
Functional Programming
WS 2010/11

Christian Sternagel (VO)
Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

January 26, 2011

http://cl-informatik.uibk.ac.at

Today’s Topics

� An ‘Imperative’ Evaluator

� Monads

� A Monadic Evaluator

An ‘Imperative’ Evaluator

The Basic Evaluator

data Term = Con Int | Div Term Term

eval :: Term -> Int
eval (Con a) = a
eval (Div t u) = eval t `div` eval u

Example Terms

answer, failure :: Term
answer = Div (Div (Con 1972) (Con 2)) (Con 23)
failure = Div (Con 1) (Con 0)

> eval answer
42
> eval failure
*** Exception: divide by zero

The Basic Evaluator

data Term = Con Int | Div Term Term

eval :: Term -> Int
eval (Con a) = a
eval (Div t u) = eval t `div` eval u

Example Terms

answer, failure :: Term
answer = Div (Div (Con 1972) (Con 2)) (Con 23)
failure = Div (Con 1) (Con 0)

> eval answer
42
> eval failure
*** Exception: divide by zero

Extending a Purely Functional Evaluator

� error handling - modify each recursive call to check for and
handle errors

� operation count - modify each recursive call to pass around
current count

� execution trace - modify each recursive call to pass around the
trace

� in impure languages we could use: exceptions, global
variables, output (not nice for mathematical reasoning, but
easy to integrate)

Extending a Purely Functional Evaluator

� error handling - modify each recursive call to check for and
handle errors

� operation count - modify each recursive call to pass around
current count

� execution trace - modify each recursive call to pass around the
trace

� in impure languages we could use: exceptions, global
variables, output (not nice for mathematical reasoning, but
easy to integrate)

Extending a Purely Functional Evaluator

� error handling - modify each recursive call to check for and
handle errors

� operation count - modify each recursive call to pass around
current count

� execution trace - modify each recursive call to pass around the
trace

� in impure languages we could use: exceptions, global
variables, output (not nice for mathematical reasoning, but
easy to integrate)

Extending a Purely Functional Evaluator

� error handling - modify each recursive call to check for and
handle errors

� operation count - modify each recursive call to pass around
current count

� execution trace - modify each recursive call to pass around the
trace

� in impure languages we could use: exceptions, global
variables, output (not nice for mathematical reasoning, but
easy to integrate)

Variation One - Exception Handling

data M a = Raise Exception | Return a
type Exception = String

eval :: Term -> M Int
eval (Con a) = Return a
eval (Div t u) =
case eval t of

Raise e -> Raise e
Return a ->
case eval u of

Raise e -> Raise e
Return b ->
if b == 0
then Raise "divide by zero"
else Return (a `div` b)

Variation Two - State

type M a = State -> (a, State)
type State = Int

eval :: Term -> M Int
eval (Con a) x = (a, x)
eval (Div t u) x = let (a, y) = eval t x in

let (b, z) = eval u y in

(a `div` b, z+1)

Variation Three - Tracing

type M a = (Output, a)
type Output = String

eval :: Term -> M Int
eval (Con a) = (line (Con a) a, a)
eval (Div t u) =
let (x, a) = eval t in

let (y, b) = eval u in

(x ++ y ++ line (Div t u) (a `div` b), a `div` b)

line :: Term -> Int -> Output
line t a =

"eval(" ++ show t ++ ") <= " ++ show a ++ "\n"

Monads

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Common Structure of Variations

� type M a of effects/computations

� original evaluator of type Term -> Int

� all variations have type Term -> M Int

� accept argument of type Term and return result of type Int
with possible additional effect captured by M

� which operations are required on M?

� turn arbitrary value into computation returning that value

return :: a -> M a

� apply function of type a -> M b to computation of type M a

(>>=) :: M a -> (a -> M b) -> M b

� M together with return and (>>=) (‘bind’) form a monad

Rewrite eval in Terms of Monad Abstractions

eval :: Term -> M Int
eval (Con a) = return a
eval (Div t u) =

eval t >>= \a -> eval u >>= \b -> return (a `div` b)

Recall

do {let x = e;M} = let x = e in do {M}

do {x <- m;M} = m >>= (\x -> do {M})

do {m;M} = m >>= (_ -> do {M})

do {M} = M

Syntactic Sugar

eval (Div t u) = do

a <- eval t
b <- eval u
return (a `div` b)

Rewrite eval in Terms of Monad Abstractions

eval :: Term -> M Int
eval (Con a) = return a
eval (Div t u) =

eval t >>= \a -> eval u >>= \b -> return (a `div` b)

Recall

do {let x = e;M} = let x = e in do {M}

do {x <- m;M} = m >>= (\x -> do {M})

do {m;M} = m >>= (_ -> do {M})

do {M} = M

Syntactic Sugar

eval (Div t u) = do

a <- eval t
b <- eval u
return (a `div` b)

Rewrite eval in Terms of Monad Abstractions

eval :: Term -> M Int
eval (Con a) = return a
eval (Div t u) =

eval t >>= \a -> eval u >>= \b -> return (a `div` b)

Recall

do {let x = e;M} = let x = e in do {M}

do {x <- m;M} = m >>= (\x -> do {M})

do {m;M} = m >>= (_ -> do {M})

do {M} = M

Syntactic Sugar

eval (Div t u) = do

a <- eval t
b <- eval u
return (a `div` b)

Monad Laws

1. left identity

return a >>= f = f a

2. right identity

m >>= return = m

3. associativity

(m >>= f) >>= g = m >>= (\x -> f x >>= g)

A Monadic Evaluator

The Basic Evaluator, Revisited - The Identity Monad

type M a = a

return :: a -> M a
return x = x

(>>=) :: M a -> (a -> M b) -> M b
x >>= f = f x

Variation One, Revisited - The Exception Monad

data M a = Raise Exception | Return a
type Exception = String

return :: a -> M a
return x = Return x

(>>=) :: M a -> (a -> M b) -> M b
m >>= f = case m of Raise e -> Raise e

Return x -> f x

raise :: Exception -> M a
raise e = Raise e

eval (Div t u) = do

a <- eval t
b <- eval u
if b == 0 then raise "divide by zero"

else return (a `div` b)

Variation Two, Revisited - The State Monad

type M a = State -> (a, State)
type State = Int

return :: a -> M a
return a = \x -> (a, x)

(>>=) :: M a -> (a -> M b) -> M b
m >>= f = \x -> let (a, y) = m x in

let (b, z) = f a y in

(b, z)

tick :: M ()
tick = \x -> ((), x+1)

eval (Div t u) = do {
a <- eval t; b <- eval u;
tick; return (a `div` b)

}

Variation Three, Revisited - The Writer Monad

type M a = (Output, a)
type Output = String

return :: a -> M a
return a = ("", a)

(>>=) :: M a -> (a -> M b) -> M b
m >>= f = let (x, a) = m in

let (y, b) = f a in

(x ++ y, b)

out :: Output -> M ()
out x = (x, ())

eval (Con a) = do { out (line (Con a) a); return a }
eval (Div t u) = do {

a <- eval t; b <- eval u;
out(line(Div t u) (a `div` b)); return(a `div` b) }

Bibliography

Philip Wadler.
Monads for functional programming.
In Johan Jeuring and Erik Meijer, editors, Advanced
Functional Programming, volume 925 of Lecture Notes in
Computer Science, pages 24–52. Springer, 1995.

