
ibm.com/redbooks

Securing Access to
CICS Within an SOA

Chris Rayns
Tony Delmenico
Peter Havercan

Mary Rees
Steven Webb

Rob Weiss

Provides information about transforming
CICS assets into SOA solutions

Furnishes updates about CICS
TS V3.1 and CICS TG V6

Covers CICS Web services and
CICS Web support

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Securing Access to CICS Within an SOA

December 2006

International Technical Support Organization

SG24-5756-01

© Copyright International Business Machines Corporation 2000, 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (December 2006)

This edition applies to Version 3, Release 1 of CICS Transaction Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this IBM Redbook . xi
Become a published author . xiii
Comments welcome. xiii

Summary of changes . xv
December 2006, Second Edition . xv

Part 1. Security and CICS SOA access . 1

Chapter 1. Introduction to SOA and CICS . 3
1.1 SOA on System z . 4

1.1.1 Understanding SOA and the reasons for adopting it. 4
1.1.2 The business and IT benefits of SOA . 8
1.1.3 Web services. 10
1.1.4 System z and the reason why it is appropriate for SOA 11

1.2 Transforming CICS assets into SOA solutions . 15
1.2.1 Transformation strategies . 15
1.2.2 The CICS assets that can be transformed . 16
1.2.3 Access to COMMAREA programs . 17
1.2.4 Access to terminal-oriented programs . 20

1.3 Interaction between CICS and other core WebSphere SOA products . . . 21

Chapter 2. Security concepts . 23
2.1 The importance of security . 24
2.2 Identification, Authentication, and Authorization . 25
2.3 IAA requirements. 25

2.3.1 IT environment and application architecture requirements 26
2.3.2 IAA component security . 26
2.3.3 Application-managed security . 27
2.3.4 Availability and performance requirements . 28
2.3.5 Performance and scalability requirements . 28
2.3.6 Identity management structures . 28

2.4 The role of cryptography . 29
2.5 Secret key or symmetric cryptography . 31

2.5.1 Data Encryption Algorithm or Data Encryption Standard 32
© Copyright IBM Corp. 2006. All rights reserved. iii

2.5.2 Triple DES (TDEA) . 36
2.5.3 Advanced Encryption Standard. 37

2.6 Public key or asymmetric cryptography. 37
2.6.1 The Rivest-Shamir-Adleman algorithm . 39

2.7 Hash functions. 41
2.8 Message authentication codes . 44
2.9 Digital signatures. 46

2.9.1 Using the RSA algorithm for digital signatures 49
2.9.2 Using the Digital Signature Algorithm for digital signatures 49
2.9.3 Using the Elliptic Curve Digital Signature Algorithm

for digital signatures . 51
2.9.4 Comparing RSA with Digital Signature Algorithm

for digital signatures . 51
2.10 Public key digital certificates . 51

2.10.1 tbsCertificate . 54
2.10.2 Standard extensions for X.509 V3 digital certificates 58
2.10.3 Certification paths . 61

2.11 Certificate revocation lists . 63
2.11.1 Extensions for entries in a certificate revocation list 65
2.11.2 Extensions for a certificate revocation list . 66
2.11.3 Security considerations when using digital certificates 67

2.12 The Diffie-Hellman key agreement protocol . 68
2.13 Transport Layer Security 1.0 protocol . 70

2.13.1 Overview of Transport Layer Security . 70
2.13.2 Cipher suites . 72
2.13.3 Alert protocol . 75
2.13.4 Handshake protocol . 76

2.14 Cryptographic hardware . 88
2.14.1 CP Assist for Cryptographic Functions . 88
2.14.2 Crypto Express2 Feature . 89

2.15 Integrated Cryptographic Service Facility . 90
2.15.1 Cryptographic hardware requirements for CICS WS-Security 90

Chapter 3. Security technologies . 93
3.1 Security risks . 94

3.1.1 Types of attacks . 94
3.1.2 z/OS V1R7 Integrated IP Security as compared to the z/OS Firewall

Technologies . 95
3.2 The z/OS Communications Server Policy Agent. 98
3.3 Virtual Private Network . 100

3.3.1 Internet Security Association and Key Management Protocol and
Internet Key Exchange . 101

3.3.2 Security associations and Virtual Private Network 102
iv Securing Access to CICS Within an SOA

3.3.3 Virtual Private Networks and certificates. 104
3.4 Application Transparent Transport Layer Security 105

3.4.1 Application Transparent Transport Layer Security concepts 106
3.4.2 Application Transparent Transport Layer Security

z/OS implementation . 107
3.5 z/OS intrusion detection services . 109

3.5.1 Overview of intrusion detection . 109
3.5.2 Understanding the z/OS intrusion detection services 111
3.5.3 The z/OS intrusion detection services policy 112
3.5.4 Traffic regulation for TCP connections and UDP receive queues. . 113
3.5.5 Clarifying the notion of an intrusion detection services event 114
3.5.6 Traffic Regulation Management Daemon . 115

3.6 Traditional CICS security. 115
3.6.1 CICS user IDs . 116

Part 2. Designing the secure CICS SOA solution . 119

Chapter 4. CICS Web services . 121
4.1 CICS TS and external standards. 122

4.1.1 Web services and service-oriented architectures 122
4.1.2 CICS TS Web services and industry standards 122
4.1.3 CICS compliance with Web service standards 124

4.2 Web services security exposures . 125
4.3 Transport-level security . 128

4.3.1 Hypertext Transfer Protocol basic authentication 128
4.3.2 Secure Sockets Layer or Transport Layer Security with Hypertext

Transfer Protocol . 129
4.3.3 CICS support for Secure Sockets Layer orTransport

Layer Security . 131
4.3.4 Cipher suites . 132
4.3.5 Setting the user ID on the URIMAP . 134
4.3.6 Determining the user ID order of precedence when using HTTP . . 136

4.4 Web Services-Security . 137
4.4.1 Web Services-Security road map . 139
4.4.2 Example of WS-Security . 141

4.5 CICS support for WS-Security. 145
4.5.1 Options for securing a SOAP message in CICS 146
4.5.2 Pipeline configuration file . 146
4.5.3 Resource Access Control Facility and WS-Security in CICS 152

4.6 Performance considerations . 152
4.6.1 Optimizing Secure Sockets Layer . 153
4.6.2 Performance improvements for Secure Sockets Layer. 154

4.7 Comparison of transport versus message security 154
 Contents v

Chapter 5. CICS Web support . 157
5.1 Overview of CICS Web support . 159
5.2 CICS Web support security issues . 163

5.2.1 Secure Sockets Layer support . 163
5.2.2 Identifying and authenticating the client user 164
5.2.3 Customizing basic authentication prompts 168
5.2.4 Authorization with a direct connection. 171
5.2.5 Access to static content . 176
5.2.6 Design issues . 176

5.3 Designing a secure solution . 178
5.3.1 CICS Web support security matrix . 178
5.3.2 CICS Web support security checklist . 181

Chapter 6. CICS Transaction Gateway . 185
6.1 Architecture choices . 187
6.2 CICS Transaction Gateway on distributed platforms 193

6.2.1 CICS TG for Multiplatforms V6.0. 193
6.2.2 CICS Transaction Gateway deployed on a distributed platform . . . 194

6.3 CICS Transaction Gateway on z/Series . 198
6.3.1 Remote Gateway daemon on z/OS . 198
6.3.2 WebSphere Application Server and CICS Transaction Gateway on

zSeries . 200
6.3.3 Security coordination between WebSphere and CICS 203

6.4 CICS Transaction Gateway for z/OS V6.1 . 204
6.4.1 Sample security programs . 207
6.4.2 Secure Sockets Layer . 208
6.4.3 Java Secure Sockets Extension . 209
6.4.4 Cipher suites . 210

6.5 Designing a secure solution . 211
6.5.1 CICS Transaction Gateway security matrix 212
6.5.2 CICS Transaction Gateway security checklist 215

Chapter 7. WebSphere MQ . 217
7.1 CICS transaction security . 218

7.1.1 Category One transaction definitions . 218
7.1.2 Administering the CICS adapter transactions 218

7.2 Granting CICS access to WebSphere MQ . 219
7.3 Adapter user IDs . 219
7.4 CICS initialization queue . 220
7.5 Working with WebSphere MQ and SSL . 221

7.5.1 Configuring WebSphere MQ for secured communication. 221

Chapter 8. CICS Enterprise JavaBeans support 237
8.1 Secure Sockets Layer support . 239
vi Securing Access to CICS Within an SOA

8.1.1 Improved Secure Sockets Layer support in CICS TS V2.3. 239
8.2 Authentication . 240
8.3 Authorization . 244
8.4 Security roles. 246

8.4.1 Using the RACF EJBROLE generator utility 248
8.5 Application-managed security . 249
8.6 Design issues . 250

Related publications . 251
IBM Redbooks . 251
Other publications . 251
Online resources . 252
How to get IBM Redbooks . 252
Help from IBM . 252

Index . 253
 Contents vii

viii Securing Access to CICS Within an SOA

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
CICS/ESA®
CICSPlex®
DB2®
Distributed Relational Database
Architecture™
DRDA®
eServer™
HiperSockets™
ibm.com®
IBM®

IMS™
Language Environment®
MVS™
OS/390®
Parallel Sysplex®
POWER™
RACF®
RDN™
Redbooks™
Redbooks (logo) ™
S/390®
SupportPac™

System z™
System z9™
Tivoli®
WebSphere®
z/Architecture™
z/OS®
zSeries®
z/VM®
z/VSE™
z9™

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Enterprise JavaBeans, EJB, Java, JavaBeans, J2EE, Solaris, Sun, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Active Directory, Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Securing Access to CICS Within an SOA

Preface

With the emergence of service-oriented architecture (SOA), the options for
accessing the existing IBM® Customer Information Control System (CICS®)
assets have become more varied than ever. With this variety comes the
complexity of securing these assets. This IBM Redbook is intended for IT
architects who are involved in the process of selecting, planning, and designing a
secure SOA solution that makes use of CICS assets.

This book introduces SOA and the options available for transforming CICS
assets into SOA solutions. It then discusses the principles of security, followed
by the different security technologies.

The book then reviews each technology individually, discussing the security
options that are available, the security architectures such as basic
authentication, firewalls, and the use of Secure Sockets Layer (SSL) and public
key infrastructure (PKI).

The team that wrote this IBM Redbook
This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO),
Poughkeepsie Center.

Chris Rayns is an IT Specialist and Project Leader at the ITSO, Poughkeepsie
Center in New York. Chris specializes in security and writes extensively about all
areas of S/390® security. Before joining the ITSO, he worked in IBM Global
Services in the United Kingdom (UK) as a CICS IT Specialist.

Tony Delmenico is a Senior Technical Specialist with IBM Global Services,
Australia. He has 20 years of experience in IBM mainframes, working for
customers and IBM. He has worked in a variety of technical support roles, but
predominantly in CICS. He holds a Bachelor of Business in Information
Technology degree from the Edith Cowan University.
© Copyright IBM Corp. 2006. All rights reserved. xi

Peter Havercan is a CICS Developer in the United Kingdom. He has over 20
years of experience in developing CICS. He has worked with IBM for 21 years.
He holds a Bachelor of Science degree in Mathematics from the Imperial
College, University of London, and a Master of Science degree in Physics from
the University of Waterloo, Ontario. His areas of expertise include CICS Security
and CICS Web Support, especially CICS support for SSL. He frequently gives
presentations on these topics at CICS Technical Conferences.

Mary Rees is a CICS Knowledge Engineer in the United States. She has 16
years of experience in the CICS Level 2 and Knowledge Engineering field. She
holds a degree in Chemical Engineering from the Michigan Technological
University. Her areas of expertise include connectivity between CICS regions,
terminal control, and security. Mary currently publishes Technotes to the CICS
support page in order to assist in faster problem resolution.

Steven Webb is a CICS Level 2 Software Engineer in the United States. He has
17 years of experience in Level 2, with the last 10 years being with CICS. His
primary areas of focus are CICS Web support, CICS Web Services, and Simple
Object Access Protocol (SOAP). He holds a Bachelor of Science degree in
Computer Science from the Michigan Technological University.

Rob Weiss is a z/Security Consultant and z/Software IT Architect in the United
States. He has 37+ years of experience in IT, with a focus on Mainframe
Security. He holds a degree in Mathematics from the Concord University,
Athens, West Virginia. He has worked with Resource Access Control Facility
(RACF®) since RACF’s introduction. Rob has been involved in security
consulting for commercial and governmental installations in several countries.

Thanks to the following people for their contributions to this project:

Richard Conway
Robert Haimowitz
ITSO, Poughkeepsie Center

Phil Wakelin
IBM Hursley (CICS Strategy and Planning)

Fraser Bohm
IBM Hursley (CICS Development Software Engineer)

The team that wrote the IBM Redbook Implementing CICS, SG24-7206, Nigel
Williams, Grant Ward Able, Paolo Chieregatti, Robert Herman, Tommy
Joergensen, Luis Aused Lopez, and Steve Wall.
xii Securing Access to CICS Within an SOA

Become a published author
Join us for a two-week to six-week residency program! Help write an IBM
Redbook dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You will have the opportunity to team
with IBM technical professionals, business partners, and clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our IBM Redbooks™ to be as helpful as possible. Send us your
comments about this or other IBM Redbooks in one of the following ways:

� Use the online Contact us review IBM Redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv Securing Access to CICS Within an SOA

Summary of changes

This section describes the technical changes made in this edition of the IBM
Redbook and in previous editions. This edition may also include minor
corrections and editorial changes that are not identified.

Summary of Changes
for SG24-5756-01
for Securing Access to CICS Within an SOA
as created or updated in December 12, 2006.

December 2006, Second Edition
This revision reflects the addition, deletion, or modification of the new and
changed information described below.

New information
� Chapter 1, “Introduction to SOA and CICS” on page 3
� Chapter 4, “CICS Web services” on page 121
� Chapter 7, “WebSphere MQ” on page 217

Changed information
� Chapter 2, “Security concepts” on page 23, Updated for z/OS® 1.8
� Chapter 3, “Security technologies” on page 93, Updated for z/OS 1.8
� Chapter 5, “CICS Web support” on page 157, Updated for CICS TS 3.1
� Chapter 6, “CICS Transaction Gateway” on page 185, Updated for CICS TG

V6
© Copyright IBM Corp. 2006. All rights reserved. xv

xvi Securing Access to CICS Within an SOA

Part 1 Security and
CICS SOA
access

Part 1 introduces service-oriented architecture (SOA) and its relationship to the
CICS Transaction Server (TS). It also introduces the different styles that you can
use when integrating the existing CICS assets into an SOA solution. It then
describes the security concepts and the different security technologies.

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

2 Securing Access to CICS Within an SOA

Chapter 1. Introduction to SOA and
CICS

This chapter introduces the concepts of service-oriented architecture (SOA) and
how they apply to IBM System z™, including a discussion about the business
and IT benefits of SOA and an overview of the Web services technologies. This
chapter then describes how you can transform the existing CICS assets to play a
role in the SOA solutions.

This chapter comprises the following sections:

� 1.1, “SOA on System z” on page 4

� 1.2, “Transforming CICS assets into SOA solutions” on page 15

� 1.3, “Interaction between CICS and other core WebSphere SOA products” on
page 21

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 SOA on System z

SOA is an architecture that organizations and their IT departments are adopting.
But what is it? This section provides an overview of the SOA, the benefits it
offers, and its positioning on System z.

1.1.1 Understanding SOA and the reasons for adopting it

This section discusses the growing use of SOA and attempts to explain what it
means and how organizations can benefit by adopting it.

An introduction to SOA
SOA is an evolution of best practices and technologies that have preceded it. It
combines the advantage of developments in Internet-based technology and
interoperability standards to offer unrivalled business and IT benefits. SOA is
defined in numerous ways, some more clearer than the others, but all of them
lending themselves to the concept of loosely coupled business services that are
provided in an interoperable and technology friendly manner.

SOA is an integration architecture approach that is based on the concept of
services. The business and infrastructure functions that are required to build
distributed systems are provided as services that individually or collectively
deliver application functions to either user applications or to other services.

Going further, the definition of SOA can be viewed from the following
perspectives:

� A set of business-aligned IT services that support an organization’s business
goals and objectives

� A set of architectural principles that address characteristics such as
modularity, loose coupling, and separation of functions

� An architectural style that requires a service provider, a service consumer,
and a service description

Note: SOA is, as its name implies, an architecture that allows you to
encapsulate business logic and separate it from application logic. It is not a
formal specification. To create an SOA implementation, use a technology
such as Web services or Service Component Architecture (SCA) in order to
make the architecture a reality.
4 Securing Access to CICS Within an SOA

� A set of services that can be combined and choreographed to produce
composite enterprise-scale services

� A programming model that comes with standards, tools, methods, and
technologies, such as Web services

By adopting an SOA approach and implementing it by using supporting
technologies, companies can achieve the following:

� Build flexible systems that implement changing business processes quickly
� Make extensive use of reusable components

Figure 1-1 shows how services are invoked to support a particular business task
or business process.

Figure 1-1 Mapping services with business tasks or functions

Process Choreography Layer

Z

Input OutputProcedure
Business

View

Specific Business
Task or Function

Computer
Science

View

Published Service

Service is able
to attend one
Business Task

Service

Specific Application

Object Classes

E
ncapsulation

Business Process

Business
Task 1

Business
Task 2

Business
Task 3

The Process Choreography Layer is
responsible for connecting the Services
providing support to the Business Process

Result
 Chapter 1. Introduction to SOA and CICS 5

Basic components of an SOA
At the most basic level, an SOA consists of the following three components
(shown in Figure 1-2):

� Service provider
� Service requester
� Service registry

Figure 1-2 SOA components and operations

Service provider
The service provider creates a service, and in some cases, publishes its
interface and access information to a service registry.

Each provider must decide which services to expose, evaluate tradeoffs between
security and easy availability, determine how to price the services or figure out
how to exploit the value of the services if they are free. The provider must also
decide about the category the service must be listed to, and the sort of trading
partner agreements required to use the service.

Service registry
The service registry is responsible for making the service interface and
implementation access the information that is available to the service providers.

The implementers of a service registry must consider the scope within which the
registry will be implemented. There are public service registries that are available
over the Internet to an unrestricted audience, and private service registries that
are only accessible to users within a company-wide intranet.

Service
Requester

Service
Provider

Service
Registry

Publish1Discover2

Invoke3

Request/Response
6 Securing Access to CICS Within an SOA

The service provider locates (discovers) entries in the service registry and then
binds to the service provider to invoke the defined service.

Each of these components can also function as one of the two other
components. For instance, if a service provider requires additional information
that it can acquire only from another service, it behaves as a service requester.

Defining a service
SOA is an architectural approach to defining integration architectures that are
based on the concept of services. A service can be described as a function that
can be offered or provided to a requester. This function can be an atomic
business function or a part of a collection of business functions that are wired
together to form a process.

There are other additional aspects to a service that must also be considered
when defining a service within an SOA. The most commonly agreed-on aspects
are:

� Services encapsulate a reusable business function

� Services are defined by explicit, implementation-independent interfaces

� Services are invoked through communication protocols that stress location
transparency and interoperability

Ideally, a service must be reusable and be accessible by more than one
requesting application in the architecture. It is, therefore, important to get the
service description and reusability correct, for example, a service that offers a
calculation such as a home insurance quote can be requested by multiple
requesters inside the enterprise and by third parties, as long as the interfaces of
the component that offers the service are defined clearly.

Services can be invoked independently by either external or internal service
requesters to process simple functions or can be chained together to form more
complex functionalities in order to devise a new functionality quickly.

Clearly-defined interfaces
The interface for SOA must encapsulate only those aspects of process and
behavior that are used in the interaction between the service requester and the
service provider. An explicit interface definition or contract binds a service
requester with the service provider. The interface must specify only the mutual
behavior that is required for the interaction and nothing about the actual
implementation of the requester or the provider.
 Chapter 1. Introduction to SOA and CICS 7

This arrangement means that those system aspects, where the requester and
the provider are hosted (their platforms), are independent of the interaction and
are free to change. This allows for flexible improvements to the underlying IT
infrastructure.

Communication protocols that stress location transparency
SOA does not specify that a consumer must have any specific protocol to access
a service. A key principle in SOA is that a service is not defined by the
communication protocol that it uses, but in a protocol-independent manner that
allows different protocols to be used to access the same service. Ideally, a
service must be defined only once, through a service interface, and must have
many implementations with different access protocols. This type of definition
helps increase the reusability of any service definition.

1.1.2 The business and IT benefits of SOA

This section provides a concise view of the business and IT benefits an
organization can enjoy by adopting SOA.

Business benefits
Organizations will always seek out innovative methods to gain a competitive
advantage. SOA allows the typically heterogeneous IT environment of an
enterprise to be agile and responsive to fast-changing business conditions.

Following are some of the business advantages that SOA offers:

� The concept of components and reuse allows organizations to increase the
speed with which they implement new products and services. By introducing
new processes and data, changing the existing reusable elements, or
recombining them quickly, technical support and provisioning of new products
and services in the marketplace is enabled.

� The increased abstraction of business processes from implementation and
run time concerns and constraints mean that there are fewer technical
inhibitors that slow down progress and change.

� The modularity and reuse of components means that services are highly
optimized to business requirements.

� The ability to extract more from what is already there means that
organizations are able to introduce new capabilities that bring business
advantages, for example, applications that were earlier siloed, can now work
together behind the scenes and help shorten human-based processes and
tasks.
8 Securing Access to CICS Within an SOA

� The ability to make available repeatable and reusable services across the
enterprise means less duplication of functions and therefore, reduced
instances of duplicated data such as client details. The ability to improve the
quality of service and retain customers increases with more accurate
information.

IT benefits
Because SOA is an approach that specifically aligns IT capabilities to business
drivers and requirements, the distinction between what is an IT benefit as
opposed to a business benefit, becomes somewhat blurred. Nevertheless, the IT
benefits that an organization can realize by implementing SOA are included in
the following list:

� The adoption of open standards and component-based development brings
about long-term reductions in development costs and ongoing maintenance.

� The sharing of services and improved consistency reduces the duplication of
siloed IT functions and consequently, the consolidation of hardware and
software is made possible, thereby reducing costs.

� The revival of core applications through SOA capabilities reduces the
requirement to replace such systems, thereby minimizing risk, disruption, and
replacement costs.

According to Gartner, following are the benefits provided by SOA to IT:

“SOA will shift the focus from tools and packaged suites to modular offerings
from multiple vendors that can be assembled and combined by a systems
integrator. By 2008, SOA will provide the basis for 80 percent of development
projects. By 2008, simple object database access plus service-oriented business
applications (SOBAs) will enable Type A organizations to increase code reuse by
more than 100 percent. The distinction between software integrators and
vendors will blur because packaged applications will be broken up and delivered
as SOBAs. In 2006, more than 60 percent of the $527 billion IT professional
services market will be based on the exploitation of Web services standards and
technology.”

Gartner also states: “SOA shifts developer focus from software to business
functions, thereby transforming the installed software from an inhibitor to a
facilitator of rapid business change.”

For more information, refer to Positions on the Five Hottest IT Topics and Trends
in 2005, which is available on the Web at:

http://www.gartner.com
 Chapter 1. Introduction to SOA and CICS 9

http://www.gartner.com

1.1.3 Web services

Web services are fast becoming the standard for basic SOA implementation.
Web services take advantage of the existing open-standard Web technologies
such as Extensible Markup Language (XML), Uniform Resource Locator (URL),
and Hypertext Transfer Protocol (HTTP), and are themselves a set of standards
that facilitate open system-to-system communication.

By adhering to Web services, standards applications that are based invariably on
differentiating platforms and technologies, can cooperate through well-defined
interfaces. Web services follow the SOA philosophy of loose coupling between
service requesters and service providers. Figure 1-3 illustrates how loose
coupling is maintained within the Web services interaction model.

Figure 1-3 Web services invocation model

The interaction shown in Figure 1-3 works as follows:

1. The service provider publishes the Web Services Description Language
(WSDL) data that defines its interface and location to a service registry such
as an Universal Description, Discovery, and Integration (UDDI) service
registry.

2. The service requester contacts the service registry to obtain a reference to a
service provider.

3. The service requester, having obtained the location of the service provider,
makes calls on the service provider by sending a SOAP-formatted message.

Service
Requester

Service
Provider

Service
Registry

Publish WSDL from
the service provider
to the service registry,
using UDDI

1
Discover a service in the
service registry and retrieve
its WSDL

2

Invoke the Web service
by sending a SOAP message

3

Request/Response
10 Securing Access to CICS Within an SOA

Basic Web services support provides three simple usage models:

� One-way usage scenario

A Web services message is sent from a requester to a provider, and no
response message is expected

� Synchronous request or response usage scenario

A Web services message is sent from a requester to a provider, and a
response message is expected

� Basic callback usage scenario

A Web service message is sent from a requester to a provider using the
2-way invocation model, but the response is treated only as an
acknowledgement of a request having been received. The provider then
responds by using a Web service callback to the requester.

Other Web service standards are built upon these basic standards and
invocation models to provide higher level functions and qualities of service.

1.1.4 System z and the reason why it is appropriate for SOA

This section provides an overview of System z and the benefits to be gained from
implementing SOA capabilities within an IBM z/OS environment.

System z
IBM eServer™ System z9™ (formerly IBM eServer zSeries®) is built on more
than 40 years of industry leadership in mainframes. It uses a modular multibook
design that supports one to four books per server. Multiple features such as
redundant input/output (I/O) interconnections (RII) help avoid unplanned
interruptions and outages. By increasing secure transaction throughput, System
z9 can improve responsiveness when strengthening security through enhanced
encryption and hashing algorithms.

System z contains specialized engines such as IBM System z9 Application
Assist Processor (zAAP), IBM System z9 Integrated Information Processor
(zIIP), IBM System z Integrated Facility for Linux® (IFL), and Internal Coupling
Facility (ICF), which can all be used for your advantage. The virtualization and
intelligent management features of IBM System z9 109 help reduce
management complexity and facilitate a more efficient use of system resources.
 Chapter 1. Introduction to SOA and CICS 11

z/OS
System z mainframes are supported by a multitude of operating systems such as
z/OS, IBM z/OS.e, IBM z/VSE™, IBM z/VM®, Transaction Processing Facility
(TPF), and Linux on System z. The flagship operating system of this group is
z/OS. With its roots in MVS™ and IBM OS/390®, z/OS is the flagship mainframe
operating system based on the IBM 64-bit z/Architecture™. It is designed to
deliver a high quality of service for enterprise transactions and data, making it
appropriate for larger enterprises.

Some highlights of z/OS V1.7 include the z/OS Workload Manager that helps
balance resources, and Intelligent Resource Director (IRD), which extends the
Workload Manager and makes it possible to manage resources dynamically
across multiple logical partitions. z/OS Parallel Sysplex® technology allows you
to balance workloads across multiple servers (up to 32) and is designed to
provide near continuous availability.

The reason behind having an SOA framework on z/OS
In a sense, the mainframe environment has always lent itself to the concept of
SOA because it regards all the resources within as providing services.
Resources meant specifically for SOA are those that provide SOA capabilities
such as the Enterprise Service Bus (ESB), process management engines, and
supporting components such as a base Java™ 2, Enterprise Edition (J2EE™)
application server and databases.

To offer the power of System z for SOA, IBM has developed specific z/OS
versions of its SOA product suite that is built on IBM WebSphere® Application
Server V6 for z/OS. The WebSphere Process Server and WebSphere Enterprise
Service Bus are z/OS-enabled, as are supporting components such as IBM
DB2® for z/OS V8. This offers a clean and contained architecture within a z/OS
environment, with the architecture based on open and interoperability standards.
Additionally, products such as the CICS Transaction Server have added features
to support SOA technologies such as Web services, and can integrate with the
WebSphere Application Server for z/OS-based products.

Following are the advantages of using System z and z/OS for SOA:

� Quality of service
� Core system transaction capabilities for SOA
� Cost of ownership
12 Securing Access to CICS Within an SOA

Quality of service
A framework that incorporates SOA capabilities exploits well-proven System z
features such as high scalability, availability, reliability, and security. System z
clustering is provided through Parallel Sysplex technology and workload
management by z/OS Workload Manager (zWLM) to offer the following features:

� Less than five minutes downtime per year
� 99.999% availability at the application level

System z has built on four decades of development and collaboration to offer
unparalleled security in both its hardware and z/OS operating system. In
addition, the introduction of virtualization for z/OS helps decouple actual physical
resources from users and services, thus bringing an additional layer of
protection. For more details about security on System z, refer to:

http://www.ibm.com/servers/eserver/zseries/security/features.html

Core system transaction capabilities for SOA
The source of most services that service requesters call upon is usually core
systems such as CICS and IBM Information Management System (IMS™)
transactions. These core systems themselves can function as requesters and
providers of services. The positioning of these systems within a System z
environment means that performance is enhanced because of less network
traffic and, in the case of z/OS, the HiperSocket technology leveraged. To
facilitate connections to CICS and IMS for an SOA architecture, the CICS
Transaction Gateway and the IMS SOAP Gateway V9.1 are offered.

Web services can be developed with IBM WebSphere Developer for zSeries
tooling in order to generate Web services artifacts easily.

Cost of ownership
When the demand for computer usage increases every year, organizations
introduce new boxes, systems, and applications in their widely heterogeneous
and distributed IT environments. Managing these distributed environments can
lead to the following hidden costs:

� Increased complexity
� Spiralling resource costs
� Increased downtime costs
� Suboptimized use of resources
� Licensing costs

The Wall Street Journal provides an interesting view:

“Distributed server farms today generate as much as 3,800 watts per square
foot, compared to 250 watts per square foot in 1992, with thousands of dollars of
cooling capacity needed for each server. Assuming 1,000 distributed servers are
 Chapter 1. Introduction to SOA and CICS 13

http://www.ibm.com/servers/eserver/zseries/security/features.html

producing 400 watts each, the electricity bill could hit more than USD 35,000 per
month alone. By comparison, a single mainframe z9 generates 312 watts per
square foot – one tenth the amount.”

The centralized architecture of the mainframe has always helped avoid such
issues, but initial purchase costs and operating costs were high. Recent
developments in new technology for System z help reduce the total operating
cost as follows:

� Virtualization

Virtualization, which allows a single server or platform to support hundreds of
concurrent applications and share data and hardware resources across
heterogeneous environments, was invented by mainframes more than 35
years ago. Today, this is highly advantageous for enterprises that are looking
for ways to simplify their IT infrastructures and reduce complexity and costs.

� zAAP

To help lower costs, IBM introduced separate processing engines to tackle a
collection of mainframe workload types. These engines can free your
mainframe CPU for other tasks and lower the related capacity charges. The
zAAP engine, released in 2005, reduces costs by processing Java-based
application workloads.

� System z Integrated Information Processor (zIIP) engine

DB2 works in concert with z/OS to tackle workloads that originate on
distributed platforms (through IBM Distributed Relational Database
Architecture™ (DRDA®) via TCP/IP) and access DB2 data running on the
mainframe. Together, DB2 and zIIP help improve resource optimization for
eligible workloads, including those from SAP® or other enterprise resource
planning (ERP) applications, along with customer resource management
(CRM) and business intelligence initiatives. A zIIP engine can be added as a
one-time cost. It can then process up to 40% of such tasks with no additional
software or capacity charges.
14 Securing Access to CICS Within an SOA

1.2 Transforming CICS assets into SOA solutions

Existing application assets running on a CICS Transaction Server can be utilized
in SOA solutions in a number of ways. This section discusses the transformation
strategies and describes how different types of CICS assets can be transformed.

1.2.1 Transformation strategies

The IBM SOA Reference Architecture shown in Figure 1-4 is a technical
framework for enterprise transformation that enables software to be delivered as
reusable, shareable services. This architecture provides the ability to bridge
disparate systems spread across your entire enterprise. Because its components
are modular, you can start small and grow your implementation to cover your
evolving integration requirements, both internally and externally.

Figure 1-4 IBM SOA Reference Architecture

This section examines three components shown in Figure 1-4 in closer detail:

� User interface modernization

This style (denoted by “1” in Figure 1-4) transforms the user experience. It
aims to reach new customers even as it helps improve productivity and
reduce costs. This style of transformation also helps reduce the training costs
and increase the overall user satisfaction. This method is the most accessible

Development services

Business performance management services

Interaction services Process services Information services

Connectivity services

Application and
information assets

Business application
services Partner services

Infrastructure management services

1

2 3
 Chapter 1. Introduction to SOA and CICS 15

because it requires the lowest level of investment. You can achieve a rapid
return on investment (ROI) through improved user interfaces such as a
modern interface design, and enhanced productivity with optimized
interaction patterns.

� Application integration

This style (denoted by “2” in Figure 1-4) transforms application connectivity. It
aims to extend the existing applications beyond their original designs to
support integrated business processes, helping reduce errors and
development costs. You can turn the existing applications into reusable
services that can be accessed by a new set of users or be reused to create
new front-end business functions. The underlying principle that you can reuse
the existing applications with little or no change, offers a lower-risk approach
than a replacement strategy, which involves rewriting applications.

� Service orientation

This style (denoted by “3” in Figure 1-4) transforms the application
architecture to provide greater responsiveness to business partners and
customers. It involves some re-engineering of the original application.
Undoubtedly, this method requires higher investment of resources and time,
but gives you the capability to create components from the existing
applications, which are more flexible and can be configured for use in new
applications. This reuse of business logic is called componentization and may
result in significant cost savings when compared to the costs involved in
developing new application code.

1.2.2 The CICS assets that can be transformed

Over the past 35 years, developers have created two major types of CICS
applications or assets:

� CICS COMMAREA programs

These programs receive requests and send responses through an area of
memory called the COMMunications AREA (COMMAREA). CICS programs
can be written in COBOL, PL/I, C, C++, Assembler, or Java. In general, CICS
COMMAREA programs are similar to subroutines, in that, they are unaware
of how they were invoked. They are often stateless, with CICS, on behalf of
the program, automatically managing the transactional scope and security
context, which are typically inherited from a caller and a transaction definition.

� CICS terminal-oriented programs

These programs are sometimes known as 3270 programs because they are
designed to be invoked directly from an IBM 3270 Display Station or similar
buffered terminal device. Invocation usually corresponds to a single
interaction in a user dialog, starting with the receipt of a message from the
16 Securing Access to CICS Within an SOA

terminal and ending with the transmission of a reply message to the same
device. Input data from the terminal device is carried in a datastream, which
the application acquires through a RECEIVE command. After processing, an
output datastream is transmitted back to the terminal device through a SEND
command. Terminal-oriented programs must be capable of analyzing
device-specific input data streams and building the output data streams that
are to be transmitted to the terminal.

CICS also provides a service known as basic mapping support (BMS), which
simplifies application programming for terminals such as the 3270 Display
Station. This enables the programmer to define a static layout for each screen to
be displayed, with identified fields for dynamic content acquired through a
RECEIVE MAP command. This in turn causes BMS to analyze the datastream
and to return record-formatted data to the application. Similarly, the application
presents output data in record format using a SEND MAP command, which
causes BMS to build an output datastream for the terminal. BMS is widely used
because it frees the application programmer from requiring knowledge about
device specifics, and enables applications to be device-independent to some
degree.

A pseudo-conversational model is normally associated with terminal-oriented
transactions. A pseudo-conversational sequence of transactions contains a
series of transactions that look to the user, such as a single conversational
transaction involving several screens of input. However, each transaction in the
sequence is, in fact, a single transaction that handles one input, sends back the
response, and then terminates.

1.2.3 Access to COMMAREA programs

The best practice in CICS application design for a number of years now has been
to separate the key elements of the application, the following in particular:

� Client adapt or presentation logic
� Integration logic
� Business logic
� Data access logic
 Chapter 1. Introduction to SOA and CICS 17

Figure 1-5 shows a transaction made up of these separate components. A
COMMAREA interface, which includes channels with CICS Transaction Server
(TS) V3.1, is used to pass data between the components.

Figure 1-5 Separating the key application elements

This separation provides a framework that enables the reuse of business logic
and data access logic programs as subroutines within a larger application and
reuse with alternative implementations of presentation logic, for example, a Web
service, a Web browser, or a 3270 device.

CICS COMMAREA programs can be relatively easily enabled for access from a
variety of different client applications running on a wide range of platforms.
Typical clients include:

� Web service requester

� Java servlet or Enterprise JavaBeans™ (EJB™) running on a J2EE
application server

� An application running on a Microsoft® .NET environment

� Web browser

� Messaging middleware

In most cases, connections from a client use a combination of the following:

� Internal adapters
� External connectors
� Standard IP-based protocols

An adapter is simply a program that accepts a request and converts the data
from an external format to the internal format used by the CICS business logic
program. Figure 1-6 shows how a terminal-oriented program and a Web service
requester can access the same CICS applications. An adapter can, for example,
convert a SOAP message to a COMMAREA format. The transport mechanism
used to invoke the adapter may be synchronous or asynchronous.

Transaction

CICS Transaction Server

Client 3270
Presentation

Integration
logic

Data
access

DIP

Business
logic

B

18 Securing Access to CICS Within an SOA

An internal adapter is run-time code, possibly generated by a tool that converts
from one request format to another, such as converting SOAP over HTTP to a
COMMAREA. You can implement the adapter in any language that is supported
by CICS and make it independent of the specific protocol that is used.

Figure 1-6 Access options provided by CICS facilitate reuse of existing business logic

An external connector provides a remote call interface and implements a private
protocol to invoke an application running under the CICS Transaction Server.
You must also use an external adapter to convert data from its external format to
the COMMAREA format that is used by your programs in the CICS Transaction
Server. The most well-known example of an external connector is IBM CICS
Transaction Gateway, which implements the Common Connector Interface
specified by the J2EE Connector Architecture (JCA), and is used with adapters
implemented as Java beans.

Along with these techniques, you can create a standard IP-based adapter that
uses a specific transport such as IBM WebSphere MQ, HTTP, and TCP/IP
sockets. This approach may be the only available option that supports some
types of clients. This method also permits greater flexibility in the functionality
that can be implemented. However, this flexibility must be balanced against
additional development effort, and a loss of generality and reuse because you
can use the adapter only with a specific transport protocol.

Your preferred architectural approach is a key decision because of its effect on
the cost of developing the solution and its long-term return on investment (ROI).
However, business factors such as existing development processes and the
availability of skills may be as significant as the technical factors influencing this
decision. It is important to recognize the fact that there is no single correct
answer that is suitable for all the solutions.

Transaction

CICS Transaction Server

A

P3270 terminal

A

I B D
 Chapter 1. Introduction to SOA and CICS 19

1.2.4 Access to terminal-oriented programs

There are many programs that do not have such a clear separation of concerns
as COMMAREA programs, combining a presentation logic (“P” in Figure 1-7) and
business logic (“B” in Figure 1-7) into a single program, for which there is only a
3270 interface.

IBM CICS TS V3.1 provides a Link3270 bridge function that neatly addresses
this problem. The client uses the Link3270 bridge to run 3270 transactions by
linking to the DFHL3270 program and passing a COMMAREA that includes the
transaction identifier and the data to be passed to the application. The response
contains the 3270 screen data reply. If the target application uses basic mapping
support (BMS), this information is presented in the form of an application data
structure (ADS), which is another name for the symbolic map that is generated
by the BMS macros used to define the mapping of the 3270 screen. No changes
are required for the existing application code. Knowledge about the 3270 data
streams is usually not required. As a result, the Link3270 bridge provides a
programmatic interface for an important class of terminal-oriented programs,
enabling them to be reused without resorting to less efficient and more fragile
screen scraping.

Figure 1-7 Access options provided by CICS facilitate reuse of existing terminal-oriented
programs

Historically, many 3270 transactions were written as pseudo-conversations,
consisting of a number of terminal-oriented programs that run in a defined
sequence. Each program in a pseudo-conversation displays data to a user and
then terminates, leaving only a small amount of state data to be picked up by the
next program in the sequence, which is initiated by the next input data received
from the user’s terminal. The Link3270 bridge is able to fully reuse these
pseudo-conversational transactions.

Transaction

Link 3270 Bridge

CICS Transaction Server

Client

DI/BP3270 terminal
20 Securing Access to CICS Within an SOA

CICS programs are typically grouped into application suites or components for
performing a common set of business actions. Identifying the CICS programs
that provide flexible public interfaces and understanding these interfaces is the
first key step for reuse. The next step is to decide on the best access options to
support your solution.

1.3 Interaction between CICS and other core
WebSphere SOA products

CICS TS provides the features that are necessary to build complete SOA
solutions. Service requesters can use these features to gain access to the CICS
assets. However, CICS TS does not have to be used in isolation to build SOA
solutions.

The following products are also important to building SOA implementations, and
can be used to interact with CICS TS assets:

� WebSphere Application Server

It hosts J2EE enterprise applications such as EJBs and Web services.
Enterprise applications deployed to the WebSphere Application Server can
interact with CICS assets using a variety of techniques described in this IBM
Redbook.

For more information about the WebSphere Application Server, refer to:

http://www.ibm.com/software/webservers/appserv/was/

� WebSphere Enterprise Service Bus

This mediates SOAP, Java Message Service (JMS), and Internet Inter-ORB
Protocol (IIOP) messages, as they travel between service requesters and
service providers. The mediations provide content-based routing to pick the
service provider that must be used, the protocol and message transformation,
and so on. SOA interactions to or from the CICS TS can be mediated in the
WebSphere Enterprise Service Bus.

For more information about the WebSphere Enterprise Service Bus, refer to:

http://www.ibm.com/software/integration/wsesb/
 Chapter 1. Introduction to SOA and CICS 21

http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/integration/wsesb/

� WebSphere Process Server

This manages business processes that incorporate calls to automated
activities such as Web services and manual activities such as those
completed by a person. Calls to CICS assets can be incorporated into
business processes running on WebSphere Process Server.

For more information about the WebSphere Process Server, refer to:

http://www.ibm.com/software/integration/wps/

Note: Each of the three products listed can run on the z/OS and the
distributed platforms.
22 Securing Access to CICS Within an SOA

http://www.ibm.com/software/integration/wps/

Chapter 2. Security concepts

This chapter lays the groundwork for a discussion of the security functions and
security issues in each of the products discussed in this IBM Redbook. This
chapter also describes the requirements for an IAA (Identification,
Authentication, and Authorization) solution..

2

© Copyright IBM Corp. 2006. All rights reserved. 23

2.1 The importance of security

Effective identity management, authorization, and access control capabilities are
the essential elements of a comprehensive enterprise security program. These
security services are necessary to control the access to resources and sensitive
information within the IT environment. The introduction of new and pending
legislation relating to the handling and access of sensitive information increases
the importance of these vital functions. Requirements such as reduced sign-on,
role-based access control, centralized authorization policies, timely account
management, and synchronized directories can be fulfilled, with the solution
approach outlined.

In order to manage core business processes, companies must give their users,
who are as likely to be customers or business partners as employees, access to
corporate information and applications through a wide-ranging network.
Organizations require a unified and centralized approach for making
authorization decisions instead of relying on custom access control services for
each server, application, or environment. The necessity for a unified and
centralized approach is also driven by the requirement to be responsive to
changes in user population. New hires must be given appropriate access as
quickly as possible. Users, whose responsibilities change due to promotion or
changes in job responsibilities, must have their authorizations changed quickly to
reflect the change in responsibilities. Most importantly, employees who leave the
company must have all their authorizations revoked on a real-time basis.
Furthermore, companies require an adaptable solution that can scale up
according to the demand. By providing highly available and centralized
authorization services, companies can better manage and secure their
business-critical distributed information and ensure their ability to meet the
time-to-market, flexibility, and scalability requirements that today's on demand
world requires.

The increased use of Web technologies has changed the business landscape
over the past few years. Web technologies are being used to deliver information
and to provide access to client accounts, manage sales, and conduct
transactions with both business partners and customers. These are just a few
examples of the manner in which the Internet has transformed business
practices. With this increased connectivity and subsequent access to corporate
information, it becomes critical to properly identify the entities that request
information. Requestors must only be able to access information or applications
that they are authorized to access.
24 Securing Access to CICS Within an SOA

2.2 Identification, Authentication, and Authorization

An IAA (Identification, Authentication, and Authorization) solution must provide
services that support the following business processes:

� User registration and administration

– Creation and deletion
• Provisioning
• Administration

– Suspend and resume
– Entitlements management

� User login and logout

– Authentication
– Password failure lock-out
– Application of idle “time-out” policy

For a more comprehensive strategy, your solution must include the following:

� User resource requests

– Authorization of requests

� User self-care

– Self-registration
– Password change
– Password reset

These solutions are for supporting IT architectural initiatives in order to reduce
the complexity and cost by implementing reusable functions. This may require
some of the processes supported by IAA to be defined at an enterprise level.

These items are not discussed in this book. However, they must be addressed
by your IT Security Officer.

2.3 IAA requirements

The IAA recommendations outlined in this section provide
implementation-independent information for identity management,
authentication, and authorization services.
 Chapter 2. Security concepts 25

2.3.1 IT environment and application architecture requirements

Following are the IT environment and application architecture requirements:

� IAA must be designed to ensure that it can be extended to cover the
authentication and authorization of access to internal and external Web
services.

� IAA must be designed to ensure that it can be extended to cover the
authentication and authorization of access to a single service that is delivered
internally and externally.

� IAA must integrate with the internal desktop SOA when it is defined.

� IAA must integrate with internal and extended global enterprise directory
strategies as they mature for the evolving, extended global enterprise.

� IAA must support the mapping of Web service identities into associated
identities for established security databases such as Resource Access
Control Facility (RACF).

� IAA must reflect the component-based architecture, shielding applications
from changes in technology and promoting reuse.

� For custom software development, IAA must support the Java 2, Enterprise
Edition (J2EE) application environment and the associated standards such as
Enterprise JavaBeans (EJB), Java Authentication and Authorization Service
(JAAS), and so on.

� Where possible, implement IAA services in such a way that decisions are
made “on behalf of” components, rather than by them.

� Provide standardized application programming interfaces (APIs) for access to
IAA services.

� Provide support for publishing directory changes to, and accept changes from
a global meta directory.

2.3.2 IAA component security

In addition to the system and network security requirements imposed by the IT
infrastructure, IAA must comply with the following security requirements:

� All IAA management and administrative actions must have the capability to
be logged to a secure audit trail, and retained according to the audit logging
policies.

� All IAA communication between the IAA components must use secure
channels, providing authenticated and encrypted communication between the
components.
26 Securing Access to CICS Within an SOA

� All IAA authentication information such as passwords and keys must be
stored in an encrypted form to protect it from unauthorized disclosure. The
z/OS Security Manager, that is, RACF, must contain and manage all the
password information.

� All the IAA keys used for the encryption of stored and in-transit information
must be managed in line with the relevant key management standards. Keys
for the Secure Sockets Layer (SSL) are managed by a z/OS service in recent
releases of z/OS.

� All IAA management and administrative interfaces must be protected by the
authentication and authorization mechanisms that comply with the relevant
logical access control standards.

� All IAA authentication actions performed on behalf of applications must be
capable of being logged to a secure audit trail, and retained according to local
and legislatively required audit logging policies.

� All unsuccessful IAA authorization actions performed on behalf of
applications must be logged to a secure audit trail and retained according to
local and legislatively required audit logging policies.

2.3.3 Application-managed security

To be defined on an application-by-application basis for each application or
group that is integrated into the IAA strategy, the consideration must be to
externalize all the application security management to the z/OS Security
Manager (RACF). This allows the centralization of security management.

Application-specific authentication, authorization, and access control can cause
inconsistencies in the level of protection for information assets, service
interruptions, and data compromises. The same confidential information can, for
example, be accessed by applications with either strong or poorly implemented
security mechanisms.

Organizations incur significant costs over developing, testing, and maintaining
custom-coded security, including additional ongoing costs to maintain the
infrastructure. Each time a new initiative is deployed in this manner, an additional
unique user account that has to be managed is created. This can result in
increased programming costs, spiralling mainframe exploitation, and delayed
deployment of new initiatives.

Authentication and access control may require additional security mechanisms
that the existing application's security model does not support. Some
applications may not, for example, support certificate-based authentication or
may not provide the required level of access control granularity that an external
authentication and authorization component supports.
 Chapter 2. Security concepts 27

2.3.4 Availability and performance requirements

The IAA solution must be architected to provide resilience, availability, scalability,
and performance in line with the design and projections for the overall system
environment.

