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NPACI Rocks
Tutorial

NPACI All Hands Meeting

March 6, 2002

Outline

n Build a Rocks Cluster
® Start right away

® Check in occasionally throughout this talk

n Introduction
n Hardware Components
n Software Components
n Future Work
n Open Lab (Customization)
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Who is NPACI Rocks?

n Cluster Computing Group at SDSC

n UC Berkeley Millennium Project
® Provide Ganglia Support

n Linux Competency Centre in SCS Enterprise
Systems Pte Ltd in Singapore
® Provide PVFS Support

® Working on user documentation for Rocks 2.2

Cluster distributions

n http://clusters.top500.org/
n We were honored to be seen as

experts in the field
n We had a blast voting for

Rocks and Oscar (this isn’t a
real poll)

n We encourage people to try
these other distributions

n Why are 26% rolling there
own clusters?
® This is the real message of

the poll
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What sets us apart

ß Fully automated cluster deployment
1. Get and burn ISO CD image from Rocks.npaci.edu

2. Fill-out form to build initial kickstart file for your first
front-end machine

3. Kickstart “naked” frontend with CD and kickstart file

4. Reboot frontend machine

5. Integrate compute nodes with “Insert Ethers”

6. Ready to go!

ß Complete out of the box solution with rational default
settings

Who is Using It?

n Growing (and partial) list of users that we know about:
® SDSC, SIO, UCSD (8 Clusters, including CMS (GriPhyN) prototype)

® Caltech

® Burnham Cancer Institute

® PNNL (several clusters, small, medium, large)

® University of Texas

® University of North Texas

® Northwestern University

® University of Hong Kong

® Compaq (Working relationship with their Intel Standard Servers
Group)

® Singapore Bioinformatics Institute

® Myricom (Their internal development cluster)
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Motivation

n Care and feeding for a system isn’t fun.
n Enable non-cluster experts to run clusters
n Essential to track software updates

® Open source moves fast!

® On the order of 3 updates a week for Red Hat

n Essential to track Red Hat releases
® Feature rot

® Unplugged security holes

n Run on heterogeneous, standard high-volume components

Philosophy

n All nodes are 100% automatically installed
® Zero “hand” configuration

® Scales very well

n NPACI Rocks is an entire cluster-aware distribution
® Included packages

n Full Red Hat release
n De-facto standard cluster packages (MPI, PBS/Maui, etc.)
n NPACI Rocks packages
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More Philosophy

n Use installation as common mechanism to manage cluster
® Install when:

n Initial bring-up

n Replacing a dead node

n Adding new nodes

n Also use installation to keep software consistent
® If you catch yourself wondering if a node’s software is up-

to-date, reinstall!

n In 10 minutes, all doubt is erased.

Hardware
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Minimum Components

x86 server

Local Hard
Drive

Power

Ethernet

Why x86 clusters?

Source: Dave Pierce, SIO
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Optional Components

n Myrinet high-performance
network

n Network-addressable power
distribution unit

n Evil keyboard/video/mouse
network not required
® In fact, we believe it’s not

desirable – just another network
to manage.

Basic Architecture

Front-end Node(s) Public Ethernet

Fast-Ethernet 
Switching Complex

Gigabit Network 
Switching Complex

Node Node Node Node Node

Node Node Node Node Node

Pow
er D

istributi o n
 ( N

e t a ddr essa bl e u nits as o pt io n)
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Meteor Cluster at SDSC
n Rocks v2.2
n 2 Frontends
n 4 NFS Servers
n 100 nodes

® Compaq

n 800, 933, IA-64
n SCSI, IDA

® IBM

n 733, 1000
n SCSI

n 50 GB RAM
n Ethernet

® For management

n Myrinet 2000

Software



9

Major Components

Software

Standard Beowulf

(and then some)
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Major Components

Red Hat

n Stock Red Hat 7.2 with updates (x86 and ia64)
n Linux 2.4 Kernel
n No support for other distributions

