
ECL Language Reference
Boca Raton Documentation Team

ECL Language Reference

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

2

ECL Language Reference
Boca Raton Documentation Team

We welcome your comments and feedback about this document via email to <docfeedback@hpccsystems.com> subject to the HPCC Contribution
Agreement at: hpccsystems.com/contribution. Please include Documentation Feedback in the subject line and reference the document name, page
numbers, and current Revision Number in the text of the message.

LexisNexis and related logos, designs, trade dress, and trademarks are owned by Reed Elsevier Properties Inc. and its affiliates, used under license
and not subject to the Creative Commons license. Other trademarks owned by their respective companies and not subject to the Creative Commons
license.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

THIS WORK IS PROVIDED UNDER THE TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE DESCRIBED IN APPENDIX "A"
(WHICH SEE).

2015 Version 5.4.2-1

ECL Language Reference

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

3

Introduction .. 8
Documentation Structure .. 8
Documentation Conventions .. 9

ECL Basics .. 10
Overview ... 10
Constants ... 11
Definitions ... 13
Basic Definition Types ... 14
Recordset Filtering ... 17
Function Definitions (Parameter Passing) .. 18
Definition Visibility ... 23
Field and Definition Qualification .. 25
Actions and Definitions .. 27

Expressions and Operators ... 28
Expressions and Operators .. 28
Logical Operators .. 30
Record Set Operators ... 31
Set Operators .. 32
String Operators .. 33
IN Operator .. 34
BETWEEN Operator .. 35

Value Types .. 36
BOOLEAN ... 36
INTEGER .. 37
REAL .. 38
DECIMAL ... 39
STRING .. 40
QSTRING .. 41
UNICODE .. 42
DATA ... 43
VARSTRING ... 44
VARUNICODE .. 45
SET OF ... 46
TYPEOF .. 47
RECORDOF ... 48
ENUM ... 49
Type Casting .. 50

Record Structures and Files .. 52
RECORD Structure .. 52
DATASET ... 61
DICTIONARY .. 76
INDEX .. 78
Scope and Logical Filenames .. 81
Implicit Dataset Relationality .. 83

Alien Data Types ... 84
TYPE Structure ... 84
TYPE Structure Special Functions .. 85

Parsing Support ... 87
Parsing Support ... 87
PARSE Pattern Value Types ... 88
NLP RECORD and TRANSFORM Functions .. 92
XML Parsing RECORD and TRANSFORM Functions .. 94

Reserved Keywords .. 96
ALL .. 96

ECL Language Reference

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

4

EXCEPT .. 97
EXPORT .. 98
GROUP keyword .. 99
IMPORT .. 100
KEYED and WILD .. 102
LEFT and RIGHT .. 104
ROWS(LEFT) and ROWS(RIGHT) .. 105
SELF ... 106
SHARED .. 107
SKIP .. 108
TRUE and FALSE ... 109

Special Structures .. 110
BEGINC++ Structure ... 111
EMBED Structure .. 116
FUNCTION Structure ... 118
FUNCTIONMACRO Structure .. 121
INTERFACE Structure ... 123
MACRO Structure ... 125
MODULE Structure ... 127
TRANSFORM Structure ... 130

Built-in Functions and Actions .. 133
ABS .. 134
ACOS .. 135
AGGREGATE .. 136
ALLNODES ... 138
APPLY .. 139
ASCII .. 140
ASIN ... 141
ASSERT .. 142
ASSTRING ... 144
ATAN .. 145
ATAN2 .. 146
AVE .. 147
BUILD ... 148
CASE .. 153
CATCH .. 154
CHOOSE .. 155
CHOOSEN ... 156
CHOOSESETS .. 157
CLUSTERSIZE ... 158
COMBINE ... 159
CORRELATION ... 162
COS .. 164
COSH .. 165
COUNT ... 166
COVARIANCE ... 167
CRON .. 169
DEDUP .. 170
DEFINE ... 172
DENORMALIZE ... 173
DISTRIBUTE ... 176
DISTRIBUTED ... 178
DISTRIBUTION .. 179
EBCDIC ... 181

ECL Language Reference

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

5

ENTH .. 182
ERROR .. 183
EVALUATE ... 184
EVENT .. 186
EVENTNAME .. 187
EVENTEXTRA ... 188
EXISTS .. 189
EXP ... 190
FAIL ... 191
FAILCODE .. 192
FAILMESSAGE .. 193
FETCH .. 194
FROMJSON ... 196
FROMUNICODE .. 197
FROMXML .. 198
GETENV .. 199
GLOBAL ... 200
GRAPH .. 201
GROUP .. 202
HASH .. 203
HASH32 .. 204
HASH64 .. 205
HASHCRC ... 206
HASHMD5 ... 207
HAVING .. 208
HTTPCALL .. 209
IF .. 210
IFF .. 211
IMPORT .. 212
INTFORMAT ... 213
ISVALID .. 214
ITERATE ... 215
JOIN .. 217
KEYDIFF ... 225
KEYPATCH ... 226
KEYUNICODE ... 227
LENGTH .. 228
LIBRARY .. 229
LIMIT .. 231
LN .. 232
LOADXML .. 233
LOCAL .. 235
LOG .. 236
LOOP .. 237
MAP .. 239
MAX ... 240
MERGE ... 241
MERGEJOIN .. 242
MIN .. 244
NOLOCAL ... 245
NONEMPTY .. 246
NORMALIZE ... 247
NOFOLD ... 249
NOTHOR ... 250

ECL Language Reference

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

6

NOTIFY ... 251
ORDERED ... 252
OUTPUT .. 253
PARALLEL .. 262
PARSE .. 263
PIPE .. 269
POWER ... 271
PRELOAD ... 272
PROCESS .. 273
PROJECT ... 275
PULL ... 278
RANDOM .. 279
RANGE ... 280
RANK ... 281
RANKED ... 282
REALFORMAT .. 283
REGEXFIND .. 284
REGEXREPLACE ... 285
REGROUP ... 286
REJECTED ... 287
ROLLUP .. 288
ROUND ... 292
ROUNDUP ... 293
ROW ... 294
ROWDIFF .. 298
SAMPLE .. 299
SEQUENTIAL .. 300
SET ... 301
SIN ... 302
SINH ... 303
SIZEOF .. 304
SOAPCALL .. 305
SORT .. 309
SORTED .. 313
SQRT .. 314
STEPPED ... 315
STORED .. 316
SUM .. 317
TABLE .. 318
TAN .. 320
TANH .. 321
THISNODE .. 322
TOJSON .. 323
TOPN .. 324
TOUNICODE ... 325
TOXML ... 326
TRANSFER .. 327
TRIM ... 328
TRUNCATE ... 329
UNGROUP ... 330
UNICODEORDER ... 331
VARIANCE .. 332
WAIT .. 334
WHEN ... 335

ECL Language Reference

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

7

WHICH .. 336
WORKUNIT ... 337
XMLDECODE .. 338
XMLENCODE .. 339

Workflow Services .. 340
Workflow Overview ... 341
CHECKPOINT .. 342
DEPRECATED ... 343
FAILURE ... 344
GLOBAL - Service .. 345
INDEPENDENT .. 346
ONWARNING .. 347
PERSIST .. 348
PRIORITY ... 350
RECOVERY ... 351
STORED - Workflow Service .. 352
SUCCESS .. 354
WHEN ... 355

Template Language .. 356
Template Language Overview .. 356
#APPEND .. 357
#CONSTANT ... 358
#DECLARE .. 359
#DEMANGLE .. 360
#ERROR .. 361
#EXPAND .. 362
#EXPORT .. 363
#EXPORTXML ... 366
#FOR ... 368
#GETDATATYPE ... 369
#IF .. 370
#INMODULE ... 371
#LOOP / #BREAK ... 372
#MANGLE ... 373
#ONWARNING .. 374
#OPTION ... 375
#SET ... 383
#STORED .. 384
#TEXT ... 385
#UNIQUENAME ... 386
#WARNING ... 388
#WEBSERVICE .. 389
#WORKUNIT ... 390

External Services .. 391
SERVICE Structure .. 391
CONST .. 393
External Service Implementation .. 394

A. Creative Commons License ... 401
Index ... 405

ECL Language Reference
Introduction

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

8

Introduction

Documentation Structure
This manual documents the Enterprise Control Language (ECL). ECL has been designed specifically for working
with huge sets of data. This book is designed to be both a learning tool and a reference work and is divided into the
following sections:

ECL Basics Addresses the fundamental concepts of ECL.

Expressions and Operators Defines available operators and their expression evaluation precedence.

Value Types Introduces data types and type casting.

Record Structures and
Files

Introduces the RECORD structure, DATASET, and INDEX.

Alien Data Types Defines the TYPE structure and the functions it may use.

Natural Language Parsing
Support

Defines the patterns and functions the PARSE function may use.

Reserved Keywords Defines special-use ECL keywords not elsewhere defined.

Special Structures Defines the TRANSFORM, MACRO, and other structures and their use.

Built-In Functions and Ac-
tions

Defines the functions and actions available as part of the language.

Workflow Services Defines the job execution/process control aspects of ECL.

Templates Defines the ECL Template commands.

External Services Defines the SERVICE structure and its use.

ECL Language Reference
Introduction

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

9

Documentation Conventions
ECL Syntax Case
Although ECL is not case-sensitive, ECL reserved keywords and built-in functions in this document are always shown
in ALL CAPS to make them stand out for easy identification. Definition and record set names are always shown in
example code as mixed-case. Run-on words may be used to explicitly identify purpose in examples.

Optional Items
Optional-use keywords and parameters are enclosed in square brackets in syntax diagrams with either/or options sep-
arated by a vertical bar (|), like this:

EXAMPLEFUNC(parameter [,optionalparameter] [,OPTIONAL | WORD])

Example Code
All example code in this document appears as in the following listing:

TotalTrades := COUNT(Trades); // TotalTrades is the Definition name
 // COUNT is a built-in function, Trades is the name of a record set

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

10

ECL Basics

Overview
Enterprise Control Language (ECL) has been designed specifically for huge data projects using the LexisNexis High
Performance Computer Cluster (HPCC). ECL’s extreme scalability comes from a design that allows you to leverage
every query you create for re-use in subsequent queries as needed. To do this, ECL takes a Dictionary approach to
building queries wherein each ECL definition defines an expression. Each previous Definition can then be used in
succeeding ECL definitions—the language extends itself as you use it.

Definitions versus Actions
Functionally, there are two types of ECL code: Definitions (AKA Attribute definitions) and executable Actions. Ac-
tions are not valid for use in expressions because they do not return values. Most ECL code is composed of definitions.

Definitions only define what is to be done, they do not actually execute. This means that the ECL programmer should
think in terms of writing code that specifies what to do rather than how to do it. This is an important concept in that,
the programmer is telling the supercomputer what needs to happen and not directing how it must be accomplished.
This frees the super-computer to optimize the actual execution in any way it needs to produce the desired result.

A second consideration is: the order that Definitions appear in source code does not define their execution order—
ECL is a non-procedural language. When an Action (such as OUTPUT) executes, all the Definitions it needs to use
(drilling down to the lowest level Definitions upon which others are built) are compiled and optimized—in other
words, unlike other programming languages, there is no inherent execution order implicit in the order that definitions
appear in source code (although there is a necessary order for compilation to occur without error—forward references
are not allowed). This concept of “orderless execution” requires a different mindset from standard, order-dependent
programming languages because it makes the code appear to execute “all at once.”

Syntax Issues
ECL is not case-sensitive. White space is ignored, allowing formatting for readability as needed.

Comments in ECL code are supported. Block comments must be delimited with /* and */.

/* this is a block comment - the terminator can be on the same line
or any succeeding line – everything in between is ignored */

Single-line comments must begin with //.

// this is a one-line comment

ECL uses the standard object.property syntax used by many other programming languages (however, ECL is not an
object-oriented language) to qualify Definition scope and disambiguate field references within tables:

ModuleName.Definition //reference an definition from another module/folder

Dataset.Field //reference a field in a dataset or recordset

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

11

Constants
String
All string literals must be contained within single quotation marks (' '). All ECL code is UTF-8 encoded, which means
that all strings are also UTF-8 encoded, whether Unicode or non-Unicode strings. Therefore, you must use a UTF-8
editor (such as the ECL IDE program).

To include the single quote character (apostrophe) in a constant string, prepend a backslash (\). To include the backslash
character (\) in a constant string, use two backslashes (\\) together.

STRING20 MyString2 := 'Fred\'s Place';
 //evaluated as: "Fred's Place"
STRING20 MyString3 := 'Fred\\Ginger\'s Place';
 //evaluated as: "Fred\Ginger's Place"

Other available escape characters are:

\t tab

\n new line

\r carriage return

\nnn 3 octal digits (for any other character)

\uhhhh lowercase "u" followed by 4 hexadecimal digits (for any other UNICODE-only character)

MyString1 := 'abcd';
MyString2 := U'abcd\353'; // becomes 'abcdë'

Hexadecimal string constants must begin with a leading “x” character. Only valid hexadecimal values (0-9, A-F)
may be in the character string and there must be an even number of characters.

DATA2 MyHexString := x'0D0A'; // a 2-byte hexadecimal string

Data string constants must begin with a leading “D” character. This is directly equivalent to casting the string constant
to DATA.

MyDataString := D'abcd'; // same as: (DATA)'abcd'

Unicode string constants must begin with a leading “U” character. Characters between the quotes are utf8-encoded
and the type of the constant is UNICODE.

MyUnicodeString1 := U'abcd'; // same as: (UNICODE)'abcd'
MyUnicodeString2 := U'abcd\353'; // becomes 'abcdë'
MyUnicodeString3 := U'abcd\u00EB'; // becomes 'abcdë'

VARSTRING string constants must begin with a leading “V” character. The terminating null byte is implied and
type of the constant is VARSTRING.

MyVarString := V'abcd'; // same as: (VARSTRING)'abcd'

QSTRING string constants must begin with a leading “Q” character. The terminating null byte is implied and type
of the constant is VARSTRING.

MyQString := Q'ABCD'; // same as: (QSTRING)'ABCD'

Numeric
Numeric constants containing a decimal portion are treated as REAL values (scientific notation is allowed) and those
without are treated as INTEGER (see Value Types). Integer constants may be decimal, hexadecimal, or binary values.

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

12

Hexadecimal values are specified with either a leading “0x” or a trailing “x” character. Binary values are specified
with either a leading “0b” or a trailing “b” character.

MyInt1 := 10; // value of MyInt1 is the INTEGER value 10
MyInt2 := 0x0A; // value of MyInt2 is the INTEGER value 10
MyInt3 := 0Ax; // value of MyInt3 is the INTEGER value 10
MyInt4 := 0b1010; // value of MyInt4 is the INTEGER value 10
MyInt5 := 1010b; // value of MyInt5 is the INTEGER value 10
MyReal1 := 10.0; // value of MyReal1 is the REAL value 10.0
MyReal2 := 1.0e1; // value of MyReal2 is the REAL value 10.0

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

13

Definitions
Each ECL definition is the basic building block of ECL. A definition specifies what is done but not how it is to
be done. Definitions can be thought of as a highly developed form of macro-substitution, making each succeeding
definition more and more highly leveraged upon the work that has gone before. This results in extremely efficient
query construction.

All definitions take the form:

[Scope] [ValueType] Name [(parms)] := Expression [:WorkflowService] ;

The Definition Operator (:= read as “is defined as”) defines an expression. On the left side of the operator is an
optional Scope (see Attribute Visibility), ValueType (see Value Types), and any parameters (parms) it may take (see
Functions (Parameter Passing)). On the right side is the expression that produces the result and optionally a colon (:)
and a comma-delimited list of WorkflowServices (see Workflow Services). A definition must be explicitly terminated
with a semi-colon (;). The Definition name can be used in subsequent definitions:

MyFirstDefinition := 5; //defined as 5
MySecondDefinition := MyFirstDefinition + 5; //this is 10

Definition Name Rules
Definition names begin with a letter and may contain only letters, numbers, or underscores (_).

My_First_Definition1 := 5; // valid name
My First Definition := 5; // INVALID name, spaces not allowed

You may name a Definition with the name of a previously created module in the ECL Repository, if the attribute is
defined with an explicit ValueType.

Reserved Words
ECL keywords, built-in functions and their options are reserved words, but they are generally reserved only in the
context within which they are valid for use. Even in that context, you may use reserved words as field or attribute
names, provided you explicitly disambiguate them, as in this example:

ds2 := DEDUP(ds, ds.all, ALL); //ds.all is the 'all' field in the
 //ds dataset - not DEDUP’s ALL option

However, it is still a good idea to avoid using ECL keywords as attribute or field names.

Definition Naming
Use descriptive names for all EXPORTed and SHARED Definitions. This will make your code more readable. The
naming convention adopted throughout the ECL documentation and training courses is as follows:

Definition Type Are Named
Boolean Is...
Set Definition Set...
Record Set ...DatasetName

For example:

IsTrue := TRUE; // a BOOLEAN Definition
SetNumbers := [1,2,3,4,5]; // a Set Definition
R_People := People(firstname[1] = 'R'); // a Record Set Definition

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

14

Basic Definition Types
The basic types of Definitions used most commonly throughout ECL coding are: Boolean, Value, Set, Record Set,
and TypeDef.

Boolean Definitions
A Boolean Definition is defined as any Definition whose definition is a logical expression resulting in a TRUE/FALSE
result. For example, the following are all Boolean Definitions:

IsBoolTrue := TRUE;
IsFloridian := Person.per_st = 'FL';
IsOldPerson := Person.Age >= 65;

Value Definitions
A Value Definition is defined as any Definition whose expression is an arithmetic or string expression with a sin-
gle-valued result. For example, the following are all Value Definitions:

ValueTrue := 1;
FloridianCount := COUNT(Person(Person.per_st = 'FL'));
OldAgeSum := SUM(Person(Person.Age >= 65),Person.Age);

Set Definitions
A Set Definition is defined as any Definition whose expression is a set of values, defined within square brackets.
Constant sets are created as a set of explicitly declared constant values that must be declared within square brackets,
whether that set is defined as a separate definition or simply included in-line in another expression. All the constants
must be of the same type.

SetInts := [1,2,3,4,5]; // an INTEGER set with 5 elements
SetReals := [1.5,2.0,3.3,4.2,5.0];
 // a REAL set with 5 elements
SetStatusCodes := ['A','B','C','D','E'];
 // a STRING set with 5 elements

The elements in any explicitly declared set can also be composed of arbitrary expressions. All the expressions must
result in the same type and must be constant expressions.

SetExp := [1,2+3,45,SomeIntegerDefinition,7*3];
 // an INTEGER set with 5 elements

Declared Sets can contain definitions and expressions as well as constants as long as all the elements are of the same
result type. For example:

StateCapitol(STRING2 state) :=
 CASE(state, 'FL' => 'Tallahassee', 'Unknown');
SetFloridaCities := ['Orlando', StateCapitol('FL'), 'Boca '+'Raton',
 person[1].per_full_city];

Set Definitions can also be defined using the SET function (which see). Sets defined this way may be used like any
other set.

SetSomeField := SET(SomeFile, SomeField);
 // a set of SomeField values

Sets can also contain datasets for use with those functions (such as: MERGE, JOIN, MERGEJOIN, or GRAPH) that
require sets of datsets as input parameters.

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

15

SetDS := [ds1, ds2, ds3]; // a set of datasets

Set Ordering and Indexing
Sets are implicitly ordered and you may index into them to access individual elements. Square brackets are used to
specify the element number to access. The first element is number one (1).

MySet := [5,4,3,2,1];
ReverseNum := MySet[2]; //indexing to MySet's element number 2,
 //so ReverseNum contains the value 4

Strings (Character Sets) may also be indexed to access individual or multiple contiguous elements within the set of
characters (a string is treated as though it were a set of 1-character strings). An element number within square brackets
specifies an individual character to extract.

MyString := 'ABCDE';
MySubString := MyString[2]; // MySubString is 'B'

Substrings may be extracted by using two periods to separate the beginning and ending element numbers within the
square brackets to specify the substring (string slice) to extract. Either the beginning or ending element number may
be omitted to indicate a substring from the beginning to the specified element, or from the specified element through
to the end.

MyString := 'ABCDE';
MySubString1 := MyString[2..4]; // MySubString1 is 'BCD'
MySubString2 := MyString[..4]; // MySubString2 is 'ABCD'
MySubString3 := MyString[2..]; // MySubString3 is 'BCDE'

Record Set Definitions
The term “Dataset” in ECL explicitly means a “physical” data file in the supercomputer (on disk or in memory), while
the term “Record Set” indicates any set of records derived from a Dataset (or another Record Set), usually based on
some filter condition to limit the result set to a subset of records. Record sets are also created as the return result from
one of the built-in functions that return result sets.

A Record Set Definition is defined as any Definition whose expression is a filtered dataset or record set, or any function
that returns a record set. For example, the following are all Record Set Definitions:

FloridaPersons := Person(Person.per_st = 'FL');
OldFloridaPersons := FloridaPersons(Person.Age >= 65);

Record Set Ordering and Indexing
All Datasets and Record Sets are implicitly ordered and may be indexed to access individual records within the set.
Square brackets are used to specify the element number to access, and the first element in any set is number one (1).

Datasets (including child datasets) and Record Sets may use the same method as described above for strings to access
individual or multiple contiguous records.

MyRec1 := Person[1]; // first rec in dataset
MyRec2 := Person[1..10]; // first ten recs in dataset
MyRec4 := Person[2..]; // all recs except the first

Note: ds[1] and ds[1..1] are not the same thing—ds[1..1] is a recordset (may be used in recordset context) while ds[1]
is a single row (may be used to reference single fields).

And you can also access individual fields in a specified record with a single index:

MyField := Person[1].per_last_name; // last name in first rec

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

16

Indexing a record set with a value that is out of bounds is defined to return a row where all the fields contain blank/
zero values. It is often more efficient to index an out of bound value rather than writing code that handles the special
case of an out of bounds index value.

For example, the expression:

IF(COUNT(ds) > 0, ds[1].x, 0);

is simpler as:

ds[1].x //note that this returns 0 if ds contains no records.

TypeDef Definitions
A TypeDef Definition is defined as any Definition whose definition is a value type, whether built-in or user-defined.
For example, the following are all TypeDef Definitions (except GetXLen):

GetXLen(DATA x,UNSIGNED len) := TRANSFER(((DATA4)(x[1..len])),UNSIGNED4);

EXPORT xstring(UNSIGNED len) := TYPE
 EXPORT INTEGER PHYSICALLENGTH(DATA x) := GetXLen(x,len) + len;
 EXPORT STRING LOAD(DATA x) := (STRING)x[(len+1)..GetXLen(x,len) + len];
 EXPORT DATA STORE(STRING x):= TRANSFER(LENGTH(x),DATA4)[1..len] + (DATA)x;
END;

pstr := xstring(1); // typedef for user defined type
pppstr := xstring(3);
nameStr := STRING20; // typedef of a system type

namesRecord := RECORD
 pstr surname;
 nameStr forename;
 pppStr addr;

END;
//A RECORD structure is also a typedef definition (user-defined)

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

17

Recordset Filtering
Filters are conditional expressions contained within the parentheses following the Dataset or Record Set name. Multiple
filter conditions may be specified by separating each filter expression with a comma (,). All filter conditions separated
by commas must be TRUE for a record to be included, which makes the comma an implicit AND operator (see Logical
Operators) in this context only.

MyRecordSet := Person(per_last_name >= 'T', per_last_name < 'U');
 // MyRecordSet contains people whose last name begins with “T”
 // the comma is an implicit AND while also functioning as
 // an expression separator (implicit parentheses)

MyRecordSet := Person(per_last_name >= 'T' AND per_last_name < 'U');
// exactly the same logical expression as above

RateGE7trds := Trades(trd_rate >= '7');

ValidTrades := Trades(NOT rmsTrade.Mortgage AND
 NOT rmsTrade.HasNarrative(rmsTrade.snClosed));

Boolean definitions should be used as recordset filters for maximum flexibility, readability and re-usability instead
of hard-coding in a Record Set definition. For example, use:

IsRevolv := trades.trd_type = 'R'
 OR (~ValidType(trades.trd_type)
 AND trades.trd_acct[1] IN ['4','5','6']);

isBank := trades.trd_ind_code IN SetBankIndCodes;

IsBankCard := IsBank AND IsRevolv;

WithinDate(INTEGER1 months) := ValidDate(trades.trd_drpt) AND
 trades.trd_drpt_mos <= months;

BankCardTrades := trades(isBankCard AND WithinDate(6));

instead of:

BankCardTrades := trades(trades.trd_ind_code IN SetBankIndCodes,
 (trades.trd_type = 'R' OR
 (~ValidType(trades.trd_type) AND
 trades.trd_acct[1] IN ['4', '5', '6'])),
 ValidDate(trades.trd_drpt),
 trades.trd_drpt_mos <= 6);

Commas used to separate filter conditions in a recordset filter definition act as both an implicit AND operation and a
set of parentheses around the individual filters being separated. This results in a tighter binding than if AND is used
instead of a comma without parentheses. For example, the filter expression in this definition::

BankMortTrades := trades(isBankCard OR isMortgage, isOpen);

is evaluated as if it were written:

(isBankCard OR isMortgage) AND isOpen

and not as:

isBankCard OR isMortgage AND isOpen

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

18

Function Definitions (Parameter Pass-
ing)
All of the basic Definition types can also become functions by defining them to accept passed parameters (arguments).
The fact that it receives parameters doesn't change the essential nature of the Definition's type, it simply makes it
more flexible.

Parameter definitions always appear in parentheses attached to the Definition's name. You may define the function
to receive as many parameters as needed to create the desired functionality by simply separating each succeeding
parameter definition with a comma.

The format of parameter definitions is as follows:

DefinitionName([ValueType] AliasName [=DefaultValue]) := expression;

ValueType Optional. Specifies the type of data being passed. If omitted, the default is INTEGER
(see Value Types). This also may include the CONST keyword (see CONST) to in-
dicate that the passed value will always be treated as a constant.

AliasName Names the parameter for use in the expression.

DefaultValue Optional. Provides the value to use in the expression if the parameter is omitted. The
DefaultValue may be the keyword ALL if the ValueType is SET (see the SET key-
word) to indicate all possible values for that type of set, or empty square brackets ([])
to indicate no possible value for that type of set.

expression The function's operation for which the parameters are used.

Simple Value Type Parameters
If the optional ValueType is any of the simple types (BOOLEAN, INTEGER, REAL, DECIMAL, STRING,
QSTRING, UNICODE, DATA, VARSTRING, VARUNICODE), the ValueType may include the CONST keyword
(see CONST) to indicate that the passed value will always be treated as a constant (typically used only in ECL pro-
totypes of external functions).

ValueDefinition := 15;
FirstFunction(INTEGER x=5) := x + 5;
 //takes an integer parameter named "x" and "x" is used in the
 //arithmetic expression to indicate the usage of the parameter

SecondDefinition := FirstFunction(ValueDefinition);
 // The value of SecondDefinition is 20

ThirdDefinition := FirstFunction();
 // The value of ThirdDefinition is 10, omitting the parameter

SET Parameters
The DefaultValue for SET parameters may be a default set of values, the keyword ALL to indicate all possible values
for that type of set, or empty square brackets ([]) to indicate no possible value for that type of set (and empty set).

SET OF INTEGER1 SetValues := [5,10,15,20];

IsInSetFunction(SET OF INTEGER1 x=SetValues,y) := y IN x;

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

19

OUTPUT(IsInSetFunction([1,2,3,4],5)); //false
OUTPUT(IsInSetFunction(,5)); // true

Passing DATASET Parameters
Passing a DATASET or a derived recordset as a parameter may be accomplished using the following syntax:

DefinitionName(DATASET(recstruct) AliasName) := expression;

The required recstruct names the RECORD structure that defines the layout of fields in the passed DATASET para-
meter. The recstruct may alternatively use the RECORDOF function. The required AliasName names the dataset for
use in the function and is used in the Definition's expression to indicate where in the operation the passed parameter
is to be used. See the DATASET as a Value Type discussion in the DATASET documentation for further examples.

MyRec := {STRING1 Letter};

SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'}],MyRec);

FilteredDS(DATASET(MyRec) ds) := ds(Letter NOT IN ['A','C','E']);
 //passed dataset referenced as “ds” in expression

OUTPUT(FilteredDS(SomeFile));

Passing DICTIONARY Parameters
Passing a DICTIONARY as a parameter may be accomplished using the following syntax:

DefinitionName(DICTIONARY(structure) AliasName) := expression;

The required structure parameter is the RECORD structure that defines the layout of fields in the passed DIC-
TIONARY parameter (usually defined inline). The required AliasName names the DICTIONARY for use in the func-
tion and is used in the Definition's expression to indicate where in the operation the passed parameter is to be used.
See the DICTIONARY as a Value Type discussion in the DICTIONARY documentation.

rec := RECORD
 STRING10 color;
 UNSIGNED1 code;
 STRING10 name;
END;
Ds := DATASET([{'Black' ,0 , 'Fred'},
 {'Brown' ,1 , 'Seth'},
 {'Red' ,2 , 'Sue'},
 {'White' ,3 , 'Jo'}], rec);

DsDCT := DICTIONARY(DS,{color => DS});

DCTrec := RECORD
 STRING10 color =>
 UNSIGNED1 code,
 STRING10 name,
END;
InlineDCT := DICTIONARY([{'Black' => 0 , 'Fred'},
 {'Brown' => 1 , 'Sam'},
 {'Red' => 2 , 'Sue'},
 {'White' => 3 , 'Jo'}],
 DCTrec);

MyDCTfunc(DICTIONARY(DCTrec) DCT,STRING10 key) := DCT[key].name;

MyDCTfunc(InlineDCT,'White'); //Jo
MyDCTfunc(DsDCT,'Brown'); //Seth

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

20

Passing Typeless Parameters
Passing parameters of any type may be accomplished using the keyword ANY as the passed value type:

DefinitionName (ANY AliasName) := expression;

a := 10;
b := 20;
c := '1';
d := '2';
e := '3';
f := '4';
s1 := [c,d];
s2 := [e,f];

ds1 := DATASET(s1,{STRING1 ltr});
ds2 := DATASET(s2,{STRING1 ltr});

MyFunc(ANY l, ANY r) := l + r;

MyFunc(a,b); //returns 30
MyFunc(a,c); //returns '101'
MyFunc(c,d); //returns '12'
MyFunc(s1,s2); //returns a set: ['1','2','3','4']
MyFunc(ds1,ds2); //returns 4 records: '1', '2', '3', and '4'

Passing Function Parameters
Passing a Function as a parameter may be accomplished using either of the following syntax options as the ValueType
for the parameter:

FunctionName(parameters)

PrototypeName

FunctionName The name of a function, the type of which may be passed as a parameter.

parameters The parameter definitions for the FunctionName parameter.

PrototypeName The name of a previously defined function to use as the type of function that may be
passed as a parameter.

The following code provides examples of both methods:

//a Function prototype:
INTEGER actionPrototype(INTEGER v1, INTEGER v2) := 0;

INTEGER aveValues(INTEGER v1, INTEGER v2) := (v1 + v2) DIV 2;
INTEGER addValues(INTEGER v1, INTEGER v2) := v1 + v2;
INTEGER multiValues(INTEGER v1, INTEGER v2) := v1 * v2;

//a Function prototype using a function prototype:
INTEGER applyPrototype(INTEGER v1, actionPrototype actionFunc) := 0;

//using the Function prototype and a default value:
INTEGER applyValue2(INTEGER v1,
 actionPrototype actionFunc = aveValues) :=
 actionFunc(v1, v1+1)*2;

//Defining the Function parameter inline, witha default value:
INTEGER applyValue4(INTEGER v1,
 INTEGER actionFunc(INTEGER v1,INTEGER v2) = aveValues)

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

21

 := actionFunc(v1, v1+1)*4;
INTEGER doApplyValue(INTEGER v1,
 INTEGER actionFunc(INTEGER v1, INTEGER v2))
 := applyValue2(v1+1, actionFunc);

//producing simple results:
OUTPUT(applyValue2(1)); // 2
OUTPUT(applyValue2(2)); // 4
OUTPUT(applyValue2(1, addValues)); // 6
OUTPUT(applyValue2(2, addValues)); // 10
OUTPUT(applyValue2(1, multiValues)); // 4
OUTPUT(applyValue2(2, multiValues)); // 12
OUTPUT(doApplyValue(1, multiValues)); // 12
OUTPUT(doApplyValue(2, multiValues)); // 24

//A definition taking function parameters which themselves
//have parameters that are functions...

STRING doMany(INTEGER v1,
 INTEGER firstAction(INTEGER v1,
 INTEGER actionFunc(INTEGER v1,INTEGER v2)),
 INTEGER secondAction(INTEGER v1,
 INTEGER actionFunc(INTEGER v1,INTEGER v2)),
 INTEGER actionFunc(INTEGER v1,INTEGER v2))
 := (STRING)firstAction(v1, actionFunc) + ':' + (STRING)secondaction(v1, actionFunc);

OUTPUT(doMany(1, applyValue2, applyValue4, addValues));
 // produces "6:12"

OUTPUT(doMany(2, applyValue4, applyValue2,multiValues));
 // produces "24:12"

Passing NAMED Parameters
Passing values to a function defined to receive multiple parameters, many of which have default values (and are
therefore omittable), is usually accomplished by “counting commas” to ensure that the values you choose to pass are
passed to the correct parameter by the parameter's position in the list. This method becomes untenable when there are
many optional parameters.

The easier method is to use the following NAMED parameter syntax, which eliminates the need to include extraneous
commas as place holders to put the passed values in the proper parameters:

Attr := FunctionName([NAMED] AliasName := value);

NAMED Optional. Required only when the AliasName clashes with a reserved word.

AliasName The names of the parameter in the definition's function definition.

value The value to pass to the parameter.

This syntax is used in the call to the function and allows you to pass values to specific parameters by their AliasName,
without regard for their position in the list. All unnamed parameters passed must precede any NAMED parameters.

outputRow(BOOLEAN showA = FALSE, BOOLEAN showB = FALSE,
 BOOLEAN showC = FALSE, STRING aValue = 'abc',
 INTEGER bValue = 10, BOOLEAN cValue = TRUE) :=
 OUTPUT(IF(showA,' a='+aValue,'')+
 IF(showB,' b='+(STRING)bValue,'')+
 IF(showc,' c='+(STRING)cValue,''));

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

22

outputRow(); //produce blanks
outputRow(TRUE); //produce "a=abc"
outputRow(,,TRUE); //produce "c=TRUE"
outputRow(NAMED showB := TRUE); //produce “b=10”

outputRow(TRUE, NAMED aValue := 'Changed value');
 //produce “a=Changed value”

outputRow(,,,'Changed value2',NAMED showA := TRUE);
 //produce "a=Changed value2"

outputRow(showB := TRUE); //produce “b=10”

outputRow(TRUE, aValue := 'Changed value');
outputRow(,,,'Changed value2',showA := TRUE);

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

23

Definition Visibility
ECL code, definitions, are stored in .ECL files in your code repository, which are organized into modules (directories
or folders on disk). Each .ECL file may only contain a single EXPORT or SHARED definition (see below) along with
any supporting local definitions required to fully define the definition's result. The name of the file and the name of
its EXPORT or SHARED definition must exactly match.

Within a module (directory or folder on disk), you may have as many EXPORT and/or SHARED definitions as needed.
An IMPORT statement (see the IMPORT keyword) identifies any other modules whose visible definitions will be
available for use in the current definition.

The following fundamental definition visibility scopes are available in ECL: "Global," Module, and Local.

"Global"
Definitions defined as EXPORT (see the EXPORT keyword) are available throughout the module in which they are
defined, and throughout any other module that IMPORTs that module (see the IMPORT keyword).

//inside the Definition1.ecl file (in AnotherModule folder) you have:
EXPORT Definition1 := 5;
 //EXPORT makes Definition1 available to other modules and
 //also available throughout its own module

Module
The scope of the definitions defined as SHARED (see the SHARED keyword) is limited to that one module, and are
available throughout the module (unlike local definitions). This allows you to keep private any definitions that are
only needed to implement internal functionality. SHARED definitions are used to support EXPORT definitions.

//inside the Definition2.ecl file you have:
IMPORT AnotherModule;
 //makes definitions from AnotherModule available to this code, as needed

SHARED Definition2 := AnotherModule.Definition1 + 5;
 //Definition2 available throughout its own module, only

//***
//then inside the Definition3.ecl file (in the same folder as Definition2) you have:
IMPORT $;
 //makes definitions from the current module available to this code, as needed

EXPORT Definition3 := $.Definition2 + 5;
 //make Definition3 available to other modules and
 //also available throughout its own module

Local
A definition without either the EXPORT or SHARED keywords is available only to subsequent definitions, until the
end of the next EXPORT or SHARED definition. This makes them private definitions used only within the scope of
that one EXPORT or SHARED definition, which allows you to keep private any definitions that are only needed to
implement internal functionality. Local definitions definitions are used to support the EXPORT or SHARED definition
in whose file they reside. Local definitions are referenced by their definition name alone; no qualification is needed.

//then inside the Definition4.ecl file (in the same folder as Definition2) you have:
IMPORT $;
 //makes definitions from the current module available to this code, as needed

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

24

LocalDef := 5;
 //local -- available through the end of Definition4's definition, only

EXPORT Definition4 := LocalDef + 5;
//EXPORT terminates scope for LocalDef

LocalDef2 := Definition4 + LocalDef;
 //INVALID SYNTAX -- LocalDef is out of scope here
 //and any local definitions following the EXPORT
 //or SHARED definition in the file are meaningless
 //since they can never be used by anything

The LOCAL keyword is valid for use within any nested structure, but most useful within a FUNCTIONMACRO struc-
ture to clearly identify that the scope of a definition is limited to the code generated within the FUNCTIONMACRO.

AddOne(num) := FUNCTIONMACRO
 LOCAL numPlus := num + 1;
 RETURN numPlus;
ENDMACRO;

numPlus := 'this is a syntax error without LOCAL in the FUNCTIONMACRO';
numPlus;
AddOne(5);

See Also: IMPORT, EXPORT, SHARED, MODULE, FUNCTIONMACRO

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

25

Field and Definition Qualification
Imported Definitions
EXPORTed definitions defined within another module and IMPORTed (see the EXPORT and IMPORT keywords)
are available for use in the definition that contains the IMPORT. Imported Definitions must be fully qualified by their
Module name and Definition name, using dot syntax (module.definition).

IMPORT abc; //make all exported definitions in the abc module available
EXPORT Definition1 := 5; //make Definition1 available to other modules
Definition2 := abc.Definition2 + Definition1;
 // object qualification needed for Definitions from abc module

Fields in Datasets
Each Dataset counts as a qualified scope and the fields within them are fully qualified by their Dataset (or record set)
name and Field name, using dot syntax (dataset.field). Similarly, the result set of the TABLE built-in function (see the
TABLE keyword) also acts as a qualified scope. The name of the record set to which a field belongs is the object name:

Young := YearOf(Person.per_dbrth) < 1950;
MySet := Person(Young);

When naming a Dataset as part of a definition, the fields of that Definition (or record set) come into scope. If Para-
meterized Definitions (functions) are nested, only the innermost scope is available. That is, all the fields of a Dataset
(or derived record set) are in scope in the filter expression. This is also true for expressions parameters of any built-
in function that names a Dataset or derived record set as a parameter.

MySet1 := Person(YearOf(dbrth) < 1950);
// MySet1 is the set of Person records who were born before 1950

MySet2 := Person(EXISTS(OpenTrades(AgeOf(trd_dla) < AgeOf(Person.per_dbrth))));

// OpenTrades is a pre-defined record set.
//All Trades fields are in scope in the OpenTrades record set filter
//expression, but Person is required here to bring Person.per_dbrth
// into scope
//This example compares each trades' Date of Last Activity to the
// related person’s Date Of Birth

Any field in a Record Set can be qualified with either the Dataset name the Record Set is based on, or any other Record
Set name based on the same base dataset. For example:

memtrade.trd_drpt
nondup_trades.trd_drpt
trades.trd_drpt

all refer to the same field in the memtrade dataset.

For consistency, you should typically use the base dataset name for qualification. You can also use the current Record
Set's name in any context where the base dataset name would be confusing.

Scope Resolution Operator
Identifiers are looked up in the following order:

1. The currently active dataset, if any

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

26

2. The current definition being defined, and any parameters it is based on

3. Any definitions or parameters of any MODULE or FUNCTION structure that contains the current definition

This might mean that the definition or parameter you want to access isn't picked because it is hidden as in a parameter
or private definition name clashing with the name of a dataset field.

It would be better to rename the parameter or private definition so the name clash cannot occur, but sometimes this
is not possible.

You may direct access to a different match by qualifying the field name with the scope resolution operator (the carat
(^) character), using it once for each step in the order listed above that you need to skip.

This example shows the qualification order necessary to reach a specific definition/parameter:

ds := DATASET([1], { INTEGER SomeValue });

INTEGER SomeValue := 10; //local definition

myModule(INTEGER SomeValue) := MODULE

 EXPORT anotherFunction(INTEGER SomeValue) := FUNCTION
 tbl := TABLE(ds,{SUM(GROUP, someValue), // 1 - DATASET field
 SUM(GROUP, ^.someValue), // 84 - FUNCTION parameter
 SUM(GROUP, ^^.someValue), // 42 - MODULE parameter
 SUM(GROUP, ^^^.someValue), // 10 - local definition
 0});
 RETURN tbl;
 END;

 EXPORT result := anotherFunction(84);
 END;

OUTPUT(myModule(42).result);

In this example there are four instances of the name "SomeValue":

a field in a DATASET.

a local definition

a parameter to a MODULE structure

a parameter to a FUNCTION structure

The code in the TABLE function shows how to reference each separate instance.

While this syntax allows exceptions where you need it, creating another definition with a different name is the preferred
solution.

ECL Language Reference
ECL Basics

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

27

Actions and Definitions
While Definitions define expressions that may be evaluated, Actions trigger execution of a workunit that produces
results that may be viewed. An Action may evaluate Definitions to produce its result. There are a number of built-in
Actions in ECL (such as OUTPUT), and any expression (without a Definition name) is implicitly treated as an Action
to produce the result of the expression.

Expressions as Actions
Fundamentally, any expression in can be treated as an Action. For example,

Attr1 := COUNT(Trades);
Attr2 := MAX(Trades,trd_bal);
Attr3 := IF (1 = 0, 'A', 'B');

are all definitions, but without a definition name, they are simply expressions

COUNT(Trades); //execute these expressions as Actions
MAX(Trades,trd_bal);
IF (1 = 0, 'A', 'B');

that are treated as actions, and as such, can directly generate result values by simply submitting them as queries to the
supercomputer. Basically, any ECL expression can be used as an Action to instigate a workunit.

Definitions as Actions
These same expression definitions can be executed by submitting the names of the Definitions as queries, like this:

Attr1; //These all generate the same result values
Attr2; // as the previous examples
Attr3;

Actions as Definitions
Conversely, by simply giving any Action a Definition name it becomes a definition, therefore no longer a directly
executable action. For example,

OUTPUT(Person);

is an action, but

Attr4 := OUTPUT(Person);

is a definition and does not immediately execute when submitted as part of a query. To execute the action inherent in
the definition, you must execute the Definition name you've given to the Action, like this:

Attr4; // run the previously defined OUTPUT(Person) action

Debugging Uses
This technique of directly executing a Definition as an Action is useful when debugging complex ECL code. You
can send the Definition as a query to determine if intermediate values are correctly calculated before continuing on
with more complex code.

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

28

Expressions and Operators

Expressions and Operators
Expressions are evaluated left-to-right and from the inside out (in nested functions). Parentheses may be used to alter
the default evaluation order of precedence for all operators.

Arithmetic Operators
Standard arithmetic operators are supported for use in expressions, listed here in their evaluation precedence:

Division /

Integer Division DIV

Modulus Division %

Multiplication *

Addition +

Subtraction -

Division by zero defaults to generating a zero result (0), rather than reporting a “divide by zero” error. This avoids
invalid or unexpected data aborting a long job. The default behaviour can be changed using

#option ('divideByZero', ...);

The #option can take the following values:

'zero' Evaluate to 0 - the default behaviour.

'fail' Stop and report a division by zero error.

'nan' This is only currently supported for real numbers. Division by zero
creates a quiet NaN, which will propogate through any real expres-
sions it is used in. You can use NOT ISVALID(x) to test if the val-
ue is a NaN. Integer and decimal division by zero continue to re-
turn 0.

Bitwise Operators
Bitwise operators are supported for use in expressions, listed here in their evaluation precedence:

Bitwise AND &

Bitwise OR |

Bitwise Exclusive OR ^

Bitwise NOT BNOT

Bitshift Operators
Bitshift operators are supported for use in integer expressions:

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

29

Bitshift Right >>

Bitshift Left <<

Comparison Operators
The following comparison operators are supported:

Equivalence = returns TRUE or FALSE

Not Equal <> returns TRUE or FALSE

Not Equal != returns TRUE or FALSE

Less Than < returns TRUE or FALSE

Greater Than > returns TRUE or FALSE

Less Than or Equal <= returns TRUE or FALSE

Greater Than or Equal >= returns TRUE or FALSE

Equivalence Comparison <=> returns -1, 0, or 1

The Greater Than or Equal operator must have the Greater Than (>) sign first. For the expression a <=> b, the Equiv-
alence Comparison operator returns -1 if a<b, 0 if a=b, and 1 if a>b.

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

30

Logical Operators
The following logical operators are supported, listed here in their evaluation precedence:

NOT Boolean NOT operation

~ Boolean NOT operation

AND Boolean AND operation

OR Boolean OR operation

Logical Expression Grouping
When a complex logical expression has multiple OR conditions, you should group the OR conditions and order them
from least complex to most complex to result in the most efficient processing. If the probability of occurrence is known,
you should order them from the most likely to occur to the least likely to occur, because once any part of a compound
OR condition evaluates to TRUE, the remainder of the expression is bypassed. This is also true of the order of MAP
function conditions.

Whenever AND and OR logical operations are mixed in the same expression, you should use parentheses to group
within the expression to ensure correct evaluation and to clarify the intent of the expression. For example consider
the following:

isCurrentRevolv := trades.trd_type = 'R' AND
 trades.trd_rate = '0' OR
 trades.trd_rate = '1';

does not produce the intended result. Use of parentheses ensures correct evaluation, as shown below:

isCurrentRevolv := trades.trd_type = 'R' AND
 (trades.trd_rate = '0' OR trades.trd_rate = '1');

An XOR Operator
The following function can be used to perform an XOR operation on 2 Boolean values:

BOOLEAN XOR(BOOLEAN cond1, BOOLEAN cond2) :=
 (cond1 OR cond2) AND NOT (cond1 AND cond2);

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

31

Record Set Operators
The following record set operators are supported (both require that the files were created using identical RECORD
structures):

+ Append all records from both files, independent of any order

- Subtract records from a file

& Append all records from both files, maintaining record order on each node

Example:

MyLayout := RECORD
 UNSIGNED Num;
 STRING Number;
END;

FirstRecSet := DATASET([{1, 'ONE'}, {2, 'Two'}, {3, 'Three'}, {4, 'Four'}], MyLayout);
SecondRecSet := DATASET([{5, 'FIVE'}, {6, 'SIX'}, {7, 'SEVEN'}, {8, 'EIGHT'}], MyLayout);

ExcludeThese := SecondRecSet(Num > 6);

WholeRecSet := FirstRecSet + SecondRecSet;
ResultSet:= WholeRecSet-ExcludeThese;

OUTPUT (WholeRecSet);
OUTPUT(ResultSet);

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

32

Set Operators
The following set operators are supported, listed here in their evaluation precedence:

+ Append (all elements from both sets, without re-ordering or duplicate element removal)

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

33

String Operators
The following string operator is supported:

+ Concatenation

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

34

IN Operator
value IN value_set

value The value to find in the value_set. This is usually a single value, but if the value_set
is a DICTIONARY with a multiple-component key, this may also be a ROW.

value_set A set of values. This may be a set expression, the SET function, or a DICTIONARY.

The IN operator is shorthand for a collection of OR conditions. It is an operator that will search a set to find an
inclusion, resulting in a Boolean return. Using IN is much more efficient than the equivalent OR expression.

Example:

ABCset := ['A', 'B', 'C'];
IsABCStatus := Person.Status IN ABCset;
 //This code is directly equivalent to:
 // IsABCStatus := Person.Status = 'A' OR
 // Person.Status = 'B' OR
 // Person.Status = 'C';

IsABC(STRING1 char) := char IN ABCset;
Trades_ABCstat := Trades(IsABC(rate));
 // Trades_ABCstat is a record set definition of all those
 // trades with a trade status of A, B, or C

//SET function examples
r := {STRING1 Letter};
SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'}],r);
x := SET(SomeFile(Letter > 'C'),Letter);
y := 'A' IN x; //results in FALSE
z := 'D' IN x; //results in TRUE

//DICTIONARY examples:
rec := {STRING color,UNSIGNED1 code};
ColorCodes := DATASET([{'Black' ,0 },
 {'Brown' ,1 },
 {'Red' ,2 },
 {'White' ,3 }], rec);

CodeColorDCT := DICTIONARY(ColorCodes,{Code => Color});
OUTPUT(6 IN CodeColorDCT); //false

ColorCodesDCT := DICTIONARY(ColorCodes,{Color,Code});
OUTPUT(ROW({'Red',2},rec) IN ColorCodesDCT);

See Also: Basic Definition Types, Definition Types (Set Definitions), Logical Operators, PATTERN, DICTIONARY,
ROW, SET, Sets and Filters, SET OF, Set Operators

ECL Language Reference
Expressions and Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

35

BETWEEN Operator
SeekVal BETWEEN LoVal AND HiVal

SeekVal The value to find in the inclusive range.

LoVal The low value in the inclusive range.

HiVal The high value in the inclusive range.

The BETWEEN operator is shorthand for an inclusive range check using standard comparison operators (SeekVal >=
LoVal AND SeekVal <= HiVal). It may be combined with NOT to reverse the logic.

Example:

X := 10;
Y := 20;
Z := 15;

IsInRange := Z BETWEEN X AND Y;
 //This code is directly equivalent to:
 // IsInRange := Z >= X AND Z <= Y;

IsNotInRange := Z NOT BETWEEN X AND Y;
 //This code is directly equivalent to:
 // IsInNotRange := NOT (Z >= X AND Z <= Y);

See Also: Logical Operators, Comparison Operators

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

36

Value Types
Value types declare an Attribute's type when placed left of the Attribute name in the definition. They also declare a
passed parameter's type when placed left of the parameter name in the definition. Value types also explicitly cast from
type to another when placed in parentheses left of the expression to cast.

BOOLEAN
BOOLEAN

A Boolean true/false value. TRUE and FALSE are reserved ECL keywords; they are Boolean constants that may be
used to compare against a BOOLEAN type. When BOOLEAN is used in a RECORD structure, a single-byte integer
containing one (1) or zero (0) is output.

Example:

BOOLEAN MyBoolean := SomeAttribute > 10;
 // declares MyBoolean a BOOLEAN Attribute

BOOLEAN MyBoolean(INTEGER p) := p > 10;
 // MyBoolean takes an INTEGER parameter

BOOLEAN Typtrd := trades.trd_type = 'R';
 // Typtrd is a Boolean attribute, likely to be used as a filter

See Also: TRUE/FALSE

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

37

INTEGER
[IntType] [UNSIGNED] INTEGER[n]

[IntType] UNSIGNEDn

An n-byte integer value. Valid values for n are: 1, 2, 3, 4, 5, 6, 7,or 8. If n is not specified for the INTEGER, the
default is 8-bytes.

The optional IntType may specify either the BIG_ENDIAN (Sun/UNIX-type, valid only inside a RECORD structure)
or LITTLE_ENDIAN (Intel-type) style of integers. These two IntTypes have opposite internal byte orders. If the
IntType is missing, the integer is LITTLE_ENDIAN.

If the optional UNSIGNED keyword is missing, the integer is signed. Unsigned integer declarations may be contracted
to UNSIGNEDn instead of UNSIGNED INTEGERn.

INTEGER Value Ranges

Size Signed Values Unsigned Values

1-byte -128 to 127 0 to 255

2-byte -32,768 to 32,767 0 to 65,535

3-byte -8,388,608 to 8,388,607 0 to 16,777,215

4-byte -2,147,483,648 to 2,147,483,647 0 to 4,294,967,295

5-byte -549,755,813,888 to 549,755,813,887 0 to 1,099,511,627,775

6-byte -140,737,488,355,328 to
140,737,488,355,327

0 to 281,474,976,710,655

7-byte -36,028,797,018,963,968 to
36,028,797,018,963,967

0 to 72,057,594,037,927,935

8-byte -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

0 to 18,446,744,073,709,551,615

Example:

INTEGER1 MyValue := MAP(MyString = '1' => MyString, '0');
 //MyValue is 1 or 0, changing type from string to integer
UNSIGNED INTEGER1 MyValue := 255; //max value possible in 1 byte
UNSIGNED1 MyValue := 255;
 //MyValue contains the max value possible in a single byte
MyRec := RECORD
 LITTLE_ENDIAN INTEGER2 MyLittleEndianValue := 1;
 BIG_ENDIAN INTEGER2 MyBigEndianValue := 1;
 //the physical byte-order is opposite in these two
END

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

38

REAL
REAL[n]

An n-byte standard IEEE floating point value. Valid values for n are: 4 (values to 7 significant digits) or 8 (values to
15 significant digits). If n is omitted, REAL is a double-precision floating-point value (8-bytes).

REAL Value Ranges
Type Significant Digits Largest Value Smallest Value

Type Significant Digits Largest Value Smallest Value
REAL4 7 (9999999) 3.402823e+038 1.175494e-038
REAL8 15 (999999999999999) 1.797693e+308 2.225074e-308

Example:

REAL4 MyValue := MAP(MyString = '1.0' => MyString, '0');
 // MyValue becomes either 1.0 or 0

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

39

DECIMAL
[UNSIGNED] DECIMALn [_y]

UDECIMALn [_y]

A packed decimal value of n total digits (to a maximum of 32). If the _y value is present, the y defines the number
of decimal places in the value.

If the UNSIGNED keyword is omitted, the rightmost nibble holds the sign. Unsigned decimal declarations may be
contracted to use the optional UDECIMALn syntax instead of UNSIGNED DECIMALn.

Using exclusively DECIMAL values in computations invokes the Binary Coded Decimal (BCD) math libraries
(base-10 math), allowing up to 32-digits of precision (which may be on either side of the decimal point).

Example:

DECIMAL5_2 MyDecimal := 123.45;
 //five total digits with two decimal places

OutputFormat199 := RECORD
 UNSIGNED DECIMAL9 Person.SSN;
 //unsigned packed decimal containing 9 digits,
 // occupying 5 bytes in a flat file

UDECIMAL10 Person.phone;
 //unsigned packed decimal containing 10 digits,
 // occupying 5 bytes in a flat file

END;

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

40

STRING
[StringType] STRING[n]

A character string of n bytes, space padded (not null-terminated). If n is omitted, the string is variable length to the
size needed to contain the result of the cast or passed parameter. You may use set indexing into any string to parse
out a substring.

The optional StringType may specify ASCII or EBCDIC. If the StringType is missing, the data is in ASCII format.
Defining an EBCDIC STRING Attribute as a string constant value implies an ASCII to EBCDIC conversion. How-
ever, defining an EBCDIC STRING Attribute as a hexadecimal string constant value implies no conversion, as the
programmer is assumed to have supplied the correct hexadecimal EBCDIC value.

Example:

STRING1 MyString := IF(SomeAttribute > 10,'1','0');
 // declares MyString a 1-byte ASCII string

EBCDIC STRING3 MyString1 := 'ABC';
 //implicit ASCII to EBCDIC conversion

EBCDIC STRING3 MyString2 := x'616263';
 //NO conversion here

See Also: LENGTH, TRIM, Set Ordering and Indexing, Hexadecimal String

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

41

QSTRING
QSTRING[n]

A data-compressed variation of STRING that uses only 6-bits per character to reduce storage requirements for large
strings. The character set is limited to capital letters A-Z, the numbers 0-9, the blank space, and the following set of
special characters:

! " # $ % & ' () * + , - . / ; < = > ? @ [\] ^ _

If n is omitted, the QSTRING is variable length to the size needed to contain the result of a cast or passed parameter.
You may use set indexing into any QSTRING to parse out a substring.

Example:

QSTRING12 CompanyName := 'LEXISNEXIS';
 // uses only 9 bytes of storage instead of 12

See Also: STRING, LENGTH, TRIM, Set Ordering and Indexing.

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

42

UNICODE
UNICODE[locale][n]

A UTF-16 encoded unicode character string of n characters, space-padded just as STRING is. If n is omitted, the string
is variable length to the size needed to contain the result of the cast or passed parameter. The optional locale specifies
a valid unicode locale code, as specified in ISO standards 639 and 3166 (not needed if LOCALE is specified on the
RECORD structure containing the field definition).

Type casting UNICODE to VARUNICODE, STRING, or DATA is allowed, while casting to any other type will first
implicitly cast to STRING and then cast to the target value type.

Example:

UNICODE16 MyUNIString := U'1234567890ABCDEF';
 // utf-16-encoded string
UNICODE4 MyUnicodeString := U'abcd';
 // same as: (UNICODE)'abcd'
UNICODEde5 MyUnicodeString := U'abcd\353';
 // becomes 'abcdë' with a German locale
UNICODEde5 MyUnicodeString := U'abcdë';
 // same as previous example

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

43

DATA
DATA[n]

A "packed hexadecimal" data block of n bytes, zero padded (not space-padded). If n is omitted, the DATA is variable
length to the size needed to contain the result of the cast or passed parameter. Type casting is allowed but only to a
STRING or UNICODE of the same number of bytes.

This type is particularly useful for containing BLOB (Binary Large OBject) data. See the Programmer's Guide article
Working with BLOBs for more information on this subject.

Example:

DATA8 MyHexString := x'1234567890ABCDEF';
 // an 8-byte data block - hex values 12 34 56 78 90 AB CD EF

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

44

VARSTRING
VARSTRING[n]

A null-terminated character string containing n bytes of data. If n is omitted, the string is variable length to the size
needed to contain the result of the cast or passed parameter. You may use set indexing into any string to parse out
a substring.

Example:

VARSTRING3 MyString := 'ABC';
 // declares MyString a 3-byte null-terminated string

See Also: LENGTH, TRIM, Set Ordering and Indexing

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

45

VARUNICODE
VARUNICODE[locale][n]

A UTF-16 encoded unicode character string of n characters, null terminated (not space-padded). The n may be omitted
only when used as a parameter type. The optional locale specifies a valid unicode locale code, as specified in ISO
standards 639 and 3166 (not needed if LOCALE is specified on the RECORD structure containing the field definition).

Type casting VARUNICODE to UNICODE, STRING, or DATA is allowed, while casting to any other type will first
implicitly cast to STRING and then cast to the target value type.

Example:

VARUNICODE16 MyUNIString := U'1234567890ABCDEF';
 // utf-16-encoded string
VARUNICODE4 MyUnicodeString := U'abcd';
 // same as: (UNICODE)'abcd'
VARUNICODE5 MyUnicodeString := U'abcd\353';
 // becomes 'abcdë'
VARUNICODE5 MyUnicodeString := U'abcdë';
 // same as previous example

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

46

SET OF
SET [OF type]

type The value type of the data in the set. Valid value types are: INTEGER, REAL,
BOOLEAN, STRING, UNICODE, DATA, or DATASET(recstruct). If omitted, the
type is INTEGER.

The SET OF value type defines Attributes that are a set of data elements. All elements of the set must be of the same
value type. The default value for SET OF when used to define a passed parameter may be a defined set, the keyword
ALL to indicate all possible values for that type of set, or empty square brackets ([]) to indicate no possible value
for that type of set.

Example:

SET OF INTEGER1 SetIntOnes := [1,2,3,4,5];
SET OF STRING1 SetStrOnes := ['1','2','3','4','5'];
SET OF STRING1 SetStrOne1 := (SET OF STRING1)SetIntOnes;
 //type casting sets is allowed
r := {STRING F1, STRING2 F2};
SET OF DATASET(r) SetDS := [ds1, ds2, ds3];

StringSetFunc(SET OF STRING passedset) := AstringValue IN passedset;
 //a set of string constants will be passed to this function
HasNarCode(SET s) := Trades.trd_narr1 IN s OR Trades.trd_narr2 IN s;
 // HasNarCode takes a parameter that specifies the set of valid
 // Narrative Code values (all INTEGERs)
SET OF INTEGER1 SetClsdNar := [65,66,90,114,115,123];
NarCodeTrades := Trades(HasNarCode(SetClsdNar));
 // Using HasNarCode(SetClsdNar) is equivalent to:
 // Trades.trd_narr1 IN [65,66,90,114,115,123] OR
 // Trades.trd_narr2 IN [65,66,90,114,115,123]

See Also: Functions (Parameter Passing), Set Ordering and Indexing

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

47

TYPEOF
TYPEOF(expression)

expression An expression defining the value type. This may be the name of a data field, passed
parameter, function, or Attribute providing the value type (including RECORD struc-
tures). This must be a legal expression for the current scope but is not evaluated for
its value.

The TYPEOF declaration allows you to define an Attribute or parameter whose value type is “just like” the expression.
It is valid for use anywhere an explicit value type is valid.

Its most typical use would be to specify the return type of a TRANSFORM function as “just like” a dataset or recordset
structure.

Example:

STRING3 Fred := 'ABC'; //declare Fred as a 3-byte string
TYPEOF(Fred) Sue := Fred; //declare Sue as “just like” Fred

See Also: TRANSFORM Structure

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

48

RECORDOF
RECORDOF(recordset)

recordset The set of data records whose RECORD structure to use. This may be a DATASET
or any derived recordset.

The RECORDOF declaration specifies use of just the record layout of the recordset in those situations where you
need to inherit the structure of the fields but not their default values, such as child DATASET declarations inside
RECORD structures.

This function allows you to keep RECORD structures local to the DATASET whose layout they define and still be
able to reference the structure (only, without default values) where needed.

Example:

Layout_People_Slim := RECORD
 STD_People.RecID;
 STD_People.ID;
 STD_People.FirstName;
 STD_People.LastName;
 STD_People.MiddleName;
 STD_People.NameSuffix;
 STD_People.FileDate;
 STD_People.BureauCode;
 STD_People.Gender;
 STD_People.BirthDate;
 STD_People.StreetAddress;
 UNSIGNED8 CSZ_ID;
END;

STD_Accounts := TABLE(UID_Accounts,Layout_STD_AcctsFile);

CombinedRec := RECORD,MAXLENGTH(100000)
 Layout_People_Slim;
 UNSIGNED1 ChildCount;
 DATASET(RECORDOF(STD_Accounts)) ChildAccts;
END;
 //This ChildAccts definition is equivalent to:
 // DATASET(Layout_STD_AcctsFile) ChildAccts;
 //but doesn’t require Layout_STD_AcctsFile to be visible (SHARED or
 // EXPORT)

See Also: DATASET, RECORD Structure

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

49

ENUM
ENUM([type ,] name [=value] [, name [=value] ...])

type The numeric value type of the values. If omitted, defaults to UNSIGNED4.

name The label of the enumerated value.

value The numeric value to associate with the name. If omitted, the value is the previous
value plus one (1). If all values are omitted, the enumeration starts with one (1).

The ENUM declaration specifies constant values to make code more readable.

Example:

GenderEnum := ENUM(UNSIGNED1,Male,Female,Either,Unknown);
 //values are 1, 2, 3, 4

Pflg := ENUM(None=0,Dead=1,Foreign=2,Terrorist=4,Wanted=Terrorist*2);
 //values are 0, 1, 2, 4, 8
namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 GenderEnum gender;
 INTEGER2 age := 25;
END;

namesTable2 := DATASET([{'Foreman','George',GenderEnum.Male,Pflg.Foreign},
 {'Bin','O',GenderEnum.Male,Pflg.Foreign+Pflg.Terrorist+Pflg.Wanted}
], namesRecord);
OUTPUT(namesTable2);

myModule(UNSIGNED4 baseError, STRING x) := MODULE
 EXPORT ErrCode := ENUM(ErrorBase = baseError,
 ErrNoActiveTable,
 ErrNoActiveSystem,
 ErrFatal,
 ErrLast);
 EXPORT reportX := FAIL(ErrCode.ErrNoActiveTable,'No ActiveTable in ' + x);
END;

myModule(100, 'Call1').reportX;
myModule(300, 'Call2').reportX;

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

50

Type Casting
Explicit Casting
The most common use of value types is to explicitly cast from one type to another in expressions. To do this, you
simply place the value type in parentheses in the expression immediately preceding the element to cast. This converts
the data from its original form to the new form (to keep the same bit-pattern, see the TRANSFER built-in function).

MyBoolean := (BOOLEAN) IF(SomeAttribute > 10,1,0);
 // casts the INTEGER values 1 and 0 to a BOOLEAN TRUE or FALSE
MyString := (STRING1) IF(SomeAttribute > 10,1,0);
 // casts the INTEGER values 1 and 0 to a 1-character string
 // containing '1' or '0'
MyValue := (INTEGER) MAP(MyString = '1' => MyString, '0');
 // casts the STRING values '1' and '0' to an INTEGER 1 or 0
MySet := (SET OF INTEGER1) [1,2,3,4,5,6,7,8,9,10];
 //casts from a SET OF INTEGER8 (the default) to SET OF INTEGER1

Implicit Casting
During expression evaluation, different value types may be implicitly cast in order to properly evaluate the expression.
Implicit casting always means promoting one value type to another: INTEGER to STRING or INTEGER to REAL.
BOOLEAN types may not be involved in mixed mode expressions. For example, when evaluating an expression using
both INTEGER and REAL values, the INTEGER is promoted to REAL at the point where the two mix, and the result
is a REAL value.

INTEGER and REAL may be freely mixed in expressions. At the point of contact between them the expression is
treated as REAL. Until that point of contact the expression may be evaluated at INTEGER width. Division on INTE-
GER values implicitly promotes both operands to REAL before performing the division.

The following expression: (1+2+3+4)*(1.0*5)

evaluates as: (REAL)((INTEGER)1+(INTEGER)2+(INTEGER)3+(INTEGER)4)*(1.0*(REAL)5)

and: 5/2+4+5 evaluates as: (REAL)5/(REAL)2+(REAL)4+(REAL)5

while: '5' + 4 evaluates as: 5 + (STRING)4 //concatenation

Comparison operators are treated as any other mixed mode expression. Built-in Functions that take multiple values,
any of which may be returned (such as MAP or IF), are treated as mixed mode expressions and will return the common
base type. This common type must be reachable by standard implicit conversions.

Type Transfer
Type casting converts data from its original form to the new form. To keep the same bit-pattern you must use either
the TRANSFER built-in function or the type transfer syntax, which is similar to type casting syntax with the addition
of angle brackets (>valuetype<).

INTEGER1 MyInt := 65; //MyInt is an integer value 65
STRING1 MyVal := (>STRING1<) MyInt; //MyVal is "A" (ASCII 65)

Casting Rules

From To Results in

ECL Language Reference
Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

51

INTEGER STRING ASCII or EBCDIC representation of the value

DECIMAL STRING ASCII or EBCDIC representation of the value, including decimal and
sign

REAL STRING ASCII or EBCDIC representation of the value, including decimal and
sign—may be expressed in scientific notation

UNICODE STRING ASCII or EBCDIC representation with any non-existent characters ap-
pearing as the SUBstitute control code (0x1A in ASCII or 0x3F in
EBCDIC) and any non-valid ASCII or EBCDIC characters appearing
as the substitution codepoint (0xFFFD)

STRING QSTRING Uppercase ASCII representation

INTEGER UNICODE UNICODE representation of the value

DECIMAL UNICODE UNICODE representation of the value, including decimal and sign

REAL UNICODE UNICODE representation of the value, including decimal and sign—
may be expressed in scientific notation

INTEGER REAL Value is cast with loss of precision when the value is greater than 15
significant digits

INTEGER REAL4 Value is cast with loss of precision when the value is greater than 7
significant digits

STRING REAL Sign, integer, and decimal portion of the string value

DECIMAL REAL Value is cast with loss of precision when the value is greater than 15
significant digits

DECIMAL REAL4 Value is cast with loss of precision when the value is greater than 7
significant digits

INTEGER DECIMAL Loss of precision if the DECIMAL is too small

REAL DECIMAL Loss of precision if the DECIMAL is too small

STRING DECIMAL Sign, integer, and decimal portion of the string value

STRING INTEGER Sign and integer portions of the string value

REAL INTEGER Integer value, only—decimal portion is truncated

DECIMAL INTEGER Integer value, only—decimal portion is truncated

INTEGER BOOLEAN 0 = FALSE, anything else = TRUE

BOOLEAN INTEGER FALSE = 0, TRUE = 1

STRING BOOLEAN '' = FALSE, anything else = TRUE

BOOLEAN STRING FALSE = '', TRUE = '1'

DATA STRING Value is cast with no translation

STRING DATA Value is cast with no translation

DATA UNICODE Value is cast with no translation

UNICODE DATA Value is cast with no translation

The casting rules for STRING to and from any numeric type apply equally to all string types, also. All casting rules
apply equally to sets (using the SET OF type syntax).

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

52

Record Structures and Files

RECORD Structure
attr := RECORD [(baserec)] [, MAXLENGTH(length)] [, LOCALE(locale)] [, PACKED]

fields ;

[IFBLOCK(condition)

fields ;

END;]

[=> payload]

END;

attr The name of the RECORD structure for later use in other definitions.

baserec Optional. The name of a RECORD structure from which to inherit all fields. Any
RECORD structure that inherits the baserecfields in this manner becomes compatible
with any TRANSFORM function defined to take a parameter of baserec type (the extra
fields will, of course, be lost).

MAXLENGTH Optional. This option is used to create indexes that are backward compatible for plat-
form versions prior to 3.0. Specifies the maximum number of characters allowed in the
RECORD structure or field. MAXLENGTH on the RECORD structure overrides any
MAXLENGTH on a field definition, which overrides any MAXLENGTH specified
in the TYPE structure if the datatype names an alien data type. This option defines
the maximum size of variable-length records. If omitted, fixed size records use the
minimum size required and variable length records produce a warning. The default
maximum size of a record containing variable-length fields is 4096 bytes (this may
be overridden by using #OPTION(maxLength,####) to change the default). The max-
imum record size should be set as conservatively as possible, and is better set on a per-
field basis (see the Field Modifiers section below).

length An integer constant specifying the maximum number of characters allowed.

LOCALE Optional. Specifies the Unicode locale for any UNICODE fields.

locale A string constant containing a valid locale code, as specified in ISO standards 639
and 3166.

PACKED Optional. Specifies the order of the fields may be changed to improve efficiency (such
as moving variable-length fields after the fixed-length fields)..

fields Field declarations. See below for the appropriate syntaxes.

IFBLOCK Optional. A block of fields that receive “live” data only if the condition is met. The IF-
BLOCK must be terminated by an END. This is used to define variable-length records.
If the condition expression references fields in the RECORD preceding the IFBLOCK,
those references must use SELF. prepended to the fieldname to disambiguate the ref-
erence.

condition A logical expression that defines when the fields within the IFBLOCK receive “live”
data. If the expression is not true, the fields receive their declared default values. If
there's no default value, the fields receive blanks or zeros.

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

53

=> Optional. The delimiter between the list of key fields and the payload when the
RECORD structure is used by the DICTIONARY declaration. Typically, this is an
inline structure using curly braces ({ }) instead of RECORD and END.

payload The list of non-keyed fields in the DICTIONARY.

Record layouts are definitions whose expression is a RECORD structure terminated by the END keyword. The attr
name creates a user-defined value type that can be used in built-in functions and TRANSFORM function definitions.
The delimiter between field definitions in a RECORD structure can be either the semi-colon (;) or a comma (,).

In-line Record Definitions
Curly braces ({}) are lexical equivalents to the keywords RECORD and END that can be used anywhere RECORD
and END are appropriate. Either form (RECORD/END or {}) can be used to create “on-the-fly” record formats within
those functions that require record structures (OUTPUT, TABLE, DATASET etc.), instead of defining the record as
a separate definition.

Field Definitions
All field declarations in a RECORD Structure must use one of the following syntaxes:

 datatype identifier [{modifier}] [:= defaultvalue] ;

 identifier := defaultvalue ;

 defaultvalue ;

 sourcefield ;

 recstruct [identifier] ;

 sourcedataset ;

 childdataset identifier [{ modifier }];

datatype The value type of the data field. This may be a child dataset (see DATASET). If omit-
ted, the value type is the result type of the defaultvalue expression.

identifier The name of the field. If omitted, the defaultvalue expression defines a column with
no name that may not be referenced in subsequent ECL.

defaultvalue Optional. An expression defining the source of the data (for operations that require
a data source, such as TABLE and PARSE). This may be a constant, expression, or
definition providing the value.

modifier Optional. One of the keywords listed in the Field Modifierssection below.

sourcefield A previously defined data field, which implicitly provides the datatype, identifier, and
defaultvalue for the new field—inherited from the sourcefield.

recstruct A previously defined RECORD structure. See the Field Inheritancesection below.

sourcedataset A previously defined DATASET or derived recordset definition. See the Field Inher-
itancesection below.

childdataset A child dataset declaration (see DATASET and DICTIONARY discussions), which
implicitly defines all the fields of the child at their already defined datatype, identifier,
and defaultvalue (if present in the child dataset's RECORD structure).

Field definitions must always define the datatype and identifier of each field, either implicitly or explicitly. If the
RECORD structure will be used by TABLE, PARSE, ROW, or any other function that creates an output recordset,
then the defaultvalue must also be implicitly or explicitly defined for each field. In the case where a field is defined

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

54

in terms of a field in a dataset already in scope, you may name the identifier with a name already in use in the dataset
already in scope as long as you explicitly define the datatype.

Field Inheritance
Field definitions may be inherited from a previously defined RECORD structure or DATASET. When a recstruct
(a RECORD Structure) is specified from which to inherit the fields, the new fields are implicitly defined using the
datatype and identifier of all the existing field definitions in the recstruct. When a sourcedataset (a previously defined
DATASET or recordset definition) is specified to inherit the fields, the new fields are implicitly defined using the
datatype, identifier, and defaultvalue of all the fields (making it usable by operations that require a data source, such
as TABLE and PARSE). Either of these forms may optionally have its own identifier to allow reference to the entire
set of inherited fields as a single entity.

