

NPACI All Hands Meeting March 18, 2003 www.rocksclusters.org

# Schedule

#### Rocks 101 (45 mins)

- Introduction to Rocks
- Cluster Architecture (HW & SW)
- Rocks software overview
- Advanced Rocks (45 mins)
  - Modifying the default configuration
  - Cluster Monitoring (UCB's Ganglia)
- Hands on Labs (90 mins)
  - Breakout into groups and build an x86 cluster
  - Run an MPI job
  - Customization (packages, monitoring)
  - □ Compare to IA64 cluster

# Rocks 101

# Make clusters easy

• Enable application scientists to build and manage their own resources

- Hardware cost is not the problem
- System Administrators cost money, and do not scale
- Software can replace much of the day-to-day grind of system administration
- Train the next generation of users on loosely coupled parallel machines
  - □ Current price-performance leader for HPC
  - Users will be ready to "step up" to NPACI (or other) resources when needed
- Rocks scales to Top500 sized resources
  - Experiment on small clusters
  - Build your own supercomputer with the same software!

## Past

#### Rocks 1.0 released at SC2000

- Good start on automating cluster building
- Included early prototype (written in Perl) of Ganglia

- Result of collaboration between SDSC and UCB's Millennium group.
- Rocks 2.x
  - Fully automated installation (frontend and compute nodes)
  - Programmable software configuration
  - SCS (Singapore) first external group to contribute software patches

## Present

Rocks 2.3.2 (today's lab is part of our beta testing)

- First simultaneous x86 and IA64 release
- Proven Scalability
  - #233 on current Top500 list
  - 287-node production cluster at Stanford
  - You can also build small clusters
- Impact
  - Rocks clusters on 6 continents
    - No Antarctica... yet.
  - 4 large NSF ITR's using Rocks as core software infrastructure

# Rocks Registration Page (5 days old)

http://www.rocksclusters.org/rocks -register



## **Rocks in the commercial world**

#### Rocks Cluster Vendors

- Cray
- Dell
- Promicro Systems
  - See page 79 of April's Linux Journal

#### SCS (in Singapore)

- Contributed PVFS, SGE to Rocks
- Active on the Rocks mailing list
- Training and Support
  - Intel is training customers on Rocks
  - Callident is offering support services



## **Promicro Systems**







## **Alternative Cluster Toolkits**

#### Cplant

- DOE clustering software
- OpenMOSIX
  - Single System Image
- OpenSCE
  - Kasetsart University, Thailand
  - Compatible with Rocks
- OSCAR
  - Aka cluster-in-a-box, MSC.Linux
  - "Best-practices of clustering"
  - Packaging effort, not a cluster distribution
- Scyld
  - Bproc based system (SSI process space)
  - Commercial
- SCore
  - Oldest clustering effort
  - Touches on all aspects of clustering software

## What sets us apart

- Fully automated cluster deployment
  - 1. Get and burn ISO CD (DVD for IA64) image from http://www.rocksclusters.org

**RUCK** 

- 2. Boot frontend with CD/DVD
- **3. Fill out 7 configuration screens (mostly Red Hat)**
- 4. Reboot frontend machine
- 5. Integrate compute nodes with insert-ethers
- 6. Ready to go!
- Complete out of the box solution with rational default settings
- Identical environment for x86 or IA64

# Testimonials and Complaints

From the Rocks-discuss mail list and other sources



## **New User on Rocks Mail List**

"I managed to install Rocks with five nodes. The nodes have a small HD 2.5 GB each, the cluster is in my home on a private network behind a Linux box "firewall". And it looks like everything is working fine. I can see all the nodes and the front-end in the ganglia web interface. I built it so I can learn more about clusters.

And to tell the truth I have no idea on what to do with it, I mean where to start, how to use it, what to use it for."

