
docs.hortonworks.com

http://docs.hortonworks.com

Data Governance Guide Dec 21, 2015

ii

Data Governance Guide: Hortonworks Data Platform
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

http://hortonworks.com/hadoop-training/
http://hortonworks.com/technology/hortonworksdataplatform
http://hortonworks.com/support
http://hortonworks.com/hadoop-training
http://hortonworks.com/about-us/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Data Governance Guide Dec 21, 2015

iii

Table of Contents
1. HDP Data Governance .. 1

1.1. Falcon Overview ... 1
1.2. Atlas Overview ... 2

2. Data Pipelines (Falcon) .. 4
2.1. Understanding Data Pipelines ... 4
2.2. Quick Start: Using the Falcon Web UI to Define Data Pipelines 5

2.2.1. Creating a Cluster Entity .. 7
2.2.2. Creating a Feed Entity ... 9
2.2.3. Creating a Process Entity .. 11

2.3. Search For and Manage Data Pipeline Entities ... 13
2.4. Mirroring Data (Falcon) .. 14
2.5. Using the Falcon CLI to Define Data Pipelines ... 16

2.5.1. Deploying Data Pipelines ... 19
2.5.2. Replicating Data (Falcon) ... 20
2.5.3. Viewing Alerts in Falcon ... 27
2.5.4. Late Data Handling .. 28
2.5.5. Setting a Retention Policy .. 29
2.5.6. Setting a Retry Policy ... 29
2.5.7. Enabling Email Notifications ... 30

2.6. Understanding Dependencies in Falcon ... 31
2.7. Viewing Dependencies .. 31

3. Metadata Services Framework (Atlas) .. 33
3.1. Understanding the HDP Metadata Services Framework 33
3.2. Using the Atlas Web UI to Search Metadata ... 34

4. Reference (Falcon) .. 38
4.1. Cluster .. 38

4.1.1. Valid Cluster Tag Attributes ... 38
4.1.2. Cluster Interfaces ... 38
4.1.3. Cluster XSD Specification .. 38

4.2. Feed Entity ... 38
4.3. Process Entity ... 39
4.4. Using the CLI to Manage Entities and Instances .. 39

4.4.1. Managing Entities with the CLI .. 39
4.4.2. Managing Instances with the CLI ... 40

5. Troubleshooting (Falcon) ... 41
5.1. Falcon logs ... 41
5.2. Falcon Server Failure ... 41
5.3. Delegation Token Renewal Issues ... 41
5.4. Invalid Entity Schema ... 41
5.5. Incorrect Entity ... 41
5.6. Bad Config Store Error ... 41
5.7. Unable to set DataSet Entity .. 42
5.8. Oozie Jobs .. 42

6. Configuring High Availability (Falcon Server) .. 43
6.1. Configuring Properties and Setting Up Directory Structure for High
Availability ... 43
6.2. Preparing the Falcon Servers ... 44
6.3. Manually Failing Over the Falcon Servers .. 44

Data Governance Guide Dec 21, 2015

iv

7. Metadata Store REST API Reference (Atlas) ... 45
7.1. Data Model .. 45
7.2. AdminResource ... 45
7.3. EntityResource .. 46
7.4. HiveLineageResource .. 48
7.5. MetadataDiscoveryResource ... 48
7.6. RexsterGraphResource .. 50
7.7. TypesResource .. 51

Data Governance Guide Dec 21, 2015

v

List of Figures
1.1. Falcon Architecture .. 2
1.2. Atlas Overview ... 3
2.1. Data Pipeline .. 4
2.2. Data Pipeline Flow ... 5
2.3. Ambari Dashboard Falcon and Oozie Service Indicators ... 6
2.4. New Cluster Configuration Dialog ... 8
2.5. New Feed Configuration Dialog .. 10
2.6. New Process Configuration Dialog .. 12
2.7. Falcon Search UI ... 13
2.8. New Mirror Configuration Dialog ... 15
2.9. Graph_view.png ... 32
3.1. Atlas Architecture ... 33
3.2. Enter Tag to Search in Atlas Dashboard .. 35
3.3. Click the Tag Link to View Details ... 35
3.4. Details Tab ... 36
3.5. Schema Tab .. 36
3.6. Output Tab .. 37

Data Governance Guide Dec 21, 2015

vi

List of Tables
2.1. Cluster Entity Configuration Values ... 8
2.2. General Feed Configuration Values ... 10
2.3. General Process Configuration Values ... 12
2.4. Mirror Configuration Values ... 16
2.5. Available Falcon Event Alerts .. 27
2.6. Email Notifications Startup Properties ... 30
4.1. Cluster tag elements ... 38
4.2. Cluster Interfaces .. 38
4.3. Entity Actions ... 39
4.4. Instance Actions ... 40

Data Governance Guide Dec 21, 2015

1

1. HDP Data Governance
Enterprises that adopt modern data architectures with Hadoop must reconcile
data management realities when they bring existing and new data from disparate
platforms under management. As Hadoop is deployed in corporate data and processing
environments, metadata and data governance must be vital parts of any enterprise-ready
data lake to realize true value.

In HDP, the overall management of the data life cycle in the platform is achieved by using
data pipelines, which ingest, move, tag, process, and expire data, and an underlying
flexible metadata store that manages all data for all components of HDP. This underlying
metadata store simplifies data governance for Hadoop because you no longer must create
interfaces to each HDP component. Instead, you can program your third-party governance
applications to access one HDP metadata store that gives you access to all metadata for the
platform.

Data governance in HDP is managed by the following components:

• Apache Falcon: solves enterprise challenges related to Hadoop data replication, business
continuity, and lineage tracing by deploying a framework for data management and
processing. The Falcon framework can also leverage other HDP components, such as Pig,
HDFS, and Oozie. Falcon enables this simplified management by providing a framework
to define, deploy, and manage data pipelines. Data pipelines contain:

• A definition of the dataset to be processed.

• Interfaces to the Hadoop cluster where the data resides.

• A process definition that defines how the data is consumed and invokes processing
logic.

• Apache Atlas: extends Falcon's governance capabilities by adding business taxonomical
and operational metadata. Atlas is a scalable and extensible set of core governance
services that enable enterprises to meet their compliance requirements within the
Hadoop stack and to integrate with their data ecosystem outside HDP. Atlas provides:

• Data classification.

• Centralized auditing.

• Search and lineage history.

• Security and policy engines.

1.1. Falcon Overview
Apache Falcon addresses the following data governance requirements and provides a
wizard-like GUI that eliminates hand coding of complex data sets and offers:

• Centrally manage the data lifecycle: Falcon enables you to manage the data lifecyle in
one common place where you can define and manage policies and pipelines for data
ingest, processing, and export.

http://www.hortonworks.com/blog/enterprise-hadoop-journey-data-lake/
http://www.hortonworks.com/blog/enterprise-hadoop-journey-data-lake/

Data Governance Guide Dec 21, 2015

2

• Business continuity and disaster recovery: Falcon can replicate HDFS and Hive datasets,
trigger processes for retry, and handle late data arrival logic. In addition, Falcon can
mirror file systems or Hive HCatalog on clusters using recipes that enable to you re-use
complex workflows.

• Address audit and compliance requirements: Falcon provides audit and compliance
features that enable you to visualize data pipeline lineage, track data pipeline audit logs,
and tag data with business metadata.

Figure 1.1. Falcon Architecture

Falcon can be installed and managed by Apache Ambari, and jobs can be traced through
the native Falcon UI. Falcon can process data from:

• Oozie jobs

• Pig scripts

• Hive scripts

1.2. Atlas Overview
Apache Atlas is a low-level service in the Hadoop stack that provides core metadata
services. Initially, Atlas provides metadata services for Hive, but in subsequent releases all
components of HDP will be brought under Atlas metadata manaagement. Atlas provides:

• Knowledge store that leverages existing Hadoop metastores: Categorized into
a business-oriented taxonomy of data sets, objects, tables, and columns. Supports
the exchange of metadata between HDP foundation components and third-party
applications or governance tools.

• Data lifecycle management: Leverages existing investment in Apache Falcon with a
focus on provenance, multi-cluster replication, data set retention and eviction, late data
handling, and automation.

• Audit store: Historical repository for all governance events, including security events
(access, grant, deny), operational events related to data provenance and metrics. The
Atlas audit store is indexed and searchable for access to governance events.

Data Governance Guide Dec 21, 2015

3

• Security: Integration with HDP security that enables you to establish global security
policies based on data classifications and that leverages Apache Ranger plug-in
architecture for security policy enforcement.

• Policy engine: Fully extensible policy engine that supports metadata-based, geo-based,
and time-based rules that rationalize at runtime.

• RESTful interface: Supports extensibility by way of REST APIs to third-party applications
so you can use your existing tools to view and manipulate metadata in the HDP
foundation components.

Figure 1.2. Atlas Overview

Data Governance Guide Dec 21, 2015

4

2. Data Pipelines (Falcon)
Data pipelines, which consist of cluster storage location definitions, dataset feeds, and
processing logic can be configured using either the Falcon command-line interface (CLI) or
the web UI. This topic explains what data pipelines are and how to configure them for data
replication and mirroring. Information for using both the web UI and the CLI is included.
The CLI commands support automating data pipeline creation.

2.1. Understanding Data Pipelines
A data pipeline consists of a dataset and processing that acts on the dataset across your
HDFS cluster.

Figure 2.1. Data Pipeline

Each pipeline consists of XML pipeline specifications, called entities. These entities act
together to provide a dynamic flow of information to load, clean, and process data.

There are three types of entities:

• Cluster: Defines where data and processes are stored.

• Feed: Defines the datasets to be cleaned and processed.

