Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

December 15, 2010

Today's Topics

- Type Checking
- Unification
- Type Inference

Type Checking

Problem - Type Checking
input: expression e and type τ output: YES (e has type τ) or NO

Problem - Type Checking

input: expression e and type τ output: YES (e has type τ) or NO

The Language of Expressions - Core FP

$e \stackrel{\text { def }}{=} x|e e| \lambda x . e \quad l$-calculus \quad constant (for primitives)

Problem - Type Checking

input: expression e and type τ output: YES (e has type τ) or NO

The Language of Expressions - Core FP

e| $\stackrel{\text { def }}{=}$ | $x\|e e\| \lambda x . e$ | λ-calculus |
| :--- | :--- | :--- |
| $\mid c$ | constant (for primitives) | |
| | let $x=e$ in e | let binding |
| | if e then e else e | conditional |

Primitives

- used for predefined "functions" and "constants"
- Boolean: True, False, $<,>, \ldots$
- arithmetic: $\times,+, \div,-, 0,1, \ldots$
- tuples: Pair, fst, snd
- lists: Nil, Cons, head, tail

What is Type Checking?

Given some environment (assigning types to primitives) together with a core FP expression and a type, check whether the expression is of the given type with respect to the environment.

Types

- type variables, $\alpha, \alpha_{0}, \alpha_{1}, \ldots$
- type variables, $\alpha, \alpha_{0}, \alpha_{1}, \ldots$
- the function type constructor \rightarrow

Types

- type variables, $\alpha, \alpha_{0}, \alpha_{1}, \ldots$
- the function type constructor \rightarrow
- type constructors C, C_{1}, \ldots (like: List)

Types

- type variables, $\alpha, \alpha_{0}, \alpha_{1}, \ldots$
- the function type constructor \rightarrow
- type constructors C, C_{1}, \ldots (like: List)
- types $\tau \stackrel{\text { def }}{=} \alpha|\tau \rightarrow \tau| C(\tau, \ldots, \tau)$

Types

- type variables, $\alpha, \alpha_{0}, \alpha_{1}, \ldots$
- the function type constructor \rightarrow
- type constructors C, C_{1}, \ldots (like: List)
- types $\tau \stackrel{\text { def }}{=} \alpha|\tau \rightarrow \tau| C(\tau, \ldots, \tau)$
- special case: base types: Int, Bool (instead of $\operatorname{Int}(), \operatorname{Bool}())$

Types

- type variables, $\alpha, \alpha_{0}, \alpha_{1}, \ldots$
- the function type constructor \rightarrow
- type constructors C, C_{1}, \ldots (like: List)
- types $\tau \stackrel{\text { def }}{=} \alpha|\tau \rightarrow \tau| C(\tau, \ldots, \tau)$
- special case: base types: Int, Bool (instead of $\operatorname{Int}(), \operatorname{Bool}())$

Example Types

- List(Bool) - list of Booleans
- Pair(Int, Int) - pairs of integers
- Int \rightarrow Int \rightarrow Bool - functions from two integers to Boolean

Typing Environments

- set of pairs E, mapping variables and primitives to types
- instead of $(e, \tau) \in E$, we write $e:: \tau \in E$

Typing Environments

- set of pairs E, mapping variables and primitives to types
- instead of $(e, \tau) \in E$, we write $e:: \tau \in E$

Typing Judgments

- $E \vdash e:: \tau$
- read: "it can be proved that e is of type τ under E "

Typing Environments

- set of pairs E, mapping variables and primitives to types
- instead of $(e, \tau) \in E$, we write $e:: \tau \in E$

Typing Judgments

- $E \vdash e:: \tau$
- read: "it can be proved that e is of type τ under E "

Examples

- primitive environment
$P=\{+::$ Int \rightarrow Int \rightarrow Int, Nil $:: \operatorname{List}(\alpha)$, True $::$ Bool, $\ldots\}$
- $P \vdash$ True :: Bool - "using the primitive environment, it can be shown that True is of type Bool"

Type Substitutions

- mapping σ from type variables to types
- apply substitution to type

$$
\tau \sigma \stackrel{\text { def }}{=} \begin{cases}\sigma(\alpha) & \text { if } \tau=\alpha \\ \tau_{1} \sigma \rightarrow \tau_{2} \sigma & \text { if } \tau=\tau_{1} \rightarrow \tau_{2} \\ C\left(\tau_{1} \sigma, \ldots, \tau_{n} \sigma\right) & \text { if } \tau=C\left(\tau_{1}, \ldots, \tau_{n}\right)\end{cases}
$$