Components of the IAA must be designed and implemented to provide the same
levels of availability as the other equivalent components in the existing
environment.

The online components of IAA must be designed and implemented to meet the
requirements of the business, including the following:

� No single point of failure
� Automatic failover and switchback
� Automatic switching to the backup site within the required time periods

The management components can be designed to meet lower availability
requirements.

2.3.5 Performance and scalability requirements

It must be possible to scale the capacity of the proposed architecture to meet the
future sizing requirements. It must also be possible to scale the IAA capacity by
expanding the capacity of the existing servers and by adding additional servers
to the IAA configuration.

IAA performance and capacity metrics must cover the following parameters:

� Concurrent user sessions
� Resource request rate
� User login rate
� Growth of user base before requiring additional resources to be deployed

2.3.6 Identity management structures

This architecture provides a consistent IAA infrastructure to deliver effective and
efficient security across the infrastructure. Following are the core security
components of the recommended solution:

� To centralize user account provisioning by automating the management and
provisioning of user identities for the infrastructure, including applications,
user registries, and operating systems

� To provide password synchronization by reducing the number of unique
passwords that a user requires to maintain and simplify authentication, and
decrease the requirement of password resets
28 Securing Access to CICS Within an SOA

� Distributed administration through the delegation of user administration from
a central authoritative resource. An installation can substantially improve the
security administration and complexity of credential life cycle management.
Often, this can be automated through feeds from the human resources data
changes. This requires the use of role-based security administration.

2.4 The role of cryptography

A complete security policy puts the necessary mechanisms in place to achieve
the following objectives:

� Identification

This is the ability to assign an identity to the entity accessing the system.
Typically, identity is used to control access to resources. Depending on the
security model in which the identification is performed, the identity can be
called a user ID, a UID, or a principal.

� Authentication

This is the process of validating the identity claimed by the accessing entity.
Authentication is performed by verifying the authentication information
provided by the claimed identity. The authentication information is generally
referred to as the accessor’s credentials. A credential can be the accessor’s
name and password or can be a token provided by a trusted party, for
example, a Kerberos ticket or an X.509 certificate.

Authentication is a must when you want to provide different rights to access
resources such as files and databases to different requesting identities.

� Authorization

Authorization is the process of checking whether an identity that has already
been authenticated must be provided access to a resource that it is
requesting. A typical implementation of authorization is to pass a security
context that contains the identity that has been authenticated, to the access
control mechanism.

Note: Authentication is usually one of the earliest steps in a request
workflow. When authenticated, an identity can be asserted to the
downstream process steps, meaning these steps trust the upstream steps
to have already authenticated the identity successfully.
 Chapter 2. Security concepts 29

� Integrity

Integrity ensures that transmitted or stored information has not been altered
in an unauthorized or accidental manner. Typically, it is a mechanism to verify
whether what is received over a network is the same as what was sent.

� Confidentiality

Confidentiality ensures that an unauthorized party does not obtain the
meaning of the transferred or stored data. Typically, confidentiality is
achieved by encrypting the data.

� Auditing

With auditing, you capture and record security-related events such as a user
signing in to a system or out of a system so that you can analyze the events if
a security breach occurs at a future date.

� Nonrepudiation

Nonrepudiation means that a data sender and a data receiver are able to
provide legal proof to a third party that the sender did send the information,
and the receiver received the identical information. Neither side is able to
deny.

In computer security, cryptography provides the following processes:

� Encrypting converts plaintext (data in normal, readable form) into ciphertext,
which conceals the meaning of the data to any unauthorized recipient.
Encrypting is also called enciphering.

Most cryptographic systems combine the following two elements:

– An algorithm that specifies the mathematical steps required to encrypt the
data

– A cryptographic key (a string of numbers or characters) or keys. The
algorithm uses the key to select one relationship between plaintext and
ciphertext out of the many possible relationships the algorithm provides.
The selected relationship determines the composition of the algorithm’s
result.

� Decrypting converts ciphertext back into plaintext. Decrypting is also called
deciphering.

� Hashing uses a one-way (irreversible) calculation to condense a long
message into a compact bit string called a message digest.
30 Securing Access to CICS Within an SOA

� Generating a digital signature involves encrypting a message digest with a
private key to create the electronic equivalent of a handwritten signature. You
can use a digital signature to verify the identity of the person who signed and
to ensure that nothing has been altered in the signed document from the time
it was signed.

This chapter shows you how to use cryptography in order to achieve
authentication, data integrity, confidentiality, and nonrepudiation.

2.5 Secret key or symmetric cryptography

In secret key cryptography, the sender and the receiver of a message know and
use the same secret key. The sender uses the secret key to encrypt the
message and the receiver uses the same secret key to decrypt the message
(see Figure 2-1). Secret key cryptography is also known as symmetric
cryptography.

Figure 2-1 Secret key or symmetric cryptography

The main challenge of secret key cryptography is getting the sender and the
receiver to agree on the secret key without anyone else finding out. If the sender
and the receiver are in separate physical locations, they must trust a courier, a
phone system, or some other transmission medium to prevent the disclosure of
the secret key. Anyone who overhears or intercepts the key in transit can later
read, modify, and forge all the messages that are encrypted using that key.

Alice

plaintext ciphertext

E

encryption
algorithm

Secret Key

decryption
algorithm

plaintext

Bob

D

Secret Key
 Chapter 2. Security concepts 31

Block ciphers
A block cipher is a type of secret key encryption algorithm that transforms a fixed
length block of plaintext data into a block of ciphertext data of the same length.
This transformation takes place under the action of a user-provided secret key.
Decryption is performed by applying the reverse transformation to the ciphertext
block using the same secret key. The fixed length is called the block size. The
common block sizes are 64 bits and 128 bits.

Iterated block ciphers
Iterated block ciphers encrypt a plaintext block with the help of a process
involving several rounds. In each round, the same transformation, also known as
a round function, is applied to the data using a subkey. The set of subkeys is
usually derived from the user-provided secret key by a special function. The set
of subkeys is called the key schedule. The number of rounds in an iterated cipher
depends on the desired security level and the consequent trade-off with
performance. In most cases, an increased number of rounds improve the
security offered by a block cipher.

2.5.1 Data Encryption Algorithm or Data Encryption Standard

The Data Encryption Algorithm (DEA) developed by IBM is an example of an
iterated block cipher. IBM submitted the DEA to the National Bureau of
Standards (NBS) during an NBS public solicitation for cryptographic algorithms
to be used in a Federal Information Processing Standard (FIPS). In 1977, the
NBS issued the FIPS Publication 46, Data Encryption Standard (DES), which
specified that the DEA be used within the United States Federal Government for
the cryptographic protection of sensitive, but unclassified, computer data. As a
result, the DEA is often called the DES.

The DES was reaffirmed in 1983, 1988, 1993, and 1999. As time passed, the
NBS became the National Institute of Standards and Technology or NIST, a
division of the US Department of Commerce.

The DES has a 64-bit block size. A DES key consists of 64 bits, of which 56 bits
are randomly generated and used directly by the algorithm. The other 8 bits,
which are not used by the algorithm, can be used for error detection. Following is
the binary format of the key:

(B1,B2,...,B7,P1,B8,...,B14,P2,B15,...,B49,P7,B50,...,B56,P8)

Here, B1,B2,...B56 are the independent bits of a DES key and P1,P2,...P8 are
reserved for parity bits computed on the preceding seven independent bits and
set, so that the parity of the octet is odd. In other words, there is an odd number
of “1” bits in the octet.
32 Securing Access to CICS Within an SOA

DES modes of operation
When a block cipher is used to encrypt a message of arbitrary length,
techniques known as modes of operation are used for the block cipher. In
December 1980, FIPS Publication 81, DES Modes of Operation, announced four
modes of operation for DES:

� Electronic Codebook (ECB)
� Cipher Block Chaining (CBC)
� Cipher Feedback (CFB)
� Output Feedback (OFB)

The ECB and CBC modes of operation are described in the following sections.

Electronic Codebook
In ECB mode, the message M of arbitrary length is first divided into blocks mi.
Each block contains 64 bits, the block size of the DES algorithm. Each plaintext
block mi is used directly as the input block to the DES algorithm. The resultant
output block is used directly as ciphertext (see Figure 2-2).

Figure 2-2 ECB mode of operation

The analogy to a codebook arises because the same plaintext block always
produces the same ciphertext block for a given cryptographic key. Thus, a list or
codebook of plaintext blocks and the corresponding ciphertext blocks can
theoretically be constructed for any given key.

c2

Ek

m2

Ek

c1

m1

Ek

c3

m3

64 bits64 bits
 Plaintext
message M m2 ... mn-1 mnm1 pad

64 bits <64 bits

m3

64 bits

Cipher
 text C c2 ...c3 cn-1c1 cn
 Chapter 2. Security concepts 33

Because the ECB mode is a 64-bit block cipher, an ECB device must encrypt
data in integral multiples of 64 bits. If a user has less than 64 bits to encrypt, the
least significant bits of the unused portion of the input data block must be
padded, for example, filled with random or pseudorandom bits prior to ECB
encryption. The corresponding decrypting device must then discard these
padding bits after the decryption of the ciphertext block.

Cipher Block Chaining
In practice, CBC is the most widely used mode of DES. In CBC, the message M
of arbitrary length is first divided into blocks mi. Each block contains 64 bits, the
block size of the DES algorithm. Each plaintext block mi is XORed (exclusive
ORed) with the previous ciphertext block ci-1 and then encrypted. A 64-bit
initialization vector c0 is used as a "seed" for the process (see Figure 2-3).

Figure 2-3 CBC mode of operation

Thus, the encryption of each block depends on the previous blocks, and the
same 64-bit plaintext block can encrypt to different ciphertext blocks depending
on its context in the overall message. XORing of the previous ciphertext block
with the plaintext block conceals any patterns in the plaintext.

c2

Ek

m2

Ek

c1

c0

m1

Ek

c3

m3

64 bits64 bits
 Plaintext
message M m2 ... mn-1 mnm1 pad

64 bits <64 bits

m3

64 bits

Cipher
text C c2 ...c3 cn-1c1 cn
34 Securing Access to CICS Within an SOA

Partial data blocks (of less than 64 bits) require special handling. One of the
methods of encrypting the final partial data block of a message is described here.

Use this method for applications where the length of the ciphertext is greater
than the length of the plaintext. In this case, the final partial data block of a
message is padded in the least significant bits positions with “0”s, “1”s, or
pseudorandom bits. The decryptor must know when and to what extent padding
has occurred. This can, for example, be accomplished explicitly by using a
padding indicator or implicitly, by using constant length transactions.

The padding indicator depends on the data that is being encrypted. Following are
the types of data:

� Binary

If the data is purely binary, the partial data block must be left justified in the
input block and the unused bits of the block set to the complement of the last
data bit, that is, if the last data bit of the message is “0”, then “1”s are used as
padding bits. If the last data bit is “1”, then “0”s are used. The input block is
then encrypted.

The resulting output block is the ciphertext. The ciphertext message must be
marked as being padded, so that the decryptor can reverse the padding
process, remove the padding bits, and produce the original plaintext. The
decryptor scans the decrypted padded block and discards the least significant
bits that are all identical.

� Bytes

If the data consists of bytes, for example, 8-bit American Standard Code for
Information Interchange (ASCII) characters, the padding indicator must be a
character denoting the number of padding bytes, including itself, and must be
placed in the least significant byte of the input block before encrypting. If, for
example, there are five ASCII data characters in the final partial block of a
message to be encrypted, then an ASCII “3” is put in the least significant byte
of the input block (any pad characters may be used in the other two pad
positions) before encryption. Again, the ciphertext message must be marked
as being padded.

Status of the Data Encryption Standard
Because the speed of computers has increased significantly since 1977, it may
now be possible to try every possible DES 56-bit key in turn until the correct key
is identified. This technique of attempting to decipher a message is called
exhaustive key search or brute force search. In fact, a DES cracking machine
has been used to recover a DES key in 22 hours.
 Chapter 2. Security concepts 35

Therefore, the consensus of the cryptographic community is that DES is no
longer secure. FIPS 46-3 reaffirmed DES usage as of October 1999, but
permitted single DES only for established systems. FIPS 46-3 included a
definition of triple DES (TDEA) which became “the FIPS approved symmetric
encryption algorithm of choice”. On November 26, 2001, the NIST published
FIPS 197 announcing the Advanced Encryption Standard (AES). The standard
became effective on May 26, 2002. The NIST withdrew FIPS 46-3 on May 19,
2005.

2.5.2 Triple DES (TDEA)

For some time now, it has been common practice to protect information with
triple DES instead of DES. This means that the input data is, in effect, encrypted
three times. There are different ways of doing this. FIPS Pub 46-3 defines triple
DES encryption with keys k1, k2, and k3 as follows:

C = Ek3(Dk2(Ek1(M)))

Here, Ek(I) and Dk(I) denote DES encryption and DES decryption respectively, of
the input I with the key k (Figure 2-4).

Figure 2-4 Triple DES-EDE

This mode of encryption is sometimes referred to as DES-EDE (encrypt, decrypt,
encrypt). FIPS Pub 46-3 defines three keying options for DES-EDE:

� k1, k2, and k3 are independent
� k1 and k2 are independent, but k3 = k1
� k1 = k2 = k3

Another variant is DES-EEE, which consists of three consecutive encryptions.

Triple Data Encryption Algorithm modes of operation
Like all block ciphers, triple DES can be used in a variety of modes. The
American National Standards Institute (ANSI) X9.52 standard Triple Data
Encryption Algorithm Modes of Operation describes seven different modes:

� TDEA Electronic Codebook (TECB)
� TDEA Cipher Block Chaining (TCBC)
� TDEA Cipher Block Chaining - Interleaved (TCBC - I)

 DES
Encrypt

 DES
Encrypt

 DES
Decrypt C

k3k1 k2

M

36 Securing Access to CICS Within an SOA

� TDEA Cipher Feedback (TCFB)
� TDEA Cipher Feedback - Pipelined (TCFB-P)
� TDEA Output Feedback (TOFB)
� TDEA Output Feedback - Interleaved (TOFB-I)

2.5.3 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is another example of an iterated
block cipher. The AES algorithm resulted from a multiyear evaluation process led
by the NIST with submissions and reviews by an international community of
cryptography experts. The Rijndael algorithm, invented by Joan Daemen and
Vincent Rijmen, was selected as the standard. The NIST specified the AES in
FIPS PUB 197 in November 2001.

The AES processes data blocks of 128 bits, in that, the input and the output for
the AES algorithm each consists of a sequence of 128 bits (16 bytes or four
words).

The cipher key for the AES algorithm is a sequence of 128, 192, or 256 bits.
These different “flavors” of AES may be referred to as “AES-128”, “AES-192”,
and “AES-256”. The number of words (Nk) in the key is thus 4, 6, or 8.

The number of rounds (Nr) to be performed during the execution of the algorithm
depends on the key size. When Nk = 4, then Nr = 10. If Nk=6, then Nr=12, and
when Nk=8, then Nr=14.

2.6 Public key or asymmetric cryptography

In public key cryptography, each person gets a pair of keys, one called the public
key and the other called the private key. The public key is published and the
private key is kept a secret. The necessity for the sender and the receiver to
share the secret information is eliminated. All communications involve only public
keys, and no private key is ever transmitted or shared. In this system, it is not
essential to trust the security of some means of communication. The only
requirement is that public keys be associated with their users in a trusted
manner, for instance, in a trusted directory.

In public key cryptography:

� Data encrypted with a public key can only be decrypted with the
corresponding private key. This guarantees data privacy for the receiver
because only the receiver can decrypt the data. However, the receiver cannot
be sure about who the sender is; it could be anybody.
 Chapter 2. Security concepts 37

� Data encrypted with a private key can only be decrypted with the
corresponding public key. Anybody can decrypt the data, but the receiver
knows who the sender is because the data can come only from one sender,
the owner of the private key.

When Alice wishes to send a secret message to Bob, she looks up Bob’s public
key in a directory, uses it to encrypt the message, and sends it. Bob then uses
his private key to decrypt the message and read it. No one listening in can
decrypt the message. Anyone can send an encrypted message to Bob, but only
Bob can read it because only Bob knows his private key (see Figure 2-5). Public
key cryptography is also known as asymmetric cryptography.

Figure 2-5 Public key or asymmetric cryptography

Notice how public key cryptography solves the problem of how to safely transmit
a secret key. When Alice wants to send a secret key to Bob, she looks up Bob’s
public key in a directory, uses it to encrypt the secret key, and sends it. Bob then
uses his private key to decrypt the secret key and read it. No one listening in can
decrypt the secret key.

In a public key cryptosystem, the private key is always linked mathematically to
the public key. Therefore, it is always possible to attack a public key system by
deriving the private key from the public key. Typically, the defense against this is
to make the problem of deriving the private key from the public key as difficult as
possible. For instance, some public key cryptosystems are designed in such a
way that deriving the private key from the public key requires the attacker to
factor a large number. In such a situation, it is computationally not feasible to
perform the derivation.

plaintext

Alice

E

encryption
algorithm

Bob's public key

ciphertext plaintext

Bob

decryption
algorithm

D

Bob's private key
38 Securing Access to CICS Within an SOA

2.6.1 The Rivest-Shamir-Adleman algorithm

The Rivest-Shamir-Adleman (RSA) algorithm cryptosystem is a public key
cryptosystem developed in 1977 by Ronald Rivest, Adi Shamir, and Leonard
Adleman. The RSA algorithm is by far the most widely used public key
cryptosystem in the world.

Before discussing how the RSA algorithm works, this section reviews the
following definitions:

� Prime number

This is any integer greater than 1 that is divisible only by 1 and itself. The first
12 primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, and 37.

� Factor

Given an integer n, any number that divides it is called a factor of n, for
example, 7 is a factor of 91, because 91/7 is an integer.

� Factoring

This is the breaking down of an integer into its prime factors. This is a hard
problem, that is, a computationally-intensive problem or a problem that is
computationally difficult to solve.

� Relatively prime

Two integers are relatively prime if they have no common factors, for example,
14 and 25 are relatively prime, but 14 and 91 are not (7 is a common factor of
14 and 91).

� Congruent modulo n

Given integers a, b, and n with n > 0, we say that a and b are congruent
modulo n if a-b is divisible by n, that is, if (a-b)/n = i, an integer. Equivalently, a
and b are congruent modulo n if there is an integer i, such that a-b = i x n, that
is, such that a = b + (i x n). If a and b are congruent modulo n, we write a = b
mod n, for example, 50 = 0 mod 5 because (50 - 0)/5 =10, an integer. But 50
is not congruent to 1 mod 5 because (50-1)/5 is not an integer. However, 51 is
congruent to 1 mod 5.

In arithmetic mod n, integers between 0 and n - 1 are used with normal
addition, subtraction, multiplication, and exponentiation, except that after
each operation, the result keeps only the remainder after dividing by n, for
example, 56 mod 23 = 8 because 56=5 x 5 x 5 x 5 x 5 x 5 = 15,625 and 15,625
divided by 23 gives a quotient of 679 and a remainder of 8. Also, 9 + 7 = 1
mod 5 because 9 + 7 = 16 and 16 divided by 5 gives a quotient of 3 and a
remainder of 1.
 Chapter 2. Security concepts 39

The RSA algorithm works as follows:

Take two large primes, p and q, and compute their product n = pq. Choose a
number, e, less than n and relatively prime to (p-1)(q-1). Find another number d
such that (ed - 1) is divisible by (p-1)(q-1). The public key is the pair (n, e) and the
private key is (n, d). The factors p and q may be destroyed or kept with the
private key.

RSA uses the following terminology:

� n is called the modulus
� e is called the public exponent
� d is called the private exponent

It is currently difficult to obtain the private exponent d from the public key (n, e).
However, if you can factor n into p and q, you can obtain the private exponent d.
Thus, the security of the RSA system is based on the assumption that factoring is
difficult. The discovery of an easy method of factoring will "break" RSA.

Here is how the RSA system can be used for encryption. Let us suppose that
Alice wants to send a message m to Bob. Alice creates the ciphertext c by
exponentiating c = me mod n, where e and n are Bob’s public key. She sends c
to Bob. To decrypt, Bob also exponentiates m = cd mod n. The relationship
between e and d ensures that Bob correctly recovers m. Because only Bob
knows d, and only Bob can decrypt this message.

In practice, however, the RSA system is often used together with a secret key
cryptosystem such as DES. If Alice wants to send an encrypted message to Bob,
she first encrypts the message with DES, using a randomly chosen DES key.
She then looks up Bob's public key and uses it to encrypt the DES key. The
DES-encrypted message and the RSA-encrypted DES key are sent to Bob.
When he receives them, Bob decrypts the DES key with his private key and uses
the DES key to decrypt the message. This combines the high speed of DES with
the key management convenience of the RSA system.

Using a large key in the RSA cryptosystem
The size of a key in the RSA algorithm typically refers to the size of n. The two
primes, p and q, which compose n must be of roughly equal length. This makes n
harder to factor than if one of the primes is much smaller than the other. If you
choose to use a 768-bit value for n, the primes must each have a length of
approximately 384 bits.
40 Securing Access to CICS Within an SOA

The best size for n depends on your security requirements. The larger the value
of n, the greater the security, but also the slower the RSA algorithm operations.
Select a length for n based on the following considerations:

� The value of the protected data and how long it must be protected
� How powerful your potential threats may be

Key sizes of 512-bits no longer provide sufficient security for anything more than
very short-term security requirements. RSA Laboratories currently recommends
key sizes of 1024 bits for corporate use and 2048 bits for extremely valuable
keys such as the root key pair used by a certifying authority. Less valuable
information may well be encrypted using a 768-bit key. As such, a key is still
beyond the reach of all known key-breaking algorithms. RSA Laboratories
publishes recommended key lengths on a regular basis.

With regard to the slowdown caused by increasing the key size, doubling the
length of n will, on an average, increase the time required for public key
operations (encryption and signature verification) by a factor of four, and
increase the time taken by private key operations (decrypting and signing) by a
factor of eight. Key generation time increases by a factor of 16 when the length of
n is doubled, but this is a relatively infrequent operation for most users.

2.7 Hash functions

A hash function H is a transformation that takes an input message m and returns
a fixed-size string, which is called the hash value h. Using a mathematical
notation for functions, this is expressed as h=H(m) (see Figure 2-6).

Figure 2-6 A hash function

When employed in cryptography, hash functions are usually chosen to have
some additional properties. The basic requirements for a cryptographic hash
function are as follows:

� The input can be of any length
� The output has a fixed length
� H(m) is relatively easy to compute for any given m
� H(m) is one-way

hh

Message digestMessage digest
(short, fixed length(short, fixed length))

HH

 Hash Hash
functionfunction

Message m of length Message m of length nn
 Chapter 2. Security concepts 41

A hash function H is said to be one-way if it is hard to invert. This means that
given a hash value h, it is computationally infeasible to find some input m,
such that H(m)=h. An everyday example of a one-way function is mashing a
potato. You can mash it easily, but after you have mashed it, it is rather
difficult to reconstruct the original potato.

� H(m) is collision-free

A collision-free hash function H is one for which it is computationally
infeasible to find any two messages x and y, such that H(x)=h and H(y)=h.
That is, it is computationally infeasible to find any two messages that hash to
the same value.

The hash value concisely represents the longer message or document from
which it is computed. This value is called the message digest. A message digest
can be thought of as a “digital fingerprint” of the larger document. It identifies the
message much like an actual fingerprint identifies a person. Thus, a good
cryptographic hash function ensures that it is difficult to:

� Recover the message from the message digest

� Construct a block of data M2 that has the same message digest h as another
given block, M1

Use the hashing function to verify that the data has not been altered during
transmission. The sender of the data calculates the message digest using the
data itself and the hashing function. The sender then ensures that the message
digest is transmitted with integrity to the intended receiver of the data. One way
of doing this is to publish the message digest in a reliable source of public
information. When the receiver gets the data, the receiver can generate the
message digest and compare it with the original one. If the two are equal, the
receiver accepts the data as genuine, and if they differ, the receiver assumes
that the data is false.

In this example, the message digest must not be sent in the clear. Because the
hash functions are well-known and no key is involved, a man-in-the-middle can
not only forge the message, but also replace the message digest with that of the
forged message. This makes it impossible for the receiver to detect forgery.

I. Damgard and R.C. Merkle greatly influenced the cryptographic hash function
design by defining a hash function in terms of what is called a compression
function. A compression function takes a fixed-length input and returns a shorter,
fixed-length output. Given a compression function F, a hash function can be
defined by repeated applications of the compression function F until the entire
message is processed. In this process, a message of arbitrary length is broken
into blocks (the length depends on the compression function) and “padded” (for
42 Securing Access to CICS Within an SOA

security reasons), so that the size of the message is a multiple of the block size.
The blocks are then processed sequentially, taking as input the result of the hash
so far and the current message block, with the final output being the hash value
for the message (see Figure 2-7).

Figure 2-7 Iterative structure for hash functions

Following is a list of well-known hash functions:

� MD2 and MD5

These were developed by Ronald Rivest of the Laboratory for Computer
Science at the Massachusetts Institute of Technology (MIT). Both functions
take a message of arbitrary length and produce a 128-bit message digest.
MD2 was optimized for 8-bit machines, and MD5 was aimed at 32-bit
machines. The description and source code for MD2 and MD5 can be found
as Internet Request for Comments (RFCs) 1319 and 1321, respectively.

� SHA-1

The Secure Hash Algorithm (SHA), the algorithm specified in the Secure
Hash Standard (FIPS PUB 180), was developed by NIST. SHA-1 is a revision
of SHA that was published in 1994. The revision corrected an unpublished
flaw in SHA.

The algorithm takes a message of less than 264 bits in length and produces a
160-bit message digest. The algorithm is slightly slower than MD5, but the
larger message digest makes it more secure against brute force collision and
inversion attacks.

Message
 block 1

Message
 block 2

P
a
d

 Last
 part of
 message

F HashF FInitial
value
 Chapter 2. Security concepts 43

2.8 Message authentication codes

There are four types of message authentication codes (MACs):

� Unconditionally secure
� Stream cipher-based
� Block cipher-based
� Hash function-based

MACs based on cryptographic hash functions are known as Keyed Hashing
Message Authentication Code (HMACs). These have two functionally distinct
parameters, a message input and a secret key known only to the message
originator and the intended receivers.

An HMAC function is used by the sender of the message to produce a value (the
MAC) that is formed by condensing the secret key and the message input. The
MAC is typically sent to the receiver of the message along with the message. The
receiver computes the MAC on the received message, using the same key and
HMAC function used by the sender, and compares the computed result with the
received MAC. If the two values match, it means that the message has been
44 Securing Access to CICS Within an SOA

correctly received, and the receiver can be assured that the sender is a member
of the community of users who share the key (see Figure 2-8).

Figure 2-8 Keyed Hash Message Authentication Code

P
l
a
i
n
t
e
x
t
M
A
C

 Sending system

Plain text

MAC

Hashing
function

Secret key

Receiving system

Plaintext

MAC

Plaintext not altered

No

Yes

Equal? Altered

Hashing
function

Secret key

Alice
 Chapter 2. Security concepts 45

Note that because the receiver has the key that is used in the creation of the
MAC, this process does not offer a guarantee of nonrepudiation because it is
theoretically possible for the receiver to forge a message and claim it was sent by
the sender.

2.9 Digital signatures

When public key cryptography is used to calculate a digital signature, the sender
encrypts the message digest of the document with the sender’s private key.
Anybody who has access to the public key of the person who signed can verify
the signature. Following is an example of the same:

1. If Alice wants to send a signed document or message to Bob, she applies a
hash function to the message, creating a message digest. She then encrypts
the message digest with her private key, thereby creating the digital signature.
(Because the message digest is usually considerably shorter than the original
message, Alice saves a considerable amount of time when she encrypts the
message digest rather than the message itself).

2. Alice sends Bob the encrypted message digest (digital signature) and the
message.

3. On receiving the message and the signature, Bob decrypts the signature with
Alice's public key to recover the message digest. He then hashes the
message with the same hash function that Alice used and compares the
result with the message digest decrypted from the signature.
46 Securing Access to CICS Within an SOA

If they are exactly equal, it means that the signature has been verified
successfully and he can be confident that the message did indeed come from
Alice. If they are not equal, it means that either the message originated
elsewhere or was altered after it was signed. Bob then rejects the message.
Figure 2-9 shows this process.

Figure 2-9 Creating and verifying a digital signature in a public key system

Note that the recipient of the signed data can use a digital signature to prove to a
third party that the signature is, in fact, generated by the signatory. This is known
as nonrepudiation because, at a later date, the signatory cannot repudiate the
signature.

Receiving system

Only Alice could have signed
Plaintext did not change

Hash value

Equal? No

Yes

Message
 not
authentic

Decryption
algorithm

Alice's public key

Hash value

Plain text

Hashing
function

P
l
a
i
n
t
e
x
t

DS

 Sending system

Plaintext

Hash value

Hashing
function

Alice's private key

Encryption
algorithm

Alice
 Chapter 2. Security concepts 47

The following is a slightly different scenario based on the previously described
scenario:

1. Alice may want to keep the contents of the document a secret. In such a
situation, she may want to sign the document and then encrypt it using Bob's
public key.

2. Bob will then have to decrypt the document using his private key and verify
the signature on the recovered message by using Alice's public key.

Figure 2-10 describes this process.

Figure 2-10 Creating and verifying a digital signature when encrypting the message

Alternately, if it is necessary for intermediary third parties to validate the integrity
of the message without being able to decrypt its content, a message digest may
be computed on the encrypted message, rather than on its plaintext form.

C
i
p
h
e
r
t
e
x
t

DS

Alice

Plaintext

Alice's private key

 Sending system

Hashing
function Bob's public

key

Encryption
algorithm

Hash value Encryption
algorithm

Hash
value

Only Alice could have signed
Plaintext did not change

Equal? No

Yes

Bogus
msg

Receiving system

Hash value

Alice's public key

Decryption

Hashing

Bob's private key

Plaintext

Decryption
algorithm

plaintext
48 Securing Access to CICS Within an SOA

There is a potential problem with this type of digital signature. Alice not only
signed the message she intended to sign, but she also signed all the other
messages that happen to hash to the same message digest. When two
messages hash to the same message digest, it is called a collision. The
collision-free properties of hash functions are a necessary security requirement
for most digital signature schemes.

In addition, someone may pretend to be Alice and sign the documents with a key
pair the pretender claims is Alice’s. To avoid scenarios such as this, there are
digital documents called certificates that associate a person with a specific public
key. For more information about digital certificates, refer to 2.10, “Public key
digital certificates” on page 51.

2.9.1 Using the RSA algorithm for digital signatures

Use the RSA algorithm to compute a digital signature. If Alice wants to send a
message m to Bob, she applies a hash function H to the message m, creating a
message digest h=H(m). She then creates a digital signature s by exponentiating
s = hd mod n, where d and n are Alice's private keys. She sends m and s to Bob.
To verify the signature, Bob exponentiates and checks whether the message
digest h is recovered, that is, h = se mod n, where e and n are Alice's public keys.

In practice, the public exponent in the RSA algorithm is usually much smaller
than the private exponent. This means that the verification of a signature is faster
than signing. This is desirable because a message will be signed by an individual
only once, but the signature is likely to be verified many times.

2.9.2 Using the Digital Signature Algorithm for digital signatures

The RSA system can be used for both encryption and digital signatures, but the
Digital Signature Algorithm (DSA) can only be used to provide digital signatures.
The NIST published the first version of the DSA in the Digital Signature Standard
(DSS) FIPS PUB 186 in May 1994. The current version was published in FIPS
PUB 186-2 in January 2000. In October 2001, Change Notice 1 amended FIPS
PUB 186-2.

Digital Signature Algorithm parameters
The DSA makes use of the following parameters:

� p = A prime number, where 21023 < p < 21024

Appendix 2 of FIPS PUB 186-2 specifies a method of generating p.

� q = A prime divisor of p-1, where 2159 < q < 2160

Appendix 2 of FIPS PUB 186-2 also specifies a method of generating q.
 Chapter 2. Security concepts 49

� g = h(p-1)/q mod p, where h is any integer with 1 < h < p-1 such that h(p-1)/q
mod p > 1

� x = A randomly or pseudo-randomly generated integer with 0 < x < q

� y = gx mod p

� k = A randomly or pseudo-randomly generated integer with 0 < k < q

Appendix 3 of FIPS PUB 186-2 specifies a method of generating both x and k.

The integers p, q, and g can be public and can be common to a group of users.
The integers x and y are a user’s private and public keys, respectively. The
parameters x and k are used only for signature generation, and must be kept a
secret. The parameter k must be regenerated for each signature.

Digital Signature Algorithm signature generation
The signature of a message M is the pair of numbers r and s computed
according to the following equations:

� r = (gk mod p) mod q
� s = (k-1(SHA-1(M) + xr)) mod q

Here, k-1 is the multiplicative inverse of k, mod q, that is, (k-1 k) mod q = 1 and 0
< k-1 < q. The value of SHA-1(M) is a 160-bit string output by the Secure Hash
Algorithm SHA-1. For use in computing s, this string must be converted to an
integer.

Digital Signature Algorithm signature verification
Before verifying the signature in a signed message, p, q, and g plus, the sender’s
public key y and identity are made available to the verifier in an authenticated
manner.

If M’, r’, and s’ are the received versions of M, r, and s respectively, to verify the
signature, the verifier first checks to see that 0 < r’ < q and 0 < s’ < q. If either
condition is violated, the signature must be rejected. If these two conditions are
satisfied, the verifier computes the following:

� w = (s’)-1mod q
� u1 = ((SHA-1(M’))w) mod q
� u2 = ((r’)w) mod q
� v = ((gu1 yu2) mod p) mod q

If v = r’, the signature is verified and the verifier can be highly confident that the
received message was sent by the party holding the secret key x corresponding
to y.
50 Securing Access to CICS Within an SOA

If v does not equal r’, the message may have been modified, the message may
have been incorrectly signed by the signatory, or the message may have been
signed by an impostor. The message must be considered as invalid.

2.9.3 Using the Elliptic Curve Digital Signature Algorithm
for digital signatures

The ANSI X9.62 standard Public Key Cryptography for the Financial Services
Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA) specifies a third
method of providing digital signatures. This method makes use of the properties
of mathematical objects known as elliptic curves. Because CICS Transaction
Server (TS) V3.1 does not support this method, this book does not discuss it.

2.9.4 Comparing RSA with Digital Signature Algorithm
for digital signatures

In DSA, signature generation is faster than signature verification, while in the
RSA algorithm, signature verification is faster than signature generation if the
public and private exponents respectively, are chosen for this property, which is
usually the case. It can in fact, be claimed that it is advantageous for signing to
be the faster task. However, because a piece of digital information is signed once
but verified often in many applications, it may well be more advantageous to
have faster verification.

2.10 Public key digital certificates

The tricky part about digital signatures is the trustworthy distribution of public
keys because the receiver requires a genuine copy of the sender’s public key.
This is provided by public key digital certificates.

A digital certificate is analogous to a passport in the following ways:

� Passports are issued by a trusted authority such as a government passport
office. Digital certificates are issued by trusted authorities known as
Certificate Authorities or CAs.

� A government passport office does not issue a passport unless the persons
requesting it have proven their identity and citizenship to the passport office.
CAs have the responsibility of checking the credentials provided in an
application for a digital certificate. The CA may, for example, require the
person who is requesting the certificate to appear in person and show a birth
certificate.
 Chapter 2. Security concepts 51

� A passport certifies the bearer’s name, address, and citizenship. A digital
certificate establishes the subject’s distinguished name (DN) and public key.

� Specialized equipment is used in the creation of passports to make it very
difficult to alter the information in it or to forge a passport. CAs sign the digital
certificates they issue with their private key.

� If other authorities, such as the border police in other countries, trust the
authority that issued the passport, they implicitly trust the passport. If a Web
user trusts a CA, he implicitly trusts the digital certificates issued by the CA.

� Both passports and digital certificates are valid for a limited period.

The process of issuing a certificate is as follows:

1. The requester generates a public key and a private key pair and sends the
public key to an appropriate CA with some proof of identification.

2. The CA checks the identification and takes any other steps that may be
necessary to assure itself that the request did indeed come from the
requester, and that the public key has not been modified in transit.

3. The CA then sends the requester a certificate, which attests that the public
key belongs to the requester.

In the discussion on digital certificates that follows, the description of the version
3 format of a digital certificate as given in RFC 3280 Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile, is used.

The certificate is a sequence of three required fields:

� tbsCertificate

The tbsCertificate field contains the name of the certificate’s subject, a public
key associated with the subject, the name of the person who issues the
certificate, a validity period, and other associated information that are
described in 2.10.1, “tbsCertificate” on page 54.

� signatureAlgorithm

The signatureAlgorithm field contains the identifier for the cryptographic
algorithm used by the CA to sign this certificate. RFC 3279 Algorithms and
Identifiers for the Internet X.509 Public Key Infrastructure Certificate and CRL
Profile lists the supported algorithms:

– md2WithRSAEncryption

This algorithm uses md2 for the hash function and RSA for the encryption
algorithm.

– md5WithRSAEncryption
– sha-1WithRSAEncryption
– id-dsa-with-sha1
52 Securing Access to CICS Within an SOA

This algorithm uses SHA-1 for the hash function, and uses the Digital
Signature Algorithm.

– ecdsa-with-SHA1

� signatureValue

The signatureValue field contains a digital signature computed on the
tbsCertificate. The ASN.1 DER-encoded tbsCertificate is used as the input to
the signature function. This signature value is encoded as a BIT STRING and
included in the signature field, as shown in Figure 2-11.

Figure 2-11 X.509 V3 public key digital certificate

By generating this signature, a CA certifies the validity of the information in
the tbsCertificate field. In particular, the CA certifies the binding between the
public key material and the subject of the certificate.

tbsCertificate

subject's name (Alice)
subject's public key (AKey)
issuer's name (CA1)
start/stop validity dates
etc.

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate (DC1)

a8&%#pq3)...

signatureValue

Hashing
function

CA1's private key
(CA1PrKey)

Encryption
algorithm

signatureAlgorithm

hash value
 Chapter 2. Security concepts 53

2.10.1 tbsCertificate

A tbsCertificate contains the following fields:

� version

ITU-T X.509, which was first published in 1988 as part of the X.500 Directory
recommendations, defines a standard certificate format. (ITU-T is the
International Telecommunications Union. It was earlier known as CCITT, and
is a multinational union that provides standards for telecommunications
equipment and systems). The certificate format in the 1988 standard is called
the V1 format. When X.500 was revised in 1993, two more fields were added,
resulting in the V2 format. Experience gained in attempts to deploy RFC 1422
Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based
Key Management revealed the necessity to develop a third version. In June
1996, standardization of the basic V3 format was completed. The value
stored in the version field is one less than the version number, for example,
when the version is 3, the value stored in the version field is 2.

� serialNumber

The serial number is a positive integer assigned by the CA to each certificate.
It is unique for each certificate issued by a CA, that is, the issuer’s name and
serial number identify a unique certificate.

� signature

This field contains the algorithm identifier for the algorithm used by the CA to
sign the certificate. This field must contain the same algorithm identifier as the
signatureAlgorithm field.

� issuer

The issuer field identifies the entity that has signed and issued the certificate.
It contains a DN. For more details about DN, refer to “Distinguished names”
on page 57.

� validity

The certificate validity period is the time interval during which the CA warrants
that it will maintain information about the status of the certificate. The field is
represented as a sequence of two dates:

– notBefore

This is the date on which the certificate validity period begins

– notAfter

This is the date on which the certificate validity period ends

Both notBefore and notAfter may be encoded as YYMMDDHHMMSSZ or
YYYYMMDDHHMMSSZ.
54 Securing Access to CICS Within an SOA

� subject

The subject field identifies the entity associated with the public key stored in
the subjectPublicKeyInfo field. The subject field contains a DN.

If the subject is a CA, the subject field must contain a DN that matches the
contents of the issuer field in all the certificates issued by the subject CA.

� subjectPublicKeyInfo

This field is used to carry the public key and identify the algorithm with which
the key is used. RFC 3279 lists the supported algorithm identifiers:

– rsaEncryption

When the algorithmIdentifier is rsaEncryption, the public key must be
encoded as a sequence of two integers, the modulus n and the public
exponent e.

– id-dsa

When the algorithmIdentifier is id-dsa, the public key must be encoded as
the integer y.

– dhpublicnumber

This identifies the Diffie-Hellman key exchange algorithm. The public key
is the integer y = gx mod p.

– id-keyExchangeAlgorithm

This identifies the Key Exchange Algorithm (KEA), which is a key
agreement algorithm. This book does not discuss this in detail.

– id-ecPublicKey

When the algorithmIdentifier is id-ecPublicKey, the public key is intended
for use in either the ECDSA or the Elliptic Curve Diffie-Hellman (ECDH)
key exchange algorithm. This book does not discuss either of these in
detail.

� issuerUniqueId (optional)

This field is used to handle the possibility of reuse of issuer names over time.
RFC 3280 recommends that names must not be reused for different entities
and that Internet certificates must not make use of unique identifiers.

� subjectUniqueId (optional)

This field is used to handle the possibility of reuse of subject names over time.
RFC 3280 recommends against the use of this field.
 Chapter 2. Security concepts 55

� extensions (optional)

If present, this field is a sequence of one or more certificate extensions. The
extensions defined for X.509 V3 certificates provide methods for associating
additional attributes with users or public keys and for managing a certification
hierarchy. A few of the standard extensions defined in RFC 3280 is discussed
in 2.10.2, “Standard extensions for X.509 V3 digital certificates” on page 58.

Example 2-1 shows the decoding of an X.509 certificate as found in the following
Web site:

http://en.wikipedia.org/wiki/X.509

Example 2-1 Sample X.509 certificate

Certificate:
Data:

 Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,

OU=Certification Services Division,
CN=Thawte Server CA/Email=server-certs@thawte.com

Validity
 Not Before: Jul 9 16:04:02 1998 GMT
 Not After : Jul 9 16:04:02 1999 GMT

 Subject: C=US, SP=Maryland, L=Pasadena, O=Brent Baccala,
OU=FreeSoft, CN=www.freesoft.org/Email=baccala@freesoft.org

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
e8:35:1c:9e:27:52:7e:41:8f:

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:
56 Securing Access to CICS Within an SOA

http://en.wikipedia.org/wiki/X.509

d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:
5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:
68:9f

Distinguished names
Both the issuer field and the subject field of tbsCertificate must contain an X.520
DN. A DN is a sequence of Relative Distinguished Names (RDNs). An RDN™
has the form <attribute type> = <value>.

Table 2-1 shows the string representations of common attribute types.

Table 2-1 Attribute types and their string representations

You can think of a DN as a unique name that unambiguously identifies a single
entry in a directory information tree. Each RDN in a DN corresponds to a branch
in the tree leading from the root of the tree to the directory entry. In Figure 2-12,
the distinguished name C=US,O=IBM,OU=IO,SP=NY,L=End,CN=Bob Herman
describes Bob Herman, who works in the village of Endicott in the state of New

Attribute type String

countryName C

organizationName O

organizationalUnitName OU

stateOrProvinceName SP

localityName L

commonName CN
 Chapter 2. Security concepts 57

York, USA, for the Integrated Operations unit of IBM. The distinguished name
C=FR,O=IBM,OU=S&D,SP=Her,L=MOP,CN=Nigel Williams describes Nigel
Williams, who works in the city of Montpellier in the province of Herault, France,
for the Sales and Distribution unit of IBM.

Figure 2-12 Distinguished names

2.10.2 Standard extensions for X.509 V3 digital certificates

Because RFC3280 defines 16 standard extensions, this book limits the
discussion of standard extensions to those supported by the RACF RACDERT
command that you can use to generate a digital certificate. These extensions
are:

� Key usage

The key usage extension defines the purpose of the subject public key
contained in the certificate:

– digitalSignature (0)

The key is used with a digital signature mechanism to support security
services other than certificate signing (bit 5) or CRL signing (bit 6). Digital
signature mechanisms are often used for entity authentication and data
origin authentication with integrity. (For more details about the CRL, refer
to 2.11, “Certificate revocation lists” on page 63.)

C=FRC=US

Directory Root

CN=Nigel WilliamsCN=

O=SFRO=IBM

ou=GBSou=S&D

SP=BorSP=Her

L=MopL=Nim

O=IBMO=AT&T

OU=IOou=SWG

SP=NYSP=CA

L=End L=Pok

CN=Bob Herman CN=
58 Securing Access to CICS Within an SOA

– nonRepudiation (1)

The key is used to verify the digital signatures that are used to provide a
nonrepudiation service, which protects against the signing entity falsely
denying some action, excluding certificate or CRL signing. If there is a
conflict later, a reliable third party may determine the authenticity of the
signed data.

– keyEncipherment (2)

The key is used for key transport, for example, when an RSA key is to be
used for key management, then this bit is set.

– dataEncipherment (3)

The key is used for enciphering user data other than cryptographic keys.

– keyAgreement (4)

The key is used for key agreement, for example, when a Diffie-Hellman
key is to be used for key management, then this bit is set.

– keyCertSign (5)

The key is used for verifying a signature on public key certificates.

– cRLSign (6)

The key is used for verifying a signature on a CRL.

– encipherOnly (7)

The meaning of the encipherOnly bit is undefined in the absence of the
keyAgreement bit. When the encipherOnly bit is asserted and the
keyAgreement bit is also set, the key may be used only for enciphering
data when performing a key agreement.

– decipherOnly (8)

The meaning of this bit is the same as the encipherOnly bit, except that it
applies to a decipher operation.

Usage restriction may be employed when a key that can be used for more
than one operation is to be restricted.

� Subject alternative name

The subject alternative name extension allows additional identities to be
bound to the subject of the certificate. Following are the defined options:

– An Internet electronic mail address
– A domain name system (DNS) name
– An IP address
– A uniform resource identifier (URI)
 Chapter 2. Security concepts 59

The subject alternative name is considered to be definitively bound to the
public key.

Example 2-2 shows the syntax of a RACF RACDCERT command that you can
use to generate a digital certificate.

Example 2-2 RACF command for generating a digital certificate

RACDCERT ID(userid) GENCERT
SUBJECTSDN(

CN(‘common-name’)
T(‘title’)
OU(‘organizational-unit-name1’,...)
O(‘organization-name’)
L(‘locality’)
SP(‘state-or-province’)
C(‘country’))

SIZE(size-of-new-private-key-in-decimal-bits)
NOTBEFORE(DATE(yyyy-mm-dd) TIME(hh:mm:ss))
NOTAFTER (DATE(yyyy-mm-dd) TIME(hh:mm:ss))
WITHLABEL(‘label-name’)
SIGNWITH(CERTAUTH|SITE LABEL(‘label-name’))
PCICC | ICSF
KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN CERTSIGN)
ALTNAME(IP(numeric-ip-address)

DOMAIN(‘internet-domain-name’)
EMAIL(‘email-address’)
URI(‘universal-resource-identifier’))

The values that you specify for the KEYUSAGE parameter specify the values for
the KeyUsage certificate extension as follows:

� HANDSHAKE

The key facilitates identification and key exchange during security
handshakes, such as SSL. RACF sets the digitalSignature and
keyEncipherment indicators in the extension.

� DATAENCRYPT

The key is used to encrypt data. RACF sets the dataEncipherment indicator in
the extension.

� DOCSIGN

The key is used to produce a legally binding signature. RACF sets the
nonRepudiation indicator in the extension.
60 Securing Access to CICS Within an SOA

� CERTSIGN

The key is used to sign other digital certificates and CRLs. RACF sets the
keyCertSign and cRLSign indicators in the extension.

2.10.3 Certification paths

In Figure 2-11 on page 53, the certificate authority CA1 issues a digital certificate
DC1 to certify that public key AKey belongs to Alice. But how do you know that
you can trust digital certificate DC1? Because DC1 is essentially the message
tbsCertificate signed with CA1’s private key, the digital signature must be verified
in the same way that the digital signature in Figure 2-9 on page 47 is verified.
This involves using CA1’s public key to proceed as shown in Figure 2-13.

Figure 2-13 Verifying the digital certificate

tbsCertificate

subject's name (Alice)
subject's public key (AKey)
issuer's name (CA1)
start/stop validity dates
etc.

