Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

November 10, 2010

Today's Topics

- Evaluation Strategies
- Abstract Data Types
- Sets and Binary Search Trees

Evaluation Strategies

Recall - λ-Terms

$$
t \stackrel{\text { def }}{=} x|(\lambda x . t)|(t t)
$$

Recall - λ-Terms

$$
t \stackrel{\text { def }}{=} x|(\lambda x \cdot t)|(t t)
$$

Examples

Conventions	Verbose	in Words
$x y$	$(x y)$	" x applied to y "
$\lambda x \cdot x$	$(\lambda x \cdot x)$	"lambda x to x " (identity function)
$\lambda x y \cdot x$	$(\lambda x \cdot(\lambda y \cdot x))$	"lambda $x y$ to x "
$\lambda x \cdot x x$	$(\lambda x \cdot(x x))$	"lambda x to x applied to $x "$
$(\lambda x \cdot x) x$	$((\lambda x \cdot x) x)$	"lambda x to x, applied to x "

Recall - β-Reduction

- term $s(\beta$-)reduces to term t in one step
- written: $s \rightarrow_{\beta} t$
- iff there is context C, variable x, and terms u and v, s.t.,
- $s=C[(\lambda x . u) v]$ and $t=C[u\{x / v\}]$

Recall - β-Reduction

- term $s(\beta$-)reduces to term t in one step
- written: $s \rightarrow_{\beta} t$
- iff there is context C, variable x, and terms u and v, s.t.,
- $s=C[(\lambda x . u) v]$ and $t=C[u\{x / v\}]$

Examples

$$
\begin{aligned}
& K \stackrel{\text { def }}{=} \lambda x y \cdot x \\
& I \stackrel{\text { def }}{=} \lambda x \cdot x \\
& \Omega \stackrel{\text { def }}{=}(\lambda x \cdot x x)(\lambda x \cdot x x)
\end{aligned}
$$

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

$$
d(d 2)
$$

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Order of Evaluation

- consider $\mathrm{d} \mathrm{x}=\mathrm{x}+\mathrm{x}$
- the term d (d 2) may be evaluated as follows

Strategies

- fix evaluation order
- call-by-value (compute arguments before function calls)
- call-by-name (compute arguments "on demand")

Strategies

- fix evaluation order
- call-by-value (compute arguments before function calls)
- call-by-name (compute arguments "on demand")

Example

- call-by-value

$$
\begin{aligned}
\mathrm{d}(\mathrm{~d} 2) & =\mathrm{d}(2+2) \\
& =\mathrm{d} 4 \\
& =4+4 \\
& =8
\end{aligned}
$$

- call-by-name

$$
\begin{aligned}
& d(d 2)=(d 2)+(d 2) \\
& =(2+2)+(d 2) \\
& =4+(\mathrm{d} 2) \\
& =4+(2+2) \\
& =4+4 \\
& =8
\end{aligned}
$$

(Leftmost) Innermost Reduction

- always reduce leftmost innermost redex
- a redex u inside a term t is innermost if it does not contain any redexes as proper subterms, i.e.,

$$
\nexists C \text { s. } u=C[s], C \neq \square \text { and } s \text { is a redex }
$$

(Leftmost) Innermost Reduction

- always reduce leftmost innermost redex
- a redex u inside a term t is innermost if it does not contain any redexes as proper subterms, i.e.,

$$
\nexists C \text { s. } u=C[s], C \neq \square \text { and } s \text { is a redex }
$$

Example

- consider $t=(\lambda x .(\lambda y \cdot y) x) z$
- $(\lambda y \cdot y) x$ is innermost redex
- t is redex, but not an innermost redex

(Leftmost) Outermost Reduction

- always reduce leftmost outermost redex
- a redex u inside a term t is outermost if it is not a proper subterm of some other redex inside t, i.e.,

$$
\nexists D \subset \text { s. } t=D[s], s=C[u], C \neq \square \text { and } s \text { is a redex }
$$

(Leftmost) Outermost Reduction

- always reduce leftmost outermost redex
- a redex u inside a term t is outermost if it is not a proper subterm of some other redex inside t, i.e.,

$$
\nexists D \subset \text { s. } t=D[s], s=C[u], C \neq \square \text { and } s \text { is a redex }
$$