- composition $\sigma_{1} \sigma_{2} \stackrel{\text { def }}{=} \sigma_{2} \circ \sigma_{1}$ (where \circ is function composition)

Type Substitutions

- mapping σ from type variables to types
- apply substitution to type

$$
\tau \sigma \stackrel{\text { def }}{=} \begin{cases}\sigma(\alpha) & \text { if } \tau=\alpha \\ \tau_{1} \sigma \rightarrow \tau_{2} \sigma & \text { if } \tau=\tau_{1} \rightarrow \tau_{2} \\ C\left(\tau_{1} \sigma, \ldots, \tau_{n} \sigma\right) & \text { if } \tau=C\left(\tau_{1}, \ldots, \tau_{n}\right)\end{cases}
$$

- composition $\sigma_{1} \sigma_{2} \stackrel{\text { def }}{=} \sigma_{2} \circ \sigma_{1}$ (where \circ is function composition)

Examples

- $\sigma_{1}=\left\{\alpha_{1} / \operatorname{List}\left(\alpha_{2}\right), \alpha_{2} /\right.$ Bool $\}$
- $\sigma_{2}=\left\{\alpha_{2} /\right.$ Int $\}$
- $\sigma_{1} \sigma_{2}=\sigma_{2} \circ \sigma_{1}=\left\{\alpha_{1} / \operatorname{List}(\operatorname{lnt}), \alpha_{2} /\right.$ Bool $\}$

Type Checking as Natural Deduction Rules

$$
\frac{e:: \tau \in E}{e:: \tau \sigma}(\text { ins })
$$

$$
\frac{e_{1}:: \tau_{2} \rightarrow \tau_{1} \quad e_{2}:: \tau_{2}}{e_{1} e_{2}:: \tau_{1}}(\text { app })
$$

$$
\frac{e_{1}:: \text { Bool } \quad e_{2}:: \tau \quad e_{3}:: \tau}{\text { if } e_{1} \text { then } e_{2} \text { else } e_{3}:: \tau} \text { (ite) }
$$

Example

- environment $E=\{$ True :: Bool, $+::$ Int \rightarrow Int \rightarrow Int $\}$
- prove judgment $E \vdash(\lambda x . x)$ True :: Bool

1
2
3
4

True $::$ Bool	ins E
$x::$ Bool	assumption
$\lambda x . x::$ Bool \rightarrow Bool	abs 2
$(\lambda x . x)$ True $::$ Bool	app 3,1

Example

- environment $E=\{$ True :: Bool, $+::$ Int \rightarrow Int \rightarrow Int $\}$
- prove judgment $E \vdash(\lambda x . x)$ True :: Bool

1	True $::$ Bool	ins E
	$x::$ Bool	assumption
3	$\lambda x \cdot x::$ Bool \rightarrow Bool	abs 2
4		$(\lambda x . x)$ True $::$ Bool
	app 3, 1	

Example

- prove $E \vdash \lambda x . x+x:: \operatorname{Int} \rightarrow \operatorname{Int}$

1	$x:: ~ \operatorname{lnt}$	assumption
2	$+:: \operatorname{Int} \rightarrow$ Int \rightarrow Int	ins E
3	$(+) \times:: \mathrm{Int} \rightarrow \mathrm{Int}$	app 2, 1
4	$x+x:: \ln t$	app 3, 1
5	$\lambda x . x+x:: \operatorname{lnt} \rightarrow \operatorname{lnt}$	abs 1-4

Unification

Problem - Unification
input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Problem - Unification a pair of types
input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Problem - Unification

> input: equation $\tau_{1} \approx \tau_{2} \quad$ syntactic equality output: substitution $\left(\sigma\right.$ s.t. $\left.\tau_{1} \sigma=\tau_{2} \sigma\right)$ or FAILURE

Problem - Unification
input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE
Notions

Problem - Unification

input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau^{\prime}$ is satisfiable iff exists σ s.t., $\tau \sigma=\tau^{\prime} \sigma$

Problem - Unification

input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau^{\prime}$ is satisfiable iff exists σ s.t., $\tau \sigma=\tau^{\prime} \sigma$
- σ is called solution of $\tau \approx \tau^{\prime}$

Problem - Unification

input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau^{\prime}$ is satisfiable iff exists σ s.t., $\tau \sigma=\tau^{\prime} \sigma$
- σ is called solution of $\tau \approx \tau^{\prime}$
- unification problem is finite sequence of equations

$$
\tau_{1} \approx \tau_{1}^{\prime} ; \ldots ; \tau_{n} \approx \tau_{n}^{\prime}
$$