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate (DC1)

signatureValue

a8&%#pq3)...

Hashing
function

Decryption
algorithm

CA1's public key
(CA1PuKey)

Hash value

Only CA1 could have signed!
tbsCertificate didn't change!

Hash value

No

Yes

DC1 not
authenticEqual?
 Chapter 2. Security concepts 61

However, if you do not already hold an assured copy of CA1’s public key, a
digital certificate signed by another CA to certify that the CA1PuKey belongs to
CA1 is required (see Figure 2-14).

Figure 2-14 Certification path

In general, a sequence of n certificates that satisfy the following conditions are
required:

� For all x in {1, 2,..., n-1}, the issuer of certificate x is the subject of certificate
x+1.

� Certificate n is issued by a CA that is trusted without a certificate from any
other CA. The certificate may be a self-signed certificate (one in which the CA
uses its own private key to attest that the subject public key belongs to the
CA).

� Certificate 1 is the certificate to be validated.

� For all x in {1,2,...n} the certificate is valid at the time in question.

Such a chain is called a certification path.

tbsCertificate

subject's name: Alice
subject's public key: AKey
issuer's name: CA1
start/stop validity dates
etc.

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate DC1

signatureValue

a8&%#pq3)...

tbsCertificate

subject's name: CA1
subject's public key:
CA1PuKey
issuer's name: CA2
start/stop validity dates

signatureAlgorithm

 X.509 V3 Public Key
Digital Certificate DC2

b0hq7kj39om...

signatureValue
62 Securing Access to CICS Within an SOA

2.11 Certificate revocation lists

When a certificate is issued, it is expected to be in use for its entire validity
period. However, various circumstances may cause a certificate to become
invalid prior to the expiration of the validity period. Such circumstances include
change of name, change of association between the subject and the CA, for
example, an employee terminates employment with an organization, and
compromise or suspected compromise of the corresponding private key. Under
such circumstances, the CA must revoke the certificate.

X.509 defines one method of certificate revocation. This method involves each
CA periodically issuing a signed data structure called a certificate revocation list
(CRL). A CRL is a time-stamped list identifying the revoked certificates, which is
signed by a CA, and made freely available in a public repository. Each revoked
certificate is identified in a CRL by its certificate serial number. When a
certificate-using system uses a certificate, that system not only checks the
certificate signature and validity, but also acquires a suitably recent CRL and
checks that the certificate serial number is not on that CRL. A new CRL is issued
on a regular periodic basis. An entry is added to the CRL as part of the next
update following notification of revocation.

Each CRL has a particular scope. The CRL scope is the set of certificates that
could appear on a given CRL, for example, the scope could be “all certificates
issued by CA X”, “all CA certificates issued by CA X”, or “all certificates issued by
CA X that have been revoked for reasons of key compromise and CA
compromise”.

A complete CRL lists all the unexpired certificates within its scope that have been
revoked for one of the revocation reasons covered by the CRL scope. The CRL
issuer may also generate delta CRLs. A delta CRL only lists those certificates
within its scope whose revocation status has changed since the issuance of a
referenced complete CRL (known as the base CRL).

A CRL is a sequence of three required fields:

� tbsCertList

The tbsCertList is itself a sequence of required and optional fields:

– version (optional)

The version field describes the version of the encoded CRL. When the
version is 2, the integer value for the field is 1.

– signature

The signature field contains the algorithm identifier for the algorithm used
to sign the CRL.
 Chapter 2. Security concepts 63

– issuer

The issuer field contains an X.500 DN that identifies the entity that has
signed and issued the CRL.

– thisUpdate

This field indicates the issue date of this CRL.

– nextUpdate

This field indicates the date by which the next CRL will be issued. The next
CRL could be issued before the indicated date, but it will not be issued any
later than the indicated date.

– revokedCertificates (optional)

The revoked certificate list is optional to support the case where a CA has
not revoked any unexpired certificates that it has issued. The
revokedCertificates field is a sequence of three fields:

• userCertificate

This field contains the serial number of the revoked certificate.
Certificates revoked by the CA are uniquely identified by the certificate
serial number.

• revocationDate

This field contains the date on which the revocation occurred.

• crlEntryExtensions (optional)

Some of the extensions for CRL entries is discussed in 2.11.1,
“Extensions for entries in a certificate revocation list” on page 65.

– crlExtensions (optional)

Some of the extensions for CRLs is discussed in 2.11.2, “Extensions for a
certificate revocation list” on page 66.

� signatureAlgorithm

The signatureAlgorithm field contains the algorithm identifier for the algorithm
used by the CRL issuer to sign the CRL.

� signatureValue

The signatureValue field contains a digital signature computed on the
tbsCertList. The ASN.1 DER encoded tbsCertList is used as the input to the
signature function. This signature value is encoded as a BIT STRING and
included in the CRL signatureValue field.
64 Securing Access to CICS Within an SOA

2.11.1 Extensions for entries in a certificate revocation list

The extensions for entries in a CRL that are defined in RFC3280 include the
following:

� reasonCode

This extension identifies the reason for the certificate revocation as follows:

– unspecified (0)
– keyCompromise (1)
– caCompromise (2)
– affiliationChanged (3)
– superseded (4)
– cessationOfOperation (5)
– certificateHold (6)
– removeFromCRL (8)
– privilegeWithdrawn (9)
– aACompromise (10)

The certificateHold status is a reversible status that can be used to notice the
temporary invalidity of the certificate, for example, when the user is not sure if
the private key is lost. If, in this example, the private key is found again and
nobody had access to it, the status can be reinstated and the certificate
becomes valid again, thus removing the certificate from further CRLs.

� holdInstructionCode

This extension indicates the action to be taken after encountering a certificate
that has been placed on hold:

– reject

Reject the certificate

– callissuer

Call the certificate issuer or reject the certificate

� invalidityDate

This extension provides the date on which it is known or suspected that the
private key was compromised or that the certificate otherwise became invalid.
This date may be earlier than the revocation date in the CRL entry, which is
the date on which the CA processed the revocation. When a revocation is first
posted by a CRL issuer in a CRL, the invalidity date may precede the date of
issue of the earlier CRLs.
 Chapter 2. Security concepts 65

2.11.2 Extensions for a certificate revocation list

The CRL extensions that are defined in RFC3280 include the following:

� authorityKeyIdentifier

This extension provides a means of identifying the public key corresponding
to the private key used to sign a CRL.

� issuerAltName

This extension allows the following additional identities to be associated with
the issuer of the CRL:

– An e-mail address
– A DNS name
– An IP address
– An URI

� cRLNumber

This extension conveys a monotonically increasing sequence number for a
given CRL scope and CRL issuer. It allows users to easily determine when a
particular CRL supersedes another CRL. CRL numbers also support the
identification of complementary complete CRLs and delta CRLs.

� issuingDistributionPoint

This extension identifies the CRL distribution point and scope for a particular
CRL and indicates whether the CRL covers revocation for end entity
certificates only, CA certificates only, attribute certificates only, or a limited set
of reason codes.

� freshestCRL

This extension identifies how delta CRL information for this complete CRL is
obtained.

� deltaCRLIndicator

This extension identifies a CRL as being a delta CRL. Delta CRLs contain
updates of previously distributed revocation information, rather than all the
information that appears in a complete CRL. The use of delta CRLs
sometimes reduces network load and processing time. The extension
contains the number of the base CRL, that is, it contains the number that
identifies the CRL for a given scope, which was used as the starting point in
the generation of this delta CRL.
66 Securing Access to CICS Within an SOA

2.11.3 Security considerations when using digital certificates

RFC 3280 advises users to consider the following points when using digital
certificates:

� The procedures performed by CAs to validate the binding of the subject’s
identity to their public key greatly affect the assurance that ought to be placed
on the certificate. Different CAs may issue certificates with varying levels of
identification requirements. One CA may insist on seeing a driver’s license,
another may want the certificate request form to be notarized, yet another
may want fingerprints of anyone requesting a certificate.

Relying parties may wish to review the CA’s certificate practice statement in
order to avoid situations such as the one described here. Assume that Mallory
wishes to impersonate Alice. If Mallory can convincingly sign messages as
Alice, he can send a message to Alice’s bank stating “I wish to withdraw
$10,000 from my account. Send me the money.” To carry out this attack,
Mallory generates a key pair and sends the public key to a CA stating “I’m
Alice. Here is my public key. Please send me a certificate.” If the CA believes
Mallory and sends him such a certificate, Mallory can in turn fool the bank.

� The use of a single key pair for the signature and other purposes is strongly
discouraged. Use of separate key pairs for the signature and key
management provides several benefits to the users. The ramifications
associated with the loss or disclosure of a signature key are different from that
associated with the loss or disclosure of a key management key. Using
separate key pairs permits a balanced and flexible response.

� The protection afforded by private keys is a critical security factor. Failure on
the part of users to protect their private keys allows attackers to masquerade
as them or decrypt their personal information.

� The availability and freshness of the revocation information affects the degree
of assurance that ought to be placed on a certificate. If the revocation
information is untimely or unavailable, the assurance associated with the
binding is clearly reduced.

� The certification path validation algorithm depends on certain knowledge
about the public keys and other information about one or more trusted CAs.
The decision to trust a CA is an important one because it ultimately
determines the trust afforded to a certificate.

� The binding between a key and a certificate subject cannot be stronger than
the cryptographic module implementation and algorithms used to generate
the signature. Short key lengths or weak hash algorithms limit the utility of a
certificate.
 Chapter 2. Security concepts 67

2.12 The Diffie-Hellman key agreement protocol

A key agreement protocol, also called a key exchange protocol, is a protocol that
allows two parties with no prior knowledge of each other to jointly establish a
shared secret key over an insecure communications channel. This key can then
be used to encrypt subsequent communications using a secret key algorithm.

One example of such a protocol is the Diffie-Hellman key agreement protocol,
which was first published publicly by Whitfield Diffie and Martin Hellman in 1976.

The protocol has two system parameters p and g. They are both public and may
be used by all the users in a system. Parameter p is a prime number, and
parameter g, which is usually called a generator, is an integer less than p, with
the following property:

For every number n between 1 and p-1 inclusive, there is a power k of g, such
that n = gk mod p. For example, if p = 7, then g = 3 is a generator because 1 = 30
mod 7, 2 = 32 mod 7, 3 =31 mod 7, 4 = 34 mod 7, 5 = 35 mod 7, and 6 = 33 mod
7.

If Alice and Bob want to agree on a shared secret key using the Diffie-Hellman
key agreement protocol, they proceed as follows.

1. Alice and Bob agree upon a prime number p and a generator g.

2. Alice generates a random private integer a and then derives her public value
ga mod p.

3. Alice sends her public value to Bob.

4. Bob generates a random private integer b and then derives his public value
gb mod p.

5. Bob sends his public value to Alice.

6. Alice computes (gb)a mod p.

7. Bob computes (ga)b mod p.

Because (gb)a mod p = gba mod p = gab mod p = (ga)b mod p, Bob and Alice
now have a shared secret key.

If, for example, Alice and Bob agree to use a prime number p = 23 and a
generator g = 5:

1. If Alice chooses a secret integer a = 6, she computes her public value 56 mod
23 = 8.

2. Alice sends her public value 8 to Bob.
68 Securing Access to CICS Within an SOA

3. If Bob chooses a secret integer b = 15, he computes his public value 515 mod
23 = 19

4. Bob sends his public value 19 to Alice.

5. Alice computes 196 mod 23 = 2.

6. Bob computes 815 mod 23 = 2.

Alice and Bob now have the shared secret key 2.

The Diffie-Hellman key agreement protocol as described in the previous example
is vulnerable to a man-in-the middle attack. In this attack, Eve (short for
eavesdropper) intercepts Alice’s public value and sends her own public value to
Bob. When Bob transmits his public value, Eve substitutes it with her own and
sends it to Alice. Eve and Alice thus agree on one shared key and Eve and Bob
agree on another shared key. After this exchange, Eve simply decrypts any
messages sent out by Alice or Bob, and then reads, and possibly modifies them
before re-encrypting with the appropriate key and transmitting them to the other
party. This vulnerability is present because the protocol does not authenticate
the participants. The protocol described in the previous example is sometimes
called anonymous Diffie-Hellman.

The authenticated Diffie-Hellman key agreement protocol or Station-to-Station
(STS) protocol was presented by Diffie, van Oorschot, and Wiener in 1992.
Before the execution of this protocol, Alice and Bob each obtain a public or
private key pair and a certificate for the public key. They also agree upon the two
system parameters, p and g. The protocol then proceeds as follows:

1. Alice generates a random number a and computes and sends ga to Bob.

2. Bob generates a random number b and computes gb.

3. Bob computes the shared secret key K = (ga)b.

4. Bob concatenates the exponentials (gb, ga) (the order is important), signs
them using his private key B, and then encrypts them with K. He sends the
ciphertext along with his own exponential gb to Alice.

5. Alice computes the shared secret key K = (gb)a.

6. Alice decrypts (gb, ga) using the shared secret key K and verifies Bob's
signature using Bob’s public key.

7. Alice concatenates the exponentials (ga, gb) (the order is important), signs
them using her private key A, and then encrypts them with K. She sends the
ciphertext to Bob.

8. Bob decrypts and verifies Alice's signature.

Alice and Bob are now mutually authenticated and have a shared secret. This
secret, K, can be used to encrypt further communication.
 Chapter 2. Security concepts 69

2.13 Transport Layer Security 1.0 protocol

The primary goal of the Transport Layer Security (TLS) protocol is to provide
privacy (confidentiality) and data integrity between two applications
communicating over the Internet. The protocol allows client/server applications to
communicate in a way that is designed to prevent eavesdropping, tampering, or
message forgery.

At the time of writing this book, two versions of the TLS protocol existed. The
Internet Society’s RFC 2246 specified the TLS 1.0 protocol in January 1999.
RFC 4346 specified the TLS 1.1 protocol in April 2006. CICS TS V3.1 added
support for the TLS protocol. However, because CICS TS V3.1 became
generally available before TLS 1.1, CICS TS V3.1 supports only TLS 1.0.
Therefore, this book limits its discussion of TLS to TLS 1.0.

TLS 1.0 is based on the SSL 3.0 Protocol Specification as published by
Netscape. The differences between TLS 1.0 and SSL 3.0 are not dramatic, but
they are significant enough, in that, TLS 1.0 and SSL 3.0 do not interoperate.
However, TLS 1.0 does incorporate a mechanism by which a TLS
implementation can back down to SSL 3.0.

2.13.1 Overview of Transport Layer Security

The TLS protocol comprises two layers, the TLS Record Protocol and the TLS
Handshake Protocol. At the lowest level, layered on top of some reliable
transport protocol, for example, TCP, is the TLS Record Protocol. The TLS
Record Protocol provides connection security that has two basic properties:

� The connection is private.

Secret key cryptography is used for data encryption. The keys for this secret
key encryption are generated uniquely for each connection and are based on
a secret negotiated by another protocol such as the TLS Handshake Protocol.

� The connection is reliable.

Message transport includes a message integrity check using a keyed MAC.
Secure hash functions, for example, SHA-1 or MD5, are used for MAC
computations.
70 Securing Access to CICS Within an SOA

The TLS Handshake Protocol operates on top of the TLS Record Protocol and
allows the server and the client to authenticate each other and to negotiate an
encryption algorithm and cryptographic keys before the application protocol such
as Hypertext Transfer Protocol (HTTP) transmits or receives its first byte of data.
The TLS Handshake Protocol provides connection security that has three basic
properties:

� The peer’s identity can be authenticated using public key cryptography.

� The negotiation of a shared secret is secure. The negotiated secret is
unavailable to eavesdroppers, and for any authenticated connection, the
secret cannot be obtained, even by attackers who can place themselves in
the middle of the connection.

� The negotiation is reliable. Attackers cannot modify the negotiation
communication without being detected by the parties to the communication.

The Record Protocol takes messages to be transmitted, fragments the data into
manageable blocks, optionally compresses the data, applies a MAC, encrypts,
and transmits the result. The received data is decrypted, verified, decompressed,
and reassembled, and then delivered to higher level clients. Figure 2-15 shows a
client sending a message to a server.

Figure 2-15 Overview of Transport Layer Security

TCP

TLS record layer
1. Receive data from higher layer
2. Fragment data into blocks
3. Compress
4. Apply a MAC
5. Encrypt
6. Transmit to server

Client

application (e.g. HTTP)

TLS handshake layer

TCP

TLS record layer
12. Deliver data to higher layer
11. Reassemble blocks into data
10. Decompress
 9. Verify MAC
 8 .Decrypt
 7. Receive from client

Server

application (e.g. HTTP)

TLS handshake layer
 Chapter 2. Security concepts 71

The TLS Handshake Protocol consists of a suite of three subprotocols:

� Change cipher spec protocol
� Alert protocol
� Handshake protocol

Before describing the Handshake protocol, this chapter describes a cipher suite.

2.13.2 Cipher suites

One dictionary defines a suite as “a group of things forming a unit or constituting
a collection”. A cipher suite then is a collection of cipher algorithms. More
specifically, RFC 2246 defines a cipher suite as a collection consisting of one key
exchange algorithm, one encryption algorithm, and one hash algorithm.

The hash algorithm must come from the following set:

� NULL (no hash algorithm)
� MD5
� SHA (meaning SHA-1)

The encryption algorithm must come from the following set:

� NULL (no encryption)
� IDEA_CBC

IDEA is a 64-bit block cipher designed by Xuejia Lai and James Massey. It
uses a 128-bit key. IDEA_CBC is IDEA running in a cipher block chaining
mode.

� RC2_CBC_40

RC2 is a variable key-size block cipher designed by Ronald Rivest for RSA
Security. It uses a 64-bit block size. RC2_CBC_40 is RC2 running with a
40-bit key in cipher block chaining mode. (“RC” stands for “Ron’s Code” or
“Rivest’s Cipher”.)

� RC4_40

RC4 is a variable key-size stream cipher designed by Rivest for RSA
Security. RC4_40 is RC4 running with a 40-bit key.

� RC4_128

RC4_128 is RC4 running with a 128-bit key. When RFC 2246 was published,
RC4_40 was “exportable”, but RC4_128 was not. (For many years, the US
government did not approve the export of cryptographic products unless the
key size was strictly limited.)

� DES40_CBC

DES40_CBC is DES running with a 40-bit key in cipher block chaining mode.
72 Securing Access to CICS Within an SOA

� DES_CBC

DES_CBC is DES running with a 56-bit key in cipher block chaining mode.
When RFC 2246 was published, DES40_CBC was exportable, but
DES_CBC was not.

� 3DES_EDE_CBC

3DES_EDE_CBC is TDEA running in cipher block chaining mode. The first
use of DES is for encryption, the second for decryption, and the third for
encryption.

The key exchange algorithm must come from the following set:

� DHE_DSS
� DHE_DSS_EXPORT
� DHE_RSA
� DHE_RSA_EXPORT
� DH_anon
� DH_anon_EXPORT
� DH_DSS
� DH_DSS_EXPORT
� DH_RSA
� DH_RSA_EXPORT
� NULL
� RSA
� RSA_EXPORT

DH denotes key exchange algorithms in which the server’s certificate contains
the Diffie-Hellman parameters signed by a CA. DHE denotes ephemeral
Diffie-Hellman, where the Diffie-Hellman parameters are signed by a DSS or
RSA certificate, which in turn has been signed by a CA. The signing algorithm
used is specified after the DH or the DHE parameter.

DH_anon indicates completely anonymous Diffie-Hellman communications in
which neither party is authenticated. RSA indicates that the server must provide
a RSA certificate that can be used for key exchange. (RSA certificate is an X.509
certificate that has been signed by using the RSA algorithm.)

RFC 2246 assigns names to the 27 cipher suites that contain an acceptable
combination of algorithms from the sets listed earlier. The names have the
following form:

TLS_key-exchange-algorithm_WITH_encryption-algorithm_hash-algorithm
 Chapter 2. Security concepts 73

For example, the cipher suite TLS_RSA_WITH_DES_CBC_SHA contains the
RSA key exchange algorithm, the DES_CBC encryption algorithm, and the SHA
hash algorithm. The cipher suite TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
contains the DH_DSS key exchange algorithm, the 3DES_EDE_CBC encryption
algorithm, and the SHA hash algorithm.

RFC 2246 also assigns a number to each of the 27 cipher suites. Table 2-2
shows the first ten.

Table 2-2 Some TLS 1.0 cipher suite numbers and their meanings

The TLS 1.0 protocol seeks to provide a framework into which the new public key
and secret key encryption methods can be incorporated. This prevents the
necessity to create a new protocol, which may introduce weaknesses. The TLS
1.0 protocol allows additional cipher suites to be registered by publishing an RFC
that specifies the cipher suite. Indeed, several such RFCs have been published,
including the following:

� RFC 2712: Addition of Kerberos Cipher Suites to Transport Layer Security
(TLS)

� RFC 3268: Advanced Encryption Standard (AES) Ciphersuites for Transport
Layer Security (TLS)

� RFC 4132: Addition of Camellia Cipher Suites to Transport Layer Security
(TLS)

Number Name

01 TLS_RSA_WITH_NULL_MD5

02 TLS_RSA_WITH_NULL_SHA

03 TLS_RSA_EXPORT_WITH_RC4_40_MD5

04 TLS_RSA_WITH_RC4_128_MD5

05 TLS_RSA_WITH_RC4_128_SHA

06 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

07 TLS_RSA_WITH_IDEA_CBC_SHA

08 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

09 TLS_RSA_WITH_DES_CBC_SHA

0A TLS_RSA_WITH_3DES_EDE_CBC_SHA
74 Securing Access to CICS Within an SOA

� RFC 4162: Addition of SEED Cipher Suites to Transport Layer Security (TLS)

� RFC 4279: Pre-shared Key Ciphersuites for Transport Layer Security (TLS)

� RFC 4492: Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS)

CICS TS V3.1 adds support for the cipher suites (shown in Table 2-3) added by
RFC 3268.

Table 2-3 Two cipher suites added by RFC 3268 and supported by CICS

2.13.3 Alert protocol

Error handling in the TLS Handshake protocol is simple. When an error is
detected, the detecting party sends a message called an alert message to the
other party. An alert message conveys the severity of the message and a
description of the alert.

The severity of the message must be one of the following:

� warning (1)
� fatal (2)

On transmission or receipt of a fatal alert message, both parties immediately
close the connection. The servers and the clients are required to forget any
session identifiers, keys, and secrets associated with a failed connection.

The description of the alert must be one of the following:

� close_notify (0)
� unexpected_message (10)
� bad_record_mac (20)
� decryption_failed (21)
� record_overflow (22)
� decompression_failure (30)
� handshake_failure (40)
� bad_certificate (42)
� unsupported_certificate (43)
� certificate_revoked (44)
� certificate_expired (45)
� certificate_unknown (46)
� illegal_parameter (47)

Number Name

2F TLS_RSA_WITH_AES_128_CBC_SHA
35 TLS_RSA_WITH_AES_128_CBC_SHA
 Chapter 2. Security concepts 75

� unknown_ca (48)
� access_denied (49)
� decode_error (50)
� decrypt_error (51)
� export_restriction (60)
� protocol_version (70)
� insufficient_security (71)
� internal_error (80)
� user_canceled (90)
� no_renegotiation (100)

RFC 2246 provides a short explanation of each of these descriptions.

The user-canceled and no-renegotiation alerts carry a level of warning.
Senders may determine at their discretion whether the following alerts are fatal
or not:

� bad_certificate
� unsupported_certificate
� certificate_revoked
� certificate_expired
� certificate_unknown
� decrypt_error

The remaining alerts always carry a level of fatal.

2.13.4 Handshake protocol

When a TLS client and server first start communicating, they agree on which
version of the TLS protocol they will use, select a cipher suite, optionally
authenticate each other, and use public key encryption techniques to generate
shared secrets.

The TLS Handshake Protocol involves the following steps:

1. Exchange hello messages to agree on a cipher suite and a compression
algorithm, exchange random values, and check for session resumption

2. Exchange the necessary cryptographic parameters to allow the client and
server to agree on a premaster secret

3. Exchange certificates and cryptographic information to allow the client and
the server to authenticate themselves

4. Generate a master secret from the premaster secret and exchanged random
values

5. Provide security parameters to the record layer, as shown in Figure 2-16
76 Securing Access to CICS Within an SOA

6. Allow the client and server to verify whether their peer has calculated the
same security parameters and whether the handshake occurred without
tampering by an attacker

Figure 2-16 Handshake protocol passes security parameters to the record layer

TCP

TLS record layer

TLS
alert
protocol

TLS
change
cipher
spec
protocol

TLS
hand
shake
protocol

application (e.g. HTTP)

secret key encryption algorithm
cipher type (block or stream)
key size
key material length
MAC algorithm, hash size
compression algorithm
master secret
client and server random numbers
 Chapter 2. Security concepts 77

Starting a new session
When the client and server want to start a new session, they begin by
exchanging hello messages, as shown in Figure 2-17.

Figure 2-17 Starting a new TLS session(1): Establishing algorithms

The server may send the hello_request message at any time. It is a simple
notification and the client must begin the negotiation process anew by sending a
client_hello message when convenient.

The client_hello message includes the following parameters:

� The version of the TLS protocol by which the client wishes to communicate
during this session. This must be the highest valued version supported by the
client. For TLS 1.0, the version must be 3.1.

� The current time and date according to the client’s internal clock, followed by
28 bytes generated by a secure random number generator.

� A list of the cipher suites supported by the client in the order of the client’s
preference (with the favorite choice coming first). Each cipher suite defines a
key exchange algorithm, a secret key encryption algorithm, including the
secret key length, and a MAC algorithm.

� A list of the compression methods supported by the client and sorted by the
client preference.

hello_request

Server

server_hello

...

Highest protocol version supported
Random number (28 bytes)
Cipher suites supported
Compression methods supported

Protocol version selected
Random number (28 bytes)
Session ID
Cipher suite selected
Compression method selected

Client

client_hello

...
78 Securing Access to CICS Within an SOA

The server sends a server_hello message in response to a client_hello
message after it finds an acceptable set of algorithms. If it cannot find such a
match, it responds with a handshake_failure alert. The server_hello message
includes the following parameters:

� The lower of the TLS protocol version suggested by the client and the highest
TLS protocol version supported by the server

� The current time and date according to the server’s internal clock, followed by
28 bytes generated by a secure random number generator

� The identity of the session corresponding to this connection. The actual
contents of the sessionID are defined by the server.

� The single cipher suite selected by the server from the list supplied by the
client

� The single compression algorithm selected by the server from the list
supplied by the client

Thus the client_hello and server_hello messages establish the following
connection attributes:

� The TLS protocol version
� The sessionID
� The key exchange algorithm
� The secret key encryption algorithm
� The key length for the secret key encryption algorithm
� The compression method

Additionally, two random values are generated and exchanged:

client_hello.random and server_hello.random.

When this list of items is compared with the list of items shown in Figure 2-16 on
page 77, which the TLS Handshake Protocol must pass to the Record layer, you
can see that the TLS Handshake Protocol must still come up with a master
secret.
 Chapter 2. Security concepts 79

The master secret is generated by using, among other things, a premaster
secret. The general goal of the key exchange process shown in Figure 2-18 is to
create a premaster secret known to the communicating parties and not to the
attackers. Note that the italicized blue lines in Figure 2-18 represent the actions
taken by the client and the server rather than the protocol messages.

Figure 2-18 Starting a new TLS session(2): Establishing the premaster secret

(1) optional
(2) only if server requested client certificate in (1)

For RSA key exchange:
 encrypted premaster secret
For DH key exchange:
 client's DH public value

For DH key exchange: p, g, gs mod p
For RSA key exchange: (n, e)
In either case: digital signature

List of types of certificates requested
DNs of acceptables CAs

Server's certificate (public key)
Chain of X.509v3 certificates

Client's certificate (public key)
Chain of X.509v3 certificates

Server

decrypt premaster secret
 or
gen premaster secret

...
gen master secret

gen encryption keys, IVs

server_certificate

server_key_exchange

certificate_request (1)

server_hello_done

...
Client

verify server certificate

client_certificate (2)

gen premaster secret

client_key_exchange

gen master secret

gen encryption keys, IVs...

...
80 Securing Access to CICS Within an SOA

The server_certificate message sends a chain of X.509v3 certificates. The
server’s certificate must come first in the chain. Each following certificate must
directly certify the one preceding it. The server’s certificate must contain a key
that matches the key exchange method, as shown in Table 2-4.

Table 2-4 Key exchange methods and certificate key types

The server_key_exchange message is sent by the server only when the
server_certificate message does not contain enough data to allow the client to
exchange a premaster secret. This is true for the following key exchange
methods:

� RSA_EXPORT (if the public key in the server certificate is longer than 512
bits)

� DHE_DSS

� DHE_DSS_EXPORT

Key exchange method Certificate key type

RSA RSA public key. The certificate must allow
the key to be used for encryption.

RSA_EXPORT RSA public key of length greater than 512
bits that can be used for signing, or a key
of 512 bits or shorter that can be used for
either encryption or signing

DHE_DSS DSS public key

DHE_DSS_EXPORT DSS public key

DHE_RSA RSA public key that can be used for
signing

RHE_RSA_EXPORT RSA public key that can be used for
signing

DH_DSS Diffie_Hellman key. The algorithm used to
sign the certificate must be DSS.

DH_RSA Diffie_Hellman key. The algorithm used to
sign the certificate must be RSA.

Note: At the time RFC 2246 was written, United States export restrictions
limited the RSA keys used for encryption to 512 bits, but did not place any limit
on lengths of RSA keys used for signing operations.
 Chapter 2. Security concepts 81

� DHE_RSA

� DHE_RSA_EXPORT

� DH_anon

The server_key_exchange message conveys cryptographic information to allow
the client to communicate the premaster secret, either an RSA public key with
which to encrypt the premaster secret or a Diffie-Hellman public key with which
the client can complete a key exchange (the result being the premaster secret).

When the key exchange method is RSA_EXPORT, the server_key_exchange
message includes the following parameters:

� The modulus n of the server’s temporary RSA key

According to US export law, at the time RFC 2246 was written, RSA moduli
larger than 512 bits could not be used for key exchange in the software
exported from the US. This message allows the larger RSA keys encoded in
certificates to be used to sign the temporary, shorter RSA keys.

� The public exponent e of the server’s temporary RSA key

� A 36-byte structure of two hashes (one SHA-1 and one MD5) that has been
signed with the server’s private key. The SHA-1 hash takes as input the
concatenation of client_hello.random, server_hello.random, and (n,e). It
produces 20 bytes of output. The MD5 hash takes the same input and
produces 16 bytes of output.

When the key exchange method is DHE_DSS, DHE_DSS_EXPORT, DHE_RSA,
or DHE_RSA_EXPORT, the server_key_exchange message includes the
following parameters:

� The prime modulus p used for the Diffie-Hellman operation

� The generator g used for the Diffie-Hellman operation

� The server’s Diffie-Hellman public value gs mod p

� Two integers r and s produced as follows:

An SHA-1 hash takes as input the concatenation of client_hello.random,
server_hello.random, p, g, and ga mod p. It produces 20 bytes of output. The
20 bytes are run through the DSA.

A nonanonymous server can optionally request a certificate from the client. The
certificate_request message includes the following parameters:

� A list of the types of certificates requested, sorted in the order of the server’s
preference

� A list of DNs of acceptable CAs
82 Securing Access to CICS Within an SOA

The server sends the server_hello_done message to indicate that it is done with
sending messages to support the key exchange, and the client can proceed with
its phase of the key exchange. On receipt of this message, the client must verify
that the server has provided a valid certificate and that the certificate has not
expired or been revoked. The client must also check that the server hello
parameters are acceptable.

The client_certificate message is the first message that the client can send
after receiving the server_hello_done message. The client only sends the
client_certificate message if the server requests a certificate. If the client
does not have a suitable certificate to send to the server, it sends a message
containing no certificates. If the server requires client authentication in order to
continue the handshake, it may respond with a fatal_handshake failure alert.

The structure of the client_key_exchange message depends on which key
exchange method is selected:

� If RSA is being used for key agreement and authentication, the client
generates a 48-byte premaster secret, encrypts it using either the public key
from the server’s certificate or the temporary RSA key provided in a
server_key_exchange message, and then sends the result in an encrypted
premaster secret message. Because the premaster secret has been
encrypted using the server’s public key, the server can decrypt it. In fact, only
the server can decrypt it. The premaster secret consists of two bytes that
indicate the latest (newest) version of the TLS protocol supported by the
client, followed by 46 securely generated random bytes.

� If Diffie-Hellman is being used for key agreement, the client_key_exchange
message conveys the client’s Diffie-Hellman public value gc mod p. Having
the client’s Diffie-Hellman public value allows the server to compute the same
premaster secret as the client. (In the event that the key exchange method is
DH_RSA or DH_DSS, and the server requests client certification and the
client is able to respond with a certificate containing a Diffie-Hellman public
key whose group and generator matched those specified by the server in its
certificate, then the client sends an empty client_key_exchange message.)

Now that the client and the server have agreed on the premaster secret, they can
compute the master secret. For all key exchange methods, the same algorithm is
used to convert the premaster secret into the master secret.
 Chapter 2. Security concepts 83

In Example 2-3, PRF is a pseudorandom function defined in RFC 2246, and +
represents the concatenation operation. PRF takes a secret such as our
premaster secret as input, an identifying label such as “master secret”, and a
seed such as the concatenation of the random numbers generated by the client
and the server.

Example 2-3 Computing the master secret

master_secret=PRF(pre_master_secret, “master secret”,
client_hello.random+server_hello.random)

Having computed the master secret, the Record Protocol layer for the client and
the Record Protocol layer for the server can now each use PRF to compute a
key_block, as shown in Example 2-4.

Example 2-4 Computing the key_block

key_block=PRF(master_secret, “key expansion”,
client_hello.random+server_hello.random)

The key_block is then partitioned as follows:

� client_write_MAC_secret

The first SecurityParameters.hash_size bytes of the key_block become the
secret data used to authenticate the data written by the client.

� server_write_MAC_secret

The next SecurityParameters.hash_size bytes of the key_block become the
secret data used to authenticate the data written by the server.

� client_write_key

The next SecurityParameters.key_material_length bytes become the key
used to encrypt the data written by the client.

� server_write_key

The next SecurityParameters.key_material_length bytes become the key
used to encrypt the data written by the server.

� client_write_IV

The next bytes become the initialization vector for the encryption algorithm
when the client encrypts the data. The required number of bytes is equal to
the block size for block ciphers and zero for stream ciphers.
84 Securing Access to CICS Within an SOA

� server_write_IV

The next bytes become the initialization vector for the encryption algorithm
when the server encrypts the data.

Figure 2-19 shows the final phase of starting a new TLS session.

Figure 2-19 Starting a new TLS session (3): Verification

The certificate_verify message is used to provide explicit verification of a
client certificate. This message follows only a client certificate that has signing
capability, that is, all the certificates except those containing fixed Diffie-Hellman
parameters.

When the key exchange method is RSA, the certificate_verify message
includes a 36-byte structure of two hashes (one SHA-1 and one MD5), which has
been signed with the client’s private key. The SHA-1 hash takes as input the
concatenation of all handshake messages sent or received starting at
client_hello up to, but not including this message. It produces 20 bytes of
output. The MD5 hash takes the same input and produces 16 bytes of output.
These handshake messages include the server certificate that binds the
signature to the server, and server_hello.random that binds the signature to the
current handshake process.

Note: Because the client_hello.random and server_hello.random values are
unique for each connection, the data encryption keys and MAC secrets are
unique for each connection. Also note that the server_write_key and the
client_write_key are independent of each other.

Uses negotiated encryption and MAC
algorithms, keys, and secrets

Digital signature computed over
hash of handshake messages

Uses negotiated encryption and MAC
algorithms, keys, and secrets

Server

finished

change_cipher_spec

validate finished msg

...
Client

certificate_verify

finished

change_cipher_spec

validate finished msg

...
 Chapter 2. Security concepts 85

When the key exchange method is Diffie-Hellman, the certificate_verify
message includes a SHA-1 hash that takes the input described in the preceding
paragraph and produces 20 bytes of output. The 20 bytes are then signed using
the DSA.

The change_cipher_spec message is sent by both the client and the server to
notify the receiving party that subsequent records will be protected under the
newly negotiated encryption and MAC algorithms and keys. The message
consists of a single byte of value 1.

A finished message is always sent immediately after a change_cipher_spec
message to verify that the key exchange and authentication processes are
successful. The finished message is protected first with the just-negotiated
algorithms, keys, and secrets. The contents of the finished message is
generated using PRF, as shown in Example 2-5.

Example 2-5 Computing verify_data

PRF(master_secret, finished_label,
MD5(handshake_messages)+SHA-1(handshake_messages))

In Example 2-5:

� The value of finished_label is the string “client finished” for the finished
messages sent by the client and ”server finished” for the finished messages
sent by the server.

� The value of handshake_messages is all the data from all the handshake
messages up to, but not including this message.

Recipients of the finished messages must verify that the contents are correct.
After one side sends its finished message and then receives and validates the
finished message from its peer, it can begin to send and receive the application
data over the connection.

Outgoing data is protected with a MAC before transmission. To prevent message
replay or modification attacks, the MAC is computed from the MAC secret, the
message contents, the message length, and the sequence number of the
message.
86 Securing Access to CICS Within an SOA

Resuming a session
Cryptographic operations tend to be highly CPU-intensive, particularly public key
operations. For this reason, the TLS protocol has incorporated an optional
session caching scheme to reduce the number of connections that have to be
established from scratch. When the client and the server decide to resume a
previous session, the message flow is as shown in Figure 2-20.

Figure 2-20 Resuming a session

The client sends a client_hello message using the session ID of the session to
be resumed. The server then checks its session cache for a match.

� If a match is found and the server is willing to re-establish the connection
under the specified session state, it sends a server_hello message with the
same session ID value plus the cipher suite and compression method from
the state of the session being resumed. At this point, both the client and the
server must send change_cipher_spec messages and proceed directly to the
finished messages.

� If a session ID match is not found, the server generates a new session ID and
the TLS client and the server perform a full handshake.

When a connection is established by resuming a session, new
client_hello.random and server_hello.random values are used with the session’s
master secret to produce a new key_block (Example 2-4). Thus, the new
encryption keys and MAC secrets.

Highest protocol version supported
Random number (28 bytes)
Session ID
Cipher suites supported
Compression methods supported

Protocol version selected
Random number (28 bytes)
Session ID
Cipher suite selected
Compression method selected

Server

server_hello

validate finished msg

change_cipher_spec

application data

finished

gen encryption keys, IVs

Client

client_hello

finished

application data

change_cipher_spec

validate finished msg

gen encryption keys, IVs
 Chapter 2. Security concepts 87

2.14 Cryptographic hardware

A cryptographic hardware feature is a secure, high-speed device that performs
cryptographic functions. The cryptographic hardware features available to your
CICS regions depend on the server you have.

This section provides a summary of the cryptographic hardware features
currently available on the latest System z hardware.

2.14.1 CP Assist for Cryptographic Functions

CP Assist for Cryptographic Functions (CPACF) is a set of cryptographic
instructions available on all CPs of an IBM System z9 109, IBM System z9
Enterprise Class (EC), and IBM System z9 Business Class (BC), z990, z890.
Using CPACF instructions improves performance.

CPACF offers a set of symmetric cryptographic functions. The CPACF feature
provides hardware acceleration for DES, triple-DES, AES (128-bit), MAC,
SHA-1, and SHA-256 cryptographic services. It provides high-performance
hardware encryption, decryption, and hashing support.

The SHA-1 algorithm is always available. The SHA-256 algorithm is available on
the System z9 109, System z9 EC, and System z9 BC. CPACF DES/triple-DES
enablement is provided with feature 3863. It provides for clear key DES and triple
DES instructions. On the z9-109, z9 EC, and z9 BC, this feature includes clear
key AES for 128-bit keys.

The CPACF feature supports z/OS applications and subsystems such as CICS
that use the Integrated Cryptographic Service Facility (ICSF) for cryptographic
functions (see 2.15, “Integrated Cryptographic Service Facility” on page 90).

Note: The CPACF operates with clear keys only. A clear key is a key that has
not been encrypted under another key and has no additional protection within
the cryptographic environment.
88 Securing Access to CICS Within an SOA

2.14.2 Crypto Express2 Feature

An installation can configure the Crypto Express2 Feature (CEX2) as an
asynchronous cryptographic coprocessor or accelerator. It is only available on
the System z9 109, System z9 EC, and System z9 BC.

� The Crypto Express 2 Coprocessor (CEX2C) feature on System z9 enables
the user to perform the following by using secure keys:

– Encrypt and decrypt data utilizing shared secret key algorithms

– Generate, install, and distribute cryptographic keys securely using both the
public and secret key cryptographic methods

– Generate, verify, and translate personal identification numbers (PINs)

– Ensure the integrity of data by using MACs, hashing algorithms, and RSA
public key algorithm (PKA) digital signatures

The CEX2C consolidates the functions previously offered on the z900 by the
Cryptographic Coprocessor feature (CCF), the PCI Cryptographic
Coprocessor (PCICC), and the PCI Cryptographic Accelerator (PCICA).

� The Crypto Express2 Accelerator (CEX2A) is actually a CEX2C that has been
reconfigured by the user to only provide a subset of the CEX2C functions at
enhanced speed.

The CEX2A is used for the following RSA cryptographic operations (with clear
keys only):

– PKA Decrypt (CSNDPKD), with PKCS-1.2 formatting
– PKA Encrypt (CSNDPKE), with ZERO-PAD formatting
– Digital Signature Verify

For detailed information about configuring these cryptographic hardware
features, refer to z9-109 Crypto and TKE V5 Update, SG24-7123.

Note: A secure key is a key that has been encrypted under another key,
usually the master key.

Important: The CEX2 feature requires ICSF to be active.
 Chapter 2. Security concepts 89

2.15 Integrated Cryptographic Service Facility

The Integrated Cryptographic Service Facility (ICSF) is a software element of
z/OS that works with cryptographic hardware features and RACF to provide
secure, high-speed cryptographic services in the z/OS environment. ICSF
provides the application programming interfaces (APIs) by which applications
and subsystems such as CICS request the cryptographic services.

ICSF provides support for a number of cryptography services, including the
following:

� DES and triple DES encryption for privacy

� The transport of symmetric data keys through the use of the RSA public key
algorithm

� The generation and verification of digital signatures through the use of both
the RSA and the DSA algorithms

� The generation of RSA and DSA keys

� The PKA Encrypt and PKA Decrypt callable services that can be used to
enhance the security and performance of Secure Sockets Layer/Transport
Layer Security (SSL/TLS) security protocol applications

� Advanced Encryption Standard (AES) encryption and decryption

The CICS support for Web Services Security (WS-Security) is dependent on
these ICSF services, and therefore, the configuration and startup of ICSF is a
requirement for using this support.

For general information about ICSF, refer to z/OS V1R8.0 Cryptographic
Services ICSF Overview, SA22-7519.

2.15.1 Cryptographic hardware requirements for CICS WS-Security

Because CICS relies on ICSF for cryptographic services and ICSF is dependent
on cryptographic devices to perform the actual cryptographic functions, there is a
clear dependency on the availability of cryptographic devices when using the
CICS WS-Security support. Specific requirements depend on the server that you
have.

Important: ICSF must be configured with cryptographic devices and started in
order to use the CICS WS-Security support.
90 Securing Access to CICS Within an SOA

Table 2-5 contains a list of the ICSF callable services used by the CICS
WS-Security support, and a brief summary of each service.

Table 2-5 ICSF callable services used by CICS WS-Security support

Many of these services require cryptographic hardware in order to be configured.

ICSF Service Description

CSNBCKM Multiple clear key import callable service in order to import a clear
single-length, double-length, or triple-length DATA key that is to be
used to encipher or decipher data

CSNBDEC Decipher callable service in order to decipher data in an address
space or a data space using the cipher block chaining mode

CSNBENC Encipher callable service to encipher data in an address space or a
data space using the cipher block chaining mode

CSNBOWH One-way hash generate callable service in order to generate a
one-way hash on specified text

CSNBRNG Service to generate a random number

CSNBSYD Symmetric key decipher callable service in order to decipher data in
an address space or a data space using the cipher block chaining
or electronic code book modes

CSNBSYE Symmetric key encipher callable service in order to encipher data in
an address space or a data space using the cipher block chaining
or electronic code book modes

CSNDDSG Digital signature generate callable service in order to generate a
digital signature using a PKA private key

CSNDDSV Digital signature verify callable service in order to verify a digital
signature using a PKA public key

CSNDPKB Service to build external PKA key tokens containing unenciphered
private RSA or DSS keys

CSNDPKD Service to decrypt (unwrap) a formatted key value. The service
unwraps the key, deformats it, and returns the deformatted value to
the application in the clear.

Important: On a z9, an optimal cryptographic hardware configuration is a
combination of CPACF and CEX2.
 Chapter 2. Security concepts 91

The publication z/OS V1R8.0 Cryptographic Services ICSF Application
Programmer's Guide, SA22-7522 documents the cryptographic hardware
requirements for the System z9 and other types of servers.
92 Securing Access to CICS Within an SOA

Chapter 3. Security technologies

This chapter examines the security technologies as they relate to the CICS
Transaction Server V3.1 (z/OS), including discussions on security risks,
Resource Access Control Facility (RACF), and the z/OS Security Server.

3

© Copyright IBM Corp. 2006. All rights reserved. 93

3.1 Security risks

The Internet is revolutionizing the way companies communicate and conduct
business. By nature, it is public, distributed, connected, and dynamic, with the
resulting effect of phenomenal growth in infrastructure, number of people online,
and number and types of applications running across it. This growth, specifically
the rush that governs the introduction of most new projects, gives rise to a new
class of risks:

� Today, security risks are often perceived as coming from malicious hackers.
These are people who are typically motivated by the mere challenge of
highlighting companies' security weaknesses and winning the respect of their
fellow hackers, sometimes called “bragging rights”. They are usually highly
skilled, and openly communicate breakthroughs to each other, fostering the
rapid development and spreading of attack tools.

� A second risk comes from the fact that a high percentage of the individuals
involved in building and maintaining Web sites and the systems that support
these servers are not well trained in security. The infrastructure of the Internet
is complicated, and today's security solutions are usually effective only when
they are tailored to the unique elements of an installation.

� A third risk, and perhaps the most serious, comes from the employees (or
former employees) of a company. The Internet gives these employees the
ability to work remotely and anonymously. To protect against such attacks is
not easy, but a good policy is that no one person must be allowed to code,
install, and use software that accesses real business data. This reduces the
risk by requiring collaboration between two or three people to obtain the
necessary knowledge in order to access data fraudulently.

3.1.1 Types of attacks

In the context of the CICS Web environments discussed in this book, the
following five possible types of attack have been identified.

Denial-of-service attacks
The aim of a denial-of-service attack is to disable a Web site by bombarding it
with requests at a rate that consumes all the available computing resources, thus
denying the services to other users. Because the network connection is usually
the limiting factor in Internet communication, these attacks are often mounted by
planting rogue applications in the computers of educational or other institutions
with high bandwidth connections, but poor security. At the time of writing this
book, a spree of such distributed denial-of-service attacks on high-profile US
Web sites has focused public attention on this issue. Unfortunately, this is not the
only attack our systems must guard against.
94 Securing Access to CICS Within an SOA

Running applications without authorization
The ease-of-use with which the Internet can be accessed means that it is all too
easy for someone to “crack” your system by trying to run applications without
authorization. Although knowledge about cracking CICS Web applications may
not be as widespread as that for cracking UNIX® systems, you must guard
against the possibility. Most such attacks on UNIX systems involve misusing the
ability of Web servers to run Common Gateway Interface (CGI) programs. This,
of course, is not possible in a CICS system. However, there are powerful CICS
transactions (such as CECI or CEMT) that can cause as much damage.

Misusing the existing applications
Most CICS applications have been developed over a period of many years and
may contain myriad methods of being invoked. A disgruntled and experienced
former employee could use such knowledge to invoke a function in an application
by calling the CICS application with the correct input parameters.

