
1

From Mining To Analytics

Making Sense of Medicare Data

2

Tripfilms.com

3

The Achievement Network

4

Archway Health Advisors

Medicare
• Centers for Medicare & Medicaid Services (CMS)

• Medicare is a national social insurance program since

1966 covering Americans aged 65 and older.

• “Fee For Service” Model

5

Medicare: Fee for Service

6

Hospital SNF

CMS

Claim Claim Claim Claims
Claim Claim Claim Claims

Claim Claim Claim Claims
Claim Claim Claim Claims

Home Health Hospital
(Readmit)

3 days 18 days 2 days 12 visits

$3,000 $12,000 $5,000 $4,000

= $24,000

Bundled Payments for Care
• Better care, smarter spending, and healthier people

• The Bundled Payments for Care Improvement (BPCI)

Payment arrangements
Based on financial and performance

• 4 Models:

Model 1: Retrospective Acute Care Hospital Stay Only
Model 2: Retrospective Acute Care Hospital Stay And Post-

acute care
Model 3: Retrospective Post-Acute Care Only
Model 4: Acute Care Hospital Stay Only

7

Medicare: BPCI

8

Hospital SNF

CMS

Claim Claim Claim Claims
Claim Claim Claim Claims

Home Health Hospital
(Readmit)

3 days 18 days

Episode
$20,000

$20,000 - ($3,000 + $12,000) = $5,000

$3,000 $12,000

Claims
• Statement of services and costs from a healthcare

provider
Patient information
Diagnosis information
Procedure(s) information

• Types:

Hospital (Inpatient) Claims
Skilled Nursing Facility (SNF) Claims
Home Health Agency (HHA) Claims
…

9

10

Episode of Care

SNF #1
SNF #2

IP #1

IP #2

SNF #2

IP #3

HHA #1

HHA #2

time

Mining Claims

11

IP SNF HHA IP IP IP IP SNF SNF

IP SNF HHA IP IP IP IP SNF SNF

IP SNF HHA IP IP IP IP SNF SNF

IP SNF HHA IP IP IP IP SNF SNF

IP SNF HHA IP IP IP IP SNF SNF

IP

IP

IP

IP

IP

Hospital
Stays

Post-Acute
Care

Anchor

Episode
Initiator

Technologies considered
• Pig (& Hadoop)

Data Processing Language
Procedural Language
Relational-oriented

• SAS
Business Analytics & BI Software
De-facto standard in Healthcare Industry
Proprietary

12

HPCC Systems
Quick Introduction

Rodrigo Pastrana -Consulting Software Engineer

WHT/082311

What is HPCC Systems

14

• Open Source distributed data-intensive computing platform
• Provides end-to-end Big Data workflow management , scheduler,

integration tools, etc
• Runs on commodity computing/storage nodes
• Binary packages available for the most common Linux distributions
• Originally designed circa 1999 (predates the original paper on

MapReduce from Dec. ‘04)
• Improved over a decade of real-world Big Data analytics
• In use across critical production environments throughout

LexisNexis for more than 10 years

WHT/082311

The HPCC Systems platform

15

WHT/082311

• Massively Parallel data processing engine
• Enables data integration on a scale not previously available
• Programmable using ECL

HPCC Systems Data Refinery (Thor)

HPCC Systems Data Delivery Engine (Roxie) • A massively parallel, high throughput, query engine
• Low latency, highly concurrent and highly available
• Several advanced strategies for efficient retrieval
• Programmable using ECL

Enterprise Control Language (ECL) • An easy to use, declarative data-centric programming
language optimized for large-scale data management
and query processing

• Highly efficient; automatically distributes workload
across all nodes; compiles to native machine code.

• Automatic parallelization and synchronization

1

2

3

The Three HPCC Systems components

Conclusion: End to End platform • No need for any third party tools

16

WHT/082311

• Declarative programming language: Describe what needs
to be done and not how to do it

• Powerful: High level data activities like JOIN, TRANSFORM,
PROJECT, SORT, DISTRIBUTE, MAP, etc. are available.

