
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat: Pract. Exper. 2002; 00:1–20 Prepared using cpeauth.cls [Version: 2001/03/05 v2.01]

NPACI Rocks: Tools and
Techniques for Easily
Deploying Manageable Linux
Clusters

Philip M. Papadopoulos,∗ Mason J. Katz, and Greg Bruno

San Diego Supercomputer Center, University of California San Diego, La Jolla, CA
92093-0505, U.S.A.

SUMMARY

High-performance computing clusters (commodity hardware with low-latency, high-
bandwidth interconnects) based on Linux, are rapidly becoming the dominant computing
platform for a wide range of scientific disciplines. Yet, straightforward software
installation, maintenance, and health monitoring for large-scale clusters has been a
consistent and nagging problem for non-cluster experts. The NPACI Rocks distribution
takes a fresh perspective on management and installation of clusters to dramatically
simplify software version tracking and cluster integration.

NPACI Rocks incorporates the latest Red Hat distribution (including security patches)
with additional cluster-specific software. Using the identical software tools used to create
the base distribution, users can customize and localize Rocks for their site. Strong
adherence to widely-used (de facto) tools allows Rocks to move with the rapid pace of
Linux development. Version 2.2.1 of the toolkit is available for download and installation.
Over 100 Rocks clusters have been built by non-cluster experts at multiple institutions
(residing in various countries) providing a peak aggregate of 2 TFLOPS of clustered
computing.

key words: clusters, beowulf, cluster management, scalable installation, kickstart

1. Introduction

Strictly from a hardware component and raw processing power perspective, commodity
clusters are phenomenal price/performance compute engines. However, if a scalable “cluster”
management strategy is not adopted, the favorable economics of clusters are changed due

∗Correspondence to: San Diego Supercomputer Center, 9500 Gilman Drive, University of California, San Diego,
La Jolla, CA 92093-0505, U.S.A.

Copyright c© 2002 John Wiley & Sons, Ltd.

2 P. M. PAPADOPOULOS, ET AL.

to the additional on-going personnel costs involved to “care and feed” for the machine. The
complexity of cluster management (e.g., determining if all nodes have a consistent set of
software) often overruns part-time cluster administrators (who are usually domain-application
scientists) to either of two extremes: the cluster is not stable due to configuration problems,
or software becomes stale (security holes, known software bugs remain unpatched).

While earlier clustering toolkits expend a great deal of effort (i.e., software) to compare
configurations of nodes, Rocks makes complete OS installation on a node the basic management
tool. With attention to complete automation of this process, it becomes faster to reinstall all
nodes to a known configuration than it is to determine if nodes were out of synchronization
in the first place. Unlike a user’s desktop, the OS on a cluster node is considered to be soft
state that can be changed and/or updated rapidly. This is clearly diametrically opposed to
the philosophy of configuration management tools like Cfengine [2] that perform exhaustive
examination and parity checking of an installed OS. At first glance, it seems wrong to reinstall
the OS when a configuration parameter needs to be changed. Indeed, for a single node this
might seem too heavyweight. However, this approach scales exceptionally well (see Table I)
making it a preferred mode for even a modest-sized cluster. Additionally, how many files can
really be updated while all services on a node remain online? Some files can be changed while
the system is running, but the line is not clear. Clearly, fundamental changes to the operating
environment require a reboot (e.g., new kernel, new glibc) and changes to any shared object or
service require that all processes that are using the file or service in question must terminate
before the update can occur to avoid a program crash.

One of the key ingredients of Rocks is a robust mechanism to produce customized (with
security patches pre-applied) distributions that define the complete set of software for a
particular node. Within a distribution, different sets of software can be installed on nodes
(for example, parallel storage servers may need additional components) by defining a machine-
specific Red Hat Kickstart file. A Kickstart file is a text-based description of all the software
packages and software configuration to be deployed on a node. By leveraging this installation
technology, we can abstract out many of the hardware differences and allow the Kickstart
process to autodetect the correct hardware modules to load (e.g., disk subsystem type:
SCSI, IDE, integrated RAID adapter; Ethernet interfaces; and high-speed network interfaces).
Further, we benefit from the robust and rich support that commercial Linux distributions must
have to be viable in today’s rapidly advancing marketplace.

Wherever possible, Rocks uses automatic methods to determine configuration differences.
Yet, because clusters are unified machines, there are a few services that require “global”
knowledge of the machine – e.g., a listing of all compute nodes for the hosts database and
queuing system. Rocks uses a MySQL database to define these global configurations and
then generates database reports to create service-specific configuration files (e.g., DHCP
configuration file, /etc/hosts, and PBS nodes file).

Since May of 2000, we’ve been addressing the difficulties of deploying manageable clusters.
We’ve been driven by one goal: make clusters easy. By easy we mean easy to deploy,
manage, upgrade and scale. We’re driven by this goal to help deliver the computational power
of clusters to a wide range of users. It’s clear that making stable and manageable parallel
computing platforms available to a wide range of scientists will aid immensely in improving
the parallel tools that need continual development.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 3

In Section 2, we provide an overview of contemporary clusters projects. In Section 3, we
examine common pitfalls in cluster management. In Section 4, we examine the hardware and
software architecture in greater detail. In Section 5, we detail the management strategy which
guides everything we develop. In Section 6, you’ll find deeper discussions of the key NPACI
Rocks tools, and in Section 7, we describe future Rocks development.

2. Related Work

In this section we reference various clustering efforts and compare them to the current state
of Rocks.

• Real World Computing Partnership - RWCP is a Tokyo-based research group
assembled in 1992. RWCP has addressed a wide range of issues in clustering from
low-level, high-performance communication [17] to manageability. Their SCore software
provides semi-automated node integration using Red Hat’s interactive installation
tool [18], and a job launcher similar to UCB’s REXEC (discussed in Section 4.1).

