Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

November 24, 2010

Today's Topics

- Efficiency - Fibonacci Numbers
- Tupling
- Tail Recursion

Efficiency - Fibonacci Numbers

Definition - n-th Fibonacci Number

$$
\operatorname{fib}(n)= \begin{cases}1 & \text { if } n \leq 1 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & \text { otherwise }\end{cases}
$$

Definition - n-th Fibonacci Number

$$
\operatorname{fib}(n)= \begin{cases}1 & \text { if } n \leq 1 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & \text { otherwise }\end{cases}
$$

Graph

Example

Example

1, 1

Example

1, 1, 2

Example

1, 1, 2, 3

Example

1, 1, 2, 3, 5

Example

1, 1, 2, 3, 5, 8

Example

$1,1,2,3,5,8,13$

Example

$1,1,2,3,5,8,13,21$

Example

$1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597$, 2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, ...

Haskell

- definition

```
fib n | n <= 1 = 1
    | otherwise = fib (n-1) + fib (n-2)
```


Haskell

- definition

```
fib n | n <= 1 = 1
    | otherwise = fib (n-1) + fib (n-2)
```

- example

Tupling

Combining Several Results

- use tuples to return more than one result
- make results available as return values instead of recomputing them

Combining Several Results

- use tuples to return more than one result
- make results available as return values instead of recomputing them

Fibonacci Numbers - Alternative Definition

- definition

```
fib' = snd . fibpair
where fibpair n | n <= 0 = (0,1)
    | otherwise = (f2,f1+f2)
    where (f1,f2) = fibpair (n-1)
```

- this function is linear in n
- since every recursive call reduces n by one

Combining Several Results

- use tuples to return more than one result
- make results available as return values instead of recomputing them

Fibonacci Numbers - Alternative Definition

- definition

$$
\begin{aligned}
& \text { fib' = snd . fibpair } \\
& \text { where fibpair n | } \mathrm{n}<=0 \quad=(0,1) \\
& \quad \mid \quad \text { otherwise }=(\mathrm{f} 2, \mathrm{f} 1+\mathrm{f} 2) \\
& \text { where }(\mathrm{f} 1, \mathrm{f} 2)=\text { fibpair }(\mathrm{n}-1)
\end{aligned}
$$

- this function is linear in n
- since every recursive call reduces n by one

Exercise - fibpair computes fib

$$
\text { fibpair }(n+1)=(\text { fib } n, \text { fib }(n+1))
$$

Example - List Average

- goal: compute average of integer list

Example - List Average

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```


Example - List Average

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```

- two traversals of xs

Example - List Average

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```

- two traversals of xs
- combined function

```
average' xs = if l /= 0 then s/l
                                else 0
    where (S,l) = sumlen xs
    sumlen [] = (0,0)
    sumlen (x:xs) = (sum + x,len + 1)
        where (sum,len) = sumlen xs
```


Example - List Average

- goal: compute average of integer list
- 1st approach:

```
average xs = sum xs `div` length xs
```

- two traversals of xs
- combined function

```
average' xs = if l /= 0 then s/l
                                else 0
    where (s,l) = sumlen xs
        sumlen [] = (0,0)
        sumlen (x:xs) = (sum + x,len + 1)
        where (sum,len) = sumlen xs
```

- one traversal of xs suffices

Exercise

- show sumlen $x s=($ sum $x s$, length $x s)$ by induction over $x s$

Tail Recursion

Recursion vs. Tail Recursion

- a function calling itself is recursive

Recursion vs. Tail Recursion

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive

Recursion vs. Tail Recursion

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive
- a special kind of recursion is tail recursion

Recursion vs. Tail Recursion

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive
- a special kind of recursion is tail recursion
- a function is tail recursive, if the last action in the function body is the recursive call

Example - Recursive (but not Tail Recursive)

```
length [] = 0
length (x:xs) = 1 + length xs
```


Example - Recursive (but not Tail Recursive)

```
length [] = 0
length (x:xs) = 1 + length xs
```


Example - Mutually Recursive (and Tail Recursive)

```
even n | n <= 0 = True
    | otherwise = odd (n-1)
odd n | n <= 0 = False
    | otherwise = even (n-1)
```


Example - Recursive (but not Tail Recursive)

length []$=0$
length $(x: x s)=1+$ length $x s$

Example - Mutually Recursive (and Tail Recursive)

```
even n | n <= 0 = True
    | otherwise = odd (n-1)
odd n | n <= 0 = False
    | otherwise = even (n-1)
```

Example - Tail Recursive

```
reverse = rev []
```

```
where rev acc [] = acc
    rev acc (x:xs) = rev (x:acc) xs
```


Accumulating Parameters

- idea: make function tail recursive

Accumulating Parameters

- idea: make function tail recursive
- provide intermediate results as additional input

Accumulating Parameters

- idea: make function tail recursive
- provide intermediate results as additional input
- why? (tail recursive functions can be transformed into space-efficient loops automatically)

Example

$$
\begin{aligned}
\text { sumlen' } & =\text { sl } 0 \\
\text { where } & \text { sl s l } \quad[] \\
\text { sl s l }(x: x s) & =(s, l) \\
& \text { sl }(s+x)(l+1) \mathrm{xs}
\end{aligned}
$$

Example

```
sumlen' = sl 0 0
    where sl s l [] = (s,l)
    sl s l (x:xs) = sl (s+x) (l+1) xs
```


Exercise

- show sumlen $x s=$ sumlen' $x s$ by induction over $x s$

Problem

- lazy evaluation
- hence $s+x$ and $1+1$ are only evaluated when result of sumlen' is used
- results in huge memory consumption
- e.g.,

$$
0+1+2+\cdots+1000000
$$

is stored for computing sumlen' [1..1000000]

- a thunk of 1000001 integers (about 8 MB)

Exercises (for December 3rd)

1. Read http://www.haskell.org/haskellwiki/Tail_recursion and http://en.wikipedia.org/wiki/Tail_recursion\#Tail_ recursion_modulo_cons
2. Find a function in the lecture slides of the previous weeks that is not tail recursive. Justify your answer.
3. Give a tail recursive implementation of range.
4. Use induction to prove that the function from Exercise 3 indeed computes range.
5. Use tupling to implement a more efficient version of splitAt n xs $=$ (take n xs, drop n xs)
6. Use induction to prove that the function from Exercise 5 computes splitAt.
