
docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform Dec 21, 2015

ii

Hortonworks Data Platform: Configuring Kafka for Kerberos Over
Ambari
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

http://hortonworks.com/hadoop-training/
http://hortonworks.com/technology/hortonworksdataplatform
http://hortonworks.com/support
http://hortonworks.com/hadoop-training
http://hortonworks.com/about-us/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hortonworks Data Platform Dec 21, 2015

iii

Table of Contents
1. Overview ... 1
2. Preparing the Cluster .. 2
3. Configuring the Kafka Broker for Kerberos ... 3
4. Creating Kafka Topics ... 4
5. Producing Events/Messages to Kafka on a Secured Cluster .. 5
6. Consuming Events/Messages from Kafka on a Secured Cluster 7
7. Authorizing Access when Kerberos is Enabled ... 9

7.1. Kafka Authorization Command Line Interface .. 9
7.2. Authorization Examples .. 11

7.2.1. Grant Read/Write Access to a Topic ... 11
7.2.2. Grant Full Access to Topic, Cluster, and Consumer Group 11
7.2.3. Add a Principal as Producer or Consumer ... 12
7.2.4. Deny Access to a Principal .. 12
7.2.5. Remove Access .. 12
7.2.6. List ACLs .. 13
7.2.7. Configure Authorizer Settings .. 13

7.3. Troubleshooting Authorizer Settings ... 13
8. Appendix: Kafka Configuration Options .. 14

8.1. Server.properties key-value pairs ... 14
8.2. JAAS Configuration File for the Kafka Server ... 16
8.3. Configuration Setting for the Kafka Producer ... 16
8.4. JAAS Configuration File for the Kafka Client ... 16

Hortonworks Data Platform Dec 21, 2015

1

1. Overview
This chapter describes how to configure Kafka for Kerberos security on an Ambari-
managed cluster.

Kerberos security for Kafka is an optional feature. When security is enabled, features
include:

• Authentication of client connections (consumer, producer) to brokers

• ACL-based authorization

Hortonworks Data Platform Dec 21, 2015

2

2. Preparing the Cluster
Before you enable Kerberos, your cluster must meet the following prerequisites:

Prerequisite References*

Ambari-managed cluster with Kafka installed.

• Ambari Version 2.1.0.0 or later

• Stack version HDP 2.3.2 or later

Installing, Configuring, and Deploying a HDP Cluster in
Automated Install with Ambari

Key Distribution Center (KDC) server installed and running Installing and Configuring the KDC in the Ambari Security
Guide

JCE installed on all hosts on the cluster (including the
Ambari server)

Enabling Kerberos Security in the Ambari Security Guide

Links are for Ambari 2.2.0.0.

When all prerequisites are fulfilled, enable Kerberos security. (For more information see
Launching the Kerberos Wizard (Automated Setup) in the Ambari Security Guide.)

http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.0.0/bk_Installing_HDP_AMB/content/ch_Deploy_and_Configure_a_HDP_Cluster.html
http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.0.0/bk_Ambari_Security_Guide/content/_installing_and_configuring_the_kdc.html
http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.0.0/bk_Ambari_Security_Guide/content/_enabling_kerberos_security_in_ambari.html
http://docs.hortonworks.com/HDPDocuments/Ambari-2.2.0.0/bk_Ambari_Security_Guide/content/_launching_the_kerberos_wizard_automated_setup.html

Hortonworks Data Platform Dec 21, 2015

3

3. Configuring the Kafka Broker for
Kerberos

During the installation process, Ambari configures a series of Kafka settings and creates a
JAAS configuration file for the Kafka server.

It is not necessary to modify these settings, but for more information see Appendix A,
Kafka Configuration Options.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-config-options.html

Hortonworks Data Platform Dec 21, 2015

4

4. Creating Kafka Topics
When you use a script, command, or API to create a topic, an entry is created under
ZooKeeper. The only user with access to ZooKeeper is the service account running Kafka
(by default, kafka). Therefore, the first step toward creating a Kafka topic on a secure
cluster is to run kinit, specifying the Kafka service keytab. The second step is to create the
topic.