Masquerading as an authenticated user
After you open your CICS system for use through the Internet, you can no longer
rely on the physical security of your terminals (the way you may have done for a
3270 terminal network) to secure access to your applications. The anonymity
provided by the Internet, which is so attractive to Web surfers, means that you
must consider how to prevent someone from misusing a powerful user ID from
the Internet to anonymously achieve a desired objective in your Web-enabled
CICS system.

Accessing the transmitted data
The Internet is a public network, and although the risk of the transmitted data
being intercepted or modified is low, it is still a distinct possibility. Just as you use
registered mail to send valuable parcels or letters, you must take extra
precautions when transmitting sensitive data over the Internet. Encryption of the
transmitted data using the SSL protocol is a popular solution to prevent access to
the transmitted data.

3.1.2 z/OS V1R7 Integrated IP Security as compared to the z/OS
Firewall Technologies

Before z/OS 1.7, the IP Filtering and Virtual Private Network (VPN) support was
spread among several z/OS components. The management and configuration
functions were provided by the z/OS Firewall Technologies, which were part of
the z/OS Security Server until z/OS 1.5, and then became part of the so-called
Integrated Security Services.
 Chapter 3. Security technologies 95

Figure 3-1 describes the functional layout of the z/OS Firewall Technologies.

Figure 3-1 IP Filtering and VPN support components in z/OS Firewall Technologies

Important: At the time of editing this book, it has been officially announced
that the z/OS Firewall Technologies have been discontinued in z/OS V1R8.

z/OS

TCP/IP Stack Filter Policy
and VPN Info

Filtering and
VPN logic

fwkern

fwstackd isakmpd cfgsrv

Firewall Technologies
address spaces

Firewall
Commands

Comm Server

syslogd

Firewall
GUI

TCP/IP
Profile

File

Firewall
Config
Files

Firewall
Trace
Files
96 Securing Access to CICS Within an SOA

Compare this to the new IP Security implementation in z/OS V1R7, which is
shown in Figure 3-2. Note the higher level of integration, which also shows that
the functions are now fully integrated into the z/OS Communications Server
package.

Figure 3-2 New integrated IP Security components in z/OS 1.7

The z/OS V1R7 IP Security services are under the control of the policies installed
in the TCP/IP stacks by the Policy Agent utility. The new z/OS UNIX ipsec
command is used to manage and monitor the IP filtering and VPN policies.

Attention: Earlier, the z/OS Firewall Technologies provided other functions in
addition to IP Filtering and VPNs. These functions include:

� FTP proxy
� Socks server
� Network Address Translation (NAT)

These functions are no longer available in the new z/OS IP Security functions.

z/OS Communications Server

TCP/IP Stack

syslogd trmd pagent iked ipsec
command

z/OS IP
Security
Configuration
Assistant GUI

Filter Policy
and VPN Info

Filtering and
VPN logic

TCP/IP
Profile

File

Pagent
Config
Files
 Chapter 3. Security technologies 97

The Communications Server provides integrated functions to support the IP
filtering, the IPSec VPNs, and the Internet Key Exchange (IKE) daemon. When
compared to the previous Firewall technologies, this implementation provides the
following:

� Easier configuration
� Greater scalability
� Improved performance
� Enhanced serviceability

3.2 The z/OS Communications Server Policy Agent

This section discusses the Policy Agent (PAGENT) utility, which is required for
setting up the VPN, Application Transparent Transport Layer Security (AT-TLS),
IP filtering, and Intrusion Detection Services (IDS). The Policy Agent fetches
relevant data in the policies pertaining to these functions and installs this data
into the designated TCP/IP stacks in an internal code format.
98 Securing Access to CICS Within an SOA

After the policies are installed in a z/OS stack, the Policy Agent can be invoked
with the z/OS UNIX command, pasearch. Using the pasearch command, a
system operator can quickly confirm the status of the policies that are installed in
the TCP/IP stacks.

As Figure 3-3 shows, quite a large number of components of a TCP/IP
environment are linked to the agent.

Figure 3-3 z/OS Communications Server Policy Agent

In Figure 3-3, two sources of policy configuration data are shown above the
Policy Agent itself. The Policy Agent can read the data either from an Lightweight
Directory Access Protocol (LDAP) server for the IDS and Quality of Service
(QoS) policies, or from the flat files for all the policies except the IDS policy,
which, even at the time of writing this book, had to be fetched from an LDAP
directory.

To the right of the Policy Agent is the pasearch command. As mentioned earlier,
this command is used to query information about the policies that have been
read into a stack by the agent.

Performance
Log

Policy
Agent

(pagent)
TRM

Daemon Netstat
command

1 2 3 4

QoS, Sysplex
Distributor, IDS, IPSec

or AT-TLS policies

Set TOS/DS, enforce TCP
data rates and

connection limits

TCP/IP Kernel

Active Queue
Management
(QDIO)

IPPackets

Collect and
maintain
performance
data:

 SLAP Mibs
Policy
SD

LDAP
Server

Policies
Local

Policies

Token Bucket
traffic enforcer

Set TOS/DS

URI

SSL

Policy
GUIs

User
Performance

Monitor
Application

SLA
Subagent

(pagtsnmp)

SLAPM2
Subagent
(nslapm2)

pasearch
command

SNMP
Agent

DPI

Non-QoS
aware
appl.

QoS
aware
appl.

RSVP
Agent

Data
Traffic

Data
Traffic

RSVP
Traffic

Sysplex
Distributor
workload
balancing

Fast
Response

Cache
Accelerator

(FRCA)

Intrusion
Detection
Services

(IDS)

IPSec
Services
(IPSec)

IKE
Daemon

Application
Transparent

Transport
Layer

Security
(AT-TLS)

ipsec
command
 Chapter 3. Security technologies 99

Note the box titled IPSec Services. This is the service that implements the IPsec
VPN. As mentioned earlier, the VPN is controlled by policy statements. The z/OS
UNIX ipsec command allows policy information to be queried and changed.

Two other partners of the Policy Agent warrant a comment here. The first is the
Traffic Regulation Monitoring daemon (TRMD). This can be viewed simply as a
message and report writer, sending the message and the report to Syslogd.
TRMD is in charge of event recording for IDS, IPsec services, and traffic
regulation. Traffic regulation is a mechanism embedded in z/OS, which limits the
amount of TCP or User Datagram Protocol (UDP) requests the stack has to
process, thus limiting the effects of denial-of-service attacks.

The z/OS Network Configuration Assistant is a graphical user interface (GUI)
that can be used to define AT-TLS and IPsec, VPN, and Internet Key Exchange
(IKE) configuration policies. After being defined in the Configuration Assistant,
the policy files and other relevant parameters or job control language (JCL) files
are sent to the z/OS TCP/IP host using FTP. The GUI can be downloaded from
the following URL:

http://www.ibm.com/support/search.wss?tc=SSSN3L&rs=852&rank=&dc=D400&dtm

Figure 3-3 on page 99 also shows the IKE daemon (IKED). As mentioned earlier,
IKE stands for Internet Key Exchange, a standardized protocol defined in RFC
2409. The IKE daemon facilitates negotiation and exchange of keys to be used
for encryption in a VPN. As such, IKED is really a helper application to make the
management of encryption keys for a VPN an automated process.

3.3 Virtual Private Network
Connecting a sysplex member to a nonsecure network introduces the necessity
for securing data that travels over the network. A VPN is one of the solutions
available on z/OS to improve the security of the data on the wire.

Clarifying the terminology
The world of technology has plenty of confusing acronyms. Therefore, it is only
appropriate to make sure that you know the meaning of some of these terms.

A VPN, also called a tunnel, is cryptographic protection applied to one or more
logical (virtual) connections between one or more pairs of endpoints on an IP
network. The traffic between these two endpoints is authenticated and
encrypted. The effect is to have data carried in a secure fashion over what is
classified as a nonsecure network.
100 Securing Access to CICS Within an SOA

http://www.ibm.com/support/search.wss?tc=SSSN3L&rs=852&rank=&dc=D400&dtm

The term IPsec (IP Security) is used to describe the standardized protocol that
makes a VPN exist and be exploited. The IPsec standard is documented by the
Internet Engineering Task Force (IETF) in Request for Comments (RFCs). The
IPsec protocol is complex and described over many RFCs. However, the primary
document is RFC 2401, which is available on the Web at:

http://www.ietf.org

In z/OS V1R7, the replacement mechanisms for the Firewall Technologies fall in
the functions category called Communications Server IP Security, and requires
the new statement IPSEC in the TCP/IP profile data set to be enabled. This
IPSEC statement also controls the IP filtering functions built into the stacks in
z/OS V1R7.

In addition, VPN, the IP filtering options, and more are controlled by a new z/OS
UNIX command, ipsec.

In summary:

� IPsec is the public standard for VPN communications

� IPSEC is the statement in the z/OS PROFILE.TCP/IP data set that enables IP
filtering or the IPSec VPNs

� ipsec is a z/OS UNIX command used to configure and display filtering and
VPN settings

3.3.1 Internet Security Association and Key Management Protocol
and Internet Key Exchange

An IPsec VPN provides encryption, integrity, and authentication, or in other
words, privacy and integrity of data and identity verification of the communicating
partner. However, keep in mind the fact that with VPNs, the partners or endpoints
are TCP/IP hosts and not applications as is the case with Secure Sockets
Layer/Transport Layer Security (SSL/TLS).

In order to encrypt data, a VPN uses a symmetric encryption key at each
endpoint. There are two ways in which this encryption key can be established:

� Manually, by installing the secret keys at both the endpoints

� Dynamically, by using the Internet Security Association and Key Management
Protocol (ISAKMP) with the IKE protocol

The manual method has the following limitations:

� The process of sharing the key must be carried out through some secure
method such as placing it on a floppy disk and copying it to each endpoint

� Mistakes may occur when typing
 Chapter 3. Security technologies 101

http://www.ietf.org

� Refreshing the key, a mandatory practice to protect against compromise of
the key, must be performed manually

� If the endpoints of the VPN are far apart, securely transporting the key
becomes a difficult undertaking.

Although z/OS V1R7 supports manual VPNs, this book does not discuss them
because dynamic VPNs are considered to consist of a superior method of key
exchange.

The ISAKMP and its subsidiary, the IKE, comprise the public standard defined in
RFC 2408 andRFC 2409 respectively, for the dynamic setting of a VPN key by
providing a secure, automated method of VPN endpoints authentication and
exchange of secret encryption keys over a nonsecure network.

3.3.2 Security associations and Virtual Private Network
A security association (SA) is a one-way or simple specification of the
cryptographic algorithms, keys, and processes, which the VPN endpoints must
adhere to. Because an SA pertains to only one direction of the data flow inside
the VPN, two security associations are required to identify the processes that
must be run at both ends of the tunnel.
102 Securing Access to CICS Within an SOA

Figure 3-4 is a graphical representation of SAs and their contents.

Figure 3-4 Security associations

The SAs are automatically established using the IKE protocols. After being
established, SAs are identified by a number called the Security Parameter Index
(SPI).

An SA consists of the following information:

� IP destination

The IP address, inbound and outbound, of the VPN endpoint

� Security protocol

IPsec allows options such as whether data must be encrypted (Encapsulating
Security Payload or ESP) or protected only from modification (Authentication
Header or AH). AH does not provide any privacy, the involved cryptographic
processes require less resources than ESP protection.

IP Destination: 1.1.1.1
Security Protocol: ESP
Auth Alg: HMAC_SHA
Encrypt Alg: DES
Encap Mode: Tunnel
DES Key

HMAC_SHA Key SAs

SPI 60

 IP Destination: 2.2.2.2
Security Protocol: ESP
Auth Alg: HMAC_SHA
Encrypt Alg: DES
Encap Mode: Tunnel
DES Key

HMAC_SHA Key

SPI 89

IP Destination: 1.1.1.1
Security Protocol: ESP
Auth Alg: HMAC_SHA
Encrypt Alg: DES
Encap Mode: Tunnel
DES Key

HMAC_SHA Key

SPI 60

 IP Destination: 2.2.2.2
Security Protocol: ESP
Auth Alg: HMAC_SHA
Encrypt Alg: DES
Encap Mode: Tunnel
DES Key

HMAC_SHA Key

SPI 89

SAs

#@%*8^%$#@!*&))_^$#@!!@$%^&HF^

Endpoint A
 (1.1.1.1) Endpoint B

(2.2.2.2)

The Internet

SPI 60
Outbound from A, Inbound to B

SPI 89
Inbound to A, Outbound from B
 Chapter 3. Security technologies 103

� Authentication algorithm

The scope of this book does not include a discussion of different
authentication algorithms. A successful negotiation ends with both ends using
the same algorithm to authenticate.

� Encryption algorithm

Again, encryption algorithms are outside the scope of this book. A successful
negotiation ends with both ends using the same algorithm to encrypt and
decrypt.

� Encapsulation mode

In the tunnel mode, the entire IP datagram, header and data, is encapsulated
as a new data field and is given a new IP header. The new source and
destination IP addresses are the endpoints of the VPN.

In transport mode, the original IP header is left intact, implying that the
original source and destination addresses are the VPN endpoints.

� Keys

The actual encryption keys to be used are also a part of the SA.

RFC 2401 provides the relevant background information pertaining to all these
terms.

3.3.3 Virtual Private Networks and certificates
The dynamic tunnel method of establishing a VPN uses several options to
authenticate both the IKE daemons, that is, both the endpoints of the VPN. One
of these options involves an exchange of digital certificates. It is outside the
scope of this book to go into details about how certificates work. The digital
certificate format is the x.509 V3 format.

Important: There are known incompatibilities between the VPN traffic and the
Network Address Translation (NAT) function, which, in some cases, leads to
the impossibility of properly establishing VPNs if a NAT device is located
between the two endpoints. You must be aware of any NAT device that may
be traversed by potential tunnels. You must then refer to the VPN
implementation reference documentation to determine whether you are facing
the impossibility of properly operating the tunnel. For z/OS, the document to
refer is z/OS V1R8.0 Communications Server: IP Configuration Guide,
SC31-8775.

The z/OS V1R7 IPsec VPN technology supports the NAT Traversal protocol,
which can help solve some of these cases.
104 Securing Access to CICS Within an SOA

Each endpoint sends a certificate request to the other end with information
describing the certificate authority certificate that it will accept. In turn, the
individual certificate signed by this authority is sent out in response.

3.4 Application Transparent Transport Layer Security

This section describes the AT-TLS implementation provided in z/OS V1R7. With
AT-TLS, the z/OS TCP/IP stack can provide TLS support to applications that do
not have TLS support implemented in their code.

Secure Sockets Layer/Transport Layer Security: Why and how
When an application uses a nonsecure network to send and receive data, some
method of protection is recommended. SSL/TLS is a secure client/server
protocol that is used by the application to preserve the confidentiality of data with
encryption in order to authenticate the server it is connected to, and optionally, to
have the authenticating client use a digital certificate.

The SSL/TLS protocol uses well-known encryption and hashing protocols such
as:

� Encryption Symmetric Key algorithms: DES, T-DES, RC4, AES
� Hashing algorithms: MD5 and SHA-1
� Encryption Asymmetric Key algorithms: RSA, Diffie-Hellman, and DSA

The protection provided by SSL/TLS differs from the IPSec VPN, in that:

� SSL/TLS is intended for an application-to-application communication, as
opposed to a VPN that protects a TCP/IP host-to-host communication

� The SSL/TLS flow appears as normal TCP communication to the network
entities. SSL/TLS is not a TCP/IP-registered protocol the way that TCP, UDP,
and Internet Control Message Protocol (ICMP) are. IPSec is a registered
protocol (protocol 50 and 51) so that network entities know that the packet is
transporting IPSec-protected data and can take decisions based on this.

Note: Secure Sockets Layer (SSL) was developed by Netscape and the
current version, V3.0, has been available since 1996. TLS is a secure protocol
that supersedes SSL.

TLS is an IETF standard protocol described in RFC 2246, and although based
on SSL V3.0, it is not interoperable with SSL. However, experience shows that
current products that support TLS can fall back to SSL communication if the
partner does not support TLS.
 Chapter 3. Security technologies 105

Note that SSL/TLS can flow within a VPN. The VPN ends at the TCP/IP stack
network layer and the SSL/TLS communication ends at the application layer.

z/OS V1R7 offers the new AT-TLS function. It is intended for those client/server
applications, which do not support SSL/TLS for some reason, for which you want
to protect the TCP/IP socket communication with TLS. With AT-TLS, the TLS
protocol is handled by the TCP/IP stack.

3.4.1 Application Transparent Transport Layer Security concepts
z/OS has been providing, and still provides the System SSL application
programming interface (API) for applications that do not have their own SSL/TLS
code, but have to support the protocol. System SSL is widely used by SSL/TLS
clients and servers provided with z/OS. System SSL has two specific features:

� It transparently invokes the hardware cryptographic coprocessors, if they are
in operation in the system, in order to get hardware assistance for the
SSL/TLS cryptographic processes.

� Its API is intended for the C/C++ language

Applications running on z/OS can still have their own SSL/TLS support code.
However, if the System SSL API is not being used, it will not get the benefit of the
implicit cryptographic coprocessor hardware assist.

With AT-TLS, an application that does not support SSL/TLS or has the support,
but is not using the z/OS System SSL API, can transparently get access to
System SSL through the TCP/IP stack.

Note that AT-TLS, with its setup parameters, allows a modular involvement of the
application with the ongoing TLS communication. The application may
completely ignore the fact that TLS is being performed, and is therefore not
involved at all (that would be the case for applications without any SSL/TLS
support and for applications with their own support that for diverse reasons we
do not want to use). Alternately, the application can intervene in the protocol
execution sequence to grab, for instance, the digital certificate provided by the
partner.

The AT/TLS provides a transparent layer where all the SSL/TLS functions are
implemented and defined outside the application in the TCP/IP address space.
106 Securing Access to CICS Within an SOA

3.4.2 Application Transparent Transport Layer Security
z/OS implementation

The z/OS V1R7 AT-TLS function involves several components:

� The TCP/IP stack address space
� The PAGENT utility
� System SSL

The TCP/IP address space is responsible for handling all the TLS-related
functions such as handshake, authentication, encryption, and decryption of the
data, and session key management through calls to System SSL. All the
functions are performed based on user-defined policies and are loaded into the
TCP/IP stack by the PAGENT. A high-level description of the AT-TLS
implementation and data flow is shown in Figure 3-5.

Figure 3-5 AT-TLS flow

In Figure 3-5 the application server does not have to know anything about the
SSL/TLS protocol. Every function required by the TSL protocol is performed
transparently by System SSL on request by the TCP/IP stack address space. For
more details about the AT-TLS configuration and implementation, refer to z/OS
V1R8.0 Communications Server: IP Configuration Reference, SC31-8776, and
z/OS V1R8.0 Communications Server: IP Configuration Guide, SC31-8775.

Policy Agent
Application

Server

TCP/IP stack

TCP Layer (TTLS rules)

Local TTLS
Config

Policy Agent
Application

Server

TCP/IP stack

TCP Layer
(AT-TLS rules)

Local
AT-TLS
config

Configured AT-TLS Policy
for the Application Server to use TTLS:

1. Client connects to server and connection
becomes established.

2. Server sends data in the clear and
TCP layer queues it.

3. TCP layer invokes System SSL to
perform SSL handshake under identity of
the server.

4. TCP layer invokes System SSL to
encrypt queued data and sends it to
client.

5. Client sends encrypted data, TCP layer
invokes System SSL to decrypt.

6. Server receives data in the clear.

1

2.2

3

4

5

Cleartext flows
Encrypted data
SSL flows

6

 Chapter 3. Security technologies 107

The TCP/IP stack address space intercepts any connection being made from the
z/OS image or from the network, and takes a decision about whether the
connection must use TLS based on the AT-TLS policy.

Note that the client application shown in Figure 3-5 must support TLS.
Alternately, it can be a non-TLS-enabled application that runs on z/OS V1R7 and
also takes advantage of AT-TLS.

For the sake of security, applications have to make decisions based on the
current characteristics of the TLS session and take the appropriate action. This is
possible with AT-TLS. The degree of involvement of the applications with the
AT-TLS operations is shown in Figure 3-6.

Figure 3-6 AT-TLS application types

Following are the application categories:

� Not-enabled applications, that is, applications that cannot be assisted by
AT-TLS. These include:

– Applications written in Pascal API or Web servers using the Fast
Response Cache Accelerator feature

AT-TLS
policy
trace

Not Enabled
Appl

(toolkit)

AT-TLS
Basic
Appl

AT-TLS
Aware
Appl

AT-TLS
Controlling

Appl

Sockets API

TCP
(System SSL)

IP

Appl
config
trace

encrypted

clear clear +
SIOCTTLSCTL
108 Securing Access to CICS Within an SOA

– No policy is defined to them, or a policy explicitly disables the usage of
AT-TLS

– Applications already using the System SSL API

� Basic applications. These are applications that can be transparently assisted
by AT-TLS:

– There is a policy specifying that they be enabled for AT-TLS usage

– They are unchanged and are unaware of AT-TLS

– The application protocol is not affected by the use of AT-TLS

� Aware applications. These are applications that get information from the TLS
context and protocol data:

– There is a policy specifying that they be enabled for AT-TLS usage

– The application is changed to use a socket API called SIOCTTLSCTL in
order to extract information from AT-TLS such as the policy status, the
negotiated SSL/TLS version and cipher specifications, and the partner’s
certificate.

� Controlling applications. These are applications that contribute in some way
to the execution of the TLS protocol:

– There is a policy specifying that they be enabled for AT-TLS usage and for
controlling the usage of AT-TLS on the session

– They can start the session in the clear and later decide to start the
SSL/TLS session

– The SIOCTTLSCTL is used to extract information and to control the
AT-TLS, for example, starting a secure session and resetting the cipher or
the session

3.5 z/OS intrusion detection services
In this section, we discuss z/OS intrusion detection services.

3.5.1 Overview of intrusion detection
In network security terminology, intrusion globally designates anomalous and
potentially malicious activities. The objective of an intrusion may be to acquire
information that a person is not authorized to have. It may be to gain
unauthorized access to a system and use it as a stepping stone for further
intrusions elsewhere. Alternately, it may be to cause business harm by rendering
 Chapter 3. Security technologies 109

a network, system, or application unusable. Most intrusions follow a pattern of
information gathering, attempted access, and then destructive attacks.

An intrusion detection system (IDS) can be network-based, in that, it analyzes
the data flowing over a segment of the network, or it can be host-based when
performing the analysis within the TCP/IP stack of a network host system. It can
also be a mix of both technologies, comprising sensors located in network
segments and on the host’s TCP/IP stacks.

Network-based intrusion detection
Sensors, also called IDS probes, analyze the network data against known
signatures, meaning IP datagram headers or data patterns known to be used for
intrusion. Because the probes are scattered over the network, and a single probe
view is usually not enough to assess the real danger of the observed IP traffic,
network-based IDS also involves the use of correlating devices such as the IBM
Tivoli® Risk Manager. These devices raise an alert if the observed traffic is
deemed to be a real alarm (in IDS terminology, not a false-positive) based on the
information collected from several IDS probes.

Host-based intrusion detection
Host-based intrusion detection relies on the additional capabilities on the host
TCP/IP stack to analyze the received IP packets against known intrusion
characteristic patterns. Host-based IDS presents the following advantages when
compared to network-based IDS:

� The ability to evaluate inbound IPSec data from when the data is first
decrypted in the target stack before intrusion analysis

� The overhead of per packet evaluation against a table of known attacks is
avoided because the target stack can internally detect the anomalous
condition and then make a decision based on the IDS policy it has to apply

� Statistical anomalies can be determined based on the target stack internal
thresholds or state data

� Prevention methods can be applied by the target stack as per the provided
IDS policy

� Globally speaking, there are also fewer false positives with host-based IDS

But again, an installation will probably want to take advantage of both the
implementations by integrating network-based and host-based IDS in their
network layout.
110 Securing Access to CICS Within an SOA

3.5.2 Understanding the z/OS intrusion detection services

z/OS IDS is an enhanced real-time host-based intrusion detection service that
uses policy control to identify, alert, and document suspicious events and assist
in their analysis. Traffic regulation is provided for the TCP and UDP traffic
through the Traffic Regulation Management Daemon (TRMD). Messages about
the possible security violations can be sent to a log file or sent directly to the
console. In summary, the z/OS IDS is used for the following:

� Detect and record scanning, common attacks, and flooding

� Record suspicious events to syslog, console, or trace files

� Set up policies to define preventive measures (meaning queue and
connection limits) against floods and attacks such as multipacket
denial-of-service attacks

� Gather data for possible legal actions
 Chapter 3. Security technologies 111

Figure 3-7 shows the z/OS IDS layout in an installation. The IDS is configured
with an IDS policy that defines the intrusion events to monitor, along with the
actions to take. The IDS policy can only be stored in an LDAP directory. The
Policy Agent (PAGENT) reads the policy from the LDAP server. The policy
definitions are processed by the Policy Agent and installed in the TCP/IP stack.

Figure 3-7 Overview of the z/OS IDS infrastructure

3.5.3 The z/OS intrusion detection services policy
The intrusion detection services policy is a set of definitions, entered as attributes
in an LDAP directory, which describe to the TCP/IP stacks the event types to
monitor, the criteria to apply for issuing alerts, and when to trigger logging and
preventive actions.

The supported intrusion event types are described in this section.

Scanning
The intent of scanning is to map the target of the attack by collecting information
about subnet structure, addresses, masks, addresses in-use, system type,
operating system, application ports available, and software release levels.

IDS Policy Repository

TCP/UDP

IP/ICMP

Data Link

Sockets API

Policy
Agent TRMD

Administration

Download policy

Download policy

Install IDS
Policy
in stack

Log Events
and Statistics

Intrusion
Event

Event messages to
local console

Trace
suspicious
activity

z/OS

LDAP Server

Integrated with TCP/IP stack

Attack

LDAPLDAP

SyslogSyslog

TracesTraces

Download
policy
112 Securing Access to CICS Within an SOA

Attack
The intent of an attack is to crash or hang the system by sending single
malformed packets in an attempt to exploit known weaknesses in the target’s
system TCP/IP stack or by flooding the target system with multiple packets sent
in high volume.

3.5.4 Traffic regulation for TCP connections and UDP receive queues

This is actually a preventive measure in case of a high volume of connection
requests arriving at the target host, which could be intended to flood a system or
could just be an unexpected peak in valid requests.

It is possible to log suspicious events to the MVS console or syslogd. Statistics
are logged to syslogd by the enhanced TRMD. The TRMDSTAT command can
be used to summarize and display syslogd messages. It is also possible to trace
suspicious packets to the new SYSTCPIS component trace log. Use Interactive
Problem Control System (IPCS) to format the SYSTCPIS trace. PAGENT also
logs its activity through SyslogD.
 Chapter 3. Security technologies 113

Figure 3-8 shows an overview of the interactions between the z/OS IDS
components.

Figure 3-8 Intrusion detection services and IP stack overview

3.5.5 Clarifying the notion of an intrusion detection services event

An intrusion detection services event is a countable occurrence of a situation
matching a set of conditions defined explicitly or implicitly in the policy. The
intrusion detection services event can trigger an action or is a part of the
statistics gathered by TRMD, depending on the active intrusion detection
services policies. The countable intrusion detection services event is dynamically
given a correlator number by the TCP/IP stack code that is used to tag the finer
detailed information such as traces, which go along with the event.

LDAPLDAP

PAgent * TRMD

SYSLOGSYSLOG

ConsoleConsole

statistics
and events

IDS probes

Policy
IOCTL

IDS data structures
 IDS functions

TCP/IP stack

 ctrace
dataspace

SYSTCPIS
event-related
packet trace

external
writer or
dump

ipcs formating

trmdstat

events
summarized

events
CS/390
Policy
114 Securing Access to CICS Within an SOA

Example 3-1 shows messages issued by TRMD and displayed in the MVS
operator console.

Example 3-1 TRMD messages in the MVS operator console

EZZ8762I EVENT TYPE: TCP PORT CONSTRAINED
 EZZ8763I CORRELATOR 3 - PROBEID 01004400
 EZZ8764I SOURCE IP ADDRESS 9.139.240.34 - PORT 0
 EZZ8765I DESTINATION IP ADDRESS 0.0.0.0 - PORT 80
 EZZ8766I IDS RULE trtcpHttp-rule
 EZZ8767I IDS ACTION trtcpHttpLog-action
 EZZ8761I IDS EVENT DETECTED 544

Example 3-2 shows messages received and stored by SyslogD.

Example 3-2 TRMD SyslogD stored messages

EZZ9321I TRMD TCP constrained entry:02/01/2002
21:16:37.18,lhost=0.0.0.0,port=80,host=9.139.240.34,available=0,total=1
,percent=50,correlator=3,probeid=01004400,threshold=0

3.5.6 Traffic Regulation Management Daemon
The Traffic Regulation Management Daemon manages the IDS message
collection. It can be run as a started task or can be started from the USS shell.
There must be one TRMD instance per TCP/IP stack in the z/OS image. The
affinity between the TRMD instance and the stack is indicated in the
RESOLVER_CONFIG environment variable.

3.6 Traditional CICS security

In a CICS environment, the assets you normally want to protect are the
application programs and the resources that are accessed by the application
programs. To prevent disclosure, destruction, or corruption of these assets,
control the access to the CICS region and to the different CICS components.

You can limit the activities of a CICS user to only those functions the user is
authorized to use, by implementing one or more of the following CICS security
mechanisms:

� Transaction security

This ensures that users who attempt to run a transaction are entitled to do so.
 Chapter 3. Security technologies 115

� Resource security

This ensures that users who use CICS resources such as files and transient
data queues, are entitled to do so.

� Command security

This ensures that users who use CICS system programming commands are
entitled to do so.

� Surrogate security

This ensures that a surrogate user is authorized to act on behalf of another
user.

When CICS security is active, requests to attach transactions and requests by
transactions to access resources are associated with a user ID. When a user
makes a request, CICS calls the external security manager, for example, RACF,
to determine if the user ID has the authority to make the request. If the user ID
does not have the correct authority, CICS denies the request.

In many cases, a user is a human operator, interacting with CICS through a
terminal or a workstation. However, the user can also be a Web browser user or,
in a Web services solution, a program executing on a client system.

For more details about CICS security, refer to CICS Transaction Server for z/OS
V2.3 RACF Security Guide, SC34-6249.

3.6.1 CICS user IDs

When a human operator signs in to a CICS region at the start of a terminal
session, the person is asked to provide a user ID and a password. The user ID
remains associated with the terminal until the terminal operator signs out.
Transactions executed from the terminal and requests made by those
transactions are associated with that user ID.

For connections from Web users, there are other ways in which the user of a
CICS transaction can be identified. This includes the following:

� A Web browser user is challenged to provide Hypertext Transfer Protocol
(HTTP) basic authentication information (a user ID and a password). The
transaction that services the client’s request and other requests made by that
transaction are associated with that user ID.
116 Securing Access to CICS Within an SOA

� A client program that is communicating with CICS using the SSL supplies a
client certificate to identify itself. The security manager maps the certificate to
a user ID. The transaction that services the client’s request and other
requests made by that transaction are associated with that user ID.

In addition to these transport-level authentication mechanisms, Web service
clients may also pass authentication data in the SOAP message.

CICS special user IDs
There are two particular user IDs that CICS uses in addition to those that identify
individual users. These are:

� Region user ID

The CICS region user ID is used for checking the authorization when the
CICS system, rather than an individual user of the system, requests access to
system resources such as CICS data sets and other servers.

� Default user ID

When a user does not sign in, CICS assigns a default user ID to the user. It is
specified in the system initialization table (SIT) parameter DFLTUSER. In the
absence of more explicit identification, it is used to identify TCP/IP clients that
connect to CICS. Provide very little authority to the default user ID.
 Chapter 3. Security technologies 117

118 Securing Access to CICS Within an SOA

Part 2 Designing the
secure CICS
SOA solution

This part of the book looks at the different technologies individually, and
discusses how best to secure these in an SOA environment.

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 119

120 Securing Access to CICS Within an SOA

Chapter 4. CICS Web services

CICS Transaction Server (TS) V3.1 allows a CICS application to participate in a
Web services environment as a service requester or as a service provider. This
service-oriented architecture (SOA) environment uses SOAP messages in
Extensible Markup Language (XML) to transmit information through a network to
a Web services partner. CICS provides outbound support (in which case, CICS is
the service requester) and inbound support (in which case, CICS is the service
provider). A CICS application can use SOAP messages to communicate with any
partner that can understand SOAP, regardless of the platform or the location of
the partner. How you secure CICS Web services in this open environment
involves understanding not only your local environment, but the pathways to all
the other Web service partners with which CICS may communicate.

This chapter discusses the industry standards for Web services and describes
the various security options available. It then discusses why you can select one
over another or combine several alternatives to meet the requirements of your
environment. Following are the topics that are discussed:

� 4.1, “CICS TS and external standards” on page 122
� 4.2, “Web services security exposures” on page 125
� 4.3, “Transport-level security” on page 128
� “Web Services-Security”
� 4.5, “CICS support for WS-Security” on page 145
� 4.6, “Performance considerations” on page 152
� 4.7, “Comparison of transport versus message security” on page 154

4

© Copyright IBM Corp. 2006. All rights reserved. 121

4.1 CICS TS and external standards

CICS TS support for Web services conforms to a number of standards that are
highlighted in the following sections. The standards and specifications are
published by the following organizations:

� World Wide Web Consortium (W3C)

� IBM

� Web Services Interoperability Organization (WS-I)

� Organization for the Advancement of Structured Information Standards
(OASIS).

4.1.1 Web services and service-oriented architectures

An SOA has been used under various guises for many years. It can be (and has
been) implemented using a number of different distributed computing
technologies. The effectiveness of service-oriented architectures in the past has
always been limited by the ability of the underlying technology to interoperate
across the enterprise.

Web services technology is the ideal technology choice for implementing an
SOA. For the first time, all the major vendors are recognizing and providing
support for Web services. WS-I is an organization that promotes open
interoperability between Web services regardless of the platforms, the operating
systems, or the programming languages used.

4.1.2 CICS TS Web services and industry standards

CICS TS V3.1 support for Web services conforms to a number of industry
standards and specifications, including the following:

� Extensible Markup Language (XML) V1.0

http://www.w3.org/TR/REC-xml

� SOAP V1.1 and SOAP V1.2

– http://www.w3.org/TR/soap12-part1/
– http://www.w3.org/TR/soap12-part2/
– http://www.w3.org/TR/soap12-part0/

Note: The SOAP V1.2 Part 0: Primer states that SOAP 1.2 will not spell
out the acronym for SOAP. Therefore, the complete name is SOAP V1.2.
122 Securing Access to CICS Within an SOA

http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/soap12-part0/

� Web Services Description Language (WSDL) V1.1

http://www.w3.org/TR/wsdl

� Web Services Coordination (WS-Coordination) V1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/

� Web Services Atomic Transaction (WS-Atomic Transaction) V1.0

http://www.ibm.com/developerworks/library/specification/ws-tx/

� WS-I Basic Profile (WS-I BP) V1.1

http://www.ws-i.org/Profiles/BasicProfile-1.1.html

� WS-I Simple SOAP Binding Profile (SSBP) V1.0

http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

� Web Services Security (WSS): SOAP Message Security

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message
-security-1.0.pdf

� Web Services Security (WSS): Username Token Profile V1.0

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0.pdf

� Web Services Security (WSS): X.509 Certificate Token Profile V1.0

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0.pdf

� XML Encryption Syntax and Processing

http://www.w3.org/TR/xmlenc-core

� XML Signature Syntax and Processing

http://www.w3.org/TR/xmldsig-core

� Hypertext Transfer Protocol (HTTP) V1.1

http://www.w3.org/Protocols/rfc2616/rfc2616.html
 Chapter 4. CICS Web services 123

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ibm.com/developerworks/library/specification/ws-tx/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmldsig-core
http://www.ibm.com/developerworks/library/specification/ws-tx/

4.1.3 CICS compliance with Web service standards

CICS is compliant with the supported Web services standards and specifications,
in that, it allows you to generate and deploy Web service applications that are
compliant.

WS-I Basic Profile V1.1 and CICS compliance
Web services can be used to connect computer systems together across
organizational boundaries. Defining a set of open, nonproprietary standards to
which all Web services adhere maximizes the ability to connect disparate
systems together.

WS-I has released a basic profile that outlines a set of specifications to which
WSDL documents and SOAP messages sent over HTTP must adhere to in order
to be WS-I compliant. The complete list of specifications is available on the WS-I
Web site:

http://www.ws-i.org/

CICS TS V3.1 support for Web services ensures maximum interoperability with
other Web service implementations by conforming to the WS-I Basic Profile 1.1
and the WS-I Simple SOAP Binding Profile 1.0. Conforming to both the profiles is
equivalent to conforming to the WS-I Basic Profile 1.0. For more information
about these profiles, refer to:

� WS-I Basic Profile 1.1

http://www.ws-i.org/Profiles/BasicProfile-1.1.html

� WS-I Simple SOAP Binding Profile 1.0

http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html

CICS conditionally complies with the WS-I Basic Profile 1.1 in that it adheres to
all the MUST level requirements. CICS does not specifically implement support
for UDDI registries, and the points relating to this in the specification are ignored.
Also, the CICS Web services assistant batch utilities (DFHLS2WS and
DFHWS2LS) and the associated runtime environment are not fully compliant
with this profile because there are limitations in the support for mapping certain
schema elements. For more information, refer to CICS Transaction Server for
z/OS V3.1 Web Services Guide, SC34-6458.

Note: CICS does not enforce the compliancy of the Web services that you
generate and deploy, for example, CICS allows you to apply additional
qualities of service to your Web service that could break the interoperability
outlined in the WS-I Basic Profile V1.1 specification.
124 Securing Access to CICS Within an SOA

http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/SimpleSoapBindingProfile-1.0.html
http://www.ws-i.org/
http://www.ws-i.org/
http://www.ws-i.org/

4.2 Web services security exposures

Web services security requires that you understand the potential security
exposures when using Web services, and the methods available to secure the
environment. This section first discusses the security exposures that you may
face, and later discusses the options available to you for creating a secure
framework for your data. The transport-level security and Web Services-Security
(message-level security) sections provide you with an overview of each of them
and discuss the pros and cons associated with each method. This provides you
with the information you require to determine which method or combination of
methods to implement in your environment.

Web services security is one of the most important Web services subjects. When
using Web services, similar security exposures exist as for other Internet,
middleware-based applications, and communications. To explain the Web
services security exposures, a bank teller scenario is used, as shown in
Figure 4-1. The bank teller (Web service requester or client) connects over the
Internet to the bank’s data center (Web service provider). Assume that no
security is applied, which, although not realistic, is used for this example.

Figure 4-1 Potential security exposures in a Web services environment

<SOAPMessage
in clear text>

User: Teller1
Account No.1234

Balance

<SOAPMessage
in clear text>

User: Teller1
Account No.1234

Balance

Network

Bank Teller 1

Attacker

Bank Data
Center

Spoofing:
No authentication

Tampering:
No integrity

Eavesdropping:
No confidentiality
 Chapter 4. CICS Web services 125

The three major risk factors in this example are:

� Spoofing, no authentication

An attacker, posing as a bank teller, can send a modified SOAP message to
the service provider IN ORDER to get confidential information or to withdraw
money from another client’s account.

Eliminate this security exposure by applying authentication to the Web
service.

� Tampering, no integrity

The SOAP message is intercepted between the Web service client and the
server. An attacker can modify the message by changing the account number
and cause money to be deposited into another account. Because there is no
integrity constraint, the Bank Data Center Web service does not check if the
message is valid, and accepts the modified transaction.

Eliminate this security exposure by applying an integrity mechanism to the
Web service.

� Eavesdropping, no confidentiality

An attacker can intercept the SOAP message and read the information
contained in the message. Because the message is not encrypted,
confidential client information or bank information can be viewed by the
attacker. This exposure exists because the account number and balance
information is sent over the network in plain text.

Eliminate this security exposure by applying a confidentiality mechanism to
the Web service.
126 Securing Access to CICS Within an SOA

To prevent these security exposures, apply the following mechanisms to secure
a Web services environment (Figure 4-2):

� Transport-level security: Transport Layer Security (TLS) or Secure Sockets
Layer (SSL)

� Message-level security: Web Services Security (WS-Security)

Figure 4-2 Securing Web services

Depending on the level of application security you require, apply one or more of
these security mechanisms. Also, depending on other nonfunctional
requirements such as system capacity and performance, you can implement a
combination of transport-level security and message-level security.

The more the security mechanisms you implement, the more potential you have
to negatively affect your other nonfunctional requirements. Therefore, when
designing a Web services security solution, keep in mind that security has an
impact on the following:

� System capacity

Any applied security mechanism has an impact on system resource usage,
for example, CPU and memory usage. Therefore, when planning a Web
service environment, the required extra processing for security must be
considered in system capacity and volume planning.

The nonfunctional requirements, capacity and volume, cover the number of
concurrent users and the number of transactions per second. This influences
the required system infrastructure, including hardware, software, and the
network.

Securing
Web Services

Message-level Security
(WS-Security)

Transport-level Security
(TLS/SSL)

Encrypt message stream
(HTTPS for HTTP)

Authentication
Example:

Username/Password

Confidentiality
Message Encryption

Integrity
Message Signature
 Chapter 4. CICS Web services 127

� Performance

Security mechanisms and functions also impact the application’s response
time. Keep this in mind when defining the Web service system response time
requirements.

The performance requirement for your system may be defined by the total
response time for your main applications, for example, you may have a
response time requirement of less than one second for 90% of all
transactions.

4.3 Transport-level security

Web services messaging relies on two protocol layers, the transport layer and
the SOAP message layer. Security can be implemented within either or both
these layers.

This section reviews how to use the different transport-level security
mechanisms to secure a CICS Web services solution. Message-level security
mechanisms are discussed in 4.4, “Web Services-Security” on page 137.

4.3.1 Hypertext Transfer Protocol basic authentication

When a CICS Web service is invoked using Hypertext Transfer Protocol (HTTP),
use the standard HTTP security mechanisms to authenticate the Web service
client and to ensure message integrity and confidentiality.

HTTP basic authentication is a simple challenge and response mechanism with
which a server can request authentication information (a user ID and a
password) from a client. The client passes the authentication information to the
server in an HTTP authorization header.

The AUTHENTICATE attribute in the CICS TCPIPSERVICE resource definition
specifies the authentication and identification scheme to be used for inbound
TCP/IP connections for the HTTP protocol. HTTP basic authentication is enabled
with CICS by specifying BASIC for the AUTHENTICATE attribute. For more
information about the TCPIPSERVICE parameters and attributes, refer to CICS
Transaction Server for z/OS V3.1 CICS Resource Definition Guide, SC34-6430.

Note: Applying security is not just a question of feasibility. The additional
system resources required and the influence on the response time must also
be considered.
128 Securing Access to CICS Within an SOA

A CICS service provider application can be protected by HTTP basic
authentication. However, the HTTP basic authentication scheme can only be
considered a secure means of authentication if the connection between the Web
service client and the CICS region is secure. If the connection is insecure, the
scheme does not provide sufficient security to prevent unauthorized users from
discovering and using the authentication information for a server. If there is a
possibility of a password being intercepted, basic authentication must be used in
combination with SSL, so that SSL encryption is used to protect the user ID and
password information.

4.3.2 Secure Sockets Layer or Transport Layer Security with
Hypertext Transfer Protocol

SSL or TLS is a popular way of encrypting communication between business
partners over the Internet. The TLS 1.0 protocol is the latest industry standard
SSL protocol and is based on SSL 3.0. The TLS 1.0 specification is documented
in Request for Comment (RFC) 2246. For more information about RFC 2246,
refer to the following RFC index search engine at:

http://www.rfc-editor.org/rfcsearch.html

SSL or TLS provides transport-level protection. It creates a secure connection
between two nodes and encrypts all the traffic flowing between the nodes. This is
also referred to as point-to-point security.

Because most Web services flow over HTTP today, SSL or TLS provides a
straightforward way of ensuring confidentiality. It also includes a built-in
communication integrity check. Connection layer authentication is achieved by
the client always authenticating the server, and optionally being authenticated by
the server through the exchange of X.509 certificates.
 Chapter 4. CICS Web services 129

http://www.rfc-editor.org/rfcsearch.html

The client initiates a Hypertext Transfer Protocol Secure (HTTPS) connection by
using an Uniform Resource Locator (URL) starting with https: instead of http:.
With SSL or TLS, the data flowing back and forth between the client and the
server is encrypted using a secret key algorithm. The exchange of the secret key
occurs at the start of the communication during the SSL handshake. This is
illustrated in Figure 4-3.

Figure 4-3 SSL handshake

Public key encryption is a cryptographic system that uses two keys, a public key
that is potentially known to everyone, and a related private key that is known only
to one party in an exchange of information. For more information, refer to 3.4.2,
“Application Transparent Transport Layer Security z/OS implementation” on
page 107 of this book, and CICS Transaction Server for z/OS V3.1 RACF
Security Guide, SC34-6454.

The server’s certificate contains the server’s public key. The client uses this
public key to encrypt an initial value for a secret key to be sent to the server. After
the client and the server have obtained the same secret key value, the
handshake ends, and they change their encryption algorithm to the new and less
CPU-intensive secret key procedure. The server can also request a digital
certificate from the client in order to verify its identity.

Client
client hello

server hello

client key exchange

server certificate

Server

server hello done

Change cipher spec
Finished

Change cipher spec
Finished

certificate request

certificate verify

(1)

(2)

(1) optional
(2) only if server requested client certificate in (1)
130 Securing Access to CICS Within an SOA

4.3.3 CICS support for Secure Sockets Layer orTransport
Layer Security

CICS supports the SSL 3.0 and the TLS 1.0 protocols. HTTPS connections
automatically use the TLS protocol, unless the client specifically requires SSL
3.0.

A CICS service provider application can be secured using HTTPS, which has the
following advantages:

� It can be used to provide a fast and secure transport for CICS Web services.

� It provides for authentication through either HTTP basic authentication or a
client X.509 certificate.

� It provides integrity between the service requester and CICS by using
symmetric key cryptography to establish the authenticity of the server and the
client and to securely share a secret key. Symmetric key algorithms use the
same or similarly related cryptographic keys for encryption and decryption.

� It provides confidentiality between the service requester and CICS through
efficient shared key cryptography.

� It can be used with hardware cryptographic devices, which can significantly
reduce the cost of SSL handshakes. You can customize your encryption
settings to use only the cipher suites that use the Integrated Cryptographic
Facility (ICSF) such as the Data Encryption Standard (DES) and Secure
Hash algorithm-1 (SHA-1) cipher suites. For more information about cipher
suites, refer to 4.3.4, “Cipher suites” on page 132.

� It is mature and similarly implemented by most vendors. It is, therefore,
subject to a few interoperability problems.

A CICS service requester application can also use HTTPS to invoke a service
provider application, with advantages that are similar to those listed here.

There are several CICS System Initialization Table (SIT) parameters that are
used to enable CICS support for SSL or TLS.

� ENCRYPTION
� KEYRING
� MAXSSLTCBS
� SSLDELAY
� SSLCACHE

Note: The CRLPROFILE system initialization table parameter may also be of
interest to you. It is used to specify the profile name for certification revocation
lists (CRLs).
 Chapter 4. CICS Web services 131

For more information about the system initialization table parameters listed
earlier and other parameters that affect CICS security, refer to CICS Transaction
Server for z/OS V3.1 CICS System Definition Guide, SC34-6428.

The SSL attribute of the TCPIPSERVICE definition is used to activate SSL in
CICS. If you require SSL, set it to either YES or CLIENTAUTH. The
AUTHENTICATE attribute of the TCPIPSERVICE definition is used to specify the
authentication and identification scheme used for inbound TCP/IP connections
for the HTTP and USER protocols, and Internet Inter-ORB Protocol (IIOP).

For more information about enabling CICS support for SSL/TLS and activating
SSL for a TCPIPSERVICE, refer to Implementing CICS Web Services,
SG24-7206.

For more information about the TCPIPSERVICE parameters and attributes, refer
to CICS Transaction Server for z/OS V3.1 CICS Resource Definition Guide,
SC34-6430.

4.3.4 Cipher suites

A cipher represents a type of algorithm used to encrypt and decrypt data. Cipher
suites are sets of ciphers that are used in an SSL connection. When an SSL
connection is established, the client and the server exchange information about
which cipher suites they have in common. The client and the server then
communicate using the highest level of security that they both support. If there is
no common cipher suite, the SSL handshake fails and the connection is closed
because a secure connection is not possible.