• Process: Consumes feeds, invokes processing logic, and produces further feeds. A process
defines the configuration of the Oozie workflow and defines when and how often the
workflow should run. Also allows for late data handling.

Data Governance Guide Dec 21, 2015

5

Each entity is defined separately and then linked together to form a data pipeline. Falcon
provides predefined policies for data replication, retention, late data handling, and
replication. These sample policies are easily customized to suit your needs.

These entities can be reused many times to define data management policies for Oozie
jobs, Pig scripts, and Hive queries. For example, Falcon data management policies become
Oozie coordinator jobs:

Figure 2.2. Data Pipeline Flow

2.2. Quick Start: Using the Falcon Web UI to
Define Data Pipelines

The Falcon web UI enables you to define and deploy data pipelines. Using the web UI
ensures that the XML definition file that you use to deploy the data pipeline to the Falcon
server is well-formed.

Prerequisite Setup Steps:

Before you define a data pipeline, a system administrator must:

• Make sure that you have the following components installed on your cluster:

• HDP

• Falcon

Data Governance Guide Dec 21, 2015

6

• Oozie client and server

• Make sure that the Falcon and Oozie services are running. For example, if you are using
Ambari, confirm that the Falcon and Oozie services have green check marks adjacent to
them on the Ambari dashboard:

Figure 2.3. Ambari Dashboard Falcon and Oozie Service Indicators

• Create the directory structure on HDFS for the staging, temp, and working folders where
the cluster entity stores the dataset. These folders must be owned by the falcon user.

For example:

sudo su falcon
hadoop fs mkdir -p /apps/falcon/primary_Cluster/staging
hadoop fs mkdir -p /apps/falcon/primary_Cluster/working
hadoop fs mkdir -p /apps/falcon/tmp

These commands create the following directories that are owned by the falcon user:

/apps/falcon/primary_Cluster/staging

/apps/falcon/primary_Cluster/working

/apps/falcon/tmp

Important

Permissions on the cluster staging directory must be set to 777 (read/write/
execute for owner/group/others). Only Oozie job definitions are written
to the staging directory so setting permissions to 777 does not create any
vulnerability.

Run:

hadoop fs -chmod -R 777 <your_staging_directory_path>

Data Governance Guide Dec 21, 2015

7

• Launch the Falcon web UI. If you are using Ambari:

1. On the Services tab, select Falcon in the services list.

2. At the top of the Falcon service page, click Quick Links, and then click Falcon Web UI.

Important

To access the Falcon UI on a secured cluster, use kinit before accessing
the Kerberos-protected web server and configure your browsers for
SPNEGO access. For more information, see Configure Browser for SPNEGO.

2.2.1. Creating a Cluster Entity

Always specify a cluster entity before defining other elements in your data pipeline. The
cluster entity defines where the data and the processes for your data pipeline are stored.
For more information, see the cluster entity XSD here.

To use the Falcon web UI to define a cluster entity:

1. At the top of the Falcon web UI page, click Cluster.

https://wiki.zimbra.com/wiki/Configure_Browser_for_SPNEGO
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/cluster-0.1.xsd;hb=HEAD

Data Governance Guide Dec 21, 2015

8

Figure 2.4. New Cluster Configuration Dialog

2. On the New Cluster page, specify the following values:

Table 2.1. Cluster Entity Configuration Values

Value Description

Name Name of the cluster entity. Not necessarily the actual
cluster name.

Colo and Description Name and description of the data center.

Tags Metadata tagging.

Access Control List Specify the HDFS access permissions.

Interfaces Specify the interface types:

Data Governance Guide Dec 21, 2015

9

Value Description

• readonly -- Required for distcp (distributed copy) used
in replication.

• write --Required to write to HDFS.

• execute --Required to write jobs to MapReduce.

• workflow --Required. This interface submits Oozie
jobs.

• messaging --Required to send alerts.

• registry --Required to register or deregister partitions
in the Hive Metastore and to fetch events on partition
availability.

Properties Specify a name and value for each property.

Location Specify HDFS locations for the staging, temp, and
working directories. For more information, see
Prerequisite Setup Steps [5].

3. Click Next to view a summary of your cluster entity definition. The XML file is displayed
to the right of the summary. Click Edit XML to edit the XML directly.

4. If you are satisfied with the cluster entity definition, click Save.

5. To verify that you successfully created the cluster entity, enter the cluster entity name
in the Falcon web UI Search well and press Enter. If the cluster entity name appears in
the search results, it was successfully created. See Search For and Manage Data Pipeline
Entities.

2.2.2. Creating a Feed Entity

The feed entity defines the datasets that are cleaned and processed in your data pipeline.
For more information, see the feed entity XSD here.

To use the Falcon web UI to define a feed entity:

1. At the top of the Falcon web UI page, click Feed.

section_search_data_pipeline_entities.html
section_search_data_pipeline_entities.html
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/feed-0.1.xsd;hb=HEAD

Data Governance Guide Dec 21, 2015

10

Figure 2.5. New Feed Configuration Dialog

2. On the New Feed page, specify the following values:

Table 2.2. General Feed Configuration Values

Value Description

Name and Description Name and description of the feed entity.

Tags Metadata tagging. For example, you can set the key
to "externalTarget" and the corresponding value to
"Marketing" tagging this feed for marketing.

Groups Specify the feed group. Feeds can belong to multiple
groups.

Notification Enables email notifications that are sent when the
scheduled feed instance completes. Specify the email
address where you want notifications to be sent. For
example, jdoe@xyz.com.

Access Control List Specify the HDFS access permissions. Required for HDFS.

Schema Specify the schema location and provider. This is
required for HDFS.

Data Governance Guide Dec 21, 2015

11

3. Click Next to advance to the Properties configuration where you can configure the
timing and other feed properties.

4. Click Next to advance to the Location configuration where you can specify the global
location across clusters. For HDFS paths, choose File System and for Hive tables, choose
Catalog Storage. For example, to specify a data path for a File System location, in the
Data path text box, enter /weblogs/${YEAR}-${MONTH}-${DAY}-${HOUR} to point to
the web logs.

5. Click Next to advance to the Clusters configuration where you can:

• Select the target cluster entity that you defined in Creating a Cluster Entity for
retention or replication.

• Specify the Storage type and Location. If you do not specify a location, the location
that you specified in the Properties configuration is used.

• Select the Validity interval.

6. Click Next to view a summary of your feed entity definition. The XML file is displayed to
the right of the summary. Click Edit XML to edit the XML directly.

7. If you are satisfied with the feed entity definition, click Save.

8. To verify that you successfully created the feed entity, enter the feed entity name in the
Falcon web UI Search well and press Enter. If the feed entity name appears in the search
results, it was successfully created. See Search For and Manage Data Pipeline Entities.

2.2.3. Creating a Process Entity

The process entity consumes the feeds, invokes processing logic, and can produce
additional feeds. For more information, see the process entity XSD here

To use the Falcon web UI to define a process entity:

1. At the top of the Falcon web UI page, click Process.

section_creating_cluster_entity.html
section_search_data_pipeline_entities.html
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/process-0.1.xsd;hb=HEAD

Data Governance Guide Dec 21, 2015

12

Figure 2.6. New Process Configuration Dialog

2. On the New Process page, specify the following values:

Table 2.3. General Process Configuration Values

Value Description

Name Name of the process entity.

Tags Business labels, such as "Finance." There is no input
validation on this field, so there can be duplicates,
which is resolved in environments with Apache Atlas
integration. See Configuring, Using, and Managing the
Metadata Store (Atlas).

Workflow Specify a Name for the workflow, which Engine it uses,
and the Path to the workflow engine. For example, if
you are using a Pig script to define the workflow, you
can set the Path to /apps/clickstream/clean-script.pig

Notification Enables email notifications that are sent when the
process instance completes. Specify the email address
where you want notifications to be sent. For example,
jdoe@xyz.com.

Access Control List Specify the HDFS access permissions. Required for HDFS.

3. Click Next to advance to the Properties configuration where you can configure the time
zone, timing, and retry policy.

4. Click Next to advance to the Clusters configuration where you can:

ch_config_using_metadata_store.html
ch_config_using_metadata_store.html

Data Governance Guide Dec 21, 2015

13

• Select the target cluster entity that you defined in Creating a Cluster Entity to specify
where the process runs.

• Select the Validity interval.

5. Click Next to advance to the Inputs & Outputs configuration where you can configure:

• Inputs: Feeds that are consumed by the process.

• Outputs: Feeds that are generated and output by the process.

6. Click Next to view a summary of your process entity definition. The XML file is displayed
to the right of the summary. Click Edit XML to edit the XML directly.

7. If you are satisfied with the process entity definition, click Save.

8. To verify that you successfully created the process entity, enter the process entity name
in the Falcon web UI Search well and press Enter. If the process entity name appears in
the search results, it was successfully created. See Search For and Manage Data Pipeline
Entities.

2.3. Search For and Manage Data Pipeline Entities
The best way to search for and manage data pipeline entities is by using the Falcon web UI.

Figure 2.7. Falcon Search UI

To search for and manage data pipeline entities with the Falcon web UI:

1. Launch the Falcon web UI. If you are using Ambari:

a. On the Services tab, select Falcon in the services list.

b. At the top of the Falcon service page, click Quick Links, and then click Falcon Web UI.

2. Enter your query in the Search well, and press Enter.

You can filter entities based on names, types, or tags. By default, the first argument in
your query is the Name filter. Wildcards are supported, such as asterisk (*). The search
is interactive so you can refine your search by adding and removing tags to tune your
result set.

