Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

December 1, 2010

Today's Topics

- Parsing - Motivation
- Combinator Parsing
- Parsing Arithmetic Expressions

Parsing - Motivation

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar
- the linear sequence may be

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar
- the linear sequence may be
- text in natural language

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar
- the linear sequence may be
- text in natural language
- a computer program

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar
- the linear sequence may be
- text in natural language
- a computer program
- a website

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar
- the linear sequence may be
- text in natural language
- a computer program
- a website
- a piece of music

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar
- the linear sequence may be
- text in natural language
- a computer program
- a website
- a piece of music
- a sequence of genes

What is Parsing

- parsing is the decomposition of a linear sequence into a structure, given by a grammar
- the linear sequence may be
- text in natural language
- a computer program
- a website
- a piece of music
- a sequence of genes
- ...

In the Following

- linear sequence: a list of so called tokens (type [t])
- structure: some user defined data type
- grammar: Backus-Naur Form (BNF)

In the Following

- linear sequence: a list of so called tokens (type [t])
- structure: some user defined data type
- grammar: Backus-Naur Form (BNF)

Notes

- BNF can express context-free grammars (CFGs)
- combinator parsers can parse context-sensitive grammars
- however, for this lecture, CFGs suffice

Example－CFG for Arithmetic Expressions

$$
\begin{aligned}
& \langle\text { expr }\rangle \stackrel{\text { def }}{=}\langle\text { expr }\rangle+\langle\text { term }\rangle \text { addition } \\
& \langle\text { expr }\rangle-\langle\text { term }\rangle \quad \text { subtraction } \\
& \text { <term> } \\
& \langle\text { term }\rangle \stackrel{\text { def }}{=}\langle\text { term }\rangle *\langle\text { fact } \\
& \langle\text { term } /\langle\text { fact } \\
& \text { 〈fact> } \\
& \langle\text { fact }\rangle \stackrel{\text { def }}{=}\langle n u m\rangle \\
& \text { (}\langle\text { expr〉) } \\
& -\langle f a c t\rangle \\
& \langle\text { num }\rangle \stackrel{\text { def }}{=}\langle\text { digit }\rangle^{+} \\
& \langle\text {digit }\rangle \stackrel{\text { def }}{=} 0|\cdots| 9
\end{aligned}
$$

Example - Rewritten CFG (avoid Left Recursion)

$$
\begin{array}{rll}
\langle\text { expr }\rangle & \stackrel{\text { def }}{=} & \langle\text { term }\rangle\left\langle\text { expr } r^{\prime}\right\rangle \\
\langle\text { expr }\rangle & \stackrel{\text { def }}{=} & +\langle\text { term }\rangle\langle\text { expr }\rangle \\
& \mid & -\langle\text { term }\rangle\langle\text { expr }\rangle \\
& \mid & \varepsilon \\
\langle\text { term }\rangle & \stackrel{\text { def }}{=} & \langle\text { fact }\rangle\langle\text { term }\rangle \\
\langle\text { term' }\rangle & \stackrel{\text { def }}{=} & *\langle\text { fact }\rangle\left\langle\text { term }^{\prime}\right\rangle \\
\mid & /\langle\text { fact }\rangle\langle\text { term }\rangle \\
\mid & \varepsilon \\
\langle\text { fact }\rangle & \stackrel{\text { def }}{=} & \langle\text { num }\rangle \\
& \mid\langle\text { expr }\rangle) \\
& \mid & -\langle\text { fact }\rangle
\end{array}
$$

Parsers - First Attempt

- functions of type [t] -> (a, [t])
- i.e., read some tokens from the given list, produce some result (of type a) together with the list of remaining tokens
- e.g., digit "12" results ('1', "2")
- but what about errors? (e.g., digit "abc")

Parsers - First Attempt

- functions of type [t] -> (a, [t])
- i.e., read some tokens from the given list, produce some result (of type a) together with the list of remaining tokens
- e.g., digit "12" results ('1', "2")
- but what about errors? (e.g., digit "abc")

Type of Parsers

- use newtype to distinguish from similar function types

newtype Parser t a =
 Parser \{ run :: [t] -> Maybe (a, [t]) \}

- a parser works on list of tokens of arbitrary type t
- successful parse yields Just (x, ts) with result x and remaining tokens ts
- errors are indicated by returning Nothing (no exact error message)

