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Today’s Topics

� Parsing - Motivation

� Combinator Parsing

� Parsing Arithmetic Expressions



Parsing - Motivation



What is Parsing

� parsing is the decomposition of a linear sequence into a
structure, given by a grammar

� the linear sequence may be

� text in natural language

� a computer program

� a website

� a piece of music

� a sequence of genes

� . . .
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In the Following

� linear sequence: a list of so called tokens (type [t])

� structure: some user defined data type

� grammar: Backus-Naur Form (BNF)

Notes

� BNF can express context-free grammars (CFGs)

� combinator parsers can parse context-sensitive grammars

� however, for this lecture, CFGs suffice
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Example - CFG for Arithmetic Expressions

〈expr〉 def
= 〈expr〉 + 〈term〉 addition
| 〈expr〉 - 〈term〉 subtraction
| 〈term〉

〈term〉 def
= 〈term〉 * 〈fact〉 multiplication
| 〈term〉 / 〈fact〉 division
| 〈fact〉

〈fact〉 def
= 〈num〉
| (〈expr〉)
| -〈fact〉

〈num〉 def
= 〈digit〉+

〈digit〉 def
= 0 | · · · | 9



Example - Rewritten CFG (avoid Left Recursion)

〈expr〉 def
= 〈term〉〈expr’〉

〈expr’〉 def
= +〈term〉〈expr’〉
| -〈term〉〈expr’〉
| ε

〈term〉 def
= 〈fact〉〈term’〉

〈term’〉 def
= *〈fact〉〈term’〉
| /〈fact〉〈term’〉
| ε

〈fact〉 def
= 〈num〉
| (〈expr〉)
| -〈fact〉

...



Parsers - First Attempt

� functions of type [t] -> (a, [t])

� i.e., read some tokens from the given list, produce some result
(of type a) together with the list of remaining tokens

� e.g., digit "12" results ('1', "2")

� but what about errors? (e.g., digit "abc")

Type of Parsers

� use newtype to distinguish from similar function types

newtype Parser t a =
Parser { run :: [t] -> Maybe (a,[t]) }

� a parser works on list of tokens of arbitrary type t

� successful parse yields Just (x, ts) with result x and
remaining tokens ts

� errors are indicated by returning Nothing (no exact error
message)
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Lexing and Parsing

� traditionally parsing is split into 2 phases

� lexing: divide original input (list of Chars) into other type of
tokens

� white spaces and comments may be dropped at this stage

� parsing: the actual parser works on list of tokens provided by
lexer

� produces an abstract syntax tree (AST)

� combinator parsers can be used for both stages
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Tokens for Arithmetic Expressions

data Token = Lpar | Rpar
| Plus | Minus
| Star | Slash
| Number Integer

deriving (Show, Eq)

AST of Arithmetic Expressions

data Expr = Nat Integer
| Neg Expr
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Div Expr Expr

deriving Show
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Combinator Parsing



Primitive Parsers

� only accept end of input

eoi :: Parser t ()
eoi = Parser (\ts ->
case ts of [] -> Just ((),[])

x:xs -> Nothing)

� reading a single token

token :: (t -> Maybe a) -> Parser t a
token test = Parser (\ts ->
case ts of

[] -> Nothing
x:xs ->
case test x of

Just y -> Just (y, xs)
Nothing -> Nothing)
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Some Derived Parsers

� reading single characters

sat p = token (\t -> if p t then Just t
else Nothing)

anyChar = sat (const True)
char c = sat (==c)

� reading letters and digits

letter = sat (`elem` (['a'..'z']++['A'..'Z']))
digit = sat (`elem` ['0'..'9'])

� choosing from list of tokens

oneof cs = sat (`elem` cs)
noneof cs = sat (`notElem` cs)

� parsing single white spaces

space = oneof " \n\r\t"
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Turning Values into Parsers

� definition
lift :: a -> Parser t a
lift x = Parser (\ts -> Just (x,ts))

� lift x takes the value x and yields a parser that returns x
without consuming any input



Parser Combinators - Sequencing Parsers

� definition
bind ::
Parser t a -> (a -> Parser t b) -> Parser t b

bind p f = Parser (\ts ->
case run p ts of

Just (x,ts') -> run (f x) ts'
Nothing -> Nothing)

� bind takes 2 arguments

� first a parser with results of type a

� then, function taking a and producing a parser with results of
type b

� bind p f, first executes p and then feeds the function f with
its result

� since f is a function producing a parser, the result of
bind p f is a parser
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Parser Combinators - Choice between two Parsers

(<|>) :: Parser t a -> Parser t a -> Parser t a
p <|> q = Parser (\ts ->
case run p ts of

Nothing -> run q ts
r -> r)

Example

� 〈p〉 def
= a | b

� p = char 'a' <|> char 'b'

� i.e., <|> corresponds to | in BNF
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Parser Combinators - Iterate Parsers

� many p applies p zero or more times

� result is list of results of p invocations

� greedy (as many applications of p as possible)

� many1, similar to many, but at least 1 application

� parsing sequences of white spaces

spaces = many space >> return ()