#### **Power Users**

#### Response to previous poster

- "It's sometimes scary how easy it is to install Rocks."
- This coined the phrase "Rocks, scary technology"

- Comment from a cluster architect
  - "You guys are the masters of the bleedin' obvious."
  - This one flattered us



## **Another New User**

"I've set up a Rocks Cluster thanks to the bone simple installation.

Thanks for making it so easy.

The drawback, because it was so easy, I didn't learn much about clustering."



# Independent Survey of Clustering Software

#### http://heppc11.ft.uam.es/Clusters/Doc

- Compares Rocks, OSCAR and others
- "NPACI Rocks is the easiest solution for the installation and management of a cluster under Linux."
- "To install and manage a Linux cluster under OSCAR is more difficult than with Rocks."
  - "With OSCAR it is necessary to have some experience in Linux system administration, and some knowledge of cluster architecture"
- Our goal is to "make clusters easy"
  - Automate the system administration wherever possible
  - Enable non-cluster experts to build clusters



# And Finally a weekly message

- "Your documentation sucks."
- Guilty, but improving
  - Rocks now installs users guide on every new cluster
  - Mailing list has several extremely helpful users





#### **Basic System Architecture**





#### Why x86 clusters?

Scaling of CCM3 Atmospheric GCM at T42 resolution





## **Minimum Components**



x86 / IA64 server

# **Optional Components**

- Myrinet high-performance network
- Network-addressable power distribution unit
- keyboard/video/mouse network not required
  - Non-commodity
  - How do you manage your management network?
  - □ Crash carts have a lower TCO Copyright © 2003 UC Regents











#### **Cluster Software Stack**

| Parallel Code / WebFarm / Grid / Computer Lab |                             |                                          |        | ations |
|-----------------------------------------------|-----------------------------|------------------------------------------|--------|--------|
| Message Passing / Communication Layer         |                             |                                          |        |        |
| Job Scheduling and Launching                  | Cluster Software Management | Cluster State Management /<br>Monitoring | Middle | eware  |
| Red Hat 7.3                                   |                             | Source Packaged Device Drivers           |        |        |
| Red Hat 7.3 Linux Kernel                      |                             | (Myrinet, PVFS)                          | Ker    | nel    |
| Any                                           | Rocks                       | Yours                                    |        | -      |

Copyright © 2003 UC Regents



## **Common to Any Cluster**



# **Red Hat**

Stock Red Hat 7.3 w/ updates (AW 2.1 for IA64)

- Linux 2.4 Kernel
- No support for other distributions
  - Red Hat is the market leader for Linux
    - In the US
    - And becoming so in Europe
- Excellent support for automated installation
  - Scriptable installation (Kickstart)
  - Very good hardware detection

## **Batch Systems**

#### Portable Batch System

- - Daemon on every node
  - Used for job launching and health reporting
- Server
  - On the frontend only
  - Queue definition, and aggregation of node information

#### Scheduler

- Policies for what job to run out of which queue at what time
- Maui is the common HPC scheduler
- SGE Sun Grid Engine
  - Alternative to PBS
  - Integrated into Rocks by SCS (Singapore)
- Scheduler manage scarce resources
  - Clusters are cheap
  - You might not want a scheduler

Copyright © 2003 UC Regents



## **Communication Layer**

#### None

- "Embarrassingly Parallel"
- Sockets
  - Client-Server model
  - Point-to-point communication
- MPI Message Passing Interface
  - Message Passing
  - Static model of participants
- PVM Parallel Virtual Machines
  - Message Passing
  - For Heterogeneous architectures
  - Resource Control and Fault Tolerance
    Copyright © 2003 UC Regents



### **Sockets are low level**

#### Sockets

- Point-to-Point
- N machines = (n<sup>2</sup> n)/2 connections
- □ 1, 3, 6, 10, 15, ...