1. Run kinit, specifying the Kafka service keytab. For example:

kinit -k -t /etc/security/keytabs/kafka.service.keytab kafka/
c6401.ambari.apache.org@EXAMPLE.COM

2. Next, create the topic. Run the kafka-topics.sh command-line tool with the
following options:

/bin/kafka-topics.sh --zookeeper <hostname>:<port> --create
--topic <topic-name> --partitions <number-of-partitions> --
replication-factor <number-of-replicating-servers>

For example:

/bin/kafka-topics.sh --zookeeper c6401.ambari.apache.org:2181 --create --
topic test_topic --partitions 2 --replication-factor 2

Created topic "test_topic".

For more information about kafka-topics.sh parameters, see Basic Kafka
Operations on the Apache Kafka website.

Permissions

By default, permissions are set so that only the Kafka service user has access; no other user
can read or write to the new topic. In other words, if your Kafka server is running with
principal $KAFKA-USER, only that principal will be able to write to ZooKeeper.

For information about adding permissions, see Authorizing Access when Kerberos is
Enabled.

https://kafka.apache.org/081/ops.html
https://kafka.apache.org/081/ops.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-auth-cli.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-auth-cli.html

Hortonworks Data Platform Dec 21, 2015

5

5. Producing Events/Messages to Kafka
on a Secured Cluster

Prerequisite: Make sure that you have enabled access to the topic (via Ranger or native
ACLs) for the user associated with the producer process. We recommend that you use
Ranger to manage permissions. For more information, see the Apache Ranger User Guide
for Kafka.

During the installation process, Ambari configures a series of Kafka client and producer
settings, and creates a JAAS configuration file for the Kafka client. It is not necessary
to modify these settings, but for more information about them see Appendix A, Kafka
Configuration Options.

Note: Only the Kafka Java API is supported for Kerberos. Third-party clients are not
supported.

To produce events/messages:

1. Specify the path to the JAAS configuration file as one of your JVM parameters:

-Djava.security.auth.login.config=/usr/hdp/current/kafka-broker/
config/kafka_client_jaas.conf

For more information about the kafka_client_jaas file, see "JAAS Configuration
File for the Kafka Client" in Kafka Configuration Options.

2. kinit with the principal's keytab.

3. Launch kafka-console-producer.sh with the following configuration options.
(Note: these settings are the same as in previous versions, except for the addition of --
security-protocol SASL_PLAINTEXT.)

./bin/kafka-console-producer.sh --broker-list <hostname:port
[,hostname:port, …]> --topic <topic-name> --security-protocol
SASL_PLAINTEXT

For example:

./bin/kafka-console-producer.sh --broker-list
c6401.ambari.apache.org:6667,c6402.ambari.apache.org:6667 --
topic test_topic --security-protocol SASL_PLAINTEXT

Troubleshooting

Issue: If you launch the producer without specifying the security-protocol option,
you will see the following error:

https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies
https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-config-options.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-config-options.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-config-options.html

Hortonworks Data Platform Dec 21, 2015

6

2015-07-21 04:14:06,611] ERROR fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
(kafka.utils.CoreUtils$)
kafka.common.KafkaException: fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
 at kafka.client.ClientUtils$.fetchTopicMetadata(ClientUtils.scala:73)
Caused by: java.io.EOFException: Received -1 when reading from channel, socket
 has likely been closed.
 at kafka.utils.CoreUtils$.read(CoreUtils.scala:193)
 at kafka.network.BoundedByteBufferReceive.
readFrom(BoundedByteBufferReceive.scala:54)

Solution: Add --security-protocol SASL_PLAINTEXT to the kafka-console-
producer.sh runtime options.

Hortonworks Data Platform Dec 21, 2015

7

6. Consuming Events/Messages from
Kafka on a Secured Cluster

Prerequisite: Make sure that you have enabled access to the topic (via Ranger or native
ACLs) for the user associated with the consumer process. We recommend that you use
Ranger to manage permissions. For more information, see the Apache Ranger User Guide
for Kafka.

During the installation process, Ambari configures a series of Kafka client and producer
settings, and creates a JAAS configuration file for the Kafka client. It is not necessary to
modify these values, but for more information see see Appendix A, Kafka Configuration
Options.

Note: Only the Kafka Java API is supported for Kerberos. Third-party clients are not
supported.

To consume events/messages:

1. Specify the path to the JAAS configuration file as one of your JVM parameters. For
example:

-Djava.security.auth.login.config=/usr/hdp/current/kafka-broker/
config/kafka_client_jaas.conf

For more information about the kafka_client_jaas file, see "JAAS Configuration
File for the Kafka Client" in Kafka Configuration Options.

