

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Cache-Friendly Liquid Load Balancer

A thesis submitted in partial satisfaction of the

requirements for the degree Master of Science in

Computer Science

by

Federico David Sacerdoti

Committee in charge:

Professor Scott B. Baden, Chair
Professor Larry Carter
Professor Dean Tullsen

2002

Copyright

Federico David Sacerdoti, 2002

All rights reserved

iii

Table of Contents

Signature Page ...iii

Table of Contents...iv

Table of Figures ...vi

Vita...vii

Abstract ..viii

I. Introduction..1

A. Parallel Machines and Clusters...3

B. Caches ...4

C. Cache Friendliness ..6

D. Load Balancing ...9

E. Overview of Thesis..11

II. Cache Friendliness ...13

A. Motivation...13

B. Existing Solutions ...15

C. Design..17

1. Our Testing Application ..17

2. Tiling for Cache ...20

3. Autoblocker ...21

4. Padding for Cache..23

5. EucPad2D ..27

6. GcdPad3D..29

7. Pad..30

8. Virtual Memory Behavior..32

D. Experiment ..33

1. Experimental Setup..34

iv

2. EucPad2D Experiments ...35

3. GcdPad3D Experiments...39

E. Discussion ...42

III. Load Balancing ..46

A. Motivation...46

B. Existing Solutions ...48

C. Design..51

1. Problem Quantization ..52

2. Timings and the Autobalancer ...53

3. Space-Filling Curve ...54

4. Dampener...56

D. Experiment ..57

1. Q-Type Experiments..58

2. Uniform Balancer Experiments ...60

3. Non-Uniform Balancer Experiments ...62

4. Balancer Overhead...66

5. Irregular Balance Experiments ..67

E. Discussion ...69

IV. Conclusion ...73

A. Future Work ..74

Appendix A: Tabular Data...77

Appendix B: Users Guide ..81

References..87

v

Table of Figures

1. Non-Linear Node Performance..14

2. The RedBlack3D Kernel..18

3. The RedBlack3D 7-point Stencil ...19

4. Tiled RedBlack3D Kernel ...20

5. Auto-Blocked RedBlack3D Kernel ...22

6. Figure of an Auto-Blocked Array..22

7. Padding and its effect on Memory Layout...24

8. Cache Conflict between Adjacent Columns ..27

9. The EucPad2D Algorithm..28

10. The GcdPad3D Algorithm ...30

11. Pad vs. GcdPad ..31

12. RedBlack2D Grind Time vs. N: EucPad2D ..35

13. RedBlack3D Grind Time vs. N: EucPad2D ..37

14. RedBlack3D Fortran vs. Auto Blocking..39

15. RedBlack3D Grind Time vs. N: GcdPad3D..40

16. RedBlack3D Grind Time vs. N: GcdPad3D with 16 Procs41

17. The Hilbert Space-Filling Curve in 2D..55

18. Quantization Experiment with 8 Procs ..59

19. Balancer at Rest ...61

20. Non-Uniform RedBlack: Unbalanced..63

21. Non-Uniform RedBlack: Balanced..63

22. Load Blancer in Action: Balance Efficiency ...64

23. Balancer Performance..65

24. Balancer Overhead...66

25. Balancer Pseudocode ...70

vi

VITA

1976 Born, Washington D.C.

1998 B.S. Washington University, Saint Louis

1999 Founder, Sacerdoti Linux Machines, Saint Louis

2000-2002 Research Assistant, University of California, San Diego

2002 M.S., University of California, San Diego

FIELDS OF STUDY

Major Field: Engineering

Studies in Computer Engineering.
Professors George Varghese, Kenneth Wong, Washington University, Saint Louis

Studies in High Performance Parallel Computing.
Professor Scott B Baden, University of California, San Diego

Studies in Computer Networking and Distributed Systems.
Professors George Varghese, Keith Marzullo, University of California, San Diego

vii

ABSTRACT OF THE THESIS

A Cache-Friendly Liquid Load Balancer

by

Federico David Sacerdoti

Master of Science in Computer Science

University of California, San Diego, 2002

Professor Scott B. Baden, Chair

Experience with computing clusters indicates a load balancer is necessary to allow

programs to adapt to a machine as they run. Scientific applications are partitioned into

pieces, which run concurrently on nodes of parallel computing clusters. Simple methods

of problem partitioning yield static-sized portions for each node. A dynamic load

balancer allows the problem to resize itself on a parallel cluster so that idle nodes receive

more work as appropriate, essentially allowing a problem to flow through different parts

of the machine, aiding efficiency and improving performance.

Our work in this thesis shows that when designing a parallel load balancer, further

issues must be considered. Local performance on compute nodes has an important impact

on balancing that is often overlooked. We show that by minimizing cache conflict misses

on nodes, we can achieve more accurate load balance.

viii

To address cache conflicts, we present a two-level partition scheme for parallel

applications. We show how the use of cache tiling and padding techniques within our

two-level framework improves performance and yields more reliable performance

metrics, which are essential for our dynamic load balancer.

This thesis describes our dynamic, cache-friendly tiling method, and associated liquid

load balancer design. We explore several recent cache-tiling algorithms, optimized for

3D stencil-based codes. Our load balancer then uses these tactics to obtain reliable per-

node performance data. We expect this approach to yield a highly adapted computing

environment for scientific solvers and simulators on modern heterogeneous clusters,

leading to significant speedups for a wide range of applications.

ix

Chapter I

 Introduction

The needs of scientific computations have outstripped the available resources for as

long as computers have existed. As a result, a good deal of effort has focused on

increasing the efficiency of high performance computer systems. The parallel computer

has emerged as the platform of choice for high performance applications. By harnessing

multiple computing elements that work together in concert, parallel systems can provide

state-of-the-art performance for scientific computations. Load Balancing is a much-

studied strategy for improving the efficiency of parallel computers. This technique seeks

to reduce processor idleness during program execution by carefully allocating

computation in the system. Existing methods of load balancing have largely overlooked

the behavior of processor caches, however, which we address in this work. This thesis

presents our Cache-Friendly Load Balancer for scientific cluster machines.

Load balancing involves assigning parts of a parallel application, called its partitions,

to computing elements, called nodes, in such a way that all the nodes have just the right

amount of work to keep themselves busy. Balancing is necessary because many parallel

programs concentrate on certain areas of the computation more than others. If we view

the problem as having a size, such as in a Finite-Element-Analysis of the stresses on a

spaceship, we would split the ship into pieces, and call each one a partition of the

problem. We assign partitions to various nodes of the cluster in some way to ensure all

nodes receive equal work. If each ship partition required equal computation, this

1

2

assignment would be easy. However, if certain parts of the ship require more effort to

compute than others, balancing the problem on the machine becomes a difficult task.

The ability to load balance effectively depends on our capacity to detect differences

in the workload distribution across processors. There are several methods available. If we

determine the workload of each partition at the beginning of the problem by some

analytical means, we could assign partitions to avoid any imbalance. However, predicting

application performance is difficult in general. In addition, hardware differences between

cluster systems make predictions not only application-specific, but machine-specific as

well. A second choice involves measuring application performance at each node during

computation. We choose this method because its success does not depend on an analytic

cost model of performance. Once node workload is determined, we can move partitions

between nodes during runtime to improve load balance.

Our work in this thesis concentrates on insuring single-processor performance over a

range of parameters. We show that partition sizes interact with the processor cache on a

node, leading to a large impact on its performance. By making the parallel application

cache-friendly, we can mitigate these effects, affording us predictable performance over

various partitioning parameters and problem sizes. This in turn allows us to achieve high

performance and accurate load balancing together.

The contribution of this work is a two-level work-granularity framework that allows a

load balancer to choose partition sizes without risk of degraded performance. Our two-

level tiling framework removes the interaction between partition size and performance.

We implement this framework in a run-time library that can be made to adapt to

particular hardware footprints more easily than compiler-based schemes [21]. As we will

show, cache-frendliness depends heavily on hardware architecture and partition size.

3

A. Parallel Machines and Clusters

Parallel computers are the system of choice among the high-performance scientific

community due to their speed and low cost/performance. These types of machines are

composed of many processing elements called nodes, which can run autonomously to

perform tasks in parallel. By splitting a problem among the nodes of the system using a

process called partitioning, an n-node parallel computer can theoretically finish an

application n times sooner than could a single processor. The general strategy when

building such a computer is to use the fastest processors possible for each node, and the

fastest interconnect between nodes.

In the 1970s and 1980s, the fastest processors were in the vector-type computers

pioneered by Seymor Cray and Cray Research. At that time, although Personal Computer

(PC) microprocessors existed, their performance was several orders of magnitude slower

than the advanced vector CPUs. These processors also cost several orders of magnitude

more than their PC cousins, limiting the size of parallel computers of that era. During the

1990s, however, PC microprocessor technology began to close the performance gap

between themselves and the vector processors. The PC manufacturers achieved this

improvement by adopting some of the technology developed earlier by Cray, such as

interleaved memory, high clock speeds, and large register files. In addition, better CMOS

processes, pipelining technology, and widespread use of caches helped improve PC

processor performance as well.

With fast and cheap microprocessors available, larger parallel computers were built

that could outperform their vector counterparts for many types of applications. Since

computer vendors often sold their generic systems with a few number of CPUs each,

parallel systems evolved as a cluster of these machines, connected with a fast

interconnect network. A single vendor typically built these systems, and they were

homogeneous in the sense that all nodes had the same hardware. The Blue Horizon

4

cluster [29] is a parallel machine of this type. This system has many nodes connected by

a high-bandwidth switch; each node has 8 high-performance workstation processors

made by IBM-Motorola. As single-processor systems became faster, however, the

parallel computer landscape changed again.

The latest trend in clusters involves using commodity, off-the-shelf PC processors

and components for each node. Since these nodes are inexpensive, commodity clusters

often outperform homogeneous clusters due to their sheer size. Scientists can afford more

nodes for the same price. These clusters rely on cheap but high performance CPUs,

which recently have become available. One result of this design is heterogeneity within

the cluster.

Computer vendors do not generally build commodity clusters. They are the first type

of parallel computer often built by researchers themselves, using components from

different manufacturers. The Beowulf project1 popularized this type of machine, and its

utility prompted similar efforts, including the Rocks clustering project at SDSC [27]

whose Meteor cluster we use in our experiments. Components in commodity clusters

exhibit a wide range of designs and architectures, to the point where a cluster built over

the period of a few months may contain nodes of different specifications. Although this

heterogeneity only has important implications for our load balancer if node cache sizes

are different, our model has the ability to handle such variations.

B. Caches

All modern processors have a memory cache, a French-derived word for “store”. In

parallel clusters, each CPU on a node has its own private cache system. The idea behind

cache is to use a small amount of fast but expensive memory to hide the long access

times to the large, slow, (but inexpensive) main memory. Luckily, a simple model for

1 http://www.beowulf.org/

5

cache layout can achieve this goal because of two important attributes of computer

programs. Statistical studies have shown that most programs have a high degree of both

spatial and temporal locality with respect to the memory they use [13, 15, 16, Ch 5].

Temporal locality occurs when a memory location used will likely be used again in the

near future (a few thousand clock cycles on the CPU). Spatial locality, a related property,

happens when the application uses memory locations corresponding to nearby points in

physical problem space. For example, if we access data located in address x, we will

likely access data in locations x+1, x-1 in the near future.

The simple cache layout model therefore places a small amount of fast memory in

between the CPU and the Main Memory. Currently we make this cache using SRAM

technology, with an access time of around 2-10 CPU clock cycles per memory access.

The cache fills with data from main memory, and due to spatial and temporal locality it

generally contains most data the CPU requires. Increasing the likelihood that the cache

will contain a given CPU memory request is of central importance to this thesis. This

figure is called the cache hit rate and we define it as the fraction (cache hits / memory

requests), where a cache hit means a data request is present in the cache, and the

processor does not need to obtain it from main memory.

In the last few decades, caches have become more and more important. CPU clock

cycles have increased faster than memory read-write latency [16, fig 5.1]. As a result,

processors must wait longer to obtain data from memory, and this trend has remained

constant for the last decade or so2. In the late 1980s, a CPU could expect a memory

request to return with data in around 10 clock cycles, even if did not exist in cache. A

current PC processor must wait much longer, on the order of 100 clock cycles, to receive

data from main memory. Since effective caching can reduce this time to around 2-3

2 Processor Speeds double roughly every 18 months, while memory speeds only

increase around 7% per year.

6

cycles even for the fastest processors, an important effect of this trend is that cache hit

rates become more critical to performance.

We will present our work on improving cache effectiveness in a later chapter, but in

order to explain why traditional parallel computations are generally cache unfriendly, we

must describe cache operation in some detail here.

C. Cache Friendliness

When a cache does not contain a requested piece of data, the processor has to wait

hundreds of cycles to obtain the word from main memory. In this section we show how

by being careful we can reduce the number of these cache misses during program

execution.

If all memory requests were found in cache, the cache hit rate would be 100%. Since

the cache has a smaller capacity than main memory, this ideal is unachievable. The CPU

must experience some cache misses, which are classified into three types [14].

Compulsory misses happen when a piece of data is requested for the very first time; since

data only comes into cache when it is requested, the first request must cause a miss.

Although there exist hardware strategies to avoid compulsory misses, such as large cache

block sizes and pre-fectching [25, 16, § 5.3], we do not attempt to mitigate them with

software techniques.

The second and third types of cache miss are of primary concern to us. Capacity

misses occur when the cache is full and cannot accommodate more data without

discarding some current resident. Often, the application will request the discarded data

again in the future, due to locality principles, and the cache will have to re-load it from

main memory. The cache is most efficient when we reuse its contents frequently. Imagine

Michelangelo painting the Sistine chapel. He has setup his scaffolding to access a

particular area of the ceiling within his reach. He could choose to paint one meter of

7

ceiling at a time, like a raster-scan, from the northernmost wall of the church to the

southernmost wall. However, it is much more efficient for Michelangelo to paint one

figure at a time. By doing so, he reuses his scaffolding placement as much as possible.

Similarly, to maximize cache reuse we would like to concentrate on a portion of the

application at once, such that each portion fits into cache.

Our cache-friendly strategies address capacity misses by computing a small block of

the problem at a time. This technique, called blocking or tiling [48, 49], chooses each

portion so it fits into cache without spilling over [17]. During the computation of a block,

the CPU will not experience any capacity misses since the block fits into cache.

With compulsory misses unavoidable, and capacity misses removed via blocking,

conflict misses remain. This last class is the most subtle, architecture-dependant, and

difficult to ameliorate of the three types. The many-to-one mapping problem makes

solving conflict misses difficult. Since a cache is smaller than main memory, its hardware

designer must decide where to place data. Imagine a 1,048,576-location main memory

(220 addresses) and a 256-location cache (28 addresses). Since the cache must be able to

store any one of the million pieces of memory, we need a flexible mapping scheme that

chooses a cache location from a memory location. A direct map is the simplest solution,

popular with earlier CPU designs. In this strategy, the last 8 binary digits of the memory

location specify which of the 256 cache locations to choose, a perfect fit.

The insight with direct mapping is that the cache may evict an existing piece of data d

before the cache is completely filled, causing an unnecessary miss if the CPU requests d

in the near future. We consider this conflict miss unnecessary since the cache was not full

when it discarded d, the discard happened simply due to a conflict in the mapping. In our

example, a conflict arises if two desired pieces of memory happen to reside 256 locations

away from each other in memory. To address this issue, designers have altered the cache

hardware to allow a small number of memory addresses to map to the same cache

8

location without eviction. This mechanism, called n-way set associativity, helps avoids

conflict misses, and is generally reasonably effective. High degrees of set-associativity,

however, require more complex hardware and slow down cache operation.

Due to the increased latency of highly set-associative cache hardware, many

processors implement a multi-level caching strategy. The highest and fastest level of

cache (level 1 or L1) often has a very low associativity, making it fast but susceptible to

conflict misses. Larger and slower caches in the system (L2, L3) typically have higher

set-associativity, and are less prone to cache conflicts. The Power3 processor by IBM

[47] has a very high 128-way set-associative data cache. However, the processor’s high

cost and relatively low performance discourages its use in commodity parallel clusters.

Previous work [7] has shown that cache conflict misses hamper performance on

single-processor machines with direct-mapped L1 and L2 caches. Our results show on

modern processors that employ set-associative cache designs, conflict misses continue to

affect performance. Our single-processor and cluster systems have 16-way set-associative

L2 caches, which can avoid the conflict misses generated by our application. To achieve

the highest clock speed, however, the L1 cache in both systems is only 2-way set-

associative and prone to conflicts. Our experiments show that L1 conflict misses have an

adverse effect on performance, even on advanced processors. (See the Experiment

section in Chapter 2 for full details.)

To reduce cache conflict misses, we work around the limitations of the cache

mapping function. By carefully choosing which memory locations hold our data

elements, we can influence how they will be mapped into cache. We do this in such a

way that no element will overwrite another in cache until it has filled to capacity. We

describe the techniques fully in Chapter 2.

9

D. Load Balancing

Load Balancing attempts to assign problem partitions to compute nodes in a cluster in

such a way to evenly distribute computational workload. We can see the utility of

balancing a parallel problem by noting that we consider its running time to be that of the

last node to complete the computation. If we do not distribute the problem carefully,

some processors may lay idle while others work. The unloaded nodes do not contribute

their full capacity towards the computation, increasing the running time of the

application. Although achieving a good balance may be trivial for simple problems, non-

uniform applications make load balancing a difficult problem since we cannot easily

determine the workload of a partition anytime before its execution.

