Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

November 17, 2010

Today's Topics

- Mathematical Induction
- Induction Over Lists
- Structural Induction

Mathematical Induction

When to use Mathematical Induction?

- prove that some property P holds for all natural numbers
- more formally, prove:

$$
\forall n . P(n) \quad(\text { where } n \in \mathbb{N})
$$

When to use Mathematical Induction?

- prove that some property P holds for all natural numbers
- more formally, prove:

$$
\forall n . P(n) \quad(\text { where } n \in \mathbb{N})
$$

How is it Applied?

- mathematical induction consists of two steps:
- first prove base case

$$
P(0)
$$

- then step case

$$
\forall k \cdot(P(k) \longrightarrow P(k+1))
$$

When to use Mathematical Induction?

- prove that some property P holds for all natural numbers
- more formally, prove:

$$
\forall n . P(n) \quad(\text { where } n \in \mathbb{N})
$$

How is it Applied?

- mathematical induction consists of two steps:
- first prove base case

$$
P(0)
$$

- then step case

$$
\forall k \cdot(P(k) \longrightarrow P(k+1))
$$

When to use Mathematical Induction?

- prove that some property P holds for all natural numbers
- more formally, prove:

$$
\forall n . P(n) \quad(\text { where } n \in \mathbb{N})
$$

How is it Applied?

- mathematical induction consists of two steps:
- first prove base case show property for 0

$$
P(0)
$$

- then step case

$$
\forall k \cdot(P(k) \longrightarrow P(k+1))
$$

When to use Mathematical Induction?

- prove that some property P holds for all natural numbers
- more formally, prove:

$$
\forall n . P(n) \quad(\text { where } n \in \mathbb{N})
$$

How is it Applied?

- mathematical induction consists of two steps:
- first prove base case

$$
P(0)
$$

- then step case

$$
\forall k \cdot(P(k) \longrightarrow P(k+1))
$$

When to use Mathematical Induction?

- prove that some property P holds for all natural numbers
- more formally, prove:

$$
\forall n . P(n) \quad(\text { where } n \in \mathbb{N})
$$

How is it Applied?

- mathematical induction consists of two steps:
- first prove base case

$$
P(0)
$$

- then step case

$$
\forall k \cdot(P(k) \longrightarrow P(k+1))
$$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$
- and $P(0) \longrightarrow P(1)$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$
- and $P(0) \longrightarrow P(1)$
- thus $P(1)$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$
- and $P(0) \longrightarrow P(1)$
- thus $P(1)$
- with $P(1) \longrightarrow P(2)$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$
- and $P(0) \longrightarrow P(1)$
- thus $P(1)$
- with $P(1) \longrightarrow P(2)$
- have $P(2)$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$
- and $P(0) \longrightarrow P(1)$
- thus $P(1)$
- with $P(1) \longrightarrow P(2)$
- have $P(2)$
- with $P(2) \longrightarrow P(3)$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$
- and $P(0) \longrightarrow P(1)$
- thus $P(1)$
- with $P(1) \longrightarrow P(2)$
- have $P(2)$
- with $P(2) \longrightarrow P(3)$
- have $P(3)$

Why does this Work?

- we have two ingredients:

1. P is true for 0
2. if P is true for arbitrary k it is also true for $k+1$

- and want to show P for every natural number $(\forall n . P(n))$

Example - $P(3)$

- have $P(0)$
- and $P(0) \longrightarrow P(1)$
- thus $P(1)$
- with $P(1) \longrightarrow P(2)$
- have $P(2)$
- with $P(2) \longrightarrow P(3)$
- have $P(3)$