#### MPI/PVM

- Shared virtual channel
- Implementation could be sockets
- **Easier to program**





## **Rocks Cluster Software**





## **Cluster State Management**

#### Static Information

- Node addresses
- Node types
- Site-specific configuration
- Dynamic Information
  - CPU utilization
  - Disk utilization
  - Which nodes are online



# ganglia



#### **Cluster Database**



## AC ROCKS

# Ganglia

#### Scalable cluster monitoring system

- Based on ip multi-cast
- Matt Massie, et al from UCB
- http://ganglia.sourceforge.net
- Gmon daemon on every node
  - Multicasts system state
  - Listens to other daemons
  - All data is represented in XML
- Ganglia command line
  - Python code to parse XML to English
- Gmetric
  - Extends Ganglia
  - Command line to multicast single metrics





## **Ganglia Screenshot**

| н                           | ost Report for Tue, 18 Mar 2003 01:28:58 +000 | 00 (Get Fresh Data) Ganglia &                             |  |  |
|-----------------------------|-----------------------------------------------|-----------------------------------------------------------|--|--|
| ROCKS                       | Last hour 🛟                                   | Node View                                                 |  |  |
| Our Cluster > b             | ritannic                                      |                                                           |  |  |
|                             | britannic Ov                                  | erview                                                    |  |  |
| This node is up and running |                                               | 2.0<br>1.0                                                |  |  |
|                             | Time and String Metrics                       |                                                           |  |  |
| Name                        | Value                                         | 0,0 00:40 01:00 01:20                                     |  |  |
| boottime                    | Tue, 18 Mar 2003 00:23:20 +0000               | 🔲 1-Minute Load 📕 Total CPUs 📕 Running Processes          |  |  |
| gexec                       | OFF                                           | britannic CPV last hour                                   |  |  |
| machine_type                | ia64                                          |                                                           |  |  |
| os_name                     | Linux                                         | e t                                                       |  |  |
| os_release                  | 2.4.18-e.12 smp                               |                                                           |  |  |
| sys_clock                   | Tue, 18 Mar 2003 00:25:34 +0000               |                                                           |  |  |
| uptime                      | 0 day, 1:5                                    | 00:40 01:00 01:20                                         |  |  |
|                             |                                               | System CPU I ale CPU                                      |  |  |
|                             | Constant Metrics                              | britannic MEM last hour                                   |  |  |
| Name                        | Value                                         |                                                           |  |  |
| cpu_aidle                   | 97.1 %                                        | 500 M                                                     |  |  |
| cpu_num                     | 2                                             |                                                           |  |  |
| cpu_speed                   | 900 MHz                                       | 0,40,01,00,01,20                                          |  |  |
| mem_total                   | 1011568 KB                                    | Memory Used Memory Shared Memory Cached                   |  |  |
| mtu 1500 B                  |                                               | 🔲 Memory Buffered 🔲 Memory Swapped 📕 Total In-Core Memory |  |  |
| swap_total                  | 1048544 KB                                    |                                                           |  |  |



# **Cluster Software Management**

#### Software Packages

- RPMs
  - Standard Red Hat (desktop) packaged software
  - Or your own addons
- Rocks-dist
  - Manages the RPM repository
  - This is the distribution

#### Software Configuration

- Tuning RPMs
  - For clusters
  - For your site
  - Other customization
- XML Kickstart
  - Programmatic System
    Building
  - Scalable



## **Building a Rocks Distribution**



- Start with Red Hat
- Add updates, Rocks (and optional other) software
- Add Kickstart profiles
- Modify Red Hat installation boot image
- Resulting in a Red Hat compatible Rocks distribution
## **Kickstart**

#### Red Hat's Kickstart

- Monolithic flat ASCII file
- No macro language
- Requires forking based on site information and node type.

