
(\lambda x . s) t \quad \rightarrow_{\beta} \quad s\{x / t\}
$$

- in words: when applying the function $(\lambda x . s)$ to the input t, just replace every occurrence of x in the body of the function (which is s) by t

Examples

$$
\begin{aligned}
(\lambda x \cdot x)(\lambda x \cdot x) & \rightarrow_{\beta} \\
(\lambda x y \cdot y)(\lambda x \cdot x) & \rightarrow_{\beta} \\
(\lambda x y z \cdot x z(y z))(\lambda x \cdot x) & \rightarrow_{\beta} \\
(\lambda x \cdot x x)(\lambda x \cdot x x) & \rightarrow_{\beta} \\
\lambda x \cdot x &
\end{aligned}
$$

Examples

$$
\begin{aligned}
(\lambda x \cdot x)(\lambda x \cdot x) & \rightarrow_{\beta} \quad \lambda x \cdot x \\
(\lambda x y \cdot y)(\lambda x \cdot x) & \rightarrow_{\beta} \\
(\lambda x y z \cdot x z(y z))(\lambda x \cdot x) & \rightarrow_{\beta} \\
(\lambda x \cdot x x)(\lambda x \cdot x x) & \rightarrow_{\beta} \\
\lambda x \cdot x &
\end{aligned}
$$

Examples

$$
\begin{array}{rlll}
(\lambda x \cdot x)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda x \cdot x \\
(\lambda x y \cdot y)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda y \cdot y \\
(\lambda x y z \cdot x z(y z))(\lambda x \cdot x) & \rightarrow_{\beta} & \\
(\lambda x \cdot x x)(\lambda x \cdot x x) & \rightarrow_{\beta} & \\
\lambda x \cdot x & &
\end{array}
$$

Examples

$$
\begin{array}{rlll}
(\lambda x \cdot x)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda x \cdot x \\
(\lambda x y \cdot y)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda y \cdot y \\
(\lambda x y z \cdot x z(y z))(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda y z \cdot(\lambda x \cdot x) z(y z) \\
(\lambda x \cdot x x)(\lambda x \cdot x x) & \rightarrow_{\beta} & \\
\lambda x \cdot x & &
\end{array}
$$

Examples

$$
\begin{array}{rlll}
(\lambda x \cdot x)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda x \cdot x \\
(\lambda x y \cdot y)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda y \cdot y \\
(\lambda x y z \cdot x z(y z))(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda y z \cdot(\lambda x \cdot x) z(y z) \\
(\lambda x \cdot x x)(\lambda x \cdot x x) & \rightarrow_{\beta} & (\lambda x \cdot x x)(\lambda x \cdot x x) \\
\lambda x \cdot x & &
\end{array}
$$

Examples

$$
\begin{array}{rlll}
(\lambda x \cdot x)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda x \cdot x \\
(\lambda x y \cdot y)(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda y \cdot y \\
(\lambda x y z \cdot x z(y z))(\lambda x \cdot x) & \rightarrow_{\beta} & \lambda y z \cdot(\lambda x \cdot x) z(y z) \\
(\lambda x \cdot x x)(\lambda x \cdot x x) & \rightarrow_{\beta} & (\lambda x \cdot x x)(\lambda x \cdot x x) \\
\lambda x \cdot x & & \text { no } \beta \text {-step possible }
\end{array}
$$

(Free and Bound) Variables of a Term

- set of variables of a term

$$
\mathcal{V} \operatorname{ar}(t) \stackrel{\text { def }}{=} \begin{cases}\{t\} & \text { if } t=x \\ \{x\} \cup \mathcal{V} \operatorname{ar}(u) & \text { if } t=\lambda x . u \\ \mathcal{V} \operatorname{ar}(u) \cup \mathcal{V} \operatorname{ar}(v) & \text { if } t=u v\end{cases}
$$

(Free and Bound) Variables of a Term

- set of variables of a term

$$
\operatorname{Var}(t) \stackrel{\text { def }}{=} \begin{cases}\{t\} & \text { if } t=x \\ \{x\} \cup \mathcal{V} \operatorname{ar}(u) & \text { if } t=\lambda x . u \\ \mathcal{V} \operatorname{ar}(u) \cup \mathcal{V} \operatorname{ar}(v) & \text { if } t=u v\end{cases}
$$