• Scyld Beowulf - Scyld Computing Corporation’s product, Scyld Beowulf, is a clustering
operating system which presents a single system image (SSI) to users through the Bproc
mechanism by modifying the following: the Linux kernel, the GNU C library, and some
user-level utilities. Rocks is not an SSI system. On Scyld clusters, configuration is pushed
to compute nodes by a Scyld-developed program run on the frontend node. Scyld provides
a good installation program, but has limited support for heterogeneous nodes. Because
of the deep changes made to the kernel by Scyld, many of the bug and security fixes must
be integrated and tested by them. These fundamental changes require Scyld to take on
many (but not all) of the duties of a distribution provider.

• Scalable Cluster Environment - The SCE project is a clustering effort being
developed at Kasetsart University in Thailand [19]. SCE is a software suite that includes
tools to install compute node software, manage and monitor compute nodes, and a
batch scheduler to address the difficulties in deploying and maintaining clusters. The
user is responsible for installing the frontend with Red Hat Linux on their own, then
SCE functionality is added to the frontend via a slick-looking GUI. Installing and
maintaining compute nodes is managed with a single-system image approach by network
booting (a.k.a., diskless client). System information is gathered and visualized with
impressive web and VRML tools. In contrast, Rocks provides a self-contained, cluster-
aware installation built upon Red Hat’s distribution. This leads to consistent installations
for both frontend and compute nodes, as well as providing well-known methods for users
to add and customize cluster functionality. Also, Rocks doesn’t employ diskless clients,
avoiding scalability issues and functionality issues (not all network adapters can network
boot). On the whole, SCE and Rocks are orthogonal – the two groups are discussing plans
to meld the base OS environment installation features from Rocks with the sophisticated
management suite from SCE.

• Cfengine - Cfengine [2, 3] is a policy-based configuration management tool that can
configure UNIX or NT hosts. After the initial operating environment is installed by

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

4 P. M. PAPADOPOULOS, ET AL.

hand or another tool (cfengine doesn’t install the base environment), cfengine is used
to instantiate the initial configuration of a host and then keep that configuration
consistent by consulting a central policy file (accessed through NFS). The central policy
file is written in a cfengine-specific configuration language (which resembles makefile
syntax) that allows an administrator to define the configuration for all hosts within
an administration domain. Each cfengine-enabled host consults this file to keep its
configuration current.
To deal with hardware and software heterogeneity, cfengine defines classes to delineate
unique characteristics.

• Open Cluster Group - The Open Cluster Group has released their OSCAR toolkit [14].
OSCAR is a collection of common clustering software tools in the form of tar files that
are installed on top of a Linux distribution on the frontend machine. When integrating
compute nodes, IBM’s Linux Utility for cluster Install (LUI) operates in a similar manner
to Red Hat’s Kickstart. OSCAR requires a deep understanding of cluster architectures
and systems, relies upon a 3rd-party installation program, and has fewer supported
cluster-specific software packages than Rocks.

3. Pitfalls

We embarked on the Rocks project after spending a year running a single, Windows NT,
64-node, hand-configured cluster. This cluster is an important experimental platform that is
used by the Concurrent Systems Architecture Group (CSAG) at UCSD to support research in
parallel and scalable systems. On the whole, the cluster is operational and serves its research
function. However, it stays running because of frequent, on-site, administrator intervention.
After this experience, it became clear that an installation management strategy is essential
for scaling and for technology transfer. This section examines some of the common pitfalls of
various cluster management approaches.

3.1. Disk Cloning

The CSAG cluster above is basically managed with a disk cloning tool, where a model node
is hand-configured with desired software and then a bit-image of the system partition is
made. Commercial software (ImageCast in this case) is then used to clone this image on
homogeneous hardware. Disk cloning was also espoused as the preferred method of system
replication in [15]. While clusters usually start out as homogeneous, they quickly evolve into
heterogeneous systems due to the rapid pace of technology refresh as they are scaled or as failed
components are replaced. As an example, over the past 18 months, the Rocks-based “Meteor”
cluster at SDSC, has evolved from a homogeneous system to one that has seven different types
of nodes, two different CPU architectures, manufactured by three vendors with three different
types of disk-storage adapters. Further, a handful of these machines are dual-homed Ethernet
frontend nodes, and most compute nodes have Myrinet adapters, but not all.

Node heterogeneity is really a common state for most clusters and being able to transparently
manage these small changes makes the complete system more stable. Additionally, while the

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 5

software state of a machine can be described as the sequential stream of bits on a disk, a
more powerful and flexible concept is to use a description of the software components that
comprise a particular node configuration. In Rocks, software package names and site-specific
configuration options fully describe a node. A framework of XML files is used to describe core
components of the base operating environment. Each component specifies one or more Red
Hat packages and optionally a post installation script. Components are drawn together based
on the type of system one wishes to install. Although we have used this idea to break down
Red Hat Kickstart files into a more managable form, the end result for node installation is a
Red Hat compliant text-based Kickstart file. By applying standard programming techniques
to monolithic Kickstart files we have created a single framework of XML files to describe all
variants of hardware (e.g., x86 and IA-64) and software (e.g., compute, frontend, NFS server,
web server) in the Meteor cluster.

3.2. Installing Each System “By Hand”

Installing and maintaining nodes by hand is another common pitfall of neophyte cluster
administrators. At first glance it appears manageable, especially for small clusters, but as
clusters scale and as time passes, small differences in each node’s configuration negatively
affects system stability. Even savvy computer professionals will occasionally enter incorrect
command line sequences, implying that the following questions need to be answered:

• “What version of software X do I have on node Y?”
• “Software service X on node Y appears to be down. Did I configure it correctly?”
• “When my script attempted to update 32 nodes ran, was node X offline?”
• “My experiment on node X just went horribly wrong. How do I restore the last known

good state?”