You may also use logical operators (AND, OR, and NOT) to include/exclude certain fields from the inheritance, as
described here:

R1 AND R2 Intersection All fields declared in both R1 and R2

R1 OR R2 Union All fields declared in either R1 or R2

R1 AND NOT R2 Difference All fields in R1 that are not in R2

R1 AND NOT F1 Exception All fields in R1 except the specified field (F1)

R1 AND NOT [F1, F2] Exception All fields in R1 except those in listed in the brackets
(F1andF2)

The minus sign (-) is a synonym for AND NOT, so R1-R2 is equivalent to R1 AND NOT R2.

It is an error if the records contain the same field names whose value types don't match, or if you end up with no
fields (such as: A-A). You must ensure that any MAXLENGTH/MAXCOUNT is specified correctly on each field in
both RECORD Structures.

Example:

R1 := {STRING1 F1,STRING1 F2,STRING1 F3,STRING1 F4,STRING1 F5};
R2 := {STRING1 F4,STRING1 F5,STRING1 F6};
R3 := {R1 AND R2}; //Intersection - fields F4 and F5 only
R4 := {R1 OR R2}; //Union - all fields F1 - F6
R5 := {R1 AND NOT R2}; //Difference - fields F1 - F3
R6 := {R1 AND NOT F1}; //Exception - fields F2 - F5
R7 := {R1 AND NOT [F1,F2]}; //Exception - fields F3 - F5

//the following two RECORD structures are equivalent:
C := RECORD,MAXLENGTH(x)
 R1 OR R2;
END;

D := RECORD, MAXLENGTH(x)
 R1;
 R2 AND NOT R1;
END;

Field Modifiers
The following list of field modifiers are available for use on field definitions:

 { MAXLENGTH(length) }

 { MAXCOUNT(records) }

 { XPATH('tag') }

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

55

 { XMLDEFAULT('value') }

 { DEFAULT(value) }

 { VIRTUAL(fileposition) }

 { VIRTUAL(localfileposition) }

 { VIRTUAL(logicalfilename) }

 { BLOB }

{ MAXLENGTH(length) } Specifies the maximum number of characters allowed in the field
(see MAXLENGTH option above).

{ MAXCOUNT(records) } Specifies the maximum number of records allowed in a child
DATASET field (similar to MAXLENGTH above).

{ XPATH('tag') } Specifies the XML or JSON tag that contains the data, in a
RECORD structure that defines XML or JSON data. This over-
rides the default tag name (the lowercase field identifier). See the
XPATH Support section below for details.

{ XMLDEFAULT('value') } Specifies a default XML value for the field. The value must be
constant.

{ DEFAULT(value) } Specifies a default value for the field. The value must be constant.
This value will be used:

1. When a DICTIONARY lookup returns no match.

2. When an out-of-range record is fetched using ds[n] (as in ds[5]
when ds contains only 4 records).

3. In the default records passed to TRANSFORM functions in non-
INNER JOINS where there is no corresponding row.

4. When defaulting field values in a TRANSFORM using SELF
= [].

{ VIRTUAL(fileposition) } Specifies the field is a VIRTUAL field containing the relative byte
position of the record within the entire file (the record pointer).
This must be an UNSIGNED8 field and must be the last field, be-
cause it only truly exists when the file is loaded into memory from
disk (hence, the “virtual”).

{ VIRTUAL(localfileposition) } Specifies the local byte position within a part of the distributed file
on a single node: the first bit is set, the next 15 bits specify the
part number, and the last 48 bits specify the relative byte position
within the part. This must be an UNSIGNED8 field and must be
the last field, because it only truly exists when the file is loaded
into memory from disk (hence, the “virtual”).

{ VIRTUAL(logicalfilename) } Specifies the logical file name of the distributed file. This must be
a STRING field. If reading from a superfile, the value is the current
logical file within the superfile.

{ BLOB } Specifies the field is stored separately from the leaf node entry in
the INDEX. This is applicable specifically to fields in the payload
of an INDEX to allow more than 32K of data per index entry. The
BLOB data is stored within the index file, but not with the rest of
the record. Accessing the BLOB data requires an additional seek.

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

56

XPATH Support
XPATH support is a limited subset of the full XPATH specification, basically expressed as:

node[qualifier] / node[qualifier] ...

node Can contain wildcards.

qualifier Can be a node or attribute, or a simple single expression of equality, inequality, or
numeric or alphanumeric comparisons, or node index values. No functions or inline
arithmetic, etc. are supported. String comparison is indicated when the right hand side
of the expression is quoted.

These operators are valid for comparisons:

<, <=, >, >=, =, !=

An example of a supported xpath:

/a/*/c*/*d/e[@attr]/f[child]/g[@attr="x"]/h[child>="5"]/i[@x!="2"]/j

You can emulate AND conditions like this:

/a/b[@x="1"][@y="2"]

Also, there is a non-standard XPATH convention for extracting the text of a match using empty angle brackets (<>):

R := RECORD
STRING blah{xpath('a/b<>')};
//contains all of b, including any child definitions and values
END;

An XPATH for a value cannot be ambiguous. If the element occurs multiple times, you must use the ordinal operation
(for example, /foo[1]/bar) to explicit select the first occurrence.

For XML or JSON DATASETs reading and processing results of the SOAPCALL function, the following XPATH
syntax is specifically supported:

1) For simple scalar value fields, if there is an XPATH specified then it is used, otherwise the lower case identifier
of the field is used.

STRING name; //matches: <name>Kevin</name>
STRING Fname{xpath('Fname')}; //matches: <Fname>Kevin</Fname>

2) For a field whose type is a RECORD structure, the specified XPATH is prefixed to all the fields it contains, otherwise
the lower case identifier of the field followed by '/' is prefixed onto the fields it contains. Note that an XPATH of
'' (empty single quotes) will prefix nothing.

NameRec := RECORD
 STRING Fname{xpath('Fname')}; //matches: <Fname>Kevin</Fname>
 STRING Mname{xpath('Mname')}; //matches: <Mname>Alfonso</Mname>
 STRING Lname{xpath('Lname')}; //matches: <Lname>Jones</Lname>
END;

PersonRec := RECORD
 STRING Uid{xpath('Person[@UID]')};
 NameRec Name{xpath('Name')};
 /*matches: <Name>
 <Fname>Kevin</Fname>
 <Mname>Alfonso</Mname>
 <Lname>Jones</Lname>

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

57

 </Name> */
END;

3) For a child DATASET field, the specified XPATH can have one of two formats: "Container/Repeated" or "/Repeat-
ed." Each "/Repeated" tag within the optional Container is iterated to provide the values. If no XPATH is specified,
then the default value for the Container is the lower case field name, and the default value for Repeated is "Row." For
example, this demonstrates "Container/Repeated":

DATASET(PeopleNames) People{xpath('people/name'])};
 /*matches: <people>
 <name>Gavin</name>
 <name>Ricardo</name>
 </people> */

This demonstrates "/Repeated":

DATASET(Names) Names{xpath('/name'])};
 /*matches: <name>Gavin</name>
 <name>Ricardo</name> */

"Container" and "Repeated" may also contain xpath filters, like this:

DATASET(doctorRec) doctors{xpath('person[@job=\'doctor\']')};
 /*matches: <person job='doctor'>
 <FName>Kevin</FName>
 <LName>Richards</LName>
 </person> */

4) For a SET OF type field, an xpath on a set field can have one of three formats: "Repeated", "Container/Repeated"
or "Container/Repeated/@attr". They are processed in a similar way to datasets, except for the following. If Container
is specified, then the XML reading checks for a tag "Container/All", and if present the set contains all possible values.
The third form allows you to read XML attribute values.

SET OF STRING people;
 //matches: <people><All/></people>
 //or: <people><Item>Kevin</Item><Item>Richard</Item></people>

SET OF STRING Npeople{xpath('Name')};
 //matches: <Name>Kevin</Name><Name>Richard</Name>
SET OF STRING Xpeople{xpath('/Name/@id')};
 //matches: <Name id='Kevin'/><Name id='Richard'/>

For writing XML or JSON files using OUTPUT, the rules are similar with the following exceptions:

• For scalar fields, simple tag names and XML/JSON attributes are supported.

• For SET fields, <All> will only be generated if the container name is specified.

• xpath filters are not supported.

• The "Container/Repeated/@attr" form for a SET is not supported.

Example:

For DATASET or the result type of a TRANSFORM function, you need only specify the value type and name of
each field in the layout:

R1 := RECORD
 UNSIGNED1 F1; //only value type and name required
 UNSIGNED4 F2;
 STRING100 F3;
END;

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

58

D1 := DATASET('RTTEMP::SomeFile',R1,THOR);

For "vertical slice" TABLE, you need to specify the value type, name, and data source for each field in the layout:

R2 := RECORD
 UNSIGNED1 F1 := D1.F1; //value type, name, data source all explicit
 D1.F2; //value type, name, data source all implicit
END;

T1 := TABLE(D1,R2);

For "crosstab report" TABLE:

R3 := RECORD
 D1.F1; //"group by" fields must come first
 UNSIGNED4 GrpCount := COUNT(GROUP);
 //value type, column name, and aggregate
 GrpSum := SUM(GROUP,D1.F2); //no value type -- defaults to INTEGER
 MAX(GROUP,D1.F2); //no column name in output
END;

T2 := TABLE(D1,R3,F1);

Form1 := RECORD
 Person.per_last_name; //field name is per_last_name - size
 //is as declared in the person dataset
 STRING25 LocalID := Person.per_first_name;
 //the name of this field is LocalID and it
 //gets its data from Person.per_first_name
 INTEGER8 COUNT(Trades); //this field is unnamed in the output file
 BOOLEAN HasBogey := FALSE;
 //HasBogey defaults to false
 REAL4 Valu8024;
 //value from the Valu8024 definition
END;
Form2 := RECORD
 Trades; //include all fields from the Trades dataset at their
 // already-defined names, types and sizes
 UNSIGNED8 fpos {VIRTUAL(fileposition)};
 //contains the relative byte position within the file
END;

Form3 := {Trades,UNSIGNED8 local_fpos {VIRTUAL(localfileposition)}};
 //use of {} instead of RECORD/END
 //”Trades” includes all fields from the dataset at their
 // already-defined names, types and sizes
 //local_fpos is the relative byte position in each part

Form4 := RECORD, MAXLENGTH(10000)
 STRING VarStringName1{MAXLENGTH(5000)};
 //this field is variable size to a 5000 byte maximum

 STRING VarStringName2{MAXLENGTH(4000)};
 //this field is variable size to a 4000 byte maximum

 IFBLOCK(MyCondition = TRUE) //following fields receive values
 //only if MyCondition = TRUE

 BOOLEAN HasLife := TRUE;
 //defaults to true unless MyCondition = FALSE

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

59

 INTEGER8 COUNT(Inquiries);
 //this field is zero if MyCondition = FALSE, even
 //if there are inquiries to count

 END;
END;

in-line record structures, demonstrating same field name use

ds := DATASET('d', { STRING s; }, THOR);
t := TABLE(ds, { STRING60 s := ds.s; });
 // new “s” field is OK with value type explicitly defined

”Child dataset” RECORD structures

ChildRec := RECORD
 UNSIGNED4 person_id;
 STRING20 per_surname;
 STRING20 per_forename;
END;
ParentRecord := RECORD
 UNSIGNED8 id;
 STRING20 address;
 STRING20 CSZ;
 STRING10 postcode;
 UNSIGNED2 numKids;
 DATASET(ChildRec) children{MAXCOUNT(100)};
END;

an example using {XPATH('tag')}

R := record
 STRING10 fname;
 STRING12 lname;
 SET OF STRING1 MySet{XPATH('Set/Element')}; //define set tags
END;
B := DATASET([{'Fred','Bell',['A','B']},
 {'George','Blanda',['C','D']},
 {'Sam','',['E','F'] }], R);

OUTPUT(B,,'~RTTEST::test.xml', XML);

/* this example produces XML output that looks like this:
<Dataset>
<Row><fname>Fred </fname><lname>Bell</lname>
 <Set><Element>A</Element><Element>B</Element></Set></Row>
<Row><fname>George</fname><lname>Blanda </lname>
 <Set><Element>C</Element><Element>D</Element></Set></Row>
<Row><fname>Sam </fname><lname> </lname>
<Set><Element>E</Element><Element>F</Element></Set></Row>
</Dataset>
*/

another XML example with a 1-field child dataset

cr := RECORD,MAXLENGTH(1024)
 STRING phoneEx{XPATH('')};
END;
r := RECORD,MAXLENGTH(4096)
 STRING id{XPATH('COMP-ID')};
 STRING phone{XPATH('PHONE-NUMBER')};
 DATASET(cr) Fred{XPATH('PHONE-NUMBER-EXP')};
END;

DS := DATASET([{'1002','1352,9493',['1352','9493']},

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

60

 {'1003','4846,4582,0779',['4846','4582','0779']}],r);

OUTPUT(ds,,'~RTTEST::XMLtest2',
 XML('RECORD',
 HEADING('<?xml version="1.0" encoding="UTF-8"?><RECORDS>',
 '</RECORDS>')));

/* this example produces XML output that looks like this:
<?xml version="1.0" encoding="UTF-8"?>
 <RECORDS>
 <RECORD>
 <COMP-ID>1002</COMP-ID>
 <PHONE-NUMBER>1352,9493</PHONE-NUMBER>
 <PHONE-NUMBER-EXP>1352</PHONE-NUMBER-EXP>
 <PHONE-NUMBER-EXP>9493</PHONE-NUMBER-EXP>
 </RECORD>
 <RECORD>
 <COMP-ID>1003</COMP-ID>
 <PHONE-NUMBER>4846,4582,0779</PHONE-NUMBER>
 <PHONE-NUMBER-EXP>4846</PHONE-NUMBER-EXP>
 <PHONE-NUMBER-EXP>4582</PHONE-NUMBER-EXP>
 <PHONE-NUMBER-EXP>0779</PHONE-NUMBER-EXP>
 </RECORD>
 </RECORDS>
 */

XPATH can also be used to define a JSON file

/* a JSON file called "MyBooks.json" contains this data:
[
 {
 "id" : "978-0641723445",
 "name" : "The Lightning Thief",
 "author" : "Rick Riordan"
 }
,
 {
 "id" : "978-1423103349",
 "name" : "The Sea of Monsters",
 "author" : "Rick Riordan"
 }
]
*/

BookRec := RECORD
 STRING ID {XPATH('id')}; //data from id tag -- renames field to uppercase
 STRING title {XPATH('name')}; //data from name tag, renaming the field
 STRING author; //data from author tag, tag name is lowercase and matches field name
END;

books := DATASET('~jd::mybooks.json',BookRec,JSON('/'));
OUTPUT(books);

See Also: DATASET, DICTIONARY, INDEX, OUTPUT, TABLE, TRANSFORM Structure, TYPE Structure,
SOAPCALL

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

61

DATASET
attr := DATASET(file, struct, filetype);

attr := DATASET(dataset, file, filetype);

attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

[attr :=] DATASET(recordset [, recstruct]);

DATASET(row)

DATASET(childstruct [, COUNT(count) | LENGTH(size)] [, CHOOSEN(maxrecs)])

[GROUPED] [LINKCOUNTED] [STREAMED] DATASET(struct)

DATASET(dict)

DATASET(count, transform [, DISTRIBUTED | LOCAL])

attr The name of the DATASET for later use in other definitions.

file A string constant containing the logical file name. See the Scope & Logical Filenames
section for more on logical filenames.

struct The RECORD structure defining the layout of the fields. This may use RECORDOF.

filetype One of the following keywords, optionally followed by relevant options for that spe-
cific type of file: THOR /FLAT, CSV, XML, JSON, PIPE. Each of these is discussed
in its own section, below.

dataset A previously-defined DATASET or recordset from which the record layout is derived.
This form is primarily used by the BUILD action and is equivalent to:

 ds := DATASET('filename',RECORDOF(anotherdataset), ...)

WORKUNIT Specifies the DATASET is the result of an OUTPUT with the NAMED option within
the same or another workunit.

wuid Optional. A string expression that specifies the workunit identifier of the job that pro-
duced the NAMED OUTPUT.

namedoutput A string expression that specifies the name given in the NAMED option.

recordset A set of in-line data records. This can simply name a previously-defined set definition
or explicitly use square brackets to indicate an in-line set definition. Within the square
brackets records are separated by commas. The records are specified by either:

1) Using curly braces ({}) to surround the field values for each record. The field values
within each record are comma-delimited.

2) A comma-delimited list of in-line transform functions that produce the data rows.
All the transform functions in the list must produce records in the same result format.

recstruct Optional. The RECORD structure of the recordset. Omittable only if the recordset
parameter is just one record or a list of in-line transform functions.

row A single data record. This may be a single-record passed parameter, or the ROW or
PROJECT function that defines a 1-row dataset.

childstruct The RECORD structure of the child records being defined. This may use the
RECORDOF function.

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

62

COUNT Optional. Specifies the number of child records attached to the parent (for use when
interfacing to external file formats).

count An expression defining the number of child records. This may be a constant or a field
in the enclosing RECORD structure (addressed as SELF.fieldname).

LENGTH Optional. Specifies the size of the child records attached to the parent (for use when
interfacing to external file formats).

size An expression defining the size of child records. This may be a constant or a field in
the enclosing RECORD structure (addressed as SELF.fieldname).

CHOOSEN Optional. Limits the number of child records attached to the parent. This implicitly
uses the CHOOSEN function wherever the child dataset is read.

maxrecs An expression defining the maximum number of child records for a single parent.

GROUPED Specifies the DATASET being passed has been grouped using the GROUP function.

LINKCOUNTED Specifies the DATASET being passed or returned uses the link counted format (each
row is stored as a separate memory allocation) instead of the default (embedded) format
where the rows of a dataset are all stored in a single block of memory. This is primarily
for use in BEGINC++ functions or external C++ library functions.

STREAMED Specifies the DATASET being returned is returned as a pointer to an IRowStream in-
terface (see the eclhelper.hpp include file for the definition).Valid only as a return
type. This is primarily for use in BEGINC++ functions or external C++ library func-
tions.

struct The RECORD structure of the dataset field or parameter. This may use the RECORD-
OF function.

dict The name of a DICTIONARY definition.

count An integer expression specifying the number of records to create.

transform The TRANSFORM function that will create the records. This may take an integer
COUNTER parameter.

DISTRIBUTED Optional. Specifies distributing the created records across all nodes of the cluster. If
omitted, all records are created on node 1.

LOCAL Optional. Specifies records are created on every node.

The DATASET declaration defines a file of records, on disk or in memory. The layout of the records is specified by a
RECORD structure (the struct or recstruct parameters described above). The distribution of records across execution
nodes is undefined in general, as it depends on how the DATASET came to be (sprayed in from a landing zone or
written to disk by an OUTPUT action), the size of the cluster on which it resides, and the size of the cluster on which
it is used (to specify distribution requirements for a particular operation, see the DISTRIBUTE function).

The first two forms are alternatives to each other and either may be used with any of the filetypes described below
(THOR/FLAT, CSV, XML, JSON, PIPE).

The third form defines the result of an OUTPUT with the NAMED option within the same workunit or the workunit
specified by the wuid (see Named Output DATASETs below).

The fourth form defines an in-line dataset (see In-line DATASETs below).

The fifth form is only used in an expression context to allow you to in-line a single record dataset (see Single-row
DATASET Expressions below).

The sixth form is only used as a value type in a RECORD structure to define a child dataset (see Child DATASETs
below).

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

63

The seventh form is only used as a value type to pass DATASET parameters (see DATASET as a Parameter Type
below).

The eighth form is used to define a DICTIONARY as a DATASET (see DATASET from DICTIONARY below).

The ninth form is used to create a DATASET using a TRANSFORM function (see DATASET from TRANSFORM
below)

THOR/FLAT Files
attr := DATASET(file, struct, THOR [,__COMPRESSED__][,OPT] [,UNSORTED][,PRELOAD([nbr])]
[,ENCRYPT(key)]);

attr := DATASET(file, struct, FLAT [,__COMPRESSED__] [,OPT] [,UNSORTED] [,PRELOAD([nbr])]
[,ENCRYPT(key)]);

THOR Specifies the file is in the Data Refinery (may optionally be specified as FLAT, which
is synonymous with THOR in this context).

__COMPRESSED__ Optional. Specifies that the THOR file on another supercomputer cluster is compressed
because it is a result of the PERSIST Workflow Service.

__GROUPED__ Specifies the DATASET has been grouped using the GROUP function.

OPT Optional. Specifies that using dataset when the THOR file doesn't exist results in an
empty recordset instead of an error condition.

UNSORTED Optional. Specifies the THOR file is not sorted, as a hint to the optimizer.

PRELOAD Optional. Specifies the file is left in memory after loading (valid only for Rapid Data
Delivery Engine use).

nbr Optional. An integer constant specifying how many indexes to create “on the fly” for
speedier access to the dataset. If > 1000, specifies the amount of memory set aside
for these indexes.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

key A string constant containing the encryption key used to create the file.

This form defines a THOR file that exists in the Data Refinery. This could contain either fixed-length or variable-length
records, depending on the layout specified in the RECORD struct.

The struct may contain an UNSIGNED8 field with either {virtual(fileposition)} or {virtual(localfileposition)} append-
ed to the field name. This indicates the field contains the record's position within the file (or part), and is used for those
instances where a usable pointer to the record is needed, such as the BUILD function.

Example:

PtblRec := RECORD
 STRING2 State := Person.per_st;
 STRING20 City := Person.per_full_city;
 STRING25 Lname := Person.per_last_name;
 STRING15 Fname := Person.per_first_name;
END;

Tbl := TABLE(Person,PtblRec);

PtblOut := OUTPUT(Tbl,,'RTTEMP::TestFile');
 //write a THOR file

Ptbl := DATASET('~Thor400::RTTEMP::TestFile',

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

64

 {PtblRec,UNSIGNED8 __fpos {virtual(fileposition)}},
 THOR,OPT);
 // __fpos contains the "pointer" to each record
 // Thor400 is the scope name and RTTEMP is the
 // directory in which TestFile is located
 //using ENCRYPT
OUTPUT(Tbl,,'~Thor400::RTTEMP::TestFileEncrypted',ENCRYPT('mykey'));
PtblE := DATASET('~Thor400::RTTEMP::TestFileEncrypted',
 PtblRec,
 THOR,OPT,ENCRYPT('mykey'));

CSV Files
attr := DATASET(file, struct, CSV [([HEADING(n)] [, SEPARATOR(f_delimiters)]

[, TERMINATOR(r_delimiters)] [, QUOTE(characters)] [, ESCAPE(esc)] [, MAXLENGTH(size)]

[ASCII | EBCDIC | UNICODE] [, NOTRIM])] [,ENCRYPT(key)]);

CSV Specifies the file is a “comma separated values” ASCII file.

HEADING(n) Optional. The number of header records in the file. If omitted, the default is zero (0).

SEPARATOR Optional. The field delimiter. If omitted, the default is a comma (',') or the delimiter
specified in the spray operation that put the file on disk.

f_delimiters A single string constant, or set of string constants, that define the character(s) used as
the field delimiter. If Unicode constants are used, then the UTF8 representation of the
character(s) will be used.

TERMINATOR Optional. The record delimiter. If omitted, the default is a line feed ('\n') or the delimiter
specified in the spray operation that put the file on disk.

r_delimiters A single string constant, or set of string constants, that define the character(s) used as
the record delimiter.

QUOTE Optional. The string quote character used. If omitted, the default is a single quote ('\'')
or the delimiter specified in the spray operation that put the file on disk.

characters A single string constant, or set of string constants, that define the character(s) used as
the string value delimiter.

ESCAPE Optional. The string escape character used to indicate the next character (usually a
control character) is part of the data and not to be interpreted as a field or row delimiter.
If omitted, the default is the escape character specified in the spray operation that put
the file on disk (if any).

esc A single string constant, or set of string constants, that define the character(s) used to
escape control characters.

MAXLENGTH(size) Optional. Maximum record length in the file. If omitted, the default is 4096.

ASCII Specifies all input is in ASCII format, including any EBCDIC or UNICODE fields.

EBCDIC Specifies all input is in EBCDIC format except the SEPARATOR and TERMINATOR
(which are expressed as ASCII values).

UNICODE Specifies all input is in Unicode UTF8 format.

NOTRIM Specifies preserving all whitespace in the input data (the default is to trim leading
blanks).

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

key A string constant containing the encryption key used to create the file.

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

65

This form is used to read an ASCII CSV file. This can also be used to read any variable-length record file that has a
defined record delimiter. If none of the ASCII, EBCDIC, or UNICODE options are specified, the default input is in
ASCII format with any UNICODE fields in UTF8 format.

Example:

CSVRecord := RECORD
 UNSIGNED4 person_id;
 STRING20 per_surname;
 STRING20 per_forename;
END;

file1 := DATASET('MyFile.CSV',CSVrecord,CSV); //all defaults
file2 := DATASET('MyFile.CSV',CSVrecord,CSV(HEADING(1)); //1 header
file3 := DATASET('MyFile.CSV',
 CSVrecord,
 CSV(HEADING(1),
 SEPARATOR([',','\t']),
 TERMINATOR(['\n','\r\n','\n\r'])));
 //1 header record, either comma or tab field delimiters,
 // either LF or CR/LF or LF/CR record delimiters

XML Files
attr := DATASET(file, struct, XML(xpath [, NOROOT]) [,ENCRYPT(key)]);

XML Specifies the file is an XML file.

xpath A string constant containing the full XPATH to the tag that delimits the records in
the file.

NOROOT Specifies the file is an XML file with no file tags, only row tags.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

key A string constant containing the encryption key used to create the file.

This form is used to read an XML file into the Data Refinery. The xpath parameter defines the record delimiter tag using
a subset of standard XPATH (www.w3.org/TR/xpath) syntax (see the XPATH Support section under the RECORD
structure discussion for a description of the supported subset).

The key to getting individual field values from the XML lies in the RECORD structure field definitions. If the
field name exactly matches a lower case XML tag containing the data, then nothing special is required. Otherwise,
{xpath(xpathtag)} appended to the field name (where the xpathtag is a string constant containing standard XPATH
syntax) is required to extract the data. An XPATH consisting of empty angle brackets (<>) indicates the field receives
the entire record. An absolute XPATH is used to access properties of parent elements. Because XML is case sensitive,
and ECL identifiers are case insensitive, xpaths need to be specified if the tag contains any upper case characters.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then a large data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

/* an XML file called "MyFile" contains this XML data:
<library>
 <book isbn="123456789X">
 <author>Bayliss</author>
 <title>A Way Too Far</title>
 </book>

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

66

 <book isbn="1234567801">
 <author>Smith</author>
 <title>A Way Too Short</title>
 </book>
</library>
*/

rform := RECORD
 STRING author; //data from author tag -- tag name is lowercase and matches field name
 STRING name {XPATH('title')}; //data from title tag, renaming the field
 STRING isbn {XPATH('@isbn')}; //isbn definition data from book tag
tag
END;
books := DATASET('MyFile',rform,XML('library/book'));

JSON Files
attr := DATASET(file, struct, JSON(xpath [, NOROOT]) [,ENCRYPT(key)]);

JSON Specifies the file is a JSON file.

xpath A string constant containing the full XPATH to the tag that delimits the records in
the file.

NOROOT Specifies the file is a JSON file with no root level markup, only a collection of objects.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRYPT option.

key A string constant containing the encryption key used to create the file.

This form is used to read a JSON file. The xpath parameter defines the path used to locate records within the JSON
content using a subset of standard XPATH (www.w3.org/TR/xpath) syntax (see the XPATH Support section under
the RECORD structure discussion for a description of the supported subset).

The key to getting individual field values from the JSON lies in the RECORD structure field definitions. If the
field name exactly matches a lower case JSON tag containing the data, then nothing special is required. Otherwise,
{xpath(xpathtag)} appended to the field name (where the xpathtag is a string constant containing standard XPATH
syntax) is required to extract the data. An XPATH consisting of empty quotes ('') indicates the field receives the entire
record. An absolute XPATH is used to access properties of child elements. Because JSON is case sensitive, and ECL
identifiers are case insensitive, xpaths need to be specified if the tag contains any upper case characters.

NOTE: JSON reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then a large data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

/* a JSON file called "MyBooks.json" contains this data:
[
 {
 "id" : "978-0641723445",
 "name" : "The Lightning Thief",
 "author" : "Rick Riordan"
 }
,
 {
 "id" : "978-1423103349",
 "name" : "The Sea of Monsters",
 "author" : "Rick Riordan"
 }
]

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

67

*/

BookRec := RECORD
 STRING ID {XPATH('id')}; //data from id tag -- renames field to uppercase
 STRING title {XPATH('name')}; //data from name tag, renaming the field
 STRING author; //data from author tag -- tag name is lowercase and matches field name
END;

books := DATASET('~jd::mybooks.json',BookRec,JSON('/'));
OUTPUT(books);

PIPE Files
attr := DATASET(file, struct, PIPE(command [, CSV | XML]));

PIPE Specifies the filecomes from the commandprogram. This is a “read” pipe.

command The name of the program to execute, which must output records in the struct format
to standard output.

CSV Optional. Specifies the output data format is CSV. If omitted, the format is raw.

XML Optional. Specifies the output data format is XML. If omitted, the format is raw.

This form uses PIPE(command) to send the file to the command program, which then returns the records to standard
output in the struct format. This is also known as an input PIPE (analogous to the PIPE function and PIPE option
on OUTPUT).

Example:

PtblRec := RECORD
 STRING2 State;
 STRING20 City;
 STRING25 Lname;
 STRING15 Fname;
END;

Ptbl := DATASET('~Thor50::RTTEMP::TestFile',
 PtblRec,
 PIPE('ProcessFile'));
 // ProcessFile is the input pipe

Named Output DATASETs
attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

This form allows you to use as a DATASET the result of an OUTPUT with the NAMED option within the same
workunit, or the workunit specified by the wuid (workunit ID). This is a feature most useful in the Rapid Data Delivery
Engine.

Example:

//Named Output DATASET in the same workunit:
a := OUTPUT(Person(per_st='FL') ,NAMED('FloridaFolk'));
x := DATASET(WORKUNIT('FloridaFolk'),
 RECORDOF(Person));
b := OUTPUT(x(per_first_name[1..4]='RICH'));

SEQUENTIAL(a,b);

//Named Output DATASET in separate workunits:
//First Workunit (wuid=W20051202-155102) contains this code:
MyRec := {STRING1 Value1,STRING1 Value2, INTEGER1 Value3};

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

68

SomeFile := DATASET([{'C','G',1},{'C','C',2},{'A','X',3},
 {'B','G',4},{'A','B',5}],MyRec);
OUTPUT(SomeFile,NAMED('Fred'));

// Second workunit contains this code, producing the same result:
ds := DATASET(WORKUNIT('W20051202-155102','Fred'), MyRec);
OUTPUT(ds);

In-line DATASETs
[attr :=] DATASET(recordset , recstruct);

This form allows you to in-line a set of data and have it treated as a file. This is useful in situations where file operations
are needed on dynamically generated data (such as the runtime values of a set of pre-defined expressions). It is also
useful to test any boundary conditions for definitions by creating a small well-defined set of records with constant
values that specifically exercise those boundaries. This form may be used in an expression context.

Nested RECORD structures may be represented by nesting records within records. Nested child datasets may also be
initialized inside TRANSFORM functions using inline datasets (see the Child DATASETs discussion).

Example:

//Inline DATASET using definition values
myrec := {REAL diff, INTEGER1 reason};
rms5008 := 10.0;
rms5009 := 11.0;
rms5010 := 12.0;
btable := DATASET([{rms5008,72},{rms5009,7},{rms5010,65}], myrec);

//Inline DATASET with nested RECORD structures
nameRecord := {STRING20 lname,STRING10 fname,STRING1 initial := ''};
personRecord := RECORD
 nameRecord primary;
 nameRecord mother;
 nameRecord father;
END;
personDataset := DATASET([{{'James','Walters','C'},
 {'Jessie','Blenger'},
 {'Horatio','Walters'}},
 {{'Anne','Winston'},
 {'Sant','Aclause'},
 {'Elfin','And'}}], personRecord);

// Inline DATASET containing a Child DATASET
childPersonRecord := {STRING fname,UNSIGNED1 age};
personRecord := RECORD
 STRING20 fname;
 STRING20 lname;
 UNSIGNED2 numChildren;
 DATASET(childPersonRecord) children;
END;
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
personDataset := DATASET([{'Kevin','Hall',2,[{'Abby',2},{'Nat',2}]},
 {'Jon','Simms',3,[{'Jen',18},{'Ali',16},{'Andy',13}]}],
 personRecord);

// Inline DATASET derived from a dynamic SET function
SetIDs(STRING fname) := SET(People(firstname=fname),id);
ds := DATASET(SetIDs('RICHARD'),{People.id});

// Inline DATASET derived from a list of transforms

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

69

IDtype := UNSIGNED8;
FMtype := STRING15;
Ltype := STRING25;

resultRec := RECORD
 IDtype id;
 FMtype firstname;
 Ltype lastname;
 FMtype middlename;
END;

T1(IDtype idval,FMtype fname,Ltype lname) :=
 TRANSFORM(resultRec,
 SELF.id := idval,
 SELF.firstname := fname,
 SELF.lastname := lname,
 SELF := []);

T2(IDtype idval,FMtype fname,FMtype mname, Ltype lname) :=
 TRANSFORM(resultRec,
 SELF.id := idval,
 SELF.firstname := fname,
 SELF.middlename := mname,
 SELF.lastname := lname);
ds := DATASET([T1(123,'Fred','Jones'),
 T2(456,'John','Q','Public'),
 T1(789,'Susie','Smith')]);

Single-row DATASET Expressions
DATASET(row)

This form is only used in an expression context. It allows you to in-line a single record dataset.

Example:

//the following examples demonstrate 4 ways to do the same thing:
personRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
END;

namesRecord := RECORD
 UNSIGNED id;
 personRecord;
END;

namesTable := DATASET('RTTEST::TestRow',namesRecord,THOR);
//simple dataset file declaration form

addressRecord := RECORD
 UNSIGNED id;
 DATASET(personRecord) people; //child dataset form
 STRING40 street;
 STRING40 town;
 STRING2 st;
END;

personRecord tc0(namesRecord L) := TRANSFORM
 SELF := L;
END;

//** 1st way - using in-line dataset form in an expression context

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

70

addressRecord t0(namesRecord L) := TRANSFORM
 SELF.people := PROJECT(DATASET([{L.id,L.surname,L.forename,L.age}],
 namesRecord),
 tc0(LEFT));
 SELF.id := L.id;
 SELF := [];
END;

p0 := PROJECT(namesTable, t0(LEFT));
OUTPUT(p0);

//** 2nd way - using single-row dataset form
addressRecord t1(namesRecord L) := TRANSFORM
 SELF.people := PROJECT(DATASET(L), tc0(LEFT));
 SELF.id := L.id;
 SELF := [];
END;

p1 := PROJECT(namesTable, t1(LEFT));
OUTPUT(p1);

//** 3rd way - using single-row dataset form and ROW function
addressRecord t2(namesRecord L) := TRANSFORM
 SELF.people := DATASET(ROW(L,personRecord));
 SELF.id := L.id;
 SELF := [];
END;

p2 := PROJECT(namesTable, t2(LEFT));
OUTPUT(p2);

//** 4th way - using in-line dataset form in an expression context
addressRecord t4(namesRecord l) := TRANSFORM
 SELF.people := PROJECT(DATASET([L], namesRecord), tc0(LEFT));
 SELF.id := L.id;
 SELF := [];
END;
p3 := PROJECT(namesTable, t4(LEFT));
OUTPUT(p3);

Child DATASETs
DATASET(childstruct [, COUNT(count) | LENGTH(size)] [, CHOOSEN(maxrecs)])

This form is used as a value type inside a RECORD structure to define child dataset records in a non-normalized flat
file. The form without COUNT or LENGTH is the simplest to use, and just means that the dataset the length and data
are stored within myfield. The COUNT form limits the number of elements to the count expression. The LENGTH
form specifies the size in another field instead of the count. This can only be used for dataset input.

The following alternative syntaxes are also supported:

childstruct fieldname [SELF.count]

DATASET newname := fieldname

DATASET fieldname (deprecated form -- will go away post-SR9)

Any operation may be performed on child datasets in hthor and the Rapid Data Delivery Engine (Roxie), but only the
following operations are supported in the Data Refinery (Thor):

1) PROJECT, CHOOSEN, TABLE (non-grouped), and filters on child tables.

2) Aggregate operations are allowed on any of the above

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

71

3) Several aggregates can be calculated at once by using

 summary := TABLE(x.children,{ f1 := COUNT(GROUP),
 f2 := SUM(GROUP,x),
 f3 := MAX(GROUP,y)});
 summary.f1;

4) DATASET[n] is supported to index the child elements

5) SORT(dataset, a, b)[1] is also supported to retrieve the best match.

6) Concatenation of datasets is supported.

7) Temporary TABLEs can be used in conjunction.

8) Initialization of child datasets in temp TABLE definitions allows [] to be used to initialize 0 elements.

Note that,

TABLE(ds, { ds.id, ds.children(age != 10) });

is not supported, because a dataset in a record definition means “expand all the fields from the dataset in the output.”
However adding an identifier creates a form that is supported:

TABLE(ds, { ds.id, newChildren := ds.children(age != 10); });

Example:

ParentRec := {INTEGER1 NameID, STRING20 Name};
ParentTable := DATASET([{1,'Kevin'},{2,'Liz'},
 {3,'Mr Nobody'},{4,'Anywhere'}], ParentRec);
ChildRec := {INTEGER1 NameID, STRING20 Addr};
ChildTable := DATASET([{1,'10 Malt Lane'},{2,'10 Malt Lane'},
 {2,'3 The cottages'},{4,'Here'},{4,'There'},
 {4,'Near'},{4,'Far'}],ChildRec);
DenormedRec := RECORD
 INTEGER1 NameID;
 STRING20 Name;
 UNSIGNED1 NumRows;
 DATASET(ChildRec) Children;
// ChildRec Children; //alternative syntax
END;

DenormedRec ParentMove(ParentRec L) := TRANSFORM
 SELF.NumRows := 0;
 SELF.Children := [];
 SELF := L;
END;

ParentOnly := PROJECT(ParentTable, ParentMove(LEFT));
DenormedRec ChildMove(DenormedRec L,ChildRec R,INTEGER C):=TRANSFORM
 SELF.NumRows := C;
 SELF.Children := L.Children + R;
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(ParentOnly, ChildTable,
 LEFT.NameID = RIGHT.NameID,
 ChildMove(LEFT,RIGHT,COUNTER));
OUTPUT(DeNormedRecs,,'RTTEMP::TestChildDatasets');

// Using inline DATASET in a TRANSFORM to initialize child records
AkaRec := {STRING20 forename,STRING20 surname};
outputRec := RECORD
 UNSIGNED id;
 DATASET(AkaRec) children;

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

72

END;

inputRec := RECORD
 UNSIGNED id;
 STRING20 forename;
 STRING20 surname;
END;

inPeople := DATASET([
 {1,'Kevin','Halliday'},{1,'Kevin','Hall'},{1,'Gawain',''},
 {2,'Liz','Halliday'},{2,'Elizabeth','Halliday'},
 {2,'Elizabeth','MaidenName'},{3,'Lorraine','Chapman'},
 {4,'Richard','Chapman'},{4,'John','Doe'}], inputRec);
outputRec makeFatRecord(inputRec l) := TRANSFORM
 SELF.id := l.id;
 SELF.children := DATASET([{ l.forename, l.surname }], AkaRec);
END;

fatIn := PROJECT(inPeople, makeFatRecord(LEFT));
outputRec makeChildren(outputRec l, outputRec r) := TRANSFORM
 SELF.id := l.id;
 SELF.children := l.children + ROW({r.children[1].forename,
 r.children[1].surname},
 AkaRec);
END;

r := ROLLUP(fatIn, id, makeChildren(LEFT, RIGHT));

DATASET as a Parameter Type
[GROUPED] [LINKCOUNTED] [STREAMED] DATASET(struct)

This form is only used as a Value Type for passing parameters, specifying function return types, or defining a SET
OF datasets. If GROUPED is present, the passed parameter must have been grouped using the GROUP function. The
LINKCOUNTED and STREAMED keywords are primarily for use in BEGINC++ functions or external C++ library
functions.

Example:

MyRec := {STRING1 Letter};
SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'}],MyRec);

//Passing a DATASET parameter
FilteredDS(DATASET(MyRec) ds) := ds(Letter NOT IN ['A','C','E']);
 //passed dataset referenced as “ds” in expression

OUTPUT(FilteredDS(SomeFile));

//***
// The following example demonstrates using DATASET as both a
// parameter type and a return type
rec_Person := RECORD
 STRING20 FirstName;
 STRING20 LastName;
END;

rec_Person_exp := RECORD(rec_Person)
 STRING20 NameOption;
END;

rec_Person_exp xfm_DisplayNames(rec_Person l, INTEGER w) :=
 TRANSFORM
 SELF.NameOption :=

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

73

 CHOOSE(w,
 TRIM(l.FirstName) + ' ' + l.LastName,
 TRIM(l.LastName) + ', ' + l.FirstName,
 l.FirstName[1] + l.LastName[1],
 l.LastName);
 SELF := l;
END;

DATASET(rec_Person_exp) prototype(DATASET(rec_Person) ds) :=
 DATASET([], rec_Person_exp);

DATASET(rec_Person_exp) DisplayFullName(DATASET(rec_Person) ds) :=
 PROJECT(ds, xfm_DisplayNames(LEFT,1));

DATASET(rec_Person_exp) DisplayRevName(DATASET(rec_Person) ds) :=
 PROJECT(ds, xfm_DisplayNames(LEFT,2));

DATASET(rec_Person_exp) DisplayFirstName(DATASET(rec_Person) ds) :=
 PROJECT(ds, xfm_DisplayNames(LEFT,3));

DATASET(rec_Person_exp) DisplayLastName(DATASET(rec_Person) ds) :=
 PROJECT(ds, xfm_DisplayNames(LEFT,4));

DATASET(rec_Person_exp) PlayWithName(DATASET(rec_Person) ds_in,
 prototype PassedFunc,
 STRING1 SortOrder='A',
 UNSIGNED1 FieldToSort=1,
 UNSIGNED1 PrePostFlag=1) := FUNCTION
 FieldPre := CHOOSE(FieldToSort,ds_in.FirstName,ds_in.LastName);
 SortedDSPre(DATASET(rec_Person) ds) :=
 IF(SortOrder='A',
 SORT(ds,FieldPre),
 SORT(ds,-FieldPre));
 InDS := IF(PrePostFlag=1,SortedDSPre(ds_in),ds_in);

 PDS := PassedFunc(InDS); //call the passed function parameter

 FieldPost := CHOOSE(FieldToSort,
 PDS.FirstName,
 PDS.LastName,
 PDS.NameOption);
 SortedDSPost(DATASET(rec_Person_exp) ds) :=
 IF(SortOrder = 'A',
 SORT(ds,FieldPost),
 SORT(ds,-FieldPost));

 OutDS := IF(PrePostFlag=1,PDS,SortedDSPost(PDS));
 RETURN OutDS;
END;

 //define inline datasets to use.
ds_names1 := DATASET([{'John','Smith'},{'Henry','Jackson'},
 {'Harry','Potter'}], rec_Person);
ds_names2 := DATASET([{'George','Foreman'},
 {'Sugar Ray','Robinson'},
 {'Joe','Louis'}], rec_Person);

//get name you want by passing the appropriate function parameter:
s_Name1 := PlayWithName(ds_names1, DisplayFullName, 'A',1,1);
s_Name2 := PlayWithName(ds_names2, DisplayRevName, 'D',3,2);
a_Name := PlayWithName(ds_names1, DisplayFirstName,'A',1,1);
b_Name := PlayWithName(ds_names2, DisplayLastName, 'D',1,1);
OUTPUT(s_Name1);
OUTPUT(s_Name2);

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

74

OUTPUT(a_Name);
OUTPUT(b_Name);

DATASET from DICTIONARY
DATASET(dict)

This form re-defines the dict as a DATASET.

Example:

rec := {STRING color,UNSIGNED1 code, STRING name};
ColorCodes := DATASET([{'Black' ,0 , 'Fred'},
 {'Brown' ,1 , 'Sam'},
 {'Red' ,2 , 'Sue'},
 {'White' ,3 , 'Jo'}], rec);

ColorCodesDCT := DICTIONARY(ColorCodes,{Color,Code});

ds := DATASET(ColorCodesDCT);
OUTPUT(ds);

See Also: OUTPUT, RECORD Structure, TABLE, ROW, RECORDOF, TRANSFORM Structure, DICTIONARY

DATASET from TRANSFORM
DATASET(count, transform [, DISTRIBUTED | LOCAL])

This form uses the transform to create the records. The result type of the transform function determines the structure.
The integer COUNTER can be used to number each iteration of the transform function.

LOCAL executes separately and independently on each node.

Example:

IMPORT STD;
msg(UNSIGNED c) := 'Rec ' + (STRING)c + ' on node ' + (STRING)(STD.system.Thorlib.Node()+1);

// DISTRIBUTED example
DS := DATASET(CLUSTERSIZE * 2,
 TRANSFORM({STRING line},
 SELF.line := msg(COUNTER)),
 DISTRIBUTED);
DS;
/* creates a result like this:
 Rec 1 on node 1
 Rec 2 on node 1
 Rec 3 on node 2
 Rec 4 on node 2
 Rec 5 on node 3
 Rec 6 on node 3
*/

// LOCAL example

DS2 := DATASET(2,
 TRANSFORM({STRING line},
 SELF.line := msg(COUNTER)),
 LOCAL);
DS2;

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

75

/* An alternative (and clearer) way
creates a result like this:
 Rec 1 on node 1
 Rec 2 on node 1
 Rec 1 on node 2
 Rec 2 on node 2
 Rec 1 on node 3
 Rec 2 on node 3
*/

See Also: RECORD Structure, TRANSFORM Structure

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

76

DICTIONARY
attr := DICTIONARY(dataset, structure);

DICTIONARY(structure)

attr The name of the DICTIONARY for later use in other definitions.

dataset The name of a DATASET or recordset from which to derive the DICTIONARY. This
may be defined inline (similar to an inline DATASET).

structure The RECORD structure (often defined inline) specifying the layout of the fields. The
first field(s) are key fields, optionally followed the "results in" operator (=>) and addi-
tional payload fields. This is similar to the payload version of an INDEX. The payload
may specify individual fields or may use the name of the dataset to payload all the
non-key fields.

A DICTIONARY allows you to efficiently check whether a particular data value is in a list (using the IN operator),
or to simply map data. It is similar to a LOOKUP JOIN that can be used in any context.

DICTIONARY Definition
The DICTIONARY declaration defines a set of unique records derived from the dataset parameter and indexed by the
first field(s) named in the structure parameter. The DICTIONARY will contain one record for each unique value(s)
in the key field(s). You can access an individual record by appending square brackets ([]) to the attr name of the
DICTIONARY, which contain the key field value(s) that identify the specific record to access.

DICTIONARY as a Value Type
The second form of DICTIONARY is a value type with the structure parameter specifying the RECORD structure of
the data. This data type usage allows you to specify a DICTIONARY as a child dataset, similar to the way DATASET
may be used to define a child dataset. This may also be used to pass a DICTIONARY as a parameter.

Example:

ColorCodes := DATASET([{'Black' ,0 },
 {'Brown' ,1 },
 {'Red' ,2 },
 {'Orange',3 },
 {'Yellow',4 },
 {'Green' ,5 },
 {'Blue' ,6 },
 {'Violet',7 },
 {'Grey' ,8 },
 {'White' ,9 }], {STRING color,UNSIGNED1 code});

ColorCodesDCT := DICTIONARY(ColorCodes,{Color,Code}); //multi-field key
ColorCodeDCT := DICTIONARY(ColorCodes,{Color => Code}); //payload field
CodeColorDCT := DICTIONARY(ColorCodes,{Code => Color});

//mapping examples
MapCode2Color(UNSIGNED1 code) := CodeColorDCT[code].color;
MapColor2Code(STRING color) := ColorCodeDCT[color].code;

OUTPUT(MapColor2Code('Red')); //2
OUTPUT(MapCode2Color(4)); //'Yellow'

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

77

//Search term examples
OUTPUT('Green' IN ColorCodeDCT); //true
OUTPUT(6 IN CodeColorDCT); //true
OUTPUT(ROW({'Red',2},RECORDOF(ColorCodes)) IN ColorCodesDCT); //multi-field key, true

//multi-field payload examples
rec := RECORD
 STRING10 color;
 UNSIGNED1 code;
 STRING10 name;
END;
Ds := DATASET([{'Black' ,0 , 'Fred'},
 {'Brown' ,1 , 'Seth'},
 {'Red' ,2 , 'Sue'},
 {'White' ,3 , 'Jo'}], rec);

DsDCT := DICTIONARY(DS,{color => DS});

OUTPUT('Red' IN DsDCT); //true
DsDCT['Red'].code; //2
DsDCT['Red'].name; //Sue

//inline DCT examples
InlineDCT := DICTIONARY([{'Black' => 0 , 'Fred'},
 {'Brown' => 1 , 'Sam'},
 {'Red' => 2 , 'Sue'},
 {'White' => 3 , 'Jo'}],
 {STRING10 color => UNSIGNED1 code,STRING10 name});

OUTPUT('Red' IN InlineDCT); //true
InlineDCT['Red'].code; //2
InlineDCT['Red'].name; //Sue
InlineDCT['Red']; //Red 2 Sue

//Form 2 examples -- parameter passing
MyDCTfunc(DICTIONARY({STRING10 color => UNSIGNED1 code,STRING10 name}) DCT,
 STRING10 key) := DCT[key].name;
MyDCTfunc(InlineDCT,'White'); //Jo
MyDCTfunc(DsDCT,'Brown'); //Seth

See Also: DATASET, RECORD Structure, INDEX, IN Operator

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

78

INDEX
attr := INDEX([baserecset,] keys, indexfile [,SORTED] [,OPT] [,COMPRESSED(LZW | ROW | FIRST)]
[,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH[(**value**)]]);

attr := INDEX([baserecset,] keys, payload, indexfile [,SORTED] [,OPT] [,COMPRESSED(LZW | ROW |
FIRST)] [,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH[(value)]]);

attr := INDEX(index,newindexfile [, MAXLENGTH[(value)]]);

attr The name of the INDEX for later use in other attributes.

baserecset Optional. The set of data records for which the index file has been created. If omitted,
all fields in the keysand payloadparameters must be fully qualified.

keys The RECORD structure of the fields in the indexfile that contains key and file position
information for referencing into the baserecset. Field names and types must match the
baserecset fields (REAL and DECIMAL type fields are not supported). This may also
contain additional fields not present in the baserecset (computed fields). If omitted,
all fields in the baserecset are used.

payload The RECORD structure of the indexfile that contains additional fields not used as keys.
If the name of the baserecset is in the structure, it specifies “all other fields not already
named in the keys parameter.” This may contain fields not present in the baserecordset
(computed fields). The payload fields do not take up space in the non-leaf nodes of
the index and cannot be referenced in a KEYED() filter clause. Any field with the
{BLOB} modifier (to allow more than 32K of data per index entry) is stored within
the indexfile, but not with the rest of the record; accessing the BLOB data requires an
additional seek.

indexfile A string constant containing the logical filename of the index. See the Scope & Logical
Filenames section for more on logical filenames.

SORTED Optional. Specifies that when the index is accessed the records come out in the order
of the keys. If omitted, the returned record order is undefined.

OPT Optional. Specifies that using the index when the indexfile doesn’t exist results in an
empty recordset instead of an error condition.

COMPRESSED Optional. Specifies the type of compression used. If omitted, the default is LZW, a
variant of the Lempel-Ziv-Welch algorithm. Specifying ROW compresses index en-
tries based on differences between contiguous rows (for use with fixed-length records,
only), and is recommended for use in circumstances where speedier decompression
time is more important than the amount of compression achieved. FIRST compresses
common leading elements of the key (recommended only for timing comparison use).

DISTRIBUTED Optional. Specifies that the index was created with the DISTRIBUTED option on the
BUILD action or the BUILD action simply referenced the INDEX declaration with
the DISTRIBUTED option. The INDEX is therefore accessed locally on each node
(similar to the LOCAL function, which is preferred), is not globally sorted, and there
is no root index to indicate which part of the index will contain a particular entry. This
may be useful in Roxie queries in conjunction with ALLNODES use.

FILEPOSITION Optional. If flag is FALSE, prevents the normal behavior of implicit fileposition field
being created and will not treat a trailing integer field any differently from the rest of
the payload.

flag Optional. TRUE or FALSE, indicating whether or not to create the implicit fileposition
field.

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

79

index The name of a previously defined INDEX attribute to duplicate.

newindexfile A string constant containing the logical filename of the new index. See the Scope &
Logical Filenames section for more on logical filenames.

MAXLENGTH Optional. This option is used to create indexes that are backward compatible for plat-
form versions prior to 3.0. Specifies the maximum length of a variable-length index
record. Fixed length records always use the minimum size required. If the default max-
imum length causes inefficiency problems, it can be explicitly overridden.

value Optional. An integer value indicating the maximum length. If omitted, the maximum
size is calculated from the record structure. Variable-length records that do not specify
MAXLENGTH may be slightly inefficient

INDEX declares a previously created index for use. INDEX is related to BUILD (or BUILDINDEX) in the same
manner that DATASET is to OUTPUT—BUILD creates an index file that INDEX then defines for use in ECL code.
Index files are compressed. A single index record must be defined as less than 32K and result in a less than 8K page
after compression.

The Binary-tree metakey portion of the INDEX is a separate 32K file part on the first node of the Thor cluster on
which it was built, but deployed to every node of a Roxie cluster. There are as many leaf-node file parts as there are
nodes to the Thor cluster on which it was built. The specific distribution of the leaf-node records across execution
nodes is undefined in general, as it depends on the size of the cluster on which it was built and the size of the cluster
on which it is used.

Keyed Access INDEX
This form defines an index file to allow keyed access to the baserecset. The index is used primarily by the FETCH
and JOIN (with the KEYED option) operations.

Example:

PtblRec := RECORD
 STRING2 State := Person.per_st;
 STRING20 City := Person.per_full_city;
 STRING25 Lname := Person.per_last_name;
 STRING15 Fname := Person.per_first_name;
END;

PtblOut := OUTPUT(TABLE(Person,PtblRec),,'RTTEMP::TestFetch');

Ptbl := DATASET('RTTEMP::TestFetch',
 {PtblRec,UNSIGNED8 RecPtr {virtual(fileposition)}},
 FLAT);

AlphaInStateCity := INDEX(Ptbl,
 {state,city,lname,fname,RecPtr},
 'RTTEMPkey::TestFetch');
Bld := BUILDINDEX(AlphaInStateCity);

Payload INDEX
This form defines an index file containing extra payload fields in addition to the keys. The payload may contain fields
with the {BLOB} modifier to allow more than 32K of data per index entry. These BLOB fields are stored within the
indexfile, but not with the rest of the record; accessing the BLOB data requires an additional seek.

This form is used primarily by “half-key” JOIN operations to eliminate the need to directly access the baserecset,
thus increasing performance over the “full-keyed” version of the same operation (done with the KEYED option on the

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

80

JOIN). By default, payload fields are not sorted during the BUILD action to minimize space on the leaf nodes of the
key. This sorting behavior can be controlled by using sortIndexPayload in a #OPTION statement.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,STRING20 city,STRING20 lname,
 UNSIGNED8 fpos{virtual(fileposition)}},FLAT);

VehicleKey := INDEX(Vehicles,{st,city},{lname,fpos},'vkey::st.city');
BUILDINDEX(VehicleKey);

Duplicate INDEX
This form defines a newindexfile that is identical to the previously defined index.

Example:

NewVehicleKey := INDEX(VehicleKey,'NEW::vkey::st.city');
 //define NewVehicleKey like VehicleKey

See Also: DATASET, BUILDINDEX, JOIN, FETCH, KEYED/WILD

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

81

Scope and Logical Filenames
File Scope
The logical filenames used in DATASET and INDEX attribute definitions and the OUTPUT and BUILD (or
BUILDINDEX) actions may begin with a scope name, indicated by a leading tilde (~), and may contain direc-
tories. The scope and directories are delimited by double colons (::). The presence of a scope in the filename
allows you to override the default scope name for the cluster.

For example, assuming you are operating on a cluster whose default scope name is “Training” then the following two
OUTPUT actions result in the same scope:

OUTPUT(SomeFile,,'SomeDir::SomeFileOut1');
OUTPUT(SomeFile,,'~Training::SomeDir::SomeFileOut2');

The presence of the leading tilde in the filename only defines the scope name and does not change the set of disks
to which the data is written (files are always written to the disks of the cluster on which the code executes). The
DATASET declarations for these files might look like this:

RecStruct := {STRING line};
ds1 := DATASET('SomeDir::SomeFileOut1',RecStruct,THOR);
ds2 := DATASET('~Training::SomeDir::SomeFileOut2',RecStruct,THOR);

These two files are in the same scope, so that when you use the DATASETs in a workunit the Distributed File Utility
(DFU) will look for both files in the Training scope.

However, once you know the scope name you can reference files from any other cluster within the same environment.
For example, assuming you are operating on a cluster whose default scope name is “Production” and you want to use
the data in the above two files. Then the following two DATASET definitions allow you to access that data:

FileX := DATASET('~Training::SomeDir::SomeFileOut1',RecStruct,THOR);
FileY := DATASET('~Training::SomeDir::SomeFileOut2',RecStruct,THOR);

Notice the presence of the scope name in both of these definitions. This is required because the files are in another
scope.

Foreign Files
Similar to the scoping rules described above, you can also reference files in separate environments serviced by a
different Dali. This allows a read-only reference to remote files (both logical files and superfiles).

The syntax looks like this:

‘~foreign::<dali-ip>::<scope>::<tail>’

For example,

MyFile :=DATASET('~foreign::10.150.50.11::training::thor::myfile',
 RecStruct,FLAT);

gives read-only access to the remote training::thor::myfile file in the 10.150.50.11 environment.

Landing Zone Files
You can also directly read and write files on a landing zone (or any other IP-addressable box) that have not been sprayed
to Thor. The landing zone must be running the dafileserv utility program. If the box is a Windows box, dafileserv
must be installed as a service.

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

82

The syntax looks like this:

‘~file::<LZ-ip>::<path>::<filename>’

For example,

MyFile :=DATASET('~file::10.150.50.12::c$::training::import::myfile',RecStruct,FLAT);

gives access to the remote c$/training/import/myfile file on the linux-based 10.150.50.12 landing zone.

ECL logical filenames are case insensitive and physical names default to lower case, which can cause problems when
the landing zone is a Linux box (Linux is case sensitive). The case of characters can be explicitly uppercased by
escaping them with a leading caret (^), as in this example:

MyFile :=DATASET('~file::10.150.50.12::c$::^Advanced^E^C^L::myfile',RecStruct,FLAT);

gives access to the remote c$/AdvancedECL/myfile file on the linux-based 10.150.50.12 landing zone.

Dynamic Files
In Roxie queries (only) you can also read files that may not exist at query deployment time, but that will exist at query
runtime by making the filename DYNAMIC.

The syntax looks like this:

DYNAMIC(‘<filename>’)

For example,

MyFile :=DATASET(DYNAMIC('~training::import::myfile'),RecStruct,FLAT);

This causes the file to be resolved when the query is executed instead of when it is deployed.

Temporary SuperFiles
A SuperFile is a collection of logical files treated as a single entity (see the SuperFile Overview article in the
Programmer's Guide). You can specify a temporary SuperFile by naming the set of sub-files within curly braces in
the string that names the logical file for the DATASET declaration. The syntax looks like this:

DATASET('{ listoffiles } ', recstruct, THOR);

listoffiles A comma-delimited list of the set of logical files to treat as a single SuperFile. The logical filenames must
follow the rules listed above for logical filenames with the one exception that the tilde indicating scope name override
may be specified either on each appropriate file in the list, or outside the curly braces.

For example, assuming the default scope name is “thor,” the following examples both define the same SuperFile:

MyFile :=DATASET('{in::file1,
 in::file2,
 ~train::in::file3}'),
 RecStruct,THOR);

MyFile :=DATASET('~{thor::in::file1,
 thor::in::file2,
 train::in::file3}'),
 RecStruct,THOR);

You cannot use this form of logical filename to do an OUTPUT or PERSIST; this form is read-only.

ECL Language Reference
Record Structures and Files

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

83

Implicit Dataset Relationality
Nested child datasets in a Data Refinery (Thor) or Rapid Data Delivery Engine (Roxie) cluster are inherently relational,
since all the parent-child data is contained within a single physical record. The following rules apply to all inherent
relationships.

The scope level of a particular query is defined by the primary dataset for the query. During the query, the assumption
is that you are working with a single record from that primary dataset.

Assuming that you have the following relational structure in your database:

 Household Parent
 Person Child of Household
 Accounts Child of Person, Grandchild of Household

This means that, at the primary scope level:

a) All fields from any file that has a 1:M relationship with the primary file are available. That is, all fields in any parent
(or grandparent, etc.) record are available to the child. For example, if the Person dataset is the primary scope, then
all the fields in the Household dataset are available.

b) All child datasets (or grandchildren, etc.) can be used in sub-queries to filter the parent, as long as the sub-query uses
an aggregate function or operates at the level of the existence of a set of child records that meet the filter criteria (see
EXISTS).You can use specific fields from within a child record at the scope level of the parent record by the use of
EVALUATE or subscripting ([]) to a specific child record. For example, if the Person dataset is the primary scope, then
you may filter the set of related Accounts records and check to see if you've filtered out all the related Accounts records.

c) If a dataset is used in a scope where it is not a child of the primary dataset, it is evaluated in the enclosing scope.
For example, the expression:

Household(Person(personage > AVE(Person,personage))

means “households containing people whose age is above the average age for the household.” It does not mean “house-
holds containing people whose age is above the average for all the households.” This is because the primary dataset
(Household) encloses the child dataset (Person), making the evaluation of the AVE function operate at the level of
the persons within the household.

d) An attribute defined with the STORED() workflow service is evaluated at the global level. It is an error if it cannot
be evaluated independently of other datasets. This can lead to some slightly strange behaviour:

AveAge := AVE(Person,personage);
MyHouses := Household(Person(personage > aveAge));

means “households containing people whose age is above the average age for the household.” However,

AveAge := AVE(Person,personage) : STORED('AveAge');
MyHouses := Household(Person(personage > aveAge));

Means “households containing people whose age is above the average for all the households.” This is because the
AveAge attribute is now evaluated outside the enclosing Household scope.

ECL Language Reference
Alien Data Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

84

Alien Data Types

TYPE Structure
TypeName := TYPE

functions;

END;

TypeName The name of the TYPE structure.

functions Function Attribute definitions. There are usually multiple functions.

The TYPE structure defines a series of functions that are implicitly invoked when the TypeName is subsequently used
in a RECORD structure as a value type. Parameters may be passed to the TYPE structure Attribute which may then
be used in any of the function definitions. To pass the parameters, simply append them to the TypeName used in the
RECORD structure to define the value type for the field.

A TYPE structure may only contain function definitions from the the list of available Special Functions (see TYPE
Structure Special Functions).

Example:

STRING4 Rev(STRING4 S) := S[4] + S[3] + S[2] + S[1];
EXPORT ReverseString4 := TYPE
 EXPORT STRING4 LOAD(STRING4 S) := Rev(S);
 EXPORT STRING4 STORE(STRING4 S) := Rev(S);
END;
NeedC(INTEGER len) := TYPE
 EXPORT STRING LOAD(STRING S) := 'C' + S[1..len];
 EXPORT STRING STORE(STRING S) := S[2..len+1];
 EXPORT INTEGER PHYSICALLENGTH(STRING S) := len;
END;
ScaleInt := TYPE
 EXPORT REAL LOAD(INTEGER4 I) := I / 100;
 EXPORT INTEGER4 STORE(REAL R) := ROUND(R * 100);
END;
R := RECORD
 ReverseString4 F1;
 // Defines a field size of 4 bytes. When R.F1 is used,
 // the ReverseString4.Load function is called passing
 // in those four bytes and returning a string result.
 NeedC(5) F2;

 // Defines a field size of 5 bytes. When R.F2 is used,
 // those 5 bytes are passed in to NeedC.Load (along with
 // the length 5) and a 6 byte string is returned.
 ScaleInt F3;

 // Defines a field size of 4. When R.F3 is used, the
 // ScaleInt.Load function returns the number / 100.
END;

See Also: RECORD Structure, TYPE Structure Special Functions

ECL Language Reference
Alien Data Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

85

TYPE Structure Special Functions
LOAD
EXPORT LogicalType LOAD(PhysicalType alias) := expression;

LogicalType The value type of the resulting output of the function.

PhysicalType The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

LOAD defines the callback function to be applied to the bytes of the record to create the data value to be used in the
computation. This function defines how the system reads the data from disk.

STORE
EXPORT PhysicalType STORE(LogicalType alias) := expression;

PhysicalType The value type of the resulting output of the function.

LogicalType The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

STORE defines the callback function to be applied to the computed value to store it within the record. This function
defines how the system writes the data to disk.

PHYSICALLENGTH
EXPORT INTEGER PHYSICALLENGTH(type alias) := expression;

type The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

PHYSICALLENGTH defines the callback function to determine the storage requirements of the logical format in
the specified physical format. This function defines how many bytes the data occupies on disk.

MAXLENGTH
EXPORT INTEGER MAXLENGTH := expression;

expression An integer constant defining the maximum physical length of the data.

MAXLENGTH defines the callback function to determine the maximum physical length of variable-length data.

GETISVALID
EXPORT BOOLEAN GETISVALID(PhysicalType alias) := expression;

ECL Language Reference
Alien Data Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

86

PhysicalType The value type of the input parameter to the function.

alias The name of the input to use in the expression.

expression The operation to perform on the input.

GETISVALID defines the callback function to determine that data values are in the specified physical format.

Example:

EXPORT NeedC(INTEGER len) := TYPE
 EXPORT STRING LOAD(STRING S) := 'C' + S[1..len];
 EXPORT STRING STORE(STRING S) := S[2..len+1];
 EXPORT INTEGER PHYSICALLENGTH(STRING S) := len;
 EXPORT INTEGER MAXLENGTH(STRING S) := len;
 EXPORT BOOLEAN GETISVALID(STRING S) := S[1] <> 'C';
END;

// delimited string data type
EXPORT dstring(STRING del) := TYPE
 EXPORT INTEGER PHYSICALLENGTH(STRING s) :=
 Std.Str.Find(s,del)+length(del)-1;
 EXPORT STRING LOAD(STRING s) :=
 s[1..Std.Str.Find(s,del)-1];
 EXPORT STRING STORE(STRING s) := s + del;
END;

See Also: TYPE Structure

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

87

Parsing Support

Parsing Support
Natural Language Parsing is accomplished in ECL by combining pattern definitions with an output RECORD structure
(or TRANSFORM function) specifically designed to receive the parsed values, then using the PARSE function to
perform the operation.

Pattern definitions are used to detect "interesting" text within the data. Just as with all other attribute definitions, these
patterns typically define specific parsing elements and may be combined to form more complex patterns, tokens, and
rules.

The output RECORD structure (or TRANSFORM function) defines the format of the resulting recordset. It typically
contains specific pattern matching functions that return the "interesting" text, its length or position.

The PARSE function implements the parsing operation. It returns a recordset that may then be post-processed as
needed using standard ECL syntax, or simply output.

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

88

PARSE Pattern Value Types
There are three value types specifically designed and required to define parsing pattern attributes:

PATTERN patternid := parsepattern;

patternid The attribute name of the pattern.

parsepattern The pattern, very similar to regular expressions. This may contain other previously
defined PATTERN attributes. See ParsePattern Definitions below.

The PATTERN value type defines a parsing expression very similar to regular expression patterns.

TOKEN tokenid := parsepattern;

tokenid The attribute name of the token.

parsepattern The token pattern, very similar to regular expressions. This may contain PATTERN
attributes but no TOKEN or RULE attributes. See ParsePattern Definitions below.

The TOKEN value type defines a parsing expression very similar to a PATTERN, but once matched, the parser doesn’t
backtrack to find alternative matches as it would with PATTERN.

RULE [(recstruct)] ruleid := rulePattern;

recstruct Optional. The attribute name of a RECORD structure attribute (valid only when the
PARSE option is used on the PARSE function).

ruleid The attribute name of the rule.

rulePattern The rule pattern, very similar to regular expressions. This may contain PATTERN at-
tributes, TOKEN attributes, or RULE attributes. See ParsePattern Definitions below.

The RULE value type defines a parsing expression containing combinations of TOKENs. If a RULE definition con-
tains a PATTERN it is implicitly converted to a TOKEN. Like PATTERN, once matched, the parser backtracks to
find alternative RULE matches.

If the PARSE option is present on the PARSE function (thereby implementing tomita parsing for the operation), each
alternative RULE rulePattern may have an associated TRANSFORM function. The different input patterns can be
referred to using $1, $2 etc. If the pattern has an associated recstruct then $1 is a row, otherwise it is a string. Default
TRANSFORM functions are created in two circumstances:

1. If there are no patterns, the default transform clears the row. For example:

RULE(myRecord) := ; //empty expression = cleared row

2. If there is only a single pattern with an associated record, and that record matches the type of the
rule being defined. For example:

RULE(myRecord) e0 := '(' USE(myRecord, 'expression') ')';

ParsePattern Definitions
A parsepattern may contain any combination of the following elements:

pattern-name The name of any previously defined PATTERN attribute.

(pattern) Parentheses may be used for grouping.

pattern1 pattern2 Pattern1 followed by pattern2.

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

89

'string' A fixed text string, which may contain escaped octal string control characters (for
example, CtrlZ is ‘\032’).

FIRST Matches the start of the string to search. This is similar to the regular expression ^
token, which is not supported.

LAST Matches the end of the string to search. This is similar to the regular expression $
token, which is not supported.

ANY Matches any character.

REPEAT(pattern) Repeat the pattern any number of times. The regular expression syntax pattern* is
supported as a shorthand for REPEAT(pattern).

REPEAT(pattern, expres-
sion)

Repeat the pattern expression times. The regular expression syntax pattern*<count>
is supported as a shorthand for REPEAT(pattern,expression), but the regular expres-
sion bounded repeats syntax pattern{expression} is not.

REPEAT(pattern, low, ANY
[,MIN])

Repeat the pattern low or more times (with the MIN option making it a mini-
mal match). The regular expression syntax pattern+ is supported as a shorthand
for REPEAT(pattern,low,ANY), but the regular expression bounded repeats syntax
pattern{expression ,} is not.

REPEAT(pattern, low, high) Repeat the pattern from low to high times. The regular expression bounded repeats
syntax pattern{low,high} is not supported.

OPT(pattern) An optional pattern. The regular expression syntax pattern? is supported as a short-
hand for OPT(pattern).

pattern1 OR pattern2 Either pattern1 or pattern2. The regular expression syntax pattern1 | pattern2 is sup-
ported as a shorthand for OR.

[list-of-patterns] A comma-delimited list of alternative patterns, useful for string sets. This is the same
as OR.

pattern1 [NOT] IN pattern2 Does the text matched with pattern1 also match pattern2? Pattern1 [NOT] = pattern2
and pattern1 != pattern2 are the same as using IN, but may make more sense in some
situations.

pattern1 [NOT] BEFORE
pattern2

Check if the given pattern2 does [not] follow pattern1. Pattern2 is not consumed
from the input.

pattern1 [NOT] AFTER pat-
tern2

Check if the given pattern2 does [not] precede pattern1. Pattern2 does not consume
any input. It must also be a fixed length.

pattern LENGTH(range) Check whether the length of a pattern is in the range. Range can have the form
<value>,<min>..<max>,<min>.. or ..<max> So “digit*3 NOT BEFORE digit” could
be represented as “digit* LENGTH(3).” This is more efficient, and digit* can be de-
fined as a token. “digit* LENGTH(4..6)” matches 4,5 and 6 digit sequences.

VALIDATE(pattern, is-
ValidExpression)

Evaluate isValidExpression to check if the pattern is valid or not. is-
ValidExpression should use MATCHTEXT or MATCHUNICODE to re-
fer to the text that matched the pattern. For example, VALIDATE(alpha*,
MATCHTEXT[4]=’Q’) is equivalent to alpha* = ANY*3 ‘Q’ ANY* or more useful-
ly: VALIDATE(alpha*,isSurnameService(MATCHTEXT));

VALIDATE(pattern, is-
ValidAsciiExpression, is-
ValidUnicodeExpression)

A two parameter variant. Use the first isValidAsciiExpression if the string being
searched is ASCII; use the second if it is Unicode.

NOCASE(pattern) Matches the pattern case insensitively, overriding the CASE option on the PARSE
function. This may be nested within a CASE pattern.

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

90

CASE(pattern) Matches the pattern case sensitively, overriding the NOCASE option on the PARSE
function. This may be nested within a NOCASE pattern.

pattern PENALTY(cost) Associate a penalty cost with this match of the pattern. This can be used to recover
from grammars with unknown words. This requires use of the BEST option on the
PARSE operation.

TOKEN(pattern) Treat the pattern as a token.

PATTERN('regular expres-
sion')

Define a pattern using a regular expression built from
the following supported syntax elements:
 (x) Grouping (not used for matching)
 x|y Alteratives x or y
 xy Concatenation of x and y.
 x* x*? Zero or more. Greedy and minimal versions.
 x+ x+? One or more. Greedy and minimal versions.
 x? x?? Zero or one. Greedy and minimal versions.
 x{m} x{m,} x{m,n} Bounded repeats, also minimal versions
 [0-9abcdef] A set of characters
 (may use ^ for exclusion list)
 (?=…) (?!...) Look ahead assertion
 (?<=…) (?<!...) Look behind assertion

Escape sequences can be used to define UNICODE Character ranges.
The encoding is UTF-16 Big Endian.
For example:
PATTERN AnyChar := PATTERN(U'[\u0001-\u7fff]');

 The following character class expressions are supported
(inside sets):
[:alnum:] [:cntrl:] [:lower:] [:upper:] [:space:]
[:alpha:] [:digit:] [:print:] [:blank:] [:graph:]
[:punct:] [:xdigit:]

 Regular expressions do not support:
 ^ $ to mark the beginning/end of the string
 Collating symbols [.ch.]
 Equivalence class [=e=]

USE([recstruct ,] 'symbol-
name')

Specifies using a pattern defined later with the DEFINE('symbolname') function. This
creates a forward reference, practical only on RULE patterns for tomita parsing (the
PARSE option is present on the PARSE function).

SELF References the pattern being defined (recursive). This is practical only in RULE pat-
terns for tomita parsing (the PARSE option is present on the PARSE function).