® We believe Red Hat is the market leader for Linux

n In the US
n And becoming so in Europe

® Automated install (kickstart) is a requirement

® Very good hardware detection

® A Cluster is not a general purpose computer

n “But I’d rather run debian” doesn’t mean anything
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Parallel Application APIs

n POSIX, Sockets
® Simple parallel jobs

® First level of parallel code

n MPI, PVM
® Message passing

® Advanced programming model

® High performance parallelism

MPI

n Message Passing Interface v1.1
® Standard for high performance message passing on

parallel machines

® http://www-unix.mcs.anl.gov/mpi/

n Supports
® GNU C, Fortran 77

® Intel C, Fortran 77, Fortran 90

® Portland Group C, C++, Fortran 77, Fortran 90

n Requires site license
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PVM

n Parallel Virtual Machines v3.4.3
® Message passing interface for heterogeneous

architectures

n Supports over 60 variants of UNIX

n Supports Windows NT
® Resource control and meta computing

® Fault tolerance

® http://www.csm.ornl.gov/pvm/

Portable Batch System

n Three standard components to PBS
® MOM

n Daemon on every node
n Used for job launching and health reporting

® Server

n On the frontend only
n Queue definition, and aggregation of node information

® Scheduler

n Policies for what job to run out of which queue at what time

n We added a forth
® Configuration

n Get cluster environment from our SQL database
n Get list of nodes from Ganglia
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PBS RPM Packaging

n Repackaged PBS
® Added “chkconfig” support to start up scripts

® Four packages

n pbs
n pbs-mom
n pbs-config-sql

® Python code to generate database report

n pbs-common

n Rocks 2.2 automatically defines a default queue with all
compute nodes participating

n http://pbs.mrj.com is a good starting point for pbs

PBS Server Defaults

n Startup script: “/etc/rc.d/init.d/pbs-server start”
n /usr/apps/pbs/pbs.default

® Sourced every time PBS is started
#
# Create and define queue default
#
create queue default
set queue default queue_type = Execution
set queue default resources_max.nodect = 256
set queue default resources_max.nodes = 999
set queue default resources_min.nodect = 1
set queue default resources_default.neednodes = 1
set queue default resources_default.nodect = 1
set queue default resources_default.nodes = 1
set queue default resources_default.walltime = 1000:00:00
set queue default enabled = True
set queue default started = True
#
# Set server attributes (assume maui scheduler will be installed)
#
set server managers = maui@frontend-0
set server operators = maui@frontend-0
set server default_queue = default
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server scheduling = false
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Maui Scheduler

n PBS using Maui 3.0 as the scheduler
® De facto standard HPC scheduling

® http://supercluster.org/projects/maui

n We are also looking into
® Sun’s Grid Engine

® SDSC’s Catalina Scheduler

® Maui Scheduler Molokini Edition

NFS

n User account are served over NFS
® Works for small clusters (<= 128 nodes)

® Will not work for large clusters (>1024 nodes)

® NAS is better than Linux

n Rocks uses the Frontend machine to server NFS
n We have deployed NAS on several clusters

n Applications are not served over NFS
® /usr/local/ does not exist

® All software is installed locally from RPM
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Open SSH

n Replaces Telnet, Rsh
® Cryptographically strong authentication and encryption

® Forwards X11 connections (no more $DISPLAY)

n Rocks uses SSH
® Mpi-launch

® Cluster-fork

n Ssh-agent
® Manager for SSH keys

® ssh-agent $SHELL

NIS & DHCP

n Network Information System
® Manages user accounts and host information

® Alternative to copying files around

n /etc/hosts
n /etc/passwd

® Scalable

n Supports slave servers
n Clients attach to closest server and load balance themselves

n Dynamic Host Configuration Protocol
® Manages network information

® Alternative to static IP address

® Foundation of insert-ethers

n Critical to keep dynamic state dynamic
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SNMP

n Enabled on all compute nodes

n Great for point-to-point use
® Good for high detail on a single end-point

® Does not scale to full cluster wide use

n Supports Linux MIB
® Uptime, Load, Network statistics

® Install Software

® Running Processes

snmp-status

n snmp-status compute-0-0
PID TIME MEM PROCESS
1 424 264 init
2 0 0 keventd
3      3 0 ksoftirqd_CPU0
4      4 0 ksoftirqd_CPU1
5  17212 0 kswapd
6      0 0 kreclaimd
7      1 0 bdflush
8      5 0 kupdated
9      0 0 mdrecoveryd
18   1695      0 kjournald
137      0 0 kjournald
5769     0 3856 httpd
11685 0 144 pvfsd
12083 1 44 dhcpcd
11685 0 144 pvfsd
12083 1 44 dhcpcd
12224 2536 432 syslogd
12229     11 268 klogd
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Syslog

n Native UNIX system event logger
® Logs events to local dist

n /var/log/message
n Rotates logs daily, eventually historic data is lost

® Forwards all message to the frontend

n Scalable
® Can add additional loghosts

® Can throttle verbosity of loggers

n Uses
® Predicting hardware and software failures

® Post Mortem on crashed nodes

® Debugging System startup

Software

Beyond Beowulf
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Major Components