- set of free variables of a term

$$
\mathcal{F} \mathcal{V} \operatorname{ar}(t) \stackrel{\text { def }}{=} \begin{cases}\{t\} & \text { if } t=x \\ \mathcal{F} \mathcal{V} \operatorname{ar}(u) \backslash\{x\} & \text { if } t=\lambda x \cdot u \\ \mathcal{F} \mathcal{V} \operatorname{ar}(u) \cup \mathcal{F} \mathcal{V} \operatorname{ar}(v) & \text { if } t=u v\end{cases}
$$

(Free and Bound) Variables of a Term

- set of variables of a term

$$
\mathcal{V} \operatorname{ar}(t) \stackrel{\text { def }}{=} \begin{cases}\{t\} & \text { if } t=x \\ \{x\} \cup \mathcal{V} \operatorname{ar}(u) & \text { if } t=\lambda x . u \\ \mathcal{V} \operatorname{ar}(u) \cup \mathcal{V} \operatorname{ar}(v) & \text { if } t=u v\end{cases}
$$

- set of free variables of a term

$$
\mathcal{F} \mathcal{V} \operatorname{ar}(t) \stackrel{\text { def }}{=} \begin{cases}\{t\} & \text { if } t=x \\ \mathcal{F} \mathcal{V} \operatorname{ar}(u) \backslash\{x\} & \text { if } t=\lambda x \cdot u \\ \mathcal{F} \mathcal{V} \operatorname{ar}(u) \cup \mathcal{F} \mathcal{V} \operatorname{ar}(v) & \text { if } t=u v\end{cases}
$$

- set of bound variables of a term

$$
\mathcal{B} \mathcal{V} \operatorname{ar}(t) \stackrel{\text { def }}{=} \begin{cases}\varnothing & \text { if } t=x \\ \{x\} \cup \mathcal{B} \mathcal{V} \operatorname{ar}(u) & \text { if } t=\lambda x \cdot u \\ \mathcal{B} \mathcal{V a r}(u) \cup \mathcal{B} \mathcal{V} \operatorname{ar}(v) & \text { if } t=u v\end{cases}
$$

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V a r}(t)$
$\lambda x . x$			
$x y$			
$(\lambda x . x) x$			
$\lambda x . x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$		
$x y$			
$(\lambda x \cdot x) x$			
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	
$x y$			
$(\lambda x \cdot x) x$			
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$			
$(\lambda x \cdot x) x$			
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$		
$(\lambda x \cdot x) x$			
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	
$(\lambda x \cdot x) x$			
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	\varnothing
$(\lambda x \cdot x) x$			
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	\varnothing
$(\lambda x \cdot x) x$	$\{x\}$		
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	\varnothing
$(\lambda x \cdot x) x$	$\{x\}$	$\{x\}$	
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	\varnothing
$(\lambda x \cdot x) x$	$\{x\}$	$\{x\}$	$\{x\}$
$\lambda x \cdot x y z$			

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	\varnothing
$(\lambda x \cdot x) x$	$\{x\}$	$\{x\}$	$\{x\}$
$\lambda x \cdot x y z$	$\{x, y, z\}$		

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x . x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	\varnothing
$(\lambda x \cdot x) x$	$\{x\}$	$\{x\}$	$\{x\}$
$\lambda x \cdot x y z$	$\{x, y, z\}$	$\{y, z\}$	

Examples

term t	$\mathcal{V} \operatorname{ar}(t)$	$\mathcal{F} \mathcal{V} \operatorname{ar}(t)$	$\mathcal{B} \mathcal{V} \operatorname{ar}(t)$
$\lambda x \cdot x$	$\{x\}$	\varnothing	$\{x\}$
$x y$	$\{x, y\}$	$\{x, y\}$	\varnothing
$(\lambda x \cdot x) x$	$\{x\}$	$\{x\}$	$\{x\}$
$\lambda x \cdot x y z$	$\{x, y, z\}$	$\{y, z\}$	$\{x\}$