Lexing and Parsing

- traditionally parsing is split into 2 phases

Lexing and Parsing

- traditionally parsing is split into 2 phases
- lexing: divide original input (list of Chars) into other type of tokens

Lexing and Parsing

- traditionally parsing is split into 2 phases
- lexing: divide original input (list of Chars) into other type of tokens
- white spaces and comments may be dropped at this stage

Lexing and Parsing

- traditionally parsing is split into 2 phases
- lexing: divide original input (list of Chars) into other type of tokens
- white spaces and comments may be dropped at this stage
- parsing: the actual parser works on list of tokens provided by lexer

Lexing and Parsing

- traditionally parsing is split into 2 phases
- lexing: divide original input (list of Chars) into other type of tokens
- white spaces and comments may be dropped at this stage
- parsing: the actual parser works on list of tokens provided by lexer
- produces an abstract syntax tree (AST)

Lexing and Parsing

- traditionally parsing is split into 2 phases
- lexing: divide original input (list of Chars) into other type of tokens
- white spaces and comments may be dropped at this stage
- parsing: the actual parser works on list of tokens provided by lexer
- produces an abstract syntax tree (AST)
- combinator parsers can be used for both stages

Tokens for Arithmetic Expressions

data Token = Lpar | Rpar
| Plus | Minus
| Star | Slash
| Number Integer
deriving (Show, Eq)

Tokens for Arithmetic Expressions

```
data Token = Lpar | Rpar
    | Plus | Minus
    | Star | Slash
    | Number Integer
    deriving (Show, Eq)
```


AST of Arithmetic Expressions

data Expr $=$	Nat Integer
\mid	Neg Expr
\mid Add Expr Expr	
\mid	Sub Expr Expr
\mid	Mul Expr Expr
\mid Div Expr Expr	

deriving Show

Combinator Parsing

Primitive Parsers

- only accept end of input

```
eoi :: Parser t ()
eoi = Parser (\ts ->
    case ts of [] -> Just ((),[])
    x:xs -> Nothing)
```


Primitive Parsers

- only accept end of input

```
eoi :: Parser t ()
eoi = Parser (\ts ->
    case ts of [] -> Just ((),[])
        x:xs -> Nothing)
```

- reading a single token

```
token :: (t -> Maybe a) -> Parser t a
token test = Parser (\ts ->
    case ts of
        [] -> Nothing
        x:xs ->
        case test x of
            Just y -> Just (y, xs)
            Nothing -> Nothing)
```


Some Derived Parsers

- reading single characters

$$
\begin{aligned}
& \text { sat } p=\text { token (} \backslash \mathrm{t} \rightarrow \text { if } p \text { then Just t } \\
& \text { else Nothing) }
\end{aligned}
$$

Some Derived Parsers

- reading single characters

$$
\begin{aligned}
& \text { sat } p=\text { token (} \backslash \mathrm{t}->\text { if } \mathrm{p} \text { t then Just } \mathrm{t} \\
& \text { else Nothing) }
\end{aligned} \quad \begin{aligned}
& \text { anyChar }=\text { sat (const True) } \\
& \text { char } c=\text { sat (==c) }
\end{aligned}
$$

- reading letters and digits

```
letter = sat (`elem` (['a'..'z']++['A'..'Z']))
digit = sat (`elem` ['0'..'9'])
```


Some Derived Parsers

- reading single characters

```
sat p = token (\t -> if p t then Just t else Nothing)
```

```
anyChar = sat (const True)
```

anyChar = sat (const True)
char c = sat (==c)

```
char c = sat (==c)
```

- reading letters and digits

```
letter = sat (`elem` (['a'..'z']++['A'..'Z']))
digit = sat (`elem` ['0'..'9'])
```

- choosing from list of tokens

```
oneof cs = sat (`elem` cs)
noneof cs = sat (`notElem` cs)
```


Some Derived Parsers

- reading single characters

```
sat p = token (\t -> if p t then Just t else Nothing)
```

```
anyChar = sat (const True)
```

anyChar = sat (const True)
char c = sat (==c)

```
char c = sat (==c)
```

- reading letters and digits

```
letter = sat (`elem` (['a'..'z']++['A'..'Z']))
digit = sat (`elem` ['0'..'9'])
```

