
1

NPACI Rocks
Tutorial

NPACI All Hands Meeting

March 6, 2002

Outline

n Build a Rocks Cluster
® Start right away

® Check in occasionally throughout this talk

n Introduction
n Hardware Components
n Software Components
n Future Work
n Open Lab (Customization)

2

Who is NPACI Rocks?

n Cluster Computing Group at SDSC

n UC Berkeley Millennium Project
® Provide Ganglia Support

n Linux Competency Centre in SCS Enterprise
Systems Pte Ltd in Singapore
® Provide PVFS Support

® Working on user documentation for Rocks 2.2

Cluster distributions

n http://clusters.top500.org/
n We were honored to be seen as

experts in the field
n We had a blast voting for

Rocks and Oscar (this isn’t a
real poll)

n We encourage people to try
these other distributions

n Why are 26% rolling there
own clusters?
® This is the real message of

the poll

3

What sets us apart

ß Fully automated cluster deployment
1. Get and burn ISO CD image from Rocks.npaci.edu

2. Fill-out form to build initial kickstart file for your first
front-end machine

3. Kickstart “naked” frontend with CD and kickstart file

4. Reboot frontend machine

5. Integrate compute nodes with “Insert Ethers”

6. Ready to go!

ß Complete out of the box solution with rational default
settings

Who is Using It?

n Growing (and partial) list of users that we know about:
® SDSC, SIO, UCSD (8 Clusters, including CMS (GriPhyN) prototype)

® Caltech

® Burnham Cancer Institute

® PNNL (several clusters, small, medium, large)

® University of Texas

® University of North Texas

® Northwestern University

® University of Hong Kong

® Compaq (Working relationship with their Intel Standard Servers
Group)

® Singapore Bioinformatics Institute

® Myricom (Their internal development cluster)

4

Motivation

n Care and feeding for a system isn’t fun.
n Enable non-cluster experts to run clusters
n Essential to track software updates

® Open source moves fast!

® On the order of 3 updates a week for Red Hat

n Essential to track Red Hat releases
® Feature rot

® Unplugged security holes

n Run on heterogeneous, standard high-volume components

Philosophy

n All nodes are 100% automatically installed
® Zero “hand” configuration

® Scales very well

n NPACI Rocks is an entire cluster-aware distribution
® Included packages

n Full Red Hat release
n De-facto standard cluster packages (MPI, PBS/Maui, etc.)
n NPACI Rocks packages

5

More Philosophy

n Use installation as common mechanism to manage cluster
® Install when:

n Initial bring-up

n Replacing a dead node

n Adding new nodes

n Also use installation to keep software consistent
® If you catch yourself wondering if a node’s software is up-

to-date, reinstall!

n In 10 minutes, all doubt is erased.

Hardware

6

Minimum Components

x86 server

Local Hard
Drive

Power

Ethernet

Why x86 clusters?

Source: Dave Pierce, SIO

7

Optional Components

n Myrinet high-performance
network

n Network-addressable power
distribution unit

n Evil keyboard/video/mouse
network not required
® In fact, we believe it’s not

desirable – just another network
to manage.

Basic Architecture

Front-end Node(s) Public Ethernet

Fast-Ethernet
Switching Complex

Gigabit Network
Switching Complex

Node Node Node Node Node

Node Node Node Node Node

Pow
er D

istributi o n
 (N

e t a ddr essa bl e u nits as o pt io n)

8

Meteor Cluster at SDSC
n Rocks v2.2
n 2 Frontends
n 4 NFS Servers
n 100 nodes

® Compaq

n 800, 933, IA-64
n SCSI, IDA

® IBM

n 733, 1000
n SCSI

n 50 GB RAM
n Ethernet

® For management

n Myrinet 2000

Software

9

Major Components

Software

Standard Beowulf

(and then some)

10

Major Components

Red Hat

n Stock Red Hat 7.2 with updates (x86 and ia64)
n Linux 2.4 Kernel
n No support for other distributions