Idea

- intuitively we can reach arbitrary n
- such that $P(n)$
- hence, $\forall n . P(n)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=(1+2+\cdots+0$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=(1+2+\cdots+0=0 \quad)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$
- step case: $P(k) \rightarrow P(k+1)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$
- step case: $P(k) \rightarrow P(k+1)$
$\mathrm{IH}: P(k)=\left(1+2+\cdots+k=\frac{k(k+1)}{2}\right)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$
- step case: $P(k) \rightarrow P(k+1)$
$\mathrm{IH}: P(k)=\left(1+2+\cdots+k=\frac{k(k+1)}{2}\right)$ show: $P(k+1)$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$
- step case: $P(k) \rightarrow P(k+1)$
$\mathrm{IH}: P(k)=\left(1+2+\cdots+k=\frac{k(k+1)}{2}\right)$ show: $P(k+1)$

$$
1+2+\cdots+(k+1)
$$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$
- step case: $P(k) \rightarrow P(k+1)$

IH: $P(k)=\left(1+2+\cdots+k=\frac{k(k+1)}{2}\right)$ show: $P(k+1)$

$$
1+2+\cdots+(k+1)=(1+2+\cdots+k)+(k+1)
$$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$
- step case: $P(k) \rightarrow P(k+1)$

IH: $P(k)=\left(1+2+\cdots+k=\frac{k(k+1)}{2}\right)$ show: $P(k+1)$

$$
\begin{aligned}
1+2+\cdots+(k+1) & =(1+2+\cdots+k)+(k+1) \\
& \stackrel{\text { ㅂ }}{=} \frac{k(k+1)}{2}+(k+1)
\end{aligned}
$$

What is a "Property"?

- anything that depends on some input and is either true or false
- i.e., some function p :: a -> Bool

Example - Gauß's Formula

- $P(x)=\left(1+2+\cdots+x=\frac{x(x+1)}{2}\right)$
- base case: $P(0)=\left(1+2+\cdots+0=0=\frac{0(0+1)}{2}\right)$
- step case: $P(k) \rightarrow P(k+1)$

IH: $P(k)=\left(1+2+\cdots+k=\frac{k(k+1)}{2}\right)$ show: $P(k+1)$

$$
\begin{aligned}
1+2+\cdots+(k+1) & =(1+2+\cdots+k)+(k+1) \\
& \stackrel{\text { Hㅏ }}{=} \frac{k(k+1)}{2}+(k+1) \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$(P(m) \wedge \forall k \geq m .(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m . P(n)$

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$(P(m) \wedge \forall k \geq m .(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m . P(n)$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$$
(P(m) \wedge \forall k \geq m \cdot(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m \cdot P(n)
$$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$$
(P(m) \wedge \forall k \geq m \cdot(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m \cdot P(n)
$$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$$
(P(m) \wedge \forall k \geq m \cdot(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m \cdot P(n)
$$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$(P(m) \wedge \forall k \geq m .(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m . P(n)$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$(P(m) \wedge \forall k \geq m .(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m . P(n)$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$(P(m) \wedge \forall k \geq m .(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m . P(n)$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$(P(m) \wedge \forall k \geq m .(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m . P(n)$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Remark

- of course, the base case may be changed
- e.g., if base case $P(1)$, property holds for all $n \geq 1$

General Induction Principle

$(P(m) \wedge \forall k \geq m .(P(k) \longrightarrow P(k+1))) \longrightarrow \forall n \geq m . P(n)$

Domino Effect

- first domino will fall
- if a domino falls also its right neighbor falls

Induction Over Lists

Recall

- type: data [a] = [] | (:) a [a]

Recall

- type: data [a] = [] | (:) a [a]

Notes

- lists are recursive structures
- base case: []
- step case: x : xs

Induction Principle for Lists - Informally

- to show $P(x s)$ for all lists xs
- show base case: $P([])$
- show step case: $P(x s) \longrightarrow P(x: x s)$ for arbitrary x and $x s$

Induction Principle for Lists - Informally

- to show $P(x s)$ for all lists $x s$
- show base case: $P([])$
- show step case: $P(x s) \longrightarrow P(x: x s)$ for arbitrary x and $x s$

Induction Principle for Lists - Formally

$$
\begin{gathered}
(P([]) \wedge \forall x . \forall x s .(P(x s) \longrightarrow P(x: x s))) \\
\longrightarrow \forall / s . P(/ s)
\end{gathered}
$$

