
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

November 10, 2010

http://cl-informatik.uibk.ac.at

Today’s Topics

� Evaluation Strategies

� Abstract Data Types

� Sets and Binary Search Trees

Evaluation Strategies

Recall - λ-Terms

t
def
= x | (λx . t) | (t t)

Examples

Conventions Verbose in Words

x y (x y) “x applied to y”
λx . x (λx . x) “lambda x to x” (identity function)
λxy . x (λx . (λy . x)) “lambda x y to x”
λx . x x (λx . (x x)) “lambda x to x applied to x”

(λx . x) x ((λx . x) x) “lambda x to x , applied to x”

Recall - λ-Terms

t
def
= x | (λx . t) | (t t)

Examples

Conventions Verbose in Words

x y (x y) “x applied to y”
λx . x (λx . x) “lambda x to x” (identity function)
λxy . x (λx . (λy . x)) “lambda x y to x”
λx . x x (λx . (x x)) “lambda x to x applied to x”

(λx . x) x ((λx . x) x) “lambda x to x , applied to x”

Recall - β-Reduction

� term s (β-)reduces to term t in one step

� written: s →β t

� iff there is context C, variable x, and terms u and v , s.t.,

� s = C [(λx . u) v] and t = C [u{x/v}]

Examples

K
def
= λxy . x

I
def
= λx . x

Ω
def
= (λx . x x) (λx . x x)

Recall - β-Reduction

� term s (β-)reduces to term t in one step

� written: s →β t

� iff there is context C, variable x, and terms u and v , s.t.,

� s = C [(λx . u) v] and t = C [u{x/v}]

Examples

K
def
= λxy . x

I
def
= λx . x

Ω
def
= (λx . x x) (λx . x x)

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2)

(d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4

(2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2)

(d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2)

(2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2)

(d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2)

(d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2)

(d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Order of Evaluation

� consider d x = x + x

� the term d (d 2) may be evaluated as follows

d (d 2)

d (2+2) (d 2)+(d 2)

d 4 (2+2)+(2+2)

(2+2)+(d 2) (d 2)+(2+2)

4+4

4+(2+2) (2+2)+4

4+(d 2) (d 2)+4

8

Strategies

� fix evaluation order

� call-by-value (compute arguments before function calls)

� call-by-name (compute arguments “on demand”)

Example

� call-by-value

d (d 2) = d (2+2)

= d 4

= 4+4

= 8

� call-by-name

d (d 2) = (d 2) + (d 2)

= (2+2) + (d 2)

= 4 + (d 2)

= 4 + (2+2)

= 4 + 4

= 8

Strategies

� fix evaluation order

� call-by-value (compute arguments before function calls)

� call-by-name (compute arguments “on demand”)

Example

� call-by-value

d (d 2) = d (2+2)

= d 4

= 4+4

= 8

� call-by-name

d (d 2) = (d 2) + (d 2)

= (2+2) + (d 2)

= 4 + (d 2)

= 4 + (2+2)

= 4 + 4

= 8

(Leftmost) Innermost Reduction

� always reduce leftmost innermost redex

� a redex u inside a term t is innermost if it does not contain
any redexes as proper subterms, i.e.,

@C s. u = C [s], C 6= � and s is a redex

Example

� consider t = (λx . (λy . y) x) z

� (λy . y) x is innermost redex

� t is redex, but not an innermost redex

(Leftmost) Innermost Reduction

� always reduce leftmost innermost redex

� a redex u inside a term t is innermost if it does not contain
any redexes as proper subterms, i.e.,

@C s. u = C [s], C 6= � and s is a redex

Example

� consider t = (λx . (λy . y) x) z

� (λy . y) x is innermost redex

� t is redex, but not an innermost redex

(Leftmost) Outermost Reduction

� always reduce leftmost outermost redex

� a redex u inside a term t is outermost if it is not a proper
subterm of some other redex inside t, i.e.,