The Rocks methodology eliminates the need to ask these questions (which rotate generally
around consistency of configuration).

3.3. Proprietary Installation Programs and Unneeded Software Customization

Proprietary and/or specialized cluster installation programs seem like a good idea when
presented with the current technology of commercial distributions. However, going down
the path of building a customized installer, means that many of the hardware detection
algorithms that are present in commercial distributions must be replicated. The pace of
hardware updates makes this task too time-consuming for research groups and is really
unneeded “wheel reinvention”. Proprietary installers often demand homogeneous hardware
or, even worse, a specific brand of homogeneous hardware. This reduces choice for a cluster
user and can inhibit the ability to grow or update a cluster. While Rocks does not have all the
bells and whistles of some of these installers, it is hardware neutral. Also, specialized cluster
installation programs often don’t incorporate the latest software, a pitfall which is described,
and addressed, later in this paper.

Unneeded software customization is another pitfall. Often, cluster administrators feel
compelled to customize the kernel to support high-performance computing. For us, the stock

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

6 P. M. PAPADOPOULOS, ET AL.

Front-end Node(s)

Fast-Ethernet

Switching Complex

P
o

w
e

r D
is

trib
u

tio
n

(E
th

e
rn

e
t a

d
d

re
s
s
a

b
le

 u
n

its
 a

s
 o

p
tio

n
)

NodeNode Node NodeNode

Node NodeNodeNode Node

Gigabit Network

Switching Complex

Public Ethernet

Figure 1. Rocks hardware architecture. Based on a minimal traditional cluster architecture.

Red Hat kernel has served us well – it has supported various hardware platforms and delivered
acceptable performance to a variety of scientific applications (e.g., GAMESS [22], AMBER [23],
NAMD [24] and NWChem [25]).

We acknowledge that kernel customization can increase application performance and is
necessary in order to support unique hardware. For these cases, we have expanded upon Red
Hat’s additions to the standard Linux kernel makefile that includes an rpm target. To include
a new kernel RPM into Rocks, the cluster administrator crafts a .config file, rebuilds the
kernel RPM (with make rpm), copies the resulting kernel binary package back to the frontend
machine and binds it into a new distribution (using rocks-dist, described in Section 6). Then
the new kernel RPM is instantiated on all desired nodes by simply reinstalling them.

4. Rocks Cluster Hardware and Software Architecture

To provide context for the tools and techniques described in the following sections, we’ll
introduce the hardware and software architecture on which Rocks runs.

Figure 1 shows a traditional architecture commonly used for high-performance computing
clusters as pioneered by the Network of Workstations project [4] and popularized by the
Beowulf project [1]. This system is composed of standard high-volume servers, an Ethernet
network, power and an optional off-the-shelf high-performance cluster interconnect (e.g.,
Myrinet or Gigabit Ethernet). We’ve defined the Rocks cluster architecture to contain a
minimal set of high-volume components in an effort to build reliable systems by reducing
the component count and by using components with large mean-time-to-failure specifications.

In support of our goal to “make clusters easy”, we’ve focused on simplicity. There is
no dedicated management network. Yet another network increases the physical deployment
(e.g., more cables, more switches) and the management burden, as one has to manage the

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 7

management network. We’ve made the choice to remotely manage compute nodes over the
integrated Ethernet device found on many server motherboards. This network is essentially
free, is configured early in the boot cycle, and can be brought up with a very small system
image. As long as compute nodes can communicate through their Ethernet, this strategy works
well. If a compute node doesn’t respond over the network, it can be remotely power cycled by
executing a hard power cycle command for its outlet on a network-enabled power distribution
unit. † If the compute node is still unresponsive, physical intervention is required. For this
case, we have a crash cart – a monitor and a keyboard.

This strategy has been effective, even though a crash cart appears to be non-scalable.
However, with modern components, total system failure rates are small. When balanced against
having to debug or manage a management network for faults, reducing network complexity
appears to be “a win”. The downside of using only Ethernet, is that an administrator is “in
the dark” from the moment the node is powered on (or reset) to the time Linux brings up the
Ethernet network. Our experience has been if Linux can’t bring up the Ethernet network, either
a hardware error has occurred with a high probability that physical intervention is necessary,
or a central (common-mode) service (often NFS) has failed. Hardware repairs require nodes
to be removed from the rack. For a common-mode failure, fixing the service and then power
cycling nodes (remotely) solves the dilemma. To minimize the time an administrator is in
the dark, we’ve developed a service that allows a user to remotely monitor the status of a
Red Hat Kickstart installation by using telnet (see Section 6.3). With this straightforward
technology, details of a node power-on-self-test is the only status that cannot be viewed from
a remote location. However, it appears that vendors will soon provide the capability to view
BIOS messages over integrated Ethernet devices. This technological change is being driven by
the needs of internet service providers to cut costs in deploying large web farms.

4.1. Frontend Node

The frontend is installed with widely-used, standard software to support cluster application
development and parallel application execution. We’ve experimented with gcc, g77, The
Portland Group’s High Performance Fortran compilers and Intel’s Linux C/C++ and Fortran
compilers.

Some of the libraries found on the frontend are basic linear algebra subprograms (ATLAS [20]
from UTK’s Innovative Computing Laboratory and Intel’s Math Kernel Library) as well as
various parallel machine message passing libraries MPICH (Myrinet and Ethernet device
support) and PVM (Ethernet device support).

To support job launching in production environments, we’ve packaged the Portable Batch
System (PBS) and the Maui scheduler. PBS is used for its workload management system
(starting and monitoring jobs) and Maui is used for its rich scheduling functionality. When
the frontend is installed, PBS and Maui are automatically started and a default queue is
defined.