The cipher suites must be supported by the operating system in order for CICS to
use them. The list of cipher suites supported by z/OS depends on the release
number of your operating system. Table 4-1 and the example that follows are for
z/OS 1.4 and CICS TS V3.1. Additional cipher suites may be available depending
on the release of your operating system. Table 4-1 shows an example of z/OS
1.6 ciphers.

Table 4-1 Cipher suites

Cipher suite Encryption
algorithm

Key length MAC algorithm

01 No encryption MD5

02 No encryption SHA

03 RC4 40 bits MD5

04 RC4 128 bits MD5
132 Securing Access to CICS Within an SOA

Following are the terms used in Table 4-1:

� MD5: Message Digest algorithm
� SHA: Secure Hash algorithm
� RC2, RC4: Rivest encryption
� DES: Data Encryption Standard
� Triple DES: DES applied three times
� AES: Advanced Encryption Standard

The CICS ENCRYPTION system initialization table parameter specifies the level
of encryption that CICS must use. Beginning with CICS TS V3.1, the default for
the ENCRYPTION parameter is STRONG. This means that CICS can use all the
cipher suites shown earlier (and additional ones depending on the release
number of the operating system) to negotiate with clients.

Using CIPHERS to set a minimum level and a maximum level
You can set a minimum as well as a maximum encryption level by editing the list
of cipher suites in the CIPHERS attribute in the appropriate CICS resource
definition:

� URIMAP: For outbound HTTP and Web service requests
� TCPIPSERVICE: For inbound HTTP and IIOP
� CORBASERVER: For outbound IIOP

05 RC4 128 bits SHA

06 RC2 40 bits MD5

09 DES 56 bits SHA

0A Triple DES 168 bits SHA

2F AES 128 bits SHA

35 AES 256 bits SHA

Note: You can also specify CIPHERS on the EXEC WEB OPEN command for
outbound HTTP connections.

Cipher suite Encryption
algorithm

Key length MAC algorithm
 Chapter 4. CICS Web services 133

Setting a minimum encryption level provides you with more control over the
security of the SSL connections that you will allow. The following list, for
example, provides the list of cipher suite codes for each level of the
ENCRYPTION attribute:

� WEAK: Default value is 03060102
� MEDIUM: Initial value is 0903060102
� STRONG: Initial value is 0504352F0A0903060102

This list shows the cipher suites available with z/OS 1.4 and CICS TS V3.1. You
can have additional cipher suites available, depending on the release number of
your operating system:

If you do not want SSL to allow the lesser cipher suite codes during the SSL
negotiation with the partner, set a minimum level by editing the CIPHERS
attribute to remove the cipher suite codes that you do not allow. If you want to, for
example, enforce STRONG and not allow the negotiation to drop to WEAK,
remove the MEDIUM and WEAK codes and keep the unique STRONG codes. In
this case, your CIPHERS attribute must have 0504352F0A. If the partner does
not support the higher level security codes, the SSL handshake fails and the
connection is not established with the partner.

4.3.5 Setting the user ID on the URIMAP

URIMAP definitions are CICS resource definitions that match the Uniform
Resource Identifiers (URIs) of HTTP or Web service requests, and provide
information about how to process the request. PIPELINE definitions are CICS
resource definitions that provide processing information to be performed on the
SOAP message. The URIMAP identifies the PIPELINE resource to associate
with the URI that was matched for the request, and the PIPELINE specifies the
processing that is to be performed on the message.

You can specify a user ID on the URIMAP to be used on behalf of a Web service
client. To do this, set the USERID attribute of the URIMAP definition for a
request. The USERID attribute specifies the 1 - 8 character user ID under which
the Web services pipeline alias transaction will be attached. By specifying the
USERID attribute, you can control the security within CICS for the alias
transaction. You can also use the TRANSACTION attribute of the URIMAP to
specify your name for the alias transaction.

Important: If the SSL handshake negotiates down to using cipher suite 01 or
02, there is no encryption, and data will be transmitted in the clear. It is
recommended that you remove 01 and 02 from the list of ciphers if even a
minimum amount of encryption is required.
134 Securing Access to CICS Within an SOA

A user ID that you specify in the URIMAP definition is overridden by any user ID
that is obtained directly from the client.

For more information about the USERID attribute for the URIMAP resource
definition, refer to the CICS Transaction Server for z/OS V3.1 Web Services
Guide, SC34-6458, and CICS Transaction Server for z/OS V3.1 CICS Resource
Definition Guide, SC34-6430.

Additional URIMAP parameters
Following is a list of the additional URIMAP parameters:

� USAGE

This determines what other attributes in the URIMAP definition can be used. It
can be set to either SERVER (if CICS is the HTTP server), CLIENT (if CICS is
the HTTP client), or PIPELINE (for a Web service).

� SCHEME

This specifies either HTTP without SSL or HTTP with SSL. This attribute is for
all USAGE options. If SCHEME(HTTPS) is specified, CICS checks during
install time whether SSL is active in the CICS region. The CICS KEYRING
system initialization table parameter must specify the key ring used by the
CICS region for SSL to be active. If SSL is not active in the CICS region, the
URIMAP definition is not installed and the message DFHAM4905 is issued.

Note: If you define and install URIMAP resource definitions explicitly using
Resource Definition Online Transaction (CEDA), and you are using the CICS
Web services assistant batch utilities (DFHLS2WS or DFHWS2LS) in order to
create the Web services, you cannot take advantage of the dynamic
installation of URIMAP resources when the PIPELINE resource is installed.
This is because the USERID parameter can also be set in the CICS Web
services assistant batch utilities, in which case, it will be used to define the
USERID attribute of the URIMAP resource when it is created automatically
during the PIPELINE scan. If you explicitly code USERID for the URIMAP and
install the URIMAP, it overrides the dynamic installation of the URIMAP
resource when the PIPELINE resource is installed.

Important: If you use a URIMAP definition to set a user ID, there is no
authentication of the client's identity. You should do this only when
communicating with your own client system, which has already authenticated
the user, and communicates with the server in a secure environment.
 Chapter 4. CICS Web services 135

� CIPHERS

This specifies a string of 2-digit cipher suite codes to be used during the SSL
handshake. This attribute is for USAGE(CLIENT) only. CICS validates the list
of cipher suites against the cipher suites supported on the running operating
system. If no valid cipher suites are found in the list, CICS issues the
message DFHAM4918, and the URIMAP definition is not installed. If some of
the cipher suites in the list are supported, CICS issues the message
DFHAM4917, and the URIMAP is installed with the reduced set of cipher
suites.

� CERTIFICATE

This specifies the label of the X.509 certificate to be used as the SSL client
certificate during the SSL handshake. This attribute is for USAGE(CLIENT)
only. CICS validates the certificate against those specified in the key ring. If
the specified certificate is not valid, CICS issues messages DFHAM4889 and
DFHAM4928, and the URIMAP definition is not installed.

� TRANSACTION

This specifies the name of the alias transaction to be used to run the user
application that composes the HTTP response, or to start the pipeline. If you
specify your own transaction name, it allows you to control security at the
transaction level. You may also want to use a unique transaction name for
monitoring and accounting or for transaction class (tclass) limits. This
attribute is for USAGE(SERVER) and USAGE(PIPELINE) only.

� USERID

This specifies the user ID under which the alias transaction is attached. You
can control the security for the alias transaction based on the user ID
specified. If surrogate user checking is enabled in the CICS region
(XUSER=YES as a system initialization table parameter), CICS checks that
the user ID used to install the URIMAP definition is authorized as a surrogate
of the user ID specified for the USERID attribute. This attribute is for
USAGE(SERVER) and USAGE(PIPELINE) only.

4.3.6 Determining the user ID order of precedence when using HTTP

It is possible that for a single Web service request transported by HTTP, multiple
methods for setting the user ID will be used at the same time. In this event, the
following order of precedence is used for setting the user ID under which the
target business logic program runs:

1. A user ID specified by a message handler or a SOAP header processing
program, which is included in the pipeline that processes the SOAP message.
A SOAP header processing program can, for example, extract a user name
from the SOAP message and specify that the CICS task must run with this
136 Securing Access to CICS Within an SOA

user ID. For more information about message handlers and SOAP header
processing programs, refer to CICS Transaction Server for z/OS V3.1 Web
Services Guide, SC34-6458.

2. A user ID obtained from the Web client using basic authentication or a user ID
associated with a client certificate

3. A user ID specified in the URIMAP definition for the request

4. The CICS default user ID, if no other ID can be determined

4.4 Web Services-Security

The Web Services Security (WS-Security) specification provides message-level
security, which is used when building secure Web services to implement
message content integrity and confidentiality.

WS-Security provides privacy and integrity protection by digitally signing and
encrypting XML elements in a SOAP message. The body of the message, any of
the elements within the body, or the header can be protected. Different levels of
protection can be provided to different elements within the SOAP message.

The advantage of using WS-Security over SSL is that it can provide end-to-end
message-level security. This means that message security can be protected
even if the message goes through multiple services called intermediaries. SSL
security is considered to be point-to-point, and the data may be decrypted
before reaching the intended recipient.

As illustrated in Figure 4-4, if the service requester identifies itself to the
intermediate gateway and the intermediate gateway identifies itself to the service
provider, the target service normally runs with the identity of the intermediate
gateway rather than the service requester.

Figure 4-4 Transport-level security with an intermediate gateway

Service
requester

Intermediate
Gateway

Service
Provider

Security
Credentials

Security
Credentials
 Chapter 4. CICS Web services 137

WS-Security addresses this problem by allowing security credentials to be
passed within the SOAP message, so that the credentials of the service
requester can be passed through an intermediate gateway, and can still be used
to identify the requester to the service provider (Figure 4-5).

Figure 4-5 SOAP message-level security with an intermediate gateway

Additionally, WS-Security is independent of the transport layer protocol. It can be
used for any Web service binding, for example, HTTP, SOAP, Remote Method
Invocation (RMI). If you use WS-Security, end-to-end security can be obtained.

Figure 4-6 shows how a SOAP message can be extended with security data that
is used to authenticate the service requester and to protect the message as it
passes between the requester and the service provider. The network portion of
the diagram can contain any number of intermediate nodes, some of which might
not be trusted.

Figure 4-6 An example of a typical scenario with WS-Security

Service
requester

Intermediate
Gateway

Service
Provider

Security
Credentials

<SOAPMessage
with WS-Sec>

Account
No.
Balance

Network

Bank Teller 1

Bank Data
Center

[Security Token]
User: Teller1

Password: XYZ

Digital Signature

Authentication
Security Token

Integrity
Signature

Confidentiality
Encryption
138 Securing Access to CICS Within an SOA

The WS-Security specification, Web Services Security: SOAP Message Security
1.0 (WS-Security 2004), has been proposed by the OASIS WSS Technical
Committee. This specification defines a standard set of SOAP extensions. The
specification is flexible and is designed to be used as the basis for securing Web
services within a wide variety of security models, including public key
infrastructure (PKI), Kerberos, and SSL. It provides support for multiple security
token formats, multiple trust domains, multiple signature formats, and multiple
encryption technologies based on XML signature and XML encryption in order to
provide integrity and confidentiality.

The specification includes security token propagation, message integrity, and
message confidentiality. However, these mechanisms by themselves do not
address all the aspects of a complete security solution. Therefore, WS-Security
represents only one of the layers in a complex, secure Web services solution
design.

The WS-Security specification defines the use of XML signature and XML
encryption:

� Message integrity is provided by XML signature in conjunction with security
tokens to ensure that modifications to messages are detected. For more
information, refer to:

http://www.w3c.org/Signature

� Message confidentiality leverages XML encryption in conjunction with
security tokens to keep portions of a SOAP message confidential. For more
information, refer to:

http://www.w3c.org/Encryption

For more information about the OASIS consortium, refer to:

http://www.oasis-open.org

4.4.1 Web Services-Security road map

The WS-Security specification addresses only a subset of security services. A
more general security model is required to cover other security aspects such as
logging and nonrepudiation. The definition of these requirements is explained in
a common Web services security model framework, a security White Paper titled
Web Services Security Roadmap. This road map is described in the following
section.
 Chapter 4. CICS Web services 139

http://www.w3c.org/Signature
http://www.w3c.org/Encryption
http://www.w3c.org/Signature
http://www.w3c.org/Encryption
http://www.oasis-open.org

Web Services-Security model framework
The WS-Security model introduces a set of individual interrelated specifications
to form a layering approach to security. It includes several aspects of security,
including identification, authentication, authorization, integrity, confidentiality,
auditing, and nonrepudiation. It is based on the WS-Security specification,
codeveloped by IBM, Microsoft, and VeriSign.

The Web services security model is schematically shown in Figure 4-7.

Figure 4-7 WS-Security road map

These specifications include different aspects of WS-Security:

� WS-Policy

Describes the capabilities and constraints of the security policies on
intermediaries and endpoints, for example, the security tokens required,
encryption algorithms supported, and privacy rules

� WS-Trust

Describes a framework for trust models, which enables Web services to
securely interoperate, manage trusts, and establish trust relationships

� WS-Privacy

Describes a model for how Web services and requestors state privacy
preferences and organizational privacy practice statements

� WS-Federation

Describes how to manage and broker the trust relationships in a
heterogeneous federated environment, including support for federated
identities

SOAP Foundation

WS-Security

WS-Policy WS-Trust WS-Privacy

WS-Secure
Conversation WS-Federation WS-Authorization
140 Securing Access to CICS Within an SOA

� WS-Authorization

Describes how to manage authorization data and authorization policies

� WS-Secure Conversation

Describes how to manage and authenticate message exchanges between
parties, including security context exchange and establishing and deriving
session keys

The combination of these security specifications enables many scenarios that
are difficult or impossible to implement with today's more basic security
mechanisms such as transport-level security or XML document encryption.

4.4.2 Example of WS-Security

With WS-Security, you can apply authentication, integrity, and confidentiality at
the message level. This section provides an example of a SOAP message with
WS-Security used for authentication. It also provides a summary of how
WS-Security can be used for message integrity and XML encryption.

Authentication
Web services security provides a general purpose mechanism to associate
security tokens with messages for single message authentication. A specific type
of security token is not required by Web services security, which is designed to
be extensible and support multiple security token formats to accommodate a
variety of authentication mechanisms, for example, a client may provide proof of
identity and proof of a particular business certification.

Example 4-1 shows a sample SOAP message without applying WS-Security.
The SOAP message is an order request for the CICS-supplied sample catalog
application.

Example 4-1 SOAP message without WS-Security

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header/>
<soapenv:Body>

<p635:DFH0XCMN xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">
 <p635:ca_request_id>01ORDR</p635:ca_request_id>
 <p635:ca_return_code>0</p635:ca_return_code>
 <p635:ca_response_message></p635:ca_response_message>

<p635:ca_order_request>
 <p635:ca_userid>srthstrh</p635:ca_userid>
 Chapter 4. CICS Web services 141

 <p635:ca_charge_dept>hbhhhh</p635:ca_charge_dept>
 <p635:ca_item_ref_number>10</p635:ca_item_ref_number>
 <p635:ca_quantity_req>1</p635:ca_quantity_req>
 <p635:filler1 xsi:nil="true" />
 </p635:ca_order_request>

</p635:DFH0XCMN>
 </soapenv:Body>
</soapenv:Envelope>

Example 4-1 shows that the SOAP message does not have any SOAP headers.
Apply WS-Security by inserting a SOAP security header. WS-Security defines a
vocabulary that can be used inside the SOAP envelope. The XML element
<wsse:Security> 1 is the container for security-related information.

When using WS-Security for authentication, a security token is embedded in the
SOAP header and is propagated from the message sender to the intended
message receiver. On the receiving side, it is the responsibility of the server
security handler to authenticate the security token and to set up the caller identity
for the request.

Example 4-2 shows the same SOAP message, but this time, with authentication.
As you can see, we have a user name and password information contained in the
<UsernameToken> element.

Example 4-2 SOAP message with WS-Security

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Header>
<wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.
xsd">
<wsse:UsernameToken>

 <wsse:Username>WEBUSER</wsse:Username>
 <wsse:Password

Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1
.0#PasswordText">REDB00KS</wsse:Password>

 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
<soapenv:Body>
<p635:DFH0XCMN xmlns:p635="http://www.DFH0XCMN.DFH0XCP5.Request.com">

 <p635:ca_request_id>01ORDR</p635:ca_request_id>
 <p635:ca_return_code>0</p635:ca_return_code>

1 wsse stands for “Web services security extension”
142 Securing Access to CICS Within an SOA

 <p635:ca_response_message></p635:ca_response_message>
<p635:ca_order_request>

 <p635:ca_userid>srthstrh</p635:ca_userid>
 <p635:ca_charge_dept>hbhhhh</p635:ca_charge_dept>
 <p635:ca_item_ref_number>10</p635:ca_item_ref_number>
 <p635:ca_quantity_req>1</p635:ca_quantity_req>
 <p635:filler1 xsi:nil="true" />
 </p635:ca_order_request>

</p635:DFH0XCMN>
 </soapenv:Body>
</soapenv:Envelope>

The <UsernameToken> element of the SOAP message in Example 4-2 contains
credentials that can be used to authenticate the user “WEBUSER”. The simplest
form of security token is the UsernameToken that is used to provide a user name
and password for basic authentication. A WS-Security header processing
program can be used to extract a UsernameToken from a SOAP header, validate
the username and password, and set the user ID of the CICS task to the
username passed in the header.

A signed security token is one that is cryptographically signed by a specific
authority. An X.509 certificate, for example, is a signed security token.

Security token usage for Web services security is defined in separate profiles
such as the Username token profile and the X.509 token profile. For further
details about these security token standards, refer to:

� Web Services Security: UsernameToken Profile V1.0 (March 2004)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-tok
en-profile-1.0.pdf

� Web Services Security: X.509 Token Profile V1.0 (March 2004)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0.pdf

Integrity
Integrity of a message means that the data has not been changed, destroyed, or
lost when it is in transit. Essentially, integrity is provided by generating an XML
digital signature on a part of the SOAP message. If the message data changes,
the signature is no longer valid.
 Chapter 4. CICS Web services 143

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

A digital signature is a number attached to the message. This signature
establishes the following information:

� The integrity of the message

Is the message intact? That is, has the message been modified between the
time it was digitally signed and now?

� The identity of the user who signed the message

Is the message authentic? That is, was the message actually signed by the
user who claims to have signed it?

A digital signature is created through a two-step process:

1. The first step distills a part of the SOAP message, for example, the body, into
a large number. This number is the digest code or the fingerprint.

Several options are available for generating the digest code, for example, the
MD5 message digest function and the SHA1 secure hash algorithm. Both
these procedures reduce a message to a number.

The crucial aspect of distilling the document to a number is that if the
message changes even in a trivial way, a different digest code results. When
the recipient gets a message and verifies the digest code by recomputing it,
any changes in the document result in a mismatch between the stated and
the computed digest codes.

2. In the second step, the digest code is encrypted with the sender's private key.

This two-step process creates the digital signature, which is appended to the
SOAP message before being sent to the service provider.

When the service provider receives the message, it performs the following tasks
to verify the signature:

1. Recomputes the digest code for the message

2. Decrypts the signature by using the sender's public key. This decryption
yields the original digest code for the message.

The receiver normally obtains the sender’s public key from the sender’s
X.509 certificate, which is sent as a security token in the SOAP message.

3. Compares the original and recomputed digest codes. If these codes match,
the message is both intact and authentic. If not, something has changed and
the message is not to be trusted.

Important: The use of digital signatures has a significant impact on the
system CPU resource usage.
144 Securing Access to CICS Within an SOA

Confidentiality
Confidentiality of a SOAP message means that it is protected so that only
authorized recipients can read the SOAP message. Confidentiality is provided by
encrypting the contents of the SOAP message using XML encryption. If the
SOAP message is encrypted, only a service that knows the key for confidentiality
can decrypt and read the message.

The XML encryption standard specifies a process for encrypting data and
representing the result in XML. XML encryption can be used to encrypt any part
of a SOAP message, usually, sensitive data such as bank account numbers or
user credentials. The result of encrypting data is an XML encryption element that
contains or references the cipher data.

XML encryption was published as a W3C recommendation in December 2002.
For more information, refer to:

http://www.w3.org/Encryption/2001/

4.5 CICS support for WS-Security

Support for WS-Security is provided by the CICS WS-Security message handler,
DFHWSSE1, which is shipped by APAR PK22736. For more information about
signature validation and signature generation algorithms, and the decryption and
encryption types that CICS supports, refer to CICS Transaction Server for z/OS
V3.1 Web Services Guide, SG34-6458.

DFHWSSE1 provides support for digital signing and encryption of the entire
SOAP body for outbound messages. It also provides support for the body or
elements of the body and header to be encrypted or digitally signed for inbound
messages.

WS-Security in CICS can be implemented through the configuration file
referenced in the CICS PIPELINE resource definition CONFIGFILE attribute. To
do this, add a WS-Security message handler to your pipeline configuration files.
This is discussed in detail in 4.5.2, “Pipeline configuration file” on page 146.

Note: CICS TS V3.1 does not support Web Services Security for atomic
transactions (WS-AT).
 Chapter 4. CICS Web services 145

http://www.w3.org/Encryption/2001/

4.5.1 Options for securing a SOAP message in CICS

CICS support for WS-Security provides signing and encrypting of SOAP
messages. There are several options available. The ones you select depends on
the level of security required for the data and the transmission path of the data.
CICS-specific support for the following options are described here:

� Basic authentication

CICS supports service provider mode. The inbound SOAP message header
can contain a user name token (UsernameToken) consisting of a user name
and a password.

User name tokens are not supported for outbound SOAP messages or with
CICS as a service requester.

� Signing with X.509 certificates

CICS supports a service provider mode and a service requester mode. You
can provide an X.509 certificate in the SOAP message header to sign the
body of the SOAP message for authentication.

� Encrypting

CICS supports a service provider mode and a service requester mode. You
can encrypt the SOAP message body using a symmetric key algorithm such
as Triple DES or AES.

For inbound SOAP messages, an element in the SOAP body can be
encrypted first, and later the entire SOAP body. If CICS receives a SOAP
message with two levels of encryption, CICS decrypts both the levels
automatically. This is not supported for outbound SOAP messages.

CICS does not support inbound SOAP messages that only have an encrypted
element in the message header and no encrypted elements in the SOAP
body.

� Signing and encrypting

CICS supports a service provider node and a service requester mode. You
can sign and encrypt the SOAP message. CICS signs the SOAP message
body first and then encrypts it. This provides message integrity and
confidentiality.

4.5.2 Pipeline configuration file

CICS TS uses a pipeline configuration file to handle Web service requests. The
configuration file is an XML document and resides in the z/OS UNIX System
Services hierarchical file system (HFS). Specify the name of the configuration file
in the CONFIGFILE attribute of the PIPELINE definition.
146 Securing Access to CICS Within an SOA

To implement WS-Security in CICS TS, include a <wsse_handler> message
handler element and provide configuration information for the handler. To do this,
update the configuration file for the appropriate pipeline. DFHWSSE1 uses the
configuration information specified for the <wsse_handler> element. The
configuration file is made up of different elements. The elements that may be
used for WS-Security are:

� <wsse_handler>

It specifies the parameters used by DFHWSSE1. It can be used in a service
provider and service requester pipeline. It contains a
<dfhwsse_configuration> element.

� <dfhwsse_configuration>

It specifies configuration information for DFHWSSE1. It can be used in a
service provider and service requester pipeline. It may contain the following
optional elements

– <authentication>

It specifies the use of security tokens in the headers of inbound and
outbound SOAP messages. It can be used in a service provider and a
service requester pipeline. In a service provider pipeline, the element
specifies whether CICS must use the security tokens in an inbound SOAP
message to determine the user ID under which work will be processed. In
a service requester pipeline, it specifies that CICS must add an X.509
certificate to the security header for outbound SOAP messages.

The <authentication> element has two attributes, trust and mode. These
attributes determine whether asserted identity is used and the
combination of the security tokens used in a SOAP message. The trust
attribute can be set to either none, basic, or signature. The mode attribute
can also be set to either none, basic, or signature. For more information
about the meaning and valid combinations of these attributes, refer to
CICS Transaction Server for z/OS V3.1 Web Services Guide, SC34-6458.

Asserted identity allows a trusted user to assert or declare that work must
run under a different identity (the asserted identity), without the trusted
user having the credentials associated with that identity. Messages
contain a trust token and an identity token. The trust token is used to
check that the sender has the correct permissions to assert identities, and
the identity token holds the asserted identity (user ID) under which the
request is to run.
 Chapter 4. CICS Web services 147

The <authenticate> element can contain the following elements:

• <certificate_label> (optional)

This specifies the label associated with an X.509 digital certificate. It is
ignored in a service provider pipeline.

• <suppress/> (optional)

For the service provider, the handler will not use any security tokens in
the message to determine under which user ID to run. For the service
requester, the handler will not add any of the security tokens required
for authentication to the SOAP message.

• <algorithm>

It specifies the URI of the algorithm that is used to sign the body of the
SOAP message.

– <expect_signed_body/>

This indicates that the <body> of the inbound message must be properly
signed. If it is not, CICS rejects the message with a security fault.

– <expect_encrypted_body/>

It indicates that the <body> of the inbound message must be properly
encrypted. If it is not, CICS rejects the message with a security fault.

– <sign_body>

It directs DFHWSSE1 to sign the body of outbound SOAP messages, and
provides information regarding how the messages are to be signed. It can
be used in a service provider and a service requester pipeline. It contains
the following elements:

• <algorithm>

This specifies the URI of the algorithm that is used to sign the body of
the SOAP message.

Note: If you use asserted identity, the service provider is required to
trust the requester to make this assertion. In CICS, the trust relationship
is established with security manager surrogate definitions, that is, the
requesting identity must have the correct authority to start work on
behalf of the asserted identity.
148 Securing Access to CICS Within an SOA

• <certificate_label>

This specifies the label associated with an X.509 digital certificate. The
digital certificate must contain the private key because this is used to
sign the message. The public key associated with the private key is
then sent in the SOAP message, which allows the signature to be
validated.

– <encrypt_body>

This directs DFHWSSE1 to encrypt the body of outbound SOAP
messages, and provides information regarding how the messages are to
be encrypted. It can be used in a service provider and a service requester
pipeline. It contains the following elements:

• <algorithm>

This specifies the URI identifying the algorithm that is used to encrypt
the body of the SOAP message.

• <certificate_label>

This specifies the label associated with an X.509 digital certificate. The
digital certificate must contain the public key of the intended recipient of
the SOAP message so that it can be decrypted with the private key
when the message is received.

Example 4-3, which is taken from CICS Transaction Server for z/OS V3.1 Web
Services Guide, SG34-6458, shows a completed <wsse_handler>, with all the
optional elements present. Add this to your configuration file for the pipeline.

Example 4-3 <wsse_handler>

<wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <certificate_label>AUTHCERT03</certificate_label>
 <suppress/>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 Chapter 4. CICS Web services 149

 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
</wsse_handler>

The <wsse_handler> element is contained in the <service_handler_list>
element. To modify the pipeline configuration file for the CICS-supplied catalog
Web sample application, add a <service_handler_list> containing the
<wsse_handler>. Example 4-4 shows the original pipeline configuration file
basicsoap11provider.xml for the EXPIPE01 service provider pipeline.

Example 4-4 CICS-supplied sample pipeline configuration file basicsoap11provider.xml

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd
">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Example 4-5 shows how to modify the pipeline configuration file to add the
<service_handler_list> and <wsse_handler> elements to implement
WS-Security. CICS reads the pipeline configuration file and when it finds the
<wsse_handler> element, it loads the program DFHWSSE1 from the library
SDFHWSLD into your DFHRPL concatenation in order to process the security
information. For more information about the elements for the pipeline
configuration file, and which ones are contained by other elements (high-level
structure diagrams), refer to CICS Transaction Server for z/OS V3.1 Web
Services Guide, SC34-6458.

Example 4-5 WS-Security <wsse_handler> element added to pipeline configuration file
basicsoap11provider.xml

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
150 Securing Access to CICS Within an SOA

 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline provider.xsd
">
 <service>
 <service_handler_list>
 <wsse_handler>
 <dfhwsse_configuration version="1">
 <authentication trust="signature" mode="basic">
 <certificate_label>AUTHCERT03</certificate_label>
 <suppress/>
 </authentication>
 <expect_signed_body/>
 <expect_encrypted_body/>
 <sign_body>
 <algorithm>http://www.w3.org/2000/09/xmldsig#rsa-sha1</algorithm>
 <certificate_label>SIGCERT01</certificate_label>
 </sign_body>
 <encrypt_body>
 <algorithm>http://www.w3.org/2001/04/xmlenc#tripledes-cbc</algorithm>
 <certificate_label>ENCCERT02</certificate_label>
 </encrypt_body>
 </dfhwsse_configuration>
 </wsse_handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

If CICS is the service provider, CICS will decrypt any inbound encrypted SOAP
message automatically when it processes the message, provided you have the
<wsse_handler> element in the pipeline configuration file. The security header in
the received message provides all the information required for CICS to decrypt it.
In other words, the <encrypt_body> and <sign_body> elements do not have to
be specified in the provider pipeline configuration file in order to decrypt the
inbound SOAP message. But you can (and probably will want to) include the
<encrypt_body> or <sign_body> or both in the provider pipeline configuration file
if you want to encrypt or sign or both encrypt and sign the reply body sent back to
the requester. This is shown in Example 4-5.

Note: For more information about the pipeline configuration file, details about
the elements described earlier, and the message handlers, refer to CICS
Transaction Server for z/OS V3.1 Web Services Guide, SC34-6458.
 Chapter 4. CICS Web services 151

4.5.3 Resource Access Control Facility and WS-Security in CICS

Use RACF or your external security manager to create public-private key pairs
and X.509 certificates for signing and encrypting outbound SOAP messages,
and to authenticate and decrypt signed and encrypted inbound SOAP messages.
For more information about this, refer to Chapter 3, “Security technologies” on
page 93 of this book, the CICS Transaction Server for z/OS V3.1 Web Services
Guide, SC34-6458, and CICS Transaction Server for z/OS V3.1 RACF Security
Guide, SC34-6454.

4.6 Performance considerations

There is a significant extra processing required when you use WS-Security in
CICS. Encryption, decryption, and signing of SOAP messages require intensive
algorithms that increase the overall response time of your system.

The advantage of using WS-Security is that you can secure a SOAP message
through an entire network (end-to-end), which may consist of any number of
intermediate nodes. Each node may have a requirement to view the header
information of a SOAP message, but you may not want the node to have access
to portions of the SOAP body that you protect with WS-Security. Protecting
confidential material in the actual SOAP message may avoid the overhead of
encrypting and decrypting through SSL at every node (point-to-point).

You may also decide to implement your own security procedures and processing
by writing a custom header handler program that can process secure SOAP
messages in the pipeline. This method may be a good option if SSL is sufficient
to satisfy your integrity and confidentiality requirements. For more information
about this, refer to the CICS support Web site by entering the Technote number,
1239021:

http://www.ibm.com/software/htp/cics/support/

Additional information about using a header handler program is also available in
Implementing CICS Web Services, SG24-7206. This also available on the Web
at:

http://www.redbooks.ibm.com/redpieces/abstracts/sg247206.html

An alternative to using WS-Security is to use SSL to encrypt the entire data
stream. If you can guarantee that after the data is decrypted, it cannot be
accessed by an untrusted node or process, using SSL may be the method that
you implement. If, however, you have untrusted nodes in the path or want to hide
the details of the data in the SOAP message, use WS-Security.
152 Securing Access to CICS Within an SOA

http://www.ibm.com/software/htp/cics/support/
http://www.redbooks.ibm.com/redpieces/abstracts/sg247206.html

4.6.1 Optimizing Secure Sockets Layer

Implementing SSL causes an increase in CPU usage. You can optimize the
performance of SSL in your environment by performing the following:

� Using only SSL for applications that require encrypted data flows

� Utilizing the IBM eServer zSeries cryptographic hardware that uses the z/OS
Integrated Cryptographic Facility (ICSF). You can also customize the
encryption settings to use only the cipher suites that use ICSF, such as DES
and SHA-1.

� Increasing the value of the CICS system initialization table parameter
SSLDELAY so that the session IDs remain in the cache longer, which results
in only partial SSL handshakes.

� Increasing the value of the CICS system initialization table parameter
MAXSSLTCBS so that there are more S8 TCBs in the SSL pool for the SSL
handshake negotiation. Refer to 4.6.2, “Performance improvements for
Secure Sockets Layer” on page 154 for more information about S8 TCBs.

� Using the CICS SSLCACHE system initialization table parameter to
implement SSL caching across a sysplex. If the cache is shared between a
number of CICS regions, the throughput of SSL connections improves. Refer
to 4.6.2, “Performance improvements for Secure Sockets Layer” on page 154
for more information about SSLCACHE.

� Keeping the socket open by coding SOCKETCLOSE NO on the
TCPIPSERVICE definition for the PIPELINE. This is the default for HTTP 1.1
persistent sessions and removes the necessity to perform a full SSL
handshake on the second or subsequent HTTP request.

� Only using client authentication by specifying SSL CLIENTAUTH in the
TCPIPSERVICE definition when you really want your clients to identify
themselves with a client certificate. Client authentication requires more
network interchanges during the SSL handshake, and more processing by
CICS to handle the received certificate. For more information about increased
SSL handshake flows, refer to Figure 4-3 on page 130.

Note: z/OS 1.6 System SSL uses the CP Assist for Cryptographic function
(CPACF) directly.

Note: The CICS system initialization table parameter SSLDELAY does not
apply to caching across a sysplex.
 Chapter 4. CICS Web services 153

4.6.2 Performance improvements for Secure Sockets Layer

There are performance improvements in CICS for SSL processing, beginning
with CICS TS V3.1.

If the client has completed the SSL handshake negotiation with CICS earlier and
the session ID is cached, the SSL cache can decrease the time required to
establish a connection. If the session ID is still in the cache, only a partial SSL
handshake is required. The CICS system initialization table parameter
SSLCACHE can be set to either CICS or SYSPLEX. The setting specifies
whether SSL is to use the local or sysplex caching of session IDs. Sysplex
caching is only useful if multiple CICS socket-owning regions accept SSL
connections in the same IP address. The CICS system initialization table
parameter SSLDELAY controls how long the session ID remains in the cache.

CICS also supports a greater number of concurrent SSL connections, which can
increase the SSL throughput. CICS uses a new open task control block (TCB)
mode called SP, which is used for socket thread-owning tasks. The SP TCB
manages the SSL pool, owns the Language Environment® (LE) enclave, and
owns the SSL cache. SSL processing uses an S8 TCB only for the SSL-specific
function. After the SSL negotiation is complete, the S8 TCB is released back into
the SSL pool to be reused. The S8 TCBs run as UNIX threads. This allows for
many more simultaneous SSL connections than in previous CICS releases. The
CICS system initialization table parameter MAXSSLTCBS controls the maximum
number of S8 TCBs that can run in the SSL pool.

4.7 Comparison of transport versus message security

This chapter shows that it is possible to implement WS-Security at two levels, the
transport-level and the SOAP message-level, with WS-Security. If your Web
services environment is simple, for example, it does not span multiple nodes, a
security solution based on transport-level security alone may be all that you
require. However, for more complex scenarios, this may not be enough by itself.

Note: The CICS system initialization table parameter SSLDELAY does not
apply to caching across a sysplex.

Note: For more information about the SSLCACHE, SSLDELAY, and
MAXSSLTCBS system initialization table parameters, refer to CICS
Transaction Server for z/OS V3.1 CICS System Definition Guide, SC34-6428.
154 Securing Access to CICS Within an SOA

This section provides general guidelines to help you decide on the type of
security solution to implement:

� Use transport-level security only to secure your CICS Web services
environment when:

– No intermediaries are used in the Web services environment

– The transport is only based on HTTP

– The Web services client is a stand-alone program

WS-Security can only be applied to clients that run in a Web services
environment supporting the WS-Security specification

� Use WS-Security, probably in addition to transport-level security, when:

– Intermediaries are used

Security credentials that flow in the SOAP message can pass through any
number of intermediaries. An intermediary can provide an authentication
service to CICS, such that the intermediary server authenticates the Web
service client and flows an asserted identity to CICS.

– Multiple transport protocols are used

WS-Security works across multiple transports and is independent of the
underlying transport protocol

– The Web service partners support WS-Security and a general decision
has been taken to flow security tokens in accordance with the
WS-Security specification.
 Chapter 4. CICS Web services 155

156 Securing Access to CICS Within an SOA

Chapter 5. CICS Web support

This chapter looks at the security issues that you face when you Web-enable
your CICS applications using CICS Web support. It also examines the Secure
Sockets Layer (SSL) support in CICS Web support and how this integrates with
the CICS support of an external security manager (ESM) such as Resource
Access Control Facility (RACF). For more information about SSL and RACF
security, refer to Chapter 3, “Security technologies” on page 93. For an
introduction to CICS Web support, refer to 5.1, “Overview of CICS Web support”
on page 159.

This chapter also discusses the way in which CICS Web support addresses the
issues of authentication, authorization, data integrity, and privacy. It summarizes
the key security considerations you may face, and provides a security matrix and
checklist for the issues discussed.

5

© Copyright IBM Corp. 2006. All rights reserved. 157

Figure 5-1 shows an overview of the possible Web connections into CICS using
CICS Web support.

Figure 5-1 Overview of Web connections into CICS using CICS Web support

z/OS

RACF

Application
to be

Web-enabled

CICS Region

CICS
Web

Support

IBM
HTTP
Server

for z/OS

HT
TP

CICS
Sockets
Listener

HTTPInternet

EXCI
158 Securing Access to CICS Within an SOA

5.1 Overview of CICS Web support

CICS Web support is a set of resources supplied with CICS Transaction Server
(TS) for z/OS. CICS Web support provides CICS with a subset of the Hypertext
Transfer Protocol-serving (HTTP-serving) functions found in a general purpose
Web server. This allows CICS applications to be invoked by and respond to
HTTP requests. A summary of how a CICS application can be Web-enabled
using the CICS Web support is illustrated in Figure 5-1.

CICS Web support provides a native HTTP interface to CICS. The interface has
its own application programming language (the EXEC CICS WEB API), but can
also be used by 3270-based transactions and applications that provide a callable
COMMAREA interface. Two different configurations can be used to route the
HTTP requests into the CICS region. Both configurations allow the use of the
same facilities in CICS, although the configurations of the two options are
significantly different. These configurations are:

� A direct connection from a Web browser to CICS

This uses the facilities of the CICS TCP/IP listener to pass the request directly
into CICS Web support.

� Through the IBM HTTP Server using the facilities of the CICS Web Server
plug-in

This is a CICS-supplied Domino Go Web server API (GWAPI) extension to
the IBM HTTP Server. It routes requests from the HTTP Server into the CICS
region using the external CICS interface (EXCI). CICS supplies two GWAPI
modules called DFHWBAPI and DFHWBDLL. If you use the CICS Web
Server plug-in, it is recommended that you use DFHWBDLL because it has
support for the FORMS application programming interface (API) commands,
for example, EXEC CICS WEB READ FORMFIELD. This book does not
discuss CICS Web Server plug-in in detail because it is no longer a widely
used configuration, and may, in fact, be withdrawn in a future release of
CICS.

You can use CICS Web support to invoke three types of CICS applications:

� New applications that use the EXEC CICS WEB programming interface
directly

Such applications may have to have some understanding of the HTTP
protocol, but most aspects of the protocol are handled by CICS.

� Existing applications that provide a callable COMMAREA interface

To use such applications, some new CICS presentation logic must be written.
This logic uses CICS facilities to interpret and act on the HTTP request, and
then build and return the HTTP response. Application code containing such
 Chapter 5. CICS Web support 159

logic is referred to as Web-aware. This Web-aware logic can be contained
either within the converter Encode and Decode routines in the original
program or in a separate Web presentation module that links to the original
program. CICS provides two different methods to create this Web-aware
presentation logic:

– WEB API

The WEB API, together with the DOCUMENT API and the TCPIP API,
provides a rich set of functions to interpret, manipulate, and build the
HTTP data streams within a CICS application. These are described in
detail in CICS Transaction Server for z/OS V3.1 CICS Application
Programming Guide, SC34-6433, CICS Transaction Server for z/OS V3.1
CICS Application Programming Reference, SC34-6434, and Chapter 6 of
CICS Transaction Server for z/OS V3.1 Internet Guide, SC34-6450.

– COMMAREA manipulation

The COMMAREA manipulation technique was originally introduced with
CICS Web Interface (CWI) support in IBM Customer Information Control
System/Enterprise Systems Architecture (CICS/ESA®) V4.1. It uses the
CICS COMMAREA as a buffer for transferring the HTTP data stream with
a range of utility programs to manipulate the data stream. You can use the
Hypertext Markup Language (HTML) template manager program,
DFHWBTL, to build the response. This technique is still available, but for
ease-of-use and higher functionality, it is recommended that you use WEB
API.

� Existing applications that were designed to be accessed from 3270 terminals

To invoke such a 3270 transaction, the facilities of the 3270 bridge are used.
The 3270 transaction remains unchanged, and the 3270 output is converted
to HTML. This function is known as the 3270 Web bridge. This chapter does
not discuss this any further.

CICS TCP/IP listener
The CICS TCP/IP listener is a part of the CICS Sockets domain and runs as the
CSOL (Sockets listener) system task. It provides TCP/IP support to handle
requests for internal CICS functions that use TCP/IP services. Currently, this
includes HTTP, Internet Inter-ORB Protocol (IIOP), and external call interface
(ECI) over TCP/IP. As such, it is not a component of CICS Web support, but a
service used by CICS Web support.

The CICS TCP/IP listener can listen on many different ports simultaneously. The
attributes of the expected traffic on each port are specified by a TCPIPSERVICE
resource definition.
160 Securing Access to CICS Within an SOA

URIMAP resource definitions
URIMAPs are resource definitions that were introduced in CICS TS V3.1. They
are used to simplify the analysis of incoming URLs1 and their mapping to CICS
resources. By using a URIMAP, you can map a URL to one of the following:

� A dynamic response that is produced by running an alias transaction

� A dynamic response that is produced by scheduling a sequence of programs
specified in a PIPELINE definition. (This is the basis for the CICS Web
Services support discussed in Chapter 4, “CICS Web services” on page 121.)

� A static response that is created from a CICS document template
(DOCTEMPLATE) or a file in the z/OS UNIX system services hierarchical file
system (HFS)

� A redirection to another URL, possibly on a completely different server

If the URIMAP selects a dynamic response, it may also specify the alias
transaction name, a converter program name, and an application program name.
It can also select the user ID under which the alias transaction must run. These
are the attributes of the alias transaction that had to be selected by the Analyzer
program in CICS TS V2.

URIMAPs can be managed by CEMT or CICSPlex® System Manager (CICSPlex
SM), which allows for an easy way to enable or disable access to certain URLs
and the associated applications. A URIMAP can also be temporarily changed to
a redirection type that you can use to offload the URL to another location.

Web attach transaction (CWXN)
The Web attach transaction performs Web attach processing. Its transaction
name is normally CWXN, but it can have an alternate name specified in a
TCPIPSERVICE definition. It processes the incoming URL and matches it
against the installed URIMAP definitions. CWXN invokes the DFHCCNV code
page conversion routine to convert HTTP headers. It writes the data received
from the client to temporary storage queues for later use by the WEB API

Note: The CICS TCP/IP listener is completely separate from, and must not be
confused with the TCP/IP Socket Interface for CICS, which provides an
application-level TCP/IP socket interface for CICS applications, and is
described in detail in z/OS V1R7.0 Communications Server: IP CICS Sockets
Guide, SC31-8807.

1 Note that a URL is a special case of a URI. A URL always corresponds to a physical resource that
is located on a server. A URI may also identify an abstract entity such as an encryption algorithm.
 Chapter 5. CICS Web support 161

commands, and then searches the URIMAPs to find a match. If a matching
URIMAP is found and it specifies a static response or a redirection, the response
is processed immediately in the CWXN transaction. Because there is no
necessity for an alias task in this case, it is not attached.

If there is no match or if the matching URIMAP requests it, the Analyzer program
is called. DFHCCNV is invoked again to convert the user data, and the alias task
is attached. If a static response is returned and the connection is persistent, then,
CWXN issues an asynchronous receive to wait for more requests from the client.
Irrespective of whether the alias task is attached or not, CWXN terminates. It is
reattached if more data is received on the socket.

DFHCCNV
The DFHCCNV code page conversion routines are invoked by the Web attach
processing to convert the American Standard Code for Information Interchange
(ASCII) HTTP headers and user data of the Web browser client to EBCDIC, and
by the alias transaction to convert EBCDIC output back to ASCII. This
conversion only affects the data in the COMMAREA. It does not affect the data in
the temporary storage queues that are used by the WEB API commands.

Analyzer
The purpose of the Analyzer is to analyze the incoming HTTP requests. It runs
under the CWXN transaction, and decides whether the requests will be
accepted, and if they will be, the parameters that will be set. Among other things,
it can set the name of the alias, converter, user ID, and application program. If
URIMAPs are being used, it is possible that the Analyzer is not called at all.

Alias task
The alias task is attached by the CWXN task if it did not process the HTTP
request by itself. The default alias transaction code is CWBA. However, URIMAP
or Analyzer Processing can modify this. The alias initially invokes the program
DFHWBA, which links to the business logic interface (BLI). The BLI is an
externally callable interface to CICS Web support, implemented by the module
DFHWBBLI. It provides a mechanism for implementing Web-aware presentation
logic in the converter program. The converter provides Decode and Encode
routines to receive the HTTP request and construct a COMMAREA for the target
application and to take the COMMAREA from the application, and send out an
HTTP response.

Note: It is possible to bypass the converter and implement the Web-aware
logic in a separate module that communicates directly with the business logic
through a COMMAREA interface.
162 Securing Access to CICS Within an SOA

5.2 CICS Web support security issues

This section looks at the two main security issues that you face when accessing
your CICS applications using CICS Web Support, that is, using SSL support to
provide encryption of the data being sent and received, and authenticating and
authorizing the user. Although it is possible to access the facilities of CICS Web
support from the IBM HTTP Server for z/OS by using a CICS-provided plug-in,
this is no longer a recommended technique. In fact, this chapter discusses only
the use of direct HTTP connections into CICS, although the CICS Web support
security decision matrix in Table 5-1 on page 178 compares them both.

Figure 5-22 shows security with CICS Web support.

Figure 5-2 Security with CICS Web support

5.2.1 Secure Sockets Layer support
SSL, and its more modern equivalent, Transport Layer Security (TLS), are
described in 2.13, “Transport Layer Security 1.0 protocol” on page 70. For the
CICS server to use SSL, you must first create a server certificate. To control the
strength of encryption that is to be used in the SSL connection, you must also
specify an appropriate CIPHERS list in the TCPIPSERVICE definition, as
described in 2.13.2, “Cipher suites” on page 72.

z/OS Communications Server

CICS TS 3.1

CSCL
CWXN

AnalyzerURIMAP

SSL
Client

Certificate

Basic
Authentication

Alias
Task

Attach

Web-Aware
Application
 Chapter 5. CICS Web support 163

To activate SSL support for an incoming HTTP request, specify one of the
following as the value of the SSL parameter of the TCPIPSERVICE definition:

� YES

If you set the value to YES, CICS sends a server certificate to the client.

� CLIENTAUTH

If you set the value to CLIENTAUTH, CICS sends a server certificate to the client
and also requests the client to send a certificate to CICS. You can affect the
way CICS handles the client’s certificate by using the AUTHENTICATE
parameter.

If you are using the outbound HTTP support, and the remote server requests a
client certificate, specify the certificate label in the CERTIFICATE parameter of
EXEC CICS WEB OPEN or on a URIMAP that is referenced by EXEC CICS
WEB OPEN. If you do not specify it in either place, the default certificate in the
key ring, if any, will be used.