@D C s. t = D[s], s = C [u], C 6= � and s is a redex

Example

� consider t = (λx . (λy . y) x) z

� t is an outermost redex

� (λy . y) x is redex, but not outermost redex

(Leftmost) Outermost Reduction

� always reduce leftmost outermost redex

� a redex u inside a term t is outermost if it is not a proper
subterm of some other redex inside t, i.e.,

@D C s. t = D[s], s = C [u], C 6= � and s is a redex

Example

� consider t = (λx . (λy . y) x) z

� t is an outermost redex

� (λy . y) x is redex, but not outermost redex

Exercises

� consider the λ-terms

� S = λxyz . x z (y z)

� K = λxy . x

� I = λx . x

� reduce S K I to NF using leftmost innermost reduction

� reduce S K I to NF using leftmost outermost reduction

Call-by-Value

� use innermost reduction

� corresponds to strict (or eager) evaluation

� adopted by most programming languages

� slight modification: only reduce terms not in WHNF

Call-by-Name

� use outermost reduction

� corresponds to lazy evaluation (without memoization)

� e.g., adopted by Haskell

� slight modification: again, only reduce terms not in WHNF

Weak Head Normal Form

term t is in weak head normal form iff t is not an application

Call-by-Value

� use innermost reduction

� corresponds to strict (or eager) evaluation

� adopted by most programming languages

� slight modification: only reduce terms not in WHNF

Call-by-Name

� use outermost reduction

� corresponds to lazy evaluation (without memoization)

� e.g., adopted by Haskell

� slight modification: again, only reduce terms not in WHNF

Weak Head Normal Form

term t is in weak head normal form iff t is not an application

Call-by-Value

� use innermost reduction

� corresponds to strict (or eager) evaluation

� adopted by most programming languages

� slight modification: only reduce terms not in WHNF

Call-by-Name

� use outermost reduction

� corresponds to lazy evaluation (without memoization)

� e.g., adopted by Haskell

� slight modification: again, only reduce terms not in WHNF

Weak Head Normal Form

term t is in weak head normal form iff t is not an application

Abstract Data Types

Idea

� hide implementation details

� just provide interface

� allows to change implementation (e.g., make more efficient)
without breaking client code

Haskell

� consider module
module M (T, . . .) where

type T = C1 | | CN

� only name T is exported, but none of C1 to CN

� thus we are not able to directly construct values of type T

� if we want to export C1 to CN, we can use T(..) in export list

Idea

� hide implementation details

� just provide interface

� allows to change implementation (e.g., make more efficient)
without breaking client code

Haskell

� consider module
module M (T, . . .) where

type T = C1 | | CN

� only name T is exported, but none of C1 to CN

� thus we are not able to directly construct values of type T

� if we want to export C1 to CN, we can use T(..) in export list

Set Characteristics

� order of elements not important
� no duplicates

Examples

{1, 2, 3, 5} = {5, 1, 3, 2}
{1, 1, 2, 2} = {1, 2}

Set Operations

description notation Haskell

empty set ∅ empty :: Set a
insertion {x} ∪ S insert :: a -> Set a -> Set a
membership e ∈ S mem :: a -> Set a -> Bool
union S ∪ T union :: Set a -> Set a -> Set a
difference S \ T diff :: Set a -> Set a -> Set a

Set Characteristics

� order of elements not important
� no duplicates

Examples

{1, 2, 3, 5} = {5, 1, 3, 2}
{1, 1, 2, 2} = {1, 2}

Set Operations

description notation Haskell

empty set ∅ empty :: Set a
insertion {x} ∪ S insert :: a -> Set a -> Set a
membership e ∈ S mem :: a -> Set a -> Bool
union S ∪ T union :: Set a -> Set a -> Set a
difference S \ T diff :: Set a -> Set a -> Set a

Set Characteristics

� order of elements not important
� no duplicates

Examples

{1, 2, 3, 5} = {5, 1, 3, 2}
{1, 1, 2, 2} = {1, 2}

Set Operations

description notation Haskell

empty set ∅ empty :: Set a
insertion {x} ∪ S insert :: a -> Set a -> Set a
membership e ∈ S mem :: a -> Set a -> Bool
union S ∪ T union :: Set a -> Set a -> Set a
difference S \ T diff :: Set a -> Set a -> Set a