Substitutions

- a substitution (for terms) is a function from variables to terms

$$
\sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{V})
$$

- we only need substitutions replacing a single variable
- hence, we can always write $\{x / t\}$ for the substitution replacing x by t and leaving all other variables unchanged

Substitutions

- a substitution (for terms) is a function from variables to terms

$$
\sigma: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{V})
$$

- we only need substitutions replacing a single variable
- hence, we can always write $\{x / t\}$ for the substitution replacing x by t and leaving all other variables unchanged

Example

- consider $\sigma=\{x / \lambda x . x\}$
- then $\sigma(x)=\lambda x . x$ and
- $\sigma(y)=y$ for all $y \neq x$

Applying Substitutions to Terms (first try)

- applying substitution $\sigma=\{x / s\}$ to term t is denoted by $t \sigma$

Applying Substitutions to Terms (first try)

- applying substitution $\sigma=\{x / s\}$ to term t is denoted by $t \sigma$
- and defined by

$$
t \sigma \stackrel{\text { def }}{=} \begin{cases}s & \text { if } t=x \\ y & \text { if } t=y \neq x \\ (u \sigma)(v \sigma) & \text { if } t=u v \\ \lambda x \cdot u & \text { if } t=\lambda x \cdot u \\ \lambda y \cdot(u \sigma) & \text { if } t=\lambda y \cdot u \text { with } x \neq y\end{cases}
$$

Applying Substitutions to Terms (first try)

- applying substitution $\sigma=\{x / s\}$ to term t is denoted by $t \sigma$
- and defined by

$$
t \sigma \stackrel{\text { def }}{=} \begin{cases}s & \text { if } t=x \\ y & \text { if } t=y \neq x \\ (u \sigma)(v \sigma) & \text { if } t=u v \\ \lambda x \cdot u & \text { if } t=\lambda x \cdot u \\ \lambda y \cdot(u \sigma) & \text { if } t=\lambda y \cdot u \text { with } x \neq y\end{cases}
$$

- i.e., bound variables are not substituted

Applying Substitutions to Terms (first try)

- applying substitution $\sigma=\{x / s\}$ to term t is denoted by $t \sigma$
- and defined by

$$
t \sigma \stackrel{\text { def }}{=} \begin{cases}s & \text { if } t=x \\ y & \text { if } t=y \neq x \\ (u \sigma)(v \sigma) & \text { if } t=u v \\ \lambda x \cdot u & \text { if } t=\lambda x \cdot u \\ \lambda y \cdot(u \sigma) & \text { if } t=\lambda y \cdot u \text { with } x \neq y\end{cases}
$$

- i.e., bound variables are not substituted

Examples

- $\sigma=\{x / \lambda x \cdot x\}$
- $x \sigma=\lambda x \cdot x$
- $y \sigma=y$
- $(\lambda x . x) \sigma=\lambda x . x$

Contexts and Subterms

- contexts are special terms, having a single occurrence of the special symbol "hole" \square

Contexts and Subterms

- contexts are special terms, having a single occurrence of the special symbol "hole" \square
- defined by $C \stackrel{\text { def }}{=} \square|\lambda x . C| C t \mid t C$

Contexts and Subterms

- contexts are special terms, having a single occurrence of the special symbol "hole" \square
- defined by $C \stackrel{\text { def }}{=} \square|\lambda x . C| C t \mid t C$
- $C[t]$ denotes replacing \square by t in C (result is a term, since no "hole" anymore)

Contexts and Subterms

- contexts are special terms, having a single occurrence of the special symbol "hole" \square
- defined by $C \stackrel{\text { def }}{=} \square|\lambda x . C| C t \mid t C$
- $C[t]$ denotes replacing \square by t in C (result is a term, since no "hole" anymore)
- we say that term s is a subterm of the term t, whenever there is some context C, s.t., $t=C[s]$