5.2.2 Identifying and authenticating the client user

When using a direct connection to CICS Web support, you can determine the
user ID the alias task runs under in one of the following ways:

� The user ID and password are requested using HTTP basic authentication

� The user ID is associated with an SSL certificate supplied by the client

� The user ID is specified in the URIMAP definition

� The user ID is selected by the Analyzer program. The Analyzer runs only if no
matching URIMAP is found or if the matching URIMAP specifies
ANALZER(YES). If the Analyzer is executed, it receives the user ID selected
by one of the earlier methods as an input. The Analyzer may either choose to
leave that user ID unchanged or may select a new one.

The user ID selected for the alias transaction is used when executing the
converter program and also when executing your business application program.

Important: Specify TCPIP=YES and the KEYRING system initialization
parameters for SSL to be available in your CICS region.
164 Securing Access to CICS Within an SOA

Figure 5-3 shows the authentication options available in CICS Web support.

Figure 5-3 Authentication options for CICS Web support

Using HTTP basic authentication
Basic authentication is an HTTP feature in which the user ID and password are
transmitted over the network in a scrambled format that uses the Base64
encoding scheme. It is, however, easily unscrambled. If you want to use HTTP
basic authentication, specify BASIC as the value for the AUTHENTICATE
parameter of the TCPIPSERVICE definition.

You can specify basic authentication irrespective of whether you use SSL or not,
but because the password is so easily deduced, it is really only safe to use basic
authentication in combination with SSL.

CICS Web support
CWXN - Web attach transaction

TCPIPSERVICE

Authenticate=
NO
BASIC
CERTIFICATE
AUTOMATIC
AUTOREGISTER

Browser

CICS

Web attach processing

HTTP basic authentication
or

SSL client certificate?

Analyzer

register certificate

Sockets
listener
(CSOL)

RACF
 Chapter 5. CICS Web support 165

Mixed case passwords
If you are using z/OS 1.7 or later, RACF includes optional support for mixed-case
passwords. When this option is activated, CICS does not fold passwords to
uppercase, but passes them to RACF in the same way they are entered. This
change affects the passwords you enter in a basic authentication dialog.
However, it does not affect the processing of user IDs, which continue to be
folded to uppercase.

Using a Secure Sockets Layer client certificate
Using SSL with CICS Web support enables the client to supply a digital
certificate in order to identify itself. If you want to use client certificates, specify
SSL(CLIENTAUTH) for the TCPIPSERVICE definition used to define the relevant
CICS TCP/IP listener. Also specify one of the following values for the
AUTHENTICATE parameter:

– CERTIFICATE

The SSL client certificate is used to authenticate and identify the client.
The client must send a valid certificate that is already registered to the
security manager and associated with a user ID. If a valid certificate is not
received or the certificate is not associated with a user ID, the connection
is rejected.

When the user is successfully authenticated, the user ID associated with
the certificate identifies the client.

– AUTOREGISTER

The SSL client certificate is used to authenticate the client.

• If the client sends a valid certificate that is already registered to the
security manager and associated with a user ID, that user ID identifies
the client.

• If the client sends a valid certificate that is not registered to the security
manager, HTTP basic authentication is used to obtain a user ID and
password from the client. If the password is valid, CICS registers the
certificate with the security manager and associates it with the user ID.
The user ID then identifies the client.

– AUTOMATIC

This combines the AUTOREGISTER and BASIC functions.

• If the client sends a certificate that is already registered to the security
manager and associated with a user ID, that user ID identifies the
client.

• If the client sends a certificate that is not registered to the security
manager, HTTP basic authentication is used to obtain a user ID and
166 Securing Access to CICS Within an SOA

password from the client. If the password is valid, CICS registers the
certificate with the security manager and associates it with the user ID.
The user ID then identifies the client.

• If the client does not send a certificate, HTTP basic authentication is
used to obtain a user ID and password from the user. When the user is
successfully authenticated, the user ID that is supplied identifies the
client.

Using a URIMAP
The USERID attribute of the URIMAP resource specifies the user ID of the
attached alias task. This user ID applies to all the inbound requests that match
the SCHEME, HOST, and PATH specified in the URIMAP. This is only used
when the specific user does not have to be authenticated, but a user ID other
than the CICS default user ID is required to authorize access to the associated
resources.

An example of when this can be used is if the CICS default user ID is not
authorized to run any Web alias transactions. If the real user is to be
authenticated using an HTML forms-based dialog, an alias transaction is
required. A special user ID can be set up to allow a specific alias transaction and
associated programs to be run before the real user ID is established.

Using the Analyzer
For special converter programs or a matching URIMAP definition that specifies
that the Analyzer must not be called, the Analyzer is bypassed. If the Analyzer is
called, it can use any information in the incoming HTTP request or can obtain it
using the EXEC CICS WEB and EXEC CICS TCPIP commands to determine
the user ID that must be used for the alias task.

The Analyzer can also determine whether the user must supply the user ID and
the password. This is done through HTTP basic authentication or a HTML
forms-based dialog. CICS ships sample Analyzer programs for both alternatives,
but you may want to write your own Analyzer. An example is provided in the
CICS SupportPac™ CA8D, which is available at:

http://www.ibm.com/software/ts/cics/txppacs

Note: You must write or customize an Analyzer program to authenticate the
user only if the other methods of authentication are unsuitable. The Analyzer
program can perform other functions though, and may be required even if they
are not used for authentication, for example, it is a good place to produce an
audit of Web access to your CICS region.
 Chapter 5. CICS Web support 167

http://www.ibm.com/software/ts/cics/txppacs
http://www.ibm.com/software/ts/cics/txppacs

5.2.3 Customizing basic authentication prompts

Standard HTTP basic authentication does not contain a protocol for expired
passwords. However, if you use a z/OS security manager such as RACF, your
user passwords are likely to expire on a regular basis. CICS detects expired
passwords during basic authentication and enters into a dialog with the user who
is outside the normal protocol.

When CICS detects an expired password, it changes the converter program to
DFHWBPW. This program runs instead of the expected application program, and
returns an HTML form in which the user can enter new password information.
The page that is returned is constructed from a number of document templates,
and it is recommended that you customize these templates to meet your
company’s requirements.

It is important to know how a browser usually handles basic authentication.
When an HTTP 401 response is received from a server, the browser pops up a
small window in which the user must enter the expected user name and the
password. The browser saves the values the user enters, and uses them in all
the subsequent requests that are sent to that server for the entire lifetime of the
browser program. The saved user names and passwords are kept in an
authenticated session cache. Because password expiry is not a part of the
standard basic authentication protocol, entities in the authenticated session
cache are not usually changed until the browser session is restarted. When CICS
changes an expired password, not only does it have to change the password in
the security manager, it also has to arrange for the password to be updated in
the browser’s authenticated session cache.

Processing is performed as follows:

1. The browser sends CICS a user name and a password from its authenticated
session cache, using the normal basic authentication header.

2. CICS detects that the password is expired, and changes the converter
program to DFHWBPW.

3. DFHWBPW sends back a form in which the user must enter the user name,
the expired password, and two copies of the new password.

4. The user enters the required details, and CICS executes an EXEC CICS
CHANGE PASSWORD command to change the expired password.

5. At this point, the password is changed in the security manager, but not in the
browser’s authenticated session cache. Note that CICS has not yet returned
an HTTP 401 status code to indicate that the password is invalid. Therefore,
CICS sends back a message to warn the user about what is going to happen
next.
168 Securing Access to CICS Within an SOA

CICS returns a message warning that the user will shortly be prompted again
for a password, and that the new password must be entered. This message
contains a button that reissues the original request that caused the expired
password to be detected in the first place.

6. The user must respond to the warning message by pressing the button. This
causes the original request to be submitted again.

7. The browser does not know that the password has changed. It therefore,
sends the old expired password with the reissued request. This time, CICS
does not detect that the password is expired because the password is now
changed. Instead, it detects it as an invalid password, and issues an HTTP
401 response.

8. The browser detects the 401 response and throws up a new prompt for the
user name and the password. This is when the user must re-enter the new
password.

9. The browser updates its authenticated session cache with the new password.
All the subsequent requests from the browser use the new password.

Because CICS uses document templates to construct its messages, you can
customize the messages by changing the document templates. Following are the
templates that CICS uses:

� DFHWBPW1

Contains an HTML prolog for the expired password prompt page, and initial
values for all the messages that may be issued

� DFHWBPW2

Contains an HTML form in which the user must enter the user name and the
old and the new passwords

� DFHWBPW3

Contains the warning that the password has been updated in the server and
that the user will be prompted for the new password. This template is used
when the original request has a method of GET and contains a refresh tag
that automatically redirects the user back to the original request after a short
interval.

� DFHWBPW4

Contains the warning that the password has been updated in the server and
that the user will be prompted for the new password. This template is used
when the original request has a method of POST, and replicates the data
entered in the original form. It does not contain a refresh tag, but does contain
a button that the user must click to continue with the original request.
 Chapter 5. CICS Web support 169

The initial prompt for the user to replace the expired password is composed from
template DFHWBPW1, followed by a symbolic reference to one of the messages
initialized by DFHWBPW1, followed by template DFHWBPW2.

You must change DFHWBPW1 if you want to change the style of the password
expiry page to match your corporate standards, or if you want to customize the
messages issued by CICS when it detects errors in the supplied password. You
can, for example, change the messages to your language. You probably do not
have to change template DFHWBPW2. However, you must change
DFHWBPW3 and DFHWBPW4 if you have the necessity to change the style or
content of the pages that warn the user about having to re-enter the password in
the browser after it is changed in the server.
170 Securing Access to CICS Within an SOA

5.2.4 Authorization with a direct connection

Figure 5-4 illustrates the points within a CICS Web support direct connection
architecture, where it is possible to perform authorization checks. In the following
discussion, it is assumed that a user ID has been assigned to the client who has
sent the HTTP request to CICS, using one of the methods described in 5.2.2,
“Identifying and authenticating the client user” on page 164.

Figure 5-4 Authorization with a CICS Web support direct connection

Following are the authorization checks you can perform:

� Attaching the alias transaction

It is possible to protect the alias transaction using transaction security. The
client user ID must be authorized to attach the alias transaction. To provide
flexibility in your security definitions, use the URIMAP or Analyzer to assign
different alias transaction names for different URLs. You then have control
over which users are permitted to access which URLs by controlling their
access to the associated alias transaction. All the alias transactions that you
specify for this purpose must have an initial program of DFHWBA.

Web attach
processing

Analyzer

Web attach
transaction CWXN

link

converter
Encode

Alias transaction CWBA

application to be
Web-enabled

converter
Encode

Resource
security

CICS Region

link

BLI

link

1 2 3

attachTransaction
security
 Chapter 5. CICS Web support 171

� Link-to-user program

The programs to which the BLI is permitted to link can also be protected by
using resource security for programs. This permits a finer level of
authorization control than transaction security. For resource security to be
effective for the alias transaction, change the RESSEC attribute of the alias
transaction to RESSEC(YES). Because you cannot modify the IBM-supplied
definition of CWBA in the DFHWEB RDO group, in order to change its
RESSEC attribute, you must first copy it to a user-defined group.

� Application security

Within the application, use the resource security to control access to
resources such as files, queues, and LINKed-to programs. You can use
command security to prevent unauthorized access to CICS administrative
functions. In addition, you may require application-specific security such as
user data or user-defined classes in RACF, or by relating something in the
incoming data to be checked against the data held in the application
database.

The authorization of CICS Web support requests differ slightly in emphasis,
depending on whether you are using a Web-aware program or the 3270 Web
bridge to run the existing 3270-based transactions. These differences are
discussed in the subsequent sections.

Web-aware applications
Web-aware applications can understand HTTP without using the 3270 Web
bridge. They can use the CICS WEB API, DOCUMENT API, or TCPIP API calls
to process the data entering CICS, or they can accept data into CICS as a
COMMAREA containing HTTP requests.

The primary defense against unauthorized access is still the protection of the
alias transaction, which is coded in the Analyzer. It is recommended that there be
at least two, one used when the application server program accesses
confidential data, and another when the data being accessed is public. This
allows transaction-level security to provide you with the first line of protection.

The next level of security that you can use is to protect the user program
LINKed-to from the BLI. Because this is the wbra_server_program set in the
Analyzer, it is already protected if the Analyzer is coded to restrict the programs
that are accessed.

As you descend within the user program, you can continue to use CICS-provided
security. Depending on the design of the application, it may be necessary to
provide resource-level protection for the resources accessed or the programs
LINKed to within the application. Additionally, use the TCP/IP API and the WEB
API to obtain information about the Web user, for example, the client IP address,
172 Securing Access to CICS Within an SOA

the port in use, the SSL session usage, and the SSL certificate information. The
information that is obtained may be used with normal CICS application interfaces
to RACF in order to obtain more details about the user and to make
application-based authorization decisions. It can also be compared to
application-specific information, for example, client number or perhaps a field
from a cookie, in order to determine which application-specific information this
client is allowed to access.

Web-owning region
A good design that you can utilize when using Web-aware programs is a
Web-owning region in order to authenticate all the Web requests and then route
all the requests to a remote region using a distributed program link (DPL)
request. This provides a physical separation between the Web world and the
existing applications, and allows authentication to be performed in the
Web-owning region and authorization to be performed in the application-owning
region (AOR), the same way that a terminal-owning region (TOR) can be used to
authenticate users in a 3270 network.

In addition, this design enables you to utilize link security, whereby a link user ID
defined in the AOR connection can provide an additional limit to the maximum
authorization possible from the connected Web-owning region.
 Chapter 5. CICS Web support 173

If you are using a Web-owning region architecture, you must be aware that all the
Web-aware applications and all the transactions running under the 3270 Web
bridge facility must run in the WOR, and only the distributed program link (DPL)
calls to the business logic or function shipping requests can be sent to the AOR.
Figure 5-5 illustrates a sample Web-owning region-application-owning region
architecture.

Figure 5-5 A Web-owning region design

3270-based applications
The 3270 Web bridge allows 3270-based transactions to run as Web
transactions with little or no modification. Instead of a 3270 terminal, a buffer
known as the bridge facility is used, which appears to be a 3270 screen to the
application. The user ID associated with this bridge facility is taken from the
Analyzer wbra_userid field and stored in the sign-on extension of the bridge
facility. Thus, the bridge facility resembles a 3270 terminal with preset security.

Because the bridge facility behaves like a terminal with preset security, it is not
possible to run a program that issues the EXEC CICS SIGNON command, or to
use the CESN transaction. Thus, any existing 3270-based transactions you use
through the 3270 Web bridge may require modification so as to not use the
explicit EXEC CICS SIGNON logic. Figure 5-6 illustrates the points within a CICS

OS/390 Sysplex

CICS
business

logic

CICS
business

logic

Data

Web
Owning
Region

Web browsers

intranet
Web browsers

3270
users

Internet

Terminal
Owning
Region

AOR

AOR

WOR

TOR
174 Securing Access to CICS Within an SOA

Web support direct connection 3270 Web bridge application, where it is possible
to perform authorization checks.

Figure 5-6 CICS Web support 3270 Web bridge authorization checks

The following list refers to the numbered points in Figure 5-6:

� CICS resource security (“1”) protects the EXEC CICS LINK from the BLI to
DFHWBTTA because this is equivalent to the user program for a Web-aware
application.

� CICS transaction security (“2”) protects the 3270 transaction started under
the bridge. Because the transaction and the bridge exit are running under the
user ID set by the Analyzer, this does not appear different from the standard
3270 access in terms of security.

� Resource or command security (“3”) protects the resources within the
program that the 3270 transaction runs. The major difference here is that
3270 transactions are not Web-aware, and so do not use the TCP/IP and
WEB APIs. Also, they have no concept of the user being a Web user. Normal
CICS application interfaces to RACF, for example, EXEC CICS QUERY
SECURITY, can still be used to obtain more details about the user and make
application-based authorization decisions.

Alias

DFHWBTTA

Web terminal
translation
program

Web bridged transactionDFHWBLT

Web bridge
exit

User
Transaction

User
Program

3270 bridge
facility

RACF

2

Transaction
security

Resource
security

Command
security

Start

1 3
 Chapter 5. CICS Web support 175

Note that because HTTP is an inherently stateless protocol, multiple screens
within a pseudo-conversational transaction must be linked together by state data,
which is managed by the 3270 Web bridge. This state data is managed by the
Web state manager program DFHWBST, which holds this information in CICS
temporary storage. This state data is timed out at the interval set by the System
Initialization Table (SIT) parameter WEBDELAY. Thus, if a
pseudo-conversational transaction is left suspended for longer than this period, it
is terminated and the user receives an HTTP 500 response. This offers a degree
of protection for 3270 Web-enabled transaction by providing a facility to time-out
inactive users.

Some CICS applications make wide use of the 3270 terminal ID for controlling
the application. Often, this can be preset, based on a pool of Systems Network
Architecture logical units (SNA LUs) or hard-coded for a particular terminal.
However, when using the 3270 Web bridge, the terminals are autoinstalled and
the terminal IDs follow the form “}AAA” to “}999”, although this is not documented
and may be subject to modification. Thus, any application decisions based on the
terminal ID must be carefully considered if you are Web-enabling them by using
the 3270 Web bridge.

5.2.5 Access to static content

If you use a URIMAP to specify a static response from a DOCTEMPLATE or an
hierarchical file system (HFS) file, note that access to the static data by the client
user ID cannot be controlled in CICS TS V3.1. Resource security does not apply
to DOCTEMPLATEs, and the access control on HFS files applies only at the
address space level, that is, the HFS permissions are only applied to the CICS
region user ID.

You must therefore, be especially careful when using a generic path. When
matching to externalize a HFS directory structure, make sure that all the files in
the directory are intended to be publicly visible if they are accessible by the CICS
region user ID.

5.2.6 Design issues

In summary, following are the key points to be considered when designing a
secure solution with a CICS Web support direct connection:

� A DMZ is a key part of a secure Web-enablement strategy. With CICS Web
support, you can participate in this architecture by installing a dedicated CICS
region, the listener region, in a separate Web logical partition (LPAR). As is
the case with a TOR, the listener region not only serves to handle incoming
requests from the Web, it also acts as a protocol switch, converting TCP/IP
requests into internal CICS protocols.
176 Securing Access to CICS Within an SOA

After the listener region has authenticated the user ID, a CICS user program
can be invoked in another CICS region using a distributed program link (DPL)
call, as shown in Figure 5-7. This program can be on a different LPAR within
the same sysplex if the DPL call utilizes the cross-system coupling facility
(XCF) communications.

Figure 5-7 Sample CICS Web support listener region configuration

� Another argument for setting up a listener region may be to have link security
between the listener region and the AOR where the business logic runs. The
link user ID carries the maximum level of authorization for any transaction in
the AOR. All the authorizations in the AOR are checked against the link user
ID and the user ID flowed with the DPL request. Both authorizations are
required for the business logic to be called.

� Also consider using URIMAPs, or, if you are just using the default Analyzer,
disabling the program autoinstall. This is because the URL format expected
by the default Analyzer allows any CICS program to be invoked. Obviously,
you are unlikely to want just any Web browser to invoke any program that can
be found in your CICS load libraries.

Note: A separate listener region is possible only if the business logic is a
COMMAREA-based application. Applications using the EXEC CICS WEB
API cannot be run remotely.

z/OS Sysplex

CICS
business

logic

CICS
business

logic

Data
Listener
RegionInternet

Web
browsers

intranet
Web

browsers

3270
users

Internet

Terminal
Owning
Region

AOR

AOR

TOR
 Chapter 5. CICS Web support 177

5.3 Designing a secure solution

This section provides a decision matrix to summarize the security support of
CICS Web support. It then provides a checklist of implementation tips that you
must consider when Web-enabling CICS applications using CICS Web support.

5.3.1 CICS Web support security matrix

The decision matrix shown in Table 5-1 summarizes the key decision points for
securing Web access to CICS using either a CICS Web support direct
connection or the CICS WebServer plug-in. Each item is discussed further
subsequently.

Table 5-1 CICS Web support security decision matrix

Architectural questions CICS Web support direct
connection

CICS Web server plug-in

Authentication of client by
user ID and password

Yes, using AUTHENTICATE(BASIC)
or custom Analyzer

Yes, through IBM HTTP Server
support for basic authentication or
custom HTML form application

SSL encryption Yes, both CICS and the IBM HTTP Server support SSL encryption, and
both can utilize IBM System z cryptographic hardware

SSL client certificate
support

Yes, using
AUTHENTICATE(AUTOREGISTER)
or AUTHENTICATE(CERTIFICATE)
and manual registration

Yes, using HTTP Server SSL
support

Flowing user ID into CICS Not applicable because user
authenticated within CICS

Yes, flow security context from
HTTP Server to CICS using
ATTACHSEC=IDENTIFY

Handling unregistered SSL
client certificates

Yes, with SSL(CLIENTAUTH) and
AUTHENTICATE(NONE)

Indirectly, with the RACF
certificate name filtering feature

Mapping of many Web
users to one RACF user ID

Yes, with
AUTHENTICATE(CERTIFICATE)
and RACF certificate name filtering

Indirectly, with the RACF
certificate name filtering feature

Restricting maximum Web
user authorization

Yes, using a customized Analyzer or
for Web-aware applications, by using
a Web-owning region and a link user
ID

Yes, using either a surrogate user
in the HTTP Server Protect
directive, or a link user on external
CICS interface (EXCI) connection

Handling expired password Yes, built-in feature that can be
customized in document templates
DFHWBPW1-4

Use the HTTP Server pwapi.so
sample plug-in or HTTP basic
authentication
178 Securing Access to CICS Within an SOA

Authentication of client by user ID and password
When using a CICS Web support direct connection, you can use the built-in
basic authentication support by specifying AUTHENTICATE(BASIC) in the
TCPIPSERVICE definition, or write your own Analyzer to implement basic
authentication or HTML forms to prompt for a user ID and password. When using
the CICS Web Server plug-in, you can use the HTTP Server support for HTTP
basic authentication or write your own custom HTML form application.

Secure Sockets Layer encryption
CICS Web support supports SSL encryption with both a direct connection and
the CICS Web Server plug-in. Both the methods can utilize the System z
cryptographic hardware in order to improve performance substantially when
using SSL.

Secure Sockets Layer client certificate support
CICS Web support supports authentication using SSL client certificates with both
a direct connection and the CIS WebServer plug-in.

Flowing user ID into CICS
When using a CICS Web support direct connection, this is not necessary
because authentication is performed within CICS and is passed to the invoked
CICS Web support programs using the wbra_userid field. When using the CICS
Web Server plug-in, authentication is performed within the IBM HTTP Server.
The authenticated user ID must then be flowed into the CICS region by
specifying ATTACHSEC=IDENTIFY on the EXCI connection definition.

Application access to
authentication data

Yes, for Web-aware applications
only, using the CICS WEB and TCPIP
APIs.

No, although HTTP Server
protection directives can be used

Signon support in CICS VERIFY PASSWORD only. Any
existing CICS SIGNON logic must be
modified.

SIGNON logic must be modified
to use flowed HTTP Server
authentication

Denial of service by
uploading large HTTP
request files

Use the TCPIP APIs

Architectural questions CICS Web support direct
connection

CICS Web server plug-in
 Chapter 5. CICS Web support 179

Handling unregistered Secure Sockets Layer client certificates
This is supported when you use a CICS Web support direct connection and the
CICS Web Server plug-in. If you are using a CICS Web support direct
connection, use the CWS Certificate Autoregistration feature, whereby the Web
user’s client certificate can be automatically registered to a known user ID.
Alternatively, you can write your own customized Analyzer program to perform
your decisions about unregistered certificates. With the IBM HTTP Server or a
CICS Web support direct connection, use the RACF certificate name filtering
feature. This automatically assigns a RACF user ID to a Web user according to
the predefined rules relating to the information contained in the certificate.

Mapping of many Web users to one Resource Access Control
Facility user ID

To achieve this, use the SSL client certificates and the RACF certificate name
filtering feature. In addition, when you use a CICS Web support direct connection
and the CWS Certificate Autoregistration feature, many Web users can be
mapped to one RACF user if each Web user knows the required password.

Restricting the maximum permissions of a Web user
You may want to prevent a user from running a transaction from the Web for
which that user ID is authorized to run in a non-Web environment. With the CICS
WebServer Plugin, you can achieve this by using a CICS Link user ID in the
SESSIONS definition, and granting a maximum authority to this user ID.
However, note that the Link user ID is discarded and not checked, when a
transaction is run under the 3270 Web bridge.

With a CICS Web support direct connection, the same can be achieved using a
Web-owning region and an MRO connection to the AOR. Alternatively, you can
limit the maximum authority of a Web user by using a customized Analyzer
program, which can check if the requested function must be available to a Web
user before authenticating the request.

Handling expired passwords
A CICS Web support direct connection handles expired passwords
automatically. When it detects an expired password, it prompts the user to
re-enter it without using HTTP basic authentication. You can customize this
process. See 5.2.3, “Customizing basic authentication prompts” on page 168 for
more details. If you are using the CICS Web Server plug-in, perform this action
by using the IBM HTTP Server pwapi.so sample plug-in.
180 Securing Access to CICS Within an SOA

Application access to authentication data
If you have to perform security decisions within your CICS application code, a
CICS Web support direct connection provides several ways to do this. The CICS
WEB and TCPIP API allow you to access a lot of information about the client,
including details about the TCP/IP address and SSL client certificate. This
support is not available with the CICS Web Server plug-in, although the IBM
HTTP Server does provide for limited decisions to be taken using the protection
directives.

Sign-on support in CICS
Because an explicit EXEC CICS SIGNON or CESN transaction is not supported
using CICS Web support, any existing logic that uses EXEC CICS SIGNON must
be modified to use the CICS Web support authentication mechanisms, that is,
authentication in the CICS Web support Analyzer with a direct connection or
using the IBM HTTP Server with the CICS Web Server plug-in. If you cannot
modify your application, consider using Host On Demand or the CICS
Transaction Gateway external presentation interface (CTG EPI) interface.

5.3.2 CICS Web support security checklist

The following list is a summary of the key actions that you must consider if you
use CICS Web support to Web-enable your CICS applications. (Note that most
of these are normal CICS security considerations, and you may decide that you
do not have to implement all these actions. However, it is recommended that you
consider each one.)

� Set up one or more separate CICS Web-owning regions if you are using a
CICS Web support direct connection, or use the CICS Web Server plug-in. A
Web-owning region design is described in “Web-owning region” on page 173.

The principal benefits of using a Web-owning region design are:

– Isolation of the Web transactions into one CICS-specialized Web-owning
region. Any failure in the Web-owning region, such as short-on-storage or
excessive CPU consumption, does not affect your production regions.
This also allows you to physically separate your traditional CICS
applications into a separate AOR in order to prevent a rogue user
application from accessing the storage or the information you do not want
to be accessed.

– The Web-owning region or the IBM HTTP Server may be placed in a
different LPAR, perhaps between a filtering router and a firewall, that is, in
a DMZ, in order to completely isolate any connected CICS regions from
attack.
 Chapter 5. CICS Web support 181

– The maximum security any Web user can have when running requests in
the connected AOR can be limited by using CICS Link security, but not
when using the 3270 Web bridge.

– Workload balancing techniques can be used to balance requests across
multiple Web-owning regions and multiple AORs. CICSPlex System
Manager (CICSPlex SM), TCP/IP port sharing, Dynamic Domain Name
System (DNS), and the Load Balancer for Websphere Application Server
can be used to balance such requests, and to limit the impact of
denial-of-service attacks.

� Use a firewall or filtering router or both as the first line of defense. This allows
you to restrict Internet access to a specific set of IP addresses and ports, to
filter out some potential Internet-style attacks, and to hide the actual IP
address that your Web server or CICS region is using.

� Use ports other than the default to avoid random attacks on known ports.

� Use a means of authenticating all the users who access the restricted
information. There are several ways of doing this, including HTTP basic
authentication, customized HTML form-based authentication, or SSL client
certificates. This provides a first line of defense against attacks and also the
ability to maintain an audit trail. If you are using HTTP basic authentication or
HTML form-based authentication, use SSL to encrypt the user ID password
flows.

� Do not transmit sensitive data as clear text across the Internet. Remember
that this includes user IDs and passwords that are sent using HTTP basic
authentication. SSL support within CICS or that provided with the IBM HTTP
Server can be used to encrypt data.

� Be extremely careful when using the 3270 Web bridge. The supplied 3270
Web bridge allows Web access to any 3270-based transaction, greatly
increasing potential security exposures. In any case, you must prevent Web
access to transactions such as CEMT or CECI. This is best done by using
CICS transaction security. However, it can be checked for in the Analyzer, or
can be prevented by using a surrogate user ID with the CICS Web Server
plug-in or a predetermined user ID specified in the Analyzer.

� Use a customized CICS Web support Analyzer when using a CICS Web
support direct connection in order to restrict access to certain authenticated
users, and transactions and programs. You can also have different
TCPIPSERVICE definitions listening on different ports with different
Analyzers. You must also be aware that by default:

– The standard CICS-supplied Analyzer, DFHWBADX, which was
recommended prior to CICS TS V3.1, allows specification of any alias
transaction, converter program, and program.
182 Securing Access to CICS Within an SOA

– The default Analyzer supplied with CICS TS V3.1 is DFHWBAAX. It does
not extract alias attributes out of the URL, but assumes that you have
installed URIMAP definitions.

– The security sample Analyzer, DFH$WBSA, uses a token in the URL,
which can be used in place of a user ID and password, by anyone with
access to the URL sent to the Web browser.

� Implement resource security in addition to transaction-level security for all the
programs in the Web-owning region. This prevents a program from being
linked to by a malicious user by using a transaction such as the CECI.

� Ensure that the program autoinstall is turned off in the Web-owning region.
Program autoinstall allows the loading of any program in the load libraries
available to CICS, into CICS storage. Without a program definition, a CICS
program cannot execute. You must also strictly control the programs in the
load libraries available to the Web-owning region. If a program cannot be
found, it cannot load and execute.

� Place limits on the maximum amount of system resources that can be used
by transactions invoked from the Web. Following are the ways to do this:

– Use the CICS TCPIPSERVICE BACKLOG parameter

– Use the CICS transaction classes to limit the maximum number of active
Web tasks, considering limiting alias, CWXN, and mirror transactions

– Use the z/OS workload management restrictions on CPU usage for each
address space such as TCP/IP, CICS, and Web server

– Use the CICSPlex System Manager to allow workload management of
CICS tasks

� Consider turning on the transaction isolation and storage protection. This
protects the CICS region from wayward transactions, and prevents a rogue
application from accessing storage areas not associated with its active task.
 Chapter 5. CICS Web support 183

184 Securing Access to CICS Within an SOA

Chapter 6. CICS Transaction Gateway

This chapter looks at the security issues that you face when using a
service-oriented architecture (SOA) for your CICS applications, using the CICS
Transaction Gateway (TG). This chapter discusses how the CICS TG addresses
the issues of authentication, authorization, data integrity, and confidentiality. It
also examines how CICS and the CICS TG work together with an External
Security Manager such as Resource Access Control Facility (RACF) to provide
these facilities.

You must decide whether you want to run the CICS TG on z/OS, or on a
distributed platform such as a Windows® or a UNIX platform, and flow the
request over a network to a remote CICS region. If you are using a distributed
platform, you have the choice of whether to reuse the CICS 3270 interface by
using the CICS TG external presentation interface (EPI) methods, or whether to
interface with the CICS business logic using the CICS TG external call interface
(ECI) methods.

6

© Copyright IBM Corp. 2006. All rights reserved. 185

Finally, the chapter summarizes the key security considerations you may
face, and provides a security matrix and checklist pertaining to the issues
raised in this chapter. Figure 6-1 shows an overview of possible CICS TG
configurations.

Figure 6-1 Overview of possible CICS TG configurations

z/OS

EXCI

Gateway
daemon

CICS TG V6.1

MRO/IRC

user ID
Authorization

RACF
Authentication

(user ID +
password)

CICS
program

CICS TS V3.1

CICS TG

Client
daemon

Gateway
daemon

ctgserver.jar

Protocol
handler

ctgjni.dll

JNI module

ctgserver.jar

Java
application

WebSphere Application
Server V6

EJB

CICS ECI
resource
adapter

CICS TG V6.1
CCI

ctgclient.jar
cicseci.rar
cicsepi.rar

ctgclient.jar
cicseci.rar
cicsepi.rar

Java
client

TCP
or

SSL

HTML

Distributed Platform

APPC
TCP62
TCP/IP

TCP/IP

TCP/IP
186 Securing Access to CICS Within an SOA

6.1 Architecture choices

This section describes the security problems relating to the use of either a Java
or a non-Java application with the CICS TG.

The CICS TG consists of a set of client and server software components that
allow a remote client application to use services in a CICS region. The client
application can be either a non-Java application using C, C++, COBOL, or COM
interfaces (depending on the platform used) or a Java application.

When you use a Java application, the application can be any type of client, such
as an applet, a servlet, or an enterprise bean. In the J2EE environment, the
application is typically a servlet or enterprise bean that you deploy into a J2EE
application server such as the IBM WebSphere Application Server.

CICS supports two main protocols for communication between a client program
and a CICS application, EPI and ECI. With ECI, you can connect from the CICS
TG to a CICS region over an IP network.

The Gateway daemon is a long-running process that functions as a server to
network-attached Java client applications such as applets or remote applications
by listening on a specified TCP/IP port. In local mode, there is no CICS TG
daemon. In remote mode, there is a CICS TG daemon address space in z/OS
that listens for ECI requests.

When you use the CICS TG on z/OS, only the ECI interface is supported. EXCI
is a cross-memory implementation of ECI that is unique to z/OS. The most
common z/OS configuration makes use of a local CICS TG. On z/OS, this results
in a direct cross-memory EXCI connection between CICS and WebSphere
Application Server.

J2EE connector architecture and security
The J2EE Connector architecture (JCA) has specific support for enabling secure
access from a J2EE application to an enterprise information system (EIS) such
as CICS. Both container-managed sign-on, in which the J2EE application server
is responsible for flowing security context to the EIS) and component-managed
sign-on in which the application is responsible for flowing security context to the
EIS are supported.

In a managed J2EE environment, such as that provided by WebSphere
Application Server, container-managed sign-on is recommended because it is
good practice to separate the business logic of an application from qualities of
service, such as security.
 Chapter 6. CICS Transaction Gateway 187

When deploying the component, the deployer must set the res-auth element in
the deployment descriptor to indicate which method is being used. Figure 6-2
shows the flow for the JCA user ID selection.

Figure 6-2 Flow sheet for JCA user ID selection

Container-managed security
If you are using container-managed security, you must set the res-auth
deployment descriptor element to Container. The application deployer must set
up the authentication information, for example, the deployer sets the family name
(user ID) and password to be used for the connection. In certain circumstances,
the container can derive the propagated identity from the currently executing
Java principal. The application uses the getConnection()method of the
connection factory and lets the application server manage the security to sign in
to CICS.

A local mode configuration is one that follows the traditional z/OS authentication
model, authenticating at the entry point to z/OS. For a J2EE application, it is
normally in an HTTP server or in a WebSphere Application Server for z/OS. After

Security Management – decision tree

application container

ECIConnection
Spec

Connection-
Spec

yes no

Container
Managed

Alias

Component
Managed

Alias

Component
Managed

Alias

Component
Managed

Alias

yes

no

Connection
Factory

custom prop.

Container
Mgd Alias.

Propagated
userid

J2EE server
userid

EJB role

role
server

RunAS

caller

yes

yesno

Res-Auth

WAS z/OS
Local mode

+ Global Security
enabled

no

WAS z/OS
188 Securing Access to CICS Within an SOA

authentication, your RACF user ID flows with you as you run work in different
parts of the system. If the J2EE application connects to a CICS application, you
must associate a RACF user ID with the request.

For connections using container-managed authentication and in local mode with
a local registry configured, WebSphere Thread Identity support passes the user
ID associated with the current Java thread in WebSphere Application Server for
z/OS to the CICS ECI resource adapter and then to CICS.

For a local mode connection, CICS uses an EXCI connection, which allows a
non-CICS address space on z/OS to communicate with CICS. EXCI assumes
that the user ID is already authenticated for the user ID to be passed on to CICS
without the password.

To avoid exposing the password, CICS allows only two options on the
ATTACHSEC property, ATTACHSEC=LOCAL, where no user ID flows, or
ATTACHSEC=IDENTIFY, where the user ID for the ECI request flows.

When using container-managed authentication, the WebSphere container is
responsible for passing security information to the CICS ECI resource adapter.
Known as thread identity, the security identity of the current Java thread is
passed to the JCA connector and then to CICS. The user ID passed is the
RunAs identity of the EJB that calls the connector. This could be:

� RunAs - Server, the application server’s user ID
� RunAs - Caller, the identity of the caller of the EJB
� RunAs - Role, a user ID associated with a role

It is the absence of an association between the connection factory and a Java
Authentication and Authorization Service (JAAS) authentication alias that
enables thread identity support and causes the identity on the current thread to
be passed to the CICS ECI resource adapter. Therefore, you must not define a
JAAS authentication alias unless you want to prevent user ID propagation and
instead, want to associate a fixed user ID (the JAAS alias) with all the requests to
that CICS ECI connection factory.

JAAS authentication alias
JAAS is a package that enables services to authenticate and enforce access
controls on users. JAAS is an optional part of Java 2 SDK 1.3, but is required by
WebSphere Application Server.

If you want to use a JAAS authentication alias, and want to authenticate the user
ID and password coded on the alias, tell the CICS ECI resource adapter to
perform a user ID and password check by defining the
AUTH_USERID_PASSWORD environment variable.
 Chapter 6. CICS Transaction Gateway 189

Component-managed security
For component-managed security, set the res-auth element to Application. The
application code can then supply the user ID and password when making the
connection. This is seen in the code sample shown in Figure 6-3. Note that even
with res-auth=Application, the application can invoke a getConnection() without
passing a user ID and password.

Figure 6-3 Component managed sign-on

Propagating an identity
This is perhaps the biggest problem facing most enterprises. If you are running
WebSphere Application Server on z/OS, the problem is not so great because you
can use the trusted identity support to flow the authenticated RACF security
context from the WebSphere Application Server thread on to CICS by using the
CICS TG, must be running in local mode.

However, if you are running WebSphere Application Server on multiplatforms, as
many enterprises do, you have the problem of mapping a set of credentials,
(perhaps certified using an operating system registry or a Lightweight Directory
Access Protocol (LDAP) directory), to some trusted user in CICS. This is referred
to as asserted identity in JCA. The problem is made easier if you are using the
CICS TG on z/OS, which supports ATTACHSEC=IDENTIFY, which means the
CICS TG can flow a user ID without a password. For more information about this,
refer to “Determining the link user ID” on page 206. Note that in order to get an
asserted identity to work for JCA, apply fix for APAR PK19503 for CICS TG for

Context ic = new InitialContext();

cnxf = (ConnectionFactory) ic.lookup("java:comp/env/eis/ECICICS1");
// create a connectionSpec to hold the security information
ECIConnectionSpec cs = new ECIConnectionSpec();
// set the user ID/password
cs.setUserName(“user_ID”);
cs.setPassword(“password”);
Connection cxn = cxnf.getConnection(cs);
Interaction ixn = cxn.createInteraction();
ECIInteractionSpec ixnSpec = new

ECIInteractionSpec(SYNC_SEND_RECEIVE,"CICSPROG");
JavaStringRecord jsr = new JavaStringRecord();
jsr.setText("DATA1");
ixn.execute(ixnSpec, jsr, jsr);
ixn.close();
cxn.close();
190 Securing Access to CICS Within an SOA

z/OS V6.1 because otherwise, the JCA resource adapter will not flow a user ID
with a null password. However, the basic problem of how to assert an identity is
the key one. Various solutions have been provided, including the following
mechanisms:

� Use IBM Tivoli Access Manager and the global sign-on (GSO) Lockbox
function.

IBM provides the use of a GSO Lockbox through the Tivoli Access Manager
plug-in for Web servers. The GSO Lockbox module provides access to
applications, using the stored user credential information in the Principal
Mapping Module, in order to map a credential to a RACF user ID.

The GSO Lockbox is essentially a cache of user IDs that can be securely
accessed with a client. However, the credentials have to be kept up-to-date
manually, especially if supplying passwords. Figure 6-4 demonstrates the use
of Tivoli Access Manager provided with WebSphere Application Server V6.

Figure 6-4 End-to-end propagation of user credentials

� Use CICS Link security either by using a Link user ID or with the Gateway
region user ID to allow the security context to be asserted on a per Gateway
basis

z/OS

CICS
app

WAS on Windows

JCA

LDAPLDAP
Users / GroupsUsers / Groups

LDAPLDAP
Users / GroupsUsers / Groups

Mapping
module

GSO
lockbox

RACF

WebSEAL

TAM
reverse
proxy

In LDAP In LDAP
registryregistry

AuthenticateAuthenticate

Generic JCA connection Generic JCA connection
that passes User that passes User
credentialscredentials

Banker
2005

JAAS
Subject

Retrieve Retrieve
user user
credentialscredentials

TAM managemanage

TAM Policy Server

User
CTG
z/OS

AuthenticateAuthenticate

AuthorizeAuthorize

Tivoli Access Manager (TAM) provided Tivoli Access Manager (TAM) provided
in the box with WAS v6in the box with WAS v6
 Chapter 6. CICS Transaction Gateway 191

� Use SSL client certificate mapping to assert a user ID on a per client
connection basis (see “Performing the encryption” on page 192)

� Develop your own mapping solution, perhaps by using RACF pass tickets

Performing the encryption
Most users want SSL direct in z/OS. This means that you must run the CICS TG
on z/OS because this is the only topology that supports SSL for this purpose.
Otherwise, you must use a virtual private network (VPN) from the CICS TG in
CICS or some other kind of trusted network. In addition, there are the following
points:

� You can map the Distinguished Name details in an SSL X509 client certificate
to a RACF user ID, using the CICS TG RACFUserid class and the server side
security exit.

� You can use SSL only for client authentication, and not payload encryption.
To do this, you require a null cipher suite such as
SSL_RSA_WITH_NULL_MD5, which has to be explicitly enabled in the CICS
TG cipher suite list.

� You must think about CPU offload for SSL by using the IBM eServer zSeries
hardware cryptographic support. Currently, the CICS TG only offloads
handshakes when using CICS TG V6.x on z/OS by using Java Secure
Sockets Extension (JSSE). Offloading handshakes to hardware substantially
reduce the CPU costs.

� Think about how you want to control the SSL cipher suite. Many enterprises
have mandates stating that only TDES or AES 256-bit can be used on the
payload and only MD5 as a hash or RSA key sizes.

Note: In JSSE, the cipher suite can only be controlled by the server (the
CICS TG). Therefore, sometimes, the only way to get SSL clients to use a
specific cipher is to have multiple CICS TGs because otherwise, all the
SSL clients will negotiate up to the strongest cipher available.
192 Securing Access to CICS Within an SOA

6.2 CICS Transaction Gateway on distributed platforms

This section looks at CICS TG from a distributed perspective.

6.2.1 CICS TG for Multiplatforms V6.0

CICS TG for Multiplatforms V6.0 is supported on the following range of operating
systems and platforms and is designed to support connectivity to all in-service
CICS servers:

� Linux on System z
� Linux on Intel®
� Linux on POWER™
� AIX®
� HP-UX (on PA-RISC)
� Sun™ Solaris™ (on SPARC)
� Windows XP, Windows 2000, and Windows 2003

CICS TG for Multiplatforms comprises the following main runtime components:
� The Gateway daemon

This listens for incoming work and manages the threads and connections
necessary to ensure good performance.

� The Client daemon

This provides the communication to CICS servers and the non-Java
application programming interfaces (APIs).

� A Java class library or JCA resource adapter

This is deployed into the client runtime environment. When used in a JCA
environment, the resource adapter is deployed into the J2EE application
server.

A Java client program can connect to a remote Gateway daemon using the TCP
or SSL protocols. The Client daemon then provides the transport drivers to
connect to the CICS server. Because the non-Java APIs are provided by the
Client daemon, there is no remote connectivity support for non-Java clients.
 Chapter 6. CICS Transaction Gateway 193

6.2.2 CICS Transaction Gateway deployed on a distributed platform

In topology 1 (shown in Figure 6-5), both the WebSphere Application Server and
the CICS TG are deployed on one of the distributed platforms, a Windows
platform or a UNIX platform.

Figure 6-5 shows the authentication and authorization checks that are performed
for an Enterprise JavaBeans (EJB) application that uses the ECI resource
adapter to access a COMMAREA-based CICS application.

Figure 6-5 Authentication and authorization mechanisms for CICS TG: Topology 1

Authentication
An authentication mechanism in WebSphere Application Server typically
collaborates closely with a pluggable user registry when performing
authentication. The user registry allows you to configure different databases to
store user IDs and passwords that are used for authentication and authorization.

Following are the user registry options:

� Local operating system user registry

When configured, the application server uses the operating system’s users
and groups for authentication.

Authorization
checks

APPC or
TCP62 or
TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

HTTP(S)

WebSphere
Application Server

ServletJSP

EJB
CICS TG
ECI
resource
adapterCCI

Distributed platform z/OS

C
lie

nt
D

ae
m

on
Authentication of
userid/password

Authentication and
authorization checks

User ID
Password/

Client
Certificate

Pluggable user
registry

Web server
Plugin

Web server

Authorization
checks

APPC or
TCP62 or
TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

HTTP(S)

WebSphere
Application Server

ServletJSP

EJB
CICS TG
ECI
resource
adapterCCI

Distributed platform z/OS

C
lie

nt
D

ae
m

on

RACFRACFRACFRACF

Authentication of
userid/password

Authentication and
authorization checks

User ID
Password/

Client
Certificate

Pluggable user
registry

Web server
Plugin

Web server
194 Securing Access to CICS Within an SOA

� LDAP user registry

In many solutions, an LDAP user registry is recommended as the best
solution for large-scale Web implementations. Most of the LDAP servers that
are available in the market are well equipped with security mechanisms that
can be used to securely communicate with WebSphere Application Server.

� Custom user registry

This is the option for any custom implementation of a user registry database.
An application server API provides the user registry Java interface that can be
used to write the custom registry. This interface can be used to access
virtually any relational database, flat files, and so on.

The authentication mechanism is responsible for creating a credential, which is
an application server internal representation of a successfully authenticated
client user. WebSphere Application Server provides two authentication
mechanisms:

� Lightweight Third Party Authentication (LTPA)

LTPA is intended for use with multiple application servers and machine
environments. It supports the forwarding of credentials and single sign-on.

� Simple WebSphere Authentication Mechanism (SWAM)

SWAM is intended for simple, nondistributed, application server
configurations and is less secure than the LTPA.

Authorization
Pluggable authorization interfaces allow the use of different authorization
mechanisms for WebSphere applications. WebSphere Application Server
standard authorization mechanisms are based on the J2EE security specification
and JAAS.

The following steps describe the main authentication and authorization events
from the point when a Web browser sends a request to the WebSphere
application:

1. The Web user requests a Web resource protected by the WebSphere
Application Server

2. The Web server receives the request, recognizes that the requested resource
is on the application server, and using the Web server plug-in, redirects the
request.

3. The Web server plug-in passes the user credentials to the Web container of
the application server, which performs user authentication against the user
registry.
 Chapter 6. CICS Transaction Gateway 195

4. After successful authentication, the Web container performs authorization
checks against the user registry of the user’s credentials and the security
information contained in the deployment descriptor.

5. On subsequent requests, further authorization checks are performed either
by the Web container or the EJB container with user credentials that are
extracted from the established security context.

6. When the EJB uses the ECI resource adapter to make a request to the CICS
application, the security credentials (user ID and password) must be
propagated through to CICS. This can be the responsibility of the application
(component-managed sign-on) or it can be the responsibility of the Web or
EJB container (container-managed sign-on).

For both the container-managed sign-on and component-managed sign-on,
the principal means of enabling authentication is by specifying a predefined
security credential known as the JAAS authentication alias.

7. After defining the JAAS authentication alias, it can be associated with a
particular connection to CICS when it is selected from a drop-down box when
defining the connection factory. Another way of determining which user ID
and password combination is propagated to CICS is to specify these in an
ECIConnectionSpec when the connection is created.

8. When the request arrives in CICS, the user ID and password combination is
verified against the RACF database. The CICS CONNECTION or
TCPIPSERVICE definition must be specified with ATTACHSEC=VERIFY.

This means that there must be some form of mapping between the user IDs
stored in the user registry used by the application server and the user IDs
stored in the RACF.