#### Rocks XML Kickstart

- Decompose a kickstart file into nodes and a graph
  - Graph specifies OO framework
  - Each node specifies a service and its configuration
- Macros and SQL for site configuration
- Driven from web cgi script







### **Sample Node File**

```
<?xml version="1.0" standalone="no"?>
<!DOCTYPE kickstart SYSTEM "@KICKSTART_DTD@" [<!ENTITY ssh "openssh">]>
<kickstart>
            <description>
            Enable SSH
            </description>
            <package>&ssh;</package>
            <package>&ssh;-clients</package>
            <package>&ssh;-server</package>
            <package>&ssh;-askpass</package>
<post>
cat > /etc/ssh/ssh_config <&lt; 'EOF' <!-- default client setup -->
Host *
        ForwardX11 yes
        ForwardAgent yes
EOF
chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh
</post>
</kickstart>>
```

## **Sample Graph File**

<?xml version="1.0" standalone="no"?> <!DOCTYPE kickstart SYSTEM "@GRAPH\_DTD@">

<graph>

<description>
Default Graph for NPACI Rocks.
</description>
<edge from="base" to="scripting"/>
<edge from="base" to="ssh"/>

<edge from="base" to="ssl"/>
<edge from="base" to="lilo" arch="i386"/>
<edge from="base" to="elilo" arch="ia64"/>

```
<edge from="node" to="base" weight="80"/>
<edge from="node" to="accounting"/>
<edge from="slave-node" to="node"/>
<edge from="slave-node" to="nis-client"/>
<edge from="slave-node" to="autofs-client"/>
<edge from="slave-node" to="dhcp-client"/>
<edge from="slave-node" to="snmp-server"/>
<edge from="slave-node" to="node-certs"/>
<edge from="compute" to="slave-node"/>
<edge from="compute" to="slave-node"/>
<edge from="master-node" to="node"/>
<edge from="master-node" to="node"/>
```

</graph>

ROCKS



#### **Kickstart framework**



## **Appliances**

Laptop / Desktop

 Appliances
 Final classes
 Node types

 Desktop IsA

 standalone
 Laptop IsA
 standalone
 pcmcia
 Code re-use is good



NPA

ROCKS

## **Optional Drivers**

#### PVFS

- Parallel Virtual File System
- Kernel module built for all nodes
- □ Initial support (full support in future version of Rocks)

ROCKS

User must decide to enable

#### Myrinet

- High Speed and Low Latency Interconnect
- GM/MPI for user Applications
- □ Kernel module built for all nodes with Myrinet cards



#### **Your Cluster Software**



## Let's Build a Cluster



### **Hardware Setup**

Grab two nodes

Use the cross-over cable to connect eth0 on the frontend to eth0 on the compute node

Hook up a monitor and keyboard

## **Software Installation**



NPA

ROCKS



#### **Cluster Information**

| root@sedona:/home/install                                                                                   |      |
|-------------------------------------------------------------------------------------------------------------|------|
| Red Hat Linux (C) 2002 Red Hat, Inc.                                                                        |      |
| Rocks version 2.3 www.rocksclusters.org                                                                     |      |
| Cluster Information                                                                                         |      |
| These fields are optional, but fill in as many as possible.                                                 |      |
| Cluster Name: The name of this cluster.                                                                     |      |
| My Cluster                                                                                                  |      |
| Owner: The organization that owns this cluster.                                                             |      |
| Contact: The administrative contact (email).                                                                |      |
| URL: The website for this cluster.                                                                          |      |
| LatLong: Your Latitude and Longitude (like 'N32.87 W117.22')                                                |      |
| OK Back                                                                                                     |      |
|                                                                                                             |      |
|                                                                                                             |      |
| <pre><tab>/<alt-tab> between elements   <space> selects   <f12> next so</f12></space></alt-tab></tab></pre> | reen |