We can view an unbalanced computation as having different work pressures in

different parts of the parallel machine [32]. Overloaded nodes have a high pressure, while

idle nodes experience low pressure. A parallel load balancer avoids this pressure

imbalance, either by partitioning the problem correctly at the outset (static balancing), or

by detecting pressure at runtime and transferring work between nodes to alleviate it

(dynamic balancing).

Static load balancers partition the (generally static) problem once, and with enough

care that the application remains balanced throughout its execution. This type of balancer

typically attempts to minimize the amount of communication between nodes, partitioning

the problem where the fewest number of data dependencies exist, while assigning each

partition the same number of data elements [50]. We show in Chapter 3, however, that if

partitions have different sizes, their compute time per point, or Grind Time, varies due to

differences in the cache miss rate. Dissimilar grind times lead to a natural load

imbalance, since although the partitions contain nearly the same number of elements,

they take different times to compute. Our two-level tiling framework removes the

10

interaction between partition size and performance. Therefore, the technique equalizes

the compute time of the partitions, leading to better load balance for static problems.

Dynamic load balancing algorithms apply to a more general set of problems than their

static counterparts, and have received a great deal of attention in the field, as the survey

in [33] attests. Advanced load balancers [1,8,10] follow the dynamic design, and allow

chunks of work to move in a fluid manner through the machine, settling so the work

pressure is even. Although recent studies have explored the quality of various dynamic

load balancing methods based on communication characteristics [52], our work

concentrates on the importance of considering single-node performance in the balancer

design, which is a less-studied aspect of the problem.

We begin by showing how load balancing can increase the number of conflict misses

in cache. A dynamic balancer will transfer work between nodes in the machine, as

necessary, to alleviate load pressures. Imagine the balancer decides to move work to an

unloaded node u from another node in the system. A naïve balancing approach would

simply add the incoming data elements to the local partition on u. As shown in the next

chapter, changing the size of the partition can affect performance unpredictably due to

cache conflict misses. Furthermore, this performance effect is non-linear and difficult for

the load balancer to predict. Therefore the balancer’s decision to move work is tenuous: it

does not know how data motion to node u will affect its performance after the transfer.

Moreover, the load balancer would like to assume all nodes are created equal. If this

were true, a partition would have the same computational weight on every node. Some

commodity clusters are heterogeneous, so this assumption may not be valid. A partition

that runs quickly on one node may take longer to compute on a different node due to

hardware differences. These hardware variations can also lead to increased cache

conflicts that further affect performance.

11

The balancer we present in Chapter 3 mediates poor performance. It addresses the

problem of changing partition sizes by imposing a level of granularity to the problem,

and moving only fixed sized problem units called quanta. Think of quanta as small

problem partitions, sufficiently numerous that each node receives many of them. The

balancer addresses the problem of different cache conflict rates by optimizing each

quantum specifically for the local cache. In this way quanta will always be cache-

friendly, even if nodes in the cluster have different cache characteristics.

Two characteristic levels of granularity are employed in the balancer design. The top

level consists of the problem quanta. We then tile each quantum individually, to be

cache-friendly. The second level of granularity ensures that quantum size does not

adversely affect performance. We must use two levels in the design because the ideal tile

size for each node may not correspond to the size of its quanta. A node can own several

quanta with different shapes, but it requires a rectangular, constant-sized tile for

maximum local performance.

To reduce communication between nodes, our balancer uses a Hillbert Space-Filling

curve [1, 53, 54] to assign problem quanta to processors. The load balancer uses a simple

geometric RCB algorithm [44] to partition the workload along the 1D Hilbert curve. Full

details of our balancer design are given in Chapter 3.

E. Overview of Thesis

In this thesis we establish that cache-friendliness is an important property for parallel

computations, especially with respect to load balancing. We present several methods of

improving cache-friendliness, and then show how it helps the efficiency of our load

balancer.

This thesis is organized as follows. Chapter 2 presents our cache capacity and conflict

miss strategy, and its associated experimental results. Chapter 3 describes our two-level

12

blocking strategy for load balancing, including the design and experiments of our

dynamic liquid load balancer using space-filling curves. Chapter 4 summarizes our work

and discusses opportunities for future study.

Appendix A presents tabular data for all the graphs presented in this document.

Appendix B describes the Autoblocker and Autobalancer APIs in the KeLP [23]

framework, along with a short users guide to the balancer.

Chapter II

 Cache Friendliness
A. Motivation

When optimizing parallel applications, single processor performance is often

overlooked. Designers view the cluster as a whole, and typically model a parallel cluster

as a graph of abstract black-box computing nodes, and the network that connects them.

Most parallel software techniques concentrate on inter-node behavior, the interplay of

one node with its neighbors. In this chapter we argue that the nodes themselves should be

given a closer look.

Our experiments have shown that single-node performance, the computational

efficiency of one node in isolation, is an important factor for parallel performance. In

addition, measurements indicate that single-node performance varies with problem size

and problem shape. We show in this chapter that by using techniques to reduce cache

miss rates, we can achieve high performance independent of problem or partition size and

shape. Although this result has been shown previously [17], we show the relevance of

this problem to load balancing and partition-size choice in parallel applications.

Our dynamic load balancer design relies heavily on single-node load figures to decide

how to move work through the cluster. When we measure the load on a given node, we

essentially gauge its performance p as it computes a workload of problem elements, w. In

initial experiments, we found that p is sensitive to small variations in the size of w. In

fact, if we gave the node slightly more work, even for uniform problems, the performance

p could vary significantly. Since our balancing algorithm anticipated a linear relationship

between p and w, it occasionally made poor decisions that lead to more load imbalance.

13

14

As a result, we began to examine the factors affecting node performance, seeking to find

a smoother workload-to-performance ratio.

The second motivation for smoothing the performance-to-workload ratio is for

parallel applications with non-uniform partition sizes. Graph partitioners typically assign

equal number of elements per partition [50]. However, partition shapes also affect the

cache miss rate, as shown in this chapter. Therefore load imbalance can occur because

the partitions of a parallel problem have unequal performance, despite their equal size.

By applying cache-friendly techniques to each partition, we can decouple performance

from partition shape as well as size.

2.15e-07

2.2e-07

2.25e-07

2.3e-07

2.35e-07

2.4e-07

2.45e-07

2.5e-07

2.55e-07

2.6e-07

2.65e-07

2.7e-07

140 150 160 170 180 190 200

G
rin

d
T

im
e

(s
 /

N
3)

Side length N (Domain is N3)

Local Grind Time of RedBlack3D (1 proc, ID=90)

Control

Figure 1. Inconsistent Performance with Changing Problem Size. An
example of the kind of performance behavior we would like to avoid. This
experiment shows the Grind Time (time needed to compute a single
element) of a RedBlack3D PDE solver for different values of N, the side
length. No tiling or padding techniques have been applied for this run, and
we note the grind time varies by up to 20%. The experiment was
performed with the environment described in the Experiment section, on
the Alpha machine.

15

As discussed in the introduction, a node’s processor cache has a large impact on its

performance due to the gap between CPU and memory speeds. Therefore, we looked to

the cache effects on a node to explain the non-linear work/performance ratio. Previous

work reveals that an undesirable work array size can dramatically increase the number of

conflict misses in cache [5]. We show that cache miss rates vary with the stride length

between memory accesses, a function of the partition’s size and shape. Frequent cache

misses can increase running times drastically. As seen in Figure 1, performance can vary

20% over a small range of workload sizes. Although the array shape in this experiment is

always cubic, the memory access strides increase with the array size. We hypothesize

that the performance fluctuation seen in Figure 1 is due to a varying cache miss rate

caused by changing memory access strides. In the experimental section we validate this

hypothesis.

Using runtime techniques to improve the cache miss rate, we achieved smooth

performance under a range of partition sizes. By effectively decoupling the partition

shape from node performance, we put load balancing decisions on firmer ground. In the

process, we were also able to achieve a performance speedup for most problems. In the

next section, we present the existing work on caches, and the various techniques used to

improve their effectiveness.

B. Existing Solutions

In the previous section we motivated our need to examine the factors that affect cache

miss rates. Here we present past work that identifies and addresses these issues.

The first commercial machine built with a processor cache was the IBM 360/85 [19].

Smith [15] performed a seminal analysis of the importance of cache, its usefulness

apparent even in these early systems. Hill [14] defined the three types of cache misses,

Compulsory, Capacity, and Conflict, as discussed in Chapter 1. Splitting a computation

16

into small chunks, called tiles or blocks, to improve locality for cache was a known

technique to improve the memory efficiency of numerical codes [48]. This strategy

became widely adopted by the numerical computation community, as epitomized in the

popular BLAS [20] linear algebra package. It was not until Lam, Rothberg, and Wolf’s

analysis of cache conflict misses [17], however, that these simple tiling schemes were

reevaluated. They identified the need to tailor the cache tile size to the work array size,

instead of using a fixed-sized tile based on the cache capacity. Newer tiling techniques

compute tile size as a function of the work array shape to more efficiently reduce conflict

misses in cache.

Recent work has focused on carefully choosing cache tile sizes based on the work

array size. Coleman and McKinley [5] present an algorithm that chooses a tile size based

on fitting columns of a work array A evenly into cache. Their algorithm ensures the first

tile dimension evenly divides the cache capacity, a powerful technique that helps reduce

conflict misses. Our approach hinges on ideas originally presented in this paper. Rivera

and Tseng [4,6,7] build on this technique, and produce a simple function to quickly

calculate tile sizes for 3D problems that minimize both capacity and conflict misses in

cache.

Both Coleman and Rivera use numerical stencil codes in their analyses, similar to the

RedBlack PDE solver that we chose as our motivating application for our load balancer

(see next section). As Rivera and Tseng showed smooth performance over varying

problem sizes as one of their results, we choose the EucPad2D algorithm in [5] as a

starting point for our cache explorations. Although they intended their technique for use

in compilers, we use it to dynamically select a custom tile size for each node in the

cluster using a runtime library.

17

Mitchell et al. [22] include other levels of memory hierarchy account when choosing

tile sizes, such as the processor’s TLB3 cache in addition to data and instruction caches.

We use a simpler technique that only considers cache specifications. We do identify the

occurrence of TLB misses in our 2D results, however, and the incorporation of the TLB

cache into tile size selection is a technique we would like to adopt in future work.

In the next section we describe the theory and function of the tiling algorithms,

addressing their approaches to capacity and conflict miss in cache.

C. Design

This section describes the design of our cache-friendly strategy for parallel

applications. We begin by presenting the application we used for the theoretical analysis

of the algorithms and our experiments. We then describe the theory of tiling, followed by

various padding strategies. Finally, we analyze the memory overheads incurred from

padding.

1. Our Testing Application

For our analysis and experiment, we used a Fortran numerical kernel called

RedBlack. This kernel implements a simple Partial Differential Equation solver for

Laplace’s equation ∇2ϕ = 0 with Dirichlet boundary conditions, using the Gauss-Seidel

RedBlack method [31]. We chose this particular example for its simplicity and low

memory requirements. RedBlack falls in the category of stencil codes, a common style of

numerical solver that makes successive passes over an array, updating each point as some

function of its neighbors. RedBlack’s computation behavior is representative of an

important class of finite-difference applications typically run on scientific parallel

3 The TLB, or Translation Lookaside Buffer, is a specialized piece of fast memory

that keeps track of Virtual to Physical memory page mappings. It is vital for the fetching
of any memory address.

18

clusters. In addition, RedBlack and its cousins are somewhat akin to the fruit fly

Drosophilia melanogaster in genetics: they are the standard test bed for new techniques.

Coleman and McKinley [5], Mitchell et al.[22], and Rivera and Tseng [4,6,7] all use

similar codes to develop their ideas.

Our version of RedBlack is implemented in Fortran77, and uses the KeLP framework

[2,3,18,23] to coordinate partitioning and communication of the parallel application.

KeLP adds a single layer of communication elements, called ghost-cells, around the

surface of each partition of the problem. It uses these extra memory elements to store off-

processor neighbor data that are updated each iteration using MPI messages. In this

manner, each local RedBlack kernel obtains data from its neighboring nodes with a

simple memory access to the ghost cells. The KeLP system ensures these cells are

refreshed every iteration. Using ghost cells, KeLP effectively hides all communication

activity from the application. Figure 2 describes the RedBlack 3D kernel in the Fortran

language.

We implement our cache algorithms within this framework. By using KeLP, we have

precise control over how the following RedBlack algorithm is called, which we use to

our advantage for some of the techniques presented later in this section.

double precision A(al0:ah0,al1:ah1,al2:ah2)
double precision RHS(al0:ah0,al1:ah1,al2:ah2)

do k = al2+1, ah2-1
 do j = al1+1, ah1-1
 jk = mod(j+k,2)
 do i = al0+1+jk, ah0-1, 2
 A(i,j,k) = c *
 2 ((A(i-1,j,k) + A(i+1,j,k)) + (A(i,j-1,k) +
 3 A(i,j+1,k)) + (A(i,j,k+1) + A(i,j,k-1) -
 RHS(i,j,k))) 4
 end do

en

 end do
d do

Figure 2. The RedBlack 3D Fortran kernel. Operates over the array A, the
innermost i loop traverses down columns; the j loop, along rows; and the k

19

loop, over planes. The loops leave room for the single coating of ghost
cells on all sides of A. The RHS array represents the right hand side of the
Laplace equation.

For our analysis, the most important feature of the RedBlack application is its

memory access pattern. For every point p in our 3D work array A defined by p=A(i,j,k),

RedBlack accesses p’s neighbors in each primary direction: i±1, j±1, and k±1. Including

the point itself, RedBlack reads 7 elements from memory. These accesses lie in the five-

column neighborhood set, which includes the columns containing p and its neighbors.

We call this pattern a stencil. Figure 3 shows the 7-point RedBlack stencil covering three

planes and five columns of A. Memory accesses to the stencil are the primary cause for

cache hits and misses during program execution.

p + AIAJ

p - AIAJ

p + 1

p - 1

p - AI p + AI
p

Figure 3. The RedBlack3D 7-point stencil. Each node above represents a
memory location. This memory access pattern is used in the analysis of
the cache tiling and padding algorithms. The center point p is the active
point, while its neighbors shown in the diagram compose its neighborhood
set. The node labels show how far from p the node is in memory, where AI
is the column length, and AJ is the row length of the work array A.

20

Now that we have presented our example application, we discuss the two types of

cache optimizations used to improve its performance predictability.

2. Tiling for Cache

Tiling for cache [56] is a well-known technique that allows more effective use of the

computer memory hierarchy. If a work array A exceeds the cache capacity, tiling

effectively partitions A into small chunks that can each fit entirely into cache. Due to

spatial and temporal locality, RedBlack will likely reuse an element of A repeatedly

during its execution. However if we do not tile, the cache may have to evict a given

element before it is ever reused. With a correctly tiled program, the CPU will fill the

cache once from memory, and then reuse the cached data multiple times. Since the

processor can access cached elements more quickly, tiling yields a performance

advantage. We note that tiling for cache is analogous in some sense to the high-level

partitioning we have done among the nodes in the cluster.

double preciTion A(al0:ah0,al1:ah1,al2:ah2)
double preciTion RHS(al0:ah0,al1:ah1,al2:ah2)

do = al1+1, ah1-1, Tj jj
 do ii = al0+1, ah0-1, Ti
 do k = al2+1, ah2-1
 do j = jj, min(jj+Tj-1,ah1-1)
 jk = mod(j+k,2)
 do i = ii+jk, min(ii+jk+Ti-1,ah0-1), 2
 A(i,j,k) = c *
 2 ((A(i-1,j,k) + A(i+1,j,k)) + (A(i,j-1,k) +
 3 A(i,j+1,k)) + (A(i,j,k+1) + A(i,j,k-1) -
 4 c2*RHS(i,j,k)))
 end do
 end do
 end do
 end do
end do

Figure 4. The tiled RedBlack 3D Fortran kernel. Tiling is implemented in
the Fortran code with the two tile dimensions Ti and Tj, which are
provided by the tiling algorithm.

21

Our tiling and padding algorithm chooses the tile dimensions TI, TJ, and TK so that

the entire tile can fit into the local processor cache. A subtle point is that TK, the number

of tile planes that need to fit in cache, is only used to determine TI and TJ. We do not

actually tile along the Z axis of A. Examining the memory access pattern of RedBlack3D,

only four4 planes need to be present in cache at once. Therefore, we do not care how

many total planes are in the tile, only that any four of them fit concurrently in cache.

3. Autoblocker

In this section we will introduce a helpful feature we created called the Autoblocker.

In our runtime library, tiling must be explicitly described in the code. We can do this

directly in the Fortran kernel loops, as illustrated in Figure 4. The autoblocker is a

feature of our runtime framework5 that coordinates tiling automatically. Applications

using our system do not know they are being tiled, while still benefiting from the

technique. A parallel algorithm such as the RedBlack3D kernel in figure 5 simply

computes over one region (the red tile in figure 6), while initializing its arrays to a larger

region (the full array A in figure 6). The autoblocker calls the algorithm once per tile,

incurring a slight subroutine-startup overhead that is negligible in our results.

The autoblocker has several advantages over compiler-based tiling. Compilers require

some runtime support for blocking, which the autoblocker supplies. In addition, standard

Fortran compilers can be used while allowing the application to benefit from the latest

tiling and padding techniques.

4 Three planes for the 7-point stencil, and one for the right hand side matrix of

Laplace’s equation ∇2 ϕ = ρ , where ρ is the right hand side.
5 The Autoblocker is a C++ Iterator, is a special object that coordinates a loop. The

Autoblocker coordinates a loop through the cache tiles. The Fortran kernel is called once
per iteration by the Autoblocker.