2. kinit with the principal's keytab.

3. Launch kafka-console-consumer.sh with the following configuration settings.
(Note: these settings are the same as in previous versions, except for the addition of --
security-protocol SASL_PLAINTEXT.)

./bin/kafka-console-consumer.sh --zookeeper
c6401.ambari.apache.org:2181 --topic test_topic --from-beginning
--security-protocol SASL_PLAINTEXT

Troubleshooting

Issue: If you launch the consumer without specifying the security-protocol option,
you will see the following error:

https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies
https://cwiki.apache.org/confluence/display/RANGER/Apache+Ranger+0.5+-+User+Guide#ApacheRanger0.5-UserGuide-AddingKAFKAPolicies
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-config-options.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-config-options.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_secure-kafka-ambari/content/ch_secure-kafka-config-options.html

Hortonworks Data Platform Dec 21, 2015

8

2015-07-21 04:14:06,611] ERROR fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
(kafka.utils.CoreUtils$)
kafka.common.KafkaException: fetching topic metadata for topics
[Set(test_topic)] from broker
[ArrayBuffer(BrokerEndPoint(0,c6401.ambari.apache.org,6667),
BrokerEndPoint(1,c6402.ambari.apache.org,6667))] failed
 at kafka.client.ClientUtils$.fetchTopicMetadata(ClientUtils.scala:73)
Caused by: java.io.EOFException: Received -1 when reading from channel, socket
 has likely been closed.
 at kafka.utils.CoreUtils$.read(CoreUtils.scala:193)
 at kafka.network.BoundedByteBufferReceive.
readFrom(BoundedByteBufferReceive.scala:54)

Solution: Add --security-protocol SASL_PLAINTEXT to the kafka-console-
consumer.sh runtime options.

Hortonworks Data Platform Dec 21, 2015

9

7. Authorizing Access when Kerberos is
Enabled

Kafka ships with a pluggable Authorizer and an out-of-box authorizer implementation that
uses ZooKeeper to store Access Control Lists (ACLs). Authorization can be done via Ranger
(see the Kafka section of the Ranger Install Guide) or with native ACLs.

A Kafka ACL entry has the following general format:

Principal P is [Allowed/Denied] Operation O From Host H On
Resource R

where

• A principal is any entity that can be authenticated by the system, such as a user account,
a thread or process running in the security context of a user account, or security
groups of such accounts. Principal is specified in the PrincipalType:PrincipalName
(User:dev@EXAMPLE.COM) format. Specify User:* to indicate all principals.

Principal is a comma-separated list of principals. Specify * to indicate all principals. (A
principal is any entity that can be authenticated by the system, such as a user account, a
thread or process running in the security context of a user account, or security groups of
such accounts.)

• Operation can be one of: READ, WRITE, CREATE, DESCRIBE, or ALL.

• Resource is a topic name, a consumer group name, or the string “kafka-cluster” to
indicate a cluster-level resource (only used with a CREATE operation).

• Host is the client host IP address. Specify * to indicate all hosts.

Note

For more information about ACL structure, including mappings between
Operations values and Kafka protocol APIs, see the Apache KIP-11
Authorization Interface document.

7.1. Kafka Authorization Command Line Interface
The Kafka Authorization CLI script, kafka-acls.sh, resides in the bin directory.

The following table lists ACL actions supported by the CLI script:

Action Type Description

--add Add an ACL.

--remove Remove an ACL.

--list List ACLs.

The following table lists additional options for the Authorization CLI:

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_Ranger_Install_Guide/content/kafka_plugin.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-11+-+Authorization+Interface
https://cwiki.apache.org/confluence/display/KAFKA/KIP-11+-+Authorization+Interface

Hortonworks Data Platform Dec 21, 2015

10

Option Description Default Option Type

--authorizer The fully-qualified class
name of the authorizer.

kafka.security.auth.SimpleAclAuthorizerConfiguration

--authorizer-
properties

A list of key=value pairs that
will be passed to authorizer
for initialization. Use this
option multiple times to
specify multiple properties.

Configuration

--cluster Specifies the cluster as
resource.

Resource

--topic <topic-name> Specifies the topic as
resource.

Resource

--consumer-group
<consumer-group>

Specifies the consumer
group as resource.

Resource

--allow-principal These principals will be used
to generate an ACL with
Allow permission.

Specify principal in
PrincipalType:name
format, such as
User:devadmin.