#### **Partition your Disks**

| root@sedona:/home/install                                                                                                                                                                                                          | _ <b>=</b> × |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Red Hat Linux (C) 2002 Red Hat, Inc.<br>Rocks vertitioning Setup                                                                                                                                                                   |              |
| Automatic Partitioning sets up your partitioning based on<br>your installation type. You also can customize the<br>resulting partitions to meet your needs.                                                                        |              |
| The manual disk partitioning tool, Disk Druid, allows you<br>to set up your partitions in an interactive environment.<br>You can set the filesystem types, mount points, size and<br>more in this easy to use, powerful interface. |              |
| fdisk is the traditional, text-based partitioning tool<br>offered by Red Hat. Although it is not as easy to use,<br>there are cases where fdisk is preferred.                                                                      |              |
| Autopartition Disk Druid fdisk Back                                                                                                                                                                                                |              |
| <tab>/<alt-tab> between elements   <space> selects   <f12> next scree</f12></space></alt-tab></tab>                                                                                                                                | en           |



#### **Configure Private Network**





#### **Configure Public Network**





#### **Set your hostname**

| root@sedona:/home/inst                                                                                                             | all                                                                                                                                             | _ <b>=</b> × |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Red Hat Linux                                                                                                                      | (C) 2002 Red Hat, Inc.                                                                                                                          |              |
| ROCKS VELSION                                                                                                                      | 2.5 WWW.IOCKSCIUSCEIS.OLG                                                                                                                       |              |
|                                                                                                                                    |                                                                                                                                                 |              |
|                                                                                                                                    | Hostname Configuration                                                                                                                          |              |
|                                                                                                                                    | The hostname is the name of your computer. If<br>your computer is attached to a network, this<br>may be assigned by your network administrator. |              |
|                                                                                                                                    | Hostname <b>frontend-0</b>                                                                                                                      |              |
|                                                                                                                                    | Back                                                                                                                                            |              |
|                                                                                                                                    |                                                                                                                                                 |              |
| <tab>/<alt-t< th=""><th>'ab&gt; between elements   <space> selects   <f12> next sc:</f12></space></th><th>reen</th></alt-t<></tab> | 'ab> between elements   <space> selects   <f12> next sc:</f12></space>                                                                          | reen         |



#### Set the root password





## **Configure NIS**

| root@sec                                                                                                                           | dona:/home/install                                                                                           | _ <b>=</b> × |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|
| Red Ha<br>Rocks                                                                                                                    | LAL Use Shadow Passwords                                                                                     |              |
|                                                                                                                                    | [*] Enable MD5 Passwords<br>[*] Enable NIS NIS Domain: rocks<br>NIS Server: [*] Request server via broadcast |              |
|                                                                                                                                    | [] Enable LDAP<br>LDAP Base DN:<br>[] Use TLS connections                                                    |              |
|                                                                                                                                    | [ ] Enable Kerberos Realm:<br>KDC:<br>Admin Server:                                                          |              |
|                                                                                                                                    |                                                                                                              |              |
| <tab< th=""><th>&gt;/<alt-tab> between elements   <space> selects   <f12> next scre</f12></space></alt-tab></th><th>en</th></tab<> | >/ <alt-tab> between elements   <space> selects   <f12> next scre</f12></space></alt-tab>                    | en           |



#### And away we go...

| root@sedona:/home/install                                                                            | X |
|------------------------------------------------------------------------------------------------------|---|
| Red Hat Linux (C) 2002 Red Hat, Inc.                                                                 |   |
| Rocks Version 2.3 WWW.rocksclusters.org                                                              |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
| Formatting                                                                                           |   |
| Formatting /export filesystem                                                                        |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
| <tab>/<alt-tab> between elements   <space> selects   <f12> next screen</f12></space></alt-tab></tab> |   |





#### **Add Compute Node with Insert-ethers**



- Collect the Ethernet MAC address of cluster nodes
- Only done once, during integration
- Populates cluster database