22

double precision A(al0:ah0,al1:ah1,al2:ah2)
double precision RHS(al0:ah0,al1:ah1,al2:ah2)

do k = al2, ah2
 do j = TjLow, TjHi
 jk = mod(j+k,2)
 do i = TiLow+jk, TiHi, 2
 A(i,j,k) = c *
 2 ((A(i-1,j,k) + A(i+1,j,k)) + (A(i,j-1,k) +
 3 A(i,j+1,k)) + (A(i,j,k+1) + A(i,j,k-1) -
 4 c2*RHS(i,j,k)))
 end do
 end do
end do

Figure 5. Auto-Blocked RedBlack3D Fortran kernel. This kernel is called
once per tile by the Autoblock C++ iterator. Both the extra tiling loops,
and ghost cell allowances have been removed. The a indices used when
initializing the A array are from the full array A, while the T indices used
in the loops define the current tile.

TJ

TI

AJ

AI A

Figure 6. Front face of a 3D autoblocked array. The Autoblocker gives the
Fortran RedBlack kernel the dimensions of the work array A (AI x AJ) to
initialize its array, but instructs the kernel to only compute over the tile
region defined by TI and TJ.

23

4. Padding for Cache

Previous work has shown that conflict misses in cache make a significant

contribution to poor performance in scientific applications [17]. Our results show this

type of cache miss also causes timing irregularities with respect to local array size.

Hardware remedies for conflict misses exist, principally highly set-associative cache

design. This hardware approach, however, increases latency and so is often absent from

the cache closest to the processor [26, 28]. Certain architectures, such as on the IBM

Power3 processor [47], have high set-associativity in the L1 (first level) cache, and

therefore will benefit less from these techniques.

As conflict misses play a big role in performance, and hardware counter-measures are

often lacking in strength, our cache-friendly techniques focus on avoiding them with a

smart layout of data in memory. This method, called padding, alters the data location in

memory by placing blocks of dummy elements between the columns and planes of our

local array A. Recall from the introduction that when we cache a word of data, its cache

location is based on the last few bits of the word’s memory address. Conflicts occur when

two pieces of requested data, say d and e, share the same low-order address digits6. When

this happens, the cache must evict one location (say d) since it is unable to place the other

elsewhere. Cache hardware can use n-way set-associativity to allow a small number of

data words (n) to map to the same location in cache without evicting its previous resident.

However, the first-level processor caches used in our experiments are only 2-way set-

associative [26,28]. If the work array A happens to be a particularly ill-shaped, our 3D

stencil code could potentially place 5 often-reused words in a given cache location.

Therefore relying on hardware alone to resolve cache conflicts is not enough.

6 Let the address of d = 1000599, and the address of e = 2000599. If the cache uses

the final 3 address digits to locate the words, they will conflict in a direct-mapped cache.
We use a decimal representation of memory addresses in our discussion for clarity.

24

Fortunately, since we know the cache mapping mechanism, we can arrange the

columns and planes of our three-dimensional array A in memory such that their cache

locations do not overlap. We begin with the observation that memory is laid out as a one-

dimensional structure, the blue curve in figure 7. The compiler and operating system lay

out our 3D array A in consecutive memory locations.

BJ

TI

BI A

Figure 7. Padding and its effect on Memory Layout. The array A is tiled as
in the previous figure. In addition, it has been padded on two axis, and
now achieves the dimensions BI and BJ . The vertical lines and dots
represent memory locations, which traverse the array like a 1D string. The
padding alters the memory locations of the data in the second column by
forcing the memory string to extend through the padded area. By carefully
choosing the amount of padding, we can reduce conflict misses in cache.
GcdPad3D pads in this manner.

Padding adds extra elements, unused by the application, between columns and planes

in A. Although we do not use these extra locations, they take up space in memory,

forcing our actual data to new locations. We have now changed the memory addresses of

all columns in A except the first one. Since the memory location of our data has changed,

so has the cache address for each element. We can use this mechanism to force the cache

to place columns of A in favorable, non-conflicting locations. The reader should note this

25

method wastes memory, but for our purposes the performance advantages outweigh this

shortfall. Later in this section we describe how the Virtual Memory system in Linux

helps ameliorate this cost [51, § 22.6].

Our second observation is that RedBlack stencil code reuses many elements along a

column, its primary axis7. We infer this locality property from inspection of our code’s

central loop, but it is a common characteristic of many Fortran applications, which

arrange their data in a column-major order. We therefore desire an entire column to

remain in cache at once so the CPU can quickly access its elements. Note that since we

have tiled the computation, the column size is that of the tile, not the entire array A.

We use the padding technique to ensure no two columns within a tile overlap in

cache. In addition to this constraint, we want the columns of a tile T to be as long as

possible, while still fitting our RedBlack’s five-column neighborhood set in cache.

Longer columns lead to higher performance due to cache-filling speeds from memory8.

To address these requirements, we explore a class of algorithms that choose the column

length TI such that it is close to the greatest common divisor of the cache size and array

column length [5,6,7].

),gcd(II ACT = (1)

When we choose our tile shape in this manner, the following lemma holds.

Lemma 1: For a direct mapped cache, every column in tile T will either
overlap another column in cache completely, or not at all.

Proof: If two columns in a tile could overlap partially, then it must be
possible for a column d to be split at the end of the cache C, where a

7 The primary axis is the one that iterates down consecutive memory locations. For

column major ordering, this is the column axis, denoted in this document by 0≤i≤I.
8 Modern EDO RAM modules can read consecutive pages of memory quickly (their

read setup time is a bottleneck that is not imposed on contiguous page reads), so the
difference between filling a short column and a long column in cache is small.

26

prefix of d maps to the end of C and a suffix of d maps to the beginning of
C. Since by (1) TI is a divisor of both C and AI, TI % C = 0, and the suffix
of d will always be of length 0. Therefore no such column exists and the
lemma holds.

As odd array sizes will always lead to TI = 1, the actual cache algorithms relax the

above equation by using a cost function to pick the most effective tile shape. We discuss

the details of the cost function and algorithms in later sections. For this analysis,

however, we assume that equation (1) strictly holds.

Since no column of a tile will partially overlap another in cache, we are assured that

in a tile, the CPU will encounter no conflict misses, as long as no column in the

neighborhood set interfere. However, by lemma 1 a tile column can completely overlap

another. To see when this happens, we examine the active neighborhood set of columns.

Remember that we define the neighborhood set as the five columns surrounding a given

point p in the tile.

Consider a simple 2D case: the neighborhood set contains the p’s column, and the

columns of its immediate neighbors to the left and right. If C | AI, we will have a

problem, since all adjacent columns will conflict9. Figure 8 illustrates this situation. The

first column T1 in the tile will map to the first TI locations in cache, the solid red line in

the figure. A gap of (AI – TI) memory locations will follow before the next column T2

begins, the dotted black line. However, since C | AI, this means TI + (AI – TI) = kC for

some k. Therefore T2, the dotted red line, will land directly on top of T1, and the cache

will evict the entire column T1 to make room.

This case is unlikely since if C | AI, then gcd(C, AI) must equal C, and we will choose

TI = C. If TI = C we could only fit one tile column in cache, which is not a good tile for

RedBlack2D. In the 3D case, however, fully conflicting columns is a danger. For 3D

problems, we need to ensure that C | AIAJ is always false to prevent columns in adjacent

9 By a|b we mean “a evenly divides b”. Equivalent to b % a = 0.

27

planes from conflicting with each other. Equation 1 does not insure this property, and

there is no way to detect when it may happen. Later we see that conflicting planes lead to

poor performance.

In this analysis we assume a direct-mapped cache. Since our machines actually have a

2-way set-associative L1 cache, this may be acceptable in some situations. However, in

our experimental section we show that performance suffers for certain problem sizes if

we ignore complete conflicts between adjacent tile planes.

T2

AI – T1 T1

Cache

Figure 8. Cache conflict between columns in the neighborhood set. We
assume a direct-mapped cache. If AI evenly divides the cache size C, then
adjacent columns will conflict completely, even with tiles chosen by
EucPad2D and GcdPad3D. This type of interference can occur between
adjacent planes of A in problems padded using EucPad2D.

5. EucPad2D

We begin our padding efforts by examining the simpler 2D case. We use the

EucPad2D algorithm from Tseng & Rivera [4,6]. This strategy chooses the tile column

length, TI, to satisfy equation (1) so TI evenly divides both the work array A and the

cache size C. The number of tile rows, TJ, is chosen so the tile fits into cache, meaning

TITJ ≤ C. EucPad2D chooses the tile size that satisfies these criteria, and has the smallest

28

cost. The cost function is the same as used by Coleman and McKinley [5], and favors

square tile shapes. Padding occurs by adding elements to the end of columns in A,

changing their length by 0-8 elements. Each padded size yields viable tiles, and we

choose the one with minimum cost. Coleman and McKinley indicated this cost function

reduced cross-interference misses for a matrix-multiply kernel, but point out this cost

metric may lead to TLB-cache misses. They note each column in the tile will often

require its own TLB entry, since memory addresses in different columns are far apart. As

TLB misses are expensive and stall the cache entirely, we should ensure the number of

rows (TJ) does not exceed the number of TLB entries. This is less of a problem in 3D

codes since their array dimensions are smaller, and adjacent columns may share a single

TLB entry.

The running time of EucPad2D follows that of the gcd(a,b) algorithm, which

completes in O(log a) time, where a>b.

L
EucPad2D(H, Hnext, Wprev, W):
 = ∅

 L += {H,W}
 if Hnext != 0:
 Wnext = H/Hnext*W + Wprev
 EucPad2D(Hnext, H % Hnext, W, Wnext, Pad)

Figure 9. EucPad2D Pseudocode. The recursive function is called with the
arguments (C, Col, 0, 1), where C is the cache size, and Col is the column
size of A that is potentially padded. L is the list of possible tile sizes. The
algorithm essentially computes the gcd(C, Col) and chooses it as the tile
column size.

Originally, we used the simple EucPad2D algorithm to choose tiles for our

RedBlack2D stencil. When experiments showed no speedup (see the discussion section),

we used the algorithm to choose tiles for a 3D RedBlack application. We now saw a

speedup, but the performance irregularity persisted. Although tiling reduced the capacity

29

misses, leading to a speedup, conflicts among planes in the neighborhood set hampered

performance for certain problem sizes.

To tile A for a 3D RedBlack application, we insure that four full planes fit in cache.

To this end, we instructed the 2D algorithm to assume the cache was one-fourth its actual

size, leading to correspondingly smaller tiles. Unfortunately, this simple solution fails to

consider conflicts between planes. The front and back columns in the neighborhood set

will conflict for certain problem sizes. Our results show when tile planes conflict,

performance suffers. Therefore this tiling technique yields limited benefits for 3D

problems. The next tiling algorithm takes inter-plane conflicts into account, and leading

to more predictable performance.

6. GcdPad3D

The GcdPad3D algorithm [7] pads both the columns and the planes of our 3D array.

In addition to insuring (1), GcdPad3D also ensures a similar conflict property for tile

planes.

),gcd(JJ ACT = (2)

When we choose our tile shape in this manner, the following lemma holds. A tile

plane is a slice of a tile, or a set of TJ tile columns.

Lemma 2: For a direct mapped cache, every plane in the tile T will either
overlap another plane completely, or not at all.

Proof: Proof follows from Lemma 1’s proof with the word column
replaced by plane.

GcdPad3D pads our array A until both equations (1) and (2) are true, so neither tile

columns nor entire planes will partially conflict with one another. Therefore GcdPad3D

insures that columns from adjacent planes do not conflict, avoiding the weakness of the

previous algorithm.

30

GcdPad3D(C,Ai,Aj,Ak):
 Tk=4
 # Ti = the smallest power of 2 >= sqrt(C/Tk).
 Ti = pow(2, ceil(log2(sqrt(C/Tk)))
 Tj = C/Ti*Tk
 Bi = 2*Ti*floor((Ai+3*Ti-1)/2*Ti) - Ti
 Bj = 2*Tj*floor((Aj+3*Tj-1)/2*Tj) - Tj
 # Max pad of Ai should be + 2Ti-1 elements,
 # same for Aj.

Figure 10. GcdPad3D Pseudocode. The algorithm picks a favorable
square tile shape based on the cache size C, then pads the array A until TI
= gcd(C,AI) and TJ = gcd(C,AJ). Assumes that C is an even power of 2,
C=2k for some k. The tile depth TK is always fixed at 4 for the stencil
code’s access pattern. BI and BJ are the new dimensions of A after
padding.

The first phase of the algorithm chooses a desirable tile size based on the dimensions

of A and the cache size C. It attempts to pick the largest square tile by choosing TI and TJ

as a function of √C. At this point it has not made any effort to insure that the tile is non-

conflicting. In the second phase, the function pads the array A to ensure the tile meets

this criterion. GcdPad’s strategy is markedly different from EucPad2D in this respect.

The latter picks the tile size based on the current size of A, while GcdPad3D chooses the

tile size first, and then coerces the array to a desirable size such that equations (1) and (2)

hold. The maximum padding possible to A is (2TI –1)(2TJ – 1). The actual impact of this

padding on the application’s memory footprint is less, however, due to characteristics of

the virtual memory system.

As the GcdPad3D algorithm involves only a series of arithmetic operations, it

completes in O(1) time.

7. Pad

As GcdPad incurs a memory overhead, it is natural for us to search for another

algorithm. The Pad algorithm [7] is purported to have nearly the same desirable

31

performance characteristics of GcdPad, while requiring less memory overhead from

padding. A simulation of the Pad algorithm revealed, however, that for the 3D array size

range 503 to 2003 (typical of our problem quanta), Pad does not lead to a significant

improvement over GcdPad in all cases. As seen in figure 11, Pad provides a significant

advantage10 over GcdPad in 52% of the sizes in our range. When Pad reduces the

memory overhead, it does so by 30-100%, however the benefit applies to about half the

array sizes tested.

Pad Results

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

50 70 90 110 130 150 170 190

N 3

GcdPad Overhead Pad3D Overhead Pad / GcdPad

Figure 11. The comparison of GcdPad3D and Pad3D cache padding
techniques. Values are from algorithm simulations with a range of 3D
problem sizes (X-axis). Overheads represent physical memory overhead
incurred by padding for cache. An overhead of 2.0 indicates the padded
application requires twice as much physical memory as the unpadded
version. Virtual Memory behavior is taken into account in this graph.

The added complexity of the Pad algorithm makes these gains less attractive. Pad

runs in O(N2 log C) time, where N is the side length of the problem, and C is the cache

10 We define significant as a 25% reduction in memory overhead.

32

size. The N2 term comes from an exhaustive search through the (B – A) domain, where B

is the size of the padded array returned by GcdPad. GcdPad, however, takes only O(1)

time to complete. Since we must run Pad for each problem quanta (as they may have

unique sizes), we feel in our design the increased running time of this algorithm does not

justify its reduction in padding overhead.

One potential optimization to this Pad involves pre-computing a lookup table of

results for likely quanta sizes. However, since quanta may not be cubic, the solution

space is too large to make this practical. In the discussion section, we point to some

hopeful leads for improving Pad’s running time.

In the next section we discuss how the operating system’s virtual memory helps

reduce the actual memory overhead from padding automatically. We believe that

previous estimates of padding overhead [6, 7] overstated its cost.

8. Virtual Memory Behavior

In Linux as in most modern UNIX variants, new memory is not mapped to physical

RAM until it is accessed. When we request new memory from the OS, it simply alters the

heap break point (sbrk(0)) in the virtual memory address space. Essentially, it gives

us a range of virtual addresses that do not occupy any real memory. Only when our

program tries to access an element of a page11 in this new memory does the OS take

action to allocate physical memory [51, § 22.6], a strategy called demand-paging.

Generally, code will access new memory soon after it allocates it, but this is not true for

our padded regions. Certain pages of padding will never be accessed by the application,

and therefore will never use physical memory. Specifically, since we organize our

program data in column-major order, padding between planes of a 3D application

occupies large contiguous areas of memory that typically span multiple pages.

11 A page is a chunk of memory containing a few KB of data, 4KB on Linux.

33

To finish our argument that unmapped VM pages help reduce the cost of padding, we

note that VM addresses are plentiful (3GB/process in Linux), and that the cache uses

Virtual memory addresses for its location mapping, not physical ones. Therefore, we will

achieve the desired cache location of our data even if the padding is never put into

physical memory on the machine.

The caveat is that when we access any location in a VM page the entire page gets

mapped to physical memory. So padding along the columns of A will still increase the

memory overhead of the application (recall A is in column-major order). A discussion of

the precise overhead incurred by GcdPad3D appears later in the chapter.

In this section we have presented the theory and design of our tiling and padding

algorithms, with the goal of reducing capacity and conflict cache misses on the local

nodes. In the next section, we describe our experiments with these algorithms, and

discuss our results.

D. Experiment

This set of experiments show the results of applying our cache-friendly strategies to

RedBlack problems of various sizes and dimensions. The arrays are made up of 64bit

floating-point values, specified by the double type in the C/C++ language, and the double

precision type in Fortan. To show the effects of our algorithms, we vary the size of the

work array by increasing its side length N. All the 2D arrays are square, containing N2

total elements and the 3D arrays are cubic with N3 elements. We measure the Grind Time

performance metric for each experiment.

The performance figure we present is the application Grind Time. This value

represents the time needed to compute one element in our work array A, and provides a

performance figure that is independent of problem size. We calculate Grind Time as

(Running time for one iteration / elements in A). This metric almost measures time/flop of

34

the application, but will be an order of magnitude high since the RedBlack kernel

performs approximately 10 floating-point operations on each element. The grind time

gives an absolute performance figure for the experiment, which provides a good

indication of the stability of the performance-to-workload function that motivated our

consideration of caches.