To specify more than
one principal in a single
command, specify this
option multiple times. For
example:

--allow-
principal User:
test1@EXAMPLE.COM

--allow-principal
User:test2@EXAMPLE.COM

Principal

--deny-principal These principals will be used
to generate an ACL with
Deny permission.

Principal is in
PrincipalType:name
format.

Multiple principals can
be specified (see the --
allow-principal
option).

Principal

--allow-host IP address of the host from
which the principals listed
in --allow-principal
will have access. To specify
multiple hosts, specify this
option multiple times.

if --allow-principal
is specified, this defaults to
*, which translates to "all
hosts"

Host

--deny-host IP Address of the host from
which the principals listed in
--deny-principal will
be denied access. To specify
multiple hosts, specify this
option multiple times.

if --deny-principal is
specified, this defaults to
*, which translates to "all
hosts"

Host

--operation An operation that will be
allowed or denied based on
principal options.

All Operation

Hortonworks Data Platform Dec 21, 2015

11

Option Description Default Option Type

Valid values: Read, Write,
Create, Delete, Alter,
Describe, ClusterAction, All

--producer Convenience option to
add or remove ACLs for
the producer role. This will
generate ACLs that allow
WRITE, DESCRIBE on topic,
and CREATE on cluster.

Convenience

--consumer Convenience option to add/
remove ACLs for consumer
role. This will generate ACLs
that allows READ, DESCRIBE
on topic, and READ on
consumer-group.

Convenience

7.2. Authorization Examples
By default, if a principal does not have an explicit ACL that allows access for an operation
to a resource, access requests from the principal will be denied.

The following examples show how to add, remove, and list ACLs.

7.2.1. Grant Read/Write Access to a Topic
To add the following ACL:

"Principals user:bob and user:alice are allowed to perform Operation Read and Write on
Topic Test-Topic from Host1 and Host2"

run the CLI with the following options:

bin/kafka-acls.sh --add --allow-principal User:bob --allow-
principal User:alice --allow-host host1 --allow-host host2 --
operation Read --operation Write --topic test-topic

7.2.2. Grant Full Access to Topic, Cluster, and Consumer
Group

To add ACLs to a topic, specify --topic <topic-name> as the resource option. Similarly,
to add ACLs to cluster, specify --cluster; to add ACLs to a consumer group, specify --
consumer-group <group-name>.

The following examples grant full access for principal bob to topic test-topic and
consumer group 10, across the cluster. Substitute your own values for principal name, topic
name, and group name.

bin/kafka-acls.sh --topic test-topic --add --allow-principal
user:bob --operation ALL --config /usr/hdp/current/kafka-broker/
config/server.properties

bin/kafka-acls.sh --consumer-group 10 --add --allow-principal
user:bob --operation ALL --config /usr/hdp/current/kafka-broker/
config/server.properties

Hortonworks Data Platform Dec 21, 2015

12

bin/kafka-acls.sh --cluster --add --allow-principal user:bob --
operation ALL --config /usr/hdp/current/kafka-broker/config/
server.properties

7.2.3. Add a Principal as Producer or Consumer
The most common use case for ACL management is to add or remove a principal as
producer or consumer. The following convenience options handle these cases.

To add User:Bob as a producer of Test-topic, run the following command:

bin/kafka-acls.sh --add --allow-principal User:bob --producer --
topic test-topic

Similarly, to add User:Alice as a consumer of test-topic with consumer group
group-1, pass the --consumer option.

Note

When using the consumer option you must specify the consumer group.

bin/kafka-acls.sh --add --allow-principal User:bob --consumer --
topic test-topic --consumer-group group-1

7.2.4. Deny Access to a Principal
In rare cases you might want to define an ACL that allows access to all but one or more
principals. In this case, use the --deny-principal and --deny-host options.

For example, to allow all users to read from test-topic except user bob from host bad-
host:

bin/kafka-acls.sh --add --allow-principal User:* --allow-host * --
deny-principal User:bob --deny-host bad-host --operation Read --
topic test-topic

7.2.5. Remove Access
Removing ACLs is similar to adding ACLs. The only difference is that you need to specify the
--remove option instead of the --add option.

