
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

December 15, 2010

http://cl-informatik.uibk.ac.at

Today’s Topics

� Type Checking

� Unification

� Type Inference

Type Checking

Problem - Type Checking

input: expression e and type τ

output: YES (e has type τ) or NO

The Language of Expressions - Core FP

e
def
= x | e e | λx . e λ-calculus
| c constant (for primitives)
| let x = e in e let binding
| if e then e else e conditional

Primitives

� used for predefined “functions” and “constants”

� Boolean: True, False, <, >, . . .

� arithmetic: ×, +, ÷, −, 0, 1, . . .

� tuples: Pair, fst, snd

� lists: Nil, Cons, head, tail

Problem - Type Checking

input: expression e and type τ

output: YES (e has type τ) or NO

The Language of Expressions - Core FP

e
def
= x | e e | λx . e λ-calculus
| c constant (for primitives)
| let x = e in e let binding
| if e then e else e conditional

Primitives

� used for predefined “functions” and “constants”

� Boolean: True, False, <, >, . . .

� arithmetic: ×, +, ÷, −, 0, 1, . . .

� tuples: Pair, fst, snd

� lists: Nil, Cons, head, tail

Problem - Type Checking

input: expression e and type τ

output: YES (e has type τ) or NO

The Language of Expressions - Core FP

e
def
= x | e e | λx . e λ-calculus
| c constant (for primitives)
| let x = e in e let binding
| if e then e else e conditional

Primitives

� used for predefined “functions” and “constants”

� Boolean: True, False, <, >, . . .

� arithmetic: ×, +, ÷, −, 0, 1, . . .

� tuples: Pair, fst, snd

� lists: Nil, Cons, head, tail

What is Type Checking?

Given some environment (assigning types to primitives)
together with a core FP expression and a type, check
whether the expression is of the given type with respect
to the environment.

Types

� type variables, α, α0, α1, . . .

� the function type constructor →
� type constructors C , C1, . . . (like: List)

� types τ
def
= α | τ → τ | C (τ, . . . , τ)

� special case: base types: Int, Bool (instead of Int(), Bool())

Example Types

� List(Bool) - list of Booleans

� Pair(Int, Int) - pairs of integers

� Int→ Int→ Bool - functions from two integers to Boolean

Types

� type variables, α, α0, α1, . . .

� the function type constructor →

� type constructors C , C1, . . . (like: List)

� types τ
def
= α | τ → τ | C (τ, . . . , τ)

� special case: base types: Int, Bool (instead of Int(), Bool())

Example Types

� List(Bool) - list of Booleans

� Pair(Int, Int) - pairs of integers

� Int→ Int→ Bool - functions from two integers to Boolean

Types

� type variables, α, α0, α1, . . .

� the function type constructor →
� type constructors C , C1, . . . (like: List)

� types τ
def
= α | τ → τ | C (τ, . . . , τ)

� special case: base types: Int, Bool (instead of Int(), Bool())

Example Types

� List(Bool) - list of Booleans

� Pair(Int, Int) - pairs of integers

� Int→ Int→ Bool - functions from two integers to Boolean

Types

� type variables, α, α0, α1, . . .

� the function type constructor →
� type constructors C , C1, . . . (like: List)

� types τ
def
= α | τ → τ | C (τ, . . . , τ)

� special case: base types: Int, Bool (instead of Int(), Bool())

Example Types

� List(Bool) - list of Booleans

� Pair(Int, Int) - pairs of integers

� Int→ Int→ Bool - functions from two integers to Boolean

Types

� type variables, α, α0, α1, . . .

� the function type constructor →
� type constructors C , C1, . . . (like: List)

� types τ
def
= α | τ → τ | C (τ, . . . , τ)

� special case: base types: Int, Bool (instead of Int(), Bool())

Example Types

� List(Bool) - list of Booleans

� Pair(Int, Int) - pairs of integers

� Int→ Int→ Bool - functions from two integers to Boolean

Types

� type variables, α, α0, α1, . . .

� the function type constructor →
� type constructors C , C1, . . . (like: List)

� types τ
def
= α | τ → τ | C (τ, . . . , τ)

� special case: base types: Int, Bool (instead of Int(), Bool())

Example Types

� List(Bool) - list of Booleans

� Pair(Int, Int) - pairs of integers

� Int→ Int→ Bool - functions from two integers to Boolean

Typing Environments

� set of pairs E , mapping variables and primitives to types

� instead of (e, τ) ∈ E , we write e :: τ ∈ E

Typing Judgments

� E ` e :: τ

� read: “it can be proved that e is of type τ under E”

Examples

� primitive environment
P = {+ :: Int→ Int→ Int,Nil :: List(α),True :: Bool, . . .}

� P ` True :: Bool - “using the primitive environment, it can be
shown that True is of type Bool”