1. Experimental Setup

Our experiments were performed on two hardware platforms. The first is a single

processor machine we will refer to as the Beta configuration. Beta has a single AMD

Athlon processor [26] running at 850Mhz. Since our cache algorithms target single node

performance, running on the one-processor Beta machine allowed us to gather applicable

results without using expensive supercomputing time.

Beta uses the Linux operating system with kernel 2.5.3, an experimental version

similar to the stable 2.4.15 Linux release. Its software comes from the Mandrake 8.1

distribution, including the gcc compiler version 2.96 that was used to compile the C++

and Fortran experimental code. Beta is equipped with 256MB SDRAM, and its Athlon

Thunderbird processor has a 64KB, 2-way set-associative L1 data cache, a 256KB full-

speed 16-way L2 cache, and a 32-entry data TLB cache. Its dedicated system bus to

memory runs at 200Mhz. See [26] for more details on the Athlon processor.

The second machine we use is the 200-node Rocks [27] Meteor parallel cluster at

SDSC. In this section, we refer to this machine as the Gamma configuration. All nodes in

Gamma run the Linux kernel version 2.4.9, and use RedHat 7.2 software, including gcc

version 2.96 that we used to build the executables. Gamma is a heterogeneous cluster, but

most nodes are 2-way Intel Pentium III servers running at 1Ghz, with 512MB SDRAM

shared between both processors. The Pentium III has a 16KB, 2-way set-associative L1

data cache, a 256KB, full-speed 8-way L2 cache, and a 64-entry TLB. The processor uses

35

a dedicated 133Mhz system bus to main memory. See [28] for more details on the

Pentium III processor.

2. EucPad2D Experiments

The first experiment ran on a 2D problem. We use the EucPad2D to choose a tile

size, and potentially pad the column size of our array A by 0-8 elements, depending on its

side length N.

1.2e-07

1.4e-07

1.6e-07

1.8e-07

2e-07

2.2e-07

2.4e-07

2.6e-07

2.8e-07

3e-07

3.2e-07

3.4e-07

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

G
rin

d
T

im
e

(s
 /

N
2)

Side length N (Domain is N2)

Local Grind Time from Quantizing RedBlack2D (1 proc, ID=10)

Control

EucPad2D

Figure 12. Grind Time plot from Tiling and Padding a 2D version of the
RedBlack application on the single-processor machine called Beta. The
simple EucPad2D algorithm was used to choose tile sizes, and tiling was
implemented in the Fortan kernel (Fortran-blocked). The word Local in
the title indicates that only the numerical kernel run time was measured.

We actually see a slowdown from tiling in this experiment, due to several factors.

The first reason is that hardware prefetching in the CPU can help ensure the cache

remains full during the entire execution [25], by detecting the simple memory access

pattern required by RedBlack2D and anticipating its future requirements. RedBlack2D

36

has a 5-point stencil that iterates over three columns in a regular pattern, so the next

iteration it will ask for elements +2 memory locations away from each current element.

The CPU’s prefetcher picks up on this pattern easily, and predictively fills the cache with

those elements. It will fail at the end of every column, since the +2 stride does not hold,

but this only results in O(AI) cache misses. As we had expected our application to

generate many more misses, our tiling performance suffers.

The second reason for the slowdown is due to TLB misses. As described in the

Design section, each column in a tile may require its own TLB entry, causing misses

when accessing the work array A. To make matters worse, the RedBlack kernel requires

another array to be present in cache, the Right Hand Side (rhs in the code) for the

computation of each element. Since this array has the same size as A, but lies in a

different location in memory, it requires another TLB entry per tile column.

In Linux, the page size is 4KB, and Beta’s Athlon CPU has 32 TLB entries. In the

N=2560 run, we gave each tile 27 columns, and each column has 15 elements. Therefore

columns are spaced over 20KB away from each other in memory12. Therefore every

column does indeed require its own TLB cache entry.

RedBlack2D accesses 3 columns of A and one of RHS for each point. The

processor’s 32 TLB entries will fill after the 8th column in the tile (32/4). All subsequent

columns will cause two TLB misses, one for the new column of A, and one for the new

column of RHS. In our example we will see (27-8)*2 = 38 TLB misses for every tile.

Misses in the TLB are expensive, and will stall the cache completely, blocking the

processors pipeline until the correct VM-to-Physical memory page mapping has been

read from memory. Mitchell et al. described this problem in [22]; they suggest making

the tiles “thinner” to reduce the number of TLB entries used per tile.

12 Distance: 64bits/element * 2560 elements/column = 163,840 bits or 20,480 bytes.

37

The control experiment runs more efficiently, since without tiling, it uses a page

completely before moving to the next one. Therefore, it uses each TLB entry to its fullest

extent, while the tiled version uses only TI elements of each page before skipping to the

next tile column (15 in our example). Because of their penalties, TLB misses are another

cause of the performance degradation we see in the early experiments.

The next graphs show the affects of the EucPad2D algorithm when applied to a 3D

problem. As described in the Design section, our 3D adaptation of EucPad2D has the

flaw that for certain problem sizes, every adjacent column in a tile will conflict. This

property will cause some performance variations in the experiment.

5e-08

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

0 50 100 150 200 250

G
rin

d
T

im
e

(s
 /

N
3)

Side length N (Domain is N3)

Local Grind Time from Fortran-Blocking RedBlack3D (1 proc, ID=1)

Control

GcdPad3D

Figure 13. Grind Time from Tiling and Padding a 3D version of the
RedBlack application on Beta. A simple modification to the EucPad2D
tiling algorithm was used, which allowed three planes from the work array
A to fit together in cache.

As expected, the performance varies significantly with the array size. However, we

see a promising speedup for larger problems, up to 60% in some runs. The speedups are

38

made possible by a more TLB-friendly tile behavior in the 3D problems. Since the side

lengths of the 3D array A are much lower, ranging from 10 to 230 instead of 1024 to

2048, the tile columns lie closer to each other in memory. As a result several columns can

share the same TLB entry, and the negative effects we saw in the previous experiment are

absent.

The tiled run follows the control for the first few problem sizes before pulling away

around N=100. Since this algorithm does not reduce conflict misses by a significant

degree, all speedups are due to a reduction in the number of capacity misses in cache.

The next set of graphs show the same experiment with the Autoblocker coordinating

the tiling. As mentioned in the Design section, the principle difference between Fortran

and Auto blocking is the simplicity of the auto-blocked numerical code. The Autoblock

API is available for inspection in Appendix B. The first graph in figure 14 shows the

Grind Time of the auto-blocked RedBlack3D, and the second graph shows the

relationship between Fortran and Auto Blocked performance.

5e-08

1e-07

1.5e-07

2e-07

2.5e-07

3e-07

0 50 100 150 200 250

G
rin

d
T

im
e

(s
 /

N
3)

Side length N (Domain is N3)

Local Grind Time from Auto-Blocking RedBlack3D (1 proc, ID=22)

Control

EucPad2D

39

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 50 100 150 200 250

S
pe

ed
up

 [
F

or
tr

an
 T

im
e

/ A
ut

oB
lo

ck
ed

 T
im

e
]

Side length N (Domain is N3)

Fortran vs. Auto Blocking (1 proc, ID=23)

EucPad2D

Figure 14. Auto-Blocked Redblack3D performance. The EucPad2D
algorithm increases performance by reducing the number of capacity
misses in cache, but does not prevent self-interference. The second graph
compares Fortran Blocking with the simpler Auto Blocked approach,
showing their similar performance.

The second graph makes it clear that Autoblocking does not slow the problem

significantly. Since the autoblocker calls the RedBlack subroutine more times than the

Fortan-blocked version, there is some extra overhead from setting up the fortran arrays

and doing the jump-to-subroutine instruction once per tile rather than once per iteration13.

However, as the recent experiment shows, this overhead is less than expected. We use the

simpler autoblocked version of RedBlack for all subsequent experiments.

3. GcdPad3D Experiments

The next set of experiments use the GcdPad3D algorithm to choose tile sizes and pad

the work array A. We expect to see fewer conflict misses, due to the aggressive padding

13 There are actually 2 calls to the kernel per iteration: one for the red points, and one

for the black points in the array.

40

strategy of the algorithm. This experiment ran on Beta using the autoblocked

RedBlack3D kernel.

1.6e-07

1.7e-07

1.8e-07

1.9e-07

2e-07

2.1e-07

2.2e-07

2.3e-07

2.4e-07

2.5e-07

2.6e-07

2.7e-07

140 150 160 170 180 190 200

G
rin

d
T

im
e

(s
 /

N
3)

Side length N (Domain is N3)

Local Grind Time from Auto-Blocking RedBlack3D (1 proc, ID=54)

Control

GcdPad3D

Figure 15. RedBlack3D Tiled vs. Control performance using GcdPad3D,
on Beta. Note the smooth, linear performance-to-workload curve of the
tiled run. The desirable performance comes at the cost of added memory
overhead.

The Grind Time graph above shows the effectiveness of the GcdPad3D algorithm.

Almost all of the performance/workload (P/W) irregularities present in the control

experiment are smoothed by this tiling strategy. In the next chapter, we will use this

linear P/W ratio to help load balance our parallel application. From the experimental

results above, we conclude that an aggressive padding strategy is needed to minimize

conflict misses in L1 data cache. Furthermore, since EucPad2D and GcdPad3D both use

tile sizes that avoid Capacity misses in cache, but only GcdPad3D yields a linear P/W

curve, we conclude that cache Conflict misses have a large impact on our application

performance. This finding agrees with Lam, Rothberg, and Wolf’s results in [17].

41

This next experiment was done on the Gamma cluster with 16 nodes. As expected, it

yields similar performance to Beta’s single processor results. The central difference

between the machines lies in their processor architecture; Beta uses an AMD Athlon

processor running at 850Mhz, while the Gamma nodes used have Pentium III 1Ghz

CPUs. Since Gamma splits the problem between 16 processors, the problem sizes in the

experiment are correspondingly larger; each node in the Gamma cluster receives

approximately the same range of N values as for the experiment on the Beta machine.

The plot in figure 16 shows the effectiveness of the GcdPad algorithm when run on a

parallel machine.

1.4e-08

1.5e-08

1.6e-08

1.7e-08

1.8e-08

1.9e-08

2e-08

2.1e-08

2.2e-08

2.3e-08

2.4e-08

340 360 380 400 420 440 460 480 500

G
rin

d
T

im
e

(s
 /

N
3)

Side length N (Domain is N3)

Local Grind Time from Auto-Blocking RedBlack3D (16 procs, ID=517)

Control

GcdPad3D

Figure 16. RedBlack3D Tiled vs. Control performance using GcdPad3D,
on the Gamma cluster with 16 processors. The smooth predictability, and
performance speedup from aggressively padding with GcdPad3D is
evident here, as on the Beta machine.

The smooth performance we saw from GcdPad3D on Beta is evident on the Linux

cluster as well. The difference in speedups is due to the different processor architectures

42

(AMD Athlon vs. Intel Pentium III), and the variations due to communication issues

between the nodes of the cluster. We can see from the Grind Time plot that the

Autoblocked GcdPad3D technique actually yields a slightly larger speedup on the cluster

than on the single processor machine Beta. The important linear P/W relationship is still

clearly present.

We now see a linear performance-to-workload curve from tiling our problem.

GcdPad3D smoothes the performance irregularities due to cache effects, and we are

ready to implement our load balancer on top of this tiling structure. In the next section,

we summarize the results of this chapter, and discuss how it will integrate into the

material in Chapter 3.

E. Discussion

In this chapter, we have explored our motivation for cache-friendliness, examined

existing work in the field, and presented the theory, design, and experimental results from

various cache tiling algorithms. Our reason for considering cache has always been to find

reliable and predictable performance for a given amount of work. In the process,

however, we have simplified the numerical processing code by tiling the problem and

handling its communication ghost-cells with the Autoblocker, all done transparently with

respect to the programmer. We have also realized a consistent 30-40% speedup over our

non-tiled application by reducing capacity and conflict misses in the processor cache. In

our final experiments, we found a tiling algorithm that met our goal of linear performance

under varying workloads.

The factors that impeded the algorithms were due primarily to subtle effects in the

cache and the processor’s TLB. Conflict misses are difficult to predict, and can be hard to

avoid. In the end, we resorted to an aggressive padding strategy that ensures tile columns

and planes do not map to the same location in cache. The memory wasted through

43

padding would be a strongly discouraging factor, but is mediated somewhat by

observations about virtual memory behavior.

The precise amount of physical memory overhead due to padding depends on the

number of untouched pages in our virtual memory space. On our applications, arrays are

arranged in column-major order. Since GcdPad3D pads significantly along the column

axis (~200 extra elements or ~2KB for experiments on Beta), much of the column

padding will be mapped into physical memory. This occurs because while padding adds

2KB to the end of each column, the system page size is a larger 4KB. Therefore most

padding elements will lie in a page containing some amount of real data. Because an

entire VM page will be mapped to physical memory if a single address in it is accessed,

most padding elements in a column will take up physical memory space, even though

they are never used.

Although the padding elements along a column will increase our real memory

footprint, the padding elements along a row (between planes) will not. These padding

elements will reside in contiguous VM pages that contain no real data, and therefore will

never be accessed by the application or mapped to physical memory by the OS. Therefore

padding along a column is much more expensive than padding rows. We now calculate

the actual memory overhead from padding with GcdPad3D.

We begin with a worst-case analysis. In GcdPad3D, the maximum padding along a

column is 2TI, where TI is the length of a tile column. For a very large cache, or small

problem size, TI could reach its largest possible value of AI. In this case, AI=gcd(C,AI).

The algorithm will pad 2TI or 2AI elements along a column, and if we assume all these

elements are mapped to physical memory, the padded problem will increase its memory

footprint by a factor of three.

Simulations of GcdPad3D have shown that for medium to large problems, this

overhead is small. However, 3D cubic problems smaller than 5003 elements will see a

44

bigger penalty that can approach the theoretical worst case. Reducing the amount of

padding overhead is a topic of future work.

The Pad algorithm [7] does reduce the padding overhead in many cases, but its

increased time complexity make it inappropriate for our design. Rivera and Tseng’s work

used direct-mapped caches in their analysis and experiment. We are optimistic that by

taking into account the higher cache associativity of modern processors, a similar

algorithm can be developed that allows a certain amount of conflicts to occur in exchange

for a lower padding overhead. The cache associativity hardware would absorb the extra

conflicts without penalty, while the algorithm would insure we do not exceed the cache’s

conflict-avoidance limitations.

We have identified another factor that contributes to performance irregularities in our

tiled experiments. Although the tiling algorithms insure a tile evenly divides the large

padded array B, it is often the case that the tile does not do the same with the work array

A. When this happens, we will encounter several smaller tiles than normal. We call these

small ones leftover tiles, and although they do not cause more conflict or capacity misses

than their normal sized counterparts, they have the same fixed subroutine-calling

overhead but perform less work due to their smaller size. In practice, however, leftover

tiles cause only small variations in performance, as evidenced by the smooth

performance-to-workload curve in the GcdPad3D experiments.

In the next chapter, we integrate this cache-friendly work with a Hilbert Space-Filling

curve-based load balancer [1]. Each node on the parallel cluster will receive multiple sub-

problems, which we call quanta. The load balancer will move these quanta through the

cluster as needed. For reasons presented next chapter, the quanta are themselves tiled by

the autoblocker on each node. This two-level blocking strategy splits the problem into

many fixed-sized quanta, and divides each quantum into multiple tiles (whose size varies

with the local node characteristics). Throughout its design, our load balancer relies on the

45

predictable node performance established by the cache-friendly work presented in this

chapter.

Chapter III

 Load Balancing
A. Motivation

Distributing work effectively on a parallel computer is a difficult but important task.

Programmers traditionally concentrate on writing applications correctly, and leave

performance optimizations to the compiler and system hardware. Unfortunately, in

parallel environments these automatic optimizations are not as effective. While in the

single processor case a compiler can identify a computationally intensive hot-spot in a

piece of code and optimize it to improve performance, it is much harder to do so among

nodes of a parallel cluster. On a single processor, effective optimization relies on global

knowledge of the code. On parallel systems, on the other hand, no node has global

knowledge of the whole cluster. As a result, it is much harder to identify bottlenecks in

the machine. Load balancing is a technique that detects these overloaded regions, and

allows work to flow to other, less-pressurized parts of the system.

A fully dynamic load balancer frequently checks the total “pressure” of the system.

Through its actions, this type of balancer allows a problem to flow like liquid through the

machine, relieving bottlenecks and engaging unused resources. When all nodes in the

cluster operate at their peak capacity (but not over it), we say the application is balanced.

However, factors such as ad hoc work distribution, heterogeneous cluster hardware, and

applications with progressively changing workloads make this a more complex problem

than it appears.

Without careful thought, haphazard work distribution across the cluster can easily

arise. It is well established that communication between nodes requires an order of

46

47

magnitude more time than communication within a single node. If data dependencies are

not carefully measured and taken into account when partitioning the problem, nodes may

communicate more data between themselves than necessary, harming performance. More

often, these dependencies are difficult to determine a priori, and designers choose a naïve

partitioning for simplicity.

We design load balancers to step in and take over this job of analysis and

optimization, alleviating the burden on programmers. As data dependencies are often

application-specific, many load balancers use an iterative strategy that monitors the

application during runtime to record its behavior. Information gathered in this stage is

used to make balancing decisions. We take this approach.