Examples:

rs := RECORD
STRING100 line;
END;
ds := DATASET([{'the fox; and the hen'}], rs);

PATTERN ws := PATTERN('[\t\r\n]');
PATTERN Alpha := PATTERN('[A-Za-z]');
PATTERN Word := Alpha+;
PATTERN Article := ['the', 'A'];
PATTERN JustAWord := Word PENALTY(1);
PATTERN notHen := VALIDATE(Word, MATCHTEXT != 'hen');

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

91

PATTERN NoHenWord := notHen PENALTY(1);
RULE NounPhraseComponent1 := JustAWord | Article ws Word;
RULE NounPhraseComponent2 := NoHenWord | Article ws Word;
ps1 := RECORD
 out1 := MATCHTEXT(NounPhraseComponent1);
END;

ps2 := RECORD
 out2 := MATCHTEXT(NounPhraseComponent2);
END;

p1 := PARSE(ds, line, NounPhraseComponent1, ps1, BEST, MANY, NOCASE);
p2 := PARSE(ds, line, NounPhraseComponent2, ps2, BEST, MANY, NOCASE);
OUTPUT(p1);
OUTPUT(p2);

See Also: PARSE, RECORD Structure, TRANSFORM Structure, DATASET

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

92

NLP RECORD and TRANSFORM Func-
tions
The following functions are used in field definition expressions within the RECORD structure or TRANSFORM func-
tion that defines the result set from the PARSE function:

MATCHED([patternreference])

MATCHED returns true or false as to whether the patternreference found a match. If the patternreference is omitted,
it indicates whether the entire pattern matched or not (for use with the NOT MATCHED option).

MATCHTEXT [(patternreference)]

MATCHTEXT returns the matching ASCII text the patternreference found, or blank if not found. If the patternref-
erence is omitted, MATCHTEXT returns all matching text.

MATCHUNICODE(patternreference)

MATCHUNICODE returns the matching Unicode text the patternreference found, or blank if not found.

MATCHLENGTH(patternreference)

MATCHLENGTH returns the number of characters in the matching text the patternreference found, or 0 if not found.

MATCHPOSITION(patternreference)

MATCHPOSITION returns the position within the text of the first character in the matching text the patternreference
found, or 0 if not found.

MATCHROW(patternreference)

MATCHROW returns the entire row of the matching text the patternreference found for a RULE (valid only when
the PARSE option is used on the PARSE function). This may be used to fully qualify a field in the RECORD structure
of the row.

Pattern References
The patternreference parameter to these functions is a slash-delimited (/) list of previously defined PATTERN, TO-
KEN, or RULE attributes with or without an instance number appended in square brackets.

If an instance number is supplied, the patternreference matches a particular occurrence, otherwise it matches any. The
patternreference provides a path through the regular expression grammar to a particular result. The path to a particular
attribute can either be fully or partially specified.

Example:

PATTERN ws := PATTERN('[\t\r\n]');
PATTERN arb := PATTERN('[-!.,\t a-zA-Z0-9]')+;
PATTERN number := PATTERN('[0-9]')+;
PATTERN age := '(' number OPT('/I') ')';
PATTERN role := '[' arb ']';
PATTERN m_rank := '<' number '>';
PATTERN actor := arb OPT(ws '(I)' ws);

NLP_layout_actor_movie := RECORD

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

93

 STRING30 actor_name := MATCHTEXT(actor);
 STRING50 movie_name := MATCHTEXT(arb[2]); //2nd instance of arb
 UNSIGNED2 movie_year := (UNSIGNED)MATCHTEXT(age/number);
 //number within age
 STRING20 movie_role := MATCHTEXT(role/arb); //arb within role
 UNSIGNED1 cast_rank := (UNSIGNED)MATCHTEXT(m_rank/number);
END;

// This example demonstrates the use of productions in PARSE code
//(only supported in the tomita version of PARSE).
PATTERN ws := [' ','\t'];
TOKEN number := PATTERN('[0-9]+');
TOKEN plus := '+';
TOKEN minus := '-';

attrRec := RECORD
 INTEGER val;
END;

RULE(attrRec) e0 :=
 '(' USE(attrRec,expr)? ')' |
 number TRANSFORM(attrRec, SELF.val := (INTEGER)$1;) |
 '-' SELF TRANSFORM(attrRec, SELF.val := -$2.val;);
RULE(attrRec) e1 :=
 e0 |
 SELF '*' e0 TRANSFORM(attrRec, SELF.val := $1.val * $3.val;) |
 USE(attrRec, e1) '/' e0
 TRANSFORM(attrRec, SELF.val := $1.val / $3.val;);
RULE(attrRec) e2 :=
 e1 |
 SELF plus e1 TRANSFORM(attrRec, SELF.val := $1.val + $3.val;) |
 SELF minus e1 TRANSFORM(attrRec, SELF.val := $1.val - $3.val;);
RULE(attrRec) expr := e2;

infile := DATASET([{'1+2*3'},{'1+2*z'},{'1+2+(3+4)*4/2'}],
 { STRING line });
resultsRec := RECORD
 RECORDOF(infile);
 attrRec;
 STRING exprText;
 INTEGER value3;
END;

resultsRec extractResults(infile l, attrRec attr) := TRANSFORM
 SELF := l;
 SELF := attr;
 SELF.exprText := MATCHTEXT;
 SELF.value3 := MATCHROW(e0[3]).val;
END;

OUTPUT(PARSE(infile,line,expr,extractResults(LEFT, $1),
 FIRST,WHOLE,PARSE,SKIP(ws)));

See Also: PARSE, RECORD Structure, TRANSFORM Structure

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

94

XML Parsing RECORD and TRANS-
FORM Functions
The following functions are valid for use only in field definition expressions within a RECORD structure or TRANS-
FORM function that is used to define the result set from the PARSE function, or the input RECORD structure for a
DATASET containing XML data.

XMLTEXT(xmltag)

XMLTEXT returns the ASCII text from the xmltag.

XMLUNICODE(xmltag)

XMLUNICODE returns the Unicode text from the xmltag.

XMLPROJECT(xmltag, transform)

XMLPROJECT returns the text from the xmltag as a child dataset.

xmltag A string constant naming the XPATH to the tag containing the data (see the XPATH
Support section under the RECORD structure discussion). This may contain an in-
stance number (such as tagname[1]).

transform The TRANSFORM function that produces the child dataset.

Example:

d := DATASET([{'<library><book isbn="123456789X">' +
 '<author>Bayliss</author><title>A Way Too Far</title></book>' +
 '<book isbn="1234567801">' +
 '<author>Smith</author><title>A Way Too Short</title></book>' +
 '</library>'}],
 {STRING line });

rform := RECORD
 STRING author := XMLTEXT('author');
 STRING title := XMLTEXT('title');
END;

books := PARSE(d,line,rform,XML('library/book'));

OUTPUT(books)

//***
/* The following XML can be parsed using XMLPROJECT
<XML>
<Field name='surname' distinct=2>
<Value count=3>Halliday</Value>
<Value count=2>Chapman</Value>
</Field>
<XML>
*/
extractedValueRec := RECORD
 STRING value;
 UNSIGNED cnt;
END;

extractedRec := RECORD

ECL Language Reference
Parsing Support

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

95

 STRING name;
 UNSIGNED cnt;
 DATASET(extractedValueRec) values;
END;

x := DATASET([{'<XML>' +
 '<Field name="surname" distinct="2">' +
 '<Value count="3">Halliday</Value>' +
 '<Value count="2">Chapman</Value>' +
 '</Field>' +
 '</XML>'}],{STRING line});

extractedRec t1 := TRANSFORM
 SELF.name := XMLTEXT('@name');
 SELF.cnt := (UNSIGNED)XMLTEXT('@distinct');
 SELF.values := XMLPROJECT('Value',
 TRANSFORM(extractedValueRec,
 SELF.value := XMLTEXT(''),
 SELF.cnt :=
 (UNSIGNED)XMLTEXT('@count')))(cnt > 1);
 END;
p := PARSE(x, line, t1, XML('XML/Field'));
OUTPUT(p);

See Also: PARSE, RECORD Structure, TRANSFORM Structure, DATASET

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

96

Reserved Keywords

ALL
ALL

The ALL keyword specifies the set of all possible values when used as the default value for a passed SET parameter
or as a substitute for a SET in operations that expect a defined SET of values.

Example:

MyFunc(STRING1 val, SET OF STRING1 S=ALL) := val IN S;
 //check for presence in passed set, if passed

SET OF INTEGER4 MySet := IF(SomeCondition=TRUE,
 [88888,99999,66666,33333,55555],ALL);
MyRecs := MyFile(Zip IN MySet);

See Also: SET OF, Attribute Functions (Parameter Passing)

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

97

EXCEPT
EXCEPT fieldlist

fields A comma-delimited list of data fields in a RECORD structure.

The EXCEPT keyword specifies a list of fields not to use in a SORT, GROUP, DEDUP, or ROLLUP operation. This
allows you to perform the operation on all fields in the RECORD EXCEPT those fields you name, making the code
more readable and maintainable.

Example:

x := DATASET([{'Taylor','Richard','Jackson' ,'M'},
 {'Taylor','David' ,'Boca' ,'M'},
 {'Taylor','Rita' ,'Boca' ,'F'},
 {'Smith' ,'Richard','Mansfield','M'},
 {'Smith' ,'Oscar' ,'Boca' ,'M'},
 {'Smith' ,'Rita' ,'Boca' ,'F'}],
 {STRING10 lname, STRING10 fname,
 STRING10 city, STRING1 sex });
y := SORT(x,EXCEPT sex); //sort on all fields but sex

OUTPUT(y)

See Also: SORT, GROUP, DEDUP, ROLLUP

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

98

EXPORT
EXPORT [VIRTUAL] definition

VIRTUAL Optional. Specifies the definition is VIRTUAL. Valid only inside a MOD-
ULE Structure.

definition A valid definition.

The EXPORT keyword explicitly allows other definitions to import the specified definition for use. It may be IM-
PORTed from code in any folder, therefore its visibility scope is global.

ECL code is stored in .ecl text files which may only contain a single EXPORT or SHARED definition. This defini-
tion may be a structure that allows EXPORT or SHARED definitions within their boundaries (such as MODULE,
INTERFACE, TYPE, etc.). The name of the .ecl file containing the code must exactly match the name of the single
EXPORT (or SHARED) definition that it contains.

Definitions without the EXPORT or SHARED keywords are local to the file within which they reside (see Definition
Visibility). A local definition's scope is limited to the next SHARED or EXPORT definition, therefore they must
precede that file's EXPORT or SHARED definition.

Example:

EXPORT MyDefinition := 5;
// allows other definitions to use MyModule.MyDefinition if they import MyModule
// the filename must be MyDefinition.ecl

//and in AnotherDef.ecl we have this code:
EXPORT AnotherDef := MODULE(x)
 EXPORT INTEGER a := c * 3;
 EXPORT INTEGER b := 2;
 EXPORT VIRTUAL INTEGER c := 3; //this def is VIRTUAL
END;

See Also: IMPORT, SHARED, Definition Visibility, MODULE Structure

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

99

GROUP keyword
GROUP

The GROUP keyword is used within output format parameter (RECORD Structure) of a TABLE definition where
optional group by expressions are also present. GROUP replaces the recordset parameter of any aggregate built-in
function used in the output to indicate the operation is performed for each group of the expression. This is similar to
an SQL “GROUP BY” clause. The most common usage is to output a table as a crosstab report.

There is also a GROUP built-in function which provides a similar functionality.

Example:

A := TABLE(Person,{per_st,per_sex,COUNT(GROUP)},per_st,per_sex);
 // create a crosstab report of each sex in each state

See Also: TABLE, COUNT, AVE, MAX, MIN, SUM, VARIANCE, COVARIANCE, CORRELATION, COMBINE

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

100

IMPORT
IMPORT module-selector-list;

IMPORT folder AS alias ;

IMPORT symbol-list FROM folder ;

IMPORTlanguage;

module-selector-list A comma-delimited list of folder or file names in the repository. The dollar sign ($) makes
all definitions in the current folder available. The caret symbol (^) can be used as short-
hand for the container of the current folder. Using a caret within the module specifier
(such as, myModule.^) selects the container of that folder. A leading caret specifies the
logical root of the file tree.

folder A folder or file name in the repository.

AS Defines a local alias name for the folder, typically used to create shorter local names for
easier typing.

alias The short name to use instead of the folder name.

symbol-list A comma-delimited list of definitions from the folder to make available without qualifi-
cation. A single asterisk (*) may be used to make all definitions from the folder available
without qualification.

FROM Specifies the folder name in which the symbol-list resides.

language Specifies the name of an external programming language whose code you wish to embed
in your ECL. A language support module for that language must have been installed in
your plugins directory. This makes the language available for use by the EMBED struc-
ture and/or the IMPORT function.

The IMPORT keyword makes EXPORT definitions (and SHARED definitions from the same folder) available for
use in the current ECL code.

Examples:

IMPORT $; //makes all definitions from the same folder available

IMPORT $, Std; //makes the standard library functions available, also

IMPORT MyModule; //makes available the definitions from MyModule folder

IMPORT $.^.MyOtherModule //makes available the definitions from MyOtherModule folder,
 //which is located in the same container as the current folder

IMPORT $.^.^.SomeOtherModule //makes available the definitions from SomeOtherModule folder,
 //which is located in the grandparent folder of current folder

IMPORT SomeFolder.SomeFile; //make the specific file available

IMPORT SomeReallyLongFolderName AS SN; //alias the long name as "SN"

IMPORT ^ as root; //allows access to non-modules defined in the root of the repository

IMPORT Def1,Def2 FROM Fred; //makes Def1 and Def2 from Fred folder available, unqualified

IMPORT * FROM Fred; //makes everything from Fred available, unqualified

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

101

IMPORT Dev.Me.Project1; //makes the Dev/Me/Project1 folder available

IMPORT Python; //makes Python language code embeddable

See Also: EXPORT, SHARED, EMBED Structure, IMPORT function

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

102

KEYED and WILD
KEYED(expression [, OPT])

WILD(field)

expression An INDEX filter condition.

OPT Only generate An INDEX filter condition.

field A single field in an INDEX.

The KEYED and WILD keywords are valid only for filters on INDEX attributes (which also qualifies as part of the
joincondition for a “half-keyed” JOIN). They indicate to the compiler which of the leading index fields are used as
filters (KEYED) or wildcarded (WILD) so that the compiler can warn you if you've gotten it wrong. Trailing fields
not used in the filter are ignored (always treated as wildcards).

The rules for their use are as follows (the term “segmonitor” refers to an internal object created to represent the possible
match conditions for a single keyable field):

1. KEYED generates a segmonitor. The segmonitor may be a wild one if the expression can never be false, such as:

 KEYED(inputval = '' OR field = inputval)

2. WILD generates a wild segmonitor, unless there is also a KEYED() filter on the same field.

3. KEYED, OPT generates a non-wild segmonitor only if the preceding field did.

4. Any field that is both KEYED and KEYED OPT creates a compile time error.

5. If WILD or KEYED are not specified for any fields, segmonitors are generated for all keyable conditions.

6. An INDEX filter condition with no KEYED specified generates a wild segmonitor (except as specified by 5).

7. KEYED limits are based upon all non-wild segmonitors.

8. Conditions that do not generate segmonitors are post-filtered.

Example:

ds := DATASET('~local::rkc::person',
 { STRING15 f1, STRING15 f2, STRING15 f3, STRING15 f4,
 UNSIGNED8 filepos{virtual(fileposition)} }, FLAT);
ix := INDEX(ds, { ds },'\\lexis\\person.name_first.key');

/*** Valid examples ****/

COUNT(ix(KEYED(f1='Kevin1')));
 // legal because only f1 is used.

COUNT(ix(KEYED(f1='Kevin2' and f2='Halliday')));
 // legal because both f1 and f2 are used

COUNT(ix(KEYED(f2='Kevin3') and WILD(f1)));
 // keyed f2, but ok because f1 is marked as wild.

COUNT(ix(f2='Halliday'));
 // ok - if keyed isn't used then it doesn't have to have
 // a wild on f1

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

103

COUNT(ix(KEYED(f1='Kevin3') and KEYED(f2='Kevin4') and WILD(f1)));
 // it is ok to mark as wild and keyed otherwise you can get
 // in a mess with compound queries.

COUNT(ix(f1='Kevin3' and KEYED(f2='Kevin4') and WILD(f1)));
 // can also be wild and a general expression.

/***Error examples ***/

COUNT(ix(KEYED(f3='Kevin3' and f2='Halliday')));
 // missing WILD(f1) before keyed

COUNT(ix(KEYED(f3='Kevin3') and f2='Halliday'));
 // missing WILD(f1) before keyed after valid field

COUNT(ix(KEYED(f3='Kevin3') and WILD(f2)));
 // missing WILD(f1) before a wild

COUNT(ix(WILD(f3) and f2='Halliday'));
 // missing WILD(f1) before wild after valid field

COUNT(ds(KEYED(f1='Kevin')));
 //KEYED not valid in DATASET filters

See Also: INDEX, JOIN, FETCH

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

104

LEFT and RIGHT
LEFT

RIGHT

The LEFT and RIGHT keywords indicate the left and right records of a record set. These may be used to substitute as
parameters passed to TRANSFORM functions or in expressions in functions where a left and right record are implicit,
such as DEDUP and JOIN.

Example:

dup_flags := JOIN(person,person,
 LEFT.current_address_key=RIGHT.current_address_key
 AND fuzzy_equal,req_output(LEFT,RIGHT));

See Also: TRANSFORM Structure, DEDUP

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

105

ROWS(LEFT) and ROWS(RIGHT)
ROWS(LEFT)

ROWS(RIGHT)

The ROWS(LEFT) and ROWS(RIGHT) keywords indicate the parameter being passed to the TRANSFORM func-
tion is a record set. These are used in functions where a dataset is being passed, such as COMBINE, ROLLUP, JOIN,
DENORMALIZE, and LOOP.

Example:

NormRec := RECORD
 STRING20 thename;
 STRING20 addr;
END;
NamesRec := RECORD
 UNSIGNED1 numRows;
 STRING20 thename;
 DATASET(NormRec) addresses;
END;
NamesTable := DATASET([{0,'Kevin',[]},{0,'Liz',[]},
 {0,'Mr Nobody',[]},{0,'Anywhere',[]}],
 NamesRec);
NormAddrs := DATASET([{'Kevin','10 Malt Lane'},
 {'Liz','10 Malt Lane'},
 {'Liz','3 The cottages'},
 {'Anywhere','Here'},
 {'Anywhere','There'},
 {'Anywhere','Near'},
 {'Anywhere','Far'}],NormRec);
NamesRec DeNormThem(NamesRec L, DATASET(NormRec) R) := TRANSFORM
 SELF.NumRows := COUNT(R);
 SELF.addresses := R;
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(NamesTable, NormAddrs,
 LEFT.thename = RIGHT.thename,
 GROUP,
 DeNormThem(LEFT,ROWS(RIGHT)));
OUTPUT(DeNormedRecs);

See Also: TRANSFORM Structure, COMBINE, ROLLUP , JOIN, DENORMALIZE, LOOP

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

106

SELF
SELF.element

element The name of a field in the result type RECORD structure of a TRANSFORM structure.

The SELF keyword is used in TRANSFORM structures to indicate a field in the output structure. It should not be
used on the right hand side of any attribute definition.

Example:

Ages := RECORD
 INTEGER8 Age; //a field named “Age”
END;

TodaysYear := 2001;
Ages req_output(person l) := TRANSFORM
 SELF.Age := TodaysYear - l.birthdate[1..4];
END;

See Also: TRANSFORM Structure

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

107

SHARED
SHARED [VIRTUAL] definition

VIRTUAL Optional. Specifies the definition is VIRTUAL. Valid only inside a MOD-
ULE Structure.

definition A valid definition.

The SHARED keyword explicitly allows other definitions within the same folder to import the specified definition
for use throughout the module/folder/directory (i.e. module scope), but not outside that scope.

ECL code is stored in .ecl text files which may only contain a single EXPORT or SHARED definition. This defini-
tion may be a structure that allows EXPORT or SHARED definitions within their boundaries (such as MODULE,
INTERFACE, TYPE, etc.). The name of the .ecl file containing the code must exactly match the name of the single
EXPORT (or SHARED) definition that it contains.

Definitions without the EXPORT or SHARED keywords are local to the file within which they reside (see Definition
Visibility). A local definition's scope is limited to the next SHARED or EXPORT definition, therefore they must
precede that file's EXPORT or SHARED definition.

Example:

//this code is contained in the GoodHouses.ecl file
BadPeople := Person(EXISTS(trades(EXISTS(phr(phr_rate > '4'))));
 //local only to the GoodHouses definition
SHARED GoodHouses := Household(~EXISTS(BadPeople));
 //available all thru the module

//and in AnotherDef.ecl we have this code:
EXPORT AnotherDef := MODULE(x)
 EXPORT INTEGER a := c * 3;
 EXPORT INTEGER b := 2;
 SHARED VIRTUAL INTEGER c := 3; //this def is VIRTUAL
 EXPORT VIRTUAL INTEGER d := c + 3; //this def is VIRTUAL
 EXPORT VIRTUAL INTEGER e := c + 3; //this def is VIRTUAL
END;

See Also: IMPORT, EXPORT, Definition Visibility, MODULE Structure

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

108

SKIP
SKIP

SKIP is valid for use only within a TRANSFORM structure and may be used anywhere an expression can be used
to indicate the current output record should not be generated into the result set. COUNTER values are incremented
even when SKIP eliminates generating the current record.

Example:

SequencedAges := RECORD
 Ages;
 INTEGER8 Sequence := 0;
END;

SequencedAges AddSequence(Ages l, INTEGER c) := TRANSFORM
 SELF.Sequence := IF(c % 2 = 0, SKIP,c); //skip the even recs
 SELF := l;
END;

SequencedAgedRecs := PROJECT(AgedRecs, AddSequence(LEFT,COUNTER));

See Also: TRANSFORM Structure

ECL Language Reference
Reserved Keywords

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

109

TRUE and FALSE
TRUE

FALSE

The TRUE and FALSE keywords are Boolean constants.

Example:

BooleanTrue := TRUE;
Booleanfalse := FALSE;

See Also: BOOLEAN

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

110

Special Structures

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

111

BEGINC++ Structure
resulttype funcname (parameterlist) := BEGINC++

code

ENDC++;

resulttype The ECL return value type of the C++ function.

funcname The ECL definition name of the function.

parameterlist The parameters to pass to the C++ function.

code The C++ function source code.

The BEGINC++ structure makes it possible to add in-line C++ code to your ECL. This is useful where string or bit
processing would be complicated in ECL, and would be more easily done in C++, typically for a one-off use. For more
commonly used C++ code, writing a plugin would be a better solution (see the External Service Implementation
discussion).

The implementation must be written to be thread safe and any calls to external libraries must be made to thread safe
versions of those libraries.

WARNING: This feature could create memory corruption and/or security issues, so great care and forethought
are advised—consult with Technical Support before using.

ECL to C++ Mapping
Types are passed as follows:

//The following typedefs are used below:
typedef unsigned size32_t;
typedef wchar_t UChar; [unsigned short in linux]

The following list describes the mappings from ECL to C++. For embedded C++ the parameters are always converted
to lower case, and capitalized in conjunctions (see below).

ECL C++ [Linux in brackets]
BOOOLEAN xyz bool xyz
INTEGER1 xyz signed char xyz
INTEGER2 xyz signed short xyz
INTEGER4 xyz signed int xyz
INTEGER8 xyz signed __int64 xyz [long long]
UNSIGNED1 xyz unsigned char xyz
UNSIGNED2 xyz unsigned short xyz
UNSIGNED4 xyz unsigned int xyz
UNSIGNED8 xyz unsigned __int64 xyz [unsigned long long xyz]
REAL4 xyz float xyz
REAL/REAL8 xyz double xyz
DATA xyz size32_t lenXyz, void * xyz
STRING xyz size32_t lenXyz, char * xyz
VARSTRING xyz char * xyz;
QSTRING xyz size32_t lenXyz, char * xyz
UNICODE xyz size32_t lenXyz, UChar * xyz
VARUNICODE xyz UChar * xyz
DATA<nn> xyz void * xyz
STRING<nn> xyz char * xyz
QSTRING<nn> xyz char * xyz
UNICODE<nn> xyz UChar * xyz
SET OF ... xyz bool isAllXyz, size32_t lenXyz, void * xyz

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

112

Note that strings of unknown length are passed differently from those with a known length. A variable length input
string is passed as a number of characters, not the size (i.e. qstring/unicode), followed by a pointer to the data, like
this (size32_t is an UNSIGNED4):

STRING ABC -> size32_t lenAbc, const char * abc;
UNICODE ABC -> size32_t lenABC, const UChar * abc;

A dataset is passed as a size/pointer pair. The length gives the size of the following dataset in bytes. The same naming
convention is used:

DATASET(r) ABC -> size32_t lenAbc, const void * abc
 The rows are accessed as x+0, x + length(row1), x + length(row1) + length(row2)

LINKCOUNTED DATASET(r) ABC -> size32_t countAbc, const byte * * abc
 The rows are accessed as x[0], x[1], x[2]

NOTE: variable length strings within a record are stored as a 4 byte number of characters, followed by the string data.

Sets are passed as a set of parameters (all, size, pointer):

SET OF UNSIGNED4 ABC -> bool isAllAbc, size32_t lenAbc, const void * abc

Return types are handled as C++ functions returning the same types with some exceptions. The exceptions have some
extra initial parameters to return the results in:

ECL C++ [Linux in brackets]
DATA xyz size32_t & __lenResult, void * & __result
STRING xyz size32_t & __lenResult, char * & __result
CONST STRING xyz size32_t lenXyz, const char * xyz
QSTRING xyz size32_t & __lenResult, char * & __result
UNICODE xyz size32_t & __lenResult, UChar * & __result
CONST UNICODE xyz size32_t & __lenResult, const UChar * & __result
DATA<nn> xyz void * __result
STRING<nn> xyz char * __result
QSTRING<nn> xyz char * __result
UNICODE<nn> xyz UChar * __result
SET OF ... xyz bool __isAllResult, size32_t & __lenResult, void * & __result

DATASET(r) size32_t & __lenResult, void * & __result

LINKCOUNTED DATASET(r)
 size32_t & __countResult, byte * * & __result

STREAMED DATASET(r)
 returns a pointer to an IRowStream interface
 (see the eclhelper.hpp include file for the definition)

For example,

STRING process(STRING value, INTEGER4 len)

has the prototype:

void process(size32_t & __lenResult, char * & __result,
 size32_t lenValue, char * value, int len);

A function that takes a string parameter should also have the type prefixed by const in the ECL code so that modern
compilers don't report errors when constant strings are passed to the function.

BOOLEAN isUpper(const string mystring) := BEGINC++
 size_t i=0;
 while (i < lenMystring)
 {
 if (!isupper((byte)mystring[i]))
 return false;
 i++;

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

113

 }
 return true;
ENDC++;
isUpper('JIM');

Available Options

#option pure By default, embedded C++ functions are assumed to have side-effects, which means
the generated code won't be as efficient as it might be since the calls can't be shared.
Adding #option pure inside the embedded C++ code causes it to be treated as a pure
function without side effects.

#option once Indicates the function has no side effects and is evaluated at query execution time, even
if the parameters are constant, allowing the optimizer to make more efficient calls to
the function in some cases.

#option action Indicates side effects, requiring the optimizer to keep all calls to the function.

#body Delimits the beginning of executable code. All code that precedes #body (such as #in-
clude) is generated outside the function definition; all code that follows it is generated
inside the function definition.

Example:

//static int add(int x,int y) {
INTEGER4 add(INTEGER4 x, INTEGER4 y) := BEGINC++
 #option pure
 return x + y;
ENDC++;

OUTPUT(add(10,20));

//static void reverseString(size32_t & __lenResult,char * & __result,
// size32_t lenValue,char * value) {
STRING reverseString(STRING value) := BEGINC++
 size32_t len = lenValue;
 char * out = (char *)rtlMalloc(len);
 for (unsigned i= 0; i < len; i++)
 out[i] = value[len-1-i];
 __lenResult = len;
 __result = out;
ENDC++;
OUTPUT(reverseString('Kevin'));
// This is a function returning an unknown length string via the
// special reference parameters __lenResult and __result

//this function demonstrates #body, allowing #include to be used
BOOLEAN nocaseInList(STRING search,
 SET OF STRING values) := BEGINC++
#include <string.h>
#body
 if (isAllValues)
 return true;
 const byte * cur = (const byte *)values;
 const byte * end = cur + lenValues;
 while (cur != end)
 {
 unsigned len = *(unsigned *)cur;
 cur += sizeof(unsigned);
 if (lenSearch == len && memicmp(search, cur, len) == 0)
 return true;
 cur += len;

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

114

 }
 return false;
ENDC++;

//and another example, generating a variable number of Xes
STRING buildString(INTEGER4 value) := BEGINC++
 char * out = (char *)rtlMalloc(value);
 for (unsigned i= 0; i < value; i++)
 out[i] = 'X';
 __lenResult = value;
 __result = out;
ENDC++;

//examples of embedded, LINKCOUNTED, and STREAMED DATASETs
inRec := { unsigned id };
doneRec := { unsigned4 execid };
out1rec := { unsigned id; };
out2rec := { real id; };

DATASET(doneRec) doSomethingNasty(DATASET(inRec) input) := BEGINC++
 __lenResult = 4;
 __result = rtlMalloc(8);
 *(unsigned *)__result = 91823;
ENDC++;

DATASET(out1Rec) extractResult1(doneRec done) := BEGINC++
 const unsigned id = *(unsigned *)done;
 const unsigned cnt = 10;
 __lenResult = cnt * sizeof(unsigned __int64);
 __result = rtlMalloc(__lenResult);
 for (unsigned i=0; i < cnt; i++)
 ((unsigned __int64 *)__result)[i] = id + i + 1;
ENDC++;

LINKCOUNTED DATASET(out2Rec) extractResult2(doneRec done) := BEGINC++
 const unsigned id = *(unsigned *)done;
 const unsigned cnt = 10;
 __countResult = cnt;
 __result = _resultAllocator->createRowset(cnt);
 for (unsigned i=0; i < cnt; i++)
 {
 size32_t allocSize;
 void * row = _resultAllocator->createRow(allocSize);
 *(double *)row = id + i + 1;
 __result[i] = (byte *)_resultAllocator->finalizeRow(allocSize, row, allocSize);
 }
ENDC++;

STREAMED DATASET(out1Rec) extractResult3(doneRec done) := BEGINC++
 class myStream : public IRowStream, public RtlCInterface
 {
 public:
 myStream(IEngineRowAllocator * _allocator, unsigned _id) : allocator(_allocator), id(_id), idx(0) {}
 RTLIMPLEMENT_IINTERFACE

 virtual const void *nextRow()
 {
 if (idx >= 10)
 return NULL;
 size32_t allocSize;
 void * row = allocator->createRow(allocSize);
 *(unsigned __int64 *)row = id + ++idx;
 return allocator->finalizeRow(allocSize, row, allocSize);
 }
 virtual void stop() {}

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

115

 private:
 unsigned id;
 unsigned idx;
 Linked<IEngineRowAllocator> allocator;
 };
 #body
 const unsigned id = *(unsigned *)done;
 return new myStream(_resultAllocator, id);
ENDC++;

ds := DATASET([1,2,3,4], inRec);

processed := doSomethingNasty(ds);

out1 := NORMALIZE(processed, extractResult1(LEFT), TRANSFORM(RIGHT));
out2 := NORMALIZE(processed, extractResult2(LEFT), TRANSFORM(RIGHT));
out3 := NORMALIZE(processed, extractResult3(LEFT), TRANSFORM(RIGHT));

SEQUENTIAL(OUTPUT(out1),OUTPUT(out2),OUTPUT(out3));

See Also: External Service Implementation, EMBED Structure

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

116

EMBED Structure
resulttype funcname (parameterlist) := EMBED(language)

code

ENDEMBED;

resulttype funcname (parameterlist) := EMBED(language, code);

resulttype The ECL return value type of the function.

funcname The ECL definition name of the function.

parameterlist The parameters to pass to the function.

language The name of the programming language being embedded. A language support module
for that language must have been installed in your plugins directory. Modules are pro-
vided for languages such as Java, R, Javascript, and Python. You can write your own
pluggable language support module for any language not already supported by using
the supplied ones as examples or starting points.

code The source code to embed.

The EMBED structure makes it possible to add in-line language code to your ECL. This is similar to the BEGINC+
+ structure, but available for any language with a pluggable language support module installed, such as R, Javascript,
and Python. Others may follow or people can write their own using the supplied ones as templates/examples/starting
points. This may be used to write Javascript, R, or Python code, but is not usable with Java code (use the IMPORT
function for Java code).

The parameter types that can be passed and returned will vary by language, but in general the simple scalar types
(INTEGER, REAL, STRING, UNICODE, BOOLEAN, and DATA) and SETs of those scalar types are supported, so
long as there is an appropriate data type in the language to map them to.

The first form of EMBED is the structure that must terminate with ENDEMBED. This may contain any code in the
supported language.

The second form of EMBED is a self-contained function. The code parameter contains all the code to execute, making
this useful only for very simple expressions.

WARNING: This feature could create memory corruption and/or security issues, so great care and forethought
are advised—consult with Technical Support before using.

Example:

//First form: a structure
IMPORT Python; //make Python language available

INTEGER addone(INTEGER p) := EMBED(Python)
Python code that returns one more than the value passed to it
if p < 10:
 return p+1
else:
 return 0
ENDEMBED;

//Second form: a function
INTEGER addtwo(INTEGER p) := EMBED(Python, 'p+2');

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

117

See Also: BEGINC++ Structure, IMPORT, IMPORT function

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

118

FUNCTION Structure
[resulttype] funcname (parameterlist) := FUNCTION

code

RETURN retval;

END;

resulttype The return value type of the function. If omitted, the type is implicit from the retval
expression.

funcname The ECL attribute name of the function.

parameterlist The parameters to pass to the code. These are available to all attributes defined in the
FUNCTION's code.

code The local attribute definitions that comprise the function. These may not be EXPORT
or SHARED attributes, but may include actions (like OUTPUT).

RETURN Specifies the function's return value expression—the retval.

retval The value, expression, recordset, row (record), or action to return.

The FUNCTION structure allows you to pass parameters to a set of related attribute definitions. This makes it pos-
sible to pass parameters to an attribute that is defined in terms of other non-exported attributes without the need to
parameterise all of those as well.

Side-effect actions contained in the code of the FUNCTION must have definition names that must be referenced by
the WHEN function to execute.

Example:

EXPORT doProjectChild(parentRecord l,UNSIGNED idAdjust2) := FUNCTION
 newChildRecord copyChild(childRecord l) := TRANSFORM
 SELF.person_id := l.person_id + idAdjust2;
 SELF := l;
 END;

 RETURN PROJECT(CHOOSEN(l.children, numChildren),copyChild(LEFT));
END;
 //And called from
SELF.children := doProjectChild(l, 99);

//**********************************
EXPORT isAnyRateGE(STRING1 rate) := FUNCTION
 SetValidRates := ['0','1','2','3','4','5','6','7','8','9'];
 IsValidTradeRate := ValidDate(Trades.trd_drpt) AND
 Trades.trd_rate >= rate AND
 Trades.trd_rate IN SetValidRates;
 ValidPHR := Prev_rate(phr_grid_flag = TRUE,
 phr_rate IN SetValidRates,
 ValidDate(phr_date));
 IsPHRGridRate := EXISTS(ValidPHR(phr_rate >= rate,
 AgeOf(phr_date)<=24));
 IsMaxPHRRate := MAX(ValidPHR(AgeOf(phr_date) > 24),
 Prev_rate.phr_rate) >= rate;
 RETURN IsValidTradeRate OR IsPHRGridRate OR IsMaxPHRRate;
END;

//***
//a FUNCTION with side-effect Action

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

119

namesTable := FUNCTION
 namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 o := OUTPUT('namesTable used by user <x>');
 ds := DATASET([{'x','y',22}],namesRecord);
 RETURN WHEN(ds,O);
END;
z := namesTable : PERSIST('z');
 //the PERSIST causes the side-effect action to execute only when the PERSIST is re-built

OUTPUT(z);

//***
//a coordinated set of 3 examples

NameRec := RECORD
 STRING5 title;
 STRING20 fname;
 STRING20 mname;
 STRING20 lname;
 STRING5 name_suffix;
 STRING3 name_score;
END;
MyRecord := RECORD
 UNSIGNED id;
 STRING uncleanedName;
 NameRec Name;
END;
ds := DATASET('RTTEST::RowFunctionData', MyRecord, THOR);
STRING73 CleanPerson73(STRING inputName) := FUNCTION
 suffix :=[' 0',' 1',' 2',' 3',' 4',' 5',' 6',' 7',' 8',' 9',
 ' J',' JR',' S',' SR'];
 InWords := Std.Str.CleanSpaces(inputName);
 HasSuffix := InWords[LENGTH(TRIM(InWords))-1 ..] IN suffix;
 WordCount := LENGTH(TRIM(InWords,LEFT,RIGHT)) -
 LENGTH(TRIM(InWords,ALL)) + 1;
 HasMiddle := WordCount = 5 OR (WordCount = 4 AND NOT HasSuffix) ;
 Sp1 := Std.Str.Find(InWords,' ',1);
 Sp2 := Std.Str.Find(InWords,' ',2);
 Sp3 := Std.Str.Find(InWords,' ',3);
 Sp4 := Std.Str.Find(InWords,' ',4);
 STRING5 title := InWords[1..Sp1-1];
 STRING20 fname := InWords[Sp1+1..Sp2-1];
 STRING20 mname := IF(HasMiddle,InWords[Sp2+1..Sp3-1],'');
 STRING20 lname := MAP(HasMiddle AND NOT HasSuffix => InWords[Sp3+1..],
 HasMiddle AND HasSuffix => InWords[Sp3+1..Sp4-1],
 NOT HasMiddle AND NOT HasSuffix => InWords[Sp2+1..],
 NOT HasMiddle AND HasSuffix => InWords[Sp2+1..Sp3-1],
 '');
 STRING5 name_suffix := IF(HasSuffix,InWords[LENGTH(TRIM(InWords))-1..],'');
 STRING3 name_score := '';
 RETURN title + fname + mname + lname + name_suffix + name_score;
END;

//Example 1 - a transform to create a row from an uncleaned name
NameRec createRow(string inputName) := TRANSFORM
 cleanedText := LocalAddrCleanLib.CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

120

 SELF.name_score := cleanedText[71..73];
END;
myRecord t(myRecord l) := TRANSFORM
 SELF.Name := ROW(createRow(l.uncleanedName));
 SELF := l;
END;
y := PROJECT(ds, t(LEFT));
OUTPUT(y);

//Example 2 - an attribute using that transform to generate the row.
NameRec cleanedName(STRING inputName) := ROW(createRow(inputName));
myRecord t2(myRecord l) := TRANSFORM
 SELF.Name := cleanedName(l.uncleanedName);
 SELF := l;
END;
y2 := PROJECT(ds, t2(LEFT));
OUTPUT(y2);

//Example 3 = Encapsulate the transform inside the attribute by
// defining a FUNCTION.
NameRec cleanedName2(STRING inputName) := FUNCTION

 NameRec createRow := TRANSFORM
 cleanedText := LocalAddrCleanLib.CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];
 SELF.name_score := cleanedText[71..73];
 END;

 RETURN ROW(createRow);
END;

myRecord t3(myRecord l) := TRANSFORM
 SELF.Name := cleanedName2(l.uncleanedName);
 SELF := l;
END;

y3 := PROJECT(ds, t3(LEFT));
OUTPUT(y3);

//Example using MODULE structure to return multiple values from a FUNCTION
OperateOnNumbers(Number1, Number2) := FUNCTION
 result := MODULE
 EXPORT Multiplied := Number1 * Number2;
 EXPORT Differenced := Number1 - Number2;
 EXPORT Summed := Number1 + Number2;
 END;
 RETURN result;
END;

OperateOnNumbers(23,22).Multiplied;
OperateOnNumbers(23,22).Differenced;
OperateOnNumbers(23,22).Summed;

See Also: MODULE Structure, TRANSFORM Structure, WHEN

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

121

FUNCTIONMACRO Structure
[resulttype] funcname (parameterlist) := FUNCTIONMACRO

code

RETURN retval;

ENDMACRO;

resulttype The return value type of the function. If omitted, the type is implicit from the retval
expression.

funcname The ECL definition name of the function/macro.

parameterlist A list of names (tokens) of the parameters that will be passed to the function/macro.
These names are used in the code and retval to indicate where the passed parameter
values are substituted when the function/macro is used. Value types for these parame-
ters are not allowed, but default values may be specified as string constants.

code The local definitions that comprise the function. These may not be EXPORT or
SHARED, but may include actions (like OUTPUT).

RETURN Specifies the return value expression—the retval.

retval The value, expression, recordset, row (record), or action to return.

The FUNCTIONMACRO structure is a code generation tool, like the MACRO structure, coupled with the code
encapsulation benefits of the FUNCTION structure. One advantage the FUNCTIONMACRO has over the MACRO
structure is that it may be called in an expression context, just like a FUNCTION would be.

Unlike the MACRO structure, #UNIQUENAME is not necessary to prevent internal definition name clashes when the
FUNCTIONMACRO is used multiple times within the same visibility scope. However, the LOCAL keyword must be
explicitly used within the FUNCTIONMACRO if a definition name in its code may also have been defined outside the
FUNCTIONMACRO and within the same visibility scope -- LOCAL clearly identifies that the definition is limited
to the code within the FUNCTIONMACRO.

Example:

This example demonstrates the FUNCTIONMACRO used in an expression context. It also shows how the FUNC-
TIONMACRO may be called multiple times without name clashes from its internal definitions:

EXPORT Field_Population(infile,infield,compareval) := FUNCTIONMACRO
 c1 := COUNT(infile(infield=compareval));
 c2 := COUNT(infile);
 RETURN DATASET([{'Total Records',c2},
 {'Recs=' + #TEXT(compareval),c1},
 {'Population Pct',(INTEGER)(((c2-c1)/c2)* 100.0)}],
 {STRING15 valuetype,INTEGER val});
ENDMACRO;

ds1 := dataset([{'M'},{'M'},{'M'},{''},{''},{'M'},{''},{'M'},{'M'},{''}],{STRING1 Gender});
ds2 := dataset([{''},{'M'},{'M'},{''},{''},{'M'},{''},{''},{'M'},{''}],{STRING1 Gender});

OUTPUT(Field_Population(ds1,Gender,''));
OUTPUT(Field_Population(ds2,Gender,''));

This example demonstrates use of the LOCAL keyword to prevent name clashes with external definitions within the
same visibility scope as the FUNCTIONMACRO:

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

122

numPlus := 'this creates a syntax error without LOCAL in the FUNCTIONMACRO';
AddOne(num) := FUNCTIONMACRO
 LOCAL numPlus := num + 1; //LOCAL required here
 RETURN numPlus;
ENDMACRO;

AddTwo(num) := FUNCTIONMACRO
 LOCAL numPlus := num + 2; //LOCAL required here
 RETURN numPlus;
ENDMACRO;

numPlus;
AddOne(5);
AddTwo(8);

See Also: FUNCTION Structure, MACRO Structure

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

123

INTERFACE Structure
interfacename [(parameters)] := INTERFACE [(inherit)]

members;

END;

interfacename The ECL definition name of the interface.

parameters Optional. The input parameters to the interface.

inherit Optional. A comma-delimited list of INTERFACE structures whose members to in-
herit. This may not be a passed parameter. Multiple inherited interfaces may contain
attributes with the same name if they are the same type and receive the same parame-
ters, but if those inherited members have different values defined for them, the conflict
must be resolved by overriding that member in the current instance.

members Definitions, which may be EXPORTed or SHARED. These may be similar to fields
defined in a RECORD structure where only the type and name are defined—the ex-
pression that defines the value may be left off (except in some cases where the expres-
sion itself defines the type of definition, like TRANSFORM structures). If no default
value is defined for a member, any MODULE derived from the INTERFACE must
define a value for that member before that MODULE can be used. These may not in-
clude other INTERFACE or abstract MODULE structures.

The INTERFACE structure defines a structured block of related members that may be passed as a single parameter to
complex queries, instead of passing each attribute individually. It is similar to a MODULE structure with the VIRTUAL
option, except errors are given for private (not SHARED or EXPORTed) member definitions.

An INTERFACE is an abstract structure—a concrete instance must be defined before it can be used in a query. A
MODULE structure that inherits the INTERFACE and defines the values for the members creates the concrete instance
for use by the query.

Example:

HeaderRec := RECORD
 UNSIGNED4 RecID;
 STRING20 company;
 STRING25 address;
 STRING25 city;
 STRING2 state;
 STRING5 zip;
END;
HeaderFile := DATASET([{1,'ABC Co','123 Main','Boca Raton','FL','33487'},
 {2,'XYZ Co','456 High','Jackson','MI','49202'},
 {3,'ABC Co','619 Eaton','Jackson','MI','49202'},
 {4,'XYZ Co','999 Yamato','Boca Raton','FL','33487'},
 {5,'Joes Eats','666 Slippery Lane','Nether','SC','12345'}
],HeaderRec);

//define an interface
IHeaderFileSearch := INTERFACE
 EXPORT STRING20 company_val;
 EXPORT STRING2 state_val;
 EXPORT STRING25 city_val := '';
END;

//define a function that uses that interface
FetchAddress(IHeaderFileSearch opts) := FUNCTION

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

124

 //define passed values tests
 CompanyPassed := opts.company_val <> '';
 StatePassed := opts.state_val <> '';
 CityPassed := opts.city_val <> '';

 //define passed value filters
 NFilter := HeaderFile.Company = opts.company_val;
 SFilter := HeaderFile.State = opts.state_val;
 CFilter := HeaderFile.City = opts.city_val;

 //define the actual filter to use based on the passed values
 filter := MAP(CompanyPassed AND StatePassed AND CityPassed
 => NFilter AND SFilter AND CFilter,
 CompanyPassed AND StatePassed
 => NFilter AND SFilter ,
 CompanyPassed AND CityPassed
 => NFilter AND CFilter,
 StatePassed AND CityPassed
 => SFilter AND CFilter,
 CompanyPassed => NFilter ,
 StatePassed => SFilter ,
 CityPassed => CFilter,
 TRUE);
 RETURN HeaderFile(filter);
END;

//***
//then you can use the interface

InRec := {HeaderRec AND NOT [RecID,Address,Zip]};

//this MODULE creates a concrete instance
BatchHeaderSearch(InRec l) := MODULE(IHeaderFileSearch)
 EXPORT STRING120 company_val := l.company;
 EXPORT STRING2 state_val := l.state;
 EXPORT STRING25 city_val := l.city;
END;

//that can be used like this
FetchAddress(BatchHeaderSearch(ROW({'ABC Co','',''},InRec)));

//or we can define an input dataset
InFile := DATASET([{'ABC Co','Boca Raton','FL'},
 {'XYZ Co','Jackson','MI'},
 {'ABC Co','',''},
 {'XYZ Co','',''},
 {'Joes Eats','',''}
],InRec);

//and an output nested child structure
HeaderRecs := RECORD
 UNSIGNED4 Pass;
 DATASET(HeaderRec) Headers;
END;

//and allow PROJECT to run the query once for each record in InFile
HeaderRecs XF(InRec L, INTEGER C) := TRANSFORM
 SELF.Pass := C;
 SELF.Headers := FetchAddress(BatchHeaderSearch(L));
END;
batchHeaderLookup := PROJECT(InFile,XF(LEFT,COUNTER));
batchHeaderLookup;

See Also: MODULE Structure, LIBRARY

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

125

MACRO Structure
[resulttype] macroname (parameterlist) := MACRO

tokenstream;

ENDMACRO;

resulttype Optional. The result type of the macro. The only valid type is DATASET. If omitted
and the tokenstream contains no Attribute definitions, then the macro is treated as
returning a value (typically INTEGER or STRING).

macroname The name of the function the MACRO structure defines.

parameterlist A list of names (tokens) of the parameters that will be passed to the macro. These names
are used in the tokenstream to indicate where the passed parameters are substituted
when the macro is used. Value types for these parameters are not allowed, but default
values may be specified as string constants.

tokenstream The Attribute definitions or Actions that the macro will perform.

The MACRO structure makes it possible to create a function without knowing the value types of the parameters that
will eventually be passed to it. The most common use would be performing functions upon arbitrary datasets.

A macro behaves as if you had typed the tokenstream into the exact position you use it, using lexical substitution—
the tokens defined in the parameterlist are substituted everywhere they appear in the tokenstream by the text passed
to the macro. This makes it entirely possible to write a valid MACRO definition that could be called with a set of
parameters that result in obscure compile time errors.

There are two basic type of macros: Value or Attribute. A Value macro does not contain any Attribute definitions, and
may therefore be used wherever the value type it will generate would be appropriate to use. An Attribute macro does
contain Attribute definitions (detected by the presence of the := in the tokenstream) and may therefore only be used
where an Attribute definition is valid (a line by itself) and one item in the parameterlist should generally name the
Attribute to be used to contain the result of the macro (so any code following the macro call can make use of the result).

Example:

// This is a DATASET Value macro that results in a crosstab
DATASET CrossTab(File,X,Y) := MACRO
 TABLE(File,{X, Y, COUNT(GROUP)},X,Y)
ENDMACRO;
// and would be used something like this:
OUTPUT(CrossTab(Person,person.per_st,Person.per_sex))
// this macro usage is the equivalent of:
// OUTPUT(TABLE(Person,{person.per_st,Person.per_sex,COUNT(GROUP)},
// person.per_st,Person.per_sex)
//The advantage of using this macro is that it can be re-used to
// produce another cross-tab without recoding
// The following macro takes a LeftFile and looks up a field of it in
// the RightFile and then sets a field in the LeftFile indicating if
// the lookup worked.
IsThere(OutFile ,RecType,LeftFile,RightFile,LinkId ,SetField) := MACRO
 RecType Trans(RecType L, RecType R) := TRANSFORM
 SELF.SetField := IF(NOT R.LinkId,0,1);
 SELF := L;
 END;
 OutFile := JOIN(LeftFile,
 RightFile,
 LEFT.LinkId=RIGHT.LinkId,

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

126

 Trans(LEFT,RIGHT),LEFT OUTER);
ENDMACRO;

// and would be used something like this:
MyRec := RECORD
 Person.per_cid;
 Person.per_st;
 Person.per_sex;
 Flag:=FALSE;
END;
MyTable1 := TABLE(Person(per_first_name[1]='R'),MyRec);
MyTable2 := TABLE(Person(per_first_name[1]='R',per_sex='F'),MyRec);

IsThere(MyOutTable,MyRec,MyTable1,MyTable2,per_cid,Flag)

 // This macro call generates the following code:
 // MyRec Trans(MyRec L, MyRec R) := TRANSFORM
 // SELF.Flag := IF(NOT R.per_cid ,0,1);
 // SELF := L;
 // END;
 // MyOutTable := JOIN(MyTable1,
 // MyTable2,
 // LEFT.per_cid=RIGHT.per_cid,
 // Trans(LEFT,RIGHT),
 // LEFT OUTER);

OUTPUT(MyOutTable);
//***
//This macro has defaults for its second and third parameters
MyMac(FirstParm,yParm='22',zParm='42') := MACRO
 FirstParm := yParm + zParm;
ENDMACRO;

// and would be used something like this:
 MyMac(Fred)
 // This macro call generates the following code:
 // Fred := 22 + 42;
 //***
 //This macro uses #EXPAND

MAC_join(attrname, leftDS, rightDS, linkflags) := MACRO
 attrname := JOIN(leftDS,rightDS,#EXPAND(linkflags));
ENDMACRO;
MAC_join(J1,People,Property,'LEFT.ID=RIGHT.PeopleID,LEFT OUTER')
//expands out to:
// J1 := JOIN(People,Property,LEFT.ID=RIGHT.PeopleID,LEFT OUTER);

See Also: TRANSFORM Structure, RECORD Structure, #UNIQUENAME, #EXPAND

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

127

MODULE Structure
modulename [(parameters)] := MODULE [(inherit)] [, VIRTUAL] [, LIBRARY(interface)] [, FORWARD]

members;

END;

modulename The ECL definition name of the module.

parameters Optional. The parameters to make available to all the definitions.

inherit A comma-delimited list of INTERFACE or abstract MODULE structures on which to
base this instance. The current instance inherits all the members from the base struc-
tures. This may not be a passed parameter.

members The definitions that comprise the module. These definitions may receive parameters,
may include actions (such as OUTPUT), and may use the EXPORT or SHARED scope
types. These may not include INTERFACE or abstract MODULEs (see below). If the
LIBRARY option is specified, the definitions must exactly implement the EXPORTed
members of the interface.

VIRTUAL Optional. Specifies the MODULE defines an abstract interface whose definitions do
not require values to be defined for them.

LIBRARY Optional. Specifies the MODULE implements a query library interface definition.

interface Specifies the INTERFACE that defines the parameters passed to the query library.
The parameters passed to the MODULE must exactly match the parameters passed
to the specified interface.

FORWARD Optional. Delays processing of definitions until they are used. Adding ,FORWARD
to a MODULE delays processing of definitions within the module until they are used.
This has two main effects: It prevents pulling in dependencies for definitions that are
never used and it allows earlier definitions to refer to later definitions. Note: Circular
references are still illegal.

The MODULE structure is a container that allows you to group related definitions. The parameters passed to the
MODULE are shared by all the related members definitions. This is similar to the FUNCTION structure except that
there is no RETURN.

Definition Visibility Rules
The scoping rules for the members are the same as those previously described in the Definition Visibility discussion:

• Local definitions are visible only through the next EXPORT or SHARED definition (including members of the
nested MODULE structure, if the next EXPORT or SHARED definition is a MODULE).

• SHARED definitions are visible to all subsequent definitions in the structure (including members of any nested
MODULE structures) but not outside of it.

• EXPORT definitions are visible within the MODULE structure (including members of any subsequent nested MOD-
ULE structures) and outside of it .

Any EXPORT members may be referenced using an additional level of standard object.property syntax. For example,
assuming the EXPORT MyModuleStructure MODULE structure is contained in an ECL Repository module named
MyModule and that it contains an EXPORT member named MyDefinition, you would reference that definition as:

MyModule.MyModuleStructure.MyDefinition

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

128

MyMod := MODULE
 SHARED x := 88;
 y := 42;
 EXPORT InMod := MODULE //nested MODULE
 EXPORT Val1 := x + 10;
 EXPORT Val2 := y + 10;
 END;
END;

MyMod.InMod.Val1;
MyMod.InMod.Val2;

MODULE Side-Effect Actions
Side-effect Actions are allowed in the MODULE only by using the WHEN function, as in this example:

//An Example with a side-effect action
EXPORT customerNames := MODULE
 EXPORT Layout := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 Act := OUTPUT('customer file used by user <x>');
 EXPORT File := WHEN(DATASET([{'x','y',22}],Layout),Act);
END;
BOOLEAN doIt := TRUE : STORED('doIt');
IF (doIt, OUTPUT(customerNames.File));
//This code produces two results: the dataset, and the string

Concrete vs. Abstract (VIRTUAL) Modules
A MODULE may contain a mixture of VIRTUAL and non-VIRTUAL members. The rules are:

• ALL members are VIRTUAL if the MODULE has the VIRTUAL option or is an INTERFACE

• A member is VIRTUAL if it is declared using the EXPORT VIRTUAL or SHARED VIRTUAL keywords

• A member is VIRTUAL if the definition of the same name in the inherited module is VIRTUAL.

• Some members can never be virtual – RECORD structures.

All EXPORTed and SHARED members of an inherited abstract module can be overridden by re-defining them in the
current instance, whether that current instance is abstract or concrete. Overridden definitions must exactly match the
type and parameters of the inherited members. Multiple inherited interfaces may contain definitions with the same
name if they are the same type and receive the same parameters, but if those inherited members have different values
defined for them, the conflict must be resolved by overriding that member in the current instance.

LIBRARY Modules
A MODULE with the LIBRARY option defines a related set of functions meant to be used as a query library (see
the LIBRARY function and BUILD action discussions). There are several restrictions on what may be included in a
query library. They are:

• It may not contain side-effect actions (like OUTPUT or BUILD)

• It may not contain definitions with workflow services attached to them (such as PERSIST, STORED, SUCCESS,
etc.)

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

129

It may only EXPORT:

• Dataset/recordset definitions

• Datarow definitions (such as the ROW function)

• Single-valued and Boolean definitions

And may NOT export:

• Actions (like OUTPUT or BUILD)

• TRANSFORM functions

• Other MODULE structures

• MACRO definitions

Example:

EXPORT filterDataset(STRING search, BOOLEAN onlyOldies) := MODULE
 f := namesTable; //local to the “g” definition
 SHARED g := IF (onlyOldies, f(age >= 65), f);
 //SHARED = visible only within the structure
 EXPORT included := g(surname != search);
 EXPORT excluded := g(surname = search);
 //EXPORT = visible outside the structure
END;
filtered := filterDataset('Halliday', TRUE);
OUTPUT(filtered.included,,NAMED('Included'));
OUTPUT(filtered.excluded,,NAMED('Excluded'));

//same result, different coding style:
EXPORT filterDataset(BOOLEAN onlyOldies) := MODULE
 f := namesTable;
 SHARED g := IF (onlyOldies, f(age >= 65), f);
 EXPORT included(STRING search) := g(surname <> search);
 EXPORT excluded(STRING search) := g(surname = search);
END;
filtered := filterDataset(TRUE);
OUTPUT(filtered.included('Halliday'),,NAMED('Included'));
OUTPUT(filterDataset(true).excluded('Halliday'),,NAMED('Excluded'));

//VIRTUAL examples
Mod1 := MODULE,VIRTUAL //a fully abstract module
 EXPORT val := 1;
 EXPORT func(INTEGER sc) := val * sc;
END;

Mod2 := MODULE(Mod1) //instance
 EXPORT val := 3; //a concete member, overriding default value
 //while func remains abstract
END;

Mod3 := MODULE(Mod1) //a fully concete instance
 EXPORT func(INTEGER sc) := val + sc; //overrides inherited func
END;
OUTPUT(Mod2.func(5)); //result is 15
OUTPUT(Mod3.func(5)); //result is 6

//FORWARD example
EXPORT MyModule := MODULE, FORWARD

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

130

 EXPORT INTEGER foo := bar;
 EXPORT INTEGER bar := 42;
END;

MyModule.foo;

See Also: FUNCTION Structure, Definition Visibility, INTERFACE Structure, LIBRARY, BUILD

TRANSFORM Structure
resulttype funcname (parameterlist) := TRANSFORM [, SKIP(condition)]

[locals]

SELF.outfield := transformation;

END;

TRANSFORM(resulttype, assignments)

TRANSFORM(datarow)

resulttype The name of a RECORD structure Attribute that specifies the output format of the
function. You may use TYPEOF here to specify a dataset. Any implicit relationality
of the input dataset is not inherited.

funcname The name of the function the TRANSFORM structure defines.

parameterlist The value types and labels of the parameters that will be passed to the TRANSFORM
function. These are usually the dataset records or COUNTER parameters but are not
limited to those.

SKIP Optional. Specifies the condition under which the TRANSFORM function operation
is skipped.

condition A logical expression defining under what circumstances the TRANSFORM operation
does not occur. This may use data from the parameterlist in the same manner as a
transformation expression.

locals Optional. Definitions of local Attributes useful within the TRANSFORM function.
These may be defined to receive parameters and may use any parameters passed to
the TRANSFORM.

SELF Specifies the resulting output recordset from the TRANSFORM.

outfield The name of a field in the resulttype structure.

transformation An expression specifying how to produce the value for the outfield. This may include
other TRANSFORM function operations (nested transforms).

assignments A semi-colon delimited list of SELF.outfield:= transformation definitions.

datarow A single record to transform, typically the keyword LEFT.

The TRANSFORM structure makes operations that must be performed on entire datasets (such as a JOIN) and any
iterative type of record processing (PROJECT, ITERATE, etc.), possible. A TRANSFORM defines the specific oper-
ations that must occur on a record-by-record basis. It defines the function that is called each time the operation that
uses the TRANSFORM needs to process record(s). One TRANSFORM function may be defined in terms of another,
and they may be nested.

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

131

The TRANSFORM structure specifies exactly how each field in the output record set is to receive its value. That result
value may simply be the value of a field in an input record set, or it may be the result of some complex calculation
or conditional expression evaluation.

The TRANSFORM structure itself is a generic tool; each operation that uses a TRANSFORM function defines what
its TRANSFORM needs to receive and what basic functionality it should provide. Therefore, the real key to under-
standing TRANSFORM structures is in understanding how it is used by the calling function -- each function that uses
a TRANSFORM documents the type of TRANSFORM required to accomplish the goal, although the TRANSFORM
itself may also provide extra functionality and receive extra parameters beyond those required by the operation itself.

The SKIP option specifies the condition that results in no output from that iteration of the TRANSFORM. However,
COUNTER values are incremented even when SKIP eliminates generating the current record.

Transformation Attribute Definitions
The attribute definitions inside the TRANSFORM structure are used to convert the data passed in as parameters to
the output resulttype format. Every field in the resulttype record layout must be fully defined in the TRANSFORM.
You can explicitly define each field, using the SELF.outfield := transformation; expression, or you can use one of
these shortcuts:

SELF := [];

clears all fields in the resulttype output that have not previously been defined in the transform function, while this form:

SELF.outfield := []; //the outfield names a child DATASET in
 // the resulttype RECORD Structure

clears only the child fields in the outfield, and this form:

SELF := label; //the label names a RECORD structure parameter
// in the parameterlist

defines the output for each field in the resulttype output format that has not previously been defined as coming from
the label parameter's matching named field.

You may also define local attributes inside the TRANSFORM structure to better organize the code. These local at-
tributes may receive parameters.

TRANSFORM Functions
This form of TRANSFORM must be terminated by the END keyword. The resulttype must be specified, and the
function itself takes parameters in the parameterlist. These parameters are typically RECORD structures, but may be
any type of parameter depending upon the type of TRANSFORM function the using function expects to call. The exact
form a TRANSFORM function must take is always directly associated with the operation that uses it.

Example:

Ages := RECORD
 AgedRecs.id;
 AgedRecs.id1;
 AgedRecs.id2;
END;
SequencedAges := RECORD
 Ages;
 INTEGER4 Sequence := 0;
END;

SequencedAges AddSequence(AgedRecs L, INTEGER C) :=

ECL Language Reference
Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

132

 TRANSFORM, SKIP(C % 2 = 0) //skip even recs
 INTEGER1 rangex(UNSIGNED4 divisor) := (l.id DIV divisor) % 100;
 SELF.id1 := rangex(10000);
 SELF.id2 := rangex(100);
 SELF.Sequence := C;
 SELF := L;
END;

SequencedAgedRecs := PROJECT(AgedRecs, AddSequence(LEFT,COUNTER));
//Example of defining a TRANSFORM function in terms of another
namesIdRecord assignId(namesRecord l, UNSIGNED value) := TRANSFORM
 SELF.id := value;
 SELF := l;
END;

assignId1(namesRecord l) := assignId(l, 1);
 //creates an assignId1 TRANSFORM that uses assignId
assignId2(namesRecord l) := assignId(l, 2);
 //creates an assignId2 TRANSFORM that uses assignId

Inline TRANSFORMs
This form of TRANSFORM is used in-line within the operation that uses it. The resulttype must be specified along with
all the assignments. This form is mainly for use where the transform assignments are trivial (such as SELF := LEFT;).

Example:

namesIdRecord assignId(namesRecord L) := TRANSFORM
 SELF := L; //more like-named fields across
 SELF := []; //clear all other fields
END;

projected1 := PROJECT(namesTable, assignId(LEFT));
projected2 := PROJECT(namesTable, TRANSFORM(namesIdRecord,
 SELF := LEFT;
 SELF := []));
//projected1 and projected2 do the same thing

Shorthand Inline TRANSFORMs
This form of TRANSFORM is a shorthand version of Inline TRANSFORMs. In this form,

TRANSFORM(LEFT)

is directly equivalent to

TRANSFORM(RECORDOF(LEFT), SELF := LEFT)

Example:

namesIdRecord assignId(namesRecord L) := TRANSFORM
 SELF := L; //move like-named fields across
END;
projected1 := PROJECT(namesTable, assignId(LEFT));
projected2 := PROJECT(namesTable, TRANSFORM(namesIdRecord,
 SELF := LEFT));
projected3 := PROJECT(namesTable, TRANSFORM(LEFT));
//projected1, projected2, and projected3 all do the same thing

See Also: RECORD Structure, RECORDOF, TYPEOF, JOIN, PROJECT, ITERATE, ROLLUP, NORMALIZE, DE-
NORMALIZE, FETCH, PARSE, ROW

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

133

Built-in Functions and Actions

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

134

ABS
ABS(expression)

expression The value (REAL or INTEGER) for which to return the absolute value.

Return: ABS returns a single value of the same type as the expression.

The ABS function returns the absolute value of the expression (always a non-negative number).

Example:

AbsVal1 := ABS(1); // returns 1
AbsVal2 := ABS(-1); // returns 1

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

135

ACOS
ACOS(cosine)

cosine The REAL cosine value for which to find the arccosine.

Return: ACOS returns a single REAL value.

The ACOS function returns the arccosine (inverse) of the cosine, in radians.

Example:

ArcCosine := ACOS(CosineAngle);

See Also: COS, SIN, TAN, ASIN, ATAN, COSH, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

136

AGGREGATE
AGGREGATE(recordset, resultrec,maintransform [, mergetransform (RIGHT1,RIGHT2)] [, groupingfields] [,
LOCAL | FEW | MANY])

recordset The set of records to process.

resultrec The RECORD structure of the result record set.

maintransform The TRANSFORM function to call for each matching pair of records in the recordset. This is
implicitly a local operation on each node.

mergetransform Optional. The TRANSFORM function to call to globally merge the result records from the
maintransform. If omitted, the compiler will attempt to deduce the merge from the maintrans-
form.

groupingfields Optional. A comma-delimited list of fields in the recordset to group by. Each field must be
prefaced with the keyword LEFT. If omitted, then all records match.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation maintains the
distribution of any previous DISTRIBUTE. Valid only if the mergetransform is omitted.

FEW Optional. Indicates that the expression will result in fewer than 10,000 records. This allows
optimization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in more than 10,000 records.

Return: AGGREGATE returns a record set.

The AGGREGATE function is similar to ROLLUP except its output format does not need to match the input format.
It also has similarity to TABLE in that the groupingfields (if present) determine the matching records such that you
will get one result for each unique value of the groupingfields. The input recordset does not need to have been sorted
by the groupingfields.

The operation is implicitly local, in that the maintransform is called to process records locally on each node, and the
result records on each node are then merged to produce the global result.

TRANSFORM Function Requirements - AGGREGATE
The maintransform must take at least two parameters: a LEFT record of the same format as the input recordset and a
RIGHT record of the same format as the resultrec. The format of the resulting record set must be the resultrec. LEFT
refers to the next input record and RIGHT the result of the previous transform.

The mergetransform must take at least two parameters: RIGHT1 and RIGHT2 records of the same format as the
resultrec. The format of the resulting record set must be the resultrec. RIGHT1 refers to the result of the maintransform
on one node and RIGHT2 the result of the maintransform on another.

The mergetransform is generated for expressions of the form:

 SELF.x := <RIGHT.x <op> f(LEFT)
 SELF.x := f(LEFT) <op> RIGHT.x

where the <op> is: MAX, MIN, SUM, +, &, |, ^, *

How AGGREGATE Works
In the maintransform, LEFT refers to the next input record and RIGHT the result of the previous transform.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

137

There are 4 interesting cases:

(a) If no records match (and the operation isn't grouped), the output is a single record with all the fields set to blank
values.

(b) If a single record matches, the first record that matches calls the maintransform as you would expect.

(c) If multiple records match on a single node, subsequent records that match call the maintransform but any field
expression in the maintransform that does not reference the RIGHT record is not processed. Therefore the value for
that field is set by the first matching record matched instead of the last.

(d) If multiple records match on multiple nodes, then step (c) performs on each node, and then the summary records are
merged. This requires a mergetransform that takes two records of type RIGHT. Whenever possible the code generator
tries to deduce the mergetransform from the maintransform. If it can't, then the user will need to specify one.

inRecord := RECORD
 UNSIGNED box;
 STRING text{MAXLENGTH(10)};
END;
inTable := DATASET([{1,'Fred'},{1,'Freddy'},
 {2,'Freddi'},{3,'Fredrik'},{1,'FredJon'}], inRecord);

//Example 1: Produce a list of box contents by concatenating a string:

outRecord1 := RECORD
 UNSIGNED box;
 STRING contents{MAXLENGTH(200)};
END;
outRecord1 t1(inRecord l, outRecord1 r) := TRANSFORM
 SELF.box := l.box;
 SELF.contents := r.contents + IF(r.contents <> '', ',', '') + l.text;
END;

outRecord1 t2(outRecord1 r1, outRecord1 r2) := TRANSFORM
 SELF.box := r1.box;
 SELF.contents := r1.contents + ',' + r2.contents;
END;
OUTPUT(AGGREGATE(inTable, outRecord1, t1(LEFT, RIGHT), t2(RIGHT1, RIGHT2), LEFT.box));

//This example could eliminate the merge transform if the SELF.contents expression in
//the t1 TRANSFORM were simpler, like this:
// SELF.contents := r.contents + ',' + l.text;
//which would make the AGGREGATE function like this:
// OUTPUT(AGGREGATE(inTable, outRecord1, t1(LEFT, RIGHT), LEFT.box));

//Example 2: A PIGMIX style grouping operation:
outRecord2 := RECORD
 UNSIGNED box;
 DATASET(inRecord) items;
END;
outRecord2 t3(inRecord l, outRecord2 r) := TRANSFORM
 SELF.box := l.box;
 SELF.items:= r.items + l;
END;
OUTPUT(AGGREGATE(inTable, outRecord2, t3(LEFT, RIGHT), LEFT.box));

See Also: TRANSFORM Structure, RECORD Structure, ROLLUP, TABLE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

138

ALLNODES
ALLNODES(operation)

operation The name of an attribute or in-line code that results in a DATASET or IN-
DEX.

Return: ALLNODES returns a record set or index.

The ALLNODES function specifies that the operation is performed on all nodes in parallel. Available for use only
in Roxie.

Example:

ds := ALLNODES(JOIN(SomeData,LOCAL(SomeIndex), LEFT.ID = RIGHT.ID));

See Also: THISNODE, LOCAL, NOLOCAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

139

APPLY
[attrname :=] APPLY(dataset, actionlist [, BEFORE(actionlist)] [, AFTER(actionlist)])

attrname Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attrname is used as an action.

dataset The set of records to apply the action to. This must be the name of a physical dataset of a type
that supports this operation.

actionlist A comma-delimited list of the operations to perform on the dataset. Typically, this is an external
service (see SERVICE Structure). This may not be an OUTPUT or any function that triggers
a child query.

BEFORE Specifies executing the enclosed actionlist before the first dataset row is processed. Not yet im-
plemented in Thor, valid only in hthor and Roxie.

AFTER Specifies executing the enclosed actionlist after the last dataset row is processed. Not yet imple-
mented in Thor, valid only in hthor and Roxie.

The APPLY action performs all the specified actions in the actionlist on each record of the nominated dataset. The
actions execute in the order they appear in the actionlist.

Example:

EXPORT x := SERVICE
 echo(const string src):library='myfuncs',entrypoint='rtlEcho';
END;
APPLY(person,x.echo(last_name + ':' + first_name));
 // concatenate each person's lastname and firstname and echo it

See Also: SERVICE Structure, DATASET

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

140

ASCII
ASCII(recordset)

recordset The set of records to process. This may be the name of a dataset or a record set
derived from some filter condition, or any expression that results in a derived
record set.

Return: ASCII returns a set of records.

The ASCII function returns the recordset with all STRING fields translated from EBCDIC to ASCII.

Example:

AsciiRecs := ASCII(SomeEBCDICInput);

See Also: EBCDIC

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

141

ASIN
ASIN(sine)

sine The REAL sine value for which to find the arcsine.

Return: ASIN returns a single REAL value.

The ASIN function returns the arcsine (inverse) of the sine, in radians.

Example:

ArcSine := ASIN(SineAngle);

See Also: ACOS, COS, SIN, TAN, ATAN, COSH, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

142

ASSERT
ASSERT(condition [, message] [, FAIL] [, CONST])

ASSERT(recset, condition [, message] [, FAIL] [, CONST])

ASSERT(recset, assertlist)

condition The logical expression that should be always be true.

message Optional. The error to display in the workunit. If omitted, a message is gen-
erated from the approximate location in the code and the condition being
checked.

FAIL Optional. Specifies an exception is generated, immediately terminating the
workunit.

CONST Optional. Specifies the condition is evaluated during code generation.

recset The set of records for which to check the condition against each record.

assertlist A comma-delimited list of ASSERTs of the first form, used to check multiple
conditions against each record in the recset.

The ASSERT action evaluates the condition, and if false, posts the message in the workunit. The workunit terminates
immediately if the FAIL option is present.

Form one is the scalar form, evaluating the condition once. Form two evaluates the condition once for each record
in the recset. Form three is a variant of form two that nests multiple form one ASSERTs so that each condition is
checked against each record in the recset.

Example:

val1 := 1;
val2 := 1;
val3 := 2;
val4 := 2 : STORED('val4');
ASSERT(val1 = val2);
ASSERT(val1 = val2, 'Abc1');
ASSERT(val1 = val3);
ASSERT(val1 = val3, 'Abc2');
ASSERT(val1 = val4);
ASSERT(val1 = val4, 'Abc3');
ds := DATASET([1,2],{INTEGER val1}) : GLOBAL;
 // global stops advanced constant folding (if ever done)
ds1 := ASSERT(ds, val1 = val2);
ds2 := ASSERT(ds1, val1 = val2, 'Abc4');
ds3 := ASSERT(ds2, val1 = val3);
ds4 := ASSERT(ds3, val1 = val3, 'Abc5');
ds5 := ASSERT(ds4, val1 = val4);
ds6 := ASSERT(ds5, val1 = val4, 'Abc6');
OUTPUT(ds6);
ds7 := ASSERT(ds(val1 != 99),
 ASSERT(val1 = val2),
 ASSERT(val1 = val2, 'Abc7'),
 ASSERT(val1 = val3),
 ASSERT(val1 = val3, 'Abc8'),
 ASSERT(val1 = val4),
 ASSERT(val1 = val4, 'Abc9'));
OUTPUT(ds7);
rec := RECORD
 INTEGER val1;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

143

 STRING text;
END;
rec t(ds l) := TRANSFORM
 ASSERT(l.val1 <= 3);
 SELF.text := CASE(l.val1,1=>'One',2=>'Two',3=>'Three','Zero');
 SELF := l;
END;
OUTPUT(PROJECT(ds, t(LEFT)));

See Also: FAIL, ERROR

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

144

ASSTRING
ASSTRING(bitmap)

bitmap The value to treat as a string.