Typing Environments

� set of pairs E , mapping variables and primitives to types

� instead of (e, τ) ∈ E , we write e :: τ ∈ E

Typing Judgments

� E ` e :: τ

� read: “it can be proved that e is of type τ under E”

Examples

� primitive environment
P = {+ :: Int→ Int→ Int,Nil :: List(α),True :: Bool, . . .}

� P ` True :: Bool - “using the primitive environment, it can be
shown that True is of type Bool”

Typing Environments

� set of pairs E , mapping variables and primitives to types

� instead of (e, τ) ∈ E , we write e :: τ ∈ E

Typing Judgments

� E ` e :: τ

� read: “it can be proved that e is of type τ under E”

Examples

� primitive environment
P = {+ :: Int→ Int→ Int,Nil :: List(α),True :: Bool, . . .}

� P ` True :: Bool - “using the primitive environment, it can be
shown that True is of type Bool”

Type Substitutions

� mapping σ from type variables to types

� apply substitution to type

τσ
def
=

σ(α) if τ = α

τ1σ → τ2σ if τ = τ1 → τ2

C (τ1σ, . . . , τnσ) if τ = C (τ1, . . . , τn)

� composition σ1σ2
def
= σ2 ◦ σ1 (where ◦ is function composition)

Examples

� σ1 = {α1/List(α2), α2/Bool}
� σ2 = {α2/Int}
� σ1σ2 = σ2 ◦ σ1 = {α1/List(Int), α2/Bool}

Type Substitutions

� mapping σ from type variables to types

� apply substitution to type

τσ
def
=

σ(α) if τ = α

τ1σ → τ2σ if τ = τ1 → τ2

C (τ1σ, . . . , τnσ) if τ = C (τ1, . . . , τn)

� composition σ1σ2
def
= σ2 ◦ σ1 (where ◦ is function composition)

Examples

� σ1 = {α1/List(α2), α2/Bool}
� σ2 = {α2/Int}
� σ1σ2 = σ2 ◦ σ1 = {α1/List(Int), α2/Bool}

Type Checking as Natural Deduction Rules

e :: τ ∈ E

e :: τσ
(ins)

e1 :: τ2 → τ1 e2 :: τ2
e1 e2 :: τ1

(app)

x :: τ1
...

e :: τ2
λx . e :: τ1 → τ2

(abs)
e1 :: τ1

x :: τ1
...

e2 :: τ2
let x = e1 in e2 :: τ2

(let)

e1 :: Bool e2 :: τ e3 :: τ

if e1 then e2 else e3 :: τ
(ite)

Example

� environment E = {True :: Bool,+ :: Int→ Int→ Int}
� prove judgment E ` (λx . x) True :: Bool

1 True :: Bool ins E
2 x :: Bool assumption
3 λx . x :: Bool→ Bool abs 2
4 (λx . x) True :: Bool app 3, 1

Example

� prove E ` λx . x + x :: Int→ Int

1 x :: Int assumption
2 + :: Int→ Int→ Int ins E
3 (+) x :: Int→ Int app 2, 1
4 x + x :: Int app 3, 1
5 λx . x + x :: Int→ Int abs 1–4

Example

� environment E = {True :: Bool,+ :: Int→ Int→ Int}
� prove judgment E ` (λx . x) True :: Bool

1 True :: Bool ins E
2 x :: Bool assumption
3 λx . x :: Bool→ Bool abs 2
4 (λx . x) True :: Bool app 3, 1

Example

� prove E ` λx . x + x :: Int→ Int

1 x :: Int assumption
2 + :: Int→ Int→ Int ins E
3 (+) x :: Int→ Int app 2, 1
4 x + x :: Int app 3, 1
5 λx . x + x :: Int→ Int abs 1–4

Unification

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′

� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n

� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Problem - Unification

input: equation τ1 ≈ τ2
output: substitution (σ s.t. τ1σ = τ2σ) or FAILURE

a pair of types

syntactic equality

Notions

� equation τ ≈ τ ′ is satisfiable iff exists σ s.t., τσ = τ ′σ

� σ is called solution of τ ≈ τ ′
� unification problem is finite sequence of equations

τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n
� � denotes empty sequence

� unification - solving given unification problem

� type variables

T Var(τ)
def
=

{α} if τ = α

T Var(τ1) ∪ T Var(τ2) if τ = τ1 → τ2⋃
1≤i≤n T Var(τi) if τ = C (τ1, . . . , τn)

Unification Rules

E1; C (τ1, . . . , τn) ≈ C (τ ′1, . . . , τ
′
n); E2

E1; τ1 ≈ τ ′1; . . . ; τn ≈ τ ′n; E2
(d1)

E1; τ1 → τ2 ≈ τ ′1 → τ ′2; E2

E1; τ1 ≈ τ ′1; τ2 ≈ τ ′2; E2
(d2)

E1;α ≈ τ ; E2 α 6∈ T Var(τ)

(E1; E2){α/τ} (v1)

E1; τ ≈ α; E2 α 6∈ T Var(τ)

(E1; E2){α/τ} (v2)

E1; τ ≈ τ ; E2

E1; E2
(t)

Example

List(Bool) ≈ List(α) ⇒(d1)
{} Bool ≈ α
⇒(v2)
{α/Bool} �

Type Inference

What is Type Inference?