® We believe Red Hat is the market leader for Linux

n In the US
n And becoming so in Europe

® Automated install (kickstart) is a requirement

® Very good hardware detection

® A Cluster is not a general purpose computer

n “But I’d rather run debian” doesn’t mean anything

11

Parallel Application APIs

n POSIX, Sockets
® Simple parallel jobs

® First level of parallel code

n MPI, PVM
® Message passing

® Advanced programming model

® High performance parallelism

MPI

n Message Passing Interface v1.1
® Standard for high performance message passing on

parallel machines

® http://www-unix.mcs.anl.gov/mpi/

n Supports
® GNU C, Fortran 77

® Intel C, Fortran 77, Fortran 90

® Portland Group C, C++, Fortran 77, Fortran 90

n Requires site license

12

PVM

n Parallel Virtual Machines v3.4.3
® Message passing interface for heterogeneous

architectures

n Supports over 60 variants of UNIX

n Supports Windows NT
® Resource control and meta computing

® Fault tolerance

® http://www.csm.ornl.gov/pvm/

Portable Batch System

n Three standard components to PBS
® MOM

n Daemon on every node
n Used for job launching and health reporting

® Server

n On the frontend only
n Queue definition, and aggregation of node information

® Scheduler

n Policies for what job to run out of which queue at what time

n We added a forth
® Configuration

n Get cluster environment from our SQL database
n Get list of nodes from Ganglia

13

PBS RPM Packaging

n Repackaged PBS
® Added “chkconfig” support to start up scripts

® Four packages

n pbs
n pbs-mom
n pbs-config-sql

® Python code to generate database report

n pbs-common

n Rocks 2.2 automatically defines a default queue with all
compute nodes participating

n http://pbs.mrj.com is a good starting point for pbs

PBS Server Defaults

n Startup script: “/etc/rc.d/init.d/pbs-server start”
n /usr/apps/pbs/pbs.default

® Sourced every time PBS is started
#
Create and define queue default
#
create queue default
set queue default queue_type = Execution
set queue default resources_max.nodect = 256
set queue default resources_max.nodes = 999
set queue default resources_min.nodect = 1
set queue default resources_default.neednodes = 1
set queue default resources_default.nodect = 1
set queue default resources_default.nodes = 1
set queue default resources_default.walltime = 1000:00:00
set queue default enabled = True
set queue default started = True
#
Set server attributes (assume maui scheduler will be installed)
#
set server managers = maui@frontend-0
set server operators = maui@frontend-0
set server default_queue = default
set server log_events = 511
set server mail_from = adm
set server scheduler_iteration = 600
set server scheduling = false

14

Maui Scheduler

n PBS using Maui 3.0 as the scheduler
® De facto standard HPC scheduling

® http://supercluster.org/projects/maui

n We are also looking into
® Sun’s Grid Engine

® SDSC’s Catalina Scheduler

® Maui Scheduler Molokini Edition

NFS

n User account are served over NFS
® Works for small clusters (<= 128 nodes)

® Will not work for large clusters (>1024 nodes)

® NAS is better than Linux

n Rocks uses the Frontend machine to server NFS
n We have deployed NAS on several clusters

n Applications are not served over NFS
® /usr/local/ does not exist

® All software is installed locally from RPM

15

Open SSH

n Replaces Telnet, Rsh
® Cryptographically strong authentication and encryption

® Forwards X11 connections (no more $DISPLAY)

n Rocks uses SSH
® Mpi-launch

® Cluster-fork

n Ssh-agent
® Manager for SSH keys

® ssh-agent $SHELL

NIS & DHCP

n Network Information System
® Manages user accounts and host information

® Alternative to copying files around

n /etc/hosts
n /etc/passwd

® Scalable

n Supports slave servers
n Clients attach to closest server and load balance themselves

n Dynamic Host Configuration Protocol
® Manages network information

® Alternative to static IP address

® Foundation of insert-ethers

n Critical to keep dynamic state dynamic

16

SNMP

n Enabled on all compute nodes

n Great for point-to-point use
® Good for high detail on a single end-point

® Does not scale to full cluster wide use

n Supports Linux MIB
® Uptime, Load, Network statistics

® Install Software

® Running Processes

snmp-status

n snmp-status compute-0-0
PID TIME MEM PROCESS
1 424 264 init
2 0 0 keventd
3 3 0 ksoftirqd_CPU0
4 4 0 ksoftirqd_CPU1
5 17212 0 kswapd
6 0 0 kreclaimd
7 1 0 bdflush
8 5 0 kupdated
9 0 0 mdrecoveryd
18 1695 0 kjournald
137 0 0 kjournald
5769 0 3856 httpd
11685 0 144 pvfsd
12083 1 44 dhcpcd
11685 0 144 pvfsd
12083 1 44 dhcpcd
12224 2536 432 syslogd
12229 11 268 klogd

17

Syslog

n Native UNIX system event logger
® Logs events to local dist

n /var/log/message
n Rotates logs daily, eventually historic data is lost

® Forwards all message to the frontend

n Scalable
® Can add additional loghosts

® Can throttle verbosity of loggers

n Uses
® Predicting hardware and software failures

® Post Mortem on crashed nodes

® Debugging System startup

Software

Beyond Beowulf

18

Major Components

Optional Drivers

n PVFS
® Parallel Virtual File System

® Kernel module built for all nodes

® Initial support (full support in future version of Rocks)

