
Hortonworks DataFlow

 (June 9, 2017)

Getting Started with Streaming Analytics

docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks DataFlow June 9, 2017

ii

Hortonworks DataFlow: Getting Started with Streaming Analytics
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks DataFlow June 9, 2017

iii

Table of Contents
1. Building an End-to-End Stream Application .. 1

1.1. Understanding the Use Case ... 1
1.2. Reference Architecture .. 2

2. Prepare Your Environment ... 3
2.1. Deploying Your HDF Clusters .. 3
2.2. Registering Schemas in Schema Registry .. 3

2.2.1. Create the Kafka Topics ... 3
2.2.2. Register Schemas for the Kafka Topics .. 4

3. Creating a Dataflow Application .. 7
3.1. Data Producer Application Generates Events ... 7
3.2. NiFi: Create a Dataflow Application .. 8

3.2.1. NiFi Controller Services ... 8
3.2.2. NiFi Ingests the Raw Sensor Events ... 9
3.2.3. Publish Enriched Events to Kafka for Consumption by Analytics
Applications ... 10
3.2.4. Start the NiFi Flow ... 11

4. Creating a Stream Analytics Application ... 12
4.1. Create a Service Pool and Environment ... 12
4.2. Create Your First Application .. 12
4.3. Creating and Configuring the Kafka Source Stream ... 13
4.4. Connecting Components ... 15
4.5. Joining Multiple Streams ... 16
4.6. Filtering Events in a Stream using Rules ... 17
4.7. Using Aggregate Functions over Windows ... 18
4.8. Implementing Business Rules on the Stream .. 19
4.9. Transforming Data using a Projection Processor .. 21
4.10. Creating Alerts with Notifications Sink ... 23
4.11. Streaming Alerts to an Analytics Engine for Dashboarding 24
4.12. Streaming Violation Events to an Analytics Engine for Descriptive
Analytics .. 25
4.13. Streaming Violation Events into a Data Lake and Operational Data Store 27

5. Deploy an Application ... 31
5.1. Configure Deployment Settings ... 31
5.2. Deploy the App .. 31
5.3. Running the Stream Simulator ... 33

6. Stream Operations ... 34
6.1. My Applications View .. 34
6.2. Application Performance Monitoring ... 34
6.3. Troubleshooting and Debugging a Stream application 35

6.3.1. Streaming Engine Infrastructure Metrics ... 36
6.3.2. Changing Log Levels Dynamically and with Expiration Policies 37
6.3.3. Distributed Log Search ... 37

6.4. Exporting and Importing Stream applications .. 38
7. Advanced: Doing Predictive Analytics on the Stream .. 40

7.1. Logistical Regression Model ... 41
7.2. Export the Model into SAM's Model Registry ... 42
7.3. Enrichment and Normalization of Model Features ... 43

Hortonworks DataFlow June 9, 2017

iv

7.4. Setting up your Enrichment Store and Building Custom UDFs and
Processors .. 43
7.5. Upload Custom Processors and UDFs for Enrichment and Normalization 44

7.5.1. Upload Custom UDFs .. 44
7.5.2. Upload Custom Processors .. 46

7.6. Scoring the Model in the Stream using a Streaming Split Join Pattern 51
7.7. Streaming Split Join Pattern .. 52
7.8. Score the Model using the PMML Processor and Alert 59

8. Creating Visualizations Using Superset ... 63
8.1. Creating Insight Slices .. 63
8.2. Adding Insight Slices to a Dashboard .. 65

8.2.1. Dashboards for the Trucking IOT App .. 65

Hortonworks DataFlow June 9, 2017

1

1. Building an End-to-End Stream
Application

A good way to get started using Hortonworks DataFlow (HDF) with Streaming Analytics
Manager and Schema Registry is to imagine a real life use case, and to learn about the
common HDF stream processing tasks and concepts through this use case. This guide sets
up a fictional use case, and walks you through the deployment and common tasks you
would perform while engaging in many of HDF's stream processing use cases.

Use this guide as a tutorial to get you started with SAM and Schema Registry. All the
resources required to complete the tasks are provided in line.

1.1. Understanding the Use Case
To build a complex streaming analytics application from scratch, we will work with a
fictional use case. A trucking company has a large fleet of trucks, and wants to perform
real-time analytics on the sensor data from the trucks, and to monitor them in real time.
Their analyitcs application has the following requirements:

1. Outfit each truck with two sensors that emit event data such as timestamp, driver ID,
truck ID, route, geographic location, and event type.

• The geo event sensor emits geographic information (latitude and longitude
coordinates) and events such as excessive braking or speeding.

• The speed sensor emits the speed of the vehicle.

2. Stream the sensor events to an IoT gateway, which serializes the events as Avro objects
and streams them into separate Kafka topics, one for each Kafka sensor.

3. Use NiFi to consume the serialized Avro events from the Kafka topics, and then route,
transform, enrich, and deliver the data to a downstream Kafka instance.

4. Connect to the two streams of data to do analytics on the stream.

5. Join the two sensor streams using attributes in real-time. For example, join the geo-
location stream of a truck with the speed stream of a driver.

6. Filter the stream on only events that are infractions or violations.

7. All infraction events need to be available for descriptive analytics (dash-boarding,
visualizations, or similar) by a business analyst. The analyst needs the ability to do
analysis on the streaming data.

8. Detect complex patterns in real-time. For example, over a three-minute period, detect
if the average speed of a driver is more than 80 miles per hour on routes known to be
dangerous.

9. When each of the preceding rules fires, create alerts and make them instantly accessible.

Hortonworks DataFlow June 9, 2017

2

10.Execute a logistical regression Spark ML model on the events in the stream to predict if a
driver is going to commit a violation. If violation is predicted, then alert on it.

The below sections walks you through how to implement all ten requirements.
Requirements 1-3 are done using NiFi and Schema Registry. Requirements 4 through 10, are
implemented using the new Streaming Analtyics Manager.

1.2. Reference Architecture
This reference architecture diagram gives you a general idea of how to build an HDF
cluster for your trucking use case. Review this suggested architecture before you begin
deployment.

Hortonworks DataFlow June 9, 2017

3

2. Prepare Your Environment

2.1. Deploying Your HDF Clusters
About This Task

Now that you have reviewed the reference architecture and planned the deployment
of your trucking application, you can begin installing HDF according to your use case
specifications. To fully build the trucking application as described in this Getting Started
with Stream Analytics document, use the following steps.

Steps

1. Install Ambari 2.5.1.

2. Install HDP 2.6.1 Cluster via Ambari.

3. Install HDF 3.0 Management Pack.

4. Update HDF 3.0 Base URL.

5. Add HDF 3.0 Services to HDP 2.6.1 cluster.

Find instructions for these installation steps in Installing HDF Services on a New HDP Cluster.

More Information

Planning Your Deployment

2.2. Registering Schemas in Schema Registry
The trucking application streams raw events that are serialized into Avro from the two
sensors to its respective Kafka topics. NiFi consumes from these topics, and then routes,
enriches, and delivers them to another set of Kafka topics for consumption by the
streaming anlatyics applications. To do this, you must perform the following tasks:

• Creating the 4 Kafka topics

• Registering Schemas for each of the Kafka topics in the Schema Registry

2.2.1. Create the Kafka Topics

About This Task

Kafka topics are categories or feed names to which records are published.

