

Functional Programming WS 2010/11

Christian Sternagel (VO) Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science University of Innsbruck

December 15, 2010

Today's Topics

- Type Checking
- Unification
- Type Inference

Type Checking

Problem - Type Checking

input: expression e and type au

output: YES (e has type τ) or NO

Problem - Type Checking

input: expression e and type τ output: YES (e has type τ) or NO

The Language of Expressions - Core FP

$$\begin{array}{lll} e & \stackrel{\mathrm{def}}{=} & x \mid e \mid e \mid \lambda x. \, e & \lambda\text{-calculus} \\ & \mid & c & \text{constant (for primitives)} \\ & \mid & \mathbf{let} \; x = e \; \mathbf{in} \; e & \text{let binding} \\ & \mid & \mathbf{if} \; e \; \mathbf{then} \; e \; \mathbf{else} \; e & \text{conditional} \end{array}$$

Problem - Type Checking

input: expression e and type τ output: YES (e has type τ) or NO

The Language of Expressions - Core FP

$$\begin{array}{lll} e & \stackrel{\mathrm{def}}{=} & x \mid e \mid e \mid \lambda x. \, e & \lambda\text{-calculus} \\ & \mid & c & \text{constant (for primitives)} \\ & \mid & \mathbf{let} \; x = e \; \mathbf{in} \; e & \text{let binding} \\ & \mid & \mathbf{if} \; e \; \mathbf{then} \; e \; \mathbf{else} \; e & \text{conditional} \end{array}$$

Primitives

- used for predefined "functions" and "constants"
- **Boolean:** True, False, <, >, . . .
- arithmetic: \times , +, \div , -, 0, 1, ...
- tuples: Pair, fst, snd
- lists: Nil, Cons, head, tail

What is Type Checking?

Given some environment (assigning types to primitives) together with a core FP expression and a type, check whether the expression is of the given type with respect to the environment.

• type variables, α , α_0 , α_1 , ...

- type variables, α , α_0 , α_1 , ...
- the function type constructor →

- type variables, α , α_0 , α_1 , ...
- the function type constructor →
- type constructors *C*, *C*₁, ... (like: List)

- type variables, α , α_0 , α_1 , ...
- the function type constructor →
- type constructors C, C_1 , ... (like: List)
- types $\tau \stackrel{\text{def}}{=} \alpha \mid \tau \to \tau \mid \mathit{C}(\tau, \dots, \tau)$

- type variables, α , α_0 , α_1 , ...
- the function type constructor →
- type constructors C, C_1 , ... (like: List)
- types $\tau \stackrel{\text{def}}{=} \alpha \mid \tau \to \tau \mid C(\tau, \dots, \tau)$
- special case: base types: Int, Bool (instead of Int(), Bool())

- type variables, α , α_0 , α_1 , ...
- the function type constructor →
- type constructors C, C₁, ... (like: List)
- types $\tau \stackrel{\text{def}}{=} \alpha \mid \tau \to \tau \mid C(\tau, \dots, \tau)$
- special case: base types: Int, Bool (instead of Int(), Bool())

Example Types

- List(Bool) list of Booleans
- Pair(Int, Int) pairs of integers
- Int \rightarrow Int \rightarrow Bool functions from two integers to Boolean

Typing Environments

- set of pairs E, mapping variables and primitives to types
- instead of $(e, \tau) \in E$, we write $e :: \tau \in E$

Typing Environments

- set of pairs E, mapping variables and primitives to types
- instead of $(e, \tau) \in E$, we write $e :: \tau \in E$

Typing Judgments

- *E* ⊢ *e* :: *τ*
- read: "it can be proved that e is of type τ under E"

Typing Environments

- set of pairs E, mapping variables and primitives to types
- instead of $(e, \tau) \in E$, we write $e :: \tau \in E$

Typing Judgments

- *E* ⊢ *e* :: *τ*
- read: "it can be proved that e is of type τ under E"

Examples

- primitive environment
 - $P = \{+ :: \mathsf{Int} \to \mathsf{Int} \to \mathsf{Int}, \mathsf{Nil} :: \mathsf{List}(\alpha), \mathsf{True} :: \mathsf{Bool}, \ldots\}$
- P ⊢ True :: Bool "using the primitive environment, it can be shown that True is of type Bool"

Type Substitutions

- mapping σ from type variables to types
- apply substitution to type

$$\tau \sigma \stackrel{\text{def}}{=} \begin{cases} \sigma(\alpha) & \text{if } \tau = \alpha \\ \tau_1 \sigma \to \tau_2 \sigma & \text{if } \tau = \tau_1 \to \tau_2 \\ C(\tau_1 \sigma, \dots, \tau_n \sigma) & \text{if } \tau = C(\tau_1, \dots, \tau_n) \end{cases}$$

• composition $\sigma_1\sigma_2\stackrel{\mathsf{def}}{=} \sigma_2\circ\sigma_1$ (where \circ is function composition)