Contexts and Subterms

- contexts are special terms, having a single occurrence of the special symbol "hole" \square
- defined by $C \stackrel{\text { def }}{=} \square|\lambda x . C| C t \mid t C$
- $C[t]$ denotes replacing \square by t in C (result is a term, since no "hole" anymore)
- we say that term s is a subterm of the term t, whenever there is some context C, s.t., $t=C[s]$
- if moreover $C \neq \square$ (i.e., context is nonempty), then s is a proper subterm of t

Contexts and Subterms

- contexts are special terms, having a single occurrence of the special symbol "hole" \square
- defined by $C \stackrel{\text { def }}{=} \square|\lambda x . C| C t \mid t C$
- $C[t]$ denotes replacing \square by t in C (result is a term, since no "hole" anymore)
- we say that term s is a subterm of the term t, whenever there is some context C, s.t., $t=C[s]$
- if moreover $C \neq \square$ (i.e., context is nonempty), then s is a proper subterm of t

Examples

- consider $C_{1}=\square, C_{2}=x \square$, and $C_{3}=\lambda x . \square x$
- $C_{1}[\lambda x . x]=\lambda x . x$
- $C_{2}[y]=x y$
- $C_{3}[\lambda x y \cdot x]=\lambda x .(\lambda x y . x) x$

The β-Rule (formal definition)

- term $s(\beta$-)reduces to term t in one step iff

$$
\exists C \times u v . s=C[(\lambda x . u) v] \wedge t=C[u\{x / v\}]
$$

The β-Rule (formal definition)

- term $s(\beta$-)reduces to term t in one step iff

$$
\exists C \times u v . s=C[(\lambda x . u) v] \wedge t=C[u\{x / v\}]
$$

- in words: if s has a subterm of the form $(\lambda x . u) v$ (an abstraction/function applied to an argument), then replacing this subterm by $u\{x / v\}$ is a β-step

The β-Rule (formal definition)

- term $s(\beta$-)reduces to term t in one step iff

$$
\exists C \times u v . s=C[(\lambda x . u) v] \wedge t=C[u\{x / v\}]
$$

- in words: if s has a subterm of the form $(\lambda x . u) v$ (an abstraction/function applied to an argument), then replacing this subterm by $u\{x / v\}$ is a β-step
- we call $(\lambda x . u) v$ a redex (short for reducible expression), and

The β-Rule (formal definition)

- term $s(\beta$-)reduces to term t in one step iff

$$
\exists C \times u v . s=C[(\lambda x . u) v] \wedge t=C[u\{x / v\}]
$$

- in words: if s has a subterm of the form $(\lambda x . u) v$ (an abstraction/function applied to an argument), then replacing this subterm by $u\{x / v\}$ is a β-step
- we call $(\lambda x . u) v$ a redex (short for reducible expression), and
- $u\{x / v\}$ the contractum

The β-Rule (formal definition)

- term $s(\beta$-)reduces to term t in one step iff

$$
\exists C \times u v . s=C[(\lambda x . u) v] \wedge t=C[u\{x / v\}]
$$

- in words: if s has a subterm of the form $(\lambda x . u) v$ (an abstraction/function applied to an argument), then replacing this subterm by $u\{x / v\}$ is a β-step
- we call $(\lambda x . u) v$ a redex (short for reducible expression), and
- $u\{x / v\}$ the contractum
- $s \rightarrow_{\beta}^{*} t$ denotes a sequence $s=t_{1} \rightarrow_{\beta} t_{2} \rightarrow_{\beta} \cdots \rightarrow_{\beta} t_{n}=t$ with $n \geq 0(s(\beta-) r e d u c e s ~ t o ~ t)$

The β-Rule (formal definition)

- term $s(\beta$-)reduces to term t in one step iff

$$
\exists C \times u v . s=C[(\lambda x . u) v] \wedge t=C[u\{x / v\}]
$$

- in words: if s has a subterm of the form $(\lambda x . u) v$ (an abstraction/function applied to an argument), then replacing this subterm by $u\{x / v\}$ is a β-step
- we call $(\lambda x . u) v$ a redex (short for reducible expression), and
- $u\{x / v\}$ the contractum
- $s \rightarrow_{\beta}^{*} t$ denotes a sequence $s=t_{1} \rightarrow_{\beta} t_{2} \rightarrow_{\beta} \cdots \rightarrow_{\beta} t_{n}=t$ with $n \geq 0$ ($s(\beta$-)reduces to $t)$
- a nonempty sequence (i.e., $n>0$) is denoted by $s \rightarrow_{\beta}^{+} t$

