HPCC Systems® I

ECL Language Reference

Boca Raton Documentation Team

@' LexisNexis’

Risk Solutions

ECL Language Reference

ECL Language Reference
Boca Raton Documentation Team

We welcome your comments and feedback about this document via email to <docfeedback @hpccsystems.com> subject to the HPCC Contribution
Agreement at: hpccsystems.com/contribution. Please include Documentation Feedback in the subject line and reference the document name, page
numbers, and current Revision Number in the text of the message.

LexisNexis and related logos, designs, trade dress, and trademarks are owned by Reed Elsevier Properties Inc. and its affiliates, used under license
and not subject to the Creative Commons license. Other trademarks owned by their respective companies and not subject to the Creative Commons
license.

All names and example data used in this manual are fictitious. Any similarity to actual persons, living or dead, is purely coincidental.

THIS WORK IS PROVIDED UNDER THE TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE DESCRIBED IN APPENDIX "A"
(WHICH SEE).

2015 Version 5.4.2-1

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
2

ECL Language Reference

a1 oo 18 ox o o ISP 8
(Dol gy 1= gl (o TS 1 Do (1 = P 8
DocumeNntation CONVENLIONSiieetteeietie ettt e e eaii e e et e e e etereeeae e e e et e eeebe e eeetan s eeeetanaeeeernnnns 9

L@ = T xS 10
L@ Y = PP 10
L0102 0 | £ TP TP 11
[11 (Lo PP 13
TS Tol B L T a TN Lo g TR N/ = 14
R wa g0t =l | =T S 17
Function Definitions (Parameter PaSsing)cvvuiiiiiieiiii e ee e e e e e e e e e e e e e e aene s 18
(D 1T Lo s Y A=] o] SO 23
Field and Definition QUalifiCAIONcouuiiiiiiiiii e e e e e e e 25
ACEONS AN DEfINITIONS ...ciiitieee et e et e e et e e e et e e e e et e e e et e e e e et e eeeetnn s 27

= Lo g R T o @] 1= = o] =P 28
EXPreSSioNS N0 OPEIELOISuueiitnieiieeeiieeete e et e et e e et e e st e e et eeaa e eat e e st e etn e eataessnaestnaeesnaeesnares 28
(oo [[or= IO o= = 0] &= T 30
R W e (o = Q@)1= - (0= PN 31
S 001 = (0] £ T PRSPPI 32
S 100 O] o= = (o] £ 33
NN 01 = (o PPN 34
[l IV e A @ o1 = | (o PP 35

RV =110 T 15/ 1= 36
121010 PP 36
INTEGER ..ottt ittt ettt e et e ettt e et et e e e et et e e e eatn e e e e e tbn e e e eatn e e e etan e e e enans 37
A PSPPI 38
@ PP 39
STRING oottt et e e ettt e e ettt e e e e et e e e et e e ettt e e e et b e e e e at e e e et e e e aatnaaaaaes 40
L@ S I NPT 41
UNITCODE ...ttt e e ettt e e e e et e e et et e e e e et e e e e e ta e e e e ett e e e e eba e e e e eba e eeeennnns 42
5N PSP 43
BT S 1 I PP 44
VARUNICODE ...ttt ettt ettt e et e e et e et et e e e e et e e e e et e e e e et e eeeetnnns 45
S O PPN 46
I 4 = PPN 47
RECORDOIF ...ttt ettt et e ettt e ettt s e e ettt s e e ettt e e e ettt e e e ettn s e e e ettt e e eestnneeaestn s eeaestnaaeaees 48
e N L 49
I8/ 1S3OS 50

RECOrd SErUCLUrES AN FIIES ...ooveiiiiiii e et e e e e et e e e e et e e e eateneeaees 52
RECORD SITUCIUIE ... ettt ettt ettt et e e e et et e e et e e et e et e e e e e e e e en s e e nreennenneerneennes 52
N N PP 61
[L0 110 11N o A PP 76
IN D EX ettt ettt et et e et e ea e e et e e et e e e 78
Scope and LOgIiCal FilENAMES ... couuii e e e e e e e e e et 81
Implicit Dataset REIGHONAITYccuuieiiiiiie e e e e e e e e e e e eeaas 83

F N L= T B == N IR/ o1 84
TYPE SHTUCKUIE ...ttt ettt e e ettt e et et e e et et e et e e eareenreen s e e e et e e e eneennas 84
TYPE Structure Special FUNCLIONSciiiiiiii e e e e e e e e e e et e e et e e e eaneees 85

= S T o TS U] o] Lo SN 87
L 6 110 TS U o] oo o AP 87
PARSE PatterN ValUB TYPES ..vvuiiiiieiii et e e e et e e e et e e e e e e e et e e e e et e e et e e et e eat e eaanaaaenaaes 88
NLP RECORD and TRANSFORM FUNCHIONScviuiiieiiiiiiee et e et e e s e et e et e e e e e e e enen s 92
XML Parsing RECORD and TRANSFORM FUNCLONSc.uiiiiiiiiiieei e ee e e e e e e e e eaens 94

RIS V=0 I = VAT o [96
N I P TUPPIN 96

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
3

ECL Language Reference

) 1 PR 97
L] = TN 98
GROUP KEBYWOIT ... it e e e e e e e e e e e e et e et e e et e e et e e e et e e et e e et e eanaeeensns 99
1Y = PR 100
KEYED QN0 WILD ..ottt ettt ettt et e e et e e et e e e e e e e et e et e e e e e e e s e erneeanees 102
(I = = o 1 I TR 104
ROWS(LEFT) and ROWS(RIGHT) ...uiiiiiiiiiieiii et e e e e e e e et e e e et e e ean e eees 105
S I PP 106
SHARED ...ttt et e e e e aaa 107
S L PPN 108
IR0 o I A R P 109
S Lo = IS {0 o =S 110
L] L N (@ 1 1 ox ([=N 111
Y o IS 1 o (0 P 116
FUNGCTION SEUCEUIE ... ivniiteit et ettt e e e e et et e et ettt e et e e e e et e et e et e e st e e s e e aa e et e eaeeneens 118
FUNCTIONMACRO SHTUCEUIE «...tieteiiiei ettt et et e et et e e e et e et e et e e et e et e et e et e et s aneraneeaeeans 121
INTERFACE SIUCLUIE . .vuitiit ittt et e e e e e e et e et et et e e et e et e et e et e aaeeraeeaeeens 123
Y O (@ S 1 U o (= 125
MODULE SHUCLUIE «...iviiieii ettt ettt e et e e e e e e e et e et et e e et e et e et e et eenns 127
TRANSFORM SHTUCIUIEivuiiteiteit et e e et e e et e e e e e e e et e et e et e st e et e et e et e et e et sanesanesaneeseees 130
BUITt-IN FUNCEIONS AN ACHIONS 1. etiiitiiiii ettt et e e e e et et e et et e e et e et e et e et earans 133
2 = 1 PRSP 134
Y L0 PN 135
A G G REGATE ..ouiiiitie et 136
ALLNODES ... oottt ettt ettt e et 138
2 e T T PTRN 139
S | PR 140
A SN oo e e et e e 141
F NS = PP 142
ASSTRING .oiiiiiiii ettt e e e et et et e e e et aaas 144
F 2L AN) T 145
F N N) P 146
AV E o e e et 147
1011 0 PP 148
A SE et e 153
(7N 01 T PTRPPN 154
(O (00 S PPN 155
(O (010 1= N T PTNN 156
(O (10 S S o I TP 157
CLUSTERSIZE ... ottt ettt et e e e e e e e et e et et e et e et e et e e b eeaas 158
(00 1Y 1 =11 1N SRR 159
CORRELATION L.ttt ettt ettt e e e e e e e e e ettt et et e et e et e et e st e aa s e eaneeens 162
(00 1 TP 164
(00 1 T 165
(00 111\ I PP 166
COV ARIANCE ...t et et e et e e e e e et e et et e et e et e e e aeeans 167
(01 N USRI 169
()] T 111 PPN 170
[0 T | PP 172
DENORMALIZE ..ottt e e e e e e e e e e e e e et e e eaaes 173
DISTRIBUTE ..ottt et ettt et e e et e e et e e e et e e e e et e e et e et e et e et e et e etaeranns 176
DISTRIBUTED ...uitniiiiiit ittt ettt et e et e et e et et e e et e e e et e et e et e et e eaneeeneeaneees 178
DISTRIBUTION L.ouiiitiiiiiiiieie ettt ettt et et e e et e et e et et e et e e e et e et e et e ea e et s et e eteetestaesnnns 179
L= =101 1 T 181

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
4

ECL Language Reference

BN T H e 182
ERROR .o e 183
EV A LUATE o e e 184
BV BN T e 186
EVENTNAME et e 187
EV EN T EX T RA e e 188
B ST S e 189
P e 190
e I PPN 191
FATLCODE ...t et e e 192
FAILMESSAGE ..o 193
FE T CH o 194
FROMUISON ..ottt e e e e b et et e st e e e e s ab e naa e ees 196
FROMUNICODE ...ttt e r e e e ees 197
FROMXML o e et e e e e e 198
GETENV e 199
GLOBAL ot 200
GRA PH e 201
GROUP .. e e 202
H A SH 203
H A SH B o 204
HASHGBA ..o 205
HASHGCRC .o e 206
HASHMDS .o 207
HAVING e e 208
HT TP AL oo e et 209
PP 210
PP 211
IV PO R T e 212
INT FORM A T e et e e e e e e s e 213
ISVALID e e 214
LT E R A T E e 215
JO N e 217
KEY DI e e e e 225
KEY PA T CH o e 226
KEYUNICODE ...t e e e e e e e e aaes 227
LEN G T H o e 228
L B RA RY o e 229
I TSP 231
LN e 232
LOAD XML e 233
L O A L i e 235
LG it 236
L OO e e 237
A P e 239
Y PP 240
MERGE ..o e 241
MERGEUJOIN ..o e 242
1 PPN 244
NOLOCAL oot et e e e e 245
NONEM T Y e e e e e 246
NORMALIZE ..o e r e e 247
NOFOLD .ottt r e 249
NOTHOR .o e et e s e e e 250

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
5

ECL Language Reference

NOTIFY oottt ettt et ettt ettt ettt et et e e ee et e e e et e et 251
ORDERED ...ttt et ettt ettt ettt et et ettt et ettt e ettt ettt ettt 252
OUTPUT oottt ettt ettt ettt ettt ettt ettt ettt et 253
PARALLEL ..ottt ettt ettt ettt ettt ettt ettt ettt 262
PARSE ...ttt ettt ettt ettt ettt 263
PIPE ettt ettt ettt ettt ettt 269
POWER ..ttt ettt ee et et ee et et e ettt et et et ettt e et ettt e et ettt e et et et e et 271
PRELOAD ...ttt ettt ettt ettt ettt ettt e ettt e ettt e et 272
PROCESS ...ttt ettt ee ettt ettt e et et et et e et et et e et et et e ettt ettt 273
PROJECT .ottt ettt ettt et e ettt ettt e ettt e e ettt 275
PULL 1ottt ettt ettt et e ettt ettt et ettt ettt ettt ettt ettt e, 278
RANDOM ...ttt ettt et ettt e et ettt e e ettt e et ettt e et e et e e 279
RANGE ...ttt ee ettt ettt et e ettt ettt ettt ettt ettt 280
RANK <ottt ettt ettt ettt ettt ettt ettt ettt ettt 281
RANKED ..ottt ettt ettt e e et ettt et et et ettt e ettt et ettt r e 282
REALFORMAT ..ottt ettt ee et e ettt et e e et et ee et e e es e 283
REGEXFIND ...t eeeee e eeeee et e et e ettt et ettt ee e et e et et et e et et et et e ee e eee et n e 284
REGEXREPLACE ...ttt ee ettt te ettt e et et e ettt ettt e e et eeee e es e 285
REGROUP ...ttt ettt ettt ettt ettt et ettt et ettt e ettt e, 286
REJECTED ..ottt ettt ettt ettt et e st e et e et s et e et et e e e et e e e et r e 287
ROLLUP ..ttt ettt ettt ettt ettt ettt ettt et ettt e et n e 288
ROUND ..ottt ettt ettt ettt et ettt et ettt ettt ettt e et ettt 292
ROUNDUP ...ttt ettt ettt ettt ettt ettt ettt et et e ettt es e 203
ROW .ttt ettt ettt ettt et e ettt ettt e ettt ettt ettt 294
ROWDIFF ..ottt ettt ettt ettt ettt et ettt e et et e e et et e ettt n et en e, 298
SAMPLE .. oottt ettt 299
SEQUENTIAL .ttt ettt ettt e ettt ettt ettt ettt ettt ettt e et r e 300
SET ettt ettt ettt 301
SIN ettt ettt ettt ettt ettt 302
SINH ettt ettt ettt ettt ettt ettt 303
SIZEOF .ottt ettt ettt 304
SOAPCALL ..ottt ettt ettt ettt ettt ettt 305
SORT ettt ettt ettt ettt 309
SORTED .ottt e et ettt ettt et et et et e et et et et e et et ettt ettt 313
SORT ettt ettt ettt 314
STEPPED ..ottt ettt ettt ettt ettt ettt ettt 315
STORED ...ttt ettt e et e ettt ettt ettt et ettt ettt ettt 316
SUM ettt ettt ettt 317
TABLE ...ttt ettt ettt ettt 318
TAN oottt ettt ettt ettt ettt 320
TANH ettt ettt ettt ettt ettt ettt 321
THISNODE ...ttt ettt ettt ettt e e et ettt et ettt e et et ettt et e e eeeen e 322
TOUSON ..ottt ettt et ettt ettt et ettt ettt e et e ettt 323
TOPN .ottt ettt ettt ettt ettt ettt ettt ettt 324
TOUNICODE ...ttt ettt ettt ee et ettt et e ettt e e e et 325
TOXML vttt ettt ettt ettt ettt ettt ettt ettt ettt 326
TRANSFER ...ttt ettt ettt ettt et ettt et ettt te et e et ee ettt r et 327
TRIM ottt ettt ettt et e e e ettt e et et e et ettt ettt ettt ettt ettt ettt 328
TRUNGCATE .t eeeeeeee ettt ettt ettt ee e e et ee et ettt et e et ettt e st e e e et e e e e e et e s, 329
UNGROUP ...ttt e ettt ettt ettt et et e e ettt n s 330
UNICODEORDER ...ttt eeeeeee e e et e e e eetee e ee et et s et e e e et e et et e s et et eeeeeeon 331
VARIANCE ..ottt ettt ettt e et et ettt e et ettt ettt e e et 332
WAIT ettt ettt ettt ettt ettt ettt ettt ettt 334
WHEN <.ttt ettt ettt ettt ettt e e ettt et et ettt ettt ettt 335

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
6

ECL Language Reference

LAY ot 336
LAY 2@ (S 1N N 337
D 1] N 338
D 1 = N[N 339
VAT Ao S (o TS Y (- PP 340
WWOTKEIOW OVEIVIBIW ..ottt e e e e e et e et e et et et e e et e et e et e et e e e eaneeens 341
L0 | =0 1 = O\ 342
[] O 2 I 0 343
A I 344
GLOBAL = SEIVICE ..ivtiiiit ettt ettt e e e e et e et e et e e st e e et e e et e e s e e e aa e s et e e ean e st e seaeeaneees 345
AN = T 346
ONWARNING ..ottt e e et e e e e e e e e e e e st e e et e e et e e sat e eaa e sateeeaneenanees 347
L T S | 348
[O N 1 22T 350
REC OV ERY ittt e et et e e e e e e e e et 351
STORED - WOTKFIOW SEIVICE ..vuitiiiiei et e et e e e e ees 352
R L0 354
RAY = 355
I 101 1o L= T =T To 0T o[- TN 356
Template LangUage OVEIVIEIWiiue i e e et e e e e e e e e e e e e e et e e et e e et e e st e e e et e eaaneeeenns 356
70 = =] N 5 357
& L0 1N LS 172N VI 358
) O Y 2 359
HDEMANGLEoeiiii et e e e e e e e e 360
(@ | 361
ey =AY 1N 0 362
ey = O 363
= O 15 q Y, 366
] 368
O I D VAN 17N N = 369
1 370
Y] L0 | 371
IO A = o A 372
N L 373
HONWARNING ...t e e et e e e e e e et e e e et e e st e e et e e eba e s aneeenas 374
2 @] 0 I N N 375
e 383
E Y 1O = L 384
3 I 385
HUNIQUENAME ..ottt et e e et e e e et e e e e et e e e e et e e e eatteeeeattaaaees 386
YA N N 388
HWEBSERVICE ...ttt e e e e et e e e et e e e e e e e e e et e e e aaas 389
VLY@ S 111 390
= =V IS = A/ o PP 391
SERVICE SHUCEUIE ...vviiiiteeeitee et e et e et e e et e e e e e e e e e et e e e e e e et e e et e e e et e e et e sebn e san e sataeseaneeennares 391
(000 1N TR 393
External Service ImMplemMENtationcooiuieiii e e e e e e e e e e et e e e aaas 394
A, Creative COMIMONS LiCENSEouiiitiiit it e et e et e e et e et et e e e e e e et e et e et e e et s e e s e eaeeaeees 401
100 L= PP 405

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
7

ECL Language Reference
Introduction

Introduction
Documentation Structure

This manua documents the Enterprise Control Language (ECL). ECL has been designed specifically for working
with huge sets of data. This book is designed to be both alearning tool and a reference work and is divided into the
following sections:

ECL Basics Addresses the fundamental concepts of ECL.

Expressions and Oper ator s | Defines available operators and their expression evaluation precedence.
Value Types Introduces data types and type casting.

Record Structuresand Introduces the RECORD structure, DATASET, and INDEX.

Files

Alien Data Types Defines the TY PE structure and the functions it may use.

Natural Language Parsing | Defines the patterns and functions the PARSE function may use.
Support

Reserved K eywords Defines specia-use ECL keywords not elsewhere defined.
Special Structures Defines the TRANSFORM, MACRO, and other structures and their use.

Built-In Functions and Ac- | Defines the functions and actions available as part of the language.
tions

Workflow Services Defines the job execution/process control aspects of ECL.
Templates Defines the ECL Template commands.
External Services Defines the SERVICE structure and its use.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
8

ECL Language Reference
Introduction

Documentation Conventions
ECL Syntax Case

Although ECL isnot case-sensitive, ECL reserved keywords and built-in functionsin this document are always shown
in ALL CAPS to make them stand out for easy identification. Definition and record set names are always shown in
exampl e code as mixed-case. Run-on words may be used to explicitly identify purpose in examples.

Optional Iltems

Optional-use keywords and parameters are enclosed in square bracketsin syntax diagrams with either/or options sep-
arated by avertical bar (]), like this:

EXAM PLEFUNC(parameter [,optionalparameter] [,OPTIONAL | WORD])

Example Code

All example codein this document appearsasin the following listing:

Total Trades : = COUNT(Trades); // Total Trades is the Definition name
[/ COUNT is a built-in function, Trades is the name of a record set

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
9

ECL Language Reference
ECL Basics

ECL Basics
Overview

Enterprise Control L anguage (ECL) has been designed specifically for huge data projects using the LexisNexis High
Performance Computer Cluster (HPCC). ECL’s extreme scalability comes from a design that allows you to leverage
every query you create for re-use in subsequent queries as needed. To do this, ECL takes a Dictionary approach to
building queries wherein each ECL definition defines an expression. Each previous Definition can then be used in
succeeding ECL definitions—the language extends itself as you use it.

Definitions versus Actions

Functionally, there are two types of ECL code: Definitions (AKA Attribute definitions) and executable Actions. Ac-
tionsare not valid for use in expressions because they do not return values. Most ECL codeis composed of definitions.

Definitions only define what isto be done, they do not actually execute. This means that the ECL programmer should
think in terms of writing code that specifies what to do rather than how to do it. Thisis an important concept in that,
the programmer is telling the supercomputer what needs to happen and not directing how it must be accomplished.
This frees the super-computer to optimize the actual execution in any way it needs to produce the desired resullt.

A second consideration is: the order that Definitions appear in source code does not define their execution order—
ECL is anon-procedural language. When an Action (such as OUTPUT) executes, all the Definitions it needs to use
(drilling down to the lowest level Definitions upon which others are built) are compiled and optimized—in other
words, unlike other programming languages, there is no inherent execution order implicit in the order that definitions
appear in source code (although there is anecessary order for compilation to occur without error—forward references
are not alowed). This concept of “orderless execution” requires a different mindset from standard, order-dependent
programming languages because it makes the code appear to execute “all at once.”

Syntax Issues

ECL is not case-sensitive. White space isignored, allowing formatting for readability as needed.

Commentsin ECL code are supported. Block comments must be delimited with /* and */.

/* this is a block cooment - the termi nator can be on the sanme |ine
or any succeeding line — everything in between is ignored */

Single-line comments must begin with //.
I/l this is a one-line coment

ECL uses the standard object.property syntax used by many other programming languages (however, ECL is not an
object-oriented language) to qualify Definition scope and disambiguate field references within tables:

Modul eName. Definition //reference an definition from another nodul e/ fol der

Dat aset. Fiel d //reference a field in a dataset or recordset

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
10

ECL Language Reference
ECL Basics

Constants
String

All string literals must be contained within single quotation marks (**). All ECL codeis UTF-8 encoded, which means
that al strings are also UTF-8 encoded, whether Unicode or non-Unicode strings. Therefore, you must use a UTF-8
editor (such asthe ECL IDE program).

Toincludethesingle quote character (apostrophe) in aconstant string, prepend abackslash (\). Toincludethe backslash
character (\) in a constant string, use two backslashes (\\) together.

STRINGO MyString2 := 'Fred\'s Place';
[/ eval uated as: "Fred's Pl ace"
STRING0O MyString3 := 'Fred\\G nger\'s Pl ace';

/leval uated as: "Fred\G nger's Pl ace"

Other available escape characters are:

\t tab

\n new line

\r carriage return

\ nnn 3 octdl digits (for any other character)

\ uhhhh lowercase "u" followed by 4 hexadecimal digits (for any other UNICODE-only character)
MyStringl : = 'abcd';

MyString2 : = U abcd\ 353" ; /'l becones 'abcdé'

Hexadecimal string constants must begin with aleading “Xx" character. Only valid hexadecimal values (0-9, A-F)
may be in the character string and there must be an even number of characters.

DATA2 MyHexString := x'ODOA' ; // a 2-byte hexadeci mal string

Datastring constants must beginwith aleading“D” character. Thisisdirectly equivalent to casting the string constant
to DATA.

My/Dat aString := D abcd'; // sane as: (DATA)'abcd'

Unicode string constants must begin with aleading “U” character. Characters between the quotes are utf8-encoded
and the type of the constant is UNICODE.

MyUni codeStringl :
MyUni codeStri ng2 :
MyUni codeStri ng3 :

U abcd' ; /] same as: (UNI CODE)' abcd'
U abcd\ 353" ; /'l becones 'abcdé’
U abcd\ uOOEB' ; // becones 'abcdé'

VARSTRING string constants must begin with a leading “V” character. The terminating null byte is implied and
type of the constant is VARSTRING.

My/Var String := V abcd'; // same as: (VARSTRI NG 'abcd'

QSTRING string constants must begin with aleading “Q” character. The terminating null byte is implied and type
of the constant is VARSTRING.

M/QString : = QABCD ; // sane as: (QSTRI NG 'ABCD

Numeric

Numeric constants containing a decimal portion are treated as REAL values (scientific notation is allowed) and those
without aretreated as INTEGER (see Value Types). Integer constants may be decimal, hexadecimal, or binary values.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
11

ECL Language Reference
ECL Basics

Hexadecimal values are specified with either a leading “0x” or atrailing “x” character. Binary values are specified
with either aleading “0b” or atrailing “b” character.

M/l nt 1 = 10; /1 value of MyIntl is the | NTEGER val ue 10
M1 nt 2 = OxO0A; /1 value of MyInt2 is the | NTEGER val ue 10
M/Int3 := 0AX; /1 value of MyInt3 is the | NTEGER val ue 10
M/l nt 4 = 0b1010; // value of MyInt4 is the I NTEGER val ue 10
MyInt5 := 1010b; // value of MyInt5 is the | NTEGER val ue 10
M/Real 1 : = 10.0; /'l value of M/Reall is the REAL val ue 10.0
M/Real 2 : = 1.0el; // value of MyReal2 is the REAL val ue 10.0

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
12

ECL Language Reference
ECL Basics

Definitions

Each ECL definition is the basic building block of ECL. A definition specifies what is done but not how it is to
be done. Definitions can be thought of as a highly developed form of macro-substitution, making each succeeding
definition more and more highly leveraged upon the work that has gone before. This results in extremely efficient
guery construction.

All definitions take the form:
[Scope] [ValueType] Name [(parms) | := Expression [:WorkflowService] ;

The Definition Operator (:= read as “is defined as’) defines an expression. On the left side of the operator is an
optional Scope (see AttributeVisibility), ValueType (see Value Types), and any parameters (parms) it may take (see
Functions (Parameter Passing)). On theright sideisthe expression that produces the result and optionally acolon (;)
and acomma-delimited list of WorkflowServices (see Wor kflow Services). A definition must be explicitly terminated
with a semi-colon (;). The Definition name can be used in subsequent definitions:

M/FirstDefinition : = 5; //defined as 5
MySecondDefinition : = MyFirstDefinition + 5; //this is 10

Definition Name Rules

Definition names begin with a letter and may contain only letters, numbers, or underscores ().

My_First_Definitionl :=5; // valid nanme
My First Definition :=5; // |INVALID nane, spaces not allowed

Y ou may name a Definition with the name of a previously created module in the ECL Repository, if the attribute is
defined with an explicit ValueType.

Reserved Words

ECL keywords, built-in functions and their options are reserved words, but they are generally reserved only in the
context within which they are valid for use. Even in that context, you may use reserved words as field or attribute
names, provided you explicitly disambiguate them, asin this example:

ds2 := DEDUP(ds, ds.all, ALL); //ds.all is the "all' field in the
//ds dataset - not DEDUP's ALL option

However, it is still agood ideato avoid using ECL keywords as attribute or field names.
Definition Naming

Use descriptive names for all EXPORTed and SHARED Definitions. This will make your code more readable. The
naming convention adopted throughout the ECL documentation and training courses is as follows:

Definition Type Are Named

Bool ean I's...

Set Definition Set. ..

Record Set ... Dat aset Nane

For example:

I sTrue : = TRUE; /] a BOOLEAN Definition
Set Nunbers := [1, 2, 3,4,5]; /1 a Set Definition

R People := People(firstnane[1l] = 'R); // a Record Set Definition

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
13

ECL Language Reference
ECL Basics

Basic Definition Types

The basic types of Definitions used most commonly throughout ECL coding are: Boolean, Value, Set, Record Set,
and TypeDef.

Boolean Definitions

A Boolean Definition is defined as any Definition whose definitionisalogical expression resultingina TRUE/FALSE
result. For example, the following are all Boolean Definitions:

| sBool True
I sFloridian :
I sA dPerson :

TRUE;
Person. per _st = "'FL';
Per son. Age >= 65;

Value Definitions

A Value Definition is defined as any Definition whose expression is an arithmetic or string expression with a sin-
gle-valued result. For example, the following are al Vaue Definitions:

Val ueTr ue = 1;
Fl ori di anCount : = COUNT(Person(Person.per_st = "'FL"));
a dAgeSum : = SUM Per son(Person. Age >= 65), Person. Age) ;

Set Definitions

A Set Definition is defined as any Definition whose expression is a set of values, defined within square brackets.
Constant sets are created as a set of explicitly declared constant values that must be declared within square brackets,
whether that set is defined as a separate definition or simply included in-line in another expression. All the constants
must be of the same type.

Setints :=1[1,2,3,4,5]; // an I NTECER set with 5 el enents
SetReals :=[1.5,2.0,3.3,4.2,5.0];

I aREAL set with 5 el enents
Set StatusCodes := ['A",'B",'C,'D,'E];

/l a STRING set with 5 el enents

The elements in any explicitly declared set can also be composed of arbitrary expressions. All the expressions must
result in the same type and must be constant expressions.

Set Exp : = [1, 2+3, 45, Sonel nt eger Defi nition, 7*3];
/1l an | NTEGER set with 5 el enents

Declared Sets can contain definitions and expressions as well as constants as long as all the elements are of the same
result type. For example:

St ateCapitol (STRIN& state) :=
CASE(state, 'FL' => 'Tall ahassee', 'Unknown');
SetFloridaCities :=['Olando', StateCapitol (' FL'), 'Boca '+' Raton',
person[1].per_full _city];

Set Definitions can also be defined using the SET function (which see). Sets defined this way may be used like any
other set.

Set SoneFi el d : = SET(SoneFi |l e, SoreFi el d);
[/l a set of SoneField val ues

Sets can also contain datasets for use with those functions (such as: MERGE, JOIN, MERGEJOIN, or GRAPH) that
require sets of datsets as input parameters.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
14

ECL Language Reference
ECL Basics

SetDS := [dsl, ds2, ds3]; // a set of datasets

Set Ordering and Indexing

Sets are implicitly ordered and you may index into them to access individual elements. Square brackets are used to
specify the element number to access. The first element is number one (1).

M/Set :=[5,4,3,2,1];
Rever seNum : = MySet[2]; //indexing to M/Set's el enent nunber 2,
//so ReverseNum cont ai ns the val ue 4

Strings (Character Sets) may also be indexed to access individual or multiple contiguous elements within the set of
characters (astring istreated asthough it were a set of 1-character strings). An element number within square brackets
specifies an individual character to extract.

MyString : = ' ABCDE ;
MySubString := MyString[2]; // MySubString is 'B

Substrings may be extracted by using two periods to separate the beginning and ending element numbers within the
square brackets to specify the substring (string slice) to extract. Either the beginning or ending element number may
be omitted to indicate a substring from the beginning to the specified element, or from the specified element through
to the end.

MyString : = ' ABCDE ;

MySubStringl := MyString[2..4]; // MySubStringl is 'BCD
MySubString2 := MyString[..4]; // M/SubString2 is ' ABCD
MySubString3 := MyString[2..]; // MySubString3 is ' BCDE

Record Set Definitions

Theterm “Dataset” in ECL explicitly meansa*“physical” datafilein the supercomputer (on disk or in memory), while
the term “Record Set” indicates any set of records derived from a Dataset (or another Record Set), usually based on
some filter condition to limit the result set to a subset of records. Record sets are also created as the return result from
one of the built-in functions that return result sets.

A Record Set Definition isdefined as any Definition whose expression isafiltered dataset or record set, or any function
that returns arecord set. For example, the following are al Record Set Definitions:

Fl ori daPer sons
QA dFl ori daPer sons :

Per son(Person. per _st = "FL");
Fl ori daPer sons(Per son. Age >= 65);

Record Set Ordering and Indexing

All Datasets and Record Sets are implicitly ordered and may be indexed to access individual records within the set.
Square brackets are used to specify the element number to access, and the first element in any set is number one (1).

Datasets (including child datasets) and Record Sets may use the same method as described above for stringsto access
individual or multiple contiguous records.

M/Recl : = Person[1]; /] first rec in dataset
M/Rec2 := Person[1..10]; // first ten recs in dataset
M/Rec4 := Person[2..]; /1 all recs except the first

Note: dg[1] and dg[1..1] are not the same thing—ds[1..1] isarecordset (may be used in recordset context) while dg[1]
isasingle row (may be used to reference single fields).

And you can aso access individua fieldsin a specified record with a single index:

M/Field := Person[1].per_last_name; // last name in first rec

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
15

ECL Language Reference
ECL Basics

Indexing arecord set with a value that is out of bounds is defined to return a row where al the fields contain blank/
zero values. It is often more efficient to index an out of bound value rather than writing code that handles the special
case of an out of bounds index value.

For example, the expression:
I F(COUNT(ds) > 0, ds[1].x, 0);
issimpler as:

ds[1] . x //note that this returns 0 if ds contains no records.

TypeDef Definitions

A TypeDef Definition is defined as any Definition whose definition is a value type, whether built-in or user-defined.
For example, the following are all TypeDef Definitions (except GetXLen):

Get XLen(DATA x, UNSI GNED | en) := TRANSFER(((DATA4) (x[1..1en])), UNSI GNED4) ;

EXPORT xstring(UNSI GNED | en) := TYPE
EXPORT | NTEGER PHYSI CALLENGTH(DATA x) := Get XLen(x,len) + len;
EXPORT STRI NG LOAD(DATA x) := (STRING x[(I en+l).. Get XLen(Xx,|en) + len];
EXPORT DATA STORE(STRI NG x): = TRANSFER(LENGTH(x) , DATA4)[1..1en] + (DATA)X;
END;

pstr := xstring(1l); // typedef for user defined type
pppstr := xstring(3);
nameStr := STRIN&20; // typedef of a systemtype

nanesRecord : = RECORD
pstr surnang;
naneStr forenaneg;
pppStr addr;

END;
/1 A RECORD structure is also a typedef definition (user-defined)

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
16

ECL Language Reference
ECL Basics

Recordset Filtering

Filtersareconditional expressions contained within the parenthesesfollowing the Dataset or Record Set name. Multiple
filter conditions may be specified by separating each filter expression with acommal(,). All filter conditions separated
by commas must be TRUE for arecord to be included, which makesthe commaan implicit AND operator (see L ogical
Operators) in this context only.

M/Recor dSet : = Person(per_last_nanme >='T', per_last_nane < 'U);
/'l MyRecordSet contains people whose | ast nane begins with “T"
/1 the comma is an inplicit AND while al so functioning as
/1 an expression separator (inplicit parentheses)

M/Recor dSet : = Person(per_last_name >= 'T AND per_|ast_nane < 'U);
/'l exactly the sane | ogical expression as above

Rat eGE7trds := Trades(trd_rate >= '7");

Val i dTrades : = Trades(NOT rnsTrade. Mort gage AND
NOT rnsTrade. HasNarrati ve(rnsTrade. snC osed)) ;

Boolean definitions should be used as recordset filters for maximum flexibility, readability and re-usability instead
of hard-coding in a Record Set definition. For example, use:

IsRevolv := trades.trd_type = 'R
OR (~Val i dType(trades.trd_type)
AND trades.trd _acct[1] IN["4','5",'6']);
isBank := trades.trd_i nd_code | N SetBankl ndCodes;
I sBankCard : = | sBank AND | sRevol v;

W't hi nDat e(| NTEGERL nonths) := ValidDate(trades.trd_drpt) AND
trades.trd_drpt_nmos <= nonths;

BankCar dTrades : = trades(i sBankCard AND Wt hi nDat e(6));

instead of:

BankCar dTrades := trades(trades.trd_i nd_code | N Set Bankl ndCodes,
(trades.trd_type = 'R OR
(~Val i dType(trades.trd_type) AND
trades.trd_acct[1] IN["4', "5, "6'])),
Val i dDat e(trades. trd_drpt),
trades.trd_drpt_nos <= 6);

Commas used to separate filter conditions in arecordset filter definition act as both an implicit AND operation and a
set of parentheses around the individual filters being separated. This results in atighter binding than if AND is used
instead of a comma without parentheses. For example, the filter expression in this definition::

BankMort Trades : = trades(i sBankCard OR i sMort gage, isOpen);
isevaluated asif it were written:
(i sBankCard OR i sMortgage) AND i sQpen

and not as:

i sBankCard OR i sWbrtgage AND i sOpen

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
17

ECL Language Reference
ECL Basics

Function Definitions (Parameter Pass-

ing)

All of the basic Definition types can also become functions by defining them to accept passed parameters (arguments).
The fact that it receives parameters doesn't change the essential nature of the Definition's type, it smply makes it
more flexible.

Parameter definitions always appear in parentheses attached to the Definition's name. Y ou may define the function
to receive as many parameters as needed to create the desired functionality by simply separating each succeeding
parameter definition with a comma.

The format of parameter definitionsis asfollows:

DefinitionName([ValueType] AliasName [=DefaultValue]) := expression;

ValueType Optional. Specifies the type of data being passed. If omitted, the default isINTEGER
(see Value Types). This also may include the CONST keyword (see CONST) to in-
dicate that the passed value will always be treated as a constant.

AliasName Names the parameter for use in the expression.
DefaultValue Optional. Provides the value to use in the expression if the parameter is omitted. The

DefaultValue may be the keyword ALL if the ValueTypeis SET (see the SET key-
word) to indicate all possible valuesfor that type of set, or empty square brackets ([])
to indicate no possible value for that type of set.

expression The function's operation for which the parameters are used.

Simple Value Type Parameters

If the optional ValueType is any of the smple types (BOOLEAN, INTEGER, REAL, DECIMAL, STRING,
QSTRING, UNICODE, DATA, VARSTRING, VARUNICODE), the ValueType may include the CONST keyword
(see CONST) to indicate that the passed value will always be treated as a constant (typically used only in ECL pro-
totypes of external functions).
Val ueDefinition := 15;
Fi rst Functi on(I NTEGER x=5) := x + 5;

//takes an integer paraneter naned "x" and "x" is used in the

[larithmetic expression to indicate the usage of the paraneter

SecondDefinition := FirstFunction(Val ueDefinition);
/1 The val ue of SecondDefinition is 20

Thi rdDefinition := FirstFunction();
[/ The value of ThirdDefinition is 10, omtting the paraneter

SET Parameters

The DefaultValue for SET parameters may be adefault set of values, the keyword ALL to indicate all possible values
for that type of set, or empty square brackets ([]) to indicate no possible value for that type of set (and empty set).

SET OF | NTEGER1 Set Val ues : = [5, 10, 15, 20] ;

I sl nSet Functi on(SET OF | NTEGERL x=Set Val ues,y) :=y IN x;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
18

ECL Language Reference
ECL Basics

QUTPUT(I sl nSet Function([1,2,3,4],5)); //false
QUTPUT(| sl nSet Function(,5)); // true

Passing DATASET Parameters

Passing aDATASET or a derived recordset as a parameter may be accomplished using the following syntax:
DefinitionName(DATASET (recstruct) AliasName) := expression;

The required recstruct names the RECORD structure that defines the layout of fields in the passed DATASET para
meter. The recstruct may aternatively use the RECORDOF function. The required AliasName names the dataset for
use in the function and is used in the Definition's expression to indicate where in the operation the passed parameter
isto beused. Seethe DATASET asa Value Type discussion in the DATASET documentation for further examples.

M/Rec := {STRINGL Letter};
SoneFile := DATASET([{'A'},{'B'},{'C},{'D}.{'E}], MRec);

Fi | ter edDS(DATASET(M/Rec) ds) := ds(Letter NOT IN['A','C,'E]);
// passed dataset referenced as “ds” in expression

OUTPUT(Fi | t er edDS(SoneFi | e)) ;

Passing DICTIONARY Parameters

Passing aDICTIONARY as a parameter may be accomplished using the following syntax:
DefinitionName(DICTIONARY (structure) AliasName) := expression;

The required structure parameter is the RECORD structure that defines the layout of fields in the passed DIC-
TIONARY parameter (usualy defined inline). The required AliasName namesthe DICTIONARY for usein the func-
tion and is used in the Definition's expression to indicate where in the operation the passed parameter is to be used.
Seethe DICTIONARY asa Value Type discussion in the DICTIONARY documentation.

rec : = RECORD
STRI NGLO col or;
UNSI GNED1 code;
STRI NGLO nane;

END;

Ds := DATASET([{'Black’ ,0 , 'Fred },
{'Brown' ,1, 'Seth'},
{' Red' .2, 'Sue'},
{'Wite' ,3, 'Jo'}], rec);

DsDCT : = DI CTI ONARY(DS, {col or => DS});

DCTrec : = RECORD
STRI NGLO col or =>
UNS| GNED1 code,
STRI NGLO nane,

END,;

InlineDCT : = DI CTI ONARY([{'Black' => 0, 'Fred'},
{*Brown' => 1, 'San},
{' Red' => 2, 'Sue'},
{"Wite' =>3, 'Jo'}],
DCTr ec) ;

MyDCTf unc(DI CTI ONARY(DCTr ec) DCT, STRI NGLO key) := DCT[key] . nane;

MyDCTf unc(| nl i neDCT, ' White'); //Jo
MyDCTf unc(DsDCT, ' Brown') ; /] Seth

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
19

ECL Language Reference
ECL Basics

Passing Typeless Parameters

Passing parameters of any type may be accomplished using the keyword ANY as the passed value type:

DefinitionName (ANY AliasName) := expression;

a := 10;

b := 20;

c:="'1;

d:="'2";

e :="'3,;

f :="'4";

sl :=[c,d];

s2 :=[e, f];

dsl : = DATASET(s1, {STRINGL Itr});
ds2 := DATASET(s2,{STRINGL Itr});
M/Func(ANY |, ANY r) :=1 + r;
My/Func(a, b) ; [/returns 30
M/Func(a, c); [/returns '101'
MyFunc(c, d); [/returns '12'
MyFunc(s1, s2); [lreturns a set: ['"1','2","'3",'4"]

MyFunc(ds1,ds2); //returns 4 records: '1', '2', '"3', and '4'

Passing Function Parameters

Passing a Function as a parameter may be accomplished using either of the following syntax options as the ValueType
for the parameter:

FunctionName(parameter s)

PrototypeName

FunctionName The name of afunction, the type of which may be passed as a parameter.

parameters The parameter definitions for the FunctionName parameter.

PrototypeName The name of a previously defined function to use as the type of function that may be
passed as a parameter.

The following code provides examples of both methods:

/la Function prototype:
I NTEGER acti onProt ot ype(| NTEGER v1, | NTEGER v2) := 0;

I NTEGER aveVal ues(| NTEGER v1, |NTEGER v2) := (vl + v2) DIV 2;
I NTEGER addVal ues(1 NTEGER v1, |NTEGER v2) := vl + v2;
I NTEGER rul ti Val ues(| NTEGER v1, | NTEGER v2) := vl * v2;

/la Function prototype using a function prototype:
I NTEGER appl yProt ot ype(| NTEGER v1, actionPrototype actionFunc) := O;

/lusing the Function prototype and a default val ue:

I NTEGER appl yVal ue2(| NTEGER v1,
acti onPrototype actionFunc = aveVal ues) :=
actionFunc(vl, vi1+1)*2;

/I Defining the Function paraneter inline, witha default val ue:
| NTEGER appl yVal ue4(| NTEGER v1,
I NTEGER acti onFunc(| NTEGER v1, | NTEGER v2) = aveVal ues)

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
20

ECL Language Reference
ECL Basics

;= actionFunc(vl, vi1+1)*4;
| NTEGER doAppl yVal ue(| NTEGER v1,
I NTEGER acti onFunc(| NTEGER v1, | NTEGER v2))
: = appl yVal ue2(v1+1, actionFunc);

/I produci ng sinple results:

OQUTPUT(appl yVal ue2(1)); /[l 2
QUTPUT(appl yVal ue2(2)); Il 4
QUTPUT(appl yVal ue2(1, addVal ues)); /Il 6
OUTPUT(appl yVal ue2(2, addVal ues)); /] 10
QUTPUT(appl yVal ue2(1, multi Val ues)); /Il 4
OQUTPUT(appl yVal ue2(2, nulti Val ues)); /] 12
OQUTPUT(doAppl yVal ue(1, multiVal ues)); /1 12
OQUTPUT(doAppl yVal ue(2, nulti Val ues)); /] 24

/1A definition taking function paraneters which thensel ves
// have paraneters that are functions...

STRI NG doMany (| NTEGER v1,
| NTEGER firstAction(l NTEGER v1,
| NTEGER act i onFunc(| NTEGER v1, | NTEGER v2)),
| NTEGER secondAct i on(| NTEGER v1,
I NTEGER act i onFunc(| NTEGER v1, | NTEGER v2)),
| NTEGER act i onFunc(| NTEGER v1, | NTEGER v2))
1= (STRINGfirstAction(vl, actionFunc) + ':' + (STRING secondaction(vl, actionFunc);

QUTPUT(doMany(1, appl yVal ue2, appl yVal ue4, addVal ues));
/] produces "6:12"

QUTPUT(doMany (2, appl yVal ue4, appl yVal ue2, mul ti Val ues));
/1 produces "24:12"

Passing NAMED Parameters

Passing values to a function defined to receive multiple parameters, many of which have default values (and are
therefore omittable), is usually accomplished by “counting commas’ to ensure that the values you choose to pass are
passed to the correct parameter by the parameter's position in the list. This method becomes untenable when there are
many optional parameters.

The easier method isto use the following NAMED parameter syntax, which eliminates the need to include extraneous
commeas as place holders to put the passed valuesin the proper parameters:

Attr := FunctionName([NAMED] AliasName := value);

NAMED Optional. Required only when the AliasName clashes with a reserved word.
AliasName The names of the parameter in the definition's function definition.
value The value to pass to the parameter.

Thissyntax is used in the call to the function and allows you to pass values to specific parameters by their AliasName,
without regard for their position in the list. All unnamed parameters passed must precede any NAMED parameters.

out put Row(BOOLEAN showA = FALSE, BOOLEAN showB = FALSE,
BOOLEAN showC = FALSE, STRING aVal ue = 'abc',
| NTEGER bVal ue = 10, BOOLEAN cVal ue = TRUE) : =
QUTPUT(| F(showA, ' a=' +aVal ue,'"') +
| F(showB, ' b='+(STRI NG bVal ue,"'")+
| F(showc,' c='+(STRING cValue,'"'));

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
21

ECL Language Reference

ECL Basics
out put Row() ; /I produce bl anks
out put Row(TRUE) ; /| produce "a=abc"
out put Row(, , TRUE) ; /| produce "c=TRUE"

out put Row(NAMED showB : = TRUE); //produce “b=10"

out put Row(TRUE, NAMED aVal ue : = ' Changed val ue');
/I produce “a=Changed val ue”

out put Row(, , , ' Changed val ue2' , NAMED showA : = TRUE) ;
/| produce "a=Changed val ue2"

out put Row(showB : = TRUE) ; /| produce “b=10"

out put Row(TRUE, aVal ue : = ' Changed val ue');
out put Row(, , , ' Changed val ue2', showA : = TRUE);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
22

ECL Language Reference
ECL Basics

Definition Visibility
ECL code, definitions, are stored in .ECL filesin your code repository, which are organized into modules (directories
or folderson disk). Each .ECL file may only contain asingle EXPORT or SHARED definition (see below) along with

any supporting local definitions required to fully define the definition's result. The name of the file and the name of
its EXPORT or SHARED definition must exactly match.

Within amodule (directory or folder on disk), you may have as many EXPORT and/or SHARED definitions as needed.
An IMPORT statement (see the IMPORT keyword) identifies any other modules whose visible definitions will be
available for usein the current definition.

The following fundamental definition visibility scopes are availablein ECL: " Global," Module, and L ocal.

"Global"

Definitions defined as EXPORT (seethe EXPORT keyword) are available throughout the module in which they are
defined, and throughout any other module that IMPORTSs that module (see the IMPORT keyword).

/linside the Definitionl.ecl file (in AnotherMdul e folder) you have:
EXPORT Definitionl := 5;

/| EXPORT nmakes Definitionl available to other nmpbdul es and

//al so avail abl e throughout its own nodul e

Module

The scope of the definitions defined as SHARED (see the SHARED keyword) is limited to that one module, and are
available throughout the module (unlike local definitions). This allows you to keep private any definitions that are
only needed to implement internal functionality. SHARED definitions are used to support EXPORT definitions.

/linside the Definition2.ecl file you have:
| MPORT Anot her Modul e;
/I makes definitions from Anot her Modul e avail able to this code, as needed

SHARED Definition2 := Anot her Modul e. Definitionl + 5;
//Definition2 avail abl e throughout its own nodule, only

//***

//then inside the Definition3.ecl file (in the sane folder as Definition2) you have:
| MPORT $;
// makes definitions fromthe current nodul e available to this code, as needed

EXPORT Definition3 := $.Definition2 + 5;
// make Definition3 available to other nodul es and
//al so avail abl e throughout its own nodul e

Local

A definition without either the EXPORT or SHARED keywords is available only to subsequent definitions, until the
end of the next EXPORT or SHARED definition. This makes them private definitions used only within the scope of
that one EXPORT or SHARED definition, which allows you to keep private any definitions that are only needed to
implement internal functionality. Local definitions definitions are used to support the EXPORT or SHARED definition
in whose file they reside. Local definitions are referenced by their definition name alone; no qualification is needed.

//then inside the Definitiond.ecl file (in the sane folder as Definition2) you have:
| MPORT $;
// makes definitions fromthe current nodul e available to this code, as needed

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
23

ECL Language Reference
ECL Basics

Local Def := 5;
//1ocal -- available through the end of Definition4's definition, only

EXPORT Definition4 := Local Def + 5;
/| EXPORT term nates scope for Local Def

Local Def2 : = Definition4 + Local Def;
/11 NVALI D SYNTAX -- Local Def is out of scope here
//and any |l ocal definitions follow ng the EXPORT
//or SHARED definition in the file are meaningl ess
//since they can never be used by anything

TheLOCAL keywordisvalid for usewithin any nested structure, but most useful withinaFUNCTIONMACRO struc-
ture to clearly identify that the scope of adefinition islimited to the code generated within the FUNCTIONMACRO.

AddOne(nun) : = FUNCTI ONMACRO
LOCAL nunPlus := num + 1;
RETURN nunPl us;

ENDVACRO,

nunPlus := "this is a syntax error without LOCAL in the FUNCTI ONVACRO ;
nunPl us;
AddOne(5) ;

See Also: IMPORT, EXPORT, SHARED, MODULE, FUNCTIONMACRO

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
24

ECL Language Reference
ECL Basics

Field and Definition Qualification

Imported Definitions

EXPORTed definitions defined within another module and IMPORTed (see the EXPORT and IMPORT keywords)
are available for use in the definition that contains the IMPORT. Imported Definitions must be fully qualified by their
Module name and Definition name, using dot syntax (module.definition).

| MPORT abc; [/ make all exported definitions in the abc nodul e avail abl e
EXPORT Definitionl :=5; //make Definitionl available to other nodul es
Definition2 := abc.Definition2 + Definitionl;

/] object qualification needed for Definitions fromabc nodul e

Fields in Datasets

Each Dataset counts as a qualified scope and the fields within them are fully qualified by their Dataset (or record set)
name and Field name, using dot syntax (dataset.field). Similarly, the result set of the TABLE built-in function (seethe
TABLE keyword) also actsasaqualified scope. The name of the record set to which afield belongsisthe object name:

Young :
MySet :

Year O (Per son. per _dbrth) < 1950;
Per son(Young) ;

When naming a Dataset as part of a definition, the fields of that Definition (or record set) come into scope. If Para-
meterized Definitions (functions) are nested, only the innermost scopeis available. That is, all the fields of a Dataset
(or derived record set) are in scope in the filter expression. Thisis also true for expressions parameters of any built-
in function that names a Dataset or derived record set as a parameter.

MySet 1 : = Person(YearOf (dbrth) < 1950);
/] MySetl is the set of Person records who were born before 1950

MySet 2 : = Person(EXI STS(OpenTr ades(AgeXf (trd_dl a) < AgeOf (Person. per_dbrth))));

/|l OpenTrades is a pre-defined record set.

/IAll Trades fields are in scope in the OpenTrades record set filter
[l expression, but Person is required here to bring Person.per_dbrth
/'l into scope

/1 Thi s exanpl e conpares each trades' Date of Last Activity to the
/1 related person’s Date O Birth

Any field in aRecord Set can be qualified with either the Dataset name the Record Set isbased on, or any other Record
Set name based on the same base dataset. For example:

ment rade. trd_dr pt
nondup_trades. trd_drpt
trades.trd_drpt

al refer to the same field in the memtrade dataset.

For consistency, you should typically use the base dataset name for qualification. Y ou can al so use the current Record
Set's name in any context where the base dataset name would be confusing.

Scope Resolution Operator

Identifiers are looked up in the following order:

1. The currently active dataset, if any

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
25

ECL Language Reference
ECL Basics

2. The current definition being defined, and any parametersit is based on
3. Any definitions or parameters of any MODULE or FUNCTION structure that contains the current definition

This might mean that the definition or parameter you want to accessisn't picked becauseit is hidden asin a parameter
or private definition name clashing with the name of a dataset field.

It would be better to rename the parameter or private definition so the name clash cannot occur, but sometimes this
isnot possible.

Y ou may direct access to a different match by qualifying the field name with the scope resol ution operator (the carat
(™) character), using it once for each step in the order listed above that you need to skip.

This example shows the qualification order necessary to reach a specific definition/parameter:
ds := DATASET([1], { | NTEGER SoneVal ue });
| NTEGER SoneVal ue := 10; //local definition
myModul e(| NTEGER SoneVal ue) : = MODULE
EXPORT anot her Functi on(| NTEGER SoneVal ue) : = FUNCTI ON
tbl := TABLE(ds, { SUM GROUP, soneValue), // 1 - DATASET field
SUM GROUP, ~.soneValue), // 84 - FUNCTI ON par anet er

SUM GROUP, ~~.soneValue), // 42 - MODULE par anet er
SUM GROUP, ~AA soneValue), // 10 - local definition

0});
RETURN t bl :
END;

EXPORT result := anotherFunction(84);
END;

OQUTPUT(nyModul e(42) .resul t);

In this example there are four instances of the name "SomeValue":
afieddinaDATASET.

alocal definition

aparameter to aMODULE structure

aparameter to a FUNCTION structure

The code in the TABLE function shows how to reference each separate instance.

Whilethissyntax allows exceptionswhere you need it, creating another definition with adifferent nameisthe preferred
solution.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
26

ECL Language Reference
ECL Basics

Actions and Definitions

While Definitions define expressions that may be evaluated, Actions trigger execution of a workunit that produces
results that may be viewed. An Action may evaluate Definitions to produce its result. There are a number of built-in
Actionsin ECL (such as OUTPUT), and any expression (without a Definition name) isimplicitly treated as an Action
to produce the result of the expression.

Expressions as Actions

Fundamentally, any expression in can be treated as an Action. For example,

Attrl : = COUNT(Trades);
Attr2 := MAX(Trades,trd_bal);
Attr3 :=IF (1 =0, 'A, 'B);

are al definitions, but without a definition name, they are simply expressions
COUNT(Tr ades) ; [execut e these expressions as Actions
MAX(Tr ades, trd_bal) ;

IF (1 =0 "A, 'B);

that are treated as actions, and as such, can directly generate result values by simply submitting them as queries to the
supercomputer. Basically, any ECL expression can be used as an Action to instigate a workunit.

Definitions as Actions

These same expression definitions can be executed by submitting the names of the Definitions as queries, like this:
Attrl; //These all generate the same result val ues

Attr2; // as the previ ous exanpl es
Attr3;

Actions as Definitions

Conversely, by simply giving any Action a Definition name it becomes a definition, therefore no longer a directly
executable action. For example,

QUTPUT(Per son) ;
isan action, but
Attr4 := OUTPUT(Person);

isadefinition and does not immediately execute when submitted as part of a query. To execute the action inherent in
the definition, you must execute the Definition name you've given to the Action, like this:

Attr4; /1 run the previously defined OUTPUT(Person) action

Debugging Uses

This technique of directly executing a Definition as an Action is useful when debugging complex ECL code. You
can send the Definition as a query to determine if intermediate values are correctly calculated before continuing on
with more complex code.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
27

ECL Language Reference

Expressions and Operators

Expressions and Operators

Expressions and Operators

Expressions are evaluated | eft-to-right and from the inside out (in nested functions). Parentheses may be used to alter
the default evaluation order of precedence for al operators.

Arithmetic Operators

Standard arithmetic operators are supported for use in expressions, listed here in their evaluation precedence:

Division

/

Integer Division

DIV

Modulus Division

%

Multiplication

*

Addition

+

Subtraction

Division by zero defaults to generating a zero result (0), rather than reporting a “divide by zero” error. This avoids
invalid or unexpected data aborting along job. The default behaviour can be changed using

#option ('divideByZero', ...);

The #option can take the following values:

Evaluate to O - the default behaviour.

'zero
‘fail' Stop and report adivision by zero error.
nan’ Thisisonly currently supported for real numbers. Division by zero

creates aquiet NaN, which will propogate through any real expres-
sionsitisusedin. You can use NOT ISVALID(x) to test if the val-
ueisaNaN. Integer and decimal division by zero continue to re-

turn O.

Bitwise Operators

Bitwise operators are supported for use in expressions, listed here in their evaluation precedence:

Bitwise AND &
Bitwise OR |
Bitwise Exclusive OR A
Bitwise NOT BNOT

Bitshift Operators

Bitshift operators are supported for use in integer expressions:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

28

ECL Language Reference
Expressions and Operators

Bitshift Right >>
Bitshift Left <<

Comparison Operators

The following comparison operators are supported:

Equivalence = returns TRUE or FALSE

Not Equal <> returns TRUE or FALSE
Not Equal I= returns TRUE or FALSE
Less Than < returns TRUE or FALSE
Gresater Than > returns TRUE or FALSE
Less Than or Equal <= returns TRUE or FALSE
Greater Than or Equal >= returns TRUE or FALSE
Equivalence Comparison <=> returns-1, 0, or 1

The Greater Than or Equal operator must have the Greater Than (>) sign first. For the expression a<=> b, the Equiv-
alence Comparison operator returns-1 if a<b, O if a=b, and 1 if a>b.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
29

ECL Language Reference
Expressions and Operators

Logical Operators

The following logical operators are supported, listed here in their evaluation precedence:

NOT Boolean NOT operation
~ Boolean NOT operation
AND Boolean AND operation
OR Boolean OR operation

Logical Expression Grouping

When a complex logical expression has multiple OR conditions, you should group the OR conditions and order them
from|east complex to most complex to result in the most efficient processing. If the probability of occurrenceisknown,
you should order them from the most likely to occur to the least likely to occur, because once any part of a compound
OR condition evaluates to TRUE, the remainder of the expression is bypassed. Thisis also true of the order of MAP
function conditions.

Whenever AND and OR logical operations are mixed in the same expression, you should use parentheses to group
within the expression to ensure correct evaluation and to clarify the intent of the expression. For example consider
the following:

isCurrentRevolv : = trades.trd_type = 'R AND
trades.trd_rate = '0" OR
trades.trd rate = '1'

1

does not produce the intended result. Use of parentheses ensures correct evaluation, as shown below:

isCurrent Revolv := trades.trd_type = 'R AND
(trades.trd_rate = '0'" OR trades.trd_rate = "'1'");

An XOR Operator

The following function can be used to perform an XOR operation on 2 Boolean values:

BOOLEAN XOR(BOOLEAN condl, BOOLEAN cond2) : =
(condl OR cond2) AND NOT (condl AND cond2);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
30

ECL Language Reference
Expressions and Operators

Record Set Operators

The following record set operators are supported (both require that the files were created using identical RECORD
structures):

+ Append al records from both files, independent of any order

- Subtract records from afile

& Append all records from both files, maintaining record order on each node
Example:

MyLayout := RECORD
UNSI GNED Num
STRI NG Nunber ;

END;

First RecSet := DATASET([{1, "ONE'}, {2, 'Two'}, {3, 'Three'}, {4, 'Four'}], MLayout);
SecondRecSet := DATASET([{5, 'FIVE'}, {6, 'SIX}, {7, "SEVEN }, {8, 'EIGHT'}], MLayout);

Excl udeThese : = SecondRecSet (Num > 6);

Whol eRecSet : = FirstRecSet + SecondRecSet;
Resul t Set : = Whol eRecSet - Excl udeThese;

QUTPUT (Whol eRecSet) ;
OUTPUT(Resul t Set) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
31

ECL Language Reference
Expressions and Operators

Set Operators

The following set operators are supported, listed here in their evaluation precedence:

‘+ ‘Append (all elements from both sets, without re-ordering or duplicate element removal)

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
32

ECL Language Reference
Expressions and Operators

String Operators

The following string operator is supported:

‘ + ‘ Concatenation

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
33

ECL Language Reference
Expressions and Operators

IN Operator

value IN value_set

value The value to find in the value_set. Thisis usually a single value, but if the value set
isaDICTIONARY with a multiple-component key, this may also be a ROW.
value_set A set of values. This may be a set expression, the SET function, or aDICTIONARY.

The IN operator is shorthand for a collection of OR conditions. It is an operator that will search a set to find an
inclusion, resulting in a Boolean return. Using IN is much more efficient than the equivalent OR expression.

Example:

ABCset :=['A, 'B', 'C];
| SABCSt at us : = Person. Status I N ABCset ;
/1 This code is directly equival ent to:

/1 |sABCStatus := Person. Status = 'A" OR
/1 Person. Status = 'B' OR
/1 Person. Status = 'C ;

I SABC(STRI NGL char) := char I N ABCset;

Trades_ABCstat := Trades(lsABC(rate));
/1 Trades_ABCstat is a record set definition of all those
/! trades with a trade status of A B, or C

/1 SET function exanpl es
r := {STRINGL Letter};

SoneFile := DATASET([{'A},{'B},{'C},.{'D},{'E},
{FLUGH{UHE I {3}
X := SET(SoneFile(Letter > 'C), Letter);
y :="A INx; //results in FALSE
z:='D INXx; [//results in TRUE
/1 DI CTlI ONARY exanpl es:
rec : = {STRI NG col or, UNS| GNED1 code};
Col or Codes : = DATASET([{'Black' ,0 },
{'Brown' ,1 1},
{' Red' .2},
{"Wite ,31}], rec);
CodeCol or DCT : = DI CTI ONARY(Col or Codes, { Code => Col or});
QUTPUT(6 | N CodeCol or DCT) ; //fal se

Col or CodesDCT : = DI CTlI ONARY(Col or Codes, { Col or, Code}) ;
OUTPUT(RON{' Red' , 2}, rec) I N Col or CodesDCT) ;

See Also: Basic Definition Types, Definition Types (Set Definitions), Logical Operators, PATTERN, DICTIONARY,
ROW, SET, Sets and Filters, SET OF, Set Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
34

ECL Language Reference
Expressions and Operators

BETWEEN Operator

Seekval BETWEEN LoVal AND HiVal

SeekVal The value to find in the inclusive range.
Loval Thelow value in the inclusive range.
Hival The high value in the inclusive range.

The BETWEEN operator is shorthand for an inclusive range check using standard comparison operators (SeekVal >=
LoVal AND SeekVal <= HiVal). It may be combined with NOT to reverse the logic.

Example:
X := 10;
Y := 20;
Z = 15;

I slnRange := Z BETWEEN X AND Y,
//This code is directly equival ent to:
/] IslnRange := Z >= X AND Z <= Y;

I sNot | nRange := Z NOT BETWEEN X AND Y;
//This code is directly equival ent to:
/1 1slnNotRange := NOT (Z >= X AND Z <= Y);

See Also: Logical Operators, Comparison Operators

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
35

ECL Language Reference
Value Types

Value Types

Value types declare an Attribute's type when placed left of the Attribute name in the definition. They also declare a
passed parameter's type when placed left of the parameter name in the definition. Value types also explicitly cast from
type to another when placed in parentheses left of the expression to cast.

BOOLEAN

BOOLEAN

A Boolean trueffalse value. TRUE and FAL SE are reserved ECL keywords; they are Boolean constants that may be
used to compare against a BOOLEAN type. When BOOLEAN is used in a RECORD structure, a single-byte integer
containing one (1) or zero (0) is output.

Example:

BOOLEAN MyBool ean : = SoneAttri bute > 10;
/'l decl ares MyBool ean a BOOLEAN Attri bute

BOOLEAN MyBool ean(| NTEGER p) := p > 10;
/| MyBool ean takes an | NTEGER par anet er

BOOLEAN Typtrd := trades.trd_type = 'R ;
/I Typtrd is a Boolean attribute, likely to be used as a filter

See Also: TRUE/FALSE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
36

ECL Language Reference
Value Types

INTEGER

[IntType] [UNSIGNED] INTEGER][]

[IntType] UNSIGNEDnN

An n-byte integer value. Valid values for n are: 1, 2, 3, 4, 5, 6, 7,0r 8. If nis not specified for the INTEGER, the
default is 8-bytes.

The optional IntType may specify either the BIG_ENDIAN (Sun/UNIX-type, valid only inside a RECORD structure)
or LITTLE _ENDIAN (Intel-type) style of integers. These two IntTypes have opposite internal byte orders. If the
IntTypeismissing, theinteger isLITTLE_ENDIAN.

If the optional UNSIGNED keyword ismissing, theinteger is signed. Unsigned integer declarations may be contracted
to UNSIGNEDnN instead of UNSIGNED INTEGERN.

INTEGER Value Ranges

Size Signed Values Unsigned Values

1-byte -128to 127 0to 255

2-byte -32,768 to 32,767 0to 65,535

3-byte -8,388,608 to 8,388,607 0to 16,777,215

4-byte -2,147,483,648 to 2,147,483,647 010 4,294,967,295

5-byte -549,755,813,888 to 549,755,813,887 | 0 to 1,099,511,627,775

6-byte -140,737,488,355,328 to|0to 281,474,976,710,655
140,737,488,355,327

7-byte -36,028,797,018,963,968 to|0to 72,057,594,037,927,935
36,028,797,018,963,967

8-byte -9,223,372,036,854,775,808 to|0 to 18,446,744,073,709,551,615
9,223,372,036,854,775,807

Example:

I NTEGERL MyVal ue := MAP(MyString = '1' => MyString, '0');
/I MyValue is 1 or 0, changing type fromstring to integer
UNSI GNED | NTEGERL MyVal ue : = 255; //max value possible in 1 byte
UNSI GNED1 MyVal ue : = 255;
/I MyVal ue contains the max val ue possible in a single byte
M/Rec : = RECORD
LI TTLE_ENDI AN | NTEGER2 MyLittl eEndi anVal ue : = 1;
Bl G_ENDI AN | NTEGER2 MyBi gEndi anVal ue : = 1;
//the physical byte-order is opposite in these two
END

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
37

ECL Language Reference
Value Types

REAL

REAL[n]

An n-byte standard | EEE floating point value. Valid values for n are: 4 (valuesto 7 significant digits) or 8 (valuesto
15 significant digits). If nisomitted, REAL is adouble-precision floating-point value (8-bytes).

REAL Value Ranges

Type Significant Digits Largest Value Smallest Value
Type Significant Digits Largest Val ue Smal | est Val ue

REAL4 7 (9999999) 3. 402823e+038 1.175494e- 038
REAL8 15 (999999999999999) 1.797693e+308 2.225074e-308

Example:

REAL4 MyVal ue := MAP(MyString = '1.0' => MyString, '0");
/'l MyVal ue becones either 1.0 or 0O

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
38

ECL Language Reference
Value Types

DECIMAL

[UNSIGNED] DECIMALN[_y]

UDECIMALN[_y]

A packed decimal value of n total digits (to a maximum of 32). If the _y value is present, the y defines the number
of decimal placesin the value.

If the UNSIGNED keyword is omitted, the rightmost nibble holds the sign. Unsigned decimal declarations may be
contracted to use the optional UDECIMALnN syntax instead of UNSIGNED DECIMALN.

Using exclusively DECIMAL values in computations invokes the Binary Coded Decimal (BCD) math libraries
(base-10 math), allowing up to 32-digits of precision (which may be on either side of the decimal point).

Example:

DECI MAL5_2 MyDeci nal := 123. 45;
//five total digits with two deci mal places

Qut put For mat 199 : = RECORD
UNSI GNED DECI MAL9 Per son. SSN;
[/ 'unsi gned packed decimal containing 9 digits,
/1 occupying 5 bytes in a flat file

UDECI MAL10 Per son. phone;
/'unsi gned packed deci mal containing 10 digits,
/'l occupying 5 bytes in a flat file

END,;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
39

ECL Language Reference
Value Types

STRING

[SringType] STRINGIN]

A character string of n bytes, space padded (not null-terminated). If n is omitted, the string is variable length to the
size needed to contain the result of the cast or passed parameter. Y ou may use set indexing into any string to parse
out a substring.

The optional SringType may specify ASCII or EBCDIC. If the SringType is missing, the datais in ASCII format.
Defining an EBCDIC STRING Attribute as a string constant value implies an ASCII to EBCDIC conversion. How-
ever, defining an EBCDIC STRING Attribute as a hexadecimal string constant value implies no conversion, as the
programmer is assumed to have supplied the correct hexadecimal EBCDIC value.

Example:

STRINGL WyString := | F(SoneAttribute > 10,'1','0");
/1 declares MyString a 1-byte ASCI| string

EBCDI C STRING3 MyStringl :="'ABC ;
/linplicit ASCII to EBCDI C conversion

EBCDI C STRING3 MyString2 := x' 616263';
// NO conversi on here

See Also: LENGTH, TRIM, Set Ordering and Indexing, Hexadecimal String

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
40

ECL Language Reference
Value Types

QSTRING

QSTRINGI[n]

A data-compressed variation of STRING that uses only 6-bits per character to reduce storage requirements for large
strings. The character set is limited to capital letters A-Z, the numbers 0-9, the blank space, and the following set of
special characters:

P " #$%&" () *+, - ./ ,;,<=>?2@[\] "_

If nisomitted, the QSTRING is variable length to the size needed to contain the result of a cast or passed parameter.
Y ou may use set indexing into any QSTRING to parse out a substring.

Example:

QSTRI NGL2 ConpanyName : = ' LEXI SNEXI S' ;
/] uses only 9 bytes of storage instead of 12

See Also: STRING, LENGTH, TRIM, Set Ordering and Indexing.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
41

ECL Language Reference
Value Types

UNICODE

UNICODE([local€e][n]

A UTF-16 encoded unicode character string of n characters, space-padded just as STRING is. If nisomitted, the string
isvariable length to the size needed to contain the result of the cast or passed parameter. The optional local e specifies
avalid unicode locale code, as specified in SO standards 639 and 3166 (not needed if LOCALE is specified on the
RECORD structure containing the field definition).

Type casting UNICODE to VARUNICODE, STRING, or DATA isalowed, while casting to any other type will first
implicitly cast to STRING and then cast to the target value type.

Example:

UNI CODE16 MyUNI String : = U 1234567890ABCDEF' ;
/] utf-16-encoded string
UNI CODE4 MyUni codeString := U abcd';
/1 same as: (UN CODE)' abcd'
UNI CODEde5 MyUni codeString := U abcd\ 353" ;
/| becones 'abcdé" with a CGerman |ocal e
UNI CODEde5 MyUni codeString := U abcdé';
/|l same as previous exanple

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
42

ECL Language Reference
Value Types

DATA

DATA[N]

A "packed hexadecimal" data block of n bytes, zero padded (not space-padded). If nis omitted, the DATA isvariable
length to the size needed to contain the result of the cast or passed parameter. Type casting is allowed but only to a
STRING or UNICODE of the same number of bytes.

Thistypeis particularly useful for containing BLOB (Binary Large OBject) data. See the Programmer’'s Guide article
Working with BLOBs for more information on this subject.

Example:

DATA8 MyHexString : = x' 1234567890ABCDEF ;
/1l an 8-byte data bl ock - hex values 12 34 56 78 90 AB CD EF

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
43

ECL Language Reference
Value Types

VARSTRING

VARSTRING[n]

A null-terminated character string containing n bytes of data. If n is omitted, the string is variable length to the size
needed to contain the result of the cast or passed parameter. You may use set indexing into any string to parse out
asubstring.

Example:

VARSTRI NG3 MyString := ' ABC ;
/] declares MyString a 3-byte null-term nated string

See Also: LENGTH, TRIM, Set Ordering and Indexing

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
44

ECL Language Reference
Value Types

VARUNICODE

VARUNICODE(local€][n]

A UTF-16 encoded unicode character string of n characters, null terminated (not space-padded). The n may be omitted
only when used as a parameter type. The optional locale specifies a valid unicode locale code, as specified in 1SO
standards 639 and 3166 (not needed if LOCALE is specified on the RECORD structure containing thefield definition).

Type casting VARUNICODE to UNICODE, STRING, or DATA isalowed, while casting to any other type will first
implicitly cast to STRING and then cast to the target value type.

Example:

VARUNI CODE16 MyUNI String := U 1234567890ABCDEF' ;
/] utf-16-encoded string
VARUNI CODE4 MyUni codeString := U abcd';
/1 same as: (UN CODE)' abcd'
VARUNI CODE5 MyUni codeString := U abcd\ 353" ;
/| becomes 'abcdé’
VARUNI CODE5 MyUni codeString := U abcdé';
/|l same as previous exanple

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
45

ECL Language Reference

Value Types
SET [OF type]
type The value type of the data in the set. Valid vaue types are: INTEGER, REAL,

BOOLEAN, STRING, UNICODE, DATA, or DATASET (recstruct). If omitted, the
type is INTEGER.

The SET OF value type defines Attributes that are a set of data elements. All elements of the set must be of the same
value type. The default value for SET OF when used to define a passed parameter may be a defined set, the keyword
ALL to indicate all possible values for that type of set, or empty square brackets ([]) to indicate no possible value
for that type of set.

Example:

SET OF I NTEGERL SetlntOnes :=[1,2,3,4,5];

SET OF STRINGL SetStrOnes :=["1",'2"',"3","4",'5"];

SET OF STRINGL SetStrOnel := (SET OF STRI NGL) Set | nt Ones;
//type casting sets is allowed

r := {STRING F1, STRIN& F2};

SET OF DATASET(r) SetDS := [dsl, ds2, ds3];

StringSet Func(SET OF STRI NG passedset) := AstringVal ue I N passedset;
/la set of string constants will be passed to this function
HasNar Code(SET s) := Trades.trd_narrl INs OR Trades.trd_narr2 IN s;
/| HasNar Code takes a paraneter that specifies the set of valid
/1 Narrative Code values (all |NTEGERs)
SET OF | NTEGERL Set d sdNar : = [65, 66, 90, 114, 115, 123] ;
Nar CodeTr ades : = Trades(HasNar Code(Set Cl sdNar)) ;
/1 Usi ng HasNar Code(Set Cl sdNar) is equival ent to:
/1 Trades.trd_narrl IN [65, 66, 90, 114, 115, 123] OR
/1 Trades.trd_narr2 IN [65, 66, 90, 114, 115, 123]

See Also: Functions (Parameter Passing), Set Ordering and Indexing

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
46

ECL Language Reference

Value Types
TYPEOF(expression)
expression An expression defining the value type. This may be the name of a data field, passed

parameter, function, or Attribute providing the value type (including RECORD struc-
tures). This must be a legal expression for the current scope but is not evaluated for
itsvalue.

TheTY PEOF declaration allowsyou to define an Attribute or parameter whose valuetypeis*“just like’ theexpression.
Itisvalid for use anywhere an explicit value typeisvalid.

Its most typical use would beto specify the return type of a TRANSFORM function as“just like” adataset or recordset
structure.

Example:

STRING Fred := 'ABC ; //declare Fred as a 3-byte string
TYPEOF(Fred) Sue := Fred; //declare Sue as “just like” Fred

See Also; TRANSFORM Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
47

ECL Language Reference

Value Types
RECORDOF(recordset)
recordset The set of data records whose RECORD structure to use. This may be a DATASET

or any derived recordset.

The RECORDOF declaration specifies use of just the record layout of the recordset in those situations where you
need to inherit the structure of the fields but not their default values, such as child DATASET declarations inside
RECORD structures.

This function allows you to keep RECORD structures local to the DATASET whose layout they define and still be
able to reference the structure (only, without default values) where needed.

Example:

Layout Peopl e_Slim:= RECORD

STD_Peopl e. Recl D;
STD_Peopl e. | D;
STD_Peopl e. Fi r st Naneg;
STD_Peopl e. Last Nane;
STD_Peopl e. M dd| eNane;
STD_Peopl e. NameSuf fi x;
STD Peopl e. Fi | eDat e;
STD_Peopl e. Bur eauCode;
STD_Peopl e. Gender ;
STD_Peopl e. Bi rt hDat e;
STD_Peopl e. St reet Addr ess;
UNSI GNED8 CSZ_| D

END;

STD Accounts := TABLE(U D_Accounts, Layout STD AcctsFile);

Conbi nedRec : = RECORD, MAXLENGTH(100000)
Layout People_Slim
UNSI GNED1 Chi | dCount ;
DATASET(RECORDOF(STD_Account s)) Chil dAccts;
END;
/1 This Chil dAccts definition is equival ent to:
/| DATASET(Layout _STD AcctsFile) Chil dAccts;
//but doesn’t require Layout_ STD AcctsFile to be visible (SHARED or
/| EXPORT)

See Also: DATASET, RECORD Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
48

ECL Language Reference
Value Types

ENUM

ENUM([type,] name [=valug] [, name[=valug] ...])

type The numeric value type of the values. If omitted, defaults to UNSIGNEDA4.

name The label of the enumerated value.

value The numeric value to associate with the name. If omitted, the value is the previous
value plus one (1). If all values are omitted, the enumeration starts with one (1).

The ENUM declaration specifies constant values to make code more readable.

Example:

Gender Enum : = ENUM UNSI GNED1, Mal e, Feral e, Ei t her, Unknown) ;
//values are 1, 2, 3, 4

Pfl g : = ENUM None=0, Dead=1, For ei gn=2, Terrori st =4, Want ed=Terrori st *2);
//values are 0, 1, 2, 4, 8
nanesRecord : = RECORD
STRI N&0 sur nane;
STRI NGLO f or enane;
Gender Enum gender ;
| NTEGER2 age := 25;
END;

nanesTabl e2 : = DATASET([{' Foreman', ' George', Gender Enum Mal e, Pf| g. For ei gn},
{'Bin',' O, Gender Enum Mal e, Pf| g. Forei gn+Pfl g. Terrori st +Pf| g. Want ed}
], nanesRecord);
QUTPUT(nanesTabl e2) ;

myModul e(UNSI GNED4 baseError, STRING x) := MODULE
EXPORT ErrCode : = ENUM ErrorBase = baseError,
Er r NoAct i veTabl e,
Err NoAct i veSyst em
Err Fat al ,
ErrLast);
EXPORT report X : = FAI L(ErrCode. Err NoActi veTabl e,' No ActiveTable in ' + Xx);
END;

myModul e(100, 'Call1').reportX;
myModul e(300, 'Call2').reportX;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
49

ECL Language Reference
Value Types

Type Casting
Explicit Casting

The most common use of value types is to explicitly cast from one type to another in expressions. To do this, you
simply place the value type in parentheses in the expression immediately preceding the element to cast. This converts
the data from its original form to the new form (to keep the same hit-pattern, see the TRANSFER built-in function).

M/Bool ean : = (BOOLEAN) | F(SoneAttribute > 10,1, 0);

/] casts the |INTEGER values 1 and O to a BOOLEAN TRUE or FALSE
MyString := (STRINGL) | F(SoneAttribute > 10,1, 0);

/] casts the INTEGER values 1 and 0 to a 1l-character string

[/ containing '1'" or 'O
MyVal ue := (I NTEGER) MAP(MyString = '1' => MyString, '0');

I/ casts the STRING values '1' and '0' to an INTEGER 1 or O
MySet := (SET OF INTEGERL) [1,2,3,4,5,6,7,8,9,10];

[/casts froma SET OF | NTEGER8 (the default) to SET OF | NTEGERL

Implicit Casting

During expression evaluation, different value types may beimplicitly cast in order to properly evaluate the expression.
Implicit casting always means promoting one value type to another: INTEGER to STRING or INTEGER to REAL.
BOOLEAN types may not beinvolved in mixed mode expressions. For example, when eval uating an expression using
both INTEGER and REAL values, the INTEGER is promoted to REAL at the point where the two mix, and the result
isaREAL value.

INTEGER and REAL may be freely mixed in expressions. At the point of contact between them the expression is
treated as REAL. Until that point of contact the expression may be evaluated at INTEGER width. Division on INTE-
GER vaues implicitly promotes both operands to REAL before performing the division.

The following expression: (1+2+3+4)*(1.0*5)

evauates as; (REAL)((INTEGER)1+(INTEGER)2+(INTEGER)3+(INTEGER)4)* (1.0* (REAL)5)
and: 5/2+4+5 evaluates as. (REAL)5/(REAL)2+(REAL)4+(REAL)5S

while: '5' + 4 evaluates as: 5 + (STRING)4 //concatenation

Comparison operators are treated as any other mixed mode expression. Built-in Functions that take multiple values,
any of which may bereturned (such asMAP or IF), are treated as mixed mode expressions and will return the common
base type. This common type must be reachable by standard implicit conversions.

Type Transfer

Type casting converts data from its original form to the new form. To keep the same bit-pattern you must use either
the TRANSFER built-in function or the type transfer syntax, which is similar to type casting syntax with the addition
of angle brackets (>val uetype<).

INTEGER1T MyInt := 65; //MInt is an integer value 65
STRINGL MyVal := (>STRINGI<) MyInt; //MVal is "A" (ASCI| 65)

Casting Rules

‘From ‘To Resultsin

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
50

ECL Language Reference

Value Types

INTEGER STRING ASCII or EBCDIC representation of the value

DECIMAL STRING ASCII or EBCDIC representation of the value, including decimal and
sign

REAL STRING ASCII or EBCDIC representation of the value, including decimal and
sign—may be expressed in scientific notation

UNICODE STRING ASCII or EBCDIC representation with any non-existent characters ap-
pearing as the SUBstitute control code (0x1A in ASCII or Ox3F in
EBCDIC) and any non-valid ASCII or EBCDIC characters appearing
as the substitution codepoint (OxFFFD)

STRING QSTRING Uppercase ASCI| representation

INTEGER UNICODE UNICODE representation of the value

DECIMAL UNICODE UNICODE representation of the value, including decimal and sign

REAL UNICODE UNICODE representation of the value, including decimal and sign—
may be expressed in scientific notation

INTEGER REAL Value is cast with loss of precision when the value is greater than 15
significant digits

INTEGER REAL4 Value is cast with loss of precision when the value is greater than 7
significant digits

STRING REAL Sign, integer, and decimal portion of the string value

DECIMAL REAL Value is cast with loss of precision when the value is greater than 15
significant digits

DECIMAL REAL4 Valueis cast with loss of precision when the value is greater than 7
significant digits

INTEGER DECIMAL Loss of precision if the DECIMAL istoo small

REAL DECIMAL Loss of precision if the DECIMAL istoo small

STRING DECIMAL Sign, integer, and decimal portion of the string value

STRING INTEGER Sign and integer portions of the string value

REAL INTEGER Integer value, only—decimal portion istruncated

DECIMAL INTEGER Integer value, only—decimal portion istruncated

INTEGER BOOLEAN 0 = FALSE, anything else= TRUE

BOOLEAN INTEGER FALSE=0, TRUE=1

STRING BOOLEAN "= FALSE, anything else = TRUE

BOOLEAN STRING FALSE=",TRUE="1'

DATA STRING Vaueis cast with no trandation

STRING DATA Valueis cast with no trandation

DATA UNICODE Valueis cast with no trandation

UNICODE DATA Vaueis cast with no trandation

The casting rules for STRING to and from any numeric type apply equally to all string types, also. All casting rules
apply equally to sets (using the SET OF type syntax).

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
51

ECL Language Reference
Record Structures and Files

Record Structures and Files

RECORD Structure

attr := RECORD [(baserec)] [, MAXLENGTH(length)] [, LOCALE(locale)][, PACKED]

fields;

[IFBLOCK(condition)

fields;
END;]
[=> payload]
END;
attr The name of the RECORD structure for later use in other definitions.
baserec Optional. The name of a RECORD structure from which to inherit al fields. Any
RECORD structure that inherits the baserecfieldsin this manner becomes compatible
with any TRANSFORM function defined to take a parameter of baserec type (theextra
fields will, of course, be lost).
MAXLENGTH Optional. This option is used to create indexes that are backward compatible for plat-
form versions prior to 3.0. Specifiesthe maximum number of charactersallowed inthe
RECORD structure or field. MAXLENGTH on the RECORD structure overrides any
MAXLENGTH on afield definition, which overrides any MAXLENGTH specified
in the TYPE structure if the datatype names an aien data type. This option defines
the maximum size of variable-length records. If omitted, fixed size records use the
minimum size required and variable length records produce a warning. The default
maximum size of a record containing variable-length fields is 4096 bytes (this may
be overridden by using #OPTION(maxLength ####) to change the default). The max-
imum record size should be set as conservatively as possible, and is better set on a per-
field basis (see the Field M odifier s section below).
length An integer constant specifying the maximum number of characters allowed.
LOCALE Optional. Specifies the Unicode locale for any UNICODE fields.
locale A string constant containing a valid locale code, as specified in 1SO standards 639
and 3166.
PACKED Optional. Specifiesthe order of the fields may be changed to improve efficiency (such
as moving variable-length fields after the fixed-length fields)..
fields Field declarations. See below for the appropriate syntaxes.
IFBLOCK Optional. A block of fieldsthat receive“live” dataonly if the conditionismet. The IF-
BLOCK must beterminated by an END. Thisisused to define variable-length records.
If the condition expression referencesfieldsin the RECORD preceding the IFBLOCK,
those references must use SELF. prepended to the fieldname to disambiguate the ref-
erence.
condition A logical expression that defines when the fields within the IFBLOCK receive “live”

data. If the expression is not true, the fields receive their declared default values. If
there's no default value, the fields receive blanks or zeros.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

52

ECL Language Reference
Record Structures and Files

= Optional. The delimiter between the list of key fields and the payload when the
RECORD structure is used by the DICTIONARY declaration. Typically, thisis an
inline structure using curly braces ({ }) instead of RECORD and END.

payload Thelist of non-keyed fieldsin the DICTIONARY .

