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Today's Topics

e Efficiency - Fibonacci Numbers
e Tupling
e Tail Recursion



Efficiency - Fibonacci Numbers



Definition - n-th Fibonacci Number

fib(n) 1 ifn<1
ib(n) =
fib(n — 1) + fib(n — 2) otherwise



Definition - n-th Fibonacci Number
1 <
ﬁb(n):{l if n<1

fib(n — 1) + fib(n — 2) otherwise
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1,1,2 3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, ...



e definition
fibn | n <=

| otherwise fib (n-1) + fib (n-2)




e definition
fibn | n <=

| otherwise fib (n-1) + fib (n-2)

e example
fib b
fib 4 fib 3
fib 3 fib 2 fib 2 fib 1
fib 2 fib 1l fib 1 fib 0 fib 1 fib 0

/\

fib 1£fib 0






Combining Several Results

e use tuples to return more than one result

® make results available as return values instead of recomputing
them
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Fibonacci Numbers - Alternative Definition

e definition

fib' = snd . fibpair
where fibpair n | n <= (0,1)

| otherwise (f2,f1+£2)
where (f1,f2) = fibpair (n-1)

e this function is linear in n
e since every recursive call reduces n by one



Combining Several Results

e use tuples to return more than one result

e make results available as return values instead of recomputing
them

Fibonacci Numbers - Alternative Definition

e definition
fib' = snd . fibpair
where fibpair n | n <= (0,1)

| otherwise (f2,f1+£2)
where (f1,f2) = fibpair (n-1)

e this function is linear in n
e since every recursive call reduces n by one

Exercise - fibpair computes fib

fibpair (n+1) = (fib n,fib (n+ 1))
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Example - List Average

e goal: compute average of integer list

e 1st approach:

average xs = sum xs ~div’ length xs

e two traversals of xs

e combined function
average' xs = if 1 /= 0 then s/1

else
where (s,1) = sumlen xs
sumlen [] = (0,0)

sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs



Example - List Average

e goal: compute average of integer list

e 1st approach:

average xs = sum xs ~div’ length xs

e two traversals of xs

e combined function

average' xs = if 1 /= 0 then s/1
else

where (s,1) = sumlen xs
sumlen [] = (0,0)

sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

e one traversal of xs suffices



Exercise

e show sumlen xs = (sum xs, length xs) by induction over xs



Tail Recursion
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Recursion vs. Tail Recursion

a function calling itself is recursive

functions that mutually call each other are mutually recursive

a special kind of recursion is tail recursion

a function is tail recursive, if the last action in the function
body is the recursive call



Example - Recursive (but not Tail Recursive)

length [1 =
length (x:xs) = 1 + length xs




Example - Recursive (but not Tail Recursive)

length [1 =
length (x:xs) = 1 + length xs

Example - Mutually Recursive (and Tail Recursive)

| = True

| otherwise = odd (n-1)
odd n | <= False

| otherwise even (n-1)

even n




Example - Recursive (but not Tail Recursive)

length [1 =
length (x:xs) = 1 + length xs

Example - Mutually Recursive (and Tail Recursive)

even n <= = True

otherwise = odd (n-1)

|
|
odd n | <= False
| otherwise even (n-1)

Example - Tail Recursive

reverse = rev []
where rev acc ] acc
rev acc (x:xs) rev (x:acc) xs




Accumulating Parameters

e idea: make function tail recursive



Accumulating Parameters

e idea: make function tail recursive

e provide intermediate results as additional input



Accumulating Parameters

e idea: make function tail recursive
e provide intermediate results as additional input

e why? (tail recursive functions can be transformed into
space-efficient loops automatically)



sumlen' = sl
where sl s 1 [] (s,1)

sl s 1 (x:xs8) sl (s+x) (1+1) xs



sumlen' = sl
where sl s 1 [] (s,1)

sl s 1 (x:xs8) sl (s+x) (1+1) xs

Exercise

e show sumlen xs = sumlen' xs by induction over xs




e lazy evaluation

e hence s+x and 1+1 are only evaluated when result of sumlen'
is used

e results in huge memory consumption
°eg.,
0+1+2+---+4 1000000
is stored for computing sumlen' [1..1000000]
e a thunk of 1000001 integers (about 8MB)



Exercises (for December 3rd)

1.

Read
http://www.haskell.org/haskellwiki/Tail_recursion and

http://en.wikipedia.org/wiki/Tail_recursion#Tail_
recursion_modulo_cons

Find a function in the lecture slides of the previous weeks that
is not tail recursive. Justify your answer.

Give a tail recursive implementation of range.

4. Use induction to prove that the function from Exercise 3

indeed computes range.
Use tupling to implement a more efficient version of
splitAt n xs = (take n xs, drop n xs)

Use induction to prove that the function from Exercise 5
computes splitAt.


http://www.haskell.org/haskellwiki/Tail_recursion
http://en.wikipedia.org/wiki/Tail_recursion#Tail_recursion_modulo_cons
http://en.wikipedia.org/wiki/Tail_recursion#Tail_recursion_modulo_cons