Filter Description

Name Subsequence of the entity name (cluster, feed, or
process name). Not case sensitive. The entity name

section_creating_cluster_entity.html
section_search_data_pipeline_entities.html
section_search_data_pipeline_entities.html

Data Governance Guide Dec 21, 2015

14

Filter Description

must contain all of the characters in the subsequence in
the same order as the original sequence from which it
derives.

For example:

• "sample1" matches the entity named "SampleFeed1-2"

• "mhs" matches the entity named "New-My-Hourly-
Summary"

Tag Keywords in metadata tags. Not case sensitive. Entities
that are returned in search results have tags that match
all of the tag keywords.

Type Specifies the type of entity. Valid entity types are cluster,
feed, or process. The Falcon search UI infers the type
filter automatically. For example, to add a "process" filter
type, enter process in the search well, and then choose
type:process from the hints offered in the UI as shown
in the previous screen capture.

3. Select entities in the search results and then select the action you want to perform.
Depending on the type of entity you select, you can schedule, resume, pause, edit, copy,
delete, or download the XML. In addition, when you click on an entity in the search
results, you can view its instances and property details.

4. Click the Falcon icon in the upper left corner of the window to exit the search results and
start a new search.

Note

Click tags in the search results to add them to the search well so you can search
on the tag definitions.

2.4. Mirroring Data (Falcon)
Mirroring data produces an exact copy of the data and keeps both copies synchronized.
You can use Falcon to mirror HDFS directories or Hive tables and you can mirror between
HDFS and Amazon S3 or Microsoft Azure. A whole database replication can be performed
with Hive.

To mirror data with the Falcon web UI:

1. Launch the Falcon web UI. If you are using Ambari:

a. On the Services tab, select Falcon in the services list.

b. At the top of the Falcon service page, click Quick Links, and then click Falcon Web UI.

2. At the top of the Falcon web UI page, click Mirror.

Data Governance Guide Dec 21, 2015

15

Figure 2.8. New Mirror Configuration Dialog

3. On the New Mirror page, specify the following values:

Data Governance Guide Dec 21, 2015

16

Table 2.4. Mirror Configuration Values

Value Description

Mirror Name Name of the mirror entity.

Tags Metadata tagging. An example is provided in the UI.

Mirror Type Select whether this is a File System or Hive catalog
mirror type.

Source Specify the location, name, and path of the cluster
or Hive table that is to be mirrored, and specify if the
mirroring job runs on the source cluster.

Target Specify the location, name, and path where the mirrored
cluster is stored, and specify if the mirroring job runs on
the target cluster.

Validity Specify the validity interval.

Advanced Options Expand the Advanced Options section of the page
to configure how often the target cluster is updated,
throttle distcp operations, set a retry policy, and specify
the ACL for the mirror entity.

4. Click Next to view a summary of your mirror entity definition.

5. If you are satisfied with the mirror entity definition, click Save.

6. To verify that you successfully created the mirror entity, enter the mirror entity name
in the Falcon web UI Search well and press Enter. If the mirror entity name appears in
the search results, it was successfully created. See Search For and Manage Data Pipeline
Entities.

2.5. Using the Falcon CLI to Define Data Pipelines
To use the Falcon CLI to define a data pipeline:

1. Create the cluster specification XML file, also known as a cluster entity. There are several
interfaces to define in a cluster entity. For example, here is a cluster entity with all cluster
interfaces defined:

• Colo: Name of the Data Center

• Name: Filename of the Data Center

• <interface>: Specify the interface type

Important

Permissions on the cluster staging directory must be set to 777 (read/write/
execute for owner/group/others). Only Oozie job definitions are written
to the staging directory so setting permissions to 777 does not create any
vulnerability.

<?xml version="1.0"?>
<!--
 Cluster Example

section_search_data_pipeline_entities.html
section_search_data_pipeline_entities.html

Data Governance Guide Dec 21, 2015

17

 -->
<cluster colo="$MyDataCenter" description="description" name=
"$MyDataCenter">
 <interfaces>
 <interface type="readonly" endpoint="hftp://nn:50070" version="2.4.0" />
 <!-- Required for distcp for replications. -->
 <interface type="write" endpoint="hdfs://nn:8020" version="2.4.0" />
 <!-- Needed for writing to HDFS-->
 <interface type="execute" endpoint="rm:8050" version="2.4.0" /> <!--
 Needed to write to jobs as MapReduce-->
 <interface type="workflow" endpoint="http://os:11000/oozie/" version="4.
0.0" /> <!-- Required. Submits Oozie jobs.-->
 <interface type=”registry" endpoint="thrift://hms:9083" version="0.
13.0" /> <!--Register/deregister partitions in the Hive Metastore and get
 events on partition availability
-->
 <interface type="messaging" endpoint="tcp://mq:61616?daemon=true"
 version="5.1.6" /> <!--Needed for alerts-->
 </interfaces>
 <locations>
 <location name="staging" path="/apps/falcon/prod-cluster/staging" />
 <!--HDFS directories used by the Falcon server-->
 <location name="temp" path="/tmp" />
 <location name="working" path="/apps/falcon/prod-cluster/working" />
 </locations>
</cluster>

Note

Additional properties must be set if you are configuring for a secure cluster.
For more information, see "Configuring for Secure Clusters" in the Non-
Ambari Cluster Installation guide.

2. Next, create a dataset specification XML file, or feed entity:

• Reference the cluster entity to determine which clusters the feed uses.

• <frequency>: Specify the frequency of the feed.

• <retention limit>: Choose a retention policy for the data to remain on the cluster.

• <location>: Provide the HDFS path to the files.

• Optional. Specify an Email Notification. The email notification tag must be placed
before the <ACL> tag.

• <ACL owner>: Specify the HDFS access permissions.

• Optional. Specify a Late Data Handling cut-off.

<?xml version="1.0"?>
<!--
 Feed Example
 -->
<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">
 <frequency>hours(1)</frequency> <!--Feed run frequency-->
 <late-arrival cut-off="hours(6)”/> <!-- Late arrival cut-off -->

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_installing_manually_book/content/ch_getting_ready_chapter.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Data Governance Guide Dec 21, 2015

18

 <groups>churnAnalysisFeeds</groups> <!--Feed group, feeds can belong to
 multiple groups -->
 <tags externalSource=$MyEDW, externalTarget=Marketing> <!-- Metadata
 tagging -->
 <clusters> <!-- Target clusters for retention and replication. -->
 <cluster name="$MyDataCenter" type="source">
 <validity start="$date" end="$date"/>
 <retention limit="days($n)" action="delete"> <!--Currently delete is
 the only action available -->
 </cluster>
 <cluster name="$MyDataCenter-secondary" type="target">
 <validity start="2012-01-01T00:00Z" end="2099-12-31T00:00Z"/>
 <location type="data” path="/churn/weblogs/${YEAR}-${MONTH}-${DAY}-
${HOUR} "/>
 <retention limit="days(7)" action="delete"/>
 </cluster>
 </clusters>
 <locations> <!-- Global location across clusters - HDFS paths or Hive
 tables -->
 <location type="data" path="/weblogs/${YEAR}-${MONTH}-${DAY}-${HOUR} "/>
 </locations>
 <notification type="email" to="falcon@xyz.com"/>
 <ACL owner="hdfs" group="users" permission="0755"/> <!-- Required for
 HDFS. -->
 <schema location="/none" provider="none"/> <!-- Required for HDFS. -->
</feed>

3. Create the process specification XML file:

• <cluster name>: Reference the cluster entity to define where the process runs.

• <feed>: Reference the feed entity to define the datasets that the process uses.

• Optional. Specify Late Data Handling policies or a Retry Policy.

• Optional. Specify an Email Notification.

<?xml version="1.0"?>
<!--
 Process Example
 -->
<process name="process-test" xmlns="uri:falcon:process:0.1”>
 <clusters>
 <cluster name="$MyDataCenter">
 <validity start="2011-11-02T00:00Z" end="2011-12-30T00:00Z"
 </cluster>
 </clusters>
 <parallel>1</parallel>
 <order>FIFO</order> <!--You can also use LIFO and LASTONLY but FIFO is
 recommended in most cases-->
 <frequency>days(1)</frequency>
 <inputs>
 <input end="today(0,0)" start="today(0,0)" feed="feed-clicks-raw"
 name="input" />
 </inputs>
 <outputs>
 <output instance="now(0,2)" feed="feed-clicks-clean" name="output" /
>
 </outputs>
 <workflow engine="pig" path="/apps/clickstream/clean-script.pig" />

Data Governance Guide Dec 21, 2015

19

 <retry policy="periodic" delay="minutes(10)" attempts="3"/>
 <late-process policy="exp-backoff" delay="hours(1)">
 <late-input input="input" workflow-path="/apps/clickstream/late" />
 </late-process>
 <notification type="email" to="falcon@xyz.com, falcon_2@xyz.com"/>
</process>

Note

LIFO and LASTONLY are also supported schedule changes for <order>.

You can now move on to Deploying Data Pipelines.

2.5.1. Deploying Data Pipelines

After you create your data pipeline with Falcon, you can deploy it with the Falcon CLI.

To deploy the data pipeline:

1. Submit your entities to Falcon. Be sure to specify the correct entity type.

a. Submit your cluster entity.

For example, to submit $sampleClusterFile.xml:

falcon entity -type cluster -submit -file $sampleClusterFile.xml

b. Submit your dataset or feed entity.

For example, to submit $sampleFeedFile.xml:

falcon entity -type feed -submit -file $sampleFeedFile.xml

c. Submit your process entity.

For example, to submit $sampleProcessFile.xml:

falcon entity -type process -submit -file $sampleProcessFile.xml

2. Schedule your feed and process entities.

a. Schedule your feed.