Steps

1. Log into the node where Kafka broker is running.

2. Create the Kafka topics using the following commands:

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.0/bk_installing-hdf-and-hdp/content/ch_install-ambari.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.0/bk_planning-your-deployment/content/ch_deployment-scenarios.html

Hortonworks DataFlow June 9, 2017

4

cd /usr/[hdf/\hdp]current/kafka-broker/bin/

./kafka-topics.sh \
--create \
--zookeeper <zookeeper-host>:2181 \
--replication-factor 2 \
--partition 3 \
--topic raw-truck_events_avro

./kafka-topics.sh \
--create \
--zookeeper <zookeeper-host>:2181 \
--replication-factor 2 \
--partition 3 \
--topic raw-truck_speed_events_avro

./kafka-topics.sh \
--create \
--zookeeper <zookeeper-host>:2181 \
--replication-factor 2 \
--partition 3 \
--topic truck_events_avro

./kafka-topics.sh \
--create \
--zookeeper <zookeeper-host>:2181 \
--replication-factor 2 \
--partition 3 \
--topic truck_speed_events_avro

More Information

Apache Kafka Component Guide

2.2.2. Register Schemas for the Kafka Topics

About This Task

Register the schemas for the 2 Kafka topics that NiFi will consume from and the two other
Kafka topics that NiFi will publish the enriched events to. Registering the Kafka topic
schemas is benefiicial in several ways. Schema Registry provides a centralized schema
location, allowing you to stream records into topics without having to attach the schema to
each record.

Steps

1. Go to the Schema Registry UI by selecting the Registry service in Ambari and under
'Quick Links' selecting 'Registry UI'

2. Click the "+" button to add a schema, schema group and schema metadata for the Raw
Geo Event Sensor Kafka topic:

• Name = raw-truck_events_avro

• Description = Raw Geo events from trucks in Kafka Topic

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.1/bk_kafka-component-guide/content/index.html

Hortonworks DataFlow June 9, 2017

5

• Type = Avro schema provider

• Schema Group = truck-sensors-kafka

• Compatibility: BACKWARD

• Check the evolve check box

• Copy the schema from here and paste it into the Schema Text area.

• Click Save

3. Click the "+" button to add a schema, schema group (exists from previous step), and
schema metadata for the Raw Speed Event Sensor Kafka topic:

• Name = raw-truck_speed_events_avro

• Description = Raw Speed Events from trucks in Kafka Topic

• Type = Avro schema provider

• Schema Group = truck-sensors-kafka

• Compatibility: BACKWARD

• Check the evolve check box

• Copy the schema from here and paste it into the Schema Text area.

• Click Save

4. Click the "+" button to add a schema, schema group and schema metadata for the Geo
Event Sensor Kafka topic:

• Name = truck_events_avro

• Description = Schema for the Kafka topic named
'truck_events_avro'

• Type = Avro schema provider

• Schema Group = truck-sensors-kafka

• Compatibility: BACKWARD

• Check the evolve checkbox

• Copy the schema from here and paste it into the Schema Text area.

• Click Save

5. Click the "+" button to add a schema, schema group (exists from previous step), and
schema metadata for the Speed Event Sensor Kafka topic:

• Name = truck_speed_events_avro

https://raw.githubusercontent.com/georgevetticaden/hdp/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/resources/schema/truck-geo-event-log.avsc
https://raw.githubusercontent.com/georgevetticaden/hdp/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/resources/schema/truck-speed-event-log.avsc
https://raw.githubusercontent.com/georgevetticaden/hdp/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/resources/schema/truck-geo-event-kafka.avsc

Hortonworks DataFlow June 9, 2017

6

• Description = Schema for the Kafka topic named
'truck_speed_events_avro'

• Type = Avro schema provider

• Schema Group = truck-sensors-kafka

• Compatibility: BACKWARD

• Check the evolve check box

• Copy the schema from here and paste it into the Schema Text area.

• Click Save.

More Information

If you want to create these schemas programmatically using the Schema Registry client via
REST rather than through the UI, you can find examples at this Github location.

https://raw.githubusercontent.com/georgevetticaden/hdp/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/resources/schema/truck-speed-event-kafka.avsc
https://github.com/georgevetticaden/hdp/blob/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/java/hortonworks/hdp/refapp/trucking/simulator/schemaregistry/TruckSchemaRegistryLoader.java#L48

Hortonworks DataFlow June 9, 2017

7

3. Creating a Dataflow Application

3.1. Data Producer Application Generates Events
The following is a sample of a raw truck event stream generated by the sensors.

The date producing application or data simulator publishes these serialized Avro raw events
into Kafka topics. The following is what the raw event looks like serialized into Avro using
the Schema Registry.

Hortonworks DataFlow June 9, 2017

8

3.2. NiFi: Create a Dataflow Application
To make things easier to setup, import the NiFi Template for this flow by downloading
it this Github location. After importing, select Use Case 1 process group. The below
instructions are with respect to that flow.

3.2.1. NiFi Controller Services

Click on Flow Configuration Settings icon and select Controller Services tab.

Hortonworks Schema Registry Controller Service

1. Click on Flow Configuration Settings icon and select Controller Services tab.

2. You will see the HWX Schema Registry controller service. Edit the properties to
configure the Schema Registry URL based on your environment. You can find this
value in the Streaming Analytics Manager Service in Ambari for the configuration
property called registry.url. An example of what the URL looks similar to http://
$REGISTRY_SERVER:7788/api/v1.

3. Enable this controller service.

RecordReader and RecordWriter Controller Services

The RecordReader and RecordWriter controller services are new controller services that
allows you convert events from one type (json, xml, csv, Avro) to another (json, xml, csv,
Avro). These controller services use the Schema Registry to fetch the schema for the event
to do this conversion. There are a number of different schema access strategies you can
configure on the RecordReader and RecordWriter to tell the Record Reader/Writer how to
look up the schema information. For example, if you are reading records serialized by the
Hortonworks Schema Registry, the schema identifier required to look up the schema in the
registry is embedded in the header of the payload. Hence, the RecordReader would use the
schema access strategy called "HWX Content-Encoded Schema Reference". The following
are the RecordReader and RecordWriter controller services used for the NiFi template
imported:

• Avro Truck Events - Reads Avro events and looks up the schema id via the HWX Content-
Encoded Schema Reference strategy. This schema id is then used to query the schema
from the Hortonworks Schema Registry.

• CSV Truck Events - Reads csv events and looks up the schema name from the value of the
"Schema Name" attribute. This schema lookup strategy is called the "Use 'Schema Name'
Property" access strategy. This value of this schema name property is then used to query
the schema from the Hortonworks Schema Registry.

• AvroRecordSetWriter - Writes events into Avro and looks up the schema identifier info
using the HWX Schema Reference Attribute strategy. This controller also uses a write
strategy of HWX Content-Encoded Schema Reference where the Avro object will have
schema identifier information pre-appended on the header.

• AvroRecordSetWriter-Read-Schema-From-HWX-Via-Schema-Name - Writes events into
Avro and looks up the schema using the Schema Name access strategy. This controller

https://raw.githubusercontent.com/georgevetticaden/hdp/master/reference-apps/iot-trucking-app/trucking-data-simulator/src/main/resources/nifi-flows/Nifi_and_Schema_Registry_Integration_End_to_End_Example.xml

Hortonworks DataFlow June 9, 2017

9

also uses a write strategy of HWX Content-Encoded Schema Reference where the Avro
object will have schema identifier information pre-appended on the header.