Exercise

- consider $\Omega \stackrel{\text { def }}{=}(\lambda x . x x)(\lambda x . x x)$,
- $K \stackrel{\text { def }}{=} \lambda x y . x$,
- $K_{*} \stackrel{\text { def }}{=} \lambda x y \cdot y$, and
- $I \stackrel{\text { def }}{=} \lambda x . x$
- reduce the following λ-terms

$$
\begin{gathered}
K \Omega \\
K_{*} \Omega \\
I \Omega
\end{gathered}
$$

Problem - Variable Capture

- consider $\lambda x y . x$

Problem - Variable Capture

- consider $\lambda x y . x$
- behavior: take 2 arguments, ignore second, return first

Problem - Variable Capture

- consider $\lambda x y . x$
- behavior: take 2 arguments, ignore second, return first
- consider $t=(\lambda x y . x)$ y z

Problem - Variable Capture

- consider $\lambda x y . x$
- behavior: take 2 arguments, ignore second, return first
- consider $t=(\lambda x y . x)$ y z
- we want y as result, but get $t \rightarrow_{\beta}(\lambda y . y) z \rightarrow_{\beta} z$

Problem - Variable Capture

- consider $\lambda x y . x$
- behavior: take 2 arguments, ignore second, return first
- consider $t=(\lambda x y . x)$ y z
- we want y as result, but get $t \rightarrow_{\beta}(\lambda y . y) z \rightarrow_{\beta} z$
- clearly not intended (the problem was that the free y was bound when substituting for x

Problem - Variable Capture

- consider $\lambda x y . x$
- behavior: take 2 arguments, ignore second, return first
- consider $t=(\lambda x y . x)$ y z
- we want y as result, but get $t \rightarrow_{\beta}(\lambda y . y) z \rightarrow_{\beta} z$
- clearly not intended (the problem was that the free y was bound when substituting for x

Solution

- modify definition of applying substitutions to terms
- rename bound variables to avoid capture of free variables

Applying Substitutions to Terms

- let $\sigma=\{x / s\}$
- new definition

$$
t \sigma \stackrel{\text { def }}{=} \begin{cases}s & \text { if } t=x \\ y & \text { if } t=y \neq x \\ (u \sigma)(v \sigma) & \text { if } t=u v \\ \lambda x \cdot u & \text { if } t=\lambda x \cdot u \\ \lambda y \cdot(u \sigma) & \text { if } t=\lambda y \cdot u \text { with } x \neq y \text { and } y \notin \mathcal{F} \operatorname{Var}(s) \\ \lambda z \cdot(u\{y / z\} \sigma) & \text { if } t=\lambda y \cdot u \text { with } x \neq y \text { and } y \in \mathcal{F} \mathcal{V} \operatorname{ar}(s)\end{cases}
$$

- where z is assumed to be fresh (i.e., it is unequal to x and y, and does neither occur in u nor in s)

What are the Results of Computations?

- we do only have λ-terms

What are the Results of Computations?

- we do only have λ-terms
- i.e., we have to express "functions" and "values" as λ-terms

What are the Results of Computations?

- we do only have λ-terms
- i.e., we have to express "functions" and "values" as λ-terms
- as long as β-steps are applicable, terms are not "stable"

What are the Results of Computations?

- we do only have λ-terms
- i.e., we have to express "functions" and "values" as λ-terms
- as long as β-steps are applicable, terms are not "stable"
- thus, we define values to be terms, for which no β-step is applicable (so called "normal forms"; abbreviation NF)

What are the Results of Computations?