• Extensible: Modular and extensible, it can shape itself to
adapt to the type of problem at hand

• Implicitly parallel: Parallelism is built into the underlying
platform. The programmer needs not be concerned with
data partitioning and parallelism

• Maintainable: High level programming language, without
side effects and with efficient encapsulation; programs are
more succinct, reliable and easier to troubleshoot

• Complete: ECL provides a complete data programming
paradigm

• Homogeneous: One language to express data algorithms
across the entire HPCC Systems platform: data integration,
analytics and high speed delivery

• Polyglottic: ECL supports the embedding of other
languages such as Java, Python, R, SQL, and more

Enterprise Control Language (ECL)

17

WHT/082311

Current Status and Resources

• HPCCSystems.com – Tutorials, Docs, Platform distributions, and more
• Latest release 5.2.0 adds many new features and improvements

• Drastic GUI improvements
• Ganglia and Nagios plug-in for system monitoring and alerting
• Security Enhancements – tighter authentication measures, intra-

component communication encryption
• Embedded Languages – Cassandra support, memcache and redis

access
• JSON based data support
• Dynamic ESDL – Provides simple middleware/back-end interface

definition
• JAVA API project – facilitates interaction between Java based apps and

HPCC web services and c++ tools
• Available now – HPCCSystems.com

http://HPCCSystems.com

Data mining with HPCC Systems
• Thor

Responsible for processing vast amount of data
Optimized for Extraction, Transformation, Loading,

Sorting and Linking Data

• ECL
Declarative
More Data Centric
Fast & Implicitly Parallel
Inline data
Unit Tests in ECL

19

20

SQL vs ECL

SELECT
diag_group_cd,
COUNT(*) as volume
SUM(pmt_amt) as costs

FROM
inpatient_claims

GROUP BY
diag_group_cd;

TABLE(
inpatient_claims,
 {

diag_group_cd;
INTEGER volume :=

COUNT(GROUP);
REAL costs := SUM(pmt_amt);

},
diag_group_cd

);

SQL ECL

SELECT
*

FROM
inpatient_claims LEFT
JOIN ip_value_codes

RIGHT
ON LEFT.id = RIGHT.id

JOIN(
inpatient_claims,
ip_value_codes,
LEFT.id = RIGHT.id

);

21

SQL vs ECL

DECLARE my_cursor CURSOR FOR
SELECT * FROM inpatient_claims;

OPEN my_cursor

FETCH NEXT FROM my_cursor
INTO @…, @…

WHILE @@FETCH_STATUS = 0
BEGIN

…
END
CLOSE my_cursor;
DEALLOCATE my_cursor;

ITERATE(
inpatient_claims,
TRANSFORM(inpatient_claim_layout,

SELF.is_dropped :=
is_one_year_or_greater(

 RIGHT.admsn_dt,
 RIGHT.dschrgdt);

SELF := RIGHT;

)
);

SQL ECL

Tx

22

ECL ROLLUP

R1 R2 R3 R4 R5 R6

LEFT RIGHT

RA

Tx LEFT RIGHT

RB R4 R6 R5

ROLLUP(dataset, condition(LEFT, RIGHT), transformation(LEFT, RIGHT))

Processing Claims
1. The intent here is to make the series of interim claims look like a single claim for

most purposes, where the admission date of the first claim becomes the
admission date of the whole claim and the discharge date of the last claim in the
series becomes the discharge date of the whole claim.

2. 􏰂􏰂The admission date from the first series in the claim and the discharge date
from the last series in the claim define the length of the stay.

3. 􏰂􏰂The MS-DRG from the last claim in the single stay (the discharge MS-DRG)
determines whether the hospital stay becomes an anchor record, or whether the
stay is included/excluded as a readmission for an existing episode.

4. 􏰂􏰂Costs across all IP claims included in the single stay are aggregated to the stay
level.