• CSVRecordSetWriter - Writes events into CSV and looks up the schema identifier using
the HWX Schema Reference Attribute strategy. The write schema strategy is also HWX
Schema Reference attributes. This means when the csv is written the schema identifier
information is stored in named attributes of the flow file.

• CSVRecordSetWriter-Read-Schema-From-HWX-Embedded - Similar to the previous csv
writer but the schema identifier is looked using the HWX Content-Encoded Schema
Reference strategy.

Enable all of these controller services.

3.2.2. NiFi Ingests the Raw Sensor Events

In the Use Case 1 process group, go into the "Acquire Events" process group. The first step
in the NiFi flow is to ingest the raw serialized Avro events from the two Kafka topics. We
will use the new ConsumerKafkaRecord processor for this.

Both ConsumerKafkaRecord processors are configured with an AvroReader controller
service and the CSVRecordSetWriter-Read-Schema-From-HWX-Embedded controller service
to convert from Avro to CSV using a schema.

Note

Make sure for both processors, you change the Kafka Brokers property value to
your cluster settings.

Hortonworks DataFlow June 9, 2017

10

3.2.3. Publish Enriched Events to Kafka for Consumption by
Analytics Applications

After NiFi has done the routing, transforms, and enrichment, NiFi will publish the enriched
events into Kafka topics. These topics have a schema registered for it in the Schema
Registry and we will store the schema identifier for the schema in the FlowFile attributes
(UpdateAttribute processors) and use the PublishKafkaRecord processor to push the events
into Kafka.

The PublishKafkaRecord processor is configured with the controller service 'CSV Truck
Events' for the Record Reader and uses the AvroRecordSetWriter to write the events
into Avro. It is a serialized Avro object with the schema identifier in the header that gets
published to Kafka for consumption by SAM.

Hortonworks DataFlow June 9, 2017

11

Note

Make sure for the PublishKafkaRecord, you change the Kafka Brokers property
value to your cluster settings.

3.2.4. Start the NiFi Flow

Start the Process Grouped called "Use Case 1".

Hortonworks DataFlow June 9, 2017

12

4. Creating a Stream Analytics
Application

1. Create a Service Pool and Environment

2. Create Your First Application

3. Creating and Configuring the Kafka Source Stream

4. Connecting Components

5. Joining Multiple Streams

6. Filtering Events in a Stream using Rules

7. Using Aggregate Functions over Windows

8. Implementing Business Rules on the Stream

9. Transforming Data using a Projection Processor

10.Creating Alerts with a Notification Sink

11.Streaming Alerts to an Analytics Engine for Dashboarding

12.Streaming Violation Events to an Analytics Engine for Descriptive Analytics

13.Streaming Violation Events into a Data Lake and Operational Data Store

4.1. Create a Service Pool and Environment
Before you create an application, you have to create a Service Pool and then an
Environment that you associate with an application. Refer to the Streaming Analytics
Manager User Guide sections on Streaming Analytics Manager Environment Setup and
Managing Stream Applications.

4.2. Create Your First Application
About This Task

The Streaming Analtyics Manager provides capabilities to the application developer
for building streaming applications. You can go to the Stream Builder UI by select the
Streaming Analytics Manager service in Ambari and under Quick Links select SAM UI.

Creating a new stream application requires two steps: clicking the + icon, and then
providing a unique name for the stream application and associating the application with an
Environment.

Steps

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.0/bk_streaming-analytics-manager-user-guide/content/ch_sam-manage.html
https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.0/bk_streaming-analytics-manager-user-guide/content/ch_sam-manage.html

Hortonworks DataFlow June 9, 2017

13

1. Click the + icon on the My Applications dashboard and choose New Application.

2. Specify the name of the stream application and the environment that you want it to use
stream.

Note

The name of the stream application cannot have any spaces.

Result

SAM displays the Stream Builder canvas. Builder components on the canvas palette are the
building blocks used to build stream applications. Now you are ready to start building the
streaming application.

4.3. Creating and Configuring the Kafka Source
Stream

About This Task

The first step in building a stream application is to drag builder components to the canvas.
As described in the Hortonworks DataFlow Overview, Stream Builder offers four types of
builder components: sources, processors, sinks, and custom components.

Hortonworks DataFlow June 9, 2017

14

Every stream application must start with a source.

Complete the following instructions to start building a stream application. Use these steps
to implement Requirement 4 of the use case.

Steps

1. Drag the Kafka builder component onto the canvas, creating a Kafka tile:

2. Set the number of run-time instances for your Kafka tile component by clicking the up
arrow on the tile.

3. Double-click on the tile to begin configuring Kafka. After you specify a Kafka topic
name, SAM communicates with the Schema Registry and displays the schema:

Hortonworks DataFlow June 9, 2017

15

Result

Once you have configured your Kafka component correctly, the tile component displays a
green dot.

More Information

Hortonworks DataFlow Overview

4.4. Connecting Components
About This Task

To pass a stream of events from one component to the next, create a connection between
the two components. In addition to defining data flow, connections allow you to pass a
schema from one component to another.

Steps

1. Click the green dot to the left of your source component.

https://docs.hortonworks.com/HDPDocuments/HDF3/HDF-3.0.0/bk_overview/content/ch_stream-analytics-overview.html

Hortonworks DataFlow June 9, 2017

16

2. Drag your cursor to the component tile to which you want to connect.

Example

The following example shows two connections: a connection from Kafka sink
TruckGeoStream to the join processor, and a connection from the Kafka sink
TruckSpeedStream to the same join processor.

4.5. Joining Multiple Streams
About This Task

Joining multiple streams is an important SAM capability. You accomplish this by adding the
Join processor to your strream application.

This section shows you how to configure a Join processor that joins the truck geo-event
stream with the speed event stream, based on Requirement 5 of the use case.

Steps

1. Drag a Join processor onto your canvas and connect it to a source.

2. Double click the Join tile to open the Configuration dialog.

3. Configure the Join processors according to the example below.

Example

Hortonworks DataFlow June 9, 2017

17

4.6. Filtering Events in a Stream using Rules
About This Task

SAM provides powerful capabilities to filter events in the stream. It uses a Rules Engine,
which translates rules into SQL queries that operate on the stream of data.

The following steps demonstrate this, implementing Requirement 6 of the use case.

Steps

1. Drag the Rule processor to the canvas and connect it from the Join processors.

2. Double click the Rule processor, click the Add new Rules button, and create a new rule.

3. Click OK to save the new rule.

Example

Hortonworks DataFlow June 9, 2017

18

4.7. Using Aggregate Functions over Windows
About This Task

Windowing is the ability to split an unbounded stream of data into finite sets based on
specified criteria such as time or count, so that you can perform aggregate functions (such
as sum or average) on the bounded set of events. SAM exposes these capabilities using the
Aggregate processor. The Aggregate processor supports two window types, tumbling and
sliding windows. The creation of a window can be based on time or count.

The following images show how to use the Aggregate processor to implement
Requirement 8 of the use case.

Steps

1. Drag the Aggregate processor to the canvas and connect it to the Rule processor.

Hortonworks DataFlow June 9, 2017

19

2. Double-click on the Aggregate processor, and configure it to calculate the average speed
of driver over a three-minute duration.

4.8. Implementing Business Rules on the Stream
About This Task

This section shows you how to implement the business rule you created above to detect
high speeding drivers. "High speed" is defined as greater than 80 miles per hour over a
three-minute time window.