For example, to schedule $feedName:

falcon entity -type feed -schedule -name $feedName

b. Schedule your process.

For example, to schedule $processName:

falcon entity -type process -schedule -name $processName

Your data pipeline is now deployed with basic necessary information to run Oozie jobs, Pig
scripts, and Hive queries. You can now explore other sections such as Late Data Handling or
Retry Policy.

Data Governance Guide Dec 21, 2015

20

2.5.2. Replicating Data (Falcon)

Falcon can replicate data across multiple clusters using distcp, and do it according to the
frequency you specify in the feed entity. Falcon uses a pull-based replication mechanism,
meaning in every target cluster, for a given source cluster, a coordinator is scheduled which
pulls the data using distcp from source cluster.

2.5.2.1. Prerequisites

Before you begin setting up Data Replication, that you have the following components
installed on your cluster:

• HDP. Installed on your cluster (using Ambari or a manual installation)

• Falcon. Installed on your cluster and the Falcon Service is running.

• Oozie Client and Server. Installed on your cluster and the Oozie Service is running on
your cluster.

2.5.2.2. Define the Data Source: Set Up a Source Cluster Entity

Define where data and processes are stored in the cluster entity.

1. Create an XML file for the Cluster entity. This file contains all properties for the cluster.
Include the XML version:

<?xml version="1.0"?>

2. Define the colo and name attributes for the cluster.

<?xml version="1.0"?>
<cluster colo="<MyDataCenter>" description="description"
 name="<MyDataCenterFilename>">
</cluster>

Note

colo specifies the data center to which this cluster belongs.

name is the name of the cluster, which must be unique.

3. Define the interfaces for the cluster. For each interface specify type of interface,
endpoint, and Apache version.

For example:

<cluster colo="<MyDataCenter>" description="description"
 name="<MyDataCenterFilename>">
 <interfaces>

 <!-- Required for distcp for replications. -->
 <interface type="readonly" endpoint="hftp://nn:50070" version="2.
4.0" />

 <!-- Needed for writing to HDFS-->

Data Governance Guide Dec 21, 2015

21

 <interface type="write" endpoint="hdfs://nn:8020" version="2.4.
0" />

 <!-- Required. An execute interface specifies the interface for
 job tracker.-->
 <interface type="execute" endpoint="rm:8050" version="2.4.0" />

 <!-- Required. A workflow interface specifies the interface for
 workflow engines, such as Oozie.-->
 <interface type="workflow" endpoint="http://os:11000/oozie/"
 version="4.0.0" />

 <!--A registry interface specifies the interface for the metadata
 catalog, such as Hive Metastore or HCatalog.-->
 <interface type="registry" endpoint="thrift://hms:9083" version=
"0.13.0" />

 <!--Messaging interface specifies the interface for sending
 alerts.-->
 <interface type="messaging" endpoint="tcp://mq:61616?daemon=true"
 version="5.1.6" />
 </interfaces>
</cluster>

4. Provide the locations for the HDFS paths to files.

For example:

<cluster colo="<MyDataCenter>" description="description"
 name="<MyDataCenter>">
 <interfaces>

 <!-- Required for distcp for replications. -->
 <interface type="readonly" endpoint="hftp://nn:50070" version="2.
4.0" />

 <!-- Needed for writing to HDFS-->
 <interface type="write" endpoint="hdfs://nn:8020" version="2.4.
0" />

 <!-- Needed to write to jobs as MapReduce-->
 <interface type="execute" endpoint="rm:8050" version="2.4.0" />

 <!-- Required. Submits Oozie jobs.-->
 <interface type="workflow" endpoint="http://os:11000/oozie/"
 version="4.0.0" />

 <!--Register/deregister partitions in the Hive Metastore and get
 events on partition availability-->
 <interface type=”registry" endpoint="thrift://hms:9083" version=
"0.13.0" />

 <!--Needed for alerts-->
 <interface type="messaging" endpoint="tcp://mq:61616?daemon=true"
 version="5.1.6" />
 </interfaces>

 <locations>

 <!--HDFS directories used by the Falcon server-->

Data Governance Guide Dec 21, 2015

22

 <location name="staging" path="/apps/falcon/prod-cluster/
staging" />
 <location name="temp" path="/tmp" />
 <location name="working" path="/apps/falcon/prod-cluster/
working" />
 </locations>
</cluster>

The cluster entity is complete if you are using a non-secure environment. If you are using
an environment that is secured with Kerberos, continue on with the next step.

5. For secure clusters, define the following properties in all your cluster entities as shown
below:

<cluster colo="<MyDataCenter>" description="description"
 name="<MyDataCenter>">

 <interfaces>

 <!-- Required for distcp for replications. -->
 <interface type="readonly" endpoint="hftp://nn:50070" version="2.
4.0" />

 <!-- Needed for writing to HDFS-->
 <interface type="write" endpoint="hdfs://nn:8020" version="2.4.
0" />

 <!-- Needed to write to jobs as MapReduce-->
 <interface type="execute" endpoint="rm:8050" version="2.4.0" />

 <!-- Required. Submits Oozie jobs.-->
 <interface type="workflow" endpoint="http://os:11000/oozie/"
 version="4.0.0" />

 <!--Register/deregister partitions in the Hive Metastore and get
 events on partition availability-->
 <interface type=”registry" endpoint="thrift://hms:9083" version=
"0.13.0" />

 <!--Needed for alerts-->
 <interface type="messaging" endpoint="tcp://mq:61616?daemon=true"
 version="5.1.6" />
 </interfaces>

 <locations>

 <!--HDFS directories used by the Falcon server-->
 <location name="staging" path="/apps/falcon/prod-cluster/
staging" />
 <location name="temp" path="/tmp" />
 <location name="working" path="/apps/falcon/prod-cluster/
working" />
 </locations>

 <properties>
 <property name="dfs.namenode.kerberos.principal" value="nn/$my.
internal@EXAMPLE.COM"/>
 <property name="hive.metastore.kerberos.principal" value="hive/
$my.internal@EXAMPLE.COM"/>

Data Governance Guide Dec 21, 2015

23

 <property name="hive.metastore.uris" value="thrift://$my.
internal:9083"/>
 <property name="hive.metastore.sasl.enabled" value="true"/>
 </properties>
</cluster>

Replace $my.internal@EXAMPLE.COM and $my.internal with your own values.

Important

Make sure hadoop.security.auth_to_local in core-site.xml is consistent across
all clusters. Inconsistencies in rules for hadoop.security.auth_to_local can
lead to issues with delegation token renewals.

2.5.2.3. Create the Replication Target: Define a Cluster Entity

Replication targets must also be defined as cluster entities. These entities include:

• colo and name attributes for the cluster.

• Interfaces for the cluster.

• Locations for the HDFS paths to files.

• (For secure clusters only) security properties.

2.5.2.4. Create the Feed Entity

The feed entity defines the data set that Falcon replicates. Reference your cluster entities to
determine which clusters the feed uses.

1. Create an XML file for the Feed entity.

<?xml version="1.0"?>

2. Describe the feed.

<?xml version="1.0"?>
<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">
</feed>

3. Specify the frequency of the feed.

<?xml version="1.0"?>
<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

</feed>

4. Choose a retention policy for the data to remain on the cluster.

For example:

<?xml version="1.0"?>

Data Governance Guide Dec 21, 2015

24

<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

</feed>

5. (Optional) Set a late-arrival cut-off policy. The supported policies for late data handling
are backoff, exp-backoff (default), and final.

For example, to set the policy to a late cutoff of 6 hours:

<?xml version="1.0"?>
<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

<!-- Late arrival cut-off -->
<late-arrival cut-off="hours(6)”/>

</feed>

6. Define your source and target clusters for the feed.

For example, for two clusters, MyDataCenter and MyDataCenter-secondary cluster:

<?xml version="1.0"?>
<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

<!-- Late arrival cut-off -->
<late-arrival cut-off="hours(6)”/>

<!-- Target clusters for retention and replication. -->
<clusters>
 <cluster name="<MyDataCenter>" type="source">
 <validity start="$date" end="$date"/>

 <!--Currently delete is the only action available -->
 <retention limit="days($n)" action="delete">
 </cluster>

 <cluster name="$MyDataCenter-secondary" type="target">
 <validity start="2012-01-01T00:00Z" end="2099-12-31T00:00Z"/>
 <location type="data” path="/churn/weblogs/${YEAR}-${MONTH}-
${DAY}-${HOUR} "/>
 <retention limit="days(7)" action="delete"/>
 </cluster>
</clusters>
</feed>

7. Specify the HDFS weblogs path locations or Hive table locations. For example to
specify the HDFS weblogs location:

Data Governance Guide Dec 21, 2015

25

<?xml version="1.0"?>

<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

<!-- Late arrival cut-off -->
<late-arrival cut-off="hours(6)”/>

<!-- Target clusters for retention and replication. -->
<clusters>
 <cluster name="<MyDataCenter>" type="source">
 <validity start="$date" end="$date"/>

 <!--Currently delete is the only action available -->
 <retention limit="days($n)" action="delete">
 </cluster>

 <cluster name="$MyDataCenter-secondary" type="target">
 <validity start="2012-01-01T00:00Z" end="2099-12-31T00:00Z"/>
 <location type="data” path="/churn/weblogs/${YEAR}-${MONTH}-
${DAY}-${HOUR} "/>
 <retention limit="days(7)" action="delete"/>
 </cluster>
 </clusters> <locations>

<!-- Global location across clusters - HDFS paths or Hive tables -->
<location type="data" path="/weblogs/${YEAR}-${MONTH}-${DAY}-${HOUR} "/>
</locations>
</feed>