Record layouts are definitions whose expression is a RECORD structure terminated by the END keyword. The attr
name creates a user-defined val ue type that can be used in built-in functions and TRANSFORM function definitions.
The delimiter between field definitions in a RECORD structure can be either the semi-colon (;) or acommac(,).

In-line Record Definitions
Curly braces ({}) are lexical equivalents to the keywords RECORD and END that can be used anywhere RECORD
and END are appropriate. Either form (RECORD/END or {}) can be used to create “ on-the-fly” record formats within

those functions that require record structures (OUTPUT, TABLE, DATASET etc.), instead of defining the record as
a separate definition.

Field Definitions

All field declarations in a RECORD Structure must use one of the following syntaxes:

datatype identifier [{modifier}] [:= defaultvalue] ;

identifier := defaultvalue;
defaultvalue ;

sourcefield ;

recstruct [identifier | ;

sourcedataset ;

childdataset identifier [{ modifier }];

datatype Thevauetype of the datafield. This may be achild dataset (see DATASET). If omit-
ted, the value type is the result type of the defaultvalue expression.

identifier The name of the field. If omitted, the defaultvalue expression defines a column with
no name that may not be referenced in subsequent ECL .

defaultvalue Optional. An expression defining the source of the data (for operations that require
a data source, such as TABLE and PARSE). This may be a constant, expression, or
definition providing the value.

modifier Optional. One of the keywords listed in the Field M odifier ssection below.

sourcefield A previously defined datafield, which implicitly providesthe datatype, identifier, and
defaultvalue for the new field—inherited from the sourcefield.

recstruct A previously defined RECORD structure. See the Field I nheritancesection below.

sour cedataset A previously defined DATASET or derived recordset definition. See the Field I nher -
itancesection below.

childdataset A child dataset declaration (see DATASET and DICTIONARY discussions), which

implicitly definesall the fields of the child at their already defined datatype, identifier,
and defaultvalue (if present in the child dataset's RECORD structure).

Field definitions must always define the datatype and identifier of each field, either implicitly or explicitly. If the
RECORD structure will be used by TABLE, PARSE, ROW, or any other function that creates an output recordset,
then the defaultvalue must also be implicitly or explicitly defined for each field. In the case where a field is defined

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
53

ECL Language Reference
Record Structures and Files

interms of afield in adataset already in scope, you may name the identifier with aname already in use in the dataset
already in scope as long as you explicitly define the datatype.

Field Inheritance

Field definitions may be inherited from a previously defined RECORD structure or DATASET. When a recstruct
(a RECORD Structure) is specified from which to inherit the fields, the new fields are implicitly defined using the
datatype and identifier of all the existing field definitionsin the recstruct. When a sourcedataset (a previously defined
DATASET or recordset definition) is specified to inherit the fields, the new fields are implicitly defined using the
datatype, identifier, and defaultvalue of all the fields (making it usable by operations that require a data source, such
as TABLE and PARSE). Either of these forms may optionally have its own identifier to allow reference to the entire
set of inherited fields as a single entity.

You may also use logical operators (AND, OR, and NOT) to include/exclude certain fields from the inheritance, as
described here:

R1 AND R2 Intersection All fields declared in both R1 and R2

R1OR R2 Union All fields declared in either R1 or R2

R1 AND NOT R2 Difference All fieldsin R1 that are not in R2

R1 AND NOT F1 Exception All fieldsin R1 except the specified field (F1)

R1 AND NOT [F1, F2] Exception All fields in R1 except those in listed in the brackets
(FlandF2)

The minus sign (-) isasynonym for AND NOT, so R1-R2 isequivalent to R1 AND NOT R2.

It is an error if the records contain the same field names whose value types don't match, or if you end up with no
fields (such as: A-A). Y ou must ensure that any MAXLENGTH/MAXCOUNT is specified correctly on each field in
both RECORD Structures.

Example:

R1 {STRINGL F1, STRINGL F2, STRINGL F3, STRINGL F4, STRI NGL F5};
{STRINGL F4, STRINGL F5, STRI NGL F6};

{R1L AND R2}; //Intersection - fields F4 and F5 only
{RL OR R2}; //Union - all fields F1 - F6

{R1L AND NOT R2}; //Difference - fields F1 - F3

{RL AND NOT F1}; //Exception - fields F2 - F5

{

R2
R3
R4 :
R5
R6
R7 R1 AND NOT [F1,F2]}; //Exception - fields F3 - F5

//the follow ng two RECORD structures are equi val ent:
C : = RECORD, MAXLENGTH(x)
Rl OR R2;
END;
D : = RECORD, MAXLENGTH(x)

R1L;
R2 AND NOT Ri,;
END,;

Field Modifiers

Thefollowing list of field modifiers are available for use on field definitions:

{ MAXLENGTH(length)}
{ MAXCOUNT(records) }
{ XPATH('tag') }

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
54

ECL Language Reference
Record Structures and Files

{ XMLDEFAULT('value) }

{ DEFAULT(value)}

{ VIRTUAL (fileposition) }

{ VIRTUAL (localfileposition) }

{ VIRTUAL (logicalfilename) }

{BLOB}

{ MAXLENGTH(length) } Specifies the maximum number of characters allowed in the field
(see MAXLENGTH option above).

{ MAXCOUNT ((records) } Specifies the maximum number of records alowed in a child
DATASET field (similar to MAXLENGTH above).

{ XPATH('tag) } Specifies the XML or JSON tag that contains the data, in a
RECORD structure that defines XML or JSON data. This over-
rides the default tag name (the lowercase field identifier). See the
XPATH Support section below for details.

{ XMLDEFAULT(‘value) } Specifies a default XML value for the field. The value must be
constant.

{ DEFAULT(value) } Specifies adefault value for the field. The value must be constant.
This value will be used:

1. When aDICTIONARY lookup returns no match.

2. When an out-of-range record is fetched using dg[n] (asin dg[5]
when ds contains only 4 records).

3. Inthe default records passed to TRANSFORM functionsin non-
INNER JOINS where there is no corresponding row.

4. When defaulting field values in a TRANSFORM using SELF
=[1

{ VIRTUAL (fileposition) } SpecifiesthefieldisaVIRTUAL field containing the relative byte
position of the record within the entire file (the record pointer).
This must be an UNSIGNEDS field and must be the last field, be-
causeit only truly exists when thefileisloaded into memory from
disk (hence, the “virtua™).

{ VIRTUAL (localfileposition) } Specifiesthelocal byte position within a part of the distributed file
on a single node: the first bit is set, the next 15 bits specify the
part number, and the last 48 bits specify the relative byte position
within the part. This must be an UNSIGNEDS field and must be
the last field, because it only truly exists when the file is loaded
into memory from disk (hence, the “virtual”).

{ VIRTUAL (logicalfilename) } Specifiesthe logical file name of the distributed file. This must be
aSTRING field. If reading from asuperfile, thevalueisthe current
logical file within the superfile.

{BLOB} Specifies the field is stored separately from the leaf node entry in
the INDEX. Thisis applicable specifically to fields in the payload
of an INDEX to alow more than 32K of data per index entry. The
BLOB datais stored within the index file, but not with the rest of
the record. Accessing the BLOB data requires an additional seek.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
55

ECL Language Reference
Record Structures and Files

XPATH Support

XPATH support isalimited subset of the full XPATH specification, basically expressed as.

node[qualifier] / node[qualifier] ...

node Can contain wildcards.

qualifier Can be a node or attribute, or a simple single expression of equality, inequality, or
numeric or alphanumeric comparisons, or node index values. No functions or inline
arithmetic, etc. are supported. String comparison isindicated when the right hand side
of the expression is quoted.

These operators are valid for comparisons:

An example of a supported xpath:

lal*/c*/*dle[@ttr]/f[child]/g[@ttr="x"]/h[child>="5"]/i[@! ="2"]/]j

Y ou can emulate AND conditions like this:

lalbl@="1"][@="2"]

Also, there is a non-standard XPATH convention for extracting the text of a match using empty angle brackets (<>):

R : = RECORD

STRI NG bl ah{xpat h("' a/ b<>')};

/lcontains all of b, including any child definitions and val ues
END;

An XPATH for avalue cannot be ambiguous. If the element occurs multiple times, you must use the ordinal operation
(for example, /foo[1]/bar) to explicit select the first occurrence.

For XML or JSON DATASETSs reading and processing results of the SOAPCALL function, the following XPATH
syntax is specifically supported:

1) For ssimple scalar value fields, if there is an XPATH specified then it is used, otherwise the lower case identifier
of thefield is used.

STRI NG nane; [/ mat ches: <nanme>Kevi n</ nanme>
STRI NG Fnanme{xpat h(' Fhane')}; //matches: <Fnanme>Kevi n</Fnanme>

2) For afield whosetypeisaRECORD structure, the specified XPATH isprefixed to al thefieldsit contains, otherwise
the lower case identifier of the field followed by /' is prefixed onto the fields it contains. Note that an XPATH of
" (empty single quotes) will prefix nothing.

NanmeRec : = RECORD
STRI NG Fnane{xpat h(' Fnane')}; //matches: <Fname>Kevi n</Fname>
STRI NG Mhare{ xpat h(' Mhane')}; //matches: <Manme>Al f onso</ Mhane>
STRI NG Lnane{xpat h(' Lnane')}; //matches: <Lname>Jones</Lnanme>
END;

Per sonRec : = RECORD
STRI NG Ui d{xpat h(' Person[@I D] ") };
NameRec Nane{xpat h(' Narme')};
/ *mat ches: <Nane>
<Fnane>Kevi n</ Fnane>
<Mhane>Al f onso</ vhane>
<Lnane>Jones</ Lname>

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
56

ECL Language Reference
Record Structures and Files

</ Nane> */
END;

3) For achild DATASET field, the specified XPATH can have one of two formats: " Container/Repeated” or "/Repeat-
ed." Each "/Repeated” tag within the optional Container is iterated to provide the values. If no XPATH is specified,
then the default value for the Container isthe lower case field name, and the default value for Repeated is"Row." For
exampl e, this demonstrates " Container/Repeated"”:

DATASET(Peopl eNanes) Peopl e{ xpat h(' peopl e/ nane'])};
[*mat ches: <peopl e>
<name>Gavi n</ nanme>
<nane>Ri car do</ nane>
</ peopl e> */

This demonstrates "/Repeated":

DATASET(Nanes) Nanes{xpath('/name'])};
/ *mat ches: <name>Gavi n</ nane>
<name>Ri car do</ nane> */

"Container" and "Repeated”" may also contain xpath filters, like this:

DATASET(doct or Rec) doct or s{xpat h(' person[@ ob=\"doctor\']"')};
[*mat ches: <person job='doctor'>
<FName>Kevi n</ FName>
<LNane>R char ds</ LName>
</ person> */

4) For a SET OF type field, an xpath on a set field can have one of three formats: "Repeated”, " Container/Repeated"
or "Container/Repeated/ @attr". They are processed in asimilar way to datasets, except for the following. If Container
is specified, then the XML reading checks for atag "Container/All", and if present the set contains all possible values.
The third form alows you to read XML attribute values.
SET OF STRI NG peopl €;

// mat ches: <peopl e><Al | / ></ peopl e>

[l or: <peopl e><ltenrKevin</I|tenp<|tenrR chard</I|ten></peopl e>
SET OF STRI NG Npeopl e{xpat h(' Narme') };

/| mat ches: <Nane>Kevi n</ Name><Nane>Ri char d</ Nane>

SET OF STRI NG Xpeopl e{xpat h('/ Name/ @d"')};
// mat ches: <Nane id='"Kevin'/><Name id='Richard' />

For writing XML or JSON files using OUTPUT, the rules are similar with the following exceptions:
* For scalar fields, simple tag names and XML/JSON attributes are supported.

» For SET fields, <All> will only be generated if the container name is specified.

* Xxpath filters are not supported.

» The "Container/Repeated/@attr" form for a SET is not supported.

Example:

For DATASET or the result type of a TRANSFORM function, you need only specify the value type and name of
each field in the layout:

Rl : = RECORD
UNSI GNEDL F1; //only val ue type and nane required
UNSI GNED4A F2;
STRI NGL0O F3;

END;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
57

ECL Language Reference
Record Structures and Files

D1 : = DATASET(' RTTEMP: : SoneFi | e', R1, THOR) ;

For "vertical slice” TABLE, you need to specify the value type, name, and data source for each field in the layout:

R2 : = RECORD
UNSI GNED1 F1 := D1.F1; //value type, nane, data source all explicit
D1.F2; //value type, nane, data source all inplicit

END;

T1 := TABLE(DL, R2);

For "crosstab report” TABLE:

R3 : = RECORD
D1. F1,; /1" group by" fields nust cone first
UNSI GNED4 G pCount : = COUNT(GROUP) ;
//val ue type, columm nanme, and aggregate
G pSum : = SUM GROUP, D1. F2); //no value type -- defaults to | NTEGER
MAX(GROUP, D1. F2); //no col umm nane in out put
END;

T2 := TABLE(DL, R3, F1);

Forml : = RECORD
Person. per _| ast_nane; //field name is per_|ast_nanme - size
/lis as declared in the person dataset
STRI N&5 Local I D : = Person. per_first_nane;
//the name of this field is LocallD and it
/lgets its data from Person. per_first_nane
| NTEGER8 COUNT(Trades); //this field is unnaned in the output file
BOOLEAN HasBogey : = FALSE;
/| HasBogey defaults to false
REAL4 Val u8024;
[/value fromthe Val u8024 definition
END;
FornmR2 : = RECORD
Trades; //include all fields fromthe Trades dataset at their
/'l al ready-defined nanes, types and sizes
UNSI GNED8 f pos {VI RTUAL(fileposition)};
//contains the relative byte position within the file
END;

FormB : = {Trades, UNSI GNED8 | ocal _f pos {VI RTUAL(| ocal fil eposition)}};
/luse of {} instead of RECORD/ END
/1" Trades” includes all fields fromthe dataset at their
/] al ready-defined nanmes, types and sizes
//local _fpos is the relative byte position in each part

Formd : = RECORD, MAXLENGTH(10000)
STRI NG Var St ri ngNane1{ MAXLENGTH(5000) } ;
//this field is variable size to a 5000 byte maxi num

STRI NG Var St ri ngName2{ MAXLENGTH(4000) } ;
//this field is variable size to a 4000 byte nmaxi num

| FBLOCK(MyCondition = TRUE) //followi ng fields receive val ues
/[/only if MyCondition = TRUE

BOOLEAN HaslLife := TRUE;
//defaults to true unless MyCondition = FALSE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
58

ECL Language Reference
Record Structures and Files

| NTEGER8 COUNT(| nqui ri es);
//this field is zero if M/Condition = FALSE, even
//if there are inquiries to count

END;
END;

in-line record structures, demonstrating same field name use

ds := DATASET('d', { STRINGs; }, THOR);
t := TABLE(ds, { STRINGGO s := ds.s; });
/1l new “s” field is OK with value type explicitly defined

" Child dataset” RECORD structures

Chi | dRec : = RECORD
UNSI GNED4 per son_i d;
STRI N&0 per _sur nane;
STRI N&0 per _f or enane;
END;
Par ent Record : = RECORD
UNSI GNEDS8 i d;
STRI N&0 addr ess;
STRI N&0 CSsz;
STRI NGLO post code;
UNSI GNED2 nunKi ds;
DATASET(Chi | dRec) chi | dr en{ MAXCOUNT(100) };

END;
an example using { XPATH('tag")}
R := record
STRI NGLO f nane;
STRI NG1L2 | nan®;
SET OF STRINGL MySet { XPATH(' Set/El enment')}; //define set tags
END;
B : = DATASET([{' Fred','Bell',['A,'B 1},

{' George','Blanda' ,['C ,'D]},
{"sam," ", ['E,"F]1 } 1, R;

OQUTPUT(B, ,' ~RTTEST: : test.xm ', XWM);

/* this exanple produces XM. output that |ooks |ike this:
<Dat aset >
<Row><f nane>Fr ed </fnane><| nane>Bel | </ | nane>

<Set ><El enent >A</ El enent ><El enent >B</ El enent ></ Set ></ Row>
<Row><f name>Geor ge</ f nanme><| nane>Bl anda </ | name>

<Set ><El enent >C</ El enent ><El enent >D</ El enent ></ Set ></ Row>
<Row><f nane>Sam </ f nane><| nanme> </ | nane>
<Set ><El enent >E</ El enent ><El enent >F</ El ement ></ Set ></ Row>
</ Dat aset >
*/

another XML example with a 1-field child dataset

cr : = RECORD, MAXLENGTH(1024)
STRI NG phoneEx{ XPATH("' ') };
END;
r : = RECORD, MAXLENGTH(4096)
STRI NG i d{ XPATH(' COVWP-1D) };
STRI NG phone{ XPATH(' PHONE- NUVBER) } ;
DATASET(cr) Fred{ XPATH(' PHONE- NUVMBER- EXP') } ;
END;

DS : = DATASET([{'1002',' 1352, 9493" ,[' 1352, '9493"]},

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
59

ECL Language Reference
Record Structures and Files

{'1003',' 4846, 4582, 0779' ,[' 4846' ,' 4582' ,' 0779']}],r);

QUTPUT(ds, , ' ~RTTEST: : XM_.t est 2",
XM_(' RECORD ,
HEADI NG ' <?xml versi on="1. 0" encodi ng="UTF- 8" ?><RECORDS>' ,
' </ RECORDS>')));

/* this exanpl e produces XM. output that |ooks |ike this:
<?xm version="1.0" encodi ng="UTF-8" ?>
<RECORDS>
<RECORD>
<COWP- | D>1002</ COWP- | D>
<PHONE- NUMBER>1352, 9493</ PHONE- NUVBER>
<PHONE- NUMBER- EXP>1352</ PHONE- NUMBER- EXP>
<PHONE- NUMBER- EXP>9493</ PHONE- NUMBER- EXP>
</ RECORD>
<RECORD>
<COWP- | D>1003</ COWP- | D>
<PHONE- NUMBER>4846, 4582, 0779</ PHONE- NUVBER>
<PHONE- NUMBER- EXP>4846</ PHONE- NUVBER- EXP>
<PHONE- NUMBER- EXP>4582</ PHONE- NUMBER- EXP>
<PHONE- NUMBER- EXP>0779</ PHONE- NUVMBER- EXP>
</ RECORD>
</ RECORDS>
*/

XPATH can also be used to define a JSON file

/* a JSON file called "MBooks.json" contains this data:

[

{
"id" @ "978-0641723445",
"name" : "The Lightning Thief",
"author" : "Rick Riordan"

}

{
"id" : "978-1423103349",
"nane" : "The Sea of Mnsters",
"author" : "Rick Ri ordan"

}

]
*/

BookRec : = RECORD

STRING I D {XPATH('id')}; //data fromid tag -- renames field to uppercase

STRING title {XPATH(' nane')}; //data from nanme tag, renamng the field

STRI NG aut hor; //data fromauthor tag, tag nane is | owercase and matches field nanme
END;

books : = DATASET(' ~j d:: mybooks.json', BookRec, JSON('/"));
QUTPUT(books) ;

See Also: DATASET, DICTIONARY, INDEX, OUTPUT, TABLE, TRANSFORM Structure, TYPE Structure,
SOAPCALL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
60

ECL Language Reference
Record Structures and Files

DATASET

attr := DATASET(file, struct, filetype);

attr := DATASET(dataset, file, filetype);

attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

[attr :=] DATASET (recordset [, recstruct]);

DATASET(row)

DATASET (childstruct [, COUNT(count) |LENGTH(size)] [, CHOOSEN(maxrecs)])

[GROUPED] [LINK COUNTED] [STREAMED] DATASET(struct)

DATASET(dict)

DATASET (count, transform [, DISTRIBUTED | LOCAL])

attr The name of the DATASET for later use in other definitions.

file A string constant containing the logical file name. See the Scope & Logical Filenames
section for more on logical filenames.

struct The RECORD structure defining the layout of the fields. This may use RECORDOF.

filetype One of the following keywords, optionally followed by relevant options for that spe-
cific type of filee THOR /FLAT, CSV, XML, JSON, PIPE. Each of theseis discussed
in its own section, below.

dataset A previoudly-defined DATASET or recordset from which the record layout is derived.
Thisformis primarily used by the BUILD action and is equivalent to:

ds : = DATASET(' fil enane', RECORDOF(anot her dataset), ...)

WORKUNIT Specifiesthe DATASET isthe result of an OUTPUT with the NAMED option within
the same or another workunit.

wuid Optional. A string expression that specifies the workunit identifier of the job that pro-
duced the NAMED OUTPUT.

namedoutput A string expression that specifies the name given in the NAMED option.

recordset A set of in-line data records. This can simply name a previously-defined set definition
or explicitly use sguare brackets to indicate an in-line set definition. Within the square
brackets records are separated by commas. The records are specified by either:
1) Using curly braces ({}) to surround the field values for each record. Thefield values
within each record are comma-delimited.
2) A comma-delimited list of in-line transform functions that produce the data rows.
All the transform functionsin the list must produce records in the same result format.

recstruct Optional. The RECORD structure of the recordset. Omittable only if the recordset
parameter isjust one record or alist of in-line transform functions.

row A single data record. This may be a single-record passed parameter, or the ROW or
PROJECT function that defines a 1-row dataset.

childstruct The RECORD structure of the child records being defined. This may use the

RECORDOF function.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

61

ECL Language Reference
Record Structures and Files

COUNT Optional. Specifies the number of child records attached to the parent (for use when
interfacing to external file formats).

count An expression defining the number of child records. This may be a constant or afield
in the enclosing RECORD structure (addressed as SELF.fieldname).

LENGTH Optional. Specifies the size of the child records attached to the parent (for use when
interfacing to external file formats).

size An expression defining the size of child records. This may be a constant or afield in
the enclosing RECORD structure (addressed as SEL F.fieldname).

CHOOSEN Optional. Limits the number of child records attached to the parent. This implicitly
uses the CHOOSEN function wherever the child dataset is read.

Maxr ecs An expression defining the maximum number of child records for a single parent.

GROUPED Specifiesthe DATASET being passed has been grouped using the GROUP function.

LINKCOUNTED

Specifiesthe DATASET being passed or returned uses the link counted format (each
row isstored asaseparate memory all ocation) instead of the default (embedded) format
wherethe rows of adataset areall stored in asingleblock of memory. Thisisprimarily
for usein BEGINC++ functions or external C++ library functions.

STREAMED Specifiesthe DATASET being returned is returned as a pointer to an IRowStream in-
terface (see the eclhelper.hpp include file for the definition).Valid only asa return
type. Thisis primarily for use in BEGINC++ functions or external C++ library func-
tions.

struct The RECORD structure of the dataset field or parameter. This may use the RECORD-
OF function.

dict The name of a DICTIONARY definition.

count An integer expression specifying the number of recordsto create.

transform The TRANSFORM function that will create the records. This may take an integer
COUNTER parameter.

DISTRIBUTED Optional. Specifies distributing the created records across al nodes of the cluster. If
omitted, all records are created on node 1.

LOCAL Optional. Specifies records are created on every node.

The DATASET declaration defines afile of records, on disk or in memory. The layout of the recordsis specified by a
RECORD structure (the struct or recstruct parameters described above). The distribution of records across execution
nodes is undefined in general, as it depends on how the DATASET came to be (sprayed in from a landing zone or
written to disk by an OUTPUT action), the size of the cluster on which it resides, and the size of the cluster on which
it is used (to specify distribution requirements for a particular operation, see the DISTRIBUTE function).

The first two forms are aternatives to each other and either may be used with any of the filetypes described below
(THOR/FLAT, CSV, XML, JSON, PIPE).

The third form defines the result of an OUTPUT with the NAMED option within the same workunit or the workunit
specified by the wuid (see Named Output DATASET s below).

The fourth form defines an in-line dataset (see In-line DATASET s below).

The fifth form is only used in an expression context to allow you to in-line a single record dataset (see Single-row
DATASET Expressions below).

The sixth form is only used as a value type in a RECORD structure to define a child dataset (see Child DATASETSs
below).

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
62

ECL Language Reference
Record Structures and Files

The seventh form is only used as avalue type to pass DATASET parameters (see DATASET as a Parameter Type
below).

The eighth form isused to define a DICTIONARY asaDATASET (see DATASET from DICTIONARY below).

The ninth form is used to create aDATASET using a TRANSFORM function (see DATASET from TRANSFORM
below)

THOR/FLAT Files

attr := DATASET(file, struct, THOR [,__ COMPRESSED__][,OPT | [,UNSORTED][,PRELOAD([nbr])]
[LENCRYPT (key) 1);

attr := DATASET(file, struct, FLAT [,__COMPRESSED_] [,OPT] [LUNSORTED] [,PRELOAD([nbr])]
[LENCRYPT (key)]);

THOR Specifiesthefileisin the Data Refinery (may optionally be specified asFLAT, which
is synonymous with THOR in this context).

__ COMPRESSED__ Optional. Specifiesthat the THOR file on another supercomputer cluster iscompressed
becauseit isaresult of the PERSIST Workflow Service.

_ GROUPED__ Specifiesthe DATASET has been grouped using the GROUP function.

OPT Optional. Specifies that using dataset when the THOR file doesn't exist resultsin an
empty recordset instead of an error condition.

UNSORTED Optional. Specifiesthe THOR file is not sorted, as a hint to the optimizer.

PRELOAD Optional. Specifiesthefileisleft in memory after loading (valid only for Rapid Data

Delivery Engine use).

nbr Optional. Aninteger constant specifying how many indexes to create “on the fly” for
speedier access to the dataset. If > 1000, specifies the amount of memory set aside
for these indexes.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRY PT option.
key A string constant containing the encryption key used to create the file.

Thisform definesaTHOR filethat existsin the DataRefinery. Thiscould contain either fixed-length or variable-length
records, depending on the layout specified in the RECORD struct.

The struct may contain an UNSIGNEDS field with either {virtual (fileposition)} or {virtual (localfileposition)} append-
ed to thefield name. Thisindicatesthefield contains the record's position within thefile (or part), and is used for those
instances where a usable pointer to the record is needed, such as the BUILD function.

Example:

Pt bl Rec : = RECORD
STRIN& State := Person. per_st;
STRINGO City := Person.per_full _city;
STRI N&5 Lnane : = Person. per_| ast _nane;
STRI NGL5 Fnane : = Person. per_first_nane;
END;

Tbl := TABLE(Person, Pt bl Rec) ;

Ptbl Qut := OUTPUT(Tbl,,"' RTTEMP: : TestFile');
/[/wite a THOR file

Pt bl : = DATASET(' ~Thor 400: : RTTEMP: : TestFi l e',

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
63

ECL Language Reference
Record Structures and Files

{Ptbl Rec, UNSI GNED8 _ fpos {virtual (fil eposition)}},
THOR, OPT) ;
/1l __fpos contains the "pointer" to each record
/1 Thor400 is the scope name and RTTEMP is the
/1 directory in which TestFile is |ocated
[l usi ng ENCRYPT
QUTPUT(Tbl , , ' ~Thor 400: : RTTEMP: : Test Fi | eEncrypt ed' , ENCRYPT(' nykey'));
Pt bl E : = DATASET(' ~Thor 400: : RTTEMP: : Test Fi | eEncrypted',

Pt bl Rec,

THOR, OPT, ENCRYPT(' nykey'));

CSV Files

attr := DATASET((file, struct, CSV [([HEADING(n)][, SEPARATOR(f _delimiters)]

[, TERMINATOR(r_dédimiters)][, QUOTE(characters)][, ESCAPE(esc)] [, MAXLENGTH(size)]

[ASCII | EBCDIC | UNICODE] [, NOTRIM])] [[ENCRYPT (key)]):

csv Specifiesthe fileis a“ comma separated values’ ASCII file.

HEADING(n) Optional. The number of header recordsin the file. If omitted, the default is zero (0).
SEPARATOR Optional. The field delimiter. If omitted, the default is a comma (',") or the delimiter
specified in the spray operation that put the file on disk.

f delimiters A single string constant, or set of string constants, that define the character(s) used as
the field delimiter. If Unicode constants are used, then the UTF8 representation of the
character(s) will be used.

TERMINATOR Optional. Therecord delimiter. If omitted, thedefaultisalinefeed (\n') or the delimiter
specified in the spray operation that put the file on disk.

r_delimiters A single string constant, or set of string constants, that define the character(s) used as
the record delimiter.

QUOTE Optional. The string quote character used. If omitted, the default is asingle quote ('\")
or the delimiter specified in the spray operation that put the file on disk.

characters A single string constant, or set of string constants, that define the character(s) used as
the string value delimiter.

ESCAPE Optional. The string escape character used to indicate the next character (usualy a
control character) ispart of the dataand not to beinterpreted asafield or row delimiter.
If omitted, the default is the escape character specified in the spray operation that put
thefile on disk (if any).

esc A single string constant, or set of string constants, that define the character(s) used to
escape control characters.

MAXLENGTH(size) Optional. Maximum record length in thefile. If omitted, the default is 4096.

ASCII Specifiesal input isin ASCII format, including any EBCDIC or UNICODE fields.

EBCDIC Specifiesall inputisin EBCDIC format except the SEPARATOR and TERMINATOR
(which are expressed as ASCII values).

UNICODE Specifiesal input isin Unicode UTF8 format.

NOTRIM Specifies preserving al whitespace in the input data (the default is to trim leading
blanks).

ENCRYPT Optional. Specifiesthe file was created by OUTPUT with the ENCRY PT option.

key A string constant containing the encryption key used to create the file.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

64

ECL Language Reference
Record Structures and Files

Thisform is used to read an ASCII CSV file. This can also be used to read any variable-length record file that has a
defined record delimiter. If none of the ASCII, EBCDIC, or UNICODE options are specified, the default input isin
ASCII format with any UNICODE fieldsin UTF8 format.

Example:

CSVRecord : = RECORD
UNSI GNED4 per son_i d;
STRI N&0 per _sur nane;
STRI N&0 per _f or enane;

END;
filel := DATASET(' M/Fil e.CSV' , CSVrecord, CSV); /lall defaults
file2 := DATASET(' MyFi | e. CSV', CSVr ecord, CSV(HEADI N&(1)); //1 header
file3 := DATASET(' MyFile. CSV' ,
CSVrecord,
CSV(HEADI N&(1) ,
SEPARATOR([',"',"\t"]),

TERM NATOR(['\n',"\r\n',"\n\r'1)));
/11 header record, either coma or tab field delimters,
/! either LF or CRILF or LF/CR record delimters

XML Files

attr := DATASET((file, struct, XML (xpath [, NOROOT]) [LENCRYPT (key)]);

XML Specifiesthefileisan XML file.

xpath A string constant containing the full XPATH to the tag that delimits the records in
thefile.

NOROOT Specifiesthefileisan XML file with no file tags, only row tags.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRY PT option.

key A string constant containing the encryption key used to create the file.

Thisformisusedtoread an XML fileinto the DataRefinery. The xpath parameter definestherecord delimiter tag using
asubset of standard XPATH (www.w3.0rg/TR/xpath) syntax (see the XPATH Support section under the RECORD
structure discussion for a description of the supported subset).

The key to getting individual field values from the XML lies in the RECORD structure field definitions. If the
field name exactly matches a lower case XML tag containing the data, then nothing special is required. Otherwise,
{xpath(xpathtag)} appended to the field name (where the xpathtag is a string constant containing standard XPATH
syntax) isrequired to extract the data. An XPATH consisting of empty angle brackets (<>) indicates the field receives
the entire record. An absolute XPATH is used to access properties of parent el ements. Because XML is case sensitive,
and ECL identifiers are case insensitive, xpaths need to be specified if the tag contains any upper case characters.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then alarge data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

/* an XML file called "MyFile" contains this XM. dat a:
<l'ibrary>
<book i sbn="123456789X" >
<aut hor >Bayl i ss</ aut hor >
<title>A Way Too Far</title>
</ book>

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
65

ECL Language Reference
Record Structures and Files

<book i sbn="1234567801" >
<aut hor >Snmi t h</ aut hor >
<title>A Way Too Short</title>
</ book>
</library>
*/

rform:= RECORD
STRI NG aut hor; //data fromauthor tag -- tag nane is | owercase and matches field nane
STRI NG name {XPATH('title')}; //data fromtitle tag, renamng the field
STRI NG i sbn { XPATH(' @sbn')}; //isbn definition data from book tag

tag

END;

books : = DATASET(' MyFile',rform XM.('Iibrary/book"'));

JSON Files

attr := DATASET(file, struct, JSON(xpath [, NOROOT]) [ENCRY PT (key)]);

JSON Specifiesthefileis a JSON file.

xpath A string constant containing the full XPATH to the tag that delimits the records in
thefile.

NOROOT SpecifiesthefileisaJSON file with no root level markup, only acollection of objects.

ENCRYPT Optional. Specifies the file was created by OUTPUT with the ENCRY PT option.

key A string constant containing the encryption key used to create the file.

Thisform is used to read a JSON file. The xpath parameter defines the path used to locate records within the JSON
content using a subset of standard XPATH (www.w3.org/TR/xpath) syntax (see the XPATH Support section under
the RECORD structure discussion for a description of the supported subset).

The key to getting individual field values from the JSON lies in the RECORD structure field definitions. If the
field name exactly matches a lower case JSON tag containing the data, then nothing special is required. Otherwise,
{xpath(xpathtag)} appended to the field name (where the xpathtag is a string constant containing standard XPATH
syntax) isrequired to extract the data. An XPATH consisting of empty quotes (") indicates thefield receivesthe entire
record. An absolute XPATH is used to access properties of child elements. Because JSON is case sensitive, and ECL
identifiers are case insensitive, xpaths need to be specified if the tag contains any upper case characters.

NOTE: JSON reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then a large data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

/* a JSON file called "MBooks.json" contains this data:

[

{
"id" : "978-0641723445",
"name" : "The Lightning Thief",
"author" : "Rick Ri ordan"

}

{
"id" : "978-1423103349",
"nane" : "The Sea of Mnsters",
"author" : "Rick Ri ordan"

}

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
66

ECL Language Reference
Record Structures and Files

*/

BookRec : = RECORD

STRING I D {XPATH('id")}; //data fromid tag -- renanes field to uppercase

STRING title {XPATH(' nane')}; //data fromnanme tag, renamng the field

STRI NG aut hor; //data fromauthor tag -- tag nane is | owercase and matches field name
END;

books : = DATASET(' ~j d:: mybooks. json', BookRec, JSON('/"));
QUTPUT(books) ;

PIPE Files

attr := DATASET(file, struct, PIPE(command [, CSV | XML]));

PIPE Specifies the filecomes from the commandprogram. Thisisa“read” pipe.

command The name of the program to execute, which must output records in the struct format
to standard output.

csv Optional. Specifies the output dataformat is CSV. If omitted, the format is raw.

XML Optional. Specifies the output data format is XML. If omitted, the format is raw.

This form uses PIPE(command) to send the file to the command program, which then returns the records to standard
output in the struct format. Thisis also known as an input PIPE (analogous to the PIPE function and PIPE option
on OUTPUT).

Example:

Pt bl Rec : = RECORD
STRIN& State;
STRIN&R0O City;
STRI N&5 Lnane;
STRI NG15 Fnane;

END;

Pt bl : = DATASET(' ~Thor50: : RTTEMP: : TestFil e',
Pt bl Rec,

Pl PE(' ProcessFile'));
/1 ProcessFile is the input pipe

Named Output DATASETS

attr := DATASET(WORKUNIT([wuid ,] namedoutput), struct);

This form allows you to use as a DATASET the result of an OUTPUT with the NAMED option within the same
workunit, or the workunit specified by thewuid (workunit ID). Thisisafeature most useful inthe Rapid DataDelivery
Engine.

Example:

// Nanmed Qut put DATASET in the sane workunit:

a := QUTPUT(Person(per_st="FL") , NAMED(' Fl ori daFol k'));
X : = DATASET(WORKUNI T("' Fl ori daFol k'),

RECORDOF(Per son)) ;
b := QUTPUT(x(per_first_name[1..4]="RICH));

SEQUENTI AL(a, b);

// Named Qut put DATASET in separate workunits:
/[l First Workunit (wui d=\W20051202-155102) contains this code:
M/Rec : = {STRINGL Val uel, STRINGL Val ue2, | NTEGERl1 Val ue3};

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
67

ECL Language Reference
Record Structures and Files

SoneFile : = DATASET([{'C,' G, 1},{
{'B,"'G,4},{
OUTPUT(SoneFi | e, NAVED(' Fred'));

'Cc,'C,2},{"A,"'X, 3},
"A,'B,5}], MRec) ;

/1 Second workunit contains this code, producing the same result:
ds := DATASET(WORKUNI T(' W20051202- 155102 , ' Fred'), MRec);
QUTPUT(ds) ;

In-line DATASETS

[attr :=] DATASET (recordset , recstruct);

Thisform allowsyoutoin-lineaset of dataand haveit treated asafile. Thisisuseful in situationswherefile operations
are needed on dynamically generated data (such as the runtime values of a set of pre-defined expressions). It is also
useful to test any boundary conditions for definitions by creating a small well-defined set of records with constant
values that specifically exercise those boundaries. Thisform may be used in an expression context.

Nested RECORD structures may be represented by nesting records within records. Nested child datasets may also be
initialized inside TRANSFORM functions using inline datasets (see the Child DATASET s discussion).

Example:

//1nline DATASET using definition val ues
myrec := {REAL diff, |NTEGERL reason};

rnms5008 : = 10. 0;
rnms5009 : = 11.0;
rnms5010 : = 12.0;

bt abl e : = DATASET([{rns5008, 72}, {rns5009, 7}, {rn85010, 65}], myrec);

/11nline DATASET with nested RECORD structures
nanmeRecord : = {STRI NGO | name, STRINGLO fnanme, STRINGL initial :="'"'};
personRecord : = RECORD
naneRecord prinmary;
nameRecor d not her;
naneRecord fat her;
END;
per sonDat aset : = DATASET([{{' Janes',' Walters','C},
{' Jessie',"'Blenger'},
{'Horatio', ' Walters'}},
{{' Anne' ,"' Wnston'},
{'Sant',"' Acl ause'},
{"ElIfin","And'}}], personRecord);

/1 Inline DATASET containing a Child DATASET
chi | dPer sonRecord : = { STRI NG f nane, UNSI GNED1 age} ;
per sonRecord : = RECORD

STRI NG0 f nane;

STRI NG20 | nane;

UNSI GNED2 nuntChi | dr en;

DATASET(chi | dPer sonRecord) chi |l dren;
END;
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
per sonDat aset : = DATASET([{' Kevin','Hall"',62,[{" Abby',2},{'Nat', 2}]},

{*Jon',"Sims',3,[{'Jen', 18}, {' Ali',16},{' Andy', 13}]1}],
per sonRecord) ;

/1 1nline DATASET derived froma dynam c SET function
Set | Ds(STRI NG f nanme) := SET(Peopl e(firstnane=fname),id);
ds := DATASET(Set | Ds(' RICHARD), {Peopl e.id});

/! 1Inline DATASET derived froma list of transforns

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
68

ECL Language Reference
Record Structures and Files

| Dt ype : = UNSI GNEDS;
FM ype : = STRI NGL5;
Lt ype : = STRI N&25;

resul t Rec : = RECORD
| Dtype id;
FM ype firstnaneg;
Ltype | ast nane;
FM ype mi ddl enane;
END;

T1(I Dtype idval, FMype fnane, Ltype | nane) :=
TRANSFORM r esul t Rec,

SELF.id := idval,

SELF. firstnane : = fnane,
SELF. | ast nanme : = | nane,
SELF :=[1]);

T2(1 Dtype idval , FM ype fnanme, FM ype mane, Ltype |name) :=
TRANSFORM r esul t Rec,

SELF.id := idval,

SELF. firstnane := fnane,
SELF. m ddl enane : = mane,
SELF. | ast nane : = | nane);

ds : = DATASET([T1(123,"'Fred','Jones'),
T2(456,"' John',' Q , "' Public'),
T1(789," ' Susie',"'Smth')]);

Single-row DATASET Expressions

DATASET(row)
Thisform isonly used in an expression context. It allows you to in-line asingle record dataset.

Example:

//the foll owi ng exanpl es denpbnstrate 4 ways to do the sane thing:
per sonRecord : = RECORD

STRI N&0 sur nane;

STRI NGLO f or enane;

| NTECER2 age : = 25;
END;

nanmesRecord : = RECORD
UNSI GNED id;
per sonRecor d;

END;

nanesTabl e : = DATASET(' RTTEST: : Test Row , nanesRecor d, THOR) ;
/lsinple dataset file declaration form

addr essRecord : = RECORD

UNSI GNED id;
DATASET(per sonRecor d) peopl e; //child dataset form
STRI NAO street;
STRI NAO t own;
STRI N& St ;
END;

per sonRecord tcO(namesRecord L) : = TRANSFORM
SELF : = L;
END;

/1** 1st way - using in-line dataset formin an expression context

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
69

ECL Language Reference
Record Structures and Files

addressRecord tO(nanesRecord L) := TRANSFORM
SELF. peopl e : = PROJECT(DATASET([{L.id, L. surnang, L. forenane, L. age}],
nanesRecord),
t cO(LEFT)) ;
SELF.id := L.id;
SELF :=[1];
END;

p0 : = PRQIECT(nanesTabl e, tO(LEFT));
OUTPUT(pO) ;

/1** 2nd way - using single-row dataset form

addressRecord t1(nanesRecord L) := TRANSFORM
SELF. peopl e : = PROJECT(DATASET(L), tcO(LEFT));
SELF.id := L.id;
SELF :=[1];

END;

pl : = PRQIECT(nanesTabl e, t1(LEFT));
QUTPUT(pl) ;

/1** 3rd way - using single-row dataset form and ROWfunction
addressRecord t2(nanesRecord L) := TRANSFORM

SELF. peopl e : = DATASET(RON L, per sonRecord)) ;

SELF.id := L.id;

SELF :=[1];
END;

p2 : = PRQIECT(nanesTabl e, t2(LEFT));
QUTPUT(p2) ;
/1** 4th way - using in-line dataset formin an expression context
addressRecord t4(nanesRecord |) := TRANSFORM
SELF. peopl e : = PRQJECT(DATASET([L], namesRecord), tcO(LEFT));
SELF.id := L.id;
SELF :=[1];
END;
p3 : = PRQJIECT(nanesTabl e, t4(LEFT));
QUTPUT(p3) ;

Child DATASETs

DATASET(childstruct [, COUNT(count) |LENGTH(size)] [, CHOOSEN(maxrecs)])

Thisform is used as a value type inside a RECORD structure to define child dataset records in a non-normalized flat
file. The form without COUNT or LENGTH isthe simplest to use, and just means that the dataset the length and data
are stored within myfield. The COUNT form limits the number of elements to the count expression. The LENGTH
form specifies the size in another field instead of the count. This can only be used for dataset input.

The following alternative syntaxes are also supported:

childstruct fieldname [SELF.count]

DATASET newname:= fieldname

DATASET fieldname (deprecated form -- will go away post-SR9)

Any operation may be performed on child datasets in hthor and the Rapid Data Delivery Engine (Roxie), but only the
following operations are supported in the Data Refinery (Thor):

1) PROJECT, CHOOSEN, TABLE (non-grouped), and filters on child tables.

2) Aggregate operations are allowed on any of the above

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
70

ECL Language Reference
Record Structures and Files

3) Several aggregates can be calculated at once by using

sumary : = TABLE(X.children,{ f1 := COUNT(GROUP),
f2 := SUM GROUP, x),
f3 := MAX(GROUP,y)});

summary. f 1;

4) DATASETIn] is supported to index the child elements

5) SORT (dataset, a, b)[1] is also supported to retrieve the best match.

6) Concatenation of datasetsis supported.

7) Temporary TABLES can be used in conjunction.

8) Initialization of child datasetsin temp TABLE definitions allows|[] to be used to initialize O elements.

Note that,

TABLE(ds, { ds.id, ds.children(age != 10) });

is not supported, because a dataset in a record definition means “expand al the fields from the dataset in the output.”
However adding an identifier creates aform that is supported:

TABLE(ds, { ds.id, newChildren := ds.children(age != 10); });

Example:

Parent Rec : = {I NTEGER1L Nanel D, STRI N&0 Nane};
Parent Tabl e : = DATASET([{1,"'Kevin'},{2,'Liz'},
{3," M Nobody'}, {4,"' Anywhere'}], ParentRec);
Chil dRec : = {I NTEGERL Nanel D, STRI NG20 Addr};
Chil dTabl e : = DATASET([{1,'10 Malt Lane'},{2,'10 Malt Lane'},
{2,'3 The cottages'},{4,"' Here'}, {4, There'},
{4, Near'}, {4, ' Far'}], Chil dRec);
Denor medRec : = RECORD
| NTEGER1 Nanel D
STRI N&20 Nane;
UNSI GNED1 NunRows;
DATASET(Chi | dRec) Chi | dren;
/1 ChildRec Children; /lalternative syntax
END;

Denor mredRec Par ent Move(Parent Rec L) := TRANSFORM
SELF. NunRows : = 0;
SELF. Children := [];
SELF : = L;

END;

Parent Only : = PRQIECT(Par ent Tabl e, Parent Move(LEFT));
Denor nedRec Chi | dMbve(Denor nedRec L, Chil dRec R, | NTEGER C) : =TRANSFORM
SELF. NunRows : = C
SELF. Children := L.Children + R
SELF : = L;
END;
DeNor mredRecs : = DENORMALI ZE(Parent Only, Chil dTabl e,
LEFT. Nanmel D = RI GHT. Nanel D,
Chi | dvbve(LEFT, RI GHT, COUNTER)) ;
OUTPUT(DeNor nedRecs, , ' RTTEMP: : Test Chi | dDat asets');

/1 Using inline DATASET in a TRANSFORM to initialize child records
AkaRec : = {STRI NGO forenane, STRI N&0 sur nane};
out put Rec : = RECORD

UNSI GNED i d;

DATASET(AkaRec) chil dren;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
71

ECL Language Reference
Record Structures and Files

END,;

i nput Rec : = RECORD
UNSI GNED i d;
STRI N&0 f or enane;
STRI N&0 sur nane;
END;

i nPeopl e : = DATASET([
{1,"Kevin','Halliday'},{1,'Kevin',"Hall"'}, {1,'Gawain',"'"'},
{2,"Liz',"Halliday'},{2,'Elizabeth',' Halliday'},
{2," Eli zabeth',"' Mai denNane'}, {3,"' Lorraine',' Chapman'},
{4,' Richard',' Chapnman'}, {4,"'John', "' Doe'}], inputRec);
out put Rec makeFat Record(i nput Rec |) := TRANSFORM
SELF.id :=1.id;
SELF. chil dren : = DATASET([{ |.forenanme, |.surnane }], AkaRec);
END;

fatln : = PRQIECT(i nPeopl e, nakeFat Recor d(LEFT));
out put Rec makeChi | dren(out put Rec |, outputRec r) := TRANSFORM

SELF.id :=1.id;
SELF.children :=|.children + RON{r.children[1].forenane,
r.children[1]. surnane},
AkaRec) ;
END;

r := ROLLUP(fatln, id, makeChildren(LEFT, RIGHT));

DATASET as a Parameter Type

[GROUPED] [LINKCOUNTED] [STREAMED] DATASET (struct)

Thisform is only used as a Value Type for passing parameters, specifying function return types, or defining a SET
OF datasets. If GROUPED is present, the passed parameter must have been grouped using the GROUP function. The
LINKCOUNTED and STREAMED keywords are primarily for use in BEGINC++ functions or external C++ library
functions.

Example:

M/Rec := {STRINGL Letter};
SoneFile := DATASET([{'A'},{'B },{'C},{'D}.{'E}], MRec);

/| Passi ng a DATASET par anet er
Fi | t er edDS(DATASET(MyRec) ds) := ds(Letter NOT IN['A','C,'E]);
/I passed dataset referenced as “ds” in expression

OUTPUT(Fi | t er edDS(SoneFil e));

//***

/1 The foll owi ng exanpl e denpbnstrates usi ng DATASET as both a
/| paranmeter type and a return type
rec_Person : = RECORD
STRI NG20 Fi r st Nane;
STRI NG20 Last Nane;
END;

rec_Person_exp : = RECORD(rec_Person)
STRI N&20 NaneOpti on;
END;

rec_Person_exp xfm D spl ayNames(rec_Person |, |INTEGER w) : =
TRANSFORM
SELF. NanmeQption : =

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
72

ECL Language Reference
Record Structures and Files

CHOOSE(w,
TRIMI.FirstName) + ' ' + |.Last Nang,
TRIMI.LastNane) + ', ' + |.FirstNang,
| . FirstName[1] + |.LastNane[1],
| . Last Nan®) ;
SELF : = |;
END;

DATASET(r ec_Person_exp) prototype(DATASET(rec_Person) ds) :=
DATASET([], rec_Person_exp);

DATASET(rec_Person_exp) D spl ayFul | Name(DATASET(r ec_Per son) ds)
PRQIECT(ds, xfm D spl ayNanmes(LEFT, 1));

DATASET(rec_Person_exp) D spl ayRevName(DATASET(rec_Person) ds) :=
PRQJIECT(ds, xfm Di spl ayNanes(LEFT, 2));

DATASET(rec_Person_exp) Di spl ayFi rst Name(DATASET(rec_Person) ds) :=
PRQIECT(ds, xfm D spl ayNames(LEFT, 3));

DATASET(r ec_Person_exp) D spl ayLast Nanme(DATASET(rec_Person) ds)
PROJIECT(ds, xfm Di spl ayNanes(LEFT, 4));

DATASET(rec_Person_exp) Pl ayWt hName(DATASET(rec_Person) ds_in,
pr ot ot ype PassedFunc,
STRINGL SortOrder='A",
UNSI GNED1 Fi el dToSort =1,
UNSI GNED1 PrePost Fl ag=1) := FUNCTI ON
Fi el dPre : = CHOOSE(Fi el dToSort, ds_i n. Fi rst Nane, ds_i n. Last Nane) ;
Sor t edDSPr e(DATASET(r ec_Person) ds) :=
| F(Sort Order="A'",
SORT(ds, Fi el dPre),
SORT(ds, -FieldPre));
I nDS : = | F(PrePost Fl ag=1, Sort edDSPre(ds_i n), ds_in);

PDS : = PassedFunc(InDS); //call the passed function paraneter

Fi el dPost : = CHOOSE(Fi el dToSort,
PDS. Fi r st Nane,
PDS. Last Nane,
PDS. NameOpt i on) ;
Sor t edDSPost (DATASET(r ec_Person_exp) ds) :=
| F(SortOrder = 'A'",
SORT(ds, Fi el dPost),
SORT(ds, - Fi el dPost)) ;

Qut DS : = | F(PrePost Fl ag=1, PDS, Sor t edDSPost (PDS)) ;
RETURN Cut DS;
END;

//define inline datasets to use.
ds_nanesl : = DATASET([{'John','Smith'},{' Henry','Jackson'},
{'Harry','Potter'}], rec_Person);
ds_nanes2 : = DATASET([{' George','Foreman'},
{' Sugar Ray', ' Robi nson'},
{'Joe',"'Louis'}], rec_Person);

//get nane you want by passing the appropriate function paraneter:
s_Nanel := PlayWthNane(ds_nanmesl, DisplayFul | Nanme, 'A ,1,1);

s_Nanme2 : = Pl ayWthNane(ds_nanes2, D splayRevNane, 'D, 3, 2);
a_Nane := PlayWthNane(ds_nanmesl, DisplayFirstNane,'A ,1,1);
b_Name := Pl ayWthNane(ds_nanmes2, DisplaylLastNane, 'D,1,1);

OQUTPUT(s_Nanel) ;
OUTPUT(s_Nane2) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
73

ECL Language Reference
Record Structures and Files

QUTPUT(a_Nan®) ;
OUTPUT(b_Nane) ;

DATASET from DICTIONARY

DATASET(dict)
Thisform re-definesthe dict asaDATASET.

Example:

rec : = {STRI NG col or, UNSI GNED1 code, STRI NG nane};
Col or Codes : = DATASET([{'Black' ,0 , 'Fred'},

{'Brown' ,1 , 'Sani},
{' Red' .2, 'Sue'},
{"Wite' ,3, 'Jo'}], rec);

Col or CodesDCT : = DI CTI ONARY(Col or Codes, { Col or, Code});

ds : = DATASET(Col or CodesDCT) ;
QUTPUT(ds) ;

See Also: OUTPUT, RECORD Structure, TABLE, ROW, RECORDOF, TRANSFORM Structure, DICTIONARY

DATASET from TRANSFORM

DATASET (count, transform [, DISTRIBUTED | LOCAL])

Thisform usesthe transform to create the records. The result type of the transform function determines the structure.
Theinteger COUNTER can be used to number each iteration of the transform function.

LOCAL executes separately and independently on each node.

Example:

I MPORT STD,
MBg(UNSIGNED ¢) := 'Rec ' + (STRINGc + ' on node ' + (STRING (STD. system Thorlib. Node() +1);

/| DI STRI BUTED exanpl e
DS : = DATASET(CLUSTERSI ZE * 2,
TRANSFORM { STRI NG | i ne},
SELF. line := nmsg(COUNTER)),

DI STRI BUTED) ;

bS;
/* creates a result like this:

Rec 1 on node 1

Rec 2 on node 1

Rec 3 on node 2

Rec 4 on node 2

Rec 5 on node 3

Rec 6 on node 3

*/
/1 LOCAL exanpl e

DS2 : = DATASET(2,
TRANSFORM { STRI NG | i ne},
SELF. line := nmsg(COUNTER)),
LOCAL) ;
DS2;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
74

ECL Language Reference
Record Structures and Files

/* An alternative (and clearer) way
creates a result like this:

Rec 1 on node 1
Rec 2 on node 1
Rec 1 on node 2
Rec 2 on node 2
Rec 1 on node 3
Rec 2 on node 3

*/

See Also; RECORD Structure, TRANSFORM Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
75

ECL Language Reference
Record Structures and Files

DICTIONARY

attr := DICTIONARY (dataset, structure);

DICTIONARY (structure)

attr The name of the DICTIONARY for later use in other definitions.

dataset The name of aDATASET or recordset from which to derivethe DICTIONARY. This
may be defined inline (similar to an inline DATASET).

structure The RECORD structure (often defined inline) specifying the layout of the fields. The

first field(s) are key fields, optionally followed the "resultsin" operator (=>) and addi-
tional payload fields. Thisissimilar to the payload version of an INDEX. The payload
may specify individual fields or may use the name of the dataset to payload all the
non-key fields.

A DICTIONARY alows you to efficiently check whether a particular datavalueisin alist (using the IN operator),
or to simply map data. It is similar to a LOOKUP JOIN that can be used in any context.

DICTIONARY Definition

The DICTIONARY declaration defines a set of unique records derived from the dataset parameter and indexed by the
first field(s) named in the structure parameter. The DICTIONARY will contain one record for each unique value(s)
in the key field(s). Y ou can access an individual record by appending square brackets ([]) to the attr name of the
DICTIONARY, which contain the key field value(s) that identify the specific record to access.

DICTIONARY as a Value Type

The second form of DICTIONARY is avalue type with the structure parameter specifying the RECORD structure of
the data. This datatype usage allows you to specify aDICTIONARY asa child dataset, similar to theway DATASET
may be used to define a child dataset. This may also be used to passa DICTIONARY as a parameter.

Example:
Col or Codes : = DATASET([{' Bl ack' ,0
{'Brown" ,1
{' Red' , 2
{' Orange', 3
{'Yellow , 4
{'Geen ,5
{"Blue' ,6
{"Violet',7
{'Gey 81},
{"Wite" ,9 }], {STRING col or, UNSI GNED1 code});
Col or CodesDCT :
Col or CodeDCT

CodeCol or DCT

DI CTI ONARY(Col or Codes, { Col or, Code}) ; /lmulti-field key
DI CTI ONARY(Col or Codes, { Col or => Code}); //payl oad field
DI CTlI ONARY(Col or Codes, { Code => Col or});

/| mappi ng exanpl es
MapCode2Col or (UNSI GNEDL code) :
MapCol or 2Code(STRI NG col or)

CodeCol or DCT[code] . col or;
Col or CodeDCT[col or] . code;

OUTPUT(MapCol or 2Code(' Red")); /12
OUTPUT(MapCode2Col or (4)) ; /1" Yel |l ow

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
76

ECL Language Reference
Record Structures and Files

/| Search term exanpl es

QUTPUT(' Green' | N Col or CodeDCT); //true

QUTPUT(6 | N CodeCol or DCT) ; [/true

OUTPUT(RON{' Red' , 2} , RECORDOF(Col or Codes)) | N Col or CodesDCT); //multi-field key, true

/Imulti-field payl oad exanpl es
rec : = RECORD

STRI NGLO col or;

UNS| GNED1 code;

STRI NGLO nane;

END;

Ds := DATASET([{'Black' ,0 , 'Fred'},
{'Brown' ,1, 'Seth'},
{' Red' ,2 , 'Sue'l},
{"Wite' ,3, 'Jo'}], rec);

DsDCT : = DI CTI ONARY(DS, {col or => DS});

OUTPUT(' Red' IN DsDCT); //true

DsDCT[' Red'] . code; /12

DsDCT[' Red'] . nane; /| Sue

/linline DCT exanpl es

InlineDCT := DI CTI ONARY([{' Bl ack' => 0 , 'Fred},
{"Brown' => 1, 'Sam},
{' Red' => 2, 'Sue'},
{"Wite' =>3, 'Jo'}],

{ STRI NG10 col or => UNSI GNED1 code, STRI NGLO nan®});

OQUTPUT(' Red" IN InlineDCT); //true

InlineDCT[' Red'] . code; /12

I nli neDCT[' Red'] . nane; /' Sue
InlineDCT[' Red'] ; /| Red 2 Sue
// Form 2 exanpl es -- paraneter passing

MyDCTf unc(DI CTI ONARY({ STRI NGLO col or => UNSI GNED1 code, STRI NG1O nane}) DCT,
STRI NGLO key) := DCT[key] . nane;

MyDCTf unc(I nli neDCT, ' White'); //Jo

MyDCTf unc(DsDCT, ' Brown') ; /] Seth

See Also: DATASET, RECORD Structure, INDEX, IN Operator

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
77

ECL Language Reference
Record Structures and Files

INDEX

attr := INDEX ([baserecset,] keys, indexfile [, SORTED] [,OPT] [,COMPRESSED(LZW | ROW | FIRST)]
[,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH[(**value**)]]);

attr := INDEX([baserecset,] keys, payload, indexfile [SORTED] [,OPT] [,COMPRESSED(LZW | ROW |
FIRST)] [,DISTRIBUTED] [,FILEPOSITION([flag])] [, MAXLENGTH[(value)]]);

attr := INDEX (index,newindexfile [, MAXLENGTH][(value)]]);

attr The name of the INDEX for later use in other attributes.

baserecset Optional. The set of datarecords for which the index file has been created. If omitted,
al fieldsin the keysand payloadparameters must be fully qualified.

keys The RECORD structure of the fieldsin theindexfile that contains key and file position

information for referencing into the baserecset. Field names and types must match the
baserecset fields (REAL and DECIMAL type fields are not supported). Thismay aso
contain additional fields not present in the baserecset (computed fields). If omitted,
al fieldsin the baserecset are used.

payload The RECORD structure of theindexfilethat contains additional fields not used askeys.
If the name of the baserecset isin the structure, it specifies“all other fields not already
named in the keys parameter.” Thismay contain fields not present in the baserecordset
(computed fields). The payload fields do not take up space in the non-leaf nodes of
the index and cannot be referenced in a KEY ED() filter clause. Any field with the
{BLOB} madifier (to allow more than 32K of data per index entry) is stored within
the indexfile, but not with the rest of the record; accessing the BLOB data requires an

additional seek.

indexfile A string constant containing thelogical filename of theindex. Seethe Scope & Logical
Filenames section for more on logical filenames.

SORTED Optional. Specifies that when the index is accessed the records come out in the order
of the keys. If omitted, the returned record order is undefined.

OPT Optional. Specifies that using the index when the indexfile doesn’t exist resultsin an
empty recordset instead of an error condition.

COMPRESSED Optional. Specifies the type of compression used. If omitted, the default isLZW, a

variant of the Lempel-Ziv-Welch algorithm. Specifying ROW compresses index en-
tries based on differences between contiguous rows (for use with fixed-length records,
only), and is recommended for use in circumstances where speedier decompression
time is more important than the amount of compression achieved. FIRST compresses
common leading elements of the key (recommended only for timing comparison use).

DISTRIBUTED Optional. Specifies that the index was created with the DISTRIBUTED option on the
BUILD action or the BUILD action simply referenced the INDEX declaration with
the DISTRIBUTED option. The INDEX is therefore accessed locally on each node
(similar to the LOCAL function, which is preferred), is not globally sorted, and there
isno root index to indicate which part of the index will contain aparticular entry. This
may be useful in Roxie queriesin conjunction with ALLNODES use.

FILEPOSITION Optional. If flag is FALSE, prevents the normal behavior of implicit fileposition field
being created and will not treat atrailing integer field any differently from the rest of
the payload.

flag Optional. TRUE or FAL SE, indicating whether or not to createtheimplicit fileposition
field.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
78

ECL Language Reference
Record Structures and Files

index The name of a previously defined INDEX attribute to duplicate.

newindexfile A string constant containing the logical filename of the new index. See the Scope &
Logical Filenames section for more on logical filenames.

MAXLENGTH Optional. This option is used to create indexes that are backward compatible for plat-

form versions prior to 3.0. Specifies the maximum length of a variable-length index
record. Fixed length records always use the minimum size required. If the default max-
imum length causes inefficiency problems, it can be explicitly overridden.

value Optional. An integer value indicating the maximum length. If omitted, the maximum
sizeiscalculated from the record structure. Variable-length records that do not specify
MAXLENGTH may be dlightly inefficient

INDEX declares a previously created index for use. INDEX is related to BUILD (or BUILDINDEX) in the same
manner that DATASET isto OUTPUT—BUILD creates an index file that INDEX then defines for usein ECL code.
Index files are compressed. A single index record must be defined as less than 32K and result in a less than 8K page
after compression.

The Binary-tree metakey portion of the INDEX is a separate 32K file part on the first node of the Thor cluster on
which it was built, but deployed to every node of a Roxie cluster. There are as many leaf-node file parts as there are
nodes to the Thor cluster on which it was built. The specific distribution of the leaf-node records across execution
nodes is undefined in general, as it depends on the size of the cluster on which it was built and the size of the cluster
onwhich it is used.

Keyed Access INDEX

This form defines an index file to allow keyed access to the baserecset. The index is used primarily by the FETCH
and JOIN (with the KEY ED option) operations.

Example:

Pt bl Rec : = RECORD
STRIN& State :
STRINGO Gty :
STRI N&5 Lnane :
STRI NGL5 Fnane :

END;

Per son. per _st;

Person. per _full _city;
Per son. per _| ast _nane;
Person. per _first_name;

Pt bl Qut : = OUTPUT(TABLE(Person, Ptbl Rec),,"' RTTEMP: : Test Fetch');

Pt bl := DATASET(' RTTEMP: : Test Fetch' ,
{Pt bl Rec, UNSI GNED8 RecPtr {virtual (fileposition)}},
FLAT) ;

Al phal nStateCity := | NDEX(Pt bl ,

{state,city, | nane, f nane, RecPtr},
' RTTEMPkey: : Test Fetch') ;
Bl d : = BUI LDI NDEX(Al phal nStateCity);

Payload INDEX

Thisform defines an index file containing extra payload fields in addition to the keys. The payload may contain fields
with the {BLOB} modifier to allow more than 32K of data per index entry. These BLOB fields are stored within the
indexfile, but not with the rest of the record; accessing the BLOB data requires an additional seek.

This form is used primarily by “half-key” JOIN operations to eliminate the need to directly access the baserecset,
thusincreasing performance over the “full-keyed” version of the same operation (done with the KEY ED option on the

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
79

ECL Language Reference
Record Structures and Files

JOIN). By default, payload fields are not sorted during the BUILD action to minimize space on the leaf nodes of the
key. This sorting behavior can be controlled by using sortindexPayload in a#OPTION statement.

Example:

Vehi cl es : = DATASET(' vehi cl es',
{STRIN& st, STRING0 city, STRING0 | nane,
UNSI GNED8 f pos{virtual (fileposition)}}, FLAT);

Vehi cl eKey : = | NDEX(Vehi cl es, {st, city}, {l nan®e, f pos}, ' vkey::st.city');
BUI LDl NDEX(Vehi cl eKey) ;

Duplicate INDEX

This form defines a newindexfile that isidentical to the previously defined index.
Example:

NewVehi cl eKey : = | NDEX(Vehi cl eKey, ' NEW : vkey::st.city');
/1 defi ne NewVehi cl eKey |i ke Vehicl eKey

See Also: DATASET, BUILDINDEX, JOIN, FETCH, KEYED/WILD

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
80

ECL Language Reference
Record Structures and Files

Scope and Logical Filenames
File Scope

The logical filenames used in DATASET and INDEX attribute definitions and the OUTPUT and BUILD (or
BUILDINDEX) actions may begin with a scope name, indicated by a leading tilde (~), and may contain direc-
tories. The scope and directories are delimited by double colons (::). The presence of a scope in the filename
allowsyou to override the default scope namefor the cluster.

For example, assuming you are operating on a cluster whose default scope nameis*“Training” then the following two
OUTPUT actions result in the same scope:

QUTPUT(SoneFil e, ," SoneDir:: SoneFi |l eQut1');
OQUTPUT(SoneFi |l e, , ' ~Trai ni ng: : SoneDi r: : SomeFi | eCut 2') ;

The presence of the leading tilde in the filename only defines the scope hame and does not change the set of disks
to which the datais written (files are always written to the disks of the cluster on which the code executes). The
DATASET declarations for these files might ook like this:

RecStruct := {STRING | ine};
dsl : = DATASET(' SoneDir:: SoneFil eQut1', RecStruct, THOR);
ds2 : = DATASET(' ~Trai ni ng: : SomeDi r: : SomeFi | eQut 2' , RecStruct, THOR) ;

These two files are in the same scope, so that when you use the DATASETs in aworkunit the Distributed File Utility
(DFU) will ook for both filesin the Training scope.

However, once you know the scope name you can reference files from any other cluster within the same environment.
For example, assuming you are operating on a cluster whose default scope nameis “Production” and you want to use
the data in the above two files. Then the following two DATASET definitions allow you to access that data:

FileX :
FileY :

DATASET(' ~Tr ai ni ng: : SormeDi r: : SoneFi | eQut 1' , RecStruct, THOR) ;
DATASET(' ~Trai ni ng: : SomeDi r: : SomeFi | eCut 2' , RecStruct, THOR) ;

Notice the presence of the scope name in both of these definitions. This is required because the files are in another
scope.

Foreign Files

Similar to the scoping rules described above, you can also reference files in separate environments serviced by a
different Dali. This alows aread-only reference to remote files (both logical files and superfiles).

The syntax looks like this:
‘~foreign::<dali-ip>::<scope>::<tail>’
For example,

M/Fi | e : =DATASET("' ~f orei gn: : 10. 150. 50. 11: :trai ning: :thor: : nyfile',
RecSt ruct, FLAT) ;

gives read-only access to the remote training: :thor::myfile file in the 10.150.50.11 environment.

Landing Zone Files

Y ou can also directly read and writefileson alanding zone (or any other | P-addressable box) that have not been sprayed
to Thor. The landing zone must be running the dafileserv utility program. If the box is a Windows box, dafileserv
must be installed as a service.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
81

ECL Language Reference
Record Structures and Files

The syntax looks like this;

‘~file::<L Z-ip>::<path>::<filename>’

For example,

M/Fi |l e : =DATASET("' ~file::10. 150.50.12::c$::training::inport::nyfile', RecStruct, FLAT);
gives access to the remote c$/training/import/myfile file on the linux-based 10.150.50.12 landing zone.

ECL logical filenames are case insensitive and physical names default to lower case, which can cause problems when
the landing zone is a Linux box (Linux is case sensitive). The case of characters can be explicitly uppercased by
escaping them with aleading caret ("), asin this example:

M/Fi | e : =DATASET("' ~fil e::10. 150. 50. 12: : c$: : ~Advanced E*C L: : nyfil e' , RecSt ruct, FLAT);

gives access to the remote c$/AdvancedECL/myfile file on the linux-based 10.150.50.12 landing zone.

Dynamic Files

In Roxie queries (only) you can a so read files that may not exist at query deployment time, but that will exist at query
runtime by making the filename DY NAMIC.

The syntax looks like this;
DYNAMIC(‘<filename>')

For example,
M/Fi | e : =DATASET(DYNAM C(' ~trai ni ng: :inport::myfile'), RecStruct, FLAT);

This causes the file to be resolved when the query is executed instead of when it is deployed.

Temporary SuperFiles

A SuperFile is a collection of logical files treated as a single entity (see the SuperFile Overview article in the
Programmer's Guide). Y ou can specify atemporary SuperFile by naming the set of sub-files within curly bracesin
the string that names the logica file for the DATASET declaration. The syntax looks like this:

DATASET('{ listoffiles } ', recstruct, THOR);

listoffiles A comma-delimited list of the set of logical filesto treat as a single SuperFile. The logical filenames must
follow the ruleslisted above for logical filenames with the one exception that the tilde indicating scope name override
may be specified either on each appropriate file in thelist, or outside the curly braces.

For example, assuming the default scope nameis “thor,” the following examples both define the same SuperFile:

M/Fi |l e : =DATASET(' {in::filel,
in::file2,
~train::in::file3}'),
RecSt ruct, THOR) ;

MyFi | e : =DATASET(' ~{thor::in::file1l,
thor::in::file2,
train::in::file3}'),

RecSt ruct, THOR) ;

Y ou cannot use this form of logical filename to do an OUTPUT or PERSIST; thisform is read-only.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
82

ECL Language Reference
Record Structures and Files

Implicit Dataset Relationality

Nested child datasetsin aDataRefinery (Thor) or Rapid Data Delivery Engine (Roxie€) cluster areinherently relational,
since al the parent-child data is contained within a single physical record. The following rules apply to all inherent
relationships.

The scope level of aparticular query is defined by the primary dataset for the query. During the query, the assumption
isthat you are working with a single record from that primary dataset.

Assuming that you have the following relational structure in your database:

Househol d Par ent
Per son Chil d of Househol d
Account s Chil d of Person, Grandchild of Househol d

This means that, at the primary scope level:

a) All fieldsfrom any filethat hasa 1:M relationship with the primary fileare available. That is, all fieldsin any parent
(or grandparent, etc.) record are available to the child. For example, if the Person dataset is the primary scope, then
all the fieldsin the Household dataset are available.

b) All child datasets (or grandchildren, etc.) can be used in sub-queriestofilter the parent, aslong asthe sub-query uses
an aggregate function or operates at the level of the existence of a set of child records that meet the filter criteria (see
EXISTS).Y ou can use specific fields from within a child record at the scope level of the parent record by the use of
EVALUATE or subscripting ([]) to aspecific child record. For example, if the Person dataset isthe primary scope, then
you may filter the set of related Accountsrecords and check to seeif you'vefiltered out all therelated Accountsrecords.

c) If adataset is used in a scope where it is not a child of the primary dataset, it is evaluated in the enclosing scope.
For example, the expression:

Househol d(Per son(per sonage > AVE(Per son, per sonage))

means “ househol ds contai ning peopl e whose age is above the average age for the household.” It does not mean “ house-
holds containing people whose age is above the average for all the households.” This is because the primary dataset
(Household) encloses the child dataset (Person), making the evaluation of the AVE function operate at the level of
the persons within the household.

d) An attribute defined with the STORED() workflow service is evaluated at the global level. Itisan error if it cannot
be evaluated independently of other datasets. This can lead to some slightly strange behaviour:

AveAge : = AVE(Person, personage) ;
M/Houses : = Househol d(Per son(per sonage > aveAge));

means “ househol ds containing people whose age is above the average age for the household.” However,

AveAge : = AVE(Person, personage) : STORED(' AveAge');
MyHouses : = Househol d(Per son(per sonage > aveAge));

Means “households containing people whose age is above the average for al the households.” This is because the
AveAge attribute is now evaluated outside the enclosing Household scope.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
83

ECL Language Reference
Alien Data Types

Alien Data Types

TYPE Structure

TypeName := TYPE

functions;

END;

TypeName The name of the TY PE structure.

functions Function Attribute definitions. There are usually multiple functions.

The TY PE structure defines a series of functionsthat areimplicitly invoked when the TypeName is subsequently used
in a RECORD structure as a value type. Parameters may be passed to the TY PE structure Attribute which may then
be used in any of the function definitions. To pass the parameters, simply append them to the TypeName used in the
RECORD structure to define the value type for the field.

A TYPE structure may only contain function definitions from the the list of available Special Functions (see TYPE
Structure Special Functions).

Example:

STRINAA ReV(STRINGA S) := S[4] + S[3] + §[2] + S[1];
EXPORT ReverseString4 : = TYPE
EXPORT STRING4 LOAD(STRIN S) := Rev(S);
EXPORT STRING4 STORE(STRIN® S) : = Rev(S);

END;

NeedC(| NTECER | en) := TYPE
EXPORT STRING LOAD(STRING S) :='C + S[1..len];
EXPORT STRI NG STORE(STRING S) := S§[2..len+1];
EXPORT | NTEGER PHYSI CALLENGTH(STRING S) : = | en;

END;

Scalelnt := TYPE
EXPORT REAL LQOAD(| NTEGER4 |)
EXPORT | NTEGER4 STORE(REAL R)

I / 100;
ROUND(R * 100);

END;
R : = RECORD
ReverseString4 F1;
/1 Defines a field size of 4 bytes. When R F1 is used,
/1 the ReverseString4.Load function is called passing
/1 in those four bytes and returning a string result.
NeedC(5) F2;
/] Defines a field size of 5 bytes. When R F2 is used,
/'l those 5 bytes are passed in to NeedC. Load (along with
/1 the length 5) and a 6 byte string is returned.
Scal el nt F3;
/] Defines a field size of 4. Wien R F3 is used, the
// Scalelnt.Load function returns the nunber / 100.
END;

See Also: RECORD Structure, TY PE Structure Special Functions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
84

ECL Language Reference
Alien Data Types

TYPE Structure Special Functions

LOAD

EXPORT Logical Type LOAD(Physical Type alias) := expression;

Logical Type The value type of the resulting output of the function.
Physical Type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

L OAD defines the callback function to be applied to the bytes of the record to create the data value to be used in the

computation. This function defines how the system reads the data from disk.

STORE

EXPORT Physical Type STORE(Logical Type alias) := expression;

Physical Type The value type of the resulting output of the function.
Logical Type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

STORE defines the callback function to be applied to the computed value to store it within the record. This function

defines how the system writes the data to disk.

PHYSICALLENGTH

EXPORT INTEGER PHYSICALLENGTH(type alias) := expression;

type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

PHYSICALLENGTH defines the callback function to determine the storage requirements of the logical format in
the specified physical format. This function defines how many bytes the data occupies on disk.

MAXLENGTH

EXPORT INTEGER MAXLENGTH := expression;

‘ expression ‘An integer constant defining the maximum physical length of the data.

MAXLENGTH defines the callback function to determine the maximum physical length of variable-length data.

GETISVALID

EXPORT BOOLEAN GETISVALID(Physical Type alias) := expression;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

85

ECL Language Reference
Alien Data Types

Physical Type The value type of the input parameter to the function.
alias The name of the input to use in the expression.
expression The operation to perform on the input.

GETISVALID defines the callback function to determine that data values are in the specified physical format.

Example:

EXPORT NeedC(| NTEGER | en) := TYPE
EXPORT STRING LOAD(STRING S) :='C + S[1..len];
EXPORT STRING STORE(STRING S) := S[2..len+1];
EXPORT | NTEGER PHYSI CALLENGTH(STRING S) : = | en;
EXPORT | NTEGER MAXLENGTH(STRING S) : = |l en;

EXPORT BOOLEAN GETI SVALID(STRING S) := §[1] <> 'C ;

END;

/l delimted string data type
EXPORT dstring(STRI NG del) := TYPE
EXPORT | NTEGER PHYSI CALLENGTH(STRI NG s) : =
Std. Str. Fi nd(s, del)+l engt h(del) -1;
EXPORT STRI NG LOAD(STRING s) : =
s[1..Std. Str. Fi nd(s, del)-1];
EXPORT STRI NG STORE(STRING s) := s + del ;
END;

See Also: TY PE Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
86

ECL Language Reference
Parsing Support

Parsing Support
Parsing Support

Natural Language Parsing isaccomplished in ECL by combining pattern definitionswith an output RECORD structure
(or TRANSFORM function) specifically designed to receive the parsed values, then using the PARSE function to
perform the operation.

Pattern definitions are used to detect "interesting” text within the data. Just as with all other attribute definitions, these
patterns typically define specific parsing elements and may be combined to form more complex patterns, tokens, and
rules.

The output RECORD structure (or TRANSFORM function) defines the format of the resulting recordset. It typically
contains specific pattern matching functions that return the "interesting” text, its length or position.

The PARSE function implements the parsing operation. It returns a recordset that may then be post-processed as
needed using standard ECL syntax, or simply output.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
87

ECL Language Reference
Parsing Support

PARSE Pattern Value Types

There are three value types specifically designed and required to define parsing pattern attributes:

PATTERN patternid := parsepattern;

patternid The attribute name of the pattern.

par sepattern The pattern, very similar to regular expressions. This may contain other previously
defined PATTERN attributes. See Par sePatter n Definitions below.

The PATTERN value type defines a parsing expression very similar to regular expression patterns.

TOKEN tokenid : = parsepattern;

tokenid The attribute name of the token.

par sepattern The token pattern, very similar to regular expressions. This may contain PATTERN
attributes but no TOKEN or RULE attributes. See Par sePatter n Definitions bel ow.

The TOKEN valuetype definesaparsing expression very similar toaPATTERN, but once matched, the parser doesn’t
backtrack to find alternative matches as it would with PATTERN.

RULE [(recstruct)] ruleid := rulePattern;

recstruct Optional. The attribute name of a RECORD structure attribute (valid only when the
PARSE option is used on the PARSE function).

ruleid The attribute name of therule.

rulePattern Therule pattern, very similar to regular expressions. This may contain PATTERN at-
tributes, TOKEN attributes, or RULE attributes. See Par sePatter n Definitionsbelow.

The RUL E value type defines a parsing expression containing combinations of TOKENS. If a RULE definition con-
tains a PATTERN it isimplicitly converted to a TOKEN. Like PATTERN, once matched, the parser backtracks to
find alternative RULE matches.

If the PARSE option is present on the PARSE function (thereby implementing tomita parsing for the operation), each
alternative RULE rulePattern may have an associated TRANSFORM function. The different input patterns can be
referred to using $1, $2 etc. If the pattern has an associated recstruct then $1 is arow, otherwise it isastring. Default
TRANSFORM functions are created in two circumstances:

1. If there are no patterns, the default transform clears the row. For example:

RULE(nyRecord) :=; //enpty expression = cleared row

2. If thereis only asingle pattern with an associated record, and that record matches the type of the
rule being defined. For example:

RULE(nmyRecord) e0 := "' (' USE(nyRecord, 'expression') ')';
ParsePattern Definitions

A parsepattern may contain any combination of the following elements:

pattern-name The name of any previously defined PATTERN attribute.
(pattern) Parentheses may be used for grouping.
patternl pattern2 Patternl followed by pattern2.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
88

ECL Language Reference
Parsing Support

'string’ A fixed text string, which may contain escaped octal string control characters (for
example, CtrlZ is*\032’).

FIRST Matches the start of the string to search. Thisis similar to the regular expression »
token, which is not supported.

LAST Matches the end of the string to search. This is similar to the regular expression $
token, which is not supported.

ANY Matches any character.

REPEAT (pattern) Repeat the pattern any number of times. The regular expression syntax pattern* is

supported as a shorthand for REPEAT (pattern).

REPEAT (pattern, expres-
sion)

Repeat the pattern expression times. The regular expression syntax pattern* <count>
is supported as a shorthand for REPEAT (pattern,expression), but the regular expres-
sion bounded repeats syntax pattern{ expression} is not.

REPEAT (pattern, low, ANY
[LMIN])

Repeat the pattern low or more times (with the MIN option making it a mini-
mal match). The regular expression syntax pattern+ is supported as a shorthand
for REPEAT (pattern,low,ANY), but the regular expression bounded repeats syntax
pattern{expression ,} is not.

REPEAT (pattern, low, high)

Repeat the pattern from low to high times. The regular expression bounded repeats
syntax pattern{low,high} is not supported.

OPT (pattern)

An optional pattern. The regular expression syntax pattern? is supported as a short-
hand for OPT (pattern).

patternl OR pattern2

Either patternl or pattern2. The regular expression syntax patternl | pattern2 is sup-
ported as a shorthand for OR.

[list-of-patterns]

A comma-delimited list of alternative patterns, useful for string sets. Thisisthe same
asOR.

patternl [NOT] IN pattern2

Doesthetext matched with patternl al so match pattern2? Patternl [NOT] = pattern2
and patternl != pattern2 are the same as using IN, but may make more sensein some
situations.

patternl [NOT] BEFORE
pattern2

Check if the given pattern2 does [not] follow patternl. Pattern2 is not consumed
from the input.

patternl [NOT] AFTER pat-
tern2

Check if the given pattern2 does [not] precede patternl. Pattern2 does not consume
any input. It must also be a fixed length.

pattern LENGTH (range)

Check whether the length of a pattern is in the range. Range can have the form
<vaue>,<min>..<max>,<min>.. or ..<max> So “digit*3 NOT BEFORE digit” could
be represented as “digit* LENGTH(3).” Thisis more efficient, and digit* can be de-
fined as atoken. “digit* LENGTH(4..6)" matches 4,5 and 6 digit sequences.

VALIDATE(pattern, is-
ValidExpression)

Evaluate isvalidExpression to check if the pattern is valid or not. is
ValidExpression should use MATCHTEXT or MATCHUNICODE to re

fer to the text that matched the pattern. For example, VALIDATE(apha*,
MATCHTEXT[4]='Q’) isequivalent to alpha* = ANY*3'Q" ANY* or more useful-
ly: VALIDATE(a pha* ,isSurnameService(MATCHTEXT));

VALIDATE(pattern, is-
ValidAsciiExpression, is-
ValidUnicodeExpression)

A two parameter variant. Use the first isValidAsciiExpression if the string being
searched is ASCII; use the second if it is Unicode.

NOCA SE(pattern)

Matches the pattern case insensitively, overriding the CASE option on the PARSE
function. This may be nested within a CASE pattern.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

89

ECL Language Reference
Parsing Support

CASE(pattern)

Matches the pattern case sensitively, overriding the NOCA SE option on the PARSE
function. This may be nested within a NOCASE pattern.

pattern PENALTY (cost)

Associate a penalty cost with this match of the pattern. This can be used to recover
from grammars with unknown words. This requires use of the BEST option on the
PARSE operation.