Problem - Unification

input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau^{\prime}$ is satisfiable iff exists σ s.t., $\tau \sigma=\tau^{\prime} \sigma$
- σ is called solution of $\tau \approx \tau^{\prime}$
- unification problem is finite sequence of equations

$$
\tau_{1} \approx \tau_{1}^{\prime} ; \ldots ; \tau_{n} \approx \tau_{n}^{\prime}
$$

- \square denotes empty sequence

Problem - Unification

input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau^{\prime}$ is satisfiable iff exists σ s.t., $\tau \sigma=\tau^{\prime} \sigma$
- σ is called solution of $\tau \approx \tau^{\prime}$
- unification problem is finite sequence of equations

$$
\tau_{1} \approx \tau_{1}^{\prime} ; \ldots ; \tau_{n} \approx \tau_{n}^{\prime}
$$

- \square denotes empty sequence
- unification - solving given unification problem

Problem - Unification

input: equation $\tau_{1} \approx \tau_{2}$
output: substitution (σ s.t. $\tau_{1} \sigma=\tau_{2} \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau^{\prime}$ is satisfiable iff exists σ s.t., $\tau \sigma=\tau^{\prime} \sigma$
- σ is called solution of $\tau \approx \tau^{\prime}$
- unification problem is finite sequence of equations

$$
\tau_{1} \approx \tau_{1}^{\prime} ; \ldots ; \tau_{n} \approx \tau_{n}^{\prime}
$$

- \square denotes empty sequence
- unification - solving given unification problem
- type variables

$$
\mathcal{T} \mathcal{V} \operatorname{ar}(\tau) \stackrel{\text { def }}{=} \begin{cases}\{\alpha\} & \text { if } \tau=\alpha \\ \mathcal{T} \mathcal{V} \operatorname{ar}\left(\tau_{1}\right) \cup \mathcal{T} \mathcal{V} \operatorname{ar}\left(\tau_{2}\right) & \text { if } \tau=\tau_{1} \rightarrow \tau_{2} \\ \bigcup_{1 \leq i \leq n} \mathcal{T} \operatorname{V} \operatorname{ar}\left(\tau_{i}\right) & \text { if } \tau=C\left(\tau_{1}, \ldots, \tau_{n}\right)\end{cases}
$$

Unification Rules

$$
\begin{gathered}
\frac{E_{1} ; C\left(\tau_{1}, \ldots, \tau_{n}\right) \approx C\left(\tau_{1}^{\prime}, \ldots, \tau_{n}^{\prime}\right) ; E_{2}}{E_{1} ; \tau_{1} \approx \tau_{1}^{\prime} ; \ldots ; \tau_{n} \approx \tau_{n}^{\prime} ; E_{2}}\left(\mathrm{~d}_{1}\right) \\
\frac{E_{1} ; \tau_{1} \rightarrow \tau_{2} \approx \tau_{1}^{\prime} \rightarrow \tau_{2}^{\prime} ; E_{2}}{E_{1} ; \tau_{1} \approx \tau_{1}^{\prime} ; \tau_{2} \approx \tau_{2}^{\prime} ; E_{2}}\left(\mathrm{~d}_{2}\right) \\
\frac{E_{1} ; \alpha \approx \tau ; E_{2} \quad \alpha \notin \mathcal{T} \operatorname{Var}(\tau)}{\left(E_{1} ; E_{2}\right)\{\alpha / \tau\}}\left(\mathrm{v}_{1}\right) \\
\frac{E_{1} ; \tau \approx \alpha ; E_{2} \quad \alpha \notin \mathcal{T} \operatorname{Var}(\tau)}{\left(E_{1} ; E_{2}\right)\{\alpha / \tau\}}\left(\mathrm{v}_{2}\right) \\
\frac{E_{1} ; \tau \approx \tau ; E_{2}}{E_{1} ; E_{2}}(\mathrm{t})
\end{gathered}
$$

Example

$$
\begin{aligned}
\operatorname{List}(\text { Bool }) \approx \operatorname{List}(\alpha) & \Rightarrow{ }_{\{ \}}^{\left(\mathrm{d}_{1}\right)} & \text { Bool } \approx \alpha \\
& \Rightarrow{ }_{\{\alpha / \text { Bool }\}}^{\left(\mathrm{v}_{2}\right)} & \square
\end{aligned}
$$

Type Inference

What is Type Inference?