Type Substitutions

- ullet mapping σ from type variables to types
- apply substitution to type

$$\tau \sigma \stackrel{\text{def}}{=} \begin{cases} \sigma(\alpha) & \text{if } \tau = \alpha \\ \tau_1 \sigma \to \tau_2 \sigma & \text{if } \tau = \tau_1 \to \tau_2 \\ C(\tau_1 \sigma, \dots, \tau_n \sigma) & \text{if } \tau = C(\tau_1, \dots, \tau_n) \end{cases}$$

• composition $\sigma_1 \sigma_2 \stackrel{\text{def}}{=} \sigma_2 \circ \sigma_1$ (where \circ is function composition)

Examples

- $\sigma_1 = \{\alpha_1/\mathsf{List}(\alpha_2), \alpha_2/\mathsf{Bool}\}$
- $\sigma_2 = \{\alpha_2/\text{Int}\}$
- $\sigma_1 \sigma_2 = \sigma_2 \circ \sigma_1 = \{\alpha_1/\mathsf{List}(\mathsf{Int}), \alpha_2/\mathsf{Bool}\}$

Type Checking as Natural Deduction Rules

Example

- environment $E = \{ \mathsf{True} :: \mathsf{Bool}, + :: \mathsf{Int} \to \mathsf{Int} \to \mathsf{Int} \}$
- prove judgment $E \vdash (\lambda x. x)$ True :: Bool

1	True :: Bool	ins <i>E</i>
2	x :: Bool	assumption
3	$\lambda x. x :: Bool \to Bool$	abs 2
4	$(\lambda x. x)$ True :: Bool	арр 3, 1

Example

- environment $E = \{\mathsf{True} :: \mathsf{Bool}, + :: \mathsf{Int} \to \mathsf{Int} \to \mathsf{Int}\}$
- prove judgment $E \vdash (\lambda x. x)$ True :: Bool

1	True :: Bool	ins <i>E</i>
2	x :: Bool	assumption
3	$\lambda x. x :: Bool \to Bool$	abs 2
4	$(\lambda x. x)$ True :: Bool	app 3, 1

Example

• prove $E \vdash \lambda x. x + x :: Int \rightarrow Int$

$$x :: Int$$
 assumption
 $+ :: Int \rightarrow Int$ ins E
 $(+) x :: Int \rightarrow Int$ app 2, 1
 $x + x :: Int$ app 3, 1
 $\lambda x. x + x :: Int \rightarrow Int$ abs 1–4

Unification

input: equation $au_1 pprox au_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

a pair of types

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

input: equation $au_1 pprox au_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

syntactic equality

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

Notions

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

Notions

• equation $\tau \approx \tau'$ is satisfiable iff exists σ s.t., $\tau \sigma = \tau' \sigma$

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau'$ is satisfiable iff exists σ s.t., $\tau \sigma = \tau' \sigma$
- σ is called solution of $\tau \approx \tau'$

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau'$ is satisfiable iff exists σ s.t., $\tau \sigma = \tau' \sigma$
- σ is called solution of $\tau \approx \tau'$
- unification problem is finite sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau'$ is satisfiable iff exists σ s.t., $\tau \sigma = \tau' \sigma$
- σ is called solution of $\tau \approx \tau'$
- unification problem is finite sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

□ denotes empty sequence

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau'$ is satisfiable iff exists σ s.t., $\tau \sigma = \tau' \sigma$
- σ is called solution of $\tau \approx \tau'$
- · unification problem is finite sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

- □ denotes empty sequence
- unification solving given unification problem

input: equation $\tau_1 \approx \tau_2$

output: substitution (σ s.t. $\tau_1 \sigma = \tau_2 \sigma$) or FAILURE

Notions

- equation $\tau \approx \tau'$ is satisfiable iff exists σ s.t., $\tau \sigma = \tau' \sigma$
- σ is called solution of $\tau \approx \tau'$
- · unification problem is finite sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

- □ denotes empty sequence
- unification solving given unification problem
- type variables

$$\mathcal{TV}\mathsf{ar}(\tau) \stackrel{\mathsf{def}}{=} \begin{cases} \{\alpha\} & \text{if } \tau = \alpha \\ \mathcal{TV}\mathsf{ar}(\tau_1) \cup \mathcal{TV}\mathsf{ar}(\tau_2) & \text{if } \tau = \tau_1 \to \tau_2 \\ \bigcup_{1 \le i \le n} \mathcal{TV}\mathsf{ar}(\tau_i) & \text{if } \tau = \mathcal{C}(\tau_1, \dots, \tau_n) \end{cases}$$