Return: ASSTRING returns a single STRING value.

The ASSTRING function returns the bitmap as a string. This is equivalent to TRANSFER(bitmap,STRINGn) where
n is the same number of bytes as the data in the bitmap.

Example:

INTEGER1 MyInt := 65; //MyInt is an integer whose value is 65
MyVal1 := ASSTRING(MyInt); //MyVal1 is “A” (ASCII 65)
 // this is directly equivalent to:
 // STRING1 MyVal1 := TRANSFER(MyInt,STRING1);INTEGER1 MyVal3 := (INTEGER)MyVal1;
 //MyVal3 is 0 (zero) because “A” is not a numeric character

See Also: TRANSFER, Type Casting

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

145

ATAN
ATAN(tangent)

tangent The REAL tangent value for which to find the arctangent.

Return: ATAN returns a single REAL value.

The ATAN function returns the arctangent (inverse) of the tangent, in radians.

Example:

ArcTangent := ATAN(TangentAngle);

See Also: ATAN2, ACOS, COS, ASIN, SIN, TAN, COSH, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

146

ATAN2
ATAN2(y, x)

y The REAL numerator value for the tangent.

x The REAL denominator value for the tangent.

Return: ATAN2 returns a single REAL value.

The ATAN2 function returns the arctangent (inverse) of the calculated tangent, in radians. This is similar to the ATAN
function but more accurate and handles the situations where x or y is zero.

Example:

ArcTangent := ATAN2(TangentNumerator, TangentDenominator);

See Also: ATAN, ACOS, COS, ASIN, SIN, TAN, COSH, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

147

AVE
AVE(recordset, value [, expression] [, KEYED])

AVE(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
keyword GROUP to indicate averaging the field values in a group.

value The expression to find the average value of.

expression Optional. A logical expression indicating which records to include in the average. Valid only
when the recordset parameter is the keyword GROUP to indicate averaging the elements in a
group.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the average value of. This may also be a SET of
values.

Return: AVE returns a single value.

The AVE function either returns the average value (arithmetic mean) from the specified recordset or the valuelist. It
is defined to return zero if the recordset is empty.

Example:

AvgBal1 := AVE(Trades,Trades.trd_bal);
AvgVal2 := AVE(4,8,16,2,1); //returns 6.2
SetVals := [4,8,16,2,1];
AvgVal3 := AVE(SetVals); //returns 6.2

See Also: MIN, MAX

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

148

BUILD
[attrname :=] BUILD(baserecset, [indexrec] , indexfile [, options]);

[attrname :=] BUILD(baserecset, keys, payload, indexfile [, options]);

[attrname :=] BUILD(indexdef [, options]);

BUILD(library);

attrname Optional. The action name, which turns the action into an attribute definition, therefore not exe-
cuted until the attrname is used as an action.

baserecset The set of data records for which the index file will be created. This may be a record set derived
from the base data with the key fields and file position.

indexrec Optional. The RECORD structure of the fields in the indexfile that contains key and file po-
sition information for referencing into the baserecset. Field names and types must match the
baserecset fields (REAL and DECIMAL value type fields are not supported). This may also con-
tain additional fields not present in the baserecset (computed fields). If omitted, all fields in the
baserecset are used. The last field must be the name of an UNSIGNED8 field defined using the
{virtual(filepposition)} function in the DATASET declaration of the baserecset.

keys The RECORD structure of fields in the indexfile that contains key and file position information for
referencing into the baserecset. Field names and types must match the baserecset fields (REAL
and DECIMAL value type fields are not supported). This may also contain additional fields not
present in the baserecset. If omitted, all fields in the baserecset are used.

payload The RECORD structure of the indexfile that contains additional fields not used as keys . If the
name of the baserecset is in the structure, it specifies “all other fields not already named in the keys
parameter.” This may contain fields not present in the baserecset (computed fields). These fields
do not take up space in the non-leaf nodes of the index and cannot be referenced in a KEYED()
filter clause

indexfile A string constant containing the logical filename of the index to produce. See the Scope & Logical
Filenames article for more on logical filenames.

options Optional. One or more of the options listed below.

indexdef The name of the INDEX attribute to build.

library The name of a MODULE attribute with the LIBRARY option.

The first three forms of the BUILD action create index files. Indexes are automatically compressed, minimizing over-
head associated with using indexed record access. The keyword BUILDINDEX may be used in place of BUILD in
these forms.

The fourth form creates an external query library—a workunit that implements the specified library. This is similar
to creating a .DLL in Windows programming, or a .SO in Linux.

Index BUILD Options
The following options are available on all three INDEX forms of BUILD (only):

[, CLUSTER(target)] [, SORTED] [, DISTRIBUTE(key) [, MERGE]][, DATASET(basedataset)] [,
OVERWRITE] [, UPDATE][,EXPIRE([days])][, FEW] [, FILEPOSITION(false)] [, LOCAL] [, NOROOT]
[, DISTRIBUTED][, COMPRESSED(LZW | ROW | FIRST)] [, WIDTH(nodes)] [, DEDUP][,SKEW(limit[,
target]) [, THRESHOLD(size)]] [, MAXLENGTH[(value)]]]

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

149

CLUSTER Specifies writing the indexfile to the specified list of target clusters. If omitted, the
indexfile is written to the cluster on which the workunit executes. The number of
physical file parts written to disk is always determined by the number of nodes in
the cluster on which the workunit executes, regardless of the number of nodes on the
target cluster(s) unless the WIDTH option is also specified.

target A comma-delimited list of string constants containing the names of the clusters to
write the indexfile to. The names must be listed as they appear on the ECL Watch
Activity page or returned by the Std.System.Thorlib.Group() function, optionally with
square brackets containing a comma-delimited list of node-numbers (1-based) and/or
ranges (specified with a dash, as in n-m) to indicate the specific set of nodes to write to.

SORTED Specifies that the baserecset is already sorted, implying that the automatic sort based
on all the indexrec fields is not required before the index is created.

DISTRIBUTE Specifies building the indexfile based on the distribution of the key.

key The name of an existing INDEX attribute definition.

MERGE Optional. Specifies merging the resulting index into the specified key.

DATASET This is only needed when the baserecset is the result of an operation (such as a JOIN)
whose result makes it ambiguous as to which physical dataset is being indexed (in
other words, use this option only when you receive an error that it cannot be deduced).
Naming the basedataset ensures that the proper record links are used in the index.

basedataset The name of the DATASET attribute from which the baserecset is derived.

OVERWRITE Specifies overwriting the indexfile if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after
the specified number of days since the file was read.

FILEPOSITION Optional. If flag is FALSE, prevents the implicit fileposition field from being created
and will not treat a trailing integer field any differently from the rest of the payload.

flag Optional. TRUE or FALSE, indicating whether or not to create the implicit fileposi-
tion field.

days Optional. The number of days from last file read after which the file may be automat-
ically deleted. If omitted, the default is seven (7).

FEW Specifies the indexfile is created as a single one-part file. Used only for small datasets
(typically lookup-type files, such as 2-character state codes). This option is now dep-
recated in favor of using the WIDTH(1).

indexdef The name of an existing INDEX attribute definition that provides the baserecset, in-
dexrec, and indexfile parameters to use.

LOCAL Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation main-
tains the distribution of any previous DISTRIBUTE function.

NOROOT Specifies that the index is not globally sorted, and there is no root index to indicate
which part of the index will contain a particular entry. This may be useful in Roxie
queries in conjunction with ALLNODES use.

DISTRIBUTED Specifies both the LOCAL and NOROOT options (congruent with the
DISTRIBUTED option on an INDEX declaration, which specifies the index was built
with the LOCAL and NOROOT options).

COMPRESSED Specifies the type of compression used. If omitted, the default is LZW, a variant of
the Lempel-Ziv-Welch algorithm. Specifying ROW compresses index entries based

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

150

on differences between contiguous rows (for use with fixed-length records, only),
and is recommended for use in circumstances where speedier decompression time is
more important than the amount of compression achieved. FIRST compresses com-
mon leading elements of the key (recommended only for timing comparison use).

WIDTH Specifies writing the indexfile to a different number of physical file parts than the
number of nodes in the cluster on which the workunit executes. If omitted, the default
is the number of nodes in the cluster on which the workunit executes. This option
is primarily to create indexes on a large Thor that are destined to be deployed to a
smaller Roxie (making the Roxie queries more efficient).

nodes The number of physical file parts to write. If set to one (1), this operates exactly the
same as the FEW option, above.

DEDUP Specifies that duplicate entries are eliminated from the INDEX.

SKEW Indicates that you know the data will not be spread evenly across nodes (will be
skewed and you choose to override the default by specifying your own limit value to
allow the job to continue despite the skewing.)

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage
of skew to allow before the job fails (the default skew is 1.0 / <number of slaves on
cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired max-
imum percentage of skew to allow (the default skew is 1.0 / <number of slaves on
cluster>).

THRESHOLD Indicates the minimum size for a single part before the SKEW limit is enforced.

size An integer value indicating the minimum number of bytes for a single part. Default
is 1GB.

MAXLENGTH Optional. This option is used to create indexes that are backward compatible for plat-
form versions prior to 3.0. Specifies the maximum length of a variable-length index
record. Fixed length records always use the minimum size required. If the default
maximum length causes inefficiency problems, it can be explicitly overridden.

value Optional. An integer value indicating the maximum length. If omitted, the maximum
size is calculated from the record structure. Variable-length records that do not specify
MAXLENGTH may be slightly inefficient

BUILD an Access Index

[attrname :=] BUILD(baserecset, [indexrec] , indexfile [, options]);

Form 1 creates an index file to allow keyed access to the baserecset. The index is used primarily by the FETCH and
JOIN (with the KEYED option) operations.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{virtual(fileposition)}},
 FLAT);
BUILD(Vehicles,{lname,filepos},'vkey::lname');
 //build key into Vehicles dataset on last name

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

151

BUILD a Payload Index
[attrname :=] BUILD(baserecset, keys, payload, indexfile [, options]);

Form 2 creates an index file containing extra payload fields in addition to the keys. This form is used primarily to create
indexes used by “half-key” JOIN operations to eliminate the need to directly access the baserecset, thus increasing
performance over the “full-keyed” version of the same operation (done with the KEYED option on the JOIN).

By default, the payload fields are sorted during the BUILDINDEX operation to minimize space on the leaf nodes of
the key. This sorting can be controlled by using sortIndexPayload in a #OPTION statement.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{virtual(fileposition)}},
 FLAT);
BUILD(Vehicles,{st,city},{lname},'vkey::st.city');
 //build key into Vehicles dataset on state and city
 //payload the last name

BUILD from an INDEX Definition
[attrname :=] BUILD(indexdef [, options]);

Form 3 creates an index file by using a previously defined INDEX definition.

Example:

nameKey := INDEX(mainTable,{surname,forename,filepos},'name.idx');
BUILD(nameKey); //gets all info from the INDEX definition

BUILD a Query Library
BUILD(library);

Form 4 creates an external query library for use in hthor or Roxie, only.

A query library allows a set of related attributes to be packaged as a self contained unit so the code can be shared
between different workunits. This reduces the time required to deploy a set of attributes, and also reduces the memory
footprint for the set of queries within Roxie that use the library. Also, functionality in the library can be updated
without having to re-deploy all the queries that use that functionality.

Query libraries are suitable for packaging together sets of functions that are closely related. They aren't suited for
including attributes defined as MACROs—the meaning of a macro isn't known until its parameters are substituted.

The name form of #WORKUNIT names the workunit that BUILD creates as the external library. That name is the
external library name used by the LIBRARY function (which provides access to the library from within the query
that uses the library). Since the workunit itself is the external query library, BUILD(library) must be the only
action in the workunit.

Example:

NamesRec := RECORD
 INTEGER1 NameID;
 STRING20 FName;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

152

 STRING20 LName;
END;
FilterLibIface1(DATASET(namesRec) ds, STRING search) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;

FilterDsLib1(DATASET(namesRec) ds, STRING search) :=
 MODULE,LIBRARY(FilterLibIface1)
 EXPORT matches := ds(Lname = search);
 EXPORT others := ds(Lname != search);
END;
#WORKUNIT('name','Ppass.FilterDsLib')
BUILD(FilterDsLib1);

See Also: INDEX, JOIN, FETCH, MODULE, INTERFACE, LIBRARY, DISTRIBUTE, #WORKUNIT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

153

CASE
CASE(expression, caseval => value, [… , caseval => value] [, elsevalue])

expression An expression that results in a single value.

caseval A value to compare against the result of the expression.

=> The “results in” operator—valid only in CASE, MAP and CHOOSESETS.

value The value to return. This may be any expression or action.

elsevalue Optional. The value to return when the result of the expression does not match any of the caseval
values. May be omitted if all return values are actions (the default would then be no action), or
all return values are record sets (the default would then be an empty record set).

Return: CASE returns a single value, a set of values, a record set, or an action.

The CASE function evaluates the expression and returns the value whose caseval matches the expression result. If
none match, it returns the elsevalue.

There may be as many caseval => value parameters as necessary to specify all the expected values of the expression
(there must be at least one). All return value parameters must be of the same type.

Example:

MyExp := 1+2;
MyChoice := CASE(MyExp, 1 => 9, 2 => 8, 3 => 7, 4 => 6, 5);
 // returns a value of 7 for the caseval of 3
MyRecSet := CASE(MyExp, 1 => Person(per_st = 'FL'),
 2 => Person(per_st = 'GA'),
 3 => Person(per_st = 'AL'),
 4 => Person(per_st = 'SC'),
 Person);
 // returns set of Alabama Persons for the caseval of 3
MyAction := CASE(MyExp, 1 => FAIL('Failed for reason 1'),
 2 => FAIL('Failed for reason 2'),
 3 => FAIL('Failed for reason 3'),
 4 => FAIL('Failed for reason 4'), FAIL('Failed for unknown reason'));
 // for the caseval of 3, Fails for reason 3

See Also: MAP, CHOOSE, IF, REJECTED, WHICH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

154

CATCH
result := CATCH(recset, action);

result The definition name for the resulting recordset.

recset The recordset expression that, if it fails, causes the action to launch.

action One of the three valid actions below.

Return: CATCH returns a set of records (which may be empty).

The CATCH function executes the action if the recset expression fails for any reason.

Valid actions are:

SKIP Specifies ignoring the error and continuing, returning an empty dataset.

ONFAIL(transform) Specifies returning a single record from the transform function. The TRANSFORM
function may use FAILCODE and/or FAILMESSAGE to provide details of the
failure and must result in a RECORD structure the same format as the recset.

FAIL The FAIL action, which specifies the error message to produce. This is meant to
provide more useful information to the end user about why the job failed.

Example:

MyRec := RECORD
 STRING50 Value1;
 UNSIGNED Value2;
END;

ds := DATASET([{'C',1},{'C',2},{'C',3},
 {'C',4},{'C',5},{'X',1},{'A',1}],MyRec);

MyRec FailTransform := transform
 self.value1 := FAILMESSAGE[1..17];
 self.value2 := FAILCODE
END;

limited1 := LIMIT(ds, 2);
limited2 := LIMIT(ds, 3);
limited3 := LIMIT(ds, 4);

recovered1 := CATCH(limited1, SKIP);
recovered2 := CATCH(limited2, ONFAIL(FailTransform));
recovered3 := CATCH(CATCH(limited3, FAIL(1, 'Failed, dude')), ONFAIL(FailTransform));

OUTPUT(recovered1); //empty recordset
OUTPUT(recovered2); //
OUTPUT(recovered3); //

See Also: TRANSFORM Structure, FAIL, FAILCODE, FAILMESSAGE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

155

CHOOSE
CHOOSE(expression, value,… , value, elsevalue)

expression An arithmetic expression that results in a positive integer and determines which value parameter
to return.

value The values to return. There may be as many value parameters as necessary to specify all the
expected values of the expression. This may be any expression or action.

elsevalue The value to return when the expression returns an out-of-range value. The last parameter is
always the elsevalue.

Return: CHOOSE returns a single value.

The CHOOSE function evaluates the expression and returns the value parameter whose ordinal position in the list
of parameters corresponds to the result of the expression. If none match, it returns the elsevalue. All values and the
elsevalue must be of the same type.

Example:

MyExp := 1+2;
MyChoice := CHOOSE(MyExp,9,8,7,6,5); // returns 7
MyChoice := CHOOSE(MyExp,1,2,3,4,5); // returns 3
MyChoice := CHOOSE(MyExp,15,14,13,12,11); // returns 13
WorstRate := CHOOSE(IntRate,1,2,3,4,5,6,6,6,6,0);
 // WorstRate receives 6 if the IntRate is 7, 8, or 9

See Also: CASE, IF, MAP

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

156

CHOOSEN
CHOOSEN(recordset, n [, startpos] [, FEW])

recordset The set of records to process. This may be the name of a dataset or a record set derived from some
filter condition, or any expression that results in a derived record set.

n The number of records to return. If zero (0), no records are returned, and if ALL or
CHOOSEN:ALL, all records are returned. The CHOOSEN:ALL option is a constant that may
be used in any expression.

startpos Optional. The ordinal position in the recordset of the first record to return. If omitted, the default
is one (1).

FEW Optional. Specifies internally converting to a TOPN operation if n is a variable number (an at-
tribute or passed parameter) and the input recordset comes from a SORT.

Return: CHOOSEN returns a set of records.

The CHOOSEN function (choose-n) returns the first n number of records, beginning with the record at the startpos,
from the specified recordset.

Example:

AllRecs := CHOOSEN(Person,ALL); // returns all recs from Person
FirstFive := CHOOSEN(Person,5); // returns first 5 recs from Person
NextFive := CHOOSEN(Person,5,6); // returns next 5 recs from Person
LimitRecs := CHOOSEN(Person,IF(MyLimit<>0,MyLimit,CHOOSEN:ALL));

See Also: SAMPLE, CHOOSESETS

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

157

CHOOSESETS
CHOOSESETS(recset, condition => n [, o][, EXCLUSIVE | LAST | ENTH])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

condition The logical expression that defines which records to include in the result set.

=> The “results in” operator—valid only in CHOOSESETS, CASE, and MAP.

n The maximum number of records to return. If zero (0), no records that meet the condition are
returned.

o Optional. The maximum number of records to return that meet none of the conditions specified.

EXCLUSIVE Optional. Specifies the condition parameters are mutually exclusive.

LAST Optional. Specifies choosing the last n records that meet the condition instead of the first n.
This option is implicitly EXCLUSIVE.

ENTH Optional. Specifies choosing a sample of records that meet the condition instead of the first n.
This option is implicitly EXCLUSIVE.

Return: CHOOSESETS returns a set of records.

The CHOOSESETS function returns a set of records from the recset. The result set is limited to n number of records
that meet each condition listed. CHOOSESETS may take as many condition => n parameters as needed to exactly
specify the desired set of records. This is a shorthand way of concatenating the result sets of multiple CHOOSEN
function calls to the same recset with different filter conditions, but CHOOSESETS executes significantly faster. This
technique is also know as a “cutback.”

Example:

MyResultSet := CHOOSESETS(Person,
 per_first_name = 'RICHARD' => 100,
 per_first_name = 'GWENDOLYN' => 200, 100)
// returns a set containing 100 Richards, 200 Gwendolyns, 100 others

See Also: CHOOSEN, SAMPLE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

158

CLUSTERSIZE
CLUSTERSIZE

Return: CLUSTERSIZE returns a single INTEGER value.

The CLUSTERSIZE compile time constant returns the number of nodes in the cluster. This is the same value as
returned by the Std.System.ThorLib.Nodes() function..

Example:

OUTPUT(CLUSTERSIZE)

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

159

COMBINE
COMBINE(leftrecset, rightrecset [, transform][,LOCAL])

COMBINE(leftrecset, rightrecset, GROUP , transform [,LOCAL])

leftrecset The LEFT record set.

rightrecset The RIGHT record set.

transform The TRANSFORM function call. If omitted, COMBINE returns all fields from both the leftrecset
and rightrecset, with the second of any duplicate named fields removed.

LOCAL The LOCAL option is required when COMBINE is used on Thor (and implicit in hThor/Roxie).

GROUP Specifies the rightrecset has been GROUPed. If this is not the case, an error occurs.

Return: COMBINE returns a record set.

The COMBINE function combines leftrecset and rightrecset on a record-by-record basis in the order in which they
appear in each.

COMBINE TRANSFORM Function Requirements
For form 1, the transform function must take at least two parameters: a LEFT record which must be in the same format
as the leftrecset and a RIGHT record which must be in the same format as the rightrecset. The format of the resulting
record set may be different from the inputs.

For form 2, the transform function must take at least three parameters: a LEFT record which must be in the same
format as the leftrecset, a RIGHT record which must be in the same format as the rightrecset, and a ROWS(RIGHT)
whose format must be a DATASET(RECORDOF(rightrecset)) parameter. The format of the resulting record set may
be different from the inputs.

COMBINE Form 1
Form 1 of COMBINE produces its result by passing each record from leftrecset along with the record in the same
ordinal position within rightrecset to the transform to produce a single output record. Grouping (if any) on the leftrecset
is preserved. An error occurs if leftrecset and rightrecset contain a different number of records.

Example:

inrec := RECORD
 UNSIGNED6 did;
END;
outrec := RECORD(inrec)
 STRING20 name;
 STRING10 ssn;
 UNSIGNED8 dob;
END;
ds := DATASET([1,2,3,4,5,6], inrec);
i1 := DATASET([{1, 'Kevin'}, {2, 'Richard'}, {5,'Nigel'}],
 { UNSIGNED6 did, STRING10 name });
i2 := DATASET([{3, '123462'}, {5, '1287234'}, {6,'007001002'}],
 { UNSIGNED6 did, STRING10 ssn });
i3 := DATASET([{1, 19700117}, {4, 19831212}, {6,20000101}],
 { UNSIGNED6 did, UNSIGNED8 dob});
j1 := JOIN(ds, i1, LEFT.did = RIGHT.did, LEFT OUTER, LOOKUP);
j2 := JOIN(ds, i2, LEFT.did = RIGHT.did, LEFT OUTER, LOOKUP);
j3 := JOIN(ds, i3, LEFT.did = RIGHT.did, LEFT OUTER, LOOKUP);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

160

combined1 := COMBINE(j1,
 j2,
 TRANSFORM(outRec,
 SELF := LEFT;
 SELF := RIGHT;
 SELF := []));
combined2 := COMBINE(combined1,
 j3,
 TRANSFORM(outRec,
 SELF.dob := RIGHT.dob;
 SELF := LEFT));

COMBINE Form 2
Form 2 of COMBINE produces its result by passing each record from leftrecset, the group in the same ordinal position
within rightrecset (along with the first record in the group) to the transform to produce a single output record. Grouping
(if any) on the leftrecset is preserved. An error occurs if the number of records in the leftrecset differs from the number
of groups in the rightrecset.

Example:

inrec := {UNSIGNED6 did};
outrec := RECORD(inrec)
 STRING20 name;
 UNSIGNED score;
END;
nameRec := RECORD
 STRING20 name;
END;

resultRec := RECORD(inrec)
 DATASET(nameRec) names;
END;
ds := DATASET([1,2,3,4,5,6], inrec);
dsg := GROUP(ds, ROW);
i1 := DATASET([{1, 'Kevin', 10},
 {2, 'Richard', 5},
 {5,'Nigel', 2},
 {0, '', 0}], outrec);
i2 := DATASET([{1, 'Kevin Halligan', 12},
 {2, 'Richard Chapman', 15},
 {3, 'Jake Smith', 20},
 {5,'Nigel Hicks', 100},
 {0, '', 0}], outrec);
i3 := DATASET([{1, 'Halligan', 8},
 {2, 'Richard', 8},
 {6, 'Pete', 4},
 {6, 'Peter', 8},
 {6, 'Petie', 1},
 {0, '', 0}], outrec);
j1 := JOIN(dsg,
 i1,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER, MANY LOOKUP);
j2 := JOIN(dsg,
 i2,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER,
 MANY LOOKUP);
j3 := JOIN(dsg,
 i3,

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

161

 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER,
 MANY LOOKUP);
combined := REGROUP(j1, j2, j3);
resultRec t(inrec l, DATASET(RECORDOF(combined)) r) := TRANSFORM
 self.names := PROJECT(r, TRANSFORM(nameRec, SELF := LEFT));
 self := l;
 END;
res1 := COMBINE(dsg,combined,GROUP,t(LEFT, ROWS(RIGHT)(score != 0)));
//A variation using rows in a child query.
resultRec t2(inrec l, DATASET(RECORDOF(combined)) r) := TRANSFORM
 SELF.names := PROJECT(SORT(r, -score),
 TRANSFORM(nameRec, SELF := LEFT));
 SELF := l;
 END;
res2 := COMBINE(dsg,combined,GROUP,t2(LEFT,ROWS(RIGHT)(score != 0)));

See Also: GROUP, REGROUP

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

162

CORRELATION
CORRELATION(recset, valuex, valuey [, expresssion] [, KEYED])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
GROUP keyword to indicate operating on the elements in each group, when used in a RECORD
structure to generate crosstab statistics.

valuex A numeric field or expression.

valuey A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid only
when the recset parameter is the keyword GROUP.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

Return: CORRELATION returns a single REAL value.

The CORRELATION function returns the Pearson's Product Moment Correlation Coefficient between valuex and
valuey.

Example:

pointRec := { REAL x, REAL y };
analyse(ds) := MACRO
#uniquename(stats)
%stats% := TABLE(ds, { c := COUNT(GROUP),
 sx := SUM(GROUP, x),
 sy := SUM(GROUP, y),
 sxx := SUM(GROUP, x * x),
 sxy := SUM(GROUP, x * y),
 syy := SUM(GROUP, y * y),
 varx := VARIANCE(GROUP, x);
 vary := VARIANCE(GROUP, y);
 varxy := COVARIANCE(GROUP, x, y);
 rc := CORRELATION(GROUP, x, y) });
OUTPUT(%stats%);
// Following should be zero
OUTPUT(%stats%, { varx - (sxx-sx*sx/c)/c,
 vary - (syy-sy*sy/c)/c,
 varxy - (sxy-sx*sy/c)/c,
 rc - (varxy/SQRT(varx*vary)) });
OUTPUT(%stats%, { 'bestFit: y=' +
 (STRING)((sy-sx*varxy/varx)/c) +
 ' + ' +
 (STRING)(varxy/varx)+'x' });
ENDMACRO;
ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);
ds2 := DATASET([{1.93896e+009, 2.04482e+009},
 {1.77971e+009, 8.54858e+008},
 {2.96181e+009, 1.24848e+009},
 {2.7744e+009, 1.26357e+009},
 {1.14416e+009, 4.3429e+008},
 {3.38728e+009, 1.30238e+009},
 {3.19538e+009, 1.71177e+009}], pointRec);
ds3 := DATASET([{1, 1.00039},
 {2, 2.07702},
 {3, 2.86158},

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

163

 {4, 3.87114},
 {5, 5.12417},
 {6, 6.20283}], pointRec);
analyse(ds1);
analyse(ds2);
analyse(ds3);

See Also: VARIANCE, COVARIANCE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

164

COS
COS(angle)

angle The REAL radian value for which to find the cosine.

Return: COS returns a single REAL value.

The COS function returns the cosine of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian

Deg2Rad := 0.0174532925199; //number of radians in a degree

Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians

Cosine45 := COS(Angle45); //get cosine of the 45 degree angle

See Also: ACOS, SIN, TAN, ASIN, ATAN, COSH, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

165

COSH
COSH(angle)

angle The REAL radian value for which to find the hyperbolic cosine.

Return: COSH returns a single REAL value.

The COSH function returns the hyperbolic cosine of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian

Deg2Rad := 0.0174532925199; //number of radians in a degree

Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians

HyperbolicCosine45 := COSH(Angle45);
 //get hyperbolic cosine of the 45 degree angle

See Also: ACOS, SIN, TAN, ASIN, ATAN, COS, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

166

COUNT
COUNT(recordset [, expression] [, KEYED])

COUNT(valuelist)

recordset The set of records to process. This may be the name of a DATASET or a record set derived
from some filter condition, or any expression that results in a derived record set, or a the name
of a DICTIONARY declaration. This also may be the GROUP keyword to indicate counting the
number of elements in a group, when used in a RECORD structure to generate crosstab statistics.

expression Optional. A logical expression indicating which records to include in the count. Valid only when
the recordset parameter is the keyword GROUP to indicate counting the number of elements in
a group.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to count. This may also be a SET of values.

Return: COUNT returns a single value.

The COUNT function returns the number of records in the specified recordset or valuelist.

Example:

MyCount := COUNT(Trades(Trades.trd_rate IN ['3', '4', '5']));
 // count the number of records in the Trades record
 // set whose trd_rate field contains 3, 4, or 5
R1 := RECORD
 person.per_st;
 person.per_sex;
 Number := COUNT(GROUP);
 //total in each state/sex category
 Hanks := COUNT(GROUP,person.per_first_name = 'HANK');
 //total of “Hanks” in each state/sex category
 NonHanks := COUNT(GROUP,person.per_first_name <> 'HANK');
 //total of “Non-Hanks” in each state/sex category
END;
T1 := TABLE(person, R1, per_st, per_sex);
Cnt1 := COUNT(4,8,16,2,1); //returns 5
SetVals := [4,8,16,2,1];
Cnt2 := COUNT(SetVals); //returns 5

See Also: SUM, AVE, MIN, MAX, GROUP, TABLE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

167

COVARIANCE
COVARIANCE(recset, valuex, valuey [, expresssion] [, KEYED])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
GROUP keyword to indicate operating on the elements in each group, when used in a RECORD
structure to generate crosstab statistics.

valuex A numeric field or expression.

valuey A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid only
when the recset parameter is the keyword GROUP.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

Return: COVARIANCE returns a single REAL value.

The COVARIANCE function returns the extent to which valuex and valuey co-vary.

Example:

pointRec := { REAL x, REAL y };
analyse(ds) := MACRO
#uniquename(stats)
%stats% := TABLE(ds, { c := COUNT(GROUP),
 sx := SUM(GROUP, x),
 sy := SUM(GROUP, y),
 sxx := SUM(GROUP, x * x),
 sxy := SUM(GROUP, x * y),
 syy := SUM(GROUP, y * y),
 varx := VARIANCE(GROUP, x);
 vary := VARIANCE(GROUP, y);
 varxy := COVARIANCE(GROUP, x, y);
 rc := CORRELATION(GROUP, x, y) });
OUTPUT(%stats%);

// Following should be zero
OUTPUT(%stats%, { varx - (sxx-sx*sx/c)/c,
 vary - (syy-sy*sy/c)/c,
 varxy - (sxy-sx*sy/c)/c,
 rc - (varxy/SQRT(varx*vary)) });

OUTPUT(%stats%, { 'bestFit: y=' +
 (STRING)((sy-sx*varxy/varx)/c) +
 ' + ' +
 (STRING)(varxy/varx)+'x' });
ENDMACRO;

ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);

ds2 := DATASET([{1.93896e+009, 2.04482e+009},
 {1.77971e+009, 8.54858e+008},
 {2.96181e+009, 1.24848e+009},
 {2.7744e+009, 1.26357e+009},
 {1.14416e+009, 4.3429e+008},
 {3.38728e+009, 1.30238e+009},
 {3.19538e+009, 1.71177e+009}], pointRec);

ds3 := DATASET([{1, 1.00039},

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

168

 {2, 2.07702},
 {3, 2.86158},
 {4, 3.87114},
 {5, 5.12417},
 {6, 6.20283}], pointRec);

analyse(ds1);
analyse(ds2);
analyse(ds3);

See Also: VARIANCE, CORRELATION

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

169

CRON
CRON(time)

time A string expression containing a unix-standard cron time.

Return: CRON defines a single timer event.

The CRON function defines a timer event for use within the WHEN workflow service or WAIT function. This is
synonymous with EVENT(‘CRON’, time).

The time parameter is unix-standard cron time, expressed in UTC (aka Greenwich Mean Time) as a string containing
the following, space-delimited components:

minute hour dom month dow

minute An integer value for the minute of the hour. Valid values are from 0 to 59.

hour An integer value for the hour. Valid values are from 0 to 23 (using the 24 hour clock).

dom An integer value for the day of the month. Valid values are from 0 to 31.

month An integer value for the month. Valid values are from 0 to 12.

dow An integer value for the day of the week. Valid values are from 0 to 7 (where both 0 and 7 represent
Sunday).

Any time component that you do not want to pass is replaced by an asterisk (*). You may define ranges of times
using a dash (-), lists using a comma (,), and ‘once every n’ using a slash (/). For example, 6-18/3 in the hour field
will fire the timer every three hours between 6am and 6pm, and 0-6/3,18-23/3 will fire the timer every three hours
between 6pm and 6am.

Example:

EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
 EXPORT EveryThreeHours := CRON('0 0-23/3 * * *');
END;

BUILD(teenagers) : WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));
BUILD(NewStuff) : WHEN(events.EveryThreeHours);

See Also: EVENT, WHEN, WAIT, NOTIFY

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

170

DEDUP
DEDUP(recordset [, condition [, ALL[, HASH]] [, KEEP n] [, keeper]] [, LOCAL])

recordset The set of records to process, typically sorted in the same order that the expression will test. This
may be the name of a dataset or derived record set, or any expression that results in a derived
record set.

condition Optional. A comma-delimited list of expressions or key fields in the recordset that defines “du-
plicate” records. The keywords LEFT and RIGHT may be used as dataset qualifiers for fields in
the recordset. If the condition is omitted, every recordset field becomes the match condition. You
may use the keyword RECORD (or WHOLE RECORD) to indicate all fields in that structure,
and/or you may use the keyword EXCEPT to list non-dedup fields in the structure.

ALL Optional. Matches the condition against all records, not just adjacent records. This option may
change the output order of the resulting records.

HASH Optional. Specifies the ALL operation is performed using hash tables.

KEEP Optional. Specifies keeping n number of duplicate records. If omitted, the default behavior is to
KEEP 1. Not valid with the ALL option present.

n The number of duplicate records to keep.

keeper Optional. The keywords LEFT or RIGHT. LEFT (the default, if omitted) keeps the first record
encountered and RIGHT keeps the last.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

Return: DEDUP returns a set of records.

The DEDUP function evaluates the recordset for duplicate records, as defined by the condition parameter, and returns
a unique return set. This is similar to the DISTINCT statement in SQL. The recordset should be sorted, unless ALL
is specified.

If a condition parameter is a single value (field), DEDUP does a simple field-level de-dupe equivalent to
LEFT.field=RIGHT.field. The condition is evaluated for each pair of adjacent records in the record set. If the condition
returns TRUE, the keeper record is kept and the other removed.

The ALL option means that every record pair is evaluated rather than only those pairs adjacent to each other, irrespec-
tive of sort order. The evaluation is such that, for records 1, 2, 3, 4, the record pairs that are compared to each other are:

(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)

This means two compares happen for each pair, allowing the condition to be non-commutative.

KEEP n effectively means leaving n records of each duplicate type. This is useful for sampling. The LEFT keeper
value (implicit if neither LEFT nor RIGHT are specified) means that if the left and right records meet the de-dupe
criteria (that is, they “match”), the left record is kept. If the RIGHT keeper appears instead, the right is kept. In both
cases, the next comparison involves the de-dupe survivor; in this way, many duplicate records can collapse into one.

Complex Record Set Conditions
The DEDUP function with the ALL option is useful in determining complex recordset conditions between records
in the same recordset. Although DEDUP is traditionally used to eliminate duplicate records next to each other in
the recordset, the conditional expression combined with the ALL option extends this capability. The ALL option

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

171

causes each record to be compared according to the conditional expression to every other record in the recordset. This
capability is most effective with small recordsets; larger recordsets should also use the HASH option.

Example:

LastTbl := TABLE(Person,{per_last_name});
Lasts := SORT(LastTbl,per_last_name);
MySet := DEDUP(Lasts,per_last_name);
 // unique last names -- this is exactly equivalent to:
 //MySet := DEDUP(Lasts,LEFT.per_last_name=RIGHT.per_last_name);
 // also exactly equivalent to:
 //MySet := DEDUP(Lasts);
NamesTbl1 := TABLE(Person,{per_last_name,per_first_name});
Names1 := SORT(NamesTbl1,per_last_name,per_first_name);
MyNames1 := DEDUP(Names1,RECORD);
 //dedup by all fields -- this is exactly equivalent to:
 //MyNames1 := DEDUP(Names,per_last_name,per_first_name);
 // also exactly equivalent to:
 //MyNames1 := DEDUP(Names1);
NamesTbl2 := TABLE(Person,{per_last_name,per_first_name, per_sex});
Names2 := SORT(NamesTbl,per_last_name,per_first_name);
MyNames2 := DEDUP(Names,RECORD, EXCEPT per_sex);
 //dedup by all fields except per_sex
 // this is exactly equivalent to:
 //MyNames2 := DEDUP(Names, EXCEPT per_sex);

/* In the following example, we want to determine how many ‘AN’ or ‘AU’ type inquiries
have occurred within 3 days of a ‘BB’ type inquiry.
The COUNT of inquiries in the deduped recordset is subtracted from the COUNT
of the inquiries in the original recordset to provide the result.*/
INTEGER abs(INTEGER i) := IF (i < 0, -i, i);
WithinDays(ldrpt,lday,rdrpt,rday,days) :=
 abs(DaysAgo(ldrpt,lday)-DaysAgo(rdrpt,rday)) <= days;
DedupedInqs := DEDUP(inquiry, LEFT.inq_ind_code='BB' AND
 RIGHT.inq_ind_code IN ['AN','AU'] AND
 WithinDays(LEFT.inq_drpt,
 LEFT.inq_drpt_day,
 RIGHT.inq_drpt,
 RIGHT.inq_drpt_day,3),
 ALL);
InqCount := COUNT(Inquiry) - COUNT(DedupedInqs);
OUTPUT(person(InqCount >0),{InqCount});

See Also: SORT, ROLLUP, TABLE, FUNCTION Structure

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

172

DEFINE
DEFINE(pattern, symbol)

pattern The name of a RULE parsing pattern.

symbol A string constant specifying the name to use in the USE option on a PARSE
function or the USE function in a RULE parsing pattern.

Return: DEFINE creates a RULE pattern.

The DEFINE function defines a symbol for the specified pattern that may be forward referenced in previously defined
parsing pattern attributes. This is the only type of forward reference allowed in ECL.

Example:

RULE a := USE('symbol');
 //uses the 'symbol'pattern defined later - b
RULE b := 'pattern';
 //defines a rule pattern
RULE s := DEFINE(b,'symbol');
 //associate the “b” rule with the
 //'symbol' for forward reference by rule “a”

See Also: PARSE, PARSE Pattern Value Types

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

173

DENORMALIZE
DENORMALIZE(parentrecset, childrecset, condition, transform [,LOCAL] [,NOSORT])

DENORMALIZE(parentrecset, childrecset, condition, GROUP, transform [,LOCAL] [,NOSORT])

parentrecset The set of parent records to process, already in the format that will contain the denormalized
parent and child records.

childrecset The set of child records to process.

condition An expression that specifies how to match records between the parentrecset and childrecset.

transform The TRANSFORM function to call.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

NOSORT Optional. Specifies the operation is performed without sorting the parentrecset or childrecset —
both must already be sorted so matching records in both are in order. This allows programmer
control of the order of the child records.

GROUP Specifies grouping the childrecset records based on the join condition so all the related child
records are passed as a dataset parameter to the transform.

Return: DENORMALIZE returns a record set.

The DENORMALIZE function is used to form a combined record out of a parent and any number of children. It acts
very similar to a JOIN except that where JOIN with one parent and three children would call the transform three times
and produce three outputs, DENORMALIZE calls the transform three times where the input to the first transform is
the parent and one child, the input to the second transform is the output of the first transform and another child, and
the input to the third transform is the output from the second transform and the remaining child. Also like JOIN, the
order in which the childrecset records are sent to the transform is undefined.

Because DENORMALIZE is basically a specialized form of JOIN, the various join types (LEFT OUTER, RIGHT
OUTER, FULL OUTER, LEFT ONLY, RIGHT ONLY, FULL ONLY) are also available for use on DENORMALIZE
and act just as they do with JOIN.

DENORMALIZE TRANSFORM Function Requirements
For form one, the transform function must take at least two parameters: a LEFT record of the same format as the
combined parentrecset and childrecset (the resulting de-normalized record structure), and a RIGHT record of the same
format as the childrecset. An optional third parameter may be specified: an integer COUNTER specifying the number
of times the transform has been called for the current set of parent/child pairs (defined by the condition values). The
result of the transform function must be a record set of the same format as the LEFT record.

For form two, the transform function must take at least two parameters: a LEFT record of the same format as the
combined parentrecset and childrecset (the resulting de-normalized record structure), and ROWS(RIGHT) dataset of
the same format as the childrecset. The result of the transform function must be a record set of the same format as
the LEFT record.

Example:

Form 1 example:

NormRec := RECORD
 STRING20 thename;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

174

 STRING20 addr;
END;
NamesRec := RECORD
 UNSIGNED1 numRows;
 STRING20 thename;
 STRING20 addr1 := '';
 STRING20 addr2 := '';
 STRING20 addr3 := '';
 STRING20 addr4 := '';
END;
NamesTable := DATASET([{0,'Kevin'},{0,'Liz'},{0,'Mr Nobody'},
 {0,'Anywhere'}], NamesRec);
NormAddrs := DATASET([{'Kevin','10 Malt Lane'},
 {'Liz','10 Malt Lane'},
 {'Liz','3 The cottages'},
 {'Anywhere','Here'},
 {'Anywhere','There'},
 {'Anywhere','Near'},
 {'Anywhere','Far'}],NormRec);
NamesRec DeNormThem(NamesRec L, NormRec R, INTEGER C) := TRANSFORM
 SELF.NumRows := C;
 SELF.addr1 := IF (C=1, R.addr, L.addr1);
 SELF.addr2 := IF (C=2, R.addr, L.addr2);
 SELF.addr3 := IF (C=3, R.addr, L.addr3);
 SELF.addr4 := IF (C=4, R.addr, L.addr4);
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(NamesTable, NormAddrs,
 LEFT.thename = RIGHT.thename,
 DeNormThem(LEFT,RIGHT,COUNTER));
OUTPUT(DeNormedRecs);

Form 2 example:

NormRec := RECORD
 STRING20 thename;
 STRING20 addr;
END;
NamesRec := RECORD
 UNSIGNED1 numRows;
 STRING20 thename;
 DATASET(NormRec) addresses;
END;
NamesTable := DATASET([{0,'Kevin',[]},{0,'Liz',[]},
 {0,'Mr Nobody',[]},{0,'Anywhere',[]}],
 NamesRec);
NormAddrs := DATASET([{'Kevin','10 Malt Lane'},
 {'Liz','10 Malt Lane'},
 {'Liz','3 The cottages'},
 {'Anywhere','Here'},
 {'Anywhere','There'},
 {'Anywhere','Near'},
 {'Anywhere','Far'}],NormRec);
NamesRec DeNormThem(NamesRec L, DATASET(NormRec) R) := TRANSFORM
 SELF.NumRows := COUNT(R);
 SELF.addresses := R;
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(NamesTable, NormAddrs,
 LEFT.thename = RIGHT.thename,
 GROUP,
 DeNormThem(LEFT,ROWS(RIGHT)));
OUTPUT(DeNormedRecs);

NOSORT example:

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

175

MyRec := RECORD
 STRING1 Value1;
 STRING1 Value2;
END;
ParentFile := DATASET([{'A','C'},{'B','B'},{'C','A'}],MyRec);
ChildFile := DATASET([{'A','Z'},{'A','T'},{'B','S'},{'B','Y'},
 {'C','X'},{'C','W'}],MyRec);
MyOutRec := RECORD
 ParentFile.Value1;
 ParentFile.Value2;
 STRING1 CVal2_1 := '';
 STRING1 CVal2_2 := '';
END;
P_Recs := TABLE(ParentFile, MyOutRec);
MyOutRec DeNormThem(MyOutRec L, MyRec R, INTEGER C) := TRANSFORM
 SELF.CVal2_1 := IF(C = 1, R.Value2, L.CVal2_1);
 SELF.CVal2_2 := IF(C = 2, R.Value2, L.CVal2_2);
 SELF := L;
END;
DeNormedRecs := DENORMALIZE(P_Recs, ChildFile,
 LEFT.Value1 = RIGHT.Value1,
 DeNormThem(LEFT,RIGHT,COUNTER),NOSORT);
OUTPUT(DeNormedRecs);
/* DeNormedRecs result set is:
 Rec# Value1 PVal2 CVal2_1 CVal2_2
 1 A C Z T
 2 B B Y S
 3 C A X W
 */

See Also: JOIN, TRANSFORM Structure, RECORD Structure, NORMALIZE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

176

DISTRIBUTE
DISTRIBUTE(recordset)

DISTRIBUTE(recordset, expression [, MERGE(sorts)])

DISTRIBUTE(recordset, index [, joincondition])

DISTRIBUTE(recordset, SKEW(maxskew [, skewlimit]))

recordset The set of records to distribute.

expression An integer expression that specifies how to distribute the recordset, usually using one the HASH
functions for efficiency.

MERGE Specifies the data is redistributed maintaining the local sort order on each node.

sorts The sort expressions by which the data has been locally sorted.

index The name of an INDEX attribute definition, which provides the appropriate distribution.

joincondition Optional. A logical expression that specifies how to link the records in the recordset and the in-
dex. The keywords LEFT and RIGHT may be used as dataset qualifiers for fields in the recordset
and index.

SKEW Specifies the allowable data skew values.

maxskew A floating point number in the range of zero (0.0) to one (1.0) specifying the minimum skew
to allow (0.1=10%).

skewlimit Optional. A floating point number in the range of zero (0.0) to one (1.0) specifying the maximum
skew to allow (0.1=10%).

Return: DISTRIBUTE returns a set of records.

The DISTRIBUTE function re-distributes records from the recordset across all the nodes of the cluster.

“Random” DISTRIBUTE
DISTRIBUTE(recordset)

This form redistributes the recordset “randomly” so there is no data skew across nodes, but without the disadvantages
the RANDOM() function could introduce. This is functionally equivalent to distributing by a hash of the entire record.

Expression DISTRIBUTE
DISTRIBUTE(recordset, expression)

This form redistributes the recordset based on the specified expression, typically one of the HASH functions. Only
the bottom 32-bits of the expression value are used, so either HASH or HASH32 are the optimal choices. Records for
which the expression evaluates the same will end up on the same node. DISTRIBUTE implicitly performs a modulus
operation if an expression value is not in the range of the number of nodes available.

If the MERGE option is specified, the recordset must have been locally sorted by the sorts expressions. This avoids
resorting.

Index-based DISTRIBUTE
DISTRIBUTE(recordset, index [, joincondition])

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

177

This form redistributes the recordset based on the existing distribution of the specified index, where the linkage between
the two is determined by the joincondition. Records for which the joncondition is true will end up on the same node.

Skew-based DISTRIBUTE
DISTRIBUTE(recordset, SKEW(maxskew [, skewlimit]))

This form redistributes the recordset, but only if necessary. The purpose of this form is to replace the use of
DISTRIBUTE(recordset,RANDOM()) to simply obtain a relatively even distribution of data across the nodes. This
form will always try to minimize the amount of data redistributed between the nodes.

The skew of a dataset is calculated as:

MAX(ABS(AvgPartSize-PartSize[node])/AvgPartSize)

If the recordset is skewed less than maxskew then the DISTRIBUTE is a no-op. If skewlimit is specified and the skew
on any node exceeds this, the job fails with an error message (specifying the first node number exceeding the limit),
otherwise the data is redistributed to ensure that the data is distributed with less skew than maxskew.

Example:

MySet1 := DISTRIBUTE(Person); //”random” distribution - no skew
MySet2 := DISTRIBUTE(Person,HASH32(Person.per_ssn));
 //all people with the same SSN end up on the same node
 //INDEX example:
mainRecord := RECORD
 INTEGER8 sequence;
 STRING20 forename;
 STRING20 surname;
 UNSIGNED8 filepos{virtual(fileposition)};
END;
mainTable := DATASET('~keyed.d00',mainRecord,THOR);
nameKey := INDEX(mainTable, {surname,forename,filepos}, 'name.idx');
incTable := DATASET('~inc.d00',mainRecord,THOR);
x := DISTRIBUTE(incTable, nameKey,
 LEFT.surname = RIGHT.surname AND
 LEFT.forename = RIGHT.forename);
OUTPUT(x);

//SKEW example:
Jds := JOIN(somedata,otherdata,LEFT.sysid=RIGHT.sysid);
Jds_dist1 := DISTRIBUTE(Jds,SKEW(0.1));
 //ensures skew is less than 10%
Jds_dist2 := DISTRIBUTE(Jds,SKEW(0.1,0.5));
 //ensures skew is less than 10%
 //and fails if skew exceeds 50% on any node

See Also: HASH32, DISTRIBUTED, INDEX

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

178

DISTRIBUTED
DISTRIBUTED(recordset [, expression])

recordset The set of distributed records.

expression Optional. An expression that specifies how the recordset is distributed.

Return: DISTRIBUTED returns a set of records.

The DISTRIBUTED function is a compiler directive indicating that the records from the recordset are already dis-
tributed across the nodes of the Data Refinery based on the specified expression. Records for which the expression
evaluates the same are on the same node.

If the expression is omitted, the function just suppresses a warning that is sometimes generated that the recordset
hasn't been distributed

Example:

MySet := DISTRIBUTED(Person,HASH32(Person.per_ssn));
 //all people with the same SSN are already on the same node

See Also: HASH32, DISTRIBUTE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

179

DISTRIBUTION
DISTRIBUTION(recordset [, fields] [, NAMED(name)])

recordset The set of records on which to run statistics.

fields Optional. A comma-delimited list of fields in the recordset to which to limit the action. If omitted,
all fields are included.

NAMED Optional. Specifies the result name that appears in the workunit.

name A string constant containing the result label.

The DISTRIBUTION action produces a crosstab report in XML format indicating how many unique records there
are in the recordset for each value in each field in the recordset.

The DECIMAL data type is not supported by this action. You can use a REAL data type instead.

Example:

SomeFile := DATASET([{'C','G'},{'C','C'},{'A','X'},{'B','G'}],
 {STRING1 Value1,STRING1 Value2});
DISTRIBUTION(SomeFile);
/* The result comes back looking like this:
<XML>
<Field name="Value1" distinct="3">
 <Value count="1">A</Value>
 <Value count="1">B</Value>
 <Value count="2">C</Value>
</Field>
<Field name="Value2" distinct="3">
 <Value count="1">C</Value>
 <Value count="2">G</Value>
 <Value count="1">X</Value>
</Field>
</XML>
*/

//**
namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age;
END;

namesTable := DATASET([
 {'Halligan','Kevin',31},
 {'Halligan','Liz',30},
 {'Salter','Abi',10},
 {'X','Z',5}], namesRecord);

DISTRIBUTION(namesTable, surname, forename, NAMED('Stats'));
/* The result comes back looking like this:
<XML>
<Field name="surname" distinct="3">
 <Value count="2">Halligan</Value>
 <Value count="1">X</Value>
 <Value count="1">Salter</Value>
</Field>
<Field name="forename" distinct="4">
 <Value count="1">Abi</Value>
 <Value count="1">Kevin</Value>

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

180

 <Value count="1">Liz</Value>
 <Value count="1">Z</Value>
</Field>
</XML>
*/

//Post-processing the result with PARSE:
x := DATASET(ROW(TRANSFORM({STRING line},
 SELF.line := WORKUNIT('Stats', STRING))));
res := RECORD
 STRING Fieldname := XMLTEXT('@name');
 STRING Cnt := XMLTEXT('@distinct');
END;

out := PARSE(x, line, res, XML('XML/Field'));
out;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

181

EBCDIC
EBCDIC(recordset)

recordset The set of records to process. This may be the name of a dataset or a record set derived from some
filter condition, or any expression that results in a derived record set.

Return: EBCDIC returns a set of records

..

The EBCDIC function returns the recordset with all STRING fields translated from ASCII to EBCDIC.

Example:

EBCDICRecs := EBCDIC(SomeASCIIInput);

See Also: ASCII

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

182

ENTH
ENTH(recordset, numerator [, denominator [, which]] [, LOCAL])

recordset The set of records to sample. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

numerator The number of records to return. The chosen records are evenly spaced from throughout the
recordset.

denominator Optional. The size of each set from which to return numerator number of records. If omitted, the
denominator value is the total number of records in the recordset.

which Optional. An integer specifying the ordinal number of the sample set to return. This is used to
obtain multiple non-overlapping samples from the same recordset. If the numerator is not 1, then
some records may overlap.

LOCAL Optional. Specifies that the sample is extracted on each supercomputer node without regard to
the number of records on other nodes, significantly improving performance if exact results are
not required.

Return: ENTH returns a set of records.

The ENTH function returns a sample set of records from the nominated recordset. ENTH returns numerator number
of records out of each denominator set of records in the recordset. Unless LOCAL is specified, records are picked at
exact intervals across all nodes of the supercomputer.

Example:

MySample1 := ENTH(Person,1,10,1); // 10% (1 out of every 10)
MySample2 := ENTH(Person,15,100,1); // 15% (15 out of every 100)
MySample3 := ENTH(Person,3,4,1); // 75% (3 out of every 4)

SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'},
 {'K'},{'L'},{'M'},{'N'},{'O'},
 {'P'},{'Q'},{'R'},{'S'},{'T'},
 {'U'},{'V'},{'W'},{'X'},{'Y'}],
 {STRING1 Letter});
Set1 := ENTH(SomeFile,2,10,1); // returns E, J, O, T, Y

See Also: CHOOSEN, SAMPLE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

183

ERROR
ERROR [(errormessage | errorcode)] ;

ERROR (errorcode , errormessage) ;

ERROR(datatype [, [errorcode] [, errormessage]]) ;

errormessage Optional. A string constant containing the message to display.

errorcode Optional. An integer constant containing the error number to display.

datatype The value type or name of a RECORD structure. This may use the TYPEOF function.

The ERROR function immediately halts processing on the workunit and displays the errorcode and/or errormessage.
The third form is available for use in contexts where a value type or dataset is required. This function does the same
thing as the FAIL action, but may be used in an expression context, such as within a TRANSFORM function.

Example:

outrec Xform(inrec L, inrec R) := TRANSFORM
 SELF.key := IF(L.key <= R.key, R.key,ERROR('Recs not in order'));
END;

See Also: FAILURE, FAIL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

184

EVALUATE
EVALUATE action
[attrname :=] EVALUATE(expression) ;

[attrname :=] EVALUATE(module [, defname]) ;

attrname Optional. The action name, which turns the action into a definition, therefore not executed until
the attrname is used as an action.

expression The function to call in an action context.

module The module to evaluate.

defname Optional. The name of a specific definition within the module to evaluate. If omitted, all defini-
tions in the module are evaluated.

The first form of the EVALUATE action names an expression (typically a function call) to execute in an action
context. This is mainly useful for calling functions that have side-effects, where you don't care about the return value.

The second form of the EVALUATE action recursively expands the exported definitions of the module and evaluates
them. If a defname is specified, then only that definition is evaluated.

Example:

Form 1 example:

myService := SERVICE
 UNSIGNED4 doSomething(STRING text);
END;

ds := DATASET('MyFile', {STRING20 text} , THOR);

APPLY(ds, EVALUATE(doSomething(ds.text)));
 //calls the doSomething function once for each record in the ds
 // dataset, ignoring the returned values from the function

Form 2 example:

M := MODULE
 EXPORT a := 10;
 EXPORT b := OUTPUT('Hello');
END;

M2 := MODULE
 EXPORT mx := M;
 EXPORT d := OUTPUT('Richard');
END;

EVALUATE(M2);
//produces three results:
// Result_1: 10
// Result_2: Hello
// Result_3: Richard

See Also: APPLY, SERVICE Structure,

EVALUATE function
EVALUATE(onerecord, value)

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

185

onerecord A record set consisting of a single record.

value The value to return. This may be any expression yielding a value.

Return: EVALUATE returns a single value.

The EVALUATE function returns the value evaluated in the context of the onerecord set (which must be a single
record, only). This function typically uses indexing to select a single record for the onerecord recordset. The usage
is to return a value from a specific child record when operating at the parent record's scope level. The advantage that
EVALUATE has over using recordset indexing into a single field is that the value returned can be any expression and
not just a single field from the child dataset.

Accessing Field-level Data in a Specific Record
To access field level data in a specific record, the recordset indexing capability must be used to select a single record.
The SORT function and recordset filters are useful in selecting and ordering the recordset so that the appropriate record
can be selected.

Example:

WorstCard := SORT(Cards,Std.Scoring);
MyValue := EVALUATE(WorstCard[1],Std.Utilization);
 // WorstCard[1] uses indexing to get the first record
 // in the sort order, then evaluates that record
 // returning the Std.Utilization value

ValidBalTrades := trades(ValidMoney(trades.trd_bal));
HighestBals := SORT(ValidBalTrades,-trades.trd_bal);
Highest_HC := EVALUATE(HighestBals[1],trades.trd_hc);
 //return trd_hc field of the trade with the highest balance
 // could also be coded as (using indexing):
 // Highest_HC := HighestBals[1].trades.trd_hc;

OUTPUT(Person,{per_last_name,per_first_name,Highest_HC});
 //output that Highest_HC for each person
 //This output operates at the scope of the Person record
 // EVALUATE is needed to get the value from a Trades record
 // because Trades is a Child of Person

IsValidInd := trades.trd_ind_code IN ['FM','RE'];
IsMortgage := IsValidInd OR trades.trd_rate = 'G';
SortedTrades := SORT(trades(ValidDate(trades.trd_dopn),isMortgage),
 trades.trd_dopn_mos);
CurrentRate := MAP(~EXISTS(SortedTrades) => ' ',
 EVALUATE(SortedTrades[1], trades.trd_rate));

OUTPUT(person,{CurrentRate});

See Also: SORT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

186

EVENT
EVENT(event , subtype)

event A case-insensitive string constant naming the event to trap.

subtype A case-insensitive string constant naming the specific type of event to trap. This may contain *
and ? to wildcard-match the event's sub-type.

Return: EVENT returns a single event.

The EVENT function returns a trigger event, which may be used within the WHEN workflow service or the WAIT
and NOTIFY actions.

Example:

IMPORT STD;
MyEventName := 'MyFileEvent';
MyFileName := 'test::myfile';

IF (STD.File.FileExists(MyFileName),
 STD.File.DeleteLogicalFile(MyFileName));
 //deletes the file if it already exists

STD.File.MonitorLogicalFileName(MyEventName,MyFileName);
 //sets up monitoring and the event name
 //to fire when the file is found

OUTPUT('File Created') : WHEN(EVENT(MyEventName,'*'),COUNT(1));
 //this OUTPUT occurs only after the event has fired

afile := DATASET([{ 'A', '0'}], {STRING10 key,STRING10 val});
OUTPUT(afile,,MyFileName);
 //this creates a file that the DFU file monitor will find
 //when it periodically polls

//**********************************
EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
END;
BUILD(teenagers): WHEN(events.dailyAtMidnight);
BUILD(oldies) : WHEN(events.dailyAt(6));

See Also: EVENTNAME, EVENTEXTRA, CRON, WHEN, WAIT, NOTIFY

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

187

EVENTNAME
EVENTNAME

Return: EVENTNAME returns a single string value.

EVENTNAME returns the name of the trigger event.

Example:

doMyService := FUNCTION
 OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
 NOTIFY(EVENT('MyServiceComplete',
 '<Event><returnTo>FRED</returnTo></Event>'),
 EVENTEXTRA('returnTo'));
 RETURN EVENTEXTRA('returnTo');
END;

doMyService : WHEN('MyService');

// and a call
NOTIFY('MyService',
 '<Event><returnTo>'+WORKUNIT+'</returnTo></Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

See Also: EVENT, EVENTEXTRA, CRON, WHEN, WAIT, NOTIFY

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

188

EVENTEXTRA
EVENTEXTRA(tag)

Return: EVENTEXTRA returns a single string value.

The EVENTEXTRA function returns the contents of the tag from the XML text in the EVENT function's second
parameter.

Example:

doMyService := FUNCTION
 OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
 NOTIFY(EVENT('MyServiceComplete',
 '<Event><returnTo>FRED</returnTo></Event>'),
 EVENTEXTRA('returnTo'));
 RETURN EVENTEXTRA('returnTo');
END;

doMyService : WHEN('MyService');

// and a call
NOTIFY('MyService',
 '<Event><returnTo>'+WORKUNIT+'</returnTo></Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

See Also: EVENT, EVENTNAME, CRON, WHEN, WAIT, NOTIFY

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

189

EXISTS
EXISTS(recordset [, KEYED])

EXISTS(valuelist)

recordset The set of records to process. This may be the name of an index, a dataset, or a record set derived
from some filter condition, or any expression that results in a derived record set.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions. This may also be a SET of values.

Return: EXISTS returns a single BOOLEAN value.

The EXISTS function returns true if the number of records in the specified recordset is > 0, or the valuelist is populated.
This is most commonly used to detect whether a filter has filtered out all the records.

When checking for an empty recordset, use the EXISTS(recordset) function instead of the expression:
COUNT(recordset) > 0. Using EXISTS results in more efficient processing and better performance under those cir-
cumstances.

Example:

MyBoolean := EXISTS(Publics(pub_type = 'B'));
TradesExistPersons := Person(EXISTS(Trades));
NoTradesPerson := Person(NOT EXISTS(Trades));

MinVal2 := EXISTS(4,8,16,2,1); //returns TRUE
SetVals := [4,8,16,2,1];
MinVal3 := EXISTS(SetVals); //returns TRUE
NullSet := [];
MinVal3 := EXISTS(NullSet); //returns FALSE

See Also: DEDUP, Record Filters

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

190

EXP
EXP(n)

n The real number to evaluate.

Return: EXP returns a single real value.

The EXP function returns the natural exponential value of the parameter (en). This is the opposite of the LN function.

Example:

MyPI := EXP(3.14159);
Interim := ROUND(1000 * (EXP(MyPI)/(1 + EXP(MyPI))));

See Also: LN, SQRT, POWER

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

191

FAIL
[attrname :=] FAIL [(errormessage | errorcode)] ;

[attrname :=] FAIL(errorcode , errormessage) ;

[attrname :=] FAIL(datatype [, [errorcode] [, errormessage]]) ;

attrname Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attrname is used as an action.

errormessage Optional. A string constant containing the message to display.

errorcode Optional. An integer constant containing the error number to display.

datatype The value type, name of a RECORD structure, DATASET, or DICTIONARY to emulate.

The FAIL action immediately halts processing on the workunit and displays the errorcode and/or errormessage. The
third form is available for use in contexts where a value type or dataset is required. FAIL may not be used in an
expression context (such as within a TRANSFORM)—use the ERROR function for those situations.

Example:

IF(header.version <> doxie.header_version_new,
 FAIL('Mismatch -- header.version vs. doxie.header_version_new.'));

FailedJob := FAIL('ouch, it broke');
sPeople := SORT(Person,Person.per_first_name);
nUniques := COUNT(DEDUP(sPeople,Person.per_first_name AND
 Person.address))
 : FAILURE(FailedJob);
MyRecSet := IF(EXISTS(Person),Person,
 FAIL(Person,99,’Person does not exist!!’));

See Also: FAILURE, ERROR

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

192

FAILCODE
FAILCODE

The FAILCODE function returns the last failure code, for use in the FAILURE workflow service or in the TRANS-
FORM structure referenced in the ONFAIL option of SOAPCALL.

Example:

SPeople := SORT(Person,Person.per_first_name);
nUniques := COUNT(DEDUP(sPeople,Person.per_first_name AND
 Person.address))
:FAILURE(Email.simpleSend(SystemsPersonnel,
SystemsPersonel.email,FAILCODE));

See Also: FAILURE, FAILMESSAGE, SOAPCALL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

193

FAILMESSAGE
FAILMESSAGE [(tag)]

tag A string constant defining the name of XML tag containing the text to return, typically extra in-
formation returned by SOAPCALL. If omitted, the default is ‘text.’

The FAILMESSAGE function returns the last failure message for use in the FAILURE workflow service or the
TRANSFORM structure referenced in the ONFAIL option of SOAPCALL.

Example:

SPeople := SORT(Person,Person.per_first_name);
nUniques := COUNT(DEDUP(sPeople,Person.per_first_name ANDPerson.address))
:FAILURE(Email.simpleSend(SystemsPersonnel,
 SystemsPersonel.email,FAILMESSAGE));

See Also: RECOVERY, FAILCODE, SOAPCALL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

194

FETCH
FETCH(basedataset, index, position [, transform] [, LOCAL])

basedataset The base DATASET attribute to process. Filtering is not allowed.

index The INDEX attribute that provides keyed access into the basedataset. This will typically have
a filter expression.

position An expression that provides the means of locating the correct record in the basedataset (usually
the field within the index containing the fileposition value).

transform The TRANSFORM function to call for each record fetched from the basedataset. If omitted,
FETCH returns a set containing all fields from both the basedataset and index, with the second
of any duplicate named fields removed.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

Return: FETCH returns a record set.

The FETCH function processes through all records in the index in the order specified by the index, fetching each
related record from the basedataset and performing the transform function.

The index will typically have a filter expression to specify the exact set of records to return from the basedataset. If
the filter expression defines a single record in the basedataset, FETCH will return just that one record. See KEYED/
WILD for a discussion of INDEX filtering.

FETCH TRANSFORM Function Requirements
The transform function must take up to two parameters: a LEFT record that must be of the same format as the base-
dataset, and an optional RIGHT record that that must be of the same format as the index. The optional second para-
meter is useful in those instances where the index contains information not present in the recordset.

Example:

PtblRec := RECORD
 STRING2 State := Person.per_st;
 STRING20 City := Person.per_full_city;
 STRING25 Lname := Person.per_last_name;
 STRING15 Fname := Person.per_first_name;
END;

PtblOut := OUTPUT(TABLE(Person,PtblRec),,'RTTEMP::TestFetch');
Ptbl := DATASET('RTTEMP::TestFetch',
 {PtblRec,UNSIGNED8 __fpos {virtual(fileposition)}},
 FLAT);

Bld := BUILD(Ptbl,
 {state,city,lname,fname,__fpos},
 'RTTEMPkey::TestFetch');

AlphaInStateCity := INDEX(Ptbl,
 {state,city,lname,fname,__fpos},
 'RTTEMPkey::TestFetch');

TYPEOF(Ptbl) copy(Ptbl l) := TRANSFORM
 SELF := l;
END;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

195

AlphaPeople := FETCH(Ptbl,
 AlphaInStateCity(state='FL',
 city ='BOCA RATON',
 Lname='WIK',
 Fname='PICHA'),
 RIGHT.__fpos,
 copy(LEFT));

OutFile := OUTPUT(CHOOSEN(AlphaPeople,10));
SEQUENTIAL(PtblOut,Bld,OutFile)

//NOTE the use of a filter on the index file. This is an important
// use of standard filtering technique in conjunction with indexing
// to achieve optimal “random” access into the base record set

See Also: TRANSFORM Structure, RECORD Structure, BUILDINDEX, INDEX, KEYED/WILD

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

196

FROMJSON
FROMJSON(record, jsonstring)

record The RECORD structure to produce. Each field should specify the XPATH to the data in the
jsonstring that it should hold. If omitted, the lower-cased field names are used.

jsonstring A string containing the JSON to convert.

Return: FROMJSON returns a single row (record).

The FROMJSON function returns a single row (record) in the record format from the specified jsonstring. This may
be used anywhere a single row can be used (similar to the ROW function).

Example:

namesRec := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
x := '{"FName": "George" , "LName": "Jetson", "EmpID": 42}';
rec := FROMJSON(namesRec,x);
OUTPUT(rec);

See Also: ROW, TOJSON

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

197

FROMUNICODE
FROMUNICODE(string, encoding)

string The UNICODE string to translate.

encoding The encoding codepage (supported by IBM’s ICU) to use for the translation.

Return: FROMUNICODE returns a single DATA value.

The FROMUNICODE function returns the string translated from the specified encoding to a DATA value.

Example:

DATA5 x := FROMUNICODE(u'ABCDE','UTF-8'); //results in 4142434445

See Also: TOUNICODE, UNICODEORDER

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

198

FROMXML
FROMXML(record, xmlstring)

record The RECORD structure to produce. Each field must specify the XPATH to the data in the xml-
string that it should hold.

xmlstring A string containing the XML to convert.

Return: FROMXML returns a single row (record).

The FROMXML function returns a single row (record) in the record format from the specified xmlstring. This may
be used anywhere a single row can be used (similar to the ROW function).

Example:

namesRec := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
x := '<Row><FName>George</FName><LName>Jetson</LName><EmpID>42</EmpID></Row>';

rec := FROMXML(namesRec,x);
OUTPUT(rec);

See Also: ROW, TOXML

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

199

GETENV
GETENV(name [, default])

name A string constant containing the name of the environment variable.

default Optional. A string constant containing the default value to use if the environment variable does
not exist.

Return: GETENV returns a STRING value.

The GETENV function returns the value of the named environment variable. If the environment variable does not
exist or contains no value, the default value is returned.

Example:

g1 := GETENV('namesTable');
g2 := GETENV('myPort','25');

OUTPUT(g1);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

200

GLOBAL
GLOBAL(expression [, FEW | MANY])

expression The expression to evaluate at a global scope.

FEW Optional. Indicates that the expression will result in fewer than 10,000 records. This allows op-
timization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in many records.

Return: GLOBAL may return scalar values or record sets.

The GLOBAL function evaluates the expression at a global scope, similar to what the GLOBAL workflow service
does but without the need to define a separate attribute.

Example:

IMPORT doxie;
besr := doxie.best_records;
ssnr := doxie.ssn_records;

//**** Individual record defs
recbesr := RECORDOF(besr);
recssnr := RECORDOF(ssnr);

//**** Monster record def
rec := RECORD, MAXLENGTH(doxie.maxlength_report)
 DATASET(recbesr) best_information_children;
 DATASET(recssnr) ssn_children;
END;
nada := DATASET([0], {INTEGER1 a});
rec tra(nada l) := TRANSFORM
 SELF.best_information_children := GLOBAL(besr);
 SELF.ssn_children := GLOBAL(ssnr);
END;
EXPORT central_records := PROJECT(nada, tra(left));

See Also: GLOBAL Workflow Service

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

201

GRAPH
GRAPH(recordset , iterations , processor)

recordset The initial set of records to process.

iterations The number of times to call the processor function.

processor The function attribute to process the input. This function may use the following as arguments:

ROWSET(LEFT) Specifies the set of input datasets, which may be indexed
 to specify the result set from any specific iteration —
 ROWSET(LEFT)[0] indicates the initial input recordset while
 ROWSET(LEFT)[1] indicates the result set from the first
 iteration. This may also be used as the first parameter
 to the RANGE function to specify a set of datasets
 (allowing the graph to efficiently process N-ary merge/join
 arguments).

COUNTER Specifies an INTEGER parameter for the graph iteration number.

Return: GRAPH returns the record set result of the last of the iterations.

The GRAPH function is similar to the LOOP function, but it executes as though all the iterations of the processor
call were expanded out, removing any branches that can't be executed, and then joined together. The resulting graph
is as efficient as if the graph had been expanded out by hand.

Example:

namesRec := RECORD
 STRING20 lname;
 STRING10 fname;
 UNSIGNED2 age := 25;
 UNSIGNED2 ctr := 0;
END;
namesTable2 := DATASET([{'Flintstone','Fred',35},
 {'Flintstone','Wilma',33},
 {'Jetson','Georgie',10},
 {'Mr. T','Z-man'}], namesRec);

loopBody(SET OF DATASET(namesRec) ds, UNSIGNED4 c) :=
 PROJECT(ds[c-1], //ds[0]=original input
 TRANSFORM(namesRec,
 SELF.age := LEFT.age+c; //c is graph COUNTER
 SELF.ctr := COUNTER; //PROJECT’s COUNTER
 SELF := LEFT));

g1 := GRAPH(namesTable2,10,loopBody(ROWSET(LEFT),COUNTER));

OUTPUT(g1);

See Also: LOOP, RANGE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

202

GROUP
GROUP(recordset [, breakcriteria [, ALL]] [, LOCAL])

recordset The set of records to fragment.

breakcriteria Optional. A comma-delimited list of expressions or key fields in the recordset that specifies
how to fragment the recordset. You may use the keyword RECORD to indicate all fields in the
recordset, and/or you may use the keyword EXCEPT to list non-group fields in the structure.
You may also use the keyword ROW to indicate each record in the recordset is a separate group.
If omitted, the recordset is ungrouped from any previous grouping.

ALL Optional. Indicates the breakcriteria is applied without regard to any previous order. If omitted,
GROUP assumes the recordset is already sorted in breakcriteria order.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

Return: GROUP returns a record set.

The GROUP function fragments a recordset into a set of sets. This allows aggregations and other operations (such as
ITERATE, DEDUP, ROLLUP, SORT and others) to occur within defined subsets of the data—the operation executes
on each subset, individually. This means that the boundary condition code written in the TRANSFORM function for
those functions that use them will be different than it would be for a recordset that has simply been SORTed.

The recordset must be sorted by the same elements as the breakcriteria if the ALL option is not specified. The max-
imum size allowed for any one subgroup is 64 Mb and subgroups never span nodes; if the breakcriteria results in a
subgroup larger than 64 Mb, an error occurs.

The recordset gets ‘ungrouped’ by use in a TABLE function, by the JOIN function in some circumstances (see JOIN),
by UNGROUP, or by another GROUP function with the second parameter omitted.

Example:

MyRec := RECORD
 STRING20 Last;
 STRING20 First;
END;
SortedSet := SORT(Person,Person.last_name); //sort by last name
GroupedSet := GROUP(SortedSet,last_name); //then group them

SecondSort := SORT(GroupedSet,Person.first_name);
 //sorts by first name within each last name group
 // this is a “sort within group”

UnGroupedSet := GROUP(GroupedSet); //ungroup the dataset
MyTable := TABLE(SecondSort,MyRec); //create table of sorted names

See Also: REGROUP, COMBINE, UNGROUP, EXCEPT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

203

HASH
HASH(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASH returns a single value.

The HASH function returns a 32-bit hash value derived from all the values in the expressionlist. Trailing spaces are
trimmed from string (or UNICODE) fields before the value is calculated (casting to DATA prevents this).