- we do only have λ-terms
- i.e., we have to express "functions" and "values" as λ-terms
- as long as β-steps are applicable, terms are not "stable"
- thus, we define values to be terms, for which no β-step is applicable (so called "normal forms"; abbreviation NF)

Examples

- $\lambda x . x$ is in NF
- $(\lambda x . x) y$ is not in NF, since $(\lambda x . x) y \rightarrow_{\beta} y$ (where y, in turn, is in NF)

Encoding Data Types

Booleans and Conditionals

- in Haskell: True, False, and if b then t else e
- in the λ-Calculus:

TRUE $\stackrel{\text { def }}{=} \lambda x y \cdot x$
FALSE $\stackrel{\text { def }}{=} \lambda x y . y$

$$
\text { IF } \xlongequal{\text { def }} \lambda x y z \cdot x y z
$$

"ignore second argument"
"ignore first argument"

Booleans and Conditionals

- in Haskell: True, False, and if b then t else e
- in the λ-Calculus:

TRUE $\stackrel{\text { def }}{=} \lambda x y \cdot x$
FALSE $\stackrel{\text { def }}{=} \lambda x y . y$

$$
\text { IF } \stackrel{\text { def }}{=} \lambda x y z \cdot x y z
$$

"ignore second argument"
"ignore first argument"

Examples

> IF TRUE $x y$
> IF FALSE $x y$

Booleans and Conditionals

- in Haskell: True, False, and if b then t else e
- in the λ-Calculus:

TRUE $\stackrel{\text { def }}{=} \lambda x y \cdot x$
FALSE $\stackrel{\text { def }}{=} \lambda x y . y$
IF $\xlongequal{\text { def }} \lambda x y z . x y z$
"ignore second argument"
"ignore first argument"

Examples

IF TRUE x y \rightarrow_{β}^{+}TRUE $x y$
IF FALSE $x y$

Booleans and Conditionals

- in Haskell: True, False, and if b then t else e
- in the λ-Calculus:

TRUE $\xlongequal{\text { def }} \lambda x y \cdot x$
FALSE $\stackrel{\text { def }}{=} \lambda x y . y$
IF $\xlongequal{\text { def }} \lambda x y z . x y z$
"ignore second argument"
"ignore first argument"

Examples

IF TRUE x y \rightarrow_{β}^{+}TRUE $x y \rightarrow_{\beta}^{+} x$
IF FALSE $x y$

Booleans and Conditionals

- in Haskell: True, False, and if b then t else e
- in the λ-Calculus:

TRUE $\xlongequal{\text { def }} \lambda x y \cdot x$
FALSE $\stackrel{\text { def }}{=} \lambda x y . y$

$$
\text { IF } \stackrel{\text { def }}{=} \lambda x y z \cdot x y z
$$

"ignore second argument"
"ignore first argument"

Examples

$$
\begin{array}{rlll}
\text { IF TRUE } x y & \rightarrow_{\beta}^{+} & \text {TRUE } x y & \rightarrow_{\beta}^{+}
\end{array}
$$

Booleans and Conditionals

- in Haskell: True, False, and if b then t else e
- in the λ-Calculus:

TRUE $\xlongequal{\text { def }} \lambda x y \cdot x$
FALSE $\stackrel{\text { def }}{=} \lambda x y . y$

$$
\text { IF } \stackrel{\text { def }}{=} \lambda x y z \cdot x y z
$$

"ignore second argument"
"ignore first argument"

Examples

$\begin{array}{rllll}\text { IF TRUE } x y & \rightarrow_{\beta}^{+} & \text {TRUE } x y & \rightarrow_{\beta}^{+} & x \\ \text { IF FALSE } x y & \rightarrow_{\beta}^{+} & \text {FALSE } x y & \rightarrow_{\beta}^{+} & y\end{array}$

Natural Numbers

- define n-fold application of "function"

$$
\begin{gathered}
s^{0} t \stackrel{\text { def }}{=} t \\
s^{n+1} t \stackrel{\text { def }}{=} s\left(s^{n} t\right)
\end{gathered}
$$

- Church numerals represent numbers
- the number n is represented by the term $\lambda f x . f^{n} x$ (i.e., a function that applies its first argument f, n-times to its second argument x)