® User must decide to enable

n Myrinet
® High Speed and Low Latency Interconnect

® GM/MPI for user Applications

® Kernel module built for all nodes with Myrinet cards

® Usher daemon for dynamic port management

19

Usher

n Distributed resource manager for GM ports
® RPC based

® Reservation system

® Simple state machine with timeouts

® Allows multiple GM jobs per node

® Transparent

n Integrated into “mpi-launch”, and “rexec” for job launching

n Stock GM
® All jobs run on port 3

® No strategy for managing port allocations

Usher State Machine

20

Ganglia

n Scalable cluster monitoring system
® Based on ip multi-cast

® Matt Massie, et al from UCB

® http://ganglia.sourceforge.net

n Gmon daemon on every node
® Multicasts system state

® Listens to other daemons

® All data is represented in XML

n Ganglia command line
® Python code to parse XML to English

n Gmetric
® Extends Ganglia

® Command line to multicast single metrics

Ganglia

21

Cluster Database

n Goal: derive all cluster configuration via queries to an
SQL database
® Rationale: SQL is an expressive, well-understood

interface to data. Allows us to write scripts that deal with
the evolving format of configuration files.

n Goal: write utilities that dynamically extract information
from the database
® insert-ethers

® makehosts, makedhcp

® Gmon + SQL = ganglia command line client

Configuration Derived from
Database

mySQL DB

makehosts

/etc/hosts

makedhcp

/etc/dhcpd.conf

pbs-config-sql

pbs node list

insert-ethers

Node 0

Node 1

Node N

Automated node
discovery

22

Key Tables - Nodes

Key Tables - Nodes

n Nodes table associates MAC addresses to IP
addresses and physical location

n Nodes table is populated with ‘insert-ethers’

23

Key Tables - Memberships

n Defines “appliance” types

Key Tables - Appliances

n Used to associate graph “starting points” for
different appliances

24

Key Tables – App_Globals

n Used to configure DHCP and to customize
“appliance” kickstart files

Nodes Table

Memberships Table

Table Relationships

25

Appliances Table

Memberships Table

Table Relationships

Example – Insert-ethers
n Insert-ethers gets ‘appliance list’ from database

26

Example – Insert-ethers
n Then it ‘inserts’ discovered appliances into nodes table

More Examples

n The command line tool for ganglia reads the nodes list to
determine all the compute nodes in the system.

n PBS ‘nodes’ file is dynamically built by extracting node
names from the nodes table.

n Host entries in dhcpd.conf is built by extracting the names
of the nodes from the nodes list
® The “global” configuration is built by extracting rows from

the “app_globals” table

27

Disk Partitioning and eKV

n Enhancements to standard Red Hat Kickstart

n Disk Partitioning
® Automatic or Manual for frontend

® “Greedy” partitioning for compute nodes

n eKV
® Ethernet Keyboard and Video

® Watch and Interact with Kickstart over Ethernet

n No serial port concentrators

n No lights out management card

Frontend Partitioning

n Setup from the configuration web page

n Two choices
® Automatic

® Manual

n Automatic

n 4 GB root partition

n Manual
n You’re on your own!

28

Compute Node Partitioning

n Creates 4 GB root partition on first drive
® This partition is volatile, that is, when the node is

reinstalled, this partition is reformatted

n Remainder of first drive is put into a partition called
“/state/partition1”

n For each remaining drives, one partition is created per
drive and named “/state/partition2”, “/state/partition3”,
etc.

n All partitions labeled “/state/partition[n]” are not
reformatted on reboots.

Example

Root Drive 18 GB

/dev/sda1 / 4 GB
/dev/sda2 /state/partition1 14 GB

29

Example

Second Drive 36 GB

/dev/sdb1 /state/partition2 36 GB

Example

Third Drive 18 GB

/dev/sdc1 /state/partition3 18 GB

30

Example

Fourth Drive 72 GB

/dev/sdd1 /state/partition4 72 GB

Example

Fifth Drive 36 GB

/dev/sde1 /state/partition5 36 GB

31

Example

Sixth Drive 181 GB

/dev/sdf1 /state/partition6 181 GB

Example

181 GB/state/partition6/dev/sdf1

36 GB/state/partition5/dev/sde1

72 GB/state/partition4/dev/sdd1

18 GB/state/partition3/dev/sdc1

36 GB/state/partition2/dev/sdb1

14 GB/state/partition1/dev/sda2

4 GB//dev/sda1

SizeNameDevice

32

eKV

n Remotely Interact with Installation
® Initial kickstart

® Re-Installation

n Shoot-node
® Reinstall OS and brings up eKV

n eKV
® telnet compute-0-0 8000

® Only on during installation

192.168.254.254

Remotely
starting
reinstallation
on two nodes

192.168.254.253

eKV

33

Software

Distribution Building and
Installation

Major Components

34

Software Installation

Collection of all possible
software packages

(AKA Distribution)