The structure of parallel clusters themselves adds another dimension to the load

balancing problem. Clusters often grow in size over time, as budgets and needs allow. As

component speeds increase, new processors are likely to be faster than the existing

hardware they augment. This characteristic can cause applications to run inefficiently,

even if they were partitioned with care. The slowdown arises from the structure common

to many scientific applications. Frequent synchronization points built into the algorithms

cause faster nodes to endure idle waits. Synchronization points force all nodes to arrive at

a common point in the program before any node can continue. Variations in node speeds

will cause fast nodes to arrive at a synchronization event first, and be forced to wait for

their slower peers. Therefore load balancers must consider hardware heterogeneity.

Finally, changing workloads further complicate the load balancer’s task. Even if it

succeeds in balancing an application, algorithmic factors could cause workload changes,

unbalancing the partition. Particle methods, and AMR-type problems have this property;

hot-spots in the problem may move through the domain as the execution progresses. A

load balancer must take these factors into account as well.

48

Much work has focused on how to solve these problems using diffusion-based

distributed algorithms. With this approach, no omniscient master node is required. Each

node uses only information from its closest neighbors to determine what work transfer

needs to occur for a better balance. Our balancer, on the other hand, takes advantage of

global performance knowledge to more effectively balance an application. We feel that

by leveraging a small amount of global information, we can converge to an optimal

balance more quickly than local-knowledge diffusion algorithms.

The rest of this chapter is organized as follows. In the next section we present

existing work in the field of dynamic parallel load balancers. The design section

discusses problem quantization, and explores the two-level blocking strategy used to

make the cache-specific tile sizes compatible with the problem-specific quanta. The

Hilbert curve we use to minimize inter-node communication is also presented. In the

experiment section we describe our experiments and analyze the results. The Discussion

section gives further analysis of the results and summarizes the chapter.

B. Existing Solutions

Much work has been devoted to load balancing in the field. Lin and Keller [32]

studied diffusion techniques for load balancing, modeling their algorithm after pressures

in a fluid. In his scheme, hot-spots in a parallel computation represent high pressure

regions. The algorithm makes several passes of the cluster node graph, and on each

iteration attempts to alleviate a measure of pressure by moving work. Cybenko was the

first to apply rigorous linear algebra techniques to this diffusion approach, leading to his

seminal paper [10] that proves an upper bound on the number of iterations required to

converge on an optimum workload balance.

Cybenko’s paper led to similar work by Diekmann, Frommer, and Monien [12] that

employs linear analysis to improve the convergence properties of diffusion-based load

49

balancers. Diekmann later provides a summary [33], classifying balancing algorithms by

the type of problem they suited for, including static, dynamic, and adaptive problems.

Kumar et al. survey the scalability of load balancers [34], by computing upper bounds on

their running time and number of messages sent. Their survey includes not only the

mathematically interesting diffusion-based schemes, but also simple master/slave

balancing approaches where a master node coordinates all balancing activities.

Flaherty et al [52] compare the performance of diffusion and re-partition techniques.

Diffusion-based balancing, called Migration by Flaherty, follows Cybenko’s approach

where load is exchanged between neighboring nodes in the cluster. Repartitioning

involves a global re-distribution of work. Both techniques are based on an Adaptive

Mesh Refinement (AMR) Finite Element Analysis (FEM) application that refines its

problem partitioning during computation. The Migration load balancer has a lower cost

in terms of communication, but is less effective than full repartitioning since it uses only

local knowledge of processor load. Repartitioning efficiently balances the application in

one step, but requires global knowledge of processor load, and therefore has a higher

overhead cost. The conclusion indicated that for the largest test, repartitioning was more

effective than migration at reducing solution time. The authors identified the

interprocessor connection density, or number of data dependencies between processors,

as a key indicator of the Repartitioner’s advantage over the Migration balancer. Our

balancer follows the repartition design.

Space-Filling Curves [53] provide a mapping of partitions to processors such that

problem locality is preserved. The DAGH partitioner [54] uses these curves as the basis

of its design, as does the balancer by Pilkington and Baden [1]. The curve maps an N-

dimensional problem onto a simple 1-dimensional curve, so that the interprocessor

connection density is minimized. The mapping is also computationally easy to compute

and invert.

50

 Load balancing occurs by partitioning this curve among the nodes in a cluster. When

applying a well-known geometric partitioning technique such as ORB [44] to a 3D

problem, balancing inaccuracies may be introduced during the first iterations in each

dimension. Using Space-Filling Curves, we are able to use these techniques to partition a

problem more accurately due to its one-dimensional structure.

Certain flavors of Space-Filling curves, such as the Hilbert curve [1, 54], have strong

locality properties. A Hillbert curve minimizes the boundary face surface area [52] of a

set of partitions on a processor. This important characteristic reduces expensive inter-

node communication within the cluster. A more detailed analysis of Hilbert curves and

their application to load balancing appears in the next section.

Our balancer uses the cache-friendly techniques from Chapter 2 to insure maximal

performance regardless of partition size. The parallel partitioner by Teresco and Flaherty

[55] mentions cache performance as a potential benefit of their framework, which places

multiple partitions on a processor in a similar fashion to our quantum design. They do not

specifically use cache performance in their analysis, however, and make no attempt to

ensure partitions are cache-friendly.

Graph partitioning involves an important class of problems defined by a graph of

work elements. These problems are more general than the dense-array-based applications

we analyzed in the previous chapter. Problems that have a non-uniform distance between

elements fall into this category, and include modeling and simulation of physical objects

as in Finite-Element-Analysis. Partitioning and balancing graph problems is a

challenging topic that has received much focus in the literature [37, 38, 39, 41]. However

as in the previous chapter, we restrict ourselves to dense-array problems. We note,

however, many of the techniques used on graph problems such as Spectral bisection [42,

43] have been applied to dense-array applications.

51

Using Hilbert Space-Filling curves and our cache-friendly work from the previous

chapter, we present experimental results from a using our load balancer on a parallel

application. In the next section we describe the design of the liquid balancing algorithm,

and its problem-quantization engine.

C. Design

Before presenting our balancer design, we describe our cluster model. The liquid

balancer is designed for a parallel cluster with heterogeneous nodes that potentially have

different cache sizes, processor architectures, and CPU clock speeds. Furthermore, we

assume a non-uniform, dense-matrix problem that is partitioned using strictly rectangular

shapes. Each rectangular partition covers a non-overlapping portion of the original

problem, and run on a separate node in the cluster. Although partitions are often different

sizes, together they conform to the partition problem:

)(|,,
0

∅=∩≠∀=Λ
=
U

P

j
jij jiji λλλ (1)

Where Λ is the problem space, P is the number of partitions, and λi is a
partition of Λ.

A partition in this model is relatively immutable. Once chosen, it may not change size

without affecting the shape of all its immediate neighbors, a property that follows from

(1). For several reasons, we choose to decompose the problem into finer-grained,

rectangular partitions called quanta.

To balance a workload, we need to allow it to move through the machine. Since the

problem may be non-uniform, certain elements may require more work to compute than

others. If we moved work by changing the partition shapes, we effectively can move a

small set of elements (a row or column of them), from one node to another. However,

since elements can be non-uniform, their number does not tell how much work has

52

moved. A set of heavy elements will have a different effect on the balance than a set of

light ones. Therefore, we make the assumption that the amount of time it takes to

compute an element is unknown until we measure it. To ensure fairness, we base our

measurement entirely on wall-clock timings taken from inside the application, as

described later in the Autobalancer portion of this section. For any reasonably sized

problem, obtaining timings of each individual element is not practical. Therefore, we

time bundles of elements called quanta.

1. Problem Quantization

Quanta are small problem partitions. They conform to equation (1), and together

completely define the problem space. Each node owns multiple quanta. The number of

these per node is called the Quantization factor Q, and is determined by experiment.

Since a quantum is individually timed, its elements have a known weight. To maintain

the integrity of this value, we never change a quantum’s size. After problem partitioning,

the shape of all quanta are fixed for the duration of the execution.

A quantum is the unit of work movement. During a balancing operation, nodes may

exchange a unit number of quanta between themselves, but never a portion of one. We

can vary Q to improve load balance accuracy at the expense of increasing communication

and other overheads, as we will see in later sections.

Careful readers will note that quanta act like cache tiles from the previous chapter.

They effectively split a problem into many autonomous blocks, changing the locality

distances of the problem. However quanta sizes are fixed, while tile sizes are based on

the characteristics of each node. If we attempted to size quanta so they conform to tile

sizes, we would quickly run into a paradox during balancing. A tile on node A may be

smaller than on a neighboring node B. If A sends B a quantum during a balancing

operation, B needs to increase its size for cache. However, since quanta are immutable,

node B would have to live with a sub-optimal tile size.

53

To address this problem, we use a two-level blocking strategy. The immutable quanta

represent the first layer, and cache tiles the second. Each quantum is tiled by the

autoblocker, ensuring the tile is shaped for the specific local cache. This approach

decouples the node-specific tile sizes from the problem-specific quanta.

2. Timings and the Autobalancer

In our model, a node has an unknown performance until it is timed. To accurately

measure this value, we time individual quanta from within the application using a facility

called the autobalancer. Taking measurements from within the program avoids problems

with load-monitors such as the Network Weather Service [45], which use a separate

process to measure performance. The monitoring process can be starved for CPU cycles

or influenced in some manner by the target application, reducing the accuracy of its data.

The autobalancer is a special C++ iterator similar to the autoblocker described last

chapter. In our KeLP programming model, all computation algorithms reside inside a

standard iterator called nodeIterator that deliver one quanta at a time to the numerical

kernel. The autobalancer is a nodeIterator that takes detailed timings for each quanta as

they are computed in the iterator loop. In this way, we obtain quanta timings from inside

the application without cooperation from the programmer.

After the autobalancer has collected a full set of local quanta timings on a node, it

exchanges them with all its neighbors in the Timing Publish phase. This step requires P

message broadcasts, where P is the number of nodes. These broadcasts publish the

timings of each quanta to all other nodes. However, our experiments have shown that

since the timing values are small (8 bytes for each quanta) the overhead from distributing

the timing figures is much smaller than time needed to transfer actual data in the work-

transfer balancing phase. Each node in the computation carries out the remaining

balancing steps in parallel.

54

Once we have the freshly-acquired quanta timings we can make balancing decisions.

In an unbalanced computation, we will notice that some quanta run faster than others.

Specifically, the time/element value may be different among the quanta. To achieve

balance, we strive to make the sum of quanta timings equal for all nodes:

.,,.
||

,0| jiji
Qq

ii ttTtt
q
qtPiTt

i

=∈∀=≤≤∈ ∑
∈

 (2)

Where Qi is the set of quanta owned by processor i, and q / |q| is the time
to compute one element of a quanta in Qi. P is the number of processors.
The value ti is the sum of quanta timings on processor i.

With this goal in mind, we present our Hilbert Space-Filling curve and RCB balancer

design. The Hilbert curve specifies which quanta to move when balancing, and keeps

inter-node communication to a minimum. The RCB algorithm makes a fair partition

based on the quanta timings.

3. Space-Filling Curve

The Hilbert Space-Filling curve [1, 53, 54] is simply an ordering of the problem

quanta. We use this ordering because Hilbert curves preserves problem locality. Quanta

along the curve not only are adjacent in the problem domain, when assigned to nodes the

boundary surface area between processors is minimized. We seek to reduce the surface

area on processor boundaries because communication overhead depends on it. Each

element on a node boundary will be exchanged with its neighbor on an adjacent node

once per iteration (for the RedBlack kernel). Therefore the amount of node-node

communication is proportional to the surface area of a node’s partition. The Hilbert curve

minimizes this surface area, and its self-similar structure enables it to maintain this

property for an arbitrarily large problem. Figure 17 shows a Hillbert curve moving

through a simple 2D quantized problem.

55

Figure 17. A Hilbert Space-Filling curve moving through a 4x4 array of
elements. The ordering imposed by the curve tends to create square and
cubic clusters of elements, a desirable property for reducing inter-node
communication in the parallel cluster. Note that in larger arrays, the
Hilbert curve makes larger versions of this shape, with this figure as every
element. In this way a Hilbert curve as self-similar across scales, much
like a fractal.

We use the RCB algorithm [44] to partition the Hilbert curve based on quanta

timings. This well-known algorithm uses a simple divide-and-conquer method to create

partitions of consecutive quanta such that we come as close to the balance equation (2) as

possible. Since we never split a quantum, smaller quanta allow more accurate balancing

due to its finer granularity. However, if a quantum becomes smaller than the optimum tile

size for a node, cache efficiency may suffer. We discuss this balancing accuracy – tiling

efficiency tradeoff in the next section.

Once the new partition has been calculated, we instruct the nodes to transfer quanta to

other parts of the machine as necessary. Nodes can coordinate this task easily since each

has global knowledge of the new partition. When a node A transfers a quantum to node

B, it initiates a message to B containing all the elements of the quantum. When B

56

receives the message, it creates new local quanta and pads it according to its local cache

characteristics. Node A then deletes its data, and the computation continues.

Our experiments have shown that this data-transfer phase takes much longer to

complete than the balancing algorithm itself. Its overhead depends on the problem size

and the degree of balance present in the system, and may represent a significant

percentage of the overall running time. To justify the costs of load balancing, every

transfer decision must have a beneficial effect on the computation. Therefore, we take a

conservative approach to data-transfer. An inertial factor in our algorithm, called a

dampener, favors smaller data transfers over large ones, in the hopes that we will avoid

spurious transfers.

4. Dampener

Our balancer has a feedback-loop design. The output from a balancing iteration

(which we call an Epoch) is fed back as the input for the next. This design naturally

suggests itself for dynamic control problems such as ours. A consequence of the

feedback-loop is that slight errors in the output can become magnified in successive

epochs, leading to mistaken decisions. As we have pointed out, no balancing decision

will be optimal because of the finite granularity of the quanta. Therefore, we need a

mechanism to reduce the cost of balancing errors.

Many designs use a weighting strategy to deal with the sensitivity of feedback loops.

New inputs are not taken as gospel, but instead contribute only a portion of their value

relative to the previous input. In effect, this approach dampens the rate of change. Our

design employs this idea. At every epoch, we receive from the balancer a statement of

how quanta should move. This statement appears as a set of quanta-processor mappings.

As in KeLP [3, 23], we call this mapping a Floorplan. To dampen the system, we

compare each new Floorplan to the previous one as described in the following equation.

57

)(1 biii FloorplanFloorplanFloorplanFloorplan −+=+ α (3)

Where 10 ≤≤ α is the dampening rate, Floorplanb is the proposed
floorplan from the balancer, and (Foorplani – Floorplanb) is a set
difference operation.

Effectively, this simple idea moves only a portion of the quanta suggested by the

balancer. In the next section we demonstrate the importance of the dampening strategy

when balancing real problems.

D. Experiment

This section presents experimental results from running our balancer on a parallel

cluster. The first set of experiments determine the optimal Q factor, or number of quanta

per region. The second set demonstrates the balancer operating at steady state. The

remaining tests present the balancer in action, operating on a non-uniform 3D problem.

We use the RedBlack3D application from last chapter for all our experiments.

The experimental setup is identical to last chapter. We choose the Gamma parallel

cluster [27]. The cluster interconnect, the network connecting its nodes, plays an

important part in these experiments. The Gamma cluster uses a Myrinet 2000

interconnect capable of 175MB/s throughput to connect its nodes. Experiments have

shown its message startup time is around 7us. This network is optimized for MPI

communication, which our RedBlack program employs.

On real computers, timings taken at the application level can occasionally be

inaccurate. System interrupts from memory page faults, incoming network packets, and

device requests can cause the inexact measurements. Since these system interrupts are

transparent to the application, the program cannot account for them. To increase our

timing accuracy, the balancer uses the median value of a small sample of 10 timings to

make its decisions. Our expectation is that the median of this set will represent a clean

58

measurement, obtained during a period without system interrupts. Therefore, a full set of

timings is made available to the balancer once every 10 iterations of the parallel

application. The Autobalancer uses the MPI_Wtime() wall-clock function to measure

timings, with an accuracy of around 1 µs.

As in all our experiments, each plotted data point is the average of five independent

executions, with outliers removed. Outliers are defined as any timing which is more than

± 2 * Median(5 Timings). In practice, we rarely have to discard outliers, and the figure

used is the average of five runs. We measure performance as before in terms of Grind

Time, the computation time per element.

1. Q-Type Experiments

These experiments determine the optimum value of the number of quanta per

processor, or Q, from a performance perspective. In the previous section, we mentioned

the tradeoff between large quanta that can be tiled effectively by the Autoblocker, and

small quanta that will yield more accurate balancing. The experiments presented here

give evidence for the tradeoff, and show that communication time plays a large role in

the choice of Q. These results consider only the performance characteristics of the

application for different values of Q. We use these results to pick a Q value for our

balancer, and later analyze the balancing accuracy that this choice affords.

By the results of last chapter, we expect to see a performance speedup from tiling and

padding the application. Although increasing Q will permit better load balance, we

anticipate an additional running time overhead as well. In the interest of maintaining a

performance speedup, we choose a value of Q with a run time within 10% of the best

case.

In this experiment we pick a single RedBlack3D problem size, 3203, and measure its

performance as we increase Q. The first y-value in figure 18 (Q=0) is the control

experiment, against which we compare our running time. The remaining points

59

correspond to the performance of the quantized RedBlack3D application. Each quanta is

tiled and padded using the GcdPad3D Autoblocker. The experiment is conducted on 8

processors of the Gamma cluster.

0

5e-09

1e-08

1.5e-08

2e-08

2.5e-08

3e-08

3.5e-08

4e-08

4.5e-08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

G
rin

d
T

im
e

(s
 /

N
3)

Regions per Processor (Q)

Grind Time from Quantizing and Auto-Blocking RedBlack3D (8 procs, ID=561)

+Communication

Computation

Figure 18. Grind Time vs. Q experiment run on 8 Processors of the
Gamma Cluster. The Computation curve represents the time required to
compute a point in the problem domain; the +Communication series adds
the communication time for each point. The first point at Q=0 represents
the non-tiled control run, which is provided as a reference.

