

ibm.com/redbooks

Patterns: SOA with an
Enterprise Service Bus
in WebSphere Application Server V6

Martin Keen
Oscar Adinolfi

Sarah Hemmings
Andrew Humphreys
Hanumanth Kanthi

Alasdair Nottingham

Design and implement an ESB using
WebSphere V6 technologies

Service-oriented architecture
and Web services

Learn by example with
practical scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: SOA with an Enterprise Service Bus in
WebSphere Application Server V6

May 2005

International Technical Support Organization

SG24-6494-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2005)

This edition applies to Version 6 of WebSphere Application Server and Rational Application
Developer.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
How to read this redbook . xi
The team that wrote this redbook. xiv
Become a published author . xvi
Comments welcome. xvii

Part 1. Patterns for e-business and SOA . 1

Chapter 1. Introduction to Patterns for e-business 3
1.1 The Patterns for e-business layered asset model . 4
1.2 How to use the Patterns for e-business . 6

1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom
design . 6

1.2.2 Selecting Application patterns. 11
1.2.3 Review Runtime patterns . 13
1.2.4 Reviewing Product mappings . 15
1.2.5 Reviewing guidelines and related links . 16

1.3 Summary . 17

Chapter 2. SOA and the Enterprise Service Bus . 19
2.1 Overview of SOA. 20

2.1.1 Definition of a service . 23
2.1.2 Web services and SOA . 27
2.1.3 The advantages of SOA . 29
2.1.4 SOA summary. 30

2.2 Overview of Enterprise Service Bus . 31
2.2.1 SOA infrastructure requirements. 31
2.2.2 Definition of an ESB . 32
2.2.3 Enterprise requirements for an ESB . 34
2.2.4 Minimum ESB capabilities. 37
2.2.5 ESB and Web services technologies . 38
2.2.6 Extended ESB capabilities . 39
2.2.7 The ESB and other SOA components . 44

Chapter 3. Application Integration and Extended Enterprise patterns . . 45
3.1 Application Integration pattern. 46
© Copyright IBM Corp. 2005. All rights reserved. iii

3.1.1 Direct Connection . 48
3.1.2 Direct Connection=Message Connection variation 49
3.1.3 Direct Connection=Call Connection variation 50
3.1.4 Broker . 51
3.1.5 Broker=Router variation . 52
3.1.6 Serial Process . 54
3.1.7 Serial Process=Workflow variation . 55
3.1.8 Parallel Process . 56
3.1.9 Parallel Process=Workflow variation. 58

3.2 Extended Enterprise pattern . 59
3.2.1 Exposed Direct Connection. 61
3.2.2 Exposed Direct Connection=Message Connection variation 62
3.2.3 Exposed Direct Connection=Call Connection variation. 63
3.2.4 Exposed Broker. 64
3.2.5 Exposed Broker=Router variation . 65
3.2.6 Exposed Serial Process . 67
3.2.7 Exposed Serial Process=Workflow variation. 68

Chapter 4. Product descriptions and ESB capabilities 71
4.1 Runtime product descriptions . 72

4.1.1 IBM WebSphere Application Server V6 . 72
4.1.2 IBM DB2 Universal Database Enterprise Server Edition V8.2 76
4.1.3 IBM Cloudscape . 76
4.1.4 IBM WebSphere MQ V5.3. 77
4.1.5 IBM WebSphere Business Integration Message Broker V5 78
4.1.6 IBM WebSphere Business Integration Server Foundation V5.1 79

4.2 Development product descriptions . 80
4.2.1 IBM Rational Application Developer V6 . 80

4.3 Product capabilities for the Enterprise Service Bus 81
4.3.1 Assessment of ESB capabilities by product 82
4.3.2 IIBM WebSphere Application Server V6 . 83
4.3.3 IBM WebSphere Business Integration Message Broker V5 87
4.3.4 Conclusion . 91

Chapter 5. SOA runtime patterns and Product mappings 95
5.1 Runtime patterns . 96

5.1.1 Direct Connection using a service bus . 96
5.1.2 ESB runtime pattern . 98
5.1.3 ESB Gateway runtime pattern. 106
5.1.4 BSC runtime pattern . 108
5.1.5 ESB, BSC composite pattern . 111
5.1.6 Exposed ESB Gateway runtime pattern . 113
5.1.7 Exposed ESB Gateway, BSC composite pattern 115
iv Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5.2 Product mappings . 116
5.2.1 ESB runtime pattern::Product mappings. 117
5.2.2 ESB Gateway runtime pattern::Product mapping 118
5.2.3 BSC runtime pattern::Product mapping . 119
5.2.4 Exposed ESB Gateway Product mapping. 120

Part 2. Business scenario and guidelines . 123

Chapter 6. The business scenario that this book uses 125
6.1 WS-I sample application . 126
6.2 Stages of the business scenario . 126

6.2.1 Stage 1: Internal supply chain management on demand 126
6.2.2 Stage 2: Additional warehouses . 128
6.2.3 Stage 3: Divested inter-enterprise manufacturers. 129

Chapter 7. Technology options . 131
7.1 Web services. 132

7.1.1 Web services interoperability . 135
7.1.2 Advanced and future Web services standards 137

7.2 Java Message Service . 141
7.2.1 Understanding messaging . 141
7.2.2 JMS messages . 142
7.2.3 Advantages of JMS . 143
7.2.4 Disadvantages of JMS . 143

7.3 J2EE Connector Architecture . 144
7.3.1 Advantages of the J2EE Connector Architecture 144
7.3.2 Disadvantages of the J2EE Connector Architecture 145

7.4 Service integration bus in WebSphere Application Server 145
7.4.1 Concepts and architecture . 145
7.4.2 Further information . 149

Part 3. Scenario implementation . 151

Chapter 8. SOA Direct Connection pattern . 153
8.1 Design guidelines . 154

8.1.1 Business scenario . 154
8.1.2 Selecting an SOA pattern . 155
8.1.3 Products . 156

8.2 Development guidelines . 157
8.2.1 Scenario implementation: Direct Connection interaction 157

8.3 Runtime guidelines . 160
8.3.1 Using the service integration bus for messaging 160
8.3.2 Creating a bus. 162
8.3.3 Adding a bus member . 163
 Contents v

8.3.4 Creating the destinations . 164
8.3.5 Creating a JMS connection factory . 165
8.3.6 Creating the JMS queues . 167
8.3.7 Creating the JMS activation specifications 169
8.3.8 Hosting the WSDL files . 171
8.3.9 Installing the applications . 172
8.3.10 Running and using the sample application 174

Chapter 9. Enterprise Service Bus pattern: router scenario 179
9.1 Design guidelines . 180

9.1.1 Business scenario . 180
9.1.2 Selecting an SOA pattern . 182
9.1.3 Router interaction design . 184
9.1.4 Products . 200

9.2 Development guidelines . 202
9.2.1 Scenario implementation: ESB router interaction 203
9.2.2 Creating a SOAP over JMS Web service . 205
9.2.3 Updating Web service clients to use the ESB. 219

9.3 Runtime guidelines . 231
9.3.1 Using the service integration bus to route Web service requests . . 233
9.3.2 Removing the existing enterprise applications 236
9.3.3 Installing the SDO repository . 237
9.3.4 Installing the Web services support . 238
9.3.5 Creating the endpoint listeners . 241
9.3.6 Creating the JMS resources for the Retailer Web service 243
9.3.7 Creating the outbound services . 244
9.3.8 Creating the inbound services. 247
9.3.9 Exporting the service integration bus WSDL for development 253
9.3.10 Importing the schemas into the SDO repository 254
9.3.11 Installing and testing the new enterprise applications. 255
9.3.12 Runtime alternatives . 256

Chapter 10. Enterprise Service Bus pattern: broker scenario 259
10.1 Design guidelines . 260

10.1.1 Business scenario . 260
10.1.2 Selecting an SOA pattern . 262
10.1.3 Broker interaction design . 264
10.1.4 Products . 271

10.2 Development guidelines . 274
10.2.1 Scenario implementation: ESB broker interaction. 274
10.2.2 Mediations. 275
10.2.3 Creating a mediation handler class. 276
10.2.4 Working with messages in mediations . 279
vi Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

10.2.5 Coding the mediations . 282
10.2.6 Assigning and exporting the mediation handlers 295

10.3 Runtime guidelines . 297
10.3.1 Externalizing service lookup . 298
10.3.2 Configuration of additional resources . 304
10.3.3 Mediation configuration . 305
10.3.4 Installing the additional Warehouses . 311
10.3.5 Testing the sample application . 311

Chapter 11. Exposed ESB Gateway pattern . 315
11.1 Design guidelines . 316

11.1.1 Business scenario . 316
11.1.2 Selecting an SOA pattern . 317
11.1.3 Exposed ESB Gateway design . 321
11.1.4 Products . 333

11.2 Development guidelines . 335
11.3 Runtime guidelines . 337

11.3.1 Removing Web services from the ESB . 338
11.3.2 Migrating the SDO repository to use Network Cloudscape. 342
11.3.3 Setting up the Exposed Gateway . 349
11.3.4 Configuring the service integration bus link 354
11.3.5 Routing Web service requests between buses 357
11.3.6 Testing the sample application . 361

Part 4. Appendixes . 363

Appendix A. Additional material . 365
Locating the Web material . 365
Using the Web material . 366

System requirements for downloading the Web material 366
How to use the Web material . 366

Appendix B. Configuring the scenario environment 367
Working with the WS-I sample scenario enterprise applications 368
Configuring the Direct Connection scenario. 368
Configuring the ESB router scenario . 370

Abbreviations and acronyms . 373

Related publications . 375
IBM Redbooks . 375
Other publications . 375
Online resources . 376
How to get IBM Redbooks . 378
 Contents vii

Help from IBM . 378

Index . 379
viii Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Redbooks (logo) ™
developerWorks®
e-business on demand™
ibm.com®
iSeries™
xSeries®
z/OS®

AIX®
Cloudscape™
CICS®
Domino®
DB2 Connect™
DB2 Universal Database™
DB2®
Everyplace®

IBM®
IMS™
Lotus®
Rational®
Redbooks™
SupportPac™
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Preface

The Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying e-business applications.
This IBM Redbook focuses on how you can use the service-oriented
architecture (SOA) profile of the Patterns for e-business to implement an
Enterprise Service Bus in WebSphere® Application Server V6.

Part 1 presents a description of service-oriented architecture and the Enterprise
Service Bus. It introduces the Application Integration and Extended Enterprise
patterns, and describes the service-oriented architecture Runtime patterns and
Product mappings.

Part 2 describes the business scenario used throughout this book and explains
the key technologies that you can use to build an Enterprise Service Bus in
WebSphere Application Server V6, including Web services and the service
integration bus.

Part 3 guides you through the process of architecting and implementing various
Enterprise Service Bus configurations using WebSphere Application Server V6
and Rational Application Developer V6. It discusses router and broker scenarios
within an Enterprise Service Bus, along with a gateway to enable interaction in
an inter-enterprise environment.

How to read this redbook
We designed this book primarily with IT architects and IT specialists in mind. You
can also find information here for application developers and system
administrators.

This book is the third in a series that covers service-oriented architecture and the
Patterns for e-business. The other books in the series are:

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

This book introduces SOA concepts and the rudimentary SOA profile of the
Patterns for e-business. Scenario chapters are provided, offering design,
development, and runtime guidelines for building SOA implementations in
WebSphere Application Server V5.
© Copyright IBM Corp. 2005. All rights reserved. xi

� Patterns: Implementing an SOA Using an Enterprise Service Bus,
SG24-6346

This book provides a more in-depth description of SOA and Web services
technologies and introduces the SOA concept of the Enterprise Service Bus.
It expands the Patterns for e-business SOA profile to provide Enterprise
Service Bus guidelines. This book also provides scenario chapters to show
Enterprise Service Bus implementations that are created in WebSphere
Application Server V5 and WebSphere Business Integration Message Broker
V5. An additional scenario chapter describes how WebSphere Business
Integration Server Foundation V5.1 can interact with an Enterprise Service
Bus.

In this book, Part 1, “Patterns for e-business and SOA” on page 1 introduces the
concepts used throughout the rest of the book:

� Chapter 1, “Introduction to Patterns for e-business” on page 3

Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying e-business
applications. This book uses the Patterns for e-business to indicate how to
develop and deploy SOA solutions. This chapter provides an introduction to
what the Patterns for e-business are at a general level.

� Chapter 2, “SOA and the Enterprise Service Bus” on page 19

This chapter provides an introduction to SOA and the Enterprise Service Bus.
It is essential reading if you are new to SOA.

� Chapter 3, “Application Integration and Extended Enterprise patterns” on
page 45

The Patterns for e-business define relevant patterns for intra-enterprise
(Application Integration) and inter-enterprise (Extended Enterprise) solutions.
This chapter introduces the Application patterns for each of these solutions,
and the SOA profile that is associated with them. You need a basic
understanding of this chapter to make sense of the Patterns for e-business
chapters in the remainder of this book.

� Chapter 4, “Product descriptions and ESB capabilities” on page 71

An Enterprise Service Bus is usually implemented using a combination of
products. This chapter provides a short introduction to each of the IBM
products discussed in the book. It also lists common capabilities of an
Enterprise Service Bus and rates WebSphere Application Server V6 and
WebSphere Business Integration Message Broker V5 against these
capabilities.
xii Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� Chapter 5, “SOA runtime patterns and Product mappings” on page 95

For information about how to architect an Enterprise Service Bus solution,
you should study this chapter closely. It describes the Runtime patterns for
the complete Patterns for e-business SOA profile. Product mappings are also
provided for each Runtime pattern, showing how WebSphere Application
Server V6 and other IBM products can be combined to create an Enterprise
Service Bus.

Part 2, “Business scenario and guidelines” on page 123 provides an introduction
to the scenario chapters that are included in Part 3. You can skip Part 2 if you are
familiar with the business scenario and technologies that are related to
WebSphere Application Server. Part 2 contains:

� Chapter 6, “The business scenario that this book uses” on page 125

All three of the IBM Redbooks™ in this series use the same business
scenario: the WS-I supply chain management scenario. This scenario is used
as the sample application throughout the scenario chapters of the book.

� Chapter 7, “Technology options” on page 131

This chapter introduces the key technologies that are used with an Enterprise
Service Bus, including Web services and the service integration bus feature
of WebSphere Application Server V6.

Part 3, “Scenario implementation” on page 151 consists of what we term
scenario chapters. Each chapter takes a Runtime pattern from the SOA profile of
the Patterns for e-business and describes how to design, development, and
deploy this Pattern using WebSphere Application Server V6. The scenario
chapters that are included are:

� Chapter 8, “SOA Direct Connection pattern” on page 153
� Chapter 9, “Enterprise Service Bus pattern: router scenario” on page 179
� Chapter 10, “Enterprise Service Bus pattern: broker scenario” on page 259
� Chapter 11, “Exposed ESB Gateway pattern” on page 315

Each scenario chapter is divided into three distinct parts:

� Design guidelines

Primarily intended for architects. This section describes the design
alternatives that you should consider when designing a particular scenario.

� Development guidelines

Primarily intended for application developers. This section describes the
application development changes that are required when implementing a
particular scenario.
 Preface xiii

� Runtime guidelines

Primarily intended for system administrators. This section describes how to
deploy a particular scenario, and the runtime alternatives that are available.

Part 4, “Appendixes” on page 363 includes the appendixes for this book,
information about abbreviations and acronyms that are used in the book, and a
bibliography of related publications.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Raleigh
Center.

Figure 1 Left to right: Sarah, Oscar, Andy, Kanthi, Martin, and Alasdair

Martin Keen is an Advisory IT Specialist at the ITSO, Raleigh Center. He writes
extensively about WebSphere products and Patterns for e-business. He also
teaches IBM classes worldwide about WebSphere and business process
management. Before joining the ITSO, Martin worked in the EMEA WebSphere
Lab Services team in Hursley, UK. Martin holds a bachelor’s degree in Computer
Studies from Southampton Institute of Higher Education.
xiv Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Oscar Adinolfi is a Certified Senior IT Architect with Global Services in
Melbourne, Australia. He has 25 years of experience in the IT industry. He has a
product and application software development background and has been
working as an IT Architect for the last 10 years, designing and implementing
solutions for large clients in the Telecommunications and Finance industries. His
areas of expertise include systems integration and middleware. He has designed
and developed middleware products, network management products, and
applications for large clients. He holds a degree in Computer Science from
Belgrano University in Argentina.

Sarah Hemmings is a Software Engineer with WebSphere Messaging and
Transactions Technologies in IBM Hursley, UK. She has six years of experience
in testing technologies that are related to messaging. Her areas of expertise
include the WebSphere platform, particularly network deployment, and
WebSphere messaging. Sarah has an Master of Science in Bioengineering from
the University of Stathclyde in the UK.

Andrew Humphreys is a Senior IT Specialist in IBM Software Group Services in
Hursley, UK. He has 10 years of experience in IT. He is a specialist on
WebSphere Business Integration products and has extensive experience in
architecting ESB-style solutions. His customer facing work has lead to an
understanding of the problems customers face and the requirements that they
have for implementing ESBs. He holds a Bachelor of Science in Economics from
City University, London, and a Master of Science in Information Systems from
the University of Huddersfield. He is also a Chartered IT professional member of
the British Computer Society.

Hanumanth Kanthi is a Senior IT Specialist with IBM Software Services for
WebSphere, part of the IBM Software Group. Kanthi’s diverse roles include
providing consulting services, education, and mentoring on J2EE technologies,
specifically WebSphere Application Server, to federal and commercial clients. He
holds a Master of Computer Science from Victoria University of Technology,
Melbourne, Australia.

Alasdair Nottingham is a Software Engineer with the IBM WebSphere
Messaging and Transactions Technologies group based in the UK. He has three
years of experience in the fields of J2EE, messaging, and Web services
technologies, specifically with WebSphere Application Server and WebSphere
MQ. He has a Bachelor of Science degree in Computer Science from University
of Southampton.
 Preface xv

Thanks to the following people for their contributions to this project:

Jonathan Adams and Paul Verschueren
Patterns for e-business leadership and architecture, IBM UK

Carla Sadtler, Linda Robinson
ITSO, Raleigh Center

Phil Adams
WebSphere Application Server Web services development, Austin, USA

Jonathan Bond
Service integration bus, Web services development, Hursley, UK

David Currie
IBM Software Services for WebSphere, Hursley, UK

Peter Lambros
Senior Technical Staff Member, ESB mediation and integration, Hursley, UK

Craig Hurst
Technology Architect, Mincom

M. R. Wok
Senior Provisioning Consultant, Research Triangle Park, USA

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners, or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xvi Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Part 1 Patterns for
e-business and
SOA

This part of the book introduces the concepts that are used throughout the rest of
the book. It contains the following chapters:

� Chapter 1, “Introduction to Patterns for e-business” on page 3

� Chapter 2, “SOA and the Enterprise Service Bus” on page 19

� Chapter 3, “Application Integration and Extended Enterprise patterns” on
page 45

� Chapter 4, “Product descriptions and ESB capabilities” on page 71

� Chapter 5, “SOA runtime patterns and Product mappings” on page 95

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 1. Introduction to Patterns for
e-business

The role of the IT architect is to evaluate business problems and build solutions
to solve them. The architect begins by gathering input on the problem,
developing an outline of the desired solution, and considering any special
requirements that need to be factored into that solution. The architect then takes
this input and designs the solution, which can include one or more computer
applications that address the business problems by supplying the necessary
business functions.

To improve the process over time, we need to capture and reuse the experience
of the IT architects in such a way that future engagements can be made simpler
and faster. We do this by capturing knowledge gained from each engagement
and using it to build a repository of assets. IT architects can then build future
solutions based on these proven assets. This reuse saves time, money, and
effort and helps ensure delivery of a solid, properly architected solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven to be successful. The information captured by them is
assumed to fit the majority, or 80/20, situation. The IBM Patterns for e-business
are further augmented with guidelines and related links for their better use.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last and include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout that describe how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure that supports an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

Figure 1-1 on page 5 shows these assets and their relationships to each other.
4 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The layers of patterns, along with their associated links and guidelines, allow the
architect to start with a problem and a vision for the solution and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
need to succeed. Finally, the architect can build the application using coding
techniques that are outlined in the associated guidelines.

The Patterns Web site provides an easy way of navigating through the layered
Patterns assets to determine the most appropriate assets for a particular
engagement.

For easy reference, see the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

Best-Practice Guidelines
Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
 Chapter 1. Introduction to Patterns for e-business 5

http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the previous section, the Patterns for e-business have a layered
structure where each layer builds detail on the last. At the highest layer are
Business patterns. These describe the entities involved in the e-business
solution.

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 5 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns and at least one Integration pattern. This section
discusses how to use the layered structure of Patterns for e-business assets.

1.2.1 Selecting a Business, Integration, or Composite pattern, or a
Custom design

When faced with the challenge of designing a solution for a business problem,
the first step is to get a high-level view of the goals that you are trying to achieve.
You need to describe a proposed business scenario and match each element to
an appropriate IBM Pattern for e-business. You might find, for example, that the
total solution requires multiple Business and Integration patterns or that it fits into
a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money spent on call centers that handle client inquiries. By allowing
customers to view their policy information and request changes online, the
company can cut back significantly on the resources that are spent handling this
type of request by phone. The objective allows policy holders to view policy
information that is stored in existing databases.

The Self-Service business pattern fits this scenario perfectly. You can use it in
situations where users need direct access to business applications and data.
The following sections discuss the available Business patterns.
6 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.

There are four primary Business patterns, that are explained in Table 1-1.

Table 1-1 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things can often be more complicated. The patterns assume that
most problems, when broken down into their basic components, will fit more than
one of these patterns. When a problem requires multiple Business patterns, you
can use Integration patterns.

Business Patterns Description Examples

Self-Service
(user-to-business)

Applications where users
interact with a business via
the Internet or intranet.

Simple Web applications

Information Aggregation
(user-to-data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, and so forth.

Business intelligence,
knowledge management,
and Web crawlers

Collaboration
(user-to-user)

Applications where the
Internet supports
collaborative work
between users.

Community, chat,
videoconferencing, e-mail,
and so forth

Extended Enterprise
(business-to-business)

Applications that link two or
more business processes
across separate
enterprises.

EDI, supply chain
management, and so forth
 Chapter 1. Introduction to Patterns for e-business 7

Integration patterns
Integration patterns allow you to tie together multiple Business patterns to solve
a business problem. Table 1-2 describes the Integration patterns.

Table 1-2 Integration patterns

The Access Integration pattern maps to User Integration. The Application
Integration pattern is divided into two essentially different approaches:

� Process Integration, which is the integration of the functional flow of
processing between the applications.

� Data Integration, which is the integration of the information that is used by
applications.

You can combine the Business and Integration patterns to implement
installation-specific business solutions called a Custom design.

Custom design
Figure 1-2 illustrates the use of a Custom design to address a business problem.

Figure 1-2 Patterns representing a Custom design

Integration Patterns Description Examples

Access Integration Integration of a number of
services through a
common entry point

Portals

Application Integration Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers,
data propagators, and data
federation engines

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

8 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

If you do not use any of the Business or Integration patterns in a Custom design,
you can show the unused patterns as lighter blocks than those patterns that you
do use. For example, Figure 1-3 shows a Custom design that does not have a
Collaboration or an Extended Enterprise business pattern for a business
problem.

Figure 1-3 Custom design showing unused patterns

If a Custom design recurs many times across domains that have similar business
problems, then it can also be a Composite pattern. For example, the Custom
design in Figure 1-3 can also describe a Sell-Side Hub Composite pattern.

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. Table 1-3 on page 10 shows the
identified Composite patterns.

A
cc

es
s

In
te

gr
at

io
n Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Introduction to Patterns for e-business 9

Table 1-3 Composite patterns

Composite Patterns Description Examples

Electronic Commerce User-to-online-buying • www.macys.com
• www.amazon.com

Portal Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized access
for its users.

• Enterprise intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

• Collaboration providers who
provide services such as e-mail or
instant messaging.

Account Access Provide customers with
around-the-clock account access to
their account information.

• Online brokerage trading
applications.

• Telephone company account
manager functions.

• Bank, credit card and insurance
company online applications.

Trading Exchange Allows buyers and sellers to trade
goods and services on a public site.

• Buyer's side - interaction between
buyer's procurement system and
commerce functions of
e-Marketplace.

• Seller's side - interaction between
the procurement functions of the
e-Marketplace and its suppliers.

Sell-Side Hub
(supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell
goods and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub
(purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a
vehicle to leverage the buying or
procurement budget in soliciting the
best deals for goods and services
from prospective sellers across the
Web.

www.wre.org
(WorldWide Retail Exchange)
10 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The makeup of these patterns is variable in that there will be basic patterns
present for each type. However, you can extend the Composite to meet
additional criteria. For more information about Composite patterns, refer to
Patterns for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas
Koushik, Guru Vasudeva, and George Galambos.

1.2.2 Selecting Application patterns
After you identify the Business pattern, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern usually has
multiple possible Application patterns. An Application pattern might have logical
components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break down the application into the most basic conceptual
components that identify the goal of the application. In our example, the
application falls into the Self-Service business pattern, and the goal is to build a
simple application that allows users to access back-end information. Figure 1-4
shows the Self-Service::Directly Integrated Single Channel application pattern,
which fulfills this requirement.

Figure 1-4 Self-Service::Directly Integrated Single Channel pattern

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read/Write data

Back-End
Application 2
 Chapter 1. Introduction to Patterns for e-business 11

This Application pattern consists of a presentation tier that handles the request
and response to the user. The application tier represents the component that
handles access to the back-end applications and data. The multiple application
boxes on the right represent the back-end applications that contain the business
data. The type of communication is specified as synchronous (one request/one
response, then next request/response) or asynchronous (multiple requests and
responses intermixed).

Suppose that the situation is a little more complicated. Let's say that the
automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request actually needs data from multiple,
disparate back-end systems. In this case, there is a need to break the request
down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information that is sent back
from the requests, and put this information into the form of a response
(recompose). In this case, the Self-Service::Decomposition application pattern
(as shown in Figure 1-5) would be more appropriate.

Figure 1-5 Self-Service::Decomposition pattern

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

Presentation synchronous Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or which
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
 flow)

Back-End
Application 1

Back-End
Application 2
12 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

1.2.3 Review Runtime patterns
You can refine the Application pattern further with more explicit functions. Each
function is associated with a runtime node. In reality, these functions, or nodes,
can exist on separate physical machines or can coexist on the same machine. In
the Runtime pattern the physical location of the function is not relevant. The
focus is on the logical nodes that are required and their placement in the overall
network structure.

As an example, let's say that our client has determined that their solution fits into
the Self-Service business pattern and that the Directly Integrated Single Channel
pattern is the most descriptive of the situation. The next step is to determine the
Runtime pattern that is most appropriate for the situation.

They know that they will have users on the Internet what are accessing their
business data, Therefore, they require a measure of security. You can implement
security at various layers of the application, but the first line of defense is almost
always one or more firewalls that define who and what can cross the physical
network boundaries into the company network.

The client also needs to determine the functional nodes that are required to
implement the application and security measures. Figure 1-6 on page 14 shows
the Runtime pattern that is one option.
 Chapter 1. Introduction to Patterns for e-business 13

Figure 1-6 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node fulfills in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. The
Application pattern handles both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. Figure 1-7 on
page 15 shows variation on this pattern. It splits the Web application server into
two functional nodes by separating the HTTP server function from the application
server. The HTTP server (Web server redirector) provides static Web pages and
redirects other requests to the application server. This pattern moves the
application server function behind the second firewall, adding further security.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Existing
Applications

and Data

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data
14 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 1-7 Directly Integrated Single Channel application pattern::Runtime pattern

These are just two examples of the possible Runtime patterns that are available.
Each Application pattern will have one or more Runtime patterns defined. You
can modify these Runtime patterns to suit the client’s needs. For example, the
client might want to add a load-balancing function and multiple application
servers.

1.2.4 Reviewing Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform. However, it is more
likely that the client will have a variety of platforms involved in the network. In this
case, you can mix and match product mappings.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data
 Chapter 1. Introduction to Patterns for e-business 15

For example, you could implement the runtime variation in Figure 1-7 on page 15
using the product set that is depicted in Figure 1-8.

Figure 1-8 Directly Integrated Single Channel application pattern: Windows® 2000 Product mapping

1.2.5 Reviewing guidelines and related links
The Application patterns, Runtime patterns, and Product mappings can guide
you in defining the application requirements and the network layout. The actual
application development has not been addressed yet. The Patterns Web site
provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application, based on the following
guidelines:

� Design guidelines provide tips and techniques for designing the applications.

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

� System management guidelines address the day-to-day operational
concerns, including security, backup and recovery, application management,
and so forth.

� Performance guidelines give information about how to improve the
application and system performance.

Internal networkDemilitarized zone
O

ut
si

de
 w

or
ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l
Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
16 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

1.3 Summary
The IBM Patterns for e-business are a collected set of proven architectures. You
can use this repository of assets to facilitate the development of Web-based
applications. Patterns for e-business help you understand and analyze complex
business problems and break them down into smaller, more manageable
functions that you can then implement.
 Chapter 1. Introduction to Patterns for e-business 17

18 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 2. SOA and the Enterprise
Service Bus

This chapter provides an introduction to service-oriented architecture (SOA). It
also defines the Enterprise Service Bus (ESB) and describes the ESB in terms of
the role that it plays in the implementation of an SOA.

2

© Copyright IBM Corp. 2005. All rights reserved. 19

2.1 Overview of SOA
SOA defines integration architectures based on the concept of a service.
Applications collaborate by invoking each others services, and services are
composed into larger sequences to implement business processes.

Drivers for SOA
The main driver for SOA is to define an architectural approach that assists in the
flexible integration of IT systems. Organizations spend a considerable amount of
time and money trying to achieve rapid, flexible integration of IT systems across
all elements of the business cycle. The drivers behind this objective include:

� Increasing the speed at which businesses can implement new products and
processes, can change existing ones, or can recombine them in new ways

� Reducing implementation and ownership costs of IT systems and the
integration between them

� Enabling flexible pricing models by outsourcing more fine-grained elements of
the business than were previously possible or by moving from fixed to
variable pricing, based on transaction volumes

� Simplifying the integration work that is required by mergers and acquisitions

� Achieving better IT use and return on investment

� Achieving implementation of business processes at a level that is
independent from the applications and platforms that are used to support the
processes

SOA prescribes a set of design principles and an architectural approach to
achieve this rapid flexible integration.