Example:

MySet := DISTRIBUTE(Person,HASH(Person.per_ssn));
 //people with the same SSN go to same Data Refinery node

See Also: DISTRIBUTE, HASH32, HASH64, HASHCRC, HASHMD5

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

204

HASH32
HASH32(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASH32 returns a single value.

The HASH32 function returns a 32-bit FNV (Fowler/Noll/Vo) hash value derived from all the values in the expres-
sionlist. This uses a hashing algorithm that is faster and less likely than HASH to return the same values from different
data. Trailing spaces are trimmed from string (or UNICODE) fields before the value is calculated (casting to DATA
prevents this).

Example:

MySet := DISTRIBUTE(Person,HASH32(Person.per_ssn));
 //people with the same SSN go to same Data Refinery node

See Also: DISTRIBUTE, HASH, HASH64, HASHCRC, HASHMD5

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

205

HASH64
HASH64(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASH64 returns a single value.

The HASH64 function returns a 64-bit FNV (Fowler/Noll/Vo) hash value derived from all the values in the expres-
sionlist. Trailing spaces are trimmed from string (or UNICODE) fields before the value is calculated (casting to DATA
prevents this).

Example:

OUTPUT(Person,{per_ssn,HASH64(per_ssn)});
 //output SSN and its 64-bit hash value

See Also: DISTRIBUTE, HASH, HASH32, HASHCRC, HASHMD5

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

206

HASHCRC
HASHCRC(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASHCRC returns a single value.

The HASHCRC function returns a CRC (cyclical redundancy check) value derived from all the values in the expres-
sionlist.

Example:

OUTPUT(Person,{per_ssn,HASHCRC(per_ssn)});
 //output SSN and its CRC hash value

See Also: DISTRIBUTE, HASH, HASH32, HASH64, HASHMD5

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

207

HASHMD5
HASHMD5(expressionlist)

expressionlist A comma-delimited list of values.

Return: HASHMD5 returns a single DATA16 value.

The HASHMD5 function returns a 128-bit hash value derived from all the values in the expressionlist, based on the
MD5 algorithm developed by Professor Ronald L. Rivest of MIT. Unlike other hashing functions, trailing spaces are
NOT trimmed before the value is calculated.

Example:

OUTPUT(Person,{per_ssn,HASHMD5(per_ssn)});
 //output SSN and its 128-bit hash value

See Also: DISTRIBUTE, HASH, HASH32, HASH64, HASHCRC

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

208

HAVING
HAVING(groupdataset, expression)

groupdataset The name of a GROUPed record set.

expression The logical expression by which to filter the groups.

Return: HAVING returns a GROUPed record set.

The HAVING function returns a GROUPed record set containing just those groups for which the expression is true.
This is similar to the HAVING clause in SQL.

Example:

MyGroups := GROUP(SORT(Person,lastname),lastname);
 //group by last name
Filtered := HAVING(MyGroups,COUNT(ROWS(LEFT)) > 10);
 //filter out the small groups

See Also: GROUP

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

209

HTTPCALL
result := HTTPCALL(url, httpmethod, responsemimetype, outstructure [, options]);

result The definition name for the resulting recordset.

url A string containing the URL that hosts the service to invoke. This may contain para-
meters to the service.

httpmethod A string containing the HTTP Method to invoke. Valid methods are: "GET"

responsemimetype A string containing the Response MIME type to use. Valid types are: "text/xml"

outstructure A RECORD structure containing the output field definitions. For an XML-based re-
sponsemimetype these should use XPATH to specify the exact data path.

options A comma-delimited list of optional specifications from the list below.

HTTPCALL is a function that calls a REST service.

Valid options are:

RETRY(count) Specifies re-attempting the call count number of times if non-fatal errors occur. If
omitted, the default is three (3).

TIMEOUT(period) Specifies the amount of time to attempt the read before failing. The period is a real
number where the integer portion specifies seconds. Setting to zero (0) indicates
waiting forever. If omitted, the default is three hundred (300).

TIMELIMIT(period) Specifies the total amount of time allowed for the HTTPCALL. The period is a
real number where the integer portion specifies seconds. If omitted, the default is
zero (0) indicating no limit.

XPATH(xpath) Specifies the path used to access rows in the output. If omitted, the default is: 'ser-
viceResponse/Results/Result/Dataset/Row'.

ONFAIL(transform) Specifies either the transform function to call if the service fails for a particular
record, or the keyword SKIP. The TRANSFORM function must produce a resul-
type the same as the outstructure and may use FAILCODE and/or FAILMESSAGE
to provide details of the failure.

TRIM Specifies all trailing spaces are removed from strings before output.

Example:

worldBankSource := RECORD
 STRING name {XPATH('name')}
END;

OutRec1 := RECORD
 DATASET(worldBankSource) Fred{XPATH('/source')};
END;

raw := HTTPCALL('http://api.worldbank.org/sources', 'GET', 'text/xml', OutRec1);

OUTPUT(raw);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

210

IF
IF(expression, trueresult [, falseresult])

expression A conditional expression.

trueresult The result to return when the expression is true. This may be any expression or action.

falseresult The result to return when the expression is false. This may be any expression or action. This may
be omitted only if the result is an action.

Return: IF returns a single value, set, recordset, or action.

The IF function evaluates the expression (which must be a conditional expression with a Boolean result) and returns
either the trueresult or falseresult based on the evaluation of the expression. Both the trueresult and falseresult must
be the same type (i.e. both strings, or both recordsets, or ...). If the trueresult and falseresult are strings, then the size
of the returned string will be the size of the resultant value. If subsequent code relies on the size of the two being
the same, then a type cast to the required size may be required (typically to cast an empty string to the proper size so
subsequent string indexing will not fail).

Example:

MyDate := IF(ValidDate(Trades.trd_dopn),Trades.trd_dopn,0);
 // in this example, 0 is the false value and
 // Trades.trd_dopn is the True value returned

MyTrades := IF(person.per_sex = 'Male',
 Trades(trd_bal<100),
 Trades(trd_bal>1000));
 // return low balance trades for men and high balance
 // trades for women

MyAddress := IF(person.gender = 'M',
 cleanAddress182(person.address),
 (STRING182)'');
 //cleanAddress182 returns a 182-byte string
 // so casting the empty string false result to a
 // STRING182 ensures a proper-length string return

See Also: IFF, MAP, EVALUATE, CASE, CHOOSE, SET

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

211

IFF
IFF(expression, trueresult [, falseresult])

expression A conditional expression.

trueresult The result to return when the expression is true. This may be any expression or action.

falseresult The result to return when the expression is false. This may be any expression or action. This may
be omitted only if the result is an action.

Return: IF returns a single value, set, recordset, or action.

The IFF function performs the same functionality as IF, but ensures that an expression containing complex boolean
logic is evaluated exactly as it appears.

See Also: IF, MAP, EVALUATE, CASE, CHOOSE, SET

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

212

IMPORT
resulttype funcname (parameterlist) := IMPORT(language, function);

resulttype The ECL return value type of the function.

funcname The ECL definition name of the function.

parameterlist The parameters to pass to the function.

language Specifies the name of the external programming language whose code you wish to embed
in your ECL. A language support module for that language must have been installed in
your plugins directory. Modules are provided for languages such as Java, R, Javascript,
and Python. You can write your own pluggable language support module for any language
not already supported by using the supplied ones as examples or starting points.

function A string constant containing the name of the function to include.

The IMPORT declaration allows you to call existing code written in the external language. This may be used to call
Java or Python code, but is not usable with Javascript or R code (use the EMBED structure instead). Java code must be
placed in a .java file and compiled using the javac compiler in the usual way. All Java classes used must be thread safe.

WARNING: This feature could create memory corruption and/or security issues, so great care and forethought
are advised—consult with Technical Support before using.

Example:

IMPORT Python;

INTEGER addthree(INTEGER p) := IMPORT(Python, 'python_mod_name.addThree');

//Java Example setting the classpath
IMPORT java;
STRING jcat(STRING a, STRING b) := IMPORT(java, 'JavaCat.cat:(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;'
 : classpath('/opt/HPCCSystems/classes/'));
jcat('I',' concatenate');

See Also: IMPORT, EMBED Structure

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

213

INTFORMAT
INTFORMAT(expression, width, mode)

expression The expression that specifies the integer value to format.

width The size of string in which to right-justify the value.

mode The format type: 0 = leading blank fill, 1 = leading zero fill.

Return: INTFORMAT returns a single value.

The INTFORMAT function returns the value of the expression formatted as a right-justified string of width characters.

Example:

val := 123456789;
OUTPUT(INTFORMAT(val,20,1));
 //formats as '00000000000123456789'
OUTPUT(INTFORMAT(val,20,0));
 //formats as ' 123456789'

See Also: REALFORMAT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

214

ISVALID
ISVALID(field)

field The name of a DECIMAL, REAL, or alien data TYPE field.

Return: ISVALID returns a single Boolean value.

The ISVALID function validates that the field contains a legal value. If the contents are not valid for the declared value
type of the field (such as hexadecimal values greater than 9 in a DECIMAL), ISVALID returns FALSE, otherwise
it returns TRUE.

Example:

MyVal := IF(ISVALID(Infile.DecimalField),Infile.DecimalField,0);
//ISVALID returns TRUE if the value is legal

See Also: TYPE Structure, DECIMAL, REAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

215

ITERATE
ITERATE(recordset, transform [, LOCAL])

recordset The set of records to process.

transform The TRANSFORM function to call for each record in the recordset.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, without requiring
interaction with all other nodes to acquire data; the operation maintains the distribution of any previous DISTRIBUTE.

Return: ITERATE returns a record set.

The ITERATE function processes through all records in the recordset one pair of records at a time, performing the
transform function on each pair in turn. The first record in the recordset is passed to the transform as the first right
record, paired with a left record whose fields are all blank or zero. Each resulting record from the transform becomes
the left record for the next pair.

TRANSFORM Function Requirements - ITERATE
The transform function must take at least two parameters: LEFT and RIGHT records that must both be of the same
format as the resulting recordset. An optional third parameter may be specified: an integer COUNTER specifying the
number of times the transform has been called for the recordset or the current group in the recordset (see the GROUP
function).

Example:

ResType := RECORD
 INTEGER1 Val;
 INTEGER1 Rtot;
END;

Records := DATASET([{1,0},{2,0},{3,0},{4,0}],ResType);
/* these are the recs going in:
Val Rtot
 1 0
 2 0
 3 0
 4 0 */

ResType T(ResType L, ResType R) := TRANSFORM
 SELF.Rtot := L.Rtot + R.Val;
 SELF := R;
END;

MySet1 := ITERATE(Records,T(LEFT,RIGHT));

/* these are the recs coming out:
Val Rtot
 1 1
 2 3
 3 6
 4 10 */

//The following code outputs a running balance:
Run_bal := RECORD
 Trades.trd_bal;
 INTEGER8 Balance := 0;
END;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

216

TradesBal := TABLE(Trades,Run_Bal);

Run_Bal DoRoll(Run_bal L, Run_bal R) := TRANSFORM
 SELF.Balance := L.Balance + IF(validmoney(R.trd_bal),R.trd_bal,0);
 SELF := R;
END;

MySet2 := ITERATE(TradesBal,DoRoll(LEFT,RIGHT));

See Also: TRANSFORM Structure, RECORD Structure, ROLLUP

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

217

JOIN
JOIN(leftrecset, rightrecset, joincondition [, transform] [, jointype] [, joinflags])

JOIN(setofdatasets, joincondition, transform, SORTED(fields) [, jointype])

leftrecset The left set of records to process.

rightrecset The right set of records to process. This may be an INDEX.

joincondition An expression specifying how to match records in the leftrecset and rightrecset or setofdatasets
(see Matching Logic discussions below). In the expression, the keyword LEFT is the dataset
qualifier for fields in the leftrecset and the keyword RIGHT is the dataset qualifier for fields in
the rightrecset.

transform Optional. The TRANSFORM function to call for each pair of records to process. If omitted,
JOIN returns all fields from both the leftrecset and rightrecset, with the second of any duplicate
named fields removed.

jointype Optional. An inner join if omitted, else one of the listed types in the JOIN Types section below.

joinflags Optional. Any option (see the JOIN Options section below) to specify exactly how the JOIN
operation executes.

setofdatasets The SET of recordsets to process ([idx1,idx2,idx3]), typically INDEXes, which all must have
the same format.

SORTED Specifies the sort order of records in the input setofdatasets and also the output sort order of
the result set.

fields A comma-delimited list of fields in the setofdatasets, which must be a subset of the input sort
order. These fields must all be used in the joincondition as they define the order in which the
fields are STEPPED.

Return: JOIN returns a record set.

The JOIN function produces a result set based on the intersection of two or more datasets or indexes (as determined
by the joincondition).

JOIN Two Datasets
JOIN(leftrecset, rightrecset, joincondition [, transform] [, jointype] [, joinflags])

The first form of JOIN processes through all pairs of records in the leftrecset and rightrecset and evaluates the
condition to find matching records. If the condition and jointype specify the pair of records qualifies to be processed,
the transform function executes, generating the result.

JOIN dynamically sorts/distributes the leftrecset and rightrecset as needed to perform its operation based on the con-
dition specified, therefore the output record set is not guaranteed to be in the same order as the input record
sets. If JOIN does do a dynamic sort of its input record sets, that new sort order cannot be relied upon to exist past
the execution of the JOIN. This principle also applies to any GROUPing—the records are automatically "un-grouped"
as needed except under the following circumstances:

* For LOOKUP and ALL joins, the GROUPing and sort order of the leftrecset are preserved.

* For KEYED joins the GROUPing (but not the sort order) of the leftrecset is preserved.

Matching Logic - JOIN
The record matching joincondition is processed internally as two parts:

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

218

"equality" (hard
match)

All the simple "LEFT.field = RIGHT.field" logic that defines matching records. For JOINs that
use keys, all these must be fields in the key to qualify for inclusion in this part. If there is no
"equality" part to the joincondition logic, then you get a "JOIN too complex" error.

"non-
equality" (soft
match)

All other matching criteria in the joincondition logic, such as "LEFT.field > RIGHT.field" ex-
pressions or any OR logic that may be involved with the final determination of which leftrecset
and rightrecset records actually match.

This internal logic split allows the JOIN code to be optimized for maximum efficiency—first the "equality" logic is
evaluated to provide an interim result that is then evaluated against any "non-equality" in the matching joincondition.

Options
The following joinflags options may be specified to determine exactly how the JOIN executes.

[, PARTITION LEFT | PARTITION RIGHT | [MANY] LOOKUP [FEW]] | GROUPED | ALL | NOSORT
[(which)] | KEYED [(index) [, UNORDERED]] | LOCAL | HASH][, KEEP(n)] [, ATMOST([condition,
] n)] [, LIMIT(value [, SKIP | transform | FAIL])] [, SKEW(limit [, target]) [, THRESHOLD(size)]] [,
PARALLEL][, SMART]

PARTITION LEFT
| RIGHT

Specifies which recordset provides the partition points that determine how the records are
sorted and distributed amongst the supercomputer nodes. PARTITION RIGHT specifies the
rightrecset while PARTITION LEFT specifies the leftrecset. If omitted, PARTITION LEFT
is the default.

[MANY] LOOKUP Specifies the rightrecset is a relatively small file of lookup records that can be fully copied to
every node. If MANY is not present, the rightrecset records bear a Many to 0/1 relationship
with the records in the leftrecset (for each record in the leftrecset there is at most 1 record in
the rightrecset). If MANY is present, the rightrecset records bear a Many to 0/Many relation-
ship with the records in the leftrecset. This option allows the optimizer to avoid unnecessary
sorting of the leftrecset. Valid only for inner, LEFT OUTER, or LEFT ONLY jointypes. The
ATMOST, LIMIT, and KEEP options are supported in conjunction with MANY LOOKUP.

SMART Specifies to use an in-memory lookup when possible, but use a distributed join if the right
dataset is large.

FEW Specifies the LOOKUP rightrecset has few records, so little memory is used, allowing multiple
lookup joins to be included in the same Thor subgraph.

GROUPED Specifies the same action as MANY LOOKUP but preserves grouping. Primarily used in the
rapid Data Delivery Engine. Valid only for inner, LEFT OUTER, or LEFT ONLY jointypes.
The ATMOST, LIMIT, and KEEP options are supported in conjunction with GROUPED.

ALL Specifies the rightrecset is a small file that can be fully copied to every node, which allows the
compiler to ignore the lack of any "equality" portion to the condition, eliminating the "join too
complex" error that the condition would normally produce. If an "equality" portion is present,
the JOIN is internally executed as a MANY LOOKUP. The KEEP option is supported in
conjunction with this option.

NOSORT Performs the JOIN without dynamically sorting the tables. This implies that the leftrecset and/
or rightrecset must have been previously sorted and partitioned based on the fields specified
in the joincondition so that records can be easily matched.

which Optional. The keywords LEFT or RIGHT to indicate the leftrecset or rightrecset has been
previously sorted. If omitted, NOSORT assumes both the leftrecset and rightrecset have been
previously sorted.

KEYED Specifies using indexed access into the rightrecset (see INDEX).

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

219

index Optional. The name of an INDEX into the rightrecset for a full-keyed JOIN (see below). If
omitted, indicates the rightrecset will always be an INDEX (useful when the rightrecset is
passed in as a parameter to a function).

UNORDERED Optional. Specifies the KEYED JOIN operation does not preserve the sort order of the left-
recset.

LOCAL Specifies the operation is performed on each supercomputer node independently, without re-
quiring interaction with all other nodes to acquire data; the operation maintains the distribution
of any previous DISTRIBUTE.

HASH Specifies an implicit DISTRIBUTE of the leftrecset and rightrecset across the supercomputer
nodes based on the joincondition so each node can do its job with local data.

KEEP(n) Specifies the maximum number of matching records (n) to generate into the result set. If omit-
ted, all matches are kept. This is useful where there may be many matching pairs and you
need to limit the number in the result set. KEEP is not supported for RIGHT OUTER, RIGHT
ONLY, LEFT ONLY, or FULL ONLY jointypes.

ATMOST Specifies a maximum number of matching records which, if exceeded, eliminates all those
matches from the result set. This is useful for situations where you need to eliminate
all "too many matches" record pairs from the result set. ATMOST is not supported on
RIGHT ONLY or RIGHT OUTER jointypes. There are two forms: ATMOST(condition,
n) — maximum is computed only for the condition. ATMOST(n) — maximum is com-
puted for the entire joincondition, unless KEYED is used in the joincondition, in which
case only the KEYED expressions are used. When ATMOST is specified (and the JOIN
is not full or half-keyed), the joincondition and condition may include string field com-
parisons that use string indexing with an asterisk as the upper bound, as in this example:
J1 := JOIN(dsL,dsR, LEFT.name[1..*]=RIGHT.name[3..*] AND LEFT.val < RIGHT.val,
T(LEFT,RIGHT), ATMOST(LEFT.name[1..*]=RIGHT.name[3..*],3)); The asterisk indi-
cates matching as many characters as necessary to reduce the number of candidate matches
to below the ATMOST number (n).

condition A portion of the joincondition expression.

n Specifies the maximum number of matches allowed.

LIMIT Specifies a maximum number of matching records which, if exceeded, either fails the job, or
eliminates all those matches from the result set. This is useful for situations where you need to
eliminate all "too many matches" record pairs from the result set. Typically used for KEYED
and "half-keyed" joins (see below), LIMIT differs from ATMOST primarily by its affect on
a LEFT OUTER join, in which a leftrecset record with too many matching records would
be treated as a non-match by ATMOST (the leftrecset record would be in the output with
no matching rightrecset records), whereas LIMIT would either fail the job entirely, or SKIP
the record (eliminating the leftrecset record entirely from the output). If omitted, the default
is LIMIT(10000). The LIMIT is applied to the set of records that meet the the hard match
("equality") portion of the joincondition but before the soft match ("non-equality") portion of
the joincondition is evaluated.

value The maximum number of matches allowed; LIMIT(0) is unlimited.

SKIP Optional. Specifies eliminating the matching records that exceed the maximum value of the
LIMIT result instead of failing the job.

transform Optional. Specifies outputting a single record produced by the transform instead of failing the
workunit (similar to the ONFAIL option of the LIMIT function).

FAIL Optional. Specifies using the FAIL action to configure the error message when the job fails.

SKEW Indicates that you know the data for this join will not be spread evenly across nodes (will be
skewed after both files have been distributed based on the join condition) and you choose to

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

220

override the default by specifying your own limit value to allow the job to continue despite the
skewing. Only valid on non-keyed joins (the KEYED option is not present and the rightrecset
is not an INDEX).

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage of skew
to allow before the job fails (the default is 0.1 = 10%).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired maximum
percentage of skew to allow (the default is 0.1 = 10%).

THRESHOLD Indicates the minimum size for a single part of either the leftrecset or rightrecset before the
SKEW limit is enforced. Only valid on non-keyed joins (the KEYED option is not present
and the rightrecset is not an INDEX).

size An integer value indicating the minimum number of bytes for a single part.

PARALLEL Specifies the leftrecset and rightrecset should be read on separate threads to minimize latency.

The following options are mutually exclusive and may only be used to the exclusion of the others in this list:
PARTITION LEFT | PARTITION RIGHT | [MANY] LOOKUP | GROUPED | ALL | NOSORT | HASH

In addition to this list, the KEYED and LOCAL options are also mutually exclusive with the options listed above,
but not to each other. When both KEYED and LOCAL options are specified, only the INDEX part(s) on each node
are accessed by that node.

Typically, the leftrecset should be larger than the rightrecset to prevent skewing problems (because PARTITION
LEFT is the default behavior). If the LOOKUP or ALL options are specified, the rightrecset must be small enough to
be loaded into memory on every node, and the operation is then implicitly LOCAL. The ALL option is impractical
if the rightrecset is larger than a few thousand records (due to the number of comparisons required). The size of the
rightrecset is irrelevant in the case of "half-keyed" and "full-keyed" JOINs (see the Keyed Join discussion below).

Use SMART when the right side dataset is likely to be small enough to fit in memory, but is not guaranteed to fit.

Keyed Joins
A "full-keyed" JOIN uses the KEYED option and the joincondition must be based on key fields in the index. The join
is actually done between the leftrecset and the index into the rightrecset—the index needs the dataset's record pointer
(virtual(fileposition)) field to properly fetch records from the rightrecset. The typical KEYED join passes only the
rightrecset to the TRANSFORM.

If the rightrecset is an INDEX, the operation is a "half-keyed" JOIN. Usually, the INDEX in a "half-keyed" JOIN
contains "payload" fields, which frequently eliminates the need to read the base dataset. If this is the case, the "payload"
INDEX does not need to have the dataset's record pointer (virtual(fileposition)) field declared. For a "half-keyed" JOIN
the joincondition may use the KEYED and WILD keywords that are available for use in INDEX filters, only.

For both types of keyed join, any GROUPing of the base record sets is left untouched. See KEYED and WILD for
a discussion of INDEX filtering.

Join Logic
The JOIN operation follows this logic:

1. Record distribution/sorting to get match candidates on the same nodes.

The PARTITION LEFT, PARTITION RIGHT, LOOKUP, ALL, NOSORT, KEYED, HASH, and LOCAL options
indicate how this happens. These options are mutually exclusive; only one may be specified, and PARTITION LEFT
is the default. SKEW and THRESHOLD may modify the requested behaviour. LOOKUP also has the additional effect
of deduping the rightrecset by the joincondition.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

221

2. Record matching.

The joincondition, LIMIT, and ATMOST determine how this is done.

3. Determine what matches to pass to transform.

The jointype determines this.

4. Generate output records through the TRANSFORM function.

The implicit or explicit transform parameter determines this.

5. Filter output records with SKIP.

If the transform for a record pair results in a SKIP, then the output record is not counted towards any KEEP option
totals.

6. Limit output records with KEEP.

Any output records for a given leftrecset record over and above the permitted KEEP value are discarded. In a FULL
OUTER join, rightrecset records that match no record are treated as if they all matched different default leftrecset
records (that is, the KEEP counter is reset for each one).

TRANSFORM Function Requirements - JOIN
The transform function must take at least one or two parameters: a LEFT record formatted like the leftrecset, and/or a
RIGHT record formatted like the rightrecset (which may be of different formats). The format of the resulting record
set need not be the same as either of the inputs.

Join Types: Two Datasets
The following jointypes produce the following types of results, based on the records matching produced by the join-
condition:

inner (default) Only those records that exist in both the leftrecset and rightrecset.

LEFT OUTER At least one record for every record in the leftrecset.

RIGHT OUTER At least one record for every record in the rightrecset.

FULL OUTER At least one record for every record in the leftrecset and rightrecset.

LEFT ONLY One record for each leftrecset record with no match in the rightrecset.

RIGHT ONLY One record for each rightrecset record with no match in the leftrecset.

FULL ONLY One record for each leftrecset and rightrecset record with no match in the opposite record set.

Example:

outrec := RECORD
 people.id;
 people.firstname;
 people.lastname;
END;

RT_folk := JOIN(people(firstname[1] = 'R'),
 people(lastname[1] = 'T'),
 LEFT.id=RIGHT.id,
 TRANSFORM(outrec,SELF := LEFT));
OUTPUT(RT_folk);

//*********************** Half KEYED JOIN example:

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

222

peopleRecord := RECORD
 INTEGER8 id;
 STRING20 addr;
END;
peopleDataset := DATASET([{3000,'LONDON'},{3500,'SMITH'},
 {30,'TAYLOR'}], peopleRecord);
PtblRec doHalfJoin(peopleRecord l) := TRANSFORM
 SELF := l;
END;
FilledRecs3 := JOIN(peopleDataset, SequenceKey,
 LEFT.id=RIGHT.sequence,doHalfJoin(LEFT));
FilledRecs4 := JOIN(peopleDataset, AlphaKey,
 LEFT.addr=RIGHT.Lname,doHalfJoin(LEFT));

//******************* Full KEYED JOIN example:
PtblRec := RECORD
 INTEGER8 seq;
 STRING2 State;
 STRING20 City;
 STRING25 Lname;
 STRING15 Fname;
END;
PtblRec Xform(person L, INTEGER C) := TRANSFORM
 SELF.seq := C;
 SELF.State := L.per_st;
 SELF.City := L.per_full_city;
 SELF.Lname := L.per_last_name;
 SELF.Fname := L.per_first_name;
END;
Proj := PROJECT(Person(per_last_name[1]=per_first_name[1]),
 Xform(LEFT,COUNTER));
PtblOut := OUTPUT(Proj,,'~RTTEMP::TestKeyedJoin',OVERWRITE);

Ptbl := DATASET('RTTEMP::TestKeyedJoin',
 {PtblRec,UNSIGNED8 __fpos {virtual(fileposition)}},
 FLAT);
AlphaKey := INDEX(Ptbl,{lname,fname,__fpos},
 '~RTTEMPkey::lname.fname');
SeqKey := INDEX(Ptbl,{seq,__fpos},'~RTTEMPkey::sequence');

Bld1 := BUILD(AlphaKey ,OVERWRITE);
Bld2 := BUILD(SeqKey,OVERWRITE);
peopleRecord := RECORD
 INTEGER8 id;
 STRING20 addr;
END;
peopleDataset := DATASET([{3000,'LONDON'},{3500,'SMITH'},
 {30,'TAYLOR'}], peopleRecord);
joinedRecord := RECORD
 PtblRec;
 peopleRecord;
END;
joinedRecord doJoin(peopleRecord l, Ptbl r) := TRANSFORM
 SELF := l;
 SELF := r;
END;

FilledRecs1 := JOIN(peopleDataset, Ptbl,LEFT.id=RIGHT.seq,
 doJoin(LEFT,RIGHT), KEYED(SeqKey));
FilledRecs2 := JOIN(peopleDataset, Ptbl,LEFT.addr=RIGHT.Lname,
 doJoin(LEFT,RIGHT), KEYED(AlphaKey));
SEQUENTIAL(PtblOut,Bld1,Bld2,OUTPUT(FilledRecs1),OUTPUT(FilledRecs2))

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

223

JOIN Set of Datasets
JOIN(setofdatasets, joincondition, transform, SORTED(fields) [, jointype])

The second form of JOIN is similar to the MERGEJOIN function in that it takes a SET OF DATASETs as its
first parameter. This allows the possibility of joining more than two datasets in a single operation.

Record Matching Logic
The record matching joincondition may contain two parts: a STEPPED condition that may optionally be ANDed with
non-STEPPED conditions. The STEPPED expression contains leading equality expressions of the fields from the
SORTED option (trailing components may be range comparisons if the range values are independent of the LEFT and
RIGHT rows), ANDed together, using LEFT and RIGHT as dataset qualifiers. If not present, the STEPPED condition
is deduced from the fields specified by the SORTED option.

The order of the datasets within the setofdatasets can be significant to the way the joincondition is evaluated. The
joincondition is duplicated between adjacent pairs of datasets, which means that this joincondition:

 LEFT.field = RIGHT.field

when applied against a setofdatasets containing three datasets, is logically equivalent to:

 ds1.field = ds2.field AND ds2.field = ds3.field

TRANSFORM Function Requirements - JOIN setof-
datasets
The transform function must take at least one parameter which must take either of two forms:

LEFT formatted like any of the setofdatasets. This indicates the first dataset in the setofdatasets.

ROWS(LEFT) formatted like any of the setofdatasets. This indicates a record set made up of all records from
any dataset in the setofdatasets that match the joincondition—this may not include all the
datasets in the setofdatasets, depending on which jointype is specified.

The format of the resulting output record set must be the same as the input datasets.

Join Types: setofdatasets
The following jointypes produce the following types of results, based on the records matching produced by the join-
condition:

INNER This is the default if no jointype is specified. Only those records that exist in all datasets in
the setofdatasets.

LEFT OUTER At least one record for every record in the first dataset in the setofdatasets.

LEFT ONLY One record for every record in the first dataset in the setofdatasets for which there is no match
in any of the subsequent datasets.

MOFN(min [,max]) One record for every record with matching records in min number of adjacent datasets within
the setofdatasets. If max is specified, the record is not included if max number of dataset
matches are exceeded.

Example:

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

224

Rec := RECORD,MAXLENGTH(4096)
 STRING1 Letter;
 UNSIGNED1 DS;
 UNSIGNED1 Matches := 0;
 UNSIGNED1 LastMatch := 0;
 SET OF UNSIGNED1 MatchDSs := [];
END;

ds1 := DATASET([{'A',1},{'B',1},{'C',1},{'D',1},{'E',1}],Rec);
ds2 := DATASET([{'A',2},{'B',2},{'H',2},{'I',2},{'J',2}],Rec);
ds3 := DATASET([{'B',3},{'C',3},{'M',3},{'N',3},{'O',3}],Rec);
ds4 := DATASET([{'A',4},{'B',4},{'R',4},{'S',4},{'T',4}],Rec);
ds5 := DATASET([{'B',5},{'V',5},{'W',5},{'X',5},{'Y',5}],Rec);
SetDS := [ds1,ds2,ds3,ds4,ds5];

Rec XF(Rec L,DATASET(Rec) Matches) := TRANSFORM
 SELF.Matches := COUNT(Matches);
 SELF.LastMatch := MAX(Matches,DS);
 SELF.MatchDSs := SET(Matches,DS);
 SELF := L;
END;
j1 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter));
j2 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),LEFT OUTER);
j3 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),LEFT ONLY);
j4 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),MOFN(3));
j5 := JOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 XF(LEFT,ROWS(LEFT)),SORTED(Letter),MOFN(3,4));

OUTPUT(j1);
OUTPUT(j2);
OUTPUT(j3);
OUTPUT(j4);
OUTPUT(j5);

See Also: TRANSFORM Structure, RECORD Structure, SKIP, STEPPED, KEYED/WILD, MERGEJOIN

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

225

KEYDIFF
[attrname :=] KEYDIFF(index1, index2, file [, OVERWRITE] [, EXPIRE([days])]);

attrname Optional. The action name, which turns the action into an attribute definition, therefore not
executed until the attrname is used as an action.

index1 An INDEX attribute.

index2 An INDEX attribute whose structure is identical to index1.

file A string constant specifying the logical name of the file to write the differences to.

OVERWRITE Optional. Specifies overwriting the filename if it already exists.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the spec-
ified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,
the default is seven (7).

The KEYDIFF action compares index1 to index2 and writes the differences to the specified file. If index1 to index2
are not exactly the same structure, an error occurs. Once generated, the file may be used by the KEYPATCH action.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{virtual(fileposition)}},
 FLAT);

i1 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20041201::st.city.lname');
i2 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20050101::st.city.lname');

KEYDIFF(i1,i2,'KEY::DIFF::20050101::i1i2',OVERWRITE);

See Also: KEYPATCH, INDEX

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

226

KEYPATCH
[attrname :=] KEYPATCH(index, patchfile, newfile [, OVERWRITE] [, EXPIRE([days])]);

attrname Optional. The action name, which turns the action into an attribute definition, therefore not
executed until the attrname is used as an action.

index The INDEX attribute to apply the changes to.

patchfile A string constant specifying the logical name of the file containing the changes to implement
(created by KEYDIFF).

newfile A string constant specifying the logical name of the file to write the new index to.

OVERWRITE Optional. Specifies overwriting the newfile if it already exists.

EXPIRE Optional. Specifies the newfile is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,
the default is seven (7).

The KEYPATCH action uses the index and patchfile to write a new index to the specified newfile containing all the
original index data updated by the information from the patchfile.

Example:

Vehicles := DATASET('vehicles',
 {STRING2 st,
 STRING20 city,
 STRING20 lname,
 UNSIGNED8 filepos{virtual(fileposition)}},
 FLAT);
i1 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20041201::st.city.lname');
i2 := INDEX(Vehicles,
 {st,city,lname,filepos},
 'vkey::20050101::st.city.lname');
a := KEYDIFF(i1,i2,'KEY::DIFF::20050101::i1i2',OVERWRITE);
b := KEYPATCH(i1,
 'KEY::DIFF::20050101::i1i2',
 'vkey::st.city.lname'OVERWRITE);
SEQUENTIAL(a,b);

See Also: KEYDIFF, INDEX

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

227

KEYUNICODE
KEYUNICODE(string)

string A UNICODE string.

Return: KEYUNICODE returns a single DATA value.

The KEYUNICODE function returns a DATA value derived from the string parameter, such that a comparison of
these data values is equivalent to a locale sensitive comparison of the Unicode values that generated them—and, being
a simple memcmp(), is significantly faster. The generating string values must be of the same locale or the results are
unpredictable. This function is particularly useful if you're doing a lot of compares on a UNICODE field in a large
dataset—it can be a good idea to generate a key field and do the compares on that instead.

Example:

//where you might do this:
my_record := RECORD
 UNICODE_en_US str;
END;
my_dataset := DATASET('filename', my_record, FLAT);
my_sorted := SORT(my_dataset, str);
//you could instead do this:
my_record := RECORD
 UNICODE_en_US str;
 DATA strkey := KEYUNICODE(SELF.str);
END;
my_dataset := DATASET('filename', my_record, FLAT);
my_sorted := SORT(my_dataset, strkey);

See Also: UNICODE, LOCALE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

228

LENGTH
LENGTH(expression)

expression A string expression.

Return: LENGTH returns a single integer value.

The LENGTH function returns the length of the string resulting from the expression by treating the expression as a
temporary STRING.

Example:

INTEGER MyLength := LENGTH('XYZ' + 'ABC');
 //MyLength is 6

See Also: String Operators, STRING

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

229

LIBRARY
LIBRARY(INTERNAL(module), interface [(parameters)])

LIBRARY(module , interface [(parameters)])

INTERNAL Optional. Specifies the module is an attribute, not an external library (created by the BUILD
action).

module The name of the query library. When INTERNAL, this is the name of the MODULE attribute
that implements the query library. If not INTERNAL, this is a string expression containing the
name of the workunit that compiled the query library (typically defined with #WORKUNIT).

interface The name of the INTERFACE structure that defines the query library.

parameters Optional. The values to pass to the INTERFACE, if defined to receive parameters.

Return: LIBRARY results in a MODULE that can be used to reference the exported attributes from the
specified module.

The LIBRARY function defines an instance of a query library—the interface as implemented by the module when
passed the specified parameters. Query libraries are only used by hthor and Roxie.

INTERNAL libraries are typically used when developing queries, while external libraries are best for production
queries. An INTERNAL library generates the library code as a separate unit, but then includes that unit within the
query workunit. It doesn't have the advantage of reducing compile time or memory usage in Roxie that an external
library would have, but it does retain the library structure, and means that changes to the code cannot affect anyone
else using the system.

External libraries are created by the BUILD action and use the "name" form of #WORKUNIT to specify the external
name of the library. An external library is pre-compiled and therefore reduces compile time for queries that use it.
They also reduce memory usage in Roxie

Example:

NamesRec := RECORD
 INTEGER1 NameID;
 STRING20 FName;
 STRING20 LName;
END;
NamesTable := DATASET([{1,'Doc','Holliday'},
 {2,'Liz','Taylor'},
 {3,'Mr','Nobody'},
 {4,'Anywhere','but here'}],
 NamesRec);
FilterLibIface1(DATASET(namesRec) ds, STRING search) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;
FilterDsLib1(DATASET(namesRec) ds, STRING search) :=
 MODULE,LIBRARY(FilterLibIface1)
 EXPORT matches := ds(Lname = search);
 EXPORT others := ds(Lname != search);
END;

// Run this to create the 'Ppass.FilterDsLib' external library
// #WORKUNIT('name','Ppass.FilterDsLib')
// BUILD(FilterDsLib1);
lib1 := LIBRARY(INTERNAL(FilterDsLib1),
 FilterLibIface1(NamesTable, 'Holliday'));

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

230

lib2 := LIBRARY('Ppass.FilterDsLib',
 FilterLibIface1(NamesTable, 'Holliday'));
IFilterArgs := INTERFACE
 EXPORT DATASET(namesRec) ds;
 EXPORT STRING search;
END;
FilterLibIface2(IFilterArgs args) := INTERFACE
 EXPORT DATASET(namesRec) matches;
 EXPORT DATASET(namesRec) others;
END;

FilterDsLib2(IFilterArgs args) := MODULE,LIBRARY(FilterLibIface2)
 EXPORT matches := args.ds(Lname = args.search);
 EXPORT others := args.ds(Lname != args.search);
END;
// Run this to create the 'Ipass.FilterDsLib' external library
// #WORKUNIT('name','Ipass.FilterDsLib')
// BUILD(FilterDsLib2);
SearchArgs := MODULE(IFilterArgs)
 EXPORT DATASET(namesRec) ds := NamesTable;
 EXPORT STRING search := 'Holliday';
END;
lib3 := LIBRARY(INTERNAL(FilterDsLib2),
 FilterLibIface2(SearchArgs));
lib4 := LIBRARY('Ipass.FilterDsLib',
 FilterLibIface2(SearchArgs));

OUTPUT(lib1.matches,NAMED('INTERNAL_matches_straight_parms'));
OUTPUT(lib1.others, NAMED('INTERNAL_nonmatches_straight_parms'));
OUTPUT(lib2.matches,NAMED('EXTERNAL_matches_straight_parms'));
OUTPUT(lib2.others, NAMED('EXTERNAL_nonmatches_straight_parms'));
OUTPUT(lib3.matches,NAMED('INTERNAL_matches_interface_parms'));
OUTPUT(lib3.others, NAMED('INTERNAL_nonmatches_interface_parms'));
OUTPUT(lib4.matches,NAMED('EXTERNAL_matches_interface_parms'));
OUTPUT(lib4.others, NAMED('EXTERNAL_nonmatches_interface_parms'));

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

231

LIMIT
LIMIT(recset, maxrecs [, failclause] [, KEYED [, COUNT]] [, SKIP])

LIMIT(recset, maxrecs [, ONFAIL(transform)] [, KEYED [, COUNT]])

recset The set of records to limit. This may be an INDEX or any expression that produces a recordset
result.

maxrecs The maximum number of records allowed on a single supercomputer node.

failclause Optional. A standard FAIL workflow service call.

KEYED Optional. Specifies limiting the keyed portion of an INDEX read.

COUNT Optional. Specifies the KEYED limit is pre-checked using keyspan.

SKIP Optional. Specifies that when the limit is exceeded it is simply eliminated from any result instead
of failing the workunit.

ONFAIL Optional. Specifies outputting a single record produced by the transform instead of failing the
workunit.

transform The TRANSFORM function to call to produce the single output record.

The LIMIT function causes the attribute to fail with an exception if the recset contains more records than maxrecs
on any single node of the supercomputer (unless the SKIP option is used for an index read or the ONFAIL option is
present). If the failclause is present, it specifies the exception number and message. This is typically used to control
"runaway" queries in the Rapid Data Delivery Engine supercomputer.

Example:

RecStruct := RECORD
 INTEGER1 Number;
 STRING1 Letter;
END;
SomeFile := DATASET([{1,'A'},{1,'B'},{1,'C'},{1,'D'},{1,'E'},
 {1,'F'},{1,'G'},{1,'H'},{1,'I'},{1,'J'},
 {2,'K'},{2,'L'},{2,'M'},{2,'N'},{2,'O'},
 {2,'P'},{2,'Q'},{2,'R'},{2,'S'},{2,'T'},
 {2,'U'},{2,'V'},{2,'W'},{2,'X'},{2,'Y'}],
 RecStruct);
//throw an exception
X := LIMIT(SomeFile,10, FAIL(99,'error!'));
//single record output
Y := LIMIT(SomeFile,10,
 ONFAIL(TRANSFORM(RecStruct,
 SELF := ROW({0,''},RecStruct))));
//no exception, just no record
Z := LIMIT(SomeFile,10,SKIP);

See Also: FAIL, TRANSFORM

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

232

LN
LN(n)

n The real number to evaluate.

Return: LN returns a single real value.

The LN function returns the natural logarithm of the parameter. This is the opposite of the EXP function.

Example:

MyLogPI := LN(3.14159); //1.14473

See Also: EXP, SQRT, POWER, LOG

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

233

LOADXML
[attributename :=] LOADXML(xmlstring | symbol [, branch])

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

xmlstring A string expression containing the XML text to process inline (no carriage returns or line feeds).

symbol The template symbol containing the XML text to process (typically loaded by #EXPORT or
#EXPORTXML).

branch A user-defined string naming the XML text, allowing #FOR to operate.

LOADXML opens an active XML scope for Template language statements or symbols to act on. LOADXML must
be the first line of code to function correctly.

LOADXML is also used in "drilldown" MACRO code.

Example:

LOADXML('<section><item type="count"><set>person</set></item></section>')
//this macro receives in-line XML as its parameter
//and demonstrates the code for multiple row drilldown
EXPORT id(xmlRow) := MACRO
STRING myxmlText := xmlRow;
LOADXML(myxmlText);
#DECLARE(OutStr)
#SET(OutStr, '')
#FOR(row)
 #APPEND(OutStr,
 'OUTPUT(FETCH(Files.People,Files.PeopleIDX(id='
 + %'id'% + '),RIGHT.RecPos));\n')
 #APPEND(OutStr,
 'ds' + %'id'%
 + ' := FETCH(Files.Property,Files.PropertyIDX(personid= '
 + %'id'% + '),RIGHT.RecPos);\n')
 #APPEND(OutStr,
 'OUTPUT(ds' + %'id'%
 + ',{countTaxdata := COUNT(Taxrecs), ds'
 + %'id'% + '});\n')
 #APPEND(OutStr,
 'OUTPUT(FETCH(Files.Vehicle,Files.VehicleIDX(personid= '
 + %'id'% + '),RIGHT.RecPos));\n')
#END
%OutStr%
ENDMACRO;

//this is an example of code for a drilldown (1 per row)
EXPORT CountTaxdata(xmlRow) := MACRO
LOADXML(xmlRow);
OUTPUT(FETCH(Files.TaxData,
 Files.TaxdataIDX(propertyid=%propertyid%),
 RIGHT.RecPos));
ENDMACRO;

//This example uses #EXPORT to generate the XML

NamesRecord := RECORD
 STRING10 first;
 STRING20 last;
END;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

234

r := RECORD
 UNSIGNED4 dg_parentid;
 STRING10 dg_firstname;
 STRING dg_lastname;
 UNSIGNED1 dg_prange;
 IFBLOCK(SELF.dg_prange % 2 = 0)
 STRING20 extrafield;
 END;
 NamesRecord namerec;
 DATASET(NamesRecord) childNames;
END;

ds := DATASET('~RTTEST::OUT::ds', r, thor);

//Walk a record and do some processing on it.
#DECLARE(out)
#EXPORT(out, r);
LOADXML(%'out'%, 'FileStruct');

#FOR (FileStruct)
 #FOR (Field)
 #IF (%'{@isEnd}'% <> '')
OUTPUT('END');
 #ELSE
OUTPUT(%'{@type}'%
 #IF (%'{@size}'% <> '-15' AND
 %'{@isRecord}'%='' AND
 %'{@isDataset}'%='')
+ %'{@size}'%
 #END
+ ' ' + %'{@label}'% + ';');
 #END
 #END
#END
OUTPUT('Done');

See Also: Templates, #EXPORT, #EXPORTXML

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

235

LOCAL
LOCAL(data)

data The name of a DATASET or INDEX attribute.

Return: LOCAL returns a record set or index.

The LOCAL function specifies that all subsequent operations on the data are performed locally on each node (similar
to use of the LOCAL option on a function). This is typically used within an ALLNODES operation. Available for
use only in Roxie.

Example:

ds := JOIN(SomeData,LOCAL(SomeIndex), LEFT.ID = RIGHT.ID);

See Also: ALLNODES, THISNODE, NOLOCAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

236

LOG
LOG(n)

n The real number to evaluate.

Return: LOG returns a single real value.

The LOG function returns the base-10 logarithm of the parameter.

Example:

MyLogPI := LOG(3.14159); //0.49715

See Also: EXP, SQRT, POWER, LN

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

237

LOOP
LOOP(dataset, loopcount, loopbody [, PARALLEL(iterations | iterationlist [, default])])

LOOP(dataset, loopcount, loopfilter, loopbody [, PARALLEL(iterations | iterationlist [, default])])

LOOP(dataset, loopfilter, loopbody)

LOOP(dataset, loopcondition, loopbody)

LOOP(dataset, rowfilter, loopcondition, loopbody)

dataset The record set to process.

loopcount An integer expression specifying the number of times to iterate .

loopbody The operation to iteratively perform. This may be a PROJECT, JOIN, or other such operation.
ROWS(LEFT) is always used as the operation's first parameter, indicating the specified dataset
is the input parameter.

PARALLEL Optional. Specifies parallel execution of loop iterations. This option is available only on Roxie.

iterations The number of parallel iterations.

iterationlist A set of integers (contained in square brackets) specifying the number of parallel iterations for
each loop. The first set element specifies the parallel iterations for the first loop, the second for
the second, ...

default Optional. The number of parallel iterations to execute once all elements in the iterationlist have
been used.

loopfilter A logical expression that specifies the set of records whose processing is not yet complete. The
set of records not meeting the condition are no longer iteratively processed and are placed into
the final result set. This evaluation occurs before each iteration of the loopbody.

loopcondition A logical expression specifying continuing loopbody iteration while TRUE.

rowfilter A logical expression that specifies a single record whose processing is complete. The record
meeting the condition is no longer iteratively processed and is placed into the final result set.
This evaluation occurs during the iteration of the loopbody.

Return: LOOP returns a record set.

The LOOP function iteratively performs the loopbody operation. The COUNTER is implicit and available for use to
return the current iteration.

The PARALLEL Option
The PARALLEL option is offered to solve the following type of problem: When implementing a text search (A and
B and C) or (D and E), where each element in the search is evaluated on an iteration of a LOOP(), you want to ensure
that the execution is broken in the correct places. If it were split every 2 iterations, the iterations would produce:

(A and B)

(A and B and C), (D)

(A and B and C) or (D and E)

The second iteration would potentially generate a very large number of temporary records. To prevent this, the number
of iterations at each step can be controlled. For this specific case you would probably use PARALLEL([3,3]). For
more complicated search criteria the numbers would be different.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

238

If a very large number is provided as the iterations or default value, then the all the iterations will execute in parallel.
Doing this will likely significantly reduce the number of temporary rows stored in the system, but may potentially
use a large amount of resources.

There is a restriction: ROWS(LEFT) cannot be directly used in a sub-query of the loopbody.

Example:

namesRec := RECORD
STRING20 lname;
STRING10 fname;
 UNSIGNED2 age := 25;
 UNSIGNED2 ctr := 0;
END;
namesTable2 := DATASET([{'Flintstone','Fred',35},
 {'Flintstone','Wilma',33},
 {'Jetson','Georgie',10},
 {'Mr. T','Z-man'}], namesRec);
loopBody(DATASET(namesRec) ds, unsigned4 c) :=
 PROJECT(ds,
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*c;
 SELF.ctr := COUNTER ;
 SELF := LEFT));
//Form 1:
OUTPUT(LOOP(namesTable2,
 COUNTER <= 10,
 PROJECT(ROWS(LEFT),
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*2;
 SELF.ctr := LEFT.ctr + COUNTER ;
 SELF := LEFT))));
OUTPUT(LOOP(namesTable2, 4, ROWS(LEFT) & ROWS(LEFT)));
//Form 2:
OUTPUT(LOOP(namesTable2,
 10,
 LEFT.age * COUNTER <= 200,
 PROJECT(ROWS(LEFT),
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*2;
 SELF := LEFT))));
//Form 3:
OUTPUT(LOOP(namesTable2,
 LEFT.age < 100,
 loopBody(ROWS(LEFT), COUNTER)));
//Form 4:
OUTPUT(LOOP(namesTable2,
 SUM(ROWS(LEFT), age) < 1000 * COUNTER,
 PROJECT(ROWS(LEFT),
 TRANSFORM(namesRec,
 SELF.age := LEFT.age*2;
 SELF := LEFT))));
//Form 5:
OUTPUT(LOOP(namesTable2,
 LEFT.age < 100,
 EXISTS(ROWS(LEFT)) and SUM(ROWS(LEFT), age) < 1000,
 loopBody(ROWS(LEFT), COUNTER)));

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

239

MAP
MAP(expression => value, [expression => value, ...] [, elsevalue])

expression A conditional expression.

=> The "results in" operator—valid only in MAP, CASE, and CHOOSESETS.

value The value to return if the expression is true. This may be a single value expression, a set of values,
a DATASET, a DICTIONARY, a record set, or an action.

elsevalue Optional. The value to return if all expressions are false. This may be a single value expression,
a set of values, a record set, or an action. May be omitted if all return values are actions (the
default would then be no action), or all return values are record sets (the default would then be
an empty record set).

Return: MAP returns a single value.

The MAP function evaluates the list of expressions and returns the value associated with the first true expression. If
none of them match, the elsevalue is returned. MAP may be thought of as an "IF ... ELSIF ... ELSIF ... ELSE" type
of structure.

All return value and elsevalue values must be of exactly the same type or a "type mismatch" error will occur. All
expressions must reference the same level of dataset scoping, else an "invalid scope" error will occur. Therefore,
all expressions must either reference fields in the same dataset or the existence of a set of related child records (see
EXISTS).

The expressions are typically evaluated in the order in which they appear, but if all the return values are scalar, the
code optimizer may change that order.

Example:

Attr01 := MAP(EXISTS(Person(Person.EyeColor = 'Blue')) => 1,
 EXISTS(Person(Person.Haircolor = 'Brown')) => 2,
 3);
 //If there are any blue-eyed people, Attr01 gets 1
 //elsif there any brown-haired people, Attr01 gets 2
 //else, Attr01 gets 3

Valu6012 := MAP(NoTrades => 99,
 NoValidTrades => 98,
 NoValidDates => 96,
 Count6012);
 //If there are no trades, Valu6012 gets 99
 //elsif there are no valid trades, Valu6012 gets 98
 //elsif there are no valid dates, Valu6012 gets 96
 //else, Valu6012 gets Count6012

MyTrades := MAP(rms.rms14 >= 93 => trades(trd_bal >= 10000),
 rms.rms14 >= 2 => trades(trd_bal >= 2000),
 rms.rms14 >= 1 => trades(trd_bal >= 1000),
 Trades);
 // this example takes the value of rms.rms14 and returns a
 // set of trades based on that value. If the value is <= 0,
 // then all trades are returned.

See Also: EVALUATE, IF, CASE, CHOOSE, CHOOSESETS, REJECTED, WHICH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

240

MAX
MAX (recordset, value [, KEYED])

MAX(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
keyword GROUP to indicate finding the maximum value of the field in a group, when used in
a RECORD structure to generate crosstab statistics.

value The expression to find the maximum value of.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the maximum value of. This may also be a SET
of values.

Return: MAX returns a single value.

The MAX function either returns the maximum value from the specified recordset or the valuelist. It is defined to
return zero if the recordset is empty.

Example:

MaxVal1 := MAX(Trades,Trades.trd_rate);
MaxVal2 := MAX(4,8,16,2,1); //returns 16
SetVals := [4,8,16,2,1];
MaxVal3 := MAX(SetVals); //returns 16

See Also: MIN, AVE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

241

MERGE
MERGE(recordsetlist , SORTED(fieldlist) [, DEDUP] [, LOCAL])

MERGE(recordsetset , fieldlist , SORTED(fieldlist) [, DEDUP] [, LOCAL])

recordsetlist A comma-delimited list of the datasets or indexes to merge, which must all be in exactly the
same format and sort order.

SORTED Specifies the sort order of the recordsetlist.

fieldlist A comma-delimited list of the fields that define the sort order.

DEDUP Optional. Specifies the result contains only records with unique values in the fields that specify
the sort order fieldlist.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

recordsetset A SET ([ds1,ds2,ds3]) of the datasets or indexes to merge, which must all be in exactly the
same format.

Return: MERGE returns a record set.

The MERGE function returns a single dataset or index containing all the records from the datasets or indexes named
in the recordsetlist or recordsetset. This is particularly useful for incremental data updates as it allows you to merge a
smaller set of new records into an existing large dataset or index without having to re-process all the source data again.
The recordsetset form makes merging a variable number of datasets possible when used inside a GRAPH function.

Example:

ds1 := SORTED(DATASET([{1,'A'},{1,'B'},{1,'C'},{1,'D'},{1,'E'},
 {1,'F'},{1,'G'},{1,'H'},{1,'I'},{1,'J'}],
 {INTEGER1 number,STRING1 Letter}),
 letter,number);
ds2 := SORTED(DATASET([{2,'A'},{2,'B'},{2,'C'},{2,'D'},{2,'E'},
 {2,'F'},{2,'G'},{2,'H'},{2,'I'},{2,'J'}],
 {INTEGER1 number,STRING1 Letter}),
 letter,number);

ds3 := MERGE(ds1,ds2,SORTED(letter,number));
SetDS := [ds1,ds2];
ds4 := MERGE(SetDS,letter,number);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

242

MERGEJOIN
MERGEJOIN(setofdatasets, joincondition, SORTED(fields) [, jointype] [, DEDUP])

setofdatasets The SET of recordsets to process ([idx1,idx2,idx3]), typically INDEXes, which all must have
the same format.

joincondition An expression specifying how to match records in the setofdatasets.

SORTED Specifies the sort order of records in the input setofdatasets and also the output sort order of
the result set.

fields A comma-delimited list of fields in the setofdatasets, which must be a subset of the input sort
order. These fields must all be used in the joincondition as they define the order in which the
fields are STEPPED.

jointype Optional. An inner join if omitted, else one of the listed types below.

DEDUP Optional. Specifies the output result set contains only unique records.

The MERGEJOIN function is a variation of the SET OF DATASETs forms of the MERGE and JOIN functions. Like
MERGE, it merges records from the setofdatasets into a single result set, but like JOIN, it uses the joincondition and
jointype to determine which records to include in the result set. It does not, however, use a TRANSFORM function to
produce the result; it includes all records, unchanged, from the setofdatasets that match the joincondition.

Matching Logic
The record matching joincondition may contain two parts: a STEPPED condition that may optionally be ANDed with
non-STEPPED conditions. The STEPPED expression contains equality expressions of the fields from the SORTED
option, ANDed together, using LEFT and RIGHT as dataset qualifiers. If not present, the STEPPED condition is
deduced from the fields specified by the SORTED option.

The order of the datasets within the setofdatasets can be significant to the way the joincondition is evaluated. The
joincondition is duplicated between adjacent pairs of datasets, which means that this joincondition:

LEFT.field = RIGHT.field

when applied against a setofdatasets containing three datasets, is logically equivalent to:

ds1.field = ds2.field AND ds2.field = ds3.field

Join Types:
The following jointypes produce the following types of results, based on the records matching produced by the join-
condition:

INNER Only those records that exist in all datasets in the setofdatasets.

LEFT OUTER At least one record for every record in the first dataset in the setofdatasets.

LEFT ONLY One record for every record in the first dataset in the setofdatasets for which there is no match
in any of the subsequent datasets.

MOFN(min [,max]) One record for every record with matching records in min number of adjacent datasets within
the setofdatasets. If max is specified, the record is not included if max number of dataset
matches are exceeded.

Example:

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

243

Rec := RECORD,MAXLENGTH(4096)
 STRING1 Letter;
 UNSIGNED1 DS;
END;
ds1 := DATASET([{'A',1},{'B',1},{'C',1},{'D',1},{'E',1}],Rec);
ds2 := DATASET([{'A',2},{'B',2},{'H',2},{'I',2},{'J',2}],Rec);
ds3 := DATASET([{'B',3},{'C',3},{'M',3},{'N',3},{'O',3}],Rec);
ds4 := DATASET([{'A',4},{'B',4},{'R',4},{'S',4},{'T',4}],Rec);
ds5 := DATASET([{'B',5},{'V',5},{'W',5},{'X',5},{'Y',5}],Rec);
SetDS := [ds1,ds2,ds3,ds4,ds5];
j1 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter));
j2 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),LEFT OUTER);
j3 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),LEFT ONLY);
j4 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),MOFN(3));
j5 := MERGEJOIN(SetDS,
 STEPPED(LEFT.Letter=RIGHT.Letter),
 SORTED(Letter),MOFN(3,4));
OUTPUT(j1);
OUTPUT(j2);
OUTPUT(j3);
OUTPUT(j4);
OUTPUT(j5);

See Also: MERGE, JOIN, STEPPED

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

244

MIN
MIN(recordset, value [, KEYED])

MIN(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
keyword GROUP to indicate finding the minimum value of the field in a group, when used in a
RECORD structure to generate crosstab statistics.

value The expression to find the minimum value of.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the minimum value of. This may also be a SET
of values.

Return: MIN returns a single value.

The MIN function either returns the minimum value from the specified recordset or the valuelist. It is defined to return
zero if the recordset is empty.

Example:

MinVal1 := MIN(Trades,Trades.trd_rate);
MinVal2 := MIN(4,8,16,2,1); //returns 1
SetVals := [4,8,16,2,1];
MinVal3 := MIN(SetVals); //returns 1

See Also: MAX, AVE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

245

NOLOCAL
NOLOCAL(data)

data The name of a DATASET or INDEX attribute.

Return: NOLOCAL returns a record set or index.

The NOLOCAL function specifies that all subsequent operations on the data are performed on all nodes. This is
typically used within a THISNODE operation. Available for use only in Roxie.

Example:

ds := JOIN(SomeData,NOLOCAL(SomeIndex), LEFT.ID = RIGHT.ID);

See Also: ALLNODES, THISNODE, LOCAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

246

NONEMPTY
NONEMPTY(recordsetlist)

recordsetlist A comma-delimited list of record sets.

Return: NONEMPTY returns a record set.

The NONEMPTY function returns the first record set from the recordsetlist that contains any records. This is similar
to using the EXISTS function in an IF expression to return one of two possible record sets.

Example:

 ds := NONEMPTY(SomeData(SomeFilter),
 SomeData(SomeOtherFilter),
 SomeOtherData(YetAnotherFilter));

See Also: EXISTS

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

247

NORMALIZE
NORMALIZE(recordset, expression, transform)

NORMALIZE(recordset, LEFT.childdataset, transform)

recordset The set of records to process.

expression A numeric expression specifying the total number of times to call the transform for that record.

transform The TRANSFORM function to call for each record in the recordset.

childdataset The field name of a child DATASET in the recordset. This must use the keyword LEFT as its
qualifier.

Return: NORMALIZE returns a record set.

The NORMALIZE function normalizes child records out of a recordset where the child records are appended to the
end of the parent data records. The purpose is to take variable-length flat-file records and split out the child information.
The parent information can easily be extracted using either TABLE or PROJECT.

NORMALIZE Form 1
Form 1 processes through all records in the recordset performing the transform function the expression number of
times on each record in turn.

TRANSFORM Function Requirements for Form 1
The transform function must take at least two parameters: a LEFT record of the same format as the recordset, and an
integer COUNTER specifying the number of times the transform has been called for that record. The resulting record
set format does not need to be the same as the input.

NORMALIZE Form 2
Form 2 processes through all records in the recordset iterating the transform function through all the childdataset
records in each record in turn.

TRANSFORM Function Requirements for Form 2
The transform function must take at least one parameter: a RIGHT record of the same format as the childdataset. The
resulting record set format does not need to be the same as the input.

Example:

//Form 1 example
NamesRec := RECORD

UNSIGNED1 numRows;
STRING20 thename;
STRING20 addr1 := '';
STRING20 addr2 := '';
STRING20 addr3 := '';
STRING20 addr4 := '';
END;
NamesTable := DATASET([{1,'Kevin','10 Malt Lane'},
{2,'Liz','10 Malt Lane','3 The cottages'},

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

248

{0,'Mr Nobody'},
{4,'Anywhere','Here','There','Near','Far'}],
NamesRec);

OutRec := RECORD
UNSIGNED1 numRows;
STRING20 thename;
STRING20 addr;
END;

OutRec NormIt(NamesRec L, INTEGER C) := TRANSFORM
SELF := L;
SELF.addr := CHOOSE(C, L.addr1, L.addr2, L.addr3,
 L.addr4);
END;

NormAddrs :=
 NORMALIZE(namesTable,LEFT.numRows,NormIt(LEFT,COUNTER));
/* the result is: numRows thename
 addr
1 Kevin 10 Malt Lane
2 Liz 10 Malt Lane
2 Liz 3 The cottages
4 Anywhere Here
4 Anywhere There
4 Anywhere Near
4 Anywhere Far */
//************************
//Form 2 example
ChildRec := RECORD
INTEGER1 NameID;
STRING20 Addr;
END;
DenormedRec := RECORD
INTEGER1 NameID;
STRING20 Name;
DATASET(ChildRec) Children;
END;

ds := DATASET([{1,'Kevin',[{1,'10 Malt Lane'}]},
{2,'Liz', [{2,'10 Malt Lane'},
{2,'3 The cottages'}]},
{3,'Mr Nobody', []},
{4,'Anywhere',[{4,'Far'},
{4,'Here'},
{4,'There'},
{4,'Near'}]}],
DenormedRec);
ChildRec NewChildren(ChildRec R) := TRANSFORM
SELF := R;
END;
NewChilds := NORMALIZE(ds,LEFT.Children,NewChildren(RIGHT));

See Also: TRANSFORM Structure, RECORD Structure, DENORMALIZE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

249

NOFOLD
[name :=] NOFOLD(expression)

name Optional. The identifier for this function.

expression The expression to evaluate.

The NOFOLD function creates a barrier that prevents optimizations occurring between the expression and the context
it is used in. This is used to prevent constant-folding in the context so that it may be evaluated as-is. Note that this does
not prevent constant-folding within the expression itself. It is normally only used to prevent test cases being optimized
into something completely different, or to temporarily work around bugs in the compiler.

Example:

OUTPUT(2 * 2); // is normally constant folded to:
OUTPUT(4); // at compile time.

 //However adding NOFOLD() around one argument prevents that
OUTPUT(NOFOLD(2) * 2);

 //Adding NOFOLD() around the entire expression does NOT
 // prevent folding within the argument:
OUTPUT(NOFOLD(2 * 2));
 //is the same as
OUTPUT(NOFOLD(4));

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

250

NOTHOR
[name :=] NOTHOR(action)

name Optional. The identifier for this action.

action The action to execute.

The NOTHOR compiler directive indicates the action should not execute on thor, but inline instead, in a global context.
You can only do very simple dataset operations within a NOTHOR, like filtering records or a simple PROJECT.

NOTHOR needs to be used around operations that use the superfile transactions, (such as the example below) where
the compiler does not spot the appropriate context.

Example:

IMPORT STD;
rec := RECORD
 STRING10 S;
END;

srcnode := '10.239.219.2';
srcdir := '/var/lib/HPCCSystems/mydropzone/';

dir := STD.File.RemoteDirectory(srcnode,srcdir,'*.txt',TRUE);

 //without NOTHOR this code gets this error:
 // "Cannot call function AddSuperFile in a non-global context"
NOTHOR(SEQUENTIAL(
 STD.File.DeleteSuperFile('MultiSuper1'),
 STD.File.CreateSuperFile('MultiSuper1'),
 STD.File.StartSuperFileTransaction(),
 APPLY(dir,STD.File.AddSuperFile('MultiSuper1',
 STD.File.ExternalLogicalFileName(srcnode,srcdir+name))),
 STD.File.FinishSuperFileTransaction()));

F1 := DATASET('MultiSuper1', rec, THOR);
OUTPUT(F1,,'testmulti1',OVERWRITE);

See Also: SEQUENTIAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

251

NOTIFY
[attributename :=] NOTIFY(event [, parm] [, expression])

attributename Optional. The identifier for this action.

event The EVENT function, or a case-insensitive string constant naming the event to generate.

parm Optional. A case-insensitive string constant containing the event's parameter.

expression Optional. A case-insensitive string constant allowing simple message passing, to restrict the
event to a specific workunit.

The NOTIFY action fires the event so that the WAIT function or WHEN workflow service can proceed with operations
they are defined to perform.

The expression parameter allows you to define a service in ECL that is initiated by an event, and only responds to
the workunit that initiated it.

Example:

NOTIFY('testevent', 'foobar');

receivedFileEvent(STRING name) := EVENT('ReceivedFile', name);
NOTIFY(receivedFileEvent('myfile'));

//as a service
doMyService := FUNCTION
OUTPUT('Did a Service for: ' + 'EVENTNAME=' + EVENTNAME);
NOTIFY(EVENT('MyServiceComplete',
'<Event><returnTo>FRED</returnTo></Event>'),
EVENTEXTRA('returnTo'));
RETURN EVENTEXTRA('returnTo');
END;

doMyService : WHEN('MyService');
// and a call to the service
NOTIFY('MyService',
'<Event><returnTo>'+WORKUNIT+'</returnTo>....</Event>');
WAIT('MyServiceComplete');
OUTPUT('WORKUNIT DONE')

See Also: EVENT, EVENTNAME, EVENTEXTRA, CRON, WHEN, WAIT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

252

ORDERED
[attributename :=] ORDERED(actionlist)

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

actionlist A comma-delimited list of the actions to execute in order. These may be ECL actions or external
actions.

The ORDERED action executes the items in the actionlist in the order in which they appear in the actionlist. This is
useful when a subsequent action requires the output of a precedent action.

It has the ordering requirements of SEQUENTIAL. This is most useful for ordering actions which do not have anything
in common, for example, generating files and then sending email. If there is any chance of a shared value which may
change meaning, you should use SEQUENTIAL.

By definition, PERSIST on an attribute means the attribute is evaluated outside of any given evaluation order. There-
fore, ORDERED has no effect on PERSISTed attributes.

Example:

Act1 :=
 OUTPUT(A_People,OutputFormat1,'//hold01/fred.out');
Act2 :=
 OUTPUT(Person,{Person.per_first_name,Person.per_last_name})
Act2 := OUTPUT(Person,{Person.per_last_name})));
//by naming these actions, they become inactive
 attributes
//that only execute when the attribute names are called as
 actions
ORDERED(Act1,PARALLEL(Act2,Act3));
//executes Act1 alone, and then executes Act2 and Act3 together

See Also: PARALLEL, PERSIST, SEQUENTIAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

253

OUTPUT
[attr :=] OUTPUT(recordset [, [format] [,file [thorfileoptions]] [, NOXPATH]);

[attr :=] OUTPUT(recordset, [format] ,file , CSV [(csvoptions)] [csvfileoptions] [, NOXPATH]);

[attr :=] OUTPUT(recordset, [format] , file , XML [(xmloptions)] [xmlfileoptions] [, NOXPATH]);

[attr :=] OUTPUT(recordset, [format] , file , JSON [(jsonoptions)] [jsonfileoptions] [, NOXPATH]);

[attr :=] OUTPUT(recordset, [format] ,PIPE(pipeoptions [, NOXPATH]);

[attr :=] OUTPUT(recordset [, format] , NAMED(name) [,EXTEND] [,ALL] [, NOXPATH]);

[attr :=] OUTPUT(expression [, NAMED(name)] [, NOXPATH]);

[attr :=] OUTPUT(recordset , THOR [, NOXPATH]);

attr Optional. The action name, which turns the action into a definition, therefore not executed
until the attr is used as an action.

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

format Optional. The format of the output records. If omitted, all fields in the recordset are output. If
not omitted, this must be either the name of a previously defined RECORD structure definition
or an "on-the-fly" record layout enclosed within curly braces ({}), and must meet the same
requirements as a RECORD structure for the TABLE function (the "vertical slice" form) by
defining the type, name, and source of the data for each field.

file Optional. The logical name of the file to write the records to. See the Scope & Logical File-
names section of the Language Reference for more on logical filenames. If omitted, the for-
matted data stream only returns to the command issuer (command line or IDE) and is not
written to a disk file.

thorfileoptions Optional. A comma-delimited list of options valid for a THOR/FLAT file (see the section
below for details).

NOXPATH Specifies any XPATHs defined in the format or the RECORD structure of the recordset are
ignored and field names are used instead. This allows control of whether XPATHs are used for
output, so that XPATHs that were meant only for xml or json input can be ignored for output.

CSV Specifies the file is a field-delimited (usually comma separated values) ASCII file.

csvoptions Optional. A comma-delimited list of options defining how the file is delimited.

csvfileoptions Optional. A comma-delimited list of options valid for a CSV file (see the section below for
details).

XML Specifies the file is output as XML data with the name of each field in the format becoming
the XML tag for that field's data.

xmloptions Optional. A comma separated list of options that define how the output XML file is delimited.

xmlfileoptions Optional. A comma-delimited list of options valid for an XML file (see the section below
for details).

JSON Specifies the file is output as JSON data with the name of each field in the format becoming
the JSON tag for that field's data.

jsonoptions Optional. A comma separated list of options that define how the output JSON file is delimited.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

254

jsonfileoptions Optional. A comma-delimited list of options valid for an JSON file (see the section below
for details).

PIPE Indicates the specified command executes with the recordset provided as standard input to
the command. This is a "write" pipe.

pipeoptions The name of a program to execute, which takes the file as its input stream, along with the
options valid for an output PIPE.

NAMED Specifies the result name that appears in the workunit. Not valid if the file parameter is present.

name A string constant containing the result label. This must be a compile-time constant and meet
the attribute naming requirements.

EXTEND Optional. Specifies appending to the existing NAMED result name in the workunit. Using
this feature requires that all NAMED OUTPUTs to the same name have the EXTEND option
present, including the first instance.

ALL Optional. Specifies all records in the recordset are output to the ECL IDE.

expression Any valid ECL expression that results in a single scalar value.

THOR Specifies the resulting recordset is stored as a file on disk, "owned" by the workunit,
instead of storing it directly within the workunit. The name of the file in the DFU is
scope::RESULT::workunitid.

The OUTPUT action produces a recordset result from the supercomputer, based on which form and options you
choose. If no file to write to is specified, the result is stored in the workunit and returned to the calling program as
a data stream.

OUTPUT Field Names
Field names in an "on the fly" record format {…} must be unique or a syntax error results. For example:

 OUTPUT(person(), {module1.attr1, module2.attr1});

will result in a syntax error. Output Field Names are assumed from the definition names.

To get around this situation, you can specify a unique name for the output field in the on-the-fly record format, like this:

 OUTPUT(person(), {module1.attr1, name := module2.attr1});

OUTPUT Thor/Flat Files
[attr :=] OUTPUT(recordset [, [format] [,file [, CLUSTER(target)] [,ENCRYPT(key)]

[,COMPRESSED] [,OVERWRITE][, UPDATE] [,EXPIRE([days])]]])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the file is
written to the cluster on which the workunit executes. The number of physical file parts written
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
file to. The names must be listed as they appear on the ECL Watch Activity page or returned by
the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, as in n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW com-
pression.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

255

key A string constant containing the encryption key to use to encrypt the data.

COMPRESSED Optional. Specifies writing the file using LZW compression.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days since the file was read.

days Optional. The number of days from last file read after which the file may be automatically
deleted. If EXPIRE is specified without number of days, it defaults to use the ExpiryDefault
setting in Sasha.

This form writes the recordset to the specified file in the specified format. If the format is omitted, all fields in the
recordset are output. If the file is omitted, then the result is sent back to the requesting program (usually the ECL IDE
or the program that sent the SOAP query to a Roxie).

Example:

OutputFormat1 := RECORD
 People.firstname;
 People.lastname;
END;

A_People := People(lastname[1]='A');
Score1 := HASHCRC(People.firstname);
Attr1 := People.firstname[1] = 'A';

OUTPUT(SORT(A_People,Score1),OutputFormat1,'hold01::fred.out');
 // writes the sorted A_People set to the fred.out file in
 // the format declared in the OutputFormat1 definition

OUTPUT(People,{firstname,lastname});
 // writes just First and Last Names to the command issuer
 // full qualification of the fields is unnecessary, since
 // the "on-the-fly" records structure is within the
 // scope of the OUTPUT -- People is assumed

OUTPUT(People(Attr1=FALSE));
 // writes all Peeople fields from records where Attr1 is
 // false to the command issuer

OUTPUT CSV Files
[attr :=] OUTPUT(recordset, [format] ,file , CSV [(csvoptions)] [, CLUSTER(target)] [,ENCRYPT(key)]

[, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the file is
written to the cluster on which the workunit executes. The number of physical file parts written
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
file to. The names must be listed as they appear on the ECL Watch Activity page or returned by
the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, as in n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW com-
pression.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

256

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,
the default is seven (7).

This form writes the recordset to the specified file in the specified format as a comma separated values ASCII file.
The valid set of csvoptions are:

HEADING([headertext [, footertext]] [, SINGLE])

SEPARATOR(delimiters)

TERMINATOR(delimiters)

QUOTE([delimiters])

ASCII | EBCDIC | UNICODE

HEADING Specifies file headers and footers.

headertext Optional. The text of the header record to place in the file. If omitted, the field names are used.

footertext Optional. The text of the footer record to place in the file. If omitted, no footertext is output.

SINGLE Optional. Specifies the headertext is written only to the beginning of part 1 and the footertext
is written only at the end of part n (producing a "standard" CSV file). If omitted, the headertext
and footertext are placed at the beginning and end of each file part (useful for producing
complex XML output).

