Functional Programming WS 2010/11

Christian Sternagel (VO)

Friedrich Neurauter (PS) Ulrich Kastlunger (PS)

Computational Logic Institute of Computer Science

University of Innsbruck

January 26, 2011

Today's Topics

- An 'Imperative' Evaluator
- Monads
- A Monadic Evaluator

An 'Imperative' Evaluator

The Basic Evaluator

```
data Term = Con Int | Div Term Term
eval :: Term -> Int
eval (Con a) = a
eval (Div t u) = eval t `div` eval u
```


The Basic Evaluator

```
data Term = Con Int | Div Term Term
eval :: Term -> Int
eval (Con a) = a
eval (Div t u) = eval t `div` eval u
```


Example Terms

```
answer, failure :: Term
answer = Div (Div (Con 1972) (Con 2)) (Con 23)
failure = Div (Con 1) (Con 0)
```

> eval answer
42
> eval failure
*** Exception: divide by zero

Extending a Purely Functional Evaluator

- error handling - modify each recursive call to check for and handle errors

Extending a Purely Functional Evaluator

- error handling - modify each recursive call to check for and handle errors
- operation count - modify each recursive call to pass around current count

Extending a Purely Functional Evaluator

- error handling - modify each recursive call to check for and handle errors
- operation count - modify each recursive call to pass around current count
- execution trace - modify each recursive call to pass around the trace

Extending a Purely Functional Evaluator

- error handling - modify each recursive call to check for and handle errors
- operation count - modify each recursive call to pass around current count
- execution trace - modify each recursive call to pass around the trace
- in impure languages we could use: exceptions, global variables, output (not nice for mathematical reasoning, but easy to integrate)

Variation One - Exception Handling

```
data M a = Raise Exception | Return a
type Exception = String
eval :: Term -> M Int
eval (Con a) = Return a
eval (Div t u) =
    case eval t of
    Raise e -> Raise e
    Return a ->
        case eval u of
        Raise e -> Raise e
        Return b ->
        if b == 0
```

 then Raise "divide by zero"
 else Return (a `div` b)

Variation Two - State

```
type M a = State -> (a, State)
type State = Int
eval :: Term -> M Int
eval (Con a) x = (a, x)
eval (Div t u) x = let (a, y) = eval t x in
    let (b, z) = eval u y in
    (a `div` b, z+1)
```


Variation Three - Tracing

```
type M a = (Output, a)
type Output = String
eval :: Term -> M Int
eval (Con a) = (line (Con a) a, a)
eval (Div t u) =
    let (x, a) = eval t in
    let (y, b) = eval u in
    (x ++ y ++ line (Div t u) (a `div` b), a `div` b)
line :: Term -> Int -> Output
line t a =
    "eval(" ++ show t ++ ") <= " ++ show a ++ "\n"
```


Monads

Common Structure of Variations

- type M a of effects/computations

Common Structure of Variations

- type M a of effects/computations
- original evaluator of type Term -> Int

Common Structure of Variations

- type M a of effects/computations
- original evaluator of type Term -> Int
- all variations have type Term -> M Int

Common Structure of Variations

- type M a of effects/computations
- original evaluator of type Term -> Int
- all variations have type Term -> M Int
- accept argument of type Term and return result of type Int with possible additional effect captured by M

Common Structure of Variations

- type M a of effects/computations
- original evaluator of type Term -> Int
- all variations have type Term -> M Int
- accept argument of type Term and return result of type Int with possible additional effect captured by M
- which operations are required on M ?

Common Structure of Variations

- type M a of effects/computations
- original evaluator of type Term -> Int
- all variations have type Term -> M Int
- accept argument of type Term and return result of type Int with possible additional effect captured by M
- which operations are required on M ?
- turn arbitrary value into computation returning that value

```
return :: a -> M a
```


Common Structure of Variations

- type M a of effects/computations
- original evaluator of type Term -> Int
- all variations have type Term -> M Int
- accept argument of type Term and return result of type Int with possible additional effect captured by M
- which operations are required on M ?
- turn arbitrary value into computation returning that value

```
return :: a -> M a
```

- apply function of type a -> M b to computation of type M a

$$
\text { (>>=) :: M a }->(\mathrm{a}->\mathrm{M} \text { b) }->\mathrm{M} \mathrm{~b}
$$