Definition of SOA
SOA is an integration architecture approach that is based on the concept of a
service. The business and infrastructure functions that are required to build
distributed systems are provided as services that collectively, or individually,
deliver application functionality to either user applications or other services.

SOA specifies that within any given architecture, there should be a consistent
mechanism by which services communicate. That mechanism should be loosely
coupled and should support the use of explicit interfaces.

SOA brings the benefits of loose coupling and encapsulation to integration at an
enterprise level. It applies successful concepts that are proven by
Object-Oriented development, Component-Based Design, and Enterprise
20 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Application Integration technology to an architectural approach for IT system
integration.

Services are the building blocks to SOA. They provide the function out of which
you can build distributed systems. Services can be invoked independently by
either external or internal service consumers to process simple functions or can
be chained together to form more complex functionality and to quickly devise
new functionality.

By adopting an SOA approach and implementing it using supporting
technologies, you can build flexible systems that implement changing business
processes quickly and make extensive use of reusable components.

Figure 2-1 illustrates a company that wants to implement a new business
process to support customers who are placing orders from a Web site.

Figure 2-1 A service-oriented approach to building systems

The company already has existing retail, warehouse, and billing systems. It
would like to build the new process by reusing the functionality that is provided by
those systems rather than having to write new applications or new interfaces to
the existing systems.

If the company has already adopted an SOA approach, it will have defined the
interfaces to its existing systems in terms of the functions or services that they
can offer to support the building of business processes. The defined interfaces
makes building the new Web front end to the system very simple. All the
company needs to do is to develop an application that makes calls to the
services to complete the new business process.

Business
Process

Bill
Customer

Defined
Services

Receive
Order

Service

Customer
Billing

Service

Fulfill
Order

Service

Restock
Service

IT
Systems

Web
Application

Retail
System

CRM
Warehouse

System

Receive
Order

Fulfill
Order Restock
 Chapter 2. SOA and the Enterprise Service Bus 21

The SOA approach means companies are able to build horizontal business
processes that integrate systems, people, and processes from across the
enterprise quickly and easily in response to changing business needs.

As shown in Figure 2-1 on page 21, the company can use existing systems to
implement new business processes that extend the use of the system beyond the
processes that they were originally written to support. The company can
maximize the previous IT investment by reusing existing IT systems without
having to invest extensively to build new interfaces to the systems.

e-business on demand™ and SOA
SOA plays a crucial role for companies who are trying to implement the IBM
vision of e-business on demand. The IBM on demand vision is to enable
customers to succeed in an environment with an unprecedented rate of change.

In an on demand world, companies need to respond quickly and easily to any
client requirement, opportunity, or threat. To succeed in this environment, a
company must be able to implement new processes quickly while leveraging
existing investment. From a business perspective, e-business on demand
provides a way for companies to realign their business and technology
environment to match the need for reusable business functionality. For a fuller
discussion about the e-business on demand vision from IBM and how it relates to
SOA refer to Chapter 2 of Patterns: Implementing an SOA Using an Enterprise
Service Bus, SG24-6346.

SOA can be an architectural enabler for e-business on demand. SOA touches on
the four key elements of e-business on demand, namely:

� Open standards

SOA provides a standard method of invoking services (business logic and
functionality) for disparate organizations to share across network boundaries.

� Integration

– SOA provides interfaces to wrap service endpoints for a
system-independent architecture that promotes cross-industry
communication and integrates end-to-end solutions both in and out of the
enterprise.

– SOAs provide dynamic service discovery and binding, which means that
service integration can occur on demand.

– SOA provides an approach to integrate heterogeneous technologies
inside an enterprise.
22 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� Virtualization

A key principle of SOA is that consumers who invoke the services are
oblivious to implementation details, including location, platform, and if
appropriate to the business scenario, even the identity of the service provider.

� Automation

Technologies, such as grid technologies, can apply SOA principles to
implementing infrastructure services that provide an evolutionary approach to
increased automation.

2.1.1 Definition of a service
SOA is an architectural approach to defining integration architectures that are
based on services. Now, it is important to define what is meant by a service in
this context in order to fully describe SOA and to understand what you can
achieve by using it.

A service can be defined as any discrete function that can be offered to an
external consumer. The function can be an individual business function or a
collection of functions that together form a process.

There are many additional aspects to a service that must also be considered in
the definition of a service within an SOA. The most commonly agreed-on aspects
of a service are that:

� Services encapsulate a reusable business function

� Services are defined by explicit, implementation-independent interfaces

� Services are invoked through communication protocols that stress location
transparency and interoperability

This book uses these commonly agreed aspects to define SOA.

Reusable function
Any business function can be a service. SOA often focusses on business
functions. However, many technical functions can also be exposed as services.
When defining function, there are several levels of granularity that you can
consider. Many descriptions of SOA refer to the use of large-grained services;
however, some powerful counter-examples of successful, reusable, fine-grained
services exist. For example, getBalance is a very useful service but is not
large-grained.
 Chapter 2. SOA and the Enterprise Service Bus 23

More realistically, there are many useful levels of service granularity in most
SOAs. For example, all of the following are services that each have a different
granularity:

� Technical Function Services (for example auditEvent, checkUserPassword,
and checkUserAuthorization)

� Business Function Services (for example calculateDollarValueFromYen and
getStockPrice)

� Business Transaction Services (for example checkOrderAvailability and
createBillingRecord)

� Business Process Services (for example openAccount, createStockOrder,
reconcileAccount, and renewPolicy)

Some degree of choreography or aggregation is required between each
granularity level for them to be integrated in an SOA.

A service can be any business function. In an SOA, however, it is preferable that
the function is genuinely reusable. In an SOA, the service can be used and
reused by one or more systems that participate in the architecture. For example,
while the reuse of a Java™ logging API could be described as design time (when
a decision is made to reuse an available package and bind it into application
code), the intention of SOA is to achieve the reuse of services at:

� Runtime

Each service is deployed in one place and one place only and is invoked
remotely by anything that must use it. The advantage of this approach is that
changes to the service (for example, to the calculation algorithm or the
reference data it depends on) need only be applied in a single place.

� Deployment time

Each service is built once but redeployed locally to each system or set of
systems that must use it. The advantage of this approach is increased
flexibility to achieve performance targets or to customize the service (perhaps
according to geography).

The service definition should encapsulate the function well enough to make the
reuse possible. The encapsulation of functions as services and their definition
using interfaces enables the substitution of one service implementation for
another. For example, the same service might be provided by multiple providers
(such as a car insurance quote service, which might be provided by multiple
insurance companies) and individual service consumers might be routed to
individual service providers through some intermediary agent.
24 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Granularity in SOA
The concept of granularity is used to mean several things in SOA, each of which
is actually quite separate:

� Level of abstraction of services

Is the service a high-level business process, a lower-level business
sub-process or activity, or a very low-level technical function?

� Granularity of service operations

How many operations are in the service? One, a few, or many? What factors
determine which operations are collected together in a service?

� Granularity of service parameters

How are the input and output data of service operations expressed? SOA
prefers a small number of large, structured parameters rather than a small
number of primitive types.

Explicit implementation independent interfaces
The use of explicit interfaces to define and encapsulate service function is of
particular importance in making services genuinely reusable. The interface
should encapsulate only those aspects of process and behavior that are used in
the interaction between the service consumer and the service provider. An
explicit interface definition, or contract, is used to bind a service consumer and a
service provider. It should specify only the mutual behavior that is required for
the interaction and nothing about the implementation of the consumer or the
provider.

By explicitly defining the interaction in this way, those aspects of either system
(for example, the platform on which they are based) that are not part of the
interaction are free to change without affecting the other system. This flexibility
allows either system to change implementation or identity freely.
 Chapter 2. SOA and the Enterprise Service Bus 25

Figure 2-2 illustrates the use of explicit interfaces to define and encapsulate
services function.

Figure 2-2 Service implementation in SOA

Communication protocols that stress location transparency
Companies have a variety of choices when deciding how to connect applications.
HTTP, HTTPS, JMS, CORBA, and SMTP are all examples of protocols that can
be used to connect applications. There are also many middleware products, for
example WebSphere MQ, that provide application-to-application connectivity.
Typically, even within a single company, a variety of techniques, products, and
protocols are used to address different integration requirements. This variety of
techniques can create problems when trying to extend the integration to connect
to applications that do not use the same protocols.

SOA does not specify that any specific protocol should be used to provide
access to a service. A key principle in SOA is that a service is not defined by the
communication protocol that it uses but instead is protocol-independent so that
different protocols can be used to access the same service.

SYSTEM 1

Internal code
and process

Service definition of reusable
business function

SYSTEM 2

Internal code
and process

Code definition of reusable
business function

INTERFACE
26 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Ideally, a service should be defined only once, through a service interface, and
should have many implementations with different access protocols. This
definition increases the reusability of any service definition. Also, services should
be invoked, published, and discovered in a way that is abstracted away from the
actual implementation using a single, standards-based form of interface. Thus,
there is a complimentary nature between SOA and Web services.

2.1.2 Web services and SOA
This section discusses the advantages of using Web services to implement SOA.
(You can find a description of Web services in 7.1, “Web services” on page 132.)

An appropriate combination of both Web services technology and the SOA
approach addresses many of the issues of building an SOA-enabled
environment. That is not to say that Web services and SOA are intrinsically
linked, because they can be implemented separately. In fact, many significant
SOAs are proprietary or customized implementations that based on reliable
messaging and Enterprise Application Integration middleware (for example
WebSphere MQ and WebSphere Business Integration Message Broker) and do
not use Web services technologies. Also, most existing Web services
implementations consist of point-to-point integrations that address a limited set of
business functions between a defined set of cooperating partners.

However, existing SOA implementations have demonstrated the benefits of
SOA, usually within a single enterprise, and the existing uses of Web services
have demonstrated the benefits of the Web services technologies in integrating
heterogeneous systems both within and among organizations. A custom
approach gives an organization the problem of supporting heterogenity; a
proprietary approach gives it to one IT vendor. Adopting a standards-based
approach, such as Web services, offers a solution to these issues.

There are logical links between Web services and SOA that suggest that they
are complimentary:

� Web services provide an open-standard and machine-readable model for
creating explicit, implementation-independent descriptions of service
interfaces.

� Web services provide communication mechanisms that are
location-transparent and interoperable.

� Web services are evolving, through Business Process Execution Language
for Web Services (BPEL4WS), document-style SOAP, Web services
Definition Language (WSDL), and emerging technologies (such as
WS-ResourceFramework), to support the technical implementation of
well-designed services that encapsulate and model reusable function in a
flexible manner.
 Chapter 2. SOA and the Enterprise Service Bus 27

Working together, Web services and SOA have the potential to address many of
the technical issues that are faced when trying to build an on demand
environment. For example:

� A multitude of technologies and platforms are used to support business
systems, all which need to be integrated into an SOA.

Web services are a set of open-standard technologies that are supported by
most of the IT industry and by the Web Services Interoperability (WS-I)
organization. Their basis is in simple, text-based, and open-standard
technologies such as XML and HTTP, and the fact that they can leverage
more sophisticated interoperable technologies, such as asynchronous
messaging, means that they can be supported in the vast majority of IT
environments. Increasing ubiquity and maturity of product support means that
implementing and integrating Web services will become increasingly efficient.

� Business process models are a mixture of people practices, application code,
and interactions among people and systems or systems and systems.

Although SOA is an approach to architecture that must be applied to systems
and integrations, it specifies a set of principles and techniques that encourage
the encapsulation and modeling of reusable business functions and
processes. Recent and emerging trends in Web services, such as BPEL4WS
and WS-ResourceFramework, will increasingly support the modeling
concepts of SOA. In this way, process management can be centralized rather
than being part of multiple applications.

� Changes to one system tend to imply ripples of change at many levels to
many other systems.

SOA specifies several principles and techniques for achieving the
encapsulation of service function and the loose coupling of service
interactions. These techniques minimize the cases where change to one part
of a system implies changes to other parts.

� In a true SOA the integration solution should be able to invoke services
offered outside the enterprise by partners and should be extendable to
support future partners.

The Web services technologies have proven effective in many
business-to-business integrations, where their open standards basis and use
of simple, existing infrastructure and protocols makes them particularly
effective. Recent and emerging standards, such as WS-Security, add to the
sophistication of interaction that is possible when using Web services in this
model.
28 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� There is no single data, business, or process model across, or beyond, the
enterprise.

Although they are not a magic solution to this issue, the SOA principles define
an approach that enables organizations to progressively expose functions
across their business as services and to combine those services into
processes. SOA encourages processes to be centrally managed and
explicitly defined and modelled. Over time, businesses that take this
approach will improve the consistency of their business and process models
and will leverage the use of business process modeling and automation
technology to more explicitly control and monitor their execution of processes.

� Not all integration technologies work as well across a wide area network or
the Internet as they do across a local area network.

The Web services technologies support multiple protocols, so they can use
the simplest protocols available, such as HTTP when that offers an
advantage, or leverage other infrastructures such as WebSphere MQ when
that is more appropriate.

For these reasons, SOA and Web services are often seen together as the future
direction for system integration. However, note that in Web services that WSDL
does not specify all that is implied by what SOA means by an interface. It does
not specify service levels, and it does not specify pre- and post- conditions.
BPEL4WS can do something equivalent but only for a subset of requirements,
for example in process models. All SOA projects have to make up this shortfall in
standard project documentation, custom service descriptions, or some other
means.

2.1.3 The advantages of SOA
Use of SOA has the following advantages to achieving loosely coupled flexible
integration of IT systems:

� Heterogeneous systems can be integrated because of
implementation-independent interfaces that describe services.

� The description of service interfaces in terms of a common business process
and data model minimizes any interdependencies to only what matters to the
business.

� The encapsulation of services with standard interfaces enables reuse and
flexibility. Each service is defined and implemented in only one place, so
changing it is straightforward.

There are benefits in development and maintenance costs, but flexibility is the
primary goal in SOA.
 Chapter 2. SOA and the Enterprise Service Bus 29

With clearly defined interfaces between all business systems, it is possible to
model and change the business process that are captured by them at a level
above individual systems. Thus, SOA is an enabler for process modelling and
automation at an enterprise scale.

Currently, and for some time to come, many of the technologies that are used to
implement SOAs are evolving rather than mature and stable. Therefore,
individual SOA solutions must make carefully balanced decisions among
customized, proprietary, and open-standard technologies, which characteristics
and components of SOA to implement, and which areas of business function and
process to which to apply them. Of course, you should balance these decisions
between business benefits, technology maturity, and implementation or
maintenance efforts.

2.1.4 SOA summary
SOA and Web services enable new opportunities for more flexible, rapid, and
widespread integration in a model that is consistent with the exposure of
business function as services. SOA and Web services offer the choreography of
those services into processes that can be modeled, executed, and monitored
with features such as:

� SOA defines concepts and general techniques for designing, encapsulating,
and invoking reusable business functions through loosely bound service
interactions. Most of the techniques have been proven individually in previous
technologies or design styles. SOA unites them in an approach that is
intended to bring encapsulation and reuse to the enterprise level.

� Web services provide an emerging set of open-standard technologies that
can be combined with proven existing technologies to implement the
concepts and techniques of SOA.

� Industry support for Web services standards, interoperability among different
implementations of Web services, and the infrastructure technology that is
required to support an SOA give technology customers increasingly mature
and sophisticated technologies that are suitable for SOA implementation.

These techniques and technologies give you the tools that are required to
implement flexible SOAs and to evolve toward an on demand business model.
However, SOA is an architectural approach, not a technology or a product. In
order to implement an SOA, you must have the infrastructure to support the
architecture, such as an Enterprise Service Bus.
30 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

2.2 Overview of Enterprise Service Bus
Successfully implementing an SOA requires applications and infrastructure that
can support the SOA principles. Applications can be enabled by creating service
interfaces to existing or new functions that are hosted by the applications. The
service interfaces should be accessed using an infrastructure that can route and
transport service requests to the correct service provider. As organizations
expose more and more functions as services, it is vitally important that this
infrastructure should support the management of SOA on an enterprise scale.

2.2.1 SOA infrastructure requirements
The Enterprise Service Bus (ESB) is emerging as a middleware infrastructure
component that supports the implementation of SOA within an enterprise. The
need for an ESB can be seen by considering how it supports the concepts of
SOA implementation by:

� Decoupling the consumer’s view of a service from the actual implementation
of the service

� Decoupling technical aspects of service interactions

� Integrating and managing services in the enterprise

Decoupling the consumer’s view of a service from the actual implementation
greatly increases the flexibility of the architecture. It allows the substitution of one
service provider for another (for example, because another provider offers the
same services for lower cost or with higher standards) without the consumer
being aware of the change or without the need to alter the architecture to support
the substitution.

This decoupling is better achieved by having the consumers and providers
interact via an intermediary. Intermediaries publish services to consumers. The
consumer binds to the intermediary to access the service, with no direct coupling
to the actual provider of the service. The intermediary maps the request to the
location of the real service implementation.

In an SOA, services are described as being loosely coupled. However, at
implementation time, there is no way to loosely couple a service or any other
interaction between systems. The systems must have some common
understanding to conduct an interaction. Instead, to achieve the benefits of loose
coupling, consideration should be given to how to couple or decouple various
aspects of service interactions, such as the platform and language in which
services are implemented, the communication protocols used to invoke services,
the data formats used to exchange input and output data between service
consumers and providers.
 Chapter 2. SOA and the Enterprise Service Bus 31

Further decoupling can be achieved by handling some of the technical aspects of
transactions outside of applications. This could apply aspects of interactions
such as:

� How service interactions are secured

� How the integrity of business transactions and data are maintained (for
example, through reliable messaging, the use of transaction monitors, or
compensation techniques)

� How the invocation of alternative service providers is handled in the event
that the default provider is unavailable

These aspects imply a need for middleware to support an SOA implementation.
Some of the functions that might be provided by the middleware are:

� Map service requests from one protocol and address to another

� Transform data formats

� Support a variety of security and transactional models between service
consumers and service providers and recognize that consumers and
providers might support or require different models

� Aggregate or disaggregate service requests and responses

� Support communication protocols between multiple platforms with
appropriate qualities of service

� Provide messaging capabilities such as message correlation and
publish/subscribe, to support different messaging models such as events and
asynchronous request/response

This middleware support is the role of an ESB.

2.2.2 Definition of an ESB
An ESB provides an infrastructure that removes any direct connection between
service consumers and providers. Consumers connect to the bus and not the
provider that actually implements the service. This type of connection further
decouples the consumer from the provider. A bus also implements further value
add capabilities. For example, security and delivery assurance can be
implemented centrally within the bus instead of having this buried within the
applications.

Integrating and managing services in the enterprise outside of the actual
implementation of the services in this way helps to increase the flexibility and
manageability of SOA.
32 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The primary driver for an ESB, however, is that it increases decoupling between
service consumers and providers. Protocols such as Web services define a
standard way of describing the interface to a service provider that allow some
level of decoupling (as the actual implementation details are hidden). However,
the protocols imply a direct connection between the consumer and provider.

Although it is relatively straight forward to build a direct link between a consumer
and provider, these links can lead to an interaction pattern that consists of
building multiple point-to-point links that perform specific interactions. With a
large number of interfaces this quickly leads to the build up of a complex
spaghetti of links with multiple security and transaction models. Routing control is
distributed throughout the infrastructure, and probably no consistent approach to
logging, monitoring, or systems management is implemented. This environment
is difficult to manage or maintain and inhibits change.

A common approach to reducing this complexity is to introduce a centralized
point through which interactions are routed, as shown in Figure 2-3.

Figure 2-3 Direct connection and central hub integration styles

Direct Connection

Hub and Spoke

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Hub:
ESB
 Chapter 2. SOA and the Enterprise Service Bus 33

A hub and spoke architecture is a common approach that is used in application
integration architectures. In a hub, the distribution rules are separated from
applications. The applications connect to the hub and not directly to any other
application. This type of connection allows a single interaction from an
application to be distributed to multiple target applications without the consumer
being aware that multiple providers are involved in servicing the request. This
connection can reduce the proliferation of point-to-point connections.

Note that the benefit of reducing the number of connections only truly emerges if
the application interfaces and connections are genuinely reusable. For example,
consider the case where one application needs to send data to three other
applications. If this is implemented in a hub, the sending application must define
a link to the hub, and the hub must have links that are defined to the three
receiving applications, giving a total of four interfaces that need to be defined. If
the same scenario was implemented using multiple point-to-point links, the
sending application would need to define links to each of the three receiving
applications, giving a total of just three links. A hub only offers the benefit of
reduced links if another application also needs to send data to the receiving
applications and can make use of the same links as those that are already
defined for the first application. In this scenario, the new application only needs
to define a connection between itself and the hub, which can then send the data
correctly formatted to the receiving applications.

Hubs can be federated together to form what is logically a single entity that
provides a single point of control but is actually a collection of physically
distributed components. This is commonly termed a bus. A bus provides a
consistent management and administration approach to a distributed integration
infrastructure.

2.2.3 Enterprise requirements for an ESB
Using a bus to implement an SOA has a number of advantages. In an SOA
services should, by definition, be reusable by a number of different consumers,
so that the benefits of reduced connections are achieved. In addition, the ESB:

� Supports high volumes of individual interactions.

� Supports more established integration styles, such as message-oriented and
event-driven integration, to extend the reach of the SOA. The ESB should
allow applications to be SOA enabled either directly or through the use of
adapters.

� Support centralization of enterprise-level qualities of service and
manageability requirements into the hub.
34 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 2-4 shows a high-level view of the ESB.

Figure 2-4 The Enterprise Service Bus

As discussed in 2.1, “Overview of SOA” on page 20, SOA applications are built
from services. Typically, a business service relies on many other services in its
implementation. The ESB is the component that provides access to the services
and so enables the building of SOA applications.

Mediation support
The ESB is more than just a transport layer. It must provide mediation support to
facilitate service interactions (for example, to find services that provide
capabilities for which a consumer is asking or to take care of interface
mismatches between consumers and providers that are compatible in terms of
their capabilities). It must support a variety of ways to get on and off the bus,
such as adapter support for existing applications or business connections, that
enable external partners in business-to-business interaction scenarios. To
support these different ways to get on and off the bus, it must support service
interaction with a wide variety of service endpoints. It is likely that each endpoint
will have its own integration techniques, protocols, security models and so on.
This level of complexity should be hidden from service consumers. They need to
be offered a simpler model. In order to hide the complexity from the consumers,
the ESB is required to mediate between the multiple interaction models that are
understood by service providers and the simplified view that is provided to
consumers.
 Chapter 2. SOA and the Enterprise Service Bus 35

Protocol independence
As shown in Figure 2-4 on page 35, services can be offered by a variety of
sources. Without an ESB infrastructure, any service consumer that needs to
invoke a service needs to connect directly to a service provider using the
protocol, transport, and interaction pattern that is used by the provider. With an
ESB, the infrastructure shields the consumer from the details of how to connect
to the provider.

In an ESB, there is no direct connection between the consumer and provider.
Consumers access the ESB to invoke services, and the ESB acts as an
intermediary by passing the request to the provider using the appropriate
protocol, transport, and interaction pattern for the provider. This intermediary
connection enables the ESB to shield the consumer from the infrastructure
details of how to connect to the provider. The ESB should support several
integration mechanisms, all of which can be described as invoking services
through specific addresses and protocols, even if in some cases the address is
the name of a CICS® transaction and the protocol is a J2EE resource adapter
integrating with the CICS Transaction Gateway. By using the ESB, the
consumers are unaware of how the service is invoked on the provider.

Because the ESB removes the direct connection between service consumer and
providers, an ESB enables the substitution of one service implementation by
another with no effect to the consumers of that service. Thus, an ESB allows the
reach of an SOA to extend to non-SOA enabled service providers. It can also be
used to support migration of the non-SOA providers to using an SOA approach
without impacting the consumers of the service.

Support for multiple interaction patterns
To fully support the variety of interaction patterns that are required in a
comprehensive SOA (for example, request/response, publish/subscribe, and
events), the ESB must support in one infrastructure the following major styles of
enterprise integration:

� SOAs in which applications communicate through reusable services with
well-defined, explicit interfaces. Service-oriented interactions leverage
underlying messaging and event communication models.

� Message-driven architectures in which applications send messages through
the ESB to receiving applications.

� Event-driven architectures in which applications generate and consume
messages independently of one another.

The ESB support the enterprise integration while providing additional capabilities
to mediate or transform service messages and interactions, enabling a wide
variety of behaviors and supporting the various models of coupling interaction.
36 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

2.2.4 Minimum ESB capabilities
This section discusses the minimum capabilities an ESB must have to support
the requirements of an SOA enabling infrastructure component. Understanding
the minimum capabilities allows you to assess the suitability of individual
technologies or products for implementing an ESB by analyzing the functionality
that they offer to support the minimum ESB capabilities.

In discussions on ESB, the most commonly agreed elements for defining an ESB
are:

� The ESB is a logical architectural component that provides an integration
infrastructure that is consistent with the principles of SOA.

� The ESB can be implemented as a distributed, heterogeneous infrastructure.

� The ESB provides the means to manage the service infrastructure and the
capability to operate in a distributed, heterogeneous environment.

Table 2-1 summarizes the minimum capabilities that an ESB should have in order
to provide an infrastructure consistent with these elements, and thus consistent
with the benefits of SOA. The sections that follow discusses these capabilities in
more detail.

Table 2-1 Minimum capabilities of an ESB

Category Capabilities Reasons

Communications • Routing
• Addressing
• At least one messaging style

(request/response,
publish/subscribe)

• At least one transport protocol that
is or can be made widely available

Provides location transparency
and supports service substitution

Integration • Several integration styles or
adapters

• Protocol transformation

Supports integration in
heterogeneous environments
and supports service substitution

Service interaction • Service interface definition
• Service messaging model
• Substitution of service

implementation

Supports SOA principles,
separating application code from
specific service protocols and
implementations

Management Administration capability A point of control over service
addressing and naming
 Chapter 2. SOA and the Enterprise Service Bus 37

Communication
The ESB needs to supply a communication layer to support service interactions.
It should support communication through a variety of protocols. It should provide
underlying support for message and event oriented middleware and integrate
with existing HTTP infrastructure and other enterprise application integration
(EAI) technologies. As a minimum capability, the ESB should support at least the
protocols that make sense given the requirements of a specific situation. The
ESB should be able to route between all these communication technologies
through a consistent naming and administration model.

Integration
The ESB should support linking to a variety of systems that do not directly
support service-style interactions so that a variety of services can be offered in a
heterogeneous environment. This includes existing systems, packaged
applications, and other EAI technologies. Integration technologies might be
protocols (for example JDBC, FTP, or EDI) or adapters such as the J2EE
Connector Architecture resource adapters or WebSphere Business Integration
Adapters. It also includes service client invocation through client APIs for various
languages (Java, C+, or C#) and platforms (J2EE or .Net), CORBA, and RMI.

Service interaction
The ESB needs to support SOA concepts for the use of interfaces and support
declaration service operations and quality of service requirements. The ESB
should also support service messaging models consistent with those interfaces,
and be capable of transmitting the required interaction context, such as security,
transaction or message correlation information.

Management
As with any other infrastructure component, the ESB needs to have
administration capabilities so that it can be managed and monitored to provide a
point of control over service addressing and naming. In addition, it should be
capable of integration into systems management software.

2.2.5 ESB and Web services technologies
Given the prominence of Web services technologies in current discussions of
SOA and the fact that many successful implementations of Web services
technologies exist, it is interesting to analyze what the use of basic Web services
technologies (WSDL and SOAP/HTTP) achieves against the minimum ESB
38 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

capabilities that are described in 2.2.4, “Minimum ESB capabilities” on page 37.
Using basic Web services technologies achieves:

� URL addressing and the existing HTTP and DNS infrastructure provide a bus
with routing services and location transparency.

� SOAP/HTTP supports the request/response messaging paradigm.

� The HTTP transport protocol is widely available.

� SOAP and WSDL are an open, implementation-independent messaging and
interfacing model.

Although the use of SOAP/HTTP and WSDL in this way has many advantages,
this scenario falls short of the minimum capabilities of the ESB in the following
ways:

� The scenario relies on the provision of interoperable SOAP/HTTP
enablement of each participating system. Because the Web services
standards are continuing to mature, there are many systems for which this will
not be feasible. An ESB should provide some form of support for alternative
integration techniques.

� Control over service addressing and routing is dispersed between client
invocation code, adapter configurations, and the DNS infrastructure. There is
no single point of infrastructure control. In other words, this is a point-to-point
integration style.

Vitally, there is no capability to substitute one implementation of a service
provider for another without changing the service consumers. Clients and
provider code tend to be bound to service invocations over specific protocols and
to specific addresses.

So, in conclusion, the use of basic Web services technologies on their own is not
sufficient to build an ESB. This technology only supports a subset of the
minimum capabilities that an ESB needs to provide. That said, support of the
Web services technologies is highly desirable within the ESB, as is support for
other technologies that are required in combination to fully implement an ESB
infrastructure.

2.2.6 Extended ESB capabilities
The minimum capabilities described in 2.2.4, “Minimum ESB capabilities” on
page 37 can help assess the suitability of individual technologies or products for
implementing an ESB. However it will establish only those technologies that are
candidates. The detailed requirements of any particular scenario drive additional
ESB capabilities that can then be used to select specific, appropriate products.
 Chapter 2. SOA and the Enterprise Service Bus 39

In particular, the following types of requirements are likely to lead to the use of
more sophisticated technologies, either now or over time:

� Non-functional requirements such quality of service demands and
service-level capabilities

� Higher-level SOA concepts, such as a service directory, and transformations

� Advanced management capabilities, such as system management, and
autonomic and intelligent capabilities

� Truly heterogeneous operation across multiple networks, multiple protocols,
and multiple domains of disparate ownership

Figure 2-5 shows the vision of the IBM On Demand Operating Environment
based on SOA.