TOKEN(pattern)

Treat the pattern as a token.

PATTERN('regular expres-
sion’)

Define a pattern using aregular expression built from
the following supported syntax elements:

x) Grouping (not used for matching)

Xly Alterativesx or y

Xy Concatenation of x and y.

X* X*? Zero or more. Greedy and minimal versions.
X+ X+7? One or more. Greedy and minimal versions.
X?X?7? Zero or one. Greedy and minimal versions.

x{m} x{m} x{m,n} Bounded repeats, also minimal versions
[0-9abcdef] A set of characters
(may use” for exclusion list)
(?=...) (?..) Look ahead assertion
(7<=...) (<!..) Look behind assertion

Escape sequences can be used to define UNICODE Character ranges.
The encoding is UTF-16 Big Endian.

For example:

PATTERN AnyChar := PATTERN(U'[\u0001-\u7fff]");

The following character class expressions are supported
(inside sets):

[:anum:] [:cntrl:] [:lower:] [:upper:] [:space]
[:apha] [:digit:]] [:print:] [:blank:] [:graph:]
[:punct:] [:xdigit:]

Regular expressions do not support:
A $to mark the beginning/end of the string
Collating symbols [.ch.]
Equivalenceclass [=e=]

USE([recstruct ,] 'symbol-
name')

Specifiesusing apattern defined later with the DEFINE('symbolname’) function. This
creates aforward reference, practical only on RULE patterns for tomita parsing (the
PARSE option is present on the PARSE function).

SELF

References the pattern being defined (recursive). Thisis practical only in RULE pat-
terns for tomita parsing (the PARSE option is present on the PARSE function).

Examples:

rs := RECORD

STRI NGLOO i ne;

END;

ds : = DATASET([{'the fox;

PATTERN ws : = PATTERN(' [

and the hen'}], rs);

\t\r\n]');

PATTERN Al pha : = PATTERN(' [A-Za-z]');

PATTERN Word : = Al pha+;
PATTERN Article :=['the'

. AT

PATTERN Just AWord : = Word PENALTY(1);
PATTERN not Hen : = VALI DATE(Word, MATCHTEXT != 'hen');

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

90

ECL Language Reference
Parsing Support

PATTERN NoHenWord : = not Hen PENALTY(1);
RULE NounPhraseConponentl1 := JustAWord | Article ws Wrd;
RULE NounPhr aseConponent?2 := NoHenWrd | Article ws Wrd;
psl : = RECORD

out 1 : = MATCHTEXT(NounPhr aseConponent 1) ;
END;

ps2 : = RECORD
out 2 : = MATCHTEXT(NounPhr aseConponent 2) ;

END;

pl : = PARSE(ds, |ine, NounPhraseConponentl1, psl, BEST, MANY, NOCASE);
p2 := PARSE(ds, |ine, NounPhraseConponent?2, ps2, BEST, MANY, NOCASE);
QUTPUT(pl) ;

QUTPUT(p2) ;

See Also: PARSE, RECORD Structure, TRANSFORM Structure, DATASET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
91

ECL Language Reference
Parsing Support

NLP RECORD and TRANSFORM Func-
tions

The following functions are used in field definition expressions within the RECORD structure or TRANSFORM func-
tion that defines the result set from the PARSE function:

MATCHED([patternreference])

MATCHED returnstrue or false as to whether the patter nreference found amatch. If the patternreference is omitted,
it indicates whether the entire pattern matched or not (for use with the NOT MATCHED option).

MATCHTEXT [(patternreference) |

MATCHTEXT returns the matching ASCI| text the patternreference found, or blank if not found. If the patternref-
erenceisomitted, MATCHTEXT returns all matching text.

MATCHUNI CODE(patternreference)

MATCHUNICODE returns the matching Unicode text the patter nreference found, or blank if not found.
MATCHLENGT H (patter nreference)

MATCHLENGTH returnsthe number of charactersin the matching text the patter nreferencefound, or O if not found.
MATCHPOSI TION(patternreference)

MATCHPOSITION returnsthe position within thetext of thefirst character in the matching text the patter nreference
found, or O if not found.

MATCHROW (patter nreference)

MATCHROW returns the entire row of the matching text the patternreference found for aRULE (valid only when
the PARSE option is used on the PARSE function). Thismay be used to fully qualify afield in the RECORD structure
of therow.

Pattern References

The patternreference parameter to these functions is a dash-delimited (/) list of previously defined PATTERN, TO-
KEN, or RULE attributes with or without an instance number appended in square brackets.

If aninstance number is supplied, the patter nreference matches a particular occurrence, otherwise it matchesany. The
patter nreference provides a path through the regular expression grammar to a particular result. The path to a particular
attribute can either be fully or partially specified.

Example:

PATTERN ws := PATTERN('[\t\r\n]');

PATTERN arb := PATTERN('[-!.,\t a-zA-Z0-9]')+;
PATTERN nunber := PATTERN('[0-9]')+;

PATTERN age := ' (' nunber OPT('/1') "')';
PATTERN role := '["' arb ']';

PATTERN m rank := '<' nunber '>';

PATTERN actor := arb OPT(ws '(l)' ws);

NLP_| ayout _act or _novi e : = RECORD

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
92

ECL Language Reference
Parsing Support

STRI NG30 act or _nanme := MATCHTEXT(actor);

STRI NG5O0 novi e_name := MATCHTEXT(arb[2]); //2nd instance of arb
UNSI GNED2 novi e_year : = (UNSI GNED) MATCHTEXT(age/ nunber) ;

/I nunber within age

MATCHTEXT(rol e/ arb); //arb within role
(UNSI GNED) MATCHTEXT(m_r ank/ nunber) ;

STRI N&20 novie_role :
UNSI GNED1 cast _rank :
END;

/1 This exanpl e denpbnstrates the use of productions in PARSE code
/Il (only supported in the tomta version of PARSE).

PATTERN ws := [',"\t'];

TOKEN nunber := PATTERN('[0-9]+');
TOKEN plus :="'+";

TOKEN minus := "'-";

attrRec := RECORD
| NTECER val ;
END;

RULE(attrRec) e0 : =
"(' USE(attrRec,expr)? ')' |
nunber TRANSFORM attrRec, SELF.val := (I NTECER) $1;) |

'-' SELF TRANSFORM attrRec, SELF. val -$2.val ;);
RULE(attrRec) el : =

el |

SELF '*' e0 TRANSFORM attrRec, SELF.val := $l.val * $3.val;) |

USE(attrRec, el) '/' eO

TRANSFORM attr Rec, SELF.val := $1.val / $3.val;);

RULE(attrRec) e2 :=

el |

SELF plus el TRANSFORM attrRec, SELF.val := $1.val + $3.val;) |

SELF m nus el TRANSFORM attrRec, SELF.val := $1.val - $3.val;);

RULE(attrRec) expr := e2;

infile := DATASET([{' 1+2*3"},{"' 1+2*z'}, {' 1+2+(3+4)*4/2'}],
{ STRING line });
resul t sRec : = RECORD
RECORDOF(i nfile);
attrRec;
STRI NG expr Text ;
| NTECER val ues3;

END;
resultsRec extractResults(infile |, attrRec attr) := TRANSFORM
SELF : = 1|;
SELF : = attr;
SELF. expr Text := MATCHTEXT,
SELF. val ue3 : = MATCHROW eO[3]) . val ;
END;

QUTPUT(PARSE(i nfil e, |ine, expr, extract Resul t s(LEFT, $1),
Fl RST, WHOLE, PARSE, SKI P(ws))) ;

See Also; PARSE, RECORD Structure, TRANSFORM Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
93

ECL Language Reference
Parsing Support

XML Parsing RECORD and TRANS-
FORM Functions

The following functions are valid for use only in field definition expressions within a RECORD structure or TRANS
FORM function that is used to define the result set from the PARSE function, or the input RECORD structure for a
DATASET containing XML data.

XMLTEXT (xmltag)

XMLTEXT returns the ASCII text from the xmitag.

XM L UNICODE(xmitag)

XMLUNICODE returns the Unicode text from the xmitag.
XMLPROJECT (xmltag, transform)

XMLPROJECT returnsthe text from the xmitag as a child dataset.

xmitag A string constant naming the XPATH to the tag containing the data (see the XPATH
Support section under the RECORD structure discussion). This may contain an in-
stance number (such as tagname| 1]).

transform The TRANSFORM function that produces the child dataset.

Example:

d := DATASET([{' <l i brary><book isbn="123456789X">" +
' <aut hor >Bayl i ss</aut hor><titl e>A Wy Too Far</titl e></book>" +
' <book isbn="1234567801">' +
' <aut hor >Smi t h</ aut hor ><titl e>A WAy Too Short</titl e></book>" +
"</library>'}],
{STRING line });

rform:= RECORD
STRI NG aut hor : = XMLTEXT(' aut hor');
STRING title := XML.TEXT('title');
END;

books : = PARSE(d, line,rform XM.('Ilibrary/book'));

OUTPUT(books)

//***

/* The followi ng XM. can be parsed usi ng XM_PRQIECT
<XM_>
<Fi el d nanme=' surnane' distinct=2>
<Val ue count =3>Hal | i day</ Val ue>
<Val ue count =2>Chaprman</ Val ue>
</ Fi el d>
<XM_>
*/
ext ract edVal ueRec : = RECORD
STRI NG val ue;
UNSI GNED cnt ;
END;

extract edRec : = RECORD

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
94

ECL Language Reference
Parsing Support

STRI NG nane;

UNSI GNED cnt ;

DATASET(ext r act edVal ueRec) val ues;
END;

X := DATASET([{'<XM.>" +
' <Fi el d nane="surnanme" distinct="2">" +
' <Val ue count ="3">Hal | i day</ Val ue>' +
<Val ue count ="2">Chapnan</ Val ue>' +
'</Field> +
</ XM.>'}],{STRING |l ine});

extractedRec t1 : = TRANSFORM
SELF. nane = XMLTEXT(' @ane');
SELF. cnt = (UNSI GNED) XMLTEXT("' @li stinct');
SELF. val ues : = XM_LPRQJECT(' Val ue',
TRANSFORM ext r act edVal ueRec,
SELF. val ue : = XMLTEXT('"'),
SELF. cnt : =
(UNSI GNED) XMLTEXT(' @ount'))) (cnt > 1);
END;
p := PARSE(x, line, t1, XM.('XM./Field));
QUTPUT(p) ;

See Also: PARSE, RECORD Structure, TRANSFORM Structure, DATASET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
95

ECL Language Reference
Reserved Keywords

Reserved Keywords

ALL

ALL

The ALL keyword specifies the set of all possible values when used as the default value for apassed SET parameter
or as asubstitute for a SET in operations that expect a defined SET of values.

Example:

M/Func(STRI NGL val, SET OF STRINGL S=ALL) := val IN S
[/ check for presence in passed set, if passed

SET OF | NTEGER4 MySet : = | F(SoneConditi on=TRUE,
[88888, 99999, 66666, 33333, 55555] , ALL) ;
M/Recs := MyFile(Zip IN MySet);

See Also: SET OF, Attribute Functions (Parameter Passing)

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
96

ECL Language Reference
Reserved Keywords

EXCEPT

EXCEPT fieldlist

fields A comma-delimited list of datafieldsin a RECORD structure.

The EXCEPT keyword specifiesalist of fields not to usein a SORT, GROUP, DEDUP, or ROLLUP operation. This
allows you to perform the operation on all fields in the RECORD EXCEPT those fields you name, making the code
more readable and maintainable.

Example:

x := DATASET([{' Taylor','Richard','Jackson' ,'M},
{' Taylor','David' ,'Boca' ,'M},
{'Taylor',"Rita’" ,'Boca ,'F},
{"Smith' ,'Richard,'Mansfield ,'M},
{"Smith'" ,'Gscar' ,'Boca' ,'M},
{*Smth' ,"Rita" ,'Boca" ,'F}],
{STRI NG10 | nane, STRI NGLO fnane,
STRINGLO city, STRINGL sex });
SORT(x, EXCEPT sex); //sort on all fields but sex

y
QUTPUT(y)

See Also: SORT, GROUP, DEDUP, ROLLUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
97

ECL Language Reference
Reserved Keywords

EXPORT

EXPORT [VIRTUAL] definition

VIRTUAL Optional. Specifies the definition is VIRTUAL. Valid only inside a MOD-
ULE Structure.
definition A valid definition.

The EXPORT keyword explicitly allows other definitions to import the specified definition for use. It may be IM-
PORTed from code in any folder, thereforeits visibility scopeis global.

ECL code is stored in .ecl text files which may only contain a single EXPORT or SHARED definition. This defini-
tion may be a structure that allows EXPORT or SHARED definitions within their boundaries (such as MODULE,
INTERFACE, TYPE, etc.). The name of the .ecl file containing the code must exactly match the name of the single
EXPORT (or SHARED) definition that it contains.

Definitions without the EXPORT or SHARED keywords arelocal to the file within which they reside (see Definition
Visibility). A local definition's scope is limited to the next SHARED or EXPORT definition, therefore they must
precede that file's EXPORT or SHARED definition.

Example:

EXPORT MyDefinition := 5;
/1 allows other definitions to use M/Modul e. MyDefinition if they inport M/Mdul e
/] the filenane nust be MyDefinition.ecl

//and in Anot herDef.ecl we have this code:
EXPORT Anot her Def : = MODULE(x)

EXPORT INTEGER a := ¢ * 3;

EXPORT | NTEGER b : = 2;

EXPORT VIRTUAL INTEGER ¢ := 3; //this def is VIRTUAL
END;

See Also: IMPORT, SHARED, Definition Visibility, MODULE Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
98

ECL Language Reference
Reserved Keywords

GROUP keyword

GROUP

The GROUP keyword is used within output format parameter (RECORD Structure) of a TABLE definition where
optional group by expressions are also present. GROUP replaces the recordset parameter of any aggregate built-in
function used in the output to indicate the operation is performed for each group of the expression. Thisis similar to
an SQL “GROUP BY” clause. The most common usage is to output atable as a crosstab report.

Thereis aso a GROUP built-in function which provides a similar functionality.

Example:

A : = TABLE(Person, { per_st, per _sex, COUNT(GROUP) }, per _st, per _sex);
/'l create a crosstab report of each sex in each state

See Also: TABLE, COUNT, AVE, MAX, MIN, SUM, VARIANCE, COVARIANCE, CORRELATION, COMBINE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
99

ECL Language Reference
Reserved Keywords

IMPORT

IMPORT module-selector-list;

IMPORT folder ASalias;

IMPORT symbol-liss FROM folder ;

IMPORT language;

modul e-selector-list A comma-delimited list of folder or file namesin therepository. The dollar sign ($) makes

al definitions in the current folder available. The caret symbol (*) can be used as short-
hand for the container of the current folder. Using a caret within the module specifier
(such as, myModule.) selects the container of that folder. A leading caret specifies the
logical root of thefile tree.

folder A folder or file name in the repository.

AS Defines alocal alias name for the folder, typically used to create shorter local names for
easier typing.

alias The short name to use instead of the folder name.

symbol-list A comma-delimited list of definitions from the folder to make available without qualifi-
cation. A single asterisk (*) may be used to make all definitions from the folder available
without qualification.

FROM Specifies the folder name in which the symbol-list resides.

language Specifies the name of an external programming language whose code you wish to embed

in your ECL. A language support module for that language must have been installed in
your plugins directory. This makes the language available for use by the EMBED struc-
ture and/or the IMPORT function.

The IMPORT keyword makes EXPORT definitions (and SHARED definitions from the same folder) available for
use in the current ECL code.

Examples:

| MPORT $; [/ makes all definitions fromthe sanme fol der avail abl e

| MPORT $, Std; /I makes the standard library functions avail able, also

| MPORT MyModul e; /I makes avail abl e the definitions from My/Mdul e fol der

| MPORT $. ~. MYQt her Modul e // makes avail abl e the definitions from M/Q her Mdul e fol der,
/Iwhich is located in the sane container as the current folder

| MPORT $.~. 7. SoneCt her Modul e /I makes avail abl e the definitions from SoneQ her Modul e f ol der,
/Iwhich is located in the grandparent folder of current folder

| MPORT SoneFol der. SoneFi | e; /I make the specific file avail abl e

| MPORT SoneReal | yLongFol derNane AS SN; //alias the |ong name as " SN

| MPORT A as root; //allows access to non-nodul es defined in the root of the repository
| MPORT Def 1, Def 2 FROM Fr ed; /I makes Defl and Def2 from Fred fol der avail able, unqualified
| MPORT * FROM Fr ed; /I makes everything from Fred avail abl e, unqualified

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
100

ECL Language Reference
Reserved Keywords

| MPORT Dev. Me. Proj ect 1; /I makes the Dev/ Me/ Projectl fol der avail able
| MPORT Pyt hon; /I makes Python | anguage code enbeddabl e

See Also; EXPORT, SHARED, EMBED Structure, IMPORT function

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
101

ECL Language Reference
Reserved Keywords

KEYED and WILD

KEYED(expression[, OPT])

WILD(field)

expression An INDEX filter condition.

OPT Only generate An INDEX filter condition.
field A singlefield in an INDEX.

The KEYED and WILD keywords are valid only for filters on INDEX attributes (which also qualifies as part of the
joincondition for a “half-keyed” JOIN). They indicate to the compiler which of the leading index fields are used as
filters (KEYED) or wildcarded (WILD) so that the compiler can warn you if you've gotten it wrong. Trailing fields
not used in the filter are ignored (always treated as wildcards).

Therulesfor their use are asfollows (theterm “ segmonitor” refersto aninternal object created to represent the possible
match conditions for a single keyable field):

1. KEYED generates a segmonitor. The segmonitor may be awild oneif the expression can never be false, such as:
KEYED(i nputval ='"'" OR field = inputval)

2. WILD generates awild segmonitor, unlessthereis also a KEY ED() filter on the same field.

3. KEYED, OPT generates a non-wild segmonitor only if the preceding field did.

4. Any field that is both KEY ED and KEY ED OPT creates a compile time error.

5. 1f WILD or KEYED are not specified for any fields, segmonitors are generated for all keyable conditions.

6. An INDEX filter condition with no KEY ED specified generates awild segmonitor (except as specified by 5).

7. KEYED limits are based upon all non-wild segmonitors.

8. Conditions that do not generate segmonitors are post-filtered.

Example:

ds : = DATASET(' ~l ocal : : rkc: : person',
{ STRINGL5 f1, STRINGL5 f2, STRINGL5 f3, STRI NG5 f4,
UNSI GNED8 fil epos{virtual (fileposition)} }, FLAT);

ix := INDEX(ds, { ds },'\\lexis\\person.nane_first.key');

/*** Valid exanpl es ****/

COUNT(i x(KEYED(f 1="Kevinl')));
/'l 1egal because only f1 is used.

COUNT(i x(KEYED(f 1=" Kevi n2' and f2='Halliday')));
/1 | egal because both f1 and f2 are used

COUNT(i x(KEYED(f 2=" Kevi n3") and WLD(f1)));
/'l keyed f2, but ok because f1 is marked as wild.

COUNT(i x(f2="Halliday'));
/1 ok - if keyed isn't used then it doesn't have to have
/l awldon fl

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
102

ECL Language Reference
Reserved Keywords

COUNT(i x(KEYED(f 1=' Kevi n3') and KEYED(f2='Kevin4') and WLD(f1)));
/] it is ok to mark as wild and keyed ot herwi se you can get
/1l in a ness with conpound queries.

COUNT(i x(f1="Kevin3' and KEYED(f2='Kevin4') and WLD(f1)));
// can also be wild and a general expression.

[***Error exanples ***/

COUNT(i x(KEYED(f 3=' Kevi n3' and f2='Halliday')));
/1 mssing WLD(f1) before keyed

COUNT(i x(KEYED(f 3=' Kevi n3') and f2='Halliday'));
/1 mssing WLD(f1l) before keyed after valid field

COUNT(i x(KEYED(f 3=' Kevin3') and WLD(f2)));
/1l mssing WLD(f1) before a wild

COUNT(i x(WLD(f3) and f2='"Halliday'));
/1 mssing WLD(f1l) before wild after valid field

COUNT(ds(KEYED(f 1=" Kevin')));
// KEYED not valid in DATASET filters

See Also: INDEX, JOIN, FETCH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
103

ECL Language Reference
Reserved Keywords

LEFT and RIGHT

LEFT

RIGHT

TheLEFT and RIGHT keywordsindicate the left and right records of arecord set. These may be used to substitute as
parameters passed to TRANSFORM functions or in expressionsin functionswhere aleft and right record are implicit,
such as DEDUP and JOIN.

Example:
dup_flags := JO N(person, person,

LEFT. current _address_key=RI GHT. current _addr ess_key
AND fuzzy_equal , req_out put (LEFT, RI GHT)) ;

See Also; TRANSFORM Structure, DEDUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
104

ECL Language Reference
Reserved Keywords

ROWS(LEFT) and ROWS(RIGHT)

ROWS(LEFT)

ROWS(RIGHT)

The ROWS(LEFT) and ROWS(RIGHT) keywordsindicate the parameter being passed to the TRANSFORM func-
tionisarecord set. These are used in functions where adataset is being passed, such as COMBINE, ROLLUP, JOIN,
DENORMALIZE, and LOOP.

Example:

Nor mRec : = RECORD
STRI NG20 t henane;
STRI NG20 addr;
END;
NamesRec : = RECORD
UNSI GNED1 nunRows;
STRI NG20 t henane;
DATASET(Nor mRec) addr esses;
END;
NanmesTabl e : = DATASET([{O,'Kevin',[]},{0,"Liz",[]},
{0," M Nobody',[]},{0," Anywhere',[]}],
NarmesRec) ;
Nor mAddrs : = DATASET([{' Kevin','10 Malt Lane'},
{"Liz',"10 Malt Lane'},
{'Liz',"3 The cottages'},
{' Anywhere',"' Here'},
{' Anywhere', ' There'},
{' Anywhere',"' Near'},
{' Anywhere', "' Far'}], Nor nRec) ;
NamesRec DeNor niThen{ NanesRec L, DATASET(NormRec) R) : = TRANSFORM
SELF. NunRows : = COUNT(R);
SELF. addresses : = R;
SELF := L;
END;
DeNor medRecs : = DENORMALI ZE(NanmesTabl e, Nor mAddr s,
LEFT. t hename = RI GHT. t henane,
GROUP,
DeNor niThen{ LEFT, ROANS(RI GHT))) ;
QUTPUT(DeNor nedRecs) ;

See Also: TRANSFORM Structure, COMBINE, ROLLUP, JOIN, DENORMALIZE, LOOP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
105

ECL Language Reference
Reserved Keywords

SELF

SEL F.element
element The name of afield in the result type RECORD structure of a TRANSFORM structure.

The SELF keyword is used in TRANSFORM structures to indicate a field in the output structure. It should not be
used on the right hand side of any attribute definition.

Example:

Ages : = RECORD
| NTEGER8 Age; //a field naned “Age”
END;

TodaysYear := 2001;
Ages req_out put (person |) := TRANSFORM

SELF. Age : = TodaysYear - |.birthdate[1l..4];
END;

See Also: TRANSFORM Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
106

ECL Language Reference
Reserved Keywords

SHARED

SHARED [VIRTUAL] definition

VIRTUAL Optional. Specifies the definition is VIRTUAL. Valid only inside a MOD-
ULE Structure.
definition A valid definition.

The SHARED keyword explicitly allows other definitions within the same folder to import the specified definition
for use throughout the module/folder/directory (i.e. module scope), but not outside that scope.

ECL code is stored in .ecl text files which may only contain a single EXPORT or SHARED definition. This defini-
tion may be a structure that allows EXPORT or SHARED definitions within their boundaries (such as MODULE,
INTERFACE, TYPE, etc.). The name of the .ecl file containing the code must exactly match the name of the single
EXPORT (or SHARED) definition that it contains.

Definitions without the EXPORT or SHARED keywords arelocal to the file within which they reside (see Definition
Visibility). A local definition's scope is limited to the next SHARED or EXPORT definition, therefore they must
precede that file's EXPORT or SHARED definition.

Example:

//this code is contained in the GoodHouses. ecl file

BadPeopl e : = Person(EXI STS(trades(EXI STS(phr (phr_rate > '4"))));
/l1ocal only to the GoodHouses definition

SHARED GoodHouses : = Househol d(~EXI STS(BadPeopl €)) ;
/lavailable all thru the nodul e

//and in Anot herDef.ecl we have this code:
EXPORT Anot her Def : = MODULE(x)
EXPORT INTEGER a := ¢ * 3;
EXPORT | NTEGER b : = 2;
SHARED VI RTUAL | NTEGER c :
EXPORT VI RTUAL | NTECGER d :
EXPORT VI RTUAL | NTEGER e :
END;

3; //this def is VIRRTUAL
c + 3; //this def is VIRTUAL
c + 3; //this def is VIRTUAL

See Also: IMPORT, EXPORT, Definition Visibility, MODULE Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
107

ECL Language Reference
Reserved Keywords

SKIP

SKIP

SKIP isvalid for use only within a TRANSFORM structure and may be used anywhere an expression can be used
to indicate the current output record should not be generated into the result set. COUNTER values are incremented
even when SKIP eliminates generating the current record.

Example:

SequencedAges : = RECORD
Ages;
I NTEGER8 Sequence : = 0;

END;

SequencedAges AddSequence(Ages |, |INTEGER c) : = TRANSFORM
SELF. Sequence := IF(c %2 = 0, SKIP,c); //skip the even recs
SELF : = |;

END;

SequencedAgedRecs : = PRQJIECT(AgedRecs, AddSequence(LEFT, COUNTER)) ;

See Also: TRANSFORM Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
108

ECL Language Reference
Reserved Keywords

TRUE and FALSE

TRUE

FALSE
The TRUE and FAL SE keywords are Boolean constants.

Example:

Bool eanTrue : = TRUE;
Bool eanf al se : = FALSE;

See Also: BOOLEAN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
109

ECL Language Reference
Special Structures

Special Structures

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
110

ECL Language Reference
Special Structures

BEGINC++ Structure

resulttype funcname (parameterlist) := BEGINC++

code

ENDC++;

resulttype The ECL return value type of the C++ function.
funcname The ECL definition name of the function.
parameterlist The parameters to pass to the C++ function.
code The C++ function source code.

The BEGINC++ structure makes it possible to add in-line C++ code to your ECL. This is useful where string or bit
processing would be complicated in ECL, and would be more easily donein C++, typically for aone-off use. For more
commonly used C++ code, writing a plugin would be a better solution (see the External Service | mplementation
discussion).

The implementation must be written to be thread safe and any calls to external libraries must be made to thread safe
versions of those libraries.

WARNING: Thisfeaturecould create memory corruption and/or security issues, so great car eand for ethought
ar e advised—consult with Technical Support before using.

ECL to C++ Mapping

Types are passed as follows:

/1 The follow ng typedefs are used bel ow
typedef unsigned size32_t;
typedef wchar _t UChar; [unsigned short in |inux]

Thefollowing list describes the mappings from ECL to C++. For embedded C++ the parameters are always converted
to lower case, and capitalized in conjunctions (see below).

ECL C++ [Linux in brackets]
BOOCOLEAN xyz bool xyz

I NTEGER1 xyz signed char xyz

| NTEGER2 xyz signed short xyz

| NTEGER4 xyz signed int xyz

| NTEGER8 xyz signed __int64 xyz [long |long]
UNSI GNED1 xyz unsi gned char xyz

UNSI GNED2 xyz unsi gned short xyz

UNSI GNED4 xyz unsi gned int xyz

UNSI GNED8 xyz unsigned __int64 xyz [unsigned long |ong xyz]
REAL4 xyz fl oat xyz

REAL/ REAL8 xyz doubl e xyz

DATA xyz size32_t |lenXyz, void * xyz

STRI NG xyz size32_t |enXyz, char * xyz
VARSTRI NG xyz char * xyz;

QSTRI NG xyz size32_t |lenXyz, char * xyz

UNI CODE xyz size32_t |enXyz, UChar * xyz
VARUNI CODE xyz UChar * xyz

DATA<Nn> xyz
STRI NG=nn> xyz
QSTRI NG=nn> xyz
UNI CODE<nn> xyz
SET OF ... Xxyz

void * xyz
char * xyz
char * xyz
UChar * xyz
bool isAll Xyz,

size32_t lenXyz, void * xyz

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

111

ECL Language Reference
Special Structures

Note that strings of unknown length are passed differently from those with a known length. A variable length input
string is passed as a number of characters, not the size (i.e. gstring/unicode), followed by a pointer to the data, like
this (size32_t isan UNSIGNED4):

STRING ABC -> size32_t |enAbc, const char * abc;
UNI CODE ABC -> size32 t |enABC, const UChar * abc;

A dataset is passed as asize/pointer pair. The length gives the size of the following dataset in bytes. The same naming
convention is used:

DATASET(r) ABC -> size32_t |enAbc, const void * abc
The rows are accessed as x+0, x + length(rowl), x + length(rowl) + |ength(row?)

LI NKCOUNTED DATASET(r) ABC -> size32_t count Abc, const byte * * abc
The rows are accessed as x[0], x[1], x[2]

NOTE: variable length strings within arecord are stored as a4 byte number of characters, followed by the string data.
Sets are passed as a set of parameters (all, size, pointer):
SET OF UNSI GNED4 ABC - > bool isAll Abc, size32_t |enAbc, const void * abc

Return types are handled as C++ functions returning the same types with some exceptions. The exceptions have some
extrainitial parametersto return the resultsin:

ECL C++ [Linux in brackets]

DATA xyz size32 t & lenResult, void * & _ result

STRI NG xyz size32 t & lenResult, char * & _result

CONST STRI NG xyz size32_t |lenXyz, const char * xyz

@STRI NG xyz size32 t & lenResult, char * & _result

UNI CODE xyz size32_t & _lenResult, UChar * & _ result

CONST UNI CODE xyz size32_t & _ lenResult, const UChar * & _ result
DATA<nn> xyz void * _result

STRI NG<nn> xyz char * _result

QSTRI NG=nn> xyz char * __result
UNI CODE<nn> xyz UChar * _ result
SET OF ... xyz bool _ isAllResult, size32 .t & _ lenResult, void * & _result

DATASET(r) size32 t & lenResult, void * & _ result

LI NKCOUNTED DATASET(r)
size32_t & _ countResult, byte * * & _result

STREAMED DATASET(r)
returns a pointer to an | RowStream i nterface
(see the ecl hel per.hpp include file for the definition)

For example,
STRI NG process(STRI NG val ue, | NTEGER4 | en)

has the prototype:

voi d process(size32_t & _lenResult, char * & _ result,
size32_t | enValue, char * value, int len);

A function that takes a string parameter should also have the type prefixed by const in the ECL code so that modern
compilers don't report errors when constant strings are passed to the function.

BOOLEAN i sUpper (const string nystring) := BEG NC++
size_t i=0;
while (i < | enMystring)
{
if (!isupper((byte)nystring[i]))
return fal se;
i ++;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
112

ECL Language Reference
Special Structures

}

return true;
ENDC++;

i sUpper('JIM);

Available Options

function without side effects.

#option pure By default, embedded C++ functions are assumed to have side-effects, which means
the generated code won't be as efficient as it might be since the calls can't be shared.
Adding #option pure inside the embedded C++ code causes it to be treated as a pure

the function in some cases.

#option once Indicatesthefunction hasno side effectsand isevaluated at query executiontime, even
if the parameters are constant, allowing the optimizer to make more efficient calls to

#option action Indicates side effects, requiring the optimizer to keep al cals to the function.

inside the function definition.

#body Delimits the beginning of executable code. All code that precedes #body (such as#in-
clude) is generated outside the function definition; all code that followsit is generated

Example:

/lstatic int add(int x,int y) {

| NTEGER4 add(| NTEGER4 x, |NTEGER4 y) := BEG NC++
#opti on pure
return x +y;

ENDC++;

QUTPUT(add(10, 20)) ;

/lstatic void reverseString(size32_t & _ lenResult,char * & _ result,
/] size32_t |enValue,char * value) {
STRI NG reverseStri ng(STRI NG val ue) : = BEG NC++

size32_t len = | enVal ue;

char * out = (char *)rtl Malloc(len);

for (unsigned i=0; i < len; i++)

out[i] = value[len-1-i];

__lenResult = len;

__result = out;
ENDC++;

OQUTPUT(reverseString(' Kevin'));
// This is a function returning an unknown |ength string via the
/1 special reference paraneters _ lenResult and _ result

//this function denobnstrates #body, allow ng #i nclude to be used
BOOLEAN nocasel nLi st (STRI NG sear ch,
SET OF STRI NG val ues) := BEG NC++

#i ncl ude <string. h>
#body

if (isAllValues)

return true;

const byte * cur = (const byte *)val ues;

const byte * end = cur + |enVal ues;

while (cur != end)

{

unsi gned | en = *(unsi gned *)cur;

cur += si zeof (unsi gned) ;

if (lenSearch == len && nem cnp(search, cur, len) == 0)

return true;
cur += |len;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
113

ECL Language Reference
Special Structures

}

return fal se;
ENDC++;

/land anot her exanpl e, generating a variable nunber of Xes
STRI NG bui I dStri ng(| NTEGER4 val ue) : = BEG NC++
char * out = (char *)rtl Mall oc(val ue);
for (unsigned i= 0; i < value; i++)
out[i] ="'X;
__lenResult = val ue;
__result = out;
ENDC++;

/| exanpl es of enbedded, LI NKCOUNTED, and STREAMED DATASETSs
inRec := { unsigned id };

doneRec : = { unsigned4 execid };

outlrec := { unsigned id; };

out2rec := { real id; };

DATASET(doneRec) doSonet hi ngNast y(DATASET(i nRec) input) := BEG NC++

__lenResult = 4;

_result =rtlMlloc(8);

*(unsigned *)_result = 91823;
ENDC++;

DATASET(out 1Rec) extract Result 1(doneRec done) := BEG NC++
const unsigned id = *(unsigned *)done;
const unsigned cnt = 10;

__lenResult = cnt * sizeof(unsigned __int64);
_result =rtlMlloc(__lenResult);
for (unsigned i=0; i < cnt; i++)
((unsigned __int64 *)_result)[i] =id + i + 1;
ENDC++;
LI NKCOUNTED DATASET(out 2Rec) extract Resul t 2(doneRec done) := BEG NC++

const unsigned id = *(unsigned *)done;

const unsigned cnt = 10;

__countResult = cnt;

_result = _resultAllocator->creat eRowset (cnt);
for (unsigned i=0; i < cnt; i++)

size32_t allocSize;

void * row = _resultAllocator->createRow allocSize);
*(double *)row =id + i + 1;
_result[i] = (byte *)_resultAllocator->finalizeRow allocSize, row, allocSize);
}
ENDC++;
STREAMED DATASET(out 1Rec) extract Resul t 3(doneRec done) := BEGQ NC++
class nyStream: public | RowStream public RtlClnterface
{
public:

my St r ean(| Engi neRowAl | ocator * _allocator, unsigned _id) : allocator(_allocator), id(_id), idx(0) {}
RTLI MPLEMENT _I | NTERFACE

virtual const void *next Row()

if (idx >= 10)
return NULL;
size32_t allocSi ze;
void * row = al |l ocat or->creat eRow al | ocSi ze);
*(unsigned __int64 *)row = id + ++idx;
return allocator->finalizeRow allocSize, row, allocSize);

}
virtual void stop() {}

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
114

ECL Language Reference
Special Structures

private:

unsi gned i d;

unsi gned i dx;

Li nked<Il Engi neRowAl | ocat or > al | ocat or;
I
#body
const unsigned id = *(unsi gned *)done;
return new nyStreanm(_resultAllocator, id);

ENDC++;

ds := DATASET([1,2,3,4], inRec);

processed : = doSonet hi ngNast y(ds);

out1l := NORMALI ZE(processed, extractResult1(LEFT), TRANSFORM RI GHT));
out2 := NORMALI ZE(processed, extractResult2(LEFT), TRANSFORM RI GHT));
out 3 : = NORMALI ZE(processed, extractResul t 3(LEFT), TRANSFORM RI GHT));

SEQUENTI AL(QUTPUT(out 1) , OUTPUT(out 2) , QUTPUT(out 3)) ;

See Also: External Service Implementation, EMBED Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
115

ECL Language Reference
Special Structures

EMBED Structure

resulttype funcname (parameterlist) := EMBED(language)

code
ENDEMBED;

resulttype funcname (parameterlist) := EMBED(language, code);

resulttype The ECL return value type of the function.

funcname The ECL definition name of the function.

parameterlist The parameters to pass to the function.

language The name of the programming language being embedded. A language support module

for that language must have been installed in your plugins directory. Modules are pro-
vided for languages such as Java, R, Javascript, and Python. Y ou can write your own
pluggable language support module for any language not already supported by using
the supplied ones as examples or starting points.

code The source code to embed.

The EMBED structure makes it possible to add in-line language code to your ECL. Thisis similar to the BEGINC+
+ structure, but available for any language with a pluggable language support module installed, such as R, Javascript,
and Python. Others may follow or people can write their own using the supplied ones as templates/exampl es/starting
points. This may be used to write Javascript, R, or Python code, but is not usable with Java code (use the IMPORT
function for Java code).

The parameter types that can be passed and returned will vary by language, but in general the simple scalar types
(INTEGER, REAL, STRING, UNICODE, BOOLEAN, and DATA) and SETs of those scalar types are supported, so
long as there is an appropriate data type in the language to map them to.

The first form of EMBED is the structure that must terminate with ENDEMBED. This may contain any code in the
supported language.

The second form of EMBED is a self-contained function. The code parameter contains all the code to execute, making
this useful only for very simple expressions.

WARNING: Thisfeaturecould create memory corruption and/or security issues, so great careand for ethought
are advised—consult with Technical Support before using.

Example:

/IFirst form a structure
I MPORT Pyt hon; //make Pyt hon | anguage avail abl e

I NTEGER addone(| NTEGER p) := EMBED(Pyt hon)
Python code that returns one nore than the val ue passed to it
if p < 10:
return p+1
el se:
return 0
ENDEMBED;

// Second form a function
I NTEGER addt wo(| NTEGER p) := EMBED(Python, 'p+2');

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
116

ECL Language Reference
Special Structures

See Also: BEGINC++ Structure, IMPORT, IMPORT function

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
117

ECL Language Reference
Special Structures

FUNCTION Structure

[resulttype] funcname (parameterlist) := FUNCTION

code

RETURN retval;

END;

resulttype The return value type of the function. If omitted, the type is implicit from the retval
expression.

funcname The ECL attribute name of the function.

parameterlist The parameters to pass to the code. These are available to all attributes defined in the
FUNCTION's code.

code Thelocal attribute definitions that comprise the function. These may not be EXPORT
or SHARED attributes, but may include actions (like OUTPUT).

RETURN Specifies the function's return value expression—the retval.

retval The value, expression, recordset, row (record), or action to return.

The FUNCTION structure allows you to pass parameters to a set of related attribute definitions. This makes it pos-
sible to pass parameters to an attribute that is defined in terms of other non-exported attributes without the need to
parameterise all of those as well.

Side-effect actions contained in the code of the FUNCTION must have definition names that must be referenced by
the WHEN function to execute.

Example:

EXPORT doPr oj ect Chi | d(parent Record |, UNSI GNED i dAdj ust 2) := FUNCTI ON
newChi | dRecord copyChil d(chil dRecord |) := TRANSFORM
SELF. person_id : = |.person_id + idAdjust?2;

SELF :

END;

RETURN PRQJECT(CHOOSEN(| . chi | dren, nuntChil dren), copyChil d(LEFT));

END;

/1 And called from
SELF. children : = doProjectChild(l, 99);

//**********************************

EXPORT i sAnyRat eGE(STRINGL rate) := FUNCTI ON
Set Val i dRates :=['0","1","2","'3",'4",'5",'6','7"',"8","'9"];
IsVal i dTradeRate : = ValidDate(Trades.trd_drpt) AND

Trades.trd_rate >= rate AND
Trades.trd _rate I N SetVal i dRat es;

Val i dPHR : = Prev_rate(phr_grid_flag = TRUE,

phr_rate I N SetVali dRat es,
Val i dDat e(phr _date));

| sPHRG i dRate : = EXI STS(Val i dPHR(phr _rate >= rate,

AgeCx (phr _dat e) <=24));

| sMaxPHRRat e : = MAX(Val i dPHR(AgeOf (phr _date) > 24),

Prev_rate. phr_rate) >= rate;

RETURN | sVal i dTradeRate OR | sPHRG i dRat e OR | sMaxPHRRat €;

END;

//***

//a FUNCTION with side-effect Action

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
118

ECL Language Reference
Special Structures

nanmesTabl e : = FUNCTI ON
nanesRecord : = RECORD
STRI N&0 sur nane,
STRI NGLO forenane;
| NTECER2 age : = 25;
END;
0 := QUTPUT(' nanesTabl e used by user <x>');
ds := DATASET([{'x','y',22}], namesRecord);
RETURN WHEN(ds, O) ;
END;
z := namesTable : PERSIST('z');
//the PERSI ST causes the side-effect action to execute only when the PERSIST is re-built

QUTPUT(z) ;

//***

/la coordinated set of 3 exanples

NaneRec : = RECORD
STRINGE title;
STRI N&0 f nane;
STRI N&0 mmane;
STRI N&0 | nane;
STRI NG5 nane_suf fi x;
STRI NG3 name_scor e;

END;
M/Record : = RECORD
UNSI GNED i d;

STRI NG uncl eanedNane;
NanmeRec Nane;

END;
ds : = DATASET(' RTTEST: : Rowruncti onData', MyRecord, THOR);
STRI NG73 Cl eanPer son73(STRI NG i nput Nane) : = FUNCTI ON
suffix :=[* 0 ," 21',' 2'," 3, 4, 5,"6, 7, 8, 9,

"3, JR," S," SR];
InWords := Std. Str. Cl eanSpaces(i nput Nane) ;
HasSuffix := | nWrds[LENGTH(TRIM | nWords))-1 ..] IN suffix;
Wor dCount LENGTH(TRI M | nWr ds, LEFT, RI GHT)) -
LENGTH(TRI M | nWords, ALL)) + 1;
HasM ddl e : = WordCount = 5 OR (WrdCount = 4 AND NOT HasSuffix) ;

Spl := Std. Str. Find(InWrds,' ',1);
Sp2 := Std. Str. Find(I nWords,"' ', 2);
Sp3 := Std. Str. Find(InWrds,' ', 3);
Sp4 := Std. Str. Find(I nWords,"' ',4);
STRINGS title := I nWrds[1..Spl-1];

STRI N&0 f nane :
STRI N&0 mane :
STRI N&0 | nane :

| nWor ds[Sp1+1. . Sp2-1];
| F(HasM ddl e, | nWr ds[Sp2+1. . Sp3-1],"'");
MAP(HasM ddl e AND NOT HasSuffix => | nWords[Sp3+1..],
HasM ddl e AND HasSuffix => | nWrds[Sp3+1. . Sp4-1],
NOT HasM ddl e AND NOT HasSuffix => | nWords[Sp2+1. .],
NOT HasM ddl e AND HasSuffix => | nWrds[Sp2+1. . Sp3-1],
)
STRI NG5 nane_suffix := | F(HasSuffi x, | nWor ds[LENGTH(TRI M I nWords))-1..1,"");
STRI NG3 nanme_score :="";
RETURN title + fname + mmane + | nane + nanme_suffix + name_score;
END;

//Exanple 1 - a transformto create a row from an uncl eaned nanme
NanmeRec createRow(string i nput Name) := TRANSFORM
cl eanedText := Local Addr Cl eanLi b. C eanPer son73(i nput Nane) ;

SELF.title := cl eanedText[1..5];
SELF. f name : = cl eanedText[6. . 25];
SELF. mane : = cl eanedText[26. . 45];
SELF. | nane : = cl eanedText [46. . 65];

SELF. nane_suffix := cl eanedText [66..70];

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
119

ECL Language Reference
Special Structures

SELF. nane_score : = cleanedText[71..73];

END;

myRecord t(nyRecord |) := TRANSFORM
SELF. Nane : = RON creat eRow(| . uncl eanedNane)) ;
SELF : = 1|;

END;

y 1= PROJECT(ds, t(LEFT));

QUTPUT(y) ;

//Exanple 2 - an attribute using that transformto generate the row

NanmeRec cl eanedNane(STRI NG i nput Nane) : =
nmyRecord t2(nmyRecord |) := TRANSFORM

ROW cr eat eRow(i nput Nane)) ;

SELF. Nane : = cl eanedNane(| . uncl eanedNane) ;
SELF : = |;
END;
y2 := PROJECT(ds, t2(LEFT));
QUTPUT(y2) ;
// Exanpl e 3 = Encapsul ate the transforminside the attribute by

/] defining a FUNCTI ON.

NanmeRec cl eanedNane2(STRI NG i nput Nane) : =
NanmeRec creat eRow : = TRANSFORM

cl eanedText : =

SELF.title := cleanedText[1..5];

SELF. f name : = cl eanedText[6. . 25];

SELF. mane : = cl eanedText[26. . 45];

SELF. | nane : = cl eanedText [46. . 65];

SELF. name_suffix : = cl eanedText[66..70];

SELF. nane_score : = cl eanedText[71..73];
END;

RETURN ROW cr eat eRow) ;
END;

nmyRecord t3(nyRecord |) := TRANSFORM

FUNCTI ON

Local Addr O eanLi b. G eanPer son73(i nput Nane) ;

SELF. Nane : = cl eanedNanme2(| . uncl eanedNane) ;
SELF : = |;
END;
y3 : = PROJECT(ds, t3(LEFT));
QUTPUT(y3) ;
/| Exanpl e usi ng MODULE structure to return nultiple values froma FUNCTI ON
Oper at eOnNunber s(Nurmber 1, Number 2) : = FUNCTI ON
result := MODULE
EXPORT Mul tiplied = Nunmber1l * Nunber 2;
EXPORT Differenced : = Nunberl - Nunber2;

EXPORT Sunmed
END,;
RETURN resul t;
END;

Nunber 1 + Nunber 2;

Oper at eOnNunber s(23, 22) .
Oper at eOnNunber s(23, 22) .
Oper at eOnNunber s(23, 22) .

Ml tiplied;
Di f f erenced;
Sunmed;

See Also; MODULE Structure, TRANSFORM Structure, WHEN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

120

ECL Language Reference
Special Structures

FUNCTIONMACRO Structure

[resulttype] funcname (parameterlist) := FUNCTIONMACRO

code

RETURN retval;

ENDMACRO;

resulttype The return value type of the function. If omitted, the type is implicit from the retval
expression.

funcname The ECL definition name of the function/macro.

parameterlist A list of names (tokens) of the parameters that will be passed to the function/macro.
These names are used in the code and retval to indicate where the passed parameter
values are substituted when the function/macro is used. Vaue types for these parame-
tersare not allowed, but default values may be specified as string constants.

code The local definitions that comprise the function. These may not be EXPORT or
SHARED, but may include actions (like OUTPUT).

RETURN Specifies the return value expression—the retval.

retval The value, expression, recordset, row (record), or action to return.

The FUNCTIONMACRO structure is a code generation tool, like the MACRO structure, coupled with the code
encapsulation benefits of the FUNCTION structure. One advantage the FUNCTIONMACRO has over the MACRO
structure is that it may be called in an expression context, just like a FUNCTION would be.

Unlike the MACRO structure, #UNIQUENAME is not necessary to prevent internal definition name clasheswhen the
FUNCTIONMACRO is used multiple timeswithin the samevisibility scope. However, the LOCAL keyword must be
explicitly used within the FUNCTIONMACRO if adefinition namein its code may also have been defined outside the
FUNCTIONMACRO and within the same visibility scope -- LOCAL clearly identifies that the definition is limited
to the code within the FUNCTIONMACRO.

Example:

This example demonstrates the FUNCTIONMACRO used in an expression context. It also shows how the FUNC-
TIONMACRO may be called multiple times without name clashes from its internal definitions:

EXPORT Fi el d_Popul ation(infile,infield, conpareval) := FUNCTI ONMACRO
cl := COUNT(infile(infield=conpareval));

c2 := COUNT(infile);
RETURN DATASET([{' Tot al

Records', c2},

{' Recs=' + #TEXT(conpareval), cl},
{' Popul ation Pct', (I NTEGER) (((c2-c1)/c2)* 100.0)}],
{ STRI NG15 val uet ype, | NTEGER val });

ENDVACRO,
dsl :=dataset([{"M}, {"M}, {"M}, {""},{""},{"M},{""}, "M}, {"M},{""}], {STRINGL Gender});
ds2 := dataset ([{" "}, {"M}, {"M}, {""},{""}, UM}, {""},{""},{"M},{""}],{STRINGL Gender});

OUTPUT(Fi el d_Popul ati on(ds1, Gender,
OUTPUT(Fi el d_Popul ati on(ds2, Gender, '

"))
"))

This example demonstrates use of the LOCAL keyword to prevent name clashes with external definitions within the
same visihility scope asthe FUNCTIONMACRO:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

121

ECL Language Reference
Special Structures

nunPlus := 'this creates a syntax error without LOCAL in the FUNCTI ONMACRO ;
AddOne(nun) : = FUNCTI ONVACRO

LOCAL nunPlus := num + 1; [/ LOCAL required here

RETURN nunPl us;
ENDVACRO,

AddTwo(num) : = FUNCTI ONMACRO
LOCAL nunPlus := num + 2; [/ LOCAL required here
RETURN nunPl us;

ENDVACRG,

nunPl us;
AddOne(5) ;
AddTwo(8) ;

See Also; FUNCTION Structure, MACRO Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
122

ECL Language Reference
Special Structures

INTERFACE Structure

interfacename [(parameters)] := INTERFACE [(inherit)]

members;

END;

interfacename The ECL definition name of the interface.

parameters Optional. The input parametersto the interface.

inherit Optional. A comma-delimited list of INTERFACE structures whose members to in-

herit. This may not be a passed parameter. Multiple inherited interfaces may contain
attributes with the same name if they are the same type and receive the same parame-
ters, but if those inherited members have different values defined for them, the conflict
must be resolved by overriding that member in the current instance.

members Definitions, which may be EXPORTed or SHARED. These may be similar to fields
defined in a RECORD structure where only the type and name are defined—the ex-
pression that defines the value may be left off (except in some cases where the expres-
sion itself defines the type of definition, like TRANSFORM structures). If no default
value is defined for a member, any MODULE derived from the INTERFACE must
define avaue for that member before that MODULE can be used. These may not in-
clude other INTERFACE or abstract MODULE structures.

The NTERFACE structure defines astructured block of related membersthat may be passed as a single parameter to
complex queries, instead of passing each attributeindividually. Itissimilar toaMODULE structurewiththe VIRTUAL
option, except errors are given for private (not SHARED or EXPORTed) member definitions.

An INTERFACE is an abstract structure—a concrete instance must be defined before it can be used in a query. A
MODULE structure that inheritsthe INTERFACE and definesthe valuesfor the member s creates the concreteinstance
for use by the query.

Example:

Header Rec : = RECORD
UNSI GNED4 Recl D;
STRI N&20 conpany;
STRI NG5 address;
STRING25 city;
STRI N& state;
STRI NG5 Zi p;
END;
Header Fil e : = DATASET([{1,' ABC Co','123 Muin','Boca Raton','FL','33487'},
{2,' XYZ Co',"'456 High','Jackson','M"',"'49202'},
{3,"ABC Co','619 Eaton','Jackson','M"', '49202'},
{4,' XYZ Co','999 Yanato',' Boca Raton','FL','33487'},
{5,"' Joes Eats','666 Slippery Lane','Nether','SC ,'12345"'}
], Header Rec) ;

//define an interface

| Header Fi | eSearch : = | NTERFACE
EXPORT STRI NG20 conpany_val ;
EXPORT STRI NG2 state_val;
EXPORT STRIN&5 city_val :=""

END;

//define a function that uses that interface
Fet chAddr ess(| Header Fi | eSearch opts) := FUNCTI ON

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
123

ECL Language Reference
Special Structures

[/ define passed val ues tests
ConpanyPassed : = opts. conpany_val <>
St at ePassed : = opts.state val <> '';
CityPassed := opts.city_val <> "'"';

// define passed value filters

NFi |l ter := HeaderFile.Conpany = opts.conpany_val ;
SFilter := HeaderFile.State = opts.state_val;
Crilter := HeaderFile.City = opts.city_val;

//define the actual filter to use based on the passed val ues
filter : = MAP(ConpanyPassed AND St at ePassed AND Ci t yPassed
=> NFilter AND SFilter AND CFilter,
ConpanyPassed AND St at ePassed
=> NFilter AND SFilter ,
ConpanyPassed AND Ci t yPassed
=> NFilter AND CFilter,
St at ePassed AND Ci t yPassed
=> SFilter AND CFilter,
ConpanyPassed => NFilter |,
St at ePassed => SFilter ,
CtyPassed => CFilter,
TRUE) ;
RETURN HeaderFile(filter);
END;

//***

//then you can use the interface

InRec := {Header Rec AND NOT [Recl D, Addr ess, Zi p] };
//this MODULE creates a concrete instance
Bat chHeader Search(I nRec |) := MODULE(| Header Fi | eSear ch)
EXPORT STRI NGL20 conpany_val := |.conpany;
EXPORT STRIN& state val :=|.state;
EXPORT STRING&25 city val :=1.city;
END;

//that can be used like this
Fet chAddr ess(Bat chHeader Sear ch(RON{' ABC Co',"'"',"'"'},InRec)));

//or we can define an input dataset
InFile := DATASET([{' ABC Co',' Boca Raton','FL'},
{' XYZ Co',"'Jackson','M"'},

{"ABC Co',"',""},
{'XYZ Co', 't),
{'Joes Eats','',''}
], 1 nRec);

//and an output nested child structure
Header Recs : = RECORD

UNSI GNED4 Pass;

DATASET(Header Rec) Headers;
END;

//and all ow PRQJECT to run the query once for each record in InFile
Header Recs XF(InRec L, INTEGER C) := TRANSFORM
SELF. Pass := G
SELF. Header s : = Fet chAddr ess(Bat chHeader Sear ch(L));
END;
bat chHeader Lookup : = PRQIECT(I nFi | e, XF(LEFT, COUNTER)) ;
bat chHeader Lookup;

See Also: MODULE Structure, LIBRARY

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
124

ECL Language Reference
Special Structures

MACRO Structure

[resulttype] macroname (parameterlist) := MACRO

tokenstream;

ENDMACRO;

resulttype Optional. The result type of the macro. The only valid type is DATASET. If omitted
and the tokenstream contains no Attribute definitions, then the macro is treated as
returning avalue (typically INTEGER or STRING).

macroname The name of the function the MACRO structure defines.

parameterlist A list of names(tokens) of the parametersthat will be passed to the macro. These names
are used in the tokenstream to indicate where the passed parameters are substituted
when the macro is used. Value types for these parameters are not allowed, but default
values may be specified as string constants.

tokenstream The Attribute definitions or Actions that the macro will perform.

The MACRO structure makes it possible to create a function without knowing the value types of the parameters that
will eventually be passed to it. The most common use would be performing functions upon arbitrary datasets.

A macro behaves as if you had typed the tokenstream into the exact position you use it, using lexical substitution—
the tokens defined in the parameterlist are substituted everywhere they appear in the tokenstream by the text passed
to the macro. This makes it entirely possible to write a valid MACRO definition that could be called with a set of
parameters that result in obscure compile time errors.

There are two basic type of macros: Value or Attribute. A Value macro does not contain any Attribute definitions, and
may therefore be used wherever the value type it will generate would be appropriate to use. An Attribute macro does
contain Attribute definitions (detected by the presence of the := in the tokenstream) and may therefore only be used
where an Attribute definition is valid (a line by itself) and one item in the parameterlist should generally name the
Attribute to be used to contain the result of the macro (so any code following the macro call can make use of theresult).

Example:

/1 This is a DATASET Val ue nmacro that results in a crosstab
DATASET CrossTab(File, X,Y) := MACRO
TABLE(Fil e, {X, Y, COUNT(GROUP)}, X Y)
ENDVACRO,
/1 and woul d be used something |like this:
OUTPUT(Cr ossTab(Per son, per son. per _st, Person. per _sex))
/1 this macro usage is the equival ent of:
I OUTPUT(TABLE(Per son, { per son. per _st, Person. per _sex, COUNT(GROUP) },
/| person. per_st, Person. per _sex)
/| The advantage of using this nacro is that it can be re-used to
/| produce another cross-tab w t hout recoding
/1 The followi ng macro takes a LeftFile and | ooks up a field of it in
/!l the RightFile and then sets a field in the LeftFile indicating if
/1 the | ookup worked.

I sThere(QutFile ,RecType, LeftFile, RightFile,Linkld ,SetField) := MACRO
RecType Trans(RecType L, RecType R) := TRANSFORM
SELF. SetField : = | F(NOT R Linkld,O,1);
SELF := L;
END;
QutFile := JON(LeftFile,
Ri ghtFil e,

LEFT. Li nkl d=RI GHT. Li nkl d,

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
125

ECL Language Reference
Special Structures

Trans(LEFT, Rl GHT) , LEFT OUTER);
ENDVACRO,

// and woul d be used sonething |ike this:
M/Rec : = RECORD

Per son. per _ci d;

Per son. per _st;

Per son. per _sex;

Fl ag: =FALSE;
END;
MyTabl el : = TABLE(Person(per_first_nanme[1] ='R), WRec);

MyTabl e2 : = TABLE(Person(per_first_nanme[1l] ="' R , per_sex='F'), M/Rec);
| sTher e(MyQut Tabl e, MyRec, MyTabl el, MyTabl e2, per _ci d, Fl ag)

/1 This macro call generates the follow ng code:
/'l MyRec Trans(M/Rec L, M/Rec R) := TRANSFORM

/Il SELF.Flag := | F(NOT R per_cid ,0,1);
/'l SELF := L;

/| END,

/1 MyQut Table := JO N(MyTabl el,

/1 MyTabl e2,

/| LEFT. per _ci d=RI GHT. per _ci d,
/| Trans(LEFT, Rl GHT),
/] LEFT OUTER);

OUTPUT(MyQut Tabl €) ;

//***

/1 This macro has defaults for its second and third paraneters

MyMac(Fi rst Parm yPar m=' 22" , zParm=' 42') := MACRO
FirstParm:= yParm + zParm
ENDVACRO,

// and woul d be used sonething |ike this:
MyMac (Fr ed)
/1 This macro call generates the follow ng code:
[l Fred := 22 + 42;

//***

// This macro uses #EXPAND

MAC join(attrname, leftDS, rightDS, |inkflags) := MACRO
attrnane := JO N(I ef t DS, ri ght DS, #EXPAND(| i nkf | ags));
ENDVACRO,

MAC_j oi n(J1, Peopl e, Property, ' LEFT. | D=RI GHT. Peopl el D, LEFT QUTER)
/| expands out to:
/1 J1 := JA N(Peopl e, Property, LEFT. | D=RI GHT. Peopl el D, LEFT OQUTER);

See Also: TRANSFORM Structure, RECORD Structure, #UNIQUENAME, #EXPAND

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
126

ECL Language Reference
Special Structures

MODULE Structure

modulename [(parameters)] := MODULE [(inherit)] [, VIRTUAL] [, LIBRARY (interface)] [, FORWARD]

members;

END;

modulename The ECL definition name of the module.

parameters Optional. The parameters to make available to all the definitions.

inherit A comma-delimited list of INTERFACE or abstract MODULE structures on which to
base this instance. The current instance inherits al the members from the base struc-
tures. This may not be a passed parameter.

members The definitions that comprise the module. These definitions may receive parameters,
may include actions (such asOUTPUT), and may usethe EXPORT or SHARED scope
types. These may not include INTERFACE or abstract MODULES (see below). If the
LIBRARY option isspecified, the definitions must exactly implement the EXPORTed
members of the interface.

VIRTUAL Optional. Specifies the MODULE defines an abstract interface whose definitions do
not require values to be defined for them.

LIBRARY Optional. Specifiesthe MODULE implements a query library interface definition.

interface Specifies the INTERFACE that defines the parameters passed to the query library.
The parameters passed to the MODULE must exactly match the parameters passed
to the specified interface.

FORWARD Optional. Delays processing of definitions until they are used. Adding ,FORWARD
toaMODULE delays processing of definitions within the module until they are used.
This has two main effects: It prevents pulling in dependencies for definitions that are
never used and it allows earlier definitionsto refer to later definitions. Note: Circular
referencesare till illegal.

The MODULE structure is a container that allows you to group related definitions. The parameters passed to the
MODULE are shared by all the related members definitions. Thisis similar to the FUNCTION structure except that

thereisno RETURN.

Definition Visibility Rules

The scoping rules for the members are the same as those previously described in the Definition Visibility discussion:

» Local definitions are visible only through the next EXPORT or SHARED definition (including members of the
nested MODULE structure, if the next EXPORT or SHARED definition isaMODULE).

» SHARED definitions are visible to al subsegquent definitions in the structure (including members of any nested
MODULE structures) but not outside of it.

» EXPORT definitionsare visiblewithin the M ODUL E structure (including member s of any subsequent nested MOD-
ULE structures) and outside of it .

Any EXPORT members may be referenced using an additional level of standard object.property syntax. For example,
assuming the EXPORT MyModuleStructure MODULE structure is contained in an ECL Repository module named
MyModule and that it contains an EXPORT member named MyDefinition, you would reference that definition as:

M/Modul e. MyModul eSt ruct ure. MyDefi nition

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL

Language Reference content licensed under Creative Commons public license.

127

ECL Language Reference
Special Structures

M/Mod : = MODULE
SHARED x : = 88;
y 1= 42;
EXPORT | nMbd : = MODULE // nested MODULE
EXPORT Vall := x + 10;
EXPORT Val2 :=y + 10;
END;
END;

MyMod. | nvbd. Val 1;
M/Mod. | nMod. Val 2;

MODULE Side-Effect Actions

Side-effect Actions are allowed in the MODULE only by using the WHEN function, asin this example:

/1 An Exanple with a side-effect action
EXPORT cust oner Nanes : = MODULE
EXPORT Layout := RECORD
STRI N&G20 sur nane;
STRI NGLO f or enane;
| NTEGER2 age : = 25;

END;

Act := OUTPUT(' custoner file used by user <x>');

EXPORT File := WHEN(DATASET([{'x"','y',22}], Layout), Act);
END;

BOOLEAN dolt := TRUE : STORED('dolt');
I F (dolt, OUTPUT(custonerNanes. File));
/1 This code produces two results: the dataset, and the string

Concrete vs. Abstract (VIRTUAL) Modules

A MODULE may contain amixture of VIRTUAL and non-VIRTUAL members. The rules are:

* ALL membersare VIRTUAL if the MODULE hasthe VIRTUAL option or isan INTERFACE

* A member isVIRTUAL if it is declared using the EXPORT VIRTUAL or SHARED VIRTUAL keywords
* A member isVIRTUAL if the definition of the same name in the inherited moduleis VIRTUAL.

» Some members can never be virtual — RECORD structures.

All EXPORTed and SHARED members of an inherited abstract module can be overridden by re-defining them in the
current instance, whether that current instance is abstract or concrete. Overridden definitions must exactly match the
type and parameters of the inherited members. Multiple inherited interfaces may contain definitions with the same
name if they are the same type and receive the same parameters, but if those inherited members have different values
defined for them, the conflict must be resolved by overriding that member in the current instance.

LIBRARY Modules

A MODULE with the LIBRARY option defines a related set of functions meant to be used as a query library (see
the LIBRARY function and BUILD action discussions). There are severa restrictions on what may be included in a
query library. They are:

* It may not contain side-effect actions (like OUTPUT or BUILD)

* It may not contain definitions with workflow services attached to them (such as PERSIST, STORED, SUCCESS,
etc.)

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
128

ECL Language Reference
Special Structures

It may only EXPORT:

 Dataset/recordset definitions

 Datarow definitions (such as the ROW function)
 Single-valued and Boolean definitions

And may NOT export:

Actions (like OUTPUT or BUILD)

TRANSFORM functions

Other MODULE structures

MACRO definitions

Example:

EXPORT filterDataset (STRI NG search, BOOLEAN onlyQ di es) := MODULE
f := namesTable; //local to the “g” definition
SHARED g := I F (onlyd dies, f(age >= 65), f);

[/ SHARED = visible only within the structure
EXPORT i ncl uded : = g(surnane != search);
EXPORT excl uded : = g(surnane = search);

[/ EXPORT = visible outside the structure

END;

filtered := filterDataset (' Halliday', TRUE);

QUTPUT(fi | tered.included,, NAMED(' | ncl uded'));

OQUTPUT(fi | tered. excl uded, , NAVED(' Excl uded'));

//same result, different coding style:
EXPORT filterDataset (BOOLEAN onl yd di es) : = MODULE
f := nanesTabl e;
SHARED g := I F (onlyd dies, f(age >= 65), f);
EXPORT i ncl uded(STRI NG search) := g(surnane <> search);
EXPORT excl uded(STRI NG search) := g(surname = search);
END;
filtered := filterDataset(TRUE);
QUTPUT(filtered.included('Halliday'),, NAVED(' | ncluded'));
OUTPUT(fi | terDataset (true).excluded(' Hal liday'),, NAMED("' Excl uded'));

/1 VI RTUAL exanpl es
Modl := MODULE, VIRTUAL //a fully abstract nodul e

EXPORT val := 1;
EXPORT func(| NTEGER sc) := val * sc;
END;

Mbd2 : = MODULE(Mbd1l) //instance

EXPORT val 3; //a concete nenber, overriding default val ue
//while func renmai ns abstract
END;
Mbd3 : = MODULE(Modl) //a fully concete instance
EXPORT func(| NTECER sc) := val + sc; //overrides inherited func
END;

OQUTPUT(Mbd2. func(5)); //result is 15
OQUTPUT(Mbd3. func(5)); //result is 6

/| FORWARD exanpl e
EXPORT MyModul e : = MODULE, FORWARD

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
129

ECL Language Reference
Special Structures

EXPORT | NTEGER f 00 :
EXPORT | NTEGER bar :
END;

My/Modul e. f oo;

bar ;
42;

See Also: FUNCTION Structure, Definition Visibility, INTERFACE Structure, LIBRARY, BUILD

TRANSFORM Structure

resulttype funcname (parameterlist) := TRANSFORM [, SKIP(condition)]

[locals]

SEL F.outfield := transformation;

END;

TRANSFORM (resulttype, assignments)

TRANSFORM (datarow)

resulttype The name of a RECORD structure Attribute that specifies the output format of the
function. Y ou may use TY PEOF here to specify a dataset. Any implicit relationality
of the input dataset is not inherited.

funcname The name of the function the TRANSFORM structure defines.

parameterlist The value types and labels of the parameters that will be passed to the TRANSFORM
function. These are usualy the dataset records or COUNTER parameters but are not
limited to those.

SKIP Optional. Specifies the condition under which the TRANSFORM function operation
is skipped.

condition A logical expression defining under what circumstances the TRANSFORM operation
does not occur. This may use data from the parameterlist in the same manner as a
transformation expression.

locals Optional. Definitions of local Attributes useful within the TRANSFORM function.
These may be defined to receive parameters and may use any parameters passed to
the TRANSFORM.

SELF Specifies the resulting output recordset from the TRANSFORM.

outfield The name of afield in the resulttype structure.

transformation

An expression specifying how to produce the value for the outfield. This may include
other TRANSFORM function operations (nested transforms).

assignments

A semi-colon delimited list of SELF.outfield:= transformation definitions.

datarow

A single record to transform, typically the keyword LEFT.

The TRANSFORM structure makes operations that must be performed on entire datasets (such as a JOIN) and any
iterative type of record processing (PROJECT, ITERATE, etc.), possible. A TRANSFORM defines the specific oper-
ations that must occur on a record-by-record basis. It defines the function that is called each time the operation that
uses the TRANSFORM needs to process record(s). One TRANSFORM function may be defined in terms of another,

and they may be nested.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

130

ECL Language Reference
Special Structures

The TRANSFORM structure specifies exactly how each field in the output record set isto receive itsvalue. That result
value may simply be the value of afield in an input record set, or it may be the result of some complex calculation
or conditional expression evaluation.

The TRANSFORM structure itself is a generic tool; each operation that uses a TRANSFORM function defines what
its TRANSFORM needs to receive and what basic functionality it should provide. Therefore, the real key to under-
standing TRANSFORM structuresisin understanding how it is used by the calling function -- each function that uses
a TRANSFORM documents the type of TRANSFORM required to accomplish the goal, although the TRANSFORM
itself may also provide extra functionality and receive extra parameters beyond those required by the operation itself.

The SKIP option specifies the condition that results in no output from that iteration of the TRANSFORM. However,
COUNTER values are incremented even when SKIP eliminates generating the current record.

Transformation Attribute Definitions

The attribute definitions inside the TRANSFORM structure are used to convert the data passed in as parameters to
the output resulttype format. Every field in the resulttype record layout must be fully defined in the TRANSFORM.
You can explicitly define each field, using the SELF.outfield := transformation; expression, or you can use one of
these shortcuts:

SELF :=1[];

clearsall fieldsin theresulttype output that have not previously been defined in the transform function, whilethisform:

SELF.outfield :=[]; //the outfield nanes a child DATASET in
/1 the resulttype RECORD Structure

clears only the child fields in the outfield, and this form:

SELF : = |l abel; //the | abel names a RECORD structure paraneter
/'l in the paraneterli st

defines the output for each field in the resulttype output format that has not previously been defined as coming from
the label parameter's matching named field.

You may aso define local attributes inside the TRANSFORM structure to better organize the code. These local at-
tributes may receive parameters.

TRANSFORM Functions

This form of TRANSFORM must be terminated by the END keyword. The resulttype must be specified, and the
function itself takes parameters in the parameterlist. These parameters are typically RECORD structures, but may be
any type of parameter depending upon the type of TRANSFORM function the using function expectsto call. The exact
form aTRANSFORM function must take is always directly associated with the operation that usesiit.

Example:

Ages : = RECORD
AgedRecs. i d;
AgedRecs. i d1;
AgedRecs. i d2;
END;
SequencedAges : = RECORD
Ages;
| NTECER4 Sequence : = 0;
END;

SequencedAges AddSequence(AgedRecs L, INTEGER C) : =

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
131

ECL Language Reference
Special Structures

TRANSFORM SKIP(C %2 = 0) //skip even recs
| NTEGERL rangex(UNSI GNED4 divisor) := (l.id DIV divisor) % 100;
SELF.idl : = rangex(10000);
SELF.id2 := rangex(100);
SELF. Sequence := C,
SELF := L;
END;

SequencedAgedRecs : = PROJIECT(AgedRecs, AddSequence(LEFT, COUNTER)) ;
/| Exanpl e of defining a TRANSFORM function in terns of another

nanesl| dRecord assi gnl d(nanesRecord |, UNSI GNED val ue) := TRANSFORM
SELF.id := val ue;
SELF : = 1|;
END;
assi gnldl(namesRecord |) := assignld(l, 1);
//creates an assignldl TRANSFORM t hat uses assignld
assi gnl d2(namesRecord |) := assignld(l, 2);

//creates an assignld2 TRANSFORM t hat uses assignld

Inline TRANSFORMSs

Thisform of TRANSFORM isused in-linewithin the operation that usesit. Theresulttype must be specified along with
all the assignments. Thisform ismainly for use where the transform assignments aretrivial (such as SELF := LEFT;).

Example:

nanes| dRecord assi gnl d(nanesRecord L) := TRANSFORM
SELF :=L; //nore |ike-named fields across
SELF := []; //clear all other fields

END;

proj ectedl : = PRQIECT(nanesTabl e, assignl d(LEFT));

proj ected2 := PRQIECT(nanesTabl e, TRANSFORM nanesl| dRecor d,
SELF : = LEFT;
SELF := [1));

[/ projectedl and projected2 do the same thing

Shorthand Inline TRANSFORMSs

This form of TRANSFORM is a shorthand version of Inline TRANSFORMSs. In thisform,

TRANSFORM LEFT)

isdirectly equivalent to

TRANSFORM RECORDOF(LEFT), SELF : = LEFT)

Example:

nanesl| dRecord assi gnl d(nanesRecord L) := TRANSFORM
SELF := L; //nove |like-named fields across

END;

proj ectedl :
proj ected2 :

PRQIECT(nanmesTabl e, assi gnl d(LEFT));

PRQIECT(nanesTabl e, TRANSFORM nanesl| dRecor d,
SELF : = LEFT));

proj ected3 : = PRQIECT(nanesTabl e, TRANSFORM LEFT)) ;

[l projectedl, projected2, and projected3 all do the sane thing

See Also: RECORD Structure, RECORDOF, TY PEOF, JOIN, PROJECT, ITERATE, ROLLUP, NORMALIZE, DE-
NORMALIZE, FETCH, PARSE, ROW

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
132

ECL Language Reference
Built-in Functions and Actions

Built-in Functions and Actions

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
133

ECL Language Reference
Built-in Functions and Actions

ABS

ABS(expression)
expression Thevalue (REAL or INTEGER) for which to return the absolute value.
Return: ABSreturns a single value of the same type as the expression.

The ABS function returns the absolute value of the expression (always a non-negative number).

Example:
AbsVal 1 := ABS(1); // returns 1
AbsVal 2 := ABS(-1); // returns 1

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
134

ECL Language Reference
Built-in Functions and Actions

ACOS

ACOS(cosine)
cosine The REAL cosine value for which to find the arccosine.
Return: ACOSreturnsasingle REAL value.

The ACOS function returns the arccosine (inverse) of the cosine, in radians.

Example:

Ar cCosi ne

: = ACOS(Cosi neAngl e) ;

See Also: COS, SIN, TAN, ASIN, ATAN, COSH, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
135

ECL Language Reference
Built-in Functions and Actions

AGGREGATE

AGGREGATE(recordset, resultrec,maintransform|[, mergetransform (RIGHT1,RIGHT?2)] [, groupingfields] [,
LOCAL | FEW | MANYT])

recordset The set of records to process.
resultrec The RECORD structure of the result record set.

maintransform The TRANSFORM function to call for each matching pair of records in the recordset. Thisis
implicitly alocal operation on each node.

mer getransform Optional. The TRANSFORM function to call to globaly merge the result records from the

maintransform. If omitted, the compiler will attempt to deduce the merge from the maintrans-
form.

groupingfields Optional. A comma-delimited list of fields in the recordset to group by. Each field must be
prefaced with the keyword LEFT. If omitted, then all records match.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation maintains the
distribution of any previous DISTRIBUTE. Valid only if the mergetransformis omitted.

FEW Optional. Indicates that the expression will result in fewer than 10,000 records. This allows
optimization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in more than 10,000 records.

Return: AGGREGATE returns arecord set.

The AGGREGATE function is similar to ROLLUP except its output format does not need to match the input format.
It also has similarity to TABLE in that the groupingfields (if present) determine the matching records such that you
will get one result for each unique value of the groupingfields. The input recordset does not need to have been sorted
by the groupingfields.

The operation isimplicitly local, in that the maintransformis called to process records locally on each node, and the
result records on each node are then merged to produce the global resuilt.

TRANSFORM Function Requirements - AGGREGATE

The maintransform must take at least two parameters: a LEFT record of the same format as the input recordset and a
RIGHT record of the same format as the resultrec. The format of the resulting record set must be the resultrec. LEFT
refersto the next input record and RIGHT the result of the previous transform.

The mergetransform must take at least two parameters: RIGHT1 and RIGHT2 records of the same format as the
resultrec. Theformat of the resulting record set must betheresultrec. RIGHT1 refersto the result of the maintransform
on one node and RIGHT2 the result of the maintransform on another.

The mergetransformis generated for expressions of the form:

SELF. x :
SELF. x :

<RI GHT. x <op> f (LEFT)
f (LEFT) <op> RI GHT. x

where the <op> is: MAX, MIN, SUM, +, &, |, *

How AGGREGATE Works

In the maintransform, LEFT refers to the next input record and RIGHT the result of the previous transform.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
136

ECL Language Reference
Built-in Functions and Actions

There are 4 interesting cases:

(a) If no records match (and the operation isn't grouped), the output is a single record with al the fields set to blank
values.

(b) If asingle record matches, the first record that matches calls the maintransform as you would expect.

(c) If multiple records match on a single node, subsequent records that match call the maintransform but any field
expression in the maintransform that does not reference the RIGHT record is not processed. Therefore the value for
that field is set by the first matching record matched instead of the last.

(d) If multiple records match on multiple nodes, then step (c) performson each node, and then the summary recordsare
merged. This requires amergetransformthat takes two records of type RIGHT. Whenever possible the code generator
tries to deduce the mergetransform from the maintransform. If it can't, then the user will need to specify one.

i nRecord : = RECORD
UNSI GNED box;
STRI NG t ext { MAXLENGTH(10) } ;
END;
inTabl e : = DATASET([{1, ' Fred'},{1,' Freddy'},
{2,"Freddi'}, {3, Fredrik'}, {1, FredJon'}], inRecord);

// Exanpl e 1: Produce a |list of box contents by concatenating a string:

out Recordl : = RECORD
UNSI GNED box;
STRI NG cont ent s{ MAXLENGTH(200) } ;
END;
out Recordl t1(inRecord |, outRecordl r) := TRANSFORM
SELF. box : = |. box;
SELF. contents := r.contents + | F(r.contents <> "', ' /' '"') + |.text;
END;

out Recordl t2(outRecordl r1, outRecordl r2) := TRANSFORM
SELF. box : = rl. box;
SELF.contents :=rl.contents + ',' + r2.contents;
END;
QUTPUT(AGGREGATE(i nTabl e, out Recordl, t1(LEFT, RIGHT), t2(RI GHT1, RI GHT2), LEFT. box));

/1 This exanple could elimnate the nerge transformif the SELF.contents expression in
//the t1 TRANSFORM were sinpler, |like this:

/1 SELF. contents :=r.contents + ',' + |.text;

/I whi ch woul d make the AGCGREGATE function |ike this:

/1 QUTPUT(AGGREGATE(i nTabl e, out Recordl, t1(LEFT, RIGHT), LEFT. box));

/'l Exanple 2: A PIGM X styl e groupi ng operati on:
out Record2 : = RECORD

UNSI GNED box;
DATASET(i nRecord) itens;
END;
out Record2 t3(inRecord I, outRecord2 r) := TRANSFORM
SELF. box : = I|. box;
SELF.itens:=r.items + |;
END;

OQUTPUT(AGGREGATE(i nTabl e, out Record2, t3(LEFT, RIGHT), LEFT. box));

See Also: TRANSFORM Structure, RECORD Structure, ROLLUP, TABLE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
137

ECL Language Reference
Built-in Functions and Actions

ALLNODES

ALLNODES(operation)

operation The name of an attribute or in-line code that resultsin a DATASET or IN-
DEX.

Return: ALLNODES returns arecord set or index.

The ALLNODES function specifies that the operation is performed on all nodesin parallel. Available for use only
in Roxie.

Example:

ds := ALLNODES(JO N(SormeDat a, LOCAL(Sonel ndex), LEFT.ID = RIGHT.ID));

See Also: THISNODE, LOCAL, NOLOCAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
138

ECL Language Reference
Built-in Functions and Actions

APPLY

[attrname ;=] APPLY (dataset, actionlist [, BEFORE(actionlist)] [, AFTER(actionlist)])

attrname Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attrname is used as an action.

dataset The set of records to apply the action to. This must be the name of a physical dataset of atype
that supports this operation.

actionlist A comma-delimited list of the operationsto perform on the dataset. Typically, thisis an external
service (see SERVICE Structure). This may not be an OUTPUT or any function that triggers
achild query.

BEFORE Specifies executing the enclosed actionlist before the first dataset row is processed. Not yet im-
plemented in Thor, valid only in hthor and Roxie.

AFTER Specifies executing the enclosed actionlist after the last dataset row is processed. Not yet imple-
mented in Thor, valid only in hthor and Roxie.

The APPLY action performs all the specified actions in the actionlist on each record of the nominated dataset. The
actions execute in the order they appear in the actionlist.

Example:
EXPORT x := SERVICE
echo(const string src):library="nyfuncs', entrypoint="rtl Echo'
END;
APPLY(per son, x. echo(last_nane + ':' + first_nanme));

/] concatenate each person's |astname and firstname and echo it

See Also: SERVICE Structure, DATASET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
139

ECL Language Reference
Built-in Functions and Actions

ASCII

ASCII(recordset)

recordset The set of recordsto process. Thismay bethe name of adataset or arecord set
derived from somefilter condition, or any expression that resultsin aderived
record set.

Return: ASCII returns a set of records.

The ASCI| function returns the recordset with all STRING fields trandated from EBCDIC to ASCI|I.
Example:
Asci i Recs : = ASCl | (SonmeEBCDI Cl nput) ;

See Also: EBCDIC

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
140

ECL Language Reference
Built-in Functions and Actions

ASIN

ASIN(sine)
sine The REAL sine value for which to find the arcsine.
Return: ASIN returns asingle REAL value.

The ASIN function returns the arcsine (inverse) of the sine, in radians.
Example:
ArcSine := ASI N(Si neAngl e) ;

See Also: ACOS, COS, SIN, TAN, ATAN, COSH, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
141

ECL Language Reference
Built-in Functions and Actions

ASSERT

ASSERT (condition [, message] [, FAIL][, CONST])

ASSERT (recset, condition [, message] [, FAIL][, CONST])

ASSERT (recset, assertlist)

condition Thelogical expression that should be aways be true.

message Optional. The error to display in the workunit. If omitted, a messageis gen-
erated from the approximate location in the code and the condition being
checked.

FAIL Optional. Specifies an exception is generated, immediately terminating the
workunit.

CONST Optional. Specifies the condition is evaluated during code generation.

recset The set of records for which to check the condition against each record.

assertlist A comma-delimited list of ASSERTsof thefirst form, used to check multiple
conditions against each record in the recset.

The ASSERT action evaluates the condition, and if false, posts the message in the workunit. The workunit terminates
immediately if the FAIL option is present.

Form one is the scalar form, evaluating the condition once. Form two evaluates the condition once for each record
in the recset. Form three is a variant of form two that nests multiple form one ASSERTSs so that each condition is
checked against each record in the recset.

Example

vall := 1;

val 2 : = 1,

val 3 := 2;

val4 := 2 : STORED('val4');
ASSERT(val 1 = val 2);
ASSERT(val 1 = val 2, 'Abcl');
ASSERT(val 1 = val 3);
ASSERT(val 1 = val 3, 'Abc2');
ASSERT(val 1 = val 4);
ASSERT(val 1 = val 4, 'Abc3');

ds := DATASET([1, 2], {I NTECER val 1}) : GLOBAL;
/'l gl obal stops advanced constant folding (if ever done)

dsl := ASSERT(ds, vall = val 2);
ds2 : = ASSERT(dsl1, vall = val2, 'Abc4');
ds3 := ASSERT(ds2, vall = val 3);
ds4 := ASSERT(ds3, vall = val3, 'Abcb5');
ds5 := ASSERT(ds4, vall = val 4);
ds6 : = ASSERT(ds5, vall = val4, 'Abc6');
QUTPUT(ds6) ;
ds7 := ASSERT(ds(vall != 99),
ASSERT(val 1 = val 2),
ASSERT(val 1 = val 2, 'Abc7'),
ASSERT(val 1 = val 3),
ASSERT(val 1 = val 3, 'Abc8'),
ASSERT(val 1 = val 4),
ASSERT(val 1 = val 4, 'Abc9'));
QUTPUT(ds7) ;
rec := RECORD
| NTEGER val 1;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
142

ECL Language Reference
Built-in Functions and Actions

STRI NG t ext ;
END;
rec t(ds |I) := TRANSFORM
ASSERT(| .val 1 <= 3);
SELF. text := CASE(l.val 1, 1=>' One', 2=>' Two', 3=>' Three', "' Zero');
SELF : = |;
END;
OUTPUT(PRQJECT(ds, t(LEFT)));

See Also: FAIL, ERROR

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
143

ECL Language Reference
Built-in Functions and Actions

ASSTRING

ASSTRING(bitmap)

bitmap The valueto treat as a string.
Return: ASSTRING returns asingle STRING value.

The ASSTRING function returns the bitmap as a string. Thisis equivalent to TRANSFER(bitmap,STRINGnN) where
n is the same number of bytes as the data in the bitmap.