Induction Principle for Lists - Informally

- to show $P(x s)$ for all lists $x s$
- show base case: $P([])$
- show step case: $P(x s) \longrightarrow P(x: x s)$ for arbitrary x and $x s$

Induction Principle for Lists - Formally

$$
\begin{aligned}
(P([]) \wedge \forall x . \forall x s . & (P(x s) \longrightarrow P(x: x s))) \\
& \longrightarrow \forall s . P(I s)
\end{aligned}
$$

Remark

- for lists, P can be seen as function p :: [a] -> Bool

Exercise - Right Identity for List Append

- definition

[]$++y s$	$=$
+	$y s$
$(x: x s)++y s$	$=$
$x:$	$(x s++y s)$

Exercise - Right Identity for List Append

- definition

- lemma: [] is a right identity of ++, i.e.,

$$
x s++[]=x s
$$

Exercise - Associativity of Append

- recall

```
[] ++ ys = ys
    (x:xs) ++ ys = x : (xs ++ ys)
```


Exercise - Associativity of Append

- recall

- and 'xs ++ [] = xs' for all lists xs

Exercise - Associativity of Append

- recall

- and 'xs ++ [] = xs' for all lists xs
- lemma: ++ is associative, i.e.,

$$
x s++(y s++z s)=(x s++y s)++z s
$$

Exercise - Length and Append

Exercise - Length and Append

- definition

length []	$=0$
length (_:xs)	$=1+$ length xs

Exercise - Length and Append

- definition

length []	$=0$
length (_:xs)	$=1+$ length xs

- lemma: sum of lengths is length of combined list, i.e.,

$$
\text { length } x s+\text { length } y s=\text { length }(x s++y s)
$$

Structural Induction

Example - Terms

```
data Term = Var String
    | Lab String Term
    | App Term Term
```


Example - Terms

data Term = Var String | Lab String Term | App Term Term

General Structures - Induction Principle

- for every non-recursive constructor, show base case
- base case: $P(\operatorname{Var} \mathrm{x})$
- for every recursive constructor, show step case
- step case 1: $P(\mathrm{t}) \longrightarrow P(\mathrm{Lab} \mathrm{x} \mathrm{t})$
- step case 2: $P(\mathrm{~s}) \wedge P(\mathrm{t}) \longrightarrow P(\operatorname{App} \mathrm{~s} \mathrm{t})$

Example - Binary Trees

data BTree $\mathrm{a}=$ Empty
| Node a (BTree a) (BTree a)

Example - Binary Trees

data BTree $\mathrm{a}=$ Empty | Node a (BTree a) (BTree a)

Induction Principle for Binary Trees

$$
\begin{gathered}
(P(\text { Empty }) \wedge \forall x . \forall I . \forall r .(P(I) \wedge P(r) \longrightarrow P(\text { Node } x I r))) \\
\longrightarrow \forall t . P(t)
\end{gathered}
$$

Exercise - Perfect Binary Trees

- a binary tree is perfect if all leaf nodes have same depth

```
perfect Empty = True
perfect (Node x l r) =
    height l == height r && perfect l && perfect r
height Empty = 0
height (Node _ l r) =
    max (height l) (height r) + 1
    size Empty = 0
    size (Node _ l r) = size l + size r + 1
```

- lemma: a perfect binary tree t of height n has exactly $2^{n}-1$ nodes, i.e.,

$$
P(t)=\left(\text { perfect } t \longrightarrow \text { size } t=2^{\text {height } t}-1\right)
$$

Exercises (for November 26th)

1. Prepare for the 1st test!
2. Prove the following equation by induction

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

3. Prove rev $(x s++y s)=$ rev $y s++$ rev $x s$ for

rev []	$=[]$
rev (x:xs)	$=$ rev xs $++[\mathrm{x}]$

using the equations

$$
\begin{align*}
x s++[] & =x s \\
(x s++y s)++z s & =x s++(y s++z s)
\end{align*}
$$