Figure 2-5 On Demand Operating Environment architecture

Figure 2-5 shows the capabilities that the ESB requires to facilitate the
interactions between the levels in the On Demand Operating Environment. These
capabilities include service level, service interface, quality of service, intelligence,
communication, security, message management, modeling,
management/automation, and integration capabilities.

If we consider the requirements for an ESB in light of both the minimum
requirements described in 2.2.4, “Minimum ESB capabilities” on page 37 and the
IBM On Demand Operating Environment requirements, then several additional
capability requirements can be identified, as shown in Table 2-2 on page 41.

Service Level Automation and Orchestration

Integration Services
Information
Management

Services

Common
Services

Business
Function
Services

Business
Process

Choreography
Services

User
Access
Services

Security Message Processing Modeling

Integration Mgmt & Autonomic Service Level Intelligence Communication

Enterprise Service Bus

Utility Business Services

Resource Virtualization

Infrastructure Services

Business
Performance
Management

Business
Service

Business
Service

U
S
E
R

B
U
S
I
N
E
S
S

Business
Services

Quality of ServiceService Interaction

User
Interaction
Services
40 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Note that many situations not in the On Demand Operating Environment can also
require some of these capabilities in addition to the minimum requirements.

Table 2-2 Categorized ESB capabilities

Communication Service interaction

• Routing
• Addressing
• Protocols and standards (HTTP,

HTTPS)
• Publish/subscribe
• Response/request
• Fire and forget, events
• Synchronous and asynchronous

messaging

• Service interface definition (WSDL)
• Substitution of service implementation
• Service messaging models required for

communication and integration (SOAP,
XML, or proprietary Enterprise
Application Integration models)

• Service directory and discovery

Integration Quality of service

• Database
• Existing and application adapters
• Connectivity to enterprise application

integration middleware
• Service mapping
• Protocol transformation
• Data enrichment
• Application server environments (J2EE

and .Net)
• Language interfaces for service

invocation (Java, C/C++, or C#)

• Transactions (atomic transactions,
compensation, WS-Transaction)

• Various assured delivery paradigms
(WS-ReliableMessaging or support for
Enterprise Application Integration
middleware)

Security Service level

• Authentication
• Authorization
• Non-repudiation
• Confidentiality
• Security standards (Kerberos,

WS-Security)

• Performance (response time,
throughput and capacity)

• Availability
• Other continuous measures that might

form the basis of contracts or
agreements
 Chapter 2. SOA and the Enterprise Service Bus 41

Integration
Because additional integration capabilities could be supported, the ESB should
be capable of connectivity to a wide range of different service providers, using
adapters and EAI middleware. It should be capable of data enrichment to alter
the service request content and destination on route, and map an incoming
service request to a one or more service providers.

Quality of service
The ESB might be required to support service interactions that require different
qualities of service to protect the integrity of data mediated through those
interactions. This support can involve transactional support, compensation, and
levels of delivery assurance. These features should be variable and driven by
service interface definitions. Other quality of service considerations for an ESB
might include:

� Support qualities of service on top of communication protocols that are
fundamentally more brittle.

� Business transactions that span several systems that need to be monitored
as a whole.

� Support for exception and error handling.

Message processing Management and autonomic

• Encoded logic
• Content-based logic
• Message and data transformations
• Message / service aggregation and

correlation
• Validation
• Intermediaries
• Object identity mapping
• Service / message aggregation
• Store and forward

• Administration capability
• Service provisioning and registration
• Logging
• Metering
• Monitoring
• Integration to systems management

and administration tooling
• Self-monitoring and self-management

Modeling Infrastructure Intelligence

• Object modeling
• Common business object models
• Data format libraries
• Public versus private models for

business-to-business integration
• Development and deployment tooling

• Business rules
• Policy-driven behavior, particularly for

service level, security and quality of
service capabilities (WS-Policy)

• Pattern recognition
42 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Security
The ESB should ensure the integrity and confidentiality of the services that it
carries is maintained. It should integrate with the existing security infrastructures
to address the essential security functions, such as:

� Identification and authentication
� Access controls
� Confidentiality
� Data integrity
� Security management and administration
� Disaster recovery and contingency planning
� Incident reporting

Additionally, the ESB should integrate with the overall management and
monitoring of the security infrastructure. The ESB can either provide security
directly or can integrate with other security components, such as authentication,
authorization, and directory components.

Service level
The ESB should mediate interactions between systems supporting specific
performance, availability and other requirements. It should offer a variety of
techniques and capabilities to meet these requirements. The ESB should provide
support that allows technical and business service level agreements to be
monitored and enforced.

Message processing
The ESB needs to be capable of integrating message, object, and data models
between the application components of an SOA. It should also be able to make
decisions, such as routing, based on content of service messages. The ESB
needs a mediation model that allows message processing to be customized. The
model should also allow sequencing of infrastructure services (for example,
security logging and monitoring) around business services invocations.
Mediations can be located close to consumers, providers, or anywhere in the
ESB infrastructure that is transparent to consumers and providers. Mediations
can also be chained. The ESB should be able to validate content and format.

Management and autonomic
In addition to basic management capabilities, the ESB should also support the
migration to autonomic and On Demand infrastructure by supporting metering
and billing, self-healing and dynamic routing, and it should be able to react to
events to self-configure, heal, and optimize.
 Chapter 2. SOA and the Enterprise Service Bus 43

Modeling
The ESB should support the increasing array of cross-industry and vertical
standards in both the XML and Web services spaces. It should support custom
message and data models. The ESB should also support the use of development
tooling and be capable of identifying different models for internal and external
services and processes.

Infrastructure intelligence
The ESB should be capable of evolving towards a more autonomic, On Demand
infrastructure. It should allow business rules and policies to affect ESB function,
and it should support pattern recognition.

2.2.7 The ESB and other SOA components
The ESB is not the only infrastructure component in an SOA. Although individual
scenarios vary, other commonly occurring components are:

� Business Service Directory, which provides details of available services to
systems that participate in the SOA.

� Business Service Choreography, which is used to orchestrate sequences of
service interactions into short or long-lived business processes.

� ESB Gateway, which is used to provide a controlled point of external access
to services where the ESB does not provide this natively. Larger
organizations are likely to keep the ESB Gateway as a separate component.
An ESB Gateway can also be used to federate ESBs within an enterprise.

These ESB and SOA components are described in detail in 5.1, “Runtime
patterns” on page 96.
44 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 3. Application Integration and
Extended Enterprise
patterns

This chapter covers Application patterns that are relevant to a service-oriented
architecture (SOA). These Application patterns describe commonly observed
and proven solution alternatives for integrating applications within an enterprise
as well as for inter-enterprise integration.

It discusses the Application Integration pattern and, more specifically, the
Process Integration patterns subset. These patterns bring together multiple
applications that integrate the functional flow of processes. This chapter
discusses the following Application Integration patterns (including variations):

� Direct Connection
� Broker
� Serial Process
� Parallel Process

The chapter also discusses the Extended Enterprise pattern (also know as
business-to-business) which addresses interactions and collaborations between
business processes in different enterprises. The patterns covered are the
exposed version of the Application Integration patterns.

3

© Copyright IBM Corp. 2005. All rights reserved. 45

3.1 Application Integration pattern
The Application Integration pattern serves to integrate multiple Business patterns
or to integrate applications and data within an individual Business pattern. At its
highest level, application integration can be divided into two essentially different
approaches:

� Process integration, which is the integration of the functional flow of
processing between applications.

� Data integration, which is the integration of the information that is used by
applications.

This section covers the Process Integration subset of the Application Integration
pattern, because this is the most relevant pattern to an SOA. Figure 3-1 shows
the patterns that this section discusses.

Figure 3-1 Process Integration::Interaction patterns

Direct Connection
Variations: Message/Call Connection

No Yes

N
o

Ye
s

Parallel Interaction

Se
ria

l I
nt

er
ac

tio
n

Source
Application

Target
Application

Broker
Variation: Router

Serial Process
Variation: Serial Workflow

Connection
Rules

Target
ApplicationSource

Application
Broker
Rules

Target
ApplicationTarget

Application

Target
ApplicationSource

Application

Serial
Process
Rules
Tier

Target
ApplicationTarget

Application

Parallel Process
Variation: Parallel Workflow

Target
Application

Parallel
Process

Rules TierSource
Application

Target
ApplicationTarget

Application
46 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

These patterns describe four styles of interaction (and several variations). The
following lists these styles in order of increasing flexibility and sophistication:

� Direct Connection

This pattern is the simplest interaction style that is based on a one-to-one
topology, enabling a pair of applications within an organization to talk directly
to each other. The variations of this pattern are Message Connection and Call
Connection, which apply to one-way request and request/reply interactions,
respectively.

� Broker

This pattern is based on a one-to-N topology which separates distribution
rules from the applications and enables a single interaction from the source
application to be distributed to multiple target applications concurrently. The
variation is Router, which applies to solutions where the source application
initiates an interaction that is forwarded to, at most, one of multiple target
applications. In addition, a Publish/Subscribe runtime variation exists for the
Broker application pattern.

� Serial Process

This pattern extends the one-to-N topology of the Broker pattern by facilitating
sequential execution of business services hosted by target applications
based on a defined set of process rules. A Workflow variation extends these
capabilities by supporting human interaction to complete specific process
steps.

� Parallel Process

This pattern extends the one-to-N topology of the Broker pattern by facilitating
parallel (concurrent) execution of processes. A Workflow variation extends
these capabilities by supporting human interaction to complete specific
process steps.

The remainder of this section provides an overview of these four styles of
interaction. You can find more details at:

http://www.ibm.com/developerworks/patterns
 Chapter 3. Application Integration and Extended Enterprise patterns 47

http://www.ibm.com/developerworks/patterns

3.1.1 Direct Connection
The Direct Connection application pattern allows a pair of applications within an
organization to directly communicate with each other. Complex connections
have associated connection rules, as shown in Figure 3-2.

Connection rules can be used to control the mode of operation of a connector,
depending on external factors. Examples of connection rules are:

� Business data mapping rules
� Infrastructure intelligence rules (such as policy-driven behavior)
� Security rules
� Service level rules (such as response time, throughput, capacity, availability)
� Management rules (such as logging, monitoring, metering)

Figure 3-2 Direct Connection application pattern

The Direct Connection application pattern has two variations:

� Message Connection variation
� Call Connection variation

The variations that are required depend on whether the initiating source
application needs a response from the target application in order to continue with
execution. Both variations can be used with either synchronous or asynchronous
communication protocols. However, synchronous protocols are a better fit for the
Call Connection variation, while asynchronous protocols are a better fit for the
Message Connection variation.

When you should use this pattern
You should use this pattern for applications that have simple integration
requirements with a small number of interfaces which are not likely to be reused
by other applications.

Note: Unlike other patterns, all applications of this pattern must be an
instance of one of the two variations. That is, the Direct Connection
application pattern must be either the Message Connection or Call Connection
variation.

Target
Application

Source
Application

Connection
Rules
48 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

When you should not use this pattern
Conversely, you should not use this pattern for applications with complex
integration requirements with interfaces that are likely to be reused. This pattern
cannot be used for intelligent routing of requests, for decomposition and
recomposition of requests, and for invoking complex business process flows. If
some of these capabilities are required, you should consider more advanced
patterns, such as Broker or Serial/Parallel Process.

SOA profile
In an SOA environment, you can implement the Direct Connection application
pattern using the Service Bus runtime pattern as described in 5.1.1, “Direct
Connection using a service bus” on page 96. This Runtime pattern provides
some minimum SOA capabilities.

3.1.2 Direct Connection=Message Connection variation
The Message Connection variation, shown in Figure 3-3, applies to solutions in
which the business process does not require a response from the target
application within the scope of the interaction.

Figure 3-3 Direct Connection=Message Connection variation

This pattern supports real-time, one-way message flows and best suits
message-oriented middleware, such as IBM WebSphere MQ.

Note: Figure 3-3 does not show the connection rules box that appears in
Figure 3-2 on page 48 in order to focus on the nature of the connection.

Target
Application

Source
Application
 Chapter 3. Application Integration and Extended Enterprise patterns 49

3.1.3 Direct Connection=Call Connection variation
The Call Connection variation, shown in Figure 3-4, applies to solutions in which
the business process depends on the target application to process a request and
return a response within the scope of the interaction.

Figure 3-4 Direct Connection=Call Connection variation

This pattern supports real-time, request/response interactions. You should use
this pattern variation only if a response from the target application is required to
fulfil the business process. Otherwise, the Message Connection variation is the
preferred option because it provides a more loosely coupled interface with better
performance characteristics.

You can also implement this pattern using federated adapter connectors to
improve reuse potential in multiple point-to-point scenarios. It supports
conversion of the request and response into a common protocol between the
adapters.

Note: Figure 3-4 does not show the connection rules box that appear in
Figure 3-2 on page 48 in order to focus on the nature of the connection.

Target
Application

Source
Application
50 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

3.1.4 Broker
The Broker application pattern, shown in Figure 3-5, is based on a one-to-N
topology that separates distribution rules from the applications. It allows a single
interaction from the source application to be distributed to multiple target
applications concurrently. This Application pattern can reduce the proliferation of
point-to-point connections.

Figure 3-5 Broker application pattern

The Broker application pattern applies to applications within an enterprise. It
uses broker rules to separate the distribution logic from the application logic. The
Broker rules are also used to handle the decomposition and recomposition of the
interaction.

The Broker application pattern is built upon the Direct Connect application
pattern, reusing it to provide connectivity between tiers. The Broker rules can
support the Message Connection or Call Connection variation of the Direct
Connect pattern.

The Broker rules should also support transformations so as to minimize the
impact to existing software assets. This transformation should include
transforming protocols and data.

When you should use this pattern
You should use this pattern to allow applications to interact with one or more of
multiple target applications. This pattern supports more complex integration
requirements than the Direct Connection application pattern. Using this pattern
can minimize the number of connections between applications and, therefore,
reduce complexity and increased flexibility. With this pattern, you can implement
solutions where the consumers and providers are loosely coupled, which
minimizes changes to both.

Target
Application

Source
Application

Broker
Rules

Target
Application

Target
ApplicationWIP

Broker Rules
& WIP Results
 Chapter 3. Application Integration and Extended Enterprise patterns 51

For a successful implementation of this pattern, a certain level of coordination
and cooperation across the enterprise or department where it is being applied is
required. Otherwise some of the advantages of using this pattern over the Direct
Connection application pattern might not be realized.

When you should not use this pattern
This pattern does not support complex business process workflow as a result of
a request from another application. If this capability is required, you should
consider additional patterns, such as Serial/Parallel Process, and use these
patterns in conjunction with the Broker pattern as a composite. Also, very simple
inter-application integration might not warrant the use of this pattern.

SOA profile
In an SOA environment, you can implement the Broker application pattern using
the Enterprise Service Bus runtime pattern as described in 5.1.2, “ESB runtime
pattern” on page 98.

3.1.5 Broker=Router variation
The Router variation of the Broker application pattern, shown in Figure 3-6,
applies to solutions in which the source application initiates an interaction with, at
most, one of multiple target applications.

Figure 3-6 Broker=Router variation

Where the Broker application pattern enables one-to-N connectivity, the Router
application pattern enables one-to-one connectivity, with the Router rules tier
selecting the target.

Target
Application

Source
Application

Router
Rules

Target
Application

Target
ApplicationR/O

Router Rules
52 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

When you should use this pattern
The reasons for selecting this pattern are similar to those for selecting the Broker
application pattern. The difference is that the Router application pattern routes
requests to only one of multiple target applications. Otherwise, as with the Broker
application pattern, this pattern removes the need for an application to hold
routing rules, provides loose coupling between consumers and providers, and
can minimize the number of connections between applications and therefore
reduce complexity and increase flexibility. The Router application pattern should
also support protocol and data transformation.

As with the Broker application pattern, this pattern requires a certain level of
coordination and cooperation across the enterprise or department where it is
being applied.

When you should not use this pattern
If a one-to-N topology is required, then, you should use the Broker application
pattern. As with the Broker application pattern, this pattern does not support
complex business process flows. If this capability is required, you should
consider additional patterns, such as Serial/Parallel Process, and use these
patterns in conjunction with the Router pattern as a composite. Also, very simple
inter-application integration might not warrant the use of this pattern.

SOA profile
In an SOA environment, you can implement the Router application pattern using
the Enterprise Service Bus runtime pattern as described in 5.1.2, “ESB runtime
pattern” on page 98. In this case, fewer ESB capabilities are required as
compared to the Broker application pattern.
 Chapter 3. Application Integration and Extended Enterprise patterns 53

3.1.6 Serial Process
The Serial Process application pattern, shown in Figure 3-7, extends the
one-to-N topology that is provided by the Broker application pattern by facilitating
the sequential execution of business services hosted by target applications.

Figure 3-7 Serial Process application pattern

This pattern enables the orchestration of a serial business process in response
to an interaction that a source application initiates.

When you should use this pattern
You should use this pattern for solutions that require the composition of
end-to-end business process flows that leverage business services that are
implemented by target applications. This pattern supports business process
flows that are composed of sequential steps. This pattern allows organizations to
externalize process flow logic. This means that process flow logic, which is
otherwise typically embedded in applications and in the interaction between
applications, can be centrally modelled and defined. This provides more flexibility
and the ability for an organization to respond to change more promptly. It also
provides a much easier way to manage the processes, to measure and analyze
process effectiveness, and to take corrective actions.

When you should not use this pattern
Although this might seem obvious, this pattern is only suited for solutions that are
process driven. The pattern is not suited if there is a requirement for parallel
process execution and is not suited for inter-enterprise process flows.

SOA profile
In an SOA environment, you can implement the Serial Process application
pattern using the Business Service Choreography runtime pattern as described
in 5.1.4, “BSC runtime pattern” on page 108.

Target
Application

Source
Application

Serial Process
Rules Tier

WIP

Intermediate
Results

R/O

Process Execution
Rules

Target
Application

Target
Application
54 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

You should also consider combining this pattern with the Enterprise Service Bus
pattern to leverage the integration capabilities of the ESB. See 5.1.5, “ESB, BSC
composite pattern” on page 111 for more information.

3.1.7 Serial Process=Workflow variation
The Serial Workflow variation of the Serial Process application pattern, shown in
Figure 3-8, extends the basic serial process orchestration capability by
supporting human interaction for completing certain process steps.

Figure 3-8 Serial Process=Workflow variation

When you should use this pattern
You should use this pattern for solutions that require the composition of
end-to-end business process flows that leverage business services that are
implemented by target applications. This pattern supports business process
flows that are composed of sequential steps. These sequential steps can include
one or more steps that are performed by a human. This pattern also supports
requirements for long running transactions, given that it must support this
requirement to provide for human interaction capability. As with the Serial
Process application pattern, organizations using this pattern can benefit from
externalizing process flow logic.

Target
Application

Source
Application

Serial Workflow
Rules Tier

WIP

Intermediate
Results

R/O

Process Execution
Rules including

task-resource relationship

Human
Interaction
Resolution

Target
Application

Target
Application
 Chapter 3. Application Integration and Extended Enterprise patterns 55

When you should not use this pattern
This pattern is only suited for solutions that are process driven and that require
human interaction. The pattern is not suited if there is a requirement for parallel
process execution and is not suited for inter-enterprise process flows.

SOA profile
In an SOA environment, you can implement the Serial Workflow variation using
the Business Service Choreography runtime pattern as described in 5.1.4, “BSC
runtime pattern” on page 108.

You should consider combining this pattern with the Enterprise Service Bus
pattern to leverage from the integration capabilities of the ESB. See 5.1.5, “ESB,
BSC composite pattern” on page 111 for more information.

3.1.8 Parallel Process
The Parallel Process application pattern, shown in Figure 3-9, extends the basic
serial process orchestration capability provided by the Serial Process application
pattern by supporting parallel (concurrent) execution of the process.

Figure 3-9 Parallel Process application pattern

This pattern enables the orchestration of a parallel business process in response
to an interaction initiated by a source application.

Source
Application

Parallel Process
Rules Tier

WIP

Intermediate
Results

R/O

Process Execution
Rules

Target
Application

Target
Application

Target
Application
56 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

When you should use this pattern
You should use this pattern for solutions that require the composition of
end-to-end business process flows that leverage business services that are
implemented by target applications.

This pattern supports parallel steps, which support requirements to reduce the
process cycle execution time. Therefore, you should use this patter in preference
to the Serial Process application pattern when improved process performance is
required. As always, there is a trade-off between improved performance and
increased complexity of the solution. This is particularly so if the middleware that
is used to implement the pattern does not fully support the pattern’s capability
requirements.

As with the Serial Process application pattern, organizations that use this pattern
can benefit from externalizing process flow logic.

When you should not use this pattern
This pattern is only suited for solutions that are process driven. If execution of
parallel process steps is not required, you should use the Serial Process
application pattern. This pattern does not support inter-enterprise process flows.

SOA profile
In an SOA environment, you can implement the Parallel Process application
pattern using the Business Service Choreography runtime pattern as described
in 5.1.4, “BSC runtime pattern” on page 108.

You should consider combining this pattern with the Enterprise Service Bus
pattern to leverage from the integration capabilities of the ESB. See 5.1.5, “ESB,
BSC composite pattern” on page 111 for more information.
 Chapter 3. Application Integration and Extended Enterprise patterns 57

3.1.9 Parallel Process=Workflow variation
The Parallel Workflow variation of the Parallel Process application pattern,
shown in Figure 3-10, extends the basic parallel process orchestration capability
by supporting human interaction for completing certain process steps.

Figure 3-10 Parallel Process=Workflow variation

This pattern is the most sophisticated of those that enable orchestration of a
business process.

When you should use this pattern
You should use this pattern for solutions that require the composition of
end-to-end business process flows that leverage business services implemented
by target applications. This pattern supports business process flows that support
the execution of some steps concurrently. One or more steps can be performed
by a human.

Parallel steps support requirements to reduce the process cycle execution time.
Therefore, you should use this pattern in preference to the Serial Workflow
variation when improved process performance is required. As always, there is a
trade-off between improved performance and increased complexity of the
solution. This is particularly so if the middleware that is used to implement the
pattern does not fully support the pattern’s capability requirements.

Source
Application

Parallel Workflow
Rules Tier

WIP

Intermediate
Results

R/O

Process Execution
Rules including

task-resource relationship

Target
Application

Target
Application

Target
Application

Human
Interaction
Resolution
58 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

This pattern supports requirements for long running transactions, given that it
must support this requirement to provide for human interaction capability. As with
the Serial Process application pattern, organizations that use this pattern can
benefit from externalizing process flow logic.

When you should not use this pattern
This pattern is only suited for solutions that are process driven and that require
human interaction. The pattern is not suited for inter-enterprise process flows.

SOA profile
In an SOA environment, you can implement the Serial Workflow variation using
the Business Service Choreography runtime pattern as described in 5.1.4, “BSC
runtime pattern” on page 108.

You should consider combining this pattern with the Enterprise Service Bus
pattern to leverage from the integration capabilities of the ESB. See 5.1.5, “ESB,
BSC composite pattern” on page 111 for more information.

3.2 Extended Enterprise pattern
The Extended Enterprise pattern addresses interactions and collaborations
between business processes in separate enterprises. This pattern can be
observed in solutions that implement programmatic interfaces to connect
inter-enterprise applications. In other words, it does not cover applications that
are directly invoked via a user interface by business partners across
organizational boundaries.

This section discusses the Extended Enterprise application pattern and its
variations. Figure 3-11 on page 60 shows the patterns that this section covers.
 Chapter 3. Application Integration and Extended Enterprise patterns 59

Figure 3-11 Extended Enterprise application patterns

These patterns describe three styles of interaction (and several variations). The
following lists these styles in order of increasing flexibility and sophistication:

� Exposed Direct Connection

This is the simplest interaction style that is based on a one-to-one topology,
enabling a pair of applications in different organizations to directly talk to each
other. The variations of this pattern are Message Connection and Call
Connection, which apply to one-way request and request/response
interactions, respectively.

� Exposed Broker

This pattern is based on a one-to-N topology which separates distribution
rules from the applications and enables a single interaction from the source
application to be distributed to multiple target applications concurrently,
where the source application belongs to a different enterprise than that of the
target applications. The variation is Router, which applies to solutions where
the source application initiates an interaction that is forwarded to at most one
of multiple target applications.

� Exposed Serial Process

This pattern extends the one-to-N topology of the Broker by facilitating
sequential execution of business services hosted by target applications
based on a defined set of process rules. A Workflow variation extends these
capabilities by supporting human interaction to complete specific process

Exposed Direct Connection
Variations: Message/Call Connection

No Yes

N
o

Ye
s

Parallel Interaction

Se
ria

l I
nt

er
ac

tio
n

Source
Application

Target
Application

Exposed Broker
Variation: Exposed Router

Exposed Serial Process
Variation: Exposed Serial Workflow

Connection
Rules

Target
ApplicationSource

Application
Broker
Rules

Target
ApplicationTarget

Application

Target
ApplicationSource

Application

Serial
Process
Rules
Tier

Target
ApplicationTarget

Application
60 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

steps. The source application, which starts the process, belongs to a different
enterprise than that of the target applications.

For more details about this pattern, consult the IBM Patterns for e-business Web
site at:

http://www.ibm.com/developerworks/patterns

3.2.1 Exposed Direct Connection
The Exposed Direct Connection application pattern allows a pair of applications
from different enterprises to directly communicate with each other. Complex
connections will have associated connection rules, as shown in Figure 3-12.

Figure 3-12 Exposed Direct Connection application pattern

This pattern is equivalent to the Direct Connection application pattern. For a
more detailed description, refer to 3.1.1, “Direct Connection” on page 48.

When should you use this pattern
You should use this pattern for very simple integration with a partner where a
small number of interfaces are not likely to be reused with other partners.

Note: An Exposed Parallel Process (with associated Parallel Workflow
variation) is not described in this section because this pattern is not yet proven
in the industry. This pattern will be described in the future when
inter-enterprise parallel process implementations are proven in production.

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zone

Target
Application

Source
Application

Connection
Rules
 Chapter 3. Application Integration and Extended Enterprise patterns 61

http://www.ibm.com/developerworks/patterns

When should you not use this pattern
Conversely, do not use this pattern for applications with complex integration
requirements with interfaces that are likely to be reused. This pattern is not
suited for interacting with multiple partners. This pattern cannot be used for
intelligent routing requests, for decomposition and recomposition of requests,
and for invoking complex business process flow. If some of these capabilities are
required, you should consider more advanced patterns, such as Exposed Broker
or Exposed Serial Process.

SOA profile
There is no specific SOA Runtime pattern that supports this Application pattern.
In an SOA environment, accessing external applications would require the
Exposed ESB Gateway runtime pattern that is described in 5.1.6, “Exposed ESB
Gateway runtime pattern” on page 113.

3.2.2 Exposed Direct Connection=Message Connection variation
The Message Connection variation, shown in Figure 3-13, applies to solutions in
which the business process does not require a response from the target
application within the scope of the interaction.

Figure 3-13 Exposed Direct Connection=Message Connection variation

Note: Figure 3-13 does not show the connection rules box that appears in
Figure 3-12 on page 61 in order to focus on the nature of the connection.

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zone

Target
Application

Source
Application
62 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

3.2.3 Exposed Direct Connection=Call Connection variation
The Call Connection variation, shown in Figure 3-14, applies to solutions in
which the business process depends on the target application to process a
request and return a response within the scope of the interaction.

Figure 3-14 Exposed Direct Connection=Call Connection variation

This pattern supports real-time, request/response interactions. You should only
use this pattern variation if a response from the target application is required to
fulfill the business process. Otherwise, the Message Connection variation is the
preferred option because it provides a more loosely coupled interface with better
performance characteristics.

Note: Figure 3-14 does not show the connection rules box that appears in
Figure 3-12 on page 61 in order to focus on the nature of the connection.

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zone

Target
Application

Source
Application
 Chapter 3. Application Integration and Extended Enterprise patterns 63

3.2.4 Exposed Broker
The Exposed Broker application pattern, shown in Figure 3-15, is based on a
one-to-N topology that separates distribution rules from the applications. It allows
a single interaction from the source application to be distributed to multiple target
applications from one or more partners concurrently. This Application pattern can
reduce the proliferation of point-to-point connections.

Figure 3-15 Exposed Broker application pattern

This pattern is equivalent to the Broker application pattern. For a more detailed
description of this pattern, see 3.1.4, “Broker” on page 51 .

When you should use this pattern
You should use this pattern to allow applications to interact with one or more of
multiple target applications from one or more partners. This pattern supports
more complex integration requirements than the Exposed Direct Connection
Application pattern supports. Using this pattern can minimize the number of
connections between applications and, therefore, reduce complexity and
increase flexibility. With this pattern, you can implement solutions where the
consumers and providers are loosely coupled, which minimizes changes to both.

This pattern should support protocol and data transformation. This pattern
supports the most likely scenario where the enterprise needs to interact with
multiple partners.

Partner B

Partner A

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zones

Source
Application

Broker
Rules

Target
Application

Target
Application

WIP

Broker Rules
& WIP Results

Partner C

Target
Application
64 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

When you should not use this pattern
This pattern does not support complex business process workflow. If this
capability is required, you should consider additional patterns, such as Exposed
Serial Process, and use these patterns in conjunction with the Exposed Broker
pattern as a composite. Also, very simple inter-application integration with one
partner might not warrant the use of this pattern.

SOA profile
In an SOA environment, you can implement the Exposed Broker application
pattern using the Exposed ESB Gateway runtime pattern as described in 5.1.6,
“Exposed ESB Gateway runtime pattern” on page 113.

3.2.5 Exposed Broker=Router variation
The Exposed Router variation of the Exposed Broker application pattern, shown
in Figure 3-16, applies to solutions in which the source application initiates an
interaction with, at most, one of multiple target applications that are hosted by
one partner company.

Figure 3-16 Exposed Broker=Router variation

Where the Broker application pattern enables one-to-N connectivity, the Router
application pattern enables one-to-one connectivity, with the router rules tier
selecting the target.