Example:

I NTEGERLT MyInt := 65; //M/Int is an integer whose value is 65
MyVal 1 : = ASSTRING(MyInt); //M/Vall is “A” (ASCI| 65)
/1 this is directly equival ent to:

/1 STRINGL MyVal 1 : = TRANSFER(M/l nt, STRI NGL) ; | NTEGERL MyVal 3 : = (| NTECER) MyVal 1;
/I MyVal 3 is 0O (zero) because “A’ is not a nuneric character

See Also: TRANSFER, Type Casting

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
144

ECL Language Reference
Built-in Functions and Actions

ATAN

ATAN(tangent)
tangent The REAL tangent value for which to find the arctangent.
Return: ATAN returnsasingle REAL value.

The ATAN function returns the arctangent (inverse) of the tangent, in radians.

Example:

ArcTangent : = ATAN(Tangent Angl e);

See Also: ATAN2, ACOS, COS, ASIN, SIN, TAN, COSH, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
145

ECL Language Reference
Built-in Functions and Actions

ATANZ2

ATAN2(y, X)

y The REAL numerator value for the tangent.

X The REAL denominator value for the tangent.
Return: ATAN2 returns asingle REAL value.

The ATANZ2 function returnsthe arctangent (inverse) of the calculated tangent, in radians. Thisissimilar tothe ATAN
function but more accurate and handles the situations where x or y is zero.

Example:
ArcTangent := ATAN2(TangentNumerator, TangentDenominator);

See Also: ATAN, ACOS, COS, ASIN, SIN, TAN, COSH, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
146

ECL Language Reference
Built-in Functions and Actions

AVE

AVE(recordset, value[, expression] [, KEYED])

AVE(valudlist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that resultsin a derived record set. Thisaso may be the
keyword GROUP to indicate averaging the field values in a group.

value The expression to find the average value of.

expression Optional. A logical expression indicating which records to include in the average. Valid only
when the recordset parameter is the keyword GROUP to indicate averaging the elementsin a
group.

KEYED Optional. Specifiesthe activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the average value of. This may also be a SET of
values.

Return: AVE returns asingle value.

The AVE function either returns the average value (arithmetic mean) from the specified recordset or the valuelist. It
is defined to return zero if the recordset is empty.

Example:

AvgBal 1 : = AVE(Trades, Trades.trd_bal);
AvgVal 2 : = AVE(4,8,16,2,1); //returns 6.2
SetVals := [4,8,16,2,1];

AvgVal 3 : = AVE(Set Val s); /lreturns 6.2

See Also: MIN, MAX

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
147

ECL Language Reference
Built-in Functions and Actions

BUILD

[attrname ;=] BUIL D(baserecset, [indexrec] , indexfile [, options]);

[attrname :=] BUIL D(baserecset, keys, payload, indexfile [, options]);
[attrname :=] BUIL D(indexdef [, options]);

BUILD(library);

attrname Optional. The action name, which turns the action into an attribute definition, therefore not exe-
cuted until the attrname is used as an action.

baserecset The set of data records for which the index file will be created. This may be arecord set derived
from the base data with the key fields and file position.

indexrec Optional. The RECORD structure of the fields in the indexfile that contains key and file po-

sition information for referencing into the baserecset. Field names and types must match the
baserecset fields (REAL and DECIMAL vauetypefields are not supported). Thismay also con-
tain additional fields not present in the baserecset (computed fields). If omitted, al fieldsin the
baserecset are used. The last field must be the name of an UNSIGNEDS field defined using the
{virtua(filepposition)} function in the DATASET declaration of the baserecset.

keys The RECORD structure of fieldsin theindexfilethat containskey and file positioninformation for
referencing into the baserecset. Field names and types must match the baserecset fields (REAL
and DECIMAL value type fields are not supported). This may also contain additional fields not
present in the baserecset. If omitted, al fields in the baserecset are used.

payload The RECORD structure of the indexfile that contains additional fields not used as keys . If the
name of the baserecset isinthe structure, it specifies“al other fieldsnot already namedinthekeys
parameter.” Thismay contain fields not present in the baserecset (computed fields). These fields
do not take up space in the non-leaf nodes of the index and cannot be referenced in a KEY ED()

filter clause

indexfile A string constant containing thelogical filename of theindex to produce. Seethe Scope & Logica
Filenames article for more on logical filenames.

options Optional. One or more of the options listed below.

indexdef The name of the INDEX attribute to build.

library The name of a MODULE attribute with the LIBRARY option.

Thefirst three forms of the BUIL D action createindex files. Indexes are automatically compressed, minimizing over-
head associated with using indexed record access. The keyword BUILDINDEX may be used in place of BUILD in
these forms.

The fourth form creates an external query library—a workunit that implements the specified library. Thisis similar
to creating a.DLL in Windows programming, or a.SO in Linux.

Index BUILD Options

The following options are available on all three INDEX forms of BUILD (only):

[, CLUSTER(target)] [, SORTED] [, DISTRIBUTE(key) [, MERGE]][, DATASET(basedataset)] [,
OVERWRITE] [, UPDATE][,.EXPIRE([days])][, FEW] [, FILEPOSI TION(false)] [, LOCAL] [, NOROOT]
[, DISTRIBUTED][, COMPRESSED(LZW | ROW | FIRST)] [, WIDTH(nodes)] [, DEDUP][,SK EW (limit],
target]) [, THRESHOLD(size)]] [MAXLENGTH[(value)]]]

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
148

ECL Language Reference
Built-in Functions and Actions

CLUSTER Specifies writing the indexfile to the specified list of target clusters. If omitted, the
indexfile is written to the cluster on which the workunit executes. The number of
physica file parts written to disk is always determined by the number of nodes in
the cluster on which the workunit executes, regardless of the number of nodes on the
target cluster(s) unlessthe WIDTH option is also specified.

target A comma-delimited list of string constants containing the names of the clusters to
write the indexfile to. The names must be listed as they appear on the ECL Watch
Activity page or returned by the Std.System.Thorlib.Group() function, optionally with
sguare brackets containing a comma-delimited list of node-numbers (1-based) and/or
ranges (specified with adash, asin n-m) toindicate the specific set of nodesto writeto.

SORTED Specifiesthat the baserecset is already sorted, implying that the automatic sort based
on al theindexrec fields is not required before the index is created.

DISTRIBUTE Specifies building the indexfile based on the distribution of the key.

key The name of an existing INDEX attribute definition.

MERGE Optional. Specifies merging the resulting index into the specified key.

DATASET Thisisonly needed when the baserecset isthe result of an operation (such asa JOIN)
whose result makes it ambiguous as to which physical dataset is being indexed (in
other words, use this option only when you receive an error that it cannot be deduced).
Naming the basedataset ensures that the proper record links are used in the index.

basedataset The name of the DATASET attribute from which the baserecset is derived.

OVERWRITE Specifies overwriting the indexfile if it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifiesthefileisatemporary file that may be automatically deleted after

the specified number of days since the file was read.

FILEPOSITION

Optional. If flagis FALSE, preventstheimplicit fileposition field from being created
and will not treat atrailing integer field any differently from the rest of the payload.

flag

Optional. TRUE or FALSE, indicating whether or not to create the implicit fileposi-
tion field.

days

Optional. The number of daysfrom last file read after which the file may be automat-
ically deleted. If omitted, the default is seven (7).

FEW

Specifiesthe indexfileis created as asingle one-part file. Used only for small datasets
(typicaly lookup-typefiles, such as 2-character state codes). This option is now dep-
recated in favor of using the WIDTH(1).

indexdef

The name of an existing INDEX attribute definition that provides the baserecset, in-
dexrec, and indexfile parametersto use.

LOCAL

Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation main-
tains the distribution of any previous DISTRIBUTE function.

NOROOT

Specifies that the index is not globally sorted, and there is no root index to indicate
which part of the index will contain a particular entry. This may be useful in Roxie
gueriesin conjunction with ALLNODES use.

DISTRIBUTED

Specifies both the LOCAL and NOROOT options (congruent with the
DISTRIBUTED option on an INDEX declaration, which specifiesthe index was built
with the LOCAL and NOROQT options).

COMPRESSED

Specifies the type of compression used. If omitted, the default is LZW, a variant of
the Lempel-Ziv-Welch algorithm. Specifying ROW compresses index entries based

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

149

ECL Language Reference
Built-in Functions and Actions

on differences between contiguous rows (for use with fixed-length records, only),
and is recommended for use in circumstances where speedier decompression time is
more important than the amount of compression achieved. FIRST compresses com-
mon leading elements of the key (recommended only for timing comparison use).

WIDTH Specifies writing the indexfile to a different number of physical file parts than the
number of nodesin the cluster on which the workunit executes. If omitted, the default
is the number of nodes in the cluster on which the workunit executes. This option
is primarily to create indexes on a large Thor that are destined to be deployed to a
smaller Roxie (making the Roxie queries more efficient).

nodes The number of physical file parts to write. If set to one (1), this operates exactly the
same as the FEW option, above.

DEDUP Specifies that duplicate entries are eliminated from the INDEX.

SKEW Indicates that you know the data will not be spread evenly across nodes (will be

skewed and you choose to override the default by specifying your own limit value to
allow the job to continue despite the skewing.)

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage
of skew to allow before the job fails (the default skew is 1.0 / <number of slaves on
cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired max-
imum percentage of skew to allow (the default skew is 1.0 / <number of slaves on
cluster>).

THRESHOLD Indicates the minimum size for asingle part before the SKEW limit is enforced.

size An integer value indicating the minimum number of bytes for a single part. Default
is1GB.

MAXLENGTH Optional. Thisoption is used to create indexes that are backward compatible for plat-

form versions prior to 3.0. Specifies the maximum length of a variable-length index
record. Fixed length records always use the minimum size required. If the default
maximum length causes inefficiency problems, it can be explicitly overridden.

value Optional. An integer value indicating the maximum length. If omitted, the maximum
sizeiscalculated from therecord structure. Variable-length recordsthat do not specify
MAXLENGTH may be dlightly inefficient

BUILD an Access Index

[attrname :=] BUIL D(baserecset, [indexrec] , indexfile [, options]);

Form 1 creates an index file to allow keyed access to the baserecset. The index is used primarily by the FETCH and
JOIN (with the KEY ED option) operations.

Example:

Vehi cl es : = DATASET(' vehi cl es',
{STRIN& st,
STRI N&20 city,
STRI NG20 | nane,
UNSI GNED8 fil epos{virtual (fil eposition)}},
FLAT) ;
BU LD(Vehi cl es, {| nane, fil epos}, ' vkey:: | nane');
//build key into Vehicles dataset on | ast nane

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
150

ECL Language Reference
Built-in Functions and Actions

BUILD a Payload Index

[attrname ;=] BUIL D(baserecset, keys, payload, indexfile [, options]);

Form 2 creates an index file containing extra payl oad fieldsin addition to the keys. Thisformisused primarily to create
indexes used by “half-key” JOIN operations to eliminate the need to directly access the baserecset, thus increasing
performance over the “full-keyed” version of the same operation (done with the KEY ED option on the JOIN).

By default, the payload fields are sorted during the BUILDINDEX operation to minimize space on the leaf nodes of
the key. This sorting can be controlled by using sortindexPayload in a#OPTION statement.

Example:

Vehi cl es : = DATASET(' vehi cl es',
{STRIN& st,
STRI NG20 city,
STRI NG20 | nane,
UNSI GNED8 fi | epos{virtual (fileposition)}},
FLAT) ;
BU LD Vehi cl es, {st, city}, {I| nane}, ' vkey::st.city');
//build key into Vehicles dataset on state and city
/I payl oad the |ast nanme

BUILD from an INDEX Definition

[attrname :=] BUIL D(indexdef [, options]);
Form 3 creates an index file by using a previously defined INDEX definition.

Example:

naneKey : = | NDEX(mai nTabl e, { sur nang, f orenaneg, fil epos}, ' nane.idx');
BU LD(naneKey); //gets all info fromthe | NDEX definition

BUILD a Query Library

BUILD(library);
Form 4 creates an externa query library for usein hthor or Roxie, only.

A query library alows a set of related attributes to be packaged as a self contained unit so the code can be shared
between different workunits. This reduces the time required to deploy a set of attributes, and also reduces the memory
footprint for the set of queries within Roxie that use the library. Also, functionality in the library can be updated
without having to re-deploy all the queries that use that functionality.

Query libraries are suitable for packaging together sets of functions that are closely related. They aren't suited for
including attributes defined as MA CROs—the meaning of a macro isn't known until its parameters are substituted.

The name form of #AWORKUNIT names the workunit that BUILD creates as the external library. That name is the
externa library name used by the LIBRARY function (which provides access to the library from within the query
that uses the library). Since the workunit itself is the external query library, BUILD(library) must be the only
action in the workunit.

Example:

NanesRec : = RECORD
| NTEGERL Nanel D
STRI NG20 FNane;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
151

ECL Language Reference
Built-in Functions and Actions

STRI NG20 LNane;

END;

Fi | terLi bl facel(DATASET(nanesRec) ds, STRI NG search) := | NTERFACE
EXPORT DATASET(nanesRec) natches;
EXPORT DATASET(nanesRec) ot hers;

END;

Fi |l terDsLi b1(DATASET(namesRec) ds, STRI NG search) :=
MODULE, LI BRARY(Fi | t erLi bl facel)
EXPORT mat ches := ds(Lnane = search);
EXPORT ot hers = ds(Lnanme != search);
END;
#WORKUNI T(' nan®' , ' Ppass. FilterDsLi b')
BUI LD(Fi | t er DsLi b1) ;

See Also: INDEX, JOIN, FETCH, MODULE, INTERFACE, LIBRARY, DISTRIBUTE, #WORKUNIT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
152

ECL Language Reference
Built-in Functions and Actions

CASE

CASE(expression, caseval => value, [..., caseval => value] [, elsevalue])

expression An expression that resultsin asingle value.

caseval A value to compare against the result of the expression.

= The “resultsin” operator—valid only in CASE, MAP and CHOOSESETS.

value The value to return. This may be any expression or action.

elsevalue Optional. The value to return when the result of the expression does not match any of the caseval
values. May be omitted if all return values are actions (the default would then be no action), or
al return values are record sets (the default would then be an empty record set).

Return: CASE returns asingle value, a set of values, arecord set, or an action.

The CASE function evaluates the expression and returns the value whose caseval matches the expression result. If
none match, it returns the elsevalue.

There may be as many caseval => value parameters as necessary to specify all the expected values of the expression
(there must be at least one). All return value parameters must be of the same type.

Example:

M/Exp : =
My Choi ce

1+2;
:= CASE(M/Exp, 1 =>9, 2 =>8, 3=>7, 4 =>6, 5);

/! returns a value of 7 for the caseval of 3

MyRec Set
2 =>
3 =
4 =>

:= CASE(M/Exp, 1 => Person(per_st = "FL'),

Person(per_st = "GA'),
Person(per_st = "'AL"),
Person(per_st = "'SC),

Per son) ;
/1 returns set of Al abama Persons for the caseval of 3

MyAct i on
2 =>

3 =>

4 =>

/Il for

:= CASE(MyExp, 1 => FAIL('Failed for reason 1'),

FAIL(' Failed for reason 2'),

FAIL(' Fail ed for reason 3'),

FAIL(' Failed for reason 4'), FAIL(' Fail ed for unknown reason'));
the caseval of 3, Fails for reason 3

See Also: MAP, CHOOSE, IF, REJECTED, WHICH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
153

ECL Language Reference
Built-in Functions and Actions

CATCH

result := CATCH(recset, action);

result The definition name for the resulting recordset.

recset The recordset expression that, if it fails, causes the action to launch.
action One of the three valid actions below.

Return: CATCH returns a set of records (which may be empty).

The CATCH function executes the action if the recset expression fails for any reason.

Valid actions are:

SKIP Specifies ignoring the error and continuing, returning an empty dataset.

ONFALIL (transform) Specifiesreturning asinglerecord fromthetransformfunction. The TRANSFORM
function may use FAILCODE and/or FAILMESSAGE to provide details of the
failure and must result in a RECORD structure the same format as the recset.

FAIL The FAIL action, which specifies the error message to produce. This is meant to
provide more useful information to the end user about why the job failed.

Example:

M/Rec : = RECORD
STRI NG5O0 Val uel;
UNSI GNED Val ue2;

END,

ds := DATASET([{'C ,1},{'C,2}
{'c,4.{"Cc,5

M/Rec Fai l
sel f. val
sel f. val

END;

limtedl :
limted2 :
limted3 :

recoveredl :
recovered2 :
recovered3 :

QUTPUT(r ec
QUTPUT(r ec
QUTPUT(r ec

}oOOX 1}, {" AL 1}], MRec) ;
Transform:= transform
uel : = FAI LMESSAGE[1..17];

ue2 : = FAI LCODE

LIMT(ds, 2);
LIM T(ds, 3);
LIMT(ds, 4);

CATCH(l i mi tedl, SKIP);
CATCH(li m ted2, ONFAIL(Fail Transform);
CATCH(CATCH(I i m ted3, FAIL(1, 'Failed, dude')), ONFAIL(Fail Transform);

overedl); //enpty recordset
overed2); [//
overed3); [//

See Also: TRANSFORM Structure, FAIL, FAILCODE, FAILMESSAGE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
154

ECL Language Reference
Built-in Functions and Actions

CHOOSE

CHOOSE(expression, value, ..., value, elsevalue)

expression An arithmetic expression that resultsin a positive integer and determines which value parameter
to return.

value The values to return. There may be as many vaue parameters as necessary to specify al the
expected values of the expression. This may be any expression or action.

elsevalue The value to return when the expression returns an out-of-range value. The last parameter is
always the elsevalue.

Return: CHOQOSE returns asingle value.

The CHOOSE function evaluates the expression and returns the value parameter whose ordina position in the list

of parameters corresponds to the result of the expression. If none match, it returns the elsevalue. All values and the
elsevalue must be of the same type.

Example:

M/Exp := 1+2;

MyChoi ce : = CHOOSE(M/Exp, 9,8,7,6,5); // returns 7
MyChoi ce : = CHOOSE(M/Exp, 1,2,3,4,5); [/ returns 3

MyChoi ce : = CHOOSE(MyExp, 15, 14, 13, 12,11); // returns 13
Worst Rate : = CHOOSE(IntRate, 1,2,3,4,5,6,6,6,6,0);
// WrstRate receives 6 if the IntRate is 7, 8, or 9

See Also: CASE, IF, MAP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
155

ECL Language Reference
Built-in Functions and Actions

CHOOSEN

CHOOSEN(recordset, n [, startpos] [, FEW])

recordset The set of recordsto process. This may be the name of adataset or arecord set derived from some
filter condition, or any expression that resultsin a derived record set.

n The number of records to return. If zero (0), no records are returned, and if ALL or
CHOOSEN:ALL, all records are returned. The CHOOSEN:ALL option is a constant that may
be used in any expression.

startpos Optional. The ordinal position in the recordset of the first record to return. If omitted, the default
isone (1).

FEW Optional. Specifies internally converting to a TOPN operation if n is a variable number (an at-
tribute or passed parameter) and the input recordset comes from a SORT.

Return: CHOOSEN returns a set of records.

The CHOOSEN function (choose-n) returns the first n number of records, beginning with the record at the startpos,
from the specified recordset.

Example:

Al |l Recs = CHOOSEN(Person, ALL); // returns all recs from Person
FirstFive : = CHOOSEN(Person, 5) ; /1 returns first 5 recs from Person
Next Fi ve = CHOOSEN(Person, 5,6); // returns next 5 recs from Person
Li m t Recs : = CHOOSEN(Person, | F(MyLi m t <>0, MyLi m t, CHOOSEN: ALL)) ;

See Also: SAMPLE, CHOOSESETS

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
156

ECL Language Reference
Built-in Functions and Actions

CHOOSESETS

CHOOSESETS(recset, condition => n[,0][, EXCLUSIVE | LAST |[ENTH])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

condition Thelogical expression that defines which records to include in the result set.

= The“resultsin” operator—valid only in CHOOSESETS, CASE, and MAP.

n The maximum number of records to return. If zero (0), no records that meet the condition are
returned.

o} Optional. The maximum number of recordsto return that meet none of the conditions specified.

EXCLUSIVE Optional. Specifies the condition parameters are mutualy exclusive.

LAST Optional. Specifies choosing the last n records that meet the condition instead of the first n.
This optionisimplicitly EXCLUSIVE.

ENTH Optional. Specifies choosing a sample of records that meet the condition instead of the first n.
Thisoption isimplicitly EXCLUSIVE.

Return: CHOOSESET S returns a set of records.

The CHOOSESET S function returns a set of records from the recset. The result set islimited to n number of records
that meet each condition listed. CHOOSESETS may take as many condition => n parameters as needed to exactly
specify the desired set of records. This is a shorthand way of concatenating the result sets of multiple CHOOSEN
function callsto the same recset with different filter conditions, but CHOOSESET S executes significantly faster. This
techniqueis also know as a“ cutback.”

Example:

MyResul t Set

: = CHOOSESETS(Per son,

per _first_nane = 'RICHARD => 100,
per_first_nanme = ' GAENDOLYN => 200, 100)
/] returns a set containing 100 Ri chards, 200 Gmendol yns, 100 others

See Also: CHOOSEN, SAMPLE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

157

ECL Language Reference
Built-in Functions and Actions

CLUSTERSIZE

CLUSTERSIZE

\ Return: \ CLUSTERSIZE returns asingle INTEGER value.

The CLUSTERSIZE compile time constant returns the number of nodes in the cluster. This is the same value as
returned by the Std.System.ThorLib.Nodes() function..

Example:

QUTPUT(CLUSTERSI ZE)

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
158

ECL Language Reference
Built-in Functions and Actions

COMBINE

COMBINE(leftrecset, rightrecset [, transform][,LOCAL])

COMBINE(leftrecset, rightrecset, GROUP , transform [,LOCAL])

leftrecset The LEFT record set.

rightrecset The RIGHT record set.

transform The TRANSFORM function call. If omitted, COMBINE returnsall fieldsfrom both the | eftrecset
and rightrecset, with the second of any duplicate named fields removed.

LOCAL The LOCAL option isrequired when COMBINE is used on Thor (and implicit in hThor/Roxie).

GROUP Specifies the rightrecset has been GROUPed. If thisis not the case, an error occurs.

Return: COMBINE returns arecord set.

The COMBINE function combines |eftrecset and rightrecset on a record-by-record basis in the order in which they
appear in each.

COMBINE TRANSFORM Function Requirements

For form 1, the transform function must take at |east two parameters: a LEFT record which must be in the same format
astheleftrecset and a RIGHT record which must bein the same format as the rightrecset. The format of the resulting
record set may be different from the inputs.

For form 2, the transform function must take at least three parameters. a LEFT record which must be in the same
format as the leftrecset, a RIGHT record which must be in the same format as the rightrecset, and a ROWS(RIGHT)
whose format must be a DATASET(RECORDOF(rightrecset)) parameter. The format of the resulting record set may
be different from the inputs.

COMBINE Form 1

Form 1 of COMBINE produces its result by passing each record from leftrecset along with the record in the same
ordinal positionwithin rightrecset to the transformto produce asingle output record. Grouping (if any) ontheleftrecset
is preserved. An error occursif |eftrecset and rightrecset contain a different number of records.

Example:

inrec : = RECORD
UNSI GNED6 di d;
END;
outrec := RECORD(i nrec)
STRI N&0 nane;
STRI NGLO ssn;
UNS| GNED8 dob;

END;
ds : = DATASET([1, 2,3,4,5,6], inrec);
il := DATASET([{1, 'Kevin'}, {2, 'Richard}, {5 'Ngel'}],
{ UNSI GNED6 did, STRINGLO nane });
i2 := DATASET([{3, '123462'}, {5, '1287234'}, {6,'007001002'}],
{ UNSI GNED6 did, STRINGLO ssn });
i3 := DATASET([{1, 19700117}, {4, 19831212}, {6,20000101}],
{ UNSI GNED6 di d, UNSI GNED8 dob});
j1 :=JANds, i1, LEFT.did = RIGHT.did, LEFT OUTER, LOOKUP);
j2 := JANds, i2, LEFT.did = RIGHT.did, LEFT OUTER, LOOKUP);
j3 :=JANds, i3, LEFT.did = RIGHT.did, LEFT OUTER, LOOKUP);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
159

ECL Language Reference
Built-in Functions and Actions

conbi ned1l : = COMVBI NE(j 1,

j2,
TRANSFORM out Rec,
SELF : = LEFT;
SELF : = RI GHT;
SELF := [1));
conbi ned2 : = COWVBI NE(conbi nedl,
i3,

TRANSFORM out Rec,
SELF. dob : = RI GHT. dob;
SELF := LEFT));

COMBINE Form 2

Form 2 of COMBINE producesits result by passing each record from leftrecset, the group in the same ordinal position
within rightrecset (along with thefirst record in the group) to thetransformto produce asingle output record. Grouping
(if any) ontheleftrecset is preserved. An error occursif the number of recordsin the leftrecset differs from the number
of groups in the rightrecset.

Example:

inrec : = {UNSI GNED6 di d};
outrec := RECORD(i nrec)
STRI N&0 nane;
UNS| GNED scor e;
END;
nanmeRec : = RECORD
STRI N&0 nane;
END;

resul t Rec : = RECORD(i nrec)
DATASET(naneRec) nanes;
END;
ds : = DATASET([1, 2,3,4,5,6], inrec);
dsg : = GROUP(ds, ROW;
il DATASET([{1, 'Kevin', 10},
'Richard', 5},
,"Nigel', 2},
, "', 0}], outrec);

DATASET([{1, 'Kevin Halligan', 12},
'Ri chard Chapman', 15},
'Jake Smith', 20},

,"Nigel Hicks', 100},
‘', 0}], outrec);
DATASET([{1, 'Halligan', 8},

'"Richard', 8},

'Pete', 4},

'Peter', 8},

"Petie', 1},

, 0}], outrec);
JA N(dsg,

S S

P e e e
OO NIOUTWN I OUN Il

e il R

j1:
i1,
LEFT. did = RIGHT. did,
TRANSFORM outrec, SELF := LEFT; SELF := RIGHT),
LEFT OQUTER, MANY LOOKUP);
j2 := JA N dsg,
i 2,
LEFT. did = RI GHT. di d,
TRANSFORM out rec, SELF := LEFT; SELF :
LEFT QOUTER,
MANY LOOKUP) ;
j3 :=JA N dsg,
i3,

RI GHT) ,

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
160

ECL Language Reference
Built-in Functions and Actions

LEFT. did = RI GHT. di d,
TRANSFORM out rec, SELF := LEFT; SELF := RIGHT),
LEFT QOUTER,
MANY LOOKUP) ;
conbined : = REGROUP(j 1, j2, j3);
resultRec t(inrec |, DATASET(RECORDOF(combined)) r) := TRANSFORM
sel f. names : = PRQIECT(r, TRANSFORM naneRec, SELF := LEFT));
self :=1;
END;
resl : = COMBI NE(dsg, conbi ned, GROUP, t (LEFT, ROWS(RI GHT) (score != 0)));
/A variation using rows in a child query.
resultRec t2(inrec |, DATASET(RECORDOF(conbined)) r) := TRANSFORM
SELF. names : = PRQIECT(SORT(r, -score),
TRANSFORM nanmeRec, SELF := LEFT));
SELF : = 1|;
END;
res2 : = COWBI NE(dsg, conbi ned, GROUP, t 2(LEFT, ROAS(RI GHT) (score != 0)));

See Also: GROUP, REGROUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
161

ECL Language Reference
Built-in Functions and Actions

CORRELATION

CORRELATION(recset, valuex, valuey [, expresssion] [, KEYED])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in aderived record set. Thisaso may be the
GROUP keyword to indicate operating on the elementsin each group, when used in a RECORD
structure to generate crosstab statistics.

valuex A numeric field or expression.

valuey A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid only
when the recset parameter is the keyword GROUP.

KEYED Optional. Specifiesthe activity is part of an index read operation, which alows the optimizer to
generate optimal code for the operation.

Return: CORRELATION returns asingle REAL value.

The CORRELATION function returns the Pearson's Product Moment Correlation Coefficient between valuex and
valuey.

Example:
pointRec := { REAL x, REAL y };
anal yse(ds) := MACRO
#uni quenane(st at s)
U%stats% : = TABLE(ds, { c : = COUNT(GROUP) ,
SX = SUM GROUP, x),
sy = SUM GROUP,),
SXX = SUM GROUP, x * Xx),
SXy = SUM GROUP, X *),
syy = SUMGROUP, vy *),
var x = VARI ANCE(GROUP, Xx);
vary := VAR ANCE(GROUP, Y);
var xy := COVARI ANCE(GROUP, X, VY);
rc = CORRELATI ON(GROUP, x, Y) });

OQUTPUT(%st at s9 ;
/1 Follow ng should be zero
QUTPUT(%t ats% { varx - (sxx-sx*sx/c)/c,
vary - (syy-sy*sy/c)l/c,
varxy - (sxy-sx*sy/c)/c,
rc - (varxy/ SQRT(varx*vary)) });
QUTPUT(%stats% { 'bestFit: y=" +
(STRING) ((sy-sx*varxy/varx)/c) +
o+ o+
(STRI NG (var xy/ varx) + x' });
ENDVACRO,
dsl : = DATASET([{1,1},{2,2},{3,3},{4, 4},{5,5},{6,6}],

poi nt Rec) ;

ds2 := DATASET([{1.93896e+009, 2.04482e+009},
{1.77971e+009, 8.54858e+008},
{2.96181e+009, 1.24848e+009},
{2.7744e+009, 1.26357e+009},
{1.14416e+009, 4.3429e+008},
{3.38728e+009, 1.30238e+009},
{3.19538e+009, 1.71177e+009}], poi ntRec);
ds3 := DATASET([{1, 1.00039},
{2, 2.07702},
{3, 2.86158},

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

162

ECL Language Reference
Built-in Functions and Actions

{4, 3.87114},

{5, 5.12417},

{6, 6.20283}], pointRec);
anal yse(dsl);
anal yse(ds2);
anal yse(ds3);

See Also: VARIANCE, COVARIANCE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
163

ECL Language Reference
Built-in Functions and Actions

COS

COS(angle)
angle The REAL radian value for which to find the cosine.
Return: COSreturnsasingle REAL value.

The COS function returns the cosine of the angle.

Example:

Rad2Deg : = 57.295779513082; //nunmber of degrees in a radi an
Deg2Rad : = 0.0174532925199; //nunmber of radians in a degree
Angl e45 : = 45 * Deg2Rad; /ltransl ate 45 degrees into radians

Cosi ne45 : = COS(Angl e45) ; //get cosine of the 45 degree angle

See Also: ACOS, SIN, TAN, ASIN, ATAN, COSH, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
164

ECL Language Reference
Built-in Functions and Actions

COSH

COSH(angle)
angle The REAL radian value for which to find the hyperbolic cosine.
Return: COSH returns asingle REAL vaue.

The COSH function returns the hyperbolic cosine of the angle.

Example:

Rad2Deg :
Deg2Rad :

Angl e45 :

57.295779513082; //nunmber of degrees in a radian
0.0174532925199; //nunber of radians in a degree

45 * Deg2Rad; /ltransl ate 45 degrees into radians

Hyper bol i cCosi ne45 : = COSH(Angl e45) ;

/1 get hyperbolic cosine of the 45 degree angl e

See Also: ACOS, SIN, TAN, ASIN, ATAN, COS, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
165

ECL Language Reference
Built-in Functions and Actions

COUNT

COUNT (recordset [, expression] [, KEYED])

COUNT (valuelist)

recordset The set of records to process. This may be the name of a DATASET or a record set derived
from some filter condition, or any expression that results in a derived record set, or athe name
of aDICTIONARY declaration. This also may be the GROUP keyword to indicate counting the
number of elementsin agroup, when used in aRECORD structure to generate crosstab statistics.

expression Optional. A logica expression indicating which recordsto includein the count. Valid only when
the recordset parameter is the keyword GROUP to indicate counting the number of elementsin
agroup.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to count. This may also be a SET of values.

Return: COUNT returnsasingle value.

The COUNT function returns the number of records in the specified recordset or valuelist.

Example:

MyCount := COUNT(Trades(Trades.trd_rate IN['3", "4', "5]));
/1 count the nunber of records in the Trades record
/'l set whose trd_rate field contains 3, 4, or 5

R1 : = RECORD
per son. per_st;
per son. per _sex;

Nurber : = COUNT(GROUP) ;

//total in each state/sex category

Hanks : = COUNT(GROUP, person. per _first_name = ' HANK') ;
//total of “Hanks” in each state/sex category

NonHanks : = COUNT(GROUP, person. per_first_nane <> ' HANK);
//total of “Non-Hanks” in each state/sex category

END,;

T1 := TABLE(person, Rl, per_st, per_sex);

Cntl
SetVal s :
Cnt 2

See Also: SUM, AV

COUNT(4, 8,16,2,1); //returns 5
[4,8,16,2,1];
COUNT(SetVals); //returns 5

E, MIN, MAX, GROUP, TABLE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

166

ECL Language Reference
Built-in Functions and Actions

COVARIANCE

COVARIANCE(recset, valuex, valuey [, expresssion] [, KEYED])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that resultsin a derived record set. This a'so may be the
GROUP keyword to indicate operating on the elements in each group, when used in aRECORD
structure to generate crosstab statistics.

valuex A numeric field or expression.

valuey A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid only
when the recset parameter is the keyword GROUP.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

Return: COVARIANCE returnsasingle REAL value.

The COVARIANCE function returns the extent to which valuex and valuey co-vary.

Example:

poi nt Rec :

anal yse(ds) :

= { REAL X,
MACRO

REAL vy };

#uni quenane(st at s)

U%stats% := TABLE(ds, { c : = COUNT(GROUP) ,
SX = SUM GROUP, x),
sy = SUM GROUP, V),
SXX = SUM GROUP, X * X),
SXY = SUM GROUP, x * V),
syy = SUMGROUP, y *),
var x = VARI ANCE(GROUP, X);
vary = VARI ANCE(GROUP, vY);
var xy := COVARI ANCE(GROUP, X, Y);
@ = CORRELATI ON(GROUP, x, Yy) });

OUTPUT(%st at s%) ;

/1 Follow ng should be zero
OQUTPUT(%st at s%
y - (syy-sy*sylc)/c,

var
var

Xy -

{ varx -

(sxy-sx*sy/c)/c,
rc - (varxy/ SQRT(varx*vary)) });

QUTPUT(%stats% { 'bestFit: y=

(STRI NG ((sy-sx*varxy/varx)/c) +

R

R

(STRI NG) (var xy/ varx) +' x' });

(sxx-sx*sx/c)/c,

ENDVACRO,
dsl := DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6,6}], pointRec);
ds2 : = DATASET([{1.93896e+009, 2.04482e+009},
{1.77971e+009, 8.54858e+008},
{2.96181e+009, 1.24848e+009},
{2.7744e+009, 1.26357e+009},
{1.14416e+009, 4.3429e+008},
{3.38728e+009, 1.30238e+009},
{3.19538e+009, 1.71177e+009}], pointRec);
ds3 : = DATASET([{1, 1.00039},

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

167

ECL Language Reference
Built-in Functions and Actions

{2, 2.07702},
{3, 2.86158},
{4, 3.87114},
{5, 5.12417},
{6, 6.20283}], pointRec);

anal yse(dsl);
anal yse(ds2);
anal yse(ds3);

See Also: VARIANCE, CORRELATION

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
168

ECL Language Reference
Built-in Functions and Actions

CRON

CRON(time)
time A string expression containing a unix-standard cron time.
Return: CRON defines asingle timer event.

The CRON function defines a timer event for use within the WHEN workflow service or WAIT function. Thisis
synonymous with EVENT(' CRON’, time).

The time parameter is unix-standard cron time, expressed in UTC (aka Greenwich Mean Time) as a string containing
the following, space-delimited components:

minute hour dom month dow

minute An integer value for the minute of the hour. Valid values are from 0 to 59.

hour An integer value for the hour. Valid values are from 0 to 23 (using the 24 hour clock).

dom An integer value for the day of the month. Valid values are from 0 to 31.

month An integer value for the month. Valid values are from 0 to 12.

dow Aninteger valuefor theday of theweek. Valid valuesarefrom 0to 7 (where both 0 and 7 represent
Sunday).

Any time component that you do not want to pass is replaced by an asterisk (*). You may define ranges of times
using a dash (-), lists using a comma (,), and ‘once every n’ using a slash (/). For example, 6-18/3 in the hour field
will fire the timer every three hours between 6am and 6pm, and 0-6/3,18-23/3 will fire the timer every three hours
between 6pm and 6am.

Example:

EXPORT events := MODULE
EXPORT dai |l yAtM dnight := CRON("0 O * * *');
EXPORT dai | yAt (| NTEGER hour,
I NTEGER mi nut e=0) : =

EVENT(' CRON
(STRING mnute + ' ' + (STRING hour + ' * * *'):
EXPORT dai | yAt M dday : = dail yAt (12, 0);
EXPORT EveryThreeHours := CRON('0 0-23/3 * * *');
END;
BU LD(t eenagers) : WHEN(events. dai |l yAt M dni ght);
BUI LD(ol di es) . WHEN(events. dai | yAt (6));
BUI LD({ NewsSt uf f) . WHEN(events. Ever yThr eeHour s) ;

See Also: EVENT, WHEN, WAIT, NOTIFY

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
169

ECL Language Reference
Built-in Functions and Actions

DEDUP

DEDUP(recordset [, condition [, ALL[, HASH]] [, KEEP n] [, keeper 1] [, LOCAL])

recordset The set of recordsto process, typically sorted in the same order that the expression will test. This
may be the name of a dataset or derived record set, or any expression that results in a derived
record set.

condition Optional. A comma-delimited list of expressions or key fields in the recordset that defines “ du-

plicate” records. The keywords LEFT and RIGHT may be used as dataset qualifiersfor fieldsin
the recordset. If the condition is omitted, every recordset field becomes the match condition. Y ou
may use the keyword RECORD (or WHOLE RECORD) to indicate al fields in that structure,
and/or you may use the keyword EXCEPT to list non-dedup fields in the structure.

ALL Optional. Matches the condition against all records, not just adjacent records. This option may
change the output order of the resulting records.

HASH Optional. Specifiesthe ALL operation is performed using hash tables.

KEEP Optional. Specifies keeping n number of duplicate records. If omitted, the default behavior isto
KEEP 1. Not valid with the ALL option present.

n The number of duplicate records to keep.

keeper Optional. The keywords LEFT or RIGHT. LEFT (the default, if omitted) keeps the first record
encountered and RIGHT keepsthe last.

LOCAL Optional. Specifiesthe operation is performed on each supercomputer node independently, with-

out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

Return: DEDUP returns a set of records.

The DEDUP function evaluates the recordset for duplicate records, as defined by the condition parameter, and returns
aunique return set. Thisis similar to the DISTINCT statement in SQL. The recordset should be sorted, unless ALL
is specified.

If a condition parameter is a single value (field), DEDUP does a simple field-level de-dupe equivaent to
LEFT.field=RIGHT .field. The condition is evaluated for each pair of adjacent recordsin the record set. If the condition
returns TRUE, the keeper record is kept and the other removed.

The AL L option meansthat every record pair is evaluated rather than only those pairs adjacent to each other, irrespec-
tive of sort order. The evaluation is such that, for records 1, 2, 3, 4, the record pairsthat are compared to each other are:

(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)
This means two compares happen for each pair, allowing the condition to be non-commutative.

KEEP n effectively means leaving n records of each duplicate type. Thisis useful for sasmpling. The LEFT keeper
value (implicit if neither LEFT nor RIGHT are specified) means that if the left and right records meet the de-dupe
criteria (that is, they “match”), the left record is kept. If the RIGHT keeper appearsinstead, the right is kept. In both
cases, the next comparison involves the de-dupe survivor; in this way, many duplicate records can collapse into one.

Complex Record Set Conditions

The DEDUP function with the ALL option is useful in determining complex recordset conditions between records
in the same recordset. Although DEDUP is traditionally used to eliminate duplicate records next to each other in
the recordset, the conditional expression combined with the ALL option extends this capability. The ALL option

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
170

ECL Language Reference
Built-in Functions and Actions

causes each record to be compared according to the conditional expression to every other record in the recordset. This
capability is most effective with small recordsets; larger recordsets should also use the HASH option.

Example:
Last Tbl := TABLE(Person, {per_| ast_nanme});
Lasts = SORT(Last Tbl , per _I| ast _nane) ;
My Set : = DEDUP(Last s, per _| ast _nan®) ;
/1 unique last names -- this is exactly equivalent to:
[/ MySet := DEDUP(Lasts, LEFT. per _| ast _nanme=RI CHT. per _| ast _nane) ;

/1 al so exactly equival ent to:

/1 MySet : = DEDUP(Lasts);
NamesTbl 1 : = TABLE(Person, {per _| ast _nane, per _first_nane});
Nanmes 1 SORT(NanesThbl 1, per _| ast _name, per _first_nane);
MyNanes1l := DEDUP(Namesl, RECORD);

//dedup by all fields -- this is exactly equival ent to:

/I M\yNames1 := DEDUP(Nanes, per_| ast_name, per_first_nanme);

/] al so exactly equival ent to:

/1 M\yNames1 : = DEDUP(Nanesl);

NanesTbl 2 : = TABLE(Per son, {per _| ast _nane, per _first_nane, per_sex});
Nanmes2 = SORT(NanmesTbl , per _| ast _nane, per _first_nane);
MyNames2 : = DEDUP(Names, RECORD, EXCEPT per_sex);

//dedup by all fields except per_sex
/] this is exactly equivalent to:
/1 M\yNames2 : = DEDUP(Names, EXCEPT per_sex);

/* In the foll owi ng exanple, we want to determ ne how many ‘AN or ‘AU type inquiries
have occurred within 3 days of a ‘BB type inquiry.
The COUNT of inquiries in the deduped recordset is subtracted from the COUNT
of the inquiries in the original recordset to provide the result.*/
I NTEGER abs(INTEGER i) := IF (i <0, -i, i);
W't hi nDays(| drpt, | day, rdrpt, rday, days) :=
abs(DaysAgo(| drpt, | day) - DaysAgo(rdrpt, rday)) <= days;
Dedupedl ngs : = DEDUP(i nquiry, LEFT.ing_ind_code='BB AND
RIGHT.ing_ind_code IN["AN ,'AU] AND
W t hi nDays(LEFT. i ng_dr pt,

LEFT. i nq_dr pt _day,

RI GHT. i ngq_dr pt ,

Rl GHT. i nq_dr pt _day, 3),

ALL);

I ngCount : = COUNT(Inquiry) - COUNT(Dedupedl ngs);
QUTPUT(per son(| ngCount >0), {1 ngCount});

See Also: SORT, ROLLUP, TABLE, FUNCTION Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
171

ECL Language Reference
Built-in Functions and Actions

DEFINE

DEFINE(pattern, symbol)

pattern The name of a RULE parsing pattern.

symbol A string constant specifying the name to use in the USE option on a PARSE
function or the USE function in a RULE parsing pattern.

Return: DEFINE creates a RULE pattern.

The DEFINE function defines a symbol for the specified pattern that may be forward referenced in previously defined
parsing pattern attributes. Thisisthe only type of forward reference allowed in ECL.

Example:

RULE a := USE(' synbol');

//uses the 'synbol'pattern defined later - b
RULE b := 'pattern';

//defines a rule pattern

RULE s : = DEFI NE(b, ' synmbol ');

//associate the “b” rule with the

/1" synmbol' for forward reference by rule “a”

See Also: PARSE, PARSE Pattern Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
172

ECL Language Reference
Built-in Functions and Actions

DENORMALIZE

DENORMAL I ZE(parentrecset, childrecset, condition, transform [,LLOCAL] [L[NOSORT])

DENORMALI|ZE(parentrecset, childrecset, condition, GROUP, transform [,LOCAL] [, NOSORT])

parentrecset The set of parent records to process, already in the format that will contain the denormalized
parent and child records.

childrecset The set of child records to process.

condition An expression that specifies how to match records between the parentrecset and childrecset.

transform The TRANSFORM function to call.

LOCAL Optional. Specifiesthe operation is performed on each supercomputer node independently, with-

out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

NOSORT Optional. Specifiesthe operation is performed without sorting the parentrecset or childrecset —
both must already be sorted so matching records in both are in order. This allows programmer
control of the order of the child records.

GROUP Specifies grouping the childrecset records based on the join condition so all the related child
records are passed as a dataset parameter to the transform.
Return: DENORMALIZE returns arecord set.

The DENORMALIZE function is used to form a combined record out of a parent and any number of children. It acts
very similar to aJOIN except that where JOIN with one parent and three children would call the transformthree times
and produce three outputs, DENORMALIZE calls the transform three times where the input to the first transformis
the parent and one child, the input to the second transform is the output of the first transform and another child, and
the input to the third transform is the output from the second transform and the remaining child. Also like JOIN, the
order in which the childrecset records are sent to the transformis undefined.

Because DENORMALIZE is basically a specialized form of JOIN, the various join types (LEFT OUTER, RIGHT
OUTER, FULL OUTER, LEFT ONLY, RIGHT ONLY, FULL ONLY) arealso availablefor useon DENORMALIZE
and act just as they do with JOIN.

DENORMALIZE TRANSFORM Function Requirements

For form one, the transform function must take at least two parameters: a LEFT record of the same format as the
combined parentrecset and childrecset (the resulting de-normalized record structure), and aRIGHT record of the same
format asthe childrecset. An optional third parameter may be specified: an integer COUNTER specifying the number
of times the transform has been called for the current set of parent/child pairs (defined by the condition values). The
result of the transform function must be arecord set of the same format as the LEFT record.

For form two, the transform function must take at least two parameters: a LEFT record of the same format as the
combined parentrecset and childrecset (the resulting de-normalized record structure), and ROWS(RIGHT) dataset of
the same format as the childrecset. The result of the transform function must be a record set of the same format as
the LEFT record.

Example:

Form 1 example:

Nor nRec : = RECORD
STRI N&0 t henane;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
173

ECL Language Reference
Built-in Functions and Actions

STRING20 addr;

END;

NanmesRec := RECORD
UNSI GNED1L nunRows;
STRI NGO t henane;
STRINGO addr1l :
STRING0 addr2 :
STRI NGO addr3 : ;

STRINGO addr4 :="'";
END;
NanmesTabl e : = DATASET([{0, 'Kevin'},{0,'Liz'},{0,' M Nobody'},
{0, " Anywhere'}], NanesRec);
Nor mAddrs : = DATASET([{' Kevin','10 Malt Lane'},
{"Liz',"10 Malt Lane'},
{'Liz',"3 The cottages'},
{' Anywhere', ' Here'},
{' Anywhere',"' There'},
{' Anywhere', ' Near'},
{' Anywhere', "' Far'}], NornRec);
NanesRec DeNor nThen(NamesRec L, NornmRec R, | NTEGER C) := TRANSFORM
SELF. NunRows : = C;

SELF.addrl := |IF (C=1, R addr, L.addrl);
SELF.addr2 := |F (C=2, R addr, L.addr2);
SELF.addr3 := | F (C=3, R addr, L.addr3);
SELF.addr4 := |F (C=4, R addr, L.addr4);
SELF := L;

END;

DeNor mredRecs : = DENORMALI ZE(NanmesTabl e, Nor mAddr s,
LEFT. t hename = RI GHT. t henane,
DeNor niThen{ LEFT, Rl GHT, COUNTER)) ;
OUTPUT(DeNor nedRecs) ;

Form 2 example:

Nor nRec : = RECORD
STRI NG20 t henane;
STRI NG20 addr;
END;
NanesRec : = RECORD
UNSI GNED1 nunRows;
STRI NG20 t henane;
DATASET(Nor mRec) addr esses;
END;
NamesTabl e : = DATASET([{O,'Kevin',[]},{0,'Liz',[]},
{0," M Nobody',[]}.{0," Anywhere',[]}],
NarmesRec) ;
Nor mAddrs : = DATASET([{' Kevin','10 Malt Lane'},
{"Liz',"10 Malt Lane'},
{'Liz',"3 The cottages'},
{' Anywhere',"' Here'},
{' Anywhere',"' There'},
{' Anywhere',"' Near'},
{' Anywhere', "' Far'}], Nor nRec) ;
NamesRec DeNor niThen{ NanesRec L, DATASET(NornmRec) R) := TRANSFORM
SELF. NunRows : = COUNT(R);
SELF. addresses := R
SELF : = L;
END;
DeNor mredRecs : = DENORMALI ZE(NanmesTabl e, Nor mAddr s,
LEFT. t henane = Rl GHT. t henaneg,
GROUP,
DeNor nirhen(LEFT, ROAS(RI GHT))) ;
QUTPUT(DeNor nedRecs) ;

NOSORT example:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
174

ECL Language Reference
Built-in Functions and Actions

M/Rec : = RECORD
STRI NGL Val uel;
STRI NGL Val uez2;

END;

ParentFile := DATASET([{'A,'C},{"B,'B},{'C,'A}], WRec);

ChildFile := DATASET([{'A,'Z},{'A,'T},{'B,'S},{'B,'Y},
{'C,' X}, {'C, W}, MWRec);

MyQut Rec : = RECORD
Par ent Fi | e. Val uel;
Par ent Fi | e. Val ue2;
STRINGL Cval 2 1 :="'";
STRINGL Cval2_2 :="'";
END;
P _Recs := TABLE(ParentFile, M/QutRec);
MyQut Rec DeNor mThen(MyQut Rec L, MyRec R, INTEGER C) := TRANSFORM

SELF.Cval2_1 := IF(C = 1, R Value2, L.Cval2_1);
SELF.Cval2_2 := IF(C = 2, R Value2, L.Cval2_2);
SELF := L;

END;

DeNor mredRecs : = DENORMALI ZE(P_Recs, Chil dFil e,
LEFT. Val uel = RI GHT. Val uel,
DeNor niThen{ LEFT, Rl GHT, COUNTER) , NOSORT) ;
OUTPUT(DeNor nedRecs) ;
/* DeNormedRecs result set is:
Rec# Valuel PVal2 Cval2_1 Cval2_ 2

1 A C Z T
2 B B Y S
3 C A X W

*/

See Also: JOIN, TRANSFORM Structure, RECORD Structure, NORMALIZE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
175

ECL Language Reference
Built-in Functions and Actions

DISTRIBUTE

DISTRIBUTE(recordset)

DISTRIBUTE(recordset, expression [, MERGE(sorts)])
DISTRIBUTE(recordset, index [, joincondition])

DISTRIBUTE(recordset, SKEW (maxskew [, skewlimit]))

recordset The set of recordsto distribute.

expression Aninteger expression that specifies how to distribute the recordset, usually using one the HASH
functions for efficiency.

MERGE Specifiesthe data is redistributed maintaining the local sort order on each node.

sorts The sort expressions by which the data has been locally sorted.

index The name of an INDEX attribute definition, which provides the appropriate distribution.

joincondition Optional. A logical expression that specifies how to link the records in the recordset and the in-
dex. ThekeywordsLEFT and RIGHT may be used as dataset qualifiersfor fieldsin the recordset
and index.

SKEW Specifies the allowable data skew values.

maxskew A floating point number in the range of zero (0.0) to one (1.0) specifying the minimum skew
to allow (0.1=10%).

skewlimit Optional. A floating point number in the range of zero (0.0) to one (1.0) specifying the maximum
skew to alow (0.1=10%).

Return: DISTRIBUTE returns a set of records.

The DISTRIBUTE function re-distributes records from the recordset across al the nodes of the cluster.

“Random” DISTRIBUTE

DISTRIBUTE(recordset)

Thisform redistributes the recordset “randomly” so there is no data skew across nodes, but without the disadvantages
the RANDOM(() function could introduce. Thisisfunctionally equivalent to distributing by ahash of the entire record.

Expression DISTRIBUTE

DISTRIBUTE(recordset, expression)

This form redistributes the recordset based on the specified expression, typically one of the HASH functions. Only
the bottom 32-bits of the expression value are used, so either HASH or HASH32 are the optimal choices. Records for
which the expression evaluates the same will end up on the same node. DISTRIBUTE implicitly performs a modulus
operation if an expression valueis not in the range of the number of nodes available.

If the MERGE option is specified, the recordset must have been locally sorted by the sorts expressions. This avoids
resorting.

Index-based DISTRIBUTE

DISTRIBUTE(recordset, index [, joincondition])

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
176

ECL Language Reference
Built-in Functions and Actions

Thisform redistributestherecordset based on the existing distribution of the specified index, wherethelinkage between
the two is determined by the joincondition. Records for which the joncondition is true will end up on the same node.

Skew-based DISTRIBUTE

DISTRIBUTE(recordset, SKEW(maxskew [, skewlimit]))

This form redistributes the recordset, but only if necessary. The purpose of this form is to replace the use of
DISTRIBUTE(recordset, RANDOM()) to simply obtain arelatively even distribution of data across the nodes. This
form will always try to minimize the amount of data redistributed between the nodes.

The skew of adataset is calculated as:
MAX(ABS(AvgPartSize-PartSize[node])/AvgPartSize)

If the recordset is skewed less than maxskew then the DISTRIBUTE isano-op. If skewlimit is specified and the skew
on any node exceeds this, the job fails with an error message (specifying the first node number exceeding the limit),
otherwise the datais redistributed to ensure that the data is distributed with less skew than maxskew.

Example:
MySet 1 : = DI STRI BUTE(Person); //”randonif distribution - no skew
MySet 2 : = DI STRI BUTE(Per son, HASH32(Per son. per _ssn));

/lall people with the same SSN end up on the same node
/11 NDEX exanpl e:
mai nRecord : = RECORD

| NTEGCER8 sequence;

STRI NG20 f or enane;

STRI NG20 sur nane;

UNSI GNED8 fi | epos{virtual (fil eposition)};

END;
mai nTabl e : = DATASET(' ~keyed. d00' , mai nRecor d, THOR) ;
naneKey := | NDEX(mai nTabl e, {surnane, forenane, fil epos}, 'nane.idx');

i ncTabl e : = DATASET(' ~i nc. d00' , mai nRecor d, THOR) ;
x := DI STRI BUTE(i ncTabl e, naneKey,
LEFT. surnane = RI GHT. surnane AND
LEFT. forename = RI GHT. f or enane) ;
QUTPUT(x) ;

/| SKEW exanpl e:
Jds : = JO N(sonedat a, ot her dat a, LEFT. sysi d=RI GHT. sysi d) ;
Jds_dist1l : = DI STRI BUTE(Jds, SKEWO. 1)) ;
[l ensures skew is |l ess than 10%
Jds_di st2 : = DI STRI BUTE(Jds, SKEW 0. 1,0.5));
/'l ensures skew is |ess than 10%
/land fails if skew exceeds 50% on any node

See Also: HASH32, DISTRIBUTED, INDEX

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
177

ECL Language Reference
Built-in Functions and Actions

DISTRIBUTED

DISTRIBUTED(recordset [, expression])

recordset The set of distributed records.
expression Optional. An expression that specifies how the recordset is distributed.
Return: DISTRIBUTED returns a set of records.

The DISTRIBUTED function is a compiler directive indicating that the records from the recordset are aready dis-
tributed across the nodes of the Data Refinery based on the specified expression. Records for which the expression
evaluates the same are on the same node.

If the expression is omitted, the function just suppresses a warning that is sometimes generated that the recordset
hasn't been distributed

Example:

MySet : = DI STRI BUTED(Per son, HASH32(Per son. per _ssn)) ;
/lall people with the same SSN are al ready on the same node

See Also: HASH32, DISTRIBUTE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
178

ECL Language Reference
Built-in Functions and Actions

DISTRIBUTION

DISTRIBUTION(recordset [, fields] [, NAMED(name)])

recordset The set of records on which to run statistics.

fields Optional. A comma-delimited list of fieldsin therecordset to which to limit the action. If omitted,
all fields are included.

NAMED Optional. Specifies the result name that appears in the workunit.

name A string constant containing the result 1abel.

The DISTRIBUTION action produces a crosstab report in XML format indicating how many unique records there
arein therecordset for each value in each field in the recordset.

The DECIMAL datatypeis not supported by this action. You can use a REAL datatype instead.

Example:

SoneFile := DATASET([{'C ,'G},{'C,'C},{'A,'X},{'B,'G}],
{STRINGL Val uel, STRI NGl Val ue2});
DI STRI BUTI ON(SoreFi | e) ;
/* The result comes back | ooking Ilike this:
<XM_>
<Fi el d nane="Val uel" distinct="3">
<Val ue count="1">A</Val ue>
<Val ue count ="1">B</ Val ue>
<Val ue count="2">C</ Val ue>
</ Fi el d>
<Fi el d nane="Val ue2" distinct="3">
<Val ue count ="1">C</ Val ue>
<Val ue count="2">G</ Val ue>
<Val ue count ="1">X</ Val ue>
</ Fi el d>
</ XM_>
*/

//**

nanmesRecord : = RECORD
STRI N&0 sur nane;
STRI NG10O f or enane;
| NTECER2 age;

END;

nanesTabl e : = DATASET([
{'Halligan',"'Kevin', 31},
{'Halligan','Liz', 30},
{'Salter','Abi', 10},
{'X,"Z,5}], nanesRecord);

DI STRI BUTI ON(nanesTabl e, surnane, forenane, NAMED(' Stats'));
/* The result conmes back | ooking |ike this:
<XM_>
<Fi el d nane="sur nane" distinct="3">

<Val ue count ="2">Hal | i gan</ Val ue>

<Val ue count="1">X</Val ue>

<Val ue count="1">Sal t er </ Val ue>
</ Fi el d>
<Fi el d nane="forenane" distinct="4">

<Val ue count ="1">Abi </ Val ue>

<Val ue count ="1">Kevi n</ Val ue>

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
179

ECL Language Reference
Built-in Functions and Actions

<Val ue count="1">Li z</ Val ue>
<Val ue count="1">Z</ Val ue>
</ Fi el d>
</ XM_>
*/

/| Post - processing the result w th PARSE:
X := DATASET(RON TRANSFORM { STRI NG | i ne},
SELF.line := WORKUNI T(' Stats', STRING)));
res : = RECORD
STRI NG Fi el dnane : = XMLTEXT(' @ane') ;
STRING Cnt := XM.TEXT(' @li stinct');
END;

out := PARSE(x, line, res, XM.('XM/Field));
out;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
180

ECL Language Reference
Built-in Functions and Actions

EBCDIC

EBCDI C(recordsst)

recordset The set of recordsto process. This may be the name of adataset or arecord set derived from some
filter condition, or any expression that resultsin a derived record set.
Return: EBCDIC returns a set of records

The EBCDIC function returns the recordset with all STRING fields translated from ASCII to EBCDIC.
Example:
EBCDI CRecs : = EBCDI C(SomeASCl | | nput) ;

See Also: ASCII

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
181

ECL Language Reference
Built-in Functions and Actions

ENTH

ENTH (recordset, numerator [, denominator [, which]] [, LOCAL])

recordset The set of records to sample. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

numer ator The number of records to return. The chosen records are evenly spaced from throughout the
recordset.

denominator Optional. The size of each set from which to return numerator number of records. If omitted, the
denominator value is the total number of recordsin the recordset.

which Optional. An integer specifying the ordinal number of the sample set to return. Thisis used to
obtain multiple non-overlapping samples from the same recordset. If the numerator isnot 1, then
some records may overlap.

LOCAL Optional. Specifies that the sample is extracted on each supercomputer node without regard to
the number of records on other nodes, significantly improving performance if exact results are
not required.

Return: ENTH returns a set of records.

The ENTH function returns a sampl e set of records from the nominated recordset. ENTH returns numerator number
of records out of each denominator set of records in the recordset. Unless LOCAL is specified, records are picked at
exact intervals across al nodes of the supercomputer.

Example:

MySanpl el :
MySanpl e2 :
My Sanpl e3 :

SoneFile :=

{STRINGL Letter}

DATASET([

ENTH(Per son, 1,10, 1); // 10% (1 out of every 10)
ENTH(Per son, 15, 100, 1); // 15% (15 out of every 100)
ENTH(Person, 3,4,1); // 75% (3 out of every 4)

{"Ay{"B},{"C},{"D}.{"E},
{(FHL{G}HL{H}{1"},{"J}
{KyL{Lry{mMp{"N},{"O},
{(PHL{QL{R}{S}H{ T}
%'U},{'V}.{'W},{'X'}.{'V}],

Set1l : = ENTH(SoneFile, 2,10,1); // returns E, J, O T, Y

See Also: CHOOSEN, SAMPLE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

182

ECL Language Reference
Built-in Functions and Actions

ERROR

ERROR [(‘errormessage | errorcode) | ;

ERROR (errorcode, errormessage) ;

ERROR(datatype[, [errorcode] [, errormessage]]) ;

errormessage Optional. A string constant containing the message to display.
errorcode Optional. An integer constant containing the error number to display.
datatype The value type or name of a RECORD structure. This may use the TY PEOF function.

The ERROR function immediately halts processing on the workunit and displaysthe errorcode and/or errormessage.
Thethird form is available for use in contexts where a value type or dataset is required. This function does the same
thing asthe FAIL action, but may be used in an expression context, such as within a TRANSFORM function.

Example:
outrec Xform(inrec L, inrec R) : = TRANSFORM

SELF. key := I F(L.key <= R key, R key, ERROR(' Recs not in order'));
END;

See Also: FAILURE, FAIL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
183

ECL Language Reference
Built-in Functions and Actions

EVALUATE
EVALUATE action

[attrname ;=] EVALUATE(expression) ;

[attrname ;=] EVALUATE(module[, deframe]) ;

attrname Optional. The action name, which turns the action into a definition, therefore not executed until
the attrname is used as an action.

expression The function to call in an action context.

module The module to evaluate.

defname Optional. The name of a specific definition within the module to evaluate. If omitted, all defini-

tions in the modul e are evaluated.

The first form of the EVALUATE action names an expression (typically a function call) to execute in an action
context. Thisis mainly useful for calling functions that have side-effects, where you don't care about the return value.

The second form of the EVAL UATE action recursively expands the exported definitions of the module and evaluates
them. If adefnameis specified, then only that definition is evaluated.

Example:

Form 1 example:

myServi ce : = SERVI CE
UNSI GNED4 doSonet hi ng(STRI NG text);
END;

ds := DATASET(' M/File', {STRING20 text} , THOR);

APPLY(ds, EVALUATE(doSonet hi ng(ds.text)));
//calls the doSonething function once for each record in the ds
/] dataset, ignoring the returned values fromthe function

Form 2 example:

M : = MODULE

EXPORT a : = 10;

EXPORT b := OUTPUT(' Hel | 0');
END;

M2 = MODULE
EXPORT nx := M
EXPORT d : = OUTPUT(' Ri chard');
END;
EVALUATE(M2) ;
[/ produces three results:
/l Result_1: 10
/l Result_2: Hello
/1l Result_3: Richard

See Also: APPLY, SERVICE Structure,

EVALUATE function

EVALUATE(onerecord, value)

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
184

ECL Language Reference
Built-in Functions and Actions

onerecord A record set consisting of asingle record.
value The value to return. This may be any expression yielding avalue.
Return: EVALUATE returns asingle value.

The EVALUATE function returns the value evaluated in the context of the onerecord set (which must be a single
record, only). This function typically uses indexing to select a single record for the onerecord recordset. The usage
isto return a value from a specific child record when operating at the parent record's scope level. The advantage that
EVALUATE has over using recordset indexing into asingle field is that the value returned can be any expression and
not just asingle field from the child dataset.

Accessing Field-level Data in a Specific Record

To accessfield level datain a specific record, the recordset indexing capability must be used to select a single record.
The SORT function and recordset filters are useful in sel ecting and ordering the recordset so that the appropriate record
can be selected.

Example:

Worst Card : = SORT(Cards, Std. Scori ng);

MyVal ue : = EVALUATE(Worst Card[1], Std. Utilization);
/1l WorstCard[1] uses indexing to get the first record
[/l in the sort order, then evaluates that record

[/l returning the Std. Utilization val ue

Val i dBal Trades : = trades(Val i dvbney(trades.trd_bal));

Hi ghestBal s : = SORT(Val i dBal Tr ades, -trades.trd_bal);

H ghest HC : = EVALUATE(Hi ghest Bal s[1] ,trades.trd_hc);
[lreturn trd_hc field of the trade with the highest bal ance
/1 could al so be coded as (using indexing):

/] Hi ghest_ HC : = HighestBal s[1].trades.trd_hc;

OQUTPUT(Per son, { per _| ast _nane, per _first_nane, H ghest HC});
//output that H ghest_ HC for each person

/1 This output operates at the scope of the Person record

/'l EVALUATE is needed to get the value froma Trades record
/| because Trades is a Child of Person

IsValidlind := trades.trd_ind_code IN['FM,'RE];
IsMortgage := IsValidind OR trades.trd_rate = 'G ;
SortedTrades := SORT(trades(ValidDate(trades.trd_dopn),isMrtgage),
trades.trd_dopn_nos);
Current Rate : = MAP(~EXI STS(Sort edTrades) => "' ',
EVALUATE(Sort edTrades[1], trades.trd_rate));

OUTPUT(per son, { Current Rat e}) ;

See Also: SORT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
185

ECL Language Reference
Built-in Functions and Actions

EVE

NT

EVENT(event , subtype)

event A case-insensitive string constant naming the event to trap.

subtype A case-insensitive string constant naming the specific type of event to trap. This may contain *
and ?to wildcard-match the event's sub-type.

Return: EVENT returnsasingle event.

The EVENT function returns a trigger event, which may be used within the WHEN workflow service or the WAIT
and NOTIFY actions.

Example:

| MPORT STD;

MyEvent Nane : = ' MyFi | eEvent';

M/Fi | eNane = "test::nyfile';

IF (STD. Fil e. Fi | eExi st s(M/Fi | eNane) ,

STD. Fi |l e. Del et eLogi cal Fi |l e(M/Fi | eNane)) ;

[/ del et es

the file if it already exists

STD. Fi | e. Moni t or Logi cal Fi | eNane(MyEvent Narme, M/Fi | eNane) ;

/lsets up
/lto fire

QUTPUT(" Fi |

moni toring and the event nanme
when the file is found

e Created') : WHEN(EVENT(MyEvent Nane, ' *'), COUNT(1));

//this OQUTPUT occurs only after the event has fired

afile := DATASET([{ 'A, '0'}], {STRINGLO key, STRI NGLO val});

QUTPUT(af i |

e, , M/Fi | eNane) ;

//this creates a file that the DFU file nonitor will find

[/ when it

periodically polls

//**********************************

EXPORT events := MODULE
EXPORT dail yAtM dnight := CRON('0 0 * * *');
EXPORT dai | yAt (| NTEGER hour ,

| NTEGER

m nut e=0) : =

EVENT(' CRON ,

(STRI NG

EXPORT dai | yAt M dday :

END;

STRING hour + ' * * *');

mnute + ' '+ (
= dail yAt (12, 0);

BU LD(t eenagers): WHEN(events. dai | yAt M dni ght);
BU LD(ol di es) : WHEN(events. dail yAt(6));

See Also: EVENTNAME, EVENTEXTRA, CRON, WHEN, WAIT, NOTIFY

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
186

ECL Language Reference
Built-in Functions and Actions

EVENTNAME

EVENTNAME

‘ Return: ‘ EVENTNAME returns asingle string value.

EVENTNAME returns the name of the trigger event.

Example:

doMyServi ce : = FUNCTI ON
QUTPUT('Did a Service for: ' + 'EVENTNAVE=" + EVENTNAME);
NOTI FY(EVENT(' MySer vi ceConpl et e’ ,
' <Event ><r et ur nTo>FRED</ r et ur nTo></ Event >'),
EVENTEXTRA(' returnTo'));
RETURN EVENTEXTRA(' returnTo');
END;

doMyService : WHEN(' MyService');

[/ and a call
NOTI FY(' MySer vi ce',
' <Event ><r et ur nTo>" +WORKUNI T+' </ r et ur nTo></ Event >');
WAI T(' MySer vi ceConpl ete');
OQUTPUT(" WORKUNI T DONE')

See Also: EVENT, EVENTEXTRA, CRON, WHEN, WAIT, NOTIFY

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
187

ECL Language Reference
Built-in Functions and Actions

EVENTEXTRA

EVENTEXTRA(tag)

‘Return: ‘EVENTEXTRA returns a single string value.

The EVENTEXTRA function returns the contents of the tag from the XML text in the EVENT function's second
parameter.

Example:

doMyServi ce : = FUNCTI ON
QUTPUT('Did a Service for: ' + 'EVENTNAVE=" + EVENTNAME);
NOTI FY(EVENT(' MySer vi ceConpl et e’ ,
' <Event ><r et ur nTo>FRED</ r et ur nTo></ Event >'),
EVENTEXTRA(' returnTo'));
RETURN EVENTEXTRA(' returnTo');
END;

doMyService : WHEN(' MyService');

[/ and a call
NOTI FY(' MySer vi ce',
' <Event ><r et ur nTo>" +WORKUNI T+' </ r et ur nTo></ Event >');
WAI T(' MySer vi ceConpl ete');
OQUTPUT(" WORKUNI T DONE')

See Also: EVENT, EVENTNAME, CRON, WHEN, WAIT, NOTIFY

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
188

ECL Language Reference
Built-in Functions and Actions

EXISTS

EXISTS(recordset [, KEYED])

EXI ST S(valudlist)

recordset The set of recordsto process. Thismay be the name of an index, a dataset, or arecord set derived
from some filter condition, or any expression that resultsin a derived record set.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions. This may also be a SET of values.

Return: EXISTS returnsasingle BOOLEAN value.

The EXI ST Sfunctionreturnstrueif the number of recordsin the specified recordsetis> 0, or thevaludlist is popul ated.
Thisis most commonly used to detect whether afilter has filtered out all the records.

When checking for an empty recordset, use the EXISTS(recordset) function instead of the expression:
COUNT (recordset) > 0. Using EXISTS results in more efficient processing and better performance under those cir-
cumstances.

Example:

MyBool ean : = EXI STS(Publ i cs(pub_type = 'B'));
Tr adesExi st Persons : = Person(EXI STS(Tr ades));
NoTr adesPer son : = Person(NOT EXI STS(Trades));

M nVal 2 : = EXI STS(4, 8,16,2,1); //returns TRUE
SetVals := [4,8,16,2,1];

M nVal 3 : = EXI STS(SetVal s); [//returns TRUE
Nul | Set : = ;

M nVal 3 : = EXISTS(Nul | Set); //returns FALSE

See Also: DEDUP, Record Filters

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
189

ECL Language Reference
Built-in Functions and Actions

EXP

EXP(n)
n The real number to evaluate.
Return: EXPreturnsasingle real value.

The EXP function returns the natural exponential value of the parameter (en). Thisisthe opposite of the LN function.

Example:

M/Pl = EXP(3.14159);
Interim:= ROUND(1000 * (EXP(M/PI)/ (1 + EXP(M/PI))));

See Also: LN, SQRT, POWER

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
190

ECL Language Reference
Built-in Functions and Actions

FAIL

[attrname :=] FAIL [(errormessage | errorcode)] ;
[attrname :=] FAIL (errorcode, errormessage) ;

[attrname :=] FAIL (datatype|, [errorcode] [, errormessage]]) ;

attrname Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attrname is used as an action.

errormessage Optional. A string constant containing the message to display.

errorcode Optional. An integer constant containing the error number to display.

datatype The value type, name of a RECORD structure, DATASET, or DICTIONARY to emulate.

The FAIL action immediately halts processing on the workunit and displays the errorcode and/or errormessage. The
third form is available for use in contexts where a value type or dataset is required. FAIL may not be used in an
expression context (such as within a TRANSFORM)—use the ERROR function for those situations.

Example:
| F(header . versi on <> doxi e. header _ver si on_new,
FAIL('M smatch -- header.version vs. doxie.header_versi on_new.'));
Fail edJob : = FAIL(' ouch, it broke');
sPeopl e = SORT(Per son, Person. per_first_nane);
nUni ques = COUNT(DEDUP(sPeopl e, Per son. per _first_nanme AND

Per son. addr ess))
FAI LURE(Fai | edJob) ;
M/RecSet : = | F(EXI STS(Person), Person,
FAI L(Per son, 99, ' Person does not exist!!’));

See Also: FAILURE, ERROR

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
191

ECL Language Reference
Built-in Functions and Actions

FAILCODE

FAILCODE

The FAIL CODE function returns the last failure code, for use in the FAILURE workflow service or in the TRANS-
FORM structure referenced in the ONFAIL option of SOAPCALL.

Example:

SPeopl e : = SORT(Person, Person. per _first_nane);

nUni ques : = COUNT(DEDUP(sPeopl e, Per son. per _first_name AND
Per son. addr ess))

: FAI LURE(Enai | . si npl eSend(Syst emsPer sonnel ,

Syst ensPer sonel . enmai | , FAI LCODE)) ;

See Also: FAILURE, FAILMESSAGE, SOAPCALL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
192

ECL Language Reference
Built-in Functions and Actions

FAILMESSAGE

FAILMESSAGE [(tag)]

tag A string constant defining the name of XML tag containing the text to return, typically extrain-
formation returned by SOAPCALL. If omitted, the default is ‘text.’

The FAILMESSAGE function returns the last failure message for use in the FAILURE workflow service or the
TRANSFORM structure referenced in the ONFAIL option of SOAPCALL.

Example:

SPeopl e : = SORT(Person, Person. per _first_nane);
nUni ques : = COUNT(DEDUP(sPeopl e, Per son. per _first_nane ANDPer son. addr ess))

: FAI LURE(Enai | . si npl eSend(Syst emrsPer sonnel ,
Syst enmsPer sonel . enmi | , FAl LVESSAGE)) ;

See Also: RECOVERY, FAILCODE, SOAPCALL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
193

ECL Language Reference
Built-in Functions and Actions

FETCH

FET CH (basedataset, index, position [, transform] [, LOCAL])

basedataset The base DATASET attribute to process. Filtering is not allowed.

index The INDEX attribute that provides keyed access into the basedataset. This will typically have
afilter expression.

position An expression that provides the means of locating the correct record in the basedataset (usually
the field within the index containing the fileposition value).

transform The TRANSFORM function to call for each record fetched from the basedataset. If omitted,
FETCH returns a set containing al fields from both the basedataset and index, with the second
of any duplicate named fields removed.

LOCAL Optional. Specifiesthe operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

Return: FETCH returns arecord set.

The FETCH function processes through all records in the index in the order specified by the index, fetching each
related record from the basedataset and performing the transform function.

The index will typicaly have afilter expression to specify the exact set of records to return from the basedataset. If
the filter expression defines a single record in the basedataset, FETCH will return just that one record. See KEY ED/
WILD for adiscussion of INDEX filtering.

FETCH TRANSFORM Function Requirements

The transform functi

on must take up to two parameters. a LEFT record that must be of the same format as the base-

dataset, and an optional RIGHT record that that must be of the same format as the index. The optional second para
meter is useful in those instances where the index containsinformation not present in the recordset.

Example:

Pt bl Rec : = RECORD

STRING State :

STRING20 Gity

STRI N&5 Lnane :
STRI NGL5 Fnane :

END;

Per son. per _st;

Person. per_full _city;

Per son. per _| ast _nane;

Per son. per _first_nane;

Pt bl Qut := OUTPUT(TABLE(Person, Ptbl Rec),,' RTTEMP: : Test Fetch');

Ptbl := DATASET("

RTTEMP: : Test Fetch'

{Ptbl Rec, UNSI GNED8 _ fpos {virtual (fil eposition)}},

FLAT) ;

Bld := BU LD(Pthl
{state,city,In
' RTTEMPKey: : Te

Al phal nStateCity
{state,city
' RTTEMPKey:

TYPEOF(Pt bl) copy
SELF := 1|;
END;

ane, f nane, __ f pos},
st Fetch');

:= | NDEX(Pt bl ,
, | nane, f nane, __f pos},
: Test Fetch');

(Ptbl 1) := TRANSFORM

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

194

ECL Language Reference
Built-in Functions and Actions

Al phaPeopl e : = FETCH(Pt bl ,
Al phalnStateCity(state="FL',
city ="' BOCA RATON ,
Lname=" WK' ,
Fname="' PI CHA'),
Rl GHT. __f pos,
copy(LEFT));

QutFil e : = OUTPUT(CHOOSEN(Al phaPeopl e, 10)) ;
SEQUENTI AL(Pt bl Qut , Bl d, Qut Fi | e)

/I NOTE the use of a filter on the index file. This is an inportant

/|l use of standard filtering technique in conjunction with indexing
/1 to achieve optimal “randonf access into the base record set

See Also: TRANSFORM Structure, RECORD Structure, BUILDINDEX, INDEX, KEYED/WILD

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
195

ECL Language Reference
Built-in Functions and Actions

FROMJSON

FROM JSON(record, jsonstring)

record The RECORD structure to produce. Each field should specify the XPATH to the data in the
jsonstring that it should hold. If omitted, the lower-cased field names are used.

jsonstring A string containing the JSON to convert.

Return: FROMJSON returns a single row (record).

The FROMJSON function returns asingle row (record) in the record format from the specified jsonstring. This may
be used anywhere a single row can be used (similar to the ROW function).

Example:

namesRec : = RECORD
UNSI GNED2 Enpl oyeel D{ xpat h(' Enpl D) };
STRI NGLO Fi r st name{ xpat h(' FNane') };
STRI NGLO Last nanme{xpat h(' LNane') };

END;

X := "{"FName": "Ceorge" , "LNane": "Jetson", "EnplD': 42}';
rec : = FROMISON(nanmesRec, X) ;

QUTPUT(r ec) ;

See Also: ROW, TOJSON

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
196

ECL Language Reference
Built-in Functions and Actions

FROMUNICODE

FROMUNICODE(string, encoding)

string The UNICODE string to trandate.
encoding The encoding codepage (supported by IBM’s1CU) to use for the trandlation.
Return: FROMUNICODE returnsasingle DATA value.

The FROM UNICODE function returns the string translated from the specified encoding to a DATA value.
Example:
DATA5 x := FROMUNI CODE(u' ABCDE',' UTF-8'); //results in 4142434445

See Also: TOUNICODE, UNICODEORDER

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
197

ECL Language Reference
Built-in Functions and Actions

FROMXML

FROM XML (record, xmistring)

record The RECORD structure to produce. Each field must specify the XPATH to the datain the xml-
string that it should hold.

xmistring A string containing the XML to convert.

Return: FROMXML returns asingle row (record).

The FROM XML function returns a single row (record) in the record format from the specified xmistring. This may
be used anywhere a single row can be used (similar to the ROW function).

Example:

namesRec : = RECORD
UNSI GNED2 Enpl oyeel D{ xpat h(' Enpl D) };
STRI NGLO Fi r st name{xpat h(' FNane')};
STRINGLO Last nanme{xpat h(' LNane') };
END;
X := ' <Row><FName>GCeor ge</ FName><LNane>Jet son</ LNane><Enpl D>42</ Enpl D></ Row>' ;

rec : = FROWM.(nanmesRec, X) ;
QUTPUT(r ec) ;

See Also: ROW, TOXML

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
198

ECL Language Reference
Built-in Functions and Actions

GETENV

GETENV(name|[, default])

name A string constant containing the name of the environment variable.

default Optional. A string constant containing the default value to use if the environment variable does
not exist.

Return: GETENV returns a STRING value.

The GETENV function returns the value of the named environment variable. If the environment variable does not
exist or contains no value, the default value is returned.

Example:

gl :
g2 :

GETENV(' nanesTabl e') ;
GETENV(' nyPort','25");

QUTPUT(g1) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
199

ECL Language Reference
Built-in Functions and Actions

GLOBAL

GLOBAL (expression[, FEW | MANY])

expression The expression to evaluate at a global scope.

FEW Optional. Indicates that the expression will result in fewer than 10,000 records. This alows op-
timization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in many records.

Return: GLOBAL may return scalar values or record sets.

The GLOBAL function evaluates the expression at a global scope, similar to what the GLOBAL workflow service
does but without the need to define a separate attribute.

Example:

| MPORT doxi e;
besr := doxie. best_records;
ssnr := doxie.ssn_records;

[[**** | ndividual record defs
recbesr := RECORDOF(besr);
recssnr : = RECORDOF(ssnr);

[[**** Nonster record def
rec : = RECORD, MAXLENGTH(doxi e. max| engt h_report)
DATASET(recbesr) best_infornation_children;
DATASET(recssnr) ssn_chil dren;
END;
nada : = DATASET([O], {INTEGERL a});
rec tra(nada |) := TRANSFORM
SELF. best _i nformati on_children : = GLOBAL(besr);
SELF. ssn_children := GLOBAL(ssnr);
END;
EXPORT central _records : = PROJECT(nada, tra(left));

See Also; GLOBAL Workflow Service

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
200

ECL Language Reference
Built-in Functions and Actions

GRAPH

GRAPH(recordset , iterations, processor)

recordset Theinitial set of records to process.
iterations The number of timesto call the processor function.
processor The function attribute to process the input. This function may use the following as arguments:
ROWSET(LEFT) Specifiesthe set of input datasets, which may be indexed
to specify the result set from any specific iteration —
ROWSET(LEFT)[Q] indicates the initial input recordset while
ROWSET(LEFT)[1] indicates the result set from the first
iteration. This may also be used as the first parameter
to the RANGE function to specify a set of datasets
(allowing the graph to efficiently process N-ary merge/join
arguments).
COUNTER Specifies an INTEGER parameter for the graph iteration number.
Return: GRAPH returns the record set result of the last of theiterations.

The GRAPH function is similar to the LOOP function, but it executes as though all the iterations of the processor
call were expanded out, removing any branches that can't be executed, and then joined together. The resulting graph
isas efficient asif the graph had been expanded out by hand.

Example:

nanmesRec

: = RECORD

STRI N&0 | nane;
STRI NGLO f nane;

UNSI GNED2 age :
UNSI GNED2 ctr :

END,;

25;
0;

nanesTabl e2 : = DATASET([{' Flintstone',"' Fred', 35},
{"Flintstone','WI|m', 33},
{'Jetson',"' CGeorgie', 10},

{"M. T ,"'Z-man'}], nanesRec);
| oopBody(SET OF DATASET(nanesRec) ds, UNSIGNEDA4 c) : =
PRQIECT(ds[c-1], /1 ds[0] =ori gi nal input
TRANSFORM nanesRec,

SELF. age : = LEFT. age+c; //c is graph COUNTER
SELF. ctr := COUNTER; /| PROOECT' s COUNTER

SELF

.= LEFT));

gl : = GRAPH(nanesTabl e2, 10, | oopBody(ROANBET(LEFT) , COUNTER)) ;

QUTPUT(gl);

See Also: LOOP, RANGE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
201

ECL Language Reference
Built-in Functions and Actions

GROUP

GROUP(recordset [, breakcriteria[, ALL]][, LOCAL])

recordset

The set of records to fragment.

breakcriteria Optional. A comma-delimited list of expressions or key fields in the recordset that specifies

how to fragment the recordset. Y ou may use the keyword RECORD to indicate al fieldsin the
recordset, and/or you may use the keyword EXCEPT to list non-group fields in the structure.
Y ou may also use the keyword ROW to indicate each record in the recordset is a separate group.
If omitted, the recordset is ungrouped from any previous grouping.

ALL

Optional. Indicates the breakceriteria is applied without regard to any previous order. If omitted,
GROUP assumes the recordset is already sorted in breakcriteria order.

LOCAL

Optional. Specifiesthe operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

Return:

GROUP returns arecord set.

The GROUP function fragments arecordset into a set of sets. This allows aggregations and other operations (such as
ITERATE, DEDUP, ROLLUP, SORT and others) to occur within defined subsets of the data—the operation executes
on each subset, individually. This means that the boundary condition code written in the TRANSFORM function for
those functions that use them will be different than it would be for arecordset that has ssimply been SORTed.

The recordset must be sorted by the same elements as the breakcriteria if the ALL option is not specified. The max-
imum size allowed for any one subgroup is 64 Mb and subgroups never span nodes; if the breakcriteria resultsin a
subgroup larger than 64 Mb, an error occurs.