Common Structure of Variations

- type M a of effects/computations
- original evaluator of type Term -> Int
- all variations have type Term -> M Int
- accept argument of type Term and return result of type Int with possible additional effect captured by M
- which operations are required on M ?
- turn arbitrary value into computation returning that value

```
return :: a -> M a
```

- apply function of type a -> M b to computation of type M a (>>=) :: M a $->(\mathrm{a} \rightarrow \mathrm{M}$ b) $->\mathrm{M} \mathrm{b}$
- M together with return and (>>=) ('bind') form a monad

Rewrite eval in Terms of Monad Abstractions

```
eval :: Term -> M Int
eval (Con a) = return a
eval (Div t u) =
eval t >>= \a -> eval u >>= \b -> return (a `div` b)
```


Rewrite eval in Terms of Monad Abstractions

```
eval :: Term -> M Int
eval (Con a) = return a
eval (Div t u) =
eval t >>= \a -> eval u >>= \b -> return (a `div` b)
```

Recall

$$
\begin{aligned}
\text { do }\{\text { let } x=e ; M\} & =\text { let } x=e \text { in do }\{M\} \\
\text { do }\{x<-m ; M\} & =m \gg=(\backslash x->\text { do }\{M\}) \\
\text { do }\{m ; M\} & =m \gg=\left(\backslash_{-}->\text {do }\{M\}\right) \\
\text { do }\{M\} & =M
\end{aligned}
$$

Rewrite eval in Terms of Monad Abstractions

```
eval :: Term -> M Int
eval (Con a) = return a
eval (Div t u) =
```

eval t >>= \a -> eval u >>= \b -> return (a `div` b)

Recall

$$
\begin{aligned}
\text { do }\{\text { let } x=e ; M\} & =\text { let } x=e \text { in do }\{M\} \\
\text { do }\{x<-m ; M\} & =m \gg=(\backslash x->\text { do }\{M\}) \\
\text { do }\{m ; M\} & =m \gg=\left(\backslash_{-}->\text {do }\{M\}\right) \\
\text { do }\{M\} & =M
\end{aligned}
$$

Syntactic Sugar

```
eval (Div t u) = do
    a <- eval t
    b <- eval u
    return (a `div` b)
```


Monad Laws

1. left identity

$$
\text { return } a \gg=f=f a
$$

2. right identity

$$
m \gg=\text { return } \quad=\quad m
$$

3. associativity

$$
(m \gg=f) \gg=g \quad=\quad m \gg=(\backslash x->f x \gg=g)
$$

A Monadic Evaluator

The Basic Evaluator, Revisited - The Identity Monad

```
type M a = a
return :: a -> M a
return x = x
    (>>=) :: M a -> (a -> M b) -> M b
x >>= f = f x
```


Variation One, Revisited - The Exception Monad

```
data M a = Raise Exception | Return a
type Exception = String
return :: a -> M a
return x = Return x
(>>=) :: M a -> (a -> M b) -> M b
m >>= f = case m of Raise e -> Raise e
                        Return x -> f x
raise :: Exception -> M a
raise e = Raise e
eval (Div t u) = do
    a <- eval t
    b <- eval u
    if b == O then raise "divide by zero"
        else return (a `div` b)
```


Variation Two, Revisited - The State Monad

```
type M a = State -> (a, State)
type State = Int
return :: a -> M a
return a = \x -> (a, x)
(>>=) :: M a -> (a -> M b) -> M b
m >>= f = \x -> let (a, y) = m x in
let (b, z) = f a y in
(b, z)
tick :: M ()
tick = \x -> ((), x+1)
eval (Div t u) = do {
    a <- eval t; b <- eval u;
    tick; return (a `div` b)
}
```


Variation Three, Revisited - The Writer Monad

```
type M a = (Output, a)
type Output = String
return :: a -> M a
return a = ("", a)
(>>=) :: M a -> (a -> M b) -> M b
m >>= f = let (x, a) = m in
    let (y, b) = f a in
    (x ++ y, b)
```

out : : Output -> M ()
out $\mathrm{x}=(\mathrm{x}, \mathrm{(})$)
eval (Con a) = do \{ out (line (Con a) a) ; return a \}
eval (Div t u) = do \{
a <- eval t; b <- eval u;
out(line(Div t u) (a `div` b)); return (a `div` b) \}

Bibliography

固 Philip Wadler.
Monads for functional programming.
In Johan Jeuring and Erik Meijer, editors, Advanced
Functional Programming, volume 925 of Lecture Notes in
Computer Science, pages 24-52. Springer, 1995.