Partner B

Partner A

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zones

Source
Application

Router
Rules

Target
Application

Target
Application

Partner C

Target
Application

R/O

Router Rules
 Chapter 3. Application Integration and Extended Enterprise patterns 65

When you should use this pattern
The reasons for selecting this pattern are similar to those for selecting the
Exposed Broker Application pattern. The difference is that the Exposed Router
Application pattern routes requests to only one of multiple partner target
applications. Otherwise, as with the Exposed Broker application pattern, this
pattern removes the need for application to hold routing rules and provides loose
coupling between consumers and providers. It also minimizes the number of
connections between applications and, therefore, reduces complexity and
increases flexibility. The Exposed Router Application pattern should also support
protocol and data transformation. As with the Exposed Broker pattern, this
pattern supports the most likely scenario where the enterprise needs to interact
with multiple partners.

When you should not use this pattern
If a one-to-N topology is required, then you should use the Exposed Broker
application pattern. As with the Exposed Broker application pattern, this pattern
does not support complex business process flows. If this capability is required,
you should consider additional patterns, such as Exposed Serial Process, and
use these patterns in conjunction with the Router pattern as a composite. Also,
very simple inter-application integration with one partner might not warrant the
use of this pattern.

SOA profile
In an SOA environment, you can implement the Exposed Router variation using
the Exposed ESB Gateway runtime pattern as described in 5.1.6, “Exposed ESB
Gateway runtime pattern” on page 113.
66 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

3.2.6 Exposed Serial Process
The Exposed Serial Process application pattern, shown in Figure 3-17, extends
the one-to-N topology that is provided by the Exposed Broker application pattern
by facilitating the sequential execution of business services that are hosted by
target applications.

Figure 3-17 Exposed Serial Process application pattern

This pattern enables a partner application to initiate the orchestration of a serial
business process. This pattern is equivalent to the Serial Process application
pattern that is described in Figure 3.1.6 on page 54.

When you should use this pattern
You should use this pattern for solutions that require the composition of
end-to-end business process flows to be initiated by a partner application. This
pattern supports business process flows that are composed of sequential steps.

This pattern allows organizations to externalize process flow logic. This means
that process flow logic, that is otherwise typically embedded in applications and
in the interaction between applications, can be centrally modelled and defined.
This provides more flexibility and the ability for an organization to respond to
change more promptly. It also provides an easier way to manage the processes,
to measure and analyze process effectiveness, and to take corrective actions.

The advantages outlined become even more important with process flows that
are able to be initiated by partners, as the ability to control and manage the
process is more critical in order to provide agreed levels of service and possibly
meet contractual obligations. Ideally, the process flows can be reused between

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zone

Source
Application

Serial
Process

Rules Tier

WIP

Intermediate
Results

R/O

Process
Execution

Rules

Target
Application
Target

Application
Target

Application
 Chapter 3. Application Integration and Extended Enterprise patterns 67

external and internal source applications by using this pattern in conjunction with
the Serial Process Application pattern.

When you should not use this pattern
This pattern is only suited for solutions that are process driven. The pattern is not
suited if there is a requirement for parallel process execution.

SOA profile
In an SOA environment, you can implement the Exposed Serial Process
application pattern using the Exposed ESB Gateway, Business Service
Choreography composite pattern as described in 5.1.7, “Exposed ESB Gateway,
BSC composite pattern” on page 115.

3.2.7 Exposed Serial Process=Workflow variation
The Exposed Serial Workflow variation of the Exposed Serial Process
application pattern, shown in Figure 3-18, extends the basic serial process
orchestration capability by supporting human interaction for completing certain
process steps.

Figure 3-18 Exposed Serial Process=Workflow variation

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zone

Source
Application

Serial
Workflow
Rules Tier

WIP

Intermediate
Results

R/O

Process
Execution

Rules including
Task-resource relationship

Target
Application
Target

Application
Target

Application

Human
Interaction
Resolution
68 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

As with the Exposed Serial Process application pattern, a partner application
initiates a process flow. In this case, however, one or more of the steps in this
process flow can be executed by a human.

When you should use this pattern
You should use this pattern for solutions that require the composition of
end-to-end business process flows to be initiated by a partner application. This
pattern supports business process flows that are composed of sequential steps.
These sequential steps can include one or more steps that are performed by a
human.

This pattern supports requirements for long running transactions, given that it
must support this requirement in order to provide for human interaction
capability. As with the Exposed Serial Process Application pattern, organizations
that use this pattern can benefit from externalizing process flow logic.

When you should not use this pattern
This pattern is only suited for solutions that are process driven and that require
human interaction. This pattern is not suited if there is a requirement for parallel
process execution.

SOA profile
In an SOA environment, you can implement the Exposed Serial Workflow
variation using the Exposed ESB Gateway, Business Service Choreography
composite pattern as described in 5.1.7, “Exposed ESB Gateway, BSC
composite pattern” on page 115.
 Chapter 3. Application Integration and Extended Enterprise patterns 69

70 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 4. Product descriptions and
ESB capabilities

This chapter describes products that are discussed and used throughout this
book for both development and runtime activities. The products described are:

� IBM WebSphere Application Server V6
� IBM DB2® Universal Database™
� IBM Cloudscape™
� IBM WebSphere MQ V5.3
� IBM WebSphere Business Integration Message Broker V5
� IBM WebSphere Business Integration Server Foundation V5.1
� IBM Rational® Application Developer V6.0

Additionally, this chapter compares two of these products, WebSphere
Application Server V6 and WebSphere Business Integration Message Broker V5,
against the ESB capabilities that are discussed in 2.2.4, “Minimum ESB
capabilities” on page 37 and 2.2.6, “Extended ESB capabilities” on page 39.

4

© Copyright IBM Corp. 2005. All rights reserved. 71

4.1 Runtime product descriptions
This section describes products that are discussed and used throughout this
book for runtime functionality.

4.1.1 IBM WebSphere Application Server V6
WebSphere Application Servers are a suite of servers that implement the J2EE
specification. Any enterprise applications that are written to the J2EE
specification can be installed and deployed on any of the servers in the
WebSphere Application Server family.

The foundation of the WebSphere brand is the application server. The
application server provides the runtime environment and management tools for
J2EE and Web services-based applications. Clients access these applications
through standard interfaces and APIs. The applications, in turn, have access to a
wide variety of external sources, such as existing systems, databases, and Web
services, that can be used to process the client requests (see Figure 4-1).

Figure 4-1 WebSphere Application Server product overview

Web
server

WebSphere
Application

Server

Application
Server

Application
Server

Clients

Web browser

Java

Msg
Queue

Msg
Queue

Legacy
systems

CICS
IMS
DB2
SAP
etc.

Application
Server

J2EE applications

Messaging

Web
services
provider

Enterprise
application
developer

Rational
Application
Developer

Rational Web
Developer

Web
application
developer

Secure
access

Tivoli
Access

Manager

Web services
Application

Server

Service
Integration B

us

Service
Integration B

us
72 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

WebSphere Application Servers are available in multiple packages to meet
specific business needs. They are also available on a wide range of platforms,
including UNIX® platforms, Microsoft® operating systems, IBM z/OS®, and
iSeries™. Although branded for iSeries, the WebSphere Application Server
products for iSeries are functionally equivalent to those for the UNIX and
Microsoft platforms.

Highlights and benefits
WebSphere Application Server provides the environment to run your
Web-enabled e-business applications. You might think of an application server
as Web middleware or a middle tier in a three-tier e-business environment. The
first tier is the HTTP server that handles requests from the browser client. The
third tier is the business database (for example, DB2 UDB for iSeries) and the
business logic (for example, traditional business applications such as order
processing). The middle tier is IBM WebSphere Application Server, which
provides a framework for consistent, architected linkage between the HTTP
requests and the business data and logic.

IBM WebSphere Application Server is intended for organizations that want to
take advantage of the productivity, performance advantages, and portability that
Java provides for dynamic Web sites. It includes:

� J2EE V1.4 support.

� High performance connectors to many common back-end systems to reduce
the coding effort required to link dynamic Web pages to real line-of-business
data.

� Application services for session and state management.

� Web services that enable businesses to connect applications to other
business applications, to deliver business functions to a broader set of
customers and partners, to interact with marketplaces more efficiently, and to
create new business models dynamically.

� The service integration bus infrastructure to complement and extend
WebSphere MQ and the application server. It is suitable for those that are
currently using the WebSphere Application Server V5 embedded messaging
and for those that need to provide messaging capability between WebSphere
Application Server and an existing WebSphere MQ backbone.

The service integration bus features include:

– Multiple messaging patterns (APIs) and protocols for message-oriented
and service-oriented applications.

– A J2EE V1.4 compliant JMS provider that is the default messaging
provider.

– The relevant Web services standards that support JAX-RPC APIs.
 Chapter 4. Product descriptions and ESB capabilities 73

– Reliable message transport capability.

– Tightly and loosely coupled communications options.

– Intermediary logic (mediations) to intelligently adapt message flow in the
network.

– Support for clustering to provide scalability and high availability.

– Quality of service options.

– Support for the WebSphere Business Integration programming model
which converges functions from workflow, message brokering,
collaborations, adaptors, and the application server.

– Fully integrated within WebSphere Application Server, including security,
installation, administration console, performance monitoring, trace, and
problem determination.

– Support for connectivity into a WebSphere MQ network.

Packaging for distributed platforms
Because different levels of application server capabilities are required at different
times as varying e-business application scenarios are pursued, WebSphere
Application Server is available in multiple packaging options. Although they
share a common foundation, each provides unique benefits to meet the needs of
applications and the infrastructure that supports them. So, at least one
WebSphere Application Server product package will fulfill the requirements of
any particular project and the prerequisites of the infrastructure that supports it.
As your business grows, the WebSphere Application Server family provides a
migration path to higher configurations.

You can find more information about the WebSphere Application Server
packages at:

http://www.ibm.com/software/webservers/appserv/was/

You can find more information about using IBM WebSphere Application Server
V6 in WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451.

WebSphere Application Server - Express V6
The Express package is geared to those who need to “get started quickly” with
e-business. It is specifically targeted at medium-sized businesses or
departments of a large corporation, and is focused on providing ease of use and
ease of application development. It contains full J2EE V1.4 support but is limited
to a single server environment.
74 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ibm.com/software/webservers/appserv/was/

The WebSphere Application Server - Express offering is unique from the other
packages in that it is bundled with an application development tool. Although
there are WebSphere Studio and Rational Developer products designed to
support each WebSphere Application Server package, they are normally ordered
independently of the server. WebSphere Application Server - Express includes
the Rational Web Developer application development tool. It provides a
development environment geared toward Web developers and includes support
for most J2EE V1.4 features with the exception of EJB and J2EE Connector
Architecture development environments.

However, keep in mind that WebSphere Application Server - Express does
contain full support for EJB and the J2EE Connector Architecture, so you can
deploy applications with them.

WebSphere Application Server V6
The WebSphere Application Server package is the next level of server
infrastructure in the WebSphere Application Server family. Though the
WebSphere Application Server is functionally equivalent to that shipped with
Express, this package differs slightly in packaging and licensing. The
development tool included is a trial version of Rational Application Developer, the
full J2EE V1.4 compliant development tool.

WebSphere Application Server Network Deployment V6
WebSphere Application Server Network Deployment is an even higher level of
server infrastructure in the WebSphere Application Server family. It extends the
WebSphere Application Server base package to include clustering capabilities,
edge components, and high availability for distributed configurations. These
features become more important at larger enterprises, where applications tend to
service a larger client base and more elaborate performance and availability
requirements are in place.

Application servers in a cluster can reside on the same or multiple machines. A
Web server plug-in installed in the Web server can distribute work among
clustered application servers. In turn, Web containers running servlets and JSPs
can distribute requests for EJBs among EJB containers in a cluster.
 Chapter 4. Product descriptions and ESB capabilities 75

4.1.2 IBM DB2 Universal Database Enterprise Server Edition V8.2
IBM DB2 Universal Database Enterprise Server Edition is a multi-user version of
DB2 Universal Database that allows you to create and manage single partitioned
or partitioned database environments. Partitioned database systems can
manage high volumes of data and provide benefits such as high availability and
increased performance. Other features include:

� A data warehouse server and related components

� DB2 Connect™ functionality for accessing data stored on midrange and
mainframe database systems

� Satellite administration capabilities

DB2 Universal Database V8.2 delivers new features to address the ever
increasing demands and requirements on important data, which include:

� Broadened autonomic computing solutions that automate and simplify
potentially time consuming and complex database tasks.

� A significant amount of new capabilities as well as further integration of DB2
tooling into the Microsoft .NET and WebSphere Java environments. These
new capabilities simplify the development and deployment of DB2
applications and allow application developers to take advantage of the
openness, performance, and scalability of DB2, without regard to the
back-end database or the chosen application architecture

� Integration of industry proven high availability disaster recovery technology
allow line-of-business managers and the enterprise itself to benefit because
applications face less risk of downtime.

You can find more information about the IBM DB2 Universal Database
Enterprise Server Edition at :

http://www.ibm.com/software/data/db2/udb

4.1.3 IBM Cloudscape
IBM Cloudscape is an open source Java relational database management
system that can be embedded in Java programs and used for online transaction
processing. IBM Cloudscape features include:

� Rapid application development through the Java-based relational database
management system (RDBMS) that is built from the ground up for the
embedded environment. This platform independent, small footprint database
integrates tightly with any Java based solution, allowing shortened
development cycles.
76 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ibm.com/software/data/db2/udb

� Supports Java technology standards. Single application versions can be
created that run on any standard Java Virtual Machine (JVM).

� Does not require database administration or resource management and is
invisible to non-technical users, thus eliminating the need for database
administration at each client installation site. IBM Cloudscape can also be
deployed anywhere, from notebook or desktop applications to robust server
solutions.

� Tuned for high performance as well as efficient use of resources, with a
straightforward migration path to various IBMDB2 versions.

� Supports international characters and formats as well as a rich set of RDBMS
features that are based on SQL-92E, including row locking, triggers, and
stored procedures.

� Available access to IBM Cloudscape from inside Java programs using JDBC
and the ability to embed the IBM Cloudscape database inside Java
applications on the server.

Cloudscape Network server comes as part of the IBM Cloudscape package. This
provides multi-user connectivity to IBM Cloudscape databases within a single
system or over a network using Standard Distributed Relational Database
Architecture protocol.

You can find more information about IBM Cloudscape at:

http://www.ibm.com/software/data/cloudscape

4.1.4 IBM WebSphere MQ V5.3
IBM WebSphere MQ provides assured once-only delivery of messages across
more than 35 industry platforms using a variety of communications protocols.
The transportation of message data through a network is made possible through
the use of a network of WebSphere MQ queue managers. Each queue manager
hosts local queues that are containers used to store messages. Through remote
queue definitions and message channels, data can be transported to its
destination queue manager.

To use the services of a WebSphere MQ transport layer, an application must
make a connection to a WebSphere MQ queue manager, the services of which
enable it to receive (get) messages from local queues or send (put) messages to
any queue on any queue manager. The application’s connection can be made
directly (where the queue manager runs locally to the application) or as a client
(to a queue manager that is accessible over a network).
 Chapter 4. Product descriptions and ESB capabilities 77

http://www.ibm.com/software/data/cloudscape

Dynamic workload distribution is another important feature of WebSphere MQ.
This feature shares the workload among a group of queue managers that are
part of the same cluster. This enables WebSphere MQ to balance the workload
across available resources automatically and provide hot standby capabilities if a
system component fails. This is a critical feature for companies that need to
maintain round-the-clock availability.

WebSphere MQ supports a variety of application programming interfaces
(including MQI, AMI, and JMS), which provide support for several programming
languages as well as point-to-point and publish/subscribe communication
models. In addition to support for application programming, WebSphere MQ
provides several connectors and gateways to a variety of other products, such as
Microsoft Exchange, Lotus® Domino®, SAP/R3, CICS, and IMS™, to name just
a few.

You can find more information about IBM WebSphere MQ at:

http://www.ibm.com/software/ts/mqseries

4.1.5 IBM WebSphere Business Integration Message Broker V5
WebSphere Business Integration Message Broker V5 extends the messaging
capabilities of WebSphere MQ by adding message routing, transformation, and
publish/subscribe features. WebSphere Business Integration Message Broker
provides a runtime environment that executes message flows, which consist of a
graph of nodes that represent the processing that is needed for integrating
applications. The message flows can be designed to perform a wide variety of
functions, including:

� Routing of messages to zero or more destinations based on the contents of
the message or message header. (Both one-to-many and many-to-one
messaging topologies are supported.)

� Transformation of messages into different formats so that diverse
applications can exchange messages that each of them can understand.

� Processing message content in several message domains, including the XML
domain that handles self-defining (or generic) XML messages, the Message
Repository Manager (MRM), which handles predefined message sets, and
unstructured data (BLOB domain).

WebSphere Business Integration Message Broker also provides these features:

� Simplified integration of existing applications with Web services through the
transformation and routing of SOAP messages, as well as logging of Web
services transactions.

� Mediation between Web services and other integration models as both a
service consumer and a service provider.
78 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ibm.com/software/ts/mqseries

� Compliance with standards such as Web Services Definition Language
(WSDL), Simple Object Access Protocol (SOAP), and Hypertext Transfer
Protocol (HTTP).

� Integrated WebSphere MQ transports for enterprise, mobile, real-time,
multicast, and telemetry endpoints.

� Standards-based metadata including XML schema and WSDL.

You can find more information about IBM WebSphere Business Integration
Message Broker V5 at:

http://www.ibm.com/software/integration/wbimessagebroker

4.1.6 IBM WebSphere Business Integration Server Foundation V5.1
WebSphere Business Integration Server Foundation V5.1 builds on WebSphere
Application Server to provide a premier J2EE and Web services
technology-based application platform for deploying enterprise Web services
solutions for dynamic e-business on demand.

It includes WebSphere Process Choreographer, which provides WebSphere
Application Server with the ability to choreograph intra-enterprise and
inter-enterprise services into business processes that are described using the
open-standard Business Process Execution Language for Web Services
(BPEL4WS).

The business processes that are implemented in an enterprise typically require a
mixture of human and IT resources, and these processes are supported by
Process Choreographer. A process is a directed graph that starts with an input
node and ends with an output node. A process itself is described in WSDL. Its
input and output are described as WSDL messages.

A process can contain many activities. An activity can be the invocation of an
EJB, a Java class, a service, or another process. A process can also be event
driven. For example, it can be paused to wait for an event and then resumed
when a message arrives.

WebSphere Process Choreographer supports processes that can be:

� Long-running and interruptible, requiring human intervention
� Short-running and part of a one-business transaction

You can find more information about IBM WebSphere Business Integration
Server Foundation V5.1 at:

http://www.ibm.com/software/integration/wbisf/
 Chapter 4. Product descriptions and ESB capabilities 79

http://www.ibm.com/software/integration/wbimessagebroker
http://www.ibm.com/software/integration/wbisf/

4.2 Development product descriptions
This section describes products that are discussed and used throughout this
book for development.

4.2.1 IBM Rational Application Developer V6
Rational Application Developer is an integrated development environment with
full support for the J2EE programming model including EJB development, Web
services, Web applications and Java. In previous releases this product was
known as WebSphere Studio Application Developer. This tool includes
integrated portal development, UML editing, code analysis, automated test and
deployment tools, built in version control, and team tools. Everything you need to
be productive and to make sure written code is well designed, scalable, and
ready for production is included in Rational Application Developer. Additionally,
everything is provided for version control and protection when developers work in
large teams or on complex projects. Rational Application Developer is optimized
for IBM WebSphere software.

Rational Application Developer V6.0 is part of the Rational Software
Development Platform used to develop applications to be deployed to IBM
WebSphere Application Server V6.0, V5.0.x, and IBM WebSphere Portal
V5.0.2.2 and V5.1. The Rational Software Development Platform provides an
integrated development environment (IDE) and tooling used to design, develop,
test, debug, and deploy applications in support of the application development
life cycle.

The IBM Rational Software Development Platform is built upon the IBM Eclipse
SDK 3.0, which is an IBM supported version of the Eclipse V3.0 Workbench
containing many new features, and a new look and feel. When used with the IBM
Software Development Platform, you can access a broad range of requirements
directly from Rational Application Developer for WebSphere Software with
features such as the following:

� Rational Web Developer tools allow accelerated use of portal, SOA, and
J2EE.

� You can shorten the Java learning curve by using drag-and-drop components
and point-and-click database connectivity.

� You can improve code quality by using automated tools for applying coding
standard reviews, component, and Web service unit testing and multi-tier
runtime analysis.

� Business applications can be integrated with Web services and SOA.
80 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

You can find more information about IBM Rational Application Developer at:

http://www.ibm.com/software/awdtools/developer/application

4.3 Product capabilities for the Enterprise Service Bus
This section discusses the features the products that are described in 4.1,
“Runtime product descriptions” on page 72 and that support the ESB capabilities
that are identified in 2.2.4, “Minimum ESB capabilities” on page 37 and 2.2.6,
“Extended ESB capabilities” on page 39. Using the product descriptions and
ESB capabilities as a guide, we can make an assessment of the products
suitability for implementing an ESB.

You should select appropriate products to support an ESB implementation based
on the current and likely future requirements for that specific ESB
implementation. These is likely to be a subset of the extended capabilities that
should include all the minimum capabilities and might also include additional
functional and non-functional requirements that are applicable only to that ESB
and are not included in our capability model.

Note that no single product currently provides strong support in all of the
capabilities that we have defined. If the aim is to build a fully functional ESB that
addresses all the capabilities, then you need to use multiple products in
combination. For this reason, it is important to ensure not only that all current
functional and non-functional requirements are met but that the products
selected can be integrated together to form a logically single ESB infrastructure.
Customized coding effort might also be required in an ESB implementation,
either to implement a customized ESB or to support service interaction
characteristics that are not supported by standards or product features.

The rapidly changing and emerging nature of the standards that an ESB needs
to support (for example Web services standards) means that it is conceivable
that the chosen technologies do not provide support for a particular standard, as
that standard is too recent. If there is a desire to use such an emerging standard
to implement some aspect of service interactions, it needs to be possible to use
features of the ESB technology runtime to provide a customized implementation
of an open standard, rather than using product features. Although a development
and maintenance cost is involved in doing a customized implementation, the use
of an open standard reduces the eventual migration cost to a product-supported
solution.
 Chapter 4. Product descriptions and ESB capabilities 81

http://www.ibm.com/software/awdtools/developer/application

In light of these requirements, you should analyze the suitability of products for
building an ESB by considering:

� The ability of product(s) to meet minimum ESB capabilities

� The ability of product(s) to address additional, specific ESB implementation
functional and non-functional requirements

� The ease of integration between multiple products in the ESB

� Support for customized development

4.3.1 Assessment of ESB capabilities by product
Table 4-1 on page 83 rates the products that are candidates for implementing an
ESB against the ESB capabilities that we have defined. The table include only
those products that meet the minimum ESB capabilities.

IBM DB2 Universal Database V8.2 and IBM Cloudscape are not discussed,
because they are not products that are aimed at implementing an ESB and do
not meet our minimum capabilities.

WebSphere Business Integration Server Foundation 5,1 is not discussed,
because it is an extension of WebSphere Application Server with additional
components to support business integration. Of particular relevance to SOA is
the WebSphere Process Choreographer component that provides a BPEL4WS
process management engine. You can use this component to implement the
business service choreography support that is required in an SOA. However,
while this is an important component in an SOA, it is not actually a part of the
ESB. In terms of ESB capabilities, WebSphere Business Integration Server
Foundation V5.1 provides the same support as WebSphere Application Server,
so is not assessed separately.

WebSphere MQ and WebSphere Business Integration Message Broker are not
discussed separately as products for building an ESB. In the assessment,
WebSphere MQ and WebSphere Business Integration Message Broker V5.0 are
considered to be components of a messaging-based ESB.
82 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Table 4-1 ESB capabilities by product

4.3.2 IIBM WebSphere Application Server V6
WebSphere Application Server V6 provides several runtime features that support
ESB capabilities. It has support for Web services standards and for programming
models that enable data and message manipulation. Development tooling for
WebSphere Application Server, such as Rational Application Developer,
includes tools and wizards that simplify the development of application,
framework, or infrastructure code to leverage those runtime features.

WebSphere Application Server provides, through the service integration bus
component, communication infrastructure for messaging and Web services
applications that enables it to support the communication and message
processing requirements of an ESB. WebSphere Application Server and tooling
also provide support for a wide variety of integration methods, either directly
(databases, J2EE connectors, and so forth) or through support for Enterprise
Application Integration middleware (such as WebSphere MQ).

Enterprise Service Bus
capability

WebSphere Application
Server V6.0

WebSphere Business
Integration Message
Broker V5.0 and
WebSphere MQ V5.3

Communication Strong Strong

Integration Strong Strong

Security Strong Medium

Message processing Limited Strong

Modeling Limited Fairly Strong

Service interaction Strong Strong

Quality of service Strong Strong

Service level Fairly Strong Strong

Management and
autonomic

Medium Medium

Infrastructure
intelligence

Limited Limited
 Chapter 4. Product descriptions and ESB capabilities 83

WebSphere Application Server V6 meets the ESB capabilities that the following
sections describe.

Communication
WebSphere Application Server supports all of the minimum and extended
capabilites that we have defined for communication, including support for:

� SOAP-based Web service hosting and invocation.

� Asynchronous messaging. The support is provided by the service integration
bus component that provides a JMS V1.1 compliant JMS provider for reliable
message transport.

� Synchronous messaging via HTTP and HTTPS transports.

� Point-to-point, request/response, fire and forget, events, and
publish/subscribe styles of messaging.

� Routing support that allows dynamic service and port selection, that allows
Web service requests to be converted from one WSDL definition to another,
and that supports internet routing with proxy.

� WSDL as the service interface definition and the service implementation
definition. Can publish services to a UDDI directory.

Integration
WebSphere Application Server supports all of the minimum and extended
capabilites that we have defined for integration, including support for:

� JDBC for connectivity to external data sources (for example, a relational
database).

� Protocol transformation. The service integration bus supports transformation
from SOAP/HTTP to SOAP/JMS and vice versa.

� Existing and application adapters by implementing the J2EE Connector
Architecture support for connecting the J2EE platform to heterogeneous
Enterprise Information Systems (EIS), for example ERP, mainframe
transaction processing, database systems, and existing applications not
written in the Java programming language.

� Connectivity to enterprise application middleware. The service integration bus
is tightly integrated with WebSphere MQ. Connections an be defined so that
WebSphere MQ queue managers view a service integration bus as a queue
manager, and so the service integration bus views queue managers as
another bus. The JMS support means messages can be exchanged with any
other JMS V1.1 compliant provider.

� Data enrichment of services messages within the ESB. The service
integration bus provides mediation support that allows processing of in-flight
84 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

messages. Examples of the processing that can be performed by a mediation
are transforming a message from one format into another, routing messages
to one or more target destinations that were not specified by the sending
application, augmenting messages by adding data from a data source, and
distributing messages to multiple target destinations.

� WebSphere Application Server is a fully J2EE V1.4 compliant application
server.

� Language interfaces for service invocation. WebSphere Application Server
supports Java interfaces. It provides Web service support so that it can act as
both a Web service provider and as a consumer. As a provider, it hosts Web
services that are published for use by clients. As a consumer, it hosts
applications that invoke Web services from other locations

Security
WebSphere Application Server supports some of the extended capabilites that
we have defined for security, including support for:

� Tokens, keys, signatures, and encryption according to the WS-Security
specification can be applied to every deployed Web service.

� Authentication and authorization as part of J2EE.

� HTTPS.

� Proxy authentication can be enabled.

� Message-level security, as part of the WS-Security specification, is
implemented using JAX-RPC.

Message processing
WebSphere Application Server supports some of the extended capabilites that
we have defined for message processing. It provides:

� Content based logic support. The mediation support in the service integration
bus allows messages to be routed and altered based on content.

� Message and data transformation support (via mediations in the service
integration bus).

� Message aggregation and correlation support. The mediation framework
requires custom Java coding to perform aggregation and correlation.

� Validation is supported, but only through mediation support so it must be
coded instead of configured.

� Intermediary support. The service integration bus allows WebSphere
Application server to act as an intermediary.

� Store and forward support.
 Chapter 4. Product descriptions and ESB capabilities 85

Modeling
WebSphere Application Server has limited support for the extended capabilites
that we have defined for modeling.

Service interaction
WebSphere Application Server supports all of the minimum and some of the
extended capabilites that we have defined for service interaction. It provides:

� WSDL support for the service interface definition and the service
implementation definition.

� Service directory and discovery support.

� Substitution of service implementation. Using WebSphere Application Server
as an ESB means service implementations can be substituted without the
service consumer needing to be aware of the change.

Quality of service
WebSphere Application Server supports some of the extended capabilites that
we have defined for quality of service. It provides:

� Assured delivery support. The service integration bus supports five levels of
message reliability and persistence. The integration with WebSphere MQ
means that it can also use the assured delivery features of WebSphere MQ.

� Transaction support. WebSphere Application Server can act as an XA
compliant transaction manager or as a participant in transactions controlled
by another transaction controller.

Service level
WebSphere Application Server supports some of the extended capabilites that
we have defined for service level. It provides:

� Performance tuning and monitoring tools. In particular Web service
performance can be monitored through the Performance Monitoring
Infrastructure (PMI), including the number of asynchronous and synchronous
requests and responses.

� WebSphere Application Server Network Deployment provides a number of
facilities for provide high availability across all components of the WebSphere
Application Server environment.
86 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Management and autonomic
WebSphere Application Server supports all of the minimum and some of the
extended capabilites that we have defined for management and autonomic. It
provides:

� Administration tools and support.

� Provision for service provision and registration.

� Integration to system management and administration tooling, in particular
IBM Tivoli® products.

Infrastructure intelligence
WebSphere Application Server has limited support for the extended capabilites
that we have defined for infrastructure intelligence.

4.3.3 IBM WebSphere Business Integration Message Broker V5
WebSphere Business Integration Message Broker V5, in combination with
WebSphere MQ, can support all the minimum ESB capabilities that we have
defined. It provides proven support for routing, addressing, and service directory
features and is well suited for building an environment that connects to multiple
service interfaces using different protocols and transports.

The following sections provide details on the capabilities of the WebSphere
Business Integration Message Broker as it relates to an ESB.

Communication
WebSphere Business Integration Message Broker supports all of the minimum
and extended capabilites that we have defined for communication, including
support for:

� Asynchronous messaging. The support is provided by WebSphere MQ, which
is a JMS provider in addition to supporting mature MQ messaging standards.