Descriptive information to
configure a node

Compute Node

Kickstart
 file

RPMs

IO Server Web Server

A
ppliances

Software Repository

Descriptive information to
configure a node

Compute Node

Kickstart
 file

IO Server Web Server

A
ppliances

Collection of all possible
software packages

(AKA Distribution)

RPMs

35

Rocks-dist

n Distribution builder
® Rocks
® Red Hat
® Same thing

n Version Manager
® Resolves software updates
® Default to the most recent software
® Can force package versions as needed

n Distribution versioning
® Allows multiple distributions at once

n CDROM building
® Build your own bootable Rocks CD

Command line

n # rocks-dist mirror
® Build (or update) a mirror of rocks.npaci.edu

® All Rocks software plus constant Red Hat updates

n # rocks-dist dist
® Build the distribution for compute nodes

® Gathers packages from various places

n Mirror (/home/install/rocks.npaci.edu)
n Local Contrib (/home/install/contrib)
n Locally built packages (/usr/src/redhat/RPMS/*)

n Mirror and distribution are setup out of the box
® Need to “rocks-dist mirror” to get all the unused RPMs

® Need to “rocks-dist dist” to build updated distributions

36

How we use rocks-dist

How you use rocks-dist

37

Inheritance

n Rocks
® Red Hat plus updates

® Rocks software

n Campus
® Rocks software

® Campus changes

n Cluster
® Campus Rocks

Collection of all possible
software packages

(AKA Distribution)

RPMs

Installation Instructions

Compute Node IO Server Web Server

A
ppliances

Kickstart
 file

Descriptive information to
configure a node

38

Kickstart

n Description based installation
® Manage software components not the bits on the disk

® Only way to deal with heterogeneous hardware

n System imaging (aka bit blasting) relies on homogeneity
n Homogenous clusters do not exist

n Red Hat’s Kickstart
® Flat ASCII file

® No macro language

® Requires forking based on site information and node type

n Rocks’ XML Kickstart
® Decompose a kickstart file into nodes and graphs

® Macros and SQL for site configuration

® Driven from web cgi script

Kickstart File Sections

n Main
® Disk partitioning

® Root password

® RPM repository URL

® …

n Packages
® List of RPMs (w/o version numbers)

® The repository determines the RPM versions

® The kickstart file determines the set of RPMs

n Pre
® Shell scripts run before RPMs are installed

® Rarely used (Rocks uses it to enhance kickstart)

n Post
® Shell scripts to cleanup RPM installation

® Fixes bugs in packages

® Adds local information

39

XML Kickstart

n Nodes
® Describe a single set of functionality

n Ssh

n Apache

® Kickstart file snippets (XML tags map to kickstart commands)

® Pull site configuration from SQL Database

® Over 80 node files in Rocks

n Graph
® Defines interconnections for nodes

® Think OOP or dependencies

® A single graph file in Rocks

n Graph + Nodes + SQL => Node specific kickstart file

Sample Node File
<?xml version="1.0" standalone="no"?>
<!DOCTYPE kickstart SYSTEM "@KICKSTART_DTD@" [<!ENTITY ssh "openssh">]>
<kickstart>

<description>
Enable SSH
</description>

<package>&ssh;</package>
<package>&ssh;-clients</package>
<package>&ssh;-server</package>
<package>&ssh;-askpass</package>

<post>

cat > /etc/ssh/ssh_config << 'EOF’ <!-- default client setup -->
Host *
 ForwardX11 yes
 ForwardAgent yes
EOF

chmod o+rx /root
mkdir /root/.ssh
chmod o+rx /root/.ssh

</post>
</kickstart>>

40

Sample Graph File
<?xml version="1.0" standalone="no"?>
<!DOCTYPE kickstart SYSTEM "@GRAPH_DTD@">

<graph>
<description>
Default Graph for NPACI Rocks.
</description>

<edge from="base" to="scripting"/>
<edge from="base" to="ssh"/>
<edge from="base" to="ssl"/>
<edge from="base" to="lilo" arch="i386"/>
<edge from="base" to="elilo" arch="ia64"/>