Optional Drivers

n PVFS
® Parallel Virtual File System

® Kernel module built for all nodes

® Initial support (full support in future version of Rocks)

® User must decide to enable

n Myrinet
® High Speed and Low Latency Interconnect

® GM/MPI for user Applications

® Kernel module built for all nodes with Myrinet cards

® Usher daemon for dynamic port management



19

Usher

n Distributed resource manager for GM ports
® RPC based

® Reservation system

® Simple state machine with timeouts

® Allows multiple GM jobs per node

® Transparent

n Integrated into “mpi-launch”, and “rexec” for job launching

n Stock GM
® All jobs run on port 3

® No strategy for managing port allocations

Usher State Machine
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Ganglia

n Scalable cluster monitoring system
® Based on ip multi-cast

® Matt Massie, et al from UCB

® http://ganglia.sourceforge.net

n Gmon daemon on every node
® Multicasts system state

® Listens to other daemons

® All data is represented in XML

n Ganglia command line
® Python code to parse XML to English

n Gmetric
® Extends Ganglia

® Command line to multicast single metrics

Ganglia
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Cluster Database

n Goal: derive all cluster configuration via queries to an
SQL database
® Rationale: SQL is an expressive, well-understood

interface to data. Allows us to write scripts that deal with
the evolving format of configuration files.

n Goal: write utilities that dynamically extract information
from the database
® insert-ethers

® makehosts, makedhcp

® Gmon + SQL = ganglia command line client

Configuration Derived from
Database

mySQL DB

makehosts

/etc/hosts

makedhcp

/etc/dhcpd.conf

pbs-config-sql

pbs node list

insert-ethers

Node 0

Node 1

Node N

Automated node
discovery
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Key Tables - Nodes

Key Tables - Nodes

n Nodes table associates MAC addresses to IP
addresses and physical location

n Nodes table is populated with ‘insert-ethers’
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Key Tables - Memberships

n Defines “appliance” types

Key Tables - Appliances

n Used to associate graph “starting points” for
different appliances
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Key Tables – App_Globals

n Used to configure DHCP and to customize
“appliance” kickstart files

Nodes Table

Memberships Table

Table Relationships
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Appliances Table

Memberships Table

Table Relationships

Example – Insert-ethers
n Insert-ethers gets ‘appliance list’ from database
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Example – Insert-ethers
n Then it ‘inserts’ discovered appliances into nodes table

More Examples

n The command line tool for ganglia reads the nodes list to
determine all the compute nodes in the system.

n PBS ‘nodes’ file is dynamically built by extracting node
names from the nodes table.

n Host entries in dhcpd.conf is built by extracting the names
of the nodes from the nodes list
® The “global” configuration is built by extracting rows from

the “app_globals” table
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Disk Partitioning and eKV

n Enhancements to standard Red Hat Kickstart

n Disk Partitioning
® Automatic or Manual for frontend

® “Greedy” partitioning for compute nodes

n eKV
® Ethernet Keyboard and Video

® Watch and Interact with Kickstart over Ethernet

n No serial port concentrators

n No lights out management card

Frontend Partitioning

n Setup from the configuration web page

n Two choices
® Automatic

® Manual

n Automatic

n 4 GB root partition

n Manual
n You’re on your own!
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Compute Node Partitioning

n Creates 4 GB root partition on first drive
® This partition is volatile, that is, when the node is

reinstalled, this partition is reformatted

n Remainder of first drive is put into a partition called
“/state/partition1”

n For each remaining drives, one partition is created per
drive and named “/state/partition2”, “/state/partition3”,
etc.

n All partitions labeled “/state/partition[n]” are not
reformatted on reboots.

Example

Root Drive 18 GB

/dev/sda1 / 4 GB
/dev/sda2 /state/partition1 14 GB
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Example

Second Drive 36 GB

/dev/sdb1 /state/partition2 36 GB

Example

Third Drive 18 GB

/dev/sdc1 /state/partition3 18 GB
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Example

Fourth Drive 72 GB

/dev/sdd1 /state/partition4 72 GB

Example

Fifth Drive 36 GB

/dev/sde1 /state/partition5 36 GB
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Example