8. Specify HDFS ACLs. Set the owner, group, and level of permissions for HDFS. For
example:

<?xml version="1.0"?>
<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

<!-- Late arrival cut-off -->
<late-arrival cut-off="hours(6)”/>

<!-- Target clusters for retention and replication. -->
<clusters>
 <cluster name="<MyDataCenter>" type="source">
 <validity start="$date" end="$date"/>

 <!--Currently delete is the only action available -->
 <retention limit="days($n)" action="delete">
 </cluster>

 <cluster name="$MyDataCenter-secondary" type="target">
 <validity start="2012-01-01T00:00Z" end="2099-12-31T00:00Z"/>
 <location type="data” path="/churn/weblogs/${YEAR}-${MONTH}-${DAY}-
${HOUR} "/>

Data Governance Guide Dec 21, 2015

26

 <retention limit="days(7)" action="delete"/>
 </cluster>
</clusters>

<!-- Global location across clusters - HDFS paths or Hive tables -->
<locations>
 <location type="data" path="/weblogs/${YEAR}-${MONTH}-${DAY}-${HOUR} "/
>
</locations>

<!-- Required for HDFS. -->
<ACL owner="hdfs" group="users" permission="0755"/>

</feed>

9. Specify the location of the schema file for the feed as well as the provider of the
schema like protobuf, thrift etc. For example:

<?xml version="1.0"?>
<feed description="$rawInputFeed" name=”testFeed” xmlns="uri:falcon:feed:0.
1">

<!--Feed run frequency-->
<frequency>hours(1)</frequency>

<!-- Late arrival cut-off -->
<late-arrival cut-off="hours(6)”/>

<!-- Target clusters for retention and replication. -->
<clusters>
 <cluster name="<MyDataCenter>" type="source">
 <validity start="$date" end="$date"/>

 <!--Currently delete is the only action available -->
 <retention limit="days($n)" action="delete">
 </cluster>

 <cluster name="$MyDataCenter-secondary" type="target">
 <validity start="2012-01-01T00:00Z" end="2099-12-31T00:00Z"/>
 <location type="data” path="/churn/weblogs/${YEAR}-${MONTH}-${DAY}-
${HOUR} "/>
 <retention limit="days(7)" action="delete"/>
 </cluster>
</clusters>

<!-- Global location across clusters - HDFS paths or Hive tables -->
<locations>
 <location type="data" path="/weblogs/${YEAR}-${MONTH}-${DAY}-${HOUR} "/
>
</locations>

<!-- Required for HDFS. -->
<ACL owner="hdfs" group="users" permission="0755"/>
<schema location="/schema" provider="protobuf"/>
</feed>

2.5.2.5. Submit and Validate the Entities

• Submit your cluster entities. For example:

Data Governance Guide Dec 21, 2015

27

falcon entity -type cluster -submit -file <YourCluster>.xml

For each entity, you should see the following success message for submit:

falcon/default/Submit successful ($entity type) $yourEntityFile

• Submit your feed entity. For example:

falcon entity -type feed -submit -file <YourFeed>.xml

For each feed entity, you should see the following success message for submit:

falcon/default/Submit successful (feed) <YourFeed>

• Schedule your feed entity. For example:

falcon entity -type feed -name <YourFeed> -schedule

For each feed entity, you should see the following success message for schedule:

falcon/default/Schedule successful (feed) <YourFeed>

2.5.2.6. Confirm Results

To confirm your results, check your target cluster and review your Oozie jobs.

2.5.3. Viewing Alerts in Falcon

Falcon provides alerting for a variety of events to let you monitor the health of your data
pipelines. All events are logged to the metric.log file, which is installed by default in your
$user/logs/ directory. You can view the events from the log or capture them using a
custom interface.

Each event logged provides the following information:

• Date: UTC date of action.

• Action: Event name.

• Dimensions: List of name/value pairs of various attributes for a given action.

• Status: Result of the action. Can be FAILED or SUCCEEDED (when applicable).

• Time-taken: Time in nanoseconds for a given action to complete.

For example, a new process-definition alert would log the following information:

2012-05-04 12:23:34,026 {Action:submit, Dimensions:{entityType=process},
 Status: SUCCEEDED, Time-taken:97087000 ns}

Table 2.5. Available Falcon Event Alerts

Entity Type Action Returns Success/Failure

Cluster New cluster definitions submitted to Falcon Yes

Cluster Cluster update events Yes

Data Governance Guide Dec 21, 2015

28

Entity Type Action Returns Success/Failure

Cluster Cluster remove events Yes

Feed New feed definition submitted to Falcon Yes

Feed Feed update events Yes

Feed Feed suspend events Yes

Feed Feed resume events Yes

Feed Feed remove events Yes

Feed Feed instance deletion event No

Feed Feed instance deletion failure event (no retries) No

Feed Feed instance replication event No

Feed Feed instance replication failure event No

Feed Feed instance replication auto-retry event No

Feed Feed instance replication retry exhaust event No

Feed Feed instance late arrival event No

Feed Feed instance post cut-off arrival event No

Process New process definition posted to Falcon Yes

Process Process update events Yes

Process Process suspend events Yes

Process Process resume events Yes

Process Process remove events Yes

Process Process instance kill events Yes

Process Process instance re-run events Yes

Process Process instance generation events No

Process Process instance failure events No

Process Process instance auto-retry events No

Process Process instance retry exhaust events No

Process Process re-run due to late feed event No

N/A Transaction rollback failed event No

2.5.4. Late Data Handling
Late data handling in Falcon defines how long data can be delayed and how that late data
is handled. For example, a late arrival cut-off of hours(6) in the feed entity means that
data for the specified hour can delay as much as 6 hours later. The late data specification in
the process entity defines how this late data is handled. The late data policy in the process
entity defines how frequently Falcon checks for late data.

The supported policies for late data handling are:

• backoff: Take the maximum late cut-off and check every specified time.

• exp-backoff (default): Recommended. Take the maximum cut-off date and check on an
exponentially determined time.

• final:Take the maximum late cut-off and check once.

The policy, along with delay, defines the interval at which late data check is done. Late
input specification for each input defines the workflow that should run when late data is
detected for that input.

Data Governance Guide Dec 21, 2015

29

To handle late data, you need to modify the feed and process entities.

1. Specify the cut-off time in your feed entity.

For example, to set a cut-off of 4 hours:

<late-arrival cut-off="hours(4)”/>

2. Specify a check for late data in all your process entities that reference that feed entity.

For example, to check each hour until the cut-off time with a specified policy of
backoff and a delay of 1 hour:

<late-process policy="exp-backoff" delay="hours(1)”>
 <late-input input="input" workflow-path="/apps/clickstream/late" />
</late-process>

2.5.5. Setting a Retention Policy
You can set retention policies on a per-cluster basis. You must specify the amount of time
to retain data before deletion.

Falcon kicks off the retention policy on the basis of the time value you specify:

• Less than 24 hours: Falcon kicks off the retention policy every 6 hours.

• More than 24 hours: Falcon kicks off the retention policy every 24 hours.

• When a feed is scheduled: Falcon kicks off the retention policy immediately.

Note

When a feed is successfully scheduled, Falcon triggers the retention policy
immediately regardless of the current timestamp or state of the cluster.

To set a retention policy, add the following lines to your feed entity for each cluster that
the feed belongs to:

<clusters>
 <cluster name="corp" type="source">
 <validity start="2012-01-30T00:00Z" end="2013-03-31T23:59Z"
 timezone="UTC" />
 <retention limit="$unitOfTime($n)" action="delete" /> <!--
Retention policy. -->
 </cluster>
 </clusters>

Where limit can be minutes, hours, days, or months and then a specified numeric value.
Falcon then retains data spanning from the current moment back to the time specified in
the attribute. Any data beyond the limit (past or future) is erased.

2.5.6. Setting a Retry Policy
You can set retry policies on a per-process basis. The policies determine how workflow
failures are handled. Depending on the delay and number of attempts, the workflow is
retried after specified intervals.

Data Governance Guide Dec 21, 2015

30

To set a retry policy, add the following lines to your process entity:

<retry policy=[retry policy] delay=[retry delay]attempts=[attempts]/>
<retry policy="$policy" delay="minutes($n)" attempts="$n"/>

For example:

<process name ="[sample-process]">
...
 <retry policy="periodic" delay="minutes(10)" attempts="3"/>
...
</process>

In this example, the workflow is retried after 10 minutes, 20 minutes, and 30 minutes.

2.5.7. Enabling Email Notifications
You can enable email notifications in feed entities and process entities. When email
notifications are enabled, an email is sent to the specified email address when the
scheduled feed or process instance completes. Email notifications can be specified in feed or
process entities as follows:

<process name="<process_name>
 ...
 <notification type="email" to="jdoe@example.com, sjones@company.com"/>
 ...
</process>

Where type specifies the type of notification. Currently, only the email notification type
is supported. The to attribute specifies where the notification is to be sent. In the case of
email notifications, specify the email address where you want notifications sent for the to
attribute. Multiple recipients can be specified as a comma-separated list of email addresses
as shown in the previous example. The <notification> tag must be placed before the
<ACL> tag.

Falcon email notifications require SMTP server configurations to be defined in the Falcon
startup.properties file that is located in the FALCON_HOME/conf directory.
Configure the following startup properties for email notifications:

Table 2.6. Email Notifications Startup Properties

Property Description Default Values

falcon.email.smtp.host Name of the host where the SMTP
server can be found.

localhost

falcon.email.smtp.port The SMTP server host port to connect
to.