This step partially implements Requirement 8 of the use case.

Steps

1. Drag the Rule processor onto the canvas and connect to it to the DriverAvgSpeed
Aggregate processor:

Hortonworks DataFlow June 9, 2017

20

2. Configure the business rule as follows:

Result

The fully configured business rule should look similar to the following. Only high speed
events continue on in the stream.

Hortonworks DataFlow June 9, 2017

21

4.9. Transforming Data using a Projection
Processor

About This Task

It is common to do transformations on the events in the stream. In our case, before we
alert on the speeding driver, we want to convert the average speed we calculated in the
aggregate processor into a integer from a double so it is easier to display in the alert. The
projection processor allows you to do these transformations.

Steps

1. Drag the Projection processor onto the canvas and connect to it to the IsDriverSpeeding
Rule processor:

Hortonworks DataFlow June 9, 2017

22

2. When you double click on the projection processor, you will see a number of out of the
box functions however a Round function does not exist.

3. Adding UDFs (User Defined Functions) is easy to do within SAM. Follow the below steps
to add Round UDF function to SAM.

a. From the left-hand menu, click Configuration, then Application Resources.

b. Select the UDF tab and click the + sign to create the ROUND UDF. The jar for this
UDF can be downloaded from here. The simple java class used to implement this
Round function using the SAM SDK can be found here. Unzip the downloaded
artifact and use the jar called sam-custom-udf-0.0.5.jar. Configure the UDF with the
following values:

https://drive.google.com/file/d/0BwT83-9bZp3eM21tVS1DTUxuR1E/view?usp=sharing
https://github.com/georgevetticaden/sam-custom-extensions/blob/master/sam-custom-udf/src/main/java/hortonworks/hdf/sam/custom/udf/math/Round.java

Hortonworks DataFlow June 9, 2017

23

c. After uploading the UDF, you should see the new Round UDF created.

4. After creating the UDF, go back to your Application and double click on the on the
Projection Processor you added to the canvas and you see ROUND in the FUNCTION
drop down list. Configure the ROUND function as the following:

4.10. Creating Alerts with Notifications Sink
About This Task

The Notifications sink allows you to create alerts. The Notification sink supports email
alerts, and it is extensible-- you can plug in other types of notifications.

The following steps demonstrate how to create email alerts when drivers are speeding. Like
custom UDFs, custom notifications can be added to SAM.

Steps

1. Drag the Notifications sink to the canvas and connect to it to the Round Projection.

Hortonworks DataFlow June 9, 2017

24

2. Configure the Notifications sink to generate email alerts for high speeding drivers.

4.11. Streaming Alerts to an Analytics Engine for
Dashboarding

About This Task

In addition creating notification alerts, a common use case requirement is to send these
alerts to a dashboard so they can be displayed and visualized. SAM offers this capability by
allowing you to stream data into DRUID and then using Superset to create dashboards and
visualizations.

Steps

1. Drag the Druid sink to the canvas and connect to it to the Round Projection.

Hortonworks DataFlow June 9, 2017

25

2. Stream these events into a Druid cube called alerts-speeding-drivers-cube by configuring
the Druid processor like the following.

3. In the Creating Visualization Section, describe how to create dashboards for the alerts-
speeding-drivers-cube.

4.12. Streaming Violation Events to an Analytics
Engine for Descriptive Analytics

About This Task

Now lets implement Requirement 7:

Hortonworks DataFlow June 9, 2017

26

All infraction events need to be available for descriptive analytic (dash-boarding,
visualizations, etc.) by a business analyst. The analyst needs the ability to do analysis on the
streaming data.

The analytics engine in SAM is powered by Druid. The following steps show how to stream
data into Druid, so that a business analyst can use the Stream Insight Superset module to
generate descriptive analytics.

Steps

1. Drag the Druid processor to the canvas and connect it to the ViolationEvents Rule
processor.

2. Configure the Druid processor. You can edit the ZooKeeper connect string
in the advanced section of the Druid Service in Ambari, under the property
druid.zk.service.host.

3. Configure the Aggregator Info settings, under the OPTIONAL menu

Hortonworks DataFlow June 9, 2017

27

4.13. Streaming Violation Events into a Data Lake
and Operational Data Store

About This Task

Another common requirement is to stream data into an operational data store like HBase
to power real-time web apps as well as a data lake powered by HDFS for long term storage
and batch etl and analytic.

Steps

1. You will need ot have HBase service running. This can be easily done by adding the HDP
HBase Service via Ambari. Create a new HBase table by logging into an node where
Hbase client is installed then execute the below commands

cd /usr/hdp/current/hbase-client/bin

/hbase shell

create 'violation_events', {NAME=> 'events', VERSIONS => 3} ;

2. Create the following directory in HDFS and give it access to all users. Log into a node
where HDFS client is installed and execute the below commands

su hdfs

hadoop fs -mkdir /apps/trucking-app

hadoop fs -chmod 777 /apps/trucking-app

3. Drag the HBase sink to the canvas and connect it to the ViolationEvents Rule processor.

Hortonworks DataFlow June 9, 2017

28

4. Configure the Hbase Sink as below.

Hortonworks DataFlow June 9, 2017

29

5. Drag the HDFS sink to the canvas and connect it to the ViolationEvents Rule processor.

6. Configure HDFS as below. Make sure you have permissiosn to write into the directory
you have configired for HDFS path.

Hortonworks DataFlow June 9, 2017

30

Hortonworks DataFlow June 9, 2017

31

5. Deploy an Application

5.1. Configure Deployment Settings
About This Task

Before deploying the application, you must configure deployment settings such as JVM
size, number of ackers, and number of workers. Because this topology uses a number of
joins and windows, you should increase the JVM heap size for the workers.

Steps

1. Click the gear icon on the top right corner of the canvas to display the Application
Configuration dialog.

2. Increase Number of Workers to 5.

3. Set Topology Worker JVM Options to -Xmx3072m.

Example

5.2. Deploy the App
After you have configure the application's deployment settings, click the Deploy button on
the lower right of the canvas.

Hortonworks DataFlow June 9, 2017

32

During the deployment process, Streaming Analytics Manager completes the following
tasks:

1. Construct the configurations for the different big data services used in the stream app.

2. Create a deployable jar of the streaming app.

3. Upload and deploy the app jar to streaming engine server.

As SAM works through these tasks, it displays a progress bar.

The stream application is deployed to a Storm cluster based on the Storm Service defined in
the Environment associated with the application.

After the application has been deployed successfully, SAM notifies you and updates the
button to red to indicate it is deployed. Click the red button to kill/undeploy the app.

Hortonworks DataFlow June 9, 2017

33

5.3. Running the Stream Simulator
Now that you have developed and deployed the NiFi Flow Application and the Stream
Analytics Application, we are ready to run a data simulator that generates truck geo events
and sensor events for the apps to process.