To remove the ACLs for principals bob and alice (added in "Grant Read/Write Access to a
Topic"), run the CLI with the following options:

bin/kafka-acls.sh --remove --allow-principal User:bob --allow-
principal User:alice --allow-host host1 --allow-host host2 --
operation Read --operation Write --topic test-topic

Similarly, to remove a principal from a producer or consumer role, specify the --remove
option instead of --add:

bin/kafka-acls.sh --remove --allow-principal User:bob --producer
--topic test-topic

Hortonworks Data Platform Dec 21, 2015

13

7.2.6. List ACLs

To list ACLs for any resource, specify the --list option with the resource. For example, to
list all ACLs for Test-topic, run the CLI with following options:

bin/kafka-acls.sh --list --topic test-topic

7.2.7. Configure Authorizer Settings

To specify which authorizer to use, include the --authorizer option. For example:

--authorizer kafka.security.auth.SimpleAclAuthorizer ...

To specify one or more authorizer initialization settings, include the --authorizer-properties
option; for example:

--authorizer-properties zookeeper.connect=localhost:2181 ...

7.3. Troubleshooting Authorizer Settings
Frequently-asked Questions:

When should I use Deny?

By default, all principals that are not explicitly granted permissions get rejected. You should
not need to use Deny. (Note: when defined, DENY takes precedence over ALLOW.)

Then why do we have deny?

Deny was introduced into Kafka for advanced use cases where negation was required.
Deny should only be used to negate a large allow, where listing all principals or hosts is
cumbersome.

Can I define ACLs with principal as user@<realm>?

You can if you are not using principal.to.local.class, but if you have set this
configuration property you must define your ACL with users without REALM. This is a
known issue in HDP 2.3.

I just gave a user CREATE Permissions on a cluster, but the user still can't create topics. Why?

Right now, Kafka create topic is not implemented as an API, but as a script that directly
modifies ZooKeeper entries. In a secure environment only the Kafka broker user is allowed
to write to ZooKeeper entries. Granting a user CREATE access does not allow that user to
modify ZooKeeper entries.

However, if that user makes a producer request to the topic and has
auto.create.topics.enable set to true, a topic will be created at the broker level.

Hortonworks Data Platform Dec 21, 2015

14

8. Appendix: Kafka Configuration Options

8.1. Server.properties key-value pairs
Ambari configures the following Kafka values during the installation process. Settings are
stored as key-value pairs stored in an underlying server.properties configuration file.

listeners

A comma-separated list of URIs that Kafka will listen on, and their protocols.

Required property with three parts:

<protocol>:<hostname>:<port>

Set <protocol> to SASL_PLAINTEXT, to specify the protocol that server accepts
connections. SASL authentication will be used over a plaintext channel. Once SASL
authentication is established between client and server, the session will have the client’s
principal as an authenticated user. The broker can only accept SASL (Kerberos) connections,
and there is no wire encryption applied. (Note: For a non-secure cluster, <protocol>
should be set to PLAINTEXT.)

Set hostname to the hostname associated with the node you are installing. Kerberos
uses this value and "principal" to construct the Kerberos service name. Specify hostname
0.0.0.0 to bind to all interfaces. Leave hostname empty to bind to the default interface.

Set port to the Kafka service port. When Kafka is installed using Ambari, the default port
number is 6667.

Examples of legal listener lists::

listeners=SASL_PLAINTEXT://kafka1.witzend.com:6667

listeners=PLAINTEXT://myhost:9092, TRACE://:9091,
SASL_PLAINTEXT://0.0.0.0:9093

advertised.listeners

A list of listeners to publish to ZooKeeper for clients to use, if different than the listeners
specified in the preceding section.

In IaaS environments, this value might need to be different from the interface to which the
broker binds.

If advertised.listeners is not set, the value for listeners will be used.

Required value with three parts:

<protocol>:<hostname>:<port>

Hortonworks Data Platform Dec 21, 2015

15

Set protocol to SASL_PLAINTEXT, to specify the protocol that server accepts
connections. SASL authentication will be used over a plaintext channel. Once SASL
authentication is established between client and server, the session will have the client’s
principal as an authenticated user. The broker can only accept SASL (Kerberos) connections,
and there is no wire encryption applied. (Note: For a non-secure cluster, <protocol>
should be set to PLAINTEXT.)

Set hostname to the hostname associated with the node you are installing. Kerberos uses
this and "principal" to construct the Kerberos service name.

Set port to the Kafka service port. When Kafka is installed using Ambari, the default port
number is 6667.