5. Claims where the last in the series of claims has patient (…) [as “still a patient”,
not discharged], flag these and drop all of the claims in the series from the IP
hospital stay file.

23

Processing Claims With ECL
H_1 := SORT(A , bene_sk, provider, admsn_dt, dschrgdt, thru_dt);
H_2 := ROLLUP(H_1,

is_interim(LEFT, RIGHT),
merge_interim_claims(LEFT, RIGHT));

H_3 := JOIN(H_2, H_1, LEFT.bene_sk = RIGHT.bene_sk […], RIGHT
ONLY);
H_4 := PROJECT(H_3, TRANSFORM(BPCI.Layouts.ip_claim_etl_layout,
 SELF.is_dropped := TRUE;
 SELF.dropped_reason_code :=
BPCI.Layouts.DROPPED_REASON_CODES.InterimClaim;
 SELF := LEFT;
));

H := H_2 + H_4;

24

25

Template Language
EXPORT load_all_client_files(pId, pFileSet, pBaseDataDirectory) := MACRO
 LOADXML(pFileSet);
 baseDataDirectory := pBaseDataDirectory + pId + '/';
 #FOR(folder)
 #UNIQUENAME(subId)
 %subId% := %''%;
 #UNIQUENAME(subDS)
 %subDS% := Client.Datasets(%subId%);

 [...]

 #UNIQUENAME(id)
 %id% := pId + '::' + %''%;
 #UNIQUENAME(dataDir)
 %dataDir% := %baseDataDirectory% + %''% + '/';
 #UNIQUENAME(etl)
 %etl% := Client.ETL(%dataDir%, %id%);
 %etl%.run();
 #END
ENDMACRO;

26

Template Language
file_set := ’<folders>’ +
 '<folder>M201409</folder>' +
 '<folder>M201410</folder>' +
 '<folder>M201411</folder>' +
 '<folder>M201412</folder>' +
 '<folder>M201501</folder>' +
 '<folder>M201502</folder>' +
 '<folder>M201503</folder>' +
‘</folders>’;

load_all_client_files(1234, file_set, ‘/volume1/data/‘);

Beyond Processing Data

• Security & Authentication

• Collaboration

• Unit Tests

• Visualizations

27

Beyond Processing: Security

• HTTPS

• Htpasswd

• LDAP support

• File level security when using LDAP

28

Beyond Processing: Workunits
• Workunit Identifier

• Attribution

• Query

• Timings

• Results

29

30

Beyond Processing: Collaboration

31

Beyond Processing: Collaboration (2)

32

Beyond Processing: Collaboration

33

Beyond Processing: Collaboration

34

Beyond Processing: Unit Tests
interim_claims := MODULE

 // Test Data
 test_set :=
 BPCI.Test.Samples.ip_claim(
 bene_id := 1, claim_id := 1, pmt_amt := 3042.0, ...)
 + BPCI.Test.Samples.ip_claim(
 bene_id := 1, claim_id := 2, pmt_amt := 11409.0, ...)
 +
 ;
 ...
 EXPORT Actual := Step2.ip_stays;

 SHARED TestSuite := MODULE
 EXPORT Test01 := ASSERT(oActual(NOT is_dropped), claimno IN [1,2], 'Did not filter ou
 EXPORT Test02 := ASSERT(oActual(is_dropped), claimno IN [3,5]);
 END;

 EXPORT AllTests := TestSuite.Test01 + TestSuite.Test02;

END;

Beyond Processing: Unit Tests (2)

35

// Using inline dataset
simple_ip_claims := DATASET([

{1,1,'0','010001',20000201,'',20000120,200
00201,'61'},
], simplified_ip_layout);

ip_claims :=
Samples.ip_claims(simple_ip_claims);