Therecordset gets ‘ungrouped’ by usein a TABLE function, by the JOIN function in some circumstances (see JOIN),
by UNGROUP, or by another GROUP function with the second parameter omitted.

Example:

M/Rec : = RECORD
STRI NG20 Last;
STRI NGO First;

END;

Sor t edSet
Gr oupedSet

SecondSor t

: = SORT(Person, Person. | ast_nane); //sort by |ast name

:= GROUP(SortedSet,|ast_nane); //then group them

: = SORT(G oupedSet, Person. first_nang);

/lsorts by first name within each |ast nane group
// this is a “sort w thin group”

UnG oupedSet : = GROUP(G oupedSet); //ungroup the dataset

M/Tabl e

: = TABLE(SecondSort, M/Rec); //create table of sorted nanes

See Also: REGROUP, COMBINE, UNGROUP, EXCEPT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
202

ECL Language Reference
Built-in Functions and Actions

HASH

HASH (expressionlist)

expressionlist A comma-delimited list of values.
Return: HASH returns asingle value.

The HASH function returns a 32-bit hash value derived from all the values in the expressionlist. Trailing spaces are
trimmed from string (or UNICODE) fields before the value is calculated (casting to DATA preventsthis).

Example:

MySet : = DI STRI BUTE(Per son, HASH(Per son. per _ssn)) ;
/I people with the same SSN go to sane Data Refinery node

See Also: DISTRIBUTE, HASH32, HASH64, HASHCRC, HASHMD5

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
203

ECL Language Reference
Built-in Functions and Actions

HASH32

HASH 32(expressionlist)

expressionlist A comma-delimited list of values.
Return: HASH32 returns asingle value.

The HASH32 function returns a 32-bit FNV (Fowler/Noll/Vo) hash value derived from all the values in the expres-
sionlist. This usesahashing algorithm that isfaster and lesslikely than HASH to return the same values from different
data. Trailing spaces are trimmed from string (or UNICODE) fields before the value is calculated (casting to DATA
prevents this).

Example:

MySet : = DI STRI BUTE(Per son, HASH32(Per son. per _ssn)) ;
/I people with the same SSN go to sane Data Refinery node

See Also: DISTRIBUTE, HASH, HASH64, HASHCRC, HASHMD5

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
204

ECL Language Reference
Built-in Functions and Actions

HASHG4

HASH64(expressionlist)

expressionlist A comma-delimited list of values.
Return: HASH®64 returns asingle value.

The HASH®64 function returns a 64-bit FNV (Fowler/Noll/Vo) hash value derived from all the values in the expres-
sionlist. Trailing spaces are trimmed from string (or UNICODE) fields beforethe valueis calculated (castingto DATA
prevents this).

Example:

QUTPUT(Per son, { per _ssn, HASH64(per _ssn) });
/loutput SSN and its 64-bit hash val ue

See Also: DISTRIBUTE, HASH, HASH32, HASHCRC, HASHMD5

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
205

ECL Language Reference
Built-in Functions and Actions

HASHCRC

HASHCRC(expressionlist)

expressionlist A comma-delimited list of values.
Return: HASHCRC returnsasingle value.

The HASHCRC function returns a CRC (cyclical redundancy check) value derived from all the valuesin the expres-
sionlist.
Example:

OQUTPUT(Per son, { per _ssn, HASHCRC(per _ssn) });
//output SSN and its CRC hash val ue

See Also: DISTRIBUTE, HASH, HASH32, HASH64, HASHMD5

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
206

ECL Language Reference
Built-in Functions and Actions

HASHMDS

HASHM D5(expressionlist)

expressionlist A comma-delimited list of values.
Return: HASHMDS5 returns asingle DATA16 value.

The HASHM D5 function returns a 128-bit hash value derived from all the values in the expressionlist, based on the
MD?5 algorithm developed by Professor Ronald L. Rivest of MIT. Unlike other hashing functions, trailing spaces are
NOT trimmed before the value is calcul ated.

Example:

OQUTPUT(Per son, { per _ssn, HASHVD5(per _ssn) });
//output SSN and its 128-bit hash val ue

See Also: DISTRIBUTE, HASH, HASH32, HASH64, HASHCRC

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
207

ECL Language Reference
Built-in Functions and Actions

HAVING

HAVING(groupdataset, expression)

groupdataset The name of a GROUPed record set.
expression The logical expression by which to filter the groups.
Return: HAVING returns a GROUPed record set.

The HAVING function returns a GROUPed record set containing just those groups for which the expression is true.
Thisissimilar to the HAVING clausein SQL.

Example:
M/G oups : = GROUP(SORT(Person, | ast nane), | ast nane) ;
[/ group by |ast nanme

Filtered : = HAVI NG MyGr oups, COUNT(ROAN5(LEFT)) > 10);
[/filter out the small groups

See Also: GROUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
208

ECL Language Reference
Built-in Functions and Actions

HTTPCALL

result := HTTPCALL(url, httpmethod, responsemimetype, outstructure [, options]);

result The definition name for the resulting recordset.

url A string containing the URL that hosts the service to invoke. This may contain para-
meters to the service.

httpmethod A string containing the HTTP Method to invoke. Valid methods are: "GET"

responsemimetype A string containing the Response MIME type to use. Valid types are: "text/xml"

outstructure A RECORD structure containing the output field definitions. For an XML-based re-
sponsemi metype these should use XPATH to specify the exact data path.

options A comma-delimited list of optional specifications from the list below.

HTTPCALL isafunction that callsa REST service.

Valid options are;

RETRY (count)

Specifies re-attempting the call count number of timesif non-fatal errors occur. If
omitted, the default isthree (3).

TIMEOUT (period)

Specifies the amount of time to attempt the read before failing. The period isareal
number where the integer portion specifies seconds. Setting to zero (0) indicates
waiting forever. If omitted, the default is three hundred (300).

TIMELIMIT (period)

Specifies the total amount of time allowed for the HTTPCALL. The period is a
real number where the integer portion specifies seconds. If omitted, the default is
zero (0) indicating no limit.

XPATH (xpath)

Specifies the path used to access rows in the output. If omitted, the default is: 'ser-
viceResponse/Results/Result/Dataset/Row'.

ONFAIL (transform)

Specifies either the transform function to call if the service fails for a particular
record, or the keyword SKIP. The TRANSFORM function must produce a resul-
typethe same asthe outstructure and may use FAIL CODE and/or FAILMESSAGE
to provide details of the failure.

TRIM

Specifies al trailing spaces are removed from strings before output.

Example:

wor | dBankSour ce : = RECORD

STRI NG nane { XPATH(' nane')}

END,;

Qut Recl : = RECORD

DATASET(wor | dBankSour ce) Fred{ XPATH(' / source')};

END,;

raw : = HTTPCALL(' http://api.worl dbank. org/sources', 'GET', 'text/xm', QutRecl);

QUTPUT(r aw) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

209

ECL Language Reference
Built-in Functions and Actions

I=

| F(expression, trueresult [, falseresult])

expression A conditional expression.
trueresult The result to return when the expression is true. This may be any expression or action.
falseresult The result to return when the expression isfalse. This may be any expression or action. Thismay

be omitted only if the result is an action.

Return: IF returns asingle value, set, recordset, or action.

The I F function evaluates the expression (which must be a conditional expression with a Boolean result) and returns
either the trueresult or falseresult based on the evaluation of the expression. Both the trueresult and fal seresult must
be the same type (i.e. both strings, or both recordsets, or ...). If the trueresult and falseresult are strings, then the size
of the returned string will be the size of the resultant value. If subsequent code relies on the size of the two being
the same, then a type cast to the required size may be required (typically to cast an empty string to the proper size so
subsequent string indexing will not fail).

Example:

MyDate : = | F(Val i dDat e(Trades. trd_dopn), Trades. trd_dopn, 0) ;
/[l in this exanple, 0 is the fal se val ue and
[/ Trades.trd_dopn is the True val ue returned

M/Trades : = | F(person. per_sex = 'Mle',
Trades(trd_bal <100),
Trades(trd_bal >1000));
/1 return | ow bal ance trades for nmen and hi gh bal ance
/] trades for wonen

MyAddress : = | F(person.gender = 'M,
cl eanAddr ess182(per son. addr ess) ,
(STRING182) "') ;
[/ cl eanAddress182 returns a 182-byte string
/] so casting the enpty string false result to a
/1 STRINGL82 ensures a proper-length string return

See Also: IFF, MAP, EVALUATE, CASE, CHOOSE, SET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
210

ECL Language Reference
Built-in Functions and Actions

IFF

| FF(expression, trueresult [, falseresult])

expression A conditional expression.
trueresult The result to return when the expression is true. This may be any expression or action.
falseresult The result to return when the expression isfalse. This may be any expression or action. Thismay

be omitted only if the result is an action.

Return: IF returns asingle value, set, recordset, or action.

The I FF function performs the same functionality as IF, but ensures that an expression containing complex boolean
logic is evaluated exactly asit appears.

See Also: IF, MAP, EVALUATE, CASE, CHOOSE, SET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
211

ECL Language Reference
Built-in Functions and Actions

IMPORT

resulttype funcname (parameterlist) := IMPORT (language, function);

resulttype The ECL return value type of the function.

funcname The ECL definition name of the function.

parameterlist The parameters to pass to the function.

language Specifiesthe name of the external programming language whose code you wish to embed

in your ECL. A language support module for that language must have been installed in
your plugins directory. Modules are provided for languages such as Java, R, Javascript,
and Python. Y ou can write your own pluggablelanguage support modulefor any language
not already supported by using the supplied ones as examples or starting points.

function A string constant containing the name of the function to include.

The IMPORT declaration allows you to call existing code written in the external language. This may be used to call
Javaor Python code, but is not usable with Javascript or R code (use the EMBED structure instead). Java code must be
placed ina.javafile and compiled using the javac compiler inthe usual way. All Java classes used must be thread safe.

WARNING: Thisfeaturecould create memory corruption and/or security issues, so great careand for ethought
are advised—consult with Technical Support before using.

Example:

| MPORT Pyt hon;

| NTEGER addt hree(| NTEGER p) : = | MPORT(Pyt hon, ' python_nod_nane. addThree');

//Java Exanpl e setting the classpath

| MPORT j ava;

STRING j cat (STRING a, STRING b) := | MPORT(j ava, 'JavaCat.cat:(Ljaval/lang/String;Ljaval/lang/String;)Ljaval/lang
: classpath('/opt/HPCCSyst ens/cl asses/"'));

jecat('l'," concatenate');

See Also: IMPORT, EMBED Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
212

ECL Language Reference
Built-in Functions and Actions

INTFORMAT

INTFORMAT (expression, width, mode)

expression The expression that specifies the integer value to format.
width The size of string in which to right-justify the value.

mode The format type: 0 = leading blank fill, 1 = leading zero fill.
Return: INTFORMAT returnsasingle value.

TheINTFORMAT function returnsthe value of the expression formatted asaright-justified string of width characters.
Example:

val := 123456789;

OUTPUT(| NTFORVAT(val , 20, 1)) ;
//formats as ' 00000000000123456789'

OUTPUT(| NTFORVAT(val , 20, 0)) ;
//formats as ‘' 123456789'

See Also: REALFORMAT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
213

ECL Language Reference
Built-in Functions and Actions

ISVALID

ISVALID(field)
field The name of aDECIMAL, REAL, or alien data TY PE field.
Return: ISVALID returns a single Boolean value.

Thel SVALID function validatesthat the field containsalegal value. If the contents are not valid for the declared value
type of the field (such as hexadecimal values greater than 9 in a DECIMAL), ISVALID returns FALSE, otherwise
it returns TRUE.

Example:

MyVal := I F(I SVALID(I nfile.Decinmal Field),|nfile.DecinalField,QO0);
/1 SVALID returns TRUE if the value is |egal

See Also: TY PE Structure, DECIMAL, REAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
214

ECL Language Reference
Built-in Functions and Actions

ITERATE

I TERATE(recordset, transform[, LOCAL])

recordset The set of recordsto process.
transform The TRANSFORM function to call for each record in the recordset.

LOCAL Optional. Specifiesthe operation is performed on each supercomputer node independently, without requiring
interaction with all other nodes to acquire data; the operation maintains the distribution of any previous DISTRIBUTE.

Return: ITERATE returns arecord set.

The ITERATE function processes through all records in the recordset one pair of records at a time, performing the
transform function on each pair in turn. The first record in the recordset is passed to the transform as the first right
record, paired with aleft record whose fields are al blank or zero. Each resulting record from the transform becomes
the | eft record for the next pair.

TRANSFORM Function Requirements - ITERATE

The transform function must take at least two parameters: LEFT and RIGHT records that must both be of the same
format as the resulting recordset. An optional third parameter may be specified: an integer COUNTER specifying the
number of times the transform has been called for the recordset or the current group in the recordset (see the GROUP
function).

Example:

ResType : = RECORD
| NTEGER1 Val ;
| NTEGERL Rt ot ;
END;

Records : = DATASET([{1,0},{2,0},{3,0},{4,0}], ResType);
/* these are the recs going in:

Val Rt ot
1 0
2 0
3 0
4 0 */

ResType T(ResType L, ResType R) := TRANSFORM
SELF. Rtot := L. Rtot + R Val;
SELF := R

END;

MySet 1 : = | TERATE(Recor ds, T(LEFT, RI GHT)) ;

/* these are the recs com ng out:
Val Rt ot
1 1
2 3
3 6
4 10 */
/1 The foll ow ng code outputs a runni ng bal ance:
Run_bal := RECORD
Trades.trd_bal;
| NTEGER8 Bal ance : = O0;
END;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
215

ECL Language Reference
Built-in Functions and Actions

TradesBal := TABLE(Trades, Run_Bal);

Run_Bal DoRol | (Run_bal L, Run_bal R) := TRANSFORM
SELF. Bal ance : = L.Bal ance + | F(validmoney(R trd_bal),R trd_bal, 0);
SELF := R;

END;

MySet 2 : = | TERATE(Tr adesBal , DoRol | (LEFT, RI GHT)) ;

See Also; TRANSFORM Structure, RECORD Structure, ROLLUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
216

ECL Language Reference
Built-in Functions and Actions

JOIN

JOIN(leftrecset, rightrecset, joincondition [, transform] [, jointype] [, joinflags])

JOI N(setofdatasets, joincondition, transform, SORTED(fields) [, jointype])

| eftrecset The left set of records to process.

rightrecset The right set of records to process. This may be an INDEX.

joincondition An expression specifying how to match records in the leftrecset and rightrecset or setofdatasets
(see Matching Logic discussions below). In the expression, the keyword LEFT is the dataset
qualifier for fieldsin the leftrecset and the keyword RIGHT is the dataset qualifier for fieldsin
the rightrecset.

transform Optional. The TRANSFORM function to call for each pair of records to process. If omitted,
JOIN returns all fields from both the leftrecset and rightrecset, with the second of any duplicate
named fields removed.

jointype Optional. Aninner join if omitted, else one of the listed typesin the JOIN Types section below.

joinflags Optional. Any option (see the JOIN Options section below) to specify exactly how the JOIN
operation executes.

setofdatasets The SET of recordsets to process ([idx1,idx2,idx3]), typically INDEXes, which all must have
the same format.

SORTED Specifies the sort order of records in the input setofdatasets and also the output sort order of
the result set.

fields A comma-delimited list of fields in the setofdatasets, which must be a subset of the input sort
order. These fields must all be used in the joincondition as they define the order in which the
fields are STEPPED.

Return: JOIN returns arecord set.

The JOIN function produces a result set based on the intersection of two or more datasets or indexes (as determined
by the joincondition).

JOIN Two Datasets

JOIN(leftrecset, rightrecset, joincondition [, transform] [, jointype] [, joinflags])

Thefirst form of JOIN processes through all pairs of records in the leftrecset and rightrecset and evaluates the
condition to find matching records. If the condition and jointype specify the pair of records qualifies to be processed,
the transform function executes, generating the result.

JOIN dynamically sorts/distributes the leftrecset and rightrecset as needed to perform its operation based on the con-
dition specified, therefore the output record set is not guaranteed to be in the same order as the input record
sets. If JOIN does do a dynamic sort of its input record sets, that new sort order cannot be relied upon to exist past
the execution of the JOIN. This principle also appliesto any GROUPing—the records are automatically "un-grouped"
as needed except under the following circumstances:

* For LOOKUP and ALL joins, the GROUPing and sort order of the leftrecset are preserved.

* For KEY ED joins the GROUPiIng (but not the sort order) of the leftrecset is preserved.
Matching Logic - JOIN

The record matching joincondition is processed internally as two parts:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

217

ECL Language Reference
Built-in Functions and Actions

"equality" (hard|All thesimple"LEFT.field = RIGHT .field" logic that defines matching records. For JOINS that
match) use keys, all these must be fields in the key to qualify for inclusion in this part. If thereis no
"equality" part to the joincondition logic, then you get a"JOIN too complex" error.

"non- All other matching criteria in the joincondition logic, such as"LEFT.field > RIGHT .field" ex-
equality” (soft | pressions or any OR logic that may be involved with the final determination of which |eftrecset
match) and rightrecset records actually match.

This internal logic split allows the JOIN code to be optimized for maximum efficiency—first the "equality" logic is
evaluated to provide an interim result that is then evaluated against any "non-equality” in the matching joincondition.

Options
The following joinflags options may be specified to determine exactly how the JOIN executes.

[, PARTITION LEFT | PARTITION RIGHT | [MANY] LOOKUP [FEW]] | GROUPED | ALL | NOSORT
[(which)] | KEYED [(index) [, UNORDERED]] | LOCAL |HASH][, KEEP(n)] [, ATMOST([condition,
1n)]L[LIMIT(value[, SKIP | transform | FAIL])] [, SKEW(limit [, target]) [, THRESHOLD(size) 1] [,
PARALLEL][, SMART]

PARTITION LEFT | Specifies which recordset provides the partition points that determine how the records are
| RIGHT sorted and distributed amongst the supercomputer nodes. PARTITION RIGHT specifies the
rightrecset while PARTITION LEFT specifies the leftrecset. If omitted, PARTITION LEFT
isthe default.

[MANY] LOOKUP |Specifiestherightrecset isarelatively small file of lookup records that can be fully copied to
every node. If MANY is not present, the rightrecset records bear a Many to 0/1 relationship
with the records in the leftrecset (for each record in the leftrecset there is at most 1 record in
therightrecset). If MANY is present, the rightrecset records bear aMany to O/Many relation-
ship with the records in the leftrecset. This option allows the optimizer to avoid unnecessary
sorting of the leftrecset. Valid only for inner, LEFT OUTER, or LEFT ONLY jointypes. The
ATMOST, LIMIT, and KEEP options are supported in conjunction with MANY LOOKUP.

SMART Specifies to use an in-memory lookup when possible, but use a distributed join if the right
dataset islarge.

FEW Specifiesthe LOOKUPTrightrecset hasfew records, so littlememory isused, allowing multiple
lookup joins to be included in the same Thor subgraph.

GROUPED Specifies the same action as MANY LOOKUP but preserves grouping. Primarily used in the

rapid Data Delivery Engine. Valid only for inner, LEFT OUTER, or LEFT ONLY jointypes.
The ATMOST, LIMIT, and KEEP options are supported in conjunction with GROUPED.

ALL Specifiestherightrecset isasmall filethat can be fully copied to every node, which allowsthe
compiler toignorethelack of any "equality” portion to the condition, eliminating the"join too
complex" error that the condition would normally produce. If an "equality" portion is present,
the JOIN is internally executed as a MANY LOOKUP. The KEEP option is supported in
conjunction with this option.

NOSORT Performsthe JOIN without dynamically sorting thetables. Thisimpliesthat the | eftrecset and/
or rightrecset must have been previously sorted and partitioned based on the fields specified
in the joincondition so that records can be easily matched.

which Optional. The keywords LEFT or RIGHT to indicate the leftrecset or rightrecset has been
previously sorted. If omitted, NOSORT assumes both the leftrecset and rightrecset have been
previously sorted.

KEYED Specifies using indexed access into the rightrecset (see INDEX).

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
218

ECL Language Reference
Built-in Functions and Actions

index

Optional. The name of an INDEX into the rightrecset for a full-keyed JOIN (see below). If
omitted, indicates the rightrecset will always be an INDEX (useful when the rightrecset is
passed in as a parameter to a function).

UNORDERED

Optional. Specifies the KEYED JOIN operation does not preserve the sort order of the left-
recset.

LOCAL

Specifies the operation is performed on each supercomputer node independently, without re-
quiring interaction with all other nodesto acquire data; the operation maintainsthe distribution
of any previous DISTRIBUTE.

HASH

Specifiesan implicit DISTRIBUTE of the leftrecset and rightrecset across the supercomputer
nodes based on the joincondition so each node can do itsjob with local data.

K EEP(n)

Specifies the maximum number of matching records (n) to generateinto theresult set. If omit-
ted, all matches are kept. This is useful where there may be many matching pairs and you
need to limit the number in the result set. KEEP is not supported for RIGHT OUTER, RIGHT
ONLY, LEFT ONLY, or FULL ONLY jointypes.

ATMOST

Specifies a maximum number of matching records which, if exceeded, eliminates al those
matches from the result set. This is useful for situations where you need to eliminate
al "too many matches' record pairs from the result set. ATMOST is not supported on
RIGHT ONLY or RIGHT OUTER jointypes. There are two forms: ATMOST (condition,
n) — maximum is computed only for the condition. ATMOST(n) — maximum is com-
puted for the entire joincondition, unless KEYED is used in the joincondition, in which
case only the KEYED expressions are used. When ATMOST s specified (and the JOIN
is not full or half-keyed), the joincondition and condition may include string field com-
parisons that use string indexing with an asterisk as the upper bound, as in this example:
J1 := JOIN(dsL,dsR, LEFT.name[1..*]=RIGHT.name[3..*] AND LEFT.val < RIGHT.val,
T(LEFT,RIGHT), ATMOST(LEFT.name[1..*]=RIGHT.name[3..*],3)); The asterisk indi-
cates matching as many characters as necessary to reduce the number of candidate matches
to below the ATMOST number (n).

condition

A portion of the joincondition expression.

n

Specifies the maximum number of matches allowed.

LIMIT

Specifies a maximum number of matching records which, if exceeded, either failsthe job, or
eliminates all those matches from the result set. Thisis useful for situations where you need to
eliminate all "too many matches" record pairs from the result set. Typically used for KEYED
and "half-keyed" joins (see below), LIMIT differs from ATMOST primarily by its affect on
aLEFT OUTER join, in which a leftrecset record with too many matching records would
be treated as a non-match by ATMOST (the leftrecset record would be in the output with
no matching rightrecset records), whereas LIMIT would either fail the job entirely, or SKIP
the record (eliminating the leftrecset record entirely from the output). If omitted, the default
is LIMIT(10000). The LIMIT is applied to the set of records that meet the the hard match
("equality") portion of the joincondition but before the soft match ("non-equality™) portion of
the joincondition is evaluated.

value

The maximum number of matches allowed; LIMIT(0) is unlimited.

SKIP

Optional. Specifies eliminating the matching records that exceed the maximum value of the
LIMIT result instead of failing the job.

transform

Optional. Specifies outputting asingle record produced by the transforminstead of failing the
workunit (similar to the ONFAIL option of the LIMIT function).

FAIL

Optional. Specifies using the FAIL action to configure the error message when the job fails.

SKEW

Indicates that you know the data for this join will not be spread evenly across nodes (will be
skewed after both files have been distributed based on the join condition) and you choose to

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

219

ECL Language Reference
Built-in Functions and Actions

override the default by specifying your own limit value to allow the job to continue despite the
skewing. Only valid on non-keyed joins (the KEY ED option is not present and the rightrecset

isnot an INDEX).

limit A vaue between zero (0) and one (1.0 = 100%) indicating the maximum percentage of skew
to allow before the job fails (the default is 0.1 = 10%).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired maximum
percentage of skew to allow (the default is 0.1 = 10%).

THRESHOLD Indicates the minimum size for a single part of either the leftrecset or rightrecset before the

SKEW limit is enforced. Only valid on non-keyed joins (the KEYED option is not present
and therightrecset is not an INDEX).

size An integer value indicating the minimum number of bytes for asingle part.
PARALLEL Specifiestheleftrecset and rightrecset should be read on separate threads to minimize latency.

The following options are mutually exclusive and may only be used to the exclusion of the others in this list:
PARTITION LEFT | PARTITION RIGHT | [MANY] LOOKUP | GROUPED | ALL | NOSORT | HASH

In addition to this list, the KEYED and LOCAL options are also mutually exclusive with the options listed above,
but not to each other. When both KEY ED and LOCAL options are specified, only the INDEX part(s) on each node
are accessed by that node.

Typically, the leftrecset should be larger than the rightrecset to prevent skewing problems (because PARTITION
LEFT isthe default behavior). If the LOOKUP or ALL options are specified, the rightrecset must be small enough to
be loaded into memory on every node, and the operation is then implicitly LOCAL. The ALL option is impractical
if the rightrecset is larger than a few thousand records (due to the number of comparisons required). The size of the
rightrecset isirrelevant in the case of "half-keyed" and "full-keyed" JOINSs (see the Keyed Join discussion below).

Use SMART when the right side dataset is likely to be small enough to fit in memory, but is not guaranteed to fit.

Keyed Joins

A "full-keyed" JOIN usesthe KEY ED option and the joincondition must be based on key fieldsin theindex. The join
is actually done between the leftrecset and the index into the rightrecset—the index needs the dataset's record pointer
(virtual (fileposition)) field to properly fetch records from the rightrecset. The typical KEYED join passes only the
rightrecset to the TRANSFORM.

If the rightrecset is an INDEX, the operation is a "half-keyed" JOIN. Usually, the INDEX in a "half-keyed" JOIN
contains"payload” fields, which frequently eliminatesthe need to read the base dataset. If thisisthe case, the "payload”
INDEX does not need to have the dataset's record pointer (virtual (fileposition)) field declared. For a"half-keyed" JOIN
the joincondition may use the KEY ED and WILD keywordsthat are available for usein INDEX filters, only.

For both types of keyed join, any GROUPiIng of the base record sets is left untouched. See KEYED and WILD for
adiscussion of INDEX filtering.

Join Logic
The JOIN operation follows this logic:

1. Record distribution/sorting to get match candidates on the same nodes.

The PARTITION LEFT, PARTITION RIGHT, LOOKUP, ALL, NOSORT, KEYED, HASH, and LOCAL options
indicate how this happens. These options are mutually exclusive; only one may be specified, and PARTITION LEFT
isthe default. SKEW and THRESHOL D may modify the requested behaviour. LOOK UP also hasthe additional effect
of deduping the rightrecset by the joincondition.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
220

ECL Language Reference
Built-in Functions and Actions

2. Record matching.

The joincondition, LIMIT, and ATMOST determine how thisis done.
3. Determine what matchesto passto transform.

Thejointype determines this.

4. Generate output recordsthrough the TRANSFORM function.
The implicit or explicit transform parameter determines this.

5. Filter output recordswith SKIP.

If the transform for a record pair results in a SKIP, then the output record is not counted towards any KEEP option
totals.

6. Limit output recordswith KEEP.

Any output records for a given leftrecset record over and above the permitted KEEP value are discarded. In a FULL
OUTER join, rightrecset records that match no record are treated as if they all matched different default leftrecset
records (that is, the KEEP counter is reset for each one).

TRANSFORM Function Requirements - JOIN

The transform function must take at least one or two parameters: aLEFT record formatted like the leftrecset, and/or a
RIGHT record formatted like the rightrecset (which may be of different formats). The format of the resulting record
set need not be the same as either of the inputs.

Join Types: Two Datasets

The following jointypes produce the following types of results, based on the records matching produced by the join-
condition:

inner (default) Only those records that exist in both the leftrecset and rightrecset.
LEFT OUTER At least one record for every record in the leftrecset.

RIGHT OUTER | At least onerecord for every record in the rightrecset.

FULL OUTER At least one record for every record in the leftrecset and rightrecset.

LEFT ONLY One record for each leftrecset record with no match in the rightrecset.

RIGHT ONLY One record for each rightrecset record with no match in the leftrecset.

FULL ONLY One record for each leftrecset and rightrecset record with no match in the opposite record set.
Example:

outrec : = RECORD
peopl e. i d;
peopl e. first nane;
peopl e. | ast nane;
END;

RT_folk := JO N(peopl e(firstname[1] = 'R),
peopl e(l astnanme[1] = "'T"),
LEFT. i d=RI GHT. i d,
TRANSFORM out r ec, SELF : = LEFT));
OUTPUT(RT_f ol k) ;

//*********************** '_Blf KEYED JGN eXaerI e:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
221

ECL Language Reference
Built-in Functions and Actions

peopl eRecord : = RECORD
| NTEGER8 i d;
STRI NG20 addr ;
END;
peopl eDat aset : = DATASET([{3000, ' LONDON }, {3500, SM TH },
{30, ' TAYLOR }], peopl eRecord);
Pt bl Rec doHal f Joi n(peopl eRecord |) := TRANSFORM

SELF : = |;
END;
Fill edRecs3 : = JO N(peopl eDat aset, SequenceKey,
LEFT. i d=RI GHT. sequence, doHal f Joi n(LEFT)) ;
Fill edRecs4 := JO N(peopl eDat aset, Al phaKey,

LEFT. addr =Rl GHT. Lnane, doHal f Joi n(LEFT)) ;

[[xxxFFRkEk Rk *xkxx Fy| | KEYED JO N exanpl e:
Pt bl Rec : = RECORD
| NTECERS seq;
STRING State;
STRING20 City;
STRI N&5 Lnane;
STRI NG1L5 Fnane;
END;
Pt bl Rec Xform(person L, | NTEGER C) := TRANSFORM
SELF. seq = C
SELF. State L. per_st;
SELF.City L.per_full _city;
SELF. Lnane L. per _| ast _nane;
SELF. Fhane L. per _first_nane;
END;
Proj := PRQIECT(Person(per_|last_nane[1] =per _first_nane[1]),
Xf or m(LEFT, COUNTER)) ;
Ptbl Qut := OUTPUT(Proj,,"'~RTTEMP: : Test KeyedJoi n' , OVERWRI TE) ;

Pt bl := DATASET(' RTTEMP: : Test KeyedJoi n',
{Ptbl Rec, UNSI GNED8 _ fpos {virtual (fil eposition)}},
FLAT) ;
Al phaKey : = | NDEX(Pt bl , {| nan®e, f nane, __ f pos},
' ~RTTEMPKey: : | nane. f nanme') ;
SeqKey := | NDEX(Ptbl, {seq, _fpos},' ~RTTEMPkey: : sequence');

Bl d1 : = BU LD(Al phaKey , OVERWRI TE) ;
Bl d2 : = BU LD(SeqKey, OVERWRI TE) ;
peopl eRecord : = RECORD
| NTEGERS8 i d;
STRI NG20 addr ;
END;
peopl eDat aset : = DATASET([{3000, ' LONDON }, {3500, SM TH },
{30, ' TAYLOR }], peopl eRecord);

j oi nedRecord : = RECORD

Pt bl Rec;
peopl eRecor d;
END;
j oi nedRecord doJoi n(peopl eRecord |, Ptbl r) := TRANSFORM
SELF := |;
SELF : = r;
END;
FilledRecsl := JO N(peopl eDat aset, Ptbl, LEFT.i d=RlI GHT. seq,
doJoi n(LEFT, RI GHT), KEYED(SeqkKey)) ;
Fill edRecs2 := JO N(peopl eDat aset, Ptbl, LEFT. addr =Rl GHT. Lnane,

doJoi n(LEFT, RI GHT) , KEYED(Al phaKey)) ;
SEQUENTI AL(Pt bl Qut, Bl d1, Bl d2, QUTPUT(Fi | | edRecs1), QUTPUT(Fi | | edRecs2))

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
222

ECL Language Reference
Built-in Functions and Actions

JOIN Set of Datasets

JOIN(setofdatasets, joincondition, transform, SORTED(fields) [, jointype])

The second form of JOIN issimilar to the MERGEJOIN function in that it takesa SET OF DATASETsasits
first parameter. Thisallowsthe possibility of joining more than two datasetsin a single operation.

Record Matching Logic

The record matching joincondition may contain two parts. a STEPPED condition that may optionally be ANDed with
non-STEPPED conditions. The STEPPED expression contains leading equality expressions of the fields from the
SORTED option (trailing components may be range comparisonsif the range values are independent of the LEFT and
RIGHT rows), ANDed together, using LEFT and RIGHT as dataset qualifiers. If not present, the STEPPED condition
is deduced from the fields specified by the SORTED option.

The order of the datasets within the setofdatasets can be significant to the way the joincondition is evaluated. The
joincondition is duplicated between adjacent pairs of datasets, which means that this joincondition:

LEFT.field = RIGHT. field

when applied against a setofdatasets containing three datasets, islogically equivalent to:

dsl.field = ds2.field AND ds2.field = ds3.field

TRANSFORM Function Requirements - JOIN setof-
datasets

The transform function must take at least one parameter which must take either of two forms:

LEFT formatted like any of the setofdatasets. This indicates the first dataset in the setofdatasets.

ROWS(LEFT) formatted like any of the setofdatasets. This indicates a record set made up of all records from
any dataset in the setofdatasets that match the joincondition—this may not include al the
datasets in the setofdatasets, depending on which jointype is specified.

The format of the resulting output record set must be the same as the input datasets.

Join Types: setofdatasets

The following jointypes produce the following types of results, based on the records matching produced by the join-
condition:

INNER Thisis the default if no jointype is specified. Only those records that exist in all datasetsin
the setofdatasets.

LEFT OUTER At least one record for every record in the first dataset in the setofdatasets.

LEFT ONLY Onerecord for every record in the first dataset in the setofdatasets for which thereis no match

in any of the subsequent datasets.

MOFN(min[,max]) |Onerecordfor every record with matching recordsin min number of adjacent datasetswithin
the setofdatasets. If max is specified, the record is not included if max number of dataset
matches are exceeded.

Example:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
223

ECL Language Reference
Built-in Functions and Actions

Rec : = RECORD, MAXLENGTH(4096)
STRINGL Letter;
UNSI GNEDL bS;

UNSI GNED1 Mat ches 1= 0;

UNSI GNED1 Last Match : = 0O;

SET OF UNSI GNED1 MatchDSs := [];
END;
dsl := DATASET([{' A ,1},{'B ,1},{'C,1},{'D,1},{' E, 1}], Rec);
ds2 := DATASET([{' A ,2},{'B,2},{"H,2},{'I',2},{'J",2}],Rec);
ds3 := DATASET([{'B ,3},{'C,3},{'M,3},{'N,3},{' O,3}],Rec);
ds4 := DATASET([{' A ,4},{'B ,4},{'R ,4},{'S ,4},{' T, 4}], Rec);
ds5 := DATASET([{' B ,5},{'V "W,5},{'X,5{ Y, 5}],Rec);

SetDS : = [ds1, ds2, ds3, ds4, ds5]

Rec XF(Rec L, DATASET(Rec) Matches) := TRANSFORM
SELF. Mat ches COUNT(Mat ches) ;
SELF. Last Mat ch : = MAX(Mat ches, DS) ;
SELF. Mat chDSs SET(Mat ches, DS) ;
SELF := L;
END;
j1 := JO N(SetDS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
XF(LEFT, ROAS(LEFT)), SORTED(Letter));
j2 := JO N(Set DS,
STEPPED(LEFT. Lett er=RI GHT. Letter),
XF(LEFT, ROAS(LEFT)), SORTED(Let t er), LEFT OUTER);
JO N(Set DS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
XF(LEFT, ROAS(LEFT)), SORTED(Letter), LEFT ONLY);
j4 := JO N(SetDS,
STEPPED(LEFT. Lett er=RI GHT. Letter),
XF(LEFT, ROAS(LEFT)), SORTED(Let t er), MOFN(3)) ;
j5 := JO N(Set DS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
XF(LEFT, ROAS(LEFT)), SORTED(Letter), MOFN(3, 4)) ;

w
1

QUTPUT(j 1) ;
QUTPUT(j 2) ;
QUTPUT(j 3);
QUTPUT(j 4) ;
QUTPUT(j 5) ;

See Also; TRANSFORM Structure, RECORD Structure, SKIP, STEPPED, KEY ED/WILD, MERGEJOIN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
224

ECL Language Reference
Built-in Functions and Actions

KEYDIFF

[attrname :=] KEYDIFF(indexl, index2, file [, OVERWRITE] [, EXPIRE([days])]);

attrname Optional. The action name, which turns the action into an attribute definition, therefore not
executed until the attrname is used as an action.

index1 An INDEX attribute.

index2 An INDEX attribute whose structure isidentical to index1.

file A string constant specifying the logical name of the file to write the differencesto.

OVERWRITE Optional. Specifies overwriting the filename if it already exists.

EXPIRE Optional. Specifiesthefileisatemporary file that may be automatically deleted after the spec-
ified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,
the default is seven (7).

The KEY DIFF action compares index1 to index2 and writes the differences to the specified file. If index1 to index2
are not exactly the same structure, an error occurs. Once generated, the file may be used by the KEY PATCH action.

Example:

Vehi cl es : = DATASET(' vehicl es',
{STRIN® st
STRI NGO city,
STRI NG20 | nane,
UNSI GNED8 fil epos{virtual (fileposition)}},
FLAT) ;

i1 := | NDEX(Vehicles,
{st,city, | nane,fil epos},
'vkey: :20041201::st.city. |l nanme');
i 2 := | NDEX(Vehi cl es,
{st,city, | nane,fil epos},
'vkey: :20050101: :st.city. | nanme');

KEYDI FF(i 1,1 2,"' KEY: : DI FF: : 20050101: : i 1i 2' , OVERWRI TE) ;

See Also: KEYPATCH, INDEX

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
225

ECL Language Reference
Built-in Functions and Actions

KEYPATCH

[attrname:=] KEYPATCH(index, patchfile, newfile [, OVERWRITE] [, EXPIRE([days]) 1);

attrname Optional. The action name, which turns the action into an attribute definition, therefore not
executed until the attrname is used as an action.

index The INDEX attribute to apply the changes to.

patchfile A string constant specifying the logical name of the file containing the changes to implement
(created by KEYDIFF).

newfile A string constant specifying the logical name of the file to write the new index to.

OVERWRITE Optional. Specifies overwriting the newfileif it already exists.

EXPIRE Optional. Specifies the newfile is atemporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,
the default is seven (7).

The KEYPATCH action uses the index and patchfile to write a new index to the specified newfile containing al the
original index data updated by the information from the patchfile.

Example:

Vehi cl es : = DATASET(' vehi cl es',

{STRIN® st,

STRI N&20 city,
STRI NG20 | nane,
UNSI GNED8 fi |l epos{virtual (fileposition)}},

FLAT) ;

i1 := | NDEX(Vehi cl es,
{st,city, | nane, fil epos},
'vkey: :20041201: :st.city. |l nane');
i 2 := | NDEX(Vehi cl es,
{st,city, | nane, fil epos},
‘vkey: : 20050101: :st.city. |l nane');

KEYDI FF(i 1,1 2," KEY: : DI FF: : 20050101: : i 1i 2' , OVERWRI TE) ;
KEYPATCH(i 1,

" KEY: : DI FF: : 20050101: :i 1i 2",
"vkey::st.city. | name' OVERWRI TE) ;

SEQUENTI AL(a, b);

See Also: KEYDIFF, INDEX

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

226

ECL Language Reference
Built-in Functions and Actions

KEYUNICODE

K EYUNICODE(string)

string A UNICODE string.
Return: KEYUNICODE returns asingle DATA value.

The KEYUNICODE function returns a DATA value derived from the string parameter, such that a comparison of
these datavaluesis equivalent to alocale sensitive comparison of the Unicode values that generated them—and, being
asimple mememp(), is significantly faster. The generating string values must be of the same locale or the results are
unpredictable. This function is particularly useful if you're doing a lot of compares on a UNICODE field in alarge
dataset—it can be a good idea to generate a key field and do the compares on that instead.

Example:

/I where you might do this:
nmy_record : = RECORD
UNI CODE_en_US str;

END;
my_dat aset : = DATASET('filenane', ny_record, FLAT);
my_sorted = SORT(ny_dat aset, str);

//you could instead do this:
my_record : = RECORD
UNI CODE_en_US str;
DATA strkey := KEYUNI CODE(SELF. str);

END;
nmy_dat aset := DATASET('fil enanme', ny_record, FLAT);
my_sorted = SORT(ny_dat aset, strkey);

See Also: UNICODE, LOCALE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
227

ECL Language Reference
Built-in Functions and Actions

LENGTH

LENGTH (expression)
expression A string expression.
Return: LENGTH returns asingle integer value.

The LENGTH function returns the length of the string resulting from the expression by treating the expression as a
temporary STRING.

Example:

I NTEGER MyLength := LENGTH(' XYZ' + 'ABC);
[/ MyLength is 6

See Also: String Operators, STRING

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
228

ECL Language Reference
Built-in Functions and Actions

LIBRARY

LIBRARY (INTERNAL (module), interface[(parameters)])

LIBRARY (module, interface[(parameters)])

INTERNAL Optional. Specifies the module is an attribute, not an external library (created by the BUILD
action).
module The name of the query library. When INTERNAL, this is the name of the MODULE attribute

that implements the query library. If not INTERNAL, thisis a string expression containing the
name of the workunit that compiled the query library (typically defined with #WORKUNIT).

interface The name of the INTERFACE structure that defines the query library.

parameters Optional. The valuesto pass to the INTERFACE, if defined to receive parameters.

Return: LIBRARY resultsinaMODULE that can be used to reference the exported attributes from the
specified module.

The LIBRARY function defines an instance of a query library—the interface as implemented by the module when
passed the specified parameters. Query libraries are only used by hthor and Roxie.

INTERNAL libraries are typicaly used when developing queries, while externa libraries are best for production
queries. An INTERNAL library generates the library code as a separate unit, but then includes that unit within the
query workunit. It doesn't have the advantage of reducing compile time or memory usage in Roxie that an external
library would have, but it does retain the library structure, and means that changes to the code cannot affect anyone
€lse using the system.

External libraries are created by the BUILD action and use the "name" form of #WORKUNIT to specify the external
name of the library. An external library is pre-compiled and therefore reduces compile time for queries that use it.
They & so reduce memory usage in Roxie

Example:

NanmesRec : = RECORD
I NTEGER1L Nanel D;
STRI NG&0 FNane;
STRING0O LNane;
END;
NanmesTabl e : = DATASET([{1,'Doc','Holliday'},
{2,'Liz'," Taylor'},
{3,'M"',"' Nobody"},
{4, Anywhere', ' but here'}],
NamesRec) ;
Fi | terLi bl facel(DATASET(nanesRec) ds, STRI NG search) := | NTERFACE
EXPORT DATASET(nanesRec) natches;
EXPORT DATASET(nanesRec) ot hers;
END;
Fi |l terDsLi b1(DATASET(namesRec) ds, STRI NG search) :=
MODULE, LI BRARY(Fi | t erLi bl facel)
EXPORT mat ches := ds(Lnanme = search);
EXPORT ot hers := ds(Lnanme != search);
END;

// Run this to create the 'Ppass.FilterDsLib' external library

/1 #WORKUNI T(' nane' , ' Ppass. Fi |l terDsLib')

/1 BU LD(FilterDsLibl);

libl := LI BRARY(| NTERNAL(FilterDsLi bl),
FilterLiblfacel(NanmesTable, 'Holliday'));

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
229

ECL Language Reference
Built-in Functions and Actions

I'ib2 := LI BRARY(' Ppass. FilterDsLib',
FilterLiblfacel(NamesTable, 'Holliday'));
IFilterArgs : = | NTERFACE
EXPORT DATASET(nanesRec) ds;
EXPORT STRI NG sear ch;
END;
FilterLiblface2(lFilterArgs args) := | NTERFACE
EXPORT DATASET(namesRec) matches;
EXPORT DATASET(nanesRec) ot hers;

END;

FilterDsLi b2(IFilterArgs args) := MODULE, LI BRARY(FilterlLiblface2)
EXPORT nat ches : = args.ds(Lnane = args. search);
EXPORT others := args.ds(Lnane != args. search);

END;

/1 Run this to create the 'Ipass.FilterDsLib' external library
[l #WORKUNI T(' nane',' | pass. FilterDsLib')
/1 BU LD(FilterDsLib2);
SearchArgs := MODULE(I FilterArgs)
EXPORT DATASET(nanesRec) ds := NanmesTabl e;
EXPORT STRI NG search := 'Hol liday';
END;
I'i b3 : = LI BRARY(I NTERNAL(Fi |t er DsLi b2),
Fi | terLi bl face2(SearchArgs));
lib4 := LI BRARY(' | pass. FilterDsLib',
Fi | terLi bl face2(SearchArgs));

OQUTPUT(| i bl. mat ches, NAMED(' | NTERNAL_nat ches_strai ght _parns'));
QUTPUT(| i bl. ot hers, NAMED(' | NTERNAL_nonmat ches_strai ght _parns'));
QUTPUT(| i b2. mat ches, NAMED(' EXTERNAL _nat ches_strai ght _parns'));
QUTPUT(| i b2. ot hers, NAMED(' EXTERNAL_nonmat ches_st rai ght _parns'));
QUTPUT(| i b3. mat ches, NAMED(' | NTERNAL_mat ches_i nter face_parns'));
OQUTPUT(| i b3. ot hers, NAMED(' | NTERNAL_nonmat ches_i nterface_parns'));
QUTPUT(| i b4. mat ches, NAMED(' EXTERNAL_mat ches_i nter face_parns'));
QUTPUT(| i b4. ot hers, NAMED(' EXTERNAL_nonmat ches_i nterface_parns'));

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
230

ECL Language Reference
Built-in Functions and Actions

LIMIT

LIMIT(recset, maxrecs|, failclause] [, KEYED [, COUNT]] [, SKIP])

LIMIT (recset, maxrecs [, ONFAIL (transform)] [, KEYED [, COUNT]1)

recset The set of records to limit. This may be an INDEX or any expression that produces a recordset
result.

Maxrecs The maximum number of records allowed on a single supercomputer node.

failclause Optional. A standard FAIL workflow service call.

KEYED Optional. Specifies limiting the keyed portion of an INDEX read.

COUNT Optional. Specifiesthe KEYED limit is pre-checked using keyspan.

SKIP Optional. Specifiesthat when thelimit isexceeded it issimply eliminated from any result instead
of failing the workunit.

ONFAIL Optional. Specifies outputting a single record produced by the transform instead of failing the
workunit.

transform The TRANSFORM function to call to produce the single output record.

The LIMIT function causes the attribute to fail with an exception if the recset contains more records than maxrecs
on any single node of the supercomputer (unless the SKIP option is used for an index read or the ONFAIL option is
present). If the failclause is present, it specifies the exception number and message. This is typically used to control
"runaway" queriesin the Rapid Data Delivery Engine supercomputer.

Example:

RecStruct : = RECORD
| NTEGER1L Nunber ;
STRINGL Letter;
END;
SoneFil e : = DATASET([

{1,"
{1,'
{2,"
{2,'
{2,"

C 'U X 'I'I >
N N N N
f-'«a'-'\-\;«a'-'\-u-'«a

RecStruct);
//throw an exception
X := LIMT(SoneFile, 10, FAIL(99, 'error!'));
//single record out put
Y := LIM T(SoneFil e, 10,

ONFAI L(TRANSFORM RecSt r uct ,

SELF : = RON{O,"'"'},RecStruct))));

/I no exception, just no record
Z := LIMT(SoneFil e, 10, SKI P) ;

See Also: FAIL, TRANSFORM

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
231

ECL Language Reference
Built-in Functions and Actions

LN

LN(n)
n The real number to evaluate.
Return: LN returnsasingle real value.

The LN function returns the natural logarithm of the parameter. Thisis the opposite of the EXP function.
Example:
MyLogPl := LN(3.14159); //1.14473

See Also: EXP, SQRT, POWER, LOG

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
232

ECL Language Reference
Built-in Functions and Actions

LOADXML

[attributename :=] LOADXML (' xmlstring | symbol [, branch])

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

xmistring A string expression containing the XML text to processinline (no carriage returns or line feeds).

symbol The template symbol containing the XML text to process (typically loaded by #EXPORT or
HEXPORTXML).

branch A user-defined string naming the XML text, allowing #FOR to operate.

LOADXML opens an active XML scope for Template language statements or symbols to act on. LOADXML must
be the first line of code to function correctly.

LOADXML isalso used in "drilldown" MACRO code.

Example:

LOADXM_(' <se
//this macro

ction><itemtype="count"><set >per son</ set ></i t enr</ secti on>')
receives in-line XM_ as its paraneter

//and denpbnstrates the code for multiple row drilldown
EXPORT id(xm Row) := MACRO

STRI NG nmyxm

Text := xm Row,

LOADXM_(nyxm Text) ;

#DECLARE(Qut

#SET(Qut Str,

#FOR(r ow)
#APPEND(Cu

Str)
)

tStr,

" QUTPUT(FETCH(Fi | es. Peopl e, Fi | es. Peopl el DX(i d='

+ %id
#APPEND(Qu
'ds' +
+ ' =
+ %id
#APPEND(Qu

% + '), Rl CGHT. RecPos));\n')

tStr,

%id %

FETCH(Fi | es. Property, Fi |l es. Propertyl DX(personi d= "
% + '), RICGHT. RecPos);\n')

tStr,

"QUTPUT(ds' + %id %
+ ', {count Taxdat a : = COUNT(Taxrecs), ds'

+ %id
#APPEND(Qu

%+ "});\n")
tStr,

' QUTPUT(FETCH(Fi | es. Vehi cl e, Fi | es. Vehi cl el DX(per soni d= "'
+ %id %+ '), R GHT. RecPos));\n')

#END
%ut St r %
ENDMVACRO,

//this is an exanple of code for a drilldown (1 per row)

EXPORT Count

Taxdat a(xm Row) : = MACRO

LOADXM_(xm Row) ;

OUTPUT(FETCH(Fi | es. TaxDat a,
Fi | es. Taxdat al DX(propertyi d=%pr opertyi d%,
Rl GHT. RecPos)) ;

ENDMVACRO,

/1 This exanpl e uses #EXPORT to generate the XM

NanesRecord
STRI NG1O f
STRI NG20 |

END,;

: = RECORD
irst;
ast ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL

Language Reference content licensed under Creative Commons public license.
233

ECL Language Reference
Built-in Functions and Actions

r := RECORD

UNSI GNED4 dg_parenti d;

STRI NGLO dg_firstnane;

STRI NG dg_| ast nan®;

UNSI GNEDL dg_pr ange;

| FBLOCK(SELF. dg_prange % 2 = 0)

STRI N&0 extrafield;

END;

NamesRecor d naner ec;

DATASET(NamesRecor d) chi | dNanes;
END;

ds : = DATASET(' ~RTTEST:: QUT::ds', r, thor);

//Wal k a record and do sonme processing on it.
#DECLARE(out)

#EXPORT(out, r);

LOADXM_(% out' % 'FileStruct');

#FOR (Fil eStruct)
#FOR (Fi el d)
#F (B {@sEnd}' % <> "")
OQUTPUT(' END) ;
#ELSE
QUTPUT(% { @ ype}' %
#F (%{@ize}' %<>"'-15 AND
% {@sRecord}' %'"' AND
%{@sDataset}' %' ")
+ % {@®ize}' %
#END
+' '+ %{@abel}' %+ ";");
#END
#END
#END
OQUTPUT("' Done') ;

See Also: Templates, #EXPORT, #EXPORTXML

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
234

ECL Language Reference
Built-in Functions and Actions

LOCAL

LOCAL (data)
data The name of aDATASET or INDEX attribute.
Return: LOCAL returns arecord set or index.

The LOCAL function specifiesthat all subsequent operations on the data are performed locally on each node (similar
to use of the LOCAL option on a function). Thisis typically used within an ALLNODES operation. Available for
useonly in Roxie.

Example:

ds := JO N(SoneDat a, LOCAL(Sonel ndex), LEFT.ID = RIGHT.ID);

See Also: ALLNODES, THISNODE, NOLOCAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
235

ECL Language Reference
Built-in Functions and Actions

LOG

LOG(n)
n The real number to evauate.
Return: LOG returnsasinglereal value.

The LOG function returns the base-10 logarithm of the parameter.

Example:

M/LogPl := LOX 3.14159); //0.49715

See Also: EXP, SQORT, POWER, LN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
236

ECL Language Reference
Built-in Functions and Actions

LOOP

L OOP(dataset, loopcount, loopbody [, PARALLEL (iterations|iterationlist [, default])])

L OOP(dataset, loopcount, loopfilter, loopbody [, PARALLEL (iterations | iterationlist [, default])])

L OOP(dataset, loopfilter, loopbody)

L OOP(dataset, loopcondition, loopbody)

L OOP(dataset, rowfilter, loopcondition, loopbody)

dataset The record set to process.

loopcount An integer expression specifying the number of timesto iterate .

loopbody The operation to iteratively perform. This may be a PROJECT, JOIN, or other such operation.
ROWS(LEFT) isaways used as the operation's first parameter, indicating the specified dataset
isthe input parameter.

PARALLEL Optional. Specifies parallel execution of loop iterations. This option is available only on Roxie.

iterations The number of paralel iterations.

iterationlist A set of integers (contained in square brackets) specifying the number of parallel iterations for
each loop. The first set element specifiesthe paralld iterations for the first loop, the second for
the second, ...

default Optional. The number of paralel iterationsto execute once all elementsin theiterationlist have
been used.

loopfilter A logical expression that specifies the set of records whose processing is not yet complete. The
set of records not meeting the condition are no longer iteratively processed and are placed into
the final result set. This evaluation occurs before each iteration of the loopbody.

loopcondition A logical expression specifying continuing loopbody iteration while TRUE.

rowfilter A logica expression that specifies a single record whose processing is complete. The record
meeting the condition is no longer iteratively processed and is placed into the final result set.
This evaluation occurs during the iteration of the loopbody.

Return: LOOP returns arecord set.

The LOOP function iteratively performs the loopbody operation. The COUNTER isimplicit and available for use to
return the current iteration.

The PARALLEL Option

The PARALLEL option is offered to solve the following type of problem: When implementing a text search (A and
B and C) or (D and E), where each element in the search is evaluated on an iteration of a LOOP(), you want to ensure
that the execution is broken in the correct places. If it were split every 2 iterations, the iterations would produce:

(A and B)
(A and B and C), (D)
(A andB and C) or (D and E)

The second iteration would potentially generate avery large number of temporary records. To prevent this, the number
of iterations at each step can be controlled. For this specific case you would probably use PARALLEL([3,3]). For
more complicated search criteria the numbers would be different.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
237

ECL Language Reference
Built-in Functions and Actions

If avery large number is provided astheiterations or default value, then the all the iterations will execute in parallel.
Doing this will likely significantly reduce the number of temporary rows stored in the system, but may potentially
use alarge amount of resources.

Thereisarestriction: ROWS(LEFT) cannot be directly used in a sub-query of the loopbody.

Example:

nanesRec : = RECORD
STRI N&0 | nane;
STRI NGLO f nane;
UNSI GNED2 age :
UNSI GNED2 ctr
END;
nanesTabl e2 : = DATASET([{' Flintstone', ' Fred', 35},
{"Flintstone','WI|m', 33},
{"Jetson',' Georgie', 10},
{"M. T,"'Z-man'}], nanmesRec);
| oopBody(DATASET(namesRec) ds, unsigned4 c) :=
PRQIECT(ds,
TRANSFORM nanesRec,
SELF. age : = LEFT. age*c;
SELF. ctr := COUNTER ;
SELF : = LEFT));
/[Form 1:
OUTPUT(LOOP(nanesTabl e2,
COUNTER <= 10,
PROJECT(ROAS(LEFT) ,
TRANSFORM nanesRec,
SELF. age : = LEFT. age*2;
SELF.ctr := LEFT.ctr + COUNTER ;
SELF : = LEFT))));
OUTPUT(LOOP(nanesTabl e2, 4, ROWS(LEFT) & ROWS(LEFT)));
[/ Form 2:
OUTPUT(LOOP(nanesTabl e2,
10,
LEFT. age * COUNTER <= 200,
PROJECT(ROANS(LEFT) ,
TRANSFORM nanesRec,
SELF. age : = LEFT. age*2;
SELF := LEFT))));
/] Form 3:
OUTPUT(LOOP(nanesTabl e2,
LEFT. age < 100,
| oopBody(ROA5(LEFT), COUNTER)));
/| Form 4:
OUTPUT(LOOP(nanesTabl e2,
SUM ROWS(LEFT), age) < 1000 * COUNTER,
PRQIECT(ROAS(LEFT) ,
TRANSFORM nanesRec,
SELF. age : = LEFT. age*?2;
SELF : = LEFT))));
/[Form 5:
OUTPUT(LOOP(nanesTabl e2,
LEFT. age < 100,
EXI STS(ROAS(LEFT)) and SUM ROWS(LEFT), age) < 1000,
| oopBody(ROA5(LEFT), COUNTER)));

5;

2
0

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
238

ECL Language Reference
Built-in Functions and Actions

MAP

M AP(expression => value, [expression => value, ...] [, elsevalue])

expression A conditional expression.

= The "resultsin" operator—valid only in MAP, CASE, and CHOOSESETS.

value Thevauetoreturnif the expression istrue. Thismay beasingle value expression, aset of values,
aDATASET, aDICTIONARY, arecord set, or an action.

elsevalue Optional. The valueto return if all expressions are false. This may be a single value expression,

a set of values, arecord set, or an action. May be omitted if all return values are actions (the
default would then be no action), or al return values are record sets (the default would then be
an empty record set).

Return: MAP returns asingle value.

The MAP function evaluates the list of expressions and returns the value associated with the first true expression. If
none of them match, the elsevalue is returned. MAP may be thought of asan "IF ... ELSIF ... ELSIF ... ELSE" type
of structure.

All return value and elsevalue values must be of exactly the same type or a "type mismatch" error will occur. All
expressions must reference the same level of dataset scoping, else an "invalid scope" error will occur. Therefore,
all expressions must either reference fields in the same dataset or the existence of a set of related child records (see
EXISTS).

The expressions are typically evaluated in the order in which they appear, but if all the return values are scalar, the
code optimizer may change that order.

Example:

Attr0l : = MAP(EXI STS(Person(Person. EyeColor = '"Blue')) => 1,
EXI STS(Per son(Per son. Hai rcol or = 'Brown')) => 2,
3);

//1f there are any bl ue-eyed people, Attr01 gets 1
/lelsif there any brown-haired people, AttrOl gets 2
/lelse, Attr0l1 gets 3

Val u6012 : = MAP(NoTrades => 99,

NoVal i dTr ades => 98,

NoVal i dDat es => 96,

Count 6012) ;
//1f there are no trades, Val u6012 gets 99
/lelsif there are no valid trades, Valu6012 gets 98
/lelsif there are no valid dates, Val u6012 gets 96
/el se, Valu6012 gets Count 6012

M/Trades := MAP(rnms.rnsl4 >= 93 => trades(trd_bal >= 10000),
roms.rnsl4 >= 2 => trades(trd_bal >= 2000),
rms.rmeld >= 1 => trades(trd_bal >= 1000),
Tr ades) ;

/1 this exanple takes the value of rnms.rnsl4 and returns a

/] set of trades based on that value. If the value is <= 0,

/1l then all trades are returned.

See Also: EVALUATE, IF, CASE, CHOOSE, CHOOSESETS, REJECTED, WHICH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
239

ECL Language Reference
Built-in Functions and Actions

MAX

MAX (recordset, value[, KEYED])

MAX (valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that resultsin a derived record set. This also may bethe
keyword GROUP to indicate finding the maximum value of the field in a group, when used in
a RECORD structure to generate crosstab statistics.

value The expression to find the maximum value of.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the maximum value of. This may also be a SET
of values.

Return: MAX returns asingle value.

The MAX function either returns the maximum value from the specified recordset or the valuelist. It is defined to
return zero if the recordset is empty.

Example:

MaxVal 1 : = MAX(Trades, Trades.trd_rate);
MaxVal 2 : = MAX(4, 8,16,2,1); //returns 16
SetVals := [4,8,16,2,1];

MaxVal 3 : = MAX(SetVals); //returns 16

See Also: MIN, AVE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
240

ECL Language Reference
Built-in Functions and Actions

MERGE

MERGE(recordsetlist , SORTED(fieldlist) [, DEDUP] [, LOCAL])

MERGE(recordsetset , fieldlist , SORTED(fieldlist) [, DEDUP] [, LOCAL])

recordsetlist A comma-delimited list of the datasets or indexes to merge, which must all be in exactly the
same format and sort order.

SORTED Specifiesthe sort order of the recordsetlist.

fieldlist A comma-delimited list of the fields that define the sort order.

DEDUP Optional. Specifies the result contains only records with unique values in the fields that specify
the sort order fieldlist.

LOCAL Optional. Specifiesthe operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

recordsetset A SET ([dsl,ds2,ds3]) of the datasets or indexes to merge, which must all be in exactly the
same format.

Return: MERGE returns arecord set.

The MERGE function returns asingle dataset or index containing all the records from the datasets or indexes named
in the recordsetlist or recordsetset. Thisis particularly useful for incremental data updates asit allows you to merge a
smaller set of new recordsinto an existing large dataset or index without having to re-process all the source dataagain.
The recordsetset form makes merging a variable number of datasets possible when used inside a GRAPH function.

Example:

dsl := SORTED(DATASET([{1,'A'},{1,'B},{1,'C},{1,'D},{1,'E}
3y

ds2 :

ds3 :

{1L,"F} {1,"G} {1,"H} {11}, {1,]
{I NTEGERL nunber, STRI NGL Letter}),

| etter, nunber);
SORTED(DATASET([{2,' A },{2,'B'},{2,'C},{2,'D},{2,'E}
J'}

(2 F}.{2,° G}, {2 H}. {21}, {2, '},

{I NTEGERL nunber, STRI NGL Letter}),

| etter, nunber);

MERGE(ds1, ds2, SORTED(| ett er, nunber));

SetDS : = [ds1, ds2];
ds4 := MERGE(Set DS, | etter, nunber);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL

Language Reference content licensed under Creative Commons public license.

241

ECL Language Reference
Built-in Functions and Actions

MERGEJOIN

M ERGEJOI N(setofdatasets, joincondition, SORTED(fields) [, jointype] [, DEDUP])

setofdatasets The SET of recordsets to process ([idx1,idx2,idx3]), typically INDEXes, which all must have
the same format.

joincondition An expression specifying how to match records in the setofdatasets.

SORTED Specifies the sort order of records in the input setofdatasets and also the output sort order of
the result set.

fields A comma-delimited list of fields in the setofdatasets, which must be a subset of the input sort

order. These fields must all be used in the joincondition as they define the order in which the
fields are STEPPED.

jointype Optional. Aninner join if omitted, else one of the listed types below.

DEDUP Optional. Specifies the output result set contains only unique records.

The MERGEJOIN functionisavariation of the SET OF DATASETsforms of the MERGE and JOIN functions. Like
MERGE, it merges records from the setofdatasets into a single result set, but like JOIN, it uses the joincondition and
jointype to determine which records to include in the result set. It does not, however, use a TRANSFORM function to
produce the result; it includes al records, unchanged, from the setofdatasets that match the joincondition.

Matching Logic

The record matching joincondition may contain two parts: a STEPPED condition that may optionally be ANDed with
non-STEPPED conditions. The STEPPED expression contains equality expressions of the fields from the SORTED
option, ANDed together, using LEFT and RIGHT as dataset qualifiers. If not present, the STEPPED condition is
deduced from the fields specified by the SORTED option.

The order of the datasets within the setofdatasets can be significant to the way the joincondition is evaluated. The
joincondition is duplicated between adjacent pairs of datasets, which means that this joincondition:

LEFT.field = RIGHT field
when applied against a setofdatasets containing three datasets, islogically equivalent to:

dsl.field = ds2.field AND ds2.field = ds3.field

Join Types:

The following jointypes produce the following types of results, based on the records matching produced by the join-
condition:

INNER Only those records that exist in al datasets in the setofdatasets.
LEFT OUTER At least one record for every record in the first dataset in the setofdatasets.
LEFT ONLY Onerecord for every record in the first dataset in the setofdatasets for which thereisno match

in any of the subsequent datasets.

MOFN(min[,max]) |Onerecordfor every record with matching recordsin min number of adjacent datasetswithin
the setofdatasets. If max is specified, the record is not included if max number of dataset
matches are exceeded.

Example:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
242

ECL Language Reference
Built-in Functions and Actions

Rec : = RECORD, MAXLENGTH(4096)
STRI NGL Letter;

UNSI GNEDL DS;
END;

dsl := DATASET([{' A ,1},{'B,1},{'C,1},{'D,1},{' E,1}], Rec);
ds2 := DATASET([{' A ,2},{'B,2},{'"H,2},{'1',2},{'J",2}],Rec);
ds3 := DATASET([{'B ,3},{'C,3},{'M,3},{'N,3},{" O,3}],Rec);
ds4 := DATASET([{' A ,4},{'B ,4},{'R,4},{'S ,4},{' T, 4}],Rec);
ds5 := DATASET([{'B ,5},{'V,5},{'W,5},{'X,5},{' Y, 5}],Rec);

Set DS : = [ds1, ds2, ds3, ds4, ds5] ;

il := MERGEJO N(Set DS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
SORTED(Letter));

j2 := MERGEJO N(Set DS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
SORTED(Lett er), LEFT QUTER);

j 3 := MERGEJO N(Set DS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
SORTED(Letter), LEFT ONLY);

j4 := MERGEJO N(Set DS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
SORTED(Letter), MOFN(3)) ;

j5 := MERGEJO N(Set DS,
STEPPED(LEFT. Lett er =Rl GHT. Letter),
SORTED(Letter), MOFN(3, 4));

QUTPUT(j 1) ;

QUTPUT(j 2) ;

QUTPUT(j 3) ;

QUTPUT(j 4) ;

QUTPUT(j 5) ;

See Also: MERGE, JOIN, STEPPED

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
243

ECL Language Reference
Built-in Functions and Actions

MIN

MIN(recordset, value[, KEYED])

MIN(valuelist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that resultsin a derived record set. Thisaso may be the
keyword GROUP to indicate finding the minimum value of the field in a group, when used in a
RECORD structure to generate crosstab statistics.

value The expression to find the minimum value of.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the minimum value of. This may also be a SET
of values.

Return: MIN returns asingle value.

TheMIN function either returns the minimum value from the specified recordset or the valuelist. It isdefined to return
zero if therecordset is empty.

Example:

MnVall := M N(Trades, Trades.trd_rate);
MnVal2 : = MN(4,8,16,2,1); //returns 1
SetVals := [4,8,16,2,1];

MnVal 3 : = MN(SetVals); //returns 1

See Also: MAX, AVE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
244

ECL Language Reference
Built-in Functions and Actions

NOLOCAL

NOL OCAL (data)
data The name of aDATASET or INDEX attribute.
Return: NOLOCAL returns arecord set or index.

The NOLOCAL function specifies that all subsequent operations on the data are performed on all nodes. This is
typically used within a THISNODE operation. Available for use only in Roxie.

Example:
ds := JO N(SomeDat a, NOLOCAL (Sonel ndex), LEFT.ID = RIGHT.ID);

See Also: ALLNODES, THISNODE, LOCAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
245

ECL Language Reference
Built-in Functions and Actions

NONEMPTY

NONEMPTY (recordsetlist)

recordsetlist A comma-delimited list of record sets.
Return: NONEMPTY returns arecord set.

The NONEMPTY function returns the first record set from the recordsetlist that contains any records. Thisissimilar
to using the EXISTS function in an |F expression to return one of two possible record sets.
Example:

ds : = NONEMPTY(SoneDat a(SoneFilter),

SoneDat a(SomeQt herFil ter),
SoneQt her Dat a(Yet Anot herFilter));

See Also: EXISTS

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
246

ECL Language Reference
Built-in Functions and Actions

NORMALIZE

NORMAL | ZE(recordset, expression, transform)

NORMALIZE(recordset, LEFT .childdataset, transform)

recordset The set of recordsto process.

expression A numeric expression specifying the total number of timesto call the transform for that record.

transform The TRANSFORM function to call for each record in the recordset.

childdataset The field name of a child DATASET in the recordset. This must use the keyword LEFT as its
qualifier.

Return: NORMALIZE returns arecord set.

The NORMAL I ZE function normalizes child records out of arecordset where the child records are appended to the
end of the parent datarecords. The purposeisto take variable-length flat-file recordsand split out the child information.
The parent information can easily be extracted using either TABLE or PROJECT.

NORMALIZE Form 1

Form 1 processes through all records in the recordset performing the transform function the expression number of
times on each record in turn.

TRANSFORM Function Requirements for Form 1

The transform function must take at least two parameters. a LEFT record of the same format as the recordset, and an
integer COUNTER specifying the number of times the transform has been called for that record. The resulting record
set format does not need to be the same as the input.

NORMALIZE Form 2

Form 2 processes through all records in the recordset iterating the transform function through al the childdataset
records in each record in turn.

TRANSFORM Function Requirements for Form 2

The transform function must take at least one parameter: a RIGHT record of the same format as the childdataset. The
resulting record set format does not need to be the same as the input.

Example:

// Form 1 exanpl e
NanmesRec : = RECORD

UNSI GNED1 nunRows;
STRI N&0 t henane;
STRI N&0 addr1 :
STRI N&0 addr 2 :
STRI N&0 addr 3 : ;
STRING0O addr4 :='""';

END;

NanmesTabl e : = DATASET([{1,'Kevin','10 Malt Lane'},
{2,"Liz',"10 Malt Lane','3 The cottages'},

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
247

ECL Language Reference
Built-in Functions and Actions

{0,' M Nobody'},
{4,' Anywhere', "' Here',' There', ' Near','Far'}],
NanmesRec) ;

Qut Rec : = RECORD

UNSI GNED1 nunRows;
STRI N&0 t henane;

STRI N&0 addr;

END;

Qut Rec Normit (NamesRec L, | NTEGER C) := TRANSFORM

SELF := L;

SELF. addr := CHOOSE(C, L.addrl, L.addr2, L.addr3,
L. addr 4);

END;

Nor mAddr s : =

NORMAL| ZE(nanesTabl e, LEFT. nunRows, Nor m t (LEFT, COUNTER)) ;

/* the result is: nunRows thenane

addr
Kevin 10 Malt Lane
Liz 10 Malt Lane
Liz 3 The cottages
Anywhere Here
Anywher e There
Anywher e Near
Anywher e Far */

/************************

~hrBABABPANNPRP

// Form 2 exanpl e

Chi | dRec : = RECORD

| NTEGERL Nanel D;

STRI N&0 Addr;

END;

Denor nedRec : = RECORD

| NTEGERL Nanel D;

STRI N&0 Nare;

DATASET(Chi | dRec) Chi |l dren;
END;

ds := DATASET([{1,'Kevin',[{1,'10 Malt Lane'}]},
{2,'Liz', [{2,'10 Malt Lane'},

{2,'3 The cottages'}]},

{3," ™M™ Nobody', []},

{4, Anywhere' ,[{4, 'Far'},

{4, Here'},

{4,' There'},

{4, " Near'}]}],

Denor nedRec) ;

Chi | dRec NewChi | dren(Chil dRec R) := TRANSFORM
SELF := R

END;

NewChi | ds : = NORMALI ZE(ds, LEFT. Chi | dren, NewChi | dren(RI GHT)) ;

See Also; TRANSFORM Structure, RECORD Structure, DENORMALIZE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
248

ECL Language Reference
Built-in Functions and Actions

NOFOLD

[name :=] NOFOL D(expression)

name Optional. Theidentifier for this function.
expression The expression to evaluate.

The NOFOL D function creates a barrier that prevents optimizati ons occurring between the expression and the context
itisusedin. Thisisused to prevent constant-folding in the context so that it may be evaluated as-is. Note that this does
not prevent constant-folding within the expression itself. It isnormally only used to prevent test cases being optimized
into something completely different, or to temporarily work around bugs in the compiler.

Example:

QUTPUT(2 * 2); [// is nornally constant fol ded to:
QUTPUT(4) ; /] at conpile tine.

[/ However addi ng NOFOLD() around one argument prevents that
OQUTPUT(NOFOLD(2) * 2);

[/ Addi ng NOFOLD() around the entire expressi on does NOT
/] prevent folding within the argunent:

QUTPUT(NOFOLD(2 * 2));
//is the sanme as

QUTPUT(NOFOLD(4)) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
249

ECL Language Reference
Built-in Functions and Actions

NOTHOR

[name :=] NOTHOR(action)

name Optional. Theidentifier for this action.

action The action to execute.

TheNOTHOR compiler directiveindicatestheaction should not execute on thor, but inlineinstead, in aglobal context.
You can only do very simple dataset operations within a NOTHOR, like filtering records or a simple PROJECT.

NOTHOR needs to be used around operations that use the superfile transactions, (such as the example below) where
the compiler does not spot the appropriate context.

Example:

| MPORT STD;
rec : = RECORD

STRI NGLO S;
END;

srcnode : = '10.239.219.2';
srcdir := "/var/lib/HPCCSyst ens/ nydropzone/"';

dir := STD. Fil e. Renpt eDi rect ory(srcnode, srcdir,'*.txt', TRUE);

//wi thout NOTHOR this code gets this error:
/] "Cannot call function AddSuperFile in a non-gl obal context"
NOTHOR(SEQUENTI AL (
STD. Fi | e. Del et eSuperFi |l e(' Mul ti Super1'),
STD. Fi | e. Creat eSuperFil e(' Mul ti Super1'),
STD. Fi |l e. Start Super Fi |l eTransacti on(),
APPLY(di r, STD. Fi | e. AddSuper Fi | e(' Mul ti Super1',
STD. Fi | e. Ext er nal Logi cal Fi | eNane(srcnode, srcdi r+nane))),
STD. Fi | e. Fi ni shSuperFi | eTransaction()));

F1 := DATASET(' Mul ti Superl', rec, THOR);
QUTPUT(F1,,'testmulti 1", OVERWRI TE) ;

See Also: SEQUENTIAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
250

ECL Language Reference
Built-in Functions and Actions

NOTIFY

[attributename :=] NOTIFY (event [, parm] [, expression])

attributename Optional. The identifier for this action.

event The EVENT function, or a case-insensitive string constant naming the event to generate.

parm Optional. A case-insensitive string constant containing the event's parameter.

expression Optional. A case-insensitive string constant allowing simple message passing, to restrict the
event to a specific workunit.

TheNOTIFY actionfiresthe event so that the WAIT function or WHEN workflow service can proceed with operations
they are defined to perform.

The expression parameter allows you to define a service in ECL that is initiated by an event, and only responds to
the workunit that initiated it.

Example:
NOTI FY(' testevent', 'foobar');
recei vedFi | eEvent (STRI NG nane) := EVENT(' Recei vedFile', nane);

NOTI FY(r ecei vedFi | eEvent (' nyfile'));

//as a service

doMyServi ce : = FUNCTI ON

QUTPUT('Did a Service for: ' + 'EVENTNAVE=' + EVENTNAME);
NOTI FY(EVENT(' MySer vi ceConpl et e'

' <Event ><r et ur nTo>FRED</ r et ur nTo></ Event >'),

EVENTEXTRA(' returnTo'));

RETURN EVENTEXTRA(' returnTo');

END;

doMyService : WHEN(' MyService');

// and a call to the service

NOTI FY(' MySer vi ce',

' <Event ><r et ur nTo>' +WORKUNI T+' </ r et urnTo>. ... </ Event>');
WAI T(* MySer vi ceConpl ete');

OUTPUT(' WORKUNI T DONE')

See Also: EVENT, EVENTNAME, EVENTEXTRA, CRON, WHEN, WAIT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
251

ECL Language Reference
Built-in Functions and Actions

ORDERED

[attributename :=] ORDERED(actionlist)

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

actionlist A comma-delimited list of the actionsto executein order. These may be ECL actions or external
actions.

The ORDERED action executes the items in the actionlist in the order in which they appear in the actionlist. Thisis
useful when a subsequent action requires the output of a precedent action.

It hasthe ordering requirements of SEQUENTIAL. Thisismost useful for ordering actionswhich do not have anything
in common, for example, generating files and then sending email. If thereis any chance of a shared value which may
change meaning, you should use SEQUENTIAL.

By definition, PERSIST on an attribute means the attribute is evaluated outside of any given evaluation order. There-
fore, ORDERED has no effect on PERSISTed attributes.

Example:

Actl : =
OUTPUT(A_Peopl e, Qut put Format 1, ' // hol dO1/fred. out"');
Act2 : =
OUTPUT(Per son, { Per son. per _first_nane, Person. per_| ast _nane})
Act 2 : = QUTPUT(Per son, { Person. per | ast_nane})));
/by nam ng these actions, they becone inactive
attributes
//that only execute when the attribute nanmes are called as
actions
ORDERED(Act 1, PARALLEL(Act 2, Act 3)) ;
/lexecutes Actl al one, and then executes Act2 and Act3 together

See Also: PARALLEL, PERSIST, SEQUENTIAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
252

ECL Language Reference
Built-in Functions and Actions

OUTPUT

[attr :=] OUTPUT (recordset [, [format] [file [thorfileoptions]] [, NOXPATH]);

[attr :=] OUTPUT (recordset, [format] ,file, CSV [(csvoptions)] [csvfileoptions] [, NOXPATH]);

[attr :=] OUTPUT (recordset, [format] , file , XML [(xmloptions)] [xmlifileoptions] [, NOXPATH]);

[attr :=] OUTPUT (recordset, [format] , file , JSON [(jsonoptions)] [jsonfileoptions] [, NOXPATH]);

[attr :=] OUTPUT (recordset, [format] ,PIPE(pipeoptions [, NOXPATH]);

[attr :=] OUTPUT (recordset [, format] , NAMED(name) [,LEXTEND] [,ALL] [, NOXPATH]);

[attr :=] OUTPUT (expression [, NAMED(name)] [, NOXPATH]);

[attr :=] OUTPUT(recordset, THOR [, NOXPATH]);

attr

Optional. The action name, which turns the action into a definition, therefore not executed
until the attr is used as an action.

recordset

The set of records to process. This may be the name of a dataset or arecord set derived from
some filter condition, or any expression that resultsin a derived record set.

format

Optional. The format of the output records. If omitted, all fieldsin the recordset are output. If
not omitted, thismust be either the name of apreviously defined RECORD structure definition
or an "on-the-fly" record layout enclosed within curly braces ({}), and must meet the same
requirements as a RECORD structure for the TABLE function (the "vertical slice” form) by
defining the type, name, and source of the data for each field.

file

Optional. The logical name of the file to write the records to. See the Scope & Logica File-
names section of the Language Reference for more on logical filenames. If omitted, the for-
matted data stream only returns to the command issuer (command line or IDE) and is not
written to adisk file.

thorfileoptions

Optional. A comma-delimited list of options valid for a THOR/FLAT file (see the section
below for details).

NOXPATH Specifies any XPATHSs defined in the format or the RECORD structure of the recordset are
ignored and field names are used instead. Thisallows control of whether XPATHsareused for
output, so that XPATHSs that were meant only for xml or json input can beignored for output.

csv Specifiesthefileis afield-delimited (usually comma separated values) ASCI file.

csvoptions Optiona. A comma-delimited list of options defining how the fileis delimited.
csvfileoptions Optional. A comma-delimited list of options valid for a CSV file (see the section below for
details).

XML Specifies the file is output as XML data with the name of each field in the format becoming
the XML tag for that field's data.

xmloptions Optional. A commaseparated list of optionsthat define how the output XML fileisdelimited.

xmlfileoptions Optional. A comma-delimited list of options valid for an XML file (see the section below
for details).

JSON Specifies the file is output as JSSON data with the name of each field in the format becoming
the JSON tag for that field's data.

jsonoptions Optional. A commaseparated list of optionsthat define how the output JSON fileisdelimited.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

253

ECL Language Reference
Built-in Functions and Actions

jsonfileoptions Optional. A comma-delimited list of options valid for an JSON file (see the section below
for details).

PIPE Indicates the specified command executes with the recordset provided as standard input to
the command. Thisisa"write" pipe.

pipeoptions The name of a program to execute, which takes the file as its input stream, along with the
options valid for an output PIPE.

NAMED Specifiestheresult namethat appearsin theworkunit. Not validif thefile parameter is present.

name A string constant containing the result label. This must be a compile-time constant and meet
the attribute naming requirements.

EXTEND Optional. Specifies appending to the existing NAMED result name in the workunit. Using

thisfeature requiresthat all NAMED OUTPUTSs to the same name have the EXTEND option
present, including the first instance.

ALL Optional. Specifies al recordsin the recordset are output to the ECL IDE.
expression Any valid ECL expression that resultsin asingle scalar value.
THOR Specifies the resulting recordset is stored as a file on disk, "owned" by the workunit,

instead of storing it directly within the workunit. The name of the file in the DFU is
scope::RESUL T::workunitid.

The OUTPUT action produces a recordset result from the supercomputer, based on which form and options you
choose. If no file to write to is specified, the result is stored in the workunit and returned to the calling program as
adata stream.

OUTPUT Field Names

Field namesin an "on the fly" record format { ...} must be unique or a syntax error results. For example:

QUTPUT(person(), {rodulel.attrl, nodule2.attrl});
will result in asyntax error. Output Field Names are assumed from the definition names.

To get around this situation, you can specify aunique name for the output field in the on-the-fly record format, likethis:

QUTPUT(person(), {nodulel.attrl, nane := nodul e2.attrl});

OUTPUT Thor/Flat Files

[attr ;=] OUTPUT (recordset [, [format] [.file[, CLUSTER(target)] [ENCRYPT(key)]
[,COMPRESSED] [, OVERWRITE][, UPDATE] [LEXPIRE([days])111)

CLUSTER Optional. Specifieswriting the file to the specified list of target clusters. If omitted, thefileis
written to the cluster on which theworkunit executes. The number of physical file partswritten
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
fileto. Thenames must belisted asthey appear onthe ECL Watch Activity pageor returned by
the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, asin n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifieswriting thefile to disk using both 256-bit AES encryption and LZW com-
pression.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
254

ECL Language Reference
Built-in Functions and Actions

key A string constant containing the encryption key to use to encrypt the data.

COMPRESSED Optional. Specifies writing the file using LZW compression.

OVERWRITE Optional. Specifies overwriting thefile if it aready exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days since the file was read.

days Optional. The number of days from last file read after which the file may be automatically
deleted. If EXPIRE is specified without number of days, it defaults to use the ExpiryDefault
setting in Sasha.

This form writes the recordset to the specified file in the specified format. If the format is omitted, al fields in the
recordset are output. If the file is omitted, then the result is sent back to the requesting program (usually the ECL IDE
or the program that sent the SOAP query to a Roxie).

Example:

Qut put For mat 1 : = RECORD
Peopl e. fi r st nane;
Peopl e. | ast nane;

END;

A Peopl e := Peopl e(l astnang[1] =' A") ;
Scor el : = HASHCRC(Peopl e. firstnane);
Attrl := People.firstnane[1l] ="'A";

OUTPUT(SORT(A_Peopl e, Scorel), Qut put Fornat 1, ' hol dO1:: fred. out');
/] wites the sorted A People set to the fred.out file in
// the format declared in the QutputFormatl definition

QUTPUT(Peopl e, {firstnane, | ast nane}) ;
/] wites just First and Last Nanes to the command i ssuer
[/ full qualification of the fields is unnecessary, since
/] the "on-the-fly" records structure is within the
/| scope of the OUTPUT -- People is assuned

OQUTPUT(Peopl e(Attr1=FALSE)) ;

I/l wites all Peeople fields fromrecords where Attrl is
/] false to the command i ssuer

OUTPUT CSV Files

[attr :=] OUTPUT (recordset, [format] file, CSV [(csvoptions)] [, CLUSTER(target)] [ENCRYPT (key)]
[, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifieswriting the file to the specified list of target clusters. If omitted, thefileis
written to the cluster on which theworkunit executes. The number of physical file partswritten
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
fileto. Thenames must belisted asthey appear onthe ECL Watch Activity page or returned by
the Std.System. Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, asin n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifieswriting thefile to disk using both 256-bit AES encryption and LZW com-
pression.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
255

ECL Language Reference
Built-in Functions and Actions

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting thefile if it aready exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,

the default is seven (7).