- choosing from list of tokens

```
oneof cs = sat (`elem` cs)
noneof cs = sat (`notElem` cs)
```

- parsing single white spaces

```
space = oneof " \n\r\t"
```


Turning Values into Parsers

- definition

```
lift :: a -> Parser t a
lift x = Parser (\ts -> Just (x,ts))
```

- lift x takes the value x and yields a parser that returns x without consuming any input

Parser Combinators - Sequencing Parsers

- definition

```
bind ::
    Parser t a -> (a -> Parser t b) -> Parser t b
bind p f = Parser (\ts ->
    case run p ts of
        Just (x,ts') -> run (f x) ts'
        Nothing -> Nothing)
```


Parser Combinators - Sequencing Parsers

- definition

```
bind ::
    Parser t a -> (a -> Parser t b) -> Parser t b
    bind p f = Parser (\ts ->
    case run p ts of
        Just (x,ts') -> run (f x) ts'
        Nothing -> Nothing)
```

- bind takes 2 arguments

Parser Combinators - Sequencing Parsers

- definition

```
bind ::
    Parser t a -> (a -> Parser t b) -> Parser t b
bind p f = Parser (\ts ->
    case run p ts of
        Just (x,ts') -> run (f x) ts'
        Nothing -> Nothing)
```

- bind takes 2 arguments
- first a parser with results of type a

Parser Combinators - Sequencing Parsers

- definition

```
bind ::
    Parser t a -> (a -> Parser t b) -> Parser t b
bind p f = Parser (\ts ->
    case run p ts of
        Just (x,ts') -> run (f x) ts'
        Nothing -> Nothing)
```

- bind takes 2 arguments
- first a parser with results of type a
- then, function taking a and producing a parser with results of type b

Parser Combinators - Sequencing Parsers

- definition

```
bind ::
    Parser t a -> (a -> Parser t b) -> Parser t b
bind p f = Parser (\ts ->
    case run p ts of
        Just (x,ts') -> run (f x) ts'
        Nothing -> Nothing)
```

- bind takes 2 arguments
- first a parser with results of type a
- then, function taking a and producing a parser with results of type b
- bind p f, first executes pand then feeds the function f with its result

Parser Combinators - Sequencing Parsers

- definition

```
bind ::
    Parser t a -> (a -> Parser t b) -> Parser t b
bind p f = Parser (\ts ->
    case run p ts of
        Just (x,ts') -> run (f x) ts'
        Nothing -> Nothing)
```

- bind takes 2 arguments
- first a parser with results of type a
- then, function taking a and producing a parser with results of type b
- bind p f, first executes pand then feeds the function f with its result
- since f is a function producing a parser, the result of bind $p \mathrm{f}$ is a parser

Parser Combinators - Choice between two Parsers

$$
\begin{aligned}
& (<\mid>): \text { Parser } \mathrm{t} \text { a }->\text { Parser } \mathrm{t} \text { a }->\text { Parser } \mathrm{t} \text { a } \\
& \mathrm{p}<\mid>\mathrm{q}=\text { Parser (\ts }-> \\
& \text { case run p ts of } \\
& \text { Nothing }->\text { run } \mathrm{q} \text { ts } \\
& \text { r } \quad \rightarrow \text { r) }
\end{aligned}
$$

Parser Combinators - Choice between two Parsers

$$
\begin{aligned}
& (<\mid>): \text { : Parser } \mathrm{t} \text { a }->\text { Parser } \mathrm{t} \text { a }->\text { Parser } \mathrm{t} \text { a } \\
& \mathrm{p}<\mid>\mathrm{q}=\text { Parser (\ts }-> \\
& \text { case run p ts of } \\
& \text { Nothing }->\text { run q ts } \\
& \text { r } \quad \rightarrow \text { r) }
\end{aligned}
$$

Example

- $\langle p\rangle \stackrel{\text { def }}{=} \mathrm{a} \mid \mathrm{b}$
- $p=c h a r{ }^{\prime} a{ }^{\prime}<\mid>$ char 'b'
- i.e., <|> corresponds to | in BNF