� Synchronous messaging via HTTP transports.

� Request/response, fire and forget, events, and publish/subscribe messaging
styles.

� Routing support that allows dynamic service and port selection and allows
Web service requests to be converted from one WSDL definition to another.

� Native WSDL for the service interface definition.

� Transaction management and assured once-only delivery of persistent
WebSphere MQ messages.
 Chapter 4. Product descriptions and ESB capabilities 87

Integration
WebSphere Business Integration Message Broker supports all of the minimum
and most of the extended capabilities that we have defined for integration,
including support for:

� Integration with relational databases, which can also be under transactional
control. This access can be used for data enrichment to provide additional
information that is required for service provider processing.

� Protocol transformation from SOAP/HTTP to SOAP/JMS and vice versa. Can
also be used to translate from SOAP to other service interface style (for
example, a CICS transaction).

� Extensive and mature existing and application adapter for connectivity to
applications, such as commercial off the shelf packages and bespoke
systems, using WebSphere Business Integration Adapters and WebSphere
MQ bridges.

� Connectivity to enterprise application middleware. WebSphere Business
Integration Message Broker is tightly integrated with WebSphere MQ.

� Extensive data enrichment. Support is provided for routing messages to one
or more target destinations that were not specified by the sending application,
augmenting messages by adding data from an external data source, and
distributing messages to multiple target destinations. All of this can be
achieved by setting configuration options without needing to write code.

� Hand-held and embedded devices (including WebSphere MQ Everyplace®
and SCADA support).

� A non-application server environment. However, integration with WebSphere
Application Server is supported via WebSphere MQ. Connections can be
defined so that WebSphere MQ queue managers view a service integration
bus on WebSphere Application Server as a queue manager and so that the
service integration bus views queue managers as another bus.

Security
WebSphere Business Integration Message Broker supports most of the
extended capabilities that we have defined for security, including support for:

� WebSphere MQ infrastructure to provide authentication and authorization for
access over JMS and WebSphere MQ.

� Authentication and authorization for access over HTTP provided by an
external HTTP server. Custom security can be implemented within
WebSphere Business Integration Message Broker. This implementation
could make a call out to an LDAP directory using a plug-in node that is
provided as a SupportPac™.

� Supports non-repudiation using WebSphere MQ.
88 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� Confidentiality using WebSphere MQ, which has built in SSL support and
provides exit support for encryption.

Message processing
WebSphere Business Integration Message Broker supports most of the
extended capabilites that we have defined for message processing. It provides:

� Encoded logic support.

� Content based logic support.

� Comprehensive message and data transformation facilities. Stylesheet
transformation can also be used.

� Native aggregation support for the processing of a single service request from
a client by fanning out several requests to service providers and aggregating
the results into a single response without coding.

� Message validation. The Message Repository provides support for defining
message and data structures and validation against the definitions. Importers
are provided to easily build structures based on XSDs and DTDs as well as
COBOL and C structures.

� Ability to act as an intermediary between a service consumer and service
provider, with independence between the two.

� Object identity support can be built into message flows, however this support
is not provided and must be coded.

� Store and forward support.

Modeling
WebSphere Business Integration Message Broker supports some of the
extended capabilites that we have defined for modeling, including support for:

� Common business objects. However, they are not provided natively and must
be defined in a message repository or in message flows developed manually.

� Extensive data format libraries are provided through the message repository.
There is also support for multiple data formats, including SOAP and business
entity support through XSDs.

� Ability to have public versus private models for business-to-business
integration, however they are not provided natively and must be defined in
message flows developed manually.

� Development and deployment tooling for modeling data structures.
 Chapter 4. Product descriptions and ESB capabilities 89

Service interaction
WebSphere Business Integration Message Broker supports all of the minimum
and most of the extended capabilites that we have defined for service interaction,
including support for:

� Service interface definition via WSDL.

� The substitution of service implementation. The implementation of a service
as a message flow can be changed without affecting the service consumer
and a service provider’s implementation can change without affecting its
access from a message flow.

� Extensive support for service messaging models including SOAP, XML, and
enterprise integration models. A message flow can handle a service request
with no, partial, or complete SOAP (or any other message structure)
validation and processing.

� Service directory and discovery. Services that are created from message
flows could be published in an external directory such as UDDI. A client could
then use UDDI to discover the services. Basic message flow functionality
provides database lookup facilities and can be extended via plug ins to
support service discovery from within a message flow.

Quality of service
WebSphere Business Integration Message Broker supports most of the
extended capabilites that we have defined for quality of service, including
support for:

� Transaction support. Message flows under transaction control and
WebSphere MQ as an XA compliant transaction manager or as a participant
in transactions that are controlled by another transaction controller.

� Use of WebSphere MQ assures the once-only delivery of persistent
messages.

Service level
WebSphere Business Integration Message Broker supports all of the extended
capabilites that we have defined for service level, including support for:

� Has high performance and throughput characteristics, as documented on the
IBM SupportPac Web site. Numerous options are available for performance
tuning, for example, partial parsing is automatically supported so the SOAP
header could be parsed and the body transported to increase throughput.

� High levels of availability can be achieved using multiple brokers and
execution groups underpinned with WebSphere MQ clustering.
90 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Management and autonomic
WebSphere Business Integration Message Broker supports all of the minimum
and some of the extended capabilites that we have defined for management and
autonomic. It provides:

� Administration and development support.

� Messages can be logged in whole or in part. Such information can be used to
input into metering and monitoring.

� Integration to system management and administration tooling, in particular
IBM Tivoli products.

Infrastructure intelligence
WebSphere Business Integration Message Broker has limited support for the
extended capabilites that we have defined for infrastructure intelligence. You
can:

� Adapt message flow processing according to business rules.
� Adapt message flow processing according to policies.

4.3.4 Conclusion
Both WebSphere Application Server V6 and WebSphere Business Integration
Message Broker V5 are suitable products for building an ESB.

WebSphere Application Server as an ESB
Building an ESB that is based entirely on WebSphere Application Server is an
option when Web services support is critical and the service provider and
consumer environment is predominantly built on J2EE. WebSphere Application
Server is most suitable for implementing ESBs that are based on Web services
standards. It also provides facilities to integrate services that are offered via
enterprise application integration messaging and other sources. However, if
integration with these non-Web service standards-based services is a major
requirement for the ESB, then you should consider WebSphere Application
Server in combination with products that provide more sophisticated support,
such as WebSphere Business Integration Message Broker.

Additionally, if the ESB needs to support high volume and complex data
transformations, routing decisions and data validation, then again, you should
consider it in combination with products that provide more sophisticated support
for this, again, such as WebSphere Business Integration Message Broker.
 Chapter 4. Product descriptions and ESB capabilities 91

WebSphere Business Integration Message Broker as an ESB
Building an ESB that is based entirely on WebSphere Business Integration
Message Broker is an option when Web services support is not critical and
quality-of-service requirements demand the use of mature middleware.
WebSphere Business Integration Message Broker V5 can support all the
minimum ESB capabilities that we have defined. However, in comparison with
WebSphere Application Server, it lacks the sophistication of Web services
support that might be required in an ESB implementation which makes extensive
use of these standards.

An ESB is for more than Web services
There are a spectrum of approaches to the use of messaging middleware to
support SOA. There is no reason why the same infrastructure should not support
a variety of other message-based and event-based interactions that are part of
an overall SOA but that, for various reasons, do not use the Web services
standards.

However, where Web services standards are not used, either for specific
interactions or for all interactions within an SOA, several decisions must be
made:

� In order to fulfill the criteria for service interactions, some form of explicit
interface definition is required. This definition is usually, but not always,
machine-readable (for example, WSDL can be read by application
development tools or ESB middleware). Machine-readable interface
specifications increase the options that are available to loosely couple service
interactions. In some cases, a proprietary interface definition might be
provided by the messaging middleware, in other cases a customized model
might be used.

� Some form of service messaging model is also required, such as to provide a
message body using some format for application data and message headers
and describing other aspects of the interaction such as security or
transactional context. Again, these features can be provided by middleware,
or a customized approach could be used. It is important to note that there are
many choices of non-Web services messaging models that nevertheless
provide inter operability and conform to open standards. XML or industry
formats that are based on it, such as ebXML, are good examples.

� Service consumers invoke and receive service requests that are defined by
an interface definition and that use a service messaging model. When the
interface definition or messaging model is proprietary, applications will either
have to construct appropriate messages themselves, or a framework will
have to be provided to assist them.
92 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Given the rapid emergence and maturity of Web services standards, the amount
of effort that should be put into customized implementations is questionable,
unless the implementation is to provide support for an open standard that is not
directly supported by the product. Preferably, as a starting position, service
interactions should use open standards or supported features of product
technologies in order to minimize development, maintenance, and migration
cost.

You can combine approaches that are based on messaging middleware with
approaches that are based on Web services in an overall ESB infrastructure. In
these situations, a combination of WebSphere Application Server with
WebSphere Business Integration Message Broker is a good fit.

Summary
In conclusion, both WebSphere Application Server and WebSphere Business
Integration Message Broker are suitable products for implementing an ESB. In
some cases, you could use WebSphere Business Integration Message Broker or
WebSphere Application Server alone. However, in more sophisticated ESBs,
these products are more likely to be combined to provide additional features.
 Chapter 4. Product descriptions and ESB capabilities 93

94 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 5. SOA runtime patterns and
Product mappings

This section describes the Runtime patterns and Product mappings that are
relevant to a Service Oriented Architecture (SOA) with specific focus on the
Enterprise Service Bus (ESB).

This chapter describes the following SOA runtime patterns:

� Direct Connection using a Service Bus runtime pattern
� ESB runtime pattern
� ESB Gateway runtime pattern
� BSC runtime pattern
� ESB, BSC composite pattern
� Exposed ESB Gateway runtime pattern (for inter-enterprise)
� Exposed ESB Gateway, BSC composite pattern (for inter-enterprise)

This chapter also provides product mappings for the following Runtime patterns:

� ESB runtime pattern
� ESB Gateway runtime pattern
� BSC runtime pattern
� Exposed ESB Gateway runtime pattern (for inter-enterprise)

You can find an overview of the products mapped in 4.1, “Runtime product
descriptions” on page 72.

5

© Copyright IBM Corp. 2005. All rights reserved. 95

5.1 Runtime patterns
Runtime patterns are used to define the logical middleware structure that
supports the Application patterns that are described in Chapter 3, “Application
Integration and Extended Enterprise patterns” on page 45. In other words,
Runtime patterns describe the logical architecture that is required to implement
an Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

The Runtime patterns that are illustrated in this chapter give some typical
examples of possible solutions. However, these examples should not be
considered exhaustive.

5.1.1 Direct Connection using a service bus
Figure 5-1 shows a service consumer that is connected to two other service
providers via a simple service bus. The Application pattern overlays in this figure
show that multiple Direct Connection application patterns can be deployed using
the service bus.

Figure 5-1 Direct Connection using a simple service bus

Direct Connection

Source
Application

Target
Application 2

Internal network

Direct Connection

Source
Application

Target
Application 1

App Server/
Services

App Server/
Services

App Server/
Services

<Service Bus>

<Service Provider><Service Consumer> <Service Provider>
96 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The service consumer (or source application) can use the service bus to initiate
direct connections to two service providers — one to Target Application 1 and
the other to Target Application 2.

In order to focus on the service bus concept, we do not explicitly model adapter
connectors or connection rules in Figure 5-1 on page 96. The service bus
concept is, however, an extension of the Direct Connection with federated
adapter connectors runtime pattern that enables a set of connected Direct
Connections. The service bus approach:

� Minimizes the number of adapters required for each point-to-point connection
to link service consumers to service providers.

� Improves reuse in multiple point-to-point scenarios.

� Addresses any technical and information model discrepancies amongst
services.

The service bus can span across multiple system/application tiers, and can
extend beyond the enterprise boundary. A rules repository node can also be
included to model a service directory, allowing services to be discovered within
and outside of the enterprise.

Note: The figure shows the relationship between the Application and Runtime
patterns as an example. For clarity, the remainder of this section concentrates
on the Runtime patterns and does not show the associated Application
patterns. Chapter 3, “Application Integration and Extended Enterprise
patterns” on page 45 describes the Application patterns that are relevant to an
SOA. Each pattern description contains an SOA Profile section that maps the
Application pattern to one of the Runtime patterns that are described in this
section. In addition, you can find full mapping between Application and
Runtime patterns at:

http://www.ibm.com/developerworks/patterns

Note: The very simple service bus described here provides just a small subset
of the integration capabilities of a true ESB as described in the remainder of
this chapter.
 Chapter 5. SOA runtime patterns and Product mappings 97

http://www.ibm.com/developerworks/patterns

5.1.2 ESB runtime pattern
Figure 5-2 shows the runtime pattern that provides the highest level view of the
ESB.

Figure 5-2 ESB runtime pattern - Level 0

The ESB is a key enabler for an SOA because it provides the capability to route
and transport service requests from the service consumer to the correct service
provider. The ESB controls routing within the scope of a service namespace,
indicated symbolically by the ellipse on the ESB node representation.

The true value of the ESB concept, however, is to enable the infrastructure for
SOA in a way that reflects the needs of today’s enterprise: to provide suitable
service levels and manageability and to operate and integrate in a
heterogeneous environment. Furthermore, the ESB needs to be centrally
managed and administered and have the ability to be physically distributed.

The Runtime pattern shown in Figure 5-3 on page 99 represents a first level
decomposition of the major components that make up an ESB.

Enterprise

ESB

App Server/
Services

App Server/
Services

App Server/
Services

<Service Consumer>

<Service Consumer>

<Service Consumer>

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

<Service Provider>
98 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 5-3 ESB runtime pattern - Level 1

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

App server/services node
These nodes represent applications that request a service from the ESB or
provide a service to the ESB. These applications can be implemented in any
technology as long as they are able to interact using one of the protocols and
messaging models that is supported by the ESB.

Services can be implemented in a variety of technologies and can be
custom-developed, enterprise applications, such as those typically implemented
in CICS Transaction Server, IMS Transaction Manager, and software packages.

Hub node
This node supports the key ESB functions and, therefore, fulfills a large part of
the ESB capabilities. The hub has a fundamental service integration role and
should be able to support various styles of interaction. There are two interaction
styles (that are covered in detail in Part 3) that the hub supports. Those styles
are the Router and Broker interaction patterns. The Router interaction pattern is
where a request is routed to a single provider. The Broker interaction pattern
supports requests that are routed to multiple providers, including aggregation
and disaggregation of messages. The hub must contain rules for routing
messages, and in the case of hubs that support the Broker interaction pattern,

Enterprise

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Administration &
Security Services

Hub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>
 Chapter 5. SOA runtime patterns and Product mappings 99

the rules must also describe how messages should be disaggregated or
aggregated.

The following are the minimum set of functions that this node should support:

� Routing

This function removes the need for applications to know anything about the
bus topology or its traversal. The interaction that a requester initiates is sent
to one provider.

� Addressing

Addressing complements routing to provide location transparency and
support service substitution. Service addresses are transparent to the service
consumer and can be transformed by the hub. The hub obtains the service
address from the namespace directory.

� Messaging styles

The hub should support at least one or more messaging styles. The most
common are request/response, fire and forget, events, publish/subscribe, and
synchronous and asynchronous messaging.

� Transport protocols

The hub should support at least one transport that is or can be made widely
available, such as HTTP/S. The hub can provide protocol transformation. If a
protocol transformation is required that is not supported by the hub, then a
specific connector can be used to perform the transformation (see
“Connectors” on page 103).

� Service interface definition

Services should have a formal definition, ideally in an industry-standard
format, such as WSDL.

� Service messaging model

The hub should support at least one model such as SOAP, XML, or a
proprietary EAI model.
100 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

In addition to these capabilities, the hub can support more advanced capabilities,
such as:

� Integration

Additional integration services that can be provided include service mapping
and data enrichment.

� Quality of service

These services can include transaction management (for example, ACID
properties, compensation, or WS-Transaction), various assured delivery
paradigms (such as WS-ReliableMessaging), or support for Enterprise
Application Integration middleware.

� Message processing

The hub can support more advanced message processing capabilities such
as encoded logic, content-based logic, message and data transformations,
message/service aggregation and correlation, validation, intermediaries,
object identity mapping, service/message aggregation, and store and
forward.

� Modelling

The hub can support more advanced modelling capabilities such as object
modeling, common business object models, data format libraries, public
versus private models for business-to-business integration, and development
and deployment tooling.

� Service level

Service level indicators might need to be measured, particularly in an
enterprise mission critical environment. The key indicators are availability and
performance, which includes response time, throughput, and capacity.

� Infrastructure intelligence

More advanced infrastructure capabilities can be provided. These include:

– Business rules
– Policy-driven behavior, particularly for service levels
– Security and quality of service capabilities (WS-Policy).

Namespace directory
This node provides routing information in order for the hub to perform routing of
service interactions. This node could be implemented as a routing table in the
more simple implementations of an ESB.
 Chapter 5. SOA runtime patterns and Product mappings 101

Administration and security services
This section covers both administration and security services.

Administration
An ESB should be controlled by a single administration infrastructure. This node
provides these administration services which, at a minimum, should support
service addressing and naming.

The key services that need to be provided by this node are:

� ESB configuration
� Service provisioning and registration
� Logging
� Metering
� Monitoring
� Integration with systems management and administration tooling

More advanced administration features that can be provided by this node include
self-monitoring and self-management.

Security
In a mission critical environment and, depending on the confidentiality, integrity,
and availability requirements of the applications, the hub should support security
capabilities such as authentication, authorization, non-repudiation,
confidentiality, and security standards, such as Kerberos and WS-Security.

Business service directory
The role of the business service directory is to provide details of services that are
available to perform business functions identified within a taxonomy. The
business service directory can be implemented as an open-standard UDDI
registry. More basic implementations can make use of an HTTP server as
described in Chapter 9, “Enterprise Service Bus pattern: router scenario” on
page 179. Catalogs, such as a UDDI registry, can achieve one of the primary
goals of a business service directory: to publish the availability of services and
encourage their reuse across the development activity of an enterprise.

The vision of Web services defines an open-standard UDDI registry that enables
the dynamic discovery and invocation of business services. However, although
technologies mature toward that vision, more basic solutions are likely to be
implemented in the near term.
102 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Connectors
If we model the connectors that facilitate the interactions between service
consumer/service providers and the ESB, as shown in Figure 5-4, we find that
we might require that some of these are both adapter connectors and path
connectors, while other service consumer/service providers only need a path
connector to the ESB.

An adapter connector is concerned with enabling logical connectivity by bridging
the gap between the context schema and protocols used by the source and
target applications. In this case, between the service consumer/providers and the
ESB.

A path connector is concerned with providing physical connectivity between
source and target applications. It can be very complex (for example, the Internet)
or very simple (an area of shared storage).

Figure 5-4 ESB Level 2 with adapter connectors

Adapter connectors facilitate integration in a heterogeneous environment with
diverse technology, protocols, application types, and integration styles. The
following are the key types of function that Adapters perform:

� Technology adaptation

This type of adapter handles service consumers and providers that are built
using technologies that are not natively supported by the hub. Examples of
technologies that can be supported via adapters are CORBA, COM, JDBC,

Enterprise

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Administration &
Security Services

Hub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

Connector

Connector
 Chapter 5. SOA runtime patterns and Product mappings 103

JMS, and EJB. Some of these technology adapters can use data handlers for
particular data formats such as EDI, SOAP, XML, and various text formats.

These adapters can also support different application server environments
such as J2EE and .Net and different language interfaces such as Java, C,
C++, and C#.

� Application adaptation

This type of adapter facilitates integration with package solutions. There are
many examples of package solutions that provide application adapters, such
as Siebel, PeopleSoft, and SAP among others.

� Legacy adaptation

This type of adapter facilitates exposing valuable enterprise applications as
services. These enterprise applications can be implemented using
technologies such as CICS Transaction Server, IMS Transaction Manager
and ADABAS amongst others.

Development-time support can also be provided in order to develop custom
adapters.

As an example, the connectors in Figure 5-4 on page 103 that are modeled (that
is that are represented as a connector node) can support a Siebel Customer
Service application that acts as a service consumer to the ESB and requests a
service that is provided by an enterprise application running under CICS
Transaction Server. In this scenario, the connector might be a Siebel application
adaptation adapter connector and a legacy adaptation adapter connector that
supports CICS Transaction Server. The connectors that are not modelled (that
is, that are only represented by a line) in this example, could support the
interaction between applications that use a SOAP/JMS to interface with the ESB
and, therefore, only require a path connector.

Not all connectors are necessarily within the ESB Zone. Figure 5-5 on page 105
shows the possible placement options for connectors that support interaction
between application server and services and the ESB. These application server
and services can be service consumers or service providers.
104 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 5-5 Placement of adapter connectors

The following are the placement options for connectors:

� Inside the ESB Zone.
� On the boundary of the ESB Zone.
� Outside the ESB Zone.

In general, IT artifacts (such as nodes, connectors, and client APIs) have some
configuration that determine their behavior. If this configuration is managed by
the ESB management infrastructure, the artifact is inside the ESB Zone.

In some instances, an artifact such as a connector can be either outside or on
the boundary of the ESB Zone, depending on whether it is managed or partly
managed by the ESB infrastructure. An example of a partly managed connector
could be an ESB that is built on WebSphere V6 with J2C Adapter to CICS
Transaction Server using CICS Transaction Gateway in Server or Client Mode.
CICS Transaction Gateway runs as a separate process, or at least with its own
configuration and management, but the J2C end is within WebSphere control.

In the scenario described previously, if we build the ESB using WebSphere
Business Integration Message Broker, linking to the J2C adaptor that is running
in WebSphere Application Server, the J2C adaptor is outside the WebSphere

Enterprise

Connector

Zone: Enterprise Service Bus

Hub

Connector

Connector

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services
 Chapter 5. SOA runtime patterns and Product mappings 105

Business Integration Message Broker management and, therefore, outside of the
ESB Zone.

5.1.3 ESB Gateway runtime pattern
The Runtime pattern shown in Figure 5-6 provides the highest level view of the
ESB Gateway

Figure 5-6 ESB Gateway runtime pattern - Level 0

The ESB Gateway acts as a proxy to provide controlled access to the ESB. A
common use of the ESB Gateway is exposing services to external parties as well
as allowing internal applications to access external services in a secure and
controlled manner. This section discusses a generic ESB Gateway pattern. For
information about the Exposed ESB Gateway runtime pattern, see “Exposed
ESB Gateway runtime pattern” on page 113.

Enterprise

ESB
Gateway

ESB
App Server/

Services

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

<Service Provider>

<Service Consumer>
106 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 5-7 represents a first level decomposition of the major nodes that make up
the ESB Gateway.

Figure 5-7 ESB Gateway runtime pattern - Level 1

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

App server/services node
You can find information about this node in “App server/services node” on
page 99.

ESB
The ESB is a key enabler for an SOA because it routes and transports service
requests from the service consumer to the correct service provider. For
information about this node, see “ESB runtime pattern” on page 98.

Rules directory
This node contains the necessary configuration information that the ESB
Gateway needs to support secure and controlled access to services. The rules
directory has configuration rules that can include mapping of service interface
definitions to gateway endpoints, mapping of ESB gateway-provided service
names to destination service names, and access control lists.

The configuration rules can also include information about service level policies
to control throughput. These rules protect associated service implementations
from operating beyond the established capacity levels.

Enterprise

Zone: ESB Gateway

Gateway
Endpoint

Gateway
Endpoint

ESB

Rules
Directory

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

<Service Provider>

<Service Consumer>
 Chapter 5. SOA runtime patterns and Product mappings 107

Gateway endpoint
This node is the entry point into services that the ESB provides or that are
external to the ESB. It provides the address where messages are received, and it
is mapped to particular protocols that the ESB Gateway supports, for example
HTTP/S. The gateway endpoint controls access to and from the ESB based on
configuration rules that include access control lists and service level policies. It
maps requests to the appropriate service and facilitates the interaction.

5.1.4 BSC runtime pattern
The Runtime pattern shown in Figure 5-8 provides the highest level view of this
pattern.

Figure 5-8 BSC runtime pattern – Level 0

With the Business Service Choreography (BSC) runtime pattern, you can
develop and execute business process flow logic which governs the sequence
and control of service invocations. The business process is controlled centrally
and is not part of the program logic in individual applications. Therefore, rather
than having the business process defined in multiple applications and within the
interactions between these multiple applications, the business process can be
modelled and implemented by a central function. The Business Service
Choreography facilitates the implementation of changes to the business process
and monitoring and analysis of business process execution.

Enterprise

App Server/
Services

Business
Service

Choreography App Server/
Services

App Server/
Services<Service Consumer>

<Service Provider>

<Service Provider>
108 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 5-9 represents a first level decomposition of the BSC node.

Figure 5-9 BSC runtime pattern – Level 1

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

App server/services
This node is described in “App server/services node” on page 99. In this pattern,
the app server/services node provides services to the process manager.

Process manager
This node contains the process flow execution engine. It provides the capability
for model-driven business process automation. It also enables tracking by
leveraging the process execution rules stored in the associated database.

These processes can span multiple applications and organizational boundaries
within an enterprise. The node maintains state and tracks sequencing through
the process flow. In doing so, it often leverages the persistence manager to store
intermediate results. Finally, it invokes target services as necessary via the ESB.

The process manager node can support serial processes in which there is a
sequential execution of process steps and parallel processes where process
steps or sub-processes can execute concurrently.

Enterprise

Process
Manager

Rules
Directory

Zone: BSC

Persistence
Manager

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>
 Chapter 5. SOA runtime patterns and Product mappings 109

The process manager should support the following key capabilities:

� Process definition standards, such as BPEL4WS, and the ability to execute
process definitions that have been defined and exported from a modelling
tool.

� Monitoring and analysis of processes by capturing information about process
execution for historical analysis. It should also support integration with system
management and administration tools.

� Ability to meet non-functional requirements such as performance, availability
and scalability will be important for mission critical enterprise applications.
Other key non-functional requirements are security and transaction
management particularly supporting the integrity and recovery of long running
business processes.

� Multiple levels of process abstractions.

� Correlation of events or incoming messages with existing process instances.

� Support for branching, parallel branch execution and recomposing if the
process manager supports parallel process execution.

Persistence manager
This node provides a persistent data storage service in support of the process
flow execution. It holds results from the execution of certain activities within the
context of an end-to-end process flow. These can be intermediate results valid
within the context of a particular process flow and process data for the purpose of
process monitoring and analysis. The intermediate results are necessary to
support state management.

The implementation of this node typically involves a persistent data technology,
such as a DBMS. In some cases, you can use non-persistent storage to store the
intermediate results.

Rules directory
This node holds the read-only process execution rules in support of the process
flow execution. These rules control the sequencing of activities and, therefore,
support flow control within the context of an end-to-end process flow. The
implementation of this node involves persistent data technologies, such as a flat
file or a DBMS.
110 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5.1.5 ESB, BSC composite pattern
The Runtime pattern shown in Figure 5-10 provides the highest level view of this
Composite pattern.

Figure 5-10 ESB with BSC composite pattern – Level 0

The BSC node is implemented as a service consumer or service provider of the
ESB. The BSC node is focused on process management function, and the ESB
node provides the integration capabilities with other services. This pattern
generally provides a loosely coupled and more functionally cohesive architecture
where functional responsibility of nodes is clearly defined. The business process
governs the sequence and control of service invocations which are mediated
through the ESB.

Figure 5-11 on page 112 represents a first level decomposition of the major
nodes that make up this pattern.

The BSC has two core components, the process manager and repository nodes,
that support the development and execution of business process flow logic. This
logic is controlled centrally outside the application logic. Shielding the
applications from the business process flow facilitates the implementation of
changes to the business process and the monitoring and analysis of business
process execution.

Enterprise

ESB

Business
Service

Choreography

App Server/
Services

App Server/
Services

<Service Consumer>

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>
 Chapter 5. SOA runtime patterns and Product mappings 111

Figure 5-11 ESB with BSC composite pattern – Level 1

The BSC and ESB nodes are described in “ESB runtime pattern” on page 98.
Therefore, this section provides only a brief description of these nodes.

BSC
This node is limited to process management and contains only the process
manager, rules directory, and persistent manager nodes. The BSC relies on the
ESB for integration and security functionality and both receives requests from the
ESB and sends requests to the ESB via the hub node. The ESB can issue a
request to the BSC to start execution of a process. The process execution will in

Note: Only a connector to the ESB is required as opposed to a connector to
each app server/services node that is involved in the process flows as
described in “BSC runtime pattern” on page 108. The service integration
function is subsumed by the ESB, leaving the BSC to perform its core process
management function.

p g p y p

Enterprise

Zone: BSC

Process
Manager

Rules
Directory

Persistence
Manager Business Service

Directory

Zone: Enterprise Service Bus

Namespace
Directory

Administration &
Security Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>Hub
112 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

turn most likely require services to be invoked as part of the process flow.
Therefore, the BSC will request services from the ESB.

For a description of the BSC nodes, see “BSC runtime pattern” on page 108.

ESB
The ESB nodes are described in “ESB runtime pattern” on page 98. As far as the
ESB is concerned, the BSC is another application which can both request and
provide services.

5.1.6 Exposed ESB Gateway runtime pattern

Figure 5-12 shows a runtime pattern that supports secured and controlled
access to enterprise services from outside of the enterprise and that allows
enterprise applications to access external services. The two major nodes in this
pattern, the Exposed ESB Gateway and ESB, are described in “ESB Gateway
runtime pattern” on page 106 and “ESB runtime pattern” on page 98.

Figure 5-12 Exposed ESB Gateway runtime pattern – Level 0

The connection between the app service/services node in the partner zone and
the network infrastructure in the inter-enterprise zone could be an HTTP server,
an ESB, an Exposed ESB Gateway, or a firewall. Therefore, depending on
security requirements, the Exposed ESB Gateway node can be inside or outside
of the Enterprise Demilitarized Zone.

This basic topology leverages the nodes with their associated responsibilities as
described in the following sections.

Note: This pattern applies to inter-enterprise solutions.

Enterprise Secure Zone
Inter-enterprise

Zone
Enterprise

Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESB
D

om
ai

n
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

App Server/
Services

<Service Provider>

<Service Consumer>

Enterprise Secure Zone
 Chapter 5. SOA runtime patterns and Product mappings 113

App server/services
This node is described in “App server/services node” on page 99.

