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Today’s Topics

� Efficiency - Fibonacci Numbers

� Tupling

� Tail Recursion



Efficiency - Fibonacci Numbers



Definition - n-th Fibonacci Number

fib(n) =

{
1 if n ≤ 1

fib(n − 1) + fib(n − 2) otherwise
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Tupling



Combining Several Results

� use tuples to return more than one result

� make results available as return values instead of recomputing
them

Fibonacci Numbers - Alternative Definition

� definition
fib' = snd . fibpair
where fibpair n | n <= 0 = (0,1)

| otherwise = (f2,f1+f2)
where (f1,f2) = fibpair (n-1)

� this function is linear in n

� since every recursive call reduces n by one

Exercise - fibpair computes fib

fibpair (n + 1) = (fib n, fib (n + 1))
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Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Exercise

� show sumlen xs = (sum xs, length xs) by induction over xs



Tail Recursion



Recursion vs. Tail Recursion

� a function calling itself is recursive

� functions that mutually call each other are mutually recursive

� a special kind of recursion is tail recursion

� a function is tail recursive, if the last action in the function
body is the recursive call
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Example - Recursive (but not Tail Recursive)

length [] = 0
length (x:xs) = 1 + length xs

Example - Mutually Recursive (and Tail Recursive)

even n | n <= 0 = True
| otherwise = odd (n-1)

odd n | n <= 0 = False
| otherwise = even (n-1)

Example - Tail Recursive

reverse = rev []
where rev acc [] = acc

rev acc (x:xs) = rev (x:acc) xs
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Accumulating Parameters

� idea: make function tail recursive

� provide intermediate results as additional input

� why? (tail recursive functions can be transformed into
space-efficient loops automatically)
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Example

sumlen' = sl 0 0
where sl s l [] = (s,l)

sl s l (x:xs) = sl (s+x) (l+1) xs

Exercise

� show sumlen xs = sumlen' xs by induction over xs
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Problem

� lazy evaluation

� hence s+x and l+1 are only evaluated when result of sumlen'
is used

� results in huge memory consumption

� e.g.,
0 + 1 + 2 + · · ·+ 1000000

is stored for computing sumlen' [1..1000000]

� a thunk of 1000001 integers (about 8MB)



Exercises (for December 3rd)

1. Read
http://www.haskell.org/haskellwiki/Tail_recursion and
http://en.wikipedia.org/wiki/Tail_recursion#Tail_
recursion_modulo_cons

2. Find a function in the lecture slides of the previous weeks that
is not tail recursive. Justify your answer.

3. Give a tail recursive implementation of range.

4. Use induction to prove that the function from Exercise 3
indeed computes range.

5. Use tupling to implement a more efficient version of
splitAt n xs = (take n xs, drop n xs)

6. Use induction to prove that the function from Exercise 5
computes splitAt.

http://www.haskell.org/haskellwiki/Tail_recursion
http://en.wikipedia.org/wiki/Tail_recursion#Tail_recursion_modulo_cons
http://en.wikipedia.org/wiki/Tail_recursion#Tail_recursion_modulo_cons