Parser Combinators - Iterate Parsers

- many p applies p zero or more times
- result is list of results of p invocations
- greedy (as many applications of p as possible)
- many1, similar to many, but at least 1 application
- parsing sequences of white spaces

```
spaces = many space >> return ()
```


Parser Combinators - Iterate Parsers

- many p applies p zero or more times
- result is list of results of p invocations
- greedy (as many applications of p as possible)
- many1, similar to many, but at least 1 application
- parsing sequences of white spaces

```
spaces = many space >> return ()
```


Example

- $\langle p\rangle \stackrel{\text { def }}{=} \mathrm{a}\langle p\rangle \mid \varepsilon$
- $p=$ many (char 'a')
- $\langle p\rangle \stackrel{\text { def }}{=} \mathrm{a}\langle p\rangle \mid \mathrm{a}$
- $p=$ many1 (char 'a')

Auxiliary Combinators

- apply a parser between to others

```
between ::
    Parser t a -> Parser t b -> Parser t c
    -> Parser t c
    between l r p = l >> p >>= \x -> r >> return x
```

- apply a parser followed by another one

```
followedBy ::
    Parser t a -> Parser t b -> Parser t a
p `followedBy` q = do {x <- p; q; return x}
```

- in both cases we use the combinators, whenever we are not interested in the result of the last parser (r for between and q for followedBy)

Running Parsers on Input

- for testing purposes

```
test :: Parser t a -> [t] -> a
test p ts = case run p ts of
    Just (x, _) -> x
    Nothing -> error "no parse"
```


Running Parsers on Input

- for testing purposes

```
test :: Parser t a -> [t] -> a
test p ts = case run p ts of
    Just (x, _) -> x
    Nothing -> error "no parse"
```

- applying a parser to a list of tokens

```
parse :: Parser t a -> [t] -> Maybe a
parse p ts = case run p ts of
    Just (x, _) -> Just x
    Nothing -> Nothing
```


Do-Notation for Parsers

- parsers are very similar to IO actions
- instead of reading input and writing output, parsers read tokens and store the remaining tokens
- as for IO actions, parsers can be run in sequence, and arbitrary values can be turned into parsers using lift
- this pattern is so common that there is a dedicated type class

Do-Notation for Parsers

- parsers are very similar to IO actions
- instead of reading input and writing output, parsers read tokens and store the remaining tokens
- as for IO actions, parsers can be run in sequence, and arbitrary values can be turned into parsers using lift
- this pattern is so common that there is a dedicated type class

The Monad Class - Supporting Do-Notation

- specification, all of:

```
return :: Monad m => a -> m a
(>>=) :: Monad m => m a -> (a -> m b) -> m b
```

- return lifts an arbitrary value into a monad
- (>>=) (called 'bind'), executes two monads in a row, where the second may depend on the 'output' of the first

Monads and Do-Notation

- do-notation is just syntactic sugar for calls to (>>=)
- the translation uses the following equalities (from top to bottom):

$$
\begin{aligned}
\text { do }\{\text { let } x=e ; M\} & =\text { let } x=e \text { in do }\{M\} \\
\text { do }\{x<-m ; M\} & =m \gg=(\backslash x->\text { do }\{M\}) \\
\text { do }\{m ; M\} & =m \gg=\left(\backslash_{-}->\text {do }\{M\}\right) \\
\text { do }\{M\} & =M
\end{aligned}
$$

Example - IO

- the do-block

$$
\begin{aligned}
& \text { do input <- readLn } \\
& \text { putStrLn ("input }=\text { '" ++ input ++ "'") } \\
& \text { let } \mathrm{n}=\text { (read input :: Int) } \\
& \text { return } \mathrm{n}
\end{aligned}
$$

- is transformed into

```
readLn >>= \input ->
putStrLn ("input = '" ++ input ++ "'") >>= \_ ->
let n = (read input :: Int)
in return n
```


Instantiating Type Classes

- general scheme for turning type T into instance of type class C instance C T where

Instantiating Type Classes

- general scheme for turning type T into instance of type class C instance C T where