This form writes the recordset to the specified file in the specified format as a comma separated values ASCI| file.
Thevalid set of csvoptions are:

HEADING([headertext [, footertext]][, SINGLE])

SEPARATOR(delimiters)

TERMINATOR(delimiters)

QUOTE([delimiters])

ASCII | EBCDIC | UNICODE

HEADING Specifies file headers and footers.

headertext Optional. Thetext of the header record to placeinthefile. If omitted, thefield namesare used.

footertext Optional. The text of the footer record to place in thefile. If omitted, no footertext is output.

SINGLE Optional. Specifiesthe headertext iswritten only to the beginning of part 1 and the footertext
iswritten only at theend of part n (producing a“standard” CSV file). If omitted, the headertext
and footertext are placed at the beginning and end of each file part (useful for producing
complex XML output).

SEPARATOR Specifies the field delimiters.

delimiters A single string constant (or comma-delimited list of string constants) that define the
character(s) used to delimit the datain the CSV file.

TERMINATOR Specifies the record delimiters.

QUOTE Specifies the quotation delimiters for string values that may contain SEPARATOR or TER-
MINATOR delimiters as part of their data.

ASCII Specifies al output isin ASCII format, including any EBCDIC or UNICODE fields.

EBCDIC Specifies all output is in EBCDIC format except the SEPARATOR and TERMINATOR
(which are expressed as ASCII values).

UNICODE Specifies al output isin Unicode UTF8 format

If none of the ASCII, EBCDIC, or UNICODE options are specified, the default output isin ASCII format with any
UNICODE fieldsin UTF8 format. The other default csvoptions are:

CSV(HEADING(' ', "'"),

Example:

SEPARATOR(', '), TERM NATOR('\n'), QUOTE())

/1 SINGLE option wites the header only to the first file part:
QUTPUT(ds, , ' ~t hor:: out dat a. csv', CSV(HEADI N& SI NGLE))) ;

/1 This exanple wites the header and footer to every file part:
OQUTPUT(XMLds, , ' ~t hor: : out dat a. xm ', CSV(HEADI NG ' <XM.>' | ' </ XM.>'))) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

256

ECL Language Reference
Built-in Functions and Actions

OUTPUT XML Files

[attr :=] OUTPUT (recordset, [format] ,file , XML [(xmloptions)] [,ENCRYPT(key)] [, CLUSTER(target)]
[, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifieswriting the file to the specified list of target clusters. If omitted, thefileis
written to the cluster on which theworkunit executes. The number of physical file partswritten
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
fileto. Thenames must belisted asthey appear onthe ECL Watch Activity pageor returned by
the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with a dash, asin n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifieswriting thefile to disk using both 256-bit AES encryption and LZW com-
pression.

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting thefile if it aready exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,

the default is seven (7).

This form writes the recordset to the specified file as XML data with the name of each field in the specified format
becoming the XML tag for that field's data. The valid set of xmloptions are:

‘rowtag'

HEADING(headertext [, footertext])

TRIM

OPT

rowtag The text to place in record delimiting tag.

HEADING Specifies placing header and footer recordsin the file.

headertext The text of the header record to placein thefile.

footertext The text of the footer record to place in thefile.

TRIM Specifies removing trailing blanks from string fiel ds before output.
OPT Specifies omitting tags for any empty string field from the outpuit.

If no xmloptions are specified, the defaults are:

XM_(' Row , HEADI N&(' <Dat aset >\ n', ' </ Dataset>\n'))

Example:

R :
B :

{ STRI NG10 f nane, STRI NG12 | nane};
DATASET([{' Fred','Bell"'},{' George','Blanda'},{'Sam,''}],R);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

257

ECL Language Reference
Built-in Functions and Actions

QUTPUT(B,, ' fredl.xm ', XM); // wites Bto the fredl.xm file
/* the Fredl. XML file |l ooks like this:

<Dat aset >

<Row><f nane>Fr ed </fnane><| nane>Bel | </ | nane></ Row>
<Row><f name>Geor ge</ f nane><| nanme>Bl anda </ | nane></ Row>
<Row><f nanme>Sam </ f name><| nane></ | nane></ Row>

</ Dat aset > */

QUTPUT(B, , ' fred2. xm ', XM_(' MyRow , HEADI N& ' <?xm version=1.0 ...?>\n<filetag>\n',"'</filetag>\n')));
/* the Fred2. XML file |ooks |ike this:

<?xm version=1.0 ..

<filetag>

. ?>

<MyRow><f name>Fr ed </fnanme><| name>Bel | </ | name></ My Row>
<MyRow><f nane>GCeor ge</ f name><| nane>Bl| anda</ | nane></ My Row>
<MyRow><f nane>Sam </ f nane><| nane></ | nane></ My Row>

</filetag> */

OUTPUT(B, , ' fred3. xm ', XM.(' M/Row , TRI M OPT)) ;
/* the Fred3. XM. file |l ooks |ike this:

<Dat aset >

<MyRow><f nane>Fr ed</ f nane><| name>Bel | </ | nane></ My Row>
<MyRow><f nane>GCeor ge</ f name><| nane>Bl| anda</ | nane></ My Row>
<MyRow><f nane>Sanx/ f name></ MyRow>

</ Dat aset > */

OUTPUT JSON Files

[attr :=] OUTPUT (recordset, [format] ,file ,JSON [(jsonoptions)] [LENCRYPT(key)][, CLUSTER(target)]
[, OVERWRITE][, UPDATE] [, EXPIRE([days])])

CLUSTER Optional. Specifieswriting the file to the specified list of target clusters. If omitted, thefileis
written to the cluster on which theworkunit executes. The number of physical file partswritten
to disk is always determined by the number of nodes in the cluster on which the workunit
executes, regardless of the number of nodes on the target cluster(s).

target A comma-delimited list of string constants containing the names of the clusters to write the
fileto. Thenames must belisted asthey appear onthe ECL Watch Activity page or returned by
the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with adash, asin n-m)
to indicate the specific set of nodes to write to.

ENCRYPT Optional. Specifieswriting the file to disk using both 256-bit AES encryption and LZW com-
pression.

key A string constant containing the encryption key to use to encrypt the data.

OVERWRITE Optional. Specifies overwriting the fileif it already exists.

UPDATE Specifies that the file should be rewritten only if the code or input data has changed.

EXPIRE Optional. Specifies the file is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted,

the default is seven (7).

This form writes the recordset to the specified file as JSON data with the name of each field in the specified format
becoming the JSON tag for that field's data. The valid set of jsonoptions are:

‘rowtag’

HEADING(headertext [, footertext])

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
258

ECL Language Reference
Built-in Functions and Actions

TRIM

OPT

rowtag The text to place in record delimiting tag.

HEADING Specifies placing header and footer recordsin the file.

headertext The text of the header record to place in the file.

footertext The text of the footer record to place in the file.

TRIM Specifies removing trailing blanks from string fields before output.
OPT Specifies omitting tags for any empty string field from the output.

If no jsonoptions are specified, the defaults are:
JSON(* Row , HEADING(' [',']"))
Example:

R :
B :

{ STRI NG10 f nane, STRI NG12 | nang};
DATASET([{' Fred','Bell"'},{' George','Blanda'},{'Sam,''}],R);

QUTPUT(B,, ' fredl.json', JSON); // wites Bto the fredl.json file
/* the Fredl.json file |l ooks like this:

{"Row': [

{"fnane": "Fred ", "l nane": "Bell 1,
{"fnane": "George ", "lname": "Bl anda "1,
{"fname": "Sam ", "l name": ' "1
1}

*/

QUTPUT(B, , ' fred2.json', JSON(' MyResul t', HEADING('[', '1')));:
/* the Fred2.json file |looks like this:
["MyResul t": [

{"fname": "Fred ", "lnane": "Bell "},
{"fnane": "George ", "lname": "Bl anda "1,
{"fname": "Sam "l name": " "

1

OUTPUT PIPE Files

[attr :=] OUTPUT (recordset, [format] ,PIPE(command [, CSV | XML]) [, REPEAT])

PIPE Indicates the specified command executes with the recordset provided as standard input to
the command. Thisisa"write" pipe.

command The name of a program to execute, which takes the file as its input stream.

csv Optional. Specifies the output data format is CSV. If omitted, the format is raw.

XML Optional. Specifies the output data format is XML. If omitted, the format is raw.

REPEAT Optional. Indicates a new instance of the specified command executes for each row in the
recordset.

This form sends the recordset in the specified format as standard input to the command. This is commonly known
as an "output pipe."

Example:

OQUTPUT(A_Peopl e, , Pl PE(' MyCommandLI| nePr ogr ani) , OVERWRI TE) ;
/1 sends the A People to MyCommandL| neProgram as

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
259

ECL Language Reference
Built-in Functions and Actions

/] standard in

Named OUTPUT

[attr :=] OUTPUT (recordset [, format] ,NAMED(name) [,EXTEND] [,ALL])

Thisformwritestherecordset to theworkunit with the specified name. The EXTEND option allowsmultiple OUTPUT
actions to the same named result. The ALL option is used to override the implicit CHOOSEN applied to interactive
queriesin the Query Builder program. This specifies returning all records.

Example:

OUTPUT(CHOOSEN(peopl e(firstnanme[1] =" A"), 10));
/Il wites the A People to the query buil der
OUTPUT(CHOOSEN(peopl e(firstnanme[1] =" A"), 10), ALL);
I/ wites all the A People to the query buil der
OUTPUT(CHOOSEN(peopl e(firstnanme[1] =" A"), 10), NAVED(' fred'));
// wites the A People to the fred named out put
//a NAMED, EXTEND exanpl e:
err MsgRec : = RECORD
UNSI GNED4 code;
STRI NG t ext ;
END;
makeEr r Msg(UNSI GNED4 _code, STRING _text) := DATASET([{_code, _text}], errMsgRec);
rpt Err Msg(UNSI GNED4 _code, STRING _text) := OUTPUT(nmekeErr Msg(_code, text),
NAVED(' Error Resul t'), EXTEND) ;

OUTPUT(DATASET([{100, 'Failed'}],errMgRec), NAVMED(' Error Resul t'), EXTEND) ;
[/ Explicit syntax.

/1 Sonet hing el se creates the dataset
OUTPUT(makeEr r Msg(101, ' Failed again'), NAVED(' Error Result'), EXTEND) ;

//out put and dataset handl ed el sewhere.
rpt ErrMsg(102, 'And again');

OUTPUT Scalar Values

[attr :=] OUTPUT (expression [, NAMED(name)])
Thisform isused to allow scalar expression output, particularly within SEQUENTIAL and PARALLEL actions.

Example:

QUTPUT(10) // scal ar val ue out put
QUTPUT(' Fred') // scal ar val ue out put

OUTPUT Workunit Files

[attr :=] OUTPUT(recordset, THOR)

Thisform is used to store the resulting recordset as afile on disk "owned" by the workunit. The name of the filein
the DFU is scope::RESULT::workunitid. Thisis useful when you want to view alarge result recordset in the Query
Builder program but do not want that much data to take up memory in the system data store.

Example:

OQUTPUT(Per son(per _st="FL'), THOR)
/] output records to screen, but store the

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
260

ECL Language Reference
Built-in Functions and Actions

[/l result on disk instead of in the workunit

See Also: TABLE, DATASET, PIPE, CHOOSEN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
261

ECL Language Reference
Built-in Functions and Actions

PARALLEL

[attributename :=] PARALLEL (actionlist)

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

actionlist A comma-delimited list of the actions to execute simultaneously. These may be ECL actions or
externa actions.

The PARALLEL action executestheitemsin the actionlist simultaneously. Thisisalready the default operative mode,
s0 PARALLEL isonly useful within the action list of a SEQUENTIAL set of actions.

Example:

Actl : =

OUTPUT(A_Peopl e, Qut put Format 1, ' // hol dO1/fred. out');
'(AJCJEI'IZDU.T(:Person, {Person. per_first_nane, Person. per _| ast _nane})
Act 2 : = QUTPUT(Person, { Person. per _| ast_nane})));

/by nam ng these actions, they becone inactive attributes
//that only execute when the attribute names are called as actions

SEQUENTI AL(Act 1, PARALLEL(Act 2, Act 3)) ;

|l executes Actl alone, and only when it's finished,
/| executes Act2 and Act 3 together

See Also: SEQUENTIAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
262

ECL Language Reference
Built-in Functions and Actions

PARSE

PARSE (dataset, data, pattern, result , flags[, MAXLENGTH(length)])

PARSE(dataset, data, result , XML (path))

dataset The set of records to process.

data An expression specifying the text to parse, typically the name of afield in the dataset.
pattern The parsing pattern to match.

result The name of either the RECORD structure attribute that specifies the format of the output

record set (like the TABLE function), or the TRANSFORM function that produces the output
record set (like PROJECT).

flags One or more parsing options, listed below.

MAXLENGTH Specifiesthe the maximum length the pattern can match. If omitted, the default length is 4096.
length An integer constant specifying the maximum number of matching characters.

XML Specifies the dataset contains XML data.

path A string constant containing the XPATH to the tag that delimits the XML data in the dataset.
Return: PARSE returns arecord set.

The PARSE function performs atext or XML parsing operation.

PARSE Text Data

Thefirst form operates on the dataset, finding records whose data contains a match for the pattern, producing aresult
set of those matches in the result format. If the pattern finds multiple matches in the data, then a result record is
generated for each match. Each match for a PARSE is effectively a single path through the pattern. If there is more
than one path that matches, then the result transform is either called once for each path, or if the BEST option is used,
the path with the lowest penalty is selected.

If the result names a RECORD structure, then this form of PARSE operates like the TABLE function to generate
the result set, but may also operate on variable length text. If the result names a TRANSFORM function, then the
transform generates the result set. The TRANSFORM function must take at least one parameter: a LEFT record of the
same format as the dataset. The format of the resulting record set does not need to be the same as the input.

Flags can have the following values:

FIRST Only return arow for the first match starting at a particular position.

ALL Return arow for every possible match of the string at a particular position.

WHOLE Only match the whole string.

NOSCAN If a position matches, don't continue searching for other matches.

SCAN If a position matches, continue searching from the end of the match, otherwise continue
from the next position.

SCAN ALL Return matches for every possible start position. Use the TRIM function to eliminate pars-
ing extraneous trailing blanks.

NOCASE Perform a case insensitive comparison.

CASE Perform a case sensitive comparison (thisis the default).

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
263

ECL Language Reference
Built-in Functions and Actions

SK 1 P(separator-

Specify a pattern that can be inserted after each token in a search pattern. For example,

pattern) SKIP ([*,\t']*) skips spaces and tabs between tokens.

KEEP(max) Only keep the first max matches.

ATMOST (max) Don't produce any matchesif there are more than max matches.

MAX Return arow for the result that matches the longest sequence of the input. Only one match
isreturned unlessthe MANY option is also specified.

MIN Return arow for the result that matches the shortest sequence of the input. Only one match

isreturned unless the MANY option is also specified.

MATCHED([rule-ref-
erence])

Used when rule-reference is used in a user-matching function. If a rule-reference is not
specified, the matching information may not be preserved.

MATCHED(ALL)

Retain all rule-names — if they are used by user match functions.

NOT MATCHED

Generate arow if there were no matches on the input row. All calls to the MATCHED()
function return false inside the resultstructure.

NOT MATCHED ON-
LY

Only generate arow if no matches were found.

BEST Pick the match with the highest score (lowest penalty). If the MAX or MIN flags are also
present, they are applied first. Only one match is returned unlessthe MANY option isalso
specified.

MANY Return multiple matches for BEST, MAX, or MIN options.

PARSE Implements Tomita parsing instead of regular expression parsing technology.

USE(] struct,] x)

Specifiesusing a RULE pattern attribute defined further on in the code with the DEFINE(X)
function, introducing a recursive grammear (the only recursion allowed in ECL). If the op-
tional struct RECORD structure is specified, USE specifies using a RULE pattern attribute
defined further on in the code with the DEFINE(x) function that produces a row result in
the struct RECORD structure format (valid only with the PARSE option also present). USE
is required on PARSE when any patterns cannot be found by walking the rules from the
root down without following any USEs.

Example:

rec : = {STRI NGL000O |i ne};

datafile := DATASET([

{'Ge 34:2 And when Shechem the son of Hanor the Hivite, prince of the country, saw her,'+
he took her, and lay with her, and defiled her.'},

{' Ge 36:10 These are the nanes of Esaus sons; Eliphaz the son of Adah the wi fe of Esau,'+
Reuel the son of Bashemath the wife of Esau.'}],rec);

PATTERN wsl := [* ',"\t',','];

PATTERN ws := wsl ws1?;

PATTERN pat Start := FIRST | ws;

PATTERN pat End := LAST | ws;

PATTERN article := ['"A','The',' Thou',"'a',"'the', 'thou'];

TOKEN pat Wrd : = PATTERN(' [a-zA-Z] +');
TOKEN Name := PATTERN(' [A-Z][a-zA-Z] +');

RULE Nanmet := name OPT(ws ['the','king of','prince of'] ws nane);
PATTERN produced := OPT(article ws) ['begat','father of',' nmother of'];
PATTERN produced_by := OPT(article ws) ['son of','daughter of'];
PATTERN produces_with := OPT(article ws) ["wife of'];

RULE rel ati ontype := (produced | produced_by | produces_with);
RULE progeny := nanet ws rel ationtype ws nanet;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
264

ECL Language Reference
Built-in Functions and Actions

results : = RECORD
STRI NGO Le : = MATCHTEXT(Nanet[1]);

STRINGS0 Ri := MATCHTEXT(Namet[2]);
STRI NG30 Rel ati onPhrase := MatchText (rel ati ontype);
END;

outfilel := PARSE(datafile,line, progeny,results, SCAN ALL);

PARSE XML Data

Thesecond form operateson an XML dataset, parsing the XML data and creating aresult set using theresult parameter,
one output record per input. The expectation is that each row of data contains a complete block of XML. If the result
names a RECORD structure, then this form of PARSE operates like the TABLE function to generate the result set.

If the result namesa TRANSFORM function, then the transform generates the result set. The TRANSFORM function
must take at least one parameter: a LEFT record of the same format as the dataset. The format of the resulting record
set does not need to be the same as the input.

NOTE: XML reading and parsing can consume a large amount of memory, depending on the usage. In particular, if
the specified xpath matches a very large amount of data, then alarge data structure will be provided to the transform.
Therefore, the more you match, the more resources you consume per match. For example, if you have a very large
document and you match an element near the root that virtually encompasses the whole thing, then the whole thing
will be constructed as a referenceable structure that the ECL can get at.

Example:

linerec := { STRING |ine };
inl := DATASET([{
' <ENTI TY ei d="P101" type="PERSON' subtype="M LI TARY">' +
' <ATTRI BUTE nanme="ful | nane">JOHN SM TH</ ATTRI BUTE>' +
<ATTRI BUTE nanme="honori fic">M.</ ATTRI BUTE>' +
' <ATTRI BUTEGRP descri pt or =" passport">' +
' <ATTRI BUTE nane="i dNunber " >WL2468</ ATTRI BUTE>' +
' <ATTRI BUTE nane="i dType" >pp</ ATTRI BUTE>' +
' <ATTRI BUTE nane="i ssui ngAut hori ty">JAPAN PASSPORT AUTHORI TY</ ATTRI BUTE>' +
' <ATTRI BUTE nanme="country" val ue="L202"/>" +
' <ATTRI BUTE nane="age" val ue="19"/>" +
' </ ATTRI BUTEGRP>' +

"</ENTITY>'}],
|'inerec);
passport Rec : = RECORD
STRI NG i d;

STRI NG i dType;
STRI NG i ssuer;
STRI NG count ry;
| NTECER age;
END;
outrec := RECORD
STRI NG i d;
UNI CODE f ul | nane;
UNI CODE title;
passport Rec passport;
STRI NG | i ne;
END;
outrec t(lineRec L) := TRANSFORM
SELF.id := XML.TEXT(' @i d');
SELF. ful | name : = XM_.UNI CODE(' ATTRI BUTE[@ane="ful | name"]");
SELF.title := XM.UN CODE(' ATTRI BUTE[@ane="honorific"]"');
SELF. passport.id : = XM.TEXT(' ATTRI BUTEGRP[@lescr i pt or =" passport"]"'
+ '/ ATTRI BUTE[@ane="i dNunber"]"');
SELF. passport.idType : = XML.TEXT(' ATTRI BUTEGRP[@lescri pt or =" passport"]’
+ '/ ATTRI BUTE[@anme="i dType"]"');
SELF. passport.issuer := XM.TEXT(' ATTRI BUTEGRP[@lescr i pt or =" passport"]"'

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
265

ECL Language Reference
Built-in Functions and Actions

+ '/ ATTRI BUTE[@ane="i ssui ngAut hority"]");
SELF. passport.country := XM.TEXT(' ATTRI BUTEGRP[@lescr i pt or =" passport"]"'
+ '/ ATTRI BUTE[@ane="country"]/ @al ue');
SELF. passport.age : = (| NTEGER) XMLTEXT("' ATTRI BUTEGRP[@escri pt or ="passport"]"'
+ '/ ATTRI BUTE[@anme="age"]/ @al ue');
SELF := L;
END;

textout := PARSE(inl, line, t(LEFT), XM.('/ENTITY[@ype="PERSON']"')):;

See Also: DATASET, OUTPUT, XMLENCODE, XMLDECODE, REGEXFIND, REGEXREPLACE, DEFINE

Extended PARSE Examples

Thisexample parsesraw phone numbersfrom aspecific field in aninput dataset into asingle standard output containing
just the numbers. A missing area code in the raw input results in three leading zeroes in the output.

infile := DATASET([{' 5619994581}, {' 15619994581' },
{* (561) 999-4581'},{' (561)999-4581"},
{' 561-999-4581'},{' 561 999 4581'},
{'561.999. 4581' }, { 561/ 999/ 4581" },
{' 561 999-4581'},{' 9994581' },
{* 999-4581' }], { STRING20 rawnurber});

PATTERN nunbers := PATTERN('[0-9]"') +;
PATTERN al pha : = PATTERN(' [A-Za-z]"') +;
PATTERN ws := [' ',"\t']*;

PATTERN sepchar := PATTERN('[-./]');
PATTERN Seperator := ws sepchar ws;

/] Area Code

PATTERN QpenParen := ["[',"(','{",'<];

PATTERN C oseParen :=[']',")"',"}','>"];

PATTERN FrontDigit :=['1", '0'] OPT(Seperator);

PATTERN ar eacode := OPT(FrontDigit) OPT(OpenParen) nunbers |ength(3) OPT(C oseParen);

/] Last Seven digits

PATTERN exchange : = nunbers | ength(3);

PATTERN | ast f our : = nunbers |ength(4);

PATTERN seven : = exchange OPT(Seperator) |astfour;

/| Extension
PATTERN ext ensi on := ws al pha ws nunbers;

/1 Phone Number
PATTERN phonenunber := OPT(areacode) OPT(Seperator) seven
opt (ext ensi on) ws;
| ayout _phone_append : = RECORD
infile;
STRI NGLO cl ean_phone : = MAP(NOT MATCHED(phonenunber) => '"',
NOT MATCHED(ar eacode) => '000' + MATCHTEXT(exchange) + MATCHTEXT(I| astfour),

MATCHTEXT(ar eacode/ nunbers) + MATCHTEXT(exchange) + MATCHTEXT(I astfour));
END;

outfile := PARSE(infile, rawnunber, phonenunber, |ayout_ phone_append, FI RST, NOT MATCHED, WHOLE);
OUTPUT(out file);

This example parses a small subset of raw movie data (freely available at IMDB.com) into standard database fields:

Layout _Actors_Raw : = RECORD
STRI NGL20 | MDB_Act or _Desc;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
266

ECL Language Reference
Built-in Functions and Actions

END,;

File_ Actors := DATASET([
{"A V., Subba Rao Chenchu Lakshm (1958/1) <10>'},
{' Jayabheri (1959) <17>'},
{' Mndal asa (1948) <3>'},
{'" Mangal ya Bal am (1958) <12>'},
{' Mbhini Bhasnmasura (1938) <3>'},
{' Palletoori Pilla (1950) [Kanpanna Dora] <4>'},
{' Peddamanushul u (1954) <6>'},
{' Sarangadhara (1957) <12>'},
{' Sri Seetha Rama Kal yanam (1961) <12>'},
{'" Sri Venkateswara Mahat myam (1960) [Akasa Raju] <5>'},
{' Vara Vi krayam (1939) [Judge] <12>'},
{' Vindhyarani (1948) <7>'},
{"'}
{"Aa, Brynjar Adjo solidaritet (1985) [Ponker] <40>'},
{""}
{' Aabel , Andreas Bor Borson Jr. (1938) [O G Hansen] <9>'},
{' Jeppe pa bjerget (1933) [En skonmkerlaerling]'},
{' Kanpen om tungtvannet (1948) <8>'},
{' Prinsessen somingen kunne nagl bi nde (1932) [Espen
Askel add] <3>'},
Spokel se forel sker seg, Et (1946) [Et spokel se] <6>'},

{

{

{' Aabel, Hauk (I) Al exander den store (1917) [Al exander Nyberg]'},
{'" Du har lovet mig en kone! (1935) [Professoren] <6>'},
{' dad gutt, En (1932) [A a Nordistua] <1>'},
{'" Jeppe pa bjerget (1933) [Jeppe] <1>'},
{' Morderen uten ansi kt (1936)'},

{'" Store barnedapen, Den (1931) [Evensen, kirketjener] <5>'},
{' Troll-El gen (1927) [Piper, direktor] <9>'},
{' Ungen (1938) [Krestoffer] <8>'},

{' Valfangare (1939) [Jensen Sr.] <4>'},
{

{

{

{

{

{

{

{

{

L

' Aabel , Per (1) Brudebuketten (1953) [Hoyland jr.] <3>'},
' Cafajestes, Os (1962)'},

' Farlige | eken, Den (1942) [Fredrik Hol m doktor]'},

' Herre ned bart, En (1942) [O e Gong, advokat] <1>'},

' K aere Maren (1976) [Doktor]'},

' Kjaerlighet og vennskap (1941) [Anton Schack] <3>'},

' Orbyte fornojer (1939) [Gegor |vanow <2>'},

' Portrettet (1954) [Per Haug, provisor] <1>'}],

ayout _Actors_Raw) ;

/| Basi c patterns:
PATTERN arb := PATTERN('[-!.,\t a-zA Z0-9]')+;

/lall al phanuneric & certain special characters
PATTERN ws := [" ',"\t']+; //word separators (space & tab)
PATTERN nunber := PATTERN('[O0-9]"')+; //nunbers

[l extended patterns:

PATTERN age := ' (' nunber OPT('/I') ")";

//movie year -- OPT('/1"') required for first rec

PATTERN role := '[' arb '"]'; //character played

PATTERN mrank :="'<" nunber '>'; //credit appearance nunber
PATTERN actor := arb OPT(ws '(I)"' ws);

/lactor's name -- OPT(ws '(I)' ws)

/Il required for last two actors

|l extended pattern to parse the actual text:
PATTERN |line := actor '\t' arb ws OPT(age) ws OPT(role) ws OPT(mrank) ws;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
267

ECL Language Reference
Built-in Functions and Actions

/ | out put

record structure:

NLP_| ayout _act or _novi e : = RECORD

STRI NG30 act or _nane :
STRI NG5O novi e_nane :

Std. Str.filterout(MATCHTEXT(actor),'\t');
MATCHTEXT(ar b[2]) ;

UNSI GNED2 novi e_year : = (UNSI GNED) MATCHTEXT(age/ nunber) ;

STRI NGO novie role :
UNSI GNEDL cast _rank :

END;

MATCHTEXT(r ol e/ ar b) ;
(UNSI GNED) MATCHTEXT(m_r ank/ nunber) ;

//and the actual parsing operation
Actor _Movie_Init := PARSE(Fil e_Actors,

| MDB_Act or _Desc,
I'i ne,
NLP_| ayout _act or _novi e, WHOLE, FI RST) ;

/] then iterate to propagate actor name in each record
NLP_| ayout _actor_novi e |terNames(NLP_| ayout _actor_novie L,

NLP_| ayout _actor_novi e R) := TRANSFORM

SELF. actor_nanme := | F(R actor_Nane='"', L. actor_Nane, R act or _nane) ;
SELF: = R

END;

NLP_Act or _Movie : = | TERATE(Actor _Movie Init,|terNanmes(LEFT, RI GHT));

/'l and output the result set
OUTPUT(NLP_Act or _Movi €e) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
268

ECL Language Reference
Built-in Functions and Actions

PIPE

PI PE(command, recorddef [, CSV | XML])

PIPE(recordset, command [, recorddef | [, REPEAT] [, CSV | XML] [, OUTPUT(CSV | XML)][, GROUP])

command The name of aprogram to execute, which must take any input data through stdin and produce its
output through stdout. This program must have already been deployed on the HPCC cluster in
the Thor instance directory (such as: /var/lib/HPCCSystems/mythor/) but that can be overridden
by the external ProgDir environment setting for the Thor cluster).

recorddef The RECORD structure format for output. If omitted, output is the same as the input format.

csv Optional. In form 1 (and as the parameter to the OUTPUT option), specifies the output data
format is CSV. In form 2, specifies the input dataformat is CSV. If omitted, the format is raw.

XML Optional. In form 1 (and as the parameter to the OUTPUT option), specifies the output data
format is XML. In form 2, specifiesthe input dataformat is XML. If omitted, the format is raw.

recordset The input dataset.

REPEAT Optional. Specifiesanew instance of the command program is created for each row in therecord-
Set.

OUTPUT Optional. Specifies CSV or XML result data format.

GROUP Optional. Specifies each result record is generated in a separate GROUP (only if REPEAT is
specified).

Return: PIPE returns arecord set.

The PIPE function allows ECL code to launch an external command program on each node, effectively paralléelizing
anon-paralléel processing program. PIPE has two forms:

Form 1 takes no input, executes the command, and produces its output in the recorddef format. Thisisan "input" pipe
(like the PIPE option on aDATASET definition).

Form 2 takes the input recordset, executes the command, producing output in the recorddef format. Thisisa"through"

pipe.
Example:

nanesRecord : =

RECORD

STRI NG1O f or enane;
STRI NGLO sur narne;

STRI N&2 nl
END,;

d:

t

‘\r\n';

Pl PE(' pi peRead 200', nanmesRecord); //form 1l - input pipe

Pl PE(d, ' pipeThrough'); //form2 - through pipe

QUTPUT(t,, PI PE("' pi peWite \\thordata\\nanes.all"')); //output pipe

//Form 2 with XM input:

nanesRecord : =

RECORD

STRI NGLO Fi r st nane{ xpat h('/ Nane/ FNane') };
STRI NGLO Last nanme{ xpat h('/ Nanme/ LNang') };

END,;

p := PIPE(' echo <Name><FNanme>Ceor ge</ FNanme><LNane>Jet son</ LNane></ Nane>', nanmesRecord, XM.);

QUTPUT(p) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

269

ECL Language Reference
Built-in Functions and Actions

See Also: OUTPUT, DATASET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
270

ECL Language Reference
Built-in Functions and Actions

POWER

POWER (base,exponent)

base The real number to raise.

exponent Therea power to raise X to.
Return: POWER returnsasingle real value.

The POWER function returns the result of the base raised to the exponent power.
Example:

MyCube := PONER(2.0,3.0); // =8
M/Square := PONER(3.0,2.0); // =9

See Also: SOQRT, EXP, LN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
271

ECL Language Reference
Built-in Functions and Actions

PRELOAD

PREL OAD(file[, nbr])

file The name of aDATASET definition.

nbr Optional. An integer constant specifying how many indexes to create "on the fly" for speedier
accessto the specified DATASET file (only). If > 1000, specifiesthe amount of memory set aside
for these indexes.

Return: PRELOAD returns arecord set.

The PREL OAD function leaves the file in memory after loading (valid only for Data Delivery Engine use). Thisis
exactly equivalent to using the PRELOAD option on the DATASET definition.

Example:

M/File := DATASET(' M/File', {STRING20 F1, STRING20 F2}, THOR);
COUNT(PRELOAD(MyFi | €))

See Also: DATASET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
272

ECL Language Reference
Built-in Functions and Actions

PROCESS

PROCESS(recordset, datarow, datasettransform, rowtransform [, LOCAL])

recordset The set of records to process.

datarow Theinitial RIGHT record to process, typically expressed by the ROW function.

datasettransform | The TRANSFORM function to call for each record in the recordset.

rowtransform The TRANSFORM function to call to produce the next RIGHT record for the datasettransform.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation maintains the
distribution of any previous DISTRIBUTE.

Return: PROCESS returns arecord set.

The PROCESS function operates in a similar manner to ITERATE in that it processes through al records in the
recordset one pair of records at atime, performing the datasettransform function on each pair of recordsin turn. The
first record in the recordset is passed to the datasettransform as the first left record, paired with the datarow as the
right record. The rowtransformis used to construct the right record for the next pair. If either the datasettransform or
the rowtransform contains a SK|1P, then no record is produced by the datasettransform for the skipped record.

TRANSFORM Function Requirements - PROCESS

The datasettransform and rowtransform functions both must take at least two parameters: a LEFT record of the same
format as the recordset and a RIGHT record of the same format as the datarow. The format of the resulting record set
for the datasettransform both must be the same as the input recordset. The format of the resulting record set for the
rowtransformboth must be the same astheinitial datarow. Optionally, the datsettransformmay take athird parameter:
an integer COUNTER specifying the number of times the transform has been called for the recordset or the current
group in the recordset (see the GROUP function).

Example:

DSrec := RECORD
STRINA Letter;
STRINA LeftRecln :="'";
STRINAA RightRecln := "'
END;
St at eRec : = RECORD
STRI N& Letter;
END;
ds := DATASET([{'AA' },{'BB'},{'CC},{'DD},{"EE }], DSrec);

DSrec DSxform(DSrec L, StateRec R) : = TRANSFORM
SELF. Letter := L.Letter[1..2] + R Letter;
SELF. LeftRecln := L. Letter;

SELF. R ght Recln := R Letter;

END;

St at eRec ROMforn(DSrec L, StateRec R) : = TRANSFORM
SELF. Letter := L.Letter[1] + R Letter[1];

END;

p : = PROCESS(ds,
ROW{' ZZ'}, St at eRec),
DSxf or m(LEFT, Rl GHT) ,
ROWKf or m(LEFT, Rl GHT)) ;

QUTPUT(p) ;

/* Result:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
273

ECL Language Reference
Built-in Functions and Actions

AAZZ AA 77
BBAZ BB AZ
CCBA CC BA
DDCB DD CB
EEDC EE DC */

//**

/1 This exanples uses different information for state tracking
/1 (the point of the PROCESS function) through the input record set.

wl : = RECORD
STRI NG v{ MAXLENGTH(100) } ;
END;

sl : = RECORD
BOOLEAN pri or A;
END;
ds := DATASET([{'B },{"A'}, {'C}, {'D}], w);

sl doState(wl |, sl r) := TRANSFORM
l.v =

SELF. priorA : = A
END;
wl doRecords(wl |, s1 r) := TRANSFORM
SELF.v :=1.v + [F(r.priorA, '*xx' ''):
END;

initState : = RON{TRUE}, sl1);

rs : = PROCESS(ds,
initState,
doRecor ds(LEFT, Rl GHT) ,
doSt at e(LEFT, RI GHT)) ;

QUTPUT(rs) ;
/* Result:
B***

A

Ck**

D

*/

See Also; TRANSFORM Structure, RECORD Structure, ROW, ITERATE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
274

ECL Language Reference
Built-in Functions and Actions

PROJECT

PROJECT (recordset, transform [, PREFETCH [(lookahead [, PARALLEL])]][, KEYED][,LOCAL)

PROJECT (recordset, record [, PREFETCH [(lookahead [, PARALLEL])]][, KEYED][,LOCAL])

recordset The set of records to process. This may be asingle-record in-line DATASET.

transform The TRANSFORM function to call for each record in the recordset.

PREFETCH Optional. Allows index reads within the transform to be as efficient as keyed JOINSs. Valid for
use only in Roxie queries.

lookahead Optional. Specifies the number of l1ook-ahead reads. If omitted, the default is the value of the
_PrefetchProjectPreload tag in the submitted query. If that is omitted, then it is taken from the
value of defaultPrefetchProjectPreload specified in the RoxieTopology file when the Roxie was
deployed. If that is omitted, it defaults to 10.

PARALLEL Optional. Specifiesthe lookahead is done on a separate thread, in parallel with query execution.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer
to generate optimal code for the operation.

LOCAL Optional. Specifiesthe operationis performed on each supercomputer nodeindependently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distri-
bution of any previous DISTRIBUTE.

record The output RECORD structure to use for each record in the recordset.

Return: PROJECT returns arecord set.

The PROJECT function processes through al records in the recordset performing the transform function on each

record in turn.

The PROJECT (recordset,record) form is simply a shorthand synonym for:

PROJECT (recordset, TRANSFORM (record,SELF := LEFT)).

making it simple to move data from one structure to another without a TRANSFORM as long as all the fields in the
output record structure are present in the input recordset.

TRANSFORM Function Requirements - PROJECT

Thetransformfunction must take at |east one parameter: aLEFT record of the sameformat astherecordset. Optionaly,
it may take a second parameter: an integer COUNTER specifying the number of times the transform has been called
for the recordset or the current group in the recordset (see the GROUP function). The second parameter form is useful
for adding sequence numbers. The format of the resulting record set does not need to be the same as the input.

Example:

//form one exan-pl e EIE R R S R T S S O S T

Ages : = RECORD

STRI NGL5 per _first_name;
STRI N&5 per _| ast _nane;

| NTEGERS Age;
END;

TodaysYear := 2001;

Ages Cal cAges(person |) := TRANSFORM
SELF. Age : = TodaysYear - |.birthdate[l..4];

SELF : = |;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

275

ECL Language Reference
Built-in Functions and Actions

END;
AgedRecs : = PRQIECT(person, Cal cAges(LEFT));

//C:QJN‘I’ER exan-pl e R R R O R O R R R
SequencedAges : = RECORD

Ages;
| NTECER8 Sequence : = 0;
END;
SequencedAges AddSequence(Ages |, INTEGER c) :=
TRANSFORM
SELF. Sequence : = c;
SELF : = 1|;
END;

SequencedAgedRecs : = PRQJECT(AgedRecs,
AddSequence(LEFT, COUNTER)) ;

//form tV\D exanpl e R o R S R R R R R S

NewRec : = RECORD
STRI NGL5 fi r st nane;
STRI N&5 | ast nane;
STRI NGL5 mi ddl enane;
END;
NewRecs : = PRQIECT(Peopl e, NewRec) ;
// equi val ent to:
/I NewRecs : = PROJECT(Peopl e, TRANSFORM NewRec, SELF : =
LEFT));

//LG:AL exan«pl e kkhkkhkkhkhkhkkhkkhkkhhhkhkhkkhhhkhkhhkhdhhhkhkdhhhhddkxx
M/Rec : = RECORD

STRI NGL Val uel;

STRI NGL Val uez2;
END;

SoneFile := DATASET([{'C ,'G},{'C,'C}
{'B,'G},{"A,'B}
MyQut Rec : = RECORD
SoneFi | e. Val uel;
SoneFi | e. Val ue2;
STRI NG6 Cat Val ues;
END;

Di stFile := D STRI BUTE(SoneFi | e, HASH32(Val uel, Val ue2));

MyCQut Rec Cat Then(SoneFile L, |INTEGER C) := TRANSFORM

SELF. Cat Values := L.Valuel + L.Value2 + '-' +
(Std. System Thorlib. Node()+1) + '-' + (STRING G
SELF := L;
END;

Cat Recs : = PROJECT(Di st Fil e, Cat Then(LEFT, COUNTER) , LOCAL) ;
OUTPUT(Cat Recs) ;

/* CatRecs result set is:
Rec# Val uel Val ue2 Cat Val ues

1 C C CC1-1
2 B G BG 2-1
3 A X AX-2-2
4 A B AB-3-1
5 C G CG 3-2
*

~

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
276

ECL Language Reference
Built-in Functions and Actions

See Also: TRANSFORM Structure, RECORD Structure, ROW, DATASET

PROJECT - Module

PROJECT (module, interface [, OPT | attributelist])

module The MODULE structure containing the attribute definitions whose values to pass as the interface.

interface The INTERFACE structure to pass.

OPT Optional. Suppressesthe error message that is generated when an attribute defined in theinterface
isnot also defined in the module.

attributelist Optional. A comma-delimited list of the specific attributes in the module to supply to the inter-
face. This allows a specified list of attributes to be implemented, which is useful if you want
closer contral, or if the types of the parameters don't match.

Return: PROJECT returns aMODULE compatible with the interface.

The PROJECT function passes a modul€e's attributes in the form of the interface to a function defined to accept
parameters structured like the specified interface. Thisallows you to create amodule for one interface with the values
being provided by another interface. The attributesin the module must be compatible with the attributesin the interface
(same type and same parameters, if any take parameters).

Example:
PRQIECT(x, y)
/*is broadly equivalent to
MODULE(y)
SoneAttributelnY := x.sonmeAttributel nY
[/... repeated for all attributes inY ...
END;

*/

myServi ce(nmylnterface myArgs) := FUNCTI ON
chi |l dArgs : = MODULE(PROJECT(nyArgs, | face, i sDead, di d, ssn, addr ess))
BOOLEAN i sFCRA : = nyArgs.i SFCRA OR nyArgs. f akeFCRA
END;
RETURN chi | dServi ce(chi | dArgs);
END;

/1 you could directly pass PROIECT as a nodul e paraneter
/] to an attri bute:
nmyServi ce(nylnterface nyArgs) := chil dServi ce(PROIECT(nyArgs, childlnterface));

See Also: MODULE Structure, INTERFACE Structure, FUNCTION Structure, STORED

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
277

ECL Language Reference
Built-in Functions and Actions

PULL

PUL L (dataset)
dataset The set of recordsto fully load into the Data Refinery.
Return: PULL returns arecordset.

The PULL function is a meta-operation intended only to hint that the dataset should be fully loaded into the Data
Refinery before continuing the operation in Data Refinery.

Example:

MySet := PULL(Person);
[/l oad Person into Data Refinery before continuing

See Also:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
278

ECL Language Reference
Built-in Functions and Actions

RANDOM

RANDOM)()

‘ Return: | RANDOM returns asingle value.

The RANDOM function returns a pseudo-random positive integer value.

Example:

MySet : = DI STRI BUTE(Per son, RANDOM)); //random di stri bution

See Also: DISTRIBUTE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
279

ECL Language Reference
Built-in Functions and Actions

RANGE

RANGE(setofdatasets, setofintegers)

setofdatasets A set of datasets.
setofintegers A set of integers.
Return: RANGE returns a set of datasets.

The RANGE function extracts a subset of the setofdatasets as a SET. The setofintegers specifies which elements of
the setofdatasets comprise the resulting SET of datasets. Thisistypically used in the GRAPH function.

Example:

r := {STRINGL Letter};

dsl := DATASET([{'A},{'B},{'C},{'D},{"E}],r);
ds2 := DATASET([{'F},{"G},{"H}, {"1'},{"J3"}].r);
ds3 := DATASET([{' K}, {"L'},{' M}, {'N},{"O}],r);
ds4 := DATASET([{' P}, {'"Q}, {'R} {'S}, {'T}],r);
ds5 := DATASET([{' U}, {'V}, {" W}, {'X},{"Y}],r);

SetDS : = [ds1, ds2, ds3, ds4, ds5] ;
out DS : = RANGE(setDS,[1, 3]);
/luse only 1st and 3rd el enents

QUTPUT(outDS[1]); //results in A B,C D E
OUTPUT(outDS[2]); //results in K, L,MN, O

See Also: GRAPH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
280

ECL Language Reference
Built-in Functions and Actions

RANK

RANK (position, set [, DESCEND])

position An integer indicating the element in the sorted set to return.
set The set of values.

DESCEND Optional. Indicates descending order sort.

Return: RANK returnsasingle value.

The RANK function sortsthe set in ascending (or descending, if DESCEND is present) order, then returns the ordinal
position (its index value) of the unsorted set's position element after the set has been sorted. This is the opposite of
RANKED.

Example:

Ranki ng : = RANK(1, [20, 30, 10, 40]);

/l returns 2 - 1st elenent (20) in unsorted set is
/1 2nd el ement after sorting to [10, 20, 30, 40]

Ranki ng : = RANK(1, [20, 30, 10, 40] , DESCEND) ;

/] returns 3 - 1st elenment (20) in unsorted set is
/1 3rd elenment after sorting to [40, 30, 20, 10]

See Also: RANKED, SORT, SORTED, Sets and Filters

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
281

ECL Language Reference
Built-in Functions and Actions

RANKED

RANK ED(position, set [,DESCEND])

position An integer indicating the element in the unsorted set to return.
set The set of values.

DESCEND Optional. Indicates descending order sort.

Return: RANKED returns asingle value.

The RANKED function sorts the set in ascending (or descending, if DESCEND is present) order, then returns the
ordinal position (itsindex value) of the sorted set's position element in the unsorted set. Thisisthe opposite of RANK.

Example:

Ranki ng : = RANKED(1, [20, 30, 10, 40]) ;
I/l returns 3 - 1st elenent (10) in sorted set [10, 20, 30, 40]
/1 was 3rd el enent in unsorted set

Ranki ng : = RANKED(1, [20, 30, 10, 40] , DESCEND) ;

/Il returns 4 - 1st elenent (40) in sorted set [40, 30, 20, 10]
/1 was 4th el enent in unsorted set

See Also: RANK, SORT, SORTED, Sets and Filters

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
282

ECL Language Reference
Built-in Functions and Actions

REALFORMAT

REALFORMAT (expression, width, decimals)

expression The expression that specifies the REAL value to format.
width The size of string in which to right-justify the value.
decimals An integer specifying the number of decimal places.
Return: REALFORMAT returnsasingle value.

The REALFORMAT function returns the value of the expression formatted as a right-justified string of width char-
acters with the number of decimals specifed.

Example:
REAL8 Fl oat := 1000. 0063;

STRI NGL2 Fl oat Str12 : = REALFORMAT(fI oat, 12, 6);
OQUTPUT(Fl oat Str12); //results in ' 1000. 006300

See Also: INTFORMAT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
283

ECL Language Reference
Built-in Functions and Actions

REGEXFIND

REGEXFIND(regex, text [, flag] [, NOCASE])

regex A standard Perl regular expression.

text Thetext to parse.

flag Optional. Specifies the text to return. If omitted, REGEXFIND returns TRUE or FALSE asto
whether the regex was found within the text. If 0, the portion of the text the regex was matched
isreturned. If >= 1, the text matched by the nth group in the regex is returned.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXFIND returnsasingle value.

The REGEXFIND function uses the regex to parse through the text and find matches. The regex must be a standard
Perl regular expression. We use third-party libraries to support this, so for non-unicode text, see boost docs at http://
www.boost.org/doc/libs/1 39 0/libs/regex/doc/htmi/index.html. For unicodetext, seethe |CU docs, the sections* Reg-

ular Expression Metacharacters' and ‘ Regular Expression Operators' at http://userguide.icu-project.org/strings/regexp
and the links from there, in particular the section ‘ UnicodeSet patterns at http://userguide.icu-project.org/strings/uni-
codeset. We use version 2.6 which should support al listed features.

Example:

nanesRecord : = RECORD
STRI N&0 sur nane;
STRI NGLO f or enane;
STRI NGLO user dat e;

END;
nanesThbl

.= DATASET([{'Halligan','Kevin',"'10/14/1998'},

{"Halligan','Liz',"'12/01/1998"},
{"Halligan','Jason','01/01/2000'},

{' MacPherson', "' Jimy',"'03/14/2003"}],
nanesRecord);

searchpattern := "~(.*)/(.*)/(.*)$;

search : =

filtered

' 10/ 14/ 1998' ;

;= namesTbl (REGEXFI ND(' ~(Mc| Mac)', surnane));

QUTPUT(filtered); //1 record -- MacPherson

QUTPUT(nanesTbl , { (st ri ng30) REGEXFI ND(sear chpat t ern, userdat e, 0),
(string30) REGEXFI ND(sear chpattern, userdate, 1),

(string30) REGEXFI ND(sear chpat t er n, user dat e, 2),

(string30) REGEXFI ND(sear chpattern, userdate, 3)});

REGEXFI ND(sear chpattern, search, 0); //returns

' 10/ 14/ 1998’
REGEXFI ND(sear chpattern, search, 1); //returns '10'
REGEXFI ND(sear chpattern, search, 2); //returns '14'
REGEXFI ND(sear chpattern, search, 3); //returns '1998'

See Also: PARSE, REGEXREPLACE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
284

ECL Language Reference
Built-in Functions and Actions

REGEXREPLACE

REGEXREPL ACE(regex, text, replacement [, NOCASE])

regex A standard Perl regular expression.

text The text to parse.

replacement The replacement text. In this string, $0 refers to the substring that matched the regex pattern, and
$1, $2, $3... match the first, second, third... groupsin the pattern.

NOCASE Optional. Specifies a case insensitive search.

Return: REGEXREPLACE returns asingle value.

The REGEXREPL ACE function usesthe regex to parse through the text and find matches, then replace them with the
replacement string. The regex must be a standard Perl regular expression. We use third-party libraries to support this,
so for non-unicode text, see boost docs at http://www.boost.org/doc/libs/1 39 0/libs/regex/doc/html/index.html. For

unicodetext,

seethel CU docs, the sections* Regular Expression Metacharacters and ‘ Regular Expression Operators' at

http://userguide.icu-project.org/strings/regexp and the links from there, in particular the section * UnicodeSet patterns

at http://userguide.icu-project.org/strings/unicodeset. We use version 2.6 which should support all listed features.

Example:

REGEXREPLACE(' (.a)t', 'the cat sat on the mat', '$1p');
/1 ASCl |

REGEXREPLACE(uU' (.a)t', u'the cat sat on the mat', u'$1p');
/1 UNI CODE

/1 both of these exanples return 'the cap sap on the nap'

inrec :
i nset

{STRI NG10 str, UNI CODE10 ustr};
DATASET([{' She', u'Eins'}, {'Sells', u' Zwei'},

{"Sea', u'Drei'}, {"Shells', u' Vier'}], inrec);

outrec := {STRINGLO orig, STRINGLO w thcase, STRI NGLO
wocase,

UNI CODE10 uori g, UNI CODE10 uwi t hcase, UNI CODE10 uwocase};

outrec trans(inrec |) := TRANSFORM

SELF.orig :=1.str;

SELF. wi t hcase : = RECGEXREPLACE('s', |.str, '"f');

SELF. wocase := REGEXREPLACE('s', |.str, 'f', NOCASE);

SELF. uorig := |.ustr;

SELF. uwi t hcase : = REGEXREPLACE(u'e', |.ustr, u'\uOOEB);

SELF. uwocase : = REGEXREPLACE(u'e', |.ustr, u'\uOOEB ,
NOCASE) ;

END;

OUTPUT(PROJECT(i nset, trans(LEFT)));

/* the result set is:
orig withcase wocase uorig uwi thcase uwocase
She She fhe Eins Eins \xc3\xabins

Sells Sellf

fellf Zwei 2Zw xc3\xabi 2Zw xc3\ xabi

Sea Sea fea Drei Dr\xc3\xabi Dr\xc3\xabi

Shel | s Shel

If fhellf Vier Vi\xc3\xabr Vi\xc3\xabr */

See Also: PARSE, REGEXFIND

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
285

ECL Language Reference
Built-in Functions and Actions

REGROUP

REGROUP(recsst,...,recset)

recset A grouped set of records. Each recset must be of exactly the same type and must contain the same
number of groups.
Return: REGROUP returns arecord set.

The REGROUP function combines the grouped recsets into a single grouped record set. This is accomplished by
combining each group in the first recset with the groups in the same ordinal position within each subsequent recset.

Example:
inrec : = {UNSI GNED6 di d};

outrec : = RECORD(i nrec)
STRI N&0 nane;
UNSI GNED scor e;

END;

ds := DATASET([1,2,3,4,5,6], inrec);
dsg := GROUP(ds, ROW;

il := DATASET([{1, 'Kevin', 10},
{2, 'Richard', 5},
{5, 'Nigel', 2},
{0, '', 0}], outrec);
i2 := DATASET([{1, 'Kevin Halligan', 12},
{2, 'Ricardo Chapman', 15},
{3, 'Jake Smith', 20},
{5, 'David Hicks', 100},
{0, '*, 0}], outrec);
i3 := DATASET([{1, 'Halligan', 8},
{2, 'Ricardo', 8},
{6, 'Pete', 4},
{6, 'Peter', 8},
{6, 'Petie', 1},
{0, '*, 0}], outrec);
j1 := JAONdsg, il, LEFT.did = RIGHT.did, LEFT OQUTER, MANY LOOKUP);
j2 := JON(dsg, i2, LEFT.did = RIGHT.did, LEFT QUTER, MANY LOOKUP);
j3 := JONdsg, i3, LEFT.did = RIGHT.did, LEFT OQUTER, MANY LOOKUP);
conbined : = REGROUP(j 1, j2, j3);
QUTPUT(j 1) ;
QUTPUT(j 2) ;
QUTPUT(j 3) ;

QUTPUT(conbi ned) ;

See Also: GROUP, COMBINE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
286

ECL Language Reference
Built-in Functions and Actions

REJECTED

REJECTED(condition,...,condition)

condition A conditional expression to evaluate.
Return: REJECTED returns asingle value.

The REJECTED function evaluates which of the list of conditions returned false and returns its ordinal position in
thelist of conditions. Zero (0) returnsif none return false. Thisisthe opposite of the WHICH function.

Example:
Rej ects : = REJECTED(Person.first_nane <> 'Fred',

Person. first_nane <> 'Sue');
/'l Rejects receives 0 for everyone except those nanmed Fred or Sue

See Also: WHICH, MAP, CHOOSE, IF, CASE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
287

ECL Language Reference
Built-in Functions and Actions

ROLLUP

ROL L UP(recordset, condition, transform[, LOCAL])

ROL L UP(recordset, transform, fieldlist [, LOCAL])

ROL L UP(recordset, GROUP, transform)

recordset The set of records to process, typically sorted in the same order that the condition or fieldlist
will test.

condition An expression that defines "duplicate” records. The keywords LEFT and RIGHT may be used as
dataset qualifiersfor fieldsin the recordset.

transform The TRANSFORM function to call for each pair of duplicate records found.

LOCAL Optional. Specifies the operation is performed on each node independently, without requiring
interaction with all other nodes to acquire data; the operation maintains the distribution of any
previous DISTRIBUTE.

fieldlist A comma-delimited list of expressions or fields in the recordset that defines "duplicate” records.
You may use the keywords WHOLE RECORD (or just RECORD) to indicate al fields in that
structure, and/or you may use the keyword EXCEPT to list fields to exclude.

GROUP Specifies the recordset is GROUPed and the ROLLUP operation will produce a single output
record for each group. If thisis not the case, an error occurs.

Return: ROLLUP returns arecord set.

The ROLLUP function is similar to the DEDUP function with the addition of a call to the transform function to
process each duplicate record pair. Thisallowsyou to retrieve valuable information from the "duplicate" record before
it'sthrown away. Depending on how you code the transform function, ROLLUP can keep the LEFT or RIGHT record,
or any mixture of datafrom both.

Thefirst form of ROLLUP tests a condition using values from the records that would be passed as LEFT and RIGHT
to the transform. The records are combined if the condition is true. The second form of ROLLUP compares values
from adjacent records in the input recordset, and combines them if they are the same. These two forms will behave
differently if the transform modifies some of the fields used in the matching condition (see example below).

For the first pair of candidate records, the LEFT record passed to the transform is the first record of the pair, and the
RIGHT record is the second. For subsequent matches of the same values, the LEFT record passed is the result record
from the previous call to the transform and the RIGHT record is the next record in the recordset, as in this example:

ds := DATASET([{1, 10}, {1, 20}, {1, 30}, {3, 40}, {4, 50}],

d t(ds L,
SELF.r :
SELF.n :

END;

ROLLUP(ds,

3 60
3 40
4 50
*
ROLLUP(ds,

2 30
1 30
3 40

ds R

{UNSI GNED r, UNSI GNED n});
. = TRANSFORM

L.r + Rr;

L.n + Rn;

t (LEFT, RIGHT), r);
/* results in:

LEFT.r = RIGHT.r,t(LEFT, RIGHT));
/* results in:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL

Language Reference content licensed under Creative Commons public license.

288

ECL Language Reference
Built-in Functions and Actions

4 50
the third record is not conbi ned because the transform nodified the val ue.
*/

TRANSFORM Function Requirements - ROLLUP

For forms 1 and 2 of ROLLUP, the transform function must take at least two parameters: aLEFT record and aRIGHT
record, which must both be in the same format as the recordset. The format of the resulting record set must also be
the same as the inputs.

For form 3 of ROLLUP, the transform function must take at least two parameters: a LEFT record which must be in
the same format as the recordset, and a ROWS(LEFT) whose format must be a DATASET(RECORDOF(recordset))
parameter. The format of the resulting record set may be different from the inputs.

ROLLUP Form 1

Form 1 processesthrough all recordsin the recordset performing the transformfunction only on those pairs of adjacent
records where the match condition is met (indicating duplicate records) and passing through all other records directly
to the outpuit.

Example:

/la crosstab table of |ast nanes and the nunber of tines they occur
M/Rec : = RECORD

Per son. per _I| ast _nane;

| NTEGER4 PersonCount := 1;
END;
LnanmeTabl e : = TABLE(Person, MyRec); //create dataset to work with
SortedTabl e : = SORT(LnaneTabl e, per _| as_nane); //sort it first

MyRec Xfornm(M/Rec L, M/Rec R) := TRANSFORM
SELF. Per sonCount := L. PersonCount + 1;
SELF := L; //keeping the L rec nakes it KEEP(1), LEFT
/Il SELF := R; //keeping the Rrec woul d nake it KEEP(1), Rl GHT
END;
XtabQut := ROLLUP(SortedTabl e,
LEFT. per _| ast _nanme=RI GHT. per _| ast _nane,
Xf or n{ LEFT, RI GHT)) ;

ROLLUP Form 2

Form 2 processesthrough all recordsin the recordset performing the transformfunction only on those pairs of adjacent
records where all the expressions in the fieldlist match (indicating duplicate records) and passing through all other
recordsto the output. Thisform allowsyou to use the samekind of EXCEPT field exclusion logic availableto DEDUP.

Example:

rec := {STRINGL strl1, STRINGL str2, STRINGL str3};
ds := DATASET([{'a', 'b', 'c'},{"a, 'b", 'c'},

{*+a', 'c', 'c'},{'a, 'c', 'd}], rec);
rec tr(rec L, rec R := TRANSFORM
SELF : = L;
END;

Cat (STRINGL L, STRINGL R) := L + R

rl := ROLLUP(ds, tr(LEFT, RIGHT), strl, str2);
//equivalent to LEFT.strl = RICGHT.str1l AND
[/ LEFT.str2 = RIGHT.str2

r2 := ROLLUP(ds, tr(LEFT, RIGHT), WHOLE RECORD, EXCEPT str3);
[/ equivalent to LEFT.strl1 = RIGHT.str1 AND

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
289

ECL Language Reference
Built-in Functions and Actions

[/ LEFT.str2 = RIGHT.str2
r3 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD, EXCEPT str3);
//equivalent to LEFT.strl = RICGHT.str1l AND
[/ LEFT.str2 = RIGHT.str2
r4 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD, EXCEPT str2,str3);
[/ equivalent to LEFT.strl1 = RIGHT.str1
r5 := ROLLUP(ds, tr(LEFT, RIGHT), RECORD);
[/ equivalent to LEFT.strl1 = RIGHT.str1l AND
[/ LEFT.str2 RI GHT. str2 AND
/1 LEFT.str3 RI GHT. st r3
r6 := ROLLUP(ds, tr(LEFT, RICGHT), strl + str2);
[/ equival ent to LEFT.str1+LEFT.str2 = RI GHT. str1+Rl GHT. str2
r7 := ROLLUP(ds, tr(LEFT, RICGHT), Cat(strl,str2));
[/ equival ent to Cat (LEFT.strl, LEFT.str2) =
/] Cat(RIGHT.str1, RIGHT. str2)

ROLLUP Form 3

Form 3 is a special form of ROLLUP where the second parameter passed to the transformis a GROUP and the first
parameter is the first record in that GROUP. It processes through all groups in the recordset, producing one result
record for each group. Aggregate functions can be used inside the transform (such as TOPN or CHOOSEN) on the
second parameter. The result record set is not grouped. Thisformisimplicitly LOCAL in nature, due to the grouping.

Example:

inrec : = RECORD
UNSI GNED6 di d;
END;

outrec := RECORD(i nrec)
STRI N&0 nane;
UNSI GNED scor e;

END;

nameRec : = RECORD
STRI N&0 nane;
END;

final Rec : = RECORD(i nrec)
DATASET(naneRec) nanes;
STRI N&0 secondNane;
END;

ds :

DATASET([1, 2,3,4,5,6], inrec);

dsg := GROUP(ds, ROW;

il := DATASET([{1, 'Kevin', 10},
{2, 'Richard', 5},
{5, Nigel', 2},
{0, "', 0}], outrec);

i2 := DATASET([{1, 'Kevin Halligan', 12},
{2, 'Richard Charles', 15},
{3, 'Blake Snmith', 20},
{5,' Nigel Hicks', 100},
{0, "', 0}], outrec);

i3 := DATASET([{1, 'Halligan', 8},

{2, 'Richard', 8},
{6, 'Pete', 4},
{6, 'Peter', 8},
{6, 'Petie', 1},

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
290

ECL Language Reference
Built-in Functions and Actions

{0, '', 0}], outrec);
j1 :=JAN dsg,
i1,
LEFT.did = RIGHT. did,
TRANSFORM out rec, SELF := LEFT; SELF :
LEFT QUTER, MANY LOOKUP);
JO N(dsg,
i2,
LEFT. did = RIGHT. did,
TRANSFORM outrec, SELF := LEFT; SELF :
LEFT OUTER,
MANY LOOKUP) ;

Rl GHT),

j2:

RI GHT),

j3 := JAN dsg,
i3,
LEFT.did = RI GHT. di d,
TRANSFORM out rec, SELF := LEFT; SELF :
LEFT QUTER,
MANY LOCKUP) ;

Rl GHT)

conbined : = REGROUP(j 1, j2, j3);

fi nal Rec doRol | up(out Rec |, DATASET(outRec) all Rows) :=
TRANSFORM
SELF.did :=1.did;
SELF. nanes : = PRQJIECT(al | Rows(score != 0),
TRANSFORM nanmeRec, SELF := LEFT));
SELF. secondNane : = al | Rows(score != 0)[2]. naneg;
END;

results := ROLLUP(conbi ned, GROUP, doRol | up(LEFT, RON5(LEFT)));

See Also: TRANSFORM Structure, RECORD Structure, DEDUP, EXCEPT, GROUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
291

ECL Language Reference
Built-in Functions and Actions

ROUND

ROUND(realvalue], decimals])

realvalue The floating-point value to round.

decimals Optional. An integer specifying the number of decimal places to
round to. If omitted, the default is zero (integer result).

Return: ROUND returns a single numeric value.

The ROUND function returns the rounded realvalue by using standard arithmetic rounding (decimal portions less
than .5 round down and decimal portions greater than or equal to .5 round up).

Example:

SoneReal Val uel : = 3.14159;
| NTEGER4 MyVal 1 : = ROUND(SoneReal Val uel); /1 MyVall is 3
I NTEGER4 MyVal 2 : = ROUND(SoneReal Val uel, 2); // MVal2 is 3.14

SoneReal Val ue2 : = 3.5;
| NTEGER4 MyVal 3 : = ROUND(SoneReal Val ue2); // M/Val is 4

SoneReal Val ue3 := -1.3;
| NTEGER4 MyVal 4 : = ROUND(SoneReal Val ue3d); // MyVal is -1

SoneReal Val ue4 : = -1.8;
| NTEGER4 MyVal 5 : = ROUND(SoneReal Val ued); // MyVal is -2

See Also: ROUNDUP, TRUNCATE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
292

ECL Language Reference
Built-in Functions and Actions

ROUNDUP

ROUNDUP(realvalue)
realvalue The floating-point value to round.
Return: ROUNDUP returns a single integer value.

The ROUNDUP function returns the rounded integer of the realvalue by rounding any decimal portion to the next
larger integer value, regardless of sign.

Example:

SoneReal Val ue := 3. 14159;

| NTEGER4 MyVal := ROUNDUP(SoneReal Value); // M/Val is 4
SoneReal Val ue := -3.9;

I NTEGER4 MyVal : = ROUNDUP(SoneReal Value); // MyVal is -4

See Also: ROUND, TRUNCATE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
293

ECL Language Reference
Built-in Functions and Actions

ROW

ROW({ fields} , recstruct)
ROW(row, resultrec)

ROW([row,] transform)

fields A comma-delimited list of data values for each field in the recstruct, contained in curly braces
({}).

recstruct The name of the RECORD structure defining the field layout.

row A single row of data. This may be an existing record, or formatted in-line data values like the

fields parameter description above, or an empty set ([]) to add a cleared record in the format of
the resultrec. If omitted, the record is produced by the transform function.

resultrec A RECORD structure that defines how to construct the row of data, similar to the type used by
TABLE.

transform A TRANSFORM function that defines how to construct the row of data.

Return: ROW returns a single record.

The ROW function creates a single data record and is valid for use in any expression where asingle record is valid.

ROW Form 1

The first form constructs a record from the in-line data in the fields, structured as defined by the recstruct. Thisis
typically used within a TRANSFORM structure as the expression defining the output for a child dataset field.

Example:

AkaRec : = {STRI NGO forenane, STRI N&0 sur nane};
out put Rec : = RECORD

UNSI GNED i d;

DATASET(AkaRec) Ki ds;
END;
i nput Rec :
i nPeopl e :

{UNSI GNED i d, STRI NG20 f or enane, STRI N&0 sur nane};
DATASET([{1, ' Kevin','Halligan'},{1, ' Kevin',6 'Hall"},

{2,"Eliza","Hall"'},{2,"'Beth',"' Took'}], inputRec);
out put Rec nakeFat Recor d(i nput Rec L) := TRANSFORM

SELF.id :=1.id;
SELF. ki ds := DATASET([{ L.forenane, L.surnane }], AkaRec);
END;

fatln : = PRQJECT(i nPeopl e, nakeFat Recor d(LEFT));
out put Rec makeChi | dren(out put Rec L, outputRec R) := TRANSFORM
SELF.id := L.id;
SELF. kids := L.kids + RON{R kids[1].forenane, R ki ds[1].surnane}, AkaRec) ;
END;
r := ROLLUP(fatln, id, nmakeChildren(LEFT, RIGHT));

ROW Form 2

The second form constructs a record from the row passed to it using the resultrec the same way the TABLE function
operates. This is typically used within a TRANSFORM structure as the expression defining the output for a child
dataset field.

Example:

AkaRec : = {STRI NG20 forenane, STRI N&0 sur nane};

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
294

ECL Language Reference
Built-in Functions and Actions

out put Rec : = RECORD

UNSI GNED i d;

DATASET(AkaRec) chil dren;

END;

input Rec : = {UNSI GNED i d, STRI N&0 f or enanme, STRI N&20 sur nane};

i nPeopl e : = DATASET([{1, ' Kevin','Halligan'},{1,'Kevin', K6 'Hall"'},

{1, Gawain',"'"},{2,'Liz',"Hall"},
{2,"Eliza","Hall"'},{2,"'Beth',"' Took'}], inputRec);
out put Rec nakeFat Recor d(i nput Rec L) : = TRANSFORM
SELF.id :=1.id;
SELF. children : = RONL, AkaRec); //using Form 2 here
END;
fatln : = PRQJECT(i nPeopl e, nakeFat Recor d(LEFT));
out put Rec makeChi | dren(out put Rec L, outputRec R) := TRANSFORM
SELF.id := L.id;
SELF. children := L.children +
RON{R chil dren[1].forenane, R children[1]. surnane}, AkaRec);

END,
r =

ROW Form 3

The third form usesa TRANSFORM function to produce its single record result. The transform function must take at
least one parameter: a LEFT record, which must be in the same format as the input record. The format of the resulting
record may be different from the input.

ROLLUP(fatln, id, makeChildren(LEFT, RIGHT));

Example:

NaneRec : = RECORD
STRINGE title;
STRI N&0 f nane;
STRI N&0 mmane;
STRI N&0 | nane;
STRI NG5 nane_suf fi x;
STRI NG3 name_scor e;
END;

M/Record : = RECORD
UNSI GNED i d;
STRI NG uncl eanedNane;
NameRec Nane;

END;

x : = DATASET(' RTTEST: : Rowruncti onData', MyRecord, THOR);

STRI NG73 C eanPer son73(STRI NG i nput Nane) : = FUNCTI ON
suffix:=[* o ," 1'," 2'," 3," 4," 5 ,"6'," 7, 8, 9,
© 3, JR,' S, SRI:
InWords : = Std. Str. Cl eanSpaces(i nput Nane) ;

HasSuffix := | nWrds[LENGTH(TRIM | nWords))-1 ..] IN suffix;

Wor dCount : = LENGTH(TRI M | nWr ds, LEFT, RI GHT)) - LENGTH(TRI M | nWr ds, ALL)) +1;
HasM ddl e : = WrdCount = 5 OR (WerOount = 4 AND NOT HasSuffix) ;

Spacel : = Std Str. Fi nd(I nWr ds, 1)

Space2 := Std. Str. Fi nd(I nWrds, "' ',2);

Space3d := Std. Str. Find(lnWrds,"' ', 3);

Space4 := Std. Str.Find(InWrds,' ',4);

STRINGS title := InWrds[1..Spacel-1];

STRI N&0 f nane :
STRI N&20 mane :
STRI N&0 | nane :

I nWr ds[Spacel+l. . Space2-1];
| F(HasM ddl e, | nWr ds[Space2+1. . Space3-1],"'"');
MAP(HasM ddl e AND NOT HasSuffix =>

| N\Wor ds[Space3+1. .1,

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
295

ECL Language Reference
Built-in Functions and Actions

HasM ddl e AND HasSuffix =>
| N\Wor ds[Space3+1. . Space4-1],

NOT HasM ddl e AND NOT HasSuffix =>
| N\Wor ds[Space2+1. .1,

NOT HasM ddl e AND HasSuffix =>
| N\Wor ds[Space2+1. . Space3-1],

)

STRING nane_suffix := | F(HasSuf fi x, | nWor ds[LENGTH(TRI M | nWords))-1 ..],"'");
STRI NG3 nanme_score := ""';
RETURN title + fname + mmane + | nane + nane_suffix + nane_score€;

END,;

/ | Exanpl

NanmeRec
cl eane
SELF. t
SELF. f

SELF. mane :

SELF. |

SELF. n

SELF. n
END;

nmyRecord

el - atransformto create a row from an uncl eaned nane
creat eRow(string i nput Name) : = TRANSFORM

dText := C eanPerson73(i nput Nane) ;

itle := cleanedText[1..5];

nane : = cl eanedText[6..25];

cl eanedText [26. . 45] ;

nane : = cl eanedText[46..65];

ame_suffix := cl eanedText[66..70];

ane_score : = cl eanedText[71..73];

t(nyRecord L) := TRANSFORM

SELF. Nane : = ROWN creat eRow(L. uncl eanedNane)) ;

SELF
END,;

=L

y := PRQIECT(x, t(LEFT));

QUTPUT(y
/ | Exanpl

NanmeRec
nmyRecord

)
e 2 - an attribute using that transformto generate the row

cl eanedNanme(STRI NG i nput Nane) : = ROWN creat eRow(i nput Nane)) ;
t2(nmyRecord L) := TRANSFORM

SELF. Nane : = cl eanedNane(L. uncl eanedNane) ;

SELF
END,;

=L

y2 := PRQAJECT(x, t2(LEFT));

QUTPUT(y

/ | Exanpl
|/ defin
NanmeRec

NanmeRe
clea
SELF
SELF

SELF.

SELF

SELF

SELF
END;

2);

e 3 = Encapsul ate the transforminside the attribute by
ing a FUNCTI ON structure.
cl eanedNanme2(STRI NG i nput Nane) : = FUNCTI ON

c creat eRow : = TRANSFORM

nedText := O eanPerson73(i nput Nane) ;
.title := cleanedText[1..5];

.fname : = cl eanedText[6..25];

mane : = cl eanedText[26. . 45];
.Iname : = cl eanedText [46. . 65];
.nanme_suffix := cl eanedText[66. . 70];
.name_score : = cleanedText[71..73];

RETURN ROWN createRow); //omitted row paraneter

END;

nmyRecord

t3(nyRecord L) := TRANSFORM

SELF. Nane : = cl eanedNanme2(L. uncl eanedNane) ;

SELF
END,;

=L

y3 := PRQJECT(X, t3(LEFT));

QUTPUT(y3) ;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
296

ECL Language Reference
Built-in Functions and Actions

See Also: TRANSFORM Structure, DATASET, RECORD Structure, FUNCTION Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
297

ECL Language Reference
Built-in Functions and Actions

ROWDIFF

ROWDI FF(left, right [, COUNT])

left The left record, or anested record structure.

right The right record, or a nested record structure.

COUNT Optional. Specifies returning a comma delimited set of zeros and ones (0,1) indicating which
fields matched (0) and which did not (1). If omitted, acommadelimited set of the non-matching
field names.

Return: ROWDIFF returns asingle value.

The ROWDIFF function is valid for use only within a TRANSFORM structure for a JOIN operation and is used
as the expression defining the output for a string field. Fields are matched by name and only like-named fields are
included in the output.

Example:

Ful | Name : = RECORD

STRI NG30 f or enane;

STRI N&0 sur nane;

| FBLOCK(SELF. sur nane <> ' W ndsor')

STRI N&0 mi ddl e;

END;
END;
inlrec := {UNSI GNED1 i d, Ful | Nane name, UNSI GNED1 age, STRINGS title};
in2rec := {UNSI GNED1 i d, Ful | Nanme nane, REAL4 age, BOOLEAN dead};

inl := DATASET([{1,'Kevin','Halligan','',33,'M"'},
{2,'Liz',"Halligan',"'"',33,'Dr'},
{3,"'Elizabeth','Wndsor', 99,' Queen'}], inlrec);

in2 := DATASET([{1,'Kevin','Halligan','",33,false},
{2,'Liz"',"'","'Jean', 33, fal se},

{3,"'Elizabeth',' Wndsor',99.1,fal se}], in2rec);

outrec := RECORD

UNSI GNED1 i d;

STRI NG35 di ff1;

STRI NG35 di f f2;

STRI NG35 di ff 3;

STRI NG35 di f f 4;
END;
outrec t1(inl L, in2 R := TRANSFORM

SELF.id := L.id;

SELF. diff1 : = ROWDI FF(L, R);

SELF. di ff2 : = ROADI FF(L. name, R nane);

SELF. di ff3 := ROWDI FF(L, R, COUNT);

SELF. di ff4 : = ROADI FF(L. name, R nane, COUNT);
END;

OUTPUT(JO N(i nl1, in2, LEFT.id = RIGHT.id, t1(LEFT, RIGHT)));
// The result set fromthis code is:

/lid diffl diff2 diff3 diffa
/11 0,0,0,0,0 0,0,0
//2 nane. surnane, nane. m ddl e surnane, mddle 0,0,1,1,0 O0,1,1
/13 age 0,0,0,0,1 0,0,0

See Also; TRANSFORM Structure, JOIN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
298

ECL Language Reference
Built-in Functions and Actions

SAMPLE

SAMPLE(recordset, interval [, which])

recordset The set of recordsto sample. This may be the name of adataset or arecord set derived from some
filter condition, or any expression that results in a derived record set.

interval Theinterval between recordsto return.

which Optional. An integer specifying the ordinal number of the sample set to return. Thisis used to
obtain multiple non-overlapping samples from the same recordset.

Return: SAMPLE returns a set of records.

The SAMPLE function returns a sample set of records from the nominated recor dset.

Example:

MySanmpl e : = SAMPLE(Person, 10,1) // get every 10th record

SonmeFile := DATASET([{"A'},{'B},{'C},{'D}, {'E},
{FYL{GHL{HE}{1 {3}
"k {Lrh{mMpL{"N}{"O},
{PY{QN{R}{'S}H{ T}
U v WEXE Y},
{STRINGL Letter});

Setl := SAWPLE(SoneFile,5,1); // returns A, F, K P, U

See Also;: CHOOSEN, ENTH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
299

ECL Language Reference
Built-in Functions and Actions

SEQUENTIAL

[attributename :=] SEQUENTIAL (actionlist)

attributename Optional. The action name, which turns the action into an attribute definition, therefore not ex-
ecuted until the attributename is used as an action.

actionlist A comma-delimited list of the actionsto executein order. These may be ECL actions or external
actions.

The SEQUENTIAL action executestheitemsin the actionlist in the order in which they appear in the actionlist. This
is useful when a subsequent action requires the output of a precedent action. By definition, PERSIST on an attribute
means the attribute is evaluated outside of any given evaluation order. Therefore, SEQUENTIAL has no effect on
PERSISTed attributes.

Example:

Actl : =
OUTPUT(A_Peopl e, Qut put Format 1, ' // hol dO1/fred. out');
Act2 : =
QUTPUT(Per son, { Per son. per _first_nane, Person. per_| ast _nane})
Act 2 : = QUTPUT(Per son, { Person. per _| ast_nane})));
/by nam ng these actions, they becone inactive
attributes
//that only execute when the attribute nanes are called as
actions
SEQUENTI AL(Act 1, PARALLEL(Act 2, Act3));
/l executes Actl alone, and only when it's finished, // executes
Act2 and Act 3 toget her

See Also: PARALLEL, PERSIST

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
300

ECL Language Reference
Built-in Functions and Actions

SET

SET (recordset,field)

recordset The set of records from which to derive the SET of values.
field Thefield in the recordset from which to obtain the values.
Return: SET returns a SET of values of the same type asthefield.

The SET function returns a SET for use in any set operation (such as the IN operator), similar to a sub-select in SQL
when used with the IN operator. It does not remove duplicate el ements and does not order the set.

One common problem is the use of the SET function in afilter condition, like this:
M/DS : = nyDat aset (nyFi el d | N SET(anot her Dat aset, somneField));

The code generated for thisisinefficient if "anotherDataset" contains alarge number of elements, and may also cause
a"Dataset too large to output to workunit" error. A better way to recode the expression would be this:

M/DS : = JO N(nyDat aset, anot her Dat aset, LEFT.nyField = Rl GHT. soneFi el d, TRANSFORM LEFT), LOOKUP) ;

The end result isthe same, the set of "myDataset" records where the "myField" valueis one of the "someField" values
from "anotherDataset,” but the code is much more efficient in execution.

Example:

ds := DATASET([{' X ,1},{'B',3},{'C,2},{'B,5},
{"C.,4,{"'D,6},{' E, 2}],
{STRINGL Ltr, INTEGERL Val});

/la SET of just the Ltr field val ues:

sl := SET(ds, Ltr);

COUNT(s1); [//results in 7

s1; /lresults in['X,'B,'C,'B,'C,'D,'E]

/la sinmple way to get just the unique el enents
/lis to use a crosstab TABLE:
t := TABLE(ds, {Ltr},Ltr); //order indeterm nant

s2 := SET(t,Ltr);
COUNT(s2); [//results in 5
s2; /lresults in ['D,'X,'C,"E,'B]

//sorted uni que el ements

s3 := SET(SORT(t, Ltr), Ltr);

COUNT(s3); //results in 5

s3; /lresults in['B,'C,'D,'E,"'X]

See Also: Sets and Filters, SET OF, Set Operators, IN Operator

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
301

ECL Language Reference
Built-in Functions and Actions

SIN

SIN(angle)
angle The REAL radian value for which to find the sine.
Return: SIN returns asingle REAL value.

The SIN function returns the sine of the angle.

Example:
Rad2Deg :
Deg2Rad :
Angl e45 :

Si ne45

57.295779513082; //nunmber of degrees in a radian
0.0174532925199; //nunber of radians in a degree
45 * Deg2Rad; /ltransl ate 45 degrees into radians

SI N(Angl e45) ; /lget sine of the 45 degree angle

See Also: ACOS, COS, ASIN, TAN, ATAN, COSH, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
302

ECL Language Reference
Built-in Functions and Actions

SINH

SINH(angle)
angle The REAL radian value for which to find the hyperbolic sine.
Return: SINH returns asingle REAL value.

The SINH function returns the hyperbolic sine of the angle.

Example:
Rad2Deg :
Deg2Rad :

Angl e45 :

57.295779513082; //nunmber of degrees in a radian
0.0174532925199; //nunber of radians in a degree

45 * Deg2Rad; /ltransl ate 45 degrees into radians

Hyper bol i cSi ne45 : = SI NH(Angl e45); //get hyperbolic sine of the angle

See Also: ACOS, COS, ASIN, TAN, ATAN, COSH, SIN, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
303

ECL Language Reference
Built-in Functions and Actions

SIZEOF

SIZEOF(data[, MAX])

data The name of a dataset, RECORD structure, a fully-qualified field name, or a constant string ex-
pression.
MAX Specifies the data is variable-length (such as containing child datasets) and the value to return is

the maximum size..

Return: SIZEOF returns a single integer value.

The SIZEOF function returns the total number of bytes defined for storage of the specified data structure or field.

Example:

M/Rec : = RECORD

| NTEGER1 F1;

| NTEGERS F2;

STRINGL F3;

STRI NGLO F4;

QSTRI NGL2 F5;

VARSTRI NG12 F6;

END;

M/Data : =
DATASET([{1, 33333333333,'A','A"," A,V A" }], M/Rec) ;

S| ZEOF(MyRec); //result is 39

S| ZEOF(MyData. F1); //result is 1

S| ZEOF(MyDat a. F2); //result is 5

S| ZEOF(MyData. F3); //result is 1

S| ZEOF(MyData. F4); //result is 1

S| ZEOF(MyDat a. F5); //result is 9

0
-12 chars stored in 9

byt es
S| ZEOF(MyDat a. F6); //result is 13 -12 chars plus null
ter mi nat or

Layout _Peopl e : = RECORD

STRI NGL5 first_nane;

STRI NGL5 mi ddl e_nane;

STRI N&5 | ast _nane;

STRIN& suf fi x;

STRI NA2 street;

STRI N&0 city;

STRIN& st ;

STRI NG5 zi p;

STRI NGL sex;

STRI N&3 age;

STRI NG3 dob;

BOCOLEAN age_f I ag;

UNSIGNED8 _ filepos { virtual (fileposition)};

END;

Fil e_Peopl e : = DATASET(' ecl _traini ng:: Peopl e', Layout_ Peopl e,

FLAT) ;

S| ZEOF(Fil e_People); //result is 147

S| ZEOF(Fi | e_Peopl e. street); //result is 42

S| ZEOF("' abc' + '123'); //result is 6

S| ZEOF(person. per _cid); //result is 9 - Person.per_cid is
DATA9

See Also: LENGTH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
304

ECL Language Reference
Built-in Functions and Actions

SOAPCALL

result := SOAPCALL ([recset,] url, service, instructure, [transform,] DATASET (outstructure) | outstructure [,
options]);

SOAPCALL ([recset,] url, service, instructure, [transform,] [options]);

result The attribute name for the resulting recordset or single record.

recset Optional. The input recordset. If omitted, the single input record must be defined by
default values for each field in the instructure parameter.

url A string containing a pipe-delimited (|) list of URLSs that host the service to invoke
(may append repository module names). This is intended to provide a means for the
client to conduct a Federated search where the request is sent to each of the target
systemsin thelist. These URLs may contain standard form usernames and passwords,
if required. The default username/password are those contained in the workunit. If
calling an ESP Web service, you can append the ver_=n.nn parameter to specify the
version of the service. For example:

SOAPCALL(" http://127.0.0.1: 8010/ Wsdf u/ ?ver _=1. 22",
' DFUSear chDat a' ,
i nstructure, DATASET(out sructure));

service A string expression containing the name of the service to invoke. This may be in the
form module.attribute if the service is on a Roxie platform.
instructure A RECORD structure containing the input field definitions from which the XML input

to the SOAP serviceis constructed. The name of thetagsin the XML are derived from
the names of the fields in the input record; this can be overridden by placing an xpath
on the field ({ xpath('tagname’)} — see the XPATH Support section of the RECORD
Structure discussion). If the recset parameter is not present, each field definition must
contain a default value that will constitute the single input record. If the recset para-
meter is present, each field definition must contain a default value unless a transform
is also specified to supply that data values.

transform Optional. The TRANSFORM functionto call to processtheinstructuredata. Thiselim-
inates the need to define default valuesfor al fieldsin the instructure RECORD struc-
ture. The transform function must take at least one parameter: a LEFT record of the
same format as the input recset. The resulting record set format must be the same as
the input instructure.