To generate the raw truck events serialized into Avro objects using the Schema registry and
publish them into the raw Kafka topics, do the following:

1. Download the Data-Loader Unzip it and copy it to the node the cluster. Lets call the
directory you unzip it to as: $DATA_LOADER_HOME. Then execute the following. Make
sure to replace variables below with your environment specific values (you can find the
REST URL to schema registry in Ambari under SAM service for config value registry.url) .
Make sure java (jdk 1.8) is on your classpath.

tar -zxvf $DATA_LOADER_HOME/routes.tar.gz

nohup java -cp \
stream-simulator-jar-with-dependencies.jar \
hortonworks.hdp.refapp.trucking.simulator.
SimulationRegistrySerializerRunnerApp \
20000 \
hortonworks.hdp.refapp.trucking.simulator.impl.domain.transport.Truck \
hortonworks.hdp.refapp.trucking.simulator.impl.collectors.
KafkaEventSerializedWithRegistryCollector \
1 \
$DATA_LOADER_HOME/routes/midwest/ \
10000 \
$KAFKA_BROKER_HOST:$KAFKA_PORT \
$REST_URL_TO_SCHEMA_REGISTRY \
ALL_STREAMS \
NONSECURE &

2. You should see events being published into the Kafka topics called: raw-
truck_events_avro and raw-truck_speed_events_avro, Nifi should be consuming
those, enriching them and then pushing into the truck_events_avro and
truck_speed_events_avro kafka topics and then SAM consumes from those topics.

https://drive.google.com/file/d/0BwT83-9bZp3ea29fM2dTVUdOT1k/view?usp=sharing

Hortonworks DataFlow June 9, 2017

34

6. Stream Operations
The Stream Operation view provides management of the stream applications, including the
following:

• Application life cycle management: start, stop, edit, delete

• Application performance metrics

• Troubleshooting, debugging

• Exporting and importing applications

6.1. My Applications View
Once a stream application has been deployed, the Stream Operations displays operational
views of the application.

One of these views is called My Application dashboard.

To access the application dashboard in SAM, click My Application tab (the hierarchy icon).
The dashboard displays all applications built using Streaming Analytics Manager:

Each stream application is represented by an application tile. Hovering over the application
tile provides status, metrics, and actions you can perform on the stream application.

6.2. Application Performance Monitoring
To view application performance metrics (APM) for the application, clicking on the
application name on the application tile.

Hortonworks DataFlow June 9, 2017

35

The following diagram describes elements of the APM view.

6.3. Troubleshooting and Debugging a Stream
application

At the top right corner of the APM, there is a Storm icon that takes you to the Storm
Ambari view.

The Storm Ambari View provides the following capabilities for deeper troubleshooting and
debugging:

• Topology View and Metrics: shows a visual representation of the deployed topology and
topology level Metrics.

• Distributed Log Search: allows users to search all logs across supervisor machines for a
topology; results can include zipped logs.

• Dynamic Log Levels: allows Users and Administrators to dynamically change the log level
settings for a running topology.

• Topology Event Inspector: allows viewing of tuples flowing through the topology along
with the ability to turn on/off debug events without having to stop/restart the entire
topology.

• Dynamic Worker Profiling: allows users to request worker profile data directly from the
Storm UI (Heap Dumps, JStack Output, JProfile).

Use the first portion of the Ambari Storm View to review the topology summary and
statistics, set event profiling, search logs, and dynamically change them.

Hortonworks DataFlow June 9, 2017

36

Scroll down to review the deployed topology and see metrics about its components.

6.3.1. Streaming Engine Infrastructure Metrics

The following dashboard shows infrastructure metrics for the streaming engine used; in this
case, it shows details about the Storm cluster.

Hortonworks DataFlow June 9, 2017

37

6.3.2. Changing Log Levels Dynamically and with Expiration
Policies

When debugging a stream application, the ability to change the log dynamically is a
powerful troubleshooting feature. However, since typical stream applications handle
millions of events per second, changes to log levels can impact performance unless
safeguards such as expiration policies are defined. The following diagram shows how to
change log levels with expiration policies.

6.3.3. Distributed Log Search

Storm is a distributed streaming engine, which means that many worker nodes can be
used to power the streaming application. Because it has a distributed architecture, logs are
distributed across the cluster on many worker nodes. Searching for log data across workers
can be a painful process. With distributed log search, however, you can search across all
logs located across all worker nodes.

The following steps describe how to use distributed log search.

1. Type your search string in the distributed log search text box:

Hortonworks DataFlow June 9, 2017

38

2. Review the results.

3. Click on the link to navigate to the exact location in the log file.

6.4. Exporting and Importing Stream applications
Service pool and environment abstractions combined with import and export capabilities
allow you to move a stream application from one environment to another easily.

To export a stream application, click the Export icon on the My Application dashboard. This
downloads a JSON file that represents your streaming application.

To import a stream application that was exported in JSON format:

1. Click on the + icon in My Applications View and select import application:

2. Select the JSON file that you want to import, provide a unique name for the application
and specify which environment to use.

Hortonworks DataFlow June 9, 2017

39

Hortonworks DataFlow June 9, 2017

40

7. Advanced: Doing Predictive Analytics
on the Stream

Requirement 10 of this use case states the following:

Execute a logistical regression Spark ML model on the events in the stream to predict if a
driver is going to commit a violation. If violation is predicted, then alert on it.

HDP, the Hortonworks data at rest platform provides powerful set of tools for data
engineers and scientists to build powerful analytics with data processing engines like Spark
Streaming, Hive and Pig. The below diagram illustrates a typical analytics life cycle in HDP.

Once the model has been trained and optimized, insights can be created by scoring the
model in real-time as events are coming in. The next set of steps in the life cycle has to do
with scoring the model in real-time using HDF components.

Hortonworks DataFlow June 9, 2017

41

In the next few sections we will walk through how to do steps 5 through 9 in SAM.

7.1. Logistical Regression Model
With steps 1-4 with HDP, we were able to build a logistical regression model. The model
was then exported into PMML. The below diagram illustrates the features, coefficients and
output of the model.

Hortonworks DataFlow June 9, 2017

42

7.2. Export the Model into SAM's Model Registry
About This Task

SAM provides a registry where you can store PMML models. To get started with predictive
analytics, upload this logistical regression model.

Steps

1. Download this PMML model and save it locally with an .xml extension.

2. Select the Model Registry menu item.

3. Click the + icon.

4. Give your PMML model a name.

5. From Upload PMML File, select the PMML file you just downloaded.

6. Click Ok.

Result

The model is saved in the Model Registry.

https://raw.githubusercontent.com/georgevetticaden/sam-custom-extensions/master/sam-custom-processor/src/main/resources/predictivemodel/pmml/DriverViolationLogisticalRegessionPredictionModel-pmml.xml

Hortonworks DataFlow June 9, 2017

43

7.3. Enrichment and Normalization of Model
Features

Now that the model has been added to the model registry, you can use it in the streaming
application by the PMML processor. Before the model can be executed, you must enrich
and normalize the streaming events with the features required by the model. As the above
diagram illustrates, there are 7 features in the model. None of these features come as
part of the stream from the two sensors. So, based on the driverId and the latitude and
longitude location, enrich the streaming event with these features and then normalize it
required by the model. The table below describe each feature, enrichment store, and the
normalization required.