#### **Discovered Appliance**

| root@frontend=0:/root                                                                                      | $\times$ |
|------------------------------------------------------------------------------------------------------------|----------|
| Insert Ethernet Addresses — version 2.1                                                                    |          |
| Inserted Appliances<br>Discovered New Appliance<br>Discovered a new appliance with MAC (00:06:29:1f:41:e8) |          |
|                                                                                                            |          |
| Press <f1> to quit</f1>                                                                                    |          |



#### Monitor the Install with eKV



PAC ROCKS

### **Ganglia Gmetrics**

- How to design new *metrics* for ganglia to track and graph.
- Called user-defined metrics, or *gmetrics*.
  - 1. Write gathering function in Python.
  - 2. Push to all compute nodes.
  - 3. Allow gschedule to call gatherer repeatedly.
  - 4. Watch the graphs grow.





## Write Metric Gatherer in Python

#

- Writing a gmetric gatherer is easy in python: Rocks has native support.
- *Gschedule* is a daemon running by default on all Rocks nodes
  - Will call our gatherer function at regular intervals, with some randomization.
- We just need to provide a name and a value for the metric.

#### # Gmetric that publishes the number of outgoing packets # through device eth0. from gmon.gmetric import Metric from string import count, split class packetsOut (Metric): "Publishes the number of outgoing packets on eth0." dev = "eth0"def init (self): # Publish value every 2 seconds on average. Metric. init (self, 2) def name(self): return "packets-out-eth0" def value(self): dev = open("/proc/net/dev")

packets.py

for line in dev.readlines(): if not count(line, self.dev): continue

```
# Discard 'dev:'
fields = split(line,":")[1]
values = split(fields)
```

```
dev.close()
return int(values[9])
```



#### **Push new Gmetric to all Nodes**



- /opt/ganglia/lib/python/g mon/metrics/
- Packaging
  - Use RPM for permanent installation





### **Gschedule daemon**

- The Rocks gschedule daemon will call our Packets metric repeatedly.
- gschedule --debug
  Or
- #service gschedule restart
  - Will publish our metric every 2 seconds.
  - Ganglia's gmetad will detect new metric, and graph it.



#### Visualization

- Our new gmetric will be graphed by *gmetad*.
  - Visible in webfrontend's host view.
  - Only metrics which are numeric and volatile (slope ≠ 'zero') are graphed.
- Gmetric restrictions:
  - Total metric size < 1500 characters.
  - Nonetheless, offers lots of possibilities:
    - Node temp, etc.

Graph of our metric







## **Monitoring Grids with Ganglia**

- Macro: How to build and grow a monitoring grid.
- A *Grid* is a collection of Grids and Clusters
- A *Cluster* is a collection of nodes
  - All ganglia-enabled





#### **Ganglia Meta Daemon**

- Gmeta daemon collects ganglia data from multiple clusters.
- Keeps a metric's history over time, used to generate web graphs.
- Requires the *trust* of each cluster.
- Trust is explicitly given



Ganglia-enabled Clusters



#### **Advanced: Grid Hierarchies**

- Enables arbitrarily-deep grid nesting in ganglia
- Distributes metric history collection, a proven bottleneck.
  - Only keep metric history for child clusters.
- Ganglia Web frontend is now a distributed system.





- RPMs are created using 'spec' files
  - 'spec' files are an RPM's makefile
- We'll use the Rocks source code infrastructure to build a new RPM
- First, get the Rocks source code:
  - # cd /home/install
  - # mkdir src
  - □ # cd src
  - # export CVS\_RSH=ssh
  - # cvs -d:pserver:anonymous@cvs.rocksclusters.org:/home/cvs/CVSROOT/ login
  - # cvs -d:pserver:anonymous@cvs.rocksclusters.org:/home/cvs/CVSROOT/ checkout rocks