DATASET (outstructure) | Specifies recordset result in the outstructure format.

outstructure A RECORD structure containing the output field definitions. If not used as a parameter
tothe DATASET keyword, this specifiesasingle record result. Each field definitionin
the RECORD structure must use an xpath attribute ({ xpath(‘tagname’)}) to eliminate
case sensitivity issues.

options A comma-delimited list of optional specifications from the list below.

Return: SOAPCALL returns either a set of records, a single record, or nothing.

SOAPCALL isafunction or action that calls a SOAP (Simple Object Access Protocol) service.

Valid options are:

RETRY (count) Specifies re-attempting the call count number of timesif non-fatal errors occur. If
omitted, the default isthree (3).

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
305

ECL Language Reference
Built-in Functions and Actions

TIMEOUT (period)

Specifies the amount of time to attempt the read beforefailing. The periodisarea
number where the integer portion specifies seconds. Setting to zero (0) indicates
waiting forever. If omitted, the default is three hundred (300).

TIMELIMIT (period)

Specifies the total amount of time allowed for the SOAPCALL. The period is a
real number where the integer portion specifies seconds. If omitted, the default is
zero (0) indicating no limit.

HEADING(prefix,suffix)

Specifies tags to wrap around the XML input fields. If omitted, the default is:
HEADING(",").

XPATH (xpath) Specifies the path used to access rows in the output. If omitted, the default is: 'ser-
viceResponse/Results/Result/Dataset/Row'.

MERGE(n) Specifies processing n records per batch (the blocking). If omitted, the default is 1
(values other than 1 may be incompatible with non-Roxie services). Valid for use
only if the recset parameter is aso present.

PARALLEL (n) Specifies the number of concurrent threads to have processing Data Delivery En-

gine queries, to a maximum of 50 (the default is 2). Thisis intended to limit the
number of concurrent sessions.

ONFALIL (transform)

Specifies either the transform function to call if the service fails for a particular
record, or the keyword SKIP. The TRANSFORM function must produce a resul-
typethe sameasthe outstructure and may use FAILCODE and/or FAILMESSAGE
to provide details of the failure.

TRIM Specifies al trailing spaces are removed from strings before output.
RESPONSE (NOTRIM) Sets flag to prevent space stripping on the response.

NAM ESPACE (namespace) Specifies the top level namespace for the SOAP request.
LITERAL Specifies the service is not necessarily implemented in ESP.

SOAPACTION (value)

Specifiesavalue wherethat valueisastring expression typically containingaURN
or URL that isrequired by the web service for proper interoperability.

LOG If specified, writes details to the log file of the engine (hThor, Thor, or Roxie) to
which the SOAPCALL is submitted.

LOG (MIN) Specifiesto write minimal details of the SOAPCALL to alog file.

LOG (expression) Specifies to add the expression to the log when performing a SOAPCALL.

ENCODING Specifies that the Web service being called requires a different message format,

where type information is embedded in the XML.

SOAPCALL Function

Thisform of SOAPCALL, the function, may take asinput either asingle record or arecordset, and both types of input
can result in either asingle record or arecordset.

The outstructure output record definition may contain an integer field with an XPATH of "_call_latency" to receive
the time, in seconds, for the call which generated the row (from creating the socket to receiving the response). The
latency is placed in every row the call returned, so if a call took 90 seconds and returned 11 rows then you will see
11 rowswith 90inthe call_latency field.

Example:

Qut Recl : = RECORD

STRI NG00 Qut Dat af XPATH(® Qut Data’) };
UNSI GNED4 Lat ency{ XPATH(' _cal | _| atency')};

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

306

ECL Language Reference
Built-in Functions and Actions

END;

ip:="'http://127.0.0.1:8022/";

ips := 'https://127.0.0.1:8022/";

i pspw : = 'https://usernane: passwor d@z27. 0. 0. 1: 8022/ ' ;
svc := ' MyModul e. SoneServi ce';

/11 rec in, 1 rec out
OneRecl : = SOAPCALL(i ps, svc, { STRINGS00 InData := 'Sonme |nput Data'}, QutRRecl);

/11 rec in, recordset out
ManyRecl := SOAPCALL(i p, svc, { STRINGS00 | nData :

' Some | nput Data'}, DATASET(CQut Recl));

/lrecordset in, 1 rec out
OneRec2 : = SOAPCALL(I nput Dat aset, i p, svc, { STRI NG5O0 | nDat a}, Qut Recl) ;

/lrecordset in, recordset out
ManyRec2 : = SOAPCALL(| nput Dat aset, i pspw, svc, { STRINGS00 |InData := 'Some |nput Data'}, DATASET(Cut Recl));

/| TRANSFORM f uncti on usage exanpl e
nanmesRecord : = RECORD
STRI N&0 sur nane;
STRI NGLO f or enane;
| NTECER2 age : = 25;
END;
ds : = DATASET(' x', namesRecord, FLAT) ;

i nRecord : = RECORD
STRI NG nane{xpat h(' Nane') };
UNSI GNED6 i d{ XPATH(' ADL') };
END;
out Record : = RECORD
STRI NG nane{xpat h(' Nane') };
UNSI GNED6 i d{ XPATH(' ADL') };

REAL8 scor e;

END;

i nRecord t(nanmesRecord |) := TRANSFORM
SELF. nane : = |.surnane;
SELF.id := 1. age;

END;

out Record genDefaul t1() := TRANSFORM
SELF. name : = FAl LMESSAGE;
SELF.id : = FAl LCODE;
SELF. score := (REAL8) FAI LVESSAGE('ip');

END;
out Record genDef aul t 2(nanesRecord |) := TRANSFORM
SELF. nane : = |.surnane;
SELF.id :=1I. age;
SELF. score : = 0;
END;
ip:="'http://127.0.0.1:8022/";
svc: = ' MyModul e. SoneSer vi ce' ;
OUTPUT(SOAPCALL(i p, svc,{ STRIN&O surnanme := 'Halligan', STRIN&O forenane := 'Kevin';},

DATASET(out Record), ONFAI L(genDefaul t1())));
OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT), DATASET(out Record), ONFAI L(genDefaul t2(LEFT))));

OUTPUT(SOAPCALL(ds, ip, svc, inRecord, t(LEFT), DATASET(outRecord), ONFAIL(SKIP)));

SOAPCALL Action

The second form of SOAPCALL, the action, may take as input either a single record or a recordset. Neither type of
input produces any returned result—it simply launches the specified SOAP service, providing it input data.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
307

ECL Language Reference
Built-in Functions and Actions

Example:

/11 rec in, no result
SOAPCALL('https://127.0.0.1:8022/',"' MyModul e. SoneServi ce', {STRINGO0O |InData := 'Sonme |nput Data'});

/lrecordset in, no result
SOAPCALL(I nput Dat aset, ' https://127.0.0.1:8022/',"' MyModul e. SoneSer vi ce' , { STRI NG00 | nDat a}) ;

See Also: RECORD Structure, TRANSFORM Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
308

ECL Language Reference
Built-in Functions and Actions

SORT

SORT (recordset,value [, JOINED(joinedset)][, SKEW(limit [target])] [, THRESHOLD(size)][, LOCAL]
[LFEW] [, STABLE [(algorithm)] | UNSTABLE [(algorithm)]])

recordset

The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

value

A comma-delimited list of expressions or key fields in the recordset on which to sort, with
the leftmost being the most significant sort criteria. A leading minus sign (-) indicates a de-
scending-order sort on that element. Y ou may have multiple value parameters to indicate sorts
within sorts. Y ou may use the keyword RECORD (or WHOLE RECORD) to indicate an as-
cending sort on all fields, and/or you may use the keyword EXCEPT to list non-sort fieldsin
the recordset.

JOINED

Optional. Indicates this sort will use the same radix-points as already used by the joinedset so
that matching records between the recordset and joinedset end up on the same supercomputer
nodes. Used to optimize supercomputer joinswherethejoinedset isvery large and the recordset
issmall.

joinedset

A set of records that has been previously sorted by the same value parameters as the recordset.

SKEW

Optional. Indicates that you know the data is not spread evenly across nodes (is skewed) and
you choose to override the default by specifying your own limit value to alow the job to
continue despite the skewing.

limit

A vaue between zero (0) and one (1.0 = 100%) indicating the maximum percentage of skew
to allow before the job fails (the default is 0.1 = 10%).

target

Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired maximum
percentage of skew to allow (the default is 0.1 = 10%).

THRESHOLD

Optional. Indicates the minimum size for asingle part of the recordset before the SKEW limit
is enforced.

size

An integer value indicating the minimum number of bytesfor asingle part.

LOCAL

Optional. Specifies the operation is performed on each node independently, without requiring
interaction with al other nodes to acquire data; the operation maintains the distribution of any
previous DISTRIBUTE. An error occurs if the recordset has been GROUPed.

FEW

Optional. Specifies that few records will be sorted. This prevents spilling the SORT to disk if
another resource-intensive activity is executing concurrently.

STABLE

Optional. Specifies a stable sort—duplicates output in the same order they were in the input.
This is the default if neither STABLE nor UNSTABLE sorting is specified. Ignored if not
supported by the target platform.

algorithm

Optional. A string constant that specifiesthe sorting a gorithm to use (seethelist of valid values
below). If omitted, the default algorithm depends on which platform is targeted by the query.

UNSTABLE

Optional. Specifies an unstable sort—duplicates may output in any order. Ignored if not sup-
ported by the target platform.

Return:

SORT returns a set of records.

The SORT function orders the recordset according to the values specified, and (if LOCAL Is not specified) partitions
the result such that all records with the same values are on the same node. SORT is usually used to produce the record
sets operated on by the DEDUP, GROUP, and ROLLUP functions, so that those functions may operate optimally.
Sorting final output is, of course, another common use.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

309

ECL Language Reference
Built-in Functions and Actions

Sorting Algorithms

There are three sort algorithms available: quicksort, insertionsort, and heapsort. They are not all available on all plat-
forms. Specifying an invalid algorithm for the targeted platform will generate awarning and the default algorithm for
that platform will be implemented.

Thor Supports stable and unstable quicksort—the sort will spill to disk, if necessary. Parallel sorting
happens automatically on clusters with multiple-CPU or multi-CPU-core nodes.

hthor Supports stable and unstable quicksort, stable and unstable insertionsort, and stable heapsort—
the sort will spill to disk, if necessary. Stable heapsort is the default if both STABLE and
UNSTABLE are omitted or if STABLE is present without an algorithm parameter.

Unstable quicksort is the default if UNSTABLE is present without an algorithm parameter.

Roxie Supports unstable quicksort, stable insertionsort, and stable heapsort—the sort does not spill to
disk.

Stable heapsort is the default if both STABLE and UNSTABLE are omitted or if STABLE is
present without an algorithm parameter. The insertionsort implements blocking and heapmerg-
ing when there are more than 1024 rows.

Quick Sort

A quick sort does nothing until it receivesthe last row of itsinput, and it produces no output until the sort is complete,
so the time required to perform the sort cannot overlap with either the timeto processitsinput or to produce its output.
Under normal circumstances, this type of sort is expected to take the least CPU time. There are rare exceptional cases
where it can perform badly (the famous "median-of-three killer" is an example) but you are very unlikely to hit these
by chance.

OnaThor cluster where each node has multiple CPUs or CPU cores, it ispossibleto split up the quick sort problem and
run sectionsof thework in parallel. Thishappensautomatically if the hardware supportsit. Doing thisdoesnot improve
the amount of actual CPU time used (in fact, it fractionally increasesit because of the overhead of splitting the task) but
the overall timerequired to perform the sort operation is significantly reduced. On a cluster with dual CPU/core nodes
it should only take about half the time, only about a quarter of the time on a cluster with quad-processor nodes, etc.

Insertion Sort

Aninsertion sort does all itswork whileit isreceiving itsinput. Note that the algorithm used performs a binary search
for insertion (unlike the classic insertion sort). Under normal circumstances, this sort is expected to produce the worst
CPU time. In the case where the input source is dow but not CPU-bound (for example, a slow remote data read or
input from aslow SOAPCALL), the time required to perform the sort is entirely overlapped with the input.

Heap Sort

A heap sort does about half its work while receiving input, and the other half while producing output. Under normal
circumstances, it is expected to take more CPU time than a quick sort, but less than an insertion sort. Therefore, in
guerieswheretheinput sourceis slow but not CPU-bound, half of the time taken to perform the sort is overlapped with
theinput. Similarly, in querieswhere the output processing is slow but not CPU-bound, the other half of the time taken
to perform the sort is overlapped with the output. Also, if the sort processing terminates without consuming all of its
input, then some of the work can be avoided entirely (about half in the limiting case where no output is consumed),
saving both CPU and total time.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
310

ECL Language Reference
Built-in Functions and Actions

In some cases, such as when a SORT is quickly followed by a CHOOSEN, the compiler will be able to spot that only
a part of the sort's output will be required and replace it with a more efficient implementation. This will not be true
in the general case.

Stable vs. Unstable

A stable sort is required when the input might contain duplicates (that is, records that have the same values for all
the sort fields) and you need the duplicates to appear in the result in the same order as they appeared in the input.
When the input contains no duplicates, or when you do not mind what order the duplicates appear in the result, an
unstable sort will do.

An unstable sort will normally be dightly faster than the stable version of the same agorithm. However, where the
ideal sort agorithm is only availablein a stable version, it may often be better than the unstable version of a different
algorithm.

Performance Considerations

The following discussion applies principally to local sorts, since Thor isthe only platform that performs global sorts,
and Thor does not provide a choice of algorithms.

CPU time vs. Total time

In some situations a query might take the least CPU time using a quick sort, but it might take the most total time
because the sort time cannot be overlapped with the time taken by an I/O-heavy task before or after it. On a system
where only one subgraph or query is being run at once (Thor or hthor), this might make quick sort a poor choice since
the extra time is simply wasted. On a system where many subgraphs or queries are running concurrently (such as a
busy Roxie) there is atrade-off, because minimizing total time will minimize the latency for the particular query, but
minimizing CPU time will maximize the throughput of the whole system.

When considering the parallel quick sort, we can see that it should significantly reduce the latency for this query; but
that if the other CPUs/cores were in use for other jobs (such as when dual Thors are running on the same dual CPU/
core machines) it will not increase (and will slightly decrease) the throughput for the machines.

Spilling to disk

Normally, records are sorted in memory. When there is not enough memory, spilling to disk may occur. This means
that blocks of records are sorted in memory and written to disk, and the sorted blocks are then merged from disk on
completion. This significantly slows the sort. It also means that the processing time for the heap sort will be longer,
asit isno longer able to overlap with its output.

When thereisnot enough memory to hold all the recordsand spilling to disk isnot available (like on the Roxie
platform), the query will fail.

How sorting affects JOINs

A normal JOIN operation requires that both itsinputs be sorted by the fields used in the equality portion of the match
condition. The supercomputer automatically performs these sorts "under the covers' unless it knows that an input is
already sorted correctly. Therefore, some of the considerations that apply to the consideration of the algorithm for a
SORT can also apply to a JOIN. To take advantage of these alternate sorting algorithmsin a JOIN context you need
to SORT the input dataset(s) the way you want, then specify the NOSORT option on the JOIN.

Notewell that no sortingisrequired for JOIN operationsusing the KEY ED (or half-keyed), LOOKUP, or ALL options.
Under some circumstances (usually in Roxie queries or in those cases where the optimizer thinksthere are few records
in the right input dataset) the supercomputer's optimizer will automatically perform a LOOKUP or ALL join instead

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
311

ECL Language Reference
Built-in Functions and Actions

of aregular join. This means that, if you have done your own SORT and specified the NOSORT option on the JOIN,
that you will be defeating this possible optimization.

Example:

MySet 1 : = SORT(Person, -1ast_nane, first_nane);
/'l descending | ast name, ascending first name

MySet 2 : = SORT(Per son, RECORD, EXCEPT per _sex, per_narital _status);
/1 sort by all fields except sex and marital status

MySet 3 : = SORT(Person, | ast_nane, first_name, STABLE(' qui cksort'));
/'l stable quick sort, not supported by Roxie

MySet 4 : = SORT(Person, | ast_nanme, first_name, UNSTABLE(' heapsort'));
/] unstabl e heap sort,

/1l not supported by any platform

/'l therefore ignored

MySet5 : = SORT(Person, | ast_nane, first_nane, STABLE(' i nsertionsort'));
/] stable insertion sort, not supported by Thor

See Also: SORTED, RANK, RANKED, EXCEPT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
312

ECL Language Reference
Built-in Functions and Actions

SORTED

SORTED(recordset,value)

SORTED(index)

recordset The set of sorted records. This may be the name of a dataset or a record set derived from some
filter condition, or any expression that results in a derived record set.

value A comma-delimited list of expressions or key fields in the recordset on which the recordset has
been sorted, with the leftmost being the most significant sort criteria. A leading minus sign (-)
indicates a descending-order sort on that element. Y ou may have multiple value parameters to
indicate sorts within sorts. Y ou may use the keyword RECORD to indicate an ascending sort on
all fields, and/or you may use the keyword EXCEPT to list non-sort fields in the recordset.

index The attribute name of an INDEX definition. Thisis equivalent to adding the SORTED option to
the INDEX definition.
Return: SORTED isacompiler directive that returns nothing.

The SORTED function indicates to the ECL compiler that the recordset is already sorted according to the values
specified. Any number of value parameters may be supplied, with the leftmost being the most significant sort criteria.
A leading minussign (-) on any value parameter indicates adescending sort for that one parameter. SORTED typically
refersto aDATASET to indicate the order in which the datais already sorted.

Example:

I nput Rec : = RECORD

| NTEGER4 Attr1;

STRI N&X0 Attr2;

| NTEGER8 Ci d;

END;

M/Fi |l e : = DATASET(' fil enange', | nput Rec, FLAT)
MySortedFil e : = SORTED(M/Fi |l e, MyFi | e. C d)
/1 Input file already sorted by Cid

See Also: SORT, DATASET, RANK, RANKED, INDEX

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
313

ECL Language Reference
Built-in Functions and Actions

SQRT

SQRT(n)
n Thereal number to evaluate.
Return: SQRT returns asinglereal value.

The SQRT function returns the square root of the parameter.
Example:

M/Root := SQRT(16.0);

See Also: POWER, EXP, LN, LOG

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
314

ECL Language Reference
Built-in Functions and Actions

STEPPED

STEPPED(index, fields)

index The INDEX to sort. This can befiltered or the result of a PROJECT on an INDEX.
fields A comma-delimited list of fields by which to sort the result, typically trailing elementsin the key.

The STEPPED function sorts the index by the specified fields. This function is used in those cases where the
SORTED(index) function will not suffice.

There are some restrictions in its use:

The key fields before ordered fields should be reasonably well filtered, otherwise the sorting could become very mem-
ory intensive.

Roxie only supports sorting by trailing components on indexes that are read locally (single part indexes or superkeys
containing single part indexes), or NOROOT indexes read within ALLNODES.

Thor does not support STEPPED.

Example:
DataFile := '~RTTEST: : Test St epped' ;
KeyFil e := ' ~RTTEST: : Test St eppedKey"' ;

Rec : = RECORD

STRI N& st at e;

STRI NG20 city;

STRI N&5 | nane;

STRI NGL5 f nane;

END;

ds : = DATASET(Dat aFi |l e,

{Rec, UNSI GNED8 RecPos {virtual (fileposition)}},

THOR) ;

I DX : = | NDEX(ds, {state, city, | nane, f nane, RecPos}, KeyFi | e) ;

OUTPUT(I DX(state IN['FL',' PA']));
/* where this OUTPUT produces this result:
FL BOCA RATON W K PI CHA

FL DELAND W KER CKE

FL GAI NESVI LLE W K MACHOUSTON

PA NEW STANTON W KER DESSI E */

OUTPUT(STEPPED(| DX(state IN["FL',' PA']), fnane));
/* this STEPPED OQUTPUT produces this result:

PA NEW STANTON W KER DESSI E

FL GAI NESVI LLE W K MACHOUSTON

FL DELAND W KER OKE

FL BOCA RATON WK PI CHA */

See Also: INDEX, SORTED, ALLNODES

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
315

ECL Language Reference
Built-in Functions and Actions

STORED

STORED(interface)

interface The name of an INTERFACE structure attribute.

The STORED function is a shorthand method of defining attributes for use in a SOAP interface. It is equivalent
to defining a MODULE structure that inherits all the attributes from the interface and adds the STORED workflow
service to each, using the attribute name as the STORED name.

Example:

I name : = | NTERFACE

EXPORT STRI N&0 Nane;

EXPORT BOOLEAN KeepNane : = TRUE;
END;

St or edName : = STORED(| nane) ;
/] is equival ent to:
/1 StoredNanme := MODULE(| nane)

/1 EXPORT STRING20 Nane :='' : STORED(' nane');
/1 EXPORT BOOLEAN KeepName := TRUE : STORED(' keepnane');
/1 END;

See Also; STORED Workflow Service, INTERFACE Structure, MODULE Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
316

ECL Language Reference
Built-in Functions and Actions

SUM

SUM (recordset, value, [, expression] [, KEYED])

SUM (valudlist)

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set. This also may be the
keyword GROUP to indicate finding the sum of values of the field in a group, when used in a
RECORD structure to generate crosstab statistics.

value The expression to sum.

expression Optional. A logical expression indicating which records to include in the sum. Valid only when
the recordset parameter is the keyword GROUP to indicate summing the elements in a group.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

valuelist A comma-delimited list of expressions to find the sum of. Thismay also be a SET of values.

Return: SUM returns asingle value.

The SUM function returns the additive sum of the value in each record of the recordset or valuelist.

Example:
MySum : =
Sunval 2 :

SetVal s :
Sunval 3 :

SUM Per son, Person. Salary); // total all salaries

SUM 4, 8,16,2,1); //returns 31
[4,8,16,2,1];
SUM Set Val s); //returns 31

See Also: COUNT, AVE, MIN, MAX

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

317

ECL Language Reference
Built-in Functions and Actions

TABLE

TABLE(recordset, format [expression [,FEW | MANY] [, UNSORTED]] [LOCAL] [, KEYED] [, MERGE]
[, SKEW (limit[, target]) [, THRESHOLD(size)]])

recordset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that results in a derived record set.

format An output RECORD structure definition that defines the type, name, and source of the data
for each field.

expression Optional. Specifiesa"group by" clause. Y ou may have multiple expressions separated by com-
mas to create a single logical "group by" clause. If expression is afield of the recordset, then
there is a single group record in the resulting table for every distinct value of the expression.
Otherwise expression isaLEFT/RIGHT type expression in the DEDUP manner.

FEW Optional. Indicates that the expression will result in fewer than 10,000 distinct groups. This
allows optimization to produce a significantly faster result.

MANY Optional. Indicates that the expression will result in many distinct groups.

UNSORTED Optional. Specifies that you don't care about the order of the groups. This allows optimization
to produce a significantly faster result.

LOCAL Optional. Specifies the operation is performed on each supercomputer node independently,
without requiring interaction with all other nodes to acquire data; the operation maintains the
distribution of any previous DISTRIBUTE.

KEYED Optional. Specifies the activity is part of an index read operation, which allows the optimizer
to generate optimal code for the operation.

MERGE Optional. Specifies that results are aggregated on each node and then the aggregated interme-
diaries are aggregated globally. This is a safe method of aggregation that shines particularly
well if the underlying data was skewed. If it is known that the number of groups will be low
then ,FEW will be even faster; avoiding the local sort of the underlying data.

SKEW Indicatesthat you know the datawill not be spread evenly across nodes (will be skewed and you
choose to override the default by specifying your own limit value to allow the job to continue
despite the skewing.)

limit A value between zero (0) and one (1.0 = 100%) indicating the maximum percentage of skew to
allow before the jab fails (the default skew is 1.0 / <number of slaves on cluster>).

target Optional. A value between zero (0) and one (1.0 = 100%) indicating the desired maximum
percentage of skew to allow (the default skew is 1.0 / <number of saves on cluster>).

THRESHOLD Indicates the minimum size for asingle part before the SKEW limit is enforced.

Size An integer value indicating the minimum number of bytes for asingle part. Default is 1GB.

Return: TABLE returns anew table.

The TABLE function issimilar to OUTPUT, but instead of writing recordsto afile, it outputs those recordsin a new
table (a new dataset in the supercomputer), in memory. The new table is temporary and exists only while the specific
guery that invoked it is running.

The new table inherits the implicit relationality the recordset has (if any), unless the optional expression is used to
perform aggregation. This meansthe parent record is available when processing table records, and you can a so access
the set of child records related to each table record. There are two forms of TABLE usage: the "Vertical Slice" form,
and the "CrossTab Report” form.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

318

ECL Language Reference
Built-in Functions and Actions

For the"Vertical Slice" form, thereis no expression parameter specified. The number of recordsin the input recordset
is equal to the number of records produced.

For the "CrossTab Report" form there is usually an expression parameter and, more importantly, the output format
RECORD structure contains at least one field using an aggregate function with the keyword GROUP asiitsfirst para-
meter. The number of records produced is equal to the number of distinct values of the expression.

Example:

/l"vertical slice" form

MyFor mat : = RECORD

STRI N&5 Lnane : = Person. per_| ast_nane;

Per son. per _first_nane;

STRINGG NewField := "'

END;

Per sonTabl e : = TABLE(Per son, MyFor mat) ;

/] adding a new field is one use of this formof TABLE

/1" CrossTab Report" form

rec : = RECORD

Per son. per _st;

StCnt : = COUNT(GROUP) ;

END

M/t abl e : = TABLE(Person, rec, per_st, FEW;

/1l group persons by state in Mytable to produce a
crosstab

See Also; OUTPUT, GROUP, DATASET, RECORD Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
319

ECL Language Reference
Built-in Functions and Actions

TAN

TAN(angle)
angle The REAL radian value for which to find the tangent.
Return: TAN returns asingle REAL value.

The TAN function returns the tangent of the angle.

Example:

Rad2Deg : = 57.295779513082; //nunmber of degrees in a radi an
Deg2Rad : = 0.0174532925199; //nunmber of radians in a degree
Angl e45 : = 45 * Deg2Rad; /ltransl ate 45 degrees into radians

Tangent 45 : = TAN(Angl e45); //get tangent of the 45 degree angle

See Also: ACOS, COS, ASIN, SIN, ATAN, COSH, SINH, TANH

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
320

ECL Language Reference
Built-in Functions and Actions

TANH

TANH (angle)
angle The REAL radian value for which to find the hyperbolic tangent.
Return: TANH returnsasingle REAL value.

The TANH function returns the hyperbolic tangent of the angle.

Example:

Rad2Deg :
Deg2Rad :

Angl e45 :

57.295779513082; //nunmber of degrees in a radian
0.0174532925199; //nunber of radians in a degree

45 * Deg2Rad; /ltransl ate 45 degrees into radians

Hyper bol i cTangent 45 : = TANH(Angl e45) ;

/1 get hyperbolic tangent of the angle

See Also: ACOS, COS, ASIN, SIN, ATAN, COSH, SINH, TAN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
321

ECL Language Reference
Built-in Functions and Actions

THISNODE

THISNODE(operation)

operation The name of an attribute or in-line code that resultsin aDATASET or INDEX.
Return: THISNODE returns arecord set or index.

The THISNODE function specifies that the operation is performed on each node, independently. This is typically
used within an ALLNODES operation. Available for use only in Roxie.

Example:
ds := ALLNODES(JO N(THI SNODE(Get Dat a(SoneDat a)) ,

THI SNODE(Get | DX(Sonel ndex)),
LEFT. ID = RIGHT. 1 D));

See Also: ALLNODES, LOCAL, NOLOCAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
322

ECL Language Reference
Built-in Functions and Actions

TOJSON

TOJSON(record)
record Therow (record) of datato convert to JSON format.
Return: TOJSON returns a STRING.

The TOJSON function returns a single string with the data in the record re-formatted as JSON. If the RECORD
structure of the record has XPATHSs defined, then they will be used, otherwise the lower-cased field names are used
as the JSON tag names.

Example:

nanesRecl : = RECORD
UNSI GNED2 Enpl oyeel D{ xpat h(' Enpl D) };
STRI NGLO Fi r st name{ xpat h(' FNane') };
STRI NGLO Last nanme{xpat h(' LNane') };

END;
strl := TOISON(RON{42,' Fred','Flintstone'}, nanesRecl));
QUTPUT(str1);

[lreturns this string:
//""Enpl D': 42, "FName": "Fred", "LNanme": "Flintstone"'
nanmesRec2 : = RECORD

UNSI GNED2 Enpl oyeel D;

STRI NGLO Fi r st nane;

STRI NGLO Last nane;

END;

str2 := TQISON(RON{42,"' Fred','Flintstone'}, nanesRec?2));
QUTPUT(str2);

/lreturns this string:

/1" "enpl oyeei d": 42, "firstnane": "Fred", "lastname": "Flintstone"'

See Also: ROW, FROMJSON

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
323

ECL Language Reference
Built-in Functions and Actions

TOPN

TOPN(recordset, count, sorts[, BEST (bestvalues)] [,LLOCAL])

recordset The set of recordsto process. This may be the name of adataset or arecord set derived from some
filter condition, or any expression that resultsin a derived record set.

count An integer expression defining the number of records to return.

sorts A comma-delimited list of expressions or key fields in the recordset on which to sort, with the
leftmost being the most significant sort criteria. A leading minus sign (-) indicates a descend-
ing-order sort on that element. Y ou may use the keyword RECORD to indicate an ascending sort
on al fields, and/or you may use the keyword EXCEPT to list non-sort fieldsin the recordset.

BEST Optional. Allows early termination of the operation if there are count number of records and the
values contained in the last record match the bestvalues.

bestvalues A commadelimited list, matching thelist of sorts, of maximum (or minimum if the corresponding
sort is descending) values.

LOCAL Optional. Specifiesthe operation is performed on each supercomputer node independently, with-
out requiring interaction with all other nodes to acquire data; the operation maintains the distrib-
ution of any previous DISTRIBUTE.

Return: TOPN returns a set of records.

The TOPN function returns the first count number of records in the sorts order from the recordset. This is rough-
ly equivalent to CHOOSEN(SORT (recordset,sorts),count) but with simpler syntax that will also work for grouped
recordsets and local operations.

Example:

y := TOPN(Person, 1000, st at e, sex) ;
[/first 1000 recs in state, sex order
z := TOPN(Person, 1000, sex, BEST(' F')); //first 1000
fenal es

See Also: CHOOSEN, SORT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

324

ECL Language Reference
Built-in Functions and Actions

TOUNICODE

TOUNICODE(string, encoding)

string The DATA string to trandlate.
encoding The encoding codepage (supported by IBM's |CU) to use for the trandation.
Return: TOUNICODE returns asingle UNICODE value.

The TOUNICODE function returns the string translated from the DATA value to the specified unicode encoding.

Example:

DATA5 x := FROMUNI CODE(u' ABCDE' ,' UTF-8');
[/results in 4142434445

y = TOUNI CODE(x,"'US-ASCI|"');

See Also: FROMUNICODE, UNICODEORDER

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
325

ECL Language Reference
Built-in Functions and Actions

TOXML

TOXML(record)
record Therow (record) of datato convert to an XML format.
Return: TOXML returnsa STRING.

The TOXML function returns a single string with the data in the record re-formatted as XML. If the RECORD
structure of the record has XPATHSs defined, then they will be used, otherwise the lower-cased field names are used
as the XML tag names.

Example:

nanesRecl : = RECORD
UNSI GNED2 Enpl oyeel D{ xpat h(' Enpl D) };
STRI NGLO Fi r st name{ xpat h(' FName') };
STRI NGLO Last nanme{ xpat h(' LNanme') };

END;
recl : = TOXML(RON{42,' Fred','Flintstone'}, namesRecl));
QUTPUT(recl);

/lreturns this string:
/1" <Enpl D>42</ Enpl D><FNanme>Fr ed</ FNane><LName>Fl i nt st one</ LNane>'

nanmesRec2 : = RECORD
UNSI GNED2 Enpl oyeel D;
STRI NGLO Fi r st nane;
STRI NGLO Last nane;

END;
rec2 := TOXML(ROWN{42,' Fred',' Flintstone'}, namesRec2));
QUTPUT(rec2);

/lreturns this string:
/1" <enpl oyeei d>42</ enpl oyeei d><fi r st name>Fr ed</ fi r st nane><l| ast name>Fl i nt st one</ | ast nane>'

See Also: ROW, FROM XML

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
326

ECL Language Reference
Built-in Functions and Actions

TRANSFER

TRANSFER(valuetype)

value An expression containing the bitmap to return.
type The value type to return.

Return: TRANSFER returns asingle value.

The TRANSFER function returns the value in the requested type. Thisis not atype cast because the bit-pattern stays
the same.

Example:
INTEGERLT MyInt := 65; //MInt is an integer whose value is 65
STRINGL MyVal := TRANSFER(MyInt, STRINGL); //MVal is "A" (ASCI| 65)

I NTEGER1 MyVal 2 := (I NTEGER)M/Val ; //MWVal 2 is 0 (zero) because
"A" is not a nunmeric character

See Also: Type Casting

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
327

ECL Language Reference
Built-in Functions and Actions

TRIM

TRIM(string_value| ,flag])

string_value The string from which to remove spaces.

flag Optional. Specify which spacesto remove. Valid flag valuesare: RIGHT (removetrailing spaces
—thisisthedefault), LEFT (removeleading spaces), LEFT, RIGHT (removeleading and trailing
spaces), and ALL (remove al spaces, even those within the string_value).

Return: TRIM returnsasingle value.

The TRIM function returns the string_value with al trailing and/or leading spaces removed.

Example:

STRI N&0 SoneStringValue : = 'ABC ;
//contains 17 trailing spaces

VARSTRI NG MyVal := TRI M SoneStri ngVal ue) ;
/[l MyVal is "ABC' with no trailing spaces

STRI N&0 SoneStringValue :="' ABC DEF ;
//contains 2 | eading and 11 trailing spaces

VARSTRI NG MyVal := TRI M SoneStri ngVal ue, LEFT, Rl GHT) ;
[/ MyVal is "ABC DEF'" with no trailing spaces

See Also: STRING, VARSTRING

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
328

ECL Language Reference
Built-in Functions and Actions

TRUNCATE

TRUNCATE(real_value)

real_value

The floating-point value to truncate.

Return:

TRUNCATE returns asingle integer value.

The TRUNCATE function returns the integer portion of thereal_value.

Example:

SoneReal Val ue : = 3.75;
| NTEGER4 MyVal := TRUNCATE(SoneReal Value); // MyVal is 3

See Also: ROUND, ROUNDUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
329

ECL Language Reference
Built-in Functions and Actions

UNGROUP

UNGROUP(recordset)

recordset The set of previously GROUPed records.
Return: UNGROUP returns arecord set.

The UNGROUP function removes previous grouping. This is equivalent to using the GROUP function without a
second parameter.

Example:

M/Rec : = RECORD
STRI N&0 Last;
STRI N&G20 First;
END;

SortedSet := SORT(Person, Person.|ast_nane); //sort by |ast
name

G oupedSet := GROUP(SortedSet,|ast_nane); //then group
t hem

SecondSort := SORT(G oupedSet, Person. first_nane);
[/sorts by first nane within each | ast name group
/[l this is a "sort within group"

UnG oupedSet : = UNGROUP(G oupedSet); //ungroup the
dat aset

See Also;: GROUP

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
330

ECL Language Reference
Built-in Functions and Actions

UNICODEORDER

UNICODEORDER(l€ft, right [, locale])

| eft The |eft Unicode expression to evaluate.

right The right Unicode expression to evaluate.

locale Optional. A string constant containing avalid locale code, as specified in 1SO standards 639 and
3166.

Return: UNICODEORDER returns asingle value.

The UNICODEORDER function returns either -1, 0, or 1 depending on the evaluation of the left and right expres-
sions. This is equivalent to the <=> equivalence comparison operator but taking the unicode locale as the basis of
determination. If left < right then -1 isreturned, if left = right then O isreturned, if left > right then 1 is returned.

Example:
UNICODEL x := u'a';
UNICODEL y := u'b';
UNICODEL z := u'a';

a :
b :
C :

UNI CODEORDER(X , vy, 'es'); [/ returns -1
UNI CODECRDER(X , z, 'es'); // returns O
UNI CODEORDER(Y , z, 'es'); [// returns 1

See Also: FROMUNICODE, TOUNICODE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
331

ECL Language Reference
Built-in Functions and Actions

VARIANCE

VARIANCE(recset, valuex [, expresssion] [, KEYED])

recset The set of records to process. This may be the name of a dataset or a record set derived from
some filter condition, or any expression that resultsin a derived record set. This also may be the
GROUP keyword to indicate operating on the elements in each group, when used in aRECORD
structure to generate crosstab statistics.

valuex A numeric field or expression.

expression Optional. A logical expression indicating which records to include in the calculation. Valid only
when the recset parameter is the keyword GROUP.

KEYED Optional. Specifiesthe activity is part of an index read operation, which allows the optimizer to
generate optimal code for the operation.

Return: VARIANCE returns asingle REAL value.

The VARIANCE function returns the (population) variance of valuex.

Example:
poi ntRec : = {

anal yse(ds)

REAL x, REAL y };

: = MACRO

#uni quenane(st at s)
Y%tats% := TABLE(ds, { ¢ := COUNT(GROUP),

SX
sy :
SXX :
SXy :
syy :

SUM GROUP, Xx),
SUM GROUP,),
SUM GROUP, Xx * Xx),
SUM GROUP, X *),
SUM GROUP, vy * V),

varx := VARl ANCE(GROUP, Xx);

vary := VARI ANCE(GROUP, VY);

varxy := COVARI ANCE(GROUP, X, Y);
rc := CORRELATI ON(GROWP, X, V) });
QUTPUT(%st at s99 ;

/1 Follow ng should be zero

QUTPUT(%t at s% { varx - (sxx-sx*sx/c)/c,
vary - (syy-sy*sy/c)l/c,

varxy - (sxy-sx*sy/c)/c,

rc - (varxy/ SQRT(varx*vary)) });

QUTPUT(%stats% { 'bestFit: y=" +
(STRI NG ((sy-sx*varxy/varx)/c) +

+ +

(STRI NG (varxy/varx) + x' });

ENDMACRO,

dsl : = DATASET([{1,1},{2,2},{3,3},{4,4},{5,5},{6, 6}],
poi nt Rec) ;

ds2 := DATASET([{1.93896e+009, 2.04482e+009},

{1.77971e+009,
{2.96181e+009,

{2. 7744e+009,

{1. 14416e+009,
{ 3. 38728e+009,
{3. 19538e+009,

8. 54858e+008} ,
1.24848e+009},

1. 26357e+009},
4.3429e+008},
1. 30238e+009},
1.71177e+009}], pointRec);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

332

ECL Language Reference
Built-in Functions and Actions

ds3 := DATASET([{1, 1.00039},
{2, 2.07702},

{3, 2.86158},

{4, 3.87114},

{5, 5.12417},

{6, 6.20283}], pointRec);

anal yse(dsl);
anal yse(ds2);
anal yse(ds3);

See Also: CORRELATION, COVARIANCE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
333

ECL Language Reference
Built-in Functions and Actions

WAIT

WAIT (event)

‘ event A string constant containing the name of the event to wait for.

The WAIT action is similar to the WHEN workflow service, but may be used within conditional code.
Example:

//You can either do this:

actionl;

action2 : WHEN(' expect edEvent');

//can also be witten as:
SEQUENTI AL(acti onl, WAI T(' expect edEvent'), acti on2);

See Also: EVENT, NOTIFY, WHEN

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
334

ECL Language Reference
Built-in Functions and Actions

WHEN

WHEN(trigger, action [BEFORE | SUCCESS | FAILURE])

trigger A dataset or action that launches the action.

action The action to execute.

BEFORE Optional. Specifies an action that should be executed before the input is read.

SUCCESS Optional. Specifiesan action that should only be executed on SUCCESS of thetrigger
(e.g., no LIMITs exceeded).

FAILURE Optional. Specifiesan action that should only be executed on FAILURE of thetrigger
(e.g., aLIMIT was exceeded).

The WHEN function associates an action with atrigger (dataset or action) so that when the trigger is executed the
action is also executed. This allows

Example:

//a FUNCTION with side-effect Action
nanesTabl e : = FUNCTI ON
nanesRecord : = RECORD
STRI N&0 sur nane;
STRI NGLO f or enane;
| NTEGER2 age : = 25;
END;
0 := QUTPUT(' nanesTabl e used by user <x>');
ds : = DATASET([{'x','y', 22}], namesRecord);
RETURN WHEN(ds, O) ;
END;

z := nanesTable : PERSIST('z');
//the PERSI ST causes the side-effect action to execute only when the PERSIST is re-built
QUTPUT(z) ;

See Also: FUNCTION Structure, WHEN, WAIT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
335

ECL Language Reference
Built-in Functions and Actions

WHICH

WHICH/(condition,...,condition)

condition A conditional expression to evaluate.
Return: WHICH returns asingle value.

The WHICH function evaluates which of the list of conditions returned true and returnsits ordinal position in the list
of conditions. Returns zero (0) if none return true. Thisis the opposite of the REJECTED function.

Example:
Accept := WH CH(Person. per_first_nanme = 'Fred',
Person. per _first_name = 'Sue');

[/ Accept is O for everyone but those nanmed Fred or Sue

See Also: REJECTED, MAP, CHOOSE, IF, CASE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
336

ECL Language Reference
Built-in Functions and Actions

WORKUNIT

WORKUNIT

WORKUNIT(named [, type])

named A string constant containing the NAMED option scalar value to return.
type Optional. The value type of the named scalar value result to return.
Return: WORKUNIT returns asingle value.

The WORKUNIT function returns values stored in the workunit. Given no parameters, it returns the unique worku-
nit identifier (WUID) for the currently executing workunit, otherwise it returns the NAMED option result from the
OUTPUT or DISTRIBUTION action.

Example:
wuid := WORKUNI T //get WJ D

nanmesRecord : = RECORD
STRI N&0 sur nane;

STRI NGLO f or enane;

| NTECER2 age;

END;

namesTabl e : = DATASET([
{'Halligan','Kevin', 31},
{*Halligan','Liz', 30},
{*Salter','Abi', 10},
{'X,"Z"}], nanesRecord);

DI STRI BUTI ON(nanesTabl e, surnanme, forenang,
NAMED(' Stats'));

X := DATASET(RON TRANSFORM { STRI NG | i ne},

SELF.line := WORKUNI T(' Stats', STRING))));

See Also: #WORKUNIT, OUTPUT, DISTRIBUTION

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
337

ECL Language Reference
Built-in Functions and Actions

XMLDECODE

XMLDECODE(unicode)
unicode The unicode text to decode.
Return: XMLDECODE returns asingle value.

The XM LDECODE function decodes special characters into an XML string (for example, &It is converted to <)
allowing you to use the CSV option on OUTPUT to produce more complex XML files than are possible by using
the XML option.

Example:
d := XMLENCODE(' <xml version 1><tag>data</tag>');
e : = XM.DECODE(d);

See Also: XMLENCODE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
338

ECL Language Reference
Built-in Functions and Actions

XMLENCODE

XMLENCODE(xmi [, ALL])

xml The XML to encode.

ALL Optional. Specifiesincluding new line charactersin theencoding so thetext can be used in attribute
definitions.

Return: XMLENCODE returns asingle value.

The XMLENCODE function encodes special charactersin an XML string (for example, < is converted to &It) al-

lowing you to use the CSV option on OUTPUT to produce more complex XML files than are possible by using the
XML option.

Example:

d :
e :

XMLENCODE(' <xm version 1><tag>data</tag>');
XM_DECODE(d) ;

See Also: XMLDECODE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
339

ECL Language Reference
Workflow Services

Workflow Services

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
340

ECL Language Reference
Workflow Services

Workflow Overview

Workflow control within ECL is generally handled automatically by the system. It spots which processes can happen
in parallel, when synchronization is required, and when processes must happen in series. These workflow services
allow exceptions to the normal flow of execution to be specified by the programmer to give extra control (such as
the FAILURE clause).

Workflow operationsareimplicitly eval uated in aseparate global scopefrom the codeto whichitisattached. Therefore,
any values from the code to which it is attached (such as loop counters) are unavailable to the workflow service.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
341

ECL Language Reference
Workflow Services

CHECKPOINT

attribute := expression : CHECKPOINT(name) ;

attribute The name of the Attribute.
expression The definition of the attribute.
name A string constant specifying the storage name of the value.

The CHECKPOINT service stores the result of the expression in the workunit so it remains available if the workunit
fails to complete, and is automatically deleted when the job completes successfully. This is particularly useful for
attributes based on large, expensive data manipulation sequences. This service implicitly causes the attribute to be
evaluated at global scope instead of any enclosing scope.

However, CHECKPOINT isonly useful when the unsuccessful workunit is resubmitted through ECL Watch; if anew
workunit isinstantiated, CHECKPOINT has no effect. The PERSIST serviceis more generally useful.

Example:
Count Peopl e : = COUNT(Person) : CHECKPO NT(' Peopl eCount');

/I Makes Count Peopl e avail able for reuse if
/1 the job does not conplete

See Also: PERSIST

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
342

ECL Language Reference
Workflow Services

DEPRECATED

attribute := expression : DEPRECATED [(message)] ;

attribute The name of the Attribute.
expression The definition of the attribute.
message Optional. The text to append to the warning if the attribute is used.

The DEPRECATED service displays a warning when the attribute is used in code that instantiates a workunit or
during a syntax check. Thisis meant to be used on attribute definitions that have been superseded.

When used on a structure attribute (RECORD, TRANSFORM, FUNCTION, etc.), this must be placed between the
keyword END and its terminating semi-colon.

Example:
O dSort := SORT(Person, Person. per_first_nane) : DEPRECATED(' Use NewSort instead.');
NewSort := SORT(Person, - Person. per_first_nane);

QUTPUT(A dSort);
// produces this warning:
/] Attribute A dSort is marked as deprecated. Use NewSort instead.

//**

ds := DATASET(['A','B','C],{STRINGL letter});

R1 : = RECORD
STRINGL letter;
END : DEPRECATED(' Use R2 now.');

R2 : = RECORD
STRINGL letter;
| NTEGER nunber ;

END;

R1 Xfornml(ds L) := TRANSFORM
SELF.letter := Std. Str. ToLower Case(L.letter);
END : DEPRECATED(' Use XfornR now. ');

R2 Xforn2(ds L, integer C) := TRANSFORM

SELF.letter := Std. Str. ToLower Case(L.letter);
SELF. nunber := C
END,;

OUTPUT(PROJECT(ds, Xf or mL(LEFT))); //produces these warnings:
/[l Attribute rl is marked as deprecated. Use R2 now.
[/ Attribute Xfornml is marked as deprecated. Use Xfornm2 now.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
343

ECL Language Reference
Workflow Services

FAILURE

attribute := expression : FAILURE(handler) ;

attribute The name of the Attribute.
expression The definition of the attribute.
handler The action to run if the expression fails.

The FAILURE service executes the handler Attribute when the expression fails. FAILURE notionally executes in
parallel with the failed return of the result. This service implicitly causes the attribute to be evaluated at global scope
instead of the enclosing scope. Only available if workflow services are turned on (see #OPTION(workflow)).

Example:
sPeopl e = SORT(Per son, Person. per _first_nane);
nUni ques : = COUNT(DEDUP(sPeopl e, Per son. per _first_nane AND

Per son. addr ess))
FAI LURE(Emai | . si npl eSend(Syst ensPer sonel ,
Syst ensPer sonel . emai | , ' ouch. htm));

See Also: SUCCESS, RECOVERY

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
344

ECL Language Reference
Workflow Services

GLOBAL - Service

attribute := expression : GLOBAL [(cluster [, FEW])];

attribute The name of the Attribute.
expression The definition of the attribute.
cluster Optional. A string constant specifying the name of the supercomputer cluster on which to build

the attribute. This makesit possible to use the attribute on a smaller cluster when it must be built
onalarger cluster, allowing for more efficient resource utilization. If omitted, the attribute is built
on the currently executing cluster.

FEW Optional. When the expression is a dataset or recordset, FEW specifies that the resulting dataset
is stored completely within the workunit. If not specified, then the dataset is stored as a THOR
file and the workunit contains only the name of thefile.

The GLOBAL service causes the attribute to be evaluated at global scope instead of the enclosing scope, similar to
the GLOBAL () function -- that is, not inside a filter/transform etc. It may be evaluated multiple times in the same
workunit if it is used from multiple workflow items, but it will share code with the context it is used.

GLOBAL is different from INDEPENDENT operates in that INDEPENDENT is only ever executed once, while
GLOBAL is executed once in each workflow item that usesit.

Example:
| := RANDOM) : | NDEPENDENT; //cal cul ated once, period
G := RANDOM) : GLOBAL; //cal cul ated once in each graph

ds := DATASET([{1,0,0,0},{2,0,0,0}], {UNSI GNEDL rec, UNSI GNED | val, UNSI GNED Gval , UNSI GNED Aval });

RECORDOF(ds) XF(ds L) := TRANSFORM
SELF. lval :=1;
SELF. Gval := G
SELF. Aval := RANDOM) ; //cal cul ated each tinme used
SELF : = L;
END;
Pl : = PROIECT(ds, XF(left)) : PERSIST(' ~RTTEST: : PERSI ST: : | ndependent Vsd obal 1') ;
P2 := PRQJIECT(ds, XF(left)) : PERSI ST(' ~RTTEST: : PERSI ST: : | ndependent Vsd obal 2') ;
OUTPUT(P1) ;
QUTPUT(P2) ; //this gets the sane Ival values as P1, but the Gval value is different than P1

See Also: GLOBAL function, INDEPENDENT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
345

ECL Language Reference
Workflow Services

INDEPENDENT

attribute := expression : INDEPENDENT;

attribute The name of the Attribute.
expression The definition of the attribute.

TheINDEPENDENT service causes the attribute to be evaluated at aglobal scope and forcesthe attribute evaluation
into a separate workflow item. The new workflow item is evaluated before the first workflow item that uses that at-
tribute. It executes independently from other workflow items, and is only executed once (including inside SEQUEN-
TIAL where it should be executed the first time it is used). It will not share any code with any other workflow items.

One use would be to provide a mechanism for commoning up code that is shared between different arguments to a

SEQUENTIAL action—normally they are evaluated completely independently.

Example:
| MPORT STD;
Filel := 'nanesl.txt';
File2 := 'nanes2.txt';
SrclP :='10.239.219. 2';
SrcPath := '/var/lib/ HPCCSyst ens/ nydr opzone/ ' ;
DestPath := '~THOR : IN::';
ESPport|I P := "http://192. 168. 56. 120: 8010/ Fi | eSpray"' ;

Deleted dFiles : =
PARALLEL(STD. Fi | e. Del et eLogi cal Fi | e(Dest Pat h+Fi | el),

STD. Fi | e. Del et eLogi cal Fi | e(Dest Pat h+Fi | €2))
| NDEPENDENT;

SprayNewFi |l es : =
PARALLEL(STD. Fi | e. SprayFi xed(Srcl P, SrcPat h+Fi | e1, 11,

"nyt hor', Dest Pat h+Fi | el,
-1, ESPport | P),
STD. Fi | e. Spr ayFi xed(Srcl P, SrcPat h+Fi | e2, 11,
"myt hor', Dest Pat h+Fi | e2,
-1, ESPport | P))
| NDEPENDENT;

SEQUENTI AL(Del et ed dFi | es, SprayNewFi | es) ;

See Also: GLOBAL

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
346

ECL Language Reference
Workflow Services

ONWARNING

attribute := expression : ONWARNING(code, action) ;

attribute The name of the Attribute.

expression The definition of the attribute.

code The number displayed in the "Code" column of the ECL IDE's Syntax Errors toolbox.
action One of these actions: ignore, error, or warning.

The ONWARNING service alows you to specify how to handle specific warnings for a given attribute. Y ou may
have it treated as a warning, promote it to an error, or ignore it. Useful warnings can get lost in a sea of less-useful
ones. Thisfeature allows you to get rid of the "clutter.”

This service overrides any global warning handling specified by #ONWARNING.
Example:

rec :={ STRING x } : ONWARNI NG(1041, ignore);
/lignore "Record doesn't have an explicit maxi mumrecord size" warning

See Also: #ONWARNING

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
347

ECL Language Reference
Workflow Services

PERSIST

attribute := expression : PERSIST(filename [, cluster] [, CLUSTER(target)] [, EXPIRE(days)] [, SINGLE] [,
MULTIPLE[(count)]]) ;

attribute The name of the Attribute.

expression The definition of the attribute. Thistypically defines arecordset (but it may be any expression).

filename A string constant specifying the storage name of the expression result. See Scope and L ogical
Filenames.

cluster Optional. A string constant specifying the name of the Thor cluster on which to re-build the

attribute if/when necessary. This makesit possible to use persisted attributes on smaller clusters
but have them rebuilt on larger, making for more efficient resource utilization. If omitted, the
attribute is re-built on the currently executing cluster.

CLUSTER Optional. Specifies writing the filename to the specified list of target clusters. If omitted, the
filename is written to the cluster on which the PERSIST executes (as specified by the cluster
parameter). The number of physical file partswritten to disk isalways determined by the number
of nodes in the cluster on which the PERSIST executes, regardless of the number of nodes on
the target(s).

target A comma-delimited list of string constants containing the names of the clustersto write thefile-
name to. The names must be listed as they appear on the ECL Watch Activity page or returned
by the Std.System.Thorlib.Group() function, optionally with square brackets containing a com-
ma-delimited list of node-numbers (1-based) and/or ranges (specified with adash, asin n-m) to
indicate the specific set of nodes to write to.

EXPIRE Optional. Specifies the filename is a temporary file that may be automatically deleted after the
specified number of days.

days Optional. The number of days after which the file may be automatically deleted. If omitted, it
defaults to use the PersistExpiryDefault setting in Sasha.

SINGLE Optional. Specifies to keep a single PERSIST. The name of the persist file is the same as the
name of the persist.

MULTIPLE Optional. Specifiesto keep different versions of the PERSIST. The name of the persist file gen-

erated is a combination of the name supplied suffixed with a 32-bit value derived from the ECL .

count Optional. The number of versions of a PERSIST to keep. If omitted, the system default is used.

ThePERSI ST servicestorestheresult of the expression globally so it remains permanently availablefor use (including
theresult of any DISTRIBUTE or GROUP operation in the expression). Thisis particularly useful for attributes based
on large, expensive data manipulation sequences. The attribute is re-cal culated only when the ECL code or underlying
data that was used to create it have changed, otherwise the attribute data is simply returned from the stored name
file on disk when referenced. This service implicitly causes the attribute to be evaluated at global scope instead of
the enclosing scope.

PERSIST may be combined with the WHEN clause so that even though the attribute may be used more than once,
its execution is based upon the WHEN clause (or the first use of the attribute) and not upon the number of times the
attribute is used in the computation. This gives akind of "compute in anticipation” capability.

By definition, PERSIST on an attribute means the attribute is evaluated outside of any given evaluation order. There-
fore, SEQUENTIAL has no effect on PERSISTed attributes.

Example:

Count Peopl e : = COUNT(Person) : PERSI ST(' Peopl eCount');

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
348

ECL Language Reference
Workflow Services

/I Makes Count Peopl e avail able for use in all subsequent work units

sPeopl e : = SORT(Person, Person. per_first_nane)
PERSI ST(' Sort Person'), WHEN(Dai | y) ;
/| Makes sPeopl e avail able for use in all subsequent work units

sl := SORT(Person, Person. per_first_nane)
PERSI ST(' Sort Personl',' & her Thor');
//run the code on the O herThor cluster
s2 : = SORT(Person, Person. per_first_nane)
PERSI ST(' Sort Person2',
' G her Thor',
CLUSTER("' Anot her Thor')) ;
//run the code on the O herThor cluster
// and wite the file to the AnotherThor cl uster

See Also: STORED, WHEN, GLOBAL, CHECKPOINT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
349

ECL Language Reference
Workflow Services

PRIORITY

action: PRIORITY (value) ;

action An action (typically OUTPUT) that will produce aresult.
value An integer in the range 0-100 indicating the relative importance of
the action.

The PRIORITY service establishes the relative importance of multiple actions in the workunit. The higher value an
action has, the greater its priority. The highest priority action executes first, if possible. PRIORITY is not allowed
on attribute definitions, it must only be associated with an action. Only available if workflow services are turned on
(see #OPTION(workflow)).

Example:

OQUTPUT(Person(per _st="NY')) : PRI ORI TY(30)
OQUTPUT(Per son(per_st="CA')) : PRI ORI TY(60);
OQUTPUT(Person(per_st="FL')) : PRI ORI TY(90)

/1 The Fl orida

See Also; OUTPUT, #OPTION

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
350

ECL Language Reference
Workflow Services

RECOVERY

attribute := expression : RECOVERY (handler [, attempts]) ;

attribute The name of the Attribute.

expression The definition of the attribute.

handler The action to run if the expression fails.

attempts Optional. The number of timesto try before giving up.

The RECOVERY service executes the handler Attribute when the expression fails then re-runs the attribute. If
the attribute till fails after the specified number of attempts, any present FAILURE clause will execute. RECOV -
ERY notionally executes in parallel with the failed return result. This service implicitly causes the attribute to be
evaluated at global scope instead of the enclosing scope. Only available if workflow services are turned on (see
#OPTION(workflow)).

Example:
DoSonet hi ngToFi xIt := TRUE; //sonme action to repair the input
SPeopl e : = SORT(Person, Person. per _first_nane);
nUni ques : = DEDUP(sPeopl e, Person. per _first_name AND Person. addr ess)
: RECOVERY(DoSonet hi ngToFi xIt, 2),
FAI LURE(Emai | . si npl eSend(Syst ensPer sonel ,
Syst ensPer sonel . emai | ,

"ouch. htm));

See Also: SUCCESS, FAILURE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
351

ECL Language Reference
Workflow Services

STORED - Workflow Service

[attribute =] expression : STORED(storedname [, FEW 11,
FORMAT ([FIELDWIDTH (widthvalue)][,FIEL DHEIGHT (heightvalue)]
[,SEQUENCE(sequencevalue)][,NOINPUT)][,PASSWORD)]]) ;

attribute Optional. The name of the Attribute.

expression The definition of the attribute.

storedname A string constant containing the name of the stored attribute result.

FEW Optional. When the expression is a dataset or recordset, FEW specifies that the dataset is stored

completely within theworkunit. If not specified, then the dataset is stored asa THOR file and the
workunit contains only the name of the file. The FEW option is required when using STORED
in a SOAP-enabled MACRO and the expected input is a dataset (such as tns:xmlDataset).

FORMAT Optional. FORMAT specifies options for formatting the field on a Web form in WsECL.
FIELDWIDTH |Optiona. FIELDWIDTH specifies the width of the input box on aWeb formin WsECL.
widthvalue An integer expression defining the width (number of characters) of the input box
FIELDHEIGHT |Optiona. FIELDHEIGHT specifies the height of the input box on a Web form in WsECL.
heightvalue Aninteger expression defining the height (number of rows) of the input box

SEQUENCE Optional. SEQUENCE specifies field ordering on a Web form in WsECL.

sequencevalue Aninteger expression defining the sequential |ocation of theinput box. These can be sparsevalues
(e.g., 100, 200, 300) to alow insertion of new inputsin the future.

NOINPUT Optional. If NOINPUT is specified, the field is not displayed on the Web form in WsECL .

PASSWORD Optional. If PASSWORD is specified, a password entry box is used on the Web form in WsECL
and the field's supplied value is not displayed while entering it. The value is also hidden when
viewing stored valuesin the workunit through EclWatch or from the command line when extract-
ing the WU XML.

The STORED service stores the result of the expression with the work unit that uses the attribute so that it remains
available for use throughout the work unit. If the attribute name is omitted, then the stored value can only be accessed
afterwards from outside of the ECL execution. If an attribute name is provided then the value of that attribute will
be pulled from storage, if it has not yet been set it will be computed, stored and then used from storage. This service
implicitly causes the attribute to be evaluated at a global scope instead of the enclosing scope.

Example:

COUNT(person) : STORED(' nynane');

/] Nanme in work unit is nmynane,

/| stored val ue accessible only outside ECL
fred : = COUNT(person) : STORED('fred');

[/ Name in work unit is fred
fred := COUNT(person) : STORED('m ndy');

// Nane in work unit is mndy

/| FORVAT options for WECL form

Password : ="' := STORED(' Password', FORVAT(SEQUENCE(1), PASSWORD));//password entry box on form

Fieldl := 1 : STORED(' Fieldl', FORMAT(SEQUENCE(10)));

Field2 := 2 : STORED('Fi el d2', FORVAT(SEQUENCE(20))) ;

AddThem : = TRUE : STORED (' AddTheni , FORMAT(SEQUENCE(15))); // places field in between Fieldl and Fiel d2
H ddenVal ue := 12 : STORED (' H ddenVal ue', FORVMAT(NO NPUT)); // not on form

TextFieldl :="Fill in description' :Stored('Description',

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
352

ECL Language Reference
Workflow Services

FORMAT(FI ELDW DTH(25) , FI ELDHEI GHT(2),
SEQUENCE(5))); //Creates 25 character wide, 2 row high input box

See Also; STORED function, #WEBSERVICE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
353

ECL Language Reference
Workflow Services

SUCCESS

attribute := expression : SUCCESS(handler) ;

attribute The name of the Attribute.
expression The definition of the attribute.
handler The action to run if the expression succeeds.

The SUCCESS service executes the handler Attribute when the expression succeeds. SUCCESS notionally executes
in parallel with the successful return of the result. This service implicitly causes the attribute to be evaluated at global
scope instead of the enclosing scope. Only available if workflow services are turned on (see #OPTION(workflow)).

Example:
SPeopl e = SORT(Person, Person. first_nane);
nUni ques : = COUNT(DEDUP(sPeopl e, Per son. per _first_nane AND

Per son. addr ess))
: SUCCESS(Enmi | . si npl eSend(Syst ensPer sonel ,
Syst ensPer sonel . emai | , ' yeah. htm));

See Also: FAILURE, RECOVERY

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
354

ECL Language Reference
Workflow Services

WHEN

action: WHEN(event [,COUNT(repeat)]) ;

action Any valid ECL Action to execute.

event The event that triggers action execution. This may be either the EVENT or CRON functions,
EVENTNAME or the name of an EVENT (asashorthand for EVENT (event,*")), or any attribute
defined with those functions.

COUNT Optional. Specifiesthe number of eventsto trigger instancesof theaction. If omitted, thedefaultis
unlimited (continuously waiting for another event to trigger another instance of the action), until
the workunit is manually removed from the list of workunits being monitored by the scheduler.

repeat An integer expression.

The WHEN service executes the action whenever the event occurs.
Example:

| MPORT STD;
IF (STD.File.FileExists('test::nyfile'),
STD. Fil e. Del eteLogical File('test::nyfile'));
//deletes the file if it already exists
STD. Fi | e. Moni t or Logi cal Fi | eName(' MyFi |l eEvent','test::nmyfile');
//sets up nonitoring and the event nane
//to fire when the file is found
QUTPUT(' File Created') : WHEN(EVENT(' MyFil eEvent','*'));
//this OQUTPUT occurs only after the event has fired
/I may al so be coded in this shorthand form
/] OUTPUT('File Created') : WHEN(' MyFi | eEvent');
afile := DATASET([{ 'A", '0'}], {STRINGLO key, STRI NGLO val });
QUTPUT(afile,, test::nyfile');
//this creates a file that the DFU file monitor will find
//when it periodically polls
//**********************************
EXPORT events : = MODULE
EXPORT dai |l yAtM dnight := CRON('0 0 * * *");
EXPORT dai | yAt (| NTEGER hour,
I NTEGER mi nut e=0) : =

EVENT(' CRON' ,
(STRINGminute + ' ' + (STRING hour + ' * * *').
EXPORT dai | yAt M dday : = dail yAt (12, 0);

END;

BU LD(t eenagers) : WHEN(events. dai | yAt M dni ght) ;
BU LD(ol di es) : WHEN(events. dai |l yAt(6));

BUI LD(ol di es) : WHEN(EVENT(' Fi | eDropped', 'X'));

See Also: EVENT, CRON, NOTIFY, WAIT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
355

ECL Language Reference
Template Language

Template Language

Template Language Overview

ECL was created to be the programming language for all of our HPCC technology. Therefore, it must be able to meet
all the demands of a complete business solution: from data ingest, through querying and processing, and al the way
to fulfillment and customer outpuit.

In most every business solution that we create, the end-users will be using some kind of a custom Graphical User
Interface (GUI) application specific to their business (typically created for them by us) to specify their queriesinto the
data and set up processing jobs for the supercomputer. These custom GUI applications can generate for the user the
ECL that will actually perform the query or process. The task of generating that ECL can be daunting if approached
through a hard-coding perspective when you consider the exponential curve of all possible sets of choices the user
could make in any moderately-complex system, and as the system grows more complex the problem becomes even
worse. That means that a hard-coding solution is out of the question.

ECL's Template |language provides the solution to this problem. The Template language is a M eta-language that takes
standard XML input, typically generated from an end-user GUI application (thereby vastly simplifying the coding
problem in the GUI) and in turn generating the appropriate ECL code to implement the user's choices.

Template Language Statements

Template Language statements all begin with # to clearly differentiate them from the ECL code that will be generated
by the template. Most statements take parameters that determine their specific action in each instance.

The required statement terminator is the semi-colon (just asin ECL) and there are multi-line structures that terminate
with the #END statement. These structures may be nested within each other.

Template Symbols

Template Language uses user-defined symbols as variables. These symbols must be explicitly declared before use (see
#DECLARE). Thetag namesin the XML text being processed are also treated like user-defined symboals.

A user-defined symbol or XML tag is referenced by surrounding the name of the symbol or tag with percent signs.
An XML tag used as a template symbol may be a simple tag name, or an xpath to the XML data to retrieve (see the
RECORD structure documentation for adescription of the supported xpath syntax). If an xpath isused, then the symbol
used must be the full xpath to the data expressed inside curly braces ({}). This syntax takes several forms:

%symbol % returns the value of the symbol

%'symbol'%. returns value of the symbol as a string

%" % (an empty string) returns the contents of the current XML tag
%{xpath}% returns the value of the data pointed to by the xpath
%'{xpath}'%. returns value of the data pointed to by the xpath as a string

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
356

ECL Language Reference
Template Language

#APPEND

#APPEND(symbol, expression);

symbol The name of a previously declared user-defined symbol.
expression The string expression specifying the string to concatenate to the existing symbol contents.

The #APPEND statement adds the value of the expression to the end of the existing string contents of the symbol.

Example:
#DECLARE(MySynbol) ; [/ decl are a synbol nanmed " M/Synbol "
#SET(MySynbol , ' Hel 1 0") ; [linitialize MySynbol to "Hell 0"

#APPEND(MySynbol ,' World'); //make MySynbol's value "Hello Wrl d"

See Also: #DECLARE, #SET

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
357

ECL Language Reference
Template Language

#CONSTANT

#CONSTANT (name, value);

name A string constant containing the name of the stored value.
value An expression for the value to assign to the stored name.

The #CONSTANT statement is similar to #STORED in that it assigns the value to the name, but #CONSTANT
specifies the value is not over-writable at runtime. This statement may be used outside an XML scope and does not

require aprevious LOADXML to instantiate an XML scope.

Example:
PersonCount := 0 : STORED(' nynane');

#CONSTANT(' nmynane' , 100) ;
/I make stored PersonCount attribute value to 100

See Also: #STORED

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
358

ECL Language Reference
Template Language

#DECLARE

#DECLARE(symbol);

‘ symbol ‘ The name of the template variable.

The #DECL ARE statement declares a user-defined symbol for use in the template. The symbol is simply created and
not initialized to any particular value, therefore it may be destined to contain either string or numeric data.

Example:

#DECLARE(MySynbol); //declare a synmbol named " M/Synbol "
#SET(MySynbol ,1); //initialize M/Synbol to 1

See Also: #SET, #APPEND

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
359

ECL Language Reference
Template Language

#DEMANGLE

#DEMANGLE(identifier);

identifier A valid ECL identifier label containing only letters, numbers, dollar sign ($), and underscore ()
characters.

The #DEM ANGLE statement takes an identifier string and returns the string as it was before it was #M ANGLEd.

Example:

#DECLARE (st g) ;
#DECLARE (dnst Q) ;
#SET (mstg, #MANGLE(' SECTI ON_STATES/ AREACCDES')) ;

export resl := % nstg %
resi; /lresl = ' SECTI ON_5f STATES 2f AREACODES'

/! Do some processing with ECL Valid Label name "nstg"
#SET (dnmstg, #DEMANGLE(% nstg' %)) ;

export res2 := %dmstg' %
res2; //res2 ' SECTI ON_STATES/ AREACODES'

See Also: #MANGLE, Attribute Names

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
360

ECL Language Reference
Template Language

#ERROR

#ERROR(errormessage);

‘ errormessage ‘A string expression containing the message to display.

The#ERROR statement immediately halts processing on the workunit and displaysthe errormessage. This statement
may be used outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

#| F(TRUE)
#ERROR(' br oken') ;
QUTPUT("' br oken");
#ELSE
#WARNI NG(' naybe br oken');
OQUTPUT(' maybe broken');
#END;

See Also: #WARNING

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
361

ECL Language Reference
Template Language

#EXPAND

#EXPAND(token);

‘token ‘ The name of the MACRO parameter whose passed string constant value to expand.

The #EXPAND statement substitutes and parses the text of the passed token's string within the MACRO.

Example:

MAC join(attrname, leftDS, rightDS, |inkflags) := MACRO
attrnane := JO N(I| eftDS, ri ght DS, #EXPAND(| i nkf | ags)) ;
ENDVACRO,

MAC_j oi n(J1, Peopl e, Property, ' LEFT. | D=RI GHT. Peopl el D, LEFT OQUTER)
/ | expands out to:
/1 J1 := JOA N(Peopl e, Property, LEFT. | D=RI GHT. Peopl el D, LEFT OQUTER);

MAC_j oi n(J2, Peopl e, Property, ' LEFT. | D=RI GHT. Peopl el D)
/ | expands out to:
[/ J2 := JO N(Peopl e, Property, LEFT. | D=RI GHT. Peopl el D) ;

See Also: MACRO

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
362

ECL Language Reference
Template Language

#EXPORT

#EXPORT (symbol, data);

symbol The name of a previously declared template variable.
data The name of afield, RECORD structure, or dataset.

The #EXPORT statement produces XML text from the specified data and places it in the symbol. This allows the
LOADXML (symbol,name) form to instantiate an XML scope on the information from the data to process.

The XML output is generated with the following format:

<Dat a>
<Fi el d | abel ="<I| abel - of -fi el d>"
nanme="<nane- of - fi el d>"
posi ti on="<n>"
rawt ype="<n>"
si ze="<n>"
t ype="<ecl -type-w t hout - si ze>" />

</ Dat a>
IFBLOCKSs are simply expanded out in the XML. Nested RECORD types have an isRecord attribute that is set to 1,
and are followed by the fields they contain, and then a Field tag with no name and the isEnd attribute set to 1. This

representation is used rather than nested objects so it can be processed by a #FOR statement. Child dataset types are
also expanded out in asimilar way, and have an isDataset attribute set to 1 on the field.

Example:

NamesRecord : = RECORD
STRI NG1O first;
STRI N&20 | ast;
END;
r := RECORD
UNSI GNED4 dg_parenti d;
STRI NGLO dg_fi r st nane;
STRI NG dg_|I ast nane;
UNSI GNED1 dg_pr ange;
| FBLOCK(SELF. dg_prange % 2 = 0)
STRI NG0 extrafiel d;
END;
NanesRecor d naner ec;
DATASET(NanesRecor d) chi | dNanes;
END;

ds := DATASET(' ~RTTEST::QUT::ds', r, thor);

#DECLARE(out) ;
H#EXPORT(out, r);
QUTPUT(% out ' 99 ;
/* produces this result:
<Dat a>
<Fi el d | abel =" DG Parent| D"
name="DG_Parent| D"
posi ti on="0"
rawt ype="262401"
si ze="4"
type="unsi gned integer"/>
<Field | abel ="DG fi rst nane"
nane="DG first nane"
posi tion="1"

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
363

ECL Language Reference
Template Language

rawt ype="655364"
si ze="10"
type="string"/>
<Fi el d | abel =" DG | ast nane"
nane="DG_| ast nane"
posi tion="2"
rawt ype="-983036"
si ze="-15"
type="string"/>
<Fi el d | abel =" DG_Prange"
name="DG_Pr ange"
posi ti on="3"
rawt ype="65793"
size="1"
type="unsi gned integer"/>
<Field | abel ="ExtraFi el d"
name="ExtraFi el d"
posi ti on="4"
rawt ype="1310724"
si ze="20"
type="string"/>
<Field i sRecord="1"
| abel =" naner ec"
name="namner ec"
posi ti on="5"
rawt ype="13"
si ze="30"
type="nanesRecord"/ >
<Field | abel ="first"
name="first"
posi ti on="6"
rawt ype="655364"

si ze="10"
type="string"/>
<Field | abel ="| ast"

nanme="| ast"

position="7"

rawt ype="1310724"

si ze="20"

type="string"/>
<Field i send="1" name="nanerec"/>
<Fi el d isDataset ="1"

| abel =" chi | dNanmes"

nanme="chi | dNanes"

posi ti on="8"

rawt ype="-983020"

si ze="30"

type="tabl e of & t;unnanedé>"/>
<Field | abel ="first"

name="first"

posi ti on="9"

rawt ype="655364"

si ze="10"
type="string"/>
<Field | abel =" ast"

nanme="| ast "
posi ti on="10"
rawt ype="1310724"
si ze="20"
type="string"/>
<Field i send="1" name="chi |l dNanes"/ >
</ Dat a>
*/

[/ whi ch you can then process ;ike this:

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
364

ECL Language Reference
Template Language

LOADXM.(% out' % ' Fred');
#FOR (Fred)

#FOR (Fi el d)

#F (%B{@sEnd}' %<>"")
QUTPUT(' END) ;

#ELSE
QUTPUT(% { @ype}' %

#F (% {@®ize}' %<>"'-15" AND
% {@sRecord}' %'"' AND
%{@sDhataset}' %' ')

+ % {@®ize}' %
#END

+' "+ %{@abel}" %+ ';");
#END

#END

#END

OQUTPUT("' Done') ;

See Also: LOADXML, #EXPORTXML, #DECLARE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
365

ECL Language Reference
Template Language

#EXPORTXML

H#EXPORTXML (symbol, data);

symbol The name of atemplate variable that has not been previously declared.
data The name of afield, RECORD structure, or dataset.

The #EXPORTXML statement produces the same XML as #EXPORT from the specified data and places it in the
symbol, then does a LOADXML (symbol, ‘1abel’) on the data.

Example:

NanesRecord : = RECORD
STRI NGLO first;
STRI N&0 | ast ;

END;

r := RECORD

UNSI GNED4 dg_parenti d;

STRI NGLO dg_fi r st nane;

STRI NG dg_|I ast nane;

UNSI GNED1 dg_pr ange;

| FBLOCK(SELF. dg_prange % 2 = 0)

STRI NGQ0 extrafiel d;

END;

NanesRecor d naner ec;

DATASET(NanesRecor d) chi | dNanes;
END;

ds := DATASET(' ~RTTEST:: QUT::ds', r, THOR);

/1 This exanpl e produces the sanme result as the exanple for #EXPORT.
//Notice the | ack of #DECLARE and LOADXM. in this version:
H#EXPORTXM_(Fred, r);

#FOR (Fred)
#FOR (Fi el d)
#F (B{@sEnd}' %<>"'")
OUTPUT(' END) ;
#ELSE
QUTPUT(% { @ ype}' %
F (% {@®ize}' % <> "'-15 AND
% {@sRecord}' %'' AND
% {@sDataset}' %'")
+ B {@®ize}' %
#END
+' '+ %{@abel}" %+ ';");
#END
#END
#END
QUTPUT(' Done') ;

//**

/] These exanpl es show sone ot her possible uses of #EXPORTXM.:

[/ This could be greatly sinplified as

[l (% {lsAStringMetal nfo/Field 1]/ @ype}' %' string')
i SAString(inputField) := MACRO

#EXPORTXM_(| sASt ri ngMet al nf o, i nputField);

#IF (% 1sAString %' ")

#DECLARE(| sAStri ng) ;

#END;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
366

ECL Language Reference
Template Language

#SET(1 sAString, false);
#FOR (| sAStri ngMet al nf 0)
#FOR (Fi el d)
#F (%{@ype}' %= "string')
#SET (1sAString, true);
#END
#BREAK
#END
#END
% sAStri ng%
ENDVACRO,

get Fi el dNanme(i nput Fi el d) : = MACRO
#EXPORTXM_(Get Fi el dNanmeMet al nfo, i nput Fi el d);
% { Get Fi el dNanmeMet al nf o/ Fi el d[1] / @nane}"' %

ENDVACRO,
di spl ayl sAString(i nputField) := MACRO
QUTPUT(get Fi el dNane(i nput Fi el d)
+ TRIM I F(isAString(inputField), ' is', ' is not'))
+ ' astring.")
ENDVACRO,

SI ZEOF(r. dg_firstnane);
i SAString(r.dg_firstnane);
get Fi el dNane(r.dg_firstname);
QUTPUT(' ds.dg_firstnane i sAString? '
+ (STRING i sAString(ds.dg_firstnane));
i SAStri ng(ds. nanerec) ;

di spl ayl sASt ri ng(ds. nanerec) ;
di spl ayl sAString(r.dg_firstnane);

See Also: LOADXML, #EXPORT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
367

ECL Language Reference
Template Language

#FOR

#FOR(tag|[(filter)])

statements
#END

tag An XML tag.

filter A logical expression indicating which specific tag instances to process.
statements The Template statements to execute.

#END The #FOR structure terminator.

The #FOR structure loops through the XML, searching for each instance of the tag that meets the filter expression
and executes the statements on the data contained within that tag.

Example:

/1 This script processes XML and generates ECL COUNT st at enents
[/ which run against the datasets and filters specified in the XM.
XMLstuf f : =
' <section>'+
'<itemr' +
' <dat aset >per son</ dat aset >' +
"<filter>firstnane = \' RICHARD\' </filter>'+
'</itemr' +
'<itemr' +
' <dat aset >per son</ dat aset >' +
"<filter>firstnanme = \'"JOH\N\' </filter>"'+
'</itemr' +
'<itemr' +
' <dat aset >per son</ dat aset >' +
"<filter>firstname = \' HENRY\' </filter>"' +
"</[itemr' +
' </section>';

LOADXM_(XM_st uf f) ;
#DECLARE(Count Str); // Declare CountStr
#SET(Count Str, "'); // Initialize it to an enpty string
#FOR(i tem
#APPEND(Count Str, ' COUNT(' + % dataset' %+ '(' + %filter' %+ '));\n");
#END

QUTPUT(% Count Str' % ; // output the string just built
%Count Str% // then execute the generated "COUNT" actions

// Note that the "CountStr" will have 3 COUNT actions in it:

/1 COUNT(per son(person. firstname = ' RICHARD));
[/ COUNT(per son(person. firstname = 'JOHN));
I COUNT(per son(person. firstname = ' HENRY'));

See Also: #LOOP, #DECLARE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
368

ECL Language Reference
Template Language

#GETDATATYPE

#GETDATATYPE(field);

‘field ‘A previously defined user-defined symbol containing the name of afield in a dataset..

The #GETDATAT Y PE function returns the value type of the field.

Example:

#DECLARE(fi el dt ype) ;
#DECLARE(fi el d);

#SET(field, 'person.per_cid);
#SET(fi el dt ype, #GETDATATYPE(% i el d%));

export res := %fieldtype' %
res; // Qutput: res = 'data9'

See Also: Value Types

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
369

ECL Language Reference
Template Language

id |

#F(condition)
truestatements

[#EL SEIF(condition)

truestatements |

[#EL SE fal sestatements]

#END

condition A logical expression.

truestatements The Template statements to execute if the condition istrue.

HELSEIF Optional. Provides structure for statements to execute if its condition is true.
HELSE Optional. Provides structure for statements to execute if the condition isfalse.
fal sestatements Optional. The Template statements to execute if the condition isfalse.

#END The #F structure terminator.

The #| F structure evaluates the condition and executes either the truestatements or falsestatements (if present). This
statement may be used outsidean XML scope and does not requireapreviousLOADXML toinstantiatean XML scope.

Example:

/1 This script creates a set attribute definition of the 1st 10
/1 natural nunbers and defines an attribute nanmed " Set 10"

#DECLARE (Set String);
#DECLARE (Ndx) ;
#SET (SetString, '['); /linitialize SetString to [

#SET (Ndx, 1); /[linitialize Ndx to 1
#LOOP
F (9%Ndx% > 9) [/if we've iterated 9 tines
#BREAK /1 break out of the | oop
#ELSE [/ ot herw se

#APPEND (SetString, % Ndx' %+ ',");
// append Ndx and conma to Set String
#SET (Ndx, 9%Ndx% + 1);
//and increment the val ue of Ndx
#END
#END

#APPEND (Set String, % Ndx' %+ ']'); //add 10th el ement and cl osi ng]
EXPORT Set10 := % SetString' % //generate the ECL code
/1 This generates:

/1 EXPORT Setl10 :=[1,2,3,4,5,6,7,8,9,10];

See Also: #LOOP, #DECLARE

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
370

ECL Language Reference
Template Language

#INMODULE

#INMODULE(module, attribute);

module A previously defined user-defined symbol containing the name of an ECL source module.

attribute A previoudly defined user-defined symbol containing the name of an Attribute that may or may
not be in the module.

The #iNM ODULE statement returns a Boolean TRUE or FAL SE as to whether the attribute exists in the specified
module.

Example:

#DECLARE (nod)
#DECLARE (attr)
#DECLARE (st g)

#SET(nod, 'default')
#SET(attr, 'YearOf')

#|1 F(#1 NMODULE(%10d% %Y%attr%)
#SET(stg, %attr' %+ ' Exists In Module ' + % nod % ;

#ELSE
#SET(stg, %attr' %+ ' Does Not Exist In Module ' + % nod' % ;
#END
export res := %stg %
res;

/] Qutput: (For 'default.YearO')

/] stg = 'Year(Exists In Mdule default'

I/

[/ Qutput: (For 'default.Fred")

/] stg = 'Fred Does Not Exist In Mdule default'

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
371

ECL Language Reference
Template Language

#LOOP / #BREAK

#.OOP

[statements]
#BREAK
[statements]

#END

statements The Template statements to execute each time.
#BREAK Terminates the loop.
#END The #L OOP structure terminator.

The #L OOP structure iterates, executing the statements each time through the loop until a#BREAK statement exe-
cutes. If thereis no #BREAK then #L OOP iterates infinitely.

Example:

[/ This script creates a set attribute definition of the 1st 10
/'l natural nunbers and defines an attribute named " Set 10"

#DECLARE (Set Stri ng)
#DECLARE (Ndx)

#SET (SetString, '['); /linitialize SetString to [
#SET (Ndx, 1); /linitialize Ndx to 1
#LOOP
F (9N\dx% > 9) [/if we've iterated 9 tines
#BREAK /1 break out of the | oop
#ELSE // ot herw se

#APPEND (SetString, % Ndx' %+ ','):
/| append Ndx and conma to SetString
#SET (Ndx, 9%Ndx% + 1)
//and increment the value of Ndx
#END
#END

#APPEND (SetString, % Ndx' %+ ']'); //add 10th el ement and cl osing]
EXPORT Set10 := % SetString' % //generate the ECL code
/1 This generates:

/1 EXPORT Setl10 :=[1,2,3,4,5,6,7,8,9,10];

See Also: #FOR, #DECLARE, #lF

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
372

ECL Language Reference
Template Language

#MANGLE

#MANGLE(string);

‘ string ‘A string value.