Example - Sets as Lists

module Set (Set,empty,insert,mem,union,diff) where

import qualified Data.List as List
data Set a = Set [a]

empty :: Set a
empty = Set []

insert :: Eq a => a -> Set a -> Set a
insert x (Set xs) = Set (List.nub (x : xs))

mem :: Eq a => a -> Set a -> Bool
mem x (Set xs) = x `elem` xs

union :: Eq a => Set a -> Set a -> Set a
union (Set xs) (Set ys) = Set (List.nub (xs ++ ys))

diff :: Eq a => Set a -> Set a -> Set a
diff (Set xs) (Set ys) = Set (xs List.\\ ys)

Note - Imports

� import M imports all functions and types defined in module M

� we may restrict to f1, . . . , fN, writing
import M (f1,. . .,fN)

� by import M hiding (f1,. . .,fN) we import everything
except the functions f1 to fN

� import qualified M allows to access all functions defined in
M using prefix M.

� import qualified M as N, same as import qualified M
but additionally rename M to N

Note - Imports

� import M imports all functions and types defined in module M

� we may restrict to f1, . . . , fN, writing
import M (f1,. . .,fN)

� by import M hiding (f1,. . .,fN) we import everything
except the functions f1 to fN

� import qualified M allows to access all functions defined in
M using prefix M.

� import qualified M as N, same as import qualified M
but additionally rename M to N

Note - Imports

� import M imports all functions and types defined in module M

� we may restrict to f1, . . . , fN, writing
import M (f1,. . .,fN)

� by import M hiding (f1,. . .,fN) we import everything
except the functions f1 to fN

� import qualified M allows to access all functions defined in
M using prefix M.

� import qualified M as N, same as import qualified M
but additionally rename M to N

Note - Imports

� import M imports all functions and types defined in module M

� we may restrict to f1, . . . , fN, writing
import M (f1,. . .,fN)

� by import M hiding (f1,. . .,fN) we import everything
except the functions f1 to fN

� import qualified M allows to access all functions defined in
M using prefix M.

� import qualified M as N, same as import qualified M
but additionally rename M to N

Note - Imports

� import M imports all functions and types defined in module M

� we may restrict to f1, . . . , fN, writing
import M (f1,. . .,fN)

� by import M hiding (f1,. . .,fN) we import everything
except the functions f1 to fN

� import qualified M allows to access all functions defined in
M using prefix M.

� import qualified M as N, same as import qualified M
but additionally rename M to N

New Types
� in Set we use data with a single constructor Set to hide the

fact that sets are implemented by lists
� this is a common special case
� we may use newtype Set a = Set a instead
� only difference: newtype has better performance than data

Record Syntax
� for data type / new type T, instead of C t1 . . . tN, we may use
� C {n1 :: t1, . . . , nN :: tN} as constructor
� provides selector functions n1::T -> t1, . . . , nN::T -> tN

Example
� data Equation a = E { lhs :: a, rhs :: a }

�

ghci> let e1 = E "10" "5+5"
ghci> let e2 = E { rhs = "5+5", lhs = "10" }
ghci> lhs e1
"10"
ghci> rhs e2
"5+5"

New Types
� in Set we use data with a single constructor Set to hide the

fact that sets are implemented by lists
� this is a common special case
� we may use newtype Set a = Set a instead
� only difference: newtype has better performance than data

Record Syntax
� for data type / new type T, instead of C t1 . . . tN, we may use
� C {n1 :: t1, . . . , nN :: tN} as constructor
� provides selector functions n1::T -> t1, . . . , nN::T -> tN

Example
� data Equation a = E { lhs :: a, rhs :: a }

�

ghci> let e1 = E "10" "5+5"
ghci> let e2 = E { rhs = "5+5", lhs = "10" }
ghci> lhs e1
"10"
ghci> rhs e2
"5+5"