Example

- consider $t=(\lambda x \cdot(\lambda y \cdot y) x) z$
- t is an outermost redex
- $(\lambda y . y) x$ is redex, but not outermost redex

Exercises

- consider the λ-terms
- $S=\lambda x y z . x z(y z)$
- $K=\lambda x y \cdot x$
- $I=\lambda x \cdot x$
- reduce $S K I$ to NF using leftmost innermost reduction
- reduce $S K I$ to NF using leftmost outermost reduction

Call-by-Value

- use innermost reduction
- corresponds to strict (or eager) evaluation
- adopted by most programming languages
- slight modification: only reduce terms not in WHNF

Call-by-Value

- use innermost reduction
- corresponds to strict (or eager) evaluation
- adopted by most programming languages
- slight modification: only reduce terms not in WHNF

Call-by-Name

- use outermost reduction
- corresponds to lazy evaluation (without memoization)
- e.g., adopted by Haskell
- slight modification: again, only reduce terms not in WHNF

Call-by-Value

- use innermost reduction
- corresponds to strict (or eager) evaluation
- adopted by most programming languages
- slight modification: only reduce terms not in WHNF

Call-by-Name

- use outermost reduction
- corresponds to lazy evaluation (without memoization)
- e.g., adopted by Haskell
- slight modification: again, only reduce terms not in WHNF

Weak Head Normal Form

term t is in weak head normal form iff t is not an application

Abstract Data Types

Idea

- hide implementation details
- just provide interface
- allows to change implementation (e.g., make more efficient) without breaking client code

Idea

- hide implementation details
- just provide interface
- allows to change implementation (e.g., make more efficient) without breaking client code

Haskell

- consider module

```
module M (T, ...) where
type T = C1 | | CN
```

- only name T is exported, but none of C 1 to CN
- thus we are not able to directly construct values of type T
- if we want to export C 1 to CN, we can use T (...) in export list

Set Characteristics

- order of elements not important
- no duplicates

Set Characteristics

- order of elements not important
- no duplicates

Examples

$$
\begin{aligned}
& \{1,2,3,5\}=\{5,1,3,2\} \\
& \{1,1,2,2\}=\{1,2\}
\end{aligned}
$$

Set Characteristics

- order of elements not important
- no duplicates

Examples

$$
\begin{aligned}
& \{1,2,3,5\}=\{5,1,3,2\} \\
& \{1,1,2,2\}=\{1,2\}
\end{aligned}
$$

Set Operations

description	notation	Haskell
empty set	\varnothing	empty $::$ Set a
insertion	$\{x\} \cup S$	insert $::$ a $->$ Set a -> Set a
membership	$e \in S$	mem $::$ a -> Set a $->$ Bool
union	$S \cup T$	union $::$ Set a $->$ Set a $->$ Set a
difference	$S \backslash T$	diff $::$ Set a $->$ Set a $->$ Set a

Example - Sets as Lists

module Set (Set,empty,insert,mem, union, diff) where import qualified Data.List as List
data Set $\mathrm{a}=\operatorname{Set}[\mathrm{a}]$
empty : : Set a
empty $=$ Set []
insert : : Eq a => a -> Set a -> Set a
insert $\mathrm{x}($ Set xs) $=\operatorname{Set}($ List.nub (x : xs))
mem : : Eq a => a -> Set a -> Bool
mem x (Set xs) $=x$ 'elem` xs
union : : Eq a $=>$ Set a $->$ Set a $->$ Set a
union (Set xs) (Set ys) = Set (List.nub (xs ++ ys))
diff : : Eq a => Set a $->$ Set a $->$ Set a
diff (Set xs) (Set ys) $=$ Set (xs List.
 ys)

Note - Imports

- import M imports all functions and types defined in module M

Note - Imports

- import M imports all functions and types defined in module M
- we may restrict to $f 1, \ldots, f N$, writing import M (f1,...,fN)

Note - Imports

- import M imports all functions and types defined in module M
- we may restrict to $f 1, \ldots, f N$, writing import M (f1,...,fN)
- by import M hiding ($f 1, \ldots, f N$) we import everything except the functions $f 1$ to $f N$

Note - Imports

- import M imports all functions and types defined in module M
- we may restrict to $f 1, \ldots, f N$, writing import M (f1,...,fN)
- by import M hiding ($f 1, \ldots, f N$) we import everything except the functions $f 1$ to $f N$
- import qualified M allows to access all functions defined in M using prefix M.