Feature Description Enrichment Store Normalization

Model_Feature_Certification Identifies if the driver is
certified or not

HBase/Phoenix table called
drivers

"yes" # normalize to 1

"no" # normalize to 0

Model_Feature_WagePlan Identifies if the driver is on
an hourly or by miles wage
plan

HBase/Phoenix table called
drivers

"Hourly" # normalize to 1

"Miles" # normalize to 0

Model_Feature_FatigueByHoursThe total number of hours
driven by the driver in the
last week

HBase/Phoenix table called
timesheet

Scale by 100 to improve
algorithm performance (e.g:
hours/100)

Model_Feature_FatigueByMilesThe total number of miles
driven by the driver in the
last week

HBase/Pheonix table called
timesheet

Scale by 1000 to improve
algorithm performance (e.g:
miles/1000)

Model_Feature_FoggyWeatherDetermines if for the given
time and location, if the
conditions are foggy

API to WeatherService if (foggy) # normalize to 1
else 0

Model_Feature_RainyWeatherDetermines if for the given
time and location, if the
conditions are rainy

API to WeatherService if (raining) –> normalize to 1
else 0

Model_Feature_WindyWeatherDetermines if for the given
time and location, if the
conditions are windy

API to WeatherService if (windy) # normalize to 1
else 0

7.4. Setting up your Enrichment Store and
Building Custom UDFs and Processors

About This Task

As the table above indicate four of the seven features comes from HBase/Phoenix tables.
This section gives you instructions on setting up the HBase/Phonenix tables timesheet
and drivers, loading them with reference data, and downloading the custom UDFs and
processors to do the enrichment and normalization.

Install HBase/Phoenix and download the sam-extensions

1. If HBase is not installed, install/add an HBase service.

2. Ensure that Phoenix is enabled on the HBase Cluster.

3. Download the Sam-Custom-Extensions.zip and save it to your local machine.

https://drive.google.com/file/d/0BwT83-9bZp3eM21tVS1DTUxuR1E/view?usp=sharing

Hortonworks DataFlow June 9, 2017

44

4. Unzip the contents. We will call the unziped folder $SAM_EXTENSIONS

Steps for Creating Phoenix Tables and Loading Reference Data

1. Copy the $SAM_EXTENSIONS/scripts.tar.gz to a node where where HBase/PHoenix
client is installed.

2. On that node, untar the scripts.tar.gz. We will call this directory $SCRIPTS

tar -zxvf scripts.tar.gz

3. Go to the directory where the phoenix script is located which will create the phoeneix
tables for enrichment and load it with reference data.

cd $SCRIPTS/phoenix

4. Open the file phoenix_create.sh and replace <ZK_HOST> with the FQDN of your
ZooKeeper host.

5. Make the phoenix_create.sh script executable and execute it. Make sure you to
JAVA_HOME

./phoenix_create.sh

Steps for Verifying Data has Populated Phoenix Tables

1. Start up sqline Phoenix client.

cd /usr/hdp/current/phoenix-client/bin

./sqlline.py $ZK_HOST:2181:/hbase-unsecure

2. List all the tables in Pheonix.

!tables

3. Query the drivers and timesheet tables.

select * from drivers;
select * from timesheet;

7.5. Upload Custom Processors and UDFs for
Enrichment and Normalization

To perform the above enrichment and normalization, upload the custom UDFs and
processors you downloaded in the previous section.

7.5.1. Upload Custom UDFs
Steps for Uploading the Timestamp_Long UDF

1. From the left-hand menu, click Configuration, then Application Resources.

2. Select the UDF Tab and click the + sign to create the TIMESTAMP_LONG UDF. This udf
will convert a string date time to a Timestamp long. The simple class for this UDF using
the SAM SDK can be found here.

https://github.com/georgevetticaden/sam-custom-extensions/blob/master/sam-custom-udf/src/main/java/hortonworks/hdf/sam/custom/udf/time/ConvertToTimestampLong.java

Hortonworks DataFlow June 9, 2017

45

3. The jar for this UDF is located in SAM_EXTENSIONS/sam-custom-udf-0.0.5.jar.

4. Configure the UDF with the following values:

Steps for Configuring the Get_Week UDF

1. Select the UDF tab and click the + sign to create the GET_WEEK UDF.

2. The jar for this UDF is located in SAM_EXTENSIONS/sam-custom-udf-0.0.5.jar.
This udf will convert a timestamp string into the week of the year which is required for
an enrichment query. The simple class for this UDF using the SAM SDK can be found
here.

3. Configure the UDF with the following values:

https://github.com/georgevetticaden/sam-custom-extensions/blob/master/sam-custom-udf/src/main/java/hortonworks/hdf/sam/custom/udf/time/GetWeek.java

Hortonworks DataFlow June 9, 2017

46

7.5.2. Upload Custom Processors

Steps for Uploading the ENRICH-PHOENIX Custom Processor

1. From the left-hand menu, click Configuration, then Application Resources.

2. Select Custom Processor and click the + sign to create the ENRICH-PHOENIX processor.
Configure the processor with the following values. This processor can be used to
enriched streams with data from Phoenix based on a user supplied sql statement. The
java class for this processor using the SAM SDK can be found here.

ENRICH-PHOENIX Configuration Values

• Streaming Engine – Storm

• Name – ENRICH-PHOENIX

• Description – Enriches the input schema with data from Phoenix based on user
supplied SQL

• ClassName –
hortonworks.hdf.sam.custom.processor.enrich.phoenix.PhoenixEnrichmentSecureProcessor

https://github.com/georgevetticaden/sam-custom-extensions/blob/master/sam-custom-processor/src/main/java/hortonworks/hdf/sam/custom/processor/enrich/phoenix/PhoenixEnrichmentSecureProcessor.java

Hortonworks DataFlow June 9, 2017

47

• Upload Jar – The jar for this custom processor can be found under
SAM_EXTENSIONS/sam-custom-processor-0.0.5-jar-with-
dependencies.jar

Click the Add Config Fields button and and the following 3 configuration fields

• Add a config field called zkServerUrl with the following values:

a. Field Name – zkServerUrl

b. UI Name – Phoenix ZooKeeper Connection URL

c. Optional – false

d. Type – string

e. ToolTip – ZooKeeper server url in the format of $FQDN_ZK_HOST:$ZK_PORT

• Add a config field called enrichmentSQL with the following values

a. Field Name – enrichmentSQL

b. UI Name – Enrichment SQL

c. Optional – false

d. Type – string

e. ToolTip – SQL to execute for the enriched values

• Add a config field called enrichedOutputFields with the following values:

a. Field Name – enrichedOutputFields

b. UI Name – Enrichment Output Fields

c. Optional – false

d. Type – string

e. ToolTip – The output field names to store new enriched values

• Add a config field called secureCluster with the following values:

a. Field Name – secureCluster

b. UI Name – Secure Cluster

c. Optional – false

d. Type – boolean

e. ToolTip – Check if connecting to a secure HBase/Phoenix Cluster

Hortonworks DataFlow June 9, 2017

48

• Add a config field called kerberosClientPrincipal with the following values:

a. Field Name – kerberosClientPrincipal

b. UI Name – Kerberos Client Principal

c. Optional – true

d. Type – string

e. ToolTip – The principal uses to connect to secure HBase/PHoenix Cluster. Required
if secureCluster is checked

• Add a config field called kerberosKeyTabFile with the following values:

a. Field Name – kerberosKeyTabFile

b. UI Name – Kerberos Key Tab File

c. Optional – true

d. Type – string

e. ToolTip – Kerberos Key Tab File location on each of the worker nodes for thee
principal configured

Input and Output Schema for ENRICH-PHOENIX

• Copy this input schema and paste into the INPUT SCHEMA text area box

• Copy this output schema and paste into the OUTPUT SCHEMA text area box

Steps for Uploading the ENRICH-WEATHER Custom Processor

1. Select Custom Processor and click the + sign to create the ENRICH-WEATHER processor.
This processor can be used to enrich streams with weather data based on time and lat/
long location. The java class for this processor using the SAM SDK can be found here.