New Types
� in Set we use data with a single constructor Set to hide the

fact that sets are implemented by lists
� this is a common special case
� we may use newtype Set a = Set a instead
� only difference: newtype has better performance than data

Record Syntax
� for data type / new type T, instead of C t1 . . . tN, we may use
� C {n1 :: t1, . . . , nN :: tN} as constructor
� provides selector functions n1::T -> t1, . . . , nN::T -> tN

Example
� data Equation a = E { lhs :: a, rhs :: a }

�

ghci> let e1 = E "10" "5+5"
ghci> let e2 = E { rhs = "5+5", lhs = "10" }
ghci> lhs e1
"10"
ghci> rhs e2
"5+5"

New Types
� in Set we use data with a single constructor Set to hide the

fact that sets are implemented by lists
� this is a common special case
� we may use newtype Set a = Set a instead
� only difference: newtype has better performance than data

Record Syntax
� for data type / new type T, instead of C t1 . . . tN, we may use
� C {n1 :: t1, . . . , nN :: tN} as constructor
� provides selector functions n1::T -> t1, . . . , nN::T -> tN

Example
� data Equation a = E { lhs :: a, rhs :: a }

�

ghci> let e1 = E "10" "5+5"
ghci> let e2 = E { rhs = "5+5", lhs = "10" }
ghci> lhs e1
"10"
ghci> rhs e2
"5+5"

Sets and Binary Search Trees

The Type
� we want to use type BTree without prefix

import BTree (BTree)
� all other functions from BTree with prefix

import qualified BTree
� the internal representation of a set is a binary tree

newtype Set a = Set { rep :: BTree a }

Note
� newtype Set a = Set { rep :: BTree a } is almost the

same as writing type Set a = BTree a

� additionally the type system prevents us from “accidentally”
(i.e., without the constructor Set) using BTrees as Sets

� no runtime penalty (in contrast to
data Set a = Set { rep :: BTree }))

� reason: newtype restricted to single constructor (usually of
same name as newly introduced type),

� whereas data may define arbitrary many constructors (e.g.,
Empty and Node)

The Type
� we want to use type BTree without prefix

import BTree (BTree)
� all other functions from BTree with prefix

import qualified BTree
� the internal representation of a set is a binary tree

newtype Set a = Set { rep :: BTree a }

Note
� newtype Set a = Set { rep :: BTree a } is almost the

same as writing type Set a = BTree a

� additionally the type system prevents us from “accidentally”
(i.e., without the constructor Set) using BTrees as Sets

� no runtime penalty (in contrast to
data Set a = Set { rep :: BTree }))

� reason: newtype restricted to single constructor (usually of
same name as newly introduced type),

� whereas data may define arbitrary many constructors (e.g.,
Empty and Node)

Empty Set

empty :: Set a
empty = Set BTree.Empty

Membership

mem :: Ord a => a -> Set a -> Bool
mem x s = x `memTree` (rep s)
where memTree x Empty = False

memTree x (Node y l r) =
case compare x y of

EQ -> True
LT -> x `memTree` l
GT -> x `memTree` r

Empty Set

empty :: Set a
empty = Set BTree.Empty

Membership

mem :: Ord a => a -> Set a -> Bool
mem x s = x `memTree` (rep s)
where memTree x Empty = False

memTree x (Node y l r) =
case compare x y of

EQ -> True
LT -> x `memTree` l
GT -> x `memTree` r

Insertion

insert :: Ord a => a -> Set a -> Set a
insert x s = Set (insertTree x (rep s))

insertTree :: Ord a => a -> BTree a -> BTree a
insertTree x Empty = Node x Empty Empty
insertTree x (Node y l r) =
case compare x y of

EQ -> Node y l r
LT -> Node y (insertTree x l) r
GT -> Node y l (insertTree x r)