The #M ANGL E statement takes any string and returns avalid ECL identifier label containing only letters, numbers,

and underscore () characters. #MANGLE replaces non-al phanumeric characters with an underscore () followed by
the hex value of the character it's replacing.

Example:

#DECLARE (nst g)
#DECLARE (dnst g)

#SET (nstg, #MANGLE(' SECTI ON_STATES/ AREACCDES')) ;
export resl := % nstg %

resi; /lresl = ' SECTI ON_5f STATES 2f AREACODES'
/! Do some processing with ECL Valid Label name "nstg"
#SET (dnmstg, #DEMANGLE(% nstg' %)) ;

export res2 := %dmstg' %

res2; /lres2 = ' SECTI ON_STATES/ AREACODES'

See Also: #DEMANGLE, Attribute Names

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
373

ECL Language Reference
Template Language

#ONWARNING

#ONWARNING(code, action);

code The number displayed in the "Code" column of the ECL IDE's Syntax Errors toolbox.

action One of these actions: ignore, error, or warning.

The #ONWARNING statement allows you to globally specify how to handle specific warnings. You may have it
treated as awarning, promoteit to an error, or ignore it. Useful warnings can get lost in a sea of less-useful ones. This
feature allows you to get rid of the "clutter."

The ONWARNING workflow service overrides any globa warning handling specified by #ONWARNING.

Example:

#ONWARNI NG(1041, error);
//globally pronbte "Record doesn't have an explicit
/] maxi mum record size" warnings to errors

rec :={ STRING x } : O\WARNI NG 1041, ignore);
/lignore "Record doesn't have an explicit maxi mum
/] record size" warning on this attribute, only

See Also: ONWARNING

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
374

ECL Language Reference
Template Language

#OPTION

#OPTION(option, value);

option

A case sensitive string constant containing the name of the option to set.

value

Thevaueto set the option to. Thismay be any type of value, dependent on what the option expects
to be.

The#OPTION statement istypically acompiler directive giving hintsto the code generator asto how best to generate
the executabl e code for aworkunit. This statement may be used outside an XML scope and does not require a previous
call to the LOADXML function to instantiate an XML scope.

Definition of Terms

These definitions are "internal-only" terms used in the option definitions that follow.

DFA Deterministic Finite-state Automaton.

Fold To turn a complex expression into a simpler equivalent one. For example, the expression "1+1"
can be replaced with "2" without atering the result.

Saill Writing intermediate result sets to disk so that memory is available for subsequent steps.

Funnel The + (append file) operator between datasets can be visualized as pouring all the recordsinto a
funnel and getting a single stream of records out of the bottom; hence the term "funnel.”

TopN Aninternally generated activity used in place of CHOOSEN(SORT(xx), n) where n is small, as
it can be computed much more efficiently than sorting the entire record set then discarding all
but thefirst n.

Activity An ECL operator that takes one or more datasets as inputs.

Graph All the Activitiesin a query.

Subgraph A collection of Activitiesthat can al be active at the sametimein Thor.

Peephole A method of code optimization that looks at a small amount of the unoptimized code at a time,
in order to combine operations into more efficient ones.

Available options

Thefollowing options are generally useful:

maxRunTime Default: none | Sets the maximum number of seconds ajob runs before
it times out

freezePersists Default: false |If true, does not cal culate/recal culate PERSI STed

expirePersists Default: true |If true, PERSISTS expire after the specified period.
Thisisset in the Sasha configuration setting (PersistEx-
piryDefault) or using #option (‘defaul tPersistExpiry', n)
where n is the number of days.

defaultPersistExpiry Default: none |If set, PERSISTs expire after the number of days spec-
ified (overriding the Sasha PersistExpiryDefault set-
ting).

multiplePersistinstances Default: true |If true, multiple PERSISTs are the defaullt.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

375

ECL Language Reference
Template Language

defaultNumPer sistl nstances Default: none | Specifies the default number of PERSISTSs. A value of
-1 specifiesthat all copies should be kept until they ex-
pire or manually deleted.

check Default: true | If true, check for potential overflows of records.

expandRepeatAnyAsDfa Default: true | If true, expand ANY* ina DFA.

forceFakeThor Default: false |If true, force code to use hthor.

forceGenerate Default: false |If true, force .SO to be generated eveniif it'snot worth it

globalFold Default: true | If true, perform aglobal constant fold before generating.

global Optimize Default: false |If true, perform a global optimize.

groupAllDistribute Default: false |If true, GROUP,ALL generatesaDISTRIBUTE instead
of aglobal SORT.

maximizel exer Default: false |If true, maximize the amount of work donein the lexer.

maxLength Default: 4096 | Specify maximum length of arecord.

minimizeSpillSize Default: false |If true, if a spill is filtered/deduped etc when read, re-
duce spill file size by splitting, filtering and then writ-
ing.

optimizeGraph Default: true | If true, optimize expressions in a graph before genera-
tion

orderDiskFunnel Default: true |If true, if all inputsto afunnel are disk reads, pull in

parseDfaComplexity Default: 2000 |Maximum complexity of expression to convert to a
DFA.

pickBestEngine Default: true | If true, use hthor if it is more efficient than Thor

targetCluster Type hthor|Thor| What supercomputer type are we generating code for?

roxie

topnLimit Default: 10000 | Maximum number of records to do topN on.

outputLimit Default: 10 Setsmaximum size (in Mb) of result stored in workunit.

sortlndexPayload Default: true | Specifies sorting (or not) payload fields

workflow Default: true | Specifies enabling/disabling workflow services.

foldStored Default: false |Specifies that all the stored variables are replaced with
their default values, or values overridden by #stored.
This can significantly reduce the size of the graph gen-
erated.

skipFileFormatCrcCheck Default: false | Specifies that the CRC check on indices produces a
warning and not an error.

allowedClusters Default: none | Specifies the comma-delimited list of cluster names (as
astring constant) where the workunit may execute. This
allows the job to be switched between clusters, manu-
aly or automaticaly, if the workunit is blocked on its
assigned cluster and another valid cluster is available
for use.

AllowAutoQueueSwitch Default: false |If true, specifies that the workunit is automatically re-
assigned to execute on another available cluster listed in
allowedClusters when blocked on its assigned cluster.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

376

ECL Language Reference
Template Language

performWor kflowCse

Default: false

If true, specifies that the code generator automati-
caly detects opportunities for Common Sub-expres-
sion Elimination that may be "buried" within multiple
PERSISTed attributes. If false, notification of these op-
portunities are displayed to the programmer as sugges-
tionsfor the use of the INDEPENDENT Workflow Ser-
vice.

defaultSkewError

Default: none

A value between 0.0 and 1.0 that determinesthe amount
of skew needed to generate a skew error. Thisvalueis
ignored if the ECL has provided a SKEW attribute.

defaultSkewWarning

Default: none

A value between 0.0 and 1.0 that determinesthe amount
of skew needed to generate askew warning. If set higher
than defaultSkewError, then the valueisignored.

overrideSkewError

Default: none

If set to a value between 0.0 and 1.0, it overrides any
ECL SKEW(nn) attribute valuesin the current job.

defaultSkewThreshold

Default: 1GB

The size of the dataset (in bytes) local to a single node
needed before Skew errors/iwarnings are generated if no
THRESHOL D(nn) was supplied in ECL .

overrideSkewThreshold

Default: none

The size of the dataset (in bytes) local to a single
node needed before Skew errors/warnings are gener-
ated. Overrides any ECL THRESHOLD(nn) attribute
valuesin the current job.

applylnstantEcl Transformations

Default false

Limit non-file outputs with a CHOOSEN

applyl nstantEcl TransformationsLimit

Default 100

Number of records to limit to

Thefollowing options are all about generating L ogical graphsin a workunit.

Logica graphs are stored in the workunit and viewed in ECL Watch. They include information about which at-
tribute/line number/column the symbols are defined in. Exported attributes are represented by <module>.<attribute>
in the header of the activity. Non-exported (local) attributes are represented as <module>.<exported-attribute>::<non-

exported-name>

generatel ogical Graph Default: false |If true, generates a Logical graph in addition to all the
workunit graphs.

generatel ogical GraphOnly Default: false |If true, generates only the Logical graph for the worku-
nit.

logical GraphExpandPersist Default: true |If true, generates expands PERSISTed attributes.

logical GraphExpandStored Default: false |If true, generates expands STORED attributes.

|ogical GraphlncludeName Default: true |If true, generates attribute names in the header of the
activity boxes.

logical Graphl ncludeModule Default: true | If true, generates modul e.attribute names in the header
of the activity boxes.

logical GraphDisplayJavadoc Default: true |If true, generates the Javadoc-style comments embed-

ded in the ECL in place of the standard text that would
be generated (see http://java.sun.com/j2se/javadoc/
writingdoccomments/). Javadoc-style comments on
RECORD structures or scalar attributes will not gener-
ate, as they have no graph Activity box directly associ-
ated.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

377

ECL Language Reference
Template Language

logical GraphDisplayJavadocParameters | Default: false |If true, generates information about parameters in any
Javadoc-style comments.

filteredReadSpill Threshold Default: 2 Filtered disk reads are spilled if will be duplicated more
than N times.

foldConstantCast Default: true | If true, (cast)valueisfolded at generate time.

foldFilter Default: true |If true, filters are constant folded.

foldAssign Default: true |If true, TRANSFORMS are constant folded.

foldSQL Default: true |If true, SQL is constant folded.

optimizeDiskRead Default: true | If true, include project and filter in the transform for a
disk read.

optimizeSQL Default: false |If true, optimize SQL.

optimizeThor Counts Default: true |If true, convert COUNT (diskfile) into optimized ver-
sion.

peephole Default: true | If true, pegphole optimize memcpy/memsets, etc.

SpotCSE Default: true | If true, look for common sub-expressions in TRANS-
FORMgfilters.

noteRecordSizel nGraph Default: true | Add estimates of record sizes to the graph

showActivitySzelnGraph Default: false | Show estimates of generated c++ size in the graph

showMetalnGraph Default: false |Add distribution/sort orders to the graph

showRecordCountInGraph Default: true | Show estimates of record counts in the graph

I

spotTopN Default: true | If true, convert CHOOSEN(SORT ()) into atopN activ-
ity.

spotLocalMerge Default: false |If true, if local JOIN and both sides are sorted, generate
alight-weight merge.

countlndex Default: false |If true, optimize COUNT (index) into optimized version
(also requires optimizeThorCounts).

allowThroughSpill Default: true |If true, allow through spills.

optimizeBool Return Default: true | If true, improve code when returning BOOLEAN from
afunction.

optimizeSubString Default: true | If true, don't allocate memory when doing a substring.

thorKeys Default: true | If true, allow INDEX operationsin Thor.

regexversion Default: 0 If set to 1, specifies use of the previous regular expres-
sion implementation, which may be faster but also may
exceed stack limits.

compileOptions Default: none | Specify override compiler options (such as/Zm1000 to
double the compiler heap size to workaround a heap
overflow error).

linkOptions Default: none | Specify override linker options.

optimizeProjects Default: true | If false, disables automatic field projection/distribution
optimization.

notifyOptimizedProjects Default: O If set to 1, reports optimizations to named attributes. If
set to 2, reports all optimizations.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

378

ECL Language Reference
Template Language

optimizeProjectsPreservePersists

Default: false

If true, disables automatic field projection/distribution
optimization around reading PERSISTed files. If a
PERSISTed fileis read on a different size cluster than
it was created on, optimizing the projected fields can
mean that the distribution/sort order cannot be recreat-
ed.

aggressiveOptimizeProjects

Default: false

If true, enables attempted minimization of network traf-
fic for sorts/distributes. This option doesn't usually re-
sult in significant benefits, but may do so in some spe-
cific cases.

percolateConstants

Default: true

If false, disables attempted aggressive constant value
optimizations.

Thefollowing options ar e useful for debugging:

clusterSze Default: none |Overridethe number of nodesin the cluster (for testing)

debugNIp Default: false |If true, output debug information about the NLP pro-
cessing to the .cpp file.

resourceMaxMemory Default: 400M | Maximum amount of memory a subgraph can use.

resourceMaxSockets Default: 2000 |Maximum number of sockets a subgraph can use.

resourceMaxActivities Default: 200 | Maximum number of activities a subgraph can contain.

unlimitedResources Default: false |If true, assume lots of resources when resourcing the

graphs.

traceRowXML Default: false |If true, turns on tracing in ECL Watch graphs. This
should only be used with small datasets for debugging
purposes.

_Probe Default: false |If true, display al result rows from intermediate result
sets in the graph in ECL Watch when used in conjunc-
tion with the traceRowXML option. This should only
be used with small datasets for debugging purposes.

debugQuery Default: false |If true, compile query using debug settings.

optimizeLevel Default: 3 for|Set the optimization level (optimizing compiler can be
roxie, else-1 |alot slower...).

checkAsserts Default: true |If true, enables ASSERT checking.

Thefollowing options are for advanced code generation use:

These options should be |eft alone unless you REALLY know what you are doing. Typically they are used internally
by our devel opers to enable/disable features that are till in development. Occasionally the technical support staff will
suggest that you change one of these settings to work around a problem that you encounter, but otherwise the default

settings are recommended in all cases.

filteredReadSpill Threshold Default: 2 Filtered disk reads are spilled if will be duplicated more
than N times.

foldConstantCast Default: true |If true, (cast)valueisfolded at generate time.

foldFilter Default: true | If true, filters are constant fol ded.

foldAssign Default: true | If true, TRANSFORMSs are constant folded.

foldSQL Default: true | If true, SQL is constant folded.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

379

ECL Language Reference
Template Language

optimizeDiskRead Default: true |If true, include project and filter in the transform for a
disk read.

optimizeSQL Default: false |If true, optimize SQL.

optimizeThor Counts Default: true | If true, convert COUNT(diskfile) into optimized ver-
sion.

peephole Default: true | If true, peephole optimize memcpy/memsets, etc.

SpotCSE Default: true |If true, look for common sub-expressions in TRANS-
FORMdfilters.

spotTopN Default: true | If true, convert CHOOSEN(SORT ()) into atopN activ-
ity.

spotLocalMerge Default: false |If true, if local JOIN and both sides are sorted, generate
alight-weight merge.

countlndex Default: false |If true, optimize COUNT (index) into optimized version
(also requires optimizeThorCounts).

allowThroughSpill Default: true |If true, allow through spills.

optimizeBool Return Default: true | If true, improve code when returning BOOLEAN from
afunction.

optimizeSubString Default: true | If true, don't allocate memory when doing a substring.

thorKeys Default: true |If true, allow INDEX operationsin thor.

regexvVersion Default: O If set to 1, specifies use of the previous regular expres-
sion implementation, which may be faster but also may
exceed stack limits.

compileOptions Default: none | Specify override compiler options (such as/Zm1000 to
double the compiler heap size to workaround a heap
overflow error).

linkOptions Default: none | Specify override linker options.

optimizeProjects Default: true |If false, disables automatic field projection/distribution
optimization.

notifyOptimizedPr ojects Default: O If set to 1, reports optimizations to named attributes. If
set to 2, reports al optimizations.

optimizeProjectsPreservePersists Default: false |If true, disables automatic field projection/distribution
optimization around reading PERSISTed files. If a
PERSISTed file is read on a different size cluster than
it was created on, optimizing the projected fields can
mean that the distribution/sort order cannot be recreat-
ed.

aggressiveOptimizeProjects Default: false |If true, enables attempted minimization of network traf-
fic for sorts/distributes. This option doesn't usually re-
sult in significant benefits, but may do so in some spe-
cific cases.

percolateConstants Default: true | If false, disables attempted aggressive constant value
optimizations.

exportDependencies Default: false |Generate information about inter-definition dependen-
cies

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

380

ECL Language Reference
Template Language

maxCompileThreads Default 4 for|Number of compiler instances to compile the c++
eclccserver and
1 for eclcc
reportCppWarnings Default: false | Report warnings from c++ compilation
saveCppTempFiles Default: false |Retain the generated c++ files
spanMultipleCpp Default: true | Generate awork unit in multiple c++ files
activitiesPer Cpp Default 500 for| Number of activities in each c++ file (requires span-
Linux or 800|MultipleCpp)
for Windows
obfuscateOutput Default false |If true, details are removed from the generated worku-
nit, including ECL code, estimates of record size, and
number of records.
Example:
#OPTI ON(' traceRowXm ', TRUE) ;
#OPTI O\N(' _Probe', TRUE);
my_rec := RECORD
STRI N&0 | nan®;
STRI N&0 f nane;
STRI N& age;
END;
d := DATASET([{ ' PORTLY', 'STUART' , '39'},
{ 'PORTLY', 'STACIE , '36'},
{ 'PORTLY', 'DARA" , ' 1'},
{ 'PORTLY', 'GARRETT', ' 4'}], ny_rec);

QUTPUT(d(d.age > "' 1'), {lname, fnane, age});

//************************************

[/ Thi s exanpl e denonstrates Logi cal G aphs and

/] Javadoc-styl e conment bl ocks

#OPTI ON(' gener at eLogi cal G aphOnl y' , TRUE) ;

#OPTI ON(' | ogi cal G aphDi spl ayJavadocPar anet ers' , TRUE) ;

/**
* Defines a record that contains information about a person
*/
namesRecord : =
RECORD
string20 sur nane;
stringl0 f or enane;
i nt eger 2 age : = 25;
END;
/**

Defines a table that can be used to read the information fromthe file
and then do something with it.

“ff

namesTabl e : = DATASET(' x' , nanmesRecord, FLAT) ;

/**
Allows the nane table to be filtered.

@ar am ages The ages that are allowed to be processed.
badFor enane Forname to avoid.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
381

ECL Language Reference
Template Language

@eturn the filtered dataset.

*/

nanmesTabl e filtered(SET OF | NTEGER2 ages, STRI NG badFor ename) : =
nanesTabl e(age in ages, forenane != badForenane);

QUTPUT(fil tered([10,20,33], ''));

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
382

ECL Language Reference
Template Language

#SET

#SET (symbol, expression);

symbol The name of apreviously declared user-defined symbol.
expression The expression whose value to assign to the symbol.

The #SET statement assigns the value of the expression to the symbol, overwriting any previous value the symbol
had contained.

Example:

#DECLARE(MySynbol); //declare a synbol naned " M/Synbol "
#SET(MySynbol , 1) ; [linitialize MySynbol to 1

See Also: #DECLARE, #APPEND

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
383

ECL Language Reference
Template Language

#STORED

#STORED(storedname, value);

storedname A string constant containing the name of the stored attribute resullt.
value An expression for the new value to assign to the stored attribute.

The #STORED statement assigns the value to the storedname, overwriting any previous value the stored attribute
had contained. This statement may be used outside an XML scope and does not require a previous LOADXML to

instantiate an XML scope.
Example:
Per sonCount := COUNT(person) : STORED(' nynang');

#STORED(' nmynane' , 100) ;
// change stored PersonCount attribute value to 100

See Also: STORED, #CONSTANT

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
384

ECL Language Reference
Template Language

#TEXT

H#TEXT(argument);

‘argument ‘The MACRO parameter whose text to supply.

The #TEXT statement returns the text of the specified argument to the MACRO. This statement may be used outside
an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:
extractFields(ds, outDs, f1, f2="?") := MACRO
#UNI QUENAVE(T) ;

% % : = RECORD

f1 := ds.f1;

#1 F (#TEXT(f2)<>'?")
#TEXT(f2) +' '
f2 := ds.f2;

#END

END;

out Ds := TABLE(ds, % % ;
ENDMACRO,

extract Fi el ds(peopl e, just Surnane, |astnane);
QUTPUT(j ust Sur nan®) ;

extract Fi el ds(peopl e, justNane, |astnane, firstnane);
QUTPUT(j ust Nare) ;

See Also;: MACRO

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
385

ECL Language Reference
Template Language

#UNIQUENAME

#UNIQUENAM E(namevar [,pattern]);

namevar Thelabel of thetemplate variable (without the percent signs) to use in subseguent statements (with
the percent signs) that need the generated unique name.

pattern Optional. A template for unique name construction. It should contain adollar sign ($) to indicate
the position at which a unique number is generated, and may contain a pound sign (#) to include
the namevar. Thisis useful for situations where #UNIQUENAME is being used to generate field
names and the result is meant to be viewed in the ECL IDE program, since by default #UNIQUE-
NAME generatesidentifiersthat begin with adouble underscore () and the ECL IDE treatsthem
as hidden fields. If omitted, the default patternis_ # $.

The #UNIQUENAME statement creates a valid unique ECL identifier within the context of the current scope limit.
This is particularly useful in MACRO structures as it allows the macro to be used multiple times in the same scope
without creating duplicate attribute name errors from the attribute definitions within the macro. This statement may
be used outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

| MPORT Tr ai ni ng_Conpar e;
EXPORT MAC Conpare_Resul t (npbdul e_nane, attribute_nanme) := MACRO

#UNl QUENAME(conpare_fil e);
%onpare_file%:= Traini ng_Conpare. Fi |l e_Conpare_Mast er;

#UNI QUENAVE(| ayout _per _attr);
#UNI QUENAME(conpare_attr, MField $);
//the conpare_attr fieldnane is generated like: _MField 1_
% ayout _per_attr% : = RECORD
per son. per _ci d;
%onpare_attr% : = nodul e_nane. attri but e_nane;
END;

#UNI QUENAVE(per son_attr_out);
Y%erson_attr_out % : = TABLE(person, % ayout _per_attr%;

#UNI QUENAME(per son_attr_out _di st);
Y%person_attr_out_dist% := Dl STRI BUTE(%per son_attr_out % HASH(per _cid));

#UN QUENAVE(| ayout _mat ch_out) ;
% ayout _mat ch_out % : = RECORD

dat a9 per _ci d;

bool ean Val uesMat chFl ag;

TYPEOF(nodul e_nane. attri bute_nane) M/Val ue;

TYPECF(%conpare_fil e% attri bute_nane) ConpareVal ue;
END;

#UNI QUENAVE(| ayout _conpare) ;

% ayout _conpar e% : = RECORD
%onpare_fil e% per_ci d;
%onpare_file%attribute_naneg;

END;

#UNI QUENAVE(conpar e_t abl e) ;

%onpar e_t abl e% : = TABLE(%conpare_fil e% % ayout_conpare®% ;

#UNI QUENAVE(conpar e_t abl e_di st) ;

%onpar e_t abl e_di st % : = DI STRI BUTE(%conpar e_t abl e% HASH(per _cid));
#UNI QUENAVE(conpare_attr_to_fiel d);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
386

ECL Language Reference
Template Language

% ayout _mat ch_out % %onpare_attr_to fiel d %erson_attr_out% L,
%conpare_t abl e% R) : = TRANSFORM
SELF. Val uesiat chFl ag : = (L. %onpare_attr% = R attri bute_nane);
SELF. MyVal ue : = L. %onpare_attr%
SELF. ConpareVal ue : = R attri bute_nane;
SELF := L;
END;

#UNI QUENAME(conpar e_out) ;

Y%conpare_out % : = JO N(%per son_attr_out _di st %
%onpare_t abl e_di st %
LEFT. per_cid = RI GHT. per_cid,
%onpare_attr_to _fiel d4LEFT, RIGHT),
LOCAL) ;

#UNI QUENAME(mat ch_out) ;

#UNI QUENAME(nomat ch_out) ;

%rat ch_out % : = %onpar e_out % Val uesMat chFl ag) ;

% omat ch_out % : = %onpar e_out % ~Val uesMat chFl ag) ;

COUNT(%at ch_out % ;

QUTPUT(CHOOSEN(%rat ch_out % 50)) ;
COUNT(%momat ch_out 99 ;

OQUTPUT(CHOCSEN(%momat ch_out % 50)) ;
ENDVACRO,

See Also; MACRO

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
387

ECL Language Reference
Template Language

#WARNING

#WARNING(message);

‘ message ‘A string expression containing the warning message to display.

The #WARNING statement displays the message in the workunit and/or syntax check. This statement may be used
outside an XML scope and does not require a previous LOADXML to instantiate an XML scope.

Example:

#| F(TRUE)
#ERROR(' br oken') ;
QUTPUT("' br oken");
#ELSE
#WARNI NG(' naybe br oken');
OQUTPUT(' maybe broken');
#END;

See Also: #ERROR

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
388

ECL Language Reference
Template Language

#WEBSERVICE

#WEBSERVICE([FIEL DS(fieldlist),][HEL P(hel ptext), [DESCRI PTI ON(descriptiontext)]);

FIELDS The FIELDS parameter specifies field sequence in WSECL Web forms. Thisisan exclusivelist.
If the FIELDS attribute is present, only the fields in the fielddlist are displayed on the Web form
in WsECL.

fieldlist A comma-separated list of field namesin the order in which they should appear on the form.

HELP The HEL P Parameter specifiesto add help text to the WsECL Web form.

helptext The help text to display.

DESCRIPTION |The DESCRIPTION Parameter specifies to add descriptive text to the WsSECL Web form.

descriptiontext | The description text to display.

The #WEBSERV | CEstatement sets options for the input parameters on a WsECL Web form for a published query.

Example:

#WEBSERVI CE(FI ELDS(' Fi el d1' , ' AddThem , ' Fi el d2'),
HELP(' Ent er | nteger Val ues'),
DESCRI PTION(' I f AddThemis TRUE, this adds the two integers'));
Fieldl :=1 : Stored('Fieldl");
Field2 := 2 :Stored('Field2");
AddThem : = TRUE : STORED (' AddThem) ;
H ddenVal ue := 12 : STORED (' Hi ddenValue'); //not in fieldlist, won't display on WSECl form
| F(AddThem OUTPUT(Fi el d1+Fi el d2), QUTPUT(' Not Added'));

See Also; STORED

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
389

ECL Language Reference
Template Language

#WORKUNIT

#WORKUNIT(option, value);

option

A string constant specifying the name of the option to set.

value

The value to set for the option.

The #WORKUNIT statement sets the option to the specified value for the current workunit. This statement may be
used outside an XML scope and does not require a previous call to the LOADXML function to instantiate an XML

scope.

Valid option settings are:

cluster The value parameter is a string constant containing the name of the target cluster on which the
workunit executes.

protect The value parameter specifies true to indicate the workunit is protected from deletion, or false
if not.

name The value parameter is a string constant specifying the workunit's jobname.

priority The value parameter isastring constant containing low, normal, or high to indicate the workunit's
execution priority level, or an integer constant value (not a string) to specify how far above high
the priority should be ("super-high").

scope Thevalue parameter isastring constant contai ning the scopeva ueto useto overridetheworkunit's
default scope (the user ID of the submitting person). This is a Workunit Security feature and
requires a system which is LDAP-enabled.

Example:

#WORKUNI T(' cl uster','400way'); //run the job on the 400-way target cluster

#WORKUNI T(' protect',true); //disallow del etion or archiving by Sasha

#WORKUNI T(' nanme' ," My Job'); /Iname it "My Job"

#WORKUNI T(' priority',"high'); [//run before other |lower-priority jobs

#WORKUNI T(' priority', 10); //run before other high-priority jobs

#WORKUNI T(' scope', ' Newval ') ; /loverride the default scope (on an LDAP enabl ed system

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

390

ECL Language Reference
External Services

External Services

SERVICE Structure

servicename

:= SERVICE [: defaultkeywords]

prototype : keywordlist;

END;

servicename

The name of the service the SERVICE structure provides.

defaultkeywords Optional. A comma-delimited list of default keywords and their values shared by all prototypes

in the external service.

prototype

The ECL name and prototype of a specific function.

keywordlist

A comma-delimited list of keywords and their values that tell the ECL compiler how to access
the external service.

The SERVICE structure makes it possible to create external servicesto extend the capabilities of ECL to perform any
desired functionality. These external system services are implemented as exported functionsin a.SO (Shared Object).
An ECL system service .SO can contain one or more services and (possibly) asingle .SO initialization routine.

Example:

email :=

SERVI CE

si npl eSend(STRI NG addr ess,

END;
MAttr @ =

STRI NG t enpl at e,
STRI NG subj ect) : LIBRARY=' ecl 2cw ,
I NI TFUNCTI ON=" i ni t Ecl 2QW ;

COUNT(Tr ades) : FAI LURE(enmi | . si npl eSend("' hel p@n_ri sk. coni
'Fai | Tenpl ate',
"COUNT failure'));

/1 An exanpl e of a SERVICE function returning a structured record
NanmeRecord : = RECORD

STRI NG5

title;

STRI N&0 f nane;
STRI N&0 mmane;
STRI N&0 | nane;

STRI NG5
STRI NG3
END,;

nanme_suf fi x;
nane_scor e;

Local Addr d eanLi b : = SERVI CE
NameRecor d dt (CONST STRI NG nane, CONST STRI NG server = 'Xx')
c, entrypoi nt =" acl G eanPerson73', pure;

END;
MyRecord : = RECORD
UNSI GNED i d;

STRI NG uncl eanedNane;
NanmeRecord Nane;

END;

x := DATASET('x', MyRecord, THOR);

nyRecord t

(nmyRecord L) := TRANSFORM

SELF. Nane : = Local Addr C eanLi b. dt (L. uncl eanedNan®) ;

SELF

=L

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL

Language Reference content licensed under Creative Commons public license.
391

ECL Language Reference
External Services

END;
y := PROJECT(x, t(LEFT));
QUTPUT(Y) ;

[/ The follow ng two exanpl es define the sane functions:
Test Servi cesl : = SERVI CE
menber (CONST STRI NG src)

holertl,library="test', entrypoint="menber', ctxnet hod;
t akesCont ext 1(CONST STRI NG src)

holertl,library="test', entrypoint="takesContext1l', context;
t akesCont ext 2()

holertl,library="test', entrypoint="takesContext2', context;
STRI NG t akesCont ext 3()

holertl,library="test', entrypoint="takesContext3', context;

END,;

//this form denonstrates the use of default keywords
Test Services2 := SERVICE : holert,library="test’
menber (CONST STRING src) : entrypoi nt=" menber', ct xnet hod;
t akesCont ext 1(CONST STRI NG src) : entrypoi nt ="t akesContext1l', context;
takesContext2() : entrypoi nt="takesContext2', context;
STRI NG t akesContext 3() : entrypoi nt='takesCont ext 3', cont ext;
END;

See Also: External Service Implementation, CONST

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
392

ECL Language Reference
External Services

CONST

CONST

The CONST keyword specifies that the value passed as a parameter will aways be treated as a constant. This is
essentially aflag that allows the compiler to properly optimize its code when declaring external functions.

Example:
STRI NG Cat Stri ngs(CONST STRING S1, CONST STRING S2) := S1 + S2;

See Also: Functions (Parameters Passing), SERVICE Structure

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
393

ECL Language Reference
External Services

External Service Implementation

ECL external system services are implemented as exported functionsin a.SO (Shared Object). An ECL system ser-
vice .SO can contain one or more services and (possibly) asingle .SO initialization routine. All system servicelibraries
must be thread safe.

All exported functions in the .SO (hereafter referred to as "entry points') must adhere to certain calling and naming
conventions. First, entry points must use the"C" naming convention. That is, function name decoration (like that used
by C++) is not allowed.

Second, the storage class of __declspec(dllexport) and declaration type _cdecl need to be declared for Windows/Mi-
crosoft C++ applications. Typicaly, SERVICE_CALL isdefined as _declspec(dllexport) and SERVICE_API is de-
fined as_cdecl for Windows, and left as nulls for Linux. For example:

Extern "C' _decl spec(dl | export) unsigned _cdecl Countchars(const unsigned |en, const char *string)

SO Initialization

Thefollowing is an example prototype for an ECL (.SO) system service initialization routine:

extern "C' void stdcall <functionName> (| Ecl WorkUnit *w);

The IEclWorkUnit is transparent to the application, and can be declared as Struct |EclWorkUnit; or simply referred
toasavoid *.

In addition, an initialization routine should retain a reference to its "Work Unit." Typicaly, a global variableis used
to retain this value. For example:

I Ecl Wor kUnit *wor kUni t ;
/1 global variable to hold the Wirk Unit reference

extern "C' void SERVICE_API nylnitFunction (IEclWrkUnit *w)
{

}
Entry Points

workUnit = w // retain reference to "Wrk Unit"

Entry points have the same definition requirements as initialization routines. However, unlike initialization routines,
entry points can return avalue. Valid return types are listed below. The following is an example of an entry point:

extern "C' __int64 SERVI CE_API PrnLog(unsigned |long |l en, const char *val)

{
}

SERVICE Structure - external

For each system service defined, a corresponding ECL function prototype must be declared (see SERVICE Struc-
ture).

servi cenane : = SERVI CE
functionname(paraneter list) [: keyword = val ue];
END;

For exanpl e:
emai | := SERVI CE
si npl eSend(STRI NG address, STRING tenplate, STRI NG subject)
LI BRARY=' ecl 2cw , | NI TFUNCTI ON='i ni t Ecl 2CWw ;
END;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
394

ECL Language Reference
External Services

Keywords

Thisisthelist of valid keywords for use in service function prototypes:

LIBRARY Indicates the name of the .SO module an entry point is defined in.

ENTRYPOINT Specifies aname for the entry point. By default, the name of the entry point isthe func-
tion name.

INITFUNCTION Specifies the name of the initialization routine defined in the module containing the
entry point. Currently, the initialization function is called once.

INCLUDE Indicates the function prototype is in the specified include file, so the generated CPP

must #include that file. If INCLUDE is not specified, the C++ prototype is generated
from the ECL function definition.

C Indicates the generated C++ prototype is enclosed within an extern "C" rather than just
extern.
PURE Indicates the function returns the same result every time you call it with the same para-

meters and has no side effects. This alows the optimizer to make more efficient calls
to the function in some cases.

ONCE Indicates the function has no side effects and is evaluated at query execution time, even
if the parameters are constant. This allows the optimizer to make more efficient callsto
the function in some cases.

ACTION Indicates the function has side effects and requires the optimizer to not remove callsto
the function.

CONTEXT Internal use, only. Indicates an extra internal context parameter (ICodeContext *) is
passed to the function. This must be the first function parameter.

GLOBALCONTEXT Internal use, only. Same as CONTEXT, but there are restrictions on where the function
can be used (for example, not in a TRANSFORM).

CTXMETHOD Internal use, only. Indicatesthefunctionisactually amethod of theinternal code context.

Data Types

Please see the BEGINC++ documentation for data type mapping.

Passing Set Parameters to a Service

Three types of set parameters are supported: INTEGER, REAL, and STRINGn.
INTEGER

If you want to sum up al the elements in a set of integers with an externa function, to declare the function in the
SERVICE structure:

Set FuncLi b : = SERVI CE
I NTEGER Sum nt (SET OF | NTEGER ss) :
hol ert!,library="dab', entrypoint="rtl Sumnt";
END,;
X:= 3+4.5;
Set FuncLi b. Sum nt ([x, 11.79]); //passed two REAL nunbers - it works

To define the external function, in the header (.h) file:

_int64 rtlSum nt(unsigned len, _ int64 * a);

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
395

ECL Language Reference
External Services

In the source code (.cpp) file:

_int64 rtlSum nt(unsigned len, __int64 * a) {
__int64 sum = 0;
for(unsigned i =0; i <len; i++) {

sum += ali];

}

return sum

}

The first parameter contains the length of the set, and the second parameter is an int array that holds the elements of
the set. Note: In declaring the function in ECL, you can also have sets of INTEGER4, INTEGER2 and INTEGER1,
but you need to change the type of the C function parameter, too. Therelationship is:

| NTEGCER8 -- __int64
| NTEGER4 -- int

| NTEGER2 -- short

| NTEGERL -- char

REAL
If you want to sum up all the elementsin a set of real numbers:

To declare the function in the SERVICE structure:

Set FuncLi b : = SERVI CE
REAL8 SunReal (SET OF REAL8 ss)
holertl,library="'dab', entrypoint="rtl SunReal ';
END;

I NTEGER r1 : = 10;

r2 := 20. 345;

Set FuncLi b. SunReal ([r1, r2]);

// intentionally passed an integer to the real set, it works too.

To define the external function, in the header (.h) file:
double rtiISumReal (unsigned len, double * a);

In the source code (.cpp) file:

doubl e rtl SunReal (unsi gned | en, double * a) {
doubl e sum = 0;
for(unsigned i =0; i < len; i++) {
sum += afi];
}

return sum

}

Thefirst parameter containsthe length of the set, and the second parameter isan array that hol dsthe elements of the set.

Note: You can aso declare the function in ECL as set of REALA4, but you need to change the parameter of the C
function to float.

STRINGnN
If you want to calculate the sum of the lengths of all the stringsin a set, with the trailing blanks trimmed off:

To declare the function in the SERVICE structure:

Set FuncLi b : = SERVI CE
| NTEGER SuntChar Len(SET OF STRI N&0 ss) :
holertl,library="dab', entrypoi nt="rtl|l SuntCharLen';
END;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
396

ECL Language Reference
External Services

strl := '1234567890" + XXxX '
str2 := "abc';
Set FuncLi b. SunChar Len([str1, str2]);

To define the external function, in the header (.h) file:
__int64 rtl SunCharLen(unsigned |len, char a[][20]);

In the source code (.cpp) file:

__int64 rtl SunChar Len(unsi gned | en, char a[][20]) {
__int64 suntrinedlen = 0;

for(unsigned i = 0; i < len; i++) {
for(int j =20-1; j >=0; j— {
ifCali]fj] '=" ") {
br eak;
}
ali][jl = 0;

suntrinedlen +=j + 1;

}

return suntrinedl en;

}

Note: In declaring the C function, we have two parameters for the set. The first parameter is the length of the set,
the second parameter is char[][n] where n is the SAME as that in stringn. Eg., if the service is declared as "integer
SumCharLen(set of string20)”, then in the C function the parameter type must be char a][20].

Plug-In Requirements

Plug-ins require an exported function with the following signature under Windows:
Extern"C" _declspec(dilexport) bool getECL PluginDefinition(ECL PluginDefinitionBlock * pb)

The function must fill the passed structure with correct information for the features of the plug-in. The structure is
defined asfollows:

Warning: Thisfunction may be called without the plugin being loaded fully. It should not make any library calls or
assume that dependent modul es have been loaded or that it has been initialised. Specifically: " The system does not call
DlIMain for process and thread initialization and termination. Also, the system does not load additional executable
modules that are referenced by the specified module.”

St ruct ECLPI ugi nDefi ni ti onBl ock
{
Size t size;
/Ilsize of passed structure - filled in by the calling function
Unsi gned nagi cVersion ;
/1 Filled in by .SO - nust be PLUG N_VERSI ON (1)
Const char *nodul eNane;
// Name of the nodul e
Const char *ECL;
/1 ECL Service definition for non-HOLE applications
Unsi gned fl ags;
/1 Type of plug-in - for user plugin use 1
Const char *version ;
/| Text describing version of plugin - used in debuggi ng
Const char *descri ption;
/| Text describing plugin

}

Toinitializeinformation in a plug-in, use aglobal variable or class and it will be appropriately constructed/destructed
when the plugin is loaded and unloaded.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
397

ECL Language Reference
External Services

Deployment

External .SOs must be deployed to the /opt/HPCCSystems/plugins directory on each node of the target environment.
If external datafilesare required, they should be either manually deployed to each node, or referenced from a network
node (the latter requires hard-coding the address in the code for the .SO). Note that manually deployed files are not
backed up with the standard SDS backup utilities.

Constraints

The full set of datatypesis supported on the Data Refinery and Data Delivery Engines (Thor/Roxie/Doxie).

An Example Service

The following code example depicts an ECL system service (.SO) called examplelib that contains one entry point
(stringfind). Thisis adlightly modified version of the Find function found in the Str standard library. Thisversion is
designed to work in the Data Refinery supercomputer.

ECL definitions

EXPORT Exanpl eLib := SERVI CE
UNSI GNED4 St ri ngFi nd(CONST STRI NG src,
CONST STRI NG tofi nd,
UNSI GNED4 i nst ance)
c, pure,entrypoint="el StringFind";
END;

.SO code module:

//**

/1 hql pl ugi ns. hpp : Defines standard val ues incl uded

in
/] the plugin header file.
//**
#i fndef __ HQLPLUG N_I NCL
#define _ HQLPLUG N_I NCL

#defi ne PLUG N_VERSI ON 1

#define PLUG N_| MPLI CI T_MODULE 1
#def i ne PLUG N_MODEL_MODULE 2
#define PLUG N_. SO MODULE 4

struct ECLPI ugi nDefi nitionBl ock
{ . .

size_t size;

unsi gned nmgi cVer si on;

const char *nodul eNane;

const char *ECL;

const char *Hol e;

unsi gned fl ags;

const char *version;

const char *descri ption;

b
t ypedef bool (*Ecl Pl ugi nDefinition) (ECLPlIuginDefinitionBlock *);

#endi f //__HQLPLUG N_I NCL

//**

/] exanplelib.hpp : Defines standard val ues included in

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
398

ECL Language Reference
External Services

/1 the plugin code file.
//**
#i f ndef EXAMPLELI B_| NCL
#defi ne EXAMPLELI B_| NCL

#i f def _W N32
#defi ne EXAMPLELI B_CALL __ cdecl
#i f def EXAMPLELI B_EXPORTS
#def i ne EXAMPLELI B_API _ decl spec(dl | export)
#el se
#defi ne EXAMPLELI B_API _ decl spec(dl | i nmport)
#endi f
#el se
#defi ne EXAMPLELI B _CALL
#defi ne EXAMPLELI B_API
#endi f

#i ncl ude "hgql pl ugi ns. hpp"

extern "C' {
EXAMPLELI B_API bool get ECLPI ugi nDefi niti on(ECLPI ugi nDefi nitionBl ock *pb);
EXAMPLELI B_API unsi gned EXAMPLELI B _CALL el Stri ngFi nd(unsi gned srclLen,
const char * src, unsigned hitlLen, const char * hit,
unsi gned i nstance) ;

}
#endi f // EXAMPLELI B_| NCL

//*********************************‘k***‘k***‘k***‘k***‘k***‘k

/] exanplelib.cpp : Defines the plugin code.
//**
#i ncl ude <menory. h>

#i ncl ude "exanpl eli b. hpp"

static char buildVersion[] = "$Nane$ Id";
#defi ne EXAMPLELI B_VERSI ON " EXAMPLELI B 1. 0. 00"

static const char * const Hol eDefinition =
" SYSTEM n"
"MODULE (SYSTEM \ n"
FUNCTI ON StringFind(string src, string search,
unsi gned4 i nstance), unsi gned4, c, nane(' el StringFind')\n"
"END\ n";

static const char * const EclDefinition =
"export ExanpleLib := SERVI CE\ n"
unsi gned integer4 StringFind(const string src,
const string tofind, unsigned4 instance)
C, pure,entrypoint="el StringFind ; \n"
"END; ";

EXAMPLELI B_API bool get ECLPI ugi nDefi nition(ECLPI ugi nDefi nitionBl ock *pb)

if (pb->size != sizeof (ECLPI ugi nDefi niti onBl ock))
return fal se;
pb- >magi cVer si on = PLUG N_VERSI ON;
pb- >versi on = EXAMPLELI B VERSION " $Nane$ Id";
pb->modul eNane = "lib_exanplelib";
pb->ECL = Ecl Definition;
pb->Hol e = Hol eDefinition;
pb->flags = PLUG N_| MPLI Cl T_MODULE;
pb->descri ption = "Exanpl eLi b exanpl e services library";
return true;

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
399

ECL Language Reference
External Services

EXAMPLELI B_API unsi gned EXAMPLELI B CALL el StringFi nd(unsi gned srclLen,
const char * src, unsigned hitlLen, const char * hit,
unsi gned i nst ance)

{
if (srcLen < hitlLen)
return O;
unsi gned steps = srclLen-hitlLen+l;
for (unsigned i = 0; i < steps; i++)
if (!'nmenmcnp((char *)src+i, hit,hitLen))
if (!--instance)
return i+1;
return O;
}

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
400

ECL Language Reference
Appendix A. Creative Commons License

Appendix A. Creative Commons
License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS
PUBLICLICENSE ("CCPL" OR "LICENSE"). THE WORK ISPROTECTED BY COPYRIGHT AND/OR OTHER
APPLICABLELAW. ANY USE OF THEWORK OTHER THAN ASAUTHORIZED UNDER THISLICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE
BOUND BY THE TERMS OF THISLICENSE. TO THE EXTENT THISLICENSE MAY BE CONSIDERED TO
BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION
OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a

" Adaptation” means a work based upon the Work, or upon the Work and other pre-existing works, such as a
trandl ation, adaptation, derivative work, arrangement of music or other aterations of aliterary or artistic work, or
phonogram or performance and includes cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form recognizably derived from the original, except that awork
that constitutes a Collection will not be considered an Adaptation for the purpose of this License. For the avoidance
of doubt, where the Work isamusical work, performance or phonogram, the synchronization of the Work in timed-
relation with amoving image ("synching") will be considered an Adaptation for the purpose of this License.

. " Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or perfor-

mances, phonograms or broadcasts, or other works or subject matter other than works listed in Section 1(f) below,
which, by reason of the selection and arrangement of their contents, constitute intellectual creations, in which the
Work isincluded in its entirety in unmodified form along with one or more other contributions, each constituting
separate and independent works in themselves, which together are assembled into a collective whole. A work that
constitutes a Collection will not be considered an Adaptation (as defined above) for the purposes of this License.

" Distribute" means to make available to the public the original and copies of the Work through sale or other
transfer of ownership.

. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this
License.
"Original Author" means, in the case of aliterary or artistic work, the individual, individuals, entity or entities

who created the Work or if no individual or entity can be identified, the publisher; and in addition (i) in the case
of a performance the actors, singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram
the producer being the person or legal entity who first fixes the sounds of a performance or other sounds; and, (iii)
in the case of broadcasts, the organization that transmits the broadcast.

. "Work" meanstheliterary and/or artistic work offered under the terms of this Licenseincluding without limitation

any production in the literary, scientific and artistic domain, whatever may be the mode or form of its expression
including digital form, such as a book, pamphlet and other writing; a lecture, address, sermon or other work of
the same nature; a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb show; a
musical composition with or without words; a cinematographic work to which are assimilated works expressed by
a process analogous to cinematography; a work of drawing, painting, architecture, sculpture, engraving or lithog-
raphy; a photographic work to which are assimilated works expressed by a process analogous to photography; a
work of applied art; anillustration, map, plan, sketch or three-dimensional work relative to geography, topography,
architecture or science; aperformance; a broadcast; a phonogram; a compilation of datato the extent it is protected

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
401

ECL Language Reference
Appendix A. Creative Commons License

as a copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise
considered aliterary or artistic work.

0. "You" meansanindividual or entity exercising rights under this License who has not previously violated the terms
of this License with respect to the Work, or who has received express permission from the Licensor to exercise
rights under this License despite a previous violation.

h. " Publicly Perform" means to perform public recitations of the Work and to communicate to the public those
public recitations, by any means or process, including by wire or wireless means or public digital performances,
to make available to the public Works in such a way that members of the public may access these Works from
a place and at a place individually chosen by them; to perform the Work to the public by any means or process
and the communication to the public of the performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs, sounds or images.

i. "Reproduce' means to make copies of the Work by any means including without limitation by sound or visual
recordings and the right of fixation and reproducing fixations of the Work, including storage of a protected perfor-
mance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright
or rights arising from limitations or exceptions that are provided for in connection with the copyright protection under
copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in
the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the Work as
incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.
c. For the avoidance of doubt:

1. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme cannot be waived, the Licensor reserves the exclusive
right to collect such royalties for any exercise by Y ou of the rights granted under this License;

2. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect royalties through
any statutory or compulsory licensing scheme can be waived, the Licensor waives the exclusive right to collect
such royalties for any exercise by Y ou of the rights granted under this License; and,

3. Voluntary License Schemes. The Licensor waives the right to collect royalties, whether individualy or, in the
event that the Licensor isamember of a collecting society that administers voluntary licensing schemes, viathat
society, from any exercise by Y ou of the rights granted under this License.

The above rights may be exercised in al media and formats whether now known or hereafter devised. The above
rights include the right to make such modifications as are technically necessary to exercise the rights in other media
and formats, but otherwise you have no rights to make Adaptations. Subject to Section 8(f), all rights not expressly
granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of thisLicense. Y ou must include acopy of,
or the Uniform Resource Identifier (URI) for, this License with every copy of the Work Y ou Distribute or Publicly
Perform. Y ou may not offer or impose any terms on the Work that restrict the terms of this License or the ability of

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
402

ECL Language Reference
Appendix A. Creative Commons License

the recipient of the Work to exercise therights granted to that recipient under the terms of the License. Y ou may not
sublicense the Work. Y ou must keep intact all notices that refer to this License and to the disclaimer of warranties
with every copy of the Work You Distribute or Publicly Perform. When Y ou Distribute or Publicly Perform the
Work, Y ou may not impose any effective technological measures on the Work that restrict the ability of arecipient
of the Work from Y ou to exercise the rights granted to that recipient under the terms of the License. This Section
4(a) appliestothe Work asincorporated in a Collection, but this does not require the Collection apart from the Work
itself to be made subject to theterms of thisLicense. If Y ou create a Collection, upon notice from any Licensor Y ou
must, to the extent practicable, remove from the Collection any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or Collections, Y ou must, unless arequest has been made pursuant
to Section 4(a), keep intact all copyright notices for the Work and provide, reasonabl e to the medium or means Y ou
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or if the Original
Author and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing entity, journal) for
attribution ("Attribution Parties') in Licensor's copyright notice, terms of service or by other reasonable means, the
name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the
URI, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work. The credit required by this Section 4(b) may be implemented in any
reasonable manner; provided, however, that in the case of a Collection, at a minimum such credit will appear, if a
credit for all contributing authors of the Collection appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors. For the avoidance of doubt, Y ou may only use the
credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Y our
rights under this License, Y ou may not implicitly or explicitly assert or imply any connection with, sponsorship or
endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of Y ou or Y our use of the
Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution
Parties.

c. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable law, if You
Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any Collections, Y ou must not
distort, mutilate, modify or take other derogatory action in relation to the Work which would be prejudicial to the
Original Author's honor or reputation.

5. Representations, Warranties and Disclaimer

UNLESSOTHERWISE MUTUALLY AGREED TO BY THE PARTIESIN WRITING, LICENSOR OFFERS THE
WORK ASIS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING
THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIESOF TITLE, MERCHANTIBILITY, FITNESSFOR A PARTICULAR PURPOSE, NONINFRINGE-
MENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OREXEMPLARY DAMAGESARISINGOUT OF THISLICENSE OR THEUSE
OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. ThisLicense and the rights granted hereunder will terminate automatically upon any breach by Y ou of the terms of
this License. Individuals or entities who have received Collections from Y ou under this License, however, will not
have their licenses terminated provided such individuals or entities remain in full compliance with those licenses.
Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
403

ECL Language Reference
Appendix A. Creative Commons License

license terms or to stop distributing the Work at any time; provided, however that any such election will not serve
to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this
License), and this License will continue in full force and effect unless terminated as stated above.

. Miscellaneous

EachtimeY ou Distribute or Publicly Perform the Work or aCollection, the Licensor offersto therecipient alicense
to the Work on the same terms and conditions as the license granted to Y ou under this License.

. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity
or enforceability of the remainder of the terms of this License, and without further action by the parties to this
agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or
consent shall be in writing and signed by the party to be charged with such waiver or consent.

. ThisLicense constitutes the entire agreement between the parties with respect to the Work licensed here. There are
no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not
be bound by any additional provisions that may appear in any communication from Y ou. This License may not be
modified without the mutual written agreement of the Licensor and Y ou.

. Therights granted under, and the subject matter referenced, in this License were drafted utilizing the terminology
of the Berne Convention for the Protection of Literary and Artistic Works (as amended on September 28, 1979),
the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms
Treaty of 1996 and the Universal Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are sought to be enforced according to
the corresponding provisions of the implementation of those treaty provisionsin the applicable national law. If the
standard suite of rights granted under applicable copyright law includes additional rights not granted under this
License, such additional rights are deemed to beincluded in the License; this License is not intended to restrict the
license of any rights under applicable law.

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
404

ECL Language Reference
Index

Symbols
#APPEND, 357
#BREAK, 372
#CONSTANT, 358
#DECLARE, 359
#DEMANGLE, 360
#EL SE, 370

#EL SEIF, 370

#END, 372

#ERROR, 361
#EXPAND, 362
#EXPORT, 363
#EXPORTXML, 366
#FOR, 368
#GETDATATYPE, 369
#F, 370
#NMODULE, 371
#LOOP, 372
#MANGLE, 373
#ONWARNING, 374
#OPTION, 375

#SET, 383

#STORED, 384
#TEXT, 385
#UNIQUENAME, 386
#WARNING, 388
#WEBSERVICE, 389
#WORKUNIT, 151, 390
.ECL files, 23

.S0, 394
__COMPRESSED__, 63

A

ABS, 134

ABS function, 134
ACOQOS, 135

ACOS function, 135
Actions as Definitions, 27
Addition, 28

AFTER, 139
AGGREGATE, 136

AGGREGATE function, 136

Index

ALL, 96, 170, 202, 218, 253, 260, 263, 339

ALL keyword, 96
ALLNODES, 138
ALLNODES function, 138
AND, 35, 54

AND NOT, 54

ANY, 20

APPLY, 139

APPLY function, 139
arguments, 18

arithmetic operators, 28
AS, 100

ASCII, 64, 140, 256
ASCII function, 140
ASIN, 141

ASIN function, 141
ASSERT, 142

ASSERT function, 142
ASSTRING, 144
ASSTRING function, 144
ATAN, 145

ATAN function, 145, 146
ATAN2, 146

ATAN2 function, 146
ATMOST, 218, 264
AVE, 147

AVE function, 147

B

BEFORE, 139
BEGINC++, 111
BEGINC++ Structure, 111
BEST, 264, 324
BETWEEN, 35

Between Operator, 35
BIG_ENDIAN, 37

Binary values, 12

Bitshift Left, 29

Bitshift operators, 28
Bitshift Right, 29

Bitwise AND, 28

Bitwise Exclusive OR, 28
Bitwise NOT, 28

Bitwise operators, 28
Bitwise OR, 28

BLOB in INDEX, 55
Boolean, 14

BOOLEAN, 36, 85
Boolean AND, 30
Boolean Definition, 14, 17
Boolean NOT, 30, 30
Boolean OR, 30
BOOLEAN value type, 36
BUILD, 148

BUILD action, 78, 80

C

CASE, 153, 263
CASE function, 153
Casting Rules, 50
CATCH, 154

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
405

ECL Language Reference
Index

CATCH Function, 154
Character Sets, 15
CHECKPOINT, 342
CHECKPOINT workflow service, 342
Child Dataset, 70

child dataset records, 70
CHOQSE, 155

CHOOQSE function, 155
CHOOQOSEN, 61, 70, 156
CHOQSEN function, 156
CHOOQSESETS, 157
CHOQSESETS function, 157
CLUSTER, 148, 254, 255, 257, 258, 348
CLUSTERSIZE, 158
COMBINE, 159

COMBINE function, 159
comparison operator, 29, 331
COMPRESSED, 63, 78, 254
COMPRESSION, 148
Concatenation, 33, 71

CONST, 18, 142, 393

CONST Function, 393
Constant set, 14

constant values, 14, 68
constants, 11
CORRELATION, 162
CORRELATION function, 162
COS, 164

COSfunction, 164

COSH, 165

COSH function, 165

COUNT, 61, 70, 166, 231, 231, 298, 355
COUNT function, 166

COUNTER, 71, 108, 132, 173, 201, 222, 237, 248, 276

COVARIANCE, 167
COVARIANCE function, 167
CRON, 169

CRON function, 169

CSV, 64, 67, 253, 255, 259, 269
CSV Files, 64, 255

D

DATA, 43

Datastring, 11

DATA vauetype, 43

Dataset, 15

DATASET, 61, 61, 64, 72, 82, 148, 305
DATASET declaration, 81, 82
DATASET parameter, 19
DATASET parameters, 63
DECIMAL, 39

DECIMAL value type, 39
DEDUP, 148, 170, 241, 242

DEDUP function, 170, 170, 288
DEFAULT, 55

DEFINE, 172

DEFINE function, 172
Definition Name, 13

Definition Operator, 13
Definition Types, 14

Definition Visibility, 23, 127
Definitions as Actions, 27
DENORMALIZE, 173
DENORMALIZE function, 173
DEPRECATED, 343
DEPRECATED workflow service, 343
DESCEND, 281, 282
DICTIONARY, 76
DICTIONARY parameter, 19
DISTINCT statement in SQL, 170
DISTRIBUTE, 148, 176
DISTRIBUTE function, 176
DISTRIBUTED, 78, 148, 178
DISTRIBUTED function, 178
DISTRIBUTION, 179
DISTRIBUTION action, 337
DISTRIBUTION function, 179
Division, 28

Division by zero, 28

dot syntax, 25

Dynamic Files, 82

E

EBCDIC, 64, 181, 256
EBCDIC function, 181
ECL, 10

ECL definition, 13

ECL IDE, 11

ECL keywords, 13
EMBED, 116

EMBED Structure, 116
ENCODING, 306
ENCRYPT, 63, 64, 65, 66, 254, 255, 257, 258
ENDC++, 111
ENDEMBED, 116
ENDMACRO, 125

ENTH, 157, 182

ENTH function, 182
ENUM, 49

ENUM datatype, 49
Equivalence, 29, 90
Equivalence Comparison, 29
ERROR, 183

ERROR function, 183, 191
ESCAPE, 64
EVALUATE, 184

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

406

ECL Language Reference

Index
EVALUATE action, 184 forward reference, 10, 90, 172
EVALUATE function, 184 FROM, 100
EVENT, 186 FROMJSON, 196
EVENT function, 186 FROMJSON function, 196
EVENTEXTRA, 188 FROMUNICODE, 197
EVENTEXTRA function, 188 FROMUNICODE function, 197
EVENTNAME, 187 FROMXML, 198
EXCEPT, 97 FROMXML function, 198
EXCEPT keyword, 97 FULL ONLY, 221
EXCLUSIVE, 157 FULL OUTER, 221
EXISTS, 189 FUNCTION, 118
EXISTS function, 189 FUNCTION Structure, 118
EXP, 190 FUNCTIONMACRO, 121
EXP function, 190, 232 FUNCTIONMACRO Structure, 121
EXPIRE, 148, 225, 226, 254, 255, 257, 258, 348 Functions, 18
Explicit Casting, 50
EXPORT, 23, 85, 98 G
EXPORTed, 25 GETENV, 199

EXPORTed Definitions, 25
Expression, 13

Expressions, 28

Expressions and Operators, 28
Expressions as Actions, 27
EXTEND, 253, 260

Extended PARSE, 266

Extended PARSE Examples, 266
External Service, 394

GETENYV function, 199
GETISVALID, 85

GLOBAL, 200, 345

GLOBAL function, 200

GLOBAL workflow service, 200, 345
GRAPH, 201

GRAPH function, 201

Greater or Equal, 29

aI . Greater Than, 29

external system services, 394 GROUP, 99, 159, 173, 269, 288
Group, 202

F GROUP function, 202, 330

FAIL, 142, 154, 191 GROUP keyword, 99, 332

FAIL action, 183, 191 GROUPED, 61, 72, 218

FAILCODE, 192

FAIL CODE function, 192 H

FAILMESSAGE, 154, 193, 209, 306

FAILMESSAGE function, 193 HASH, 170, 203, 218

HASH function, 203

FAILURE, 344 .
FAILURE workflow service, 192, 344 HASH32 function, 204
HASH64, 204, 205
FALSE, 36, 109 .
HASHG64 function, 205
FALSE keyword, 109 A SHORC. 206
FETCH, 194 ’

HASHCRC function, 206
HASHMDS5, 207
HASHMDS5 function, 207
HAVING, 208

FETCH function, 194
FEW, 136, 148, 156, 200, 218, 309, 318, 345, 352
field sequence, 389

E:fésgg?ﬁé,\] 148 HAVING function, 208
Filters, 17 ’ HEADING, 64, 256, 257, 258, 306
heapsort, 310
FIRST, 76, 145, 263 Hexadecimal, 11, 12
FLAT, 63
Flat Files, 254 HPCC, 10
L hthor, 310

floating point, 38
Foreign files, 81
FORWARD, 127

HTTPCALL, 209
HTTPCALL Function, 209
HTTPCALL Options, 209

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
407

ECL Language Reference

Index
I K
IF, 210 KEEP, 170, 218, 264
IF function, 210 KEYDIFF, 225
IFBLOCK, 52 KEY DIFF function, 225
IFF, 211 KEYED, 102, 147, 162, 166, 167, 189, 218, 231, 231,

IFF function, 211

Implicit Casting, 50

Implicit Dataset, 83

Implicit Dataset Relationality, 83
IMPORT, 100

IMPORT AS, 100

IMPORT FROM, 100
IMPORT function, 212
IMPORTed, 25

IN, 34

In Line Dataset, 68

IN Operator, 34

in-line a set of data, 68
In-Line Dataset, 68
INDEPENDENT, 346
INDEPENDENT workflow service, 346
INDEX, 78

INDEX declaration, 78
Indexing, 15

Inline TRANSFORMS, 132, 132
INNER, 242

insertionsort, 310
INTEGER, 11, 37, 85, 395
Integer Division, 28
INTEGER value type, 37
INTERFACE, 123
interface, 316

INTERFACE Structure, 123
INTERNAL, 229
INTFORMAT, 213
INTFORMAT function, 213
ISVALID, 214

ISVALID function, 214
ITERATE, 215

ITERATE function, 215

J

JOIN, 217, 223

JOIN function, 217, 223
JOIN Set, 223

JOIN setofdatasets, 223
Join Types, 242
joincondition, 102, 218
JOINED, 309

joinflags, 218
JOINSFULL OUTER, 221
JSON, 66, 253, 258
JSON Files, 258

244, 275, 317, 318, 332
Keyed JOIN, 220

KEYED Keyword, 102
KEYPATCH, 226
KEYPATCH action, 225
KEYPATCH function, 226
KEYUNICODE, 227
KEYUNICODE function, 227

L

Landing Zonefiles, 81
LAST, 157

LEFT, 104, 173, 247
LEFT ONLY, 221, 242
LEFT OUTER, 221, 242
LENGTH, 61, 70, 228
LENGTH function, 228
Lessor Equal, 29

Less Than, 29
LIBRARY, 127, 229
LIBRARY function, 151, 229
LIMIT, 218, 231

LIMIT function, 231
LINKCOUNTED, 61, 72
LITERAL, 306
LITTLE_ENDIAN, 37
LN, 232

LN function, 190, 232
LOAD, 85

LOADXML, 233
LOADXML function, 233

LOCAL, 24, 136, 148, 159, 170, 173, 182, 194, 202, 215,

218, 235, 241, 273, 275, 288, 309, 318, 324
LOCAL function, 78, 235
LOCALE, 52

LOG, 236, 306

LOG function, 236
LOGICAL Filenames, 81
Logica graphs, 377
logical operators, 30, 54
LOOKUP, 218

LOOP, 237

LOORP function, 201, 237
loopbody, 237
loopcondition, 237
loopcount, 237

loopfilter, 237

LZW, 78, 148

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.

408

ECL Language Reference
Index

M NOTIFY function, 251
MACRO, 125 NOTRIM, 64, 306

MACRO Structure, 125 NOXPATH, 253
MANY, 136, 200, 218, 264, 318

MAP, 239 O

MAP function, 239 ONFAIL, 154, 209, 231, 306
MATCHED, 264 ONWARNING, 347

MATCHED ALL, 264 ONWARNING workflow service, 347
MAX, 264, 304 Operators, 28

MAX function, 240 OPT, 63, 78, 102, 257, 259, 277
MAXCOUNT, 54 OR, 54

MAXLENGTH, 52, 54, 64, 78, 78, 78, 85, 148, 263 ORDERED, 252

MERGE, 148, 241, 306, 318 ORDERED function, 252

MERGE function, 241 OUTPUT, 253, 254, 255, 257, 258, 260, 260, 269
MERGEJOIN, 242 OUTPUT - CSV Files, 255
MERGEJOIN function, 223, 242 OUTPUT - JSON Files, 258

MIN, 244, 264 OUTPUT - NAMED Files, 260
MIN function, 244 OUTPUT - XML Files, 257
MODULE, 127 OUTPUT action, 253

MODULE Structure, 127 OUTPUT PipeFiles, 259

Modulus Division, 28 OUTPUT Scalar Vaues, 260
MOFN, 242 OUTPUT Thor/Flat Files, 254
MULTIPLE, 348 OUTPUT Workunit Files, 260
Multiplication, 28 OVERWRITE, 148, 225, 226, 254, 255, 257, 258
N P

N-ary merge/join, 201 PACKED, 52

Name, 13 packed decimal, 39, 39, 39
NAMED, 21, 179, 253, 260, 260 packed hexadecimal, 43

NAMED OUTPUT, 260 PARALLEL, 218, 237, 262, 275, 306
Named Output Dataset, 67 PARALLEL action, 260
NAMESPACE, 306 PARALLEL function, 262

Natural Language Parsing, 87 Parameter Passing, 18

Nested child datasets, 83 parameters, 13

NOCASE, 263, 284, 285 PARSE, 263, 264

NOFOLD, 249 PARSE Examples, 266

NOFOLD function, 249 PARSE function, 92, 263
NOLOCAL, 245 PARSE Text, 263

NOLOCAL function, 245 PARSE XML, 265

non-procedural language, 10 PARTITION LEFT, 218
NONEMPTY, 246 PARTITION RIGHT, 218
NONEMPTY function, 246 Passing aDATASET parameter, 72
NORMALIZE, 247 Passing Set Parameters, 395
NORMALIZE function, 247 PATTERN, 88

NOROOQT, 65, 66, 148 Perl regular expression, 284, 285
NOSCAN, 263 PERSIST, 348

NOSORT, 173, 218 PERSIST workflow service, 348
Not Equal, 29 PHYSICALLENGTH, 85

NOT MATCHED, 264 Pipe, 67

NOT MATCHED ONLY, 264 PIPE, 253, 259, 269

NOTHOR, 250 PIPE Files, 67

NOTHOR action, 250 PIPE function, 67, 269

NOTIFY, 251 POWER, 271

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
409

ECL Language Reference
Index

POWER function, 271
PREFETCH, 275, 275
PRELOAD, 63, 272
PRELOAD function, 272
PRIORITY, 350
PRIORITY workflow service, 350
PROCESS, 273
PROCESS function, 273
PROJECT, 275, 277
PROJECT function, 275
PULL, 278

PULL function, 278

Q

QSTRING, 41

QSTRING string constants, 11
QSTRING vauetype, 41
query library, 127, 148
quicksort, 310

QUOTE, 64, 256

R

RANDOM, 279

RANDOM function, 279
RANGE, 280

RANGE function, 280

RANK, 281

RANK function, 281
RANKED, 282

RANKED function, 282
REAL, 38, 396

REAL datatype, 38
REALFORMAT, 283
REALFORMAT Function, 283
realvalue, 293

RECORD, 52

record matching, 242

Record Matching Logic, 242
Record Set, 14, 15, 17, 31
Record Set Definition, 15
Record Set Operators, 31
RECORD structure, 31, 52, 65, 66, 68, 84, 92, 94, 106,
131, 264, 264, 275, 318, 319, 332
RECORD Structure, 52
RECORDOF, 48

RECORDOF datatype, 48
RECOVERY, 351
RECOVERY workflow service, 351
recstruct, 294

regex, 284, 285

REGEXFIND, 284
REGEXFIND function, 284
REGEXREPLACE, 285

REGEXREPLACE function, 285
REGROUP, 286
REGROUP function, 286
regular expression, 88
REJECTED, 287
REJECTED function, 287, 336
Relationality, 83
REPEAT, 259, 269
Reserved Words, 13
resultrec, 294

RETRY, 209, 305
RETURN, 26, 118, 121
RIGHT, 104, 173

RIGHT ONLY, 221
RIGHT OUTER, 221
RIGHT1, 136

RIGHT2, 136

ROLLUP, 288

ROLLUP function, 288, 309
ROUND, 292

ROUND function, 292
ROUNDUP, 293
ROUNDUP function, 293
ROW, 78, 148, 294
ROW function, 129, 294
ROWDIFF, 298
ROWDIFF function, 298
ROWS(LEFT), 105
ROWS(RIGHT), 105
ROWSET, 201
ROWSET(LEFT), 201
Roxie, 235, 310

RULE, 88

S

SAMPLE, 299

SAMPLE function, 299

Scalar OUTPUT, 260

SCAN, 263

SCAN ALL, 263

Scope, 13

SCOPE, 81

SELF, 106, 130

SELF keyword, 106
SEPARATOR, 64, 256
SEQUENTIAL, 300
SEQUENTIAL function, 300
Service Function Keywords, 395
SERVICE Structure, 139, 391, 394
SERVICE structure, 396, 396
Set, 14

SET, 18, 301

Set Definition, 14, 14

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
410

ECL Language Reference

Index
SET function, 14, 301 SUM, 317
SET OF, 46 SUM function, 317
SET OF vauetype, 46 SuperFile, 82
Set Operators, 32
Set Ordering, 15 T

SET parameters, 18

Set Parameters, 395

Sets can contain definitions and expressions, 14
SHARED, 23, 107

TABLE, 25, 318
TABLE function, 26
TABLE Function, 318

_ TAN, 320
gmregogbject, 394 TAN Function, 320
: TANH, 321

SIN function, 302
SINGLE, 256, 348
Single Row Dataset, 69
Single-Row Dataset, 69

TANH Function, 321

Template Language, 356
Temporary SuperFile, 82
TERMINATOR, 64, 256

g: m:’ficr)f:tion 303 NonE e
SINH o THISNODE Function, 322

THOR, 63, 253, 260

Thor, 310

THRESHOLD, 148, 218, 309, 318
TIMELIMIT, 209, 306
TIMEOUT, 209, 306

SIZEOF function, 304

SKEW, 148, 176, 218, 309, 318
SKIP, 108, 130, 154, 218, 231, 264
SMART, 218

SOAPACTION, 306

SOAPCALL, 56, 305, 306 TOJSON, 323 .

. TOJSON function, 323
SOAPCALL Action, 307 TOKEN. 88
SOAPCALL Function, 305, 306 Tomita |c;arsi ng, 264
SOAPCALL Options, 305 TOPN, 324

SORT, 309

sort algorithms, 310

SORT function, 309

SORTED, 78, 148, 217, 223, 241, 242, 313
SORTED function, 313

SQRT, 314

SQRT function, 314

square brackets, 9, 14, 18, 46, 237

TOPN Function, 324
TOUNICODE, 325
TOUNICODE Function, 325
TOXML, 326

TOXML function, 326
TRANSFER, 327
TRANSFER Function, 327
TRANSFORM, 130

ggg;;)?i transform function, 194, 215, 221
STEPPED function. 315 TRANSFORM Function, 273, 275
STORE. 85 uneton. TRANSFORM Function Requirements, 273, 275

Transform Requirement Process, 273

Transform Requirement Project, 275

Transform Requirements, 273, 275

TRANSFORM structure, 106, 108, 130, 192, 193, 294
Treating DICTIONARY asaDATASET, 74

TRIM, 209, 257, 259, 306, 328

TRIM Function, 328

TRIM OPT, 257, 259

TRUE, 36, 109

STORED, 316, 352

STORED function, 316
STORED workflow service, 352
STREAMED, 61, 72

String, 15

STRING, 40

string constants, 11

string operator, 33

string dlice, 15

STRING value type, 40 Iﬁﬂﬁéiyfé’ rg'zéog

STRI NGn, 396 TRUNCATE Function, 329
substring, 15 TYPE, 84

Subtraction, 28 ~ i

SUCCESS, 354 Type Casting, 50

SUCCESS workflow service, 354 TYPE structure, 52, 84

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
411

ECL Language Reference

Index
Type Transfer, 50 WIDTH, 148
TypeDef, 14 WILD, 102
TypeDef Definition, 16 WILD index filter, 102
TYPEOF, 47 WILD Keyword, 102
TY PEOF datatype, 47 WORKUNIT, 61, 337

Workunit, 67

U WORKUNIT Function, 337
UDECIMALRN, 39 Workunit OUTPUT, 260
UNGROUP, 330 WUID, 337
UNGROUP Function, 330
UNICODE, 42, 64, 256 X
Unicode string, 11 XML, 65, 67, 253, 257, 259, 263, 269
UNICODE value type, 42 XML Files, 257
UNICODEORDER, 331 XMLDECODE, 338
UNICODEORDER function, 331 XMLDECODE Function, 338
UNORDERED, 218 XMLDEFAULT, 55
UNSIGNED, 37, 39 XMLENCODE, 339
UNSIGNED valuetype, 37 XMLENCODE Function, 339
UNSORTED, 63, 318 XOR Operator, 30
UNSTABLE, 309 XPATH, 54, 209, 306
UPDATE, 148, 254, 255, 257, 258 XPATH support, 56
USE, 264
UTF-§, 11
V
Value, 14

Vaue Definition, 14

Value Type, 13

Value Types, 18, 36
VARIANCE, 332
VARSTRING, 44
VARSTRING string constants, 11
VARSTRING value type, 44
VARUNICODE, 45
VARUNICODE valuetype, 45
Virtual, 55

VIRTUAL, 127

VIRTUAL EXPORT, 98
Virtual fileposition, 55

Virtual localfileposition, 55
Virtual logicalfilename, 55
VIRTUAL SHARED, 107

W

WAIT, 334

WAIT Function, 334

WHEN, 335, 355

WHEN Function, 335

WHEN workflow service, 169, 186, 355
WHICH, 336

WHICH function, 287

WHICH Function, 336

WHOLE, 263

© 2015 HPCC Systems®. All rights reserved. Except where otherwise noted, ECL
Language Reference content licensed under Creative Commons public license.
412

	ECL Language Reference
	Table of Contents
	Introduction
	Documentation Structure
	Documentation Conventions
	ECL Syntax Case
	Optional Items
	Example Code

	ECL Basics
	Overview
	Definitions versus Actions
	Syntax Issues

	Constants
	String
	Numeric

	Definitions
	Definition Name Rules
	Reserved Words
	Definition Naming

	Basic Definition Types
	Boolean Definitions
	Value Definitions
	Set Definitions
	Set Ordering and Indexing
	Record Set Definitions
	Record Set Ordering and Indexing
	TypeDef Definitions

	Recordset Filtering
	Function Definitions (Parameter Passing)
	Simple Value Type Parameters
	SET Parameters
	Passing DATASET Parameters
	Passing DICTIONARY Parameters
	Passing Typeless Parameters
	Passing Function Parameters
	Passing NAMED Parameters

	Definition Visibility
	"Global"
	Module
	Local

	Field and Definition Qualification
	Imported Definitions
	Fields in Datasets
	Scope Resolution Operator

	Actions and Definitions
	Expressions as Actions
	Definitions as Actions
	Actions as Definitions
	Debugging Uses

	Expressions and Operators
	Expressions and Operators
	Arithmetic Operators
	Bitwise Operators
	Bitshift Operators
	Comparison Operators

	Logical Operators
	Logical Expression Grouping
	An XOR Operator

	Record Set Operators
	Set Operators
	String Operators
	IN Operator
	BETWEEN Operator

	Value Types
	BOOLEAN
	INTEGER
	INTEGER Value Ranges

	REAL
	REAL Value Ranges

	DECIMAL
	STRING
	QSTRING
	UNICODE
	DATA
	VARSTRING
	VARUNICODE
	SET OF
	TYPEOF
	RECORDOF
	ENUM
	Type Casting
	Explicit Casting
	Implicit Casting
	Type Transfer
	Casting Rules

	Record Structures and Files
	RECORD Structure
	In-line Record Definitions
	Field Definitions
	Field Inheritance
	Field Modifiers
	XPATH Support

	DATASET
	THOR/FLAT Files
	CSV Files
	XML Files
	JSON Files
	PIPE Files
	Named Output DATASETs
	In-line DATASETs
	Single-row DATASET Expressions
	Child DATASETs
	DATASET as a Parameter Type
	DATASET from DICTIONARY
	DATASET from TRANSFORM

	DICTIONARY
	DICTIONARY Definition
	DICTIONARY as a Value Type

	INDEX
	Keyed Access INDEX
	Payload INDEX
	Duplicate INDEX

	Scope and Logical Filenames
	File Scope
	Foreign Files
	Landing Zone Files
	Dynamic Files
	Temporary SuperFiles

	Implicit Dataset Relationality

	Alien Data Types
	TYPE Structure
	TYPE Structure Special Functions
	LOAD
	STORE
	PHYSICALLENGTH
	MAXLENGTH
	GETISVALID

	Parsing Support
	Parsing Support
	PARSE Pattern Value Types
	ParsePattern Definitions

	NLP RECORD and TRANSFORM Functions
	Pattern References

	XML Parsing RECORD and TRANSFORM Functions

	Reserved Keywords
	ALL
	EXCEPT
	EXPORT
	GROUP keyword
	IMPORT
	KEYED and WILD
	LEFT and RIGHT
	ROWS(LEFT) and ROWS(RIGHT)
	SELF
	SHARED
	SKIP
	TRUE and FALSE

	Special Structures
	BEGINC++ Structure
	ECL to C++ Mapping
	Available Options

	EMBED Structure
	FUNCTION Structure
	FUNCTIONMACRO Structure
	INTERFACE Structure
	MACRO Structure
	MODULE Structure
	Definition Visibility Rules
	MODULE Side-Effect Actions
	Concrete vs. Abstract (VIRTUAL) Modules
	LIBRARY Modules

	TRANSFORM Structure
	Transformation Attribute Definitions
	TRANSFORM Functions
	Inline TRANSFORMs
	Shorthand Inline TRANSFORMs

	Built-in Functions and Actions
	ABS
	ACOS
	AGGREGATE
	TRANSFORM Function Requirements - AGGREGATE
	How AGGREGATE Works

	ALLNODES
	APPLY
	ASCII
	ASIN
	ASSERT
	ASSTRING
	ATAN
	ATAN2
	AVE
	BUILD
	Index BUILD Options
	BUILD an Access Index
	BUILD a Payload Index
	BUILD from an INDEX Definition
	BUILD a Query Library

	CASE
	CATCH
	CHOOSE
	CHOOSEN
	CHOOSESETS
	CLUSTERSIZE
	COMBINE
	COMBINE TRANSFORM Function Requirements
	COMBINE Form 1
	COMBINE Form 2

	CORRELATION
	COS
	COSH
	COUNT
	COVARIANCE
	CRON
	DEDUP
	Complex Record Set Conditions

	DEFINE
	DENORMALIZE
	DENORMALIZE TRANSFORM Function Requirements

	DISTRIBUTE
	“Random” DISTRIBUTE
	Expression DISTRIBUTE
	Index-based DISTRIBUTE
	Skew-based DISTRIBUTE

	DISTRIBUTED
	DISTRIBUTION
	EBCDIC
	ENTH
	ERROR
	EVALUATE
	EVALUATE action
	EVALUATE function
	Accessing Field-level Data in a Specific Record

	EVENT
	EVENTNAME
	EVENTEXTRA
	EXISTS
	EXP
	FAIL
	FAILCODE
	FAILMESSAGE
	FETCH
	FETCH TRANSFORM Function Requirements

	FROMJSON
	FROMUNICODE
	FROMXML
	GETENV
	GLOBAL
	GRAPH
	GROUP
	HASH
	HASH32
	HASH64
	HASHCRC
	HASHMD5
	HAVING
	HTTPCALL
	IF
	IFF
	IMPORT
	INTFORMAT
	ISVALID
	ITERATE
	TRANSFORM Function Requirements - ITERATE

	JOIN
	JOIN Two Datasets
	Matching Logic - JOIN
	Options
	Keyed Joins
	Join Logic
	TRANSFORM Function Requirements - JOIN
	Join Types: Two Datasets
	JOIN Set of Datasets
	Record Matching Logic
	TRANSFORM Function Requirements - JOIN setofdatasets
	Join Types: setofdatasets

	KEYDIFF
	KEYPATCH
	KEYUNICODE
	LENGTH
	LIBRARY
	LIMIT
	LN
	LOADXML
	LOCAL
	LOG
	LOOP
	The PARALLEL Option

	MAP
	MAX
	MERGE
	MERGEJOIN
	Matching Logic
	Join Types:

	MIN
	NOLOCAL
	NONEMPTY
	NORMALIZE
	NORMALIZE Form 1
	TRANSFORM Function Requirements for Form 1
	NORMALIZE Form 2
	TRANSFORM Function Requirements for Form 2

	NOFOLD
	NOTHOR
	NOTIFY
	ORDERED
	OUTPUT
	OUTPUT Field Names
	OUTPUT Thor/Flat Files
	OUTPUT CSV Files
	OUTPUT XML Files
	OUTPUT JSON Files
	OUTPUT PIPE Files
	Named OUTPUT
	OUTPUT Scalar Values
	OUTPUT Workunit Files

	PARALLEL
	PARSE
	PARSE Text Data
	PARSE XML Data
	Extended PARSE Examples

	PIPE
	POWER
	PRELOAD
	PROCESS
	TRANSFORM Function Requirements - PROCESS

	PROJECT
	TRANSFORM Function Requirements - PROJECT
	PROJECT - Module

	PULL
	RANDOM
	RANGE
	RANK
	RANKED
	REALFORMAT
	REGEXFIND
	REGEXREPLACE
	REGROUP
	REJECTED
	ROLLUP
	TRANSFORM Function Requirements - ROLLUP
	ROLLUP Form 1
	ROLLUP Form 2
	ROLLUP Form 3

	ROUND
	ROUNDUP
	ROW
	ROW Form 1
	ROW Form 2
	ROW Form 3

	ROWDIFF
	SAMPLE
	SEQUENTIAL
	SET
	SIN
	SINH
	SIZEOF
	SOAPCALL
	SOAPCALL Function
	SOAPCALL Action

	SORT
	Sorting Algorithms
	Quick Sort
	Insertion Sort
	Heap Sort
	Stable vs. Unstable
	Performance Considerations
	CPU time vs. Total time
	Spilling to disk
	How sorting affects JOINs

	SORTED
	SQRT
	STEPPED
	STORED
	SUM
	TABLE
	TAN
	TANH
	THISNODE
	TOJSON
	TOPN
	TOUNICODE
	TOXML
	TRANSFER
	TRIM
	TRUNCATE
	UNGROUP
	UNICODEORDER
	VARIANCE
	WAIT
	WHEN
	WHICH
	WORKUNIT
	XMLDECODE
	XMLENCODE

	Workflow Services
	Workflow Overview
	CHECKPOINT
	DEPRECATED
	FAILURE
	GLOBAL - Service
	INDEPENDENT
	ONWARNING
	PERSIST
	PRIORITY
	RECOVERY
	STORED - Workflow Service
	SUCCESS
	WHEN

	Template Language
	Template Language Overview
	Template Language Statements
	Template Symbols

	#APPEND
	#CONSTANT
	#DECLARE
	#DEMANGLE
	#ERROR
	#EXPAND
	#EXPORT
	#EXPORTXML
	#FOR
	#GETDATATYPE
	#IF
	#INMODULE
	#LOOP / #BREAK
	#MANGLE
	#ONWARNING
	#OPTION
	Definition of Terms
	Available options

	#SET
	#STORED
	#TEXT
	#UNIQUENAME
	#WARNING
	#WEBSERVICE
	#WORKUNIT

	External Services
	SERVICE Structure
	CONST
	External Service Implementation
	.SO Initialization
	Entry Points
	SERVICE Structure - external
	Keywords
	Data Types
	Passing Set Parameters to a Service
	Plug-In Requirements
	Deployment
	Constraints
	An Example Service
	ECL definitions
	.SO code module:

	Appendix A. Creative Commons License
	Index