### Create the 'contrib-new' package

- Go to the 'contrib' area of Rocks
  - # cd /home/install/src/rocks/src/contrib/
- Create the 'new' directory:
  - # mkdir new
- Populate 'new' with the 'skeleton' files:
  - # cp skeleton/\* new
- Change names: 'skeleton' to 'new'
  - # cd new
  - # mv contrib-skeleton.spec.in contrib-new.spec.in
  - # vi Makefile
    - Change '/opt/skeleton' to '/opt/new'



### **Building the Package**

#### • Execute:

- # make rpm
- This creates a binary and source RPM:
  - /usr/src/redhat/RPMS/i386/contrib-new-1-1.i386.rpm
  - /usr/src/redhat/SRPMS/contrib-new-1-1.src.rpm



## Adding the New Package to the

## Distribution

- The distribution compiler, rocks-dist, merges RPMs from the following sources:
  - /home/install/ftp.rocksclusters.org/
  - /usr/src/redhat/RPMS/
  - /home/install/contrib/RPMS/
- The package contrib-new-1-1.i386.rpm is in /usr/src/redhat/RPMS/i386
- To compile a new distro with the 'contrib-new' package:
  - # cd /home/install
  - # rocks-dist dist
- This creates a Red Hat compatible distro in /home/install/rocks-dist/
- Look under /home/install/rocks-dist for 'contribnew-1-1.i386.rpm'





# Assigning the New Package to a Cluster Appliance

- Extend the 'compute' appliance
  - # cd /home/install/profiles/2.3.2/site-nodes
  - # cp skeleton.xml extend-compute.xml
- Add the 'contrib-new' package
  - # vi extend-compute.xml
  - Add the line:
    - <package>contrib-new</package>
  - To apply dynamic configuration to components of the 'contrib-new' package, write a program and place it between '<post> ... </post>' tags



#### **Test the changes**

#### Run kickstart.cgi

- # cd /home/install
- # ./kickstart.cgi --client='compute-0-0' > /tmp/ks.cfg
- Look for 'contrib-new' in '%packages' section of /tmp/ks.cfg


## **Reinstall Compute Nodes**

- Use 'shoot-node' to reinstall compute nodes in order to apply the 'contrib-new' package
  - # shoot-node compute-0-0



## **Building a Custom Kernel RPM**

#### Pick a compute node

- # ssh compute-0-0
- Develop on this node, doesn't "trash" the environment on the frontend
- Create a custom '.config' file.
  - This can be done from scratch or based on a canned Red Hat configuration file
    - # cd /usr/src/linux-2.4
    - # cp configs/kernel-2.4.18-i686-smp.config .config
    - # vi .config

Copyright © 2003 UC Regents



## **Building a Custom Kernel RPM**

#### Build a kernel RPM

# make rpm

### • Copy the resulting kernel RPM to the frontend:

- # scp /usr/src/redhat/RPMS/i686/kernel.rpm frontend-0:/home/install/contrib/RPMS/public/i386
- Rebuild the distro on the frontend
  - # cd /home/install
  - # rocks-dist dist

# **Compute Node Partitioning**

BUCK

- Creates 4 GB root partition on first drive
  - This partition is volatile, that is, when the node is reinstalled, this partition is reformatted
- Remainder of first drive is put into a partition called "/state/partition1"
- For each remaining drives, one partition is created per drive and named "/state/partition2", "/state/partition3", etc.
- All partitions labeled "/state/partition[n]" are not reformatted on reboots.



|                                            | C             |
|--------------------------------------------|---------------|
| Root Drive 18 GB                           |               |
| /dev/sda1 /<br>/dev/sda2 /state/partition1 | 4 GB<br>14 GB |





Second Drive 36 GB

/dev/sdb1 /state/partition2 36 GB



| Third Drive 18 GB<br>/dev/sdc1 /state/partition3 | 18 | GB |  |  |
|--------------------------------------------------|----|----|--|--|
|                                                  |    |    |  |  |

















| Device    | Name              | Size   |
|-----------|-------------------|--------|
| /dev/sda1 | /                 | 4 GB   |
| /dev/sda2 | /state/partition1 | 14 GB  |
| /dev/sdb1 | /state/partition2 | 36 GB  |
| /dev/sdc1 | /state/partition3 | 18 GB  |
| /dev/sdd1 | /state/partition4 | 72 GB  |
| /dev/sde1 | /state/partition5 | 36 GB  |
| /dev/sdf1 | /state/partition6 | 181 GB |