// OR passing NAMED parameters
ip_claims := Samples.ip_claims2(
 bene_id := 1,
 claim_id := 1,
 claim_type := '00'
)

simplified_ip_layout := RECORD
 UNSIGNED bene_id;
 UNSIGNED claim_id;
 STRING claim_type;
 STRING provider_number;
 INTEGER4 through_date;
 STRING status_code;
 INTEGER4 admission_date;
 INTEGER4 discharge_date;
 STRING ms_drg_code;
END;

36

Beyond Processing: Visualization

37

Custom Visualization

38

(No) Insights

0

20

40

60

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ep
iso

de
s

Costs in $1,000

39

Insights

0

20

40

60

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ep
iso

de
s

Costs in $1,000

No readmit 1 Readmit 2 Readmits

Data Delivery: Roxie

• Data Delivery Engine

• Indexed, compressed and in-memory

• Data Warehouse Capabilities

• Data Services

40

Data Services

• Web Services over Data Warehouse

• XML/SOAP but also JSON

• Web Services defined in ECL

• Solution to add/remove data from the cluster

41

Data Service: Query
• Define service using ECL

42

INTEGER4 oOffset := 1 : STORED('Offset');
INTEGER4 oResults := 100 : STORED('Results');
INTEGER4 oStartDate := 20130201 : STORED('Begin_Date');
INTEGER4 oEndDate := 20140201 : STORED('End_Date');
...

oParams := DATASET([{ oOffset, oResults, oStartDate, oEndDate, … }],
Layouts.service_parameters_layout);

T(DATASET(RECORDOF(Datasets.dsFactEpisodeCostsIndex)) pData) := FUNCTION
 RETURN TABLE(pData,
 {
 STRING bpid := pData.bpid;
 UNSIGNED INTEGER1 model := pData.model;
 UNSIGNED INTEGER1 post_dsch_prd_length := pData.post_dsch_prd_length;

 INTEGER8 total_episodes := COUNT(GROUP);
 DECIMAL15_2 total_costs := SUM(GROUP, sum_post_dsch_prd_pay);
 DECIMAL15_2 average_costs := AVE(GROUP, sum_post_dsch_prd_pay);
 DECIMAL15_2 std_dev_costs := SQRT(VARIANCE(GROUP, sum_post_dsch_prd_pay));
 }, bpid, model, post_dsch_prd_length);
END;

ReportServices.BaseService.run_it('Summary', oParameters, T, bpid);

43

Data (Web) Services

{
 "summary": {
 "offset": 1,
 "results": 10,
 "begin_date": 20130101,
 "end_date": 20130201,
 …
 }
}

{
 "summaryResponse": {
 …
 "Results": {
 …
 "Summary": {
 "Row": [
 {
 "bpid": "9999",
 "model": 2,
 "post_dsch_prd_length": 90,
 "total_episodes": 987,
 "total_costs": 9876543.21,
 "average_costs": 12358.13

 …
 }
]
 …

Request Response

https://.../WsEcl/forms/json/query/roxie/summary

https://.../WsEcl/forms/json/query/roxie/bpidsummary
https://.../WsEcl/forms/json/query/roxie/bpidsummary

44

Data Services: WsECL

45

Data Services: WsECL

Loading up data
• Logical vs Physical

~abc::subfolder::subsubfolder::myfile
/abc/subfolder/subsubfolder/myfile

• ECL to load data into cluster:

46

oDS := DATASET(
std.File.ExternalLogicalFilename('172.0.0.1','/var/lib/.../myfile.csv'),

Layouts.ip_claim_layout,
CSV(HEADING(0)));

oDSDistributed := DISTRIBUTE(oDS, bene_id);
OUTPUT(oDSDistributed,, ‘~somewhere::over::here::myfile’, OVERWRITE);

oDS := DATASET(‘~somewhere::over::here::myfile’, Layouts.ip_claim_layout);

• ECL to use data loaded into cluster:

SuperFiles
• Super File = Symbolic link, list of sub-files
• Each sub-file must have the same layout