25

falcon.email.from.address The "From:" address used for all
notification emails.

falcon@localhost

falcon.email.smtp.auth Indicates whether user sending the
email is authenticated. Boolean value
(true | false)

false

falcon.email.smtp.user If authentication is enabled, this
property specifies the username that
is used to log in.

none

falcon.email.smtp.password If authentication is enabled, the
username's password that is used to
authenticate the user.

none

Data Governance Guide Dec 21, 2015

31

Property Description Default Values

monitoring.plugins Ensure that the email notification
plugin is listed for this property to
enable email notifications.

For example:

org.apache.falcon.plugin.
EmailNotificationPlugin,
 org.apache.falcon.plugin.
DefaultMonitoringPlugin

none

2.6. Understanding Dependencies in Falcon
Cross-entity dependencies in Falcon are important because a dependency cannot be
removed until all the dependents are first removed. For example, if Falcon manages two
clusters, one in Oregon and one in Virginia, and the Oregon cluster is going to be taken
down, you must first resolve the Virginia cluster dependencies as one Dataset (Dataset 3)
has a cross-entity dependency and depends on Email Ingest (Process 1).

To remove the Oregon cluster, you must resolve this dependency. Before you can remove
the Oregon Hadoop cluster, you must remove not only Process 1, Datasets 1 and 2 but also
modify the Dataset 3 entity to remove its dependence on Process 1.

As Falcon manages more clusters, viewing these dependencies becomes more crucial.

2.7. Viewing Dependencies
The Falcon native UI provides dependency viewing for clusters, datasets, and processes that
shows lineage in a list or graphical format:

Data Governance Guide Dec 21, 2015

32

• List: View the various dependencies and their types in a linear format.

• Graph: View the relationships between dependencies as a graph to determine
requirements for removal.

Figure 2.9. Graph_view.png

Data Governance Guide Dec 21, 2015

33

3. Metadata Services Framework (Atlas)
Atlas is a low-level service that provides metadata services to the HDP platform. Veracity of
the metadata is maintained by leveraging Apache Ranger to prevent unauthorized access
at runtime, using both role-based (RBAC) and attribute-based (ABAC) access control.

Important

This chapter is intended as a quick start for the Atlas web UI. The content will
be updated on a regular cadence over the next few months.

3.1. Understanding the HDP Metadata Services
Framework

Hadoop presents data governance challenges because it is a platform comprised of
autonomous projects that define their own future and share no common framework.
For example, disparate tools, such as HCatalog, Ranger, and Falcon provide pieces of an
overall data governance solution, but there is no comprehensive governance within the
Hadoop stack. In addition, there is no means to integrate the Hadoop stack with external
governance frameworks.

Atlas provides the means to centrally manage the data lifecycle in HDP, providing a
repository that collects metadata for the platform that can be searched, tagged, and
managed. A REST API is also available that can be used to integrate third-party governance
tools with HDP. For information about the REST API, see Appendix D in this guide.

Figure 3.1. Atlas Architecture

• REST API handles all interaction with the metadata services.

• Existing HDP stack plug-in model leveraged by metadata services.

• Metadata search provided in two ways:

• DSL (domain-specific language) search. A SQL-like query language.

• Lucene-style full text search.

ch_app_metadata_store_ref.html

Data Governance Guide Dec 21, 2015

34

• Type system provides flexible modeling capability to model any business, data asset, or
process, including inheritance.

• Titan/HBase Graph database that runs the type system.

• Bridge, a native connector to automatically fetch lineage and metadata. The Hive bridge
connector ships with HDP 2.3. Additional components to follow.

• Solr/Elastic provide additional plugable search capability that can be used without
affecting the REST API or Atlas capabilities.

3.2. Using the Atlas Web UI to Search Metadata
Using the Atlas web UI is an efficient way to interact with HDP metadata services. Use
Ambari to deploy your cluster, choose Atlas as one of your services, and the Atlas web UI is
automatically installed. See the Automated Install with Ambari guide.

Try the Atlas web UI by installing sample metadata with the quick_start.py Python
script. This script installs metadata in your repository so you can test the search capabilities
of the Atlas web UI:

To install sample metadata in your Atlas repository:

1. At a command prompt, log in to the host on your cluster where Atlas is installed.

2. Run the following command as the Atlas user:

su atlas -c '/usr/hdp/current/atlas-server/bin/quick_start.py'

After you have installed the sample metadata, you can explore the Atlas web UI.

To search metadata with the Atlas web UI:

1. From the Ambari dashboard, click Services > Atlas. On the Summary tab, make sure that
the Atlas Metadata Server is started.

2. Click Quick Links > Atlas Dashboard to launch the Atlas web UI.

3. Type a tag name in the search well and press enter:

http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.0.0/bk_Installing_HDP_AMB/content/index.html

Data Governance Guide Dec 21, 2015

35

Figure 3.2. Enter Tag to Search in Atlas Dashboard

4. The search returns all metadata types that are associated with the tag. Click the
identifier link to view details about the metadata object:

Figure 3.3. Click the Tag Link to View Details

5. You can view four types of information for each metadata object by clicking each tab:
Details, Schema, Output, and Input.

Data Governance Guide Dec 21, 2015

36

The Details tab shows information about the object, such as when it was created, the
owner, when it was last accessed, and so on:

Figure 3.4. Details Tab

6. Click the Schema tab to view the metadata object schema:

Figure 3.5. Schema Tab

7. Click the Output or the Input tabs to view lineage of the metadata:

Data Governance Guide Dec 21, 2015

37

Figure 3.6. Output Tab

In the above image, the lineage, or where the data comes from and where it goes when
it is output is shown.

Data Governance Guide Dec 21, 2015

38

4. Reference (Falcon)
Valid entity schemas are required for a successful data pipline.

To use the Falcon REST API, see RESTful Resources on the Apache web site.

4.1. Cluster
Always specify a cluster entity before determining the other elements in your data pipeline.

4.1.1. Valid Cluster Tag Attributes
The Cluster tag contains the following attributes to set:

 <cluster colo="NJ-datacenter" description="test_cluster" name=”prod-
cluster">

Table 4.1. Cluster tag elements

Example Definition Required?

colo="$unique_name" Unique name of the cluster,
such as New Jersey Data
Center.

Yes

description="$your_text" Description of the cluster, if
desired.

No

name="$filename" Description of the cluster
readiness.

Yes

4.1.2. Cluster Interfaces
You can define the following interfaces in your cluster entity:

Table 4.2. Cluster Interfaces

Type Required Interface Example Code Definition

readonly Yes <interface type="readonly" endpoint="hftp://nn: 50070" version="2.4.0" /> Needed by distcp for replications.

write Yes <interface type="write" endpoint="hdfs://nn:8020" version="2.4.0" /> Writes system data to HDFS.

execute Yes <interface type="execute" endpoint ="rm:8050" version="0.20.2" /> Submits processes as MapReduce.

workflow Yes <interface type="workflow"
 endpoint="http://localhost:11000/oozie/" version="3.1" />

Submits Oozie jobs.

registry No, unless your
feeds are Hive
tables.

<interface type="registry"
 endpoint="thrift://localhost:9083" version="0.11.0" />

Required for Hive metastore to register/deregister partitions and get events on
partition availability.

messaging Yes <interface type="messaging"
 endpoint="tcp://localhost:61616?daemon=true" version="5.4.6" />

Needed for alerting.

4.1.3. Cluster XSD Specification
The Cluster XSD specification is defined here.

4.2. Feed Entity
The Feed XSD specification is defined here.

http://falcon.apache.org/restapi/ResourceList.html
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/cluster-0.1.xsd;hb=HEAD
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/feed-0.1.xsd;hb=HEAD

Data Governance Guide Dec 21, 2015

39

4.3. Process Entity
The Process XSD specification is defined here.

4.4. Using the CLI to Manage Entities and
Instances

Falcon supports managing entities and instances with the CLI. Entities include all data
pipeline components, such as clusters, feeds, and processes. Instances include only feeds
and processes.

4.4.1. Managing Entities with the CLI

The following table provides information about CLI options you can use to manage entities:

Table 4.3. Entity Actions

Option Entities Definition CLI Usage

definition All Current entity definition.
Any documentation you
have made within the entity
will NOT be retained.

$FALCON_HOME/bin/falcon
entity -type [cluster|feed|
process] -name $name -
definition

delete All Removes the entity from
any scheduled activity and
the Falcon configuration
store.

$FALCON_HOME/bin/falcon
entity -type [cluster|feed|
process] -name $name -
delete

dependency Feeds, Processes CLI dependency tracking.
Returns all dependencies of
the specified entity.

$FALCON_HOME/bin/falcon
entity -type [cluster|feed|
process] -name $name -
dependency

list All Lists all scheduled and
submitted entities in Falcon
for a specified entity.

$FALCON_HOME/bin/falcon
entity -type [cluster|feed|
process] -list

resume Feeds, Processes Restores a feed or process
back to the active state,
resuming the related Oozie
bundle.

$FALCON_HOME/bin/falcon
entity -type [feed|process] -
name $name -resume

schedule Feeds, Processes Schedules submitted feeds
or processes.

$FALCON_HOME/bin/falcon
entity -type [process|feed] -
name $name -schedule

status All Current status of the entity. $FALCON_HOME/bin/falcon
entity -type [cluster|feed|
process] -name $name -
status

submit All Creates a new cluster,
feed, or process entity
and validate it against the
appropriate XSD. Check for
dependent entities.

$FALCON_HOME/bin/falcon
entity -submit -type cluster -
file /cluster/definition.xml

suspend Feeds, Processes Suspends any scheduled
entity by triggering suspend
on the Oozie bundle.

