

Functional Programming WS 2010/11

Christian Sternagel (VO) Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science University of Innsbruck

November 24, 2010

Today's Topics

- Efficiency Fibonacci Numbers
- Tupling
- Tail Recursion

Efficiency - Fibonacci Numbers

Definition - *n*-th Fibonacci Number

$$\operatorname{fib}(n) = egin{cases} 1 & ext{if } n \leq 1 \\ \operatorname{fib}(n-1) + \operatorname{fib}(n-2) & ext{otherwise} \end{cases}$$

Definition - *n*-th Fibonacci Number

$$\mathsf{fib}(n) = egin{cases} 1 & \mathsf{if} \ n \leq 1 \\ \mathsf{fib}(n-1) + \mathsf{fib}(n-2) & \mathsf{otherwise} \end{cases}$$

Graph

J

1, 1

Example 1, 1, 2

Example 1, 1, 2, 3

Example 1, 1, 2, 3, 5

Example 1, 1, 2, 3, 5, 8

1, 1, 2, 3, 5, 8, 13

1, 1, 2, 3, 5, 8, 13, 21

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,

5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073

1134903170, 1836311903, 2971215073, . . .

Haskell

definition

```
fib n | n <= 1 = 1
| otherwise = fib (n-1) + fib (n-2)
```

Haskell

definition

```
fib n | n <= 1 = 1 | otherwise = fib (n-1) + fib (n-2)
```

example

Tupling

Combining Several Results

- use tuples to return more than one result
- make results available as return values instead of recomputing them

Combining Several Results

- use tuples to return more than one result
- make results available as return values instead of recomputing them

Fibonacci Numbers - Alternative Definition

definition

```
fib' = snd . fibpair

where fibpair n \mid n \le 0 = (0,1)

| otherwise = (f2,f1+f2)

where (f1,f2) = fibpair (n-1)
```

- this function is linear in n
- since every recursive call reduces *n* by one

Combining Several Results

- use tuples to return more than one result
- make results available as return values instead of recomputing them

Fibonacci Numbers - Alternative Definition

definition

```
fib' = snd . fibpair

where fibpair n \mid n \le 0 = (0,1)

| otherwise = (f2,f1+f2)

where (f1,f2) = fibpair (n-1)
```

- this function is linear in n
- since every recursive call reduces *n* by one

Exercise - fibpair computes fib

fibpair
$$(n+1) = (fib n, fib (n+1))$$

• goal: compute average of integer list

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```

• two traversals of xs

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```

- two traversals of xs
- combined function

```
average' xs = if 1 /= 0 then s/l
else 0

where (s,1) = sumlen xs

sumlen [] = (0,0)

sumlen (x:xs) = (sum + x,len + 1)

where (sum,len) = sumlen xs
```

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```

- two traversals of xs
- combined function

one traversal of xs suffices

Exercise

• show sumlen xs = (sum xs, length xs) by induction over xs

Tail Recursion

• a function calling itself is recursive

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive
- a special kind of recursion is tail recursion

- · a function calling itself is recursive
- functions that mutually call each other are mutually recursive
- a special kind of recursion is tail recursion
- a function is tail recursive, if the last action in the function body is the recursive call

Example - Recursive (but not Tail Recursive)

```
length [] = 0
length (x:xs) = 1 + length xs
```

```
Example - Recursive (but not Tail Recursive)

length [] = 0
```

```
length (x:xs) = 1 + length xs
```

 $odd n \mid n \le 0 = False$

Example - Mutually Recursive (and Tail Recursive)

```
even n | n <= 0 = True
| otherwise = odd (n-1)
```

| otherwise = even (n-1)

```
Example - Recursive (but not Tail Recursive)

length [] = 0

length (x:xs) = 1 + length xs
```

```
Example - Mutually Recursive (and Tail Recursive)
```

Example - Tail Recursive

```
reverse = rev []
where rev acc [] = acc
rev acc (x:xs) = rev (x:acc) xs
```

Accumulating Parameters

• idea: make function tail recursive

Accumulating Parameters

- idea: make function tail recursive
- provide intermediate results as additional input

Accumulating Parameters

- idea: make function tail recursive
- provide intermediate results as additional input
- why? (tail recursive functions can be transformed into space-efficient loops automatically)

```
sumlen' = sl 0 0
where sl s l [] = (s,l)
sl s l (x:xs) = sl (s+x) (l+1) xs
```

<u>Ex</u>ercise

• show sumlen xs = sumlen' xs by induction over xs

Problem

- lazy evaluation
- hence s+x and l+1 are only evaluated when result of sumlen' is used
- results in huge memory consumption
- e.g.,

$$0+1+2+\cdots+1000000$$

is stored for computing sumlen' [1..1000000]

• a thunk of 1000001 integers (about 8MB)

Exercises (for December 3rd)

- 1. Read http://www.haskell.org/haskellwiki/Tail_recursion and http://en.wikipedia.org/wiki/Tail_recursion#Tail_ recursion_modulo_cons
- 2. Find a function in the lecture slides of the previous weeks that is not tail recursive. Justify your answer.
- 3. Give a tail recursive implementation of range.
- 4. Use induction to prove that the function from Exercise 3 indeed computes range.
- Use tupling to implement a more efficient version of splitAt n xs = (take n xs, drop n xs)
- Use induction to prove that the function from Exercise 5 computes splitAt.