
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

November 24, 2010

http://cl-informatik.uibk.ac.at


Today’s Topics

� Efficiency - Fibonacci Numbers

� Tupling

� Tail Recursion



Efficiency - Fibonacci Numbers



Definition - n-th Fibonacci Number

fib(n) =

{
1 if n ≤ 1

fib(n − 1) + fib(n − 2) otherwise

Graph

n

fib(n)
2n



Definition - n-th Fibonacci Number

fib(n) =

{
1 if n ≤ 1

fib(n − 1) + fib(n − 2) otherwise

Graph

n

fib(n)
2n



Example

1

, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1

, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1, 2

, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1, 2, 3

, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1, 2, 3, 5

, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1, 2, 3, 5, 8

, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1, 2, 3, 5, 8, 13

, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1, 2, 3, 5, 8, 13, 21

, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Example

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393,
196418, 317811, 514229, 832040, 1346269, 2178309, 3524578,
5702887, 9227465, 14930352, 24157817, 39088169, 63245986,
102334155, 165580141, 267914296, 433494437, 701408733,
1134903170, 1836311903, 2971215073, . . .



Haskell

� definition
fib n | n <= 1 = 1

| otherwise = fib (n-1) + fib (n-2)

� example

fib 5

fib 4

fib 3

fib 2

fib 1 fib 0

fib 1

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1 fib 0

fib 1



Haskell

� definition
fib n | n <= 1 = 1

| otherwise = fib (n-1) + fib (n-2)

� example

fib 5

fib 4

fib 3

fib 2

fib 1 fib 0

fib 1

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1 fib 0

fib 1



Tupling



Combining Several Results

� use tuples to return more than one result

� make results available as return values instead of recomputing
them

Fibonacci Numbers - Alternative Definition

� definition
fib' = snd . fibpair
where fibpair n | n <= 0 = (0,1)

| otherwise = (f2,f1+f2)
where (f1,f2) = fibpair (n-1)

� this function is linear in n

� since every recursive call reduces n by one

Exercise - fibpair computes fib

fibpair (n + 1) = (fib n, fib (n + 1))



Combining Several Results

� use tuples to return more than one result

� make results available as return values instead of recomputing
them

Fibonacci Numbers - Alternative Definition

� definition
fib' = snd . fibpair
where fibpair n | n <= 0 = (0,1)

| otherwise = (f2,f1+f2)
where (f1,f2) = fibpair (n-1)

� this function is linear in n

� since every recursive call reduces n by one

Exercise - fibpair computes fib

fibpair (n + 1) = (fib n, fib (n + 1))



Combining Several Results

� use tuples to return more than one result

� make results available as return values instead of recomputing
them

Fibonacci Numbers - Alternative Definition

� definition
fib' = snd . fibpair
where fibpair n | n <= 0 = (0,1)

| otherwise = (f2,f1+f2)
where (f1,f2) = fibpair (n-1)

� this function is linear in n

� since every recursive call reduces n by one

Exercise - fibpair computes fib

fibpair (n + 1) = (fib n, fib (n + 1))



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Example - List Average

� goal: compute average of integer list

� 1st approach:

average xs = sum xs `div` length xs

� two traversals of xs

� combined function
average' xs = if l /= 0 then s/l

else 0
where (s,l) = sumlen xs

sumlen [] = (0,0)
sumlen (x:xs) = (sum + x,len + 1)
where (sum,len) = sumlen xs

� one traversal of xs suffices



Exercise

� show sumlen xs = (sum xs, length xs) by induction over xs



Tail Recursion



Recursion vs. Tail Recursion

� a function calling itself is recursive

� functions that mutually call each other are mutually recursive

� a special kind of recursion is tail recursion

� a function is tail recursive, if the last action in the function
body is the recursive call



Recursion vs. Tail Recursion

� a function calling itself is recursive

� functions that mutually call each other are mutually recursive

� a special kind of recursion is tail recursion

� a function is tail recursive, if the last action in the function
body is the recursive call