For example:

advertised.listeners=SASL_PLAINTEXT://kafka1.witzend.com:6667

security.inter.broker.protocol

Specifies the inter-broker communication protocol. In a Kerberized cluster, brokers are
required to communicate over SASL. (This approach supports replication of topic data.) Set
the value to SASL_PLAINTEXT:

security.inter.broker.protocol=SASL_PLAINTEXT

authorizer.class.name

Configures the authorizer class.

Set this value to kafka.security.auth.SimpleAclAuthorizer:

authorizer.class.name=kafka.security.auth.SimpleAclAuthorizer

For more information, see "Authorizing Access when Kerberos is Enabled."

principal.to.local.class

Transforms Kerberos principals to their local Unix usernames.

Set this value to kafka.security.auth.KerberosPrincipalToLocal:

principal.to.local.class=kafka.security.auth.KerberosPrincipalToLocal

super.users

Specifies a list of user accounts that will have all cluster permissions. Kafka is included in the
list by default, because it is the principal associated with brokers -- it needs the permissions.

Set this value to user:<comma-separated-list-of-user-accounts>; for example:

Hortonworks Data Platform Dec 21, 2015

16

super.users=user:kafka

8.2. JAAS Configuration File for the Kafka Server
The Java Authentication and Authorization Service (JAAS) API supplies user authentication
and authorization services for Java applications.

After enabling Kerberos, Ambari sets up a JAAS login configuration file for the Kafka
server. This file is used to authenticate the Kafka broker against Kerberos. The file is stored
at:

/usr/hdp/current/kafka-broker/config/kafka_server_jaas.conf

Ambari adds the following settings to the file. (Note: serviceName="kafka" is required for
connections from other brokers.)

KafkaServer {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/security/keytabs/kafka.service.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="kafka"
 principal="kafka/c6401.ambari.apache.org@EXAMPLE.COM";
 };

Client { // used for zookeeper connection
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/security/keytabs/kafka.service.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="zookeeper"
 principal="kafka/c6401.ambari.apache.org@EXAMPLE.COM";
 };

8.3. Configuration Setting for the Kafka Producer
After enabling Kerberos, Ambari sets the following key-value pair in the
server.properties file:

security.protocol=SASL_PLAINTEXT

8.4. JAAS Configuration File for the Kafka Client
After enabling Kerberos, Ambari sets up a JAAS login configuration file for the Kafka client.
Settings in this file will be used for any client (consumer, producer) that connects to a
Kerberos-enabled Kafka cluster. The file is stored at:

/usr/hdp/current/kafka-broker/config/kafka_client_jaas.conf

Ambari adds the following settings to the file. (Note: serviceName=kafka is required for
connections from other brokers.)

Hortonworks Data Platform Dec 21, 2015

17

Note

For command-line utilities like kafka-console-producer and kafka-console-
consumer, use kinit. If you use a long-running process (for example, your
own Producer), use keytab.

Kafka client configuration with keytab, for producers:

KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/security/keytabs/storm.service.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="kafka"
 principal="storm@EXAMPLE.COM";
 };

Kafka client configuration without keytab, for producers:

KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useTicketCache=true
 renewTicket=true
 serviceName="kafka";
 };

Kafka client configuration for consumers:

 KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useTicketCache=true
 renewTicket=true
 serviceName="kafka";
 };

	Hortonworks Data Platform
	Table of Contents
	1. Overview
	2. Preparing the Cluster
	3. Configuring the Kafka Broker for Kerberos
	4. Creating Kafka Topics
	5. Producing Events/Messages to Kafka on a Secured Cluster
	6. Consuming Events/Messages from Kafka on a Secured Cluster
	7. Authorizing Access when Kerberos is Enabled
	7.1. Kafka Authorization Command Line Interface
	7.2. Authorization Examples
	7.2.1. Grant Read/Write Access to a Topic
	7.2.2. Grant Full Access to Topic, Cluster, and Consumer Group
	7.2.3. Add a Principal as Producer or Consumer
	7.2.4. Deny Access to a Principal
	7.2.5. Remove Access
	7.2.6. List ACLs
	7.2.7. Configure Authorizer Settings

	7.3. Troubleshooting Authorizer Settings

	8. Appendix: Kafka Configuration Options
	8.1. Server.properties key-value pairs
	8.2. JAAS Configuration File for the Kafka Server
	8.3. Configuration Setting for the Kafka Producer
	8.4. JAAS Configuration File for the Kafka Client