Unification Rules

$$\begin{split} & \frac{E_1;\,\mathcal{C}(\tau_1,\ldots,\tau_n) \approx \,\mathcal{C}(\tau_1',\ldots,\tau_n');\,E_2}{E_1;\,\tau_1 \approx \tau_1';\ldots;\,\tau_n \approx \tau_n';\,E_2} \,(\mathsf{d}_1) \\ & \frac{E_1;\,\tau_1 \to \tau_2 \approx \tau_1' \to \tau_2';\,E_2}{E_1;\,\tau_1 \approx \tau_1';\,\tau_2 \approx \tau_2';\,E_2} \,(\mathsf{d}_2) \\ & \frac{E_1;\,\alpha \approx \tau;\,E_2 \quad \alpha \not\in \mathcal{TV} \mathsf{ar}(\tau)}{(E_1;\,E_2)\{\alpha/\tau\}} \,(\mathsf{v}_1) \\ & \frac{E_1;\,\tau \approx \alpha;\,E_2 \quad \alpha \not\in \mathcal{TV} \mathsf{ar}(\tau)}{(E_1;\,E_2)\{\alpha/\tau\}} \,(\mathsf{v}_2) \\ & \frac{E_1;\,\tau \approx \tau;\,E_2 \quad \alpha \not\in \mathcal{TV} \mathsf{ar}(\tau)}{E_1;\,E_2} \,(\mathsf{t}) \end{split}$$

Example

Type Inference

What is Type Inference?

Given some environment together with a core FP expression and a type, infer a solution (i.e., type substitution)—if possible—such that applying the substitution to the initial type yields the most general type of the initial expression.

Type Inference Problems

- *E* ⊳ *e* :: *τ*
- read: "try to infer most general substitution σ such that $E \vdash e :: \tau \sigma$ "

Type Inference Problems

- *E* ⊳ *e* :: *τ*
- read: "try to infer most general substitution σ such that $E \vdash e :: \tau \sigma$ "

Example

6

- $E = \{0 :: Int\}$
- $E \triangleright$ let $id = \lambda x. x$ in $id 0 :: \alpha_0$
- $\sigma = \{\alpha_0/\text{Int}\}$

1	x :: Int	assumption
2	$\lambda x. x :: Int \to Int$	abs 1
3	$id :: Int \to Int$	assumption
4	0 :: Int	ins <i>E</i>
5	<i>id</i> 0 :: Int	app 3, 4

let $id = \lambda x. x$ **in** id 0 :: Int let 2, 3–5

Typing Constraint Rules

$$\frac{E,e :: \tau_0 \rhd e :: \tau_1}{\tau_0 \approx \tau_1} \text{ (con)} \qquad \frac{E \rhd e_1 \ e_2 :: \tau}{E \rhd e_1 :: \alpha \to \tau; E \rhd e_2 :: \alpha} \text{ (app)}$$

$$\frac{E \rhd \lambda x. \ e :: \tau}{E,x :: \alpha_1 \rhd e :: \alpha_2; \tau \approx \alpha_1 \to \alpha_2} \text{ (abs)} \qquad \frac{E \rhd \textbf{let} \ x = e_1 \ \textbf{in} \ e_2 :: \tau}{E \rhd e_1 :: \alpha; E,x :: \alpha \rhd e_2 :: \tau} \text{ (let)}$$

$$\frac{E \rhd \mathbf{if} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 :: \tau}{E \rhd e_1 :: \mathsf{Bool}; E \rhd e_2 :: \tau; E \rhd e_3 :: \tau} \text{ (ite)}$$

• to find most general type of e under E

- to find most general type of e under E
- first, take $E \triangleright e :: \alpha_0$ (for fresh type variable α_0)

- to find most general type of e under E
- first, take $E \triangleright e :: \alpha_0$ (for fresh type variable α_0)
- then, use typing constraint rules to generate unification problem u (if at any point no rule applicable Not Typable)

- to find most general type of e under E
- first, take $E \triangleright e :: \alpha_0$ (for fresh type variable α_0)
- then, use typing constraint rules to generate unification problem u (if at any point no rule applicable Not Typable)
- if u has no solution (none of the rules is applicable before reaching □) then Not Typable, otherwise, solve u obtaining solution σ

- to find most general type of e under E
- first, take $E \triangleright e :: \alpha_0$ (for fresh type variable α_0)
- then, use typing constraint rules to generate unification problem u (if at any point no rule applicable Not Typable)
- if u has no solution (none of the rules is applicable before reaching \Box) then Not Typable, otherwise, solve u obtaining solution σ
- finally, $\alpha_0 \sigma$ is the most general type of e

Exercise

find most general type of **let** $id = \lambda x. x$ **in** id 0 w.r.t. P

Exercises (for January 14th)

- 1. Read the lecture notes about type checking and type inference.
- 2. Check that **if** True **then** x + 1 **else** x 1 is of type Int under $P \cup \{x :: Int\}$.
- 3. Give a proof of $\varnothing \vdash \lambda xy. x :: \alpha_0 \to \alpha_1 \to \alpha_0$.
- 4. Solve the unification problem $Pair(Bool, \alpha_0) \approx Pair(\alpha_1, Int)$.
- 5. Show that the unification problem $\mathsf{Pair}(\mathsf{Bool},\alpha_0) \approx \mathsf{Pair}(\alpha_0,\mathsf{Int})$ does not have a solution.
- 6. Infer the most general type of let $suc = \lambda x. x + 1$ in let $d = \lambda x. suc$ (suc x) in d 2 under P.