SEPARATOR Specifies the field delimiters.

delimiters A single string constant (or comma-delimited list of string constants) that define the
character(s) used to delimit the data in the CSV file.

TERMINATOR Specifies the record delimiters.

QUOTE Specifies the quotation delimiters for string values that may contain SEPARATOR or TER-
MINATOR delimiters as part of their data.

ASCII Specifies all output is in ASCII format, including any EBCDIC or UNICODE fields.

EBCDIC Specifies all output is in EBCDIC format except the SEPARATOR and TERMINATOR
(which are expressed as ASCII values).

UNICODE Specifies all output is in Unicode UTF8 format

If none of the ASCII, EBCDIC, or UNICODE options are specified, the default output is in ASCII format with any
UNICODE fields in UTF8 format. The other default csvoptions are:

 CSV(HEADING('',''), SEPARATOR(','), TERMINATOR('\n'), QUOTE())

Example:

//SINGLE option writes the header only to the first file part:
OUTPUT(ds,,'~thor::outdata.csv',CSV(HEADING(SINGLE)));

//This example writes the header and footer to every file part:
OUTPUT(XMLds,,'~thor::outdata.xml',CSV(HEADING('<XML>','</XML>')));

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

257

OUTPUT XML Files
[attr :=] OUTPUT(recordset, [format] ,file ,XML [(xmloptions)] [,ENCRYPT(key)] [, CLUSTER(target)]
[, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the file is
written to the cluster on which the workunit executes. The number of physical file parts written
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
file to. The names must be listed as they appear on the ECL Watch Activity page or returned by
the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, as in n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW com-
pression.

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,
the default is seven (7).

This form writes the recordset to the specified file as XML data with the name of each field in the specified format
becoming the XML tag for that field's data. The valid set of xmloptions are:

‘rowtag'

HEADING(headertext [, footertext])

TRIM

OPT

rowtag The text to place in record delimiting tag.

HEADING Specifies placing header and footer records in the file.

headertext The text of the header record to place in the file.

footertext The text of the footer record to place in the file.

TRIM Specifies removing trailing blanks from string fields before output.

OPT Specifies omitting tags for any empty string field from the output.

If no xmloptions are specified, the defaults are:

 XML('Row',HEADING('<Dataset>\n','</Dataset>\n'))

Example:

R := {STRING10 fname,STRING12 lname};
B := DATASET([{'Fred','Bell'},{'George','Blanda'},{'Sam',''}],R);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

258

OUTPUT(B,,'fred1.xml', XML); // writes B to the fred1.xml file
/* the Fred1.XML file looks like this:
<Dataset>
 <Row><fname>Fred </fname><lname>Bell</lname></Row>
 <Row><fname>George</fname><lname>Blanda </lname></Row>
 <Row><fname>Sam </fname><lname></lname></Row>
</Dataset> */

OUTPUT(B,,'fred2.xml',XML('MyRow', HEADING('<?xml version=1.0 ...?>\n<filetag>\n','</filetag>\n')));
/* the Fred2.XML file looks like this:
<?xml version=1.0 ...?>
<filetag>
 <MyRow><fname>Fred </fname><lname>Bell</lname></MyRow>
 <MyRow><fname>George</fname><lname>Blanda</lname></MyRow>
 <MyRow><fname>Sam </fname><lname></lname></MyRow>
</filetag> */

OUTPUT(B,,'fred3.xml',XML('MyRow',TRIM,OPT));
/* the Fred3.XML file looks like this:
<Dataset>
 <MyRow><fname>Fred</fname><lname>Bell</lname></MyRow>
 <MyRow><fname>George</fname><lname>Blanda</lname></MyRow>
 <MyRow><fname>Sam</fname></MyRow>
</Dataset> */

OUTPUT JSON Files
[attr :=] OUTPUT(recordset, [format] ,file ,JSON [(jsonoptions)] [,ENCRYPT(key)] [, CLUSTER(target)]
[, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifies writing the file to the specified list of target clusters. If omitted, the file is
written to the cluster on which the workunit executes. The number of physical file parts written
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
file to. The names must be listed as they appear on the ECL Watch Activity page or returned by
the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, as in n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifies writing the file to disk using both 256-bit AES encryption and LZW com-
pression.

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting the file if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,
the default is seven (7).

This form writes the recordset to the specified file as JSON data with the name of each field in the specified format
becoming the JSON tag for that field's data. The valid set of jsonoptions are:

‘rowtag'

HEADING(headertext [, footertext])

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

259

TRIM

OPT

rowtag The text to place in record delimiting tag.

HEADING Specifies placing header and footer records in the file.

headertext The text of the header record to place in the file.

footertext The text of the footer record to place in the file.

TRIM Specifies removing trailing blanks from string fields before output.

OPT Specifies omitting tags for any empty string field from the output.

If no jsonoptions are specified, the defaults are:

 JSON('Row',HEADING('[',']'))

Example:

R := {STRING10 fname,STRING12 lname};
B := DATASET([{'Fred','Bell'},{'George','Blanda'},{'Sam',''}],R);

OUTPUT(B,,'fred1.json', JSON); // writes B to the fred1.json file
/* the Fred1.json file looks like this:
{"Row": [
{"fname": "Fred ", "lname": "Bell "},
{"fname": "George ", "lname": "Blanda "},
{"fname": "Sam ", "lname": " "}
]}
*/
OUTPUT(B,,'fred2.json',JSON('MyResult', HEADING('[', ']')));
/* the Fred2.json file looks like this:
["MyResult": [
{"fname": "Fred ", "lname": "Bell "},
{"fname": "George ", "lname": "Blanda "},
{"fname": "Sam ", "lname": " "}
]]

OUTPUT PIPE Files
[attr :=] OUTPUT(recordset, [format] ,PIPE(command [, CSV | XML]) [, REPEAT])

PIPE Indicates the specified command executes with the recordset provided as standard input to
the command. This is a "write" pipe.

command The name of a program to execute, which takes the file as its input stream.

CSV Optional. Specifies the output data format is CSV. If omitted, the format is raw.

XML Optional. Specifies the output data format is XML. If omitted, the format is raw.

REPEAT Optional. Indicates a new instance of the specified command executes for each row in the
recordset.

This form sends the recordset in the specified format as standard input to the command. This is commonly known
as an "output pipe."

Example:

OUTPUT(A_People,,PIPE('MyCommandLIneProgram'),OVERWRITE);
 // sends the A_People to MyCommandLIneProgram as

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

260

 // standard in

Named OUTPUT
[attr :=] OUTPUT(recordset [, format] ,NAMED(name) [,EXTEND] [,ALL])

This form writes the recordset to the workunit with the specified name. The EXTEND option allows multiple OUTPUT
actions to the same named result. The ALL option is used to override the implicit CHOOSEN applied to interactive
queries in the Query Builder program. This specifies returning all records.

Example:

OUTPUT(CHOOSEN(people(firstname[1]='A'),10));
 // writes the A People to the query builder
OUTPUT(CHOOSEN(people(firstname[1]='A'),10),ALL);
 // writes all the A People to the query builder
OUTPUT(CHOOSEN(people(firstname[1]='A'),10),NAMED('fred'));
 // writes the A People to the fred named output

//a NAMED, EXTEND example:
errMsgRec := RECORD
 UNSIGNED4 code;
 STRING text;
END;
makeErrMsg(UNSIGNED4 _code,STRING _text) := DATASET([{_code, _text}], errMsgRec);
rptErrMsg(UNSIGNED4 _code,STRING _text) := OUTPUT(makeErrMsg(_code,_text),
 NAMED('ErrorResult'),EXTEND);

OUTPUT(DATASET([{100, 'Failed'}],errMsgRec),NAMED('ErrorResult'),EXTEND);
 //Explicit syntax.

//Something else creates the dataset
OUTPUT(makeErrMsg(101, 'Failed again'),NAMED('ErrorResult'),EXTEND);

//output and dataset handled elsewhere.
rptErrMsg(102, 'And again');

OUTPUT Scalar Values
[attr :=] OUTPUT(expression [, NAMED(name)])

This form is used to allow scalar expression output, particularly within SEQUENTIAL and PARALLEL actions.

Example:

OUTPUT(10) // scalar value output
OUTPUT('Fred') // scalar value output

OUTPUT Workunit Files
[attr :=] OUTPUT(recordset , THOR)

This form is used to store the resulting recordset as a file on disk "owned" by the workunit. The name of the file in
the DFU is scope::RESULT::workunitid. This is useful when you want to view a large result recordset in the Query
Builder program but do not want that much data to take up memory in the system data store.

Example:

OUTPUT(Person(per_st='FL'), THOR)
 // output records to screen, but store the

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

261

 // result on disk instead of in the workunit

See Also: TABLE, DATASET, PIPE, CHOOSEN

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

262

PARALLEL
[attributename :=] PARALLEL(actionlist)

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

actionlist A comma-delimited list of the actions to execute simultaneously. These may be ECL actions or
external actions.

The PARALLEL action executes the items in the actionlist simultaneously. This is already the default operative mode,
so PARALLEL is only useful within the action list of a SEQUENTIAL set of actions.

Example:

Act1 :=
OUTPUT(A_People,OutputFormat1,'//hold01/fred.out');
Act2 :=
OUTPUT(Person,{Person.per_first_name,Person.per_last_name})

Act2 := OUTPUT(Person,{Person.per_last_name})));

//by naming these actions, they become inactive attributes
//that only execute when the attribute names are called as actions

SEQUENTIAL(Act1,PARALLEL(Act2,Act3));

//executes Act1 alone, and only when it's finished,
// executes Act2 and Act3 together

See Also: SEQUENTIAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

263

PARSE
PARSE(dataset, data, pattern, result , flags [, MAXLENGTH(length)])

PARSE(dataset, data, result , XML(path))

dataset The set of records to process.

data An expression specifying the text to parse, typically the name of a field in the dataset.

pattern The parsing pattern to match.

result The name of either the RECORD structure attribute that specifies the format of the output
record set (like the TABLE function), or the TRANSFORM function that produces the output
record set (like PROJECT).

flags One or more parsing options, listed below.

MAXLENGTH Specifies the the maximum length the pattern can match. If omitted, the default length is 4096.

length An integer constant specifying the maximum number of matching characters.

XML Specifies the dataset contains XML data.

path A string constant containing the XPATH to the tag that delimits the XML data in the dataset.

Return: PARSE returns a record set.

The PARSE function performs a text or XML parsing operation.

PARSE Text Data
The first form operates on the dataset, finding records whose data contains a match for the pattern, producing a result
set of those matches in the result format. If the pattern finds multiple matches in the data, then a result record is
generated for each match. Each match for a PARSE is effectively a single path through the pattern. If there is more
than one path that matches, then the result transform is either called once for each path, or if the BEST option is used,
the path with the lowest penalty is selected.

If the result names a RECORD structure, then this form of PARSE operates like the TABLE function to generate
the result set, but may also operate on variable length text. If the result names a TRANSFORM function, then the
transform generates the result set. The TRANSFORM function must take at least one parameter: a LEFT record of the
same format as the dataset. The format of the resulting record set does not need to be the same as the input.

Flags can have the following values:

FIRST Only return a row for the first match starting at a particular position.

ALL Return a row for every possible match of the string at a particular position.

WHOLE Only match the whole string.

NOSCAN If a position matches, don't continue searching for other matches.

SCAN If a position matches, continue searching from the end of the match, otherwise continue
from the next position.

SCAN ALL Return matches for every possible start position. Use the TRIM function to eliminate pars-
ing extraneous trailing blanks.

NOCASE Perform a case insensitive comparison.

CASE Perform a case sensitive comparison (this is the default).

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

264

SKIP(separator-
pattern)

Specify a pattern that can be inserted after each token in a search pattern. For example,
SKIP ([‘ ‘,'\t']*) skips spaces and tabs between tokens.

KEEP(max) Only keep the first max matches.

ATMOST(max) Don't produce any matches if there are more than max matches.

MAX Return a row for the result that matches the longest sequence of the input. Only one match
is returned unless the MANY option is also specified.

MIN Return a row for the result that matches the shortest sequence of the input. Only one match
is returned unless the MANY option is also specified.

MATCHED([rule-ref-
erence])

Used when rule-reference is used in a user-matching function. If a rule-reference is not
specified, the matching information may not be preserved.

MATCHED(ALL) Retain all rule-names – if they are used by user match functions.

NOT MATCHED Generate a row if there were no matches on the input row. All calls to the MATCHED()
function return false inside the resultstructure.

NOT MATCHED ON-
LY

Only generate a row if no matches were found.

BEST Pick the match with the highest score (lowest penalty). If the MAX or MIN flags are also
present, they are applied first. Only one match is returned unless the MANY option is also
specified.

MANY Return multiple matches for BEST, MAX, or MIN options.

PARSE Implements Tomita parsing instead of regular expression parsing technology.

USE([struct,] x) Specifies using a RULE pattern attribute defined further on in the code with the DEFINE(x)
function, introducing a recursive grammar (the only recursion allowed in ECL). If the op-
tional struct RECORD structure is specified, USE specifies using a RULE pattern attribute
defined further on in the code with the DEFINE(x) function that produces a row result in
the struct RECORD structure format (valid only with the PARSE option also present). USE
is required on PARSE when any patterns cannot be found by walking the rules from the
root down without following any USEs.

Example:

rec := {STRING10000 line};
datafile := DATASET([
 {'Ge 34:2 And when Shechem the son of Hamor the Hivite, prince of the country, saw her,'+
 ' he took her, and lay with her, and defiled her.'},
 {'Ge 36:10 These are the names of Esaus sons; Eliphaz the son of Adah the wife of Esau,'+
 ' Reuel the son of Bashemath the wife of Esau.'}],rec);
PATTERN ws1 := [' ','\t',','];
PATTERN ws := ws1 ws1?;
PATTERN patStart := FIRST | ws;
PATTERN patEnd := LAST | ws;
PATTERN article := ['A','The','Thou','a','the','thou'];

TOKEN patWord := PATTERN('[a-zA-Z]+');
TOKEN Name := PATTERN('[A-Z][a-zA-Z]+');

RULE Namet := name OPT(ws ['the','king of','prince of'] ws name);
PATTERN produced := OPT(article ws) ['begat','father of','mother of'];
PATTERN produced_by := OPT(article ws) ['son of','daughter of'];
PATTERN produces_with := OPT(article ws) ['wife of'];

RULE relationtype := (produced | produced_by | produces_with);
RULE progeny := namet ws relationtype ws namet;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

265

results := RECORD
 STRING60 Le := MATCHTEXT(Namet[1]);
 STRING60 Ri := MATCHTEXT(Namet[2]);
 STRING30 RelationPhrase := MatchText(relationtype);
END;
outfile1 := PARSE(datafile,line,progeny,results,SCAN ALL);

PARSE XML Data
The second form operates on an XML dataset, parsing the XML data and creating a result set using the result parameter,
one output record per input. The expectation is that each row of data contains a complete block of XML. If the result
names a RECORD structure, then this form of PARSE operates like the TABLE function to generate the result set.

If the result names a TRANSFORM function, then the transform generates the result set. The TRANSFORM function
must take at least one parameter: a LEFT record of the same format as the dataset. The format of the resulting record
set does not need to be the same as the input.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then a large data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

linerec := { STRING line };
in1 := DATASET([{
 '<ENTITY eid="P101" type="PERSON" subtype="MILITARY">' +
 ' <ATTRIBUTE name="fullname">JOHN SMITH</ATTRIBUTE>' +
 ' <ATTRIBUTE name="honorific">Mr.</ATTRIBUTE>' +
 ' <ATTRIBUTEGRP descriptor="passport">' +
 ' <ATTRIBUTE name="idNumber">W12468</ATTRIBUTE>' +
 ' <ATTRIBUTE name="idType">pp</ATTRIBUTE>' +
 ' <ATTRIBUTE name="issuingAuthority">JAPAN PASSPORT AUTHORITY</ATTRIBUTE>' +
 ' <ATTRIBUTE name="country" value="L202"/>' +
 ' <ATTRIBUTE name="age" value="19"/>' +
 ' </ATTRIBUTEGRP>' +
 '</ENTITY>'}],
 linerec);
passportRec := RECORD
 STRING id;
 STRING idType;
 STRING issuer;
 STRING country;
 INTEGER age;
END;
outrec := RECORD
 STRING id;
 UNICODE fullname;
 UNICODE title;
 passportRec passport;
 STRING line;
END;
outrec t(lineRec L) := TRANSFORM
 SELF.id := XMLTEXT('@eid');
 SELF.fullname := XMLUNICODE('ATTRIBUTE[@name="fullname"]');
 SELF.title := XMLUNICODE('ATTRIBUTE[@name="honorific"]');
 SELF.passport.id := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="idNumber"]');
 SELF.passport.idType := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="idType"]');
 SELF.passport.issuer := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

266

 + '/ATTRIBUTE[@name="issuingAuthority"]');
 SELF.passport.country := XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="country"]/@value');
 SELF.passport.age := (INTEGER)XMLTEXT('ATTRIBUTEGRP[@descriptor="passport"]'
 + '/ATTRIBUTE[@name="age"]/@value');
 SELF := L;
END;

textout := PARSE(in1, line, t(LEFT), XML('/ENTITY[@type="PERSON"]'));

See Also: DATASET, OUTPUT, XMLENCODE, XMLDECODE, REGEXFIND, REGEXREPLACE, DEFINE

Extended PARSE Examples
This example parses raw phone numbers from a specific field in an input dataset into a single standard output containing
just the numbers. A missing area code in the raw input results in three leading zeroes in the output.

infile := DATASET([{'5619994581'},{'15619994581'},
 {'(561) 999-4581'},{'(561)999-4581'},
 {'561-999-4581'},{'561 999 4581'},
 {'561.999.4581'},{'561/999/4581'},
 {'561 999-4581'},{'9994581'},
 {'999-4581'}],{STRING20 rawnumber});

PATTERN numbers := PATTERN('[0-9]')+;
PATTERN alpha := PATTERN('[A-Za-z]')+;
PATTERN ws := [' ','\t']*;
PATTERN sepchar := PATTERN('[-./]');
PATTERN Seperator := ws sepchar ws;

// Area Code
PATTERN OpenParen := ['[','(','{','<'];
PATTERN CloseParen := [']',')','}','>'];
PATTERN FrontDigit := ['1', '0'] OPT(Seperator);
PATTERN areacode := OPT(FrontDigit) OPT(OpenParen) numbers length(3) OPT(CloseParen);

// Last Seven digits
PATTERN exchange := numbers length(3);
PATTERN lastfour := numbers length(4);
PATTERN seven := exchange OPT(Seperator) lastfour;

// Extension
PATTERN extension := ws alpha ws numbers;

// Phone Number
PATTERN phonenumber := OPT(areacode) OPT(Seperator) seven
 opt(extension) ws;

layout_phone_append := RECORD
 infile;
 STRING10 clean_phone := MAP(NOT MATCHED(phonenumber) => '',
 NOT MATCHED(areacode) => '000' + MATCHTEXT(exchange) + MATCHTEXT(lastfour),
 MATCHTEXT(areacode/numbers) + MATCHTEXT(exchange) + MATCHTEXT(lastfour));
END;

outfile := PARSE(infile, rawnumber, phonenumber, layout_phone_append,FIRST, NOT MATCHED, WHOLE);

OUTPUT(outfile);

This example parses a small subset of raw movie data (freely available at IMDB.com) into standard database fields:

Layout_Actors_Raw := RECORD
STRING120 IMDB_Actor_Desc;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

267

END;

File_Actors := DATASET([
{'A.V., Subba Rao Chenchu Lakshmi (1958/I) <10>'},
{' Jayabheri (1959) <17>'},
{' Madalasa (1948) <3>'},
{' Mangalya Balam (1958) <12>'},
{' Mohini Bhasmasura (1938) <3>'},
{' Palletoori Pilla (1950) [Kampanna Dora] <4>'},
{' Peddamanushulu (1954) <6>'},
{' Sarangadhara (1957) <12>'},
{' Sri Seetha Rama Kalyanam (1961) <12>'},
{' Sri Venkateswara Mahatmyam (1960) [Akasa Raju] <5>'},
{' Vara Vikrayam (1939) [Judge] <12>'},
{' Vindhyarani (1948) <7>'},
{''},
{'Aa, Brynjar Adjo solidaritet (1985) [Ponker] <40>'},
{''},
{'Aabel, Andreas Bor Borson Jr. (1938) [O.G. Hansen] <9>'},
{' Jeppe pa bjerget (1933) [En skomakerlaerling]'},
{' Kampen om tungtvannet (1948) <8>'},
{' Prinsessen som ingen kunne maqlbinde (1932) [Espen
 Askeladd] <3>'},
{' Spokelse forelsker seg, Et (1946) [Et spokelse] <6>'},
{''},
{'Aabel, Hauk (I) Alexander den store (1917) [Alexander Nyberg]'},
{' Du har lovet mig en kone! (1935) [Professoren] <6>'},
{' Glad gutt, En (1932) [Ola Nordistua] <1>'},
{' Jeppe pa bjerget (1933) [Jeppe] <1>'},
{' Morderen uten ansikt (1936)'},
{' Store barnedapen, Den (1931) [Evensen, kirketjener] <5>'},
{' Troll-Elgen (1927) [Piper, direktor] <9>'},
{' Ungen (1938) [Krestoffer] <8>'},
{' Valfangare (1939) [Jensen Sr.] <4>'},
{''},
{'Aabel, Per (I) Brudebuketten (1953) [Hoyland jr.] <3>'},
{' Cafajestes, Os (1962)'},
{' Farlige leken, Den (1942) [Fredrik Holm, doktor]'},
{' Herre med bart, En (1942) [Ole Grong, advokat] <1>'},
{' Kjaere Maren (1976) [Doktor]'},
{' Kjaerlighet og vennskap (1941) [Anton Schack] <3>'},
{' Ombyte fornojer (1939) [Gregor Ivanow] <2>'},
{' Portrettet (1954) [Per Haug, provisor] <1>'}],
Layout_Actors_Raw);

//Basic patterns:
PATTERN arb := PATTERN('[-!.,\t a-zA-Z0-9]')+;

//all alphanumeric & certain special characters
PATTERN ws := [' ','\t']+; //word separators (space & tab)
PATTERN number := PATTERN('[0-9]')+; //numbers

//extended patterns:
PATTERN age := '(' number OPT('/I') ')';

//movie year -- OPT('/I') required for first rec
PATTERN role := '[' arb ']'; //character played
PATTERN m_rank := '<' number '>'; //credit appearance number
PATTERN actor := arb OPT(ws '(I)' ws);
//actor's name -- OPT(ws '(I)' ws)
// required for last two actors

//extended pattern to parse the actual text:
PATTERN line := actor '\t' arb ws OPT(age) ws OPT(role) ws OPT(m_rank) ws;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

268

//output record structure:
NLP_layout_actor_movie := RECORD
 STRING30 actor_name := Std.Str.filterout(MATCHTEXT(actor),'\t');
 STRING50 movie_name := MATCHTEXT(arb[2]);
 UNSIGNED2 movie_year := (UNSIGNED)MATCHTEXT(age/number);
 STRING20 movie_role := MATCHTEXT(role/arb);
 UNSIGNED1 cast_rank := (UNSIGNED)MATCHTEXT(m_rank/number);
END;

//and the actual parsing operation
Actor_Movie_Init := PARSE(File_Actors,
 IMDB_Actor_Desc,
 line,
 NLP_layout_actor_movie,WHOLE,FIRST);

// then iterate to propagate actor name in each record
NLP_layout_actor_movie IterNames(NLP_layout_actor_movie L,
 NLP_layout_actor_movie R) := TRANSFORM
 SELF.actor_name := IF(R.actor_Name='',L.actor_Name,R.actor_name);
 SELF:= R;
END;

NLP_Actor_Movie := ITERATE(Actor_Movie_Init,IterNames(LEFT,RIGHT));

// and output the result set
OUTPUT(NLP_Actor_Movie);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

269

PIPE
PIPE(command, recorddef [, CSV | XML])

PIPE(recordset, command [, recorddef] [, REPEAT] [, CSV | XML] [, OUTPUT(CSV | XML)] [, GROUP])

command The name of a program to execute, which must take any input data through stdin and produce its
output through stdout. This program must have already been deployed on the HPCC cluster in
the Thor instance directory (such as: /var/lib/HPCCSystems/mythor/) but that can be overridden
by the externalProgDir environment setting for the Thor cluster).

recorddef The RECORD structure format for output. If omitted, output is the same as the input format.

CSV Optional. In form 1 (and as the parameter to the OUTPUT option), specifies the output data
format is CSV. In form 2, specifies the input data format is CSV. If omitted, the format is raw.

XML Optional. In form 1 (and as the parameter to the OUTPUT option), specifies the output data
format is XML. In form 2, specifies the input data format is XML. If omitted, the format is raw.

recordset The input dataset.

REPEAT Optional. Specifies a new instance of the command program is created for each row in the record-
set.

OUTPUT Optional. Specifies CSV or XML result data format.

GROUP Optional. Specifies each result record is generated in a separate GROUP (only if REPEAT is
specified).

Return: PIPE returns a record set.

The PIPE function allows ECL code to launch an external command program on each node, effectively parallelizing
a non-parallel processing program. PIPE has two forms:

Form 1 takes no input, executes the command, and produces its output in the recorddef format. This is an "input" pipe
(like the PIPE option on a DATASET definition).

Form 2 takes the input recordset, executes the command, producing output in the recorddef format. This is a "through"
pipe.

Example:

namesRecord := RECORD
 STRING10 forename;
 STRING10 surname;
 STRING2 nl := '\r\n';
END;

d := PIPE('pipeRead 200', namesRecord); //form 1 - input pipe

t := PIPE(d, 'pipeThrough'); //form 2 - through pipe

OUTPUT(t,,PIPE('pipeWrite \\thordata\\names.all')); //output pipe

//Form 2 with XML input:
namesRecord := RECORD
 STRING10 Firstname{xpath('/Name/FName')};
 STRING10 Lastname{xpath('/Name/LName')};
END;

p := PIPE('echo <Name><FName>George</FName><LName>Jetson</LName></Name>', namesRecord, XML);
OUTPUT(p);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

270

See Also: OUTPUT, DATASET

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

271

POWER
POWER(base,exponent)

base The real number to raise.

exponent The real power to raise x to.

Return: POWER returns a single real value.

The POWER function returns the result of the base raised to the exponent power.

Example:

MyCube := POWER(2.0,3.0); // = 8
MySquare := POWER(3.0,2.0); // = 9

See Also: SQRT, EXP, LN

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

272

PRELOAD
PRELOAD(file [, nbr])

file The name of a DATASET definition.

nbr Optional. An integer constant specifying how many indexes to create "on the fly" for speedier
access to the specified DATASET file (only). If > 1000, specifies the amount of memory set aside
for these indexes.

Return: PRELOAD returns a record set.

The PRELOAD function leaves the file in memory after loading (valid only for Data Delivery Engine use). This is
exactly equivalent to using the PRELOAD option on the DATASET definition.

Example:

MyFile := DATASET('MyFile',{STRING20 F1, STRING20 F2},THOR);
 COUNT(PRELOAD(MyFile))

See Also: DATASET

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

273

PROCESS
PROCESS(recordset, datarow, datasettransform, rowtransform [, LOCAL])

recordset The set of records to process.

datarow The initial RIGHT record to process, typically expressed by the ROW function.

datasettransform The TRANSFORM function to call for each record in the recordset.

rowtransform The TRANSFORM function to call to produce the next RIGHT record for the datasettransform.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation maintains the
distribution of any previous DISTRIBUTE.

Return: PROCESS returns a record set.

The PROCESS function operates in a similar manner to ITERATE in that it processes through all records in the
recordset one pair of records at a time, performing the datasettransform function on each pair of records in turn. The
first record in the recordset is passed to the datasettransform as the first left record, paired with the datarow as the
right record. The rowtransform is used to construct the right record for the next pair. If either the datasettransform or
the rowtransform contains a SKIP, then no record is produced by the datasettransform for the skipped record.

TRANSFORM Function Requirements - PROCESS
The datasettransform and rowtransform functions both must take at least two parameters: a LEFT record of the same
format as the recordset and a RIGHT record of the same format as the datarow. The format of the resulting record set
for the datasettransform both must be the same as the input recordset. The format of the resulting record set for the
rowtransform both must be the same as the initial datarow. Optionally, the datsettransform may take a third parameter:
an integer COUNTER specifying the number of times the transform has been called for the recordset or the current
group in the recordset (see the GROUP function).

Example:

DSrec := RECORD
 STRING4 Letter;
 STRING4 LeftRecIn := '';
 STRING4 RightRecIn := '';
END;
StateRec := RECORD
 STRING2 Letter;
END;
ds := DATASET([{'AA'},{'BB'},{'CC'},{'DD'},{'EE'}],DSrec);

DSrec DSxform(DSrec L,StateRec R) := TRANSFORM
 SELF.Letter := L.Letter[1..2] + R.Letter;
 SELF.LeftRecIn := L.Letter;
 SELF.RightRecIn := R.Letter;
END;
StateRec ROWxform(DSrec L,StateRec R) := TRANSFORM
 SELF.Letter := L.Letter[1] + R.Letter[1];
END;

p := PROCESS(ds,
 ROW({'ZZ'},StateRec),
 DSxform(LEFT,RIGHT),
 ROWxform(LEFT,RIGHT));
OUTPUT(p);
/* Result:

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

274

AAZZ AA ZZ
BBAZ BB AZ
CCBA CC BA
DDCB DD CB
EEDC EE DC */

//**
// This examples uses different information for state tracking
// (the point of the PROCESS function) through the input record set.

w1 := RECORD
 STRING v{MAXLENGTH(100)};
END;

s1 := RECORD
 BOOLEAN priorA;
END;

ds := DATASET([{'B'},{'A'}, {'C'}, {'D'}], w1);

s1 doState(w1 l, s1 r) := TRANSFORM
 SELF.priorA := l.v = 'A';
END;

w1 doRecords(w1 l, s1 r) := TRANSFORM
 SELF.v := l.v + IF(r.priorA, '***', '');
END;

initState := ROW({TRUE}, s1);

rs := PROCESS(ds,
 initState,
 doRecords(LEFT,RIGHT),
 doState(LEFT,RIGHT));

OUTPUT(rs);
/* Result:
B***
A
C***
D
*/

See Also: TRANSFORM Structure, RECORD Structure, ROW, ITERATE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

275

PROJECT
PROJECT(recordset, transform [, PREFETCH [(lookahead [, PARALLEL])]] [, KEYED] [, LOCAL])

PROJECT(recordset, record [, PREFETCH [(lookahead [, PARALLEL])]] [, KEYED] [, LOCAL])

recordset The set of records to process. This may be a single-record in-line DATASET.

transform The TRANSFORM function to call for each record in the recordset.

PREFETCH Optional. Allows index reads within the transform to be as efficient as keyed JOINs. Valid for
use only in Roxie queries.

lookahead Optional. Specifies the number of look-ahead reads. If omitted, the default is the value of the
_PrefetchProjectPreload tag in the submitted query. If that is omitted, then it is taken from the
value of defaultPrefetchProjectPreload specified in the RoxieTopology file when the Roxie was
deployed. If that is omitted, it defaults to 10.

PARALLEL Optional. Specifies the lookahead is done on a separate thread, in parallel with query execution.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer
to generate optimal code for the operation.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

record The output RECORD structure to use for each record in the recordset.

Return: PROJECT returns a record set.

The PROJECT function processes through all records in the recordset performing the transform function on each
record in turn.

The PROJECT(recordset,record) form is simply a shorthand synonym for:

PROJECT(recordset,TRANSFORM(record,SELF := LEFT)).

making it simple to move data from one structure to another without a TRANSFORM as long as all the fields in the
output record structure are present in the input recordset.

TRANSFORM Function Requirements - PROJECT
The transform function must take at least one parameter: a LEFT record of the same format as the recordset. Optionally,
it may take a second parameter: an integer COUNTER specifying the number of times the transform has been called
for the recordset or the current group in the recordset (see the GROUP function). The second parameter form is useful
for adding sequence numbers. The format of the resulting record set does not need to be the same as the input.

Example:

//form one example **********************************
Ages := RECORD
 STRING15 per_first_name;
 STRING25 per_last_name;
 INTEGER8 Age;
END;
TodaysYear := 2001;

Ages CalcAges(person l) := TRANSFORM
 SELF.Age := TodaysYear - l.birthdate[1..4];
 SELF := l;

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

276

END;
AgedRecs := PROJECT(person, CalcAges(LEFT));

//COUNTER example **********************************
SequencedAges := RECORD
 Ages;
 INTEGER8 Sequence := 0;
END;

SequencedAges AddSequence(Ages l, INTEGER c) :=
 TRANSFORM
 SELF.Sequence := c;
 SELF := l;
END;
SequencedAgedRecs := PROJECT(AgedRecs,
 AddSequence(LEFT,COUNTER));

//form two example **********************************
NewRec := RECORD
 STRING15 firstname;
 STRING25 lastname;
 STRING15 middlename;
END;
NewRecs := PROJECT(People,NewRec);
//equivalent to:
//NewRecs := PROJECT(People,TRANSFORM(NewRec,SELF :=
 LEFT));

//LOCAL example **********************************
MyRec := RECORD
 STRING1 Value1;
 STRING1 Value2;
END;

SomeFile := DATASET([{'C','G'},{'C','C'},{'A','X'},
 {'B','G'},{'A','B'}],MyRec);

MyOutRec := RECORD
 SomeFile.Value1;
 SomeFile.Value2;
 STRING6 CatValues;
END;

DistFile := DISTRIBUTE(SomeFile,HASH32(Value1,Value2));

MyOutRec CatThem(SomeFile L, INTEGER C) := TRANSFORM
 SELF.CatValues := L.Value1 + L.Value2 + '-' +
 (Std.System.Thorlib.Node()+1) + '-' + (STRING)C;
 SELF := L;
END;

CatRecs := PROJECT(DistFile,CatThem(LEFT,COUNTER),LOCAL);

OUTPUT(CatRecs);

/* CatRecs result set is:
Rec# Value1 Value2 CatValues
1 C C CC-1-1
2 B G BG-2-1
3 A X AX-2-2
4 A B AB-3-1
5 C G CG-3-2
*/

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

277

See Also: TRANSFORM Structure, RECORD Structure, ROW, DATASET

PROJECT - Module
PROJECT(module, interface [, OPT | attributelist])

module The MODULE structure containing the attribute definitions whose values to pass as the interface.

interface The INTERFACE structure to pass.

OPT Optional. Suppresses the error message that is generated when an attribute defined in the interface
is not also defined in the module.

attributelist Optional. A comma-delimited list of the specific attributes in the module to supply to the inter-
face. This allows a specified list of attributes to be implemented, which is useful if you want
closer control, or if the types of the parameters don't match.

Return: PROJECT returns a MODULE compatible with the interface.

The PROJECT function passes a module's attributes in the form of the interface to a function defined to accept
parameters structured like the specified interface. This allows you to create a module for one interface with the values
being provided by another interface. The attributes in the module must be compatible with the attributes in the interface
(same type and same parameters, if any take parameters).

Example:

PROJECT(x,y)
/*is broadly equivalent to
MODULE(y)
 SomeAttributeInY := x.someAttributeInY
 //... repeated for all attributes in Y ...
END;
*/

myService(myInterface myArgs) := FUNCTION
 childArgs := MODULE(PROJECT(myArgs,Iface,isDead,did,ssn,address))
 BOOLEAN isFCRA := myArgs.isFCRA OR myArgs.fakeFCRA
 END;
 RETURN childService(childArgs);
 END;

// you could directly pass PROJECT as a module parameter
// to an attribute:
myService(myInterface myArgs) := childService(PROJECT(myArgs, childInterface));

See Also: MODULE Structure, INTERFACE Structure, FUNCTION Structure, STORED

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

278

PULL
PULL(dataset)

dataset The set of records to fully load into the Data Refinery.

Return: PULL returns a recordset.

The PULL function is a meta-operation intended only to hint that the dataset should be fully loaded into the Data
Refinery before continuing the operation in Data Refinery.

Example:

MySet := PULL(Person);
 //load Person into Data Refinery before continuing

See Also:

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

279

RANDOM
RANDOM()

Return: RANDOM returns a single value.

The RANDOM function returns a pseudo-random positive integer value.

Example:

MySet := DISTRIBUTE(Person,RANDOM()); //random distribution

See Also: DISTRIBUTE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

280

RANGE
RANGE(setofdatasets, setofintegers)

setofdatasets A set of datasets.

setofintegers A set of integers.

Return: RANGE returns a set of datasets.

The RANGE function extracts a subset of the setofdatasets as a SET. The setofintegers specifies which elements of
the setofdatasets comprise the resulting SET of datasets. This is typically used in the GRAPH function.

Example:

r := {STRING1 Letter};
ds1 := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'}],r);
ds2 := DATASET([{'F'},{'G'},{'H'},{'I'},{'J'}],r);
ds3 := DATASET([{'K'},{'L'},{'M'},{'N'},{'O'}],r);
ds4 := DATASET([{'P'},{'Q'},{'R'},{'S'},{'T'}],r);
ds5 := DATASET([{'U'},{'V'},{'W'},{'X'},{'Y'}],r);

SetDS := [ds1,ds2,ds3,ds4,ds5];
outDS := RANGE(setDS,[1,3]);
//use only 1st and 3rd elements

OUTPUT(outDS[1]); //results in A,B,C,D,E
OUTPUT(outDS[2]); //results in K,L,M,N,O

See Also: GRAPH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

281

RANK
RANK(position, set [,DESCEND])

position An integer indicating the element in the sorted set to return.

set The set of values.

DESCEND Optional. Indicates descending order sort.

Return: RANK returns a single value.

The RANK function sorts the set in ascending (or descending, if DESCEND is present) order, then returns the ordinal
position (its index value) of the unsorted set's position element after the set has been sorted. This is the opposite of
RANKED.

Example:

Ranking := RANK(1,[20,30,10,40]);
// returns 2 - 1st element (20) in unsorted set is
// 2nd element after sorting to [10,20,30,40]
Ranking := RANK(1,[20,30,10,40],DESCEND);
// returns 3 - 1st element (20) in unsorted set is
// 3rd element after sorting to [40,30,20,10]

See Also: RANKED, SORT, SORTED, Sets and Filters

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

282

RANKED
RANKED(position, set [,DESCEND])

position An integer indicating the element in the unsorted set to return.

set The set of values.

DESCEND Optional. Indicates descending order sort.

Return: RANKED returns a single value.

The RANKED function sorts the set in ascending (or descending, if DESCEND is present) order, then returns the
ordinal position (its index value) of the sorted set's position element in the unsorted set. This is the opposite of RANK.

Example:

Ranking := RANKED(1,[20,30,10,40]);
// returns 3 - 1st element (10) in sorted set [10,20,30,40]
// was 3rd element in unsorted set

Ranking := RANKED(1,[20,30,10,40],DESCEND);
// returns 4 - 1st element (40) in sorted set [40,30,20,10]
// was 4th element in unsorted set

See Also: RANK, SORT, SORTED, Sets and Filters

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

283

REALFORMAT
REALFORMAT(expression, width, decimals)

expression The expression that specifies the REAL value to format.

width The size of string in which to right-justify the value.

decimals An integer specifying the number of decimal places.

Return: REALFORMAT returns a single value.

The REALFORMAT function returns the value of the expression formatted as a right-justified string of width char-
acters with the number of decimals specifed.

Example:

REAL8 Float := 1000.0063;
STRING12 FloatStr12 := REALFORMAT(float,12,6);
OUTPUT(FloatStr12); //results in ' 1000.006300'

See Also: INTFORMAT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

284

REGEXFIND
REGEXFIND(regex, text [, flag] [, NOCASE])

regex A standard Perl regular expression.

text The text to parse.

flag Optional. Specifies the text to return. If omitted, REGEXFIND returns TRUE or FALSE as to
whether the regex was found within the text. If 0, the portion of the text the regex was matched
is returned. If >= 1, the text matched by the nth group in the regex is returned.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXFIND returns a single value.

The REGEXFIND function uses the regex to parse through the text and find matches. The regex must be a standard
Perl regular expression. We use third-party libraries to support this, so for non-unicode text, see boost docs at http://
www.boost.org/doc/libs/1_39_0/libs/regex/doc/html/index.html. For unicode text, see the ICU docs, the sections ‘Reg-
ular Expression Metacharacters' and ‘Regular Expression Operators' at http://userguide.icu-project.org/strings/regexp
and the links from there, in particular the section ‘UnicodeSet patterns' at http://userguide.icu-project.org/strings/uni-
codeset. We use version 2.6 which should support all listed features.

Example:

namesRecord := RECORD
STRING20 surname;
STRING10 forename;
STRING10 userdate;
END;
namesTbl := DATASET([{'Halligan','Kevin','10/14/1998'},
{'Halligan','Liz','12/01/1998'},
{'Halligan','Jason','01/01/2000'},
{'MacPherson','Jimmy','03/14/2003'}],
namesRecord);
searchpattern := '^(.*)/(.*)/(.*)$';
search := '10/14/1998';

filtered := namesTbl(REGEXFIND('^(Mc|Mac)', surname));

OUTPUT(filtered); //1 record -- MacPherson
OUTPUT(namesTbl,{(string30)REGEXFIND(searchpattern,userdate,0),
(string30)REGEXFIND(searchpattern,userdate,1),
(string30)REGEXFIND(searchpattern,userdate,2),
(string30)REGEXFIND(searchpattern,userdate,3)});

REGEXFIND(searchpattern, search, 0); //returns
 '10/14/1998'
REGEXFIND(searchpattern, search, 1); //returns '10'
REGEXFIND(searchpattern, search, 2); //returns '14'
REGEXFIND(searchpattern, search, 3); //returns '1998'

See Also: PARSE, REGEXREPLACE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

285

REGEXREPLACE
REGEXREPLACE(regex, text, replacement [, NOCASE])

regex A standard Perl regular expression.

text The text to parse.

replacement The replacement text. In this string, $0 refers to the substring that matched the regex pattern, and
$1, $2, $3... match the first, second, third... groups in the pattern.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXREPLACE returns a single value.

The REGEXREPLACE function uses the regex to parse through the text and find matches, then replace them with the
replacement string. The regex must be a standard Perl regular expression. We use third-party libraries to support this,
so for non-unicode text, see boost docs at http://www.boost.org/doc/libs/1_39_0/libs/regex/doc/html/index.html. For
unicode text, see the ICU docs, the sections ‘Regular Expression Metacharacters' and ‘Regular Expression Operators' at
http://userguide.icu-project.org/strings/regexp and the links from there, in particular the section ‘UnicodeSet patterns'
at http://userguide.icu-project.org/strings/unicodeset. We use version 2.6 which should support all listed features.

Example:

REGEXREPLACE('(.a)t', 'the cat sat on the mat', '$1p');
 //ASCII
REGEXREPLACE(u'(.a)t', u'the cat sat on the mat', u'$1p');
 //UNICODE
// both of these examples return 'the cap sap on the map'

inrec := {STRING10 str, UNICODE10 ustr};
inset := DATASET([{'She', u'Eins'}, {'Sells', u'Zwei'},
{'Sea', u'Drei'}, {'Shells', u'Vier'}], inrec);
outrec := {STRING10 orig, STRING10 withcase, STRING10
 wocase,
UNICODE10 uorig,UNICODE10 uwithcase,UNICODE10 uwocase};

outrec trans(inrec l) := TRANSFORM
SELF.orig := l.str;
SELF.withcase := REGEXREPLACE('s', l.str, 'f');
SELF.wocase := REGEXREPLACE('s', l.str, 'f', NOCASE);
SELF.uorig := l.ustr;
SELF.uwithcase := REGEXREPLACE(u'e', l.ustr, u'\u00EB');
SELF.uwocase := REGEXREPLACE(u'e', l.ustr, u'\u00EB',
 NOCASE);
END;
OUTPUT(PROJECT(inset, trans(LEFT)));

/* the result set is:
orig withcase wocase uorig uwithcase uwocase
She She fhe Eins Eins \xc3\xabins
Sells Sellf fellf Zwei Zw\xc3\xabi Zw\xc3\xabi
Sea Sea fea Drei Dr\xc3\xabi Dr\xc3\xabi
Shells Shellf fhellf Vier Vi\xc3\xabr Vi\xc3\xabr */

See Also: PARSE, REGEXFIND

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

286

REGROUP
REGROUP(recset,…,recset)

recset A grouped set of records. Each recset must be of exactly the same type and must contain the same
number of groups.

Return: REGROUP returns a record set.

The REGROUP function combines the grouped recsets into a single grouped record set. This is accomplished by
combining each group in the first recset with the groups in the same ordinal position within each subsequent recset.

Example:

inrec := {UNSIGNED6 did};

outrec := RECORD(inrec)
 STRING20 name;
 UNSIGNED score;
END;

ds := DATASET([1,2,3,4,5,6], inrec);
dsg := GROUP(ds, ROW);

i1 := DATASET([{1, 'Kevin', 10},
 {2, 'Richard', 5},
 {5, 'Nigel', 2},
 {0, '', 0}], outrec);
i2 := DATASET([{1, 'Kevin Halligan', 12},
 {2, 'Ricardo Chapman', 15},
 {3, 'Jake Smith', 20},
 {5, 'David Hicks', 100},
 {0, '', 0}], outrec);
i3 := DATASET([{1, 'Halligan', 8},
 {2, 'Ricardo', 8},
 {6, 'Pete', 4},
 {6, 'Peter', 8},
 {6, 'Petie', 1},
 {0, '', 0}], outrec);

j1 := JOIN(dsg, i1, LEFT.did = RIGHT.did, LEFT OUTER, MANY LOOKUP);
j2 := JOIN(dsg, i2, LEFT.did = RIGHT.did, LEFT OUTER, MANY LOOKUP);
j3 := JOIN(dsg, i3, LEFT.did = RIGHT.did, LEFT OUTER, MANY LOOKUP);

combined := REGROUP(j1, j2, j3);
OUTPUT(j1);
OUTPUT(j2);
OUTPUT(j3);
OUTPUT(combined);

See Also: GROUP, COMBINE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

287

REJECTED
REJECTED(condition,…,condition)

condition A conditional expression to evaluate.

Return: REJECTED returns a single value.

The REJECTED function evaluates which of the list of conditions returned false and returns its ordinal position in
the list of conditions. Zero (0) returns if none return false. This is the opposite of the WHICH function.

Example:

Rejects := REJECTED(Person.first_name <> 'Fred',
Person.first_name <> 'Sue');
// Rejects receives 0 for everyone except those named Fred or Sue

See Also: WHICH, MAP, CHOOSE, IF, CASE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

288

ROLLUP
ROLLUP(recordset, condition, transform [, LOCAL])

ROLLUP(recordset, transform, fieldlist [, LOCAL])

ROLLUP(recordset, GROUP, transform)

recordset The set of records to process, typically sorted in the same order that the condition or fieldlist
will test.

condition An expression that defines "duplicate" records. The keywords LEFT and RIGHT may be used as
dataset qualifiers for fields in the recordset.

transform The TRANSFORM function to call for each pair of duplicate records found.

LOCAL Optional. Specifies the operation is performed on each node independently, without requiring
interaction with all other nodes to acquire data; the operation maintains the distribution of any
previous DISTRIBUTE.

fieldlist A comma-delimited list of expressions or fields in the recordset that defines "duplicate" records.
You may use the keywords WHOLE RECORD (or just RECORD) to indicate all fields in that
structure, and/or you may use the keyword EXCEPT to list fields to exclude.

GROUP Specifies the recordset is GROUPed and the ROLLUP operation will produce a single output
record for each group. If this is not the case, an error occurs.

Return: ROLLUP returns a record set.

The ROLLUP function is similar to the DEDUP function with the addition of a call to the transform function to
process each duplicate record pair. This allows you to retrieve valuable information from the "duplicate" record before
it's thrown away. Depending on how you code the transform function, ROLLUP can keep the LEFT or RIGHT record,
or any mixture of data from both.

The first form of ROLLUP tests a condition using values from the records that would be passed as LEFT and RIGHT
to the transform. The records are combined if the condition is true. The second form of ROLLUP compares values
from adjacent records in the input recordset, and combines them if they are the same. These two forms will behave
differently if the transform modifies some of the fields used in the matching condition (see example below).

For the first pair of candidate records, the LEFT record passed to the transform is the first record of the pair, and the
RIGHT record is the second. For subsequent matches of the same values, the LEFT record passed is the result record
from the previous call to the transform and the RIGHT record is the next record in the recordset, as in this example:

ds := DATASET([{1,10},{1,20},{1,30},{3,40},{4,50}],
 {UNSIGNED r, UNSIGNED n});
d t(ds L, ds R) := TRANSFORM
 SELF.r := L.r + R.r;
 SELF.n := L.n + R.n;
END;
ROLLUP(ds, t(LEFT, RIGHT), r);
/* results in:
 3 60
 3 40
 4 50
*/
ROLLUP(ds, LEFT.r = RIGHT.r,t(LEFT, RIGHT));
/* results in:
 2 30
 1 30
 3 40

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

289

 4 50
 the third record is not combined because the transform modified the value.
*/

TRANSFORM Function Requirements - ROLLUP
For forms 1 and 2 of ROLLUP, the transform function must take at least two parameters: a LEFT record and a RIGHT
record, which must both be in the same format as the recordset. The format of the resulting record set must also be
the same as the inputs.

For form 3 of ROLLUP, the transform function must take at least two parameters: a LEFT record which must be in
the same format as the recordset, and a ROWS(LEFT) whose format must be a DATASET(RECORDOF(recordset))
parameter. The format of the resulting record set may be different from the inputs.

ROLLUP Form 1
Form 1 processes through all records in the recordset performing the transform function only on those pairs of adjacent
records where the match condition is met (indicating duplicate records) and passing through all other records directly
to the output.

Example:

//a crosstab table of last names and the number of times they occur
MyRec := RECORD
 Person.per_last_name;
 INTEGER4 PersonCount := 1;
END;
LnameTable := TABLE(Person,MyRec); //create dataset to work with
SortedTable := SORT(LnameTable,per_las_name); //sort it first

MyRec Xform(MyRec L,MyRec R) := TRANSFORM
 SELF.PersonCount := L.PersonCount + 1;
 SELF := L; //keeping the L rec makes it KEEP(1),LEFT
// SELF := R; //keeping the R rec would make it KEEP(1),RIGHT
END;
XtabOut := ROLLUP(SortedTable,
 LEFT.per_last_name=RIGHT.per_last_name,
 Xform(LEFT,RIGHT));

ROLLUP Form 2
Form 2 processes through all records in the recordset performing the transform function only on those pairs of adjacent
records where all the expressions in the fieldlist match (indicating duplicate records) and passing through all other
records to the output. This form allows you to use the same kind of EXCEPT field exclusion logic available to DEDUP.

Example:

rec := {STRING1 str1,STRING1 str2,STRING1 str3};
ds := DATASET([{'a', 'b', 'c'},{'a', 'b', 'c'},
 {'a', 'c', 'c'},{'a', 'c', 'd'}], rec);
rec tr(rec L, rec R) := TRANSFORM
 SELF := L;
END;
Cat(STRING1 L, STRING1 R) := L + R;
r1 := ROLLUP(ds, tr(LEFT, RIGHT), str1, str2);
 //equivalent to LEFT.str1 = RIGHT.str1 AND
 // LEFT.str2 = RIGHT.str2
r2 := ROLLUP(ds, tr(LEFT, RIGHT), WHOLE RECORD, EXCEPT str3);
 //equivalent to LEFT.str1 = RIGHT.str1 AND

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

290

 // LEFT.str2 = RIGHT.str2
r3 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD, EXCEPT str3);
 //equivalent to LEFT.str1 = RIGHT.str1 AND
 // LEFT.str2 = RIGHT.str2
r4 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD, EXCEPT str2,str3);
 //equivalent to LEFT.str1 = RIGHT.str1
r5 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD);
 //equivalent to LEFT.str1 = RIGHT.str1 AND
 // LEFT.str2 = RIGHT.str2 AND
 // LEFT.str3 = RIGHT.str3
r6 := ROLLUP(ds, tr(LEFT, RIGHT), str1 + str2);
 //equivalent to LEFT.str1+LEFT.str2 = RIGHT.str1+RIGHT.str2
r7 := ROLLUP(ds, tr(LEFT, RIGHT), Cat(str1,str2));
 //equivalent to Cat(LEFT.str1,LEFT.str2) =
 // Cat(RIGHT.str1,RIGHT.str2)

ROLLUP Form 3
Form 3 is a special form of ROLLUP where the second parameter passed to the transform is a GROUP and the first
parameter is the first record in that GROUP. It processes through all groups in the recordset, producing one result
record for each group. Aggregate functions can be used inside the transform (such as TOPN or CHOOSEN) on the
second parameter. The result record set is not grouped. This form is implicitly LOCAL in nature, due to the grouping.

Example:

inrec := RECORD
 UNSIGNED6 did;
END;

outrec := RECORD(inrec)
 STRING20 name;
 UNSIGNED score;
END;

nameRec := RECORD
 STRING20 name;
END;

finalRec := RECORD(inrec)
 DATASET(nameRec) names;
 STRING20 secondName;
END;

ds := DATASET([1,2,3,4,5,6], inrec);

dsg := GROUP(ds, ROW);

i1 := DATASET([{1, 'Kevin', 10},
 {2, 'Richard', 5},
 {5,'Nigel', 2},
 {0, '', 0}], outrec);

i2 := DATASET([{1, 'Kevin Halligan', 12},
 {2, 'Richard Charles', 15},
 {3, 'Blake Smith', 20},
 {5,'Nigel Hicks', 100},
 {0, '', 0}], outrec);

i3 := DATASET([{1, 'Halligan', 8},
 {2, 'Richard', 8},
 {6, 'Pete', 4},
 {6, 'Peter', 8},
 {6, 'Petie', 1},

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

291

 {0, '', 0}], outrec);
j1 := JOIN(dsg,
 i1,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER, MANY LOOKUP);
j2 := JOIN(dsg,
 i2,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER,
 MANY LOOKUP);

j3 := JOIN(dsg,
 i3,
 LEFT.did = RIGHT.did,
 TRANSFORM(outrec, SELF := LEFT; SELF := RIGHT),
 LEFT OUTER,
 MANY LOOKUP);

combined := REGROUP(j1, j2, j3);

finalRec doRollup(outRec l, DATASET(outRec) allRows) :=
 TRANSFORM
 SELF.did := l.did;
 SELF.names := PROJECT(allRows(score != 0),
 TRANSFORM(nameRec, SELF := LEFT));
 SELF.secondName := allRows(score != 0)[2].name;
END;

results := ROLLUP(combined, GROUP, doRollup(LEFT,ROWS(LEFT)));

See Also: TRANSFORM Structure, RECORD Structure, DEDUP, EXCEPT, GROUP

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

292

ROUND
ROUND(realvalue[, decimals])

realvalue The floating-point value to round.

decimals Optional. An integer specifying the number of decimal places to
round to. If omitted, the default is zero (integer result).

Return: ROUND returns a single numeric value.

The ROUND function returns the rounded realvalue by using standard arithmetic rounding (decimal portions less
than .5 round down and decimal portions greater than or equal to .5 round up).

Example:

SomeRealValue1 := 3.14159;
INTEGER4 MyVal1 := ROUND(SomeRealValue1); // MyVal1 is 3
INTEGER4 MyVal2 := ROUND(SomeRealValue1,2); // MyVal2 is 3.14

SomeRealValue2 := 3.5;
INTEGER4 MyVal3 := ROUND(SomeRealValue2); // MyVal is 4

SomeRealValue3 := -1.3;
INTEGER4 MyVal4 := ROUND(SomeRealValue3); // MyVal is -1

SomeRealValue4 := -1.8;
INTEGER4 MyVal5 := ROUND(SomeRealValue4); // MyVal is -2

See Also: ROUNDUP, TRUNCATE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

293

ROUNDUP
ROUNDUP(realvalue)

realvalue The floating-point value to round.

Return: ROUNDUP returns a single integer value.

The ROUNDUP function returns the rounded integer of the realvalue by rounding any decimal portion to the next
larger integer value, regardless of sign.

Example:

SomeRealValue := 3.14159;
INTEGER4 MyVal := ROUNDUP(SomeRealValue); // MyVal is 4

SomeRealValue := -3.9;
INTEGER4 MyVal := ROUNDUP(SomeRealValue); // MyVal is -4

See Also: ROUND, TRUNCATE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

294

ROW
ROW({ fields } , recstruct)

ROW(row , resultrec)

ROW([row ,] transform)

fields A comma-delimited list of data values for each field in the recstruct, contained in curly braces
({}).

recstruct The name of the RECORD structure defining the field layout.

row A single row of data. This may be an existing record, or formatted in-line data values like the
fields parameter description above, or an empty set ([]) to add a cleared record in the format of
the resultrec. If omitted, the record is produced by the transform function.

resultrec A RECORD structure that defines how to construct the row of data, similar to the type used by
TABLE.

transform A TRANSFORM function that defines how to construct the row of data.

Return: ROW returns a single record.

The ROW function creates a single data record and is valid for use in any expression where a single record is valid.

ROW Form 1
The first form constructs a record from the in-line data in the fields, structured as defined by the recstruct. This is
typically used within a TRANSFORM structure as the expression defining the output for a child dataset field.

Example:

AkaRec := {STRING20 forename,STRING20 surname};
outputRec := RECORD
 UNSIGNED id;
 DATASET(AkaRec) kids;
END;
inputRec := {UNSIGNED id,STRING20 forename,STRING20 surname};
inPeople := DATASET([{1,'Kevin','Halligan'},{1,'Kevin','Hall'},
 {2,'Eliza','Hall'},{2,'Beth','Took'}],inputRec);
outputRec makeFatRecord(inputRec L) := TRANSFORM
 SELF.id := l.id;
 SELF.kids := DATASET([{ L.forename, L.surname }],AkaRec);
END;
fatIn := PROJECT(inPeople, makeFatRecord(LEFT));
outputRec makeChildren(outputRec L, outputRec R) := TRANSFORM
 SELF.id := L.id;
 SELF.kids := L.kids + ROW({R.kids[1].forename,R.kids[1].surname},AkaRec);
END;
r := ROLLUP(fatIn, id, makeChildren(LEFT, RIGHT));

ROW Form 2
The second form constructs a record from the row passed to it using the resultrec the same way the TABLE function
operates. This is typically used within a TRANSFORM structure as the expression defining the output for a child
dataset field.

Example:

AkaRec := {STRING20 forename,STRING20 surname};

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

295

outputRec := RECORD
UNSIGNED id;
DATASET(AkaRec) children;
END;
inputRec := {UNSIGNED id,STRING20 forename,STRING20 surname};
inPeople := DATASET([{1,'Kevin','Halligan'},{1,'Kevin','Hall'},
 {1,'Gawain',''},{2,'Liz','Hall'},
 {2,'Eliza','Hall'},{2,'Beth','Took'}],inputRec);
outputRec makeFatRecord(inputRec L) := TRANSFORM
 SELF.id := l.id;
 SELF.children := ROW(L, AkaRec); //using Form 2 here
END;
fatIn := PROJECT(inPeople, makeFatRecord(LEFT));
outputRec makeChildren(outputRec L, outputRec R) := TRANSFORM
 SELF.id := L.id;
 SELF.children := L.children +
 ROW({R.children[1].forename,R.children[1].surname},AkaRec);

END;
r := ROLLUP(fatIn, id, makeChildren(LEFT, RIGHT));

ROW Form 3
The third form uses a TRANSFORM function to produce its single record result. The transform function must take at
least one parameter: a LEFT record, which must be in the same format as the input record. The format of the resulting
record may be different from the input.

Example:

NameRec := RECORD
 STRING5 title;
 STRING20 fname;
 STRING20 mname;
 STRING20 lname;
 STRING5 name_suffix;
 STRING3 name_score;
END;

MyRecord := RECORD
 UNSIGNED id;
 STRING uncleanedName;
 NameRec Name;
END;

x := DATASET('RTTEST::RowFunctionData', MyRecord,THOR);

STRING73 CleanPerson73(STRING inputName) := FUNCTION
 suffix:=[' 0',' 1',' 2',' 3',' 4',' 5',' 6',' 7',' 8',' 9',
 ' J',' JR',' S',' SR'];
 InWords := Std.Str.CleanSpaces(inputName);
 HasSuffix := InWords[LENGTH(TRIM(InWords))-1 ..] IN suffix;
 WordCount := LENGTH(TRIM(InWords,LEFT,RIGHT)) - LENGTH(TRIM(InWords,ALL))+1;
 HasMiddle := WordCount = 5 OR (WordCount = 4 AND NOT HasSuffix) ;
 Space1 := Std.Str.Find(InWords,' ',1);
 Space2 := Std.Str.Find(InWords,' ',2);
 Space3 := Std.Str.Find(InWords,' ',3);
 Space4 := Std.Str.Find(InWords,' ',4);
 STRING5 title := InWords[1..Space1-1];
 STRING20 fname := InWords[Space1+1..Space2-1];
 STRING20 mname := IF(HasMiddle,InWords[Space2+1..Space3-1],'');
 STRING20 lname := MAP(HasMiddle AND NOT HasSuffix =>
 InWords[Space3+1..],

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

296

 HasMiddle AND HasSuffix =>
 InWords[Space3+1..Space4-1],
 NOT HasMiddle AND NOT HasSuffix =>
 InWords[Space2+1..],
 NOT HasMiddle AND HasSuffix =>
 InWords[Space2+1..Space3-1],
 '');
 STRING5 name_suffix := IF(HasSuffix,InWords[LENGTH(TRIM(InWords))-1 ..],'');
 STRING3 name_score := '';
 RETURN title + fname + mname + lname + name_suffix + name_score;
END;

//Example 1 - a transform to create a row from an uncleaned name
NameRec createRow(string inputName) := TRANSFORM
 cleanedText := CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];
 SELF.name_score := cleanedText[71..73];
END;

myRecord t(myRecord L) := TRANSFORM
 SELF.Name := ROW(createRow(L.uncleanedName));
 SELF := L;
END;
y := PROJECT(x, t(LEFT));
OUTPUT(y);

//Example 2 - an attribute using that transform to generate the row.

NameRec cleanedName(STRING inputName) := ROW(createRow(inputName));
myRecord t2(myRecord L) := TRANSFORM
 SELF.Name := cleanedName(L.uncleanedName);
 SELF := L;
END;
y2 := PROJECT(x, t2(LEFT));
OUTPUT(y2);

//Example 3 = Encapsulate the transform inside the attribute by
// defining a FUNCTION structure.
NameRec cleanedName2(STRING inputName) := FUNCTION

 NameRec createRow := TRANSFORM
 cleanedText := CleanPerson73(inputName);
 SELF.title := cleanedText[1..5];
 SELF.fname := cleanedText[6..25];
 SELF.mname := cleanedText[26..45];
 SELF.lname := cleanedText[46..65];
 SELF.name_suffix := cleanedText[66..70];
 SELF.name_score := cleanedText[71..73];
 END;

 RETURN ROW(createRow); //omitted row parameter
END;

myRecord t3(myRecord L) := TRANSFORM
 SELF.Name := cleanedName2(L.uncleanedName);
 SELF := L;
END;

y3 := PROJECT(x, t3(LEFT));

OUTPUT(y3);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

297

See Also: TRANSFORM Structure, DATASET, RECORD Structure, FUNCTION Structure

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

298

ROWDIFF
ROWDIFF(left, right [, COUNT])

left The left record, or a nested record structure.

right The right record, or a nested record structure.

COUNT Optional. Specifies returning a comma delimited set of zeros and ones (0,1) indicating which
fields matched (0) and which did not (1). If omitted, a comma delimited set of the non-matching
field names.

Return: ROWDIFF returns a single value.

The ROWDIFF function is valid for use only within a TRANSFORM structure for a JOIN operation and is used
as the expression defining the output for a string field. Fields are matched by name and only like-named fields are
included in the output.

Example:

FullName := RECORD
 STRING30 forename;
 STRING20 surname;
 IFBLOCK(SELF.surname <> 'Windsor')
 STRING20 middle;
 END;
END;
in1rec := {UNSIGNED1 id,FullName name,UNSIGNED1 age,STRING5 title};
in2rec := {UNSIGNED1 id,FullName name,REAL4 age,BOOLEAN dead};
in1 := DATASET([{1,'Kevin','Halligan','',33,'Mr'},
 {2,'Liz','Halligan','',33,'Dr'},
 {3,'Elizabeth','Windsor',99,'Queen'}], in1rec);
in2 := DATASET([{1,'Kevin','Halligan','',33,false},
 {2,'Liz','','Jean',33,false},
 {3,'Elizabeth','Windsor',99.1,false}], in2rec);
outrec := RECORD
 UNSIGNED1 id;
 STRING35 diff1;
 STRING35 diff2;
 STRING35 diff3;
 STRING35 diff4;
END;
outrec t1(in1 L, in2 R) := TRANSFORM
 SELF.id := L.id;
 SELF.diff1 := ROWDIFF(L,R);
 SELF.diff2 := ROWDIFF(L.name, R.name);
 SELF.diff3 := ROWDIFF(L, R, COUNT);
 SELF.diff4 := ROWDIFF(L.name, R.name, COUNT);
END;
OUTPUT(JOIN(in1, in2, LEFT.id = RIGHT.id, t1(LEFT,RIGHT)));
// The result set from this code is:
//id diff1 diff2 diff3 diff4
//1 0,0,0,0,0 0,0,0
//2 name.surname,name.middle surname,middle 0,0,1,1,0 0,1,1
//3 age 0,0,0,0,1 0,0,0

See Also: TRANSFORM Structure, JOIN

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

299

SAMPLE
SAMPLE(recordset, interval [, which])

recordset The set of records to sample. This may be the name of a dataset or a record set derived from some
filter condition, or any expression that results in a derived record set.

interval The interval between records to return.

which Optional. An integer specifying the ordinal number of the sample set to return. This is used to
obtain multiple non-overlapping samples from the same recordset.

Return: SAMPLE returns a set of records.

The SAMPLE function returns a sample set of records from the nominated recordset.

Example:

MySample := SAMPLE(Person,10,1) // get every 10th record

SomeFile := DATASET([{'A'},{'B'},{'C'},{'D'},{'E'},
 {'F'},{'G'},{'H'},{'I'},{'J'},
 {'K'},{'L'},{'M'},{'N'},{'O'},
 {'P'},{'Q'},{'R'},{'S'},{'T'},
 {'U'},{'V'},{'W'},{'X'},{'Y'}],
 {STRING1 Letter});
Set1 := SAMPLE(SomeFile,5,1); // returns A, F, K, P, U

See Also: CHOOSEN, ENTH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

300

SEQUENTIAL
[attributename :=] SEQUENTIAL(actionlist)

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

actionlist A comma-delimited list of the actions to execute in order. These may be ECL actions or external
actions.

The SEQUENTIAL action executes the items in the actionlist in the order in which they appear in the actionlist. This
is useful when a subsequent action requires the output of a precedent action. By definition, PERSIST on an attribute
means the attribute is evaluated outside of any given evaluation order. Therefore, SEQUENTIAL has no effect on
PERSISTed attributes.

Example:

Act1 :=
 OUTPUT(A_People,OutputFormat1,'//hold01/fred.out');
Act2 :=
 OUTPUT(Person,{Person.per_first_name,Person.per_last_name})
Act2 := OUTPUT(Person,{Person.per_last_name})));
//by naming these actions, they become inactive
 attributes
//that only execute when the attribute names are called as
 actions
SEQUENTIAL(Act1,PARALLEL(Act2,Act3));
//executes Act1 alone, and only when it's finished, // executes
 Act2 and Act3 together

See Also: PARALLEL, PERSIST

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

301

SET
SET(recordset,field)

recordset The set of records from which to derive the SET of values.

field The field in the recordset from which to obtain the values.

Return: SET returns a SET of values of the same type as the field.

The SET function returns a SET for use in any set operation (such as the IN operator), similar to a sub-select in SQL
when used with the IN operator. It does not remove duplicate elements and does not order the set.

One common problem is the use of the SET function in a filter condition, like this:

MyDS := myDataset(myField IN SET(anotherDataset, someField));

The code generated for this is inefficient if "anotherDataset" contains a large number of elements, and may also cause
a "Dataset too large to output to workunit" error. A better way to recode the expression would be this:

MyDS := JOIN(myDataset, anotherDataset, LEFT.myField = RIGHT.someField, TRANSFORM(LEFT), LOOKUP) ;

The end result is the same, the set of "myDataset" records where the "myField" value is one of the "someField" values
from "anotherDataset," but the code is much more efficient in execution.

Example:

ds := DATASET([{'X',1},{'B',3},{'C',2},{'B',5},
 {'C',4},{'D',6},{'E',2}],
 {STRING1 Ltr, INTEGER1 Val});

//a SET of just the Ltr field values:
s1 := SET(ds,Ltr);
COUNT(s1); //results in 7
s1; //results in ['X','B','C','B','C','D','E']

//a simple way to get just the unique elements
//is to use a crosstab TABLE:
t := TABLE(ds,{Ltr},Ltr); //order indeterminant

s2 := SET(t,Ltr);
COUNT(s2); //results in 5
s2; //results in ['D','X','C','E','B']

//sorted unique elements
s3 := SET(SORT(t,Ltr),Ltr);
COUNT(s3); //results in 5
s3; //results in ['B','C','D','E','X']

See Also: Sets and Filters, SET OF, Set Operators, IN Operator

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

302

SIN
SIN(angle)

angle The REAL radian value for which to find the sine.

Return: SIN returns a single REAL value.

The SIN function returns the sine of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian

Deg2Rad := 0.0174532925199; //number of radians in a degree

Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians

Sine45 := SIN(Angle45); //get sine of the 45 degree angle

See Also: ACOS, COS, ASIN, TAN, ATAN, COSH, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

303

SINH
SINH(angle)

angle The REAL radian value for which to find the hyperbolic sine.

Return: SINH returns a single REAL value.

The SINH function returns the hyperbolic sine of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian

Deg2Rad := 0.0174532925199; //number of radians in a degree

Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians

HyperbolicSine45 := SINH(Angle45); //get hyperbolic sine of the angle

See Also: ACOS, COS, ASIN, TAN, ATAN, COSH, SIN, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

304

SIZEOF
SIZEOF(data [, MAX])

data The name of a dataset, RECORD structure, a fully-qualified field name, or a constant string ex-
pression.

MAX Specifies the data is variable-length (such as containing child datasets) and the value to return is
the maximum size..

Return: SIZEOF returns a single integer value.

The SIZEOF function returns the total number of bytes defined for storage of the specified data structure or field.

Example:

MyRec := RECORD
INTEGER1 F1;
INTEGER5 F2;
STRING1 F3;
STRING10 F4;
QSTRING12 F5;
VARSTRING12 F6;
END;
MyData :=
 DATASET([{1,33333333333,'A','A','A',V'A'}],MyRec);
SIZEOF(MyRec); //result is 39
SIZEOF(MyData.F1); //result is 1
SIZEOF(MyData.F2); //result is 5
SIZEOF(MyData.F3); //result is 1
SIZEOF(MyData.F4); //result is 10
SIZEOF(MyData.F5); //result is 9 -12 chars stored in 9
 bytes
SIZEOF(MyData.F6); //result is 13 -12 chars plus null
 terminator

Layout_People := RECORD
STRING15 first_name;
STRING15 middle_name;
STRING25 last_name;
STRING2 suffix;
STRING42 street;
STRING20 city;
STRING2 st;
STRING5 zip;
STRING1 sex;
STRING3 age;
STRING8 dob;
BOOLEAN age_flag;
UNSIGNED8 __filepos { virtual(fileposition)};
END;
File_People := DATASET('ecl_training::People', Layout_People,
 FLAT);
SIZEOF(File_People); //result is 147
SIZEOF(File_People.street); //result is 42
SIZEOF('abc' + '123'); //result is 6
SIZEOF(person.per_cid); //result is 9 - Person.per_cid is
 DATA9

See Also: LENGTH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

305

SOAPCALL
result := SOAPCALL([recset,] url, service, instructure, [transform,] DATASET(outstructure) | outstructure [,
options]);

SOAPCALL([recset,] url, service, instructure, [transform,] [options]);

result The attribute name for the resulting recordset or single record.

recset Optional. The input recordset. If omitted, the single input record must be defined by
default values for each field in the instructure parameter.

url A string containing a pipe-delimited (|) list of URLs that host the service to invoke
(may append repository module names). This is intended to provide a means for the
client to conduct a Federated search where the request is sent to each of the target
systems in the list. These URLs may contain standard form usernames and passwords,
if required. The default username/password are those contained in the workunit. If
calling an ESP Web service, you can append the ver_=n.nn parameter to specify the
version of the service. For example:

SOAPCALL('http://127.0.0.1:8010/Wsdfu/?ver_=1.22',
 'DFUSearchData',
 instructure,DATASET(outsructure));

service A string expression containing the name of the service to invoke. This may be in the
form module.attribute if the service is on a Roxie platform.

instructure A RECORD structure containing the input field definitions from which the XML input
to the SOAP service is constructed. The name of the tags in the XML are derived from
the names of the fields in the input record; this can be overridden by placing an xpath
on the field ({xpath('tagname')} — see the XPATH Support section of the RECORD
Structure discussion). If the recset parameter is not present, each field definition must
contain a default value that will constitute the single input record. If the recset para-
meter is present, each field definition must contain a default value unless a transform
is also specified to supply that data values.

transform Optional. The TRANSFORM function to call to process the instructure data. This elim-
inates the need to define default values for all fields in the instructure RECORD struc-
ture. The transform function must take at least one parameter: a LEFT record of the
same format as the input recset. The resulting record set format must be the same as
the input instructure.

DATASET (outstructure) Specifies recordset result in the outstructure format.

outstructure A RECORD structure containing the output field definitions. If not used as a parameter
to the DATASET keyword, this specifies a single record result. Each field definition in
the RECORD structure must use an xpath attribute ({xpath('tagname')}) to eliminate
case sensitivity issues.

options A comma-delimited list of optional specifications from the list below.

Return: SOAPCALL returns either a set of records, a single record, or nothing.

SOAPCALL is a function or action that calls a SOAP (Simple Object Access Protocol) service.

Valid options are:

RETRY(count) Specifies re-attempting the call count number of times if non-fatal errors occur. If
omitted, the default is three (3).

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

306

TIMEOUT(period) Specifies the amount of time to attempt the read before failing. The period is a real
number where the integer portion specifies seconds. Setting to zero (0) indicates
waiting forever. If omitted, the default is three hundred (300).