Given some environment together with a core FP
expression and a type, infer a solution (i.e., type
substitution)—if possible—such that applying the
substitution to the initial type yields the most general
type of the initial expression.

Type Inference Problems

� E B e :: τ

� read: “try to infer most general substitution σ such that
E ` e :: τσ”

Example

� E = {0 :: Int}
� E B let id = λx . x in id 0 :: α0

� σ = {α0/Int}
1 x :: Int assumption
2 λx . x :: Int→ Int abs 1
3 id :: Int→ Int assumption
4 0 :: Int ins E
5 id 0 :: Int app 3, 4
6 let id = λx . x in id 0 :: Int let 2, 3–5

Type Inference Problems

� E B e :: τ

� read: “try to infer most general substitution σ such that
E ` e :: τσ”

Example

� E = {0 :: Int}
� E B let id = λx . x in id 0 :: α0

� σ = {α0/Int}
1 x :: Int assumption
2 λx . x :: Int→ Int abs 1
3 id :: Int→ Int assumption
4 0 :: Int ins E
5 id 0 :: Int app 3, 4
6 let id = λx . x in id 0 :: Int let 2, 3–5

Typing Constraint Rules

E , e :: τ0 B e :: τ1
τ0 ≈ τ1

(con)
E B e1 e2 :: τ

E B e1 :: α→ τ ; E B e2 :: α
(app)

E B λx . e :: τ

E , x :: α1 B e :: α2; τ ≈ α1 → α2
(abs)

E B let x = e1 in e2 :: τ

E B e1 :: α; E , x :: αB e2 :: τ
(let)

E B if e1 then e2 else e3 :: τ

E B e1 :: Bool; E B e2 :: τ ; E B e3 :: τ
(ite)

Recipe - Type Inference

� to find most general type of e under E

� first, take E B e :: α0 (for fresh type variable α0)

� then, use typing constraint rules to generate unification
problem u (if at any point no rule applicable Not Typable)

� if u has no solution (none of the rules is applicable before
reaching �) then Not Typable, otherwise, solve u obtaining
solution σ

� finally, α0σ is the most general type of e

Recipe - Type Inference

� to find most general type of e under E

� first, take E B e :: α0 (for fresh type variable α0)

� then, use typing constraint rules to generate unification
problem u (if at any point no rule applicable Not Typable)

� if u has no solution (none of the rules is applicable before
reaching �) then Not Typable, otherwise, solve u obtaining
solution σ

� finally, α0σ is the most general type of e

Recipe - Type Inference

� to find most general type of e under E

� first, take E B e :: α0 (for fresh type variable α0)

� then, use typing constraint rules to generate unification
problem u (if at any point no rule applicable Not Typable)

� if u has no solution (none of the rules is applicable before
reaching �) then Not Typable, otherwise, solve u obtaining
solution σ

� finally, α0σ is the most general type of e

Recipe - Type Inference

� to find most general type of e under E

� first, take E B e :: α0 (for fresh type variable α0)

� then, use typing constraint rules to generate unification
problem u (if at any point no rule applicable Not Typable)

� if u has no solution (none of the rules is applicable before
reaching �) then Not Typable, otherwise, solve u obtaining
solution σ

� finally, α0σ is the most general type of e

Recipe - Type Inference

� to find most general type of e under E

� first, take E B e :: α0 (for fresh type variable α0)

� then, use typing constraint rules to generate unification
problem u (if at any point no rule applicable Not Typable)

� if u has no solution (none of the rules is applicable before
reaching �) then Not Typable, otherwise, solve u obtaining
solution σ

� finally, α0σ is the most general type of e

Exercise

find most general type of let id = λx . x in id 0 w.r.t. P

Exercises (for January 14th)

1. Read the lecture notes about type checking and type
inference.

2. Check that if True then x + 1 else x − 1 is of type Int under
P ∪ {x :: Int}.

3. Give a proof of ∅ ` λxy . x :: α0 → α1 → α0.

4. Solve the unification problem Pair(Bool, α0) ≈ Pair(α1, Int).

5. Show that the unification problem
Pair(Bool, α0) ≈ Pair(α0, Int) does not have a solution.

6. Infer the most general type of
let suc = λx . x + 1 in let d = λx . suc (suc x) in d 2 under
P.