…
<edge from="node" to="base" weight="80"/>
<edge from="node" to="accounting"/>
<edge from="slave-node" to="node"/>
<edge from="slave-node" to="nis-client"/>

 <edge from="slave-node" to="autofs-client"/>
 <edge from="slave-node" to="dhcp-client"/>
 <edge from="slave-node" to="snmp-server"/>
 <edge from="slave-node" to="node-certs"/>
 <edge from="compute" to="slave-node"/>
 <edge from="compute" to="usher-server"/>
 <edge from="master-node" to="node"/>
 <edge from="master-node" to="x11"/>
 <edge from="master-node" to="usher-client"/>
</graph>

Macros

n SQL Database
® App_globals table defines over 20 variables based on the

node’s group membership

n Creating new macros
® By value

n <var name=“Foo” val=“Bar”/>
® By reference

n <var name=”Foo2” ref=“Foo”/>
n This is invalid: <var name=“Foo2” val=<var name=“Foo”/>/>

n Referencing
® <var name=“Foo”/>

41

Kickstart framework

Appliances

n Laptop / Desktop
® Appliances

® Final classes

® Node types

n Desktop IsA
® standalone

n Laptop IsA
® standalone

® pcmcia

n Code re-use is good

42

Architecture Differences

n Annotate edges with the
architecture of the node

n ia64-partition
® EFI (DOS) partition

® Only for Itanium

n dhcp-client / ganglia-
client
® Not ported to Itanium

Creating the Kickstart file

1. Node makes HTTP request to get configuration
• Can be online or captured to a file

• Node reports architecture type, IP address, [appliance
type], [options]

2. Kpp – preprocessor
• Start at appliance type (node) and make a single large

XML file by traversing the graph

• Node-specific configuration looked up in SQL database

3. Kgen – generation
• Translation to kickstart format

• Other formats could be supported

n Graph visualization using dot (AT&T)

43

Software

The Payoff of description based
installation

Payoff #1

n Dual -Athlon white-box, 20GB IDE, 3COM Ethernet
® 3:00 in cardboard box

® Shook out loose screws and dropped in Myrinet card

® Screwed into the rack and cable it up

® 3:25 inserted Rocks CD

® 3:40 ran Linpack

n Completely foreign hardware
® Never done AMD

® Never done IDE

® Never done 3COM

44

Payoff #2

n Two dual-Itanium, 18GB SCSI, Intel Ethernet
® 2:00 in cardboard box

® 3:40 debugged 2.4.6 ia64 kernel bug

® Downloaded Rawhide 2.4.9 kernel

® Rebuilt Rocks distribution

® 4:30 both nodes integrated into the cluster

n Second IA64 box we touched
n This one was hard!

Future Work

45

Real Job Control (and cleanup)

n Adequate job launching
® Mpirun

n From MPI software
® Mpi-launch

n SSH-based job launcher
® Rexec

n SSL-based job launcher from UCB

n Looking for better solutions

Storage

n We know NFS is wrong
® Linux NFS is really wrong

® NAS is better

® SAN with NFS metadata server isn’t right either

n Need flexible parallel file system
® Tunable performance

® Tunable redundancy

® Leverage existing cluster components

46

System Monitoring

n Want lots of detail
® Snmp

® Netsaint

® http access to proc file system

n Need scalability
® Ganglia

n Two concepts
® Cluster wide status

® Single node status

n Want multiple views of cluster status

Itanium

n Rocks 2.1
® ia64 compute node support

® Required i386 frontend machine

n Rocks 2.2 ia64 support coming this month
® Still compute node only support

n Next major release of Rocks will have full ia64
support

47

Grid

n Globus integration is too hard
® Local administrator (with 2 years Globus

experience) can install Globus in 30 minutes

® We can install a cluster in 30 minutes

n Tracking NMI (National Middleware Initiative)
® Packaging Grid tools in target OS’s native package

format

® Primary target is Linux

n Does Grid = Globus?

Lots of other stuff

n Track Red Hat faster than we have been
n Fix the frontend upgrade problem

® Compute node are easy

® A lot more state on the frontend

® Push all state into SQL database

n Documentation
® Top priority now that 2.2 is out

n Any one want a job?

48

Open Lab

Ideas

n Tour of rocks-dist
® Building personal distributions

® Changing XML profiles

n Database
® Change “compute-0-0” to “node-0-0”

® Adding personal distributions

n PBS
® Launch some jobs (linpack)

n Build your own cluster

49

End