TIMELIMIT(period) Specifies the total amount of time allowed for the SOAPCALL. The period is a
real number where the integer portion specifies seconds. If omitted, the default is
zero (0) indicating no limit.

HEADING(prefix,suffix) Specifies tags to wrap around the XML input fields. If omitted, the default is:
HEADING('','').

XPATH(xpath) Specifies the path used to access rows in the output. If omitted, the default is: 'ser-
viceResponse/Results/Result/Dataset/Row'.

MERGE(n) Specifies processing n records per batch (the blocking). If omitted, the default is 1
(values other than 1 may be incompatible with non-Roxie services). Valid for use
only if the recset parameter is also present.

PARALLEL(n) Specifies the number of concurrent threads to have processing Data Delivery En-
gine queries, to a maximum of 50 (the default is 2). This is intended to limit the
number of concurrent sessions.

ONFAIL(transform) Specifies either the transform function to call if the service fails for a particular
record, or the keyword SKIP. The TRANSFORM function must produce a resul-
type the same as the outstructure and may use FAILCODE and/or FAILMESSAGE
to provide details of the failure.

TRIM Specifies all trailing spaces are removed from strings before output.

RESPONSE (NOTRIM) Sets flag to prevent space stripping on the response.

NAMESPACE (namespace) Specifies the top level namespace for the SOAP request.

LITERAL Specifies the service is not necessarily implemented in ESP.

SOAPACTION (value) Specifies a value where that value is a string expression typically containing a URN
or URL that is required by the web service for proper interoperability.

LOG If specified, writes details to the log file of the engine (hThor, Thor, or Roxie) to
which the SOAPCALL is submitted.

LOG (MIN) Specifies to write minimal details of the SOAPCALL to a log file.

LOG (expression) Specifies to add the expression to the log when performing a SOAPCALL.

ENCODING Specifies that the Web service being called requires a different message format,
where type information is embedded in the XML.

SOAPCALL Function

This form of SOAPCALL, the function, may take as input either a single record or a recordset, and both types of input
can result in either a single record or a recordset.

The outstructure output record definition may contain an integer field with an XPATH of "_call_latency" to receive
the time, in seconds, for the call which generated the row (from creating the socket to receiving the response). The
latency is placed in every row the call returned, so if a call took 90 seconds and returned 11 rows then you will see
11 rows with 90 in the _call_latency field.

Example:

OutRec1 := RECORD
 STRING500 OutData{XPATH('OutData')};
 UNSIGNED4 Latency{XPATH('_call_latency')};

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

307

END;
ip := 'http://127.0.0.1:8022/';
ips := 'https://127.0.0.1:8022/';
ipspw := 'https://username:password@127.0.0.1:8022/';
svc := 'MyModule.SomeService';

//1 rec in, 1 rec out
OneRec1 := SOAPCALL(ips,svc,{STRING500 InData := 'Some Input Data'},OutRec1);

//1 rec in, recordset out
ManyRec1 := SOAPCALL(ip,svc,{STRING500 InData := 'Some Input Data'},DATASET(OutRec1));

//recordset in, 1 rec out
OneRec2 := SOAPCALL(InputDataset,ip,svc,{STRING500 InData},OutRec1);

//recordset in, recordset out
ManyRec2 := SOAPCALL(InputDataset,ipspw,svc,{STRING500 InData := 'Some Input Data'},DATASET(OutRec1));

//TRANSFORM function usage example
namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
END;
ds := DATASET('x',namesRecord,FLAT);

inRecord := RECORD
 STRING name{xpath('Name')};
 UNSIGNED6 id{XPATH('ADL')};
END;
outRecord := RECORD
 STRING name{xpath('Name')};
 UNSIGNED6 id{XPATH('ADL')};
 REAL8 score;
END;
inRecord t(namesRecord l) := TRANSFORM
 SELF.name := l.surname;
 SELF.id := l.age;
END;
outRecord genDefault1() := TRANSFORM
 SELF.name := FAILMESSAGE;
 SELF.id := FAILCODE;
 SELF.score := (REAL8)FAILMESSAGE('ip');
END;
outRecord genDefault2(namesRecord l) := TRANSFORM
 SELF.name := l.surname;
 SELF.id := l.age;
 SELF.score := 0;
END;

ip := 'http://127.0.0.1:8022/';
svc:= 'MyModule.SomeService';
OUTPUT(SOAPCALL(ip, svc,{ STRING20 surname := 'Halligan',STRING20 forename := 'Kevin';},
DATASET(outRecord), ONFAIL(genDefault1())));

OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT),DATASET(outRecord), ONFAIL(genDefault2(LEFT))));

OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT),DATASET(outRecord), ONFAIL(SKIP)));

SOAPCALL Action

The second form of SOAPCALL, the action, may take as input either a single record or a recordset. Neither type of
input produces any returned result—it simply launches the specified SOAP service, providing it input data.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

308

Example:

//1 rec in, no result
SOAPCALL('https://127.0.0.1:8022/','MyModule.SomeService',{STRING500 InData := 'Some Input Data'});

//recordset in, no result
SOAPCALL(InputDataset,'https://127.0.0.1:8022/','MyModule.SomeService',{STRING500 InData});

See Also: RECORD Structure, TRANSFORM Structure

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

309

SORT
SORT(recordset,value [, JOINED(joinedset)][, SKEW(limit [,target])] [, THRESHOLD(size)][, LOCAL]
[,FEW] [, STABLE [(algorithm)] | UNSTABLE [(algorithm)]])

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

value A comma-delimited list of expressions or key fields in the recordset on which to sort, with
the leftmost being the most significant sort criteria. A leading minus sign (-) indicates a de-
scending-order sort on that element. You may have multiple value parameters to indicate sorts
within sorts. You may use the keyword RECORD (or WHOLE RECORD) to indicate an as-
cending sort on all fields, and/or you may use the keyword EXCEPT to list non-sort fields in
the recordset.

JOINED Optional. Indicates this sort will use the same radix-points as already used by the joinedset so
that matching records between the recordset and joinedset end up on the same supercomputer
nodes. Used to optimize supercomputer joins where the joinedset is very large and the recordset
is small.

joinedset A set of records that has been previously sorted by the same value parameters as the recordset.

SKEW Optional. Indicates that you know the data is not spread evenly across nodes (is skewed) and
you choose to override the default by specifying your own limit value to allow the job to
continue despite the skewing.

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage of skew
to allow before the job fails (the default is 0.1 = 10%).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired maximum
percentage of skew to allow (the default is 0.1 = 10%).

THRESHOLD Optional. Indicates the minimum size for a single part of the recordset before the SKEW limit
is enforced.

size An integer value indicating the minimum number of bytes for a single part.

LOCAL Optional. Specifies the operation is performed on each node independently, without requiring
interaction with all other nodes to acquire data; the operation maintains the distribution of any
previous DISTRIBUTE. An error occurs if the recordset has been GROUPed.

FEW Optional. Specifies that few records will be sorted. This prevents spilling the SORT to disk if
another resource-intensive activity is executing concurrently.

STABLE Optional. Specifies a stable sort—duplicates output in the same order they were in the input.
This is the default if neither STABLE nor UNSTABLE sorting is specified. Ignored if not
supported by the target platform.

algorithm Optional. A string constant that specifies the sorting algorithm to use (see the list of valid values
below). If omitted, the default algorithm depends on which platform is targeted by the query.

UNSTABLE Optional. Specifies an unstable sort—duplicates may output in any order. Ignored if not sup-
ported by the target platform.

Return: SORT returns a set of records.

The SORT function orders the recordset according to the values specified, and (if LOCAL Is not specified) partitions
the result such that all records with the same values are on the same node. SORT is usually used to produce the record
sets operated on by the DEDUP, GROUP, and ROLLUP functions, so that those functions may operate optimally.
Sorting final output is, of course, another common use.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

310

Sorting Algorithms
There are three sort algorithms available: quicksort, insertionsort, and heapsort. They are not all available on all plat-
forms. Specifying an invalid algorithm for the targeted platform will generate a warning and the default algorithm for
that platform will be implemented.

Thor Supports stable and unstable quicksort—the sort will spill to disk, if necessary. Parallel sorting
happens automatically on clusters with multiple-CPU or multi-CPU-core nodes.

hthor Supports stable and unstable quicksort, stable and unstable insertionsort, and stable heapsort—
the sort will spill to disk, if necessary. Stable heapsort is the default if both STABLE and
UNSTABLE are omitted or if STABLE is present without an algorithm parameter.

Unstable quicksort is the default if UNSTABLE is present without an algorithm parameter.

Roxie Supports unstable quicksort, stable insertionsort, and stable heapsort—the sort does not spill to
disk.

Stable heapsort is the default if both STABLE and UNSTABLE are omitted or if STABLE is
present without an algorithm parameter. The insertionsort implements blocking and heapmerg-
ing when there are more than 1024 rows.

Quick Sort
A quick sort does nothing until it receives the last row of its input, and it produces no output until the sort is complete,
so the time required to perform the sort cannot overlap with either the time to process its input or to produce its output.
Under normal circumstances, this type of sort is expected to take the least CPU time. There are rare exceptional cases
where it can perform badly (the famous "median-of-three killer" is an example) but you are very unlikely to hit these
by chance.

On a Thor cluster where each node has multiple CPUs or CPU cores, it is possible to split up the quick sort problem and
run sections of the work in parallel. This happens automatically if the hardware supports it. Doing this does not improve
the amount of actual CPU time used (in fact, it fractionally increases it because of the overhead of splitting the task) but
the overall time required to perform the sort operation is significantly reduced. On a cluster with dual CPU/core nodes
it should only take about half the time, only about a quarter of the time on a cluster with quad-processor nodes, etc.

Insertion Sort
An insertion sort does all its work while it is receiving its input. Note that the algorithm used performs a binary search
for insertion (unlike the classic insertion sort). Under normal circumstances, this sort is expected to produce the worst
CPU time. In the case where the input source is slow but not CPU-bound (for example, a slow remote data read or
input from a slow SOAPCALL), the time required to perform the sort is entirely overlapped with the input.

Heap Sort
A heap sort does about half its work while receiving input, and the other half while producing output. Under normal
circumstances, it is expected to take more CPU time than a quick sort, but less than an insertion sort. Therefore, in
queries where the input source is slow but not CPU-bound, half of the time taken to perform the sort is overlapped with
the input. Similarly, in queries where the output processing is slow but not CPU-bound, the other half of the time taken
to perform the sort is overlapped with the output. Also, if the sort processing terminates without consuming all of its
input, then some of the work can be avoided entirely (about half in the limiting case where no output is consumed),
saving both CPU and total time.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

311

In some cases, such as when a SORT is quickly followed by a CHOOSEN, the compiler will be able to spot that only
a part of the sort's output will be required and replace it with a more efficient implementation. This will not be true
in the general case.

Stable vs. Unstable
A stable sort is required when the input might contain duplicates (that is, records that have the same values for all
the sort fields) and you need the duplicates to appear in the result in the same order as they appeared in the input.
When the input contains no duplicates, or when you do not mind what order the duplicates appear in the result, an
unstable sort will do.

An unstable sort will normally be slightly faster than the stable version of the same algorithm. However, where the
ideal sort algorithm is only available in a stable version, it may often be better than the unstable version of a different
algorithm.

Performance Considerations
The following discussion applies principally to local sorts, since Thor is the only platform that performs global sorts,
and Thor does not provide a choice of algorithms.

CPU time vs. Total time

In some situations a query might take the least CPU time using a quick sort, but it might take the most total time
because the sort time cannot be overlapped with the time taken by an I/O-heavy task before or after it. On a system
where only one subgraph or query is being run at once (Thor or hthor), this might make quick sort a poor choice since
the extra time is simply wasted. On a system where many subgraphs or queries are running concurrently (such as a
busy Roxie) there is a trade-off, because minimizing total time will minimize the latency for the particular query, but
minimizing CPU time will maximize the throughput of the whole system.

When considering the parallel quick sort, we can see that it should significantly reduce the latency for this query; but
that if the other CPUs/cores were in use for other jobs (such as when dual Thors are running on the same dual CPU/
core machines) it will not increase (and will slightly decrease) the throughput for the machines.

Spilling to disk

Normally, records are sorted in memory. When there is not enough memory, spilling to disk may occur. This means
that blocks of records are sorted in memory and written to disk, and the sorted blocks are then merged from disk on
completion. This significantly slows the sort. It also means that the processing time for the heap sort will be longer,
as it is no longer able to overlap with its output.

When there is not enough memory to hold all the records and spilling to disk is not available (like on the Roxie
platform), the query will fail.

How sorting affects JOINs

A normal JOIN operation requires that both its inputs be sorted by the fields used in the equality portion of the match
condition. The supercomputer automatically performs these sorts "under the covers" unless it knows that an input is
already sorted correctly. Therefore, some of the considerations that apply to the consideration of the algorithm for a
SORT can also apply to a JOIN. To take advantage of these alternate sorting algorithms in a JOIN context you need
to SORT the input dataset(s) the way you want, then specify the NOSORT option on the JOIN.

Note well that no sorting is required for JOIN operations using the KEYED (or half-keyed), LOOKUP, or ALL options.
Under some circumstances (usually in Roxie queries or in those cases where the optimizer thinks there are few records
in the right input dataset) the supercomputer's optimizer will automatically perform a LOOKUP or ALL join instead

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

312

of a regular join. This means that, if you have done your own SORT and specified the NOSORT option on the JOIN,
that you will be defeating this possible optimization.

Example:

MySet1 := SORT(Person,-last_name, first_name);
// descending last name, ascending first name

MySet2 := SORT(Person,RECORD,EXCEPT per_sex,per_marital_status);
// sort by all fields except sex and marital status

MySet3 := SORT(Person,last_name, first_name,STABLE('quicksort'));
// stable quick sort, not supported by Roxie

MySet4 := SORT(Person,last_name, first_name,UNSTABLE('heapsort'));
// unstable heap sort,
// not supported by any platform,
// therefore ignored

MySet5 := SORT(Person,last_name,first_name,STABLE('insertionsort'));
// stable insertion sort, not supported by Thor

See Also: SORTED, RANK, RANKED, EXCEPT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

313

SORTED
SORTED(recordset,value)

SORTED(index)

recordset The set of sorted records. This may be the name of a dataset or a record set derived from some
filter condition, or any expression that results in a derived record set.

value A comma-delimited list of expressions or key fields in the recordset on which the recordset has
been sorted, with the leftmost being the most significant sort criteria. A leading minus sign (-)
indicates a descending-order sort on that element. You may have multiple value parameters to
indicate sorts within sorts. You may use the keyword RECORD to indicate an ascending sort on
all fields, and/or you may use the keyword EXCEPT to list non-sort fields in the recordset.

index The attribute name of an INDEX definition. This is equivalent to adding the SORTED option to
the INDEX definition.

Return: SORTED is a compiler directive that returns nothing.

The SORTED function indicates to the ECL compiler that the recordset is already sorted according to the values
specified. Any number of value parameters may be supplied, with the leftmost being the most significant sort criteria.
A leading minus sign (-) on any value parameter indicates a descending sort for that one parameter. SORTED typically
refers to a DATASET to indicate the order in which the data is already sorted.

Example:

InputRec := RECORD
INTEGER4 Attr1;
STRING20 Attr2;
INTEGER8 Cid;
END;
MyFile := DATASET('filename',InputRec,FLAT)
MySortedFile := SORTED(MyFile,MyFile.Cid)
// Input file already sorted by Cid

See Also: SORT, DATASET, RANK, RANKED, INDEX

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

314

SQRT
SQRT(n)

n The real number to evaluate.

Return: SQRT returns a single real value.

The SQRT function returns the square root of the parameter.

Example:

MyRoot := SQRT(16.0);

See Also: POWER, EXP, LN, LOG

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

315

STEPPED
STEPPED(index, fields)

index The INDEX to sort. This can be filtered or the result of a PROJECT on an INDEX.

fields A comma-delimited list of fields by which to sort the result, typically trailing elements in the key.

The STEPPED function sorts the index by the specified fields. This function is used in those cases where the
SORTED(index) function will not suffice.

There are some restrictions in its use:

The key fields before ordered fields should be reasonably well filtered, otherwise the sorting could become very mem-
ory intensive.

Roxie only supports sorting by trailing components on indexes that are read locally (single part indexes or superkeys
containing single part indexes), or NOROOT indexes read within ALLNODES.

Thor does not support STEPPED.

Example:

DataFile := '~RTTEST::TestStepped';
KeyFile := '~RTTEST::TestSteppedKey';
Rec := RECORD
STRING2 state;
STRING20 city;
STRING25 lname;
STRING15 fname;
END;
ds := DATASET(DataFile,
{Rec,UNSIGNED8 RecPos {virtual(fileposition)}},
THOR);
IDX := INDEX(ds,{state,city,lname,fname,RecPos},KeyFile);

OUTPUT(IDX(state IN ['FL','PA']));
/* where this OUTPUT produces this result:
FL BOCA RATON WIK PICHA
FL DELAND WIKER OKE
FL GAINESVILLE WIK MACHOUSTON
PA NEW STANTON WIKER DESSIE */

OUTPUT(STEPPED(IDX(state IN ['FL','PA']),fname));
/* this STEPPED OUTPUT produces this result:
PA NEW STANTON WIKER DESSIE
FL GAINESVILLE WIK MACHOUSTON
FL DELAND WIKER OKE
FL BOCA RATON WIK PICHA */

See Also: INDEX, SORTED, ALLNODES

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

316

STORED
STORED(interface)

interface The name of an INTERFACE structure attribute.

The STORED function is a shorthand method of defining attributes for use in a SOAP interface. It is equivalent
to defining a MODULE structure that inherits all the attributes from the interface and adds the STORED workflow
service to each, using the attribute name as the STORED name.

Example:

Iname := INTERFACE
EXPORT STRING20 Name;
EXPORT BOOLEAN KeepName := TRUE;
END;

StoredName := STORED(Iname);
// is equivalent to:
// StoredName := MODULE(Iname)
// EXPORT STRING20 Name := '' : STORED('name');
// EXPORT BOOLEAN KeepName := TRUE : STORED('keepname');
// END;

See Also: STORED Workflow Service, INTERFACE Structure, MODULE Structure

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

317

SUM
SUM(recordset, value, [, expression] [, KEYED])

SUM(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
keyword GROUP to indicate finding the sum of values of the field in a group, when used in a
RECORD structure to generate crosstab statistics.

value The expression to sum.

expression Optional. A logical expression indicating which records to include in the sum. Valid only when
the recordset parameter is the keyword GROUP to indicate summing the elements in a group.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the sum of. This may also be a SET of values.

Return: SUM returns a single value.

The SUM function returns the additive sum of the value in each record of the recordset or valuelist.

Example:

MySum := SUM(Person,Person.Salary); // total all salaries

SumVal2 := SUM(4,8,16,2,1); //returns 31
SetVals := [4,8,16,2,1];
SumVal3 := SUM(SetVals); //returns 31

See Also: COUNT, AVE, MIN, MAX

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

318

TABLE
TABLE(recordset, format [,expression [,FEW | MANY] [, UNSORTED]] [,LOCAL] [, KEYED] [, MERGE]
[,SKEW(limit[, target]) [, THRESHOLD(size)]])

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

format An output RECORD structure definition that defines the type, name, and source of the data
for each field.

expression Optional. Specifies a "group by" clause. You may have multiple expressions separated by com-
mas to create a single logical "group by" clause. If expression is a field of the recordset, then
there is a single group record in the resulting table for every distinct value of the expression.
Otherwise expression is a LEFT/RIGHT type expression in the DEDUP manner.

FEW Optional. Indicates that the expression will result in fewer than 10,000 distinct groups. This
allows optimization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in many distinct groups.

UNSORTED Optional. Specifies that you don't care about the order of the groups. This allows optimization
to produce a significantly faster result.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation maintains the
distribution of any previous DISTRIBUTE.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer
to generate optimal code for the operation.

MERGE Optional. Specifies that results are aggregated on each node and then the aggregated interme-
diaries are aggregated globally. This is a safe method of aggregation that shines particularly
well if the underlying data was skewed. If it is known that the number of groups will be low
then ,FEW will be even faster; avoiding the local sort of the underlying data.

SKEW Indicates that you know the data will not be spread evenly across nodes (will be skewed and you
choose to override the default by specifying your own limit value to allow the job to continue
despite the skewing.)

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage of skew to
allow before the job fails (the default skew is 1.0 / <number of slaves on cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired maximum
percentage of skew to allow (the default skew is 1.0 / <number of slaves on cluster>).

THRESHOLD Indicates the minimum size for a single part before the SKEW limit is enforced.

size An integer value indicating the minimum number of bytes for a single part. Default is 1GB.

Return: TABLE returns a new table.

The TABLE function is similar to OUTPUT, but instead of writing records to a file, it outputs those records in a new
table (a new dataset in the supercomputer), in memory. The new table is temporary and exists only while the specific
query that invoked it is running.

The new table inherits the implicit relationality the recordset has (if any), unless the optional expression is used to
perform aggregation. This means the parent record is available when processing table records, and you can also access
the set of child records related to each table record. There are two forms of TABLE usage: the "Vertical Slice" form,
and the "CrossTab Report" form.

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

319

For the "Vertical Slice" form, there is no expression parameter specified. The number of records in the input recordset
is equal to the number of records produced.

For the "CrossTab Report" form there is usually an expression parameter and, more importantly, the output format
RECORD structure contains at least one field using an aggregate function with the keyword GROUP as its first para-
meter. The number of records produced is equal to the number of distinct values of the expression.

Example:

//"vertical slice" form:
MyFormat := RECORD
STRING25 Lname := Person.per_last_name;
Person.per_first_name;
STRING5 NewField := '';
END;
PersonTable := TABLE(Person,MyFormat);
// adding a new field is one use of this form of TABLE

//"CrossTab Report" form:
rec := RECORD
Person.per_st;
StCnt := COUNT(GROUP);
END
Mytable := TABLE(Person,rec,per_st,FEW);
// group persons by state in Mytable to produce a
 crosstab

See Also: OUTPUT, GROUP, DATASET, RECORD Structure

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

320

TAN
TAN(angle)

angle The REAL radian value for which to find the tangent.

Return: TAN returns a single REAL value.

The TAN function returns the tangent of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian

Deg2Rad := 0.0174532925199; //number of radians in a degree

Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians

Tangent45 := TAN(Angle45); //get tangent of the 45 degree angle

See Also: ACOS, COS, ASIN, SIN, ATAN, COSH, SINH, TANH

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

321

TANH
TANH(angle)

angle The REAL radian value for which to find the hyperbolic tangent.

Return: TANH returns a single REAL value.

The TANH function returns the hyperbolic tangent of the angle.

Example:

Rad2Deg := 57.295779513082; //number of degrees in a radian

Deg2Rad := 0.0174532925199; //number of radians in a degree

Angle45 := 45 * Deg2Rad; //translate 45 degrees into radians

HyperbolicTangent45 := TANH(Angle45);
 //get hyperbolic tangent of the angle

See Also: ACOS, COS, ASIN, SIN, ATAN, COSH, SINH, TAN

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

322

THISNODE
THISNODE(operation)

operation The name of an attribute or in-line code that results in a DATASET or INDEX.

Return: THISNODE returns a record set or index.

The THISNODE function specifies that the operation is performed on each node, independently. This is typically
used within an ALLNODES operation. Available for use only in Roxie.

Example:

ds := ALLNODES(JOIN(THISNODE(GetData(SomeData)),
 THISNODE(GetIDX(SomeIndex)),
 LEFT.ID = RIGHT.ID));

See Also: ALLNODES, LOCAL, NOLOCAL

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

323

TOJSON
TOJSON(record)

record The row (record) of data to convert to JSON format.

Return: TOJSON returns a STRING.

The TOJSON function returns a single string with the data in the record re-formatted as JSON. If the RECORD
structure of the record has XPATHs defined, then they will be used, otherwise the lower-cased field names are used
as the JSON tag names.

Example:

namesRec1 := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
str1 := TOJSON(ROW({42,'Fred','Flintstone'},namesRec1));
OUTPUT(str1);
//returns this string:
//'"EmpID": 42, "FName": "Fred", "LName": "Flintstone"'
namesRec2 := RECORD
 UNSIGNED2 EmployeeID;
 STRING10 Firstname;
 STRING10 Lastname;
END;
str2 := TOJSON(ROW({42,'Fred','Flintstone'},namesRec2));
OUTPUT(str2);
//returns this string:
//'"employeeid": 42, "firstname": "Fred", "lastname": "Flintstone"'

See Also: ROW, FROMJSON

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

324

TOPN
TOPN(recordset, count, sorts [, BEST(bestvalues)] [,LOCAL])

recordset The set of records to process. This may be the name of a dataset or a record set derived from some
filter condition, or any expression that results in a derived record set.

count An integer expression defining the number of records to return.

sorts A comma-delimited list of expressions or key fields in the recordset on which to sort, with the
leftmost being the most significant sort criteria. A leading minus sign (-) indicates a descend-
ing-order sort on that element. You may use the keyword RECORD to indicate an ascending sort
on all fields, and/or you may use the keyword EXCEPT to list non-sort fields in the recordset.

BEST Optional. Allows early termination of the operation if there are count number of records and the
values contained in the last record match the bestvalues.

bestvalues A comma delimited list, matching the list of sorts, of maximum (or minimum if the corresponding
sort is descending) values.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distrib-
ution of any previous DISTRIBUTE.

Return: TOPN returns a set of records.

The TOPN function returns the first count number of records in the sorts order from the recordset. This is rough-
ly equivalent to CHOOSEN(SORT(recordset,sorts),count) but with simpler syntax that will also work for grouped
recordsets and local operations.

Example:

y := TOPN(Person,1000,state,sex);
 //first 1000 recs in state, sex order
z := TOPN(Person,1000,sex,BEST('F')); //first 1000
 females

See Also: CHOOSEN, SORT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

325

TOUNICODE
TOUNICODE(string, encoding)

string The DATA string to translate.

encoding The encoding codepage (supported by IBM's ICU) to use for the translation.

Return: TOUNICODE returns a single UNICODE value.

The TOUNICODE function returns the string translated from the DATA value to the specified unicode encoding.

Example:

DATA5 x := FROMUNICODE(u'ABCDE','UTF-8');
 //results in 4142434445
y := TOUNICODE(x,'US-ASCII');

See Also: FROMUNICODE, UNICODEORDER

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

326

TOXML
TOXML(record)

record The row (record) of data to convert to an XML format.

Return: TOXML returns a STRING.

The TOXML function returns a single string with the data in the record re-formatted as XML. If the RECORD
structure of the record has XPATHs defined, then they will be used, otherwise the lower-cased field names are used
as the XML tag names.

Example:

namesRec1 := RECORD
 UNSIGNED2 EmployeeID{xpath('EmpID')};
 STRING10 Firstname{xpath('FName')};
 STRING10 Lastname{xpath('LName')};
END;
rec1 := TOXML(ROW({42,'Fred','Flintstone'},namesRec1));
OUTPUT(rec1);

//returns this string:
//'<EmpID>42</EmpID><FName>Fred</FName><LName>Flintstone</LName>'

namesRec2 := RECORD
 UNSIGNED2 EmployeeID;
 STRING10 Firstname;
 STRING10 Lastname;
END;
rec2 := TOXML(ROW({42,'Fred','Flintstone'},namesRec2));
OUTPUT(rec2);
//returns this string:
//'<employeeid>42</employeeid><firstname>Fred</firstname><lastname>Flintstone</lastname>'

See Also: ROW, FROMXML

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

327

TRANSFER
TRANSFER(value,type)

value An expression containing the bitmap to return.

type The value type to return.

Return: TRANSFER returns a single value.

The TRANSFER function returns the value in the requested type. This is not a type cast because the bit-pattern stays
the same.

Example:

INTEGER1 MyInt := 65; //MyInt is an integer whose value is 65

STRING1 MyVal := TRANSFER(MyInt,STRING1); //MyVal is "A" (ASCII 65)

INTEGER1 MyVal2 := (INTEGER)MyVal; //MyVal2 is 0 (zero) because
 "A" is not a numeric character

See Also: Type Casting

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

328

TRIM
TRIM(string_value [,flag])

string_value The string from which to remove spaces.

flag Optional. Specify which spaces to remove. Valid flag values are: RIGHT (remove trailing spaces
—this is the default), LEFT (remove leading spaces), LEFT, RIGHT (remove leading and trailing
spaces), and ALL (remove all spaces, even those within the string_value).

Return: TRIM returns a single value.

The TRIM function returns the string_value with all trailing and/or leading spaces removed.

Example:

 STRING20 SomeStringValue := 'ABC';
 //contains 17 trailing spaces

 VARSTRING MyVal := TRIM(SomeStringValue);
 // MyVal is "ABC" with no trailing spaces

 STRING20 SomeStringValue := ' ABC DEF';
 //contains 2 leading and 11 trailing spaces

 VARSTRING MyVal := TRIM(SomeStringValue,LEFT,RIGHT);
 // MyVal is "ABC DEF" with no trailing spaces

See Also: STRING, VARSTRING

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

329

TRUNCATE
TRUNCATE(real_value)

real_value The floating-point value to truncate.

Return: TRUNCATE returns a single integer value.

The TRUNCATE function returns the integer portion of the real_value.

Example:

SomeRealValue := 3.75;
INTEGER4 MyVal := TRUNCATE(SomeRealValue); // MyVal is 3

See Also: ROUND, ROUNDUP

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

330

UNGROUP
UNGROUP(recordset)

recordset The set of previously GROUPed records.

Return: UNGROUP returns a record set.

The UNGROUP function removes previous grouping. This is equivalent to using the GROUP function without a
second parameter.

Example:

 MyRec := RECORD
 STRING20 Last;
 STRING20 First;
 END;

 SortedSet := SORT(Person,Person.last_name); //sort by last
 name
 GroupedSet := GROUP(SortedSet,last_name); //then group
 them

 SecondSort := SORT(GroupedSet,Person.first_name);
 //sorts by first name within each last name group
 // this is a "sort within group"

 UnGroupedSet := UNGROUP(GroupedSet); //ungroup the
 dataset

See Also: GROUP

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

331

UNICODEORDER
UNICODEORDER(left, right [, locale])

left The left Unicode expression to evaluate.

right The right Unicode expression to evaluate.

locale Optional. A string constant containing a valid locale code, as specified in ISO standards 639 and
3166.

Return: UNICODEORDER returns a single value.

The UNICODEORDER function returns either -1, 0, or 1 depending on the evaluation of the left and right expres-
sions. This is equivalent to the <=> equivalence comparison operator but taking the unicode locale as the basis of
determination. If left < right then -1 is returned, if left = right then 0 is returned, if left > right then 1 is returned.

Example:

 UNICODE1 x := u'a';
 UNICODE1 y := u'b';
 UNICODE1 z := u'a';

 a := UNICODEORDER(x , y, 'es'); // returns -1
 b := UNICODEORDER(x , z, 'es'); // returns 0
 c := UNICODEORDER(y , z, 'es'); // returns 1

See Also: FROMUNICODE, TOUNICODE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

332

VARIANCE
VARIANCE(recset, valuex [, expresssion] [, KEYED])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
GROUP keyword to indicate operating on the elements in each group, when used in a RECORD
structure to generate crosstab statistics.

valuex A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid only
when the recset parameter is the keyword GROUP.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

Return: VARIANCE returns a single REAL value.

The VARIANCE function returns the (population) variance of valuex.

Example:

 pointRec := { REAL x, REAL y };

 analyse(ds) := MACRO

 #uniquename(stats)
 %stats% := TABLE(ds, { c := COUNT(GROUP),
 sx := SUM(GROUP, x),
 sy := SUM(GROUP, y),
 sxx := SUM(GROUP, x * x),
 sxy := SUM(GROUP, x * y),
 syy := SUM(GROUP, y * y),
 varx := VARIANCE(GROUP, x);
 vary := VARIANCE(GROUP, y);
 varxy := COVARIANCE(GROUP, x, y);
 rc := CORRELATION(GROUP, x, y) });
 OUTPUT(%stats%);

 // Following should be zero

 OUTPUT(%stats%, { varx - (sxx-sx*sx/c)/c,
 vary - (syy-sy*sy/c)/c,
 varxy - (sxy-sx*sy/c)/c,
 rc - (varxy/SQRT(varx*vary)) });

 OUTPUT(%stats%, { 'bestFit: y=' +
 (STRING)((sy-sx*varxy/varx)/c) +
 ' + ' +
 (STRING)(varxy/varx)+'x' });
 ENDMACRO;
 ds1 := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}],
 pointRec);

 ds2 := DATASET([{1.93896e+009, 2.04482e+009},
 {1.77971e+009, 8.54858e+008},
 {2.96181e+009, 1.24848e+009},
 {2.7744e+009, 1.26357e+009},
 {1.14416e+009, 4.3429e+008},
 {3.38728e+009, 1.30238e+009},
 {3.19538e+009, 1.71177e+009}], pointRec);

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

333

 ds3 := DATASET([{1, 1.00039},
 {2, 2.07702},
 {3, 2.86158},
 {4, 3.87114},
 {5, 5.12417},
 {6, 6.20283}], pointRec);

 analyse(ds1);
 analyse(ds2);
 analyse(ds3);

See Also: CORRELATION, COVARIANCE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

334

WAIT
WAIT(event)

event A string constant containing the name of the event to wait for.

The WAIT action is similar to the WHEN workflow service, but may be used within conditional code.

Example:

 //You can either do this:
 action1;
 action2 : WHEN('expectedEvent');

 //can also be written as:
 SEQUENTIAL(action1,WAIT('expectedEvent'),action2);

See Also: EVENT, NOTIFY, WHEN

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

335

WHEN
WHEN(trigger, action [BEFORE | SUCCESS | FAILURE])

trigger A dataset or action that launches the action.

action The action to execute.

BEFORE Optional. Specifies an action that should be executed before the input is read.

SUCCESS Optional. Specifies an action that should only be executed on SUCCESS of the trigger
(e.g., no LIMITs exceeded).

FAILURE Optional. Specifies an action that should only be executed on FAILURE of the trigger
(e.g., a LIMIT was exceeded).

The WHEN function associates an action with a trigger (dataset or action) so that when the trigger is executed the
action is also executed. This allows

Example:

//a FUNCTION with side-effect Action
namesTable := FUNCTION
 namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age := 25;
 END;
 o := OUTPUT('namesTable used by user <x>');
 ds := DATASET([{'x','y',22}],namesRecord);
 RETURN WHEN(ds,O);
END;

z := namesTable : PERSIST('z');
 //the PERSIST causes the side-effect action to execute only when the PERSIST is re-built
OUTPUT(z);

See Also: FUNCTION Structure, WHEN, WAIT

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

336

WHICH
WHICH(condition,…,condition)

condition A conditional expression to evaluate.

Return: WHICH returns a single value.

The WHICH function evaluates which of the list of conditions returned true and returns its ordinal position in the list
of conditions. Returns zero (0) if none return true. This is the opposite of the REJECTED function.

Example:

 Accept := WHICH(Person.per_first_name = 'Fred',
 Person.per_first_name = 'Sue');
 //Accept is 0 for everyone but those named Fred or Sue

See Also: REJECTED, MAP, CHOOSE, IF, CASE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

337

WORKUNIT
WORKUNIT

WORKUNIT(named [, type])

named A string constant containing the NAMED option scalar value to return.

type Optional. The value type of the named scalar value result to return.

Return: WORKUNIT returns a single value.

The WORKUNIT function returns values stored in the workunit. Given no parameters, it returns the unique worku-
nit identifier (WUID) for the currently executing workunit, otherwise it returns the NAMED option result from the
OUTPUT or DISTRIBUTION action.

Example:

 wuid := WORKUNIT //get WUID

 namesRecord := RECORD
 STRING20 surname;
 STRING10 forename;
 INTEGER2 age;
 END;

 namesTable := DATASET([
 {'Halligan','Kevin',31},
 {'Halligan','Liz',30},
 {'Salter','Abi',10},
 {'X','Z'}], namesRecord);

 DISTRIBUTION(namesTable, surname, forename,
 NAMED('Stats'));
 x := DATASET(ROW(TRANSFORM({STRING line},
 SELF.line := WORKUNIT('Stats', STRING))));

See Also: #WORKUNIT, OUTPUT, DISTRIBUTION

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

338

XMLDECODE
XMLDECODE(unicode)

unicode The unicode text to decode.

Return: XMLDECODE returns a single value.

The XMLDECODE function decodes special characters into an XML string (for example, < is converted to <)
allowing you to use the CSV option on OUTPUT to produce more complex XML files than are possible by using
the XML option.

Example:

 d := XMLENCODE('<xml version 1><tag>data</tag>');
 e := XMLDECODE(d);

See Also: XMLENCODE

ECL Language Reference
Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

339

XMLENCODE
XMLENCODE(xml [, ALL])

xml The XML to encode.

ALL Optional. Specifies including new line characters in the encoding so the text can be used in attribute
definitions.

Return: XMLENCODE returns a single value.

The XMLENCODE function encodes special characters in an XML string (for example, < is converted to <) al-
lowing you to use the CSV option on OUTPUT to produce more complex XML files than are possible by using the
XML option.

Example:

 d := XMLENCODE('<xml version 1><tag>data</tag>');
 e := XMLDECODE(d);

See Also: XMLDECODE

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

340

Workflow Services

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

341

Workflow Overview
Workflow control within ECL is generally handled automatically by the system. It spots which processes can happen
in parallel, when synchronization is required, and when processes must happen in series. These workflow services
allow exceptions to the normal flow of execution to be specified by the programmer to give extra control (such as
the FAILURE clause).

Workflow operations are implicitly evaluated in a separate global scope from the code to which it is attached. Therefore,
any values from the code to which it is attached (such as loop counters) are unavailable to the workflow service.

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

342

CHECKPOINT
attribute := expression : CHECKPOINT(name) ;

attribute The name of the Attribute.

expression The definition of the attribute.

name A string constant specifying the storage name of the value.

The CHECKPOINT service stores the result of the expression in the workunit so it remains available if the workunit
fails to complete, and is automatically deleted when the job completes successfully. This is particularly useful for
attributes based on large, expensive data manipulation sequences. This service implicitly causes the attribute to be
evaluated at global scope instead of any enclosing scope.

However, CHECKPOINT is only useful when the unsuccessful workunit is resubmitted through ECL Watch; if a new
workunit is instantiated, CHECKPOINT has no effect. The PERSIST service is more generally useful.

Example:

CountPeople := COUNT(Person) : CHECKPOINT('PeopleCount');
 //Makes CountPeople available for reuse if
 // the job does not complete

See Also: PERSIST

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

343

DEPRECATED
attribute := expression : DEPRECATED [(message)] ;

attribute The name of the Attribute.

expression The definition of the attribute.

message Optional. The text to append to the warning if the attribute is used.

The DEPRECATED service displays a warning when the attribute is used in code that instantiates a workunit or
during a syntax check. This is meant to be used on attribute definitions that have been superseded.

When used on a structure attribute (RECORD, TRANSFORM, FUNCTION, etc.), this must be placed between the
keyword END and its terminating semi-colon.

Example:

 OldSort := SORT(Person,Person.per_first_name) : DEPRECATED('Use NewSort instead.');
 NewSort := SORT(Person,-Person.per_first_name);

 OUTPUT(OldSort);
 //produces this warning:
 // Attribute OldSort is marked as deprecated. Use NewSort instead.

 //**
 ds := DATASET(['A','B','C'],{STRING1 letter});

 R1 := RECORD
 STRING1 letter;
 END : DEPRECATED('Use R2 now.');

 R2 := RECORD
 STRING1 letter;
 INTEGER number;
 END;

 R1 Xform1(ds L) := TRANSFORM
 SELF.letter := Std.Str.ToLowerCase(L.letter);
 END : DEPRECATED('Use Xform2 now.');

 R2 Xform2(ds L, integer C) := TRANSFORM
 SELF.letter := Std.Str.ToLowerCase(L.letter);
 SELF.number := C;
 END;

 OUTPUT(PROJECT(ds,Xform1(LEFT))); //produces these warnings:
 // Attribute r1 is marked as deprecated. Use R2 now.
 // Attribute Xform1 is marked as deprecated. Use Xform2 now.

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

344

FAILURE
attribute := expression : FAILURE(handler) ;

attribute The name of the Attribute.

expression The definition of the attribute.

handler The action to run if the expression fails.

The FAILURE service executes the handler Attribute when the expression fails. FAILURE notionally executes in
parallel with the failed return of the result. This service implicitly causes the attribute to be evaluated at global scope
instead of the enclosing scope. Only available if workflow services are turned on (see #OPTION(workflow)).

Example:

 sPeople := SORT(Person,Person.per_first_name);
 nUniques := COUNT(DEDUP(sPeople,Person.per_first_name AND
 Person.address))
 : FAILURE(Email.simpleSend(SystemsPersonel,
 SystemsPersonel.email,'ouch.htm'));

See Also: SUCCESS, RECOVERY

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

345

GLOBAL - Service
attribute := expression : GLOBAL [(cluster [, FEW])];

attribute The name of the Attribute.

expression The definition of the attribute.

cluster Optional. A string constant specifying the name of the supercomputer cluster on which to build
the attribute. This makes it possible to use the attribute on a smaller cluster when it must be built
on a larger cluster, allowing for more efficient resource utilization. If omitted, the attribute is built
on the currently executing cluster.

FEW Optional. When the expression is a dataset or recordset, FEW specifies that the resulting dataset
is stored completely within the workunit. If not specified, then the dataset is stored as a THOR
file and the workunit contains only the name of the file.

The GLOBAL service causes the attribute to be evaluated at global scope instead of the enclosing scope, similar to
the GLOBAL() function -- that is, not inside a filter/transform etc. It may be evaluated multiple times in the same
workunit if it is used from multiple workflow items, but it will share code with the context it is used.

GLOBAL is different from INDEPENDENT operates in that INDEPENDENT is only ever executed once, while
GLOBAL is executed once in each workflow item that uses it.

Example:

I := RANDOM() : INDEPENDENT; //calculated once, period
G := RANDOM() : GLOBAL; //calculated once in each graph

ds := DATASET([{1,0,0,0},{2,0,0,0}],{UNSIGNED1 rec,UNSIGNED Ival, UNSIGNED Gval , UNSIGNED Aval });

RECORDOF(ds) XF(ds L) := TRANSFORM
 SELF.Ival := I;
 SELF.Gval := G;
 SELF.Aval := RANDOM(); //calculated each time used
 SELF := L;
END;

P1 := PROJECT(ds,XF(left)) : PERSIST('~RTTEST::PERSIST::IndependentVsGlobal1');
P2 := PROJECT(ds,XF(left)) : PERSIST('~RTTEST::PERSIST::IndependentVsGlobal2');

OUTPUT(P1);
OUTPUT(P2); //this gets the same Ival values as P1, but the Gval value is different than P1

See Also: GLOBAL function, INDEPENDENT

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

346

INDEPENDENT
attribute := expression : INDEPENDENT;

attribute The name of the Attribute.

expression The definition of the attribute.

The INDEPENDENT service causes the attribute to be evaluated at a global scope and forces the attribute evaluation
into a separate workflow item. The new workflow item is evaluated before the first workflow item that uses that at-
tribute. It executes independently from other workflow items, and is only executed once (including inside SEQUEN-
TIAL where it should be executed the first time it is used). It will not share any code with any other workflow items.

One use would be to provide a mechanism for commoning up code that is shared between different arguments to a
SEQUENTIAL action—normally they are evaluated completely independently.

Example:

 IMPORT STD;
 File1 := 'names1.txt';
 File2 := 'names2.txt';

 SrcIP := '10.239.219.2';
 SrcPath := '/var/lib/HPCCSystems/mydropzone/';
 DestPath := '~THOR::IN::';
 ESPportIP := 'http://192.168.56.120:8010/FileSpray';

 DeleteOldFiles :=
 PARALLEL(STD.File.DeleteLogicalFile(DestPath+File1),
 STD.File.DeleteLogicalFile(DestPath+File2))
 : INDEPENDENT;
 SprayNewFiles :=
 PARALLEL(STD.File.SprayFixed(SrcIP,SrcPath+File1,11,
 'mythor',DestPath+File1,
 -1,ESPportIP),
 STD.File.SprayFixed(SrcIP,SrcPath+File2,11,
 'mythor',DestPath+File2,
 -1,ESPportIP))
 : INDEPENDENT;
 SEQUENTIAL(DeleteOldFiles,SprayNewFiles);

See Also: GLOBAL

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

347

ONWARNING
attribute := expression : ONWARNING(code, action) ;

attribute The name of the Attribute.

expression The definition of the attribute.

code The number displayed in the "Code" column of the ECL IDE's Syntax Errors toolbox.

action One of these actions: ignore, error, or warning.

The ONWARNING service allows you to specify how to handle specific warnings for a given attribute. You may
have it treated as a warning, promote it to an error, or ignore it. Useful warnings can get lost in a sea of less-useful
ones. This feature allows you to get rid of the "clutter."

This service overrides any global warning handling specified by #ONWARNING.

Example:

rec := { STRING x } : ONWARNING(1041, ignore);
 //ignore "Record doesn't have an explicit maximum record size" warning

See Also: #ONWARNING

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

348

PERSIST
attribute := expression : PERSIST(filename [, cluster] [, CLUSTER(target)] [, EXPIRE(days)] [, SINGLE] [,
MULTIPLE[(count)]]) ;

attribute The name of the Attribute.

expression The definition of the attribute. This typically defines a recordset (but it may be any expression).

filename A string constant specifying the storage name of the expression result. See Scope and Logical
Filenames.

cluster Optional. A string constant specifying the name of the Thor cluster on which to re-build the
attribute if/when necessary. This makes it possible to use persisted attributes on smaller clusters
but have them rebuilt on larger, making for more efficient resource utilization. If omitted, the
attribute is re-built on the currently executing cluster.

CLUSTER Optional. Specifies writing the filename to the specified list of target clusters. If omitted, the
filename is written to the cluster on which the PERSIST executes (as specified by the cluster
parameter). The number of physical file parts written to disk is always determined by the number
of nodes in the cluster on which the PERSIST executes, regardless of the number of nodes on
the target(s).

target A comma-delimited list of string constants containing the names of the clusters to write the file-
name to. The names must be listed as they appear on the ECL Watch Activity page or returned
by the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, as in n-m) to
indicate the specific set of nodes to write to.

EXPIRE Optional. Specifies the filename is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted, it
defaults to use the PersistExpiryDefault setting in Sasha.

SINGLE Optional. Specifies to keep a single PERSIST. The name of the persist file is the same as the
name of the persist.

MULTIPLE Optional. Specifies to keep different versions of the PERSIST. The name of the persist file gen-
erated is a combination of the name supplied suffixed with a 32-bit value derived from the ECL.

count Optional. The number of versions of a PERSIST to keep. If omitted, the system default is used.

The PERSIST service stores the result of the expression globally so it remains permanently available for use (including
the result of any DISTRIBUTE or GROUP operation in the expression). This is particularly useful for attributes based
on large, expensive data manipulation sequences. The attribute is re-calculated only when the ECL code or underlying
data that was used to create it have changed, otherwise the attribute data is simply returned from the stored name
file on disk when referenced. This service implicitly causes the attribute to be evaluated at global scope instead of
the enclosing scope.

PERSIST may be combined with the WHEN clause so that even though the attribute may be used more than once,
its execution is based upon the WHEN clause (or the first use of the attribute) and not upon the number of times the
attribute is used in the computation. This gives a kind of "compute in anticipation" capability.

By definition, PERSIST on an attribute means the attribute is evaluated outside of any given evaluation order. There-
fore, SEQUENTIAL has no effect on PERSISTed attributes.

Example:

 CountPeople := COUNT(Person) : PERSIST('PeopleCount');

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

349

 //Makes CountPeople available for use in all subsequent work units

 sPeople := SORT(Person,Person.per_first_name) :
 PERSIST('SortPerson'),WHEN(Daily);
 //Makes sPeople available for use in all subsequent work units

 s1 := SORT(Person,Person.per_first_name) :
 PERSIST('SortPerson1','OtherThor');
 //run the code on the OtherThor cluster
 s2 := SORT(Person,Person.per_first_name) :
 PERSIST('SortPerson2',
 'OtherThor',
 CLUSTER('AnotherThor'));
 //run the code on the OtherThor cluster
 // and write the file to the AnotherThor cluster

See Also: STORED, WHEN, GLOBAL, CHECKPOINT

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

350

PRIORITY
action : PRIORITY(value) ;

action An action (typically OUTPUT) that will produce a result.

value An integer in the range 0-100 indicating the relative importance of
the action.

The PRIORITY service establishes the relative importance of multiple actions in the workunit. The higher value an
action has, the greater its priority. The highest priority action executes first, if possible. PRIORITY is not allowed
on attribute definitions, it must only be associated with an action. Only available if workflow services are turned on
(see #OPTION(workflow)).

Example:

OUTPUT(Person(per_st='NY')) : PRIORITY(30);
OUTPUT(Person(per_st='CA')) : PRIORITY(60);
OUTPUT(Person(per_st='FL')) : PRIORITY(90);
 //The Florida

See Also: OUTPUT, #OPTION

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

351

RECOVERY
attribute := expression : RECOVERY(handler [, attempts]) ;

attribute The name of the Attribute.

expression The definition of the attribute.

handler The action to run if the expression fails.

attempts Optional. The number of times to try before giving up.

The RECOVERY service executes the handler Attribute when the expression fails then re-runs the attribute. If
the attribute still fails after the specified number of attempts, any present FAILURE clause will execute. RECOV-
ERY notionally executes in parallel with the failed return result. This service implicitly causes the attribute to be
evaluated at global scope instead of the enclosing scope. Only available if workflow services are turned on (see
#OPTION(workflow)).

Example:

 DoSomethingToFixIt := TRUE; //some action to repair the input

 SPeople := SORT(Person,Person.per_first_name);

 nUniques := DEDUP(sPeople,Person.per_first_name AND Person.address)
 :RECOVERY(DoSomethingToFixIt,2),
 FAILURE(Email.simpleSend(SystemsPersonel,
 SystemsPersonel.email,
 'ouch.htm'));

See Also: SUCCESS, FAILURE

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

352

STORED - Workflow Service
[attribute :=] expression : STORED(storedname [, FEW][,
FORMAT([FIELDWIDTH(widthvalue)][,FIELDHEIGHT(heightvalue)]
[,SEQUENCE(sequencevalue)][,NOINPUT)][,PASSWORD)]]) ;

attribute Optional. The name of the Attribute.

expression The definition of the attribute.

storedname A string constant containing the name of the stored attribute result.

FEW Optional. When the expression is a dataset or recordset, FEW specifies that the dataset is stored
completely within the workunit. If not specified, then the dataset is stored as a THOR file and the
workunit contains only the name of the file. The FEW option is required when using STORED
in a SOAP-enabled MACRO and the expected input is a dataset (such as tns:xmlDataset).

FORMAT Optional. FORMAT specifies options for formatting the field on a Web form in WsECL.

FIELDWIDTH Optional. FIELDWIDTH specifies the width of the input box on a Web form in WsECL.

widthvalue An integer expression defining the width (number of characters) of the input box

FIELDHEIGHT Optional. FIELDHEIGHT specifies the height of the input box on a Web form in WsECL.

heightvalue An integer expression defining the height (number of rows) of the input box

SEQUENCE Optional. SEQUENCE specifies field ordering on a Web form in WsECL.

sequencevalue An integer expression defining the sequential location of the input box. These can be sparse values
(e.g., 100, 200, 300) to allow insertion of new inputs in the future.

NOINPUT Optional. If NOINPUT is specified, the field is not displayed on the Web form in WsECL.

PASSWORD Optional. If PASSWORD is specified, a password entry box is used on the Web form in WsECL
and the field's supplied value is not displayed while entering it. The value is also hidden when
viewing stored values in the workunit through EclWatch or from the command line when extract-
ing the WU XML.

The STORED service stores the result of the expression with the work unit that uses the attribute so that it remains
available for use throughout the work unit. If the attribute name is omitted, then the stored value can only be accessed
afterwards from outside of the ECL execution. If an attribute name is provided then the value of that attribute will
be pulled from storage, if it has not yet been set it will be computed, stored and then used from storage. This service
implicitly causes the attribute to be evaluated at a global scope instead of the enclosing scope.

Example:

 COUNT(person) : STORED('myname');
 // Name in work unit is myname,
 // stored value accessible only outside ECL
 fred := COUNT(person) : STORED('fred');
 // Name in work unit is fred
 fred := COUNT(person) : STORED('mindy');
 // Name in work unit is mindy

//FORMAT options for WsECL form

 Password :='' := STORED('Password',FORMAT(SEQUENCE(1),PASSWORD));//password entry box on form
 Field1 := 1 : STORED('Field1',FORMAT(SEQUENCE(10)));
 Field2 := 2 : STORED('Field2',FORMAT(SEQUENCE(20)));
 AddThem := TRUE :STORED ('AddThem',FORMAT(SEQUENCE(15))); // places field in between Field1 and Field2
 HiddenValue := 12 :STORED ('HiddenValue',FORMAT(NOINPUT)); // not on form
 TextField1 :='Fill in description' :Stored('Description',

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

353

 FORMAT(FIELDWIDTH(25),FIELDHEIGHT(2),
 SEQUENCE(5))); //Creates 25 character wide, 2 row high input box

See Also: STORED function, #WEBSERVICE

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

354

SUCCESS
attribute := expression : SUCCESS(handler) ;

attribute The name of the Attribute.

expression The definition of the attribute.

handler The action to run if the expression succeeds.

The SUCCESS service executes the handler Attribute when the expression succeeds. SUCCESS notionally executes
in parallel with the successful return of the result. This service implicitly causes the attribute to be evaluated at global
scope instead of the enclosing scope. Only available if workflow services are turned on (see #OPTION(workflow)).

Example:

 SPeople := SORT(Person,Person.first_name);
 nUniques := COUNT(DEDUP(sPeople,Person.per_first_name AND
 Person.address))
 : SUCCESS(Email.simpleSend(SystemsPersonel,
 SystemsPersonel.email,'yeah.htm'));

See Also: FAILURE, RECOVERY

ECL Language Reference
Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

355

WHEN
action : WHEN(event [,COUNT(repeat)]) ;

action Any valid ECL Action to execute.

event The event that triggers action execution. This may be either the EVENT or CRON functions,
EVENTNAME or the name of an EVENT (as a shorthand for EVENT(event,'*')), or any attribute
defined with those functions.

COUNT Optional. Specifies the number of events to trigger instances of the action. If omitted, the default is
unlimited (continuously waiting for another event to trigger another instance of the action), until
the workunit is manually removed from the list of workunits being monitored by the scheduler.

repeat An integer expression.

The WHEN service executes the action whenever the event occurs.

Example:

IMPORT STD;
IF (STD.File.FileExists('test::myfile'),
 STD.File.DeleteLogicalFile('test::myfile'));
 //deletes the file if it already exists
 STD.File.MonitorLogicalFileName('MyFileEvent','test::myfile');
 //sets up monitoring and the event name
 //to fire when the file is found
 OUTPUT('File Created') : WHEN(EVENT('MyFileEvent','*'));
 //this OUTPUT occurs only after the event has fired
 //may also be coded in this shorthand form:
 // OUTPUT('File Created') : WHEN('MyFileEvent');
 afile := DATASET([{ 'A', '0'}], {STRING10 key,STRING10 val});
 OUTPUT(afile,,'test::myfile');
 //this creates a file that the DFU file monitor will find
 //when it periodically polls
 //**********************************
 EXPORT events := MODULE
 EXPORT dailyAtMidnight := CRON('0 0 * * *');
 EXPORT dailyAt(INTEGER hour,
 INTEGER minute=0) :=
 EVENT('CRON',
 (STRING)minute + ' ' + (STRING)hour + ' * * *');
 EXPORT dailyAtMidday := dailyAt(12, 0);
 END;
 BUILD(teenagers) : WHEN(events.dailyAtMidnight);
 BUILD(oldies) : WHEN(events.dailyAt(6));
 BUILD(oldies) : WHEN(EVENT('FileDropped', 'x'));

See Also: EVENT, CRON, NOTIFY, WAIT

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

356

Template Language

Template Language Overview
ECL was created to be the programming language for all of our HPCC technology. Therefore, it must be able to meet
all the demands of a complete business solution: from data ingest, through querying and processing, and all the way
to fulfillment and customer output.

In most every business solution that we create, the end-users will be using some kind of a custom Graphical User
Interface (GUI) application specific to their business (typically created for them by us) to specify their queries into the
data and set up processing jobs for the supercomputer. These custom GUI applications can generate for the user the
ECL that will actually perform the query or process. The task of generating that ECL can be daunting if approached
through a hard-coding perspective when you consider the exponential curve of all possible sets of choices the user
could make in any moderately-complex system, and as the system grows more complex the problem becomes even
worse. That means that a hard-coding solution is out of the question.

ECL's Template language provides the solution to this problem. The Template language is a Meta-language that takes
standard XML input, typically generated from an end-user GUI application (thereby vastly simplifying the coding
problem in the GUI) and in turn generating the appropriate ECL code to implement the user's choices.

Template Language Statements
Template Language statements all begin with # to clearly differentiate them from the ECL code that will be generated
by the template. Most statements take parameters that determine their specific action in each instance.

The required statement terminator is the semi-colon (just as in ECL) and there are multi-line structures that terminate
with the #END statement. These structures may be nested within each other.

Template Symbols
Template Language uses user-defined symbols as variables. These symbols must be explicitly declared before use (see
#DECLARE). The tag names in the XML text being processed are also treated like user-defined symbols.

A user-defined symbol or XML tag is referenced by surrounding the name of the symbol or tag with percent signs.
An XML tag used as a template symbol may be a simple tag name, or an xpath to the XML data to retrieve (see the
RECORD structure documentation for a description of the supported xpath syntax). If an xpath is used, then the symbol
used must be the full xpath to the data expressed inside curly braces ({}). This syntax takes several forms:

%symbol% returns the value of the symbol

%'symbol'%. returns value of the symbol as a string

%'' % (an empty string) returns the contents of the current XML tag

%{xpath}% returns the value of the data pointed to by the xpath

%'{xpath}'%. returns value of the data pointed to by the xpath as a string

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

357

#APPEND
#APPEND(symbol, expression);

symbol The name of a previously declared user-defined symbol.

expression The string expression specifying the string to concatenate to the existing symbol contents.

The #APPEND statement adds the value of the expression to the end of the existing string contents of the symbol.

Example:

 #DECLARE(MySymbol); //declare a symbol named "MySymbol"
 #SET(MySymbol,'Hello'); //initialize MySymbol to "Hello"
 #APPEND(MySymbol,' World'); //make MySymbol's value "Hello World"

See Also: #DECLARE, #SET

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

358

#CONSTANT
#CONSTANT(name, value);

name A string constant containing the name of the stored value.

value An expression for the value to assign to the stored name.

The #CONSTANT statement is similar to #STORED in that it assigns the value to the name, but #CONSTANT
specifies the value is not over-writable at runtime. This statement may be used outside an XML scope and does not
require a previous LOADXML to instantiate an XML scope.

Example:

 PersonCount := 0 : STORED('myname');
 #CONSTANT('myname',100);
 //make stored PersonCount attribute value to 100

See Also: #STORED

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

359

#DECLARE
#DECLARE(symbol);

symbol The name of the template variable.

The #DECLARE statement declares a user-defined symbol for use in the template. The symbol is simply created and
not initialized to any particular value, therefore it may be destined to contain either string or numeric data.

Example:

 #DECLARE(MySymbol); //declare a symbol named "MySymbol"
 #SET(MySymbol,1); //initialize MySymbol to 1

See Also: #SET, #APPEND

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

360

#DEMANGLE
#DEMANGLE(identifier);

identifier A valid ECL identifier label containing only letters, numbers, dollar sign ($), and underscore (_)
characters.

The #DEMANGLE statement takes an identifier string and returns the string as it was before it was #MANGLEd.

Example:

 #DECLARE (mstg);
 #DECLARE (dmstg);
 #SET (mstg, #MANGLE('SECTION_STATES/AREACODES'));

 export res1 := %'mstg'%;
 res1; //res1 = 'SECTION_5fSTATES_2fAREACODES'

 // Do some processing with ECL Valid Label name "mstg"

 #SET (dmstg, #DEMANGLE(%'mstg'%));
 export res2 := %'dmstg'%;
 res2; //res2 = 'SECTION_STATES/AREACODES'

See Also: #MANGLE, Attribute Names

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

361

#ERROR
#ERROR(errormessage);

errormessage A string expression containing the message to display.

The #ERROR statement immediately halts processing on the workunit and displays the errormessage. This statement
may be used outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

 #IF(TRUE)
 #ERROR('broken');
 OUTPUT('broken');
 #ELSE
 #WARNING('maybe broken');
 OUTPUT('maybe broken');
 #END;

See Also: #WARNING

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

362

#EXPAND
#EXPAND(token);

token The name of the MACRO parameter whose passed string constant value to expand.

The #EXPAND statement substitutes and parses the text of the passed token's string within the MACRO.

Example:

 MAC_join(attrname, leftDS, rightDS, linkflags) := MACRO
 attrname := JOIN(leftDS,rightDS,#EXPAND(linkflags));
 ENDMACRO;

 MAC_join(J1,People,Property,'LEFT.ID=RIGHT.PeopleID,LEFT OUTER')
 //expands out to:
 // J1 := JOIN(People,Property,LEFT.ID=RIGHT.PeopleID,LEFT OUTER);

 MAC_join(J2,People,Property,'LEFT.ID=RIGHT.PeopleID')
 //expands out to:
 // J2 := JOIN(People,Property,LEFT.ID=RIGHT.PeopleID);

See Also: MACRO

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

363

#EXPORT
#EXPORT(symbol, data);

symbol The name of a previously declared template variable.

data The name of a field, RECORD structure, or dataset.

The #EXPORT statement produces XML text from the specified data and places it in the symbol. This allows the
LOADXML(symbol,name) form to instantiate an XML scope on the information from the data to process.

The XML output is generated with the following format:

 <Data>
 <Field label="<label-of-field>"
 name="<name-of-field>"
 position="<n>"
 rawtype="<n>"
 size="<n>"
 type="<ecl-type-without-size>" />
 ...
 </Data>

IFBLOCKs are simply expanded out in the XML. Nested RECORD types have an isRecord attribute that is set to 1,
and are followed by the fields they contain, and then a Field tag with no name and the isEnd attribute set to 1. This
representation is used rather than nested objects so it can be processed by a #FOR statement. Child dataset types are
also expanded out in a similar way, and have an isDataset attribute set to 1 on the field.

Example:

 NamesRecord := RECORD
 STRING10 first;
 STRING20 last;
 END;
 r := RECORD
 UNSIGNED4 dg_parentid;
 STRING10 dg_firstname;
 STRING dg_lastname;
 UNSIGNED1 dg_prange;
 IFBLOCK(SELF.dg_prange % 2 = 0)
 STRING20 extrafield;
 END;
 NamesRecord namerec;
 DATASET(NamesRecord) childNames;
 END;

 ds := DATASET('~RTTEST::OUT::ds', r, thor);

 #DECLARE(out);
 #EXPORT(out, r);
 OUTPUT(%'out'%);
 /* produces this result:
 <Data>
 <Field label="DG_ParentID"
 name="DG_ParentID"
 position="0"
 rawtype="262401"
 size="4"
 type="unsigned integer"/>
 <Field label="DG_firstname"
 name="DG_firstname"
 position="1"

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

364

 rawtype="655364"
 size="10"
 type="string"/>
 <Field label="DG_lastname"
 name="DG_lastname"
 position="2"
 rawtype="-983036"
 size="-15"
 type="string"/>
 <Field label="DG_Prange"
 name="DG_Prange"
 position="3"
 rawtype="65793"
 size="1"
 type="unsigned integer"/>
 <Field label="ExtraField"
 name="ExtraField"
 position="4"
 rawtype="1310724"
 size="20"
 type="string"/>
 <Field isRecord="1"
 label="namerec"
 name="namerec"
 position="5"
 rawtype="13"
 size="30"
 type="namesRecord"/>
 <Field label="first"
 name="first"
 position="6"
 rawtype="655364"
 size="10"
 type="string"/>
 <Field label="last"
 name="last"
 position="7"
 rawtype="1310724"
 size="20"
 type="string"/>
 <Field isEnd="1" name="namerec"/>
 <Field isDataset="1"
 label="childNames"
 name="childNames"
 position="8"
 rawtype="-983020"
 size="30"
 type="table of <unnamed>"/>
 <Field label="first"
 name="first"
 position="9"
 rawtype="655364"
 size="10"
 type="string"/>
 <Field label="last"
 name="last"
 position="10"
 rawtype="1310724"
 size="20"
 type="string"/>
 <Field isEnd="1" name="childNames"/>
 </Data>
 */

 //which you can then process ;ike this:

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

365

 LOADXML(%'out'%, 'Fred');
 #FOR (Fred)
 #FOR (Field)
 #IF (%'{@isEnd}'% <> '')
 OUTPUT('END');
 #ELSE
 OUTPUT(%'{@type}'%
 #IF (%'{@size}'% <> '-15' AND
 %'{@isRecord}'%='' AND
 %'{@isDataset}'%='')
 + %'{@size}'%
 #END
 + ' ' + %'{@label}'% + ';');
 #END
 #END
 #END
 OUTPUT('Done');

See Also: LOADXML, #EXPORTXML, #DECLARE

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

366

#EXPORTXML
#EXPORTXML(symbol, data);

symbol The name of a template variable that has not been previously declared.

data The name of a field, RECORD structure, or dataset.

The #EXPORTXML statement produces the same XML as #EXPORT from the specified data and places it in the
symbol, then does a LOADXML(symbol, ‘label') on the data.

Example:

 NamesRecord := RECORD
 STRING10 first;
 STRING20 last;
 END;

 r := RECORD
 UNSIGNED4 dg_parentid;
 STRING10 dg_firstname;
 STRING dg_lastname;
 UNSIGNED1 dg_prange;
 IFBLOCK(SELF.dg_prange % 2 = 0)
 STRING20 extrafield;
 END;
 NamesRecord namerec;
 DATASET(NamesRecord) childNames;
 END;

 ds := DATASET('~RTTEST::OUT::ds', r, THOR);

 //This example produces the same result as the example for #EXPORT.
 //Notice the lack of #DECLARE and LOADXML in this version:
 #EXPORTXML(Fred,r);

 #FOR (Fred)
 #FOR (Field)
 #IF (%'{@isEnd}'% <> '')
 OUTPUT('END');
 #ELSE
 OUTPUT(%'{@type}'%
 #IF (%'{@size}'% <> '-15' AND
 %'{@isRecord}'%='' AND
 %'{@isDataset}'%='')
 + %'{@size}'%
 #END
 + ' ' + %'{@label}'% + ';');
 #END
 #END
 #END
 OUTPUT('Done');
 //**
 //These examples show some other possible uses of #EXPORTXML:

 //This could be greatly simplified as
 // (%'{IsAStringMetaInfo/Field[1]/@type}'%='string')
 isAString(inputField) := MACRO
 #EXPORTXML(IsAStringMetaInfo, inputField);
 #IF (%'IsAString'%='')
 #DECLARE(IsAString);
 #END;

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

367

 #SET(IsAString, false);
 #FOR (IsAStringMetaInfo)
 #FOR (Field)
 #IF (%'{@type}'% = 'string')
 #SET (IsAString, true);
 #END
 #BREAK
 #END
 #END
 %IsAString%
 ENDMACRO;

 getFieldName(inputField) := MACRO
 #EXPORTXML(GetFieldNameMetaInfo, inputField);
 %'{GetFieldNameMetaInfo/Field[1]/@name}'%
 ENDMACRO;
 displayIsAString(inputField) := MACRO
 OUTPUT(getFieldName(inputField)
 + TRIM(IF(isAString(inputField), ' is', ' is not'))
 + ' a string.')
 ENDMACRO;

 SIZEOF(r.dg_firstname);
 isAString(r.dg_firstname);
 getFieldName(r.dg_firstname);
 OUTPUT('ds.dg_firstname isAString? '
 + (STRING)isAString(ds.dg_firstname));
 isAString(ds.namerec);

 displayIsAString(ds.namerec);
 displayIsAString(r.dg_firstname);

See Also: LOADXML, #EXPORT

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

368

#FOR
#FOR(tag [(filter)])

statements

#END

tag An XML tag.

filter A logical expression indicating which specific tag instances to process.

statements The Template statements to execute.

#END The #FOR structure terminator.

The #FOR structure loops through the XML, searching for each instance of the tag that meets the filter expression
and executes the statements on the data contained within that tag.

Example:

 // This script processes XML and generates ECL COUNT statements
 // which run against the datasets and filters specified in the XML.
 XMLstuff :=
 '<section>'+
 '<item>'+
 '<dataset>person</dataset>'+
 '<filter>firstname = \'RICHARD\'</filter>'+
 '</item>'+
 '<item>'+
 '<dataset>person</dataset>'+
 '<filter>firstname = \'JOHN\'</filter>'+
 '</item>'+
 '<item>'+
 '<dataset>person</dataset>'+
 '<filter>firstname = \'HENRY\'</filter>'+
 '</item>'+
 '</section>';

 LOADXML(XMLstuff);
 #DECLARE(CountStr); // Declare CountStr
 #SET(CountStr, ''); // Initialize it to an empty string
 #FOR(item)
 #APPEND(CountStr,'COUNT(' + %'dataset'% + '(' + %'filter'% + '));\n');
 #END

 OUTPUT(%'CountStr'%); // output the string just built
 %CountStr% // then execute the generated "COUNT" actions

 // Note that the "CountStr" will have 3 COUNT actions in it:
 // COUNT(person(person.firstname = 'RICHARD'));
 // COUNT(person(person.firstname = 'JOHN'));
 // COUNT(person(person.firstname = 'HENRY'));

See Also: #LOOP, #DECLARE

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

369

#GETDATATYPE
#GETDATATYPE(field);

field A previously defined user-defined symbol containing the name of a field in a dataset..

The #GETDATATYPE function returns the value type of the field.

Example:

 #DECLARE(fieldtype);
 #DECLARE(field);

 #SET(field, 'person.per_cid');

 #SET(fieldtype, #GETDATATYPE(%field%));

 export res := %'fieldtype'%;
 res; // Output: res = 'data9'

See Also: Value Types

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

370

#IF
#IF(condition)

truestatements

[#ELSEIF(condition)

truestatements]

[#ELSE falsestatements]

#END

condition A logical expression.

truestatements The Template statements to execute if the condition is true.

#ELSEIF Optional. Provides structure for statements to execute if its condition is true.

#ELSE Optional. Provides structure for statements to execute if the condition is false.

falsestatements Optional. The Template statements to execute if the condition is false.

#END The #IF structure terminator.

The #IF structure evaluates the condition and executes either the truestatements or falsestatements (if present). This
statement may be used outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

 // This script creates a set attribute definition of the 1st 10
 // natural numbers and defines an attribute named "Set10"

 #DECLARE (SetString);
 #DECLARE (Ndx);
 #SET (SetString, '['); //initialize SetString to [
 #SET (Ndx, 1); //initialize Ndx to 1
 #LOOP
 #IF (%Ndx% > 9) //if we've iterated 9 times
 #BREAK // break out of the loop
 #ELSE //otherwise
 #APPEND (SetString, %'Ndx'% + ',');
 //append Ndx and comma to SetString
 #SET (Ndx, %Ndx% + 1);
 //and increment the value of Ndx
 #END
 #END

 #APPEND (SetString, %'Ndx'% + ']'); //add 10th element and closing]

 EXPORT Set10 := %'SetString'%; //generate the ECL code
 // This generates:
 // EXPORT Set10 := [1,2,3,4,5,6,7,8,9,10];

See Also: #LOOP, #DECLARE

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

371

#INMODULE
#INMODULE(module, attribute);

module A previously defined user-defined symbol containing the name of an ECL source module.

attribute A previously defined user-defined symbol containing the name of an Attribute that may or may
not be in the module.

The #INMODULE statement returns a Boolean TRUE or FALSE as to whether the attribute exists in the specified
module.

Example:

 #DECLARE (mod)
 #DECLARE (attr)
 #DECLARE (stg)

 #SET(mod, 'default')
 #SET(attr, 'YearOf')

 #IF(#INMODULE(%mod%, %attr%))
 #SET(stg, %'attr'% + ' Exists In Module ' + %'mod'%);
 #ELSE
 #SET(stg, %'attr'% + ' Does Not Exist In Module ' + %'mod'%);
 #END

 export res := %'stg'%;
 res;

 // Output: (For 'default.YearOf')
 // stg = 'YearOf Exists In Module default'
 //
 // Output: (For 'default.Fred')
 // stg = 'Fred Does Not Exist In Module default'

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

372

#LOOP / #BREAK
#LOOP

[statements]

#BREAK

[statements]

#END

statements The Template statements to execute each time.

#BREAK Terminates the loop.

#END The #LOOP structure terminator.

The #LOOP structure iterates, executing the statements each time through the loop until a #BREAK statement exe-
cutes. If there is no #BREAK then #LOOP iterates infinitely.

Example:

 // This script creates a set attribute definition of the 1st 10
 // natural numbers and defines an attribute named "Set10"

 #DECLARE (SetString)
 #DECLARE (Ndx)
 #SET (SetString, '['); //initialize SetString to [
 #SET (Ndx, 1); //initialize Ndx to 1
 #LOOP
 #IF (%Ndx% > 9) //if we've iterated 9 times
 #BREAK // break out of the loop
 #ELSE //otherwise
 #APPEND (SetString, %'Ndx'% + ',');
 //append Ndx and comma to SetString
 #SET (Ndx, %Ndx% + 1)
 //and increment the value of Ndx
 #END
 #END

 #APPEND (SetString, %'Ndx'% + ']'); //add 10th element and closing]

 EXPORT Set10 := %'SetString'%; //generate the ECL code
 // This generates:
 // EXPORT Set10 := [1,2,3,4,5,6,7,8,9,10];

See Also: #FOR, #DECLARE, #IF

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

373

#MANGLE
#MANGLE(string);

string A string value.

The #MANGLE statement takes any string and returns a valid ECL identifier label containing only letters, numbers,
and underscore (_) characters. #MANGLE replaces non-alphanumeric characters with an underscore (_) followed by
the hex value of the character it's replacing.

Example:

 #DECLARE (mstg)
 #DECLARE (dmstg)

 #SET (mstg, #MANGLE('SECTION_STATES/AREACODES'));
 export res1 := %'mstg'%;
 res1; //res1 = 'SECTION_5fSTATES_2fAREACODES'

 // Do some processing with ECL Valid Label name "mstg"

 #SET (dmstg, #DEMANGLE(%'mstg'%));
 export res2 := %'dmstg'%;
 res2; //res2 = 'SECTION_STATES/AREACODES'

See Also: #DEMANGLE, Attribute Names

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

374

#ONWARNING
#ONWARNING(code, action);

code The number displayed in the "Code" column of the ECL IDE's Syntax Errors toolbox.

action One of these actions: ignore, error, or warning.