9. After successful authentication by CICS, the CICS application runs and CICS
resource authorization checking is performed against the flowed user ID (the
user ID that is specified in the JAAS authentication alias). The same checks
are also performed against the link user ID if it is specified in the CICS
SESSIONS definition. Note that the option of using a link user ID is not
available when a TCP/IP connection to CICS is used.

Note: To change the user ID and password information held in the CICS
external security manager (ESM), use the ESI, which is based in the CICS
password expiration management (PEM) function. There is no JCA
resource adapter support for the ESI. Only the CICS TG base classes
provide support.
196 Securing Access to CICS Within an SOA

Data integrity and confidentiality
Figure 6-5 shows that Hypertext Transfer Protocol Secure (HTTPS) can be used
to secure the link between the Web server and the WebSphere Application
Server. The Java Secure Socket Extension (JSEE) is the SSL implementation
used by the WebSphere Application Server. It is a set of Java packages that
enable secure Internet communications. It implements a Java version of SSL
and Transport Layer Security (TLS) protocols and includes functionality for data
encryption, message integrity, server authentication, and client authentication.

However, the link between the application server and CICS cannot be secured
using SSL, that is, the user ID and password are not encrypted. The security of
this link is, therefore, dependent on the security offered by the physical
configuration.
 Chapter 6. CICS Transaction Gateway 197

6.3 CICS Transaction Gateway on z/Series

This section focuses on CICS TG on the zSeries platform.

6.3.1 Remote Gateway daemon on z/OS

In topology 2 (shown inFigure 6-6), where WebSphere Application Server is
deployed on one of the distributed platforms, access to CICS is through a
Gateway daemon running on z/OS, as shown in Figure 6-6.

Figure 6-6 Authentication and authorization mechanisms for CICS TG: Topology 2

There are several important security differences between this topology and
topology 1 shown in Figure 6-5 on page 194.

Authentication
The same application server authentication options that were discussed for
topology 1 apply equally to topology 2. There is, however, an important
difference in the authentication processing on z/OS.

Topology 1 requires that a user ID and password are flowed with each ECI
request. This can be inconvenient in situations where authentication is being
undertaken using a mechanism other than user ID and password authentication,
such as client certificate authentication. In such situations, user ID authentication

WebSphere
Application Server

 ServletJSP

EJB CICS TG ECI
resource
adapterCCI

Distributed platform

 CICS
Application

 CICS TS

 z/OS

EXCI

JNI

 CICS TG
 Gateway
 Daemon TCP, SSL

Web
server
Plugin

User ID
Password/

Client
Certificate

Web server

HTTP(S)

Authentication and
authorization checks

Pluggable
user registry Authorization

checks

Optional
authentication
of userid/
password

 RACF
198 Securing Access to CICS Within an SOA

by CICS does not easily fit into the overall security design of the solution. Using
topology 2 can help you to avoid this problem because CICS TG for z/OS allows
a preauthenticated user ID to be flowed into CICS without a password. The
authentication of user ID and password in this topology is optional.

To enable the CICS TG to authenticate each user ID and password flowed on an
ECI request, the environment variable AUTH_USERID_PASSWORD must be
set in the CICS TG environment variables. If user ID and password checking is
not performed, it will probably be necessary to devise a way to establish a trust
relationship between the application server and the Gateway daemon, so that
the application server can be trusted to flow only the user ID on the request
through to CICS by using the Gateway daemon. Solutions such as SSL client
authentication and virtual private networks (VPN) can be used to establish such
a trust relationship.

Because no password is flowed to CICS when you use the CICS TG on z/OS,
the EXCI CONNECTION definition must be defined with
ATTACHSEC=IDENTIFY. IDENTIFY means that CICS uses the flowed user ID
in the EXCI request, but does not expect a password to be flowed with the
request because this is (optionally) checked by the CICS TG.

Authorization
In addition to the authorization checks described for topology 1, additional
authorization checks can be used when the CICS TG is deployed on z/OS.
These include:

� Multiregion operation (MRO) bind security

Use MRO bind security to prevent unauthorized attached MRO regions from
starting transactions in a CICS region. Use the RACF DFHAPPL profiles in
the FACILITY class to control the login to DFHIRP. This determines whether
a particular CICS TG can connect to a CICS region.

� Link security

The link user ID that is used for authorization checks in CICS is the user ID
that is associated with the started task of the CICS TG Gateway daemon.
Because this is likely to remain the same after the initial configuration, it can
be preset in the EXCI SESSIONS definition.

� Surrogate security

Use surrogate security to authorize the user ID that is associated with the
CICS TG-started task to switch the security context of an EXCI request to the
flowed user ID. Control surrogate security by using a profile in the
SURROGAT class of RACF.
 Chapter 6. CICS Transaction Gateway 199

Data integrity and confidentiality
The CICS TG for z/OS provides SSL support by using the JSSE. Following are
some of the features of JSSE on z/OS:

� RACF key ring support

SSL key stores can now be stored in a RACF database

� zSeries hardware cryptographic support

This provides the ability for the CPU to offload SSL handshakes to hardware.
This can substantially reduce the CPU cost of SSL handshakes and SSL data
encryption.

� SSL cipher suite selection

The SSL cipher suite that is in use can be configured. When using SSL with
this topology, it is particularly important to have an efficient connection
pooling mechanism because otherwise, a significant proportion of the time -
from making the connection to receiving the result from CICS and closing the
connection - can be in the SSL handshaking. The JCA connection pooling
mechanism mitigates this overhead by allowing connections to be pooled by
the WebSphere Application Server pool manager so that SSL handshaking is
not required for each request.

6.3.2 WebSphere Application Server and CICS Transaction Gateway
on zSeries

In a zSeries topology, WebSphere Application Server can be deployed on either
a z/OS system or on a Linux operating system. The security mechanisms differ
significantly between these two topologies.

WebSphere Application Server and CICS Transaction Gateway
on z/OS

This topology (shown in Figure 6-7) has significant security advantages for the
following reasons:

� The application server and CICS are able to share the same RACF user
registry for authentication and authorization checks (see Figure 6-7).

� The application server and CICS are installed in the same Multiple Virtual
Storage logical partition (MVS LPAR) and therefore, the connection between
the servers is inherently more secure.

Note: The link between CICS TG and CICS TS in this topology is MRO (Cross
Memory). Therefore, cryptography is not necessary.
200 Securing Access to CICS Within an SOA

� Thread identity support is enabled (see “Authorization” on page 201).

Figure 6-7 Authentication and authorization mechanisms for CICS TG: Topology 3a

Authentication
When WebSphere Application Server is running on z/OS, the same options for a
pluggable user registry apply, that is, a local OS registry, an LDAP registry, or a
custom user registry. When the application server is configured to use a local OS
registry such as RACF, the security identity established after authentication in
WebSphere Application Server is a RACF user ID if you use basic authentication
or form-based login. If an SSL client certificate is used to authenticate, you can
configure RACF to map that certificate to a RACF user ID. This means that the
Java thread in WebSphere Application Server on z/OS will have a security
identity that is a RACF user ID.

Authorization
When using container-managed sign-on, a z/OS system-specific functionality
known as thread identity support is provided by WebSphere Application Server
for z/OS. This support is unique to WebSphere Application Server for z/OS and
allows the application server to automatically pass the user ID of the thread (the
caller's identity) to CICS when using the ECI resource adapter.

z/OS

 CICS TS

CICS
application

WebSphere
Application Server

 ServletJSP

EJB

C
O
M
M
A
R
E
A

CICS TG
ECI
resource
adapter CCI

EXCI

Web
server
Plugin

HTTP(S)

User ID
Password/

Client
Certificate

Pluggable
user registry

 RACF

Authorization
checks

Authentication and
authorization checks

Optional
 Chapter 6. CICS Transaction Gateway 201

Thread identity support is enabled under the following situations:

� WebSphere Global security is enabled and RACF is being used as the local
OS registry

� A local connection is being used between the application server and CICS

� Container-managed security is being used (the res-auth deployment
descriptor is set to Container)

� The connection factory does not specify a JAAS authentication alias

Most z/OS customers want to use this feature because it enables the application
server to behave in a way that traditional z/OS address spaces behave, that is,
after you have authenticated, your user ID flows with any work you do within the
z/OS system.

The CICS authorization mechanisms apply to this topology as follows:

� MRO bind security

Use MRO bind security to establish a trust relationship between the
application server and CICS servers. Use the RACF DFHAPPL profiles in the
FACILITY class to control the login to DFHIRP.

� Link security

The link user ID that is used for authorization checks in CICS is the user ID
that is associated with the started task of the WebSphere J2EE servant
region. Because this is likely to remain the same after the initial configuration,
this can be preset in the EXCI SESSIONS definition.

� Surrogate security

Enable surrogate security checks to authorize the user ID associated with the
J2EE servant region to flow a specific user ID or one of a generic set of user
IDs to CICS.

Data integrity and confidentiality
WebSphere Application Server for z/OS supports JSSE as the SSL service
provider for the Web and EJB containers. JSSE is a pure Java implementation
that is common across all IBM platforms. IBMJSSE implements SSL 3.0 and TLS
1.0 algorithm types as Java 2 standard extensions. IBMJSSE is the preferred
SSL and TLS provider for Java applications on z/OS, and must be used in place
of SystemSSL for Java applications. Because the link between the application
server and CICS is normally a local cross-memory link, it is not necessary to
encrypt the data that is passed between the application server and CICS.

For more information about managing security in this z/OS topology, refer to
z/OS WebSphere Application Server V5 and J2EE 1.3 Security Handbook,
SG24-6086.
202 Securing Access to CICS Within an SOA

WebSphere Application Server and CICS TG on Linux on
System z

In this topology (shown in Figure 6-8), the WebSphere Application Server is
deployed within Linux on System z. The security options for this topology are
almost identical to those described for topology 1. One notable exception is that
in this topology, you can use HiperSockets™ to connect from the CICS TG
running on Linux to the CICS server. Therefore, it is unlikely that you have to
encrypt the data that is passed on this link.

Figure 6-8 CICS TG: Topology 3b

6.3.3 Security coordination between WebSphere and CICS

This section summarizes the key security points that you have to understand
when using the JCA to connect to CICS from a J2EE application running in the
WebSphere Application Server:

� You have a choice of using container-managed sign-on or
component-managed sign-on. Container-managed sign-on is the
recommended approach.

� When using the ECI resource adapter, the support provided by the JCA
security management contract is dependent on the CICS TG topology being
used.

� Defining a JAAS authentication alias is the principal way of specifying the
user ID and password to be flowed to CICS when using topologies 1 and 2
(WebSphere Application Server installed on a distributed platform).

APPC,
TCP62 or

TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

ServletJSP

EJB
CICS TG
ECI
resource
adapterCCI

Linux on zSeries z/OS

Client
daemon

zSeries

Comms Server
or

HiperSockets

Service
request

APPC,
TCP62 or

TCP/IP

CICS TS

CICS
application

C
O
M
M
A
R
E
A

WebSphere
Application Server

ServletJSP

EJB
CICS TG
ECI
resource
adapterCCI

Linux on zSeries z/OS

Client
daemon

zSeries

Comms Server
or

HiperSockets

Service
request
 Chapter 6. CICS Transaction Gateway 203

� When using the ECI resource adapter with topology 1 (CICS TG installed on
a distributed platform), a user ID and password must be flowed with each ECI
request. In contrast, you have the option of flowing only the user ID when
using topology 2 (CICS TG installed on z/OS).

� When using the ECI resource adapter with topology 3a (WebSphere
Application Server installed on z/OS) the application server is capable of
automatically passing the caller’s authenticated user ID to CICS.

� You can use a number of CICS security mechanisms, including bind, link, and
surrogate security to provide additional security checks.

� You can use SSL in most configurations if there is a requirement to encrypt
the data that is passed between the different physical tiers in the topology.

6.4 CICS Transaction Gateway for z/OS V6.1

CICS TG for z/OS V6.1 is the latest version of the z/OS product. It is supported
on z/OS V1R4 and later, and supports connectivity to CICS TS for z/OS V1.3,
V2.2, V2.3, and V3.1.

CICS TG for z/OS uses the external communication interface (EXCI) provided by
CICS TS to communicate with CICS. It does not include the Client daemon and
does not provide any support for non-Java based applications because this
support is provided through the CICS EXCI interface.

For all CICS TG topologies, there is a requirement to authenticate the user and
to ensure that only authorized users have access to the application and its
resources. The CICS TG uses the z/OS System Authorization Facility (SAF) to
route authorization requests to an external security manager (ESM) to perform
all its security checks. You can use any suitable ESM. However, because the
RACF product from IBM is the most commonly used, the rest of this book refers
to it. For complete information about CICS security, refer to the CICS
Transaction Server for z/OS V3.1 RACF Security Guide, SC34-6454.

For information about configuring a secure CICS TG for a z/OS environment,
refer to CICS Transaction Gateway for z/OS Version 6.1, SG24-7161.

External call interface using COMMAREA applications
The CICS TG on z/OS only supports the ECI. The ECI allows a non-CICS
application to call a CICS program in a CICS server. The CICS TG does not
provide an EPI interface and so does not provide support for 3270-based
transactions.
204 Securing Access to CICS Within an SOA

Determining the flowed user ID
The flowed user ID is the identity that is passed on the ECI request. It often
represents the identity of the application user. When using the base CICS TG
classes, the user ID and password can be specified as parameters when
constructing an ECIRequest object.

Because the CICS TG runs as a shell process under UNIX System Services, any
user ID that it tries to authenticate with RACF, such as a user ID flowed with an
ECI request, must have an OMVS segment defined in its RACF profile. For more
information about this, refer to z/OS V1R8.0 UNIX System Services Planning,
GA22-7800.

If you receive a message such as “CTG6808E Authorize userid/password with
RACF. User ID = CICSCTG , Return code = -1, errno = 157 , errno2 =
0X90C02AF”, refer to z/OS V1R8.0 UNIX System Services Messages and Codes,
SA22-7807 for the meaning of “errno”.

The errnos are, for example, listed by value in Section 3.0. An errno of 157
indicates that a MVS environmental or internal error has occurred. The meaning
of errno2 can be found in 5.2 Reason Codes. The last 4 digits of errno2 is 02AF
indicating JREnvDirty. The specified function is not supported in an address
space where a load that is not program controlled was done. The action to be
undertaken is to make sure that the programs being loaded from this address
space are defined as program-controlled.

Determining the mirror transactions
An EXCI request received by CICS from the Gateway daemon attaches a mirror
transaction. Therefore, you must authorize your flowed user ID and your link user
ID to your private mirror transaction.

Tip: In a production environment, you may create a group of users who
require common access. When you build a group, you permit access to a
group so that user access can be controlled by the group to which a user
belongs, rather than by individual permissions. This method simplifies the
security definitions that are required.
 Chapter 6. CICS Transaction Gateway 205

Determining the link user ID
The link user ID is the user ID associated with the Gateway daemon that is
passing the request to CICS. If the link security is enabled, the link user ID, like
the flowed user ID, must be authorized to access all the transactions and
resources used as a result of the request.

The link user ID can be preset in the EXCI SESSIONS definition using the
USERID parameter. For EXCI requests, the link security works as follows:

1. If the link user ID is the same as the CICS region user ID, the systems are
deemed equivalent and no link security authorization is performed.

2. If the link user ID is preset as something other than the CICS region user ID,
this user ID must be authorized to access all the transactions and resources
invoked as a result of the request.

3. If the link user ID is not preset, the user ID of the connected region, that is, the
user ID of the Gateway daemon started task, is the link user ID, and this user
ID must be authorized to access all the transactions and resources invoked
as a result of the request.

When running any application that connects to CICS through the EXCI, such as
the Gateway daemon, CICS writes a DFHSN1400 Session sign-on message,
followed by a DFHSN1500 Session sign-off message pair to the CICS joblog for
each request. By default, this message pair is written for each ECI request.
However, when the link user ID is preset, EXCI sign-on is performed when the
CICS CONNECTION is installed, but not for each ECI request.

It is also possible to suppress EXCI sign-on messages by using the CICS user
exit XMEOUT. An assembler sample of this program can be found in
SDFHSAMP(DFH$SXP1).

It is recommended that you specify ATTACHSEC=IDENTIFY and use nonequivalent
systems, so that security checks are also performed against a a link user ID.

Table 6-1 lists the different settings for link security and ATTACHSEC and how
they interoperate.

Table 6-1 Attach security settings with an EXCI connection from the Gateway daemon

Equivalent systems Link user ID = CICS region user ID Link user ID not = CICS region user
ID

ATTACHSEC LOCAL IDENTIFY LOCAL IDENTIFY

Link user ID check NO NO YES YES

Flowed user ID check NO YES NO YES
206 Securing Access to CICS Within an SOA

6.4.1 Sample security programs
The CICS TG provides several sample programs to assist you in setting up
security with your CICS TG region. There are samples that run as batch jobs
under z/OS, and others that run as Java programs.

The job CTGTESTR is supplied in the SCTGSAMP library. CTGTESTR runs the
EciB1 sample through an active CICS TG daemon and checks the connectivity to
the first CICS Transaction Server index defined. The JCL passes the URL, port,
user ID, and password to the CICS TG. If the CICS TG has a working connection
to a backend CICS region, the request flows across an EXCI link and runs
program EC01 (Figure 6-9).

Figure 6-9 Test scenario for the CTGTESTR JCL

User ID mirror
transaction runs under
in CICS

CICS default
user ID

Flowed user ID Link user ID Flowed user ID

Equivalent systems Link user ID = CICS region user ID Link user ID not = CICS region user
ID

ATTACHSEC LOCAL IDENTIFY LOCAL IDENTIFY

E XC I

C IC S TG

z/O S

JN I

C IC S

E C 01
G atew ay
daem on

exam ple .itso .ibm .com

E C I request

U N IX System
Serv ices

JVM

ctgclient.jar

C IC S
A pplicatio n

13103

C TG B ATC H C TG TE STR
 JC L

E ciB 1

C IC S P TA1

ctgserver.jar

ctgstart

C IC SC TG
 Chapter 6. CICS Transaction Gateway 207

The EC01 program returns the date and time that is presented in the
CTGTESTR JCL in hex and ASCII format.

A Java program called EciB1 is a sample program to test that the CICS TG user
ID password authentication is working properly. This program is in the
ctgsamples.jar supplied in the classes directory. The source for this program is
provided in the \samples\java\com\ibm\ctg\samples\j2ee directory.

The sample TestECI program earlier provided by the CICS TG has been
replaced by the EciB2 sample program. This program allows you to control the
input parameters from the command line.

6.4.2 Secure Sockets Layer

SSL is a protocol designed to create a secure connection to a server, using
public key encryption, and to protect the data integrity and privacy as the data is
transferred over the connection. CICS TG supports the JSSE implementation of
SSL, which provides 128-bit encryption and 256-bit encryption. JSSE is supplied
as part of the IBM SDK for z/OS, Java 2 Technology Edition, V1.4.2 SR2.

In the earlier versions of CICS TG, you were able to use SystemSSL, which is
specific to z/OS, and the Java-based SSLight. JSSE is the only supported option
for providing SSL with CICS TG V6 and later releases.

The SSL Handshake Protocol consists of two phases:

1. Server authentication

In the first phase, the server responds to a client’s request by sending its
certificate and cipher preferences. The client then generates a master key,
which it encrypts with the server’s public key, and then transmits the
encrypted master key to the server. The server authenticates itself to the
client by returning a message authenticated with the keys derived from the
master key. Subsequent data is encrypted and authenticated with keys
derived from the master key.

2. Client authentication

In the second optional phase, the server requests that a client identifies itself
during the SSL handshake by providing its client certificate. Client
authentication can only be requested by the server.

Important: SystemSSL and SSLight are not supported by CICS TG V6 and
later releases.

Note: CICS TG supports server authentication and client authentication.
208 Securing Access to CICS Within an SOA

When setting up an SSL environment, you have a choice between self-signed
certificates and CA-signed certificates:

� Self-signed certificates

A self-signed certificate is an identity certificate that is signed by its creator. In
this situation, the creator is verifying that the certificate is valid.

� Certificating authority (CA) signed certificates

CA-signed certificates are created by a user organization and sent to a CA to
be signed. Before signing a certificate, the CA verifies that the organization
requesting the certificate is actually who they claim to be. In this situation, it is
the CA who is verifying that the certificate is valid.

In a production environment, the CA-signed certificates are expected to be
used because they provide a more secure solution.

6.4.3 Java Secure Sockets Extension
JSSE is a Java implementation of SSL common across all platforms. JSSE
implements SSL 3.0 and Transport Layer Security (TLS) 1.0 algorithm types as
Java 2 standard extensions. It provides the socket factories that allow for ease of
programming if the provided defaults are taken.

JSSE is now the strategic SSL implementation for CICS TG and supports the
following:

� Cryptographic handshakes on z/OS using an IBMJCE4758 Peripheral
Component Interconnect (PCI) card

� Management tools to generate keystores and manage certificates. These
include:

– keytool

A command-line interface for maintaining keystores

– hwkeytool

A command-line interface for maintaining hardware keys

– ikeyman

A graphical user interface (GUI) for maintaining keystores

� The ability to store digital certificates in a RACF database.

Restriction: At this point in time, CICS TG does not support TLS.
 Chapter 6. CICS Transaction Gateway 209

6.4.4 Cipher suites
IBM SDK 1.4.2 JSSE supports a wide range of cipher suites. Example 6-1
provides an explanation of the cipher suite naming convention.

Example 6-1 Cipher suite components

SSL_RSA_WITH_RC4_128_SHA

RSA is a type of key exchange cipher
RC4_128 is the cipher for data encryption
SHA is the hashing algorithm

The key exchange cipher is used for the initial handshake. The most widely used
key exchange cipher is Rivest-Shamir-Adleman (RSA). This type of cipher is
referred to as asymmetric because it uses the public key and the private key.

The cipher for data encryption, also known as the data encryption cipher, is used
to secure the data that is passed over the SSL connection after the handshake is
completed. Possible data encryption ciphers are Advanced Encryption Standard
(AES), Data Encryption Standard (DES), Triple DES, RC2 (“RC” stands for
“Ron’s Code” or “Rivest’s Cipher”), and RC4, which have 40-bit,128-bit, and
256-bit variants. These ciphers are referred to as symmetric because they use a
single key for encryption and decryption. Symmetric key or secret key algorithms
can be further classified as either block ciphers or stream ciphers. Block ciphers,
such as DES, operate on the data in blocks and stream ciphers, such as RC4,
operate on the data one bit at a time.

The hashing algorithm is a one-way method of producing a hash number from a
message. A slight change in the message produces a completely different hash
number (a 128-bit fingerprint) and is used to ensure that a message has not
been tampered with. The client and the server both generate a hash number
from the data transmitted using the hashing algorithm. If the hash numbers do
not match, it means that the integrity of the message has been compromised.
Data integrity is provided by one of the following hashing algorithms, also known
as message digest algorithms, SHA1 (Secure Hash Algorithm), SHA2, SHA3,
SHA5, MD2, and MD5. Cipher suite names ending in _SHA indicate that the
SHA1 hashing algorithm is being used.

SSL can use signature algorithms SHA1 with RSA, SHA1 with DSA, MD5 with
RSA, and MD2 with RSA.
210 Securing Access to CICS Within an SOA

Resource Access Control Facility key ring
To create a RACF key ring, you can either migrate the certificates that you have
already built in a key database with the gskkyman utility, or you can generate new
certificates using the RACF RACDCERT command. In z/OS, RACF is the tool of
choice because it provides known, trusted, and auditable access, and a secure
database for credentials.

If you are creating your own self-signed certificate, you may want to use the
CICS-supplied sample REXX exec called DFH$RING. This creates several
certificates and a RACF key ring, and then adds the new certificates and the CA
certificates to the key ring. DFH$RING is supplied in the SDFHSAMP data set.

For information about creating a key ring and certificates on z/OS using RACF,
refer to CICS Transaction Gateway for z/OS V6.1, SG24-7161 .

6.5 Designing a secure solution

This section first provides a decision matrix to summarize the security support of
the CICS TG. It the provides a checklist of implementation tips that you must
consider when using the CICS TG to access CICS applications.

Tips: CICS TG V6 supports a range of different cipher suites and allows you
to specify which ciphers to use. When deciding this, you must consider the
following performance criteria:

� You can significantly reduce the number of SSL handshakes when
connecting from the WebSphere Application Server by using JCA
connection pooling.

� RSA encryption and decryption processing during the SSL handshake can
be offloaded using crypto engines, PCICA, PCIXCC, or CEX2C.

� Larger keys (512/1024/2048) for key exchange ciphers have a higher
handshake cost.

� Choose appropriate bulk data ciphers. It is generally accepted that:

– MD5 is faster than SHA, but is less secure
– RC4 normally has a lower CPU cost than DES in software
– RC4 stronger ciphers (128-bit versus 40-bit) do not require more CPU

cycles
– SHA, DES, and AES can often be implemented efficiently in hardware
 Chapter 6. CICS Transaction Gateway 211

6.5.1 CICS Transaction Gateway security matrix

The security matrix in Table 6-2 summarizes the key architectural questions for
securing access to CICS, using either CICS TG on z/OS or on a distributed
platform. Each item is discussed in detail in the subsequent sections.

Table 6-2 CICS TG security decision matrix

Architectural questions Distributed CICS TG CICS TG on z/OS

Authentication of client by
user ID and password

Flow the user ID on an ESI, EPI, or
ECI request

Use a preauthenticated user ID or set
the AUTH_USERID_PASSWORD
environment variable

SSL encryption support Yes, CICS TG supports the JSSE
implementation of SSL

Yes, CICS TG supports the JSSE
implementation of SSL, which
provides 128-bit and 256-bit
encryption

SSL client certificate
support

Yes, using client authentication during the SSL handshake

Flowing user ID into CICS Yes, use ATTACHSEC=VERIFY to
flow a user ID and password for
authentication to CICS

Yes, use ATTACHSEC=IDENTIFY to
flow user ID into CICS

Handling unregistered
client certificates

RACF certificate name filtering feature

Mapping of many users to
one RACF user ID

RACF certificate name filtering feature

Restricting maximum user
authorization

Yes, restrict the link user ID on the connection into CICS

Handling expired password Use the ESI to check and manage
passwords. Can be used only with
CICS servers that support
password expiry management
(PEM).

Use Password Application
Programming Interface (PWAPI)
plug-in or change with HTTP basic
authentication prompts or use RACF
Java API

Application access to
authentication data

No, but the CICS TG security exit can access authenticated data

Sign-on support in CICS Sign-on possible by using the
EPIRequest class

Not required because attach security
is used with the ECI to authenticate
the user in CICS TG
212 Securing Access to CICS Within an SOA

Authentication of client by user ID and password
When using the CICS TG on a distributed platform, the user ID and password are
flowed with each request. When the CICS TG is on z/OS, you can flow a
preauthenticated user ID into CICS without a password. The authentication of
the user ID and the password in this topology is optional.

To enable the CICS TG to authenticate each user ID and password flowed on an
ECI request, the variable AUTH_USERID_PASSWORD must be set in the CICS
TG environment variables.

Secure Sockets Layer encryption support
SSL encryption creates a secure connection to a server using public key
encryption and protects the data integrity and privacy as the data is transferred
over the connection. The CICS TG supports the JSSE implementation of SSL
that provides 128-bit and 256-bit encryption. JSSE is supplied as part of the IBM
SDK for z/OS Java 2 Technology Edition, V1.4.2 SR2.

Secure Sockets Layer client certificate support
The SSL Handshake Protocol consists of two phases:

1. Server authentication

In the first phase, the server responds to a client’s request by sending its
certificate and cipher preferences. The client then generates a master key
that it encrypts with the server’s public key and then transmits the encrypted
master key to the server. The server authenticates itself to the client by
returning a message authenticated with keys derived from the master key.
Subsequent data is encrypted and authenticated with keys derived from the
master key.

2. Client authentication

In the second optional phase, the server requests that a client identify itself
during the SSL handshake by providing its client certificate. Client
authentication can only be requested by the server.

Flowing user ID into CICS
You many want to flow a user ID into CICS when using the CICS TG to
authenticate each request. When using the CICS TG on a distributed platform,
specify ATTACHSEC=VERIFY in the CICS CONNECTION definition. This causes the
user ID and password flowed with an ECI or EPI call to be authenticated with
each request.

Note: CICS TG supports both server and client authentication.
 Chapter 6. CICS Transaction Gateway 213

For the CICS TG on z/OS, specify ATTACHSEC=IDENTIFY in the CONNECTION
definition to flow the user ID on an ECI call. The user ID and password is verified
with RACF by the CICS TG before the ECI call is made. Any security failure on
an ECI or EPI call will be returned as a generic security failure. Additionally, with
the distributed CICS TG, you can use the ESI interface to authenticate a given
user ID and password before making an ECI or EPI call.

Handling unregistered Secure Sockets Layer client certificates
To handle an unregistered SSL client certificate, the RACF certificate name
filtering feature can be used to automatically assign a specific RACF user ID to a
user according to predefined rules relating to the information contained in the
certificate.

Mapping of many Web users to one Resource Access Control
Facility user ID

To achieve this when using the CICS TG on z/OS, use SSL client certificates and
the RACF certificate name filtering feature.

Restricting maximum permissions of a Web user
You might wish to prevent a user from running transactions from the Web
because the user is authorized to run those transactions only in a non-Web
environment. With CICS TG, you can achieve this by using a CICS link user ID,
and restricting the authority to this user ID.

Handling expired passwords
If your users have no other means of managing their RACF user ID other than by
using the CICS TG, you must consider how to give them the ability to change an
expired password.

For CICS clients, the management of expired passwords can be handled by the
ESI function CICS_ChangePassword and CICS_VerifyPassword. The ESI
functions can be used only with CICS servers that support PEM. To use PEM,
the Client daemon must be connected to the CICS server over TCP62 or SNA.
An ESM such as RACF must also be available to the CICS server. ESI calls can
be included within your ECI or EPI application.

When the CICS TG is on z/OS, use the PWAPI plug-in. A sample program is
provided with the z/OS Web server that provides a function to identify when a
user’s password has expired, and a mechanism for changing the password.
214 Securing Access to CICS Within an SOA

Application access to authentication data
The CICS TG does not allow you to make decisions in your application based on
authentication data. However, you can use the CICS TG security exits to access
this information before your CICS application programs are called.

Sign-on support in CICS
For a distributed CICS TG using EPI, you can initiate a CICS transaction that
uses the CICS CESN sign-on transaction or issues an EXEC CICS SIGNON
command. Otherwise, when using the ECI, the user ID and password verified on
the ECI call can be verified with RACF before the request is run in CICS.

6.5.2 CICS Transaction Gateway security checklist

The following list is a summary of the key actions that you must consider if you
use the CICS TG to access your CICS applications. Note that most of these are
normal security considerations, and you may decide that you do not have to
implement all these actions. However, it is recommended that you consider each
of them carefully.

� Use a firewall or a filtering router as the first line of defense. This allows you to
restrict access to a specific set of IP addresses and ports, to filter out some
potential Internet-style attacks, and to hide the actual IP address that your
Web server or CICS TG is using.

� Use a means of authenticating all the users who access restricted
information. You can do this by using SSL client certificates and using SSL to
encrypt the user ID and password flows. You can also make use of link
security and authenticate users coming in through the EPI.

� Do not transmit sensitive data as clear text across the Internet. Remember
that this includes user IDs and passwords. Encryption of transmitted data is
provided by SSL with or without client authentication.

� Prevent access to powerful administrative transactions such as CEMT or
CECI if you are using the Terminal Servlet.

� Use a link user ID on the CICS connection definition to restrict access to your
desired transactions and programs, regardless of the user ID flowed on an
ECI or EPI call.

� Ensure that program autoinstall is turned off in CICS. Program autoinstall
allows the loading into CICS storage of any program in the load libraries
available to CICS. Without a program definition, a CICS program cannot run.
Further, strictly control the programs in the load libraries available to the CICS
region. If a program cannot be found, it cannot load and cannot run.
 Chapter 6. CICS Transaction Gateway 215

� Place limits on the maximum amount of system resources that can be used
by transactions coming in from the CICS TG. Following are the ways to do
this:

– Set a maximum number of CICS TG connection manager threads in the
CTG.ini file. This limits the maximum number of attached users.

– Control the size of the CICS TG worker thread pool by setting a maximum
number of worker threads in the CTG.ini file. This limits the maximum
number of parallel ECI or EPI calls that can be issued by the CICS TG.

– Use z/OS workload management restrictions on CPU usage for each
address space such as the CICS TG Gateway daemon, the z/OS Web
server, and CICS.

� Consider implementing resource security for transactions and other
resources in your CICS region. This prevents malicious users from calling a
program within your CICS region by using the CICS TG.

� Consider turning on transaction isolation and storage protection. This protects
the CICS region from storage overlays from rogue applications accessing
storage areas not associated with its active task.
216 Securing Access to CICS Within an SOA

Chapter 7. WebSphere MQ

This chapter discusses the security requirements for connecting a CICS region
to a WebSphere MQ subsystem. It discusses how to achieve secure
communication using the Secure Sockets Layer (SSL) protocol and WebSphere
MQ transport for SOAP.

This chapter discusses the following topics:

� CICS transaction security

� Access requirements for WebSphere MQ resources

� User ID authority for the CICS adapter

� The use of IBM Global Security Kit (GSKit) and the IBM Key Management
(iKeyman) tool to configure SSL on WebSphere MQ channels

� The enablement of a configured SSL environment when using WebSphere
MQ transport for SOAP

7

© Copyright IBM Corp. 2006. All rights reserved. 217

7.1 CICS transaction security

CICS transaction security can broken down into two requirements, the access
requirements for long-running transactions and the access requirements for the
user-initiated transactions.

7.1.1 Category One transaction definitions

WebSphere MQ has two transactions, CKTI and CKAM, which are designed to
be run without a terminal. The CICS region user ID is required in order to have
access to run these transactions. Example 7-1 shows how to define these
transactions to the Resource Access Control Facility (RACF).

Example 7-1 Defining WebSphere MQ CICS Category One transactions to RACF

RALTER GCICSTRN CICSCAT1 ADDMEM(CKTI,CKAM)
SETROPTS RACLIST(TCICSTRN) REFRESH

7.1.2 Administering the CICS adapter transactions

The following transactions are used to administer the WebSphere MQ CICS
Adapter:

� CKQC: Controls the CICS adapter functions
� CKBM: Controls the CICS adapter functions
� CKRT: Controls the CICS adapter functions
� CKCN: Connect
� CKSD: Disconnect
� CKRS: Statistics
� CKDP: Full screen display
� CKDL: Line mode display
� CKSQ: CKTI Start/Stop
� CKMC: Distributed MQ (Channel Control)
� CKMH: Distributed MQ (Channel Help)
� CKRC: Distributed MQ (Receiver)
� CKRQ: Distributed MQ (Requestor)
� CKSG: Distributed MQ (Sender)
� CKSV: Distributed MQ (Server)

When these transactions are defined to CICS using the supplied samples, the
RESEC option and the CMDSEC option are both set to NO. It is recommended
that you do not change this setting. For more information, refer to CICS
Transaction Server for z/OS V3.1 RACF Security Guide, SC34-6454.
218 Securing Access to CICS Within an SOA

In order to provide a user with access to only display the current status of the
adapter by using the full screen interface, they must be provided with access to
transactions CKQC, CKBM, CKRT, and CKDP.

Example 7-2 shows how to define CICS WebSphere MQ transactions to RACF.

Example 7-2 Defining CICS WebSphere MQ transactions to RACF

RDEFINE GCICSTRN WSMQUSER UACC(NONE) +
ADDMEM(CKQC,CKBM,CKRT,CKCN,CKSD,CKRS,CKDP,CKDL,CKSQ,CKMC,CKMH,CKRC,CKRQ
,CKSG,CKSV)
PERMIT WSMQUSER CLASS(GICSTRN) ID(CICSUSER)
SETROPTS RACLIST(TCICSTRN) REFRESH

7.2 Granting CICS access to WebSphere MQ

To enable the CICS region to connect to the WebSphere MQ subsystem, the
CICS region must be authorized to connect to the WebSphere MQ subsystem.

The CICS region user ID or the group it is connected to must have READ access
to RACF CLASS MQCONN profile <MQ sub system>.CICS. Example 7-3 shows
how to grant access in order to enable CICS to connect to WebSphere MQ.

Example 7-3 Authorizing CICS to connect to WebSphere MQ

RDEFINE MQCONN MQMD.CICS
PERMIT MQMD.CICS CLASS(MQCONN) ID(CICS) ACCESS(READ)
SETROPTS RACLIST(MQCONN) REFRESH

7.3 Adapter user IDs

The user ID used by the CICS adapter is determined by the method in which the
adapter interface is started. Irrespective of the startup process that is used, the
user ID being used to start the CICS adapter must have access to all the
WebSphere MQ resources.

Important: The user ID that is used to start the adapter is propagated to all
the other transactions started by the CICS adapter, that is, when CKTI starts
another CICS transaction as a result of a WebSphere MQ message arriving
on a queue, it uses the user ID that was used to start the CICS adapter on the
started transaction.
 Chapter 7. WebSphere MQ 219

There are three different startup methods that can enable the CICS adapter
(transaction CKTI) to have a different user ID:

� When the adapter is started during CICSPLT, including using the CICS
System Initialization Table (SIT) option of MQCONN=YES, the CICS adapter
task CKTI the user ID of the CKTI task is set to the user ID of the CICS
region.

� When the CICS SIT option of PLTPIUSR is also set when the CICS adapter is
started through the CICSPLT, the adapter executes under the user ID
specified in the PLTPIUSR SIT option.

� Starting the CICS Adapter after CICS initialization is completed. In this
scenario, the CICS adapter can be started by using a sequential terminal,
with the terminal having an input containing the CKQC STRATCKTI
command or by using automation tools such as System Automation to sign in
to CICS and issue the STARTCKTI command.

7.4 CICS initialization queue

WebSphere MQ uses an initialization queue to pass requests into CICS. When
WebSphere MQ is started, the user ID starting the adapter interfaces is required
in order to have UPDATE access to the CICS initialization queue. Example 7-4
shows granting CICS access to the initialization queue.

Example 7-4 Granting CICS access to the initialization queue

RDEFINE MQQUEUE CICS01.INITQ
PERMIT CICS.INITQ CLASS(MQQUEUE) ID(CICS) ACCESS(UPDATE)
SETROPTS RACLIST(MQQUEUE) REFRESH

Note: All the other tasks that start during the processing of the program list
table (PLT) also start with the user ID specified in the SIT option
PLTPIUSR.
220 Securing Access to CICS Within an SOA

7.5 Working with WebSphere MQ and SSL
This section discusses the use of SSL within a WebSphere MQ environment,
including details about setting up secure message channels and secure
Message Queue Interface (MQI) channels. The following steps are detailed in
this section:

1. Creating the key repository

2. Generating the certificates for both the WebSphere MQ queue manager and
the client

3. Adding digital certificates to the key repository, ready for use

4. Specifying the SSL attributes for the Universal Resource Indicator (URI) when
using WebSphere MQ transport for SOAP

7.5.1 Configuring WebSphere MQ for secured communication
When using a message channel, it is vital that both the WebSphere MQ queue
managers at each end have a user certificate. The channel is an MQI channel,
and only if the SSLCAUTH attribute on the server connection channel is set to
REQUIRED does the client on that channel also require a user certificate.

The tool that is used to demonstrate the key repository and certificate
management is the GSKit because it is provided with the installation of
WebSphere MQ. Some parts of this book assume that WebSphere MQ Explorer
is already installed.

Note: When setting SSLCAUTH to OPTIONAL, if the client has a digital
certificate, it is sent to the server and authenticated. If this authentication fails,
the channel does not start. However, if the client does not have a certificate
and SSLCAUTH is set to OPTIONAL, no attempt is made to authenticate, and
the channel starts.
 Chapter 7. WebSphere MQ 221

The SSL key repository
The SSL key repository is where all the digital certificates for use within
WebSphere MQ are stored. To create an SSL key repository, perform the
following tasks:

1. Open WebSphere MQ Explorer from Start → Programs → IBM WebSphere
MQ → WebSphere MQ Explorer.

2. Start the GSKit key manager by right-clicking IBM WebSphere MQ and
selecting Manage SSL Certificates... as shown in Figure 7-1.

Figure 7-1 Opening the GSKit Key Manager

3. In the IBM Key Management tool, select Key Database File → New.... Enter
the File Name and Location to create the key repository, and click OK, as
shown in Figure 7-2.

Figure 7-2 Creating a new key repository
222 Securing Access to CICS Within an SOA

4. Create a password to access the key repository, as shown in Figure 7-3.
Select Stash the password to a file? and click OK.

Figure 7-3 Creating a password for the key repository

The password is stashed to a file in the same directory as the key repository,
with the same file name, but with an .sth extension.

Note: If you are using the Java client, select JKS instead of the default
CMS for the SSL key repository that is used by the client. This is due to
SSL being handled by the Java Secure Socket Extension (JSSE). The file
extension automatically changes to .jks.

Important: It is vital that you select Stash the password to a file?.
WebSphere MQ channels of any type does not start if the password is not
stashed to a file. However, this is not required if you are using a Java
client.
 Chapter 7. WebSphere MQ 223

The key repository is created. By default, when you first create a key
repository, it contains a selection of trusted root certificate authority (CA)
certificates. This is shown in Figure 7-4.

Figure 7-4 The default CA root certificates in a new key repository

The graphical view of the key repository provides you with the ability to look at
the CA (or signer) certificates, the user or personal certificates, and any
certificate requests for personal certificates that have been generated. To
access each of these, click the dropdown box named Signer Certificates.
Each of the different views provides different action buttons along the right
side of the window. For more information about how to use these, refer to IBM
Tivoli Access Manager Secure Sockets Layer Introduction and iKeyman
Users Guide, V5.1, SC32-1363.
224 Securing Access to CICS Within an SOA

For purposes of demonstration, the remaining tasks in certificate management is
performed using the command-line version of the iKeyman graphical user
interface (GUI). Before using the command-line tool, execute the following
commands to ensure that the environment is correctly configured, as shown in
Example 7-5.

Example 7-5 Ensuring that the environment is correctly configured

set PATH=%PATH%;C:\Program Files\IBM\gsk7\bin\
set JAVA_HOME=C:\Program Files\IBM\WebSphere MQ\gskit\jre\

These are the default install directories for the command-line version of iKeyman
and the Java installation used by iKeyman.

On UNIX platforms, the JAVA_HOME variable must be set as specified in
Table 7-1.

Table 7-1 Environment setup for UNIX platforms

The Java SSL key repository
When using the Java client, some extra options must be specified for
authentication to succeed during communication. The JSSE handles the SSL
functionality and prescribes that there must be a trust store and a key store. Each
of these are represented as a standard SSL key store, as described in the
previous section. However, it is their contents that define whether they are a trust
store or a key store:

� A trust store contains only CA certificates and can be used by every user on a
given system as a reference to the trusted authorities

� A key store contains at least a personal (or user) certificate. Optionally, it may
also contain a list of CA certificates. It must be specific to one user on the
system.

It is possible for a key repository to behave as both a trust store and a key store
at the same time. The contents of a key store can only be accessed using the
correct password. The CA certificate contents of the key repository can be
viewed by anyone without a password. Therefore, a key store can be used as a

Platform Command

AIX export JAVA_HOME=/usr/mqm/ssl/jre

HP-UX export JAVA_HOME=/opt/mqm/ssl

Linux export JAVA_HOME=/opt/mqm/ssl/jre

Solaris export JAVA_HOME=/opt/mqm/ssl
 Chapter 7. WebSphere MQ 225

trust store too and still preserve the confidentiality of the personal certificate.
When the key repository is used in this manner, it can be treated the same way
as the standard key repository, as described earlier.

To use a separate key repository for each trust store and key store, the process
of creating a key store (with a .jks extension) must be followed twice, once for
each type. Care must be taken when generating and importing a CA certificate,
and subsequently, when signing and adding user certificates to the correct
repositories. In the commands that follow, note the differences in the option and
parameters when using the Java client.

Creating the root CA certificate using the GSKit
In the following examples, each of the user certificates have been signed by a
CA certificate. This section details how to generate the CA or the signer
certificate. The iKeyman provides the facility to create a user certificate that is
self-signed. This means that the certificate is a root CA certificate, which can also
be used as a user certificate. In the steps that follow, the self-signed certificate is
created as a normal user certificate, and then moved around the key repository
so that it becomes a true CA or signer certificate, which is then used to sign more
user certificates. These instructions assume that a temporary key repository is
already created, holds the generated CA certificate, and is used to sign
certificate requests.

1. Execute the command shown in Example 7-6 to create a self-signed
certificate and add it to a temporary key repository.

Example 7-6 Creating a self-signed certificate and adding it to a temporary key repository

gsk7cmd -cert -create -db "C:\SSL\temp\key.kdb" -pw password -label
"Root CA Certificate" -dn "CN=Root CA, O=IBM, OU=ITSO, C=US" -expire
1000

The values for db and pw must be the location of the key repository and the
password to access it, respectively. Label, dn, and expire can be set to
anything suitable, according to the system requirements. (The value of expire
is the number of days until this certificate becomes invalid.)

Note: When using the Java client, the db value has the extension .jks
instead of .kdb.
226 Securing Access to CICS Within an SOA

2. Extract the certificate from its current key repository, so that it can be used as
a root CA or signer certificate for use in the demonstrations that follow. To
extract the certificate, execute the command shown in Example 7-7.

Example 7-7 Extracting the certificate

gsk7cmd -cert -extract -db “C:\SSL\temp\key.kdb” -pw password -label
“Root CA Certificate” -target “C:\SSL\temp\CAExtracted.arm” -format
ascii

This command creates a file called CAExtracted.arm in the same directory as
the key repository. If you are using the American Standard Code for
Information Interchange (ASCII) format, the file extension must be .arm. If you
are using the binary format, the file extension must be .der. These are the file
extensions prescribed by the GSKit and the iKeyman tool.

3. Retain the key repository used to create the CA certificate in order to sign the
certificate requests.

Securing the channels between the queue managers
Secure the message channels between two server WebSphere MQ queue
managers using SSL by performing the following tasks:

1. Create an SSL key repository for each queue manager, ensuring that the
password for each repository is stashed. For more information about the
tasks you must perform, refer to “The SSL key repository” on page 222.

2. Each queue manager’s key repository requires the root CA certificate in its
signer certificate store. Issue the command shown in Example 7-8 for each
queue manager key repository. In this command, the value of the file must be
the location of the file that was extracted from the temporary key repository, in
this case, CAExtracted.arm.

Example 7-8 Command to create CA certificate

gsk7cmd -cert -add -db “C:\SSL\server\key.kdb” -pw password -label
“Root CA Certificate” -file “C:\SSL\temp\CAExtracted.arm” -format ascii
-trust enable

Note: When using the Java client, the db value has the extension .jks
instead of .kdb.
 Chapter 7. WebSphere MQ 227

3. Each queue manager requires a user certificate. Therefore, a certificate
request must be constructed. Issue the command shown in Example 7-9 for
each queue manager.

Example 7-9 Constructing a user certificate

gsk7cmd -certreq -create -db “C:\SSL\server\key.kdb” -pw password
-label “ibmwebspheremqqm1” -dn “CN=QM1, O=IBM, OU=ITSO, C=US” -file
“C:\SSL\server\ibmwebspheremqqm1_request.arm”

4. At this point, the certificate requests generated in step 3 are sent to an
external CA. However, this example has its own CA, and can therefore take
these certificate requests and process them locally. Issue the command
shown in Example 7-10 for each certificate request. The signed certificate is
stored in the file ibmwebspheremqqm1_sigend.arm.

Example 7-10 Command for each certificate request

gsk7cmd -cert -sign -file “C:\SSL\server\ibmwebspheremqqm1_request.arm”
-db “C:\SSL\temp\key.kdb” -pw password -label “Root CA Certificate”
-target “C:\SSL\server\ibmwebspheremqqm1_sigend.arm” -expire 364

5. You can add the user certificates to each queue manager’s key repository, for
example, for a queue manager called QM1, issue the command shown in
Example 7-11.