†A hard power cycle on a Rocks compute node forces the node to reinstall itself.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

8 P. M. PAPADOPOULOS, ET AL.

For interactive and development environments, Rocks includes mpirun from the MPICH
distribution and REXEC (remote execution) system from UC Berkeley [5]. REXEC provides
transparent, secure remote execution of parallel and sequential jobs. It has a sophisticated
signal handling system which provides remote forwarding of signals. REXEC also redirects
stdin, stdout and stderr from each parallel process and it propagates a local environment
including environment variables, user ID, group ID and current working directory.

4.2. Compute Nodes

Compute nodes are the workhorses – they execute all the jobs. Peak performance is dictated
by the number and type of compute nodes and normally there are many more compute nodes
than frontend nodes. Since there can be wide range for the number of compute nodes, our
software has been designed to accommodate this variable.

5. Management Strategy

Our management strategy is based on the following philosophy:

It must be trivial to deploy any version of software on any node of the cluster,
regardless of the cluster size.

To implement this vision, we’ve defined these rules:

• All software deployed on Rocks clusters are in RPMs.
• Require 100% automatic configuration of compute nodes.
• It’s essential to use scalable services (HTTP, NIS, etc.).

Red Hat has developed two key technologies which directly support this philosophy: Red Hat
Package Manager (RPM) and the Kickstart installation tool. Analogous to Sun Microsystems’
packages, an RPM package contains all the files (e.g., binaries, header files, init scripts, man
pages) for deploying a particular software module. More importantly, RPMs can be installed
using the command line which promotes programmable methods for adding or updating
packages.

Red Hat has written a sophisticated, customizable script which automates package
installation from Red Hat distributions called Kickstart. Nodes installed in this manner are
driven by a user-created configuration file that essentially contains the answers to all the
questions posed by a standard interactive installation. Kickstart files also can contain scripts
that are run during the installation. Rocks leverages this scripting feature to achieve 100%
automatic configuration of compute nodes.

Rocks clusters are fundamentally about managing two systems: a frontend node and a
compute node. The frontend node requires the skills of a savvy UNIX user, as this is a machine
which runs many of the services found on any robust server. In contrast, the compute node is a
minimal server, and simply serves as a container to run parallel jobs. Simplifying the role of a
compute node, treating their base OS as stateless, and requiring 100% automatic configuration

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 9

makes scaling-out tenable. Each compute node added to the system only increments the total
management effort by a small amount.

Another requirement for scaling out is only using scalable services and utilizing dynamic
services for frequently changing state which must be communicated to compute nodes (user
information, network configuration, etc.). For installation, compute nodes use Kickstart’s
HTTP method to pull RPMs across the network. For configuring Ethernet devices on
compute nodes, the Dynamic Host Configuration Protocol (DHCP) is essential. User account
configuration (e.g., passwords and home directory locations) are synchronized from the
frontend node to compute nodes with the Network Information Service (NIS).

We have employed one unscalable service, the Network File System (NFS) [7]. The frontend
node exports all user home directories to compute nodes via NFS. We are searching for an
alternative that is scalable, fault-tolerant and transparent (i.e., exports the ubiquitous interface
open/read/write/close).

The strategy described above simplifies cluster management, promotes experimentation and
provides a method to keep production machines on current software. As mentioned in Section 3,
we used to spend a large amount of time checking if compute nodes were consistent. Now, rather
than wondering, we simply reinstall by sending a message over the network. After a compute
node completes its reinstallation, currently 5-10 minutes, the node is consistent.

Our strategy promotes experimentation. Developers can change configuration and try
services in a wanton manner because any number of compute nodes can be restored to a
known good state in 5-10 minutes.

Finally, software on production machines can be systematically and continually upgraded.
As described in the next section, we’ve built a tool that easily updates a Rocks distribution
(a collection of RPMs from Red Hat, the community and NPACI). This tool can be used to
apply the latest security advisories and bug fixes. After the updates are validated on a small
test cluster, the production system can be upgraded by submitting a “reinstall cluster” job
to Maui, as not to disturb any running applications. Once the reinstallation is complete, the
next job will have a known, consistent software base.

6. Tools

6.1. Actively Managing Node Configuration with HTTP and XML

All nodes are installed using Red Hat’s kickstart tool which is driven by a text-based
configuration file. This text file contains all the package names to install and “post processing”
commands. Traditionally, kickstart files are static entities created by system adminstrators and
tailored, by hand, for each machine type.

In Rocks, we actively manage kickstart files by building them on-the-fly with a CGI script.
This script merges two major functions to produce the resulting kickstart file: it constructs a
general configuration file from a set of XML-based configuration files and applies node-specific
parameters by querying a local SQL database.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

10 P. M. PAPADOPOULOS, ET AL.

<?XML VERSION="1.0" STANDALONE="no"?>
<KICKSTART>

<DESCRIPTION>Setup the DHCP server for the cluster</DESCRIPTION>
<PACKAGE>dhcp</PACKAGE>
<POST>

<!-- tell dhcp just to listen to eth0 -->
awk ’ \

/^DHCPD_INTERFACES/ { \
printf("DHCPD_INTERFACES=\"eth0\"\n"); \
next; \

} \
{ \

print $0; \
} ’ /etc/sysconfig/dhcpd > /tmp/dhcpd

mv /tmp/dhcpd /etc/sysconfig/dhcpd
</POST>

</KICKSTART>

Figure 2. XML node file: DHCP server configuration.

The XML-based configuration files are divided into two types, nodes and graphs. A node file
is a small single-purpose module that specifies the packages and per-package post configuration
commands for a specific service. † For example, Figure 2 is the node file for a DHCP server.

An XML-based graph file links all the defined modules together with directed edges. An edge
represents a relation between two modules. The roots of the graph represent “appliances”, such
as compute and frontend. Figure 3 is a snippet from the graph file and Figure 4 visualizes the
graph components: appliances, modules and the relationship between modules (the edges).
This single XML-based software installation infrastructure “describes” all node behaviors.

