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Today’s Topics

� Mathematical Induction

� Induction Over Lists

� Structural Induction



Mathematical Induction



When to use Mathematical Induction?

� prove that some property P holds for all natural numbers

� more formally, prove:

∀n. P(n) (where n ∈ N)

How is it Applied?

� mathematical induction consists of two steps:

� first prove base case
P(0)

show property for 0

� then step case

∀k. (P(k) −→ P(k + 1))

assume P(k) (induction hypothesis), show P(k + 1)
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Why does this Work?

� we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for k + 1

� and want to show P for every natural number (∀n. P(n))

Example - P(3)

� have P(0)

� and P(0) −→ P(1)

� thus P(1)

� with P(1) −→ P(2)

� have P(2)

� with P(2) −→ P(3)

� have P(3)

Idea

� intuitively we can reach
arbitrary n

� such that P(n)

� hence, ∀n. P(n)
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What is a “Property”?

� anything that depends on some input and is either true or false

� i.e., some function p :: a -> Bool

Example - Gauß’s Formula

� P(x) = (1 + 2 + · · ·+ x = x(x+1)
2 )

� base case: P(0)

= (1 + 2 + · · ·+ 0

= 0

= 0(0+1)
2

)

� step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k(k + 1)

2
+ (k + 1)

=
(k + 1)(k + 2)

2
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Remark

� of course, the base case may be changed

� e.g., if base case P(1), property holds for all n ≥ 1

General Induction Principle

(P(m) ∧ ∀k ≥ m. (P(k) −→ P(k + 1))) −→ ∀n ≥ m. P(n)

Domino Effect

� first domino will fall

� if a domino falls also its right neighbor falls
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Induction Over Lists



Recall

� type: data [a] = [] | (:) a [a]

Notes

� lists are recursive structures

� base case: []

� step case: x : xs
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Induction Principle for Lists - Informally

� to show P(xs) for all lists xs

� show base case: P([])

� show step case: P(xs) −→ P(x : xs) for arbitrary x and xs

Induction Principle for Lists - Formally

(P([]) ∧ ∀x . ∀xs. (P(xs) −→ P(x : xs)))

−→ ∀ls. P(ls)

Remark

� for lists, P can be seen as function p :: [a] -> Bool
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Exercise - Right Identity for List Append

� definition
[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

� lemma: [] is a right identity of ++, i.e.,

xs ++ [] = xs
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Exercise - Associativity of Append

� recall
[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

� and ‘xs ++ [] = xs’ for all lists xs

� lemma: ++ is associative, i.e.,

xs ++ (ys ++ zs) = (xs ++ ys) ++ zs
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Exercise - Length and Append

� definition
length [] = 0
length (_:xs) = 1 + length xs

� lemma: sum of lengths is length of combined list, i.e.,

length xs + length ys = length (xs ++ ys)
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length xs + length ys = length (xs ++ ys)



Structural Induction



Example - Terms

data Term = Var String
| Lab String Term
| App Term Term

General Structures - Induction Principle

� for every non-recursive constructor, show base case
� base case: P(Var x)

� for every recursive constructor, show step case
� step case 1: P(t) −→ P(Lab x t)
� step case 2: P(s) ∧ P(t) −→ P(App s t)
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Example - Binary Trees

data BTree a = Empty
| Node a (BTree a) (BTree a)

Induction Principle for Binary Trees

(P(Empty) ∧ ∀x .∀l .∀r . (P(l) ∧ P(r) −→ P(Node x l r)))

−→ ∀t. P(t)
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Exercise - Perfect Binary Trees

� a binary tree is perfect if all leaf nodes have same depth

perfect Empty = True
perfect (Node x l r) =
height l == height r && perfect l && perfect r

height Empty = 0
height (Node _ l r) =
max (height l) (height r) + 1

size Empty = 0
size (Node _ l r) = size l + size r + 1

� lemma: a perfect binary tree t of height n has exactly 2n − 1
nodes, i.e.,

P(t) =
(
perfect t −→ size t = 2height t − 1

)



Exercises (for November 26th)

1. Prepare for the 1st test!

2. Prove the following equation by induction

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6

3. Prove rev (xs ++ ys) = rev ys ++ rev xs for

rev [] = []
rev (x:xs) = rev xs ++ [x]

using the equations

xs ++ [] = xs (?)

(xs ++ ys) ++ zs = xs ++ (ys ++ zs) (??)