Note - Imports

- import M imports all functions and types defined in module M
- we may restrict to $f 1, \ldots, f N$, writing import M (f1,...,fN)
- by import M hiding ($f 1, \ldots, f N$) we import everything except the functions $f 1$ to $f N$
- import qualified M allows to access all functions defined in M using prefix M.
- import qualified M as N, same as import qualified M but additionally rename M to N

New Types

- in Set we use data with a single constructor Set to hide the fact that sets are implemented by lists
- this is a common special case
- we may use newtype Set a = Set a instead
- only difference: newtype has better performance than data

New Types

- in Set we use data with a single constructor Set to hide the fact that sets are implemented by lists
- this is a common special case
- we may use newtype Set a = Set a instead
- only difference: newtype has better performance than data

Record Syntax

- for data type / new type T, instead of C t1 ...tN, we may use
- C \{n1 :: t1,..., nN :: tN\} as constructor
- provides selector functions n1::T -> t1, ..., nN::T -> tN

New Types

- in Set we use data with a single constructor Set to hide the fact that sets are implemented by lists
- this is a common special case
- we may use newtype Set a = Set a instead
- only difference: newtype has better performance than data

Record Syntax

- for data type / new type T, instead of C t1 ...tN, we may use
- C \{n1 :: t1,..., nN :: tN\} as constructor
- provides selector functions n1::T -> t1,..., nN::T -> tN

New Types

- in Set we use data with a single constructor Set to hide the fact that sets are implemented by lists
- this is a common special case
- we may use newtype Set a = Set a instead
- only difference: newtype has better performance than data

Record Syntax

- for data type / new type T, instead of C t1 ...tN, we may use
- C \{n1 :: t1,..., nN :: tN\} as constructor
- provides selector functions $\mathrm{n} 1:: \mathrm{T} \rightarrow \mathrm{t} 1, \ldots, \mathrm{nN}:: \mathrm{T}$-> tN

Example

- data Equation $a=E$ \{ hs : : a, rhs :: a \}

```
ghci> let e1 = E "10" "5+5"
ghci> let e2 = E { rhs = "5+5", lhs = "10" }
ghci> lhs e1
"10"
ghci> rhs e2
"5+5"
```


Sets and Binary Search Trees

The Type

- we want to use type BTree without prefix import BTree (BTree)
- all other functions from BTree with prefix import qualified BTree
- the internal representation of a set is a binary tree
newtype Set a $=\operatorname{Set}\{$ rep : : BTree a \}

The Type

- we want to use type BTree without prefix

import BTree (BTree)

- all other functions from BTree with prefix

import qualified BTree

- the internal representation of a set is a binary tree
newtype Set $a=\operatorname{Set}\{$ rep : : BTree a \}

Note

 same as writing type Set $\mathrm{a}=$ BTree a

- additionally the type system prevents us from "accidentally" (i.e., without the constructor Set) using BTrees as Sets
- no runtime penalty (in contrast to data Set $a=\operatorname{Set}\{r e p:: B T r e e ~\}))$
- reason: newtype restricted to single constructor (usually of same name as newly introduced type),
- whereas data may define arbitrary many constructors (e.g., Empty and Node)

Empty Set

empty :: Set a
empty = Set BTree.Empty

Empty Set

empty : : Set a
empty = Set BTree.Empty

Membership

```
mem :: Ord a => a -> Set a -> Bool
mem x s = x `memTree` (rep s)
    where memTree x Empty = False
        memTree x (Node y l r) =
        case compare x y of
        EQ -> True
        LT -> x `memTree` l
        GT -> x `memTree` r
```