2. Configure the processor with the following values.

https://raw.githubusercontent.com/georgevetticaden/sam-custom-extensions/master/sam-custom-processor/src/main/resources/schemas/driver-enrichment-phoenix/driverenrich-input-schema.json
https://raw.githubusercontent.com/georgevetticaden/sam-custom-extensions/master/sam-custom-processor/src/main/resources/schemas/driver-enrichment-phoenix/driverenrich-output-combined-schema.json
https://github.com/georgevetticaden/sam-custom-extensions/blob/master/sam-custom-processor/src/main/java/hortonworks/hdf/sam/custom/processor/enrich/weather/WeatherEnrichmentProcessor.java

Hortonworks DataFlow June 9, 2017

49

ENRICH-WEATHER Configuration Values

• Streaming Engine – Storm

• Name – ENRICH-WEATHER

• Description – Enrichment with normalized weather data for a geo location

• ClassName –
hortonworks.hdf.sam.custom.processor.enrich.weather.WeatherEnrichmentProcessor

• Upload Jar – The jar for this custom processor can be found under SAM_EXTENSIONS/
sam-custom-processor-0.0.5.jar

Click the Add Config Fields button and and a configuration field with the following values:

• Field Name – weatherServiceURL

• UI Name – Weather Web Service URL

• Optional – false

• Type – string

• Tooltip – The URL to the Weather Web Service

Input and Output Schema for ENRICH-WEATHER

• Copy this input schema and paste into the INPUT SCHEMA text area box

• Copy this output schema and paste into the OUTPUT SCHEMA text area box

https://raw.githubusercontent.com/georgevetticaden/sam-custom-extensions/master/sam-custom-processor/src/main/resources/schemas/weather/weatherenrich-input-schema.json
https://raw.githubusercontent.com/georgevetticaden/sam-custom-extensions/master/sam-custom-processor/src/main/resources/schemas/weather/weatherenrich-output-schema.json

Hortonworks DataFlow June 9, 2017

50

Steps for Uploading the NORMALIZE-MODEL-FEATURES Custom Processor

1. Select the Custom Processor Tab and click the + sign to create the NORMALIZE-MODEL-
FEATURES processor. This processor is to normalized the enriched fields to format that
the model is expecting.

2. Configure the processor with the following values.

NORMALIZE-MODEL-FEATURES Configuration Values

• Streaming Engine – Storm

• Name – NORMALIZE-MODEL-FEATURES

• Description – Normalize the features of the model before passing it to model

• ClassName –
hortonworks.hdf.sam.custom.processor.enrich.driver.predictivemodel.FeatureNormalizationProcessor

• Upload Jar – The jar for this custom processor can be found under SAM_EXTENSIONS/
sam-custom-processor-0.0.5a.jar

Input and Output Schema for NORMALIZE-MODEL-FEATURES

• Copy this input schema and paste into the INPUT SCHEMA text area box

• Copy this output schema and paste into the OUTPUT SCHEMA text area box

Result

We have uploaded three custom processors required to do enrichment of the stream and
normalization of the enriched values to feed into the model.

https://raw.githubusercontent.com/georgevetticaden/sam-custom-extensions/master/sam-custom-processor/src/main/resources/schemas/model-feature-normalization/normalization-input-schema.json
https://raw.githubusercontent.com/georgevetticaden/sam-custom-extensions/master/sam-custom-processor/src/main/resources/schemas/model-feature-normalization/normalization-output-schema.json

Hortonworks DataFlow June 9, 2017

51

If you go back to the Stream Builder, you will see three new custom processors on palette.

7.6. Scoring the Model in the Stream using a
Streaming Split Join Pattern

About This Task

Now that you have created the enrichment store, loaded the enrichment data and
uploaded the custom UDFs and processors to SAM, build the stream flow to score the
model in real-time. In this case, you want to predict violations for events that are not
blatant infractions.

Steps

1. Click into to the Trucking IOT application you built.

2. Double click the Event Type rule processor to display the Add New Rule dialog.

3. Configure the new rule with the following values:

Hortonworks DataFlow June 9, 2017

52

Result

Your new rule is added to the Event Type processor.

7.7. Streaming Split Join Pattern
About This Task

Hortonworks DataFlow June 9, 2017

53

You objective is to perform three enrichments:

• Retrieve a driver's certification and wage plan from the driver's table

• Retrieve the driver's hours and miles logged from the timesheet table

• Query weather information for a specific time and location.

To do this, use the split join pattern to split the stream into 3, perform the enrichment in
parallel, and then re-join the three streams.

Steps for Creating a Split Join Key

1. Create a new split key in the stream which allows you to join in a common field when
you join the three stream. To do this, drag the projection processor to the canvas and
create a connection from the EventType rule processor to this projectioin processor.
When configuring the connection, select the Non Violation Events Rule which tells SAM
to only send non violation events to this project processor.

2. Configure the projection processor to create our split join key called splitJoinValue
using the custom udf we uploaded earlier called "TIMESTAMP_LONG". We will also do a
transformation which calculates the week based on the event time which is required for
one of the enrichments downstream. Configure the processor like the following:

Hortonworks DataFlow June 9, 2017

54

Steps for Splitting the Stream into Three to Perform Enrichments in Parallel

1. With the split join key created, we can split the stream into three to perform the
enrichments in parallel. To do the first split to do the enrichment of the wage and
certification status of driver, drag the "ENRICH-PHOENIX" processor the canvas and
connect it from the Split project processor

2. Configure the enrich processor like below. After this processor executes, the output
schema will have two fields populated called driverCertification and driverWagePlan.

a. ENRICHEMNT SQL: select certified, wage_plan from drivers where driverid=
${driverId}

b. ENRICHMENT OUTPUT FIELDS: driverCertification, driverWagePlan

c. SECURE CLUSTER: false

d. INPUT SCHEMA MAPPINGS: Leave defaults

e. OUTPUT FIELDS: select all fields except for driverFatigueByHours and
driverFatigueByMiles

Hortonworks DataFlow June 9, 2017

55

3. Create the second stream to do enrichment of the drivers hours and miles logged in last
week by dragging another "ENRICH-PHOENIX" processor to the canvas and connect it
from the Split projection processor.

4. Configure the enrich processor like below. After this processor executes, the
output schema will have two fields populated called driverFatigueByHours,
driverFatigueByMiles.

a. ENRICHEMNT SQL: select hours_logged, miles_logged from timesheet where driverid=
${driverId} and week=${week}

b. ENRICHMENT OUTPUT FIELDS: driverFatigueByHours, driverFatigueByMiles

c. SECURE CLUSTER: false

Hortonworks DataFlow June 9, 2017

56

d. INPUT SCHEMA MAPPINGS: Leave defaults

e. OUTPUT FIELDS: select splitJoinValue, driverFatigueByHours, driverFatigueMiles

5. Create the third stream to do weather enrichment by dragging the custom processor we
uploaded called "ENRICH-WEATHER" processor to the canvas and connect it from the
Split project processor.

6. Configure the weather process like the following (currently the weather
processor is just a stub that generates random normalized weather info). After
this processor executes, the output schema will have three fields populated
called Model_Feature_FoggyWeather, Model_Feature_RainyWeather,
Model_Feature_WindyWeather.