At installation time, a machine requests its kickstart file via HTTP from a CGI script on
the frontend server. This script uses the requesting node’s IP address to drive a series of SQL
queries that determine the appliance type, software distribution, and localization of the node.

The script then parses the XML graph file and traverses it, parsing all the node files based
on the appliance type. Using Figure 4 as an example, if the machine was configured to be a
compute appliance, the traversal of the graph would be the compute, mpi, and c-development
node files. The end result of the parser is a Red Hat compliant text-based kickstart file which
is returned to the requesting machine.

This method has proven to be extremely flexible, as heterogeneous hardware is no harder to
support than homogeneous. For example, in our cluster at SDSC, one XML graph file supports
the dynamic kickstart file generation for three processor types (IA-32, Athlon and IA-64), three

†We develop and distribute the default set of node and graph files that are automatically installed when a user
creates a frontend node. Users can modify (or add) a node or graph file to tailor the cluster to their needs
(explained in Section 6.2.3).

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 11

<?XML VERSION="1.0" STANDALONE="no"?>
<GRAPH>

<DESCRIPTION>Default Graph for NPACI Rocks</DESCRIPTION>

<EDGE FROM="frontend" TO="mpi-devel"/>
<EDGE FROM="frontend" TO="dhcp-server"/>

<EDGE FROM="compute" TO="mpi"/>
<EDGE FROM="compute" TO="c-development"/>

<EDGE FROM="mpi-devel" TO="c-development"/>
<EDGE FROM="mpi-devel" TO="fortran-development"/>

</GRAPH>

Figure 3. An excerpt from the XML graph file.

mpi

dhcp-server c-development

mpi-devel fortran-development

compute

frontend

Figure 4. A visualization of the XML graph description.

storage types (SCSI, IDE and integrated RAID devices) and two network types (Ethernet and
Myrinet).

6.2. Managing a Cluster-Enhanced Linux Distribution with Rocks-Dist

A major problem in the day-to-day administration of clusters is managing the software that
runs on the nodes. This problem is twofold. First, how is the software initially deployed and
what is the administration cost of the initial deployment? Second, how are upgrades to the
system software achieved and how are software upgrades chosen?

The initial deployment of a Rocks cluster is performed using Red Hat’s Kickstart installation
program. However, since a Red Hat distribution is only a collection of RPMs, anyone can create
a new distribution that can be installed with Kickstart. This is the foundation of the Rocks
distribution: We start with a stock Red Hat release, apply Red Hat’s updates and add a
small number of RPMs. The new distribution is supported by Kickstart and remains true to

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

12 P. M. PAPADOPOULOS, ET AL.

the original structure of a Red Hat distribution, only the list of software packages has been
expanded.

6.2.1. Keeping Up with Software

One of the widely-claimed benefits of open source software is the rapid pace of development.
These benefits range from the quick closure of security holes in software, to rapid performance
and functionality enhancements. Although these are tremendous benefits of Linux (and open
source in general), this rapid turn around of software is also a great burden on system
administrators. For example, in less than a year, Red Hat 6.2 for Intel had 124 updated
packages. There were also 74 security vulnerabilities reported to www.securityfocus.com, for
which several of the updated packages were targeted. On average, this amounts to one update
every three days.

A goal of Rocks is to provide an agile cluster distribution that rests on top of the latest
Red Hat Linux software set. In this vein, the only manageable scheme for addressing software
updates is to automatically track them. While Red Hat does not always “get it right” they
must remain responsive and correct any errors to maintain their leading market share. We
simply do not have the manpower, time, or interest to inspect every software update and bless
it. If Red Hat ships it, so do we.

To integrate our software with Red Hat’s stock and updated packages, we created a program
called rocks-dist. Rocks-dist gathers software components from the following sources and
constructs a single new distribution:

• Red Hat software - The stock distribution and updated RPMs replicated onto a local
mirror. Rocks-dist resolves version numbers of RPMs and only includes the most
recent software. This behavior alone allows us to produce an always up-to-date Red
Hat distribution that frees the user from having to update software after an initial
installation.

• Third party software - Any desired software not included in Red Hat. Some of our
database packages fall into this category.

• Local software - All RPMs built on site. For Rocks, this means all Rocks packages
and Kickstart profiles for compute nodes and frontend nodes. This also includes
our eKV enhancement to Kickstart to provide status and interactive control over
the network during the Kickstart process (detailed in Section 6.3).

6.2.2. Extensibility

Figure 5 illustrates the process of gathering software to produce a distribution. The resulting
Rocks distribution looks just like a Red Hat distribution, only with more software. A
consequence of this is repeatability – a Rocks distribution can be run through the identical
process to produce an enhanced Rocks distribution. This allows a user, such as a university
campus, to add local software packages to Rocks and have all departments build clusters based
off the campus’ distribution. This object-oriented approach is illustrated in Figure 6.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 13

Red Hat

7.1

Red Hat

Updates

NPACI

Rocks

RPMS

Other

RPMS

Kickstart

Profiles
eKV

NPACI

Rocks

rocks-dist

Figure 5. Building a Rocks distribution with rocks-dist.

Red Hat

NPACI

Rocks

Campus

Cluster

Flow of Software

Figure 6. Object-oriented model of rocks-dist.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

14 P. M. PAPADOPOULOS, ET AL.

We envision a hierarchy of Rocks distribution hosts, each adding software packages for child
distributions. This method of distributing software allows us to focus on our Rocks components
while remaining highly extensible for end users.

6.2.3. Kickstarting and Heterogeneity

Software homogeneity is not always a desirable goal. For instance, during development of
Rocks, we had the need to isolate developers from one another and allow different distributions
to be installed on compute nodes of a shared cluster. This need is not isolated to software
development, even production users may want custom software deployed on nodes for a specific
job run, without affecting other users on the cluster.