Connector
This node, which is deployed in the demilitarized zone (DMZ) between two
firewalls, provides a communication link over the internet for incoming requests
from external applications as well as outgoing requests to external services.

Exposed ESB Gateway
An Exposed ESB Gateway makes the services of one organization available to
others, and vice versa, in a controlled and secure manner. Although this might
require capabilities such as partner provisioning and management, which are
distinct from ESB capabilities, the intent of this component is different from the
intent of the ESB, which is to provide a service infrastructure within an
organization. For both of these reasons, the Exposed ESB Gateway is likely to
be integrated to, but not be a part of, the Enterprise Service Bus.

This node is described in “ESB Gateway runtime pattern” on page 106.

ESB
The ESB is a key enabler for an SOA as it provides the capability to route and
transport service requests from the service consumer to the correct service
provider.

This node is described in “ESB runtime pattern” on page 98.

Note: The app server/services node that interacts directly with the ESB
Gateway could be an ESB in the other enterprise.
114 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5.1.7 Exposed ESB Gateway, BSC composite pattern

The Runtime pattern shown in Figure 5-13 adds BSC to the Exposed ESB
runtime pattern that is described in “Exposed ESB Gateway runtime pattern” on
page 113.

Figure 5-13 Exposed ESB Gateway, BSC composite pattern - Level 0

This Runtime pattern supports scenarios where business process services need
to be provided to both external and internal requesters. The BSC node is added
to expose enterprise business processes to the enterprise, clients, partners, and
suppliers.

This Runtime pattern also allows internal requesters to have controlled and
secure access to services external to the enterprise, which can also include
business processes, depending on the capabilities implemented by the external
organization. Therefore, this Runtime pattern, when combined with appropriate
process definition standards such as BPEL4WS, enables inter-enterprise
processes.

Note: This pattern applies to inter-enterprise solutions.

Inter-enterprise
Zone

Enterprise
Demilitarized ZonePartner Zone

App Server/
Services

Network
Infrastructure

ESB

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

Business
Service

Choreography

App Server/
Services

<Service Provider>

<Service Consumer>

Enterprise Secure Zone
 Chapter 5. SOA runtime patterns and Product mappings 115

5.2 Product mappings
After choosing a Runtime pattern, you need to determine the actual products and
platforms that you will use. The Product mappings in this section are suggested
mappings and address both the scenario implementations that Part 3 of this book
discusses. These Product mappings are also typical product mappings that are
used for production systems.

We suggest that you make the final product selection decisions based on your
particular non-functional requirements, such as volumetric data, performance,
availability, scalability, security, manageability, and supportability. These
non-functional requirements typically are defined during the solution analysis
process.

Other considerations that influence the product selection include:

� Specific technology and product standards
� Existing systems and platform investments
� Existing development skills

Note: The product mappings in this section do not include hardware nodes
and operating systems. The sample scenarios in Part 3 of this book were
implemented on xSeries® Servers running the Windows 2000 Operating
System.
116 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5.2.1 ESB runtime pattern::Product mappings
Figure 5-14 shows a Product mapping for the ESB runtime pattern.

Figure 5-14 ESB runtime pattern::Product mapping=WebSphere Application Server V6

This Product mapping uses WebSphere Application Server Network Deployment
V6.0. With the Network Deployment offering, you can implement a scalable
clustering of multiple WebSphere Application Server servers. If the clustering
capability is not required, you should use the base WebSphere Application
Server V6 offering.

The service consumer applications that are supported are not only Java
applications that issue SOAP/HTTP requests but are also packages or
applications that are built on other technologies, using other protocols, (for
example, the Siebel package in shown in Figure 5-14. For this purpose, the
WebSphere Business Integration Adapters are used to implement the adapter
connector node. The ESB hub is run on WebSphere Application Server Network
Deployment, which acts as a broker between the requester and multiple provider
applications that are also running under WebSphere Application Server Network
Deployment.

The J2EE Connector Architecture (J2C) resource adapter is used to implement
Adapters to access services that are implemented under enterprise resources

Enterprise

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Administration &
Security Services

Hub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

• Service Integration Bus
(part of WebSphere
Application Server
Network Deployment
V6.0.1
+ PK02919, PK05354)

• IBM DB2 UDB V8.2

WebSphere UDDI
Registry V1.1

WebSphere
Application Server
Network Deployment
V6.0.1 EJB Container

WebSphere
Application Server
Network
Deployment V6.0.1

J2C Resource
Adapters

WebSphere
Business
Integration
Adapter

WebSphere Administration
(part of WebSphere
Application Server Network
Deployment V6.0.1)

WebSphere Administration
(part of WebSphere
Application Server Network
Deployment V6.0.1)

Siebel

CICS
Transaction
Server

Adapter
Connector

Adapter
Connector
 Chapter 5. SOA runtime patterns and Product mappings 117

such as CICS Transaction Server. The WebSphere UDDI Registry is used to
implement the business service directory. The advantage of using a UDDI
registry is that there is a central location where all available services are
published which should encourage reuse of services within an enterprise. The
Administration Services and namespace directory are provided by WebSphere
Application Server Network Deployment. A local DB2 database is used to store
the SDO repository.

5.2.2 ESB Gateway runtime pattern::Product mapping
Figure 5-15 shows the Product mapping for the ESB Gateway runtime pattern.

Figure 5-15 ESB Gateway::Product mappings

The service consumer application in this scenario is implemented using
WebSphere Application Server V6. However, it could be implemented in other
technologies and, in fact, could be another ESB. The service consumer initiates
a service via the Gateway using either SOAP over HTTP or SOAP over JMS.
The gateway endpoint node in the gateway is implemented using WebSphere
Application Server and the rules directory is implemented using the file system.

Enterprise

Zone: ESB Gateway

Gateway
Endpoint

Gateway
Endpoint

ESB

Rules
Directory

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Consumer>

WebSphere
Application
Server V6.0.1

Service Integration Bus
(part of WebSphere
Application Server V6.0.1 +
PK02919, PK05354)

• Service Integration Bus &
WebSphere Administration
(part of WebSphere
Application Server V6.0.1
+ PK02919, PK05354)

• Network Cloudscape

WebSphere
Application
Server V6.0.1

WebSphere Administration
(part of WebSphere
Application Server V6.0.1 +
PK02919, PK05354)
118 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The ESB Gateway verifies that it is a valid request via the access control list held
in the Repository and maps the request to a service that is provided by the ESB.
The request to the ESB uses SOAP over HTTP or JMS.

Network Cloudscape database is used to store the SDO repository. The network
configuration of Cloudscape is required to allow the ESB Gateway and the ESB
to share the same repository.

The service provider application can be implemented using the EJB container of
WebSphere Application Server. However, the ESB supports an heterogeneous
environment through the use of adapters. Therefore, the services can be existing
enterprise applications, other non-J2EE application servers, or software
packages.

5.2.3 BSC runtime pattern::Product mapping
Figure 5-16 shows the Product mapping for the BSC zone of the ESB, BSC
composite pattern. You can find the Product mapping for the ESB in 5.2.1, “ESB
runtime pattern::Product mappings” on page 117.

Figure 5-16 BSC runtime pattern::Product mappings

Enterprise

Zone: BSC

Process
Manager

Rules
Directory

Persistence
Manager Business Service

Directory

Zone: Enterprise Service Bus

Namespace
Directory

Administration &
Security Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>Hub

p g p y p

WebSphere Business
Integration Server
Foundation V5.1

DB2 UDB V8.2

Business Rules
Bean persisted
in the file system
 Chapter 5. SOA runtime patterns and Product mappings 119

The process manager is implemented using the Business Process
Choreography component that is part of the WebSphere Business Integration
Server Foundation product. The process manager controls the process
execution and invokes services from the ESB via the hub using SOAP over
HTTP or JMS.

The process manager uses the persistence manager implemented using the
DB2 database to store process results and a business rules bean persisted in
the file system to implement the business process flow rules as part of the rules
directory node.

For more information about BSC, refer to Patterns: Serial and Parallel Processes
for Process Choreography and Workflow, SG24-6306 and to Patterns: Using
Business Service Choreography In Conjunction With An Enterprise Service Bus,
REDP-3908.

5.2.4 Exposed ESB Gateway Product mapping
Figure 5-17 shows the Product mapping for the Exposed ESB Gateway runtime
pattern. This Product mapping is used to implement the scenario that is
described in Chapter 11, “Exposed ESB Gateway pattern” on page 315.

Figure 5-17 Exposed ESB Gateway::Product mappings

Inter-enterprise
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESB

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

<Service Provider>

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Consumer>

IBM HTTP
Server V2

WebSphere
Application
Server V6.0.1

Service Integration Bus
(part of WebSphere
Application Server
V6.0.1
+ PK02919, PK05354)

• Service Integration Bus &
WebSphere Administration
(part of WebSphere
Application Server V6.0.1 +
+ PK02919, PK05354)

• Network Cloudscape

WebSphere
Application
Server V6.0.1

<Service Provider>Internet
120 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

This scenario represents an external service consumer accessing services from
an Enterprise over the Internet. The service consumer in this scenario is
implemented using WebSphere Application Server V6. However, it could be
implemented in any technology capable of issuing HTTPS requests. The figure
also shows an external service provider that is implemented using WebSphere
Application Server V6 and provides Web Services that use SOAP/HTTPS.

The requests are received by an HTTP server that is located in the DMZ, which
receives all incoming requests and sends them to the Exposed ESB Gateway.
The Exposed ESB Gateway is implemented using WebSphere Application
Server, as described in “Exposed ESB Gateway” on page 114.

The Exposed ESB Gateway verifies and maps the request to a service that is
provided by the ESB. The ESB is implemented using WebSphere Application
Server using a network setup for the Cloudscape database which holds the SDO
repository. Finally, the internal service provider application is implemented using
WebSphere Application Server.
 Chapter 5. SOA runtime patterns and Product mappings 121

122 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Part 2 Business
scenario and
guidelines

This part of the book provides an introduction to the scenario chapters in Part 3,
“Scenario implementation” on page 151. The chapters in this part are:

� Chapter 6, “The business scenario that this book uses” on page 125
� Chapter 7, “Technology options” on page 131

You can skip this part of the book if you are familiar with the business scenario
and WebSphere Application Server related technologies.

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 123

124 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 6. The business scenario that
this book uses

Part 3, “Scenario implementation” on page 151 uses a common business
scenario: the WS-I Supply Chain Management sample application. This chapter
describes the sample scenario, the three stages of the scenario, and the relevant
chapter in which each stage is described.

6

© Copyright IBM Corp. 2005. All rights reserved. 125

6.1 WS-I sample application
The Web Services Interoperability Organization (WS-I) has developed a supply
chain management business scenario that demonstrates the features of the
WS-I Basic Profile V1.0. The following documents describe the WS-I sample
business scenario and the technical solution overview:

� WS-I Supply Chain Management Use Cases V1.0
� WS-I Usage Scenarios V1.0
� WS-I Supply Chain Management Technical Architecture V1.0

For full details, see the Web Services Interoperability Organization Web site:

http://www.ws-i.org

This book uses this business scenario to show how you can use the Patterns for
e-business, service-oriented architecture (SOA), and Enterprise Service Bus
approach to develop solutions with real-world business requirements that are
based on interoperability principles as defined in the WS-I Basic Profile.

This business scenario is a simplified supply chain for a consumer electronics
retailer. This chapter describes the evolution of scenarios as the supply chain
management organization moves from a directly connected intra-enterprise
environment to an expanded organization that has divested its business and
operates in an inter-enterprise environment.

6.2 Stages of the business scenario
This section describes the stages of the business scenario. Each stage builds a
layer of complexity onto the previous stage.

6.2.1 Stage 1: Internal supply chain management on demand
In a typical B2C model, customers can access the retailer’s Web site, review the
catalog, and place orders for products, such as televisions, DVD players, and
video cameras. The retailer system requests fulfilment of a consumer’s order
from the internal company warehouse, which responds as to whether line items
from the order can be filled. If stock for any line item falls below a minimum
threshold in the warehouse, a replenishment order is sent to an external
manufacturer using the business-to-business model.

The manufacturer does not immediately fulfill replenishment orders, but
completes the order at some later time (possibly after completing a
manufacturing run).
126 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ws-i.org

Figure 6-1 illustrates the business scenario.

Figure 6-1 Stage 1: Internal SCM

The simplest way to model this business scenario is to use the Direct Connection
pattern to communicate between each service. This scenario is described in
Chapter 8, “SOA Direct Connection pattern” on page 153.

To model this scenario more effectively, we could replace the point-to-point
connections with an Enterprise Service Bus using router interactions. Doing so
would allows greater separation between service consumer and service provider.
This modified scenario is described in Chapter 9, “Enterprise Service Bus
pattern: router scenario” on page 179.

Intranet

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

WarehouseRetail
System

SCM
Application
 Chapter 6. The business scenario that this book uses 127

6.2.2 Stage 2: Additional warehouses
The company has a requirement to stock the parts that it offers to customers in
more than one warehouse. However, the client must see the order as a single
transaction with the company, as shown in Figure 6-2.

Figure 6-2 Stage 2: Additional warehouses

An Enterprise Service Bus using router interactions is no longer sufficient to
model this business scenario because a single message from the retail system
needs to be broken apart into multiple messages and sent to each of the
warehouse systems. This scenario requires an Enterprise Service Bus with
broker interactions. This stage is discussed in chapter Chapter 10, “Enterprise
Service Bus pattern: broker scenario” on page 259.

Intranet

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse
128 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

6.2.3 Stage 3: Divested inter-enterprise manufacturers
The company has decided to divest itself of the three manufacturers. Each
manufacturer will be sold off to another company or be established as a new
company in its own right. Various interactions must now take place securely over
the Internet as shown in Figure 6-3.

Figure 6-3 Stage 3: Divested manufacturers

Each manufacturer runs within its own Enterprise Service Bus. Communication
between two Enterprise Services Bus implementations is represented by the
Exposed ESB Gateway pattern. This stage is discussed in chapter Chapter 11,
“Exposed ESB Gateway pattern” on page 315.

Intranet

Logging
Facility

Retail
System

SCM
Application

Manufacturer
Manufacturer

ManufacturerWarehouse

Intranet

In
te

rn
et
 Chapter 6. The business scenario that this book uses 129

130 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 7. Technology options

This chapter discusses the technologies that this book uses to implement the
SOA patterns. The following standards are of particular importance to an SOA
implementation:

� Web services
� Java Message Service (JMS)
� J2EE Connector Architecture

This book describes SOA implementations in WebSphere Application Server V6.
The key technology to implementing SOA in WebSphere Application Server V6
is the service integration bus.

7

© Copyright IBM Corp. 2005. All rights reserved. 131

7.1 Web services
Web services is a recent re-invention of concepts that have been around for
sometime. They introduce many new advantages and capabilities. In a sense,
none of the function that Web services provide is new; CORBA has provided
much of this function for many years. Web services, however, builds upon
existing open Web technologies, such as XML, URL, and HTTP. Web services
are defined in several different standards, such as SOAP and WSDL which build
upon general Web and other Web services standards. These standards are
defined by the World Wide Web Consortium, the Organization for the
Advancement of Structured Information Standards (OASIS), and Web Services
Interoperability Organization (WS-I).

The basic Web services support provides for three simple usage models:

� One-way usage scenario

A Web services message is sent from a consumer to a provider and no
response message is expected.

� Synchronous request/response usage scenario

A Web services message is sent from a consumer to a provider and a
response message is expected.

� Basic callback usage scenario

A Web service message is sent from a consumer to a provider using the
2-way invocation model, but the response is just treated as an
acknowledgement that the request has been received. The provider then
responds by calling making use of a Web service callback to the consumer.

Other Web service standards are built upon these basic standards and
invocation models to provide higher level functions and qualities of service.
Examples of these standards are WS-Transaction, WS-Security, and
WS-ResourceFramework.

One of the main aims of Web services is to provide a loose coupling between
service consumer and service providers. While this is limited to a certain extent
by a requirement for the consumers and providers to agree on a WSDL interface
definition, Web services have been created with significant flexibility with regard
to the location of these Web services. Figure 7-1 on page 133 shows how the
Web services interaction model has been designed with this form of loose
coupling.
132 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 7-1 Basic Web service interaction model

The interactions work as follows:

1. The service provider publishes some WSDL defining its interface and location
to a service registry.

2. The service consumer contacts the service registry in order to obtain a
reference to a service provider.

3. The service consumer, having obtained the location of the service provider,
makes calls on the service provider.

Note: Although this model is regularly discussed, the service registry is often
removed from the cycle in real implementations in the interests of simplicity
and lack of trust of the services in the service registry. This has the drawback
that if the service provider is relocated, the service consumer needs to be
changed to refer to the new location of the service provider.

Service
Consumer

Service
Registry

Service
Provider

Find Publish

Use

12

3

Exposes business functions as
Web services
Publishes functions to registry
Listens to and accepts requests

Requires business functions
Searches registry for matching
functions
Binds and make requests

Maintains repository of
business functions
Accessed via UDDI

Business functions
described in WSDL
using UDDI

Business functions
described in WSDL
using UDDI

Business functions
using SOAP

UDDI: Service Registry
WSDL: Service Description
SOAP: Service Invocation
 Chapter 7. Technology options 133

SOAP
SOAP is an XML-based format for constructing messages in a transport
independent way and a standard on how the message should be handled. SOAP
messages consist of an envelope that contains a header and a body. It also
defines a mechanism for indicating and communicating problems that occurred
while processing the message, which are known as SOAP faults.

The headers section of a SOAP message is extensible and can contain many
different headers that are defined by different schemas. The extra headers can
be used to modify the behavior of the middleware infrastructure. For example,
the headers can include information about transactions that can be used to
ensure that actions performed by the service consumer and service provider are
coordinated.

The body section contains the content of the SOAP message. When used by
Web services, the SOAP body contains XML-formatted data. This data is
specified in the WSDL that describes the Web service.

When talking about SOAP, it is common to talk about SOAP in combination with
the transport protocol that is used to communicate the SOAP message. For
example, SOAP that is transported using HTTP is referred to as SOAP over
HTTP or SOAP/HTTP.

The most common transport that is used to communicate SOAP messages is
HTTP. This is expected because Web services are designed to make use of
Web technologies. However, SOAP can also be communicated using JMS as a
transport. When using JMS, the address of the Web service is expressed in
terms of a JMS connection factory and a JMS destination. Although using JMS
provides a more reliable transport mechanism, it is not an open standard,
requires extra and potential expensive investment, and does not interoperate as
easily as SOAP over HTTP.

The SOAP version 1.1 and 1.2 specifications are available from the World Wide
Web Consortium at:

http://www.w3.org/TR/soaap/

Web Services Description Language
Web Services Description Language (WSDL) is an XML-based interface
definition language that separates function from implementation and enables
design by contract as recommended by SOA. WSDL descriptions contain a port
type (the functional and data description of the operations that are available in a
Web service), a binding (providing instructions for interacting with the Web
service through specific protocols, such as SOAP over HTTP), and a port
(providing a specific address through which a Web service can be invoked using
a specific protocol binding).
134 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.w3.org/TR/soaap/

It is common for these aspects to be defined in three separate WSDL files, each
importing the others.

The value of WSDL is that it enables development tooling and middleware for
any platform and language to understand service operations and invocation
mechanisms. For example, given the WSDL interface to a service that is
implemented in Java, running in a WebSphere environment, and offering
invocation through HTTP, a developer working in the Microsoft .Net platform can
import the WSDL and easily generate application code to invoke the service.

As with SOAP, the WSDL specification is extensible and provides for additional
aspects of service interactions to be specified, such as security and
transactionality.

Universal Description, Discovery, Integration
Universal Description, Discovery, Integration (UDDI) servers act as a directory of
available services and service providers. SOAP can be used to query UDDI to
find the locations of WSDL definitions of services, or the search can be
performed through a user interface at design or development time. The original
UDDI classification was based on a U.S. government taxonomy of businesses
and recent versions of the UDDI specification have added support for custom
taxonomies.

A public UDDI directory is provided by IBM, Microsoft, and SAP, each of whom
runs a mirror of the same directory of public services. However, there are many
patterns of use that involve private registries. For more information, see the
following articles:

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

7.1.1 Web services interoperability
In order to facilitate the development of truly interoperable Web services, the
Web Services Interoperability Organization (often referred to as the WS-I) was
formed in February 2002. The WS-I aims to promote interoperability of Web
services implementations by publishing profiles, which are descriptions of
conventions and practices for the use of specific combinations of Web services
standards through which systems can interact. Technology vendors can then
produce compliant implementations and publicize that compliance, offering some
level of assurance to technology customers as to the level of Web services
interoperability that can be achieved with different implementations.
 Chapter 7. Technology options 135

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

The WS-I published the first profile for interaction, the Basic Profile V1.0, in July
2003, and many technology vendors provide product implementations of Web
services that are compliant with this profile. This is described further in the next
section.

In August 2004, the WS-I published the Basic Profile V1.1, splitting the original
profile in two: the Basic Profile V1.1 and the Simple SOAP Binding Profile V1.0.
The idea is that the combination is equivalent to Basic Profile V1.0. Combining
the two profiles aids in the incorporation of different binding mechanisms, such
as SOAP with Attachments. This allows a implementation to make the claim that
it is Basic Profile V1.1 and Attachments Profile V1.0 compliant without needing to
implement the Simple SOAP Binding Profile V1.0.

The Web Services Interoperability Organization Web site contains links to
published, draft, and planned interoperability profiles and information about
vendor compliance:

http://www.ws-i.org/

WS-I Basic Profile V1.0
The WS-I Basic Profile V1.0 specifies a set of usage scenarios and Web services
standards that can be used to integrate systems. It focuses on the core
foundation technologies upon which Web services are based. Basic Profile V1.0
was approved unanimously on July 22, 2003, by the WS-I board of directors and
members.

The WS-I Basic Profile V1.0 - Profile Specification consists of the following
non-proprietary Web services related specifications:

� SOAP V1.1
� WSDL V1.1
� UDDI V2.0
� XML V1.0 (Second Edition)
� XML Schema Part 1: Structures
� XML Schema Part 2: Datatypes
� RFC2246: The Transport Layer Security Protocol Version V1.0
� RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL

Profile
� RFC2616: HyperText Transfer Protocol V1.1
� RFC2818: HTTP over TLS
� RFC2965: HTTP State Management Mechanism
� The Secure Sockets Layer Protocol Version V3.0
136 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ws-i.org/

The WS-I Supply Chain Management sample application depicts an application
for a fictitious consumer electronics retailer. This sample application is the basis
of the scenarios in this book and is described in Chapter 6, “The business
scenario that this book uses” on page 125.

See also the following IBM developerWorks® articles:

� First look at the WS-I Basic Profile V1.0

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html

� First look at the WS-I Usage Scenarios

http://www.ibm.com/developerworks/webservices/library/ws-iuse/

� Preview of WS-I sample application

http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

WS-I Basic Profile V1.1
The WS-I Basic Profile V1.1 removes the SOAP binding requirements and
moves them to the Simple SOAP Binding Profile V1.0. This means that being
WS-I Basic Profile V1.1 compliant by itself is not very interesting. It is not until a
binding is applied that the Web services can interact. Two bindings have been
created. The Simple SOAP Binding Profile V1.0 which together with the WS-I
Basic Profile V1.1 allows equivalent function to the Basic Profile V1.0, and the
Attachments Profile V1.0 which allows SOAP with attachments as a binding
option.

7.1.2 Advanced and future Web services standards
There are many successful implementations of the basic Web services
standards, particularly SOAP and WSDL but many aspects of service interaction
and integration are not directly supported by those basic standards, such as
security, transactionality, delivery assurance, and process modeling.

The Web services standards are evolving and maturing to address these aspects
of interaction and integration, increasing their value to SOA. This section
discusses some of the recent and emerging Web services standards that support
more sophisticated aspects of service interactions and SOA.

Production-level product support for some of these standards is not yet available,
but early implementations exist. The IBM Emerging Technologies Toolkit
(ETTK), for example, provides an implementation of WS-ReliableMessaging.
You can download the toolkit from:

http://www.alphaworks.ibm.com/tech/ettk
 Chapter 7. Technology options 137

http://www.alphaworks.ibm.com/tech/ettk
http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

Web services security
In theory, Web services can leverage any security model that is appropriate to
the underlying communication technologies. (SOAP/HTTP can use basic HTTP
authentication or SSL authentication and encryption.) However, such simple
point-to-point models are insufficient for the widespread integration needs of
SOA. For example:

� Communication security does not recognize the difference between SOAP
message headers and the SOAP message body.

� Credentials can be technology-specific to the communication mechanism, but
inappropriate to communication mechanisms that are used farther down the
interaction chain.

� Combining many interactions in a secure overall chain involves trust models
between the participants in the chain. Such models are often customized or
proprietary, and are not consistent with flexibly changing the participants in
the chain as they imply a technology barrier to participation.

In 2002, IBM and Microsoft proposed an architecture and road map for Web
services security (WS-Security). This set out a framework consisting of several
Web services specifications, including WS-Security, WS-Trust, WS-Privacy, and
WS-Policy. It also accommodated existing security technologies such as
Kerberos, XML Digital Signatures, and XML Encryption.

Support for the basic WS-Security standards is available in existing products and
can be used to implement secure Web services solutions. Understanding the
security requirements of specific SOA situations and selecting appropriate
technologies, include those compliant with the WS-Security standards, is a key
decision in SOA implementation.

For further information, see:

� Security in a Web Services World: a Proposed Architecture and Road map

http://www.ibm.com/developerworks/library/ws-secmap/

� Web Services Security: Moving up the stack

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

WS-ReliableMessaging and SOAP/JMS
The HTTP protocol is used widely in SOAP interactions and is specified in the
WS-I Basic Profile. However, it offers relatively poor reliability in contrast to
communication protocols that are often associated with valuable business
transactions, such as WebSphere MQ. Many SOA scenarios involve interactions
that require a level of delivery assurance beyond that provided by HTTP.
138 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ibm.com/developerworks/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/

The WS-ReliableMessaging specification defines a protocol for reliable
communication (including SOAP messages) that use a variety of communication
technologies, which themselves might be less reliable. An updated specification
was published in March 2004.

Until WS-ReliableMessaging is widely available, alternative approaches are
possible using implementations of SOAP over more reliable communication
infrastructures. For example, SOAP messaging is supported through the JMS
API to WebSphere MQ by WebSphere MQ, the Web Services Gateway, and
WebSphere Business Integration Server Foundation. However, such
approaches tend to be implementations by specific technology vendors so,
although they are useful in particular SOA implementations, they do not have all
of the potential benefits of a fully open-standard implementation.

For further information, see:

� Updated: Web Services Reliable Messaging: A new protocol for reliable
delivery between distributed applications

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� Implementation Strategies for WS-ReliableMessaging: How
WS-ReliableMessaging can interact with other middleware communication
systems

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

Business Process Execution Language for Web Services
The encapsulation and exposure of business functions as services in an SOA
enables the definition of processes consisting of those services. The Business
Process Execution Language for Web Services (BPEL4WS) provides a
standard, XML language for expressing business processes consisting of
functions that are defined through WSDL interfaces. BPEL4WS supports both
short-lived processes and long-lived processes (processes that must wait at
certain points until some event occurs, such as the receipt of an event).

As with WSDL, BPEL4WS has both design time and runtime uses. At design
time, development or modeling tools can use, import, or export BPEL4WS to
enable business analysts to specify processes and developers to refine them
and bind process steps to specific service implementations. The runtime
choreography and workflow engines can use BPEL4WS to control the execution
of processes and invoke the services that are required to implement them.

Although BPEL4WS is a relatively new standard, product support such as
WebSphere Business Integration Server Foundation V5.1 is available. This
support provides additional facilities to compensate failed processes (a
proprietary equivalent to the WS-BusinessActivity standard described in the next
 Chapter 7. Technology options 139

http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

section, “Web services transactions”) and provide a user workflow interface to
enable human actions to fulfill WSDL-defined steps in a BPEL4WS process.

For further information, see:

� BPEL4WS Specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Process with BPEL4WS, a series of introductory articles and
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� BPEL4WS support in WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/features/

� BPEL4WS support in WebSphere Studio Application Developer Integration
Edition

http://www.ibm.com/software/integration/wsadie/features/

Web services transactions
Although WS-ReliableMessaging provides a means to assure the delivery of
individual communications in a Web services interaction, a means is also
required to control the integrity of business transactions in an SOA that consist of
one or more Web services invocations or interactions.

Within the framework of the Web services coordination (WS-Coordination)
specification, both synchronous (WS-AtomicTransaction) and long-lived
(WS-BusinessActivity) transaction models have been defined. These replace the
previous WS-Transaction specification.

The WS-AtomicTransaction specifies a model for synchronous, two-phase
committal of distributed transactions using Web services protocols.
WS-BusinessActivity defines an asynchronous model for compensating failed
processes using undo actions to reverse the effects of individual steps of the
process. Neither specification has mature product support to date.

For further information, see:

� WS-AtomicTransaction Specification

http://www.ibm.com/developerworks/library/ws-atomtran/

� WS-BusinessActivity Specification

http://www.ibm.com/developerworks/webservices/library/ws-busact/

� Transactions in the world of Web Services, part 1 and part 2

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/
140 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ibm.com/developerworks/library/ws-atomtran/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.ibm.com/software/integration/wbisf/features/
http://www.ibm.com/software/integration/wsadie/features/
http://www.ibm.com/developerworks/webservices/library/ws-busact/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

� WS-Coordination Specification

http://www.ibm.com/developerworks/library/ws-coor/

Web Services Policy Framework (WS-Policy)
The Web Services Policy Framework is intended to provide a set of languages
by which service consumers and providers can express their requirements and
capabilities concerning qualities of service of service interactions, such as
security, transactionality, and communication reliability. Eventually, a framework
of such languages, supported by Enterprise Service Bus middleware, enables
open-standard implementations of negotiated coupling between various aspects
of service interactions.

A WS-Policy specification is available, although specific policy languages for
quality of service aspects such as security are still required, and product support
has yet to emerge.