The #ONWARNING statement allows you to globally specify how to handle specific warnings. You may have it
treated as a warning, promote it to an error, or ignore it. Useful warnings can get lost in a sea of less-useful ones. This
feature allows you to get rid of the "clutter."

The ONWARNING workflow service overrides any global warning handling specified by #ONWARNING.

Example:

 #ONWARNING(1041, error);
 //globally promote "Record doesn't have an explicit
 // maximum record size" warnings to errors
 rec := { STRING x } : ONWARNING(1041, ignore);
 //ignore "Record doesn't have an explicit maximum
 // record size" warning on this attribute, only

See Also: ONWARNING

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

375

#OPTION
#OPTION(option, value);

option A case sensitive string constant containing the name of the option to set.

value The value to set the option to. This may be any type of value, dependent on what the option expects
to be.

The #OPTION statement is typically a compiler directive giving hints to the code generator as to how best to generate
the executable code for a workunit. This statement may be used outside an XML scope and does not require a previous
call to the LOADXML function to instantiate an XML scope.

Definition of Terms
These definitions are "internal-only" terms used in the option definitions that follow.

DFA Deterministic Finite-state Automaton.

Fold To turn a complex expression into a simpler equivalent one. For example, the expression "1+1"
can be replaced with "2" without altering the result.

Spill Writing intermediate result sets to disk so that memory is available for subsequent steps.

Funnel The + (append file) operator between datasets can be visualized as pouring all the records into a
funnel and getting a single stream of records out of the bottom; hence the term "funnel."

TopN An internally generated activity used in place of CHOOSEN(SORT(xx), n) where n is small, as
it can be computed much more efficiently than sorting the entire record set then discarding all
but the first n.

Activity An ECL operator that takes one or more datasets as inputs.

Graph All the Activities in a query.

Subgraph A collection of Activities that can all be active at the same time in Thor.

Peephole A method of code optimization that looks at a small amount of the unoptimized code at a time,
in order to combine operations into more efficient ones.

Available options
The following options are generally useful:

maxRunTime Default: none Sets the maximum number of seconds a job runs before
it times out

freezePersists Default: false If true, does not calculate/recalculate PERSISTed

expirePersists Default: true If true, PERSISTs expire after the specified period.
This is set in the Sasha configuration setting (PersistEx-
piryDefault) or using #option ('defaultPersistExpiry', n)
where n is the number of days.

defaultPersistExpiry Default: none If set, PERSISTs expire after the number of days spec-
ified (overriding the Sasha PersistExpiryDefault set-
ting).

multiplePersistInstances Default: true If true, multiple PERSISTs are the default.

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

376

defaultNumPersistInstances Default: none Specifies the default number of PERSISTs. A value of
-1 specifies that all copies should be kept until they ex-
pire or manually deleted.

check Default: true If true, check for potential overflows of records.

expandRepeatAnyAsDfa Default: true If true, expand ANY* in a DFA.

forceFakeThor Default: false If true, force code to use hthor.

forceGenerate Default: false If true, force .SO to be generated even if it's not worth it

globalFold Default: true If true, perform a global constant fold before generating.

globalOptimize Default: false If true, perform a global optimize.

groupAllDistribute Default: false If true, GROUP,ALL generates a DISTRIBUTE instead
of a global SORT.

maximizeLexer Default: false If true, maximize the amount of work done in the lexer.

maxLength Default: 4096 Specify maximum length of a record.

minimizeSpillSize Default: false If true, if a spill is filtered/deduped etc when read, re-
duce spill file size by splitting, filtering and then writ-
ing.

optimizeGraph Default: true If true, optimize expressions in a graph before genera-
tion

orderDiskFunnel Default: true If true, if all inputs to a funnel are disk reads, pull in

parseDfaComplexity Default: 2000 Maximum complexity of expression to convert to a
DFA.

pickBestEngine Default: true If true, use hthor if it is more efficient than Thor

targetClusterType hthor|Thor|
roxie

What supercomputer type are we generating code for?

topnLimit Default: 10000 Maximum number of records to do topN on.

outputLimit Default: 10 Sets maximum size (in Mb) of result stored in workunit.

sortIndexPayload Default: true Specifies sorting (or not) payload fields

workflow Default: true Specifies enabling/disabling workflow services.

foldStored Default: false Specifies that all the stored variables are replaced with
their default values, or values overridden by #stored.
This can significantly reduce the size of the graph gen-
erated.

skipFileFormatCrcCheck Default: false Specifies that the CRC check on indices produces a
warning and not an error.

allowedClusters Default: none Specifies the comma-delimited list of cluster names (as
a string constant) where the workunit may execute. This
allows the job to be switched between clusters, manu-
ally or automatically, if the workunit is blocked on its
assigned cluster and another valid cluster is available
for use.

AllowAutoQueueSwitch Default: false If true, specifies that the workunit is automatically re-
assigned to execute on another available cluster listed in
allowedClusters when blocked on its assigned cluster.

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

377

performWorkflowCse Default: false If true, specifies that the code generator automati-
cally detects opportunities for Common Sub-expres-
sion Elimination that may be "buried" within multiple
PERSISTed attributes. If false, notification of these op-
portunities are displayed to the programmer as sugges-
tions for the use of the INDEPENDENT Workflow Ser-
vice.

defaultSkewError Default: none A value between 0.0 and 1.0 that determines the amount
of skew needed to generate a skew error. This value is
ignored if the ECL has provided a SKEW attribute.

defaultSkewWarning Default: none A value between 0.0 and 1.0 that determines the amount
of skew needed to generate a skew warning. If set higher
than defaultSkewError, then the value is ignored.

overrideSkewError Default: none If set to a value between 0.0 and 1.0, it overrides any
ECL SKEW(nn) attribute values in the current job.

defaultSkewThreshold Default: 1GB The size of the dataset (in bytes) local to a single node
needed before Skew errors/warnings are generated if no
THRESHOLD(nn) was supplied in ECL.

overrideSkewThreshold Default: none The size of the dataset (in bytes) local to a single
node needed before Skew errors/warnings are gener-
ated. Overrides any ECL THRESHOLD(nn) attribute
values in the current job.

applyInstantEclTransformations Default false Limit non-file outputs with a CHOOSEN

applyInstantEclTransformationsLimit Default 100 Number of records to limit to

The following options are all about generating Logical graphs in a workunit.

Logical graphs are stored in the workunit and viewed in ECL Watch. They include information about which at-
tribute/line number/column the symbols are defined in. Exported attributes are represented by <module>.<attribute>
in the header of the activity. Non-exported (local) attributes are represented as <module>.<exported-attribute>::<non-
exported-name>

generateLogicalGraph Default: false If true, generates a Logical graph in addition to all the
workunit graphs.

generateLogicalGraphOnly Default: false If true, generates only the Logical graph for the worku-
nit.

logicalGraphExpandPersist Default: true If true, generates expands PERSISTed attributes.

logicalGraphExpandStored Default: false If true, generates expands STORED attributes.

logicalGraphIncludeName Default: true If true, generates attribute names in the header of the
activity boxes.

logicalGraphIncludeModule Default: true If true, generates module.attribute names in the header
of the activity boxes.

logicalGraphDisplayJavadoc Default: true If true, generates the Javadoc-style comments embed-
ded in the ECL in place of the standard text that would
be generated (see http://java.sun.com/j2se/javadoc/
writingdoccomments/). Javadoc-style comments on
RECORD structures or scalar attributes will not gener-
ate, as they have no graph Activity box directly associ-
ated.

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

378

logicalGraphDisplayJavadocParameters Default: false If true, generates information about parameters in any
Javadoc-style comments.

filteredReadSpillThreshold Default: 2 Filtered disk reads are spilled if will be duplicated more
than N times.

foldConstantCast Default: true If true, (cast)value is folded at generate time.

foldFilter Default: true If true, filters are constant folded.

foldAssign Default: true If true, TRANSFORMs are constant folded.

foldSQL Default: true If true, SQL is constant folded.

optimizeDiskRead Default: true If true, include project and filter in the transform for a
disk read.

optimizeSQL Default: false If true, optimize SQL.

optimizeThorCounts Default: true If true, convert COUNT(diskfile) into optimized ver-
sion.

peephole Default: true If true, peephole optimize memcpy/memsets, etc.

spotCSE Default: true If true, look for common sub-expressions in TRANS-
FORMs/filters.

noteRecordSizeInGraph Default: true Add estimates of record sizes to the graph

showActivitySizeInGraph Default: false Show estimates of generated c++ size in the graph

showMetaInGraph Default: false Add distribution/sort orders to the graph

showRecordCountInGraph Default: true Show estimates of record counts in the graph

spotTopN Default: true If true, convert CHOOSEN(SORT()) into a topN activ-
ity.

spotLocalMerge Default: false If true, if local JOIN and both sides are sorted, generate
a light-weight merge.

countIndex Default: false If true, optimize COUNT(index) into optimized version
(also requires optimizeThorCounts).

allowThroughSpill Default: true If true, allow through spills.

optimizeBoolReturn Default: true If true, improve code when returning BOOLEAN from
a function.

optimizeSubString Default: true If true, don't allocate memory when doing a substring.

thorKeys Default: true If true, allow INDEX operations in Thor.

regexVersion Default: 0 If set to 1, specifies use of the previous regular expres-
sion implementation, which may be faster but also may
exceed stack limits.

compileOptions Default: none Specify override compiler options (such as /Zm1000 to
double the compiler heap size to workaround a heap
overflow error).

linkOptions Default: none Specify override linker options.

optimizeProjects Default: true If false, disables automatic field projection/distribution
optimization.

notifyOptimizedProjects Default: 0 If set to 1, reports optimizations to named attributes. If
set to 2, reports all optimizations.

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

379

optimizeProjectsPreservePersists Default: false If true, disables automatic field projection/distribution
optimization around reading PERSISTed files. If a
PERSISTed file is read on a different size cluster than
it was created on, optimizing the projected fields can
mean that the distribution/sort order cannot be recreat-
ed.

aggressiveOptimizeProjects Default: false If true, enables attempted minimization of network traf-
fic for sorts/distributes. This option doesn't usually re-
sult in significant benefits, but may do so in some spe-
cific cases.

percolateConstants Default: true If false, disables attempted aggressive constant value
optimizations.

The following options are useful for debugging:

clusterSize Default: none Override the number of nodes in the cluster (for testing)

debugNlp Default: false If true, output debug information about the NLP pro-
cessing to the .cpp file.

resourceMaxMemory Default: 400M Maximum amount of memory a subgraph can use.

resourceMaxSockets Default: 2000 Maximum number of sockets a subgraph can use.

resourceMaxActivities Default: 200 Maximum number of activities a subgraph can contain.

unlimitedResources Default: false If true, assume lots of resources when resourcing the
graphs.

traceRowXML Default: false If true, turns on tracing in ECL Watch graphs. This
should only be used with small datasets for debugging
purposes.

_Probe Default: false If true, display all result rows from intermediate result
sets in the graph in ECL Watch when used in conjunc-
tion with the traceRowXML option. This should only
be used with small datasets for debugging purposes.

debugQuery Default: false If true, compile query using debug settings.

optimizeLevel Default: 3 for
roxie, else -1

Set the optimization level (optimizing compiler can be
a lot slower...).

checkAsserts Default: true If true, enables ASSERT checking.

The following options are for advanced code generation use:

These options should be left alone unless you REALLY know what you are doing. Typically they are used internally
by our developers to enable/disable features that are still in development. Occasionally the technical support staff will
suggest that you change one of these settings to work around a problem that you encounter, but otherwise the default
settings are recommended in all cases.

filteredReadSpillThreshold Default: 2 Filtered disk reads are spilled if will be duplicated more
than N times.

foldConstantCast Default: true If true, (cast)value is folded at generate time.

foldFilter Default: true If true, filters are constant folded.

foldAssign Default: true If true, TRANSFORMs are constant folded.

foldSQL Default: true If true, SQL is constant folded.

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

380

optimizeDiskRead Default: true If true, include project and filter in the transform for a
disk read.

optimizeSQL Default: false If true, optimize SQL.

optimizeThorCounts Default: true If true, convert COUNT(diskfile) into optimized ver-
sion.

peephole Default: true If true, peephole optimize memcpy/memsets, etc.

spotCSE Default: true If true, look for common sub-expressions in TRANS-
FORMs/filters.

spotTopN Default: true If true, convert CHOOSEN(SORT()) into a topN activ-
ity.

spotLocalMerge Default: false If true, if local JOIN and both sides are sorted, generate
a light-weight merge.

countIndex Default: false If true, optimize COUNT(index) into optimized version
(also requires optimizeThorCounts).

allowThroughSpill Default: true If true, allow through spills.

optimizeBoolReturn Default: true If true, improve code when returning BOOLEAN from
a function.

optimizeSubString Default: true If true, don't allocate memory when doing a substring.

thorKeys Default: true If true, allow INDEX operations in thor.

regexVersion Default: 0 If set to 1, specifies use of the previous regular expres-
sion implementation, which may be faster but also may
exceed stack limits.

compileOptions Default: none Specify override compiler options (such as /Zm1000 to
double the compiler heap size to workaround a heap
overflow error).

linkOptions Default: none Specify override linker options.

optimizeProjects Default: true If false, disables automatic field projection/distribution
optimization.

notifyOptimizedProjects Default: 0 If set to 1, reports optimizations to named attributes. If
set to 2, reports all optimizations.

optimizeProjectsPreservePersists Default: false If true, disables automatic field projection/distribution
optimization around reading PERSISTed files. If a
PERSISTed file is read on a different size cluster than
it was created on, optimizing the projected fields can
mean that the distribution/sort order cannot be recreat-
ed.

aggressiveOptimizeProjects Default: false If true, enables attempted minimization of network traf-
fic for sorts/distributes. This option doesn't usually re-
sult in significant benefits, but may do so in some spe-
cific cases.

percolateConstants Default: true If false, disables attempted aggressive constant value
optimizations.

exportDependencies Default: false Generate information about inter-definition dependen-
cies

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

381

maxCompileThreads Default 4 for
eclccserver and
1 for eclcc

Number of compiler instances to compile the c++

reportCppWarnings Default: false Report warnings from c++ compilation

saveCppTempFiles Default: false Retain the generated c++ files

spanMultipleCpp Default: true Generate a work unit in multiple c++ files

activitiesPerCpp Default 500 for
Linux or 800
for Windows

Number of activities in each c++ file (requires span-
MultipleCpp)

obfuscateOutput Default false If true, details are removed from the generated worku-
nit, including ECL code, estimates of record size, and
number of records.

Example:

 #OPTION('traceRowXml', TRUE);
 #OPTION('_Probe', TRUE);

 my_rec := RECORD
 STRING20 lname;
 STRING20 fname;
 STRING2 age;
 END;

 d := DATASET([{ 'PORTLY', 'STUART' , '39'},
 { 'PORTLY', 'STACIE' , '36'},
 { 'PORTLY', 'DARA' , ' 1'},
 { 'PORTLY', 'GARRETT', ' 4'}], my_rec);

 OUTPUT(d(d.age > ' 1'), {lname, fname, age});

 //************************************
 //This example demonstrates Logical Graphs and
 // Javadoc-style comment blocks
 #OPTION('generateLogicalGraphOnly',TRUE);
 #OPTION('logicalGraphDisplayJavadocParameters',TRUE);

 /**
 * Defines a record that contains information about a person
 */
 namesRecord :=
 RECORD
 string20 surname;
 string10 forename;
 integer2 age := 25;
 END;

 /**
 Defines a table that can be used to read the information from the file
 and then do something with it.
 */
 namesTable := DATASET('x',namesRecord,FLAT);

 /**
 Allows the name table to be filtered.

 @param ages The ages that are allowed to be processed.
 badForename Forname to avoid.

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

382

 @return the filtered dataset.
 */
 namesTable filtered(SET OF INTEGER2 ages, STRING badForename) :=
 namesTable(age in ages, forename != badForename);

 OUTPUT(filtered([10,20,33], ''));

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

383

#SET
#SET(symbol, expression);

symbol The name of a previously declared user-defined symbol.

expression The expression whose value to assign to the symbol.

The #SET statement assigns the value of the expression to the symbol, overwriting any previous value the symbol
had contained.

Example:

 #DECLARE(MySymbol); //declare a symbol named "MySymbol"
 #SET(MySymbol,1); //initialize MySymbol to 1

See Also: #DECLARE, #APPEND

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

384

#STORED
#STORED(storedname , value);

storedname A string constant containing the name of the stored attribute result.

value An expression for the new value to assign to the stored attribute.

The #STORED statement assigns the value to the storedname, overwriting any previous value the stored attribute
had contained. This statement may be used outside an XML scope and does not require a previous LOADXML to
instantiate an XML scope.

Example:

 PersonCount := COUNT(person) : STORED('myname');
 #STORED('myname',100);
 //change stored PersonCount attribute value to 100

See Also: STORED, #CONSTANT

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

385

#TEXT
#TEXT(argument);

argument The MACRO parameter whose text to supply.

The #TEXT statement returns the text of the specified argument to the MACRO. This statement may be used outside
an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

 extractFields(ds, outDs, f1, f2='?') := MACRO

 #UNIQUENAME(r);

 %r% := RECORD
 f1 := ds.f1;
 #IF (#TEXT(f2)<>'?')
 #TEXT(f2)+':';
 f2 := ds.f2;
 #END
 END;

 outDs := TABLE(ds, %r%);
 ENDMACRO;

 extractFields(people, justSurname, lastname);
 OUTPUT(justSurname);

 extractFields(people, justName, lastname, firstname);
 OUTPUT(justName);

See Also: MACRO

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

386

#UNIQUENAME
#UNIQUENAME(namevar [,pattern]);

namevar The label of the template variable (without the percent signs) to use in subsequent statements (with
the percent signs) that need the generated unique name.

pattern Optional. A template for unique name construction. It should contain a dollar sign ($) to indicate
the position at which a unique number is generated, and may contain a pound sign (#) to include
the namevar. This is useful for situations where #UNIQUENAME is being used to generate field
names and the result is meant to be viewed in the ECL IDE program, since by default #UNIQUE-
NAME generates identifiers that begin with a double underscore (__) and the ECL IDE treats them
as hidden fields. If omitted, the default pattern is __#__$__.

The #UNIQUENAME statement creates a valid unique ECL identifier within the context of the current scope limit.
This is particularly useful in MACRO structures as it allows the macro to be used multiple times in the same scope
without creating duplicate attribute name errors from the attribute definitions within the macro. This statement may
be used outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

 IMPORT Training_Compare;
 EXPORT MAC_Compare_Result(module_name, attribute_name) := MACRO

 #UNIQUENAME(compare_file);
 %compare_file% := Training_Compare.File_Compare_Master;

 #UNIQUENAME(layout_per_attr);
 #UNIQUENAME(compare_attr, _MyField_$_);
 //the compare_attr fieldname is generated like: _MyField_1_
 %layout_per_attr% := RECORD
 person.per_cid;
 %compare_attr% := module_name.attribute_name;
 END;

 #UNIQUENAME(person_attr_out);
 %person_attr_out% := TABLE(person, %layout_per_attr%);

 #UNIQUENAME(person_attr_out_dist);
 %person_attr_out_dist% := DISTRIBUTE(%person_attr_out%,HASH(per_cid));

 #UNIQUENAME(layout_match_out);
 %layout_match_out% := RECORD
 data9 per_cid;
 boolean ValuesMatchFlag;
 TYPEOF(module_name.attribute_name) MyValue;
 TYPEOF(%compare_file%.attribute_name) CompareValue;
 END;

 #UNIQUENAME(layout_compare);
 %layout_compare% := RECORD
 %compare_file%.per_cid;
 %compare_file%.attribute_name;
 END;

 #UNIQUENAME(compare_table);
 %compare_table% := TABLE(%compare_file%, %layout_compare%);
 #UNIQUENAME(compare_table_dist);
 %compare_table_dist% := DISTRIBUTE(%compare_table%, HASH(per_cid));
 #UNIQUENAME(compare_attr_to_field);

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

387

 %layout_match_out% %compare_attr_to_field%(%person_attr_out% L,
 %compare_table% R) := TRANSFORM
 SELF.ValuesMatchFlag := (L.%compare_attr% = R.attribute_name);
 SELF.MyValue := L.%compare_attr%;
 SELF.CompareValue := R.attribute_name;
 SELF := L;
 END;

 #UNIQUENAME(compare_out);
 %compare_out% := JOIN(%person_attr_out_dist%,
 %compare_table_dist%,
 LEFT.per_cid = RIGHT.per_cid,
 %compare_attr_to_field%(LEFT, RIGHT),
 LOCAL);

 #UNIQUENAME(match_out);
 #UNIQUENAME(nomatch_out);
 %match_out% := %compare_out%(ValuesMatchFlag);
 %nomatch_out% := %compare_out%(~ValuesMatchFlag);

 COUNT(%match_out%);
 OUTPUT(CHOOSEN(%match_out%, 50));
 COUNT(%nomatch_out%);
 OUTPUT(CHOOSEN(%nomatch_out%, 50));

 ENDMACRO;

See Also: MACRO

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

388

#WARNING
#WARNING(message);

message A string expression containing the warning message to display.

The #WARNING statement displays the message in the workunit and/or syntax check. This statement may be used
outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

 #IF(TRUE)
 #ERROR('broken');
 OUTPUT('broken');
 #ELSE
 #WARNING('maybe broken');
 OUTPUT('maybe broken');
 #END;

See Also: #ERROR

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

389

#WEBSERVICE
#WEBSERVICE([FIELDS(fieldlist),][HELP(helptext),][DESCRIPTION(descriptiontext),]);

FIELDS The FIELDS parameter specifies field sequence in WsECL Web forms. This is an exclusive list.
If the FIELDS attribute is present, only the fields in the fieldslist are displayed on the Web form
in WsECL.

fieldlist A comma-separated list of field names in the order in which they should appear on the form.

HELP The HELP Parameter specifies to add help text to the WsECL Web form.

helptext The help text to display.

DESCRIPTION The DESCRIPTION Parameter specifies to add descriptive text to the WsECL Web form.

descriptiontext The description text to display.

The #WEBSERVICEstatement sets options for the input parameters on a WsECL Web form for a published query.

Example:

#WEBSERVICE(FIELDS('Field1','AddThem','Field2'),
 HELP('Enter Integer Values'),
 DESCRIPTION('If AddThem is TRUE, this adds the two integers'));
Field1 := 1 : Stored('Field1');
Field2 := 2 :Stored('Field2');
AddThem := TRUE :STORED ('AddThem');
HiddenValue := 12 :STORED ('HiddenValue'); //not in fieldlist, won't display on WsECl form
IF(AddThem,OUTPUT(Field1+Field2),OUTPUT('Not Added'));

See Also: STORED

ECL Language Reference
Template Language

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

390

#WORKUNIT
#WORKUNIT(option, value);

option A string constant specifying the name of the option to set.

value The value to set for the option.

The #WORKUNIT statement sets the option to the specified value for the current workunit. This statement may be
used outside an XML scope and does not require a previous call to the LOADXML function to instantiate an XML
scope.

Valid option settings are:

cluster The value parameter is a string constant containing the name of the target cluster on which the
workunit executes.

protect The value parameter specifies true to indicate the workunit is protected from deletion, or false
if not.

name The value parameter is a string constant specifying the workunit's jobname.

priority The value parameter is a string constant containing low, normal, or high to indicate the workunit's
execution priority level, or an integer constant value (not a string) to specify how far above high
the priority should be ("super-high").

scope The value parameter is a string constant containing the scope value to use to override the workunit's
default scope (the user ID of the submitting person). This is a Workunit Security feature and
requires a system which is LDAP-enabled.

Example:

#WORKUNIT('cluster','400way'); //run the job on the 400-way target cluster
#WORKUNIT('protect',true); //disallow deletion or archiving by Sasha
#WORKUNIT('name','My Job'); //name it "My Job"
#WORKUNIT('priority','high'); //run before other lower-priority jobs
#WORKUNIT('priority',10); //run before other high-priority jobs
#WORKUNIT('scope','NewVal'); //override the default scope (on an LDAP enabled system)

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

391

External Services

SERVICE Structure
servicename := SERVICE [: defaultkeywords]

prototype : keywordlist;

END;

servicename The name of the service the SERVICE structure provides.

defaultkeywords Optional. A comma-delimited list of default keywords and their values shared by all prototypes
in the external service.

prototype The ECL name and prototype of a specific function.

keywordlist A comma-delimited list of keywords and their values that tell the ECL compiler how to access
the external service.

The SERVICE structure makes it possible to create external services to extend the capabilities of ECL to perform any
desired functionality. These external system services are implemented as exported functions in a .SO (Shared Object).
An ECL system service .SO can contain one or more services and (possibly) a single .SO initialization routine.

Example:

 email := SERVICE
 simpleSend(STRING address,
 STRING template,
 STRING subject) : LIBRARY='ecl2cw',
 INITFUNCTION='initEcl2Cw';
 END;
 MyAttr := COUNT(Trades): FAILURE(email.simpleSend('help@ln_risk.com',
 'FailTemplate',
 'COUNT failure'));
 //An example of a SERVICE function returning a structured record
 NameRecord := RECORD
 STRING5 title;
 STRING20 fname;
 STRING20 mname;
 STRING20 lname;
 STRING5 name_suffix;
 STRING3 name_score;
 END;

 LocalAddrCleanLib := SERVICE
 NameRecord dt(CONST STRING name, CONST STRING server = 'x')
 : c,entrypoint='aclCleanPerson73',pure;
 END;

 MyRecord := RECORD
 UNSIGNED id;
 STRING uncleanedName;
 NameRecord Name;
 END;
 x := DATASET('x', MyRecord, THOR);

 myRecord t(myRecord L) := TRANSFORM
 SELF.Name := LocalAddrCleanLib.dt(L.uncleanedName);
 SELF := L;

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

392

 END;
 y := PROJECT(x, t(LEFT));
 OUTPUT(y);

 //The following two examples define the same functions:
 TestServices1 := SERVICE
 member(CONST STRING src)
 : holertl,library='test',entrypoint='member',ctxmethod;
 takesContext1(CONST STRING src)
 : holertl,library='test',entrypoint='takesContext1',context;
 takesContext2()
 : holertl,library='test',entrypoint='takesContext2',context;
 STRING takesContext3()
 : holertl,library='test',entrypoint='takesContext3',context;
 END;

 //this form demonstrates the use of default keywords
 TestServices2 := SERVICE : holert,library='test'
 member(CONST STRING src) : entrypoint='member',ctxmethod;
 takesContext1(CONST STRING src) : entrypoint='takesContext1',context;
 takesContext2() : entrypoint='takesContext2',context;
 STRING takesContext3() : entrypoint='takesContext3',context;
 END;

See Also: External Service Implementation, CONST

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

393

CONST
CONST

The CONST keyword specifies that the value passed as a parameter will always be treated as a constant. This is
essentially a flag that allows the compiler to properly optimize its code when declaring external functions.

Example:

STRING CatStrings(CONST STRING S1, CONST STRING S2) := S1 + S2;

See Also: Functions (Parameters Passing), SERVICE Structure

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

394

External Service Implementation
ECL external system services are implemented as exported functions in a .SO (Shared Object). An ECL system ser-
vice .SO can contain one or more services and (possibly) a single .SO initialization routine. All system service libraries
must be thread safe.

All exported functions in the .SO (hereafter referred to as "entry points") must adhere to certain calling and naming
conventions. First, entry points must use the "C" naming convention. That is, function name decoration (like that used
by C++) is not allowed.

Second, the storage class of __declspec(dllexport) and declaration type _cdecl need to be declared for Windows/Mi-
crosoft C++ applications. Typically, SERVICE_CALL is defined as _declspec(dllexport) and SERVICE_API is de-
fined as _cdecl for Windows, and left as nulls for Linux. For example:

Extern "C" _declspec(dllexport) unsigned _cdecl Countchars(const unsigned len, const char *string)

.SO Initialization
The following is an example prototype for an ECL (.SO) system service initialization routine:

extern "C" void stdcall <functionName> (IEclWorkUnit *w);

The IEclWorkUnit is transparent to the application, and can be declared as Struct IEclWorkUnit; or simply referred
to as a void *.

In addition, an initialization routine should retain a reference to its "Work Unit." Typically, a global variable is used
to retain this value. For example:

IEclWorkUnit *workUnit;
 // global variable to hold the Work Unit reference

 extern "C" void SERVICE_API myInitFunction (IEclWorkUnit *w)
 {
 workUnit = w; // retain reference to "Work Unit"
 }

Entry Points
Entry points have the same definition requirements as initialization routines. However, unlike initialization routines,
entry points can return a value. Valid return types are listed below. The following is an example of an entry point:

extern "C" __int64 SERVICE_API PrnLog(unsigned long len, const char *val)
 {
 }

SERVICE Structure - external
For each system service defined, a corresponding ECL function prototype must be declared (see SERVICE Struc-
ture).

 servicename := SERVICE
 functionname(parameter list) [: keyword = value];
 END;

 For example:
 email := SERVICE
 simpleSend(STRING address, STRING template, STRING subject)
 : LIBRARY='ecl2cw', INITFUNCTION='initEcl2Cw';
 END;

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

395

Keywords
This is the list of valid keywords for use in service function prototypes:

LIBRARY Indicates the name of the .SO module an entry point is defined in.

ENTRYPOINT Specifies a name for the entry point. By default, the name of the entry point is the func-
tion name.

INITFUNCTION Specifies the name of the initialization routine defined in the module containing the
entry point. Currently, the initialization function is called once.

INCLUDE Indicates the function prototype is in the specified include file, so the generated CPP
must #include that file. If INCLUDE is not specified, the C++ prototype is generated
from the ECL function definition.

C Indicates the generated C++ prototype is enclosed within an extern "C" rather than just
extern.

PURE Indicates the function returns the same result every time you call it with the same para-
meters and has no side effects. This allows the optimizer to make more efficient calls
to the function in some cases.

ONCE Indicates the function has no side effects and is evaluated at query execution time, even
if the parameters are constant. This allows the optimizer to make more efficient calls to
the function in some cases.

ACTION Indicates the function has side effects and requires the optimizer to not remove calls to
the function.

CONTEXT Internal use, only. Indicates an extra internal context parameter (ICodeContext *) is
passed to the function. This must be the first function parameter.

GLOBALCONTEXT Internal use, only. Same as CONTEXT, but there are restrictions on where the function
can be used (for example, not in a TRANSFORM).

CTXMETHOD Internal use, only. Indicates the function is actually a method of the internal code context.

Data Types
Please see the BEGINC++ documentation for data type mapping.

Passing Set Parameters to a Service
Three types of set parameters are supported: INTEGER, REAL, and STRINGn.

INTEGER

If you want to sum up all the elements in a set of integers with an external function, to declare the function in the
SERVICE structure:

 SetFuncLib := SERVICE
 INTEGER SumInt(SET OF INTEGER ss) :
 holertl,library='dab',entrypoint='rtlSumInt';
 END;
 x:= 3+4.5;
 SetFuncLib.SumInt([x, 11.79]); //passed two REAL numbers - it works

To define the external function, in the header (.h) file:

__int64 rtlSumInt(unsigned len, __int64 * a);

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

396

In the source code (.cpp) file:

 __int64 rtlSumInt(unsigned len, __int64 * a) {
 __int64 sum = 0;
 for(unsigned i = 0; i < len; i++) {
 sum += a[i];
 }
 return sum;
 }

The first parameter contains the length of the set, and the second parameter is an int array that holds the elements of
the set. Note: In declaring the function in ECL, you can also have sets of INTEGER4, INTEGER2 and INTEGER1,
but you need to change the type of the C function parameter, too. The relationship is:

 INTEGER8 -- __int64
 INTEGER4 -- int
 INTEGER2 -- short
 INTEGER1 -- char

REAL

If you want to sum up all the elements in a set of real numbers:

To declare the function in the SERVICE structure:

 SetFuncLib := SERVICE
 REAL8 SumReal(SET OF REAL8 ss) :
 holertl,library='dab',entrypoint='rtlSumReal';
 END;

 INTEGER r1 := 10;
 r2 := 20.345;
 SetFuncLib.SumReal([r1, r2]);
 // intentionally passed an integer to the real set, it works too.

To define the external function, in the header (.h) file:

double rtlSumReal(unsigned len, double * a);

In the source code (.cpp) file:

 double rtlSumReal(unsigned len, double * a) {
 double sum = 0;
 for(unsigned i = 0; i < len; i++) {
 sum += a[i];
 }
 return sum;
 }

The first parameter contains the length of the set, and the second parameter is an array that holds the elements of the set.

Note: You can also declare the function in ECL as set of REAL4, but you need to change the parameter of the C
function to float.

STRINGn

If you want to calculate the sum of the lengths of all the strings in a set, with the trailing blanks trimmed off:

To declare the function in the SERVICE structure:

 SetFuncLib := SERVICE
 INTEGER SumCharLen(SET OF STRING20 ss) :
 holertl,library='dab',entrypoint='rtlSumCharLen';
 END;

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

397

 str1 := '1234567890'+'xxxx ';
 str2 := 'abc';
 SetFuncLib.SumCharLen([str1, str2]);

To define the external function, in the header (.h) file:

__int64 rtlSumCharLen(unsigned len, char a[][20]);

In the source code (.cpp) file:

__int64 rtlSumCharLen(unsigned len, char a[][20]) {
 __int64 sumtrimedlen = 0;
 for(unsigned i = 0; i < len; i++) {
 for(int j = 20-1; j >= 0; j—) {
 if(a[i][j] != ' ') {
 break;
 }
 a[i][j] = 0;
 }
 sumtrimedlen += j + 1;
 }
 return sumtrimedlen;
 }

Note: In declaring the C function, we have two parameters for the set. The first parameter is the length of the set,
the second parameter is char[][n] where n is the SAME as that in stringn. Eg., if the service is declared as "integer
SumCharLen(set of string20)", then in the C function the parameter type must be char a[][20].

Plug-In Requirements
Plug-ins require an exported function with the following signature under Windows:

Extern "C" _declspec(dllexport) bool getECLPluginDefinition(ECLPluginDefinitionBlock *pb)

The function must fill the passed structure with correct information for the features of the plug-in. The structure is
defined as follows:

Warning: This function may be called without the plugin being loaded fully. It should not make any library calls or
assume that dependent modules have been loaded or that it has been initialised. Specifically: "The system does not call
DllMain for process and thread initialization and termination. Also, the system does not load additional executable
modules that are referenced by the specified module."

Struct ECLPluginDefinitionBlock
 {
 Size_t size;
 //size of passed structure - filled in by the calling function
 Unsigned magicVersion ;
 // Filled in by .SO - must be PLUGIN_VERSION (1)
 Const char *moduleName;
 // Name of the module
 Const char *ECL;
 // ECL Service definition for non-HOLE applications
 Unsigned flags;
 // Type of plug-in - for user plugin use 1
 Const char *version ;
 // Text describing version of plugin - used in debugging
 Const char *description;
 // Text describing plugin
 }

To initialize information in a plug-in, use a global variable or class and it will be appropriately constructed/destructed
when the plugin is loaded and unloaded.

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

398

Deployment
External .SOs must be deployed to the /opt/HPCCSystems/plugins directory on each node of the target environment.
If external data files are required, they should be either manually deployed to each node, or referenced from a network
node (the latter requires hard-coding the address in the code for the .SO). Note that manually deployed files are not
backed up with the standard SDS backup utilities.

Constraints
The full set of data types is supported on the Data Refinery and Data Delivery Engines (Thor/Roxie/Doxie).

An Example Service
The following code example depicts an ECL system service (.SO) called examplelib that contains one entry point
(stringfind). This is a slightly modified version of the Find function found in the Str standard library. This version is
designed to work in the Data Refinery supercomputer.

ECL definitions
 EXPORT ExampleLib := SERVICE
 UNSIGNED4 StringFind(CONST STRING src,
 CONST STRING tofind,
 UNSIGNED4 instance)
 : c, pure,entrypoint='elStringFind';
 END;

.SO code module:
 //**
 // hqlplugins.hpp : Defines standard values included
 in
 // the plugin header file.
 //**
 #ifndef __HQLPLUGIN_INCL
 #define __HQLPLUGIN_INCL

 #define PLUGIN_VERSION 1

 #define PLUGIN_IMPLICIT_MODULE 1
 #define PLUGIN_MODEL_MODULE 2
 #define PLUGIN_.SO_MODULE 4

 struct ECLPluginDefinitionBlock
 {
 size_t size;
 unsigned magicVersion;
 const char *moduleName;
 const char *ECL;
 const char *Hole;
 unsigned flags;
 const char *version;
 const char *description;
 };

 typedef bool (*EclPluginDefinition) (ECLPluginDefinitionBlock *);

 #endif //__HQLPLUGIN_INCL

 //**
 // examplelib.hpp : Defines standard values included in

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

399

 // the plugin code file.
 //**
 #ifndef EXAMPLELIB_INCL
 #define EXAMPLELIB_INCL

 #ifdef _WIN32
 #define EXAMPLELIB_CALL __cdecl
 #ifdef EXAMPLELIB_EXPORTS
 #define EXAMPLELIB_API __declspec(dllexport)
 #else
 #define EXAMPLELIB_API __declspec(dllimport)
 #endif
 #else
 #define EXAMPLELIB_CALL
 #define EXAMPLELIB_API
 #endif

 #include "hqlplugins.hpp"

 extern "C" {
 EXAMPLELIB_API bool getECLPluginDefinition(ECLPluginDefinitionBlock *pb);
 EXAMPLELIB_API unsigned EXAMPLELIB_CALL elStringFind(unsigned srcLen,
 const char * src, unsigned hitLen, const char * hit,
 unsigned instance);
 }

 #endif //EXAMPLELIB_INCL

 //**
 // examplelib.cpp : Defines the plugin code.
 //**
 #include <memory.h>
 #include "examplelib.hpp"

 static char buildVersion[] = "$Name$ Id";

 #define EXAMPLELIB_VERSION "EXAMPLELIB 1.0.00"

 static const char * const HoleDefinition =
 "SYSTEM\n"
 "MODULE (SYSTEM)\n"
 " FUNCTION StringFind(string src, string search,
 unsigned4 instance),unsigned4,c,name('elStringFind')\n"
 "END\n";

 static const char * const EclDefinition =
 "export ExampleLib := SERVICE\n"
 " unsigned integer4 StringFind(const string src,
 const string tofind, unsigned4 instance)
 : c, pure,entrypoint='elStringFind'; \n"
 "END;";

 EXAMPLELIB_API bool getECLPluginDefinition(ECLPluginDefinitionBlock *pb)
 {
 if (pb->size != sizeof(ECLPluginDefinitionBlock))
 return false;
 pb->magicVersion = PLUGIN_VERSION;
 pb->version = EXAMPLELIB_VERSION " $Name$ Id";
 pb->moduleName = "lib_examplelib";
 pb->ECL = EclDefinition;
 pb->Hole = HoleDefinition;
 pb->flags = PLUGIN_IMPLICIT_MODULE;
 pb->description = "ExampleLib example services library";
 return true;
 }

ECL Language Reference
External Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

400

 //--
 EXAMPLELIB_API unsigned EXAMPLELIB_CALL elStringFind(unsigned srcLen,
 const char * src, unsigned hitLen, const char * hit,
 unsigned instance)
 {
 if (srcLen < hitLen)
 return 0;
 unsigned steps = srcLen-hitLen+1;
 for (unsigned i = 0; i < steps; i++)
 if (!memcmp((char *)src+i,hit,hitLen))
 if (!--instance)
 return i+1;
 return 0;
 }

ECL Language Reference
Appendix A. Creative Commons License

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

401

Appendix A. Creative Commons
License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS
PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO
BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION
OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works, such as a
translation, adaptation, derivative work, arrangement of music or other alterations of a literary or artistic work, or
phonogram or performance and includes cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form recognizably derived from the original, except that a work
that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance
of doubt, where the Work is a musical work, performance or phonogram, the synchronization of the Work in timed-
relation with a moving image ("synching") will be considered an Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or perfor-
mances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below,
which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the
Work is included in its entirety in unmodified form along with one or more other contributions, each constituting
separate and independent works in themselves, which together are assembled into a collective whole. A work that
constitutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work through sale or other
transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this
License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or entities
who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case
of a performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram
the producer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii)
in the case of broadcasts, the organization that transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including without limitation
any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression
including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of
the same nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a
musical composition with or without words; a cinematographic work to which are assimilated works expressed by
a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithog-
raphy; a photographic work to which are assimilated works expressed by a process analogous to photography; a
work of applied art; an illustration, map, plan, sketch or three-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a phonogram; a compilation of data to the extent it is protected

ECL Language Reference
Appendix A. Creative Commons License

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

402

as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise
considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously violated the terms
of this License with respect to the Work, or who has received express permission from the Licensor to exercise
rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public those
public recitations, by any means or process, including by wire or wireless means or public digital performances;
to make available to the public Works in such a way that members of the public may access these Works from
a place and at a place individually chosen by them; to perform the Work to the public by any means or process
and the communication to the public of the performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound or visual
recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected perfor-
mance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright
or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in
the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as
incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

c. For the avoidance of doubt:

1. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive
right to collect such royalties for any exercise by You of the rights granted under this License;

2. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through
any statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect
such royalties for any exercise by You of the rights granted under this License; and,

3. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individually or, in the
event that the Licensor is a member of a collecting society that administers voluntary licensing schemes, via that
society, from any exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above
rights include the right to make such modifications as are technically necessary to exercise the rights in other media
and formats, but otherwise you have no rights to make Adaptations. Subject to Section 8(f), all rights not expressly
granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include a copy of,
or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You Distribute or Publicly
Perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of

ECL Language Reference
Appendix A. Creative Commons License

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

403

the recipient of the Work to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties
with every copy of the Work You Distribute or Publicly Perform. When You Distribute or Publicly Perform the
Work, You may not impose any effective technological measures on the Work that restrict the ability of a recipient
of the Work from You to exercise the rights granted to that recipient under the terms of the License. This Section
4(a) applies to the Work as incorporated in a Collection, but this does not require the Collection apart from the Work
itself to be made subject to the terms of this License. If You create a Collection, upon notice from any Licensor You
must, to the extent practicable, remove from the Collection any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request has been made pursuant
to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original
Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable means, the
name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the
URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work. The credit required by this Section 4(b) may be implemented in any
reasonable manner; provided, however, that in the case of a Collection, at a minimum such credit will appear, if a
credit for all contributing authors of the Collection appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the
credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your
rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or
endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the
Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution
Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You
Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Collections, You must not
distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the
Original Author's honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE
WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGE-
MENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE
OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of the terms of
this License. Individuals or entities who have received Collections from You under this License, however, will not
have their licenses terminated provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different

ECL Language Reference
Appendix A. Creative Commons License

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

404

license terms or to stop distributing the Work at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the recipient a license
to the Work on the same terms and conditions as the license granted to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity
or enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are
no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not
be bound by any additional provisions that may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology
of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979),
the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms
Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to
the corresponding provisions of the implementation of those treaty provisions in the applicable national law. If the
standard suite of rights granted under applicable copyright law includes additional rights not granted under this
License, such additional rights are deemed to be included in the License; this License is not intended to restrict the
license of any rights under applicable law.

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

405

Index
Symbols
#APPEND, 357
#BREAK, 372
#CONSTANT, 358
#DECLARE, 359
#DEMANGLE, 360
#ELSE, 370
#ELSEIF, 370
#END, 372
#ERROR, 361
#EXPAND, 362
#EXPORT, 363
#EXPORTXML, 366
#FOR, 368
#GETDATATYPE, 369
#IF, 370
#INMODULE, 371
#LOOP, 372
#MANGLE, 373
#ONWARNING, 374
#OPTION, 375
#SET, 383
#STORED, 384
#TEXT, 385
#UNIQUENAME, 386
#WARNING, 388
#WEBSERVICE, 389
#WORKUNIT, 151, 390
.ECL files, 23
.SO, 394
__COMPRESSED__, 63

A
ABS, 134
ABS function, 134
ACOS, 135
ACOS function, 135
Actions as Definitions, 27
Addition, 28
AFTER, 139
AGGREGATE, 136
AGGREGATE function, 136
ALL, 96, 170, 202, 218, 253, 260, 263, 339
ALL keyword, 96
ALLNODES, 138
ALLNODES function, 138
AND, 35, 54
AND NOT, 54
ANY, 20
APPLY, 139

APPLY function, 139
arguments, 18
arithmetic operators, 28
AS, 100
ASCII, 64, 140, 256
ASCII function, 140
ASIN, 141
ASIN function, 141
ASSERT, 142
ASSERT function, 142
ASSTRING, 144
ASSTRING function, 144
ATAN, 145
ATAN function, 145, 146
ATAN2, 146
ATAN2 function, 146
ATMOST, 218, 264
AVE, 147
AVE function, 147

B
BEFORE, 139
BEGINC++, 111
BEGINC++ Structure, 111
BEST, 264, 324
BETWEEN, 35
Between Operator, 35
BIG_ENDIAN, 37
Binary values, 12
Bitshift Left, 29
Bitshift operators, 28
Bitshift Right, 29
Bitwise AND, 28
Bitwise Exclusive OR, 28
Bitwise NOT, 28
Bitwise operators, 28
Bitwise OR, 28
BLOB in INDEX, 55
Boolean, 14
BOOLEAN, 36, 85
Boolean AND, 30
Boolean Definition, 14, 17
Boolean NOT, 30, 30
Boolean OR, 30
BOOLEAN value type, 36
BUILD, 148
BUILD action, 78, 80

C
CASE, 153, 263
CASE function, 153
Casting Rules, 50
CATCH, 154

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

406

CATCH Function, 154
Character Sets, 15
CHECKPOINT, 342
CHECKPOINT workflow service, 342
Child Dataset, 70
child dataset records, 70
CHOOSE, 155
CHOOSE function, 155
CHOOSEN, 61, 70, 156
CHOOSEN function, 156
CHOOSESETS, 157
CHOOSESETS function, 157
CLUSTER, 148, 254, 255, 257, 258, 348
CLUSTERSIZE, 158
COMBINE, 159
COMBINE function, 159
comparison operator, 29, 331
COMPRESSED, 63, 78, 254
COMPRESSION, 148
Concatenation, 33, 71
CONST, 18, 142, 393
CONST Function, 393
Constant set, 14
constant values, 14, 68
constants, 11
CORRELATION, 162
CORRELATION function, 162
COS, 164
COS function, 164
COSH, 165
COSH function, 165
COUNT, 61, 70, 166, 231, 231, 298, 355
COUNT function, 166
COUNTER, 71, 108, 132, 173, 201, 222, 237, 248, 276
COVARIANCE, 167
COVARIANCE function, 167
CRON, 169
CRON function, 169
CSV, 64, 67, 253, 255, 259, 269
CSV Files, 64, 255

D
DATA, 43
Data string, 11
DATA value type, 43
Dataset, 15
DATASET, 61, 61, 64, 72, 82, 148, 305
DATASET declaration, 81, 82
DATASET parameter, 19
DATASET parameters, 63
DECIMAL, 39
DECIMAL value type, 39
DEDUP, 148, 170, 241, 242

DEDUP function, 170, 170, 288
DEFAULT, 55
DEFINE, 172
DEFINE function, 172
Definition Name, 13
Definition Operator, 13
Definition Types, 14
Definition Visibility, 23, 127
Definitions as Actions, 27
DENORMALIZE, 173
DENORMALIZE function, 173
DEPRECATED, 343
DEPRECATED workflow service, 343
DESCEND, 281, 282
DICTIONARY, 76
DICTIONARY parameter, 19
DISTINCT statement in SQL, 170
DISTRIBUTE, 148, 176
DISTRIBUTE function, 176
DISTRIBUTED, 78, 148, 178
DISTRIBUTED function, 178
DISTRIBUTION, 179
DISTRIBUTION action, 337
DISTRIBUTION function, 179
Division, 28
Division by zero, 28
dot syntax, 25
Dynamic Files, 82

E
EBCDIC, 64, 181, 256
EBCDIC function, 181
ECL, 10
ECL definition, 13
ECL IDE, 11
ECL keywords, 13
EMBED, 116
EMBED Structure, 116
ENCODING, 306
ENCRYPT, 63, 64, 65, 66, 254, 255, 257, 258
ENDC++, 111
ENDEMBED, 116
ENDMACRO, 125
ENTH, 157, 182
ENTH function, 182
ENUM, 49
ENUM datatype, 49
Equivalence, 29, 90
Equivalence Comparison, 29
ERROR, 183
ERROR function, 183, 191
ESCAPE, 64
EVALUATE, 184

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

407

EVALUATE action, 184
EVALUATE function, 184
EVENT, 186
EVENT function, 186
EVENTEXTRA, 188
EVENTEXTRA function, 188
EVENTNAME, 187
EXCEPT, 97
EXCEPT keyword, 97
EXCLUSIVE, 157
EXISTS, 189
EXISTS function, 189
EXP, 190
EXP function, 190, 232
EXPIRE, 148, 225, 226, 254, 255, 257, 258, 348
Explicit Casting, 50
EXPORT, 23, 85, 98
EXPORTed, 25
EXPORTed Definitions, 25
Expression, 13
Expressions, 28
Expressions and Operators, 28
Expressions as Actions, 27
EXTEND, 253, 260
Extended PARSE, 266
Extended PARSE Examples, 266
External Service, 394
external system services, 394

F
FAIL, 142, 154, 191
FAIL action, 183, 191
FAILCODE, 192
FAILCODE function, 192
FAILMESSAGE, 154, 193, 209, 306
FAILMESSAGE function, 193
FAILURE, 344
FAILURE workflow service, 192, 344
FALSE, 36, 109
FALSE keyword, 109
FETCH, 194
FETCH function, 194
FEW, 136, 148, 156, 200, 218, 309, 318, 345, 352
field sequence, 389
File Scope, 81
FILEPOSITION, 148
Filters, 17
FIRST, 78, 148, 263
FLAT, 63
Flat Files, 254
floating point, 38
Foreign files, 81
FORWARD, 127

forward reference, 10, 90, 172
FROM, 100
FROMJSON, 196
FROMJSON function, 196
FROMUNICODE, 197
FROMUNICODE function, 197
FROMXML, 198
FROMXML function, 198
FULL ONLY, 221
FULL OUTER, 221
FUNCTION, 118
FUNCTION Structure, 118
FUNCTIONMACRO, 121
FUNCTIONMACRO Structure, 121
Functions, 18

G
GETENV, 199
GETENV function, 199
GETISVALID, 85
GLOBAL, 200, 345
GLOBAL function, 200
GLOBAL workflow service, 200, 345
GRAPH, 201
GRAPH function, 201
Greater or Equal, 29
Greater Than, 29
GROUP, 99, 159, 173, 269, 288
Group, 202
GROUP function, 202, 330
GROUP keyword, 99, 332
GROUPED, 61, 72, 218

H
HASH, 170, 203, 218
HASH function, 203
HASH32 function, 204
HASH64, 204, 205
HASH64 function, 205
HASHCRC, 206
HASHCRC function, 206
HASHMD5, 207
HASHMD5 function, 207
HAVING, 208
HAVING function, 208
HEADING, 64, 256, 257, 258, 306
heapsort, 310
Hexadecimal, 11, 12
HPCC, 10
hthor, 310
HTTPCALL, 209
HTTPCALL Function, 209
HTTPCALL Options, 209

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

408

I
IF, 210
IF function, 210
IFBLOCK, 52
IFF, 211
IFF function, 211
Implicit Casting, 50
Implicit Dataset, 83
Implicit Dataset Relationality, 83
IMPORT, 100
IMPORT AS, 100
IMPORT FROM, 100
IMPORT function, 212
IMPORTed, 25
IN, 34
In Line Dataset, 68
IN Operator, 34
in-line a set of data, 68
In-Line Dataset, 68
INDEPENDENT, 346
INDEPENDENT workflow service, 346
INDEX, 78
INDEX declaration, 78
Indexing, 15
Inline TRANSFORMs, 132, 132
INNER, 242
insertionsort, 310
INTEGER, 11, 37, 85, 395
Integer Division, 28
INTEGER value type, 37
INTERFACE, 123
interface, 316
INTERFACE Structure, 123
INTERNAL, 229
INTFORMAT, 213
INTFORMAT function, 213
ISVALID, 214
ISVALID function, 214
ITERATE, 215
ITERATE function, 215

J
JOIN, 217, 223
JOIN function, 217, 223
JOIN Set, 223
JOIN setofdatasets, 223
Join Types, 242
joincondition, 102, 218
JOINED, 309
joinflags, 218
JOINS FULL OUTER, 221
JSON, 66, 253, 258
JSON Files, 258

K
KEEP, 170, 218, 264
KEYDIFF, 225
KEYDIFF function, 225
KEYED, 102, 147, 162, 166, 167, 189, 218, 231, 231,
244, 275, 317, 318, 332
Keyed JOIN, 220
KEYED Keyword, 102
KEYPATCH, 226
KEYPATCH action, 225
KEYPATCH function, 226
KEYUNICODE, 227
KEYUNICODE function, 227

L
Landing Zone files, 81
LAST, 157
LEFT, 104, 173, 247
LEFT ONLY, 221, 242
LEFT OUTER, 221, 242
LENGTH, 61, 70, 228
LENGTH function, 228
Less or Equal, 29
Less Than, 29
LIBRARY, 127, 229
LIBRARY function, 151, 229
LIMIT, 218, 231
LIMIT function, 231
LINKCOUNTED, 61, 72
LITERAL, 306
LITTLE_ENDIAN, 37
LN, 232
LN function, 190, 232
LOAD, 85
LOADXML, 233
LOADXML function, 233
LOCAL, 24, 136, 148, 159, 170, 173, 182, 194, 202, 215,
218, 235, 241, 273, 275, 288, 309, 318, 324
LOCAL function, 78, 235
LOCALE, 52
LOG, 236, 306
LOG function, 236
LOGICAL Filenames, 81
Logical graphs, 377
logical operators, 30, 54
LOOKUP, 218
LOOP, 237
LOOP function, 201, 237
loopbody, 237
loopcondition, 237
loopcount, 237
loopfilter, 237
LZW, 78, 148

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

409

M
MACRO, 125
MACRO Structure, 125
MANY, 136, 200, 218, 264, 318
MAP, 239
MAP function, 239
MATCHED, 264
MATCHED ALL, 264
MAX, 264, 304
MAX function, 240
MAXCOUNT, 54
MAXLENGTH, 52, 54, 64, 78, 78, 78, 85, 148, 263
MERGE, 148, 241, 306, 318
MERGE function, 241
MERGEJOIN, 242
MERGEJOIN function, 223, 242
MIN, 244, 264
MIN function, 244
MODULE, 127
MODULE Structure, 127
Modulus Division, 28
MOFN, 242
MULTIPLE, 348
Multiplication, 28

N
N-ary merge/join, 201
Name, 13
NAMED, 21, 179, 253, 260, 260
NAMED OUTPUT, 260
Named Output Dataset, 67
NAMESPACE, 306
Natural Language Parsing, 87
Nested child datasets, 83
NOCASE, 263, 284, 285
NOFOLD, 249
NOFOLD function, 249
NOLOCAL, 245
NOLOCAL function, 245
non-procedural language, 10
NONEMPTY, 246
NONEMPTY function, 246
NORMALIZE, 247
NORMALIZE function, 247
NOROOT, 65, 66, 148
NOSCAN, 263
NOSORT, 173, 218
Not Equal, 29
NOT MATCHED, 264
NOT MATCHED ONLY, 264
NOTHOR, 250
NOTHOR action, 250
NOTIFY, 251

NOTIFY function, 251
NOTRIM, 64, 306
NOXPATH, 253

O
ONFAIL, 154, 209, 231, 306
ONWARNING, 347
ONWARNING workflow service, 347
Operators, 28
OPT, 63, 78, 102, 257, 259, 277
OR, 54
ORDERED, 252
ORDERED function, 252
OUTPUT, 253, 254, 255, 257, 258, 260, 260, 269
OUTPUT - CSV Files, 255
OUTPUT - JSON Files, 258
OUTPUT - NAMED Files, 260
OUTPUT - XML Files, 257
OUTPUT action, 253
OUTPUT Pipe Files, 259
OUTPUT Scalar Values, 260
OUTPUT Thor/Flat Files, 254
OUTPUT Workunit Files, 260
OVERWRITE, 148, 225, 226, 254, 255, 257, 258

P
PACKED, 52
packed decimal, 39, 39, 39
packed hexadecimal, 43
PARALLEL, 218, 237, 262, 275, 306
PARALLEL action, 260
PARALLEL function, 262
Parameter Passing, 18
parameters, 13
PARSE, 263, 264
PARSE Examples, 266
PARSE function, 92, 263
PARSE Text, 263
PARSE XML, 265
PARTITION LEFT, 218
PARTITION RIGHT, 218
Passing a DATASET parameter, 72
Passing Set Parameters, 395
PATTERN, 88
Perl regular expression, 284, 285
PERSIST, 348
PERSIST workflow service, 348
PHYSICALLENGTH, 85
Pipe, 67
PIPE, 253, 259, 269
PIPE Files, 67
PIPE function, 67, 269
POWER, 271

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

410

POWER function, 271
PREFETCH, 275, 275
PRELOAD, 63, 272
PRELOAD function, 272
PRIORITY, 350
PRIORITY workflow service, 350
PROCESS, 273
PROCESS function, 273
PROJECT, 275, 277
PROJECT function, 275
PULL, 278
PULL function, 278

Q
QSTRING, 41
QSTRING string constants, 11
QSTRING value type, 41
query library, 127, 148
quicksort, 310
QUOTE, 64, 256

R
RANDOM, 279
RANDOM function, 279
RANGE, 280
RANGE function, 280
RANK, 281
RANK function, 281
RANKED, 282
RANKED function, 282
REAL, 38, 396
REAL data type, 38
REALFORMAT, 283
REALFORMAT Function, 283
realvalue, 293
RECORD, 52
record matching, 242
Record Matching Logic, 242
Record Set, 14, 15, 17, 31
Record Set Definition, 15
Record Set Operators, 31
RECORD structure, 31, 52, 65, 66, 68, 84, 92, 94, 106,
131, 264, 264, 275, 318, 319, 332
RECORD Structure, 52
RECORDOF, 48
RECORDOF datatype, 48
RECOVERY, 351
RECOVERY workflow service, 351
recstruct, 294
regex, 284, 285
REGEXFIND, 284
REGEXFIND function, 284
REGEXREPLACE, 285

REGEXREPLACE function, 285
REGROUP, 286
REGROUP function, 286
regular expression, 88
REJECTED, 287
REJECTED function, 287, 336
Relationality, 83
REPEAT, 259, 269
Reserved Words, 13
resultrec, 294
RETRY, 209, 305
RETURN, 26, 118, 121
RIGHT, 104, 173
RIGHT ONLY, 221
RIGHT OUTER, 221
RIGHT1, 136
RIGHT2, 136
ROLLUP, 288
ROLLUP function, 288, 309
ROUND, 292
ROUND function, 292
ROUNDUP, 293
ROUNDUP function, 293
ROW, 78, 148, 294
ROW function, 129, 294
ROWDIFF, 298
ROWDIFF function, 298
ROWS(LEFT), 105
ROWS(RIGHT), 105
ROWSET, 201
ROWSET(LEFT), 201
Roxie, 235, 310
RULE, 88

S
SAMPLE, 299
SAMPLE function, 299
Scalar OUTPUT, 260
SCAN, 263
SCAN ALL, 263
Scope, 13
SCOPE, 81
SELF, 106, 130
SELF keyword, 106
SEPARATOR, 64, 256
SEQUENTIAL, 300
SEQUENTIAL function, 300
Service Function Keywords, 395
SERVICE Structure, 139, 391, 394
SERVICE structure, 396, 396
Set, 14
SET, 18, 301
Set Definition, 14, 14

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

411

SET function, 14, 301
SET OF, 46
SET OF value type, 46
Set Operators, 32
Set Ordering, 15
SET parameters, 18
Set Parameters, 395
Sets can contain definitions and expressions, 14
SHARED, 23, 107
Shared Object, 394
SIN, 302
SIN function, 302
SINGLE, 256, 348
Single Row Dataset, 69
Single-Row Dataset, 69
SINH, 303
SINH function, 303
SIZEOF, 304
SIZEOF function, 304
SKEW, 148, 176, 218, 309, 318
SKIP, 108, 130, 154, 218, 231, 264
SMART, 218
SOAPACTION, 306
SOAPCALL, 56, 305, 306
SOAPCALL Action, 307
SOAPCALL Function, 305, 306
SOAPCALL Options, 305
SORT, 309
sort algorithms, 310
SORT function, 309
SORTED, 78, 148, 217, 223, 241, 242, 313
SORTED function, 313
SQRT, 314
SQRT function, 314
square brackets, 9, 14, 18, 46, 237
STABLE, 309
STEPPED, 315
STEPPED function, 315
STORE, 85
STORED, 316, 352
STORED function, 316
STORED workflow service, 352
STREAMED, 61, 72
String, 15
STRING, 40
string constants, 11
string operator, 33
string slice, 15
STRING value type, 40
STRINGn, 396
substring, 15
Subtraction, 28
SUCCESS, 354
SUCCESS workflow service, 354

SUM, 317
SUM function, 317
SuperFile, 82

T
TABLE, 25, 318
TABLE function, 26
TABLE Function, 318
TAN, 320
TAN Function, 320
TANH, 321
TANH Function, 321
Template Language, 356
Temporary SuperFile, 82
TERMINATOR, 64, 256
THISNODE, 322
THISNODE Function, 322
THOR, 63, 253, 260
Thor, 310
THRESHOLD, 148, 218, 309, 318
TIMELIMIT, 209, 306
TIMEOUT, 209, 306
TOJSON, 323
TOJSON function, 323
TOKEN, 88
Tomita parsing, 264
TOPN, 324
TOPN Function, 324
TOUNICODE, 325
TOUNICODE Function, 325
TOXML, 326
TOXML function, 326
TRANSFER, 327
TRANSFER Function, 327
TRANSFORM, 130
transform function, 194, 215, 221
TRANSFORM Function, 273, 275
TRANSFORM Function Requirements, 273, 275
Transform Requirement Process, 273
Transform Requirement Project, 275
Transform Requirements, 273, 275
TRANSFORM structure, 106, 108, 130, 192, 193, 294
Treating DICTIONARY as a DATASET, 74
TRIM, 209, 257, 259, 306, 328
TRIM Function, 328
TRIM OPT, 257, 259
TRUE, 36, 109
TRUE keyword, 109
TRUNCATE, 329
TRUNCATE Function, 329
TYPE, 84
Type Casting, 50
TYPE structure, 52, 84

ECL Language Reference
Index

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

412

Type Transfer, 50
TypeDef, 14
TypeDef Definition, 16
TYPEOF, 47
TYPEOF data type, 47

U
UDECIMALn, 39
UNGROUP, 330
UNGROUP Function, 330
UNICODE, 42, 64, 256
Unicode string, 11
UNICODE value type, 42
UNICODEORDER, 331
UNICODEORDER function, 331
UNORDERED, 218
UNSIGNED, 37, 39
UNSIGNED value type, 37
UNSORTED, 63, 318
UNSTABLE, 309
UPDATE, 148, 254, 255, 257, 258
USE, 264
UTF-8, 11

V
Value, 14
Value Definition, 14
Value Type, 13
Value Types, 18, 36
VARIANCE, 332
VARSTRING, 44
VARSTRING string constants, 11
VARSTRING value type, 44
VARUNICODE, 45
VARUNICODE value type, 45
Virtual, 55
VIRTUAL, 127
VIRTUAL EXPORT, 98
Virtual fileposition, 55
Virtual localfileposition, 55
Virtual logicalfilename, 55
VIRTUAL SHARED, 107

W
WAIT, 334
WAIT Function, 334
WHEN, 335, 355
WHEN Function, 335
WHEN workflow service, 169, 186, 355
WHICH, 336
WHICH function, 287
WHICH Function, 336
WHOLE, 263

WIDTH, 148
WILD, 102
WILD index filter, 102
WILD Keyword, 102
WORKUNIT, 61, 337
Workunit, 67
WORKUNIT Function, 337
Workunit OUTPUT, 260
WUID, 337

X
XML, 65, 67, 253, 257, 259, 263, 269
XML Files, 257
XMLDECODE, 338
XMLDECODE Function, 338
XMLDEFAULT, 55
XMLENCODE, 339
XMLENCODE Function, 339
XOR Operator, 30
XPATH, 54, 209, 306
XPATH support, 56

	ECL Language Reference
	Table of Contents
	Introduction
	Documentation Structure
	Documentation Conventions
	ECL Syntax Case
	Optional Items
	Example Code

	ECL Basics
	Overview
	Definitions versus Actions
	Syntax Issues

	Constants
	String
	Numeric

	Definitions
	Definition Name Rules
	Reserved Words
	Definition Naming

	Basic Definition Types
	Boolean Definitions
	Value Definitions
	Set Definitions
	Set Ordering and Indexing
	Record Set Definitions
	Record Set Ordering and Indexing
	TypeDef Definitions

	Recordset Filtering
	Function Definitions (Parameter Passing)
	Simple Value Type Parameters
	SET Parameters
	Passing DATASET Parameters
	Passing DICTIONARY Parameters
	Passing Typeless Parameters
	Passing Function Parameters
	Passing NAMED Parameters

	Definition Visibility
	"Global"
	Module
	Local

	Field and Definition Qualification
	Imported Definitions
	Fields in Datasets
	Scope Resolution Operator

	Actions and Definitions
	Expressions as Actions
	Definitions as Actions
	Actions as Definitions
	Debugging Uses

	Expressions and Operators
	Expressions and Operators
	Arithmetic Operators
	Bitwise Operators
	Bitshift Operators
	Comparison Operators

	Logical Operators
	Logical Expression Grouping
	An XOR Operator

	Record Set Operators
	Set Operators
	String Operators
	IN Operator
	BETWEEN Operator

	Value Types
	BOOLEAN
	INTEGER
	INTEGER Value Ranges

	REAL
	REAL Value Ranges

	DECIMAL
	STRING
	QSTRING
	UNICODE
	DATA
	VARSTRING
	VARUNICODE
	SET OF
	TYPEOF
	RECORDOF
	ENUM
	Type Casting
	Explicit Casting
	Implicit Casting
	Type Transfer
	Casting Rules

	Record Structures and Files
	RECORD Structure
	In-line Record Definitions
	Field Definitions
	Field Inheritance
	Field Modifiers
	XPATH Support

	DATASET
	THOR/FLAT Files
	CSV Files
	XML Files
	JSON Files
	PIPE Files
	Named Output DATASETs
	In-line DATASETs
	Single-row DATASET Expressions
	Child DATASETs
	DATASET as a Parameter Type
	DATASET from DICTIONARY
	DATASET from TRANSFORM

	DICTIONARY
	DICTIONARY Definition
	DICTIONARY as a Value Type

	INDEX
	Keyed Access INDEX
	Payload INDEX
	Duplicate INDEX

	Scope and Logical Filenames
	File Scope
	Foreign Files
	Landing Zone Files
	Dynamic Files
	Temporary SuperFiles

	Implicit Dataset Relationality

	Alien Data Types
	TYPE Structure
	TYPE Structure Special Functions
	LOAD
	STORE
	PHYSICALLENGTH
	MAXLENGTH
	GETISVALID

	Parsing Support
	Parsing Support
	PARSE Pattern Value Types
	ParsePattern Definitions

	NLP RECORD and TRANSFORM Functions
	Pattern References

	XML Parsing RECORD and TRANSFORM Functions

	Reserved Keywords
	ALL
	EXCEPT
	EXPORT
	GROUP keyword
	IMPORT
	KEYED and WILD
	LEFT and RIGHT
	ROWS(LEFT) and ROWS(RIGHT)
	SELF
	SHARED
	SKIP
	TRUE and FALSE

	Special Structures
	BEGINC++ Structure
	ECL to C++ Mapping
	Available Options

	EMBED Structure
	FUNCTION Structure
	FUNCTIONMACRO Structure
	INTERFACE Structure
	MACRO Structure
	MODULE Structure
	Definition Visibility Rules
	MODULE Side-Effect Actions
	Concrete vs. Abstract (VIRTUAL) Modules
	LIBRARY Modules

	TRANSFORM Structure
	Transformation Attribute Definitions
	TRANSFORM Functions
	Inline TRANSFORMs
	Shorthand Inline TRANSFORMs

	Built-in Functions and Actions
	ABS
	ACOS
	AGGREGATE
	TRANSFORM Function Requirements - AGGREGATE
	How AGGREGATE Works

	ALLNODES
	APPLY
	ASCII
	ASIN
	ASSERT
	ASSTRING
	ATAN
	ATAN2
	AVE
	BUILD
	Index BUILD Options
	BUILD an Access Index
	BUILD a Payload Index
	BUILD from an INDEX Definition
	BUILD a Query Library

	CASE
	CATCH
	CHOOSE
	CHOOSEN
	CHOOSESETS
	CLUSTERSIZE
	COMBINE
	COMBINE TRANSFORM Function Requirements
	COMBINE Form 1
	COMBINE Form 2

	CORRELATION
	COS
	COSH
	COUNT
	COVARIANCE
	CRON
	DEDUP
	Complex Record Set Conditions

	DEFINE
	DENORMALIZE
	DENORMALIZE TRANSFORM Function Requirements

	DISTRIBUTE
	“Random” DISTRIBUTE
	Expression DISTRIBUTE
	Index-based DISTRIBUTE
	Skew-based DISTRIBUTE

	DISTRIBUTED
	DISTRIBUTION
	EBCDIC
	ENTH
	ERROR
	EVALUATE
	EVALUATE action
	EVALUATE function
	Accessing Field-level Data in a Specific Record

	EVENT
	EVENTNAME
	EVENTEXTRA
	EXISTS
	EXP
	FAIL
	FAILCODE
	FAILMESSAGE
	FETCH
	FETCH TRANSFORM Function Requirements

	FROMJSON
	FROMUNICODE
	FROMXML
	GETENV
	GLOBAL
	GRAPH
	GROUP
	HASH
	HASH32
	HASH64
	HASHCRC
	HASHMD5
	HAVING
	HTTPCALL
	IF
	IFF
	IMPORT
	INTFORMAT
	ISVALID
	ITERATE
	TRANSFORM Function Requirements - ITERATE

	JOIN
	JOIN Two Datasets
	Matching Logic - JOIN
	Options
	Keyed Joins
	Join Logic
	TRANSFORM Function Requirements - JOIN
	Join Types: Two Datasets
	JOIN Set of Datasets
	Record Matching Logic
	TRANSFORM Function Requirements - JOIN setofdatasets
	Join Types: setofdatasets

	KEYDIFF
	KEYPATCH
	KEYUNICODE
	LENGTH
	LIBRARY
	LIMIT
	LN
	LOADXML
	LOCAL
	LOG
	LOOP
	The PARALLEL Option

	MAP
	MAX
	MERGE
	MERGEJOIN
	Matching Logic
	Join Types:

	MIN
	NOLOCAL
	NONEMPTY
	NORMALIZE
	NORMALIZE Form 1
	TRANSFORM Function Requirements for Form 1
	NORMALIZE Form 2
	TRANSFORM Function Requirements for Form 2

	NOFOLD
	NOTHOR
	NOTIFY
	ORDERED
	OUTPUT
	OUTPUT Field Names
	OUTPUT Thor/Flat Files
	OUTPUT CSV Files
	OUTPUT XML Files
	OUTPUT JSON Files
	OUTPUT PIPE Files
	Named OUTPUT
	OUTPUT Scalar Values
	OUTPUT Workunit Files

	PARALLEL
	PARSE
	PARSE Text Data
	PARSE XML Data
	Extended PARSE Examples

	PIPE
	POWER
	PRELOAD
	PROCESS
	TRANSFORM Function Requirements - PROCESS

	PROJECT
	TRANSFORM Function Requirements - PROJECT
	PROJECT - Module

	PULL
	RANDOM
	RANGE
	RANK
	RANKED
	REALFORMAT
	REGEXFIND
	REGEXREPLACE
	REGROUP
	REJECTED
	ROLLUP
	TRANSFORM Function Requirements - ROLLUP
	ROLLUP Form 1
	ROLLUP Form 2
	ROLLUP Form 3

	ROUND
	ROUNDUP
	ROW
	ROW Form 1
	ROW Form 2
	ROW Form 3

	ROWDIFF
	SAMPLE
	SEQUENTIAL
	SET
	SIN
	SINH
	SIZEOF
	SOAPCALL
	SOAPCALL Function
	SOAPCALL Action

	SORT
	Sorting Algorithms
	Quick Sort
	Insertion Sort
	Heap Sort
	Stable vs. Unstable
	Performance Considerations
	CPU time vs. Total time
	Spilling to disk
	How sorting affects JOINs

	SORTED
	SQRT
	STEPPED
	STORED
	SUM
	TABLE
	TAN
	TANH
	THISNODE
	TOJSON
	TOPN
	TOUNICODE
	TOXML
	TRANSFER
	TRIM
	TRUNCATE
	UNGROUP
	UNICODEORDER
	VARIANCE
	WAIT
	WHEN
	WHICH
	WORKUNIT
	XMLDECODE
	XMLENCODE

	Workflow Services
	Workflow Overview
	CHECKPOINT
	DEPRECATED
	FAILURE
	GLOBAL - Service
	INDEPENDENT
	ONWARNING
	PERSIST
	PRIORITY
	RECOVERY
	STORED - Workflow Service
	SUCCESS
	WHEN

	Template Language
	Template Language Overview
	Template Language Statements
	Template Symbols

	#APPEND
	#CONSTANT
	#DECLARE
	#DEMANGLE
	#ERROR
	#EXPAND
	#EXPORT
	#EXPORTXML
	#FOR
	#GETDATATYPE
	#IF
	#INMODULE
	#LOOP / #BREAK
	#MANGLE
	#ONWARNING
	#OPTION
	Definition of Terms
	Available options

	#SET
	#STORED
	#TEXT
	#UNIQUENAME
	#WARNING
	#WEBSERVICE
	#WORKUNIT

	External Services
	SERVICE Structure
	CONST
	External Service Implementation
	.SO Initialization
	Entry Points
	SERVICE Structure - external
	Keywords
	Data Types
	Passing Set Parameters to a Service
	Plug-In Requirements
	Deployment
	Constraints
	An Example Service
	ECL definitions
	.SO code module:

	Appendix A. Creative Commons License
	Index