When building a new distribution, rocks-dist replicates the software from its parent
distribution using wget over HTTP (see Figure 6) and creates a new tree comprised mostly of
symbolic links to the mirrored software. Inside this tree is a build directory that contains the
XML configuration infrastructure. Users can customize this new distribution (by editing the
XML modules or graph) and manually adding new RPMs that rocks-dist did not integrate. By
creating multiple distributions and editing the XML configuration infrastructure, the user can
create unique configurations for subsets of cluster nodes. Further, because each distribution
is composed mainly of symbolic links, each distribution is lightweight (on the order of 25MB)
and can be built in under a minute.

The strategy is similar to diskless clients which boot their system image off NFS. However,
by pushing the software to the nodes, we incur a single network bandwidth penalty which does
not recur every time the node boots. Further, we can create variants of the software images in
minimal space and time.

6.3. Reinstallation

Reinstallation is the primary mechanism for forcing the base OS on the root partition of
compute nodes to a known state. As a side note, all non-root partitions are preserved over
reinstalls, and therefore, can be used as persistent storage. After building a distribution with
rocks-dist, the distribution is applied to compute nodes via reinstallation.

A compute node reinstalls itself when an administrator invokes shoot-node, or after a
hard power cycle (e.g., power failure). Shoot-node is a command-line tool that, over Ethernet,
instructs a compute node to reboot itself into installation mode. It monitors the node’s
progress and pops open an xterm window which displays the status of the Red Hat Kickstart
installation. This status is redirected over the Ethernet by eKV (Ethernet Keyboard and
Video). This is accomplished by slightly modifying Red Hat’s Kickstart installation program,
anaconda, to capture standard output and present it on a telnet-compatible port. Should
something go wrong, we’ve also inserted code that allows users to interact with the installation
through the same xterm window that reports the installation status (Figure 7).

Using HTTP to distribute RPMs scales well. It offers many simple methods in which to
support our software management strategies for large clusters. Table I shows the total time to
reinstall a number of nodes concurrently from a single HTTP server. In this experiment, the
HTTP server is a dual 733 MHz PIII with 100 Mbit Ethernet and the compute nodes are 733

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 15

Figure 7. Shoot-node and eKV. Red Hat’s Kickstart screen is redirected over Ethernet.

MHz - 1 GHz PIIIs with Myrinet. Times include the time taken to rebuild the Myrinet driver.
Each node transfers approximately 225 MB of data from the server. In this experiment, of the
total time (600 seconds), approximately 223 seconds is devoted to downloading and installing
RPMs (the remainder of the time is spent in rebooting and post configuration), therefore, each
reinstalling node demands 1 MB/sec of network bandwidth (225 MB / 223 sec). Assuming the
web server can utilize 70% of the 100 Mbit Ethernet connection, (i.e., provide 7 MB/sec),
the web server described above should be able to support 7 concurrent reinstallations at full
speed. By running a micro-benchmark that consisted of serially downloading all the RPMs
a compute node downloads during its reinstallation, we found the web server sourced 7-8
MB/s. Additionally, our empirical data validates the above model as an 8-node concurrent
reinstallation takes almost the same time as a 1, 2 and 4-node reinstallation.

In order to support full-speed reinstallation at scale, many simple methods can be employed.
First, one can scale the network connection to the web server. By adding a Gigabit Ethernet
connection to the web server, it will theoretically be able to support 10 times the number of
concurrent full-speed reinstallations. †

†In practice, Gigabit Ethernet will support 7.0-9.5 times the number of concurrent full-speed reinstallations
over Fast Ethernet. [26]

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

16 P. M. PAPADOPOULOS, ET AL.

Table I. Reinstallation performance. The HTTP server is a dual 733 MHz PIII with 100
Mbit Ethernet. Compute nodes are 733 MHz - 1 GHz PIIIs with Myrinet. Times include
the time taken to rebuild the Myrinet driver. Each node transfers approximately 225 MB

of data from the server.

Nodes Total Reinstall Time (minutes)

1 10.3
2 9.8
4 10.1
8 10.4
16 11.1
32 13.7

Another method is to replicate the web server and use HTTP load balancing (many hardware
and software solutions exist). † By deploying N web servers, one can support N times the
number of concurrent full-speed reinstallations that a single web server can support. ‡

As mentioned earlier, compute node reinstallation time is between 5 and 10 minutes. The
upper bound is for compute nodes with a Myrinet card, which rebuild the driver from source
on its first boot after an installation. Driver rebuilds mitigate the problem of having to keep N
Myrinet driver binary packages for N versions of the Linux kernel. Because the Linux kernel
has module versioning enabled (the default for Red Hat compiled kernels), it will only load
modules that were compiled for that particular kernel version. The Linux kernel moves quickly
– over the last year, there have been 16 updates to the “stable tree” (kernel version 2.4).
Since we maintain the package for the Myrinet driver, we quickly grew tired of the cycle of:
installing a node with the latest kernel and compilers, preparing the kernel tree for compilation,
compiling the Myrinet driver, packaging the driver, then transporting the binary package back
to our distribution server. The easiest way to manage kernel version changes is to have each
compute node compile the Myrinet driver from a source RPM. The Myrinet driver module can
be compiled, installed, and started without incurring a reboot. The seemingly heavy-weight
solution adds only a 20-30% time penalty on reinstallation.

6.4. Deriving Cluster Configuration Via an SQL Interface

One of the most serious pitfalls of UNIX is the lack of a common format for configuration files.
The Registry on Windows machines is an attempt to enforce a single extensible format for
configuration. Although the Registry has its own problems, it is a step in the right direction.