Example - Equality for User-Defined Type

- consider the type data YNM = Yes | No | Maybe
- instance declaration

instance Eq YNM where			
Yes	$==$	Yes	$=$ True
No	$=$	No	$=$
True			
Maybe	$=$	Maybe	$=$
True			
_	$==$	$=$	False

Instantiating Type Classes

- general scheme for turning type T into instance of type class C instance C T where
...-- implementations of class functions

Example - Equality for User-Defined Type

- consider the type data YNM = Yes | No | Maybe
- instance declaration

$$
\begin{aligned}
& \text { instance Eq YNM where } \\
& \text { Yes }==\text { Yes }=\text { True } \\
& \text { No }==~ N o ~=\text { True } \\
& \text { Maybe }=\text { Maybe }
\end{aligned}
$$

Example - Parsers are Monads

instance Monad (Parser t) where
return = lift
(>>=) = bind

Parsing Arithmetic Expressions

Reading Tokens

- ignore trailing white space

$$
\text { lex } p=p \text { `followedBy` spaces }
$$

- reading tokens of type Token

```
lpar = lex (char '(') >> return Lpar
rpar = lex (char ')') >> return Rpar
plus = lex (char '+') >> return Plus
minus = lex (char '-') >> return Minus
star = lex (char '*') >> return Star
slash = lex (char '/') >> return Slash
num =
    lex (many1 digit) >>= return . Number . read
```

- lexing the input (i.e., turn list of Chars into list of Tokens)

```
tokenize = spaces >> many token
    where token = lpar <|> rpar <|> plus
        <|> minus <|> star <|> slash <|> num
```


Recognizing Tokens

$$
\begin{aligned}
& \text { nat = token (\t -> } \\
& \text { case t of Lex.Number i -> Just (Nat i) } \\
& \text {-> Nothing) } \\
& \text { justIf :: (a -> Bool) -> a -> Maybe () } \\
& \text { justIf p x = if p x then Just () } \\
& \text { else Nothing }
\end{aligned}
$$

lpar = token (justIf (== Lex.Lpar))
rpar = token (justIf (== Lex.Rpar))
plus = token (justIf (== Lex.Plus))
minus = token (justIf (== Lex.Minus))
star = token (justIf (== Lex.Star))
slash = token (justIf (== Lex.Slash))

Parsing Tokens

expr $=$ term $\gg=$ expr'
where

$$
\text { expr' } \mathrm{t}=\text { add }\langle\mid\rangle \text { sub }\langle\mid\rangle \text { return } \mathrm{t}
$$ where

$$
\begin{aligned}
& \text { add }=\text { plus } \gg \text { term } \gg=\text { expr }^{\prime} \text {. Add } t \\
& \text { sub }=\text { minus } \gg \text { term } \gg=\text { expr }^{\prime} \text {. Sub } t
\end{aligned}
$$

term $=$ factor $\gg=$ term $^{\prime}$
where
term' $f=m u l<|>\operatorname{div}<|>$ return f where

$$
\begin{aligned}
& \text { mul }=\text { star } \gg \text { factor } \gg=\text { term }^{\prime} \text {. Mul } f \\
& \text { div }=\text { slash } \gg \text { factor } \gg=\text { term }^{\prime} \text {. Div } f
\end{aligned}
$$

factor = nat <|> par <|> neg where

$$
\begin{aligned}
& \text { par }=\text { between lear spar expr } \\
& \text { neg }=\text { minus } \gg \text { factor } \gg=\text { return } . \text { Neg }
\end{aligned}
$$

Exercises (for December 10th)

1. Read chapter 10 of Real World Haskell
2. Write your own Eq instance for the data type Term from the lecture slides.
3. Write your own Show instance for the data type Term from the lecture slides.
4. Implement a function eval :: Exp -> Integer, computing the result of a given expression.
5. Use the parsers and combinators from this lecture to define a function
uibkMail :: String -> Maybe (String,String) that accepts an email address of the form $\left\langle\right.$ forename.$\left\langle\right.$ surname ${ }^{@ s t u d e n t . ~ u i b k . ~ a c . ~ a t ~(w h e r e ~}$ student. is optional) and returns the pair of forename and surname.
6. Implement a function fromHex : String -> Maybe Int that takes a string representation of a hexadecimal number and returns its decimal value as integer.