Example

� 〈p〉 def
= a〈p〉 | ε

� p = many (char 'a')

� 〈p〉 def
= a〈p〉 | a

� p = many1 (char 'a')
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Auxiliary Combinators

� apply a parser between to others

between ::
Parser t a -> Parser t b -> Parser t c

-> Parser t c
between l r p = l >> p >>= \x -> r >> return x

� apply a parser followed by another one

followedBy ::
Parser t a -> Parser t b -> Parser t a

p `followedBy` q = do {x <- p; q; return x}

� in both cases we use the combinators, whenever we are not
interested in the result of the last parser (r for between and q
for followedBy)



Running Parsers on Input

� for testing purposes

test :: Parser t a -> [t] -> a
test p ts = case run p ts of

Just (x, _) -> x
Nothing -> error "no parse"

� applying a parser to a list of tokens

parse :: Parser t a -> [t] -> Maybe a
parse p ts = case run p ts of

Just (x, _) -> Just x
Nothing -> Nothing
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Do-Notation for Parsers

� parsers are very similar to IO actions

� instead of reading input and writing output, parsers read
tokens and store the remaining tokens

� as for IO actions, parsers can be run in sequence, and
arbitrary values can be turned into parsers using lift

� this pattern is so common that there is a dedicated type class

The Monad Class - Supporting Do-Notation

� specification, all of:

return :: Monad m => a -> m a
(>>=) :: Monad m => m a -> (a -> m b) -> m b

� return lifts an arbitrary value into a monad

� (>>=) (called ‘bind’), executes two monads in a row, where
the second may depend on the ‘output’ of the first
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Monads and Do-Notation

� do-notation is just syntactic sugar for calls to (>>=)

� the translation uses the following equalities (from top to
bottom):

do {let x = e;M} = let x = e in do {M}

do {x <- m;M} = m >>= (\x -> do {M})

do {m;M} = m >>= (\_ -> do {M})

do {M} = M



Example - IO

� the do-block
do input <- readLn

putStrLn ("input = '" ++ input ++ "'")
let n = (read input :: Int)
return n

� is transformed into
readLn >>= \input ->
putStrLn ("input = '" ++ input ++ "'") >>= \_ ->
let n = (read input :: Int)
in return n



Instantiating Type Classes

� general scheme for turning type T into instance of type class C

instance C T where

...-- implementations of class functions

Example - Equality for User-Defined Type

� consider the type data YNM = Yes | No | Maybe

� instance declaration
instance Eq YNM where

Yes == Yes = True
No == No = True
Maybe == Maybe = True
_ == _ = False

Example - Parsers are Monads

instance Monad (Parser t) where

return = lift
(>>=) = bind
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Parsing Arithmetic Expressions



Reading Tokens

� ignore trailing white space

lex p = p `followedBy` spaces

� reading tokens of type Token

lpar = lex (char '(') >> return Lpar
rpar = lex (char ')') >> return Rpar
plus = lex (char '+') >> return Plus
minus = lex (char '-') >> return Minus
star = lex (char '*') >> return Star
slash = lex (char '/') >> return Slash
num =
lex (many1 digit) >>= return . Number . read

� lexing the input (i.e., turn list of Chars into list of Tokens)

tokenize = spaces >> many token
where token = lpar <|> rpar <|> plus

<|> minus <|> star <|> slash <|> num



Recognizing Tokens

nat = token (\t ->
case t of Lex.Number i -> Just (Nat i)

_ -> Nothing)

justIf :: (a -> Bool) -> a -> Maybe ()
justIf p x = if p x then Just ()

else Nothing

lpar = token (justIf (== Lex.Lpar))
rpar = token (justIf (== Lex.Rpar))
plus = token (justIf (== Lex.Plus))
minus = token (justIf (== Lex.Minus))
star = token (justIf (== Lex.Star))
slash = token (justIf (== Lex.Slash))



Parsing Tokens

expr = term >>= expr'
where

expr' t = add <|> sub <|> return t
where

add = plus >> term >>= expr' . Add t
sub = minus >> term >>= expr' . Sub t

term = factor >>= term'
where

term' f = mul <|> div <|> return f
where

mul = star >> factor >>= term' . Mul f
div = slash >> factor >>= term' . Div f

factor = nat <|> par <|> neg
where

par = between lpar rpar expr
neg = minus >> factor >>= return . Neg



Exercises (for December 10th)

1. Read chapter 10 of Real World Haskell

2. Write your own Eq instance for the data type Term from the
lecture slides.

3. Write your own Show instance for the data type Term from
the lecture slides.

4. Implement a function eval :: Exp -> Integer, computing
the result of a given expression.

5. Use the parsers and combinators from this lecture to define a
function
uibkMail :: String -> Maybe (String,String) that
accepts an email address of the form
〈forename〉.〈surname〉@student.uibk.ac.at (where
student. is optional) and returns the pair of forename and
surname.

6. Implement a function fromHex : String -> Maybe Int
that takes a string representation of a hexadecimal number
and returns its decimal value as integer.

http://book.realworldhaskell.org/read/