47

WEBLOGS_FILE := ‘~somewhere::logs::web’
Std.File.CreateSuperFile(WEBLOGS_FILE);
…

run_report() := FUNCTION
 oDS := DATASET(WEBLOGS_FILE, Layouts.weblogs_layout, CSV);
 RETURN TABLE(oDS, { ip_address; COUNT(GROUP); }, ip_address);
END;

SEQUENTIAL(
Std.File.StartSuperFileTransaction(),

 Std.File.AddSuperFile(WEBLOGS_FILE, ‘~somewhere::logs::web::2015::04::01’),
 Std.File.FinishSuperFileTransaction()
);

• Including (more) data:

48

Data Services: Reusability
EXPORT run_it(pServiceName, pParams, pReportFunction, pSortByField) := MACRO

 // Filtering data based on parameters
 #UNIQUENAME(DS);
 %DS% := WS.Datasets.dsFactEpisodeCostsIndex;
 […]

#UNIQUENAME(B)
 %B% := IF(COUNT(pParams[1].providers) = 0, %A%, %A%(provider_id IN pParams[1].providers));
 #UNIQUENAME(C)
 %C% := IF(COUNT(pParams[1].npis) = 0, %B%, %B%(at_npi IN pParams[1].npis OR op_npi IN pParams[
 […]

#UNIQUENAME(report)
 %report% := pReportFunction(%K%);

 #UNIQUENAME(sorted)
 %sorted% := SORT(%report%, pSortByField);
 #UNIQUENAME(O1)
 %O1% := OUTPUT(pParameters, NAMED('Request'));
 oSummary := DATASET([{ COUNT(%sorted%) }], WS.Layouts.service_summary_layout);
 #UNIQUENAME(O2)
 %O2% := OUTPUT(oSummary, NAMED(‘Metadata'));
 #UNIQUENAME(O3)
 %O3% := OUTPUT(

CHOOSEN(%sorted%, pParams[1].results, pParams[1].offset),
NAMED(pServiceName), ALL);

 PARALLEL(%O1%, %O2%, %O3%);
ENDMACRO;

49

AHA System Architecture

50

Archway Analytics

51

lpezet@archwayha.com
www.linkedin.com/in/lucpezet

mezzetin.blogspot.com

HPCC Systems open source portal:
http://hpccsystems.com

Thank you
Questions? Feedback?
Questions ? Feedback ?

www.linkedin.com/in/lucpezet

mezzetin blogspot com

http://www.linkedin.com/in/lucpezet
http://mezzetin.blogspot.com
http://mezzetin.blogspot.com
http://mezzetin.blogspot.com
http://www.linkedin.com/in/lucpezet
http://mezzetin.blogspot.com
http://mezzetin.blogspot.com

	Slide Number 1
	Tripfilms.com
	The Achievement Network
	Archway Health Advisors
	Medicare
	Medicare: Fee for Service
	Bundled Payments for Care
	Medicare: BPCI
	Claims
	Episode of Care
	Mining Claims
	Technologies considered
	HPCC Systems
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Current Status and Resources
	Data mining with HPCC Systems
	SQL vs ECL
	SQL vs ECL
	ECL ROLLUP
	Processing Claims
	Processing Claims With ECL
	Template Language
	Template Language
	Beyond Processing Data
	Beyond Processing: Security
	Beyond Processing: Workunits
	Beyond Processing: Collaboration
	Beyond Processing: Collaboration (2)
	Beyond Processing: Collaboration
	Beyond Processing: Collaboration
	Beyond Processing: Unit Tests
	Beyond Processing: Unit Tests (2)
	Beyond Processing: Visualization
	Custom Visualization
	(No) Insights
	Insights
	Data Delivery: Roxie
	Data Services
	Data Service: Query
	Data (Web) Services
	Data Services: WsECL
	Data Services: WsECL
	Loading up data
	SuperFiles
	Data Services: Reusability
	AHA System Architecture
	Archway Analytics
	Slide Number 51