Although the quantization factor (Q) has little effect on the local computation time, it

does have a large impact on the communication overhead of the problem. This

experiment shows that communication requirements limit the number of quanta we will

assign per processor.

As the local computation time remains relatively constant, we conclude that the tiling

techniques can handle small quanta sizes effectively. Although cache efficiency is

slightly lower for large Q, because the small quanta prevent tiles from achieving their

60

optimal size, the results point to communication overhead as a more significant

performance factor.

As the number of quanta per node increases, so does the time needed to update the

communication boundary cells (ghost-cells) between quanta. We see from the

Communication curve that this overhead significantly impacts performance. Using our

requirement that performance remain within 10% of the best case, we determine an upper

threshold for Q that qualitatively allows enough quanta balance effectively, while

keeping communication overhead within acceptable limits.

As long as Q remains less than 8-10, the time needed to fill the communication cells

surrounding each quantum remains acceptably small, and the running time is within 10%

of the ideal (Q=1) performance. When Q increases beyond this threshold, however, we

consider the communication overhead prohibitive. From a performance perspective, we

would like to choose a small value of Q. However, since our ability to balance effectively

increases with more quanta, we choose the parameter Q=8 for the balancer experiments.

Although we chose this figure somewhat arbitrarily from these results, we present

evidence that this parameter choice provides enough granularity to accurately load

balance our application.

2. Uniform Balancer Experiments

To establish a baseline, we show the balancer operating on a uniform problem. This

RedBlack3D application is already in balance, and we show that the balancer detects this

state, and takes no further action.

To measure the effectiveness of the balancer, we introduce the Balance Efficiency

(BE) metric [1]. The Balance Efficiency ranges from 0-100% and is highest when all

processors compute an iteration of the parallel algorithm in identical time.

61

Pi
TMaxP

T
BE

i

i ≤≤= ∑ 0,
)(*

 (4)

Where Ti is the sum of all quanta timings on a processor i, and P is the
number of processors.

The graph below shows the balancer operating on a uniform RedBlack3D problem. It

presents Balance Efficiency vs. Epoch for an 8-processor run with 8 quanta per

processor. The balancer Epoch represents one balance operation performed once every 10

iterations of the application. This uniform problem has 64 equal-sized quanta and all

quanta require the same computation time.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

B
al

an
ce

 E
ffi

ci
en

cy
 (

%
)

Epoch

Hilbert Balancer Performance for RedBlack3D (8 procs, ID=587)

N=320

Figure 19. The balancer at rest. When we run the balancer on a balanced
problem such as this uniform 3203 RedBlack3D application. Each of the 8
processors own 8 problem quanta. The balance efficiency does not change
during the experiment, illustrating the stability of the balancer. The
dampener was set at 0.5 for this experiment.

The Balance Efficiency remains constant at 94% throughout the execution. The

importance of Figure 19 is the stability of the balancer during the duration of the run.

62

Although dependent on clean wall-clock timings to operate correctly, the balancer does

an adequate job of gauging processor load. We do not achieve perfect efficiency due to

variations in the timings gathered by the balancer. We note that printing the timing

figures themselves causes some variation because only the first processor generates the

output. Therefore the first processor runs slightly slower than its peers, and causes a

slight timing variation.

During this run, the Gamma cluster was under heavy use. When we ran the

experiment with no dampening, the balancer chose to move quanta, though there was no

need to. We concluded the heavy load caused spurious timing variations in the cluster. In

response, we increased the dampener value to 0.5, which successfully brought the

balancer to rest.

In the next section we present the balancer in action, actively moving problem quanta

between processors during runtime. The next experiments show how the balancer brings

an unbalanced application into balance, leading to a reduction in running time.

3. Non-Uniform Balancer Experiments

 In this set of experiments we run the balancer on an unbalanced problem to observe

its operation. The problem we choose is a non-uniform version of RedBlack3D. In this

problem, only some of the quanta have real work, while the others have only light

computational requirements (see figures below). Although this toy problem is easy to

balance statically upon inspection, we note that our balancer detects the imbalance at

runtime without any aid from the application itself. Therefore, we expect this experiment

to show that our balancer can indeed detect and correct load imbalances automatically.

63

Non-Uniform RedBlack: Unbalanced

Figure 20. Processor assignments in a 4-processor non-uniform RedBlack
problem before balancing. Each color along the Hilbert curve represents
one processor. The shaded portion of the problem requires more work than
the un-shaded regions.

Non-Uniform RedBlack: Balanced

Figure 21. The non-uniform RedBlack problem after balancing. The
shaded busy section of the problem receives more processors than the
empty area, leading to a better balance. An actual balanced partitioning is
presented in Appendix A.

64

The plot below shows the balancer in action; aggregating all quanta in the unloaded

region of the problem onto one processor, and splitting the loaded portion of the

computation between the remaining processors. We again chart Balance Efficiency vs.

Epoch.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

B
al

an
ce

 E
ffi

ci
en

cy
 (

%
)

Epoch

Hilbert Balancer Efficiency for Autoblocked RedBlack3D (8 procs, Q=8, ID=606)

N=320

Figure 22. The load balancer in action. The non-uniform problem is
quickly balanced, and the balancer rests for the remainder of the
execution.

The balancer works quickly to achieve balance, making all changes in the first epoch.

Again, the later epochs in figure 22 show the stability of the balancer. Although it does

improve the Balance Efficiency significantly, the final achieved balance is less than we

saw in the previous experiment. Despite the imbalance, however, the balancer detects it

can do no better, and makes no further attempt to transfer work.

As mentioned earlier in the chapter, accurate balancing requires fine-grained quanta,

as a single quantum is the smallest amount of work we may move during balancing. The

tradeoff between numerous small quanta for balancing and fewer (but large) quanta for

65

communication led us to choose Q=8, as discussed in the previous section. The balancer

achieves a BE of 84% in this experiment, which we believe is close enough to the 94% in

the uniform case to demonstrate the effectiveness of our design. In the next section, we

demonstrate the performance benefits from balancing this problem.

The load on the cluster was light during this experiment, and no dampening was

needed. The following graph shows the speedup due to our balancing efforts.

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

 (
F

irs
t E

po
ch

 /
E

po
ch

 ti
m

e)

Epoch

Speedup from Balancing RedBlack3D (8 procs, Q=8, ID=606)

N=320

Figure 23. Speedup from balancing. We calculate the speedup as (First
Epoch Iteration Time / Epoch Iteration Time). Timings taken every 10
iterations of the 3203-sized RedBlack3D problem, which was run on 8
processors of the Gamma cluster.

The speedup from balancing is large, as we would expect. Before balancing, the

cluster required 0.50 seconds to complete 10 iterations of the RedBlack3D application.

After the first balancing epoch, this figure becomes 0.15 seconds, a speedup of 335%.

The balancer requires computational and communication overhead to function, which

we discuss in the next section.

66

4. Balancer Overhead

The balancer imposes an overhead to the running time of the application due to

several phases of its operation. The most costly of these is data-transfer, where all data in

a set of quanta are moved from one cluster node to another. The balancing algorithm

itself requires a measure of computation and communication, and is another source of

overhead. We separate the balancing algorithm overhead into two parts. First, the time

required to distribute the quanta timings to all processors. We call this the Timing Publish

phase. The second phase, where all nodes compute the RCB algorithm on the timings, we

call the Balancing Algorithm phase. The two phases of the algorithm decide what quanta

to move, and where to move them. The data-transfer phase invokes the MPI message

calls to actually transfer the data between nodes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

B
al

an
ce

 O
ve

rh
ea

d
(%

 o
f r

un
tim

e)

Epoch

Hilbert Balancer Overhead for Autoblocked RedBlack3D (8 procs, Q=8, ID=606)

Algorithm (RCB) + Timing Publish + Data Transfer

Data Transfer

Figure 24. Balancer overhead. All values are given as a percentage of total
run time. The red line shows the time needed for Data Transfer only, while
the green set adds the Timing Publish and RCB algorithm overheads.

67

The balancer overhead is small compared to the overall running time of the

application. As we expected, the overhead from the Data Transfer phase is much higher

than either the Timing Publish or the Balancing Algorithm. This is in part due to highly

optimized Timing Broadcast and RCB implementations used by the balancer. We see that

after the data transfer in the first epoch, the overhead from later balancer epochs is

negligible. During data transfer, we only measure the time needed for the MPI messages

to complete. Other overheads such as memory allocation on nodes receiving data, and

memory free operations on nodes sending data do not contribute significant overhead

compared to message passing.

5. Irregular Balance Experiments

The experiments presented in this chapter have load balanced parallel problems with

regular decomposition. The partitions of a regularly partitioned problem have identical

size and shape, and each covers the same number of elements. By extension, all quanta in

the computation have the same size and shape as well. As mentioned earlier in this

dissertation, an important class of problems are irregularly partitioned so their quanta

have varying shapes. An interesting experiment for future work will show how these

problems have a natural load imbalance due to variances in the cache miss rates during

computation over quanta of different shapes.

Irregularly partitioned problems allocate an equal measure of elements to each

partition. We argue that because partitions have differing shapes, the cache miss rate will

vary between them, leading to a load imbalance. By figure 1 we see that performance

varies with partition size. The EucPad3D and GcdPad3D experiments in Chapter 2

establish that cache conflict misses cause this observed variation. We know the conflict

miss rate is sensitive to memory access strides imposed by partition shape, since we

achieved stable performance only when we pad as a function of the partition dimensions.

68

Without the application of cache-friendly techniques, the partitions of an irregularly-

decomposed problem will experience differing cache miss rates. In figures 14 and 15

from last chapter, we see that the rate of cache misses significantly affects computation

time. Therefore, an irregularly-decomposed problem will naturally have a load imbalance

because the performance of its partitions will be non-uniform. By the results from last

chapter, we believe our cache-friendly parallel framework will bring such problems into

balance by minimizing cache conflict misses over all partitions, independent of their size

or shape.

In this section we described our experimental setup and presented our results. In the

next section, we discuss our findings and summarize the chapter.

69

E. Discussion

In this chapter we presented the motivation, design, and experimental results from our

dynamic liquid load balancer. We leveraged our cache-friendly work from the previous

chapter to obtain good performance for all quanta sizes.

The plentiful work on load balancers in the literature allowed us to choose the

balancing technique most suited to our environment. The Hillbert Space-Filling curve

guides our work movement during balancing, maintaining problem locality at all times to

minimize expensive inter-node communication. The popular RCB algorithm partitions

the 1D curve among nodes based on the application-measured performance timings.

We divide our problem into fixed-sized Quanta, which are the unit of performance

monitoring and work movement in the balancer. We tile each quantum individually using

cache-friendly techniques to ensure reliable performance, independent of quanta size.

Our Autobalancer obtains reliable per-quantum timings of the Fortran numerical kernel

without aid from the programmer. When all quanta are timed, and outliers removed,

nodes exchange timing figures so each has knowledge of its peer’s performance. Each

node runs the RCB balancing algorithm in parallel. We keep a history of the pivots, or

cut-points picked by the algorithm in each epoch. This cut-history is used to dampen the

balancer decision to reduce the effects of balancing errors.

The dampener helps desensitize the balancer to load variations on the cluster from

other jobs. This type of contentious load can lead to balancing errors that cause expensive

data transfers to occur. To combat this effect, we use the dampener to keep the balance

delta small, as described in equation (3). Exploring the precise effect of other jobs in the

cluster on our balancer remains as an interesting area for future work.

70

Instance: List of Quanta. Floorplan[1:QP]: Floorplan[i] = (p, O, qstart, qend), p is partition
coordinate, O is processor owner: 1≤O≤P, where P is the number of processors and Q
is the number of quanta per processor. The q{start,end} fields are quantum bounding
coordinates. Coordinates are N-dimensional points in Euclidean space. List of
Timings. T[1:QP]: T[i] = Quanta timing in seconds. List of Cut Points from previous
partitioning. Cuts[1:P]: Cuts[i] = Index of processor ownership boundary in the
floorplan.

Pre-condition on Input: TimingPublish(T[1:Q])

Balance(T[1:QP], Floorplan[1:QP], cuts[1:P]):

 scan[0] = 0; scan[i] = Sum(1..i, T[i]), 1≤i≤|T|
 Floorplan’ = RCB(Floorplan, scan, cuts)
 MoveQuanta(Floorplan’, Floorplan)

RCB(F[a:b], scan[0:QP], cuts[1:P], i=0, j=0):

 if 2i ≥ P:
 F[a:b].owner = j
 return
 key = (scan[b] – scan[a-1]) / 2 + scan[a-1]
 cut = find index of key in scan[a:b]
 cut = Damp(cuts[j], cut)
 rcb(F[a:cut], scan, cuts, i+1, 2j)
 rcb(F[cut+1:b], scan, cuts, i+1, 2j+1)

Damp(old, new):

 return old + α(new – old) 0 ≤ α ≤ 1

MoveQuanta(F’[1:QP], F[1:QP]):
 for i in (1..QP):
 src = F[i].owner
 dst = F’[i].owner

 if src ≠ dst:
 transfer data in quanta i from src to dst

TimingPublish(T[1:Q]):
 AllTimes = [1:QP]
 for root in P:

 AllTimes ← broadcast(T, root)
 return AllTimes

Figure 25. Balancer Pseudocode. Processors always own contiguous
subsets of the floorplan. Notice the RCB scan array is calculated only
once. The order of quanta in the floorplan follows a Hilbert Space-Filling
curve.

71

We have established that the overhead from the Timing Publish phase is negligible

compared to the cost of transferring quanta and their data payload during the work-

transfer phase. Therefore we feel the quick convergence of our balancing algorithm (one

iteration in our experiment) justifies the added cost of publishing the timing figures to

every node, which requires O(P) message broadcasts as described in figure 25. We note

that our experiments involved only a small number of processors. If the scale of the

cluster approached hundreds of nodes, the Timing Publish overhead may become

prohibitively expensive, and a more distributed algorithm would be needed. Diffusion

algorithms [10] fall into this category, and trade lower timing communication overhead

for slower convergence.

Our balancing algorithm was chosen for its quick convergence. We chose this design

parameter with the expectation that data transfer would be the bottleneck during

balancing. Although our experiments confirm this, the Myrinet network in the Gamma

cluster operates more efficiently than we had expected. In our experiment, it completed a

data-transfer operation involving the communication of 54 quanta, each with 4MB of

data, in approximately 2 seconds. The corresponding transfer rate is 110MB/s, which

compares to the maximum measured Myrinet throughput of approximately 175MB/s.

Standard 100Mbps Ethernet can achieve a theoretical maximum of 12.5 MB/s.

The observed transfer rate during balancing represents the actual message transit

time, and two sets of memory copies, one each on the sending and receiving node. As the

memory copies involve 3D data structures, we can expect many TLB and cache misses

during the operation. Therefore, the 110MB/s effective data-transfer rate is quite

impressive, and suggests that using a diffusion-based algorithm would be practical if the

Timing Publish overhead becomes excessive.

The experiments illustrate the tradeoff between large and small quanta sizes. Since

we balance by moving whole quanta, smaller quanta size leads to more accurate

72

balancing. However, if a quantum becomes smaller than the ideal cache tile size (a

function of the √cache size), cache efficiency suffers somewhat. More importantly,

however, numerous small quanta lead to prohibitive communication overhead. Each

quantum has a layer of communication elements surrounding it, which we must update in

each iteration. Therefore smaller (and more numerous) quanta require greater

communication overhead per iteration. This effect is particularly evident in the Q-type

experiments, which show communication time increasing with the number of quanta per

processor. The quanta-size tradeoff led us to choose a Q value of 8, which we feel strikes

a reasonable balance between communication overhead, tiling efficiency, and balance

accuracy.

In the next chapter we conclude the thesis. We summarize our work and offer

directions for future research.

Chapter IV

 Conclusion

This thesis presents our cache-friendly liquid load balancer. We chose among several

cache tiling and padding techniques for use in a two-level work granularity framework

that achieves consistent parallel performance independent of problem partitioning.

Although computation performance varies with partition shape, by applying our cache-

friendly strategy to each partition we achieve maximum performance irrespective of the

partition dimensions. We say our balancer is liquid because its dynamic and iterative

monitoring allows work to flow fluidly through the machine during computation.

The Cache-Friendly chapter analyzed a variety of cache tiling and padding

techniques. We showed by experiment that only aggressive padding between the columns

and planes of a 3D work array was sufficient to reduce cache conflict misses in the L1

data cache. Although this padding leads to a memory overhead, we show that UNIX

Virtual Memory behavior mediates the actual padding cost in terms of physical RAM.

When cache conflict and capacity misses were reduced, our experiments showed

stable performance under varying partition sizes. Moreover, the runtime tiling and

padding approach we chose led to at least a 30% speedup on every machine we tested.

We point out that our tiling library can adapt to various hardware configurations more

easily than compile-time techniques, since it can access vital cache statistics at runtime.

Since we calculate the cache tile size and padding factor at runtime, our library may be

designed to automatically adapt to the system hardware. Although in its current form, our

framework does not attempt to automatically identify the local cache characteristics, its

73

74

runtime structure makes such a design feasible. Compiler-based tiling, on the other hand,

minimally requires a recompilation for each new hardware architecture. For

heterogeneous parallel clusters that potentially contain nodes with different cache sizes, a

runtime tiling strategy with an automatic cache discovery mechanism seems necessary.

Our work provides the first step towards such a design.