Example 7-11 Adding user certificates to each queue manager’s key repository

gsk7cmd -cert -receive -db “C:\SSL\server\key.kdb” -pw password -file
“C:\SSL\server\ibmwebspheremqqm1_signed.arm”

Important: Prefix the label option in this command with ibmwebspheremq
followed immediately by the name of the queue manager folded to lower
case. In Example 7-9, the queue manager name is QM1, and therefore, the
label for the certificate is ibmwebspheremqqm1.

Note: In the command shown in Example 7-10, the value of db is the key
repository in which the original CA certificate was created. The original
self-signed CA certificate holds both the public key and the private key
used to sign any certificate requests.
228 Securing Access to CICS Within an SOA

6. Issue a similar command for the other server queue manager in order to get
its user certificate into its own key repository. At this point, it is necessary to
make sure that the queue manager attribute SSLKEYR is set correctly for
each queue manager. Example 7-12 shows how to set the SSKLEYR value to
the right location.

Example 7-12 Altering the SSLKEYR value for a queue manager

>runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2004. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM1.

alter qmgr SSLKEYR(‘C:\SSL\server\key’)
1 : alter qmgr SSLKEYR('C:\SSL\server\key')

AMQ8005: WebSphere MQ queue manager changed.

This step is necessary, unless the default location for the key repositories has
been used, and the default name of the repository file has not been changed
from key.kdb. When altering the value of SSLKEYR, the .kdb extension must
not be used, and the secured SSL channels must not be started.

7. To enable SSL on channels, it is necessary to set the SSLCIPH value on the
channel to a valid cipherSpec. The same cipherSpec must be specified at
both ends of the channel. Example 7-13 shows one such instance.

Example 7-13 Altering the SSLCIPH value on a channel

>runmqsc QM1
5724-H72 (C) Copyright IBM Corp. 1994, 2004. ALL RIGHTS RESERVED.
Starting MQSC for queue manager QM1.

alter channel(QM1_2_QM2_SDRC) chltype(SDR) SSLCIPH(RC2_MD5_EXPORT)
 4 : alter channel(QM1_2_QM2_SDRC) chltype(SDR)

SSLCIPH(RC2_MD5_EXPORT)
AMQ8016: WebSphere MQ channel changed.

For more information about the available cipherSpec, refer to WebSphere MQ
Security, SC34-6588. Changes to the SSL settings on channels are only picked
up when the channels are restarted. At this point, when you restart the channels,
the SSL becomes enabled and active.

The commands shown here are suitable for both the Windows platform and the
UNIX platform. The examples shown here are for the Windows systems. The
only alteration required for UNIX platforms is to change the way the directory
structure is passed to the gsk7cmd command.
 Chapter 7. WebSphere MQ 229

Securing the client/server connections
Enabling SSL on an MQI channel is slightly different from enabling SSL on a
message channel. However, many of the same ideas apply, and many of the
commands described earlier are valid. This section highlights the differences
between the two types of channels, and describes the process involved in
enabling SSL between a WebSphere MQ client and a server queue manager.

WebSphere MQ clients make use of both an SSL key repository (in the case of
the Java client, this is a Java key store) and a user certificate that is signed by a
CA. Therefore, the setup stages for an MQI channel are almost the same. The
first difference occurs in 3 on page 228 described in the previous section. The
label for a client certificate must conform to following syntax:

ibmwebspheremqlogonid

In the example described in the previous section, for a message channel, the
suffix is the queue manager name folded to lower case. However, for a client
certificate, the suffix must be the login ID for the client system user. Therefore,
issue the command shown in Example 7-14 to create a certificate request for a
client.

Example 7-14 Command to create a certificate for a client

gsk7cmd -certreq -create -db “C:\SSL\client\key.kdb” -pw password
-label “ibmwebspheremqmmyuserid” -dn “CN=Client 1, O=IBM, OU=ITSO,
C=US” -file “C:\SSL\client\ibmwebspheremqmyuserid_request.arm”

The certificate request is then signed in the usual manner for all client types, with
the command shown in Example 7-15.

Example 7-15 Signing the certificate request

gsk7cmd -cert -sign -file
“C:\SSL\client\ibmwebspheremqmyuserid_request.arm” -db
“C:\SSL\temp\key.kdb” -pw password -label “Root CA Certificate” -target
“C:\SSL\client\ibmwebspheremqmyuserid_sigend.arm” -expire 364

Note: If you are using a Java client, the file extension for the db value must be
.jks. This relates directly to the type of key store created for the client.
Moreover, the value of the db must be the Java key store that holds the user
certificate.

Note: As with the command shown in Example 7-14, here too, the file
extension for the db value must be .jks if you are using the Java client.
230 Securing Access to CICS Within an SOA

Add the signed certificate as a user certificate in the client’s key repository by
issuing the command shown in Example 7-16.

Example 7-16 Adding the signed certificate as a user certificate

gsk7cmd -cert -receive -db “C:\SSL\client\key.kdb” -pw password -file
“C:\SSL\client\ibmwebspheremqmyuserid_signed.arm”

If the system requires a separate Java trust store, add the CA certificate that has
signed the user certificate to that trust store. To do this, issue the command
shown in Example 7-17.

Example 7-17 Adding a CA certificate to the trust store

gsk7cmd -cert -add -db “C:\SSL\Java\client\trust.jks” -pw password
-label “Root CA Certificate” -file “C:\SSL\temp\CAExtracted.arm”
-format ascii -trust enable

To inform a client about the location of its SSL key repository, use of one the
following options:

� The simplest way is to define an environment variable, MQSSLKEYR.
Table 7-2 shows how to set this up on the Windows platform and the UNIX
platform.

Table 7-2 Setting the MQSSLKEYR environment variable

As mentioned earlier, the .kdb extension is not required, and adding it to the
end of the file name means that the client is unable to find the key repository.

� Alternatively, the location of the SSL key repository can be specified as part
of the SSL connect options structure (MQSCO) that is used when issuing a
MQCONNX call from with an application.

Note: As with the command shown in Example 7-14, here too, the file
extension for the db value must be .jks if you are using the Java client.

Important: This step is not required if the key store is also being used as the
trust store.

Platform Command (example)

Windows set MQSSLKEYR=C:\client\key

UNIX export MQSSLKEYR=/client/key
 Chapter 7. WebSphere MQ 231

It then becomes the application’s responsibility to update the KeyRepository
field within the MQSCO to the location of the SSL key repository, again
without the .kdb extension. For more information about the MQSCO, refer to
WebSphere MQ Application Programming Reference, SC34-6596.

Specifying the location of the Java trust store and the Java key store to the Java
client is a little more complex. It is performed using the -d option in the java
command. Set the following three parameters:

� javax.net.ssl.keyStore
� javax.net.ssl.keyStorePassword
� javax.net.ssl.trustStore

The command shown in Example 7-18 executes the client application and sets
the specified parameters.

Example 7-18 Executing the client application and setting the specified parameters

java -Djavax.net.ssl.keyStore=C:\SSL\Java\client\key.jks
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=C:\SSL\Java\client\trust.jks clientApp

In this example, clientApp is the compiled Java code, representing the client
application.

The cipherSpec can be specified in three ways. The client connection channel
has a SSLCIPH attribute that is used to provide the type of algorithm used for
authenticating and encrypting the data flowing across the channel. Although it is
possible to enable each of the three methods, the following list shows the
methods in the order of precedence:

� Within an MQCONNX call

Within the channel definition structure MQCD, there is a field named
SSLCipherSpec, which you can use to specify the cipherSpec that is to be
used for communication.

� Using a client channel definition table

If the client system is unable to access the client channel definition table as a
shared file on the server machine, the definition copies the table to the client
machine. As an entry in the definition table, the SSLCIPH is defined and
altered on the server machine before being copied to the client machine. For
more information about using the client channel definition tables and the
setup that is required, refer to WebSphere MQ Clients, GC34-6590.
232 Securing Access to CICS Within an SOA

� Using Active Directory® on Windows

On Windows systems, it is possible to publish the client channel definition tale
to Active Directory by using the setmqscp command. For more information
about using Active Directory, refer to WebSphere MQ System Administration
Guide, SC34-6584.

When you use a Java client, the equivalent value of SSLCIPH is
SSLCIPHERSUITE. Configure it by using the JMSAdmin tool. For more
information about specifying SSL on a Java client, refer to WebSphere MQ Using
Java, SC34-6591.

Specify the location of the key repositories only when a WebSphere MQ client or
a Java client is communicating with a server queue manager in the usual
manner. Within the area of Web services, the SSL configuration options are
specified using the Universal Resource Indicator (URI).

SSL in the Universal Resource Indicator
The SSL configuration for WebSphere MQ transport for SOAP is provided in the
form of several options in the WebSphere MQ URI. The options that are
available depend on the environment being used.

In a Microsoft .NET environment, the following options are specific to the
environment:

� sslKeyRepository

This is the location of the SSL key repository, specified as a full path name to
the .kdb file. Specify this without the .kdb extension.

� sslCipherSpec

This can be any value that can be specified in the SSLCIPH value on any
channel. For a full list of the possible values, refer to WebSphere MQ
Security, SC34-6588. This is a mandatory field if sslKeyRepository is set.

In a Java environment, the following options are specific to the environment:

� sslKeyStore

This is the location of the JSSE key store, specified as a full path name to the
.jks file. Specify this without the .jks extension.

� sslKeyStorePassword

This is the password that grants access to the JSSE key store specified in the
sslKeyStore option.
 Chapter 7. WebSphere MQ 233

� sslTrustStore

This is the location of the JSSE trust store, specified as a full path name to the
.jks file. Specify this without the .jks extension.

� sslTrustStorePassword

This is the password that grants access to the JSSE trust store specified in
the sslTrustStore option.

� sslCipherSuite

This is the cipherSuite as specified in WebSphere MQ Using Java,
SC34-6591. In a Java environment, there is a direct mapping from the value
of a cipherSuite to cipherSpec, as used in the message channels.

If any of these are specified in an environment that they are not specific to, they
are ignored. For more information about the SSL options available on the
WebSphere MQ URI, refer to WebSphere MQ Transport for SOAP, SC34-6651.

Another important, but optional option that can be set on the URI is
SSLPeerName. This represents a section of the distinguished name (DN) that
must be in any certificate received from the remote participant in the
communication. (This is the certificate the WebSphere MQ queue manager
receives from the client). The value of SSLPeerName can contain the asterisk (*)
character, representing a wild card, for example, an SSLPeerName of CN=IBM*
matches CN=IBM Corporation.

Chapters 8 - 13 of this book discuss the implementation of Web services and
clients to invoke them within a .NET, Axis, and IBM WebSphere Application
Server environment. Each client uses WebSphere MQ transport for SOAP to
invoke the Web service. Therefore, SSL support within WebSphere MQ is
integral to securing the communication from the client through WebSphere MQ
on to invocation of the Web service, and the response that flows back.

Within the scope of this book, there are three distinct areas in which securing
communication using SSL is important:

� The connections between the server queue managers within the WebSphere
MQ network topology

� The way the invoking client connects to a queue manager

� The way the invoked Web service connects to a queue manager

For more details about how to secure communication between the server queue
managers, refer to WebSphere MQ Security, SC34-6588.
234 Securing Access to CICS Within an SOA

The subsequent chapters focus on securing the client/server connections
between the invoking client and a queue manager, and the invoked Web service
and a queue manager. The enablement of SSL comes entirely from the settings
of the options supplied in the URI. The underlying implementation of the security
services that SSL supplies is achieved by putting in place the key repositories
and populating each of them with the required certificates. This chapter provided
details about the tasks involved in implementing these security services. Each of
the subsequent chapters detail the enablement of the services provided by
WebSphere MQ and SOAP.
 Chapter 7. WebSphere MQ 235

236 Securing Access to CICS Within an SOA

Chapter 8. CICS Enterprise JavaBeans
support

Accessing enterprise beans requires the use of the Internet Inter-ORB Protocol
(IIOP). Support for IIOP is provided by the CICS TCP/IP listener. Figure 8-1
shows a typical CICS enterprise bean environment.

Figure 8-1 Using SSL with EJB clients

8

Applet
or Java
application

WebSphere
Application

Server

Web server

Servlet or
enterprise

bean

firewall

CICS region

TCP/IP listener

bean bean

Naming
ServerJNDI

IIOP / SSL

Container

JNDI

IIOP or
IIOP / SSL

Port=xx Port=yy
EJB client
© Copyright IBM Corp. 2006. All rights reserved. 237

Applets or Java applications may require the use of Secure Sockets Layer (SSL).
But a servlet or an enterprise bean running on IBM WebSphere may not require
SSL security because CICS and WebSphere are likely to be in your private
network.

Thus, providing security for enterprise beans involves:

� Providing an appropriate level of privacy and data integrity (SSL support)
� Confirming the identity of the client (authentication)
� Controlling what the client can do (authorization)
238 Securing Access to CICS Within an SOA

8.1 Secure Sockets Layer support

To activate SSL support for an incoming IIOP request for an enterprise bean,
specify one of the following for the value of the SSL parameter of the
TCPIPSERVICE definition:

� YES
� CLIENTAUTH

CICS Transaction Server (TS) V2.2 and V2.3 also support outbound IIOP
requests. This enables an enterprise bean in a CICS Enterprise JavaBeans
(EJB) Server to invoke an enterprise bean in another EJB Server using Remote
Method Invocation over IIOP (RMI/IIOP). This communication can also be
encrypted using SSL. The Interoperable Object Reference (IOR) of the remote
enterprise bean specifies whether SSL must be used.

The remote server can request CICS to authenticate itself with a client certificate.
CICS finds the label of the client certificate that it must use in the CERTIFICATE
parameter of the CORBASERVER definition and then obtains the certificate from
the KEYRING, as specified in the System Initialization Table (SIT).

8.1.1 Improved Secure Sockets Layer support in CICS TS V2.3

This section discusses how CICS TS V2.3 allows you to restrict the cipher suites
that CICS advertises for connections that use the Hypertext Transfer Protocol
(HTTP). Use the same values of the PRIVACY parameter of the TCPIPSERVICE
definition, namely:

� NOT SUPPORTED
� SUPPORTED
� REQUIRED

This is to also restrict the cipher suites that CICS advertises for inbound IIOP
requests.

To restrict the cipher suites that CICS uses for outbound IIOP requests, specify
one of the same values for the OUTPRIVACY parameter of the CORBASERVER
definition.
 Chapter 8. CICS Enterprise JavaBeans support 239

8.2 Authentication

Because CICS authorization is based on a user ID, CICS must derive one from
the IIOP request and authenticate it. It can do so by using the information
associated with or provided by the following:

� An SSL client certificate
� The security user-replaceable module (DFHXOPUS)
� Asserted identity

Secure Sockets Layer client certificate
If you are using SSL to send an IIOP message, use client certificates to
authenticate the user. This is achieved by setting SSL(CLIENTAUTH) and
AUTHENTICATE(CERTIFICATE) in the TCPIPSERVICE definition and
CLIENTCERT(tcpipservicename) in the CORBASERVER definition.

The mapping from a certificate to a user ID exists when:

� The certificate is already registered to a user ID in your external security
manager’s database (single certificate)

� The information sent in the client certificate matches a Resource Access
Control Facility (RACF) Certificate Name Filtering profile that allows multiple
SSL client certificates to be associated with a single user ID.

Security user-replaceable module (DFHXOPUS)
If no SSL client certificate is provided, assign a user ID by coding a
user-replaceable module (URM) and specifying its name in the URM parameter
of the TCPIPSERVICE definition. If you do not specify a module name, CICS
assigns the default user ID set in the DFLTUSER system initialization parameter.

CICS provides the sample DFHXOPUS module, which is a C program. An
alternative COBOL version (named COBXOPUS) is available as additional
material for the IBM Redbook Enterprise JavaBeans for z/OS and OS/390 CICS
Transaction Server V2.2, SG24-6284.

Because it is possible for a CICS region to have several TCP/IP listeners, you
can use different URMs. The URM must return a pointer to an 8-byte character
field in its COMMAREA, and CICS will associate the user ID in that field with the
server transaction.
240 Securing Access to CICS Within an SOA

The URM can use a variety of designs to choose the correct identification.
Following is a list of the possibilities:

� Passing a user ID and password in the IIOP message and performing custom
authentication using the EXEC CICS VERIFY PASSWORD command

� Extracting user information such as the client TCP/IP address and port
number, using the EXEC CICS EXTRACT TCPIP command

� Mapping user IDs based on enterprise bean names and method names

� Assigning a single user ID for all IIOP messages

Asserted identity
Assume that an HTTP request drives a servlet in WebSphere, which then
invokes a method on an enterprise bean in CICS, as shown in Figure 8-2.

Figure 8-2 Invoking a bean method through an intermediate server

In CICS TS V2.2, CICS does not recognize that there is a server at the other end
of the IIOP connection. WebSphere may present a client certificate, but it is not
the user’s certificate. Rather, it is WebSphere’s own certificate, and thus
WebSphere’s identity. Thus, the work in CICS executes under some user ID
other than “Joe”. This may be the CICS region default user ID, one assigned by
the URM, or the one associated with a certificate presented by WebSphere.

DB2IMSVSAMVSAM IMS DB2

WebSphere/390

HTTP
Servlet RMI-IIOP

COBOL
program

userID=XXXX

cert=(Joe)

userID=Joe

EJB

CICS
 Chapter 8. CICS Enterprise JavaBeans support 241

IBM has developed a proprietary protocol called Asserted Identity to address this
problem. Implemented by WebSphere V4 and WebSphere V5 and CICS TS
V2.3, Asserted Identity allows “Joe” to be known in all the servers and his
security identification will be passed from WebSphere to CICS.

Asserted identity authentication can be used when an IIOP client communicates
with the target server (CICS TS V2.3) through an intermediate server (CICS TS
V2.3, WebSphere V4 or WebSphere V5), and both the servers use the same
security manager. It works as follows:

1. The intermediate server’s identity is authenticated by the target server using
SSL client certificate authentication.

2. Through the security manager, the target server verifies that the intermediate
server can be trusted to authenticate its clients.

3. When the intermediate server receives a request, it authenticates the client
using whatever authentication protocol is appropriate. If the client is
successfully authenticated, the intermediate server passes the request to the
target server.

4. Because the target server trusts the intermediate server to authenticate the
client, it makes no further checks of the client’s authenticity before processing
the client’s request.

To establish a trust relationship between the intermediate and target servers,
where the target server is a CICS CorbaServer, perform the following tasks:

1. Configure your CICS region to use SSL authentication and specify
AUTHENTICATE(ASSERTED) and SSL(CLIENTAUTH) in the TCPIPSERVICE
definition.

2. Associate the intermediate server’s client certificate with a RACF user ID.

3. Create a profile named DFH.applid.corbaserver.ASSERTID in the
SERVAUTH general resource class, where applid is the APPLID of the CICS
region and corbaserver is the name of the target CorbaServer. Use the
following RACF command:

RDEFINE SERVAUTH DFH.applid.corbaserver.ASSERTID UACC(NONE)

4. Provide the intermediate server’s user ID (established in step 2) READ
authority to the profile. Use the following RACF command, for example:

PERMIT DFH.applid.corbaserver.ASSERTID CLASS(SERVAUTH)
ID(server_user_ID) ACCESS(READ)

5. If the intermediate server is WebSphere, specify Send asserted identities
allowed in its Properties form. Fill in the values for the SSL-related elements
(SSL RACF-keyring, SSL V2 timeout, and SSL V3 timeout).
242 Securing Access to CICS Within an SOA

If the intermediate server is CICS, no additional setup is required. CICS
always sends asserted identities if the target server is capable of receiving
them.

User ID authentication summary
Table 8-1 summarizes the relation between the TCPIPSERVICE and the
CORBASERVER parameters relating to SSL, and shows how the user ID is
obtained.

Table 8-1 User ID authentication summary

Authenticati-
on method

TCPIPSER-
VICE
AUTHENTI
CATE
parameter

TCPIPSER-
VICE SSL
parameter

Associated
CORBASER-
VER parameter

Client
Cert
associa-
ted with
user ID

How the user
ID of the IIOP
client is
identified

IIOP with no
authentication

NO NO UNAUTH
(tcpipservice)

N/A User ID
provided by
URM specified
on
TCPIPSERVIC
E(2)

IIOP with no
authentication

NO YES SSLUNAUTH
(tcpipservice)

N/A User ID
provided by
URM specified
on
TCPIPSERVIC
E (2)

IIOP with SSL
client
certificate
optional

NO CLIENTAUTH SSLUNAUTH
(tcpipservice)

NO User ID
provided by
URM specified
on
TCPIPSERVIC
E(2)

YES That user ID is
used

IIOP with SSL
client
certificate
required

CERTIFICATE CLIENTAUTH CLIENTCERT
(tcpipservice)

NO Connection is
rejected

YES That user ID is
used
 Chapter 8. CICS Enterprise JavaBeans support 243

8.3 Authorization

Authorization involves verifying that a user is allowed to access a particular
method in a bean, and then to access the resources used by that method.

Associating methods with transaction IDs
CICS runs each method call as a CICS transaction. The association between a
method and a CICS transaction is specified in a REQUESTMODEL resource
definition. A CICS-supplied transaction, CREA, enables you to generate
REQUESTMODEL definitions that can be installed dynamically into the CICS
region, written to the CICS system definition file (CSD), or both. CREA displays a
list of beans and bean methods within the JAR file related to an installed DJAR
resource definition, and enables you to associate transaction IDs with those
beans and methods. After you have finished associating transaction IDs with
beans and methods, a list of request models that best match the transaction IDs
with the beans and methods in the JAR file, is generated. Each
REQUESTMODEL definition is presented to you with the option to:

� Install the REQUESTMODEL in CICS
� Define the REQUESTMODEL to the CSD
� Install and define the REQUESTMODEL
� Ignore the REQUESTMODEL

A list of the REQUESTMODELs that you have installed and defined is then
displayed. Any REQUESTMODELs installed in CICS that are not used by the
DJAR, but refer to beans within the DJAR, are also shown. Similarly, any
transaction IDs that are used, but currently not installed, are also listed.

IIOP with
asserted
identity
authentication

ASSERTED CLIENTAUTH ASSERTED
(tcpipservice)

NO (1) Connection is
rejected

YES (1) User ID sent in
IIOP request by
intermediate
server

1. Intermediate server’s certificate
2. If a program is not specified in the URM parameter of the TCPIPSERVICE definition, the CICS
default user ID is used

Authenticati-
on method

TCPIPSER-
VICE
AUTHENTI
CATE
parameter

TCPIPSER-
VICE SSL
parameter

Associated
CORBASER-
VER parameter

Client
Cert
associa-
ted with
user ID

How the user
ID of the IIOP
client is
identified
244 Securing Access to CICS Within an SOA

Matching method calls to REQUESTMODELs
Figure 8-3 illustrates the process of matching a method request to a
REQUESTMODEL. CICS uses the bean name, the interface type (home or
remote), the CorbaServer name, and the method name (in this order) to match
the incoming method request with a REQUESTMODEL. A more specific match
overrides a generic match. If you do not define a REQUESTMODEL, CICS uses
the default REQUESTMODEL, which always maps the method name to
transaction CIRP. The CIRP transaction points to the default request processor
DFJIIRP.

Figure 8-3 Using REQUESTMODELs to map a bean method to a transaction ID

In your external security manager, provide access to the transaction CIRP to the
user ID associated with any request for a method in EJBtwo. Similarly, provide
access to transaction TRX2 to the user ID associated with a client request for the
breakd() method in EJBone, and access to transaction TRX1 to the user ID
associated with a client request for any other method in EJBone.

Request without
matching

REQUESTMODEL

Transaction
TRX1

Transaction
TRX2

Transaction
CIRP

REQUESTMODEL: TRX2
BEANNAME: EJBone
OPERATION: breakd
CORBASERVER: PJA1
TRANSID: TRX2

REQUESTMODEL: TRX1

CorbaServer: PJA1

JNDIPrefix: ITSO/PJA1

DJAR: EJBone

EJBoneBean

CorbaServer: COR1

JNDIPrefix: ITSO/COR1

DJAR: EJBtwo

EJBtwoBean

EJBtwo.anyMethod() EJBone.breakd() EJBone.otherMethods()

BEANNAME: EJBone
OPERATION: *
CORBASERVER: PJA1
TRANSID: TRX1
 Chapter 8. CICS Enterprise JavaBeans support 245

8.4 Security roles

In the Enterprise JavaBeans Specification V1.1, access to enterprise bean
methods is based on the concept of security roles. A security role represents a
type of user of an application in terms of the permissions that user must have to
successfully use the application. A role is a logical security identification.

In a payroll application, for example:

� A manager role could represent users who are permitted to use all parts of an
application

� A team_leader role could represent users who are permitted to use the
administrative functions of the application

� A data_entry role could represent users who are permitted to use the data
entry functions of the application

The security roles for an application are defined by the application assembler,
and are specified in the bean's deployment descriptor, as shown in Figure 8-4.

Figure 8-4 Definition of security roles in an XML deployment descriptor

The security roles that are permitted to execute a bean method are also specified
in the bean's deployment descriptor, again by the application assembler. The
association between security roles and the bean methods is defined by using
method-permission tags.

<security-role>
 <description>
 A user with this role may access any method
 </description>
 <role-name>
 Manager
 </role-name>
</security-role>
<security-role>
 <description>
 A user with this role may use administrative functions
 </description>
 <role-name>
 Team_leader
 </role-name>
</security-role>
246 Securing Access to CICS Within an SOA

Figure 8-5 shows an example of providing the security role Manager with access
to all the methods in the bean named Payroll.

Figure 8-5 Access rights for the Manager role

In this example, methods that update the number of hours worked by employees
each week may be assigned to the data_entry role, and methods that delete an
employee from the payroll may be assigned to the team_leader role.

To distinguish similarly-named security roles in different applications or on
different systems, the security roles specified in the bean's deployment
descriptor can be given a one-part or two-part qualifier when the bean is
deployed in a CICS system:

� Security role with no qualifier: Team_leader
� Security role with one qualifier: Payroll.team_leader
� Security role with two qualifiers: Prodcics.payroll.team_leader

In this example, payroll qualifies the security role at the application level and is
used to distinguish between the team_leader role in the payroll application and
the team_leader role in the other applications. Similarly, prodcics qualifies the
security role at the system level and is used to distinguish between the
payroll.team_leader role in the prodcics region and the payroll.team_leader role
in the test regions.

At the application level, security roles are qualified by the display name, if one is
specified in the deployment descriptor. At the system level, security roles are
optionally qualified with a prefix that is specified in the EJBROLEPRFX system
initialization parameter.

A security role with its qualifiers is known as a deployed security role. The
mapping of individual users or groups to deployed security roles is carried out in
the RACF entity class EJBROLE or the RACF grouping class GEJBROLE.

<method-permission>
 <role-name>Manager</role-name>
 <method>
 <ejb-name>Payroll</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>
 Chapter 8. CICS Enterprise JavaBeans support 247

8.4.1 Using the RACF EJBROLE generator utility

The RACF EJBROLE generator utility (dfhreg) is a Java application program that
extracts security role information from a deployment descriptor, and generates an
output file containing the RACF commands that define security roles as members
of a profile in the GEJBROLE class.

Example 8-1 shows a UNIX System Services (USS) command that invokes the
RACF EJBROLE generator utility. In this example,:

� -secprfx PRODCICS specifies the name used to qualify the security role at
the system level. The value you specify must match the value of the
EJBROLEPRFX system initialization parameter for the CICS system where
the security roles will be used.

� PayrollSessionBeanEJB.roles specifies the name of the file to which dfhreg
will write its output.

� PayrollSessionBeanEJB.jar specifies the name of the input file which contains
the deployment descriptor.

Example 8-1 Executing dfhreg from a USS command line

dfhreg -secprfx PRODCICS -out PayrollSessionBeanEJB.roles
PayrollSessionBeanEJB.jar

Example 8-2 shows the output file generated by dfhreg.

Example 8-2 PayrollSessionBeanEJB.roles file created by dfhreg

/***/
/* RACF EJBROLE GENERATOR TOOL */
/***/
/* Default enterprise role used to group EJBROLE definitions. */

RDEFINE GEJBROLE DFLTROLE

/* Manager role */
RALTER GEJBROLE DFLTROLE ADDMEM(PRODCICS.Payroll.manager)

 /* Team Leader role */
RALTER GEJBROLE DFLTROLE ADDMEM(PRODCICS.Payroll.team_leader)

/* Data Entry role */
RALTER GEJBROLE DFLTROLE ADDMEM(PRODCICS.Payroll.data_entry)
248 Securing Access to CICS Within an SOA

These RACF commands define the three deployed security roles
(PRODCICS.Payroll.manager, PRODCICS.Payroll.team_leader, and
PRODCICS.Payroll.data_entry) as members of the profile DFLTROLE in the
RACF grouping class GEJBROLE. You can then use the RACF PERMIT
command to provide the appropriate users with READ access to the DFLTROLE
profile:

PERMIT DFLTROLE CLASS(GEJBROLE) ID(user1,user2) ACCESS(READ)

Alternatively, you can use the following commands to define the deployed
security roles in the EJBROLE entity class:

RDEFINE EJBROLE (PRODCICS.Payroll.manager) UACC(NONE)
RDEFINE EJBROLE (PRODCICS.Payroll.team_leader) UACC(NONE)
RDEFINE EJBROLE (PRODCICS.Payroll.data_entry) UACC(NONE)

You can then use the RACF PERMIT command to provide a user with access to
one security role without giving the user access to the other security roles:

PERMIT PRODCICS.Payroll.manager) CLASS(EJBROLE) ID(user1) ACCESS(READ)
PERMIT PRODCICS.Payroll.team_leader) CLASS(EJBROLE) ID(user2)
ACCESS(READ)
PERMIT PRODCICS.Payroll.data_entry) CLASS(EJBROLE) ID(user3)
ACCESS(READ)

8.5 Application-managed security

Applications can query the session context object to retrieve security information.
Usually, this must be avoided because the objective of EJB is to let the
application programmer concentrate on the business logic. However, sometimes
it may be necessary.

The EJB 1.1 specification provides the following two methods:

� isCallerInRole(String roleName)

Returns true if the caller is in the security role specified as the single string
argument. Otherwise, false is returned.
 Chapter 8. CICS Enterprise JavaBeans support 249

� getCallerPrincipal()

Returns an object of the class java.security.Principal, which may then be
used to extract more information such as the distinguished name (DN) that is
associated with this session. Figure 8-6 shows a Java code sample for
extracting the DN.

Figure 8-6 Extracting distinguished name

When a Java program calls the getName() method, the DN is extracted from the
X.509 certificate provided by the client. The DN includes user information such
as Common Name, Title, e-mail address, Organization Unit, Organization,
Location, State, and Country.

If a certificate is not available, the DFHEJDNX user-replaceable module is
invoked to generate the DN, given the following inputs:

� The Common Name, that is, the user name associated with the caller’s user
ID. The user name is a 20-character name of the user obtained from the
external security manager (ESM).

� Certain fields from the CICS client certificate that is used by outbound SSL
and specified in the CERTIFICATE parameter of the CORBASERVER
definition. If a CORBAServer certificate is not available, the default certificate
provided in the key ring is used instead.

8.6 Design issues

The solution design must consider the security requirements, the performance
issues, and the possible implications of flowing IIOP requests through firewalls
that may not provide an IIOP capable proxy server.

For a distributed program link (DPL) issued from within CICS, the standard
multiregion operation (MRO) security rules apply, including the considerations for
link security and equivalent systems.

// obtain the caller principal
 callerPrincipal = ejbContext.getCallerPrincipal();
// obtain the caller principal’s name
 callerName = callerPrincipal.getName();
250 Securing Access to CICS Within an SOA

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 252. Note that some of the documents referenced here may
be available in softcopy only.

� CICS Transaction Gateway for z/OS V6.1, SG24-7161

� Enterprise JavaBeans for z/OS and OS/390 CICS Transaction Server V2.2,
SG24-6284

� Implementing CICS Web Services, SG24-7206

� z/OS WebSphere Application Server V5 and J2EE 1.3 Security Handbook,
SG24-6086

Other publications
These publications are also relevant as further information sources:

� CICS Transaction Server for z/OS V3.1 CICS Application Programming
Guide, SC34-6433

� CICS Transaction Server for z/OS V3.1 CICS Application Programming
Reference, SC34-6434

� CICS Transaction Server for z/OS V3.1 CICS Resource Definition Guide,
SC34-6430

� CICS Transaction Server for z/OS V3.1 CICS System Definition Guide,
SC34-6428

� CICS Transaction Server for z/OS V3.1 Internet Guide, SC34-6450

� CICS Transaction Server for z/OS V3.1 RACF Security Guide, SC34-6454
© Copyright IBM Corp. 2006. All rights reserved. 251

� CICS Transaction Server for z/OS V3.1 Web Services Guide, SC34-6458.

� WebSphere MQ Security, SC34-6588

� WebSphere MQ Using Java, SC34-6591

� z/OS V1R7.0 Communications Server: IP CICS Sockets Guide, SC31-8807

Online resources
The following Web sites are also relevant as further sources of information:

� CICS SupportPacs

http://www.ibm.com/software/ts/cics/txppacs

� Extensible Markup Language (XML) V1.0

http://www.w3.org/TR/REC-xml

� Security on System z

http://www.ibm.com/servers/eserver/zseries/security/features.html

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, IBM Redpapers, Hints
and Tips, Draft Publications, and Additional Materials, and order a hardcopy of
IBM Redbooks or CD-ROMs from the following Web site:

ibm.com/redbooks

Help from IBM
IBM Support and Downloads

ibm.com/support

IBM Global Services

ibm.com/services
252 Securing Access to CICS Within an SOA

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.ibm.com/software/ts/cics/txppacs
http://www.ibm.com/servers/eserver/zseries/security/features.html
http://www.ibm.com/servers/eserver/zseries/security/features.html
http://www.ibm.com/servers/eserver/zseries/security/features.html
http://www.w3.org/TR/REC-xml

Index

Numerics
3270 174
3270 Web bridge

bridge facility 174

A
Advanced Encryption Standard, See AES
AES 210

256 192
AIX 193
An 4
AOR 174
APAR

PK19503 190
application-owning region, See AOR
authentication 240
authorization 244
autoinstall

CICS programs 183

B
basic mapping support, See BMS
BMS 17

C
C++ 187
CECI transaction 95, 182
CEMT transaction 95, 182
CICS

business logic program 18
COMMAREA programs 16
default user ID 117
ECI resource adapter 189
EJB role generator 248
initialization queue 220
region user ID 117
TCP/IP listener 160
terminal-oriented programs 16

CICS freeware
CA8D - CWS analyzer 167

CICS TG 185
daemon address space 187
© Copyright IBM Corp. 2006. All rights reserved.
External Call Interface 185
External Presentation Interface 185
on distributed platforms 193
on z/Series 198
security

checklist 215
matrix 212

CICS Transaction Security 218
CICS Web Support

SSL support 163
CICS Web support 163

alias 182
analyzer 172
certificate auto registration 166
HTTP

basic authentication 165
mixed case passwords 166
security issues 163
SSL client certificate 166

AUTOMATIC 166
AUTOREGISTER 166
CERTIFICATE 166

wbra_server_program 172
wbra_userid 174

CICSPlex SM 183
cipher suites 210
CKAM 218
CKBM

controls CICS adapter functions 218
CKCN

connect 218
CKMC

Distributed MQ (channel control) 218
CKMH

Distributed MQ(channel help) 218
CKQC

controls CICS adapter functions 218
CKRC

Distributed MQ (Receiver) 218
CKRQ Distributed MQ (Requestor) 218
CKRT

controls CICS adapter functions 218
CKSG

Distributed MQ (Sender) 218
 253

CKSQ
CKTI Start/Stop 218

CKSV
Distributed MQ (Server) 218

client certificate 208
COMMAREA 159
configuring SSL

using GSKit and IBM Key Management tool 217
container-managed security 188
core system transactions capability 13
CREA

request model transaction 244
cryptography 30
CWS

security
checklist 181
matrix 178

CWXN
Web attach transaction 183

D
demilitarized zone, See DMZ
denial-of-service attacks 182
distinguished name, See DN
DMZ 176
DN 250
DOCUMENT API 160
DSA 210

E
ECI interface 187
EIS 187
EJB

container 196
roles 248
security 237

enterprise information system, See EIS
ESM 157
EXCI connection 189
EXEC CICS

CHANGE PASSWORD 168
EXTRACT CERTIFICATE 166
LINK 175
QUERY SECURITY 175
SIGN-ON 174

External Security Manager, See ESM

F
flowed user ID 206

G
graphical user interface, See GUI
GUI 100

H
host-based intrusion detection 110
HP-UX 193
HTTP 160

basic authentication 165
HTTPS 197
hwkeytool 209

I
IBM HTTP Server 181
IDS 111

attack 113
event 114
policy 112
probes 110
scan detection 112
traffic regulation 113

IIOP 160
IKE 98
IKED 100
ikeyman 209
Internet Inter-ORB Protocol, See IIOP
Internet Key Exchange 98
Internet Key Exchange, See IKE
intrusion detection system 110
intrusion detection system, See IDS
IPsec 101

J
J2EE connector architecture, See JCA
JAAS 189
JAAS Authentication Alias 189
Java

application 187
Java 2 SDK 1.3, 189
Java Authentication and Authorization Services,
See JAAS
Java Secure Sockets Extension, See JSSE
JCA 187

security 187
254 Securing Access to CICS Within an SOA

JSSE 192

L
LDAP user registry 195
Lightweight Third Party Authentication, See LTPA
link security 202
Linux 193
LTPA 195

M
mixed case passwords 166
MQI channel 230
MRO 180

bind security 202
regions 199

Multi Region Operation, See MRO

N
Network Address Translation 97
Network Configuration Assistant 100
Network-based Intrusion Detection 110

P
pasearch 99
PCI 209
Peripheral Component Interconnect, See PCI
ports

with CICS Web support 182
pseudoconversational 17

Q
QoS 13, 99
Quality of Service, See QoS

R
RACF 185

class
FACILITY 199
GEJBROLE 248
MQCONN 219
SURROGAT 199

EJBROLE generator utility 248
key ring 211
key ring support 200

Redbooks Web site 252
Contact us xiii

REQUESTMODEL definition 245
RFC

2246 105
2401 101
2408 102
2409 102

S
Secure Sockets Layer, See SSL
securing message channels

Java environment
sslCipherSuite 234
sslKeyStore 233
sslKeyStorePassword 233
sslTrustStore 234
sslTrustStorePassword 234

Microsoft .NET environment
sslCipherSpec 233
sslKeyRepository 233

SSLPeerName 234
security

association 102
authentication 29
authorization 29
confidentiality 30
identification 29
integrity 30
risks 94
roles 246
surrogate 202
user-replaceable module 240

self-signed certificate 209
service

consumer 10
provider 10

SIT parameter
DFLTUSER 117
WEBDELAY 176

SOA 4
business and IT benefits 8
communication protocol 8
interfaces 7
services 7

Socks server 97
SSL 105

client certificate 166, 240
support 213

in URI 233
 Index 255

key repository 232
protocol 217
use with CICS Web support 179

state management program 176
System Authorization Facility 204
System SSL 106, 208
System z Integrated Information Processor 14

T
TAM 191
TCP/IP

port 187
TCPIP

API 160
terminal ID in CICS 176
Tivoli Access Manager, See TAM
TLS 209
Traffic 115
Traffic Regulation Monitoring 100
transaction isolation in CICS 183
Transport Layer Security, See TLS
TRMD 100
TRMDSTAT 113

U
UNIX platform 185
URIMAPs 177

V
virtualization 14
VPN 100, 192

certificates 104
encapsulation mode 104
symmetric encryption 101

W
WEB API 161
Web attach transaction (CWXN) 161
Web LPAR 176
Web services 10

SOA 122
usage models 11

basic callback 11
one-way 11
synchronous request/response 11

Web terminal translation program 175
Web-aware applications 172

Web-aware CICS application 173
WebSphere

Thread Identity support 189
WebSphere Application Server 187
WebSphere MQ

Explorer 222
WS-Security

typical scenario 138

X
XCF communications 177

Z
z/OS 12

Communications Server Policy Agent 98
Firewall Technologies 96
IDS policy 112

attack detection, reporting, and prevention
113
traffic regulation for TCP connections and
UDP receive queues 113

zAAP 14
zSeries hardware cryptographic support 200
256 Securing Access to CICS Within an SOA

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Securing Access to CICS W
ithin an SOA

®

SG24-5756-01 ISBN 0738496715

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Securing Access to CICS
Within an SOA

Provides information
about transforming
CICS assets into SOA
solutions

Furnishes updates
about CICS TS V3.1
and CICS TG V6

Covers CICS Web
services and CICS
Web support

With the emergence of service-oriented architecture (SOA),
the options for accessing the existing IBM Customer
Information Control System (CICS) assets have become more
varied than ever. With this variety comes the complexity of
securing these assets. This IBM Redbook is intended for IT
architects who are involved in the process of selecting,
planning, and designing a secure SOA solution that makes
use of CICS assets.

This book introduces SOA and the options available for
transforming CICS assets into SOA solutions. It then
discusses the principles of security, followed by the different
security technologies.

The book then reviews each technology individually,
discussing the security options that are available, the
security architectures such as basic authentication, firewalls,
and the use of Secure Sockets Layer (SSL) and public key
infrastructure (PKI).

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbook
	Become a published author
	Comments welcome

	Summary of changes
	December 2006, Second Edition

	Part 1 Security and CICS SOA access
	Chapter 1. Introduction to SOA and CICS
	1.1 SOA on System z
	1.1.1 Understanding SOA and the reasons for adopting it
	1.1.2 The business and IT benefits of SOA
	1.1.3 Web services
	1.1.4 System z and the reason why it is appropriate for SOA

	1.2 Transforming CICS assets into SOA solutions
	1.2.1 Transformation strategies
	1.2.2 The CICS assets that can be transformed
	1.2.3 Access to COMMAREA programs
	1.2.4 Access to terminal-oriented programs

	1.3 Interaction between CICS and other core WebSphere SOA products

	Chapter 2. Security concepts
	2.1 The importance of security
	2.2 Identification, Authentication, and Authorization
	2.3 IAA requirements
	2.3.1 IT environment and application architecture requirements
	2.3.2 IAA component security
	2.3.3 Application-managed security
	2.3.4 Availability and performance requirements
	2.3.5 Performance and scalability requirements
	2.3.6 Identity management structures

	2.4 The role of cryptography
	2.5 Secret key or symmetric cryptography
	2.5.1 Data Encryption Algorithm or Data Encryption Standard
	2.5.2 Triple DES (TDEA)
	2.5.3 Advanced Encryption Standard

	2.6 Public key or asymmetric cryptography
	2.6.1 The Rivest-Shamir-Adleman algorithm

	2.7 Hash functions
	2.8 Message authentication codes
	2.9 Digital signatures
	2.9.1 Using the RSA algorithm for digital signatures
	2.9.2 Using the Digital Signature Algorithm for digital signatures
	2.9.3 Using the Elliptic Curve Digital Signature Algorithm for digital signatures
	2.9.4 Comparing RSA with Digital Signature Algorithm for digital signatures

	2.10 Public key digital certificates
	2.10.1 tbsCertificate
	2.10.2 Standard extensions for X.509 V3 digital certificates
	2.10.3 Certification paths

	2.11 Certificate revocation lists
	2.11.1 Extensions for entries in a certificate revocation list
	2.11.2 Extensions for a certificate revocation list
	2.11.3 Security considerations when using digital certificates

	2.12 The Diffie-Hellman key agreement protocol
	2.13 Transport Layer Security 1.0 protocol
	2.13.1 Overview of Transport Layer Security
	2.13.2 Cipher suites
	2.13.3 Alert protocol
	2.13.4 Handshake protocol

	2.14 Cryptographic hardware
	2.14.1 CP Assist for Cryptographic Functions
	2.14.2 Crypto Express2 Feature

	2.15 Integrated Cryptographic Service Facility
	2.15.1 Cryptographic hardware requirements for CICS WS-Security

	Chapter 3. Security technologies
	3.1 Security risks
	3.1.1 Types of attacks
	3.1.2 z/OS V1R7 Integrated IP Security as compared to the z/OS Firewall Technologies

	3.2 The z/OS Communications Server Policy Agent
	3.3 Virtual Private Network
	3.3.1 Internet Security Association and Key Management Protocol and Internet Key Exchange
	3.3.2 Security associations and Virtual Private Network
	3.3.3 Virtual Private Networks and certificates

	3.4 Application Transparent Transport Layer Security
	3.4.1 Application Transparent Transport Layer Security concepts
	3.4.2 Application Transparent Transport Layer Security z/OS implementation

	3.5 z/OS intrusion detection services
	3.5.1 Overview of intrusion detection
	3.5.2 Understanding the z/OS intrusion detection services
	3.5.3 The z/OS intrusion detection services policy
	3.5.4 Traffic regulation for TCP connections and UDP receive queues
	3.5.5 Clarifying the notion of an intrusion detection services event
	3.5.6 Traffic Regulation Management Daemon

	3.6 Traditional CICS security
	3.6.1 CICS user IDs

	Part 2 Designing the secure CICS SOA solution
	Chapter 4. CICS Web services
	4.1 CICS TS and external standards
	4.1.1 Web services and service-oriented architectures
	4.1.2 CICS TS Web services and industry standards
	4.1.3 CICS compliance with Web service standards

	4.2 Web services security exposures
	4.3 Transport-level security
	4.3.1 Hypertext Transfer Protocol basic authentication
	4.3.2 Secure Sockets Layer or Transport Layer Security with Hypertext Transfer Protocol
	4.3.3 CICS support for Secure Sockets Layer orTransport Layer Security
	4.3.4 Cipher suites
	4.3.5 Setting the user ID on the URIMAP
	4.3.6 Determining the user ID order of precedence when using HTTP

	4.4 Web Services-Security
	4.4.1 Web Services-Security road map
	4.4.2 Example of WS-Security

	4.5 CICS support for WS-Security
	4.5.1 Options for securing a SOAP message in CICS
	4.5.2 Pipeline configuration file
	4.5.3 Resource Access Control Facility and WS-Security in CICS

	4.6 Performance considerations
	4.6.1 Optimizing Secure Sockets Layer
	4.6.2 Performance improvements for Secure Sockets Layer

	4.7 Comparison of transport versus message security

	Chapter 5. CICS Web support
	5.1 Overview of CICS Web support
	5.2 CICS Web support security issues
	5.2.1 Secure Sockets Layer support
	5.2.2 Identifying and authenticating the client user
	5.2.3 Customizing basic authentication prompts
	5.2.4 Authorization with a direct connection
	5.2.5 Access to static content
	5.2.6 Design issues

	5.3 Designing a secure solution
	5.3.1 CICS Web support security matrix
	5.3.2 CICS Web support security checklist

	Chapter 6. CICS Transaction Gateway
	6.1 Architecture choices
	6.2 CICS Transaction Gateway on distributed platforms
	6.2.1 CICS TG for Multiplatforms V6.0
	6.2.2 CICS Transaction Gateway deployed on a distributed platform

	6.3 CICS Transaction Gateway on z/Series
	6.3.1 Remote Gateway daemon on z/OS
	6.3.2 WebSphere Application Server and CICS Transaction Gateway on zSeries
	6.3.3 Security coordination between WebSphere and CICS

	6.4 CICS Transaction Gateway for z/OS V6.1
	6.4.1 Sample security programs
	6.4.2 Secure Sockets Layer
	6.4.3 Java Secure Sockets Extension
	6.4.4 Cipher suites

	6.5 Designing a secure solution
	6.5.1 CICS Transaction Gateway security matrix
	6.5.2 CICS Transaction Gateway security checklist

	Chapter 7. WebSphere MQ
	7.1 CICS transaction security
	7.1.1 Category One transaction definitions
	7.1.2 Administering the CICS adapter transactions

	7.2 Granting CICS access to WebSphere MQ
	7.3 Adapter user IDs
	7.4 CICS initialization queue
	7.5 Working with WebSphere MQ and SSL
	7.5.1 Configuring WebSphere MQ for secured communication

	Chapter 8. CICS Enterprise JavaBeans support
	8.1 Secure Sockets Layer support
	8.1.1 Improved Secure Sockets Layer support in CICS TS V2.3

	8.2 Authentication
	8.3 Authorization
	8.4 Security roles
	8.4.1 Using the RACF EJBROLE generator utility

	8.5 Application-managed security
	8.6 Design issues

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