## **User-specified Partitioning**

- Override the default partitioning configuration file:
  - # cd /home/install/profiles/2.3.2/site-nodes
  - # cp skeleton.xml replace-auto-partition.xml
- Add your partitions to 'replace-auto-partition.xml'
  - <part> / --size 5000 --ondisk sda </part>
  - <part> swap --size 512 --ondisk sda </part>
  - <part> /mydata --size 1 --grow --ondisk sda </part>



## **Building your own CD Set**

- After customizing your cluster distribution, make ISO images to export it
- First, you must mirror the full Rocks release
  - # cd /home/install
  - # rocks-dist mirror
    - Or, put in the second (then third) Rocks CD and execute:
  - # rocks-dist copycd



## **Building your own CD Set**

#### Build a CD Set

- # cd /home/install
- # rm -rf cdrom
- # rocks-dist --dist=cdrom cdrom
- This creates a CD set under the directory '/home/install/cdrom'
  - # cd /home/install/cdrom/7.3/en/os



# ROCKS

### Thanks

#### Inspired by a lab conducted at TACC

Copyright © 2003 UC Regents

## Lab

- Building 2-node x86 clusters
- Ganglia grid
- Adding users
- Running Linpack
- Checking out rocks source
- Creating a new package
- Recompiling distro
- Reinstall compute nodes
- Creating/using a new distribution

ROCKS

## **Add New Users**

#### Use the standard linux command:

- # useradd <username>
- This adds user account info to /etc/passwd, /etc/shadow and /etc/group

ROCKS

- Additionally, adds mountpoint to autofs configuration file (/etc/auto.home) and refreshes the NIS database
- To delete users, use:
  - # userdel <username>
  - This reverses all the actions taken by 'useradd'

Copyright © 2003 UC Regents

## **Run Linpack**

- Login as new user:
  - 🗆 # su bruno
  - This prompts for information regarding a new ssh key
    - Ssh is the sole mechanism for logging into compute nodes

ROCKS

- Copy over the linpack example files:
  - \$ cp /var/www/html/rocks-documentation/2.3.2/examples/\* .

## **Run Linpack**

#### • Submit a 2-processor Linpack job to PBS:

- \$ qsub qsub-test.sh
- Monitor job progress with:
  - \$ showq
  - $\hfill\square$  Or the frontend's job monitoring web page

ROCKS



## **Scaling Up Linpack**

#### • To scale the job up, edit 'qsub-test.sh' and change:

#PBS -l nodes=2

#### To (assuming you have dual-processor compute nodes):

#PBS -1 nodes=2:ppn=2

#### Also change:

- /opt/mpich/ethernet/gcc/bin/mpirun -np 2
- **To:** 
  - /opt/mpich/ethernet/gcc/bin/mpirun -np 4

# NPACI ROCKS

## **Scaling Up Linpack**

- Then edit 'HPL.dat' and change:
  - 1 Ps
  - 🗆 То:
    - 2 Ps
  - The number of processors Linpack uses is P \* Q
- To make Linpack use more memory (and increase performance), edit 'HPL.dat' and change:
  - 1000 Ns
  - **To:** 
    - **4000** Ns
  - Linpack operates on an N \* N matrix
- Submit the (larger) job:
  - \$ qsub qsub-test.sh

Copyright © 2003 UC Regents



## **Using Linpack Over Myrinet**

#### Submit the job:

- \$ qsub qsub-test-myri.sh
- Scale up the job in the same manner as described in the previous slides.



#### Go Home