For further information, see:

� WS-Policy Framework Specification

http://www.ibm.com/developerworks/library/ws-polfram/

� Web Services Policy Framework: New specifications improve WS-Security

http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.ht
ml

7.2 Java Message Service
The Java Message Service (JMS) is a cross platform Java API for accessing
message oriented middleware.

7.2.1 Understanding messaging
Messaging is a form of communication between two or more software
applications or components. Messaging is commonly used for application
integration where the application does not need an immediate answer to
progress. In messaging, the requester sends a message to a destination. At
some point the provider receives the message and does some processing. It
does not require that the two applications be up at the same time. The power of
messaging lies in this disconnect. Messaging is often referred to as loosely
coupled, but to get the full advantage of this, advanced broker functionality is
 Chapter 7. Technology options 141

http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html

required. Without this broker functionality the requester and provider must agree
on a format and location for the messages. The addition of broker functionality
allows for routing of messages between destinations and for code to be inserted
into the messaging middleware in order to transform message formats.

7.2.2 JMS messages
The JMS specification defines a set of message types and APIs for sending and
receiving those messages to and from destinations. In JMS, messages are split
into the following sections:

� Header

The JMS header contains information about where the message was sent to
and where responses should be sent. These properties are typically for use
by the JMS provider.

� Properties

JMS properties are application level properties. JMS properties can be
strings, numbers, or booleans and are named. The JMS properties are
intended as an extensible form of application level header.

� Body

The body of the message contains the data being transported. It is intended
for the payload of the message.

JMS defines the following interaction styles for messaging:

� Point-to-point

A single message sent to a destination is received by a single client.

� Publish subscribe

A single message sent, or published, to a destination is received by all clients.

Messages can be persisted at the destinations. The intent is that persistent
messages are guaranteed to be delivered and not duplicated. Messages can
also be sent as a part of an externally coordinated two phase commit transaction.

The J2EE V1.3 specification integrates support for JMS V1.0.2b and requires
that J2EE V1.3 compliant application servers include an integral JMS provider. It
also introduces the concept of message-driven beans (MDBs), which allow
message to be delivered to an EJB allowing the asynchronous invocation of
business logic.

With J2EE V1.4 the JMS specification is upgraded to the V1.1 level which
includes support for domain neutral messaging. In JMS 1.0.2b the application
writer has to decide which of the two messaging model, point-to-point or publish
142 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

subscribe, the program should use. In JMS V1.1 the programming model is the
same for both interactions models. It is type of the destination that is used to
determine which model that maps to. Destinations in JMS are considered
administrative objects which get bound into a JNDI namespace and looked up
later. J2EE V1.4 also makes the concept of an MDB more generic, providing a
framework for anyone wishing to trigger work asynchronously into an enterprise
application.

The JMS provider in WebSphere Application Server V6 is the service integration
bus. See 7.4, “Service integration bus in WebSphere Application Server” on
page 145

7.2.3 Advantages of JMS
The following are some of the advantages of using JMS:

� It is the first enterprise messaging API that has achieved wide cross-industry
support.

� It simplifies the development of enterprise applications by providing standard
messaging concepts and conventions that apply across a wide range of
enterprise messaging systems.

� It leverages existing, enterprise-proven, messaging systems.

� It allows you to extend existing message-based applications by adding new
JMS clients that are integrated fully with their existing non-JMS clients.

� Developers have to learn only one common interface for accessing diverse
messaging systems.

7.2.4 Disadvantages of JMS
The following are some of the disadvantages of using JMS:

� In common with messaging, in general it does not easily support the concepts
of synchronous request-response.

� It is not a protocol, so all your JMS applications need to access the same JMS
provider.

� JMS resources require an extra level of administration.
 Chapter 7. Technology options 143

7.3 J2EE Connector Architecture
The J2EE Connector Architecture is aimed at providing a standard way to access
enterprise applications from a J2EE-based Java application. It defines a set of
Java interfaces through which application developers can access Enterprise
Information Systems (EIS), for example, CICS, and Enterprise Resource
Planning (ERP) applications.

J2EE Connector Architecture V1.5 support is a requirement of the J2EE V1.4
specification. Resource adapters allow J2EE applications to connect to a
particular EIS. The J2EE Connector Architecture specification defines the
following types of resource adapters:

� Outbound adapters, which are used by application initiated requests to an
EIS.

� Inbound adapters, which are used by the EIS making calls to a
message-driven bean.

The J2EE Connector Architecture provides a Common Client Interface API (CCI)
with both common and resource adapter specific interfaces. Application
programmers code to this single API rather than using different interfaces for
each proprietary system. However, it is common for a resource adapter to make
use of its own, or an existing API, such as JDBC or JMS.

The J2EE Connector Architecture specification provides support for transactions,
security and sharing of connections between different clients.

7.3.1 Advantages of the J2EE Connector Architecture
The following are some of the advantages of using J2EE Connector Architecture
resource adapters:

� The CCI simplifies application integration with diverse EISs. This common
interface makes it easy to plug third-party or home-grown resource adapters
into your applications.

� Inbound adapters provide a way to get a message-driven bean invoked when
an event occurs in the EIS (for example, a message arrives at a JMS
destination).

� Outbound adapters that are XA capable automatically participate in any
transactions in effect without requiring action by an application.

� Outbound adapters can pick up security credentials from the container where
they are executing.

� Connections to the EIS can be shared to reduce resource overhead.
144 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

7.3.2 Disadvantages of the J2EE Connector Architecture
Although the CCI provides a common interface definition, some resource adapter
specific interfaces still need to be used. The usage of these interfaces varies
depending on the EIS the resource adapter used.

7.4 Service integration bus in WebSphere Application
Server

The service integration bus provides advanced support for application
integration. It combines support for applications connecting via native JMS,
WebSphere MQ JMS, WebSphere MQ, and Web services. It supports the
message-oriented middleware and request-response interaction models. As a
part of this, the service integration bus supports multiple message distribution
models, reliability options, and transactional messaging.

7.4.1 Concepts and architecture
This section discusses the new concepts that service integration bus technology
introduces.

Bus
A service integration bus, or bus, provides a conceptual connection point and a
namespace for destinations and services. The application integration capabilities
of the service integration bus are provided by a number of connected messaging
engines.

Messaging engine
A messaging engine provides the messaging capabilities of the service
integration bus. Messaging engines provide two functions:

� Message management

A messaging engine manages messages by routing them to the appropriate
endpoint (via additional messaging engines if required). These messages can
be persisted to a database and managed within a transactional scope.

� Connection management

While the conceptual entity clients connect to is the bus, the physical
connection is to a messaging engine. Clients can connect into any messaging
engine in the bus and send messages to it. If the destination is assigned to a
different messaging engine the messaging engine will route it to the correct
messaging engine. A messaging engine is assigned to a bus member.
 Chapter 7. Technology options 145

Bus member
A bus member is an application server or cluster that is a member of a bus and,
therefore, is hosting a messaging engine.

Destination
A destination is an addressing point within a bus. A destination is assigned to
one bus member and, therefore, one or more messaging engines. Clients send
messages to a destination and the bus ensures that it is routed to the correct
localization on the bus. The following destination types are supported by the
service integration bus:

� Web service destinations

Web service destinations are a representation of an outbound Web service in
the bus. They are used as a placeholder for a port selection mediation.

� Port destinations

Port destinations are a representation of an outbound Web service port.
Sending a Web service request to a port destination will result in the target
Web service being invoked.

� Queue destinations

Queue destinations are destinations that are configured for point-to-point
messaging.

� Topic space destinations

Topic space destinations are destinations that are configured for
publish/subscribe messaging.

� Alias destinations

Alias destinations are destinations that are configured to refer to another
destination. They provide an extra level of indirection for messaging
applications. An alias destination can also be used to override some of the
values specified on the target destination, such as default reliability and
maximum reliability. An alias destination can also refer to a destination on a
foreign bus. Foreign buses are discussed in “Foreign bus” on page 148.

� Foreign destinations

Foreign destinations are not actual destinations within a service integration
bus, but they can be used override the default reliability and maximum
reliability properties of a destination that exists on a foreign bus. Foreign
buses are discussed in “Foreign bus” on page 148.

Destinations can be mediated to provide advanced message formatting and
routing function.
146 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Inbound service
An inbound service is defined to allow Web service clients to connect into the
bus. An inbound service converts an incoming Web service request into a
message and places it on a destination. The message can then be routed,
transformed, and processed. Inbound services can be invoked using SOAP over
JMS or SOAP over HTTP by associating the service with the relevant endpoint
listener.

Outbound service
An outbound service allows a Web service request in the bus to exit and invoke a
Web service. The Web service can be invoked by SOAP over JMS or SOAP over
HTTP. Creating an outbound service causes Web service and port type
destinations to be created. Sending a Web service message to the Web service
destination causes the Web service to be invoked. By routing a request from an
inbound service to an outbound service, the service integration bus can be
inserted in the Web service flow providing some Enterprise Service Bus
capabilities.

Endpoint listener
An endpoint listener listens for incoming Web service requests via HTTP or JMS
and passes them onto the relevant inbound service. An endpoint listener can be
thought of as a localization point for an inbound service.

Message point
When a destination is assigned to a bus member, a message point is created.
The messages are stored on the message point.

The following are the types of message point that can be contained with a
messaging engine:

� Queue point, which is the message point for a queue destination.

� Publication points, which is the message point for a topic space. Creating a
topic space destination automatically defines a publication point for each
messaging engine within the bus.

� Mediation points, which is where messages are stored while they wait to be
mediated. A mediated destination also has mediation points.
 Chapter 7. Technology options 147

Mediation
A mediation processes in-flight messages between the production of a message
by one application and the consumption of a message by another application.
Mediations enable the messaging behavior of a bus to be customized. Examples
of the processing that can be performed by a mediation are:

� Transforming a message from one format into another.

� Dynamically routing messages to one or more target destinations that were
not specified by the sending application.

� Augmenting messages by adding data from a data source.

� Disaggregation of a request into several requests and then aggregation of the
responses.

A mediation is defined within a bus. This mediation can then be associated with a
destination on the bus. A destination with which the mediation is associated is
referred to as a mediated destination.

Foreign bus
A bus can be configured to connect to and exchange messages with other
messaging networks. A foreign bus is how the service integration bus refers to
one of these networks.

A foreign bus encapsulates information related to the remote messaging
network, such as the type of the foreign bus and whether messaging applications
are allowed to send messages to the foreign bus. When buses are
interconnected, applications can send messages to destinations that are defined
on other buses.

Foreign bus link
When a foreign bus is configured on a bus, it simply names a foreign bus. It does
not define a link between the two. In order for the two buses to be able to
communicate with each other at runtime, links must be configured between a
specific messaging engine within the local bus and a specific messaging engine,
or queue manager, within the foreign bus. When configuring a direct service
integration bus link, these links must be configured in both directions in order for
the two buses to be able to communicate. At runtime, messages that are routed
to a foreign bus will flow across the corresponding link.

Exception destinations
If a message cannot be delivered to the target destination or client, the message
is placed on an exception destination. Thus, messages are not lost in the event
of delivery failure and allows applications to continue in the event of a corrupt or
poisoned message.
148 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

7.4.2 Further information
You can find more information about the service integration bus in WebSphere
Application Server V6 System Management and Configuration Handbook,
SG24-6451.
 Chapter 7. Technology options 149

150 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Part 3 Scenario
implementation

This part of the book consists of what we term scenario chapters. Each chapter
takes a Runtime pattern from the SOA profile of the Patterns for e-business and
describes how to design, development, and deploy this pattern using
WebSphere Application Server V6. Each chapter is divided into design
guidelines, development guidelines, and runtime guidelines.

This part contains the following chapters:

� Chapter 8, “SOA Direct Connection pattern” on page 153
� Chapter 9, “Enterprise Service Bus pattern: router scenario” on page 179
� Chapter 10, “Enterprise Service Bus pattern: broker scenario” on page 259
� Chapter 11, “Exposed ESB Gateway pattern” on page 315

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 151

152 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 8. SOA Direct Connection
pattern

The simplest form of SOA implementation is to use the Direct Connection
runtime pattern, where service consumers and providers communicate through
direct point-to-point interactions. Although simple to implement, this pattern does
not incorporate an Enterprise Service Bus (ESB) design and, thus, does not
inherit any of the advantages of using an ESB.

This chapter discusses how to construct the simplest form of SOA and also
introduces the basic runtime guidelines for administering WebSphere Application
Server V6. We have, however, deliberately kept this chapter as short and simple
as possible. For more advanced information about SOA design decisions,
development guidelines, and runtime guidelines, consult the Enterprise Service
Bus scenario chapters which follow this chapter.

8

© Copyright IBM Corp. 2005. All rights reserved. 153

8.1 Design guidelines
This section discusses the business needs that are addressed by the sample
scenario, and the appropriate SOA pattern and WebSphere products that meet
the requirements of this solution. The business scenario that is implemented in
this chapter is Stage 1 of the WS-I sample application business scenario that is
defined in Chapter 6, “The business scenario that this book uses” on page 125.

8.1.1 Business scenario
The business scenario that is implemented in this chapter represents the internal
supply chain management on demand scenario as defined in 6.2.1, “Stage 1:
Internal supply chain management on demand” on page 126. This scenario
illustrates how you can develop solutions to real-world business requirements
within an single enterprise by applying an SOA that uses simple point-to-point
interactions.

The Supply Chain Management application makes requests to the Retail system
to help customers buy electronics goods online. The Retailer receives stock from
the Warehouse, and the Warehouse replenishes stock from the Manufacturers,
on a one-to-one basis, as shown in Figure 8-1.

Figure 8-1 High-level business context showing the existing infrastructure

Intranet

Manufacturer
Manufacturer

Manufacturer

Logging
Facility

WarehouseRetail
System

SCM
Application
154 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The organization has the following requirements:

� This scenario represents the organization’s first attempt to implement an SOA
solution. Therefore, the business requires that the implementation be kept as
simple as possible. The organization expects that over time the
implementation will be enhanced to take advantage of more advanced SOA
benefits, such as looser coupling and service routing.

� The systems that make up the scenario are fixed and established. Their
location and naming conventions are not expected to change.

8.1.2 Selecting an SOA pattern
We use the Patterns for e-business to determine the appropriate Runtime pattern
to apply to this scenario. Because this is an intra-enterprise scenario, we select
the Process Integration application patterns. The business scenario requires only
point-to-point connections. These are described by the Direct Connection
application pattern. Our business scenario describes SOA, so we select the SOA
profile of the Direct Connection runtime pattern as described in 5.1.1, “Direct
Connection using a service bus” on page 96.

We apply the implementation for this business scenario to the level 0
decomposition of the Direct Connection runtime pattern, as shown in Figure 8-2.

Figure 8-2 Direct Connection runtime pattern applied to our scenario

Enterprise

<Service Bus>

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

SCM
Application

Retail
System

Business
Event Log

Manufacturer ManufacturerB ManufacturerC Warehouse
 Chapter 8. SOA Direct Connection pattern 155

The Direct Connection runtime pattern from the SOA profile uses point-to-point
interactions. These point-to-point interactions are defined by the Direct
Connection application pattern. This Application pattern, and its two variants, are
described in 3.1.1, “Direct Connection” on page 48.

Figure 8-3 illustrates the Direct Connection application pattern.

Figure 8-3 Direct Connection application pattern

8.1.3 Products
For this scenario, we can use the following currently available products to
implement the SOA Direct Connection pattern:

� WebSphere Application Server V6.0 (any edition)
� WebSphere Application Server V5.1.1 (any edition)

We select the base offering of WebSphere Application Server V6.0 because this
offering uses a SOAP over HTTP service bus. Figure 8-4 on page 157 shows the
Product mapping for the Direct Connection runtime pattern that this scenario
uses.

Target
Application

Source
Application

Connection
Rules
156 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 8-4 Product mapping=WebSphere Application Server V6

The sample application internally uses JMS messaging to communicate to its
components. Therefore, a JMS-capable messaging engine is required. We use
the default JMS messaging capability that is provided by the WebSphere
Application Server V6.0 service integration bus.

8.2 Development guidelines
The scenario that this book uses is based on the WS-I sample application. This
section discusses how the scenario makes use of the SOA Direct Connection
runtime pattern.

8.2.1 Scenario implementation: Direct Connection interaction
Figure 8-5 on page 158 shows the WS-I sample application. Each scenario has a
similar diagram that shows the interactions that are made by each component in
the sample application.

Enterprise

App Server/
Services

Adapter
Connector

App Server/
Services

Adapter
Connector

App Server/
Services

Adapter
Connector

<Service Bus>SOAP V1.1 /
HTTP V1.1

WebSphere
Application
Server V6.0

SOAP provider

Web service
 Chapter 8. SOA Direct Connection pattern 157

Figure 8-5 Scenario implementation using the Direct Connection pattern

Figure 8-5 shows how the application has been written and how it interacts with
other components. Shown are the enterprise applications (the blue boxes), the
Web services (the white boxes), and the operations (the small white boxes that
come out of the larger white boxes). Also shown is whether the operation in
question is a one-way or two-way Web service request or a JMS operation. All
arrows that connect the cogs to operations indicate a Web service invocation.
Lines that are decorated by an envelope designate a SOAP over JMS invocation.
All other invocations are SOAP over HTTP.

LoggingFacility

logEvent

getEvents

LoggingFacility

Retailer

getCatalog

submitOrder

Retailer

Warehouse

shipGoods
Warehouse

submitSN

errorPO

Warehouse
Callback

SCMSampleUI

SCMSampleUI

Key:

Operation name A Web service operation or onMessage

Indicates a one-way operation Indicates a Web service request

Indicates a JMS related operation

Indicates a request/response operation

shipGoods

logEvent

logEvent

submitPO

logEvent

getEvents

getCatalog

submitOrder

submitPO
Manufacturer

Manufacturer
MDB

logEvent

onMessage

submitSN

errorPO

Manufacturer
158 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The application interacts as follows:

1. The SCMSampleUI application:

a. Provides a Web user interface.

b. Invokes the Retailer Web service to obtain a list of all the items that can be
purchased.

c. Invokes the Retailer Web service to order an item.

d. Invokes the LoggingFacility to track an order.

2. When an order is submitted, the Retailer Web service:

a. Invokes the LoggingFacility to log events that occur in the order.

b. Invokes the Warehouse to obtain whether the order can be shipped and, if
so, has it shipped.

3. When a request to ship goods is made, the Warehouse Web service:

a. Determines if there is enough of the goods in stock to ship the order.

• If there is not enough goods in stock, it refuses to ship the order.

• If there is enough goods in stock, it ships the order.

b. Determines if more goods need to be ordered:

• If more goods need to be ordered, it submits a purchase order to the
relevant manufacturer.

• If there is enough goods in stock, it does nothing.

4. When a purchase order is submitted, the Manufacturer Web service sends a
JMS message to a queue.

5. When triggered, Manufacturer message-driven bean:

a. If the purchase order can be filled:

• Invokes submitSN on the WarehouseCallback.

• Invokes LoggingFacility to log that the item has been shipped.

b. If the purchase order cannot be filled:

• Invokes errorPO on the WarehouseCallback.

• Invokes LoggingFacility to indicate that the item cannot be shipped.

6. When invoked, the WarehouseCallback Web service calls the LoggingFacility
to indicate whether the purchase order was filled.
 Chapter 8. SOA Direct Connection pattern 159

8.3 Runtime guidelines
This section takes you through the steps that are involved for configuring the
sample application using the SOA Direct Connection pattern. It assumes that you
have a running application server.

This section describes the following activities:

� Using the service integration bus for messaging
� Creating a bus
� Adding a bus member
� Creating the destinations
� Creating a JMS connection factory
� Creating the JMS queues
� Creating the JMS activation specifications
� Hosting the WSDL files
� Installing the applications
� Running and using the sample application

8.3.1 Using the service integration bus for messaging
The sample scenario that is used in this chapter uses JMS messaging to pass
messages within the three Manufacturer enterprise applications, as shown in
Figure 8-6 on page 161.
160 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 8-6 Messaging that is used by the Manufacturer enterprise applications

We, therefore, need to do the following:

� Define the destinations that are required by the Manufacturers in a
messaging engine.

� Expose these destinations as JMS destinations, using the names that are
specified in the Manufacturer enterprise applications.

In WebSphere Application Server V5, the messaging engine usually is provided
by the Embedded Messaging support or by an external WebSphere MQ. In
WebSphere Application Server V6, we can use the service integration bus as the
messaging engine.

Therefore, we create a new service integration bus and define the destinations
that are required by the Manufacturer enterprise applications into this bus. We
also define the JMS resources that are required: a connection factory, three
destinations, and three activation specifications.

ManufacturerWeb

StockWorker.doWork()

Sample/WSI/Manufacturer

ManufacturerEJB

CallbackMessageBean.onMessage()

ManufacturerBWeb

StockWorker.doWork()

Sample/WSI/ManufacturerB

ManufacturerBEJB

CallbackMessageBean.onMessage()

ManufacturerCWeb

StockWorker.doWork()

Sample/WSI/ManufacturerC

ManufacturerCEJB

CallbackMessageBean.onMessage()
 Chapter 8. SOA Direct Connection pattern 161

8.3.2 Creating a bus
The first step in the process is to create a new service integration bus. To create
a bus:

1. Access and log in to the WebSphere Application Server administrative
console at:

http://localhost:9060/ibm/console

2. Expand Service integration and click Buses.

3. Click New.

4. In the field labeled Name, enter TESTBUS, as shown in Figure 8-7. For the
other values, accept the defaults.

Figure 8-7 New Bus details entry page

5. Click Apply, and the bus is created. Save the changes.

Note: In this chapter, we simply use the service integration bus as a
messaging engine. If our sample application did not use messaging, we would
not have needed the service integration bus to implement the SOA Direct
Connection pattern. The Web services support of the service integration bus
was not required, because all our Web service interactions are point-to-point
and require no redirection or mediation.

In the following chapters, we use the Web services support of the service
integration bus to act as an intermediary between Web service invocations. In
those chapters, we use the service integration bus as a component of an
Enterprise Service Bus.
162 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

8.3.3 Adding a bus member
Creating a bus just creates an administrative entity. It does not create any
resources for messaging. To create resource, we need to add a bus member,
which has the effect of creating a messaging engine. To add a bus member:

1. Click TESTBUS to show its properties. Under Additional Properties, click Bus
members.

2. Click Add. The page shown in Figure 8-8 appears where you can choose
which server or cluster to add.

Figure 8-8 Adding a bus member wizard

3. Accept the defaults, and click Next.

4. This page is a details summary page. Click Finish. The server is added as a
member of the bus, and a messaging engine created.

5. Save the changes.
 Chapter 8. SOA Direct Connection pattern 163

8.3.4 Creating the destinations
The Manufacturer enterprise application uses a JMS to trigger some work to
occur asynchronously. The use of JMS requires you to create some destinations.
To create these destinations:

1. From the bus details page for TESTBUS under Additional Properties, click
Destinations.

2. Click New.

3. In the page that appears, as shown in Figure 8-9, you can select the type of
destination to be created. Accept the default of Queue, and click Next. This
launches the Queue creation wizard.

Figure 8-9 Destination type selection page

4. The first page of the wizard, as shown in Figure 8-10, asks for an identifier
and description. The identifier is the name by which the destination will be
exposed to applications. Enter ManufacturerSIBQ, and click Next.

Figure 8-10 New Destination wizard
164 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5. The next page allows you to specify to which bus member to assign the
destination. There is only one bus member in this scenario, so accept the
default. Click Next.

6. The final page is just a summary. Click Finish, and the destination is created.

7. We need to create an additional two queue type destinations. So, repeat
steps 2 on page 164 to 6 and specify ManufacturerBSIBQ and
ManufacturerCSIBQ instead of ManufacturerSIBQ.

8. Save the changes.

8.3.5 Creating a JMS connection factory
The next step is to create a JMS connection factory so that the Manufacturers
can connect to the service integration bus to send a JMS message. To create a
JMS connection factory:

1. From the administrative console, expand Resources → JMS Providers, and
click Default messaging.

2. Under Connection Factories, click JMS connection factory.

3. Click New.

The page that appears, as shown in Figure 8-11 on page 166, allows you to
specify the properties for the JMS connection factory.
 Chapter 8. SOA Direct Connection pattern 165

Figure 8-11 Creating a new JMS connection factory page

Most of the values can keep their defaults. The following lists the values that
you must enter:

– Name

An administrative name that is used for locating the connection factory in
the administrative console. Enter a value of DCConnFac.

– JNDI Name

The location in the JNDI namespace to bind the connection factory. This is
the location where the application resource reference is bound. Enter a
value of Sample/WSI/CF.

– Bus name

The name of the bus to which the connection factory should connect. This
name is specified by a pull-down of all the buses in the cell. It also allows
you to enter an arbitrary value by choosing other, please specify. Select
TESTBUS in the pull-down.

4. Click OK, and save the changes.
166 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

8.3.6 Creating the JMS queues
Now, we need to create some JMS queues, one for each of the service
integration bus queue type destinations that we defined in 8.3.4, “Creating the
destinations” on page 164.

1. From the administrative console, expand Resources → JMS Providers, and
click Default messaging.

2. Under Destinations, click JMS queue.

3. Click New.

4. The page that appears, as shown in Figure 8-12, you can specify the values
for the queue.

Figure 8-12 Creating a new JMS queue page

Most of the values can keep their defaults. The following lists the values that
you must enter:

– Name

An administrative name that is used for locating the JMS queue in the
administrative console. Enter a value of ManufacturerJMSQ.
 Chapter 8. SOA Direct Connection pattern 167

– JNDI Name

The location in the JNDI namespace to bind the JMS queue. This is the
location where applications message reference is bound. Enter a value of
Sample/WSI/Manufacturer.

– Bus name

The name of the bus to which you are connecting. While this name is not
strictly necessary, specifying the bus name allows the administrative
console to fill in the Queue names with the queue type destinations that
are defined on the bus. Select the value of TESTBUS. The page is
reloaded with the Queue names list.

– Queue name

This field specifies the service integration bus queue type destination that
is used to store the messages that are sent to this JMS queue. Select the
value of ManufacturerSIBQ.

5. Click OK.

6. You need to repeat steps 3 on page 167 to 5 to create two other JMS queues.
Table 8-1 and Table 8-2 provide the configuration for these queues.

Table 8-1 JMS queue settings for Manufacturer B

Table 8-2 JMS queue settings for Manufacturer C

7. Save the changes.

Field Value

Name ManufacturerBJMSQ

JNDI Name Sample/WSI/ManufacturerB

Bus name TESTBUS

Queue name ManufacturerBSIBQ

Field Value

Name ManufacturerCJMSQ

JNDI Name Sample/WSI/ManufacturerC

Bus name TESTBUS

Queue name ManufacturerCSIBQ
168 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

8.3.7 Creating the JMS activation specifications
Now, we need to create one activation specification for each JMS queue that we
created in 8.3.6, “Creating the JMS queues” on page 167.

1. From the administrative console, expand Resources → JMS Providers, and
click Default messaging.

2. Under Activation Specifications, click JMS activation specification.

3. Click New.

4. The page that appears, as shown in Figure 8-13, you can specify the values
for the activation specification.

Figure 8-13 Create a new JMS activation specification

Most of the values can keep their defaults. The following lists the values that
you must enter:

– Name, which is an administrative name that is used for locating the JMS
activation specification in the administrative console. Enter a value of
ManufacturerAS.
 Chapter 8. SOA Direct Connection pattern 169

– JNDI name, which is the location in the JNDI namespace to bind the JMS
activation specification. This location is where the applications
message-driven beans are bound for message delivery. Enter a value of
Sample/WSI/ManufacturerAS.

– Destination type, which is the type of the JMS destination that is used to
deliver messages to the message-driven bean. Accept the default of
Queue.

– Destination JNDI name, which is the location in JNDI of the JMS
destination from which messages are received. Enter a value of
Sample/WSI/Manufacturer.

– Bus name, which is the name of the bus from which the JMS destination
receives messages. This name is not required, but for consistency, select
the value of TESTBUS.

5. Click OK.

6. You need to repeat steps 3 on page 169 to 5 to create two other activation
specifications. Table 8-3, and Table 8-4 give the configuration for these
specifications.

7. Save the changes.

Table 8-3 JMS activation specification settings for Manufacturer B

Table 8-4 JMS activation specification settings for Manufacturer C

Field Value

Name ManufacturerBAS

JNDI name Sample/WSI/ManufacturerBAS

Destination type Queue

Destination JNDI name Sample/WSI/ManufacturerB

Bus name TESTBUS

Field Value

Name ManufacturerCAS

JNDI name Sample/WSI/ManufacturerCAS

Destination type Queue

Destination JNDI name Sample/WSI/ManufacturerC

Bus name TESTBUS
170 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

8.3.8 Hosting the WSDL files
Each Web service client in the WS-I sample application attempts to retrieve
WSDL files that contain port type and binding information. Import statements
dictate the location of these files. For example, the SCMSampleUI enterprise
application contains a WSDL file that tries to retrieve the Retailer port type and
binding by using the following import:

<wsdl:import location="http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl"
namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/
2002-08/Retailer.wsdl"/>

Thus, it is necessary to host an HTTP server where these files can be retrieved.
Furthermore, this HTTP server must be assigned the address of
appsrv1a.itso.ral.ibm.com. The address assignment can easily be achieved on
a Windows machine by modifying the hosts file located at:

<Windows_home>\system32\drivers\etc\hosts

And adding the following statement to the hosts file:

127.0.0.1 appsrv1a.itso.ral.ibm.com

We installed IBM HTTP Server V6, which is shipped with WebSphere Application
Server V6. The WSDL files to be hosted on this HTTP server are provided with
the additional materials that are supplied with this book. For information about
how to obtain the additional materials, see Appendix A, “Additional material” on
page 365.

From the additional material, copy the contents of the \DirectConnection\wsdl
directory to the following directory in the HTTP server:

<HTTP_Server_home>\htdocs\en_US\wsdl

Make sure that the HTTP server is started, then test that the WSDL is available
by entering the following URL into a Web browser:

http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl

It should show the WSDL for the Retailer Web service.
 Chapter 8. SOA Direct Connection pattern 171

8.3.9 Installing the applications
The final step to setting up this scenario is to install the scenario enterprise
applications. This scenario uses the enterprise applications that are provided
specifically for the SOA Direct Connection scenario.