Given some environment together with a core FP expression and a type, infer a solution (i.e., type substitution)—if possible-such that applying the substitution to the initial type yields the most general type of the initial expression.

Type Inference Problems

- $E \triangleright e:: \tau$
- read: "try to infer most general substitution σ such that $E \vdash e:: \tau \sigma$ "

Type Inference Problems

- $E \triangleright e:: \tau$
- read: "try to infer most general substitution σ such that $E \vdash e:: \tau \sigma^{\prime \prime}$

Example

- $E=\{0:: \operatorname{lnt}\}$
- $E \triangleright$ let $i d=\lambda x . x$ in id $0:: \alpha_{0}$
- $\sigma=\left\{\alpha_{0} / \operatorname{lnt}\right\}$
1

3

$x:: \operatorname{lnt}$	assumption
$\lambda x \cdot x:: \operatorname{lnt} \rightarrow \operatorname{lnt}$	abs 1
$i d:: \operatorname{lnt} \rightarrow \operatorname{lnt}$	assumption
$0:: \operatorname{Int}$	ins E
id $0::$ Int	app 3,4

Typing Constraint Rules

$$
\begin{array}{cc}
\frac{E, e:: \tau_{0} \triangleright e:: \tau_{1}}{\tau_{0} \approx \tau_{1}} \text { (con) } & E \triangleright e_{1} e_{2}:: \tau \\
\frac{E \triangleright e_{1}:: \alpha \rightarrow \tau ; E \triangleright e_{2}:: \alpha}{(a p p)} \\
\frac{E, x:: \alpha_{1} \triangleright e:: \alpha_{2} ; \tau \approx \alpha_{1} \rightarrow \alpha_{2}}{} \text { (abs) } & \frac{E \triangleright \text { let } x=e_{1} \text { in } e_{2}:: \tau}{E \triangleright e_{1}:: \alpha ; E, x:: \alpha \triangleright e_{2}:: \tau} \text { (let) } \\
\frac{E \triangleright \text { if } e_{1} \text { then } e_{2} \text { else } e_{3}:: \tau}{E \triangleright e_{1}:: \text { Bool; } E \triangleright e_{2}:: \tau ; E \triangleright e_{3}:: \tau} \text { (ite) }
\end{array}
$$

Recipe - Type Inference

- to find most general type of e under E

Recipe - Type Inference

- to find most general type of e under E
- first, take $E \triangleright e:: \alpha_{0}$ (for fresh type variable α_{0})

Recipe - Type Inference

- to find most general type of e under E
- first, take $E \triangleright e:: \alpha_{0}$ (for fresh type variable α_{0})
- then, use typing constraint rules to generate unification problem u (if at any point no rule applicable Not Typable)

Recipe - Type Inference

- to find most general type of e under E
- first, take $E \triangleright e:: \alpha_{0}$ (for fresh type variable α_{0})
- then, use typing constraint rules to generate unification problem u (if at any point no rule applicable Not Typable)
- if u has no solution (none of the rules is applicable before reaching \square) then Not Typable, otherwise, solve u obtaining solution σ

Recipe - Type Inference

- to find most general type of e under E
- first, take $E \triangleright e:: \alpha_{0}$ (for fresh type variable α_{0})
- then, use typing constraint rules to generate unification problem u (if at any point no rule applicable Not Typable)
- if u has no solution (none of the rules is applicable before reaching \square) then Not Typable, otherwise, solve u obtaining solution σ
- finally, $\alpha_{0} \sigma$ is the most general type of e

Exercise

find most general type of let $i d=\lambda x . x$ in id 0 w.r.t. P

Exercises (for January 14th)

1. Read the lecture notes about type checking and type inference.
2. Check that if True then $x+1$ else $x-1$ is of type Int under $P \cup\{x:: \operatorname{lnt}\}$.
3. Give a proof of $\varnothing \vdash \lambda x y . x:: \alpha_{0} \rightarrow \alpha_{1} \rightarrow \alpha_{0}$.
4. Solve the unification problem $\operatorname{Pair}\left(\operatorname{Bool}, \alpha_{0}\right) \approx \operatorname{Pair}\left(\alpha_{1}, \operatorname{lnt}\right)$.
5. Show that the unification problem $\operatorname{Pair}\left(\right.$ Bool,$\left.\alpha_{0}\right) \approx \operatorname{Pair}\left(\alpha_{0}, \operatorname{lnt}\right)$ does not have a solution.
6. Infer the most general type of let suc $=\lambda x \cdot x+1$ in let $d=\lambda x$. suc $(\operatorname{suc} x)$ in $d 2$ under P.