†Replicating an installation web server is straightforward – downloading RPMs is strictly read only.
‡Disk performance is a non-issue. 225 MB of RPMs easily fits into 512 MB of main memory (and one GB of
main memory for servers is common).

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 17

Table II. An example of the Nodes table stored in the Rocks MySQL database.

ID MAC Name Membership Rack Rank IP Comment

1 00:30:c1:d8:ac:80 frontend-0 1 0 0 10.1.1.1 Gateway machine
2 00:01:e7:1a:be:00 network-0-0 4 0 0 10.255.255.253 Switch for Cabinet 0
3 00:50:8b:a5:4d:b1 nfs-0-0 7 0 0 10.255.255.249 NFS Server in Cabinet 0
4 00:50:8b:e0:3a:a7 compute-0-0 2 0 0 10.255.255.245 Compute node
5 00:50:8b:e0:44:5e compute-0-1 2 0 1 10.255.255.244 Compute node
6 00:50:8b:e0:40:95 compute-0-2 2 0 2 10.255.255.243 Compute node
7 00:50:8b:e0:40:93 compute-0-3 2 0 3 10.255.255.242 Compute node
8 00:50:8b:c5:c7:d3 web-1-0 8 1 0 10.255.255.246 Web Server in Cabinet 1

Rocks clusters use a MySQL database for site configuration. The two key tables we provide
are, 1) a site-specific configuration table and, 2) a nodes table (Table II). From these tables
we generate the /etc/hosts, /etc/dhcpd.conf, and PBS configuration files.

The “nodes table” houses the bindings between host names and network addresses. When
the frontend machine is installed from the Rocks CD distribution, the database is created, and
an entry for this machine is added to the database. Bindings for the compute nodes are added
to the database by running the utility insert-ethers on the frontend machine, and sequentially
booting compute nodes with the Rocks CD. † Insert-ethers monitors syslog messages for DHCP
requests from new hosts and when found, generates a hostname, determines the next free IP
address, binds the hostname and IP address to its Ethernet MAC address, and inserts this
information into the database. Insert-ethers then rebuilds service-specific configuration files by
running queries against the database, and restarting the respective services.

We, like many people who run parallel machines [21], have our own set of rudimentary
scripts to interactively control and monitor the nodes. Our first version of our script that
killed runaway processes on compute nodes (cluster-kill), generated a list of nodes by
matching the prefix compute- on each entry in /etc/hosts. This works fine on small clusters,
or when there is a job running on all the compute nodes, but when a runaway job is on a subset
of the nodes (e.g., running on the nodes in one cabinet), or when some nodes are down, the
brute-force method quickly becomes tiring. By simply adding an SQL interface to the script
makes it more powerful as the user can intelligently direct the script to a subset of the nodes.
For example, if the user knows that all the runaway processes are in cabinet 1, then a little
finesse can be added to cluster-kill by:

†Nodes are booted sequentially in order for insert-ethers to bind hostnames to physical locations, as insert-
ethers associates a rack and rank with each hostname (see Table II). The serial nature of this procedure is
only required when installing nodes. This procedure can be executed in parallel if a node’s physical location is
unimportant.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

18 P. M. PAPADOPOULOS, ET AL.

Table III. An example of the Memberships table.

ID Name Appliance Compute

1 Frontend 1 no
2 Compute 2 yes
3 External 1 no
4 Ethernet Switches 4 no
5 Myrinet Switches 4 no
6 Power Units 5 no

cluster-kill --query="select name from nodes where rack=1" bad-job

Any SQL query, including joins, can be fed to cluster-kill. Another table defined in the
Rocks database is the memberships table (Table III). By using the Compute field of the
memberships table and joining it with the Membership field of the nodes table, one can kill
a runaway job only on the compute nodes with the following:

cluster-kill --query="select nodes.name from nodes,memberships where \
nodes.membership = memberships.id and \
memberships.name = ’Compute’" bad-job

This is a trivial example, but it illustrates the potential power of multi-table joins.

7. Current Status and Future Work

As of June 2002, the latest Rocks release (version 2.2.1) is:

• Red Hat 7.2 base plus Red Hat’s 327 security advisories and bug fixes.
• Assorted community software (MPICH, PVM, ATLAS BLAS, Intel math kernel library,

etc.).
• NPACI software (the software described in this paper).

Rocks has been used to install 12 clusters on the UCSD campus (including two 256-
processor clusters at the Scripps Institute of Oceanography) and at least a dozen groups from
around the world have installed their own Rocks clusters (e.g., Advanced Computing Center
for Engineering & Science at UT Austin, Pacific Northwest National Labs, the Chemistry
Department at Northwestern University, and a group at the Hong Kong Baptist University).
We say “at least” a dozen because the total number is unknown as our software doesn’t require
registration, therefore, we don’t have a hard count of Rocks users – we only know our user
base through direct communication. In response to a request we placed on our email discussion
list, we’ve calculated that Rocks drives over 2 TFLOPS (peak) of clustered computing.

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

NPACI ROCKS 19

Rocks is installed with a floppy and a CD and the frontend Kickstart file is built from a simple
web form (links to both the ISO image and web form are found at http://rocks.npaci.edu/).
After the frontend is installed, the same CD is used to bring up the individual compute nodes
(the floppy is not needed for compute node installations). This scheme is similar to Scyld
Computing Corporation’s cluster installation found on their Scyld Beowulf CD [13].

We look forward to integrating future clusters. An announced cluster which will be running
Rocks is a prototype machine for the Grid Physics Network (GriPhyN) project. The GriPhyN
project is tasked with building a scalable computational environment that will drive Petabyte-
scale storage. Paul Avery, the principal investigator, has chosen to use Rocks to build a
prototype Tier 2 server. When in production, the Tier 2 sites will provide roughly 1/3 of the
cycles needed by high-energy physicists to analyze data coming from experiments at CERN’s
Large Hadron Collider.