Natural Numbers

- define n-fold application of "function"

$$
\begin{gathered}
s^{0} t \stackrel{\text { def }}{=} t \\
s^{n+1} t \stackrel{\text { def }}{=} s\left(s^{n} t\right)
\end{gathered}
$$

- Church numerals represent numbers
- the number n is represented by the term $\lambda f x . f^{n} \times$ (i.e., a function that applies its first argument f, n-times to its second argument x)

Haskell vs. λ-Calculus

0	$0 \stackrel{\text { def }}{=} \lambda f x \cdot x$
1	$1 \stackrel{\text { def }}{=} \lambda f x . f x$
n	$\mathrm{~N} \stackrel{\text { def }}{=} \lambda f x . f^{n} x$
$(+)$	ADD $\stackrel{\text { def }}{=} \lambda m n f x . m f(n f x)$
$(*)$	MUL $\stackrel{\text { def }}{=} \lambda m n f . m(n f)$
(\sim)	EXP $\stackrel{\text { def }}{=} \lambda m n . n m$

Pairs - Haskell vs. λ-Calculus

$()$,	PAIR $\stackrel{\text { def }}{=} \lambda x y f . f \times y$
fst	FST $\stackrel{\text { def }}{=} \lambda p . p$ TRUE
snd	SND $\stackrel{\text { def }}{=} \lambda p . p$ FALSE

Pairs - Haskell vs. λ-Calculus

$()$,	PAIR $\stackrel{\text { def }}{=} \lambda x y f . f x y$
fst	$\mathrm{FST} \stackrel{\text { def }}{=} \lambda p . p$ TRUE
snd	$\mathrm{SND} \stackrel{\text { def }}{=} \lambda p . p$ FALSE

Lists - Haskell vs. λ-Calculus

$(:)$	CONS $\stackrel{\text { def }}{=} \lambda x y$. PAIR FALSE (PAIR $x y)$
head	HEAD $\stackrel{\text { def }}{=} \lambda z$. FST (SND $z)$
tail	TAIL $\stackrel{\text { def }}{=} \lambda z$. SND (SND $z)$
[]	NIL $\stackrel{\text { def }}{=} \lambda x . x$
null	NULL $\stackrel{\text { def }}{=}$ FST

Recursion

- Haskell function

```
length x = if null x then 0
else 1 + length (tail x)
```


Recursion

- Haskell function

```
length x = if null x then 0
else 1 + length (tail x)
```

- in λ-Calculus: first try

LENGTH $\stackrel{\text { def }}{=} \lambda x$. IF (NULL $x) 0($ ADD $1($ LENGTH $($ TAIL $x)))$

Recursion

- Haskell function

```
length x = if null x then 0
else 1 + length (tail x)
```

- in λ-Calculus: first try

LENGTH $\stackrel{\text { def }}{=} \lambda x$. IF (NULL $x) 0($ ADD $1($ LENGTH $($ TAIL $x)))$

- problem: LENGTH is not allowed to occur on right-hand side

Recursion

- Haskell function

```
length x = if null x then 0
else 1 + length (tail x)
```

- in λ-Calculus: first try

LENGTH $\stackrel{\text { def }}{=} \lambda x$. IF (NULL $x) 0($ ADD 1 (LENGTH (TAIL $x))$)

- problem: LENGTH is not allowed to occur on right-hand side
- try to cope by adding additional argument

LENGTH $\stackrel{\text { def }}{=} \lambda f x$. IF $(\operatorname{NULL} x) 0(\operatorname{ADD} 1(f(\operatorname{TAIL} x)))$

Recursion

- Haskell function

```
length x = if null x then 0
else 1 + length (tail x)
```

- in λ-Calculus: first try

LENGTH $\stackrel{\text { def }}{=} \lambda x$. IF (NULL $x) 0($ ADD 1 (LENGTH (TAIL $x))$)

- problem: LENGTH is not allowed to occur on right-hand side
- try to cope by adding additional argument

$$
\text { LENGTH } \stackrel{\text { def }}{=} \lambda f x \text {.IF }(\text { NULL } x) 0(\operatorname{ADD} 1(f(\operatorname{TAIL} x)))
$$