The Liquid Load Balancer builds on the reliable performance yielded by our cache-

friendly efforts. When partition performance is independent of problem size, the first-

level Quantum Partitioner can choose partition sizes freely, without concerns that

pathologically shaped quanta will lead to poor performance. We identify a tradeoff

between small quanta that aid balancing efficiency, and large quanta that lead to more

effective cache tiling and lower communication costs.

We use a Hilbert Space-Filling curve to guide data-motion through the cluster so that

inter-node communication dependencies are minimized. Minimizing communication is

important due to the high cost of message passing. We handle non-uniform workloads by

measuring node performance over fixed-sized problem quanta. Balancing occurs by

moving these quanta between nodes in the machine.

In conclusion, our load balancer can successfully balance a non-uniform parallel

application on a Commodity Cluster Computer, with performance insured over a range of

parameter choices by our cache-friendly framework.

A. Future Work

This thesis gives rise to several future research possibilities. The tiling and padding

algorithms impose a memory overhead, which we have not proved is minimal. Whether

we may reduce this memory cost while maintaining the reduced capacity miss behavior is

an open research question. We postulate that high cache associativity present in the

75

processors of our Gamma cluster may allow padding algorithms to trade a controlled rate

of cache conflicts for reduced memory overhead.

For hardware designers, we ask whether the conflict misses shown in our results can

be avoided altogether in hardware. We have presented a motivating example for which

current commodity cache designs falter, leading us to use memory-wasteful strategies

such as padding to achieve optimum performance.

Our balancing algorithm works well for small numbers of processors. However, it

remains a topic of future work whether our balancer design is appropriate for larger

parallel jobs. Due to our optimized Timing Publish algorithm and our balancer overhead

results, we expect our design to scale well to tens of processors. However experiments

with hundreds of processors may strain the scalability of our design.

We have only tested the balancer with a static non-uniform problem. The design can

theoretically handle dynamic problems, and the quick convergence of our algorithm

supports this belief. Applying our balancer to adaptive mesh refinement, particle

methods, shockwave simulations, and other dynamic problems is an area of future work.

Finally, our balancer incorporates a dampening factor. This design feature is intended

to allow the balancer to operate in a varying environment where load influences from

applications can effect the accuracy of the node performance timings. Our analysis of the

dampener is primarily theoretical, and we did not conduct rigorous experiments with

respect to load variations caused by other jobs in the cluster. Such work remains as an

area for future research.

I would first like to thank Scott Baden, my advisor, for his help, direction, and insight

throughout this research. Greg Balls, Dan Shalit, and Bill Kerney in the Scientific

Computing Group of the High Performance Computing Laboratory at UCSD have given

numerous suggestions and useful analysis that helped shape this work. Eric Tune

76

provided invaluable hardware and architecture knowledge. Michelle Mills Strout, who

has worked with caches far longer than I have, kindly offered her help for tiling

algorithm analysis. Phil Papadopoulos, Mason Katz, and Greg Bruno of the NPACI

Rocks cluster team were a great help and provided me with time on the high-performance

Meteor cluster at SDSC. Finally I would like to thank my mother Wendy for pushing me

to embark on this journey through the CS Masters Program at UCSD, which has proved a

wonderful and cherished experience.

Appendix A: Tabular Data
Tile Size

The following tables list the tile dimensions chosen by the EucPad3D and GcdPad3D

algorithms. Tiles are sized for a cubic array with side length N, and a 256KB cache size.

EucPad3D

Below is shown the tile sizes chosen by the EucPad3D cache tiling algorithm. The

tile size is a function of the cache size and array dimensions. A cost function chooses the

best tile from a set generated by adding up to 8 padding elements to the column length of

A. We only present data for problem sizes greater than 1003. The effective N value

represents the column size of A after padding and adding the KeLP ghost cells.

N Tile (TI, TJ) Column Padding (effective N)
100 100,76 0 (102)
110 110,69 0 (112)
120 121,63 1 (123)
130 131,58 1 (133)
140 62,109 2 (144)
150 151,50 1 (153)
160 78,95 3 (165)
170 82,91 0 (172)
180 86,85 2 (184)
190 85,81 1 (193)
200 94,75 6 (208)
210 101,71 7 (219)
220 98,69 3 (225)
230 78,98 8 (240)
240 73,96 3 (245)

77

78

GcdPad3D

The following table lists the tile sizes and padding chosen by the GcdPad3D

algorithm. The tile size is a function of the cache size, and the padding depends on the

array size. We present the data points from figure 15, in the range 140 to 200. The (BI,BJ)

padded dimensions represent the column and row lengths of A after padding and adding

the KeLP ghost-cells.

N Tile (TI, TJ) Padded dims (BI, BJ)
140-190 126,62 384,192
191-200 126,62 384,320

Q-Type Experiment
Below is shown tabular data from the Q-type experiment on the Gamma Cluster with

eight processors (ID=561). Each value is the average of five independent runs.

Q Computation (s) Communication (s) Total (s)
1 19.037 1.642 20.679
2 19.432 2.138 22.422
3 18.916 2.289 21.206
4 19.034 2.514 21.549
5 18.974 2.700 21.675
6 18.567 2.725 21.293
7 19.274 4.781 24.055
8 19.174 3.504 22.679
9 19.325 4.311 23.636
10 19.076 3.732 22.809
11 19.467 5.557 25.025
12 19.274 5.011 24.286
13 19.704 6.361 26.065
14 19.108 4.956 24.065
15 19.980 4.711 24.692
16 19.189 5.722 24.911

79

Balancer
The results from the balancer at rest experiment (ID=587) in tabular form. Each value

is the average of five independent runs.

Epoch Balance Efficiency (%) Total Overhead (s)
1-10 94.500 0.000

The results from the balancer in action experiment (ID=606) in tabular form. Again,

each value is the average of five independent runs.

Epoch Balance Efficiency (%) Total Overhead (s)
1 25.673 2.093
2-10 84.500 0.019

FloorPlans: Unbalanced and Balanced

The two KeLP floorplans shown below describe the 3D RedBlack quantum

partitionings before and after balancing. The floorplans describe the quanta-to-processor

mapping of the parallel problem. The application has a non-uniform structure as

illustrated in Figure 21. Both floorplans cover a 3203-element cubic problem. The quanta

order follows a Hilbert Space-Filling curve through the problem partitioning.

Before balancing, the unbalanced partition shows each processor owns an equal

number of quanta:

KeLP FloorPlan: Processors: 8, Q: 8, Size: 64, Shape: (4,4,4)

id:(3D partition coordinate) processor owner:[quanta region extents] (size)

0:(1,1,1). 0:[(1,1,1),(80,80,80)] (512000)
1:(1,2,1). 0:[(1,81,1),(80,160,80)] (512000)
2:(2,2,1). 0:[(81,81,1),(160,160,80)] (512000)
3:(2,1,1). 0:[(81,1,1),(160,80,80)] (512000)
4:(2,1,2). 0:[(81,1,81),(160,80,160)] (512000)
5:(2,2,2). 0:[(81,81,81),(160,160,160)] (512000)
6:(1,2,2). 0:[(1,81,81),(80,160,160)] (512000)
7:(1,1,2). 0:[(1,1,81),(80,80,160)] (512000)
8:(1,1,3). 1:[(1,1,161),(80,80,240)] (512000)
9:(2,1,3). 1:[(81,1,161),(160,80,240)] (512000)
10:(2,1,4). 1:[(81,1,241),(160,80,320)] (512000)
11:(1,1,4). 1:[(1,1,241),(80,80,320)] (512000)

32:(3,4,2). 4:[(161,241,81),(240,320,160)] (512000)
33:(3,4,1). 4:[(161,241,1),(240,320,80)] (512000)
34:(3,3,1). 4:[(161,161,1),(240,240,80)] (512000)
35:(3,3,2). 4:[(161,161,81),(240,240,160)] (512000)
36:(4,3,2). 4:[(241,161,81),(320,240,160)] (512000)
37:(4,3,1). 4:[(241,161,1),(320,240,80)] (512000)
38:(4,4,1). 4:[(241,241,1),(320,320,80)] (512000)
39:(4,4,2). 4:[(241,241,81),(320,320,160)] (512000)
40:(4,4,3). 5:[(241,241,161),(320,320,240)] (512000)
41:(3,4,3). 5:[(161,241,161),(240,320,240)] (512000)
42:(3,4,4). 5:[(161,241,241),(240,320,320)] (512000)
43:(4,4,4). 5:[(241,241,241),(320,320,320)] (512000)

80

12:(1,2,4). 1:[(1,81,241),(80,160,320)] (512000)
13:(2,2,4). 1:[(81,81,241),(160,160,320)] (512000)
14:(2,2,3). 1:[(81,81,161),(160,160,240)] (512000)
15:(1,2,3). 1:[(1,81,161),(80,160,240)] (512000)
16:(1,3,3). 2:[(1,161,161),(80,240,240)] (512000)
17:(1,3,4). 2:[(1,161,241),(80,240,320)] (512000)
18:(1,4,4). 2:[(1,241,241),(80,320,320)] (512000)
19:(1,4,3). 2:[(1,241,161),(80,320,240)] (512000)
20:(2,4,3). 2:[(81,241,161),(160,320,240)] (512000)
21:(2,4,4). 2:[(81,241,241),(160,320,320)] (512000)
22:(2,3,4). 2:[(81,161,241),(160,240,320)] (512000)
23:(2,3,3). 2:[(81,161,161),(160,240,240)] (512000)
24:(2,3,2). 3:[(81,161,81),(160,240,160)] (512000)
25:(1,3,2). 3:[(1,161,81),(80,240,160)] (512000)
26:(1,3,1). 3:[(1,161,1),(80,240,80)] (512000)
27:(2,3,1). 3:[(81,161,1),(160,240,80)] (512000)
28:(2,4,1). 3:[(81,241,1),(160,320,80)] (512000)
29:(1,4,1). 3:[(1,241,1),(80,320,80)] (512000)
30:(1,4,2). 3:[(1,241,81),(80,320,160)] (512000)
31:(2,4,2). 3:[(81,241,81),(160,320,160)] (512000)

44:(4,3,4). 5:[(241,161,241),(320,240,320)] (512000)
45:(3,3,4). 5:[(161,161,241),(240,240,320)] (512000)
46:(3,3,3). 5:[(161,161,161),(240,240,240)] (512000)
47:(4,3,3). 5:[(241,161,161),(320,240,240)] (512000)
48:(4,2,3). 6:[(241,81,161),(320,160,240)] (512000)
49:(4,2,4). 6:[(241,81,241),(320,160,320)] (512000)
50:(4,1,4). 6:[(241,1,241),(320,80,320)] (512000)
51:(4,1,3). 6:[(241,1,161),(320,80,240)] (512000)
52:(3,1,3). 6:[(161,1,161),(240,80,240)] (512000)
53:(3,1,4). 6:[(161,1,241),(240,80,320)] (512000)
54:(3,2,4). 6:[(161,81,241),(240,160,320)] (512000)
55:(3,2,3). 6:[(161,81,161),(240,160,240)] (512000)
56:(3,2,2). 7:[(161,81,81),(240,160,160)] (512000)
57:(3,2,1). 7:[(161,81,1),(240,160,80)] (512000)
58:(3,1,1). 7:[(161,1,1),(240,80,80)] (512000)
59:(3,1,2). 7:[(161,1,81),(240,80,160)] (512000)
60:(4,1,2). 7:[(241,1,81),(320,80,160)] (512000)
61:(4,1,1). 7:[(241,1,1),(320,80,80)] (512000)
62:(4,2,1). 7:[(241,81,1),(320,160,80)] (512000)
63:(4,2,2). 7:[(241,81,81),(320,160,160)] (512000)

After balancing, many quanta have been moved. Most of the unloaded section of the

problem has been allocated to one processor (id=7).

 KeLP FloorPlan: Processors: 8, Q: 8, Size: 64, Shape: (4,4,4)

id:(3D partition coordinate) processor owner:[quanta region extents] (size)

0:(1,1,1). 0:[(0,0,0),(81,81,81)] (551368)
1:(1,2,1). 0:[(0,80,0),(81,161,81)] (551368)
2:(2,2,1). 1:[(80,80,0),(161,161,81)] (551368)
3:(2,1,1). 1:[(80,0,0),(161,81,81)] (551368)
4:(2,1,2). 2:[(80,0,80),(161,81,161)] (551368)
5:(2,2,2). 2:[(80,80,80),(161,161,161)] (551368)
6:(1,2,2). 3:[(0,80,80),(81,161,161)] (551368)
7:(1,1,2). 3:[(0,0,80),(81,81,161)] (551368)
8:(1,1,3). 4:[(0,0,160),(81,81,241)] (551368)
9:(2,1,3). 4:[(80,0,160),(161,81,241)] (551368)
10:(2,1,4). 5:[(80,0,240),(161,81,321)] (551368)
11:(1,1,4). 5:[(0,0,240),(81,81,321)] (551368)
12:(1,2,4). 6:[(0,80,240),(81,161,321)] (551368)
13:(2,2,4). 6:[(80,80,240),(161,161,321)] (551368)
14:(2,2,3). 7:[(80,80,160),(161,161,241)] (551368)
15:(1,2,3). 7:[(0,80,160),(81,161,241)] (551368)
16:(1,3,3). 7:[(0,160,160),(81,241,241)] (551368)
17:(1,3,4). 7:[(0,160,240),(81,241,321)] (551368)
18:(1,4,4). 7:[(0,240,240),(81,321,321)] (551368)
19:(1,4,3). 7:[(0,240,160),(81,321,241)] (551368)
20:(2,4,3). 7:[(80,240,160),(161,321,241)] (551368)
21:(2,4,4). 7:[(80,240,240),(161,321,321)] (551368)
22:(2,3,4). 7:[(80,160,240),(161,241,321)] (551368)
23:(2,3,3). 7:[(80,160,160),(161,241,241)] (551368)
24:(2,3,2). 7:[(80,160,80),(161,241,161)] (551368)
25:(1,3,2). 7:[(0,160,80),(81,241,161)] (551368)
26:(1,3,1). 7:[(0,160,0),(81,241,81)] (551368)
27:(2,3,1). 7:[(80,160,0),(161,241,81)] (551368)
28:(2,4,1). 7:[(80,240,0),(161,321,81)] (551368)
29:(1,4,1). 7:[(0,240,0),(81,321,81)] (551368)
30:(1,4,2). 7:[(0,240,80),(81,321,161)] (551368)
31:(2,4,2). 7:[(80,240,80),(161,321,161)] (551368)

32:(3,4,2). 7:[(160,240,80),(241,321,161)] (551368)
33:(3,4,1). 7:[(160,240,0),(241,321,81)] (551368)
34:(3,3,1). 7:[(160,160,0),(241,241,81)] (551368)
35:(3,3,2). 7:[(160,160,80),(241,241,161)] (551368)
36:(4,3,2). 7:[(240,160,80),(321,241,161)] (551368)
37:(4,3,1). 7:[(240,160,0),(321,241,81)] (551368)
38:(4,4,1). 7:[(240,240,0),(321,321,81)] (551368)
39:(4,4,2). 7:[(240,240,80),(321,321,161)] (551368)
40:(4,4,3). 7:[(240,240,160),(321,321,241)] (551368)
41:(3,4,3). 7:[(160,240,160),(241,321,241)] (551368)
42:(3,4,4). 7:[(160,240,240),(241,321,321)] (551368)
43:(4,4,4). 7:[(240,240,240),(321,321,321)] (551368)
44:(4,3,4). 7:[(240,160,240),(321,241,321)] (551368)
45:(3,3,4). 7:[(160,160,240),(241,241,321)] (551368)
46:(3,3,3). 7:[(160,160,160),(241,241,241)] (551368)
47:(4,3,3). 7:[(240,160,160),(321,241,241)] (551368)
48:(4,2,3). 7:[(240,80,160),(321,161,241)] (551368)
49:(4,2,4). 7:[(240,80,240),(321,161,321)] (551368)
50:(4,1,4). 7:[(240,0,240),(321,81,321)] (551368)
51:(4,1,3). 7:[(240,0,160),(321,81,241)] (551368)
52:(3,1,3). 7:[(160,0,160),(241,81,241)] (551368)
53:(3,1,4). 7:[(160,0,240),(241,81,321)] (551368)
54:(3,2,4). 7:[(160,80,240),(241,161,321)] (551368)
55:(3,2,3). 7:[(160,80,160),(241,161,241)] (551368)
56:(3,2,2). 7:[(160,80,80),(241,161,161)] (551368)
57:(3,2,1). 7:[(160,80,0),(241,161,81)] (551368)
58:(3,1,1). 7:[(160,0,0),(241,81,81)] (551368)
59:(3,1,2). 7:[(160,0,80),(241,81,161)] (551368)
60:(4,1,2). 7:[(240,0,80),(321,81,161)] (551368)
61:(4,1,1). 7:[(240,0,0),(321,81,81)] (551368)
62:(4,2,1). 7:[(240,80,0),(321,161,81)] (551368)
63:(4,2,2). 7:[(240,80,80),(321,161,161)] (551368)

81

Appendix B: Users Guide

API
This section presents the Application Programmer Interface (API) for the

Autoblocker and Autobalancer. All code is written in the C++ language, as specified by

the g++ compiler version 2.96 (Linux). The components presented in this appendix

operate within the KeLP parallel framework [2, 23].