Hortonworks DataFlow June 9, 2017

57

a. WEATHER WEB SERVICE URL: http://weather.com/api?lat=${latitude}&lng=
${longitude}

b. INPUT SCHEMA MAPPINGS: Leave defaults

c. OUTPUT FIELDS: Select the splitJoinValue and the three model enriched features

Steps for Rejoining the Three Enriched Streams

1. Now that we have done the enrichment in parallel by splitting the stream into 3, we can
now join the 3 streams by dragging the join processor to the canvas and connecting the
join from the 3 streams.

2. Configure the join processor like the following where we use the joinSplitValue to join all
three streams.

Hortonworks DataFlow June 9, 2017

58

For the Output field, just click SELECT ALL to get all the fields across the three streams.

3. Now that we have joined three enriched streams, lets normalize the data into the
format that the model expects by dragging to the canvas the "NORMALIZE-MODEL-
FEATURES" custom processor that we added. For the output fields select all the fields
and the leave the the mapping as defaults.

Result

Your flow looks similar to the following.

Hortonworks DataFlow June 9, 2017

59

7.8. Score the Model using the PMML Processor
and Alert

About This Task

Now you are ready to score the logistical regression model.

Steps

1. Drag the PMML processor the canvas and connect it to the Normalize processor.

2. Configure the PMML processor like the following by selecting the
DriverViolationPredictionModel that you uploaded to the Model Registry earlier. After
this processor executes, a new field called ViolationPredicted is added to stream for the
result of the prediction. In output fields, select all the contextual fields you want to pass
on including the model value result.

Hortonworks DataFlow June 9, 2017

60

3. Determine if the model predicted if the driver will commit a violation by dragging a rule
processor to the canvas and configuring a rule like the following:

Hortonworks DataFlow June 9, 2017

61

4. If a violation is predicted, send it to a Druid to display on a dashboard. Drag the Druid
processor to canvas and configure. Stream the events into a cube called alerts-violation-
predictions-cube.

Result

The final flow looks like the following:

Hortonworks DataFlow June 9, 2017

62

Hortonworks DataFlow June 9, 2017

63

8. Creating Visualizations Using Superset
A business analyst can create a wide array of visualizations to gather insights on streaming
data. The platform supports over 30+ visualizations the business analyst can create. For
visualization examples, see the Gallery of Superset Visualizations.

The general process for creating and viewing visualizations is as follows:

1. Whenever you add new data sources to Druid via a Stream App, perform the Refresh
Druid Metadata action on the Superset menu.

2. Using the Superset Stream Insight UI, create one or more "slices". A slice is one business
visualization assoicated with a data source (e.g: Druid cube).

3. Using the Dashboard menu, add the slices to your dashboard and organize their layout.

Note

Note that when a SAM app streams data to a new cube using the Druid
processor, it will about 30 minutes for the cube to appear in Superset. This is
because Superset has to wait for the first segment to be created in Druid. After
the cube appears, users can analyze the streaming data immediately as it is
streaming in.

8.1. Creating Insight Slices
The following steps demonstrate a typical flow for creating a slice:

1. Choose Slices on the Menu.

2. Click + to create a new Slice.

3. Select the Druid Data Source that you want to use for the new visualization:

4. Select a Chart Type from the menu.

http://airbnb.io/superset/gallery.html

Hortonworks DataFlow June 9, 2017

64

This example creates a "Sunburst" visualization where we are rolling up multiple
dimensions like route, eventType and driver info. Configure the chart and click Execute
Query.

5. Another visualization could be integration with MapBox Here we are mapping where
violations are occurring the most based on the lat/long location of the event

6. To save the slice, specify a name and name and click Save.

https://www.mapbox.com/

Hortonworks DataFlow June 9, 2017

65

8.2. Adding Insight Slices to a Dashboard
After you create slices, you can organize them into a dashboards:

1. Click the Dashboard menu item.

2. Click + to create a new Dashboard.

3. Configure the dashboard: specify a name and the slices to include in the Dashboard.

4. Arrange the slices on the dashboard as desired, and then click Save.

8.2.1. Dashboards for the Trucking IOT App

The IOT Trucking app that we implementing using the Stream Builder was streaming
violation events, alerts and predictions into three cubes:

• violation-events-cube

• alerts-speeding-drivers-cube

• alerts-violation-predictions-cube

Based on the powerful visualizations that SuperSet offers, you can create the below
powerful dashboards in minutes.

Hortonworks DataFlow June 9, 2017

66

IoT Dashboard

Alerts Dashboard

Hortonworks DataFlow June 9, 2017

67

	Hortonworks DataFlow
	Table of Contents
	1. Building an End-to-End Stream Application
	1.1. Understanding the Use Case
	1.2. Reference Architecture

	2. Prepare Your Environment
	2.1. Deploying Your HDF Clusters
	2.2. Registering Schemas in Schema Registry
	2.2.1. Create the Kafka Topics
	2.2.2. Register Schemas for the Kafka Topics

	3. Creating a Dataflow Application
	3.1. Data Producer Application Generates Events
	3.2. NiFi: Create a Dataflow Application
	3.2.1. NiFi Controller Services
	3.2.2. NiFi Ingests the Raw Sensor Events
	3.2.3. Publish Enriched Events to Kafka for Consumption by Analytics Applications
	3.2.4. Start the NiFi Flow

	4. Creating a Stream Analytics Application
	4.1. Create a Service Pool and Environment
	4.2. Create Your First Application
	4.3. Creating and Configuring the Kafka Source Stream
	4.4. Connecting Components
	4.5. Joining Multiple Streams
	4.6. Filtering Events in a Stream using Rules
	4.7. Using Aggregate Functions over Windows
	4.8. Implementing Business Rules on the Stream
	4.9. Transforming Data using a Projection Processor
	4.10. Creating Alerts with Notifications Sink
	4.11. Streaming Alerts to an Analytics Engine for Dashboarding
	4.12. Streaming Violation Events to an Analytics Engine for Descriptive Analytics
	4.13. Streaming Violation Events into a Data Lake and Operational Data Store

	5. Deploy an Application
	5.1. Configure Deployment Settings
	5.2. Deploy the App
	5.3. Running the Stream Simulator

	6. Stream Operations
	6.1. My Applications View
	6.2. Application Performance Monitoring
	6.3. Troubleshooting and Debugging a Stream application
	6.3.1. Streaming Engine Infrastructure Metrics
	6.3.2. Changing Log Levels Dynamically and with Expiration Policies
	6.3.3. Distributed Log Search

	6.4. Exporting and Importing Stream applications

	7. Advanced: Doing Predictive Analytics on the Stream
	7.1. Logistical Regression Model
	7.2. Export the Model into SAM's Model Registry
	7.3. Enrichment and Normalization of Model Features
	7.4. Setting up your Enrichment Store and Building Custom UDFs and Processors
	7.5. Upload Custom Processors and UDFs for Enrichment and Normalization
	7.5.1. Upload Custom UDFs
	7.5.2. Upload Custom Processors

	7.6. Scoring the Model in the Stream using a Streaming Split Join Pattern
	7.7. Streaming Split Join Pattern
	7.8. Score the Model using the PMML Processor and Alert

	8. Creating Visualizations Using Superset
	8.1. Creating Insight Slices
	8.2. Adding Insight Slices to a Dashboard
	8.2.1. Dashboards for the Trucking IOT App