Sixth Drive 181 GB

/dev/sdf1 /state/partition6 181 GB

Example

181 GB/state/partition6/dev/sdf1

36 GB/state/partition5/dev/sde1

72 GB/state/partition4/dev/sdd1

18 GB/state/partition3/dev/sdc1

36 GB/state/partition2/dev/sdb1

14 GB/state/partition1/dev/sda2

4 GB//dev/sda1

SizeNameDevice
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eKV

n Remotely Interact with Installation
® Initial kickstart

® Re-Installation

n Shoot-node
® Reinstall OS and brings up eKV

n eKV
® telnet compute-0-0 8000

® Only on during installation

192.168.254.254

Remotely
starting
reinstallation
on two nodes

192.168.254.253

eKV
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Software

Distribution Building and
Installation

Major Components
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Software Installation

Collection of all possible 
software packages

(AKA Distribution)

Descriptive information to 
configure a node

Compute Node

Kickstart
 file

RPMs

IO Server Web Server

A
ppliances

Software Repository

Descriptive information to 
configure a node

Compute Node

Kickstart
 file

IO Server Web Server

A
ppliances

Collection of all possible 
software packages

(AKA Distribution)

RPMs
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Rocks-dist

n Distribution builder
® Rocks
® Red Hat
® Same thing

n Version Manager
® Resolves software updates
® Default to the most recent software
® Can force package versions as needed

n Distribution versioning
® Allows multiple distributions at once

n CDROM building
® Build your own bootable Rocks CD

Command line

n # rocks-dist mirror
® Build (or update) a mirror of rocks.npaci.edu

® All Rocks software plus constant Red Hat updates

n # rocks-dist dist
® Build the distribution for compute nodes

® Gathers packages from various places

n Mirror (/home/install/rocks.npaci.edu)
n Local Contrib (/home/install/contrib)
n Locally built packages (/usr/src/redhat/RPMS/*)

n Mirror and distribution are setup out of the box
® Need to “rocks-dist mirror” to get all the unused RPMs

® Need to “rocks-dist dist” to build updated distributions
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How we use rocks-dist

How you use rocks-dist
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Inheritance

n Rocks
® Red Hat plus updates

® Rocks software

n Campus
® Rocks software

® Campus changes

n Cluster
® Campus Rocks

Collection of all possible 
software packages

(AKA Distribution)

RPMs

Installation Instructions

Compute Node IO Server Web Server

A
ppliances

Kickstart
 file

Descriptive information to 
configure a node
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Kickstart

n Description based installation
® Manage software components not the bits on the disk

® Only way to deal with heterogeneous hardware

n System imaging (aka bit blasting) relies on homogeneity
n Homogenous clusters do not exist

n Red Hat’s Kickstart
® Flat ASCII file

® No macro language

® Requires forking based on site information and node type

n Rocks’ XML Kickstart
® Decompose a kickstart file into nodes and graphs

® Macros and SQL for site configuration

® Driven from web cgi script

Kickstart File Sections

n Main
® Disk partitioning

® Root password

® RPM repository URL

® …

n Packages
® List of RPMs (w/o version numbers)

® The repository determines the RPM versions

® The kickstart file determines the set of RPMs

n Pre
® Shell scripts run before RPMs are installed

® Rarely used (Rocks uses it to enhance kickstart)

n Post
® Shell scripts to cleanup RPM installation

® Fixes bugs in packages

® Adds local information



39

XML Kickstart

n Nodes
® Describe a single set of functionality

n Ssh

n Apache

® Kickstart file snippets (XML tags map to kickstart commands)

® Pull site configuration from SQL Database

® Over 80 node files in Rocks

n Graph
® Defines interconnections for nodes

® Think OOP or dependencies

® A single graph file in Rocks

n Graph + Nodes + SQL => Node specific kickstart file

Sample Node File
<?xml version="1.0" standalone="no"?>
<!DOCTYPE kickstart SYSTEM "@KICKSTART_DTD@" [<!ENTITY ssh "openssh">]>
<kickstart>

<description>
Enable SSH
</description>

<package>&ssh;</package>
<package>&ssh;-clients</package>
<package>&ssh;-server</package>
<package>&ssh;-askpass</package>

<post>

cat &gt; /etc/ssh/ssh_config &lt;&lt; 'EOF’ <!-- default client setup -->
Host *
        ForwardX11 yes
        ForwardAgent yes
EOF

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>>
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Sample Graph File
<?xml version="1.0" standalone="no"?>
<!DOCTYPE kickstart SYSTEM "@GRAPH_DTD@">

<graph>
<description>
Default Graph for NPACI Rocks.
</description>

<edge from="base" to="scripting"/>
<edge from="base" to="ssh"/>
<edge from="base" to="ssl"/>
<edge from="base" to="lilo"  arch="i386"/>
<edge from="base" to="elilo" arch="ia64"/>