$FALCON_HOME/bin/falcon
entity -type [feed|process] -
name $name -suspend

update Feeds, Processes Allows an already submitted
or scheduled entity to be

$FALCON_HOME/bin/falcon
entity -type [feed|process]

https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/process-0.1.xsd;hb=HEAD

Data Governance Guide Dec 21, 2015

40

Option Entities Definition CLI Usage

updated. Not allowed for
cluster entities.

-name $name -update [-
effective $effective time]

4.4.2. Managing Instances with the CLI

The following table provides information about CLI options you can use to manage feed or
process instances:

Table 4.4. Instance Actions

Option Definition CLI Usage

continue Continue a process instance in a
terminal state such as SUCCEEDED,
KILLED, or FAILED.

$FALCON_HOME/bin/falcon
instance -type $feed/process -name
$name -continue -start "yyyy-MM-
dd'T'HH:mm'Z'" -end "yyyy-MM-
dd'T'HH:mm'Z'"

help Returns help on Falcon commands. $FALCON_HOME/bin/falcon admin -
help

kill Kills all the instances of the specified
process whose nominal time is
between the given start time and end
time.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -kill
-start "yyyy-MM-dd'T'HH:mm'Z'" -end
"yyyy-MM-dd'T'HH:mm'Z'

logs Gets logs for instance actions. $FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
logs -start "yyyy-MM-dd'T'HH:mm'Z'" [-
end "yyyy-MM-dd'T'HH:mm'Z'"] [-runid
$runid]

rerun Rerun a process instance in a terminal
state such as SUCCEEDED, KILLED, or
FAILED.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -re-
run -start "yyyy-MM-dd'T'HH:mm'Z'" -
end "yyyy-MM-dd'T'HH:mm'Z'" [-file
$properties file]

resume Resumes any instance in a suspended
state.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
resume -start "yyyy-MM-dd'T'HH:mm'Z'"
-end "yyyy-MM-dd'T'HH:mm'Z'"

running Provides all running instances of the
specified process.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
running

status Gets the status of one or multiple
instances of a process.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
status -start "yyyy-MM-dd'T'HH:mm'Z'" -
end "yyyy-MM-dd'T'HH:mm'Z'"

summary Summary of the status of feeds or
processes within the time periods
specified.

$FALCON_HOME/bin/falcon
instance -type $feed/process -name
$name -summary -start "yyyy-MM-
dd'T'HH:mm'Z'" -end "yyyy-MM-
dd'T'HH:mm'Z'"

suspend Suspends one or more instances for
the given process. Pauses the parent
workflow at the state.

$FALCON_HOME/bin/falcon
instance -type $feed/process -name
$name -suspend -start "yyyy-MM-
dd'T'HH:mm'Z'" -end "yyyy-MM-
dd'T'HH:mm'Z'"

version Returns current version of Falcon. $FALCON_HOME/bin/falcon admin -
version

Data Governance Guide Dec 21, 2015

41

5. Troubleshooting (Falcon)
The following information can help you troubleshoot issues with your Falcon server
installation.

5.1. Falcon logs
The Falcon server logs are available in the logs directory under $FALCON_HOME.

To get logs for an instance of a feed or process:

$FALCON_HOME/bin/falcon instance -type $feed/process -name $name -logs -start
 "yyyy-MM-dd'T'HH:mm'Z'" [-end "yyyy-MM-dd'T'HH:mm'Z'"] [-runid $runid]

5.2. Falcon Server Failure
The Falcon server is stateless. All you need to do is restart Falcon for recovery, because a
Falcon server failure does not affect currently scheduled feeds and processes.

5.3. Delegation Token Renewal Issues
Inconsistencies in rules for hadoop.security.auth_to_local can lead to issues with delegation
token renewals.

If you are using secure clusters, verify that hadoop.security.auth_to_local in core-
site.xml is consistent across all clusters.

5.4. Invalid Entity Schema
Invalid values in cluster, feeds (datasets), or processing schema can occur.

Review Falcon entity specifications.

5.5. Incorrect Entity
Failure to specify the correct entity type to Falcon for any action results in a validation
error.

For example, if you specify -type feed to sumbit -type process, you will see the following
error:

[org.xml.sax.SAXParseException; lineNumber: 5; columnNumber: 68; cvc-elt.1.a:
 Cannot find the declaration of element 'process'.]

5.6. Bad Config Store Error
The configuration store directory must be owned by your "falcon" user.

http://falcon.apache.org/EntitySpecification.html

Data Governance Guide Dec 21, 2015

42

5.7. Unable to set DataSet Entity
Ensure ‘validity times’ make sense.

• They must align between clusters, processes, and feeds.

• In a given pipeline Dates need to be ISO8601 format:

yyyy-MM-dd'T'HH:mm'Z’

5.8. Oozie Jobs
Always start with the Oozie bundle job, one bundle job per feed and process. Feeds have
one coordinator job to set the retention policy and one coordinator for the replication
policy.

Data Governance Guide Dec 21, 2015

43

6. Configuring High Availability (Falcon
Server)

Currently, configuring high availability for the Falcon server is a manual process. When the
primary Falcon server is down, the backup Falcon server must be manually started by the
system administrator. Then the backup Falcon server picks up where the primary server
stopped.

6.1. Configuring Properties and Setting Up
Directory Structure for High Availability

Required Properties for Falcon Server High Availability:

The Falcon server stores its data in the startup.properties file that is located in the
<falcon_home>/conf directory. Configure the start-up properties as follows for high
availability:

• *.config.store.uri: This location should be a directory on HDFS.

• *.retry.recorder.path: This location should be an NFS-mounted directory that is owned
by Falcon, and with permissions set to 755.

• *.falcon.graph.storage.directory: This location should also be an NFS-mounted directory
that is owned by Falcon, and with permissions set to 755.

• Falcon conf directory: The default location of this directory is <falcon_home>/conf, which
is symbolically linked to /etc/falcon/conf. This directory must point to an NFS-mounted
directory to ensure that the changes made on the primary Falcon server are populated to
the back-up server.

To set up an NFS-mounted directory:

The following instructions use 240.0.0.10 for the NFS server, 240.0.0.12 for the primary
Falcon server, and 240.0.0.13 for the back-up Falcon server.

1. Logged in as root on the server that hosts the NFS mount directory:

a. Install and start NFS with the following command:

yum install nfs-utils nfs-utils-lib
chkconfig nfs on
service rpcbind start
service nfs start

b. Create a directory that holds the Falcon data:

mkdir -p /hadoop/falcon/data

c. Add the following lines to the file /etc/exports to share the data directories:

/hadoop/falcon/data 240.0.0.12(rw,sync,no_root_squash,no_subtree_check)
/hadoop/falcon/data 240.0.0.13(rw,sync,no_root_squash,no_subtree_check)

Data Governance Guide Dec 21, 2015

44

d. Export the shared data directories:

exportfs -a

2. Logged in as root, install the nfs-utils package and its library on each of the Falcon
servers.

yum install nfs-utils nfs-utils-lib

3. After installing the NFS utilities packages, still logged in as root, create the NFS mount
directory, and then mount the directories with the following commands:

mkdir -p /hadoop/falcon/data
mount 240.0.0.10:/hadoop/falcon/data/hadoop/falcon/data

6.2. Preparing the Falcon Servers
To prepare the Falcon servers for high availability:

1. Logged in as root on each of the Falcon servers, make sure that the properties
*.retry.recorder.path and *.falcon.graph.storage.directory point to a directory under
the NFS-mounted directory. For example, the /hadoop/falcon/data directory as shown in
the above example.

2. Logged in as the falcon user, start the primary Falcon server. Do not start the back-up
Falcon server.

<falcon_home>/bin/falcon-start

6.3. Manually Failing Over the Falcon Servers
When the primary Falcon server fails, the failover to the back-up server is a manual process:

1. Logged in as the falcon user, make sure that the Falcon process is not running on the
back-up server:

<falcon-home>/bin/falcon-stop

2. Logged in as root, update the client.properties files on all of the Falcon client nodes. Set
the property falcon.url to the fully qualified domain name of the back-up server.

If Transport Layer Security (TLS) is disabled, use port 15000:

falcon.url=http://<back-up-server>:15000/ ### if TLS is disabled

If TLS is enabled, use port 15443:

falcon.url=https://<back-up-server>:15443/ ### if TLS is enabled

3. Logged in as the falcon user, start the back-up Falcon server:

<falcon-home>/bin/falcon-start

Data Governance Guide Dec 21, 2015

45

7. Metadata Store REST API Reference
(Atlas)

This API supports a Representational State Transfer (REST) model for accessing a set of
resources through a fixed set of operations. The following resources are accessible through
the RESTful model:

• AdminResource

• EntityResource

• HiveLineageResource

• MetadataDiscoveryResource

• RexsterGraphResource

• TypesResource

Important

This appendix is intended as a quick start for the Atlas REST API. The content
will be updated on a regular cadence over the next few months.

7.1. Data Model
All endpoints act on a common set of data. The data can be represented with difference
media (i.e. "MIME") types, depending on the endpoint that consumes and/or produces the
data. The data can be described by an XML Schema, which definitively describes the XML
representation of the data, but is also useful for describing the other formats of the data,
such as JSON.

This document describes the data using terms based on an XML Schema. Data can be
grouped by namespace with a schema document describing the elements and types of the
namespace. Types define the structure of the data and elements are instances of a type.
For example, elements are usually produced by (or consumed by) a REST endpoint, and the
structure of each element is described by its type.