Insertion

```
insert :: Ord a => a -> Set a -> Set a
insert x s = Set (insertTree x (rep s))
insertTree :: Ord a => a -> BTree a -> BTree a
insertTree x Empty = Node x Empty Empty
insertTree x (Node y l r) =
    case compare x y of
    EQ -> Node y l r
    LT -> Node y (insertTree x l) r
    GT -> Node y l (insertTree x r)
```


Union

union : : Ord $a=>$ Set $a \rightarrow$ Set $a \rightarrow$ Set a union $s t=$ Set (rep s -unionTree`rep t) unionTree : : Ord a => BTree a -> BTree a -> BTree a unionTree Empty \(s=s\) unionTree (Node x l r) \(\mathrm{s}=\) insertTree x (l`unionTree`r`unionTree` s)

Removing the Maximal Element

```
splitMaxTree : : BTree a -> Maybe (a,BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x l Empty) = Just (x,l)
splitMaxTree (Node x l r) =
    let Just (m,r') = splitMaxTree r
    in Just (m,Node x l r')
```


Removing the Maximal Element

```
splitMaxTree : : BTree a -> Maybe (a,BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x l Empty) = Just (x,l)
splitMaxTree (Node x l r) =
    let Just (m,r') = splitMaxTree r
    in Just (m,Node x l r')
```


The Maybe Type

- Prelude: data Maybe $a=$ Just $a \mid$ Nothing
- used for type-safe error handling
- if an error occurs, we return Nothing
- otherwise Just the result

Removing the Maximal Element

```
splitMaxTree :: BTree a -> Maybe (a,BTree a)
splitMaxTree Empty = Nothing
splitMaxTree (Node x l Empty) = Just (x,l)
splitMaxTree (Node x l r) =
    let Just (m,r') = splitMaxTree r
    in Just (m,Node x l r')
```


The Maybe Type

- Prelude: data Maybe a = Just a | Nothing
- used for type-safe error handling
- if an error occurs, we return Nothing
- otherwise Just the result

Example - Safe Head

safeHead (x:_) = Just x
safeHead _ = Nothing

Remove Given Element

```
removeTree :: Ord a => a -> BTree a -> BTree a
removeTree x Empty = Empty
removeTree x (Node y l r) = case compare x y of
    LT -> Node y (removeTree x l) r
    GT -> Node y l (removeTree x r)
    EQ -> case splitMaxTree l of
    Nothing -> r
    Just (m,l') -> Node m l' r
```


Remove Given Element

```
removeTree :: Ord a => a -> BTree a -> BTree a
removeTree x Empty = Empty
removeTree x (Node y l r) = case compare x y of
    LT -> Node y (removeTree x l) r
    GT -> Node y l (removeTree x r)
    EQ -> case splitMaxTree l of
    Nothing -> r
    Just (m,l') -> Node m l' r
```


Idea

- have binary search tree (BST)
- x smaller y: x can only occur in 1
- x greater y: x can only occur in r
- x equals y : remove current node and
- combine 1 and r into new BST
- therefore, take maximum of 1 as new root
- guarantees that all other elements in 1 are smaller and
- that all elements in r are greater

Difference

```
diff :: Ord a => Set a -> Set a -> Set a
diff s t = Set (rep s `diffTree` rep t)
diffTree :: Ord a => BTree a -> BTree a -> BTree a
diffTree t Empty = t
diffTree t (Node x l r) =
    removeTree x t `diffTree` l `diffTree` r
```


Exercises (for November 19th)

1. Read chapter 3 of Real World Haskell and the lecture notes about the lambda-calculus.
2. Reduce each of the following λ-terms to NF

$$
\begin{gathered}
(\lambda w \cdot w)((\lambda x y \cdot y)(z z)) \\
(\lambda x y \cdot x)(\lambda z \cdot y z) \\
\lambda z \cdot(\lambda x \cdot x z y)(\lambda x y \cdot y z) \\
\lambda x y \cdot y(\lambda w \cdot w)(\lambda y z \cdot y x)
\end{gathered}
$$

3. Reduce ADD 32 to WHNF using leftmost innermost/outermost reduction.
4. Give λ-terms encoding (\&\&), (||), and not.
5. Implement safe versions (i.e., using Maybe) of tail, init, and last.
6. Implement the function
equals :: Ord a => Set a -> Set a -> Bool, checking whether two sets are equal.