…
<edge from="node" to="base" weight="80"/>
<edge from="node" to="accounting"/>
<edge from="slave-node" to="node"/>
<edge from="slave-node" to="nis-client"/>

  <edge from="slave-node" to="autofs-client"/>
  <edge from="slave-node" to="dhcp-client"/>
  <edge from="slave-node" to="snmp-server"/>
  <edge from="slave-node" to="node-certs"/>
 <edge from="compute" to="slave-node"/>
  <edge from="compute" to="usher-server"/>
 <edge from="master-node" to="node"/>
  <edge from="master-node" to="x11"/>
  <edge from="master-node" to="usher-client"/>
</graph>

Macros

n SQL Database
® App_globals table defines over 20 variables based on the

node’s group membership

n Creating new macros
® By value

n <var name=“Foo” val=“Bar”/>
® By reference

n <var name=”Foo2” ref=“Foo”/>
n This is invalid: <var name=“Foo2” val=<var name=“Foo”/>/>

n Referencing
® <var name=“Foo”/>
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Kickstart framework

Appliances

n Laptop / Desktop
® Appliances

® Final classes

® Node types

n Desktop IsA
® standalone

n Laptop IsA
® standalone

® pcmcia

n Code re-use is good
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Architecture Differences

n Annotate edges with the
architecture of the node

n ia64-partition
® EFI (DOS) partition

® Only for Itanium

n dhcp-client / ganglia-
client
® Not ported to Itanium

Creating the Kickstart file

1. Node makes HTTP request to get configuration
• Can be online or captured to a file

• Node reports architecture type, IP address, [ appliance
type], [options]

2. Kpp – preprocessor
• Start at appliance type (node) and make a single large

XML file by traversing the graph

• Node-specific configuration looked up in SQL database

3. Kgen – generation
• Translation to kickstart format

• Other formats could be supported

n Graph visualization using dot (AT&T)
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Software

The Payoff of description based
installation

Payoff #1

n Dual -Athlon white-box, 20GB IDE, 3COM Ethernet
® 3:00 in cardboard box

® Shook out loose screws and dropped in Myrinet card

® Screwed into the rack and cable it up

® 3:25 inserted Rocks CD

® 3:40 ran Linpack

n Completely foreign hardware
® Never done AMD

® Never done IDE

® Never done 3COM
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Payoff #2

n Two dual-Itanium, 18GB SCSI, Intel Ethernet
® 2:00 in cardboard box

® 3:40 debugged 2.4.6 ia64 kernel bug

® Downloaded Rawhide 2.4.9 kernel

® Rebuilt Rocks distribution

® 4:30 both nodes integrated into the cluster

n Second IA64 box we touched
n This one was hard!

Future Work
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Real Job Control (and cleanup)

n Adequate job launching
® Mpirun

n From MPI software
® Mpi-launch

n SSH-based job launcher
® Rexec

n SSL-based job launcher from UCB

n Looking for better solutions

Storage

n We know NFS is wrong
® Linux NFS is really wrong

® NAS is better

® SAN with NFS metadata server isn’t right either

n Need flexible parallel file system
® Tunable performance

® Tunable redundancy

® Leverage existing cluster components
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System Monitoring

n Want lots of detail
® Snmp

® Netsaint

® http access to proc file system

n Need scalability
® Ganglia

n Two concepts
® Cluster wide status

® Single node status

n Want multiple views of cluster status

Itanium

n Rocks 2.1
® ia64 compute node support

® Required i386 frontend machine

n Rocks 2.2 ia64 support coming this month
® Still compute node only support

n Next major release of Rocks will have full ia64
support
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Grid

n Globus integration is too hard
® Local administrator (with 2 years Globus

experience) can install Globus in 30 minutes

® We can install a cluster in 30 minutes

n Tracking NMI (National Middleware Initiative)
® Packaging Grid tools in target OS’s native package

format

® Primary target is Linux

n Does Grid = Globus?

Lots of other stuff

n Track Red Hat faster than we have been
n Fix the frontend upgrade problem

® Compute node are easy

® A lot more state on the frontend

® Push all state into SQL database

n Documentation
® Top priority now that 2.2 is out

n Any one want a job?
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Open Lab

Ideas

n Tour of rocks-dist
® Building personal distributions

® Changing XML profiles

n Database
® Change “compute-0-0” to “node-0-0”

® Adding personal distributions

n PBS
® Launch some jobs (linpack)

n Build your own cluster
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End