Autoblocker

The Autoblocker uses cache tiling and padding techniques to make KeLP

applications cache-friendly. This component is relatively transparent to the programmer,

and involves using a specialized C++ loop iterator. The following code example shows

the Autoblocker being used in the KeLP local computation loop of a RedBlack3D

application.

void ComputeLocal(IrregularGrid3 & U, const int color,
 IrregularGrid3 & rhs)
{
 const int RED = 0 , BLK = 1;

 for (BlockedNodeIterator3 ni(U); ni; ++ni) {
 int i = ni();
 Grid3<double>& UG = U(i);

 // The full padded region.
 FortranRegion3 fullFU(UG.fullRegion());

 // The region to compute over is blocked for cache
 // Automatically by the iterator.
 FortranRegion3 FU(ni.block());

 if (color == RED)
 f_rb7rrelax(UG.data(), FORTRAN_REGION3(fullFU),
 FORTRAN_REGION3(FU), rhs(i).data());
 else
 f_rb7brelax(UG.data(), FORTRAN_REGION3(fullFU),
 FORTRAN_REGION3(FU), rhs(i).data());
 }
}

82

Note the use of the BlockedNodeIterator in the for-loop. Each iteration, the call to

ni.block() gives the current cache tile (a subset of the problem domain) to compute over.

The fullRegion() includes the padding elements, which are not used in the actual

computation. The actual RedBlack algorithm is implemented in the Fortran routines

f_rb7*relax().

Autobalancer

The Autobalancer uses a Hilbert Space-Filling Curve to coordinate data-motion

through a parallel cluster at runtime, to dynamically load balance an application. This

component is also relatively transparent to the programmer, and again involves the

BlockedNodeIterator. All quanta timings are obtained automatically be the

BlockedNodeIterator, which times the activity within each loop iteration. The following

code sample shows the Autobalancer being used by the RedBlack3D application.

void ComputeLocal(IrregularGrid3 & U, const int color,
 IrregularGrid3 & rhs, const int radius)
{
 const int RED = 0 , BLK = 1;

 // To make the NodeIterator long-lived (outside the loop).
 BlockedNodeIterator3 ni(U);
 while (ni) {
 int i = ni();
 Grid3<double>& UG = U(i);

 // The full padded region.
 FortranRegion3 fullFU(UG.fullRegion());

 // The region to compute over is blocked for cache
 // Automatically by the iterator.
 FortranRegion3 FU(ni.block());

 if (color == RED)
 f_rb7rrelax(UG.data(), FORTRAN_REGION3(fullFU),
 FORTRAN_REGION3(FU), rhs(i).data(), &radius);
 else
 f_rb7brelax(UG.data(), FORTRAN_REGION3(fullFU),
 FORTRAN_REGION3(FU), rhs(i).data(), &radius);

 // Always increment the iterator at the end of the loop.
 ++ni;
 }

83

 int moved;
 moved=U.balance(ni.balance());
 // A fast quanta mover for constant XArrays.
 rhs.moveConst(ni.balance(), 0.0);
}

Since each iteration is timed, and the timings will dictate the balancer’s actions, the

application should perform all significant computation within the loop, and no more.

Specifically, no I/O or other blocking calls should be executed within this loop. Since

NodeIterator-derived loops such as the BlockedNodeIterator are typically the central

processing loop for KeLP applications, most programs will be able to use the

Autobalancer with minimal changes.

Some care must be given to the placement of the balance() data-transfer call. Since

this function may change the location of data in the cluster, it may not occur inside the

computation loop. If data was changed inside the loop, a processor could attempt to

access data that has been moved off the node during load balancing. Therefore, we

always call balance() after the BlockedNodeIterator loop when using the Autobalancer.

The moveConst() call (move constant quanta) is analogous to balance() but does not

involve any communication. If the moved quanta moved are identical, as in the case of

the RHS array above, moveConst() is applicable, and will run much faster than balance().

The key difference between the two is that balance() sends actual data between nodes

during balancing, while moveConst() only allocates and deletes quanta as necessary,

filling newly-created quanta with a constant value.

Quantizing a FloorPlan

Although the Autoblocker can operate on any type of floorplan, the load balancer

requires a Quantization parameter as input during floorplan creation. The value of Q

describes how many problem quanta to assign to a processor. As discussed in the thesis

body, the higher the value of Q, the more accurately we can balance a problem, but the

more communication overhead we will incur.

84

The following code shows an example of using the Q-Dock partitioning library to

create a regular decomposition (where all quanta have identical size and shape) for a

parallel RedBlack 3D problem.

 // The number of processors.
 int nP = mpNodes();

 int Quantums = nP * Q;
 Processors3 P(Quantums);
 P.Map(HILBERT, Q);
 OUTPUT(P << endl);

 // Our problem region is always cubic with side length = N.
 Decomposition3 T(N,N,N);

 // Change this for overpartitioner.
 T.distribute(BLOCK2,BLOCK2,BLOCK2,P);
 OUTPUT(T << endl);

 T.addGhost(1);
 T.pad(true);
 T.balance(false);
 Manhattan grid(T);
 IrregularGrid3 rhs(T);

The Processors3 object decomposes the N3 problem into a Decomposition3 FloorPlan

with P * Q quanta, where P is the number of processors, and Q is the number of quanta

per processor. The FloorPlan T is used to create two KeLP XArrays: grid and rhs, used in

the RedBlack3D application. The Decomposition class derives from FloorPlan, and the

Manhattan and IrregularGrid classes derive from XArray.

The pad() and balance() method calls switch on or off Padding for cache and Load

Balancing features respectively. Without padding, the Autoblocker will still tile the

problem, but will not add dummy padding elements to the data arrays. When the balancer

is turned on, the potentially-expensive Timing Publish communication phase will occur

automatically when a BlockedNodeIterator is used to coordinate computation. These

features will affect memory overhead and communication time respectively, so use them

with care.

85

Code Design
In this section we present the relevant C++ classes used in the Autoblocker and

Autobalancer, and describe their function.

Kelp/Kelp Library

These classes are located in the central kelp library libkelp.so.

• ShapedFloorPlanX – An X-dimensional FloorPlan that knows the processor

region. This contrasts to the normal KeLP FloorPlan that views each partition

as elements of a 1D array. The processor region describes how processors are

oriented relative to each other in the problem domain. The Q-Dock library

ensures the processor region is as square as possible to minimize inter-

processor surface area (and therefore communication).

• TimingsX – An X-dimensional array of quanta timings. This array is the same

shape as the processor region. Uses MPI broadcasts to implement the Timing

Publish phase of the load balancer. Also performs statistics on timings to

remove outlier measurements.

• BalanceX – A base class that coordinates the balancing algorithm. The

XArray has an instance of this class, and so it is persistent across

BlockedNodeIterator loops. BalanceX tracks the FloorPlan of the problem,

and ensures that is up to date in the face of changes. Has a TimingsX instance.

• RCBX – A derived class of BalanceX. Implements the Recursive-Coordinate-

Bisection algorithm using timings from its parent BalanceX class.

Kelp/Q-Dock Library

These classes comprise the new Quantum Decomposition (Q-Dock) library,

which is derived from the KeLP 1.3 Dock library.

86

• BlockedNodeIteratorX – A 2 or 3-dimensional class, derived from

ParallelIterator. Used in the place of NodeIterator, it implements the

Autoblocker and Autobalancer functionality. Has the ability to collect quanta

timings transparently using the MPI_Wtime() wall-clock function.

• ProcessorX – A X-dimensional class that knows how to decompose a parallel

problem using a Quantization factor, and how to order quanta along a Hilbert

Space-Filling Curve.

REFERENCES

1. J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured

workloads with spacefilling curves. IEEE Transactions on Parallel and Distributed
Systems, 7(3):288-- 300, Mar. 1996. 37

2. S. Baden and S. Fink. The Data Mover: A machine independent abstraction for

managing customized data motion. LCPC, August 1999.

3. S. J. Fink, S. R. Kohn, and S. B. Baden. Efficient run-time support for irregular
block-structured applications. Journal of Parallel and Distributed Computing,
50:61--82, May 1998.

4. C. Rivera and C.-W. Tseng, Data transformations for eliminating conflict misses, in

Proceedings of the ACM SIGPLAN'98 Conference on Programming Language
Design and Implementation, 1998, pp. 38--49.

5. S. Coleman and K. McKinley. Tile size selection using cache organization and data

layout. In Proc. Programming Language Design and Implementation, pages 279-
290, 1995.

6. G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms. In 8th

International Conference on Compiler Construction (CC'99), March 1999.

7. G. Rivera and C.-W. Tseng. Tiling optimizations for 3d scientific computations. In
Proceedings of SC'00, Dallas, TX, November 2000.

8. Diekmann, R., Monien, R., Preis, R Load Balancing Strategies for Distributed

Memory Machines. Parallel and Distributed Processing for Computational
Mechanics: Systems and Tools, pages 124-157, Saxe-Coburg 1999.

9. B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel

computing. Parallel Computing, 26:1519--1534, 2000.

10. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. of

Parallel Distributed Computing , 7:279--301, 1989.

11. R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick.
Empirical evaluation of the CRAYT3D: A compiler perspective. In Proceedings of
the 22nd Annual International Symposium on Computer Architecture, pages 320--
331, Santa Margherita Ligure, Italy, June 1995.

12. R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor

load balancing. Parallel Computing, 25:789--812, 1999.

87

88

13. D. H. Gibson. Considerations in block-oriented systems design. AFIPS Conference
Proceedings, 30; SJCC, 75-80, 1967.

14. M. D. Hill. Aspects of Cache Memory and Instruction Buffer Performance. Ph.D.

Thesis, UCB, Technical Report UCB/CSD 87/381, November 1987.

15. A. J. Smith. Cache memories. Computing Surveys 14:3, 473-530, September 1982.

16. J. L. Hennessy, D. A. Patterson. Computer Architecture: A Quantitative Approach.

Second Edition. Morgan Kaufmann Publishers, Inc. San Francisco, CA, 1996.

17. M. Lam, E. Rothberg, and M. E.Wolf. The cache performance and optimizations of

blocked algorithms. Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IV), Santa Clara, CA, April 1991.

18. S. B. Baden, R. B. Frost, D. Shalit. KeLP User Guide Version 1.3. CSE

Department, University of California, San Diego, September 1999.

19. J. S. Liptay. Structural aspects of the System/360 Model 85, Part II: The Cache.

IBM Systems Journal. 7:1, 15-21, 1968.

20. C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic Linear Algebra

Subprograms for FORTRAN usage. ACM Trans. Math. Software, 5:308--323,
1979.

21. David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations

for high-performance computing. ACM Computing Surveys, 26(4), 1994.

22. N. Mitchell, L. Carter, J. Ferrante, and K. Hogstedt. Quantifying the multi-level

nature of tiling interactions. In Proceedings of the Tenth Workshop on Languages
and Compilers for Parallel Computing, Minneapolis, MN, August 1997.

23. S. J. Fink. A Programming Model for Block-Structured Scientific Calculations on

SMP Clusters. UCSD CSE Department, Ph.D Dissertation, June 1998.

24. K. Gatlin and L. Carter. Architecture-cognizant divide and conquer algorithms. In

Proceedings of SC'99, Portland, OR, November 1999.

25. S. VanderWiel, and D. Lilja. (1997). When Caches Aren't Enough: Data

Prefetching Techniques. IEEE Computer, 30(7):23—30

26. AMD. AMD Athlon Processor Model 4 Data Sheet. http://www.amd.com/us-

en/assets/content_type/white_papers_and_tech_docs/23792.pdf, November 2001.

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/23792.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/23792.pdf

89

27. P. M. Papadopoulos, M. J. Katz, G. Bruno. NPACI Rocks: Tools and Techniques
for Easily Deploying Manageable Linux Clusters. Accepted and to appear in:
Cluster 2001, Newport Beach, October, 2001.

28. Intel Corporation. Intel Pentium III Processor Overview.

http://developer.intel.com/design/pentiumiii/prodbref/index.htm

29. San Diego Supercomputing Center (SDSC). Blue-Horizon: NPACI TeraFlops IBM

SP. http://www.sdsc.edu/Resources/bluehorizon.html.

30. S. B. Baden, S. Fink. A Programming Methodology for Dual-tier Multicomputers.

IEEE Transactions on Software Engineering, 26(3): 212-26, March 2000.

31. A. Brandt, Guide to multigrid development, in Multigrid Methods, W. Hackbusch

and U. Trottenberg, eds., Lecture Notes in Mathematics 960, Springer,
Berlin/Heidelberg, 1982.

32. F. C. H. Lin and R. M. Keller. The Gradient Model Load Balancing Method. IEEE

Transactions on Software Engineering, SE-13(1):32--38, January 1987.

33. R. P. R. Diekmann, B. Monien. Load balancing strategies for distributed memory

machines. In Karsch/Monien/Satz, editor, Multi-Scale Phenomena and their
Simulation, pages 255--266. World Scientific, 1997.

34. V. Kumar, A. Grama, and V. Rao. Scalable load balancing techniques for parallel

computers. Journal of Parallel and Distributed Computing, 22(1), 1994.

35. Christian Weiss, Markus Kowarschik, Ulrich Ruede, and Wolfgang Karl. Cache-
Aware multigrid methods for solving poisson 's equation in two dimensions, 1999.
http://www.mgnet.org/mgnet/Conferences/ParMGM98/Papers/kowarschik.html

36. M. Ripeanu, A. Iamnitchi. And I. Foster. Performance Predictions for a Numerical

Relativity Package in Grid Environments. International Journal of Scientific
Applications, 14 (4). 2001.

37. B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs. In
Proceedings of Supercomputing 95, December 1995.

38. B. Hendrickson and K. Devine. Dynamic load balancing in computational

mechanics. Computer Methods in Applied Mechanics and Engineering, 184:485-
500, 2000.

39. R. D. Williams. Performance of dynamic load balancing algorithms for

unstructured mesh calculations. Concurrency: Practice & Experience, 3:457--481,
1991.

http://developer.intel.com/design/pentiumiii/prodbref/index.htm
http://www.sdsc.edu/Resources/bluehorizon.html

90

40. V. Kumar, A. Grama, V. Rao. 1994. Scalable load balancing techniques for
parallel computers. Journal of Parallel and Distributed Computing, 22(1):60-79.

41. B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel

computing. Parallel Computing, 26:1519--1534, 2000.

42. S. T. Barnardand H. D. Simon. A Fast Multilevel Implementation of Recursive

Spectral Bisection for Partitioning Unstructured Problems. Concurrency: Practice
& Experience, 6(2):101--117, 1994.

43. H. D. Simon. Partitioning of unstructured problems for parallel processing.

Computing Systems in Engineering, 2(2/3):135--148, 1991.

44. M.J. Berger and S. Bokhari. A partitioning strategy for non-uniform problems on

multiprocessors. IEEE Trans. Computers, C-26:570--580, 1987.

45. R. Wolski. Dynamically forecasting network performance to support dynamic

scheduling using the network weather service. In Proc. 6th IEEE Symp. on High
Performance Distributed Computing, August 1997.

46. SDSC. NPACI / NSF Distributed Terascale Facility (DTF).

http://www.sdsc.edu/Press/01/080901_teragrid.html

47. IBM Corporation. IBM Redbooks | RS/6000 Scientific and Technical Computing:

POWER3 Introduction and Tuning Guide
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245155.pdf

48. Kyle Gallivan, William Jalby, Ulrike Meier, and Ahmed H. Sameh. Impact of

Hierarchical Memory Systems on Linear Algebra Algorithm Design. The
International Journal of Supercomputer Application, 2(1):12--48, 1988.

49. D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache and local memory

management by global program transformations. Journal of Parallel and
Distributed Computing, 5:587-616, 1988.

50. G. Karypis, K. Schloegel, and V. Kumar. Parmetis---parallel graph partitioning

and sparse matrix ordering library, version 2.0. Univ. of Minnesota, Minneapolis,
MN, 1998.

51. A. Silberschatz, P. B. Galvin. Operating System Concepts. Fifth Edition. Addison-

Wesley, 1998.

52. C. L. Bottasso, J. E. Flaherty, C. Ozturan, M. S. Shephard, B. K. Szymanski, J. D.

Teresco, and L. H. Ziantz. The quality of partitions produced by an iterative load
balancer. In B. K. Szymanski and B. Sinharoy, editors, Proceedings Third

http://www.sdsc.edu/Press/01/080901_teragrid.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245155.pdf

91

Workshop on Languages, Compilers, and Runtime Systems, Kluwer, Boston, pp.
265--277, 1995.

53. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,

1990.

54. Manish Parashar and J.C. Browne. On partitioning dynamic adaptive grid

hierarchies. In 29th Annual Hawaii International Conference on Systems Sciences,
pages 604-613, Maui, Hawaii, January 1996.

55. J. Teresco, M. Beall, J. Flaherty, and M. Shephard. A Hierarchical partition model

for adaptive finite element computation. Technical report, Dept. of Computer
Science, Rensselaer Polytechnic Institute, 1998.

56. F. Irigoin and R. Triolet. Supernode partitioning. In 15th Annual ACM Symposium

on Principles of Programming Languages, pages 319--329, San Diego, California.,
Jan. 1988.

	Introduction
	Parallel Machines and Clusters
	Caches
	Cache Friendliness
	Load Balancing
	Overview of Thesis

	Cache Friendliness
	Motivation
	Existing Solutions
	Design
	Our Testing Application
	Tiling for Cache
	Autoblocker
	Padding for Cache
	EucPad2D
	GcdPad3D
	Pad
	Virtual Memory Behavior

	Experiment
	Experimental Setup
	EucPad2D Experiments
	GcdPad3D Experiments

	Discussion

	Load Balancing
	Motivation
	Existing Solutions
	Design
	Problem Quantization
	Timings and the Autobalancer
	Space-Filling Curve
	Dampener

	Experiment
	Q-Type Experiments
	Uniform Balancer Experiments
	Non-Uniform Balancer Experiments
	Balancer Overhead
	Irregular Balance Experiments

	Discussion

	Conclusion
	Future Work