Recursion vs. Tail Recursion

� a function calling itself is recursive

� functions that mutually call each other are mutually recursive

� a special kind of recursion is tail recursion

� a function is tail recursive, if the last action in the function
body is the recursive call



Recursion vs. Tail Recursion

� a function calling itself is recursive

� functions that mutually call each other are mutually recursive

� a special kind of recursion is tail recursion

� a function is tail recursive, if the last action in the function
body is the recursive call



Example - Recursive (but not Tail Recursive)

length [] = 0
length (x:xs) = 1 + length xs

Example - Mutually Recursive (and Tail Recursive)

even n | n <= 0 = True
| otherwise = odd (n-1)

odd n | n <= 0 = False
| otherwise = even (n-1)

Example - Tail Recursive

reverse = rev []
where rev acc [] = acc

rev acc (x:xs) = rev (x:acc) xs



Example - Recursive (but not Tail Recursive)

length [] = 0
length (x:xs) = 1 + length xs

Example - Mutually Recursive (and Tail Recursive)

even n | n <= 0 = True
| otherwise = odd (n-1)

odd n | n <= 0 = False
| otherwise = even (n-1)

Example - Tail Recursive

reverse = rev []
where rev acc [] = acc

rev acc (x:xs) = rev (x:acc) xs



Example - Recursive (but not Tail Recursive)

length [] = 0
length (x:xs) = 1 + length xs

Example - Mutually Recursive (and Tail Recursive)

even n | n <= 0 = True
| otherwise = odd (n-1)

odd n | n <= 0 = False
| otherwise = even (n-1)

Example - Tail Recursive

reverse = rev []
where rev acc [] = acc

rev acc (x:xs) = rev (x:acc) xs



Accumulating Parameters

� idea: make function tail recursive

� provide intermediate results as additional input

� why? (tail recursive functions can be transformed into
space-efficient loops automatically)



Accumulating Parameters

� idea: make function tail recursive

� provide intermediate results as additional input

� why? (tail recursive functions can be transformed into
space-efficient loops automatically)



Accumulating Parameters

� idea: make function tail recursive

� provide intermediate results as additional input

� why? (tail recursive functions can be transformed into
space-efficient loops automatically)



Example

sumlen' = sl 0 0
where sl s l [] = (s,l)

sl s l (x:xs) = sl (s+x) (l+1) xs

Exercise

� show sumlen xs = sumlen' xs by induction over xs



Example

sumlen' = sl 0 0
where sl s l [] = (s,l)

sl s l (x:xs) = sl (s+x) (l+1) xs

Exercise

� show sumlen xs = sumlen' xs by induction over xs



Problem

� lazy evaluation

� hence s+x and l+1 are only evaluated when result of sumlen'
is used

� results in huge memory consumption

� e.g.,
0 + 1 + 2 + · · ·+ 1000000

is stored for computing sumlen' [1..1000000]

� a thunk of 1000001 integers (about 8MB)



Exercises (for December 3rd)

1. Read
http://www.haskell.org/haskellwiki/Tail_recursion and
http://en.wikipedia.org/wiki/Tail_recursion#Tail_
recursion_modulo_cons

2. Find a function in the lecture slides of the previous weeks that
is not tail recursive. Justify your answer.

3. Give a tail recursive implementation of range.

4. Use induction to prove that the function from Exercise 3
indeed computes range.

5. Use tupling to implement a more efficient version of
splitAt n xs = (take n xs, drop n xs)

6. Use induction to prove that the function from Exercise 5
computes splitAt.

http://www.haskell.org/haskellwiki/Tail_recursion
http://en.wikipedia.org/wiki/Tail_recursion#Tail_recursion_modulo_cons
http://en.wikipedia.org/wiki/Tail_recursion#Tail_recursion_modulo_cons