1. From the WebSphere Application Server administrative console, select
Applications, and click Install New Application.

The page that appears, as shown in Figure 8-14, requires you to provide the
location of the application. The enterprise applications requirements for this
scenario are located in the DirectConnection\ears directory of the additional
material that is supplied with this book.

2. Enter the location of the LoggingFacility.ear file on your local file system by
either entering it directly or by clicking Browse and navigating to the file in the
open file dialog.

Figure 8-14 Specify enterprise application to install

3. Click Next.

4. On the next page that appears, accept the defaults, and click Next.

5. The next page to come up is the first page in the wizard. The application is
fully configured and deployed so that you should use the defaults on each
page . Either click Next until the final page, or click the last step that is
labelled Summary.

6. Click Finish. When the application has been installed, a screen similar to
Figure 8-15 on page 173 appears.
172 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 8-15 Application installation finished page

7. Repeat steps 1 on page 172 to 6 on page 172 for each of the additional
applications. The remaining applications are:

– Manufacturer.ear
– ManufacturerB.ear
– ManufacturerC.ear
– Retailer.ear
– SCMSampleUI.ear
– Warehouse.ear

8. Save the changes.

9. Restart the application server to ensure that all the changes to the
configuration are loaded.
 Chapter 8. SOA Direct Connection pattern 173

8.3.10 Running and using the sample application
You can test the WS-I sample application by entering the following URL in a Web
browser on the machine that is hosting the application server:

http://localhost:9080/SCMSampleUI/

The Supply Chain Management Sample Application should start, as shown in
Figure 8-16.

Figure 8-16 SCM Sample application
174 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

To use the application:

1. To retrieve a list of products, select Place New Order to displays a list of 10
products, as shown in Figure 8-17.

Figure 8-17 SCM Sample product listing

You can order multiple quantities of each product. If the warehouse has
sufficient stock for the product, an order will be placed.

If the placement of the order causes the warehouse’s stock level of that
product to drop below a certain threshold, then an reorder request is sent to
the manufacturer of the product.

The warehouse stock level is stored in the
org.ws_i.www.Impl.WarehouseImpl class in the WarehouseEJB project. For
example, the stock level for the first three products is shown in Table 8-5 on
page 176.
 Chapter 8. SOA Direct Connection pattern 175

Table 8-5 Warehouse stock levels

If the current stock level falls below the minimum stock level, the stock is
reordered so that, after the reorder has arrived, the stock is at the maximum
level. For example, if you order six items of product number 605001, it
reduces the current stock level to four (10 - 6 = 4). A reorder is made for 21
new items to bring the stock level back to the acceptable minimum.

Each manufacturer only manufactures certain products. For example
Manufacturer A manufacturers products 605001, 605004, and 605007.

2. Place orders for multiple products in the sample application by entering
quantities and selecting Submit Order. For example, order three items of
product 605001 and six items of product 605002. This order triggers a reorder
of product 605002 with Manufacturer B.

3. The order status screen, as shown in Figure 8-18, shows which orders were
placed and which orders were not placed due to insufficient stock.

Figure 8-18 SCM Sample order status page

4. Click Track Order to see the entries that were written to the LoggingFacility.
As new entries are added to the Logging Facility, you must refresh this screen
by clicking Order Status and then clicking Track Order again.

Product number Current level Minimum level Maximum level

605001 10 5 25

605002 7 4 20

605003 15 10 50
176 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 8-19 shows the results of an order in which products 605001 and
605002 were shipped and a reorder for 19 units of product 605002 was
placed with Manufacturer B.

Figure 8-19 SCM Sample track order page

5. To start a new order, click Configure. At this point, all state is lost, and the
warehouse stock levels return to their default values.
 Chapter 8. SOA Direct Connection pattern 177

178 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 9. Enterprise Service Bus
pattern: router scenario

In this chapter, the Enterprise Service Bus (ESB) is moved from concept to
practical implementation by applying the service-oriented architecture (SOA)
ESB runtime pattern with router interactions. Using a simple scenario (as
described in Chapter 6, “The business scenario that this book uses” on
page 125), this chapter demonstrates how you can use an ESB runtime pattern
to implement this pattern.

9

© Copyright IBM Corp. 2005. All rights reserved. 179

9.1 Design guidelines
This section discusses the business needs that are addressed by the sample
scenario, the use of ESB runtime pattern for router interactions, and the design
decisions that are made in order to implement the chosen scenario.

The business scenario implemented in this chapter is Stage 1 of the WS-I
sample application business scenario, that is defined in Chapter 6, “The business
scenario that this book uses” on page 125.

Figure 9-1 shows an overview of the steps that are involved in designing a
solution that addresses particular business requirements. This chapter discusses
each of these steps.

Figure 9-1 Designing a solution

9.1.1 Business scenario
The business scenario that is implemented in this chapter represents a variation
of the internal supply chain management on demand scenario as defined in
6.2.1, “Stage 1: Internal supply chain management on demand” on page 126.
The scenario shows how you can apply an SOA using an Enterprise Service Bus
to develop solutions to real-world business requirements within an single
enterprise.

The Supply Chain Management application makes requests to the Retail system
to help customers buy electronics goods online. The Retailer gets stock from the
Warehouse and the Warehouse replenishes stock from the Manufacturers, on a
one-to-one basis, as shown in Figure 9-2 on page 181.

Design and
implement
the solution

Select a
product

Analyze
design
options

Select a
Pattern

Analyze the
business
needs

Design and
implement
the solution

Select a
product
Select a
product

Analyze
design
options

Analyze
design
options

Select a
Pattern
Select a
Pattern

Analyze the
business
needs

Analyze the
business
needs

Analyze the
business
needs

Analyze the
business
needs
180 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 9-2 High-level business context showing the existing infrastructure

The organization has a few concerns with their current ability to meet market
demands. Competition is increasing, customers have more options and
opportunities, and the enterprise is under management pressure to do more for
less. Consequently, the proposed solution must focus on solving the following
business issues:

� Quicker response to change:

– Improve the ability to respond to changes including both business
requirements and changes in technology.

– Implement changes quickly in a central location because service providers
often change due to mergers and acquisitions.

– Rapidly grow the business without constant infrastructure change.

� Reduce costs:

– Suppliers throughout the supply chain have different infrastructures.
Managing all of these differences can be costly due to increases in
resources, time, and training.

– Reuse of existing code by combining independent business requirements
in an innovative way.

– Use existing resources more efficiently.

– Make use of industry open standards in all possible locations of the
solution.

Intranet

Manufacturer
Manufacturer

Manufacturer

Logging
Facility

WarehouseRetail
System

SCM
Application
 Chapter 9. Enterprise Service Bus pattern: router scenario 181

9.1.2 Selecting an SOA pattern
The business scenario states that the Retailer gets stock from the Warehouse
and the Warehouse replenishes stock from the Manufacturers on a one-to-one
basis. From this description, we can conclude that there are two interaction
requirements:

� Only one Warehouse provider is used.

� The Warehouse calls each Manufacturer in isolation. Interactions with more
than one manufacturer require multiple calls.

Choosing and applying the relevant SOA pattern
We used the Patterns for e-business to determine the appropriate Runtime
pattern to apply to this scenario. Because this is an intra-enterprise scenario, we
selected the Process Integration application patterns. The business scenario
requires routing of requests to one of multiple providers. This routing interaction
is described by the Router variation of the Broker application pattern. Our
business scenario describes SOA. So, we selected the SOA profile of the Router
runtime pattern, which is the ESB runtime pattern. This pattern is described in
5.1.2, “ESB runtime pattern” on page 98.

The ESB implementation for this business scenario is applied to the level 0
decomposition of the ESB runtime pattern, as shown in Figure 9-3.

Figure 9-3 ESB runtime pattern applied to our scenario

Select a
Pattern
Select a
Pattern

Enterprise

ESB
App Server/

Services Manufacturer

App Server/
Services ManufacturerB

App Server/
Services ManufacturerC

App Server/
Services

SCM
Application

App Server/
Services

Business
Event Log

App Server/
ServicesRetail System

App Server/
Services Warehouse
182 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The routing function that is supported by this pattern states that the interaction
that a consumer initiates is sent to one or more providers. The scenario
implementation in this chapter requires the Retailer to call the Warehouse, and
then the Manufacturer , in isolation. Thus, the initiated interaction can only be
sent to one provider. This scenario requirement is met by using router
interactions. These interactions are described by the Router variation of the
Broker application pattern that is described in 3.1.5, “Broker=Router variation” on
page 52. Figure 9-4 illustrates this pattern.

Figure 9-4 Broker application pattern= Router variation

ESB capabilities addressed
ESB capabilities are discussed in 2.2.4, “Minimum ESB capabilities” on page 37
and 2.2.6, “Extended ESB capabilities” on page 39. In this scenario the
Enterprise Service Bus runtime pattern with router interactions is used to exploit:

� Communications

Routing of requests from service consumers to the relevant service provider
based on endpoint definitions.

� Integration

Protocol transformation to allow decoupling of the protocol that is used
between the service consumers and service providers. This allows service
consumers to invoke services that are exposed using a different protocol (for
example, SOAP/HTTP, to SOAP/JMS).

Target
Application

Source
Application

Router
Rules

Target
Application

Target
ApplicationR/O

Router Rules
 Chapter 9. Enterprise Service Bus pattern: router scenario 183

Managing communications and integration through the ESB provides many
benefits:

� Decoupling of service consumers and service providers.

� Centralized control of service namespace.

� Logging of service requests and responses.

� Transformation of service requests and responses.

� Centralized security for Web service invocations, for example all service
consumers can be authenticated centrally.

� Common access point for service consumers that need access to service
providers. The ESB intercepts and routes requests to the relevant service
provider. A change in location of the service provider only affects the ESB
routing; the service provider location remains transparent to the service
consumer.

9.1.3 Router interaction design
This section discusses the architectural decisions made, and their options, for
implementation of this scenario using router interactions in the Enterprise
Service Bus.

Location of service definitions
Table 9-1 summarizes the design alternatives that are available when deciding
where to locate service definitions. Following the table, each design alternative is
discussed in detail.

Table 9-1 Location of service definitions

Decision title Where to locate service definitions

Problem statement The interface, binding, and service
endpoint of a Web service are defined in
Web Services Definition Language
(WSDL) files. The ESB must have access
to these service definitions so a decision
has to be made on where to put the WSDL
files so that they can be accessed as
needed.

Alternative 1 Copy the WSDL files to a local directory.

Alternative 2 Publish WSDL files on an HTTP server.

Analyze
design
options

Analyze
design
options

Analyze
design
options
184 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Alternative 1: Local directory copy of WSDL
The WSDL files can be copied into a local directory and the ESB can be given
access to the local directory.

� Reasons for using this option include:

– Easy configuration.

– Fast and simple configuration for prototypes.

� Reasons for not using this option include:

– For a large system having local copies of WSDL files will require high
maintenance.

– In a production environment it might not be sensible to give access to local
directories, especially if the WSDL files are accessed by multiple
consumers.

Alternative 3 Publish the WSDL files to a Universal
Description and Integration (UDDI)
registry.

Decision Publish WSDL files on an HTTP server so
they can be accessed by the ESB.

Justification The WSDL files used in this scenario are
published on an HTTP server.
The scenario is a prototype, so a local
directory copy of the WSDL could be
used, but multiple scenarios and ESB
implementations need to access the
WSDL files. UDDI publication could offer
advantages for multiple users but
technical features are not exploited and
can be more difficult to set up than HTTP.
So, HTTP publication seemed to be a
sensible choice for this scenario because
it is easy to set up and organize for
multiple users.

Decision title Where to locate service definitions
 Chapter 9. Enterprise Service Bus pattern: router scenario 185

Alternative 2: HTTP server publication of WSDL
The WSDL files can be published on an HTTP server which the ESB can access
using a specific URL.

� Reasons for using this option include:

– Simple implementation.

– The WSDL files used can be organized sensibly and accessed easily on
an HTTP server.

� Reasons for not using this option include:

– Providers of Web services within an enterprise could change frequently
because of organizational changes or business needs. In this environment
HTTP published WSDL files could have a high maintenance overhead.

Alternative 3: UDDI registry publication of WSDL
The UDDI specification defines a way to publish and discover information about
Web services. In this specification:

� Each Web service is owned by one business, and each business (and Web
service it owns) is maintained by one authorized name.

� One authorized name can own many businesses, and one business can own
many Web services.

The UDDI specification also associates Web services with technical models.
Using these models or generic categories, a UDDI registry user can search for a
type of service, rather than needing to know the access details for a specific
service.

� Reasons for using this option include:

– UDDI registries allow a fine degree of classification for Web services in an
organization, which enables service consumers to quickly find the Web
services to fit particular needs.

– Due to frequent changes of Web service providers, from an administrative
point of view, it might be easier for each service provider to keep
published data up to date using UDDI.

� Reasons for not using this option include:

– In this scenario most UDDI features are not used and not needed.

– UDDI publication should be used for production ready systems.

– UDDI is more complicated to set up in comparison with an HTTP server.
186 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Security
Table 9-2 discusses security design alternatives. Each design alternative is then
discussed in more detail.

Table 9-2 Design decision: security

Alternative 1: WS-Security
WS-Security describes how to secure SOAP messages to provide message
integrity, confidentiality, identification, and authentication. WS-Security provides
security on the message level.

The server consumer generates a request that is handled by the service
consumer Web services engine. The engine reads the consumer security
configuration and applies the defined security to the SOAP message. On receipt
of a SOAP message the Web services engine on the service provider refers to
the service called. It checks that the relevant security configuration has been
applied to the incoming message. If the message does not comply, it is rejected.

On the response from the service provider to the service consumer, the process
is reversed. The Web service tells the engine what security to apply to the
response message, and in turn what security the service consumer should
expect.

Decision title What type of security to configure

Problem statement The aim of applying security in an SOA is to provide
end-to-end security between a service consumer
and a service provider. The introduction of an ESB
between the two means that end-to-end security
can no longer be achieved using transport level
security mechanisms such as SSL. A security
decision has to be made in order to reach an
end-to-end security solution.

Alternative 1 WS-Security

Alternative 2 Service integration bus messaging security in
WebSphere Application Server V6.0

Alternative 3 Do not implement a security solution

Decision No security solution used

Justification This scenario is a prototype, so security was not
implemented but in a production system both
WS-Security and messaging security should be
used to create an end-to-end security solution.
 Chapter 9. Enterprise Service Bus pattern: router scenario 187

To secure an inbound or outbound service, the following types of WS-Security
resources need to be applied to the ports that the relevant services use:

� WS-Security configurations
� WS-Security bindings

The configurations type specifies the level of security that is required (for
example, the body must be signed) and the bindings type that provides the
information that the runtime needs to implement the configuration (for example,
to sign the body, use this key).

WS-Security resources are administered separately from any Web service that
uses them. So, one or more WS-Security configurations and bindings can be
configured, all of which can then be applied to multiple Web services.

� Reasons for using this option include:

– You can easily enforce different security constraints on messages.

– You can enforce message confidentiality by encrypting the SOAP body or
parts of it. The ESB can process a message without affecting end-to-end
security by decrypting and encrypting data. Selective SOAP parsing is
automatically applied to all Web services that are configured for a service
integration bus in WebSphere Application Server V6.0. This means only
message headers are parsed and confidentiality is not breached.

– You can separate resource administration from the Web services that
uses them, providing flexibility, reuse, and low maintenance.

– When used with messaging security, you can provide an end-to-end
security solution between consumers and providers.

– This option stops unauthorized users from changing message content and
sending unauthorized requests.

� Reasons for not using this option include:

– It is not quick to configure. Therefore, it is unsuitable when implementing
prototypes within set time constraints.

Alternative 2: Messaging security
In WebSphere Application Server V6.0, messaging security is provided by a
number of components that can be used together to ensure that users are
authenticated, that resources are protected by security checks, and that
messages are secure when they are in transit from a sending application to a
receiving application.

When a connection to the messaging system is created, a user name and
password can be specified. These are authenticated through the WebSphere
Application Server user registry. If the authentication is successful, an access
188 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

check is performed to see if the user has permission to connect to the service
integration bus. Further checks are done depending on what is being accessed
(for example, a destination).

Messaging security applies to the entire service integration bus and mandates
that global security be enabled on the application server in use. Role-based
authentication is used and is based on a simple role model which contains the
authorization permission required to perform a given operation.

Confidentiality and integrity of messages in transit can be ensured by configuring
SSL or HTTPS secure transport for specific connections (for example, between
buses).

� Reasons for using this option include:

– It provides an end-to-end security solution for a service integration bus.

– When used with WS-Security, you can provide an end-to-end security
solution between consumers and providers.

– This option stops unauthorized users from accessing messages in transit.

� Reasons for not using this option include:

– This option is complex to configure than using no security. So, it might not
be appropriate for a prototype system where time constraints are an issue.

Logging
Table 9-3 discusses logging design alternatives. Each design alternative is then
discussed in more detail.

Table 9-3 Design decision: logging

Decision title At what level is business logging done

Problem statement Logging can be done at different levels within a
design so a decision has to be made as to which
level of logging is most appropriate.

Alternative 1 Service integration bus level logging, in
WebSphere Application Server V6.0.

Alternative 2 Application level logging.

Decision Application level logging is used.

Justification The design of the scenario tries to fit in with general
architectural and design principles so it is important
that business logging is not done at the ESB level,
but within an endpoint application. Business logic
should not be implemented at the ESB level.
 Chapter 9. Enterprise Service Bus pattern: router scenario 189

Alternative 1: Service integration bus level logging
Logging can be turned on at the ESB level, in WebSphere Application Server
V6.0, by using a logging mediation on destinations of choice:

� Reasons for using this option include:

– Logic is centralized in the ESB, which facilitates reuse, allows a single
point of maintenance, and enables it to be provided as a service.

– A logging mediation is simple to implement.

� Reasons for not using this option include:

– Most business logic events should not be modeled through the ESB.
Business logic events are better served by embedding them into the
application logic. The ESB is not a place to store business logic. However,
an architecture that sent interaction level events through the ESB could
provide benefits in interaction diagnostics.

Alternative 2: Application level logging
Logging can be turned on at the application level by including logging logic inside
an application.

� Reasons for using this option include:

– Business decisions are logged outside of the ESB, which fits general
architectural and design principles.

– Services should allow changes to business logic by a business division
without the need for other service providers to change their WSDL
definitions. Putting business logic at the application level facilitates
flexibility within a business division.

� Reasons for not using this option include:

– This option requires high maintenance and difficult change implementation
in large production systems. If logging is done at an application level with
multiple applications, implementing change would mean a lot of work and
maintenance will be high.
190 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Communication protocols
Table 9-4 discusses design alternatives for communication protocols over which
SOAP messages can be sent. Each design alternative is then discussed in more
detail.

Table 9-4 Design decision: SOAP message transportation.

Alternative 1: HTTP service bus
HTTP is the protocol by which servers and clients communicate. An HTTP
interaction consists of a request sent by a client to a server and (in a
request-response interaction) a response sent from the server to the client.
HTTP defines how messages are formatted and transmitted and what actions
should be taken in response to various commands.

HTTP is the most familiar way to send requests and responses between service
consumers and providers. Organizations are already well equipped to handle
HTTP security requirements and have put in measures to ensure that only valid
HTTP requests are received through farewells, proxy servers, demilitarized
zones, HTTP servers, authorization, authentication procedures, and so forth. As
a result, HTTP is usually one of the first transport layers an organization would
use when thinking about inter-enterprise solutions.

Decision title Communication protocol used for SOAP
message transportation

Problem statement Web services can communicate using SOAP
messages over a variety of protocols. Each
protocol effectively provides a service bus between
multiple endpoints. So a decision has to be made
about which service bus implementation to use.
Two primary options for transporting SOAP
messages are Hyper Text Transfer Protocol
(HTTP) and Java Message Service (JMS).

Alternative 1 HTTP service bus

Alternative 2 JMS service bus

Decision Both alternatives are implemented.

Justification In this scenario, one of the exploited ESB
capabilities is integration, in particular protocol
transformation. Using the ESB capabilities enables
a service provider to receive a JMS message that is
sent from a service consumer that originated the
call using HTTP. Both alternatives are implemented
to show the protocol transformation capabilities of
the ESB.
 Chapter 9. Enterprise Service Bus pattern: router scenario 191

Use of an ESB extends the use of HTTP. It enables a service consumer to
communicate using HTTP and permits a service provider to receive the request
using a different transport mechanism.

� Reasons for using this alternative include:

– HTTP is a widely adopted protocol, and so the HTTP infrastructure is
widely available.

– The HTTP protocol is open and deployed on many different system types.

– Most enterprises allow HTTP to travel through protocol firewalls.
Therefore, there are fewer barriers to extended enterprise use of HTTP as
a transport for Web services.

� Reasons for not using this alternative include:

– There is no single point of control over the namespace with HTTP. This
differs from the scope of an ESB that is defined by a group of services that
are accessible through one or more protocols whose addressing and
naming is controlled at a single point.

– HTTP is a lightweight and stateless protocol that was not originally
designed to carry application data. If any state data is required to maintain
an application session, the applications must create and manage the state
data.

– HTTP is not a reliable protocol.

Alternative 2: JMS service bus
JMS defines the standard for reliable enterprise messaging. JMS, part of the
J2EE standard, provides a conventional way to create, send and receive
messages. A JMS service bus can provide asynchronous and reliable
messaging to Web service invocations. The use of a JMS service bus means
that the service consumer can receive acknowledgement of assured delivery and
communicate with services that might not be available.

The use of an ESB extends the use of JMS, enabling service consumers and
providers to communicate using different protocols.

� Reasons for using this alternative include:

– JMS provides a more reliable transport than alternatives such as HTTP.

– Asynchronous requests can be deployed readily.

– JMS is an open Java based standard and is readily available to Java
based systems.
192 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� Reasons for not using this alternative include:

– JMS does not provide the level of interoperability that HTTP does.

– JMS is a Java based standard and is not as readily accessible to systems
that are not Java based.

– The actual transport system must be provided by a software product. So
the communicating Web services must have access to JMS providers that
can communicate with each other.

Service provider routing
Table 9-5 discusses service provider routing design alternatives. Each design
alternative is then discussed in more detail.

Table 9-5 Design decision: service provider routing

Alternative 1: Static routing
Routing can be done statically by looking up the endpoint for a given Web
service from within the ESB, or from an external routing table.

� Reasons for using this option include:

– This option is easy to configure, with no programming required.

– It ensures that all requests for a particular Web service operation are
forwarded to the same service provider.

– It is easily changeable in the ESB or in the external routing table without
making any change to the service consumer.

Decision title Determining the route to a service provider

Problem statement When multiple services are configured there are
multiple providers to which a request can be routed.
The ESB has to determine which service provider
to send a request to so that the correct service can
be invoked for that particular request. A decision
has to be made as to which method of routing to
use.

Alternative 1 Static routing

Alternative 2 Dynamic routing

Decision Static routing based on a routing table.

Justification In this scenario one-to-one relationships between
service consumers and providers are of interest.
The benefits of dynamic routing would not be
exploited in this situation so static routing is applied.
 Chapter 9. Enterprise Service Bus pattern: router scenario 193

� Reasons for not using this option include:

– The service providers in an organization are subject to change over time.
These changes would lead to ESB configuration changes and so higher
maintenance.

Alternative 2: Dynamic routing
Routing can be done dynamically by examining a SOAP message and
determining the endpoint based on the content of the message. This dynamic
routing can be achieved by designing and configuring a mediation or using the
Web Services Gateway as a proxy for a service. You can use a JAX-RPC
handler list to set the endpoints for incoming request messages for the service.
Mediations and JAX-RPC handler lists are discussed in more detail in 10.1.3,
“Broker interaction design” on page 264.

� Reasons for using this option include:

– The service providers in an organization are subject to change over time.
Provided that a service provider keeps its routing directory entry up to
date, dynamic routing leads to little or no ESB administration after initial
set up.

– You configure this option only once and future maintenance is minimal.

� Reasons for not using this option include:

– It can be complicated to configure.

– Programming is required for this option.

Topology considerations
This section discusses different topology options for the scenarios that are used
in this book for WebSphere Application Server V6.0.

Figure 9-5 on page 195 shows three alterative operational topologies. The
topologies are conceptual but map to what can be implemented using
WebSphere Application Server V6. Some of the terminology that is used in the
diagram is as follows:

� Servers, which are instances of the WebSphere Application Server runtime
that are running one or more applications. That is, a server in this context
equates to a WebSphere Application Server instance. The servers run the
application services and also the ESB.

� Nodes, which are a logical grouping of servers. Nodes usually correspond to
hardware (that is, computers to where servers are deployed and where these
deployed servers execute).

� Bus, which equates to the service integration bus that is part of WebSphere
Application Server V6. The service integration bus provides a common
194 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

messaging component for the WebSphere Application Server platform
providing point-to-point, publish/subscribe, persistent, and non-persistent
messaging. The service integration bus is a key component for building an
ESB in WebSphere Application Server V6. However, it is not purely the ESB
itself.

� Cell, which is an administrative domain in WebSphere Application Server V6.
All servers within a cell can be administered from a central console.

Figure 9-5 General topology implementations

The three alternatives shown in Figure 9-5 represent different WebSphere
Application Server V6 configurations. These configurations essentially differ in
the number of nodes that are deployed, whether single or multiple buses are
used, and how the administration domain (cell) is configured.

Alternative 2: Multiple nodes, single bus

Node 1 Node 2

Alternative 1: Single node, single bus

Cell

Node

Server:
ESB &
Application
Services

Bus

Server:
ESB &
Application
Services

Cell

Alternative 3: Multiple nodes, multiple buses

Node 1 Node 2

Server:
ESB &
Application
Services

Cell 1

Bus
Inter-Bus

Link

Cell 2

Server:
ESB &
Application
Services

Bus

Server:
ESB &
Application
Services

Bus
 Chapter 9. Enterprise Service Bus pattern: router scenario 195

The remainder of this section summarizes the alternatives and the decision that
was applied to this scenario. It then discusses the pros and cons of each of these
alternatives.

Table 9-6 summarizes the problem and various operational topology alternatives.

Table 9-6 Design decision: topology considerations

Note: These topologies are not an exhaustive list of possible topologies.
Mission critical production environments most likely have variations of these
topologies where nodes are replicated to provide high availability and high
performance. ESB design for high availability solutions is not the focus of this
book.

Decision title Which topology is most suitable

Problem statement Different ESB topologies can be used
depending on enterprise requirements.

Alternative 1 Single node topology with single bus.

Alternative 2 Multi node topology with single bus.

Alternative 3 Multi node topology with multiple buses.

Decision A single node topology is used.

Justification This scenario is a prototype, so a simple
topology is used.
196 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Alternative 1: Single node topology with a single bus
In this alternative, as shown in Figure 9-6, there would be one node with one bus.
This alternative is equivalent to a small start-up enterprise or a prototype set up.

Figure 9-6 Single node, single bus topology

� Reasons for using this alternative include:

– It is very simple to set up and configure.

� Reasons for not using this alternative include:

– There is a single point of failure.

– This alternative does not provide scalability.

– Message throughput cannot be increased easily.

– There is a limitation on the number of client connections that can be
handled.

Alternative 1: Single node, single bus

Cell

Node

Server:
ESB &
Application
Services

Bus
 Chapter 9. Enterprise Service Bus pattern: router scenario 197

Alternative 2: Multi node topology with a single bus
In this alternative, as shown in Figure 9-7, there would be several nodes that are
linked together by a bus. This SOA is equivalent to different departments in
different locations that need to communicate or to different sections of different
departments that need to communicate within an enterprise.

Figure 9-7 Multiple node, single bus topology

� Reasons for using this alternative include:

– Messaging workload can be spread across multiple nodes, resulting in
increased message throughput.

– Availability is improved by removing a single point of failure.

– Network traffic can be reduced by placing message processing next to the
services that use it. For example if the sending and receiving services are
running on the same node it would be inefficient to route the messages
that flow between them through a remote node.

– Improved scalability.

– More client connections can be handled.

� Reasons for not using this alternative include:

– It is more complex to set up and configure.

Alternative 2: Multiple nodes, single bus

Node 1 Node 2

Server:
ESB &
Application
Services

Cell

Server:
ESB &
Application
Services

Bus
198 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Alternative 3: Multi node topology with multiple buses
In this alternative, as shown in Figure 9-8, there would be several
inter-connected buses. This alternative is equivalent to several enterprises that
need to communicate with each other or to different departments in different
locations that need to communicate.

Figure 9-8 Multiple nodes, multiple buses topology

� Reasons for using this alternative include:

– You can easily apply different security zones.

– This alternative provides improved scalability.

– Services on other buses can be accessed and messages can be sent to
other bus services.

– Resources provided by other buses can be accessed.

� Reasons for not using this alternative:

– This alternative is complicated to set up and configure.

Alternative 3: Multiple nodes, multiple buses

Node 1 Node 2

Server:
ESB &
Application
Services

Cell 1

Bus
Inter-Bus

Link

Cell 2

Server:
ESB &
Application
Services

Bus
 Chapter 9. Enterprise Service Bus pattern: router scenario 199

9.1.4 Products
Several design decisions were discussed which influence product choice in
9.1.3, “Router interaction design” on page 184. This section looks at the products
that you can use to implement these design decisions and the product choices
that were made for this particular implementation.

Product implementation options
Product choices for this scenario are based on:

� Exploiting the ESB capabilities, as discussed in “ESB capabilities addressed”
on page 183.

� Making the design decisions, as discussed in “Router interaction design” on
page 184.

� Using products that are currently available.

For this scenario, we can use the following currently available products to
implement Enterprise Service Bus with router interactions:

� WebSphere Application Server V6.0

� WebSphere Application Server Network Deployment V6.0

� WebSphere Application Server Network Deployment V5.1.1 Web Services
Gateway

� WebSphere Business Integration Message Broker V5.0

� WebSphere Business Integration Connect V4.2

You can find a comparison between available products and ESB capabilities in
4.3.1, “Assessment of ESB capabilities by product” on page 82.

WebSphere Application Server V6.0 meets all of the requirements of this
scenario. Thus, this is the product of choice.

Select a
product
Select a
product
200 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Product mappings