- idea: at some point f should be replaced by LENGTH again

Recursion

- Haskell function

length $\mathrm{x}=$ if null x then 0

else 1 + length (tail x)

- in λ-Calculus: first try

LENGTH $\stackrel{\text { def }}{=} \lambda x$. IF $($ NULL $x) 0($ ADD $1($ LENGTH $($ TAIL $x)))$

- problem: LENGTH is not allowed to occur on right-hand side
- try to cope by adding additional argument

$$
\text { LENGTH } \stackrel{\text { def }}{=} \lambda f x \text {. IF }(\text { NULL } x) 0(\operatorname{ADD} 1(f(\text { TAIL } x)))
$$

- idea: at some point f should be replaced by LENGTH again
- partial solution:
$\operatorname{LENGTH} \stackrel{\text { def }}{=} \mathrm{Y}(\lambda f x . \operatorname{IF}(\operatorname{NULL} x) 0(\operatorname{ADD} 1(f(\operatorname{TAIL} x))))$

Recursion

- Haskell function

length $\mathrm{x}=$ if null x then 0

else 1 + length (tail x)

- in λ-Calculus: first try

LENGTH $\stackrel{\text { def }}{=} \lambda x$.IF (NULL $x) 0($ ADD $1($ LENGTH (TAIL $x)))$

- problem: LENGTH is not allowed to occur on right-hand side
- try to cope by adding additional argument

$$
\text { LENGTH } \stackrel{\text { def }}{=} \lambda f x \text {. IF }(\text { NULL } x) 0(\operatorname{ADD} 1(f(\text { TAIL } x)))
$$

- idea: at some point f should be replaced by LENGTH again
- partial solution:

$$
\operatorname{LENGTH} \stackrel{\text { def }}{=} \mathrm{Y}(\lambda f x . \operatorname{IF}(\text { NULL } x) 0(\operatorname{ADD} 1(f(\operatorname{TAIL} x))))
$$

- missing: find appropriate Y
- note: a combinator is a λ-term without free variables
- Haskell Curry found a combinator Y, satisfying

$$
\mathrm{Y} t \leftrightarrow{ }_{\beta}^{*} t(\mathrm{Y} t)
$$

for every term t

- this is called the fixed point property
- the definition is somewhat complicated

$$
Y \stackrel{\text { def }}{=} \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

The Y-Combinator

- note: a combinator is a λ-term without free variables
- Haskell Curry found a combinator Y, satisfying

$$
\mathrm{Y} t \leftrightarrow_{\beta}^{*} t(\mathrm{Y} t)
$$

for every term t

- this is called the fixed point property
- the definition is somewhat complicated

$$
Y \stackrel{\text { def }}{=} \lambda f .(\lambda x . f(x x))(\lambda x . f(x x))
$$

Example - Length

- recall that LENGTH $=\mathrm{Y} g$ with $g=\lambda f x$. IF (NULL $x) 0($ ADD $1(f($ TAIL $x)))$
- by the fixed point property we obtain

LENGTH $\leftrightarrow_{\beta}^{*} g$ LENGTH, which takes care of replacing the additional parameter f in g by the definition of LENGTH

Exercises (for November 12th)

1. Read the lecture notes about the lambda-calculus.
2. Use the conventions to simplify λx. $(\lambda y$. $(\lambda z .((z(x y)) x)))$. Drop the conventions in the term $\lambda a b c d . a b c d$.
3. Consider the term $t=\lambda x . f(x x)$, find all possible contexts C and terms s, s.t., $t=C[s]$ (those are the subterms of t).
4. Consider $F \stackrel{\text { def }}{=} \lambda f x y . f y x$. What does F do? What does F $(\lambda x y . x)$ do? Reduce $\mathrm{F}(\lambda x y . x)$ to NF.
5. Using the type
data Term = Var String | Lab String Term | App Term Term
implement functions vars, freeVars, boundVars (all of type Term -> [String]), computing the respective lists of variables.
6. Implement a function
applySubst : : String -> Term -> Term -> Term, where applySubst x s t computes $t\{x / s\}$.