7.2. AdminResource
Jersey Resource for administrative operations. The following resources are applicable:

• /admin/stack [45]

• /admin/version [46]

/admin/stack

GET Fetches the thread stack dump for this application.

http://en.wikipedia.org/wiki/Representational_State_Transfer
section_atlas_restapi_adminresource.html
section_atlas_restapi_entityresource.html
section_atlas_restapi_hivelineageresource.html
section_atlas_restapi_metadata_discovery_resource.html
section_atlas_restapi_rexter_graph_resource.html
section_atlas_restapi_types_resource.html
http://www.w3.org/XML/Schema
http://json.org/

Data Governance Guide Dec 21, 2015

46

Response Body element: (custom)

media types: text/plain

JSON represents the thread stack dump.

/admin/version

GET Fetches the version for this application.

Response Body element: (custom)

media types: application/json

JSON represents the version.

7.3. EntityResource
Entity management operations. An entity is an instance of a type. Entities conform to the
definition of the type that they they correspond to. The following resources are applicable:

• /entities [46]

• /entities/{guid} [46]

• /entities/{guid}/traits [47]

• /entities/{guid}/traits/{traitName} [47]

/entities

POST Submits an entity definition (instance) corresponding to a
given type.

Response Body element: (custom)

media types: application/json

GET Fetches the list of entities for an entity type.

Parameters name description type default

type The name
of a unique
type.

query

Response Body element: (custom)

media types: application/json

/entities/{guid}

GET Fetches the complete definition of the entity identified by
the GUID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

Data Governance Guide Dec 21, 2015

47

Response Body element: (custom)

media types: application/json

PUT Adds a property to the entity ID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

property The property
that must be
added.

query

value The value of
the property.

query

Response Body element: (custom)

media types: application/json

Response payload as JSON.

/entities/{guid}/traits

GET Gets the list of trait names for the entity that is
represented by the GUID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

Response Body element: (custom)

media types: application/json

A list of trait names for the entity that is identified by the
GUID.

POST Submits a new trait to an existing entity that is
represented by the GUID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

Response Body element: (custom)

media types: application/json

/entities/{guid}/traits/{traitName}

DELETE Deletes a trait from the entity that is represented by the
GUID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

Data Governance Guide Dec 21, 2015

48

traitName The name of
the trait.

path

Response Body element: (custom)

media types: application/json

7.4. HiveLineageResource
Jersey Resource for the Hive table lineage. The following resources are applicable:

• /lineage/hive/table/{tableName}/inputs/graph [48]

• /lineage/hive/table/{tableName}/outputs/graph [48]

• /lineage/hive/table/{tableName}/schema [48]

/lineage/hive/table/{tableName}/inputs/graph

GET Fetches the inputs graph for an entity.

Parameters name description type default

tableName The name of
the table.

path

Response Body element: (custom)

media types: application/json

/lineage/hive/table/{tableName}/outputs/graph

GET Fetches the outputs graph for an entity.

Parameters name description type default

tableName The name of
the table.

path

Response Body element: (custom)

media types: application/json

/lineage/hive/table/{tableName}/schema

GET Fetches the schema for the table.

Parameters name description type default

tableName The name of
the table.

path

Response Body element: (custom)

media types: application/json

7.5. MetadataDiscoveryResource
Jersey Resource for metadata operations. The following resources are applicable:

• /discovery/search [49]

Data Governance Guide Dec 21, 2015

49

• /discovery/search/dsl [49]

• /discovery/search/fulltext [49]

• /discovery/search/gremlin [49]

/discovery/search

GET Search by using a query.

Parameters name description type default

query The search
query in raw
Gremlin or
DSL format
that falls
back to full
text.

query

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

/discovery/search/dsl

GET Search by using the query DSL format.

Parameters name description type default

query The search
query in DSL
format.

query

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

/discovery/search/fulltext

GET Search by using full text search.

Parameters name description type default

query The full text
search query.

query

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

/discovery/search/gremlin

GET Search by using the raw gremlin query format.

Parameters name description type default

query The search
query in
raw gremlin
format.

query

Data Governance Guide Dec 21, 2015

50

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

7.6. RexsterGraphResource
Jersey Resource for lineage metadata operations. Implements most of the GET operations
of the Rexster API without the indexes. This is a subset of the Rexster REST API, designed
to provide read-only methods for accessing the back-end graph. See https://github.com/
tinkerpop/rexster/wiki/Basic-REST-API.

The following resources are applicable:

• /graph/edges/{id} [50]

• /graph/vertices [50]

• /graph/vertices/{id} [50]

• /graph/vertices/{id}/{direction} [51]

• /graph/vertices/properties/{id} [51]

/graph/edges/{id}

GET Fetches a single edge with a unique ID.

For example, GET http://host/metadata/
lineage/edges/id graph.getEdge(id);

Parameters name description type default

id path

Response Body element: (custom)

media types: application/json

/graph/vertices

GET Fetches a list of vertices that match a property key and
value.

For example, GET http://host/metadata/
lineage/vertices?key=&value=
graph.getVertices(key,value);

Parameters name description type default

key query

value query

Response Body element: (custom)

media types: application/json

/graph/vertices/{id}

GET Fetches a single vertex with a unique ID.

https://github.com/tinkerpop/rexster/wiki/Basic-REST-API
https://github.com/tinkerpop/rexster/wiki/Basic-REST-API

Data Governance Guide Dec 21, 2015

51

For example, GET http://host/metadata/
lineage/vertices/id graph.getVertex(id);

Parameters name description type default

id path

Response Body element: (custom)

media types: application/json

/graph/vertices/{id}/{direction}

GET Fetches a list of adjacent edges with a direction.

For example, GET http://host/
metadata/lineage/vertices/id /
directiongraph.getVertex(id).get{Direction}Edges();
direction:{(?!outE)(?!bothE)(?!inE)(?!out)
(?!both)(?!in)(?!query).+}

Parameters name description type default

id path

direction path

Response Body element: (custom)

media types: application/json

/graph/vertices/properties/{id}

GET Fetches properties for a single vertex with a unique ID.

For example, GET http://host/metadata/
lineage/vertices/ properties/id

Note
This method is not part of the Rexster API.

Parameters name description type default

id path

relationships query false

Response Body element: (custom)

media types: application/json

7.7. TypesResource
This class provides a RESTful API for types. A type is the description of any representable
item, for example, a Hive table. You can represent any meta model of any domain using
these types. The following resources are applicable:

• /types [51]

• /types/{typeName} [52]

/types

POST Submits a type definition that corresponds to a type
that represents a domain meta model. This method can

Data Governance Guide Dec 21, 2015

52

represent objects like a Hive database, Hive table, and so
on.

Response Body element: (custom)

media types: application/json

GET Fetches a list of trait type names that are registered in the
type system.

Parameters name description type default

type The name
of the
enumerator

org.apache.atlas.typesystem.
types.DataTypes.TypeCategory.

Typically, this
can be one
of:

all, TRAIT,
CLASS,
ENUM,
STRUCT.

query all

Response Body element: (custom)

media types: application/json

The entity names response payload represented as JSON.

/types/{typeName}

GET Fetches the complete definition of a unique type name.

Parameters name description type default

typename The unique
name of the
type.

path

Response Body element: (custom)

media types: application/json

	Data Governance Guide
	Table of Contents
	1. HDP Data Governance
	1.1. Falcon Overview
	1.2. Atlas Overview

	2. Data Pipelines (Falcon)
	2.1. Understanding Data Pipelines
	2.2. Quick Start: Using the Falcon Web UI to Define Data Pipelines
	2.2.1. Creating a Cluster Entity
	2.2.2. Creating a Feed Entity
	2.2.3. Creating a Process Entity

	2.3. Search For and Manage Data Pipeline Entities
	2.4. Mirroring Data (Falcon)
	2.5. Using the Falcon CLI to Define Data Pipelines
	2.5.1. Deploying Data Pipelines
	2.5.2. Replicating Data (Falcon)
	2.5.2.1. Prerequisites
	2.5.2.2. Define the Data Source: Set Up a Source Cluster Entity
	2.5.2.3. Create the Replication Target: Define a Cluster Entity
	2.5.2.4. Create the Feed Entity
	2.5.2.5. Submit and Validate the Entities
	2.5.2.6. Confirm Results

	2.5.3. Viewing Alerts in Falcon
	2.5.4. Late Data Handling
	2.5.5. Setting a Retention Policy
	2.5.6. Setting a Retry Policy
	2.5.7. Enabling Email Notifications

	2.6. Understanding Dependencies in Falcon
	2.7. Viewing Dependencies

	3. Metadata Services Framework (Atlas)
	3.1. Understanding the HDP Metadata Services Framework
	3.2. Using the Atlas Web UI to Search Metadata

	4. Reference (Falcon)
	4.1. Cluster
	4.1.1. Valid Cluster Tag Attributes
	4.1.2. Cluster Interfaces
	4.1.3. Cluster XSD Specification

	4.2. Feed Entity
	4.3. Process Entity
	4.4. Using the CLI to Manage Entities and Instances
	4.4.1. Managing Entities with the CLI
	4.4.2. Managing Instances with the CLI

	5. Troubleshooting (Falcon)
	5.1. Falcon logs
	5.2. Falcon Server Failure
	5.3. Delegation Token Renewal Issues
	5.4. Invalid Entity Schema
	5.5. Incorrect Entity
	5.6. Bad Config Store Error
	5.7. Unable to set DataSet Entity
	5.8. Oozie Jobs

	6. Configuring High Availability (Falcon Server)
	6.1. Configuring Properties and Setting Up Directory Structure for High Availability
	6.2. Preparing the Falcon Servers
	6.3. Manually Failing Over the Falcon Servers

	7. Metadata Store REST API Reference (Atlas)
	7.1. Data Model
	7.2. AdminResource
	7.3. EntityResource
	7.4. HiveLineageResource
	7.5. MetadataDiscoveryResource
	7.6. RexsterGraphResource
	7.7. TypesResource