8. Conclusion

Armed with a management strategy which dictates the three mechanisms of 1) all software
deployed are in RPMs, 2) 100% automatic configuration of compute nodes, and 3) utilizing
only scalable services, we’ve built a distribution which allows non-cluster systems experts to
easily deploy and maintain their own high-performance cluster.

Many of the underlying mechanisms and techniques described in this paper are not new –
they are well-understood, and often, widely deployed. What is new is the combination of these
mechanisms in order to build a cluster-aware Linux distribution that, through one mechanism
(reinstall), simplifies cluster management (which serves the application scientist) and promotes
experimentation (which serves the cluster developer).

NPACI Rocks is a collection point for Linux cluster software – we encourage all participation
from the community, especially bug fixes, future enhancement suggestions and new software
RPMs.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of Compaq Computer Corporation, and especially our
account representative Sally Patchen.

We’ve benefitted enormously from our collaboration with David Culler and the Millennium Group
at UC Berkeley, most notably: Eric Fraser, Matt Massie, Albert Goto, Brent Chun and Philip
Buonadonna.

Red Hat has made a fantastic contribution to the community with their Red Hat Package Manager
and Kickstart.

We also thank IBM for equipment donations through their Shared University Research program
(SUR).

We thank the reviewers for their insightful comments that helped us tune this paper.
And, most importantly, to Caroline, Melissa, and Monica, whose love brings balance.

REFERENCES

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

20 P. M. PAPADOPOULOS, ET AL.

1. Sterling T, Savarese D, Becker DJ, Dorband JE, Ranawake UA, Packer CV. BEOWULF: A Parallel
Workstation for Scientific Computation. Proceedings of the 24th International Conference on Parallel
Processing 1995; I:11–14.

2. Burgess M. Cfengine A Site Configuration Engine. USENIX Computing Systems 1995; 8(3).
3. Burgess M. Recent Developments in Cfengine. Unix.nl Conference, The Hague 2001.
4. Anderson TE, Culler DE, Patterson DA. A Case for Networks of Workstations: NOW. IEEE Micro 1995;

February.
5. Chun BN, Culler DE. REXEC: A Decentralized, Secure Remote Execution Environment for Clusters.

4th Workshop on Communication, Architecture, and Applications for Network-based Parallel Computing
2000; January.

6. Foster I, Kesselman C. Globus: A Metacomputing Infrastructure Toolkit. The International Journal of
Supercomputer Applications and High Performance Computing 1997; 11(2):115–128.

7. Callaghan B, Pawlowski B, Staubach P. RFC 1813: NFS Version 3 Protocol Specification.
ftp://ftp.internic.net/rfc/rfc1094.txt [June 1995].

8. Alexander S, Droms R. RFC 2132: DHCP Options and BOOTP Vendor Extensions.
ftp://ftp.internic.net/rfc/rfc1533.txt [March 1997].

9. Antilla C, Augustin L, Biles B. Build-to-Order Software: Vision and Short Term Implementation.
http://www.valinux.com.

10. Mehat S, Sprackett Z, Johnson D, Katzung J, Haitzler C. VACM: Users and Programmers Manual.
http://www.valinux.com.

11. Maui Scheduler.
http://mauischeduler.sourceforge.net.

12. Portable Batch System.
http://pbs.mrj.com/.

13. Scyld Beowulf.
http://www.scyld.com/.

14. Open Cluster Group. OSCAR: A packaged cluster software stack for high performance computing.
http://www.openclustergroup.org [January 2001].

15. Sterling T, Salmon J, Becker DJ, Savarese D. How to Build a Beowulf: A Guide to the Implementation
and Application of PC Clusters. MIT Press, 1999.

16. Ishikawa Y, Tezuka H, Hori A, Sumimoto S, Takahashi T, O’Carroll F, Harada H. RWC PC Cluster II and
SCore Cluster System Software–High Performance Linux Cluster. Proceedings of the 5th Annual Linux
Expo 1999; 55-62.

17. Tezuka H, Hori A, Ishikawa Y, Sato M. PM: An Operating System Coordinated High Performance
Communication Library. High-Performance Computing and Networking 97 1997.

18. Parallel and Distributed Systems Software Laboratory, RWCP.
http://pdswww.rwcp.or.jp/.

19. Uthayopas P, Angsakul T, Maneesilp J. System Management Framework and Tools for Beowulf Cluster.
Proceedings of HPCAsia2000, Beijing, China, 2000; May.

20. Whaley C, Petitet A, Dongarra J. Automated Empirical Optimization of Software and the ATLAS Project.
Parallel Computing, May/June 2001; 22-29.

21. Ong E, Lusk E, Gropp W. Scalable Unix Commands for Parallel Processors: A High-Performance
Implementation. To appear at Euro PVM-MPI 2001 (PVM-MPI 01), Santorini (Thera) Island, Greece,
17-20 April 2002.

22. General Atomic and Molecular Electronic Structure System (GAMESS).
http://www.msg.ameslab.gov/GAMESS/GAMESS.html.

23. Assisted Model Building with Energy Refinement (AMBER).
http://www.amber.ucsf.edu/amber/amber.html.

24. NAMD - Scalable Molecular Dynamics.
http://www.ks.uiuc.edu/Research/namd/.

25. NWChem - High Performance Computational Chemistry Software.
http://www.emsl.pnl.gov:2080/docs/nwchem/nwchem.html.

26. Loeb ML, Rindos AJ, Holland WG, Woolet SP. Gigabit Ethernet PCI Adapter Performance. IEEE Network
1995; March-April 2001, 15(2).

Copyright c© 2002 John Wiley & Sons, Ltd. Concurrency Computat: Pract. Exper. 2002; 00:1–20
Prepared using cpeauth.cls