Union

union :: Ord a => Set a -> Set a -> Set a
union s t = Set (rep s `unionTree` rep t)

unionTree :: Ord a => BTree a -> BTree a -> BTree a
unionTree Empty s = s
unionTree (Node x l r) s =

insertTree x (l `unionTree` r `unionTree` s)

Removing the Maximal Element

splitMaxTree :: BTree a -> Maybe (a,BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x l Empty) = Just (x,l)
splitMaxTree (Node x l r) =
let Just (m,r') = splitMaxTree r
in Just (m,Node x l r')

The Maybe Type

� Prelude: data Maybe a = Just a | Nothing

� used for type-safe error handling

� if an error occurs, we return Nothing

� otherwise Just the result

Example - Safe Head

safeHead (x:_) = Just x
safeHead _ = Nothing

Removing the Maximal Element

splitMaxTree :: BTree a -> Maybe (a,BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x l Empty) = Just (x,l)
splitMaxTree (Node x l r) =
let Just (m,r') = splitMaxTree r
in Just (m,Node x l r')

The Maybe Type

� Prelude: data Maybe a = Just a | Nothing

� used for type-safe error handling

� if an error occurs, we return Nothing

� otherwise Just the result

Example - Safe Head

safeHead (x:_) = Just x
safeHead _ = Nothing

Removing the Maximal Element

splitMaxTree :: BTree a -> Maybe (a,BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x l Empty) = Just (x,l)
splitMaxTree (Node x l r) =
let Just (m,r') = splitMaxTree r
in Just (m,Node x l r')

The Maybe Type

� Prelude: data Maybe a = Just a | Nothing

� used for type-safe error handling

� if an error occurs, we return Nothing

� otherwise Just the result

Example - Safe Head

safeHead (x:_) = Just x
safeHead _ = Nothing

Remove Given Element

removeTree :: Ord a => a -> BTree a -> BTree a
removeTree x Empty = Empty
removeTree x (Node y l r) = case compare x y of

LT -> Node y (removeTree x l) r
GT -> Node y l (removeTree x r)
EQ -> case splitMaxTree l of

Nothing -> r
Just (m,l') -> Node m l' r

Idea

� have binary search tree (BST)
� x smaller y: x can only occur in l
� x greater y: x can only occur in r
� x equals y: remove current node and
� combine l and r into new BST
� therefore, take maximum of l as new root
� guarantees that all other elements in l are smaller and
� that all elements in r are greater

Remove Given Element

removeTree :: Ord a => a -> BTree a -> BTree a
removeTree x Empty = Empty
removeTree x (Node y l r) = case compare x y of

LT -> Node y (removeTree x l) r
GT -> Node y l (removeTree x r)
EQ -> case splitMaxTree l of

Nothing -> r
Just (m,l') -> Node m l' r

Idea

� have binary search tree (BST)
� x smaller y: x can only occur in l
� x greater y: x can only occur in r
� x equals y: remove current node and
� combine l and r into new BST
� therefore, take maximum of l as new root
� guarantees that all other elements in l are smaller and
� that all elements in r are greater

Difference

diff :: Ord a => Set a -> Set a -> Set a
diff s t = Set (rep s `diffTree` rep t)

diffTree :: Ord a => BTree a -> BTree a -> BTree a
diffTree t Empty = t
diffTree t (Node x l r) =

removeTree x t `diffTree` l `diffTree` r

Exercises (for November 19th)

1. Read chapter 3 of Real World Haskell and the lecture notes
about the lambda-calculus.

2. Reduce each of the following λ-terms to NF

(λw .w) ((λxy . y) (z z))

(λxy . x) (λz . y z)

λz . (λx . x z y) (λxy . y z)

λxy . y (λw .w) (λyz . y x)

3. Reduce ADD 3 2 to WHNF using leftmost
innermost/outermost reduction.

4. Give λ-terms encoding (&&), (||), and not.

5. Implement safe versions (i.e., using Maybe) of tail, init,
and last.

6. Implement the function
equals :: Ord a => Set a -> Set a -> Bool, checking
whether two sets are equal.

http://book.realworldhaskell.org/read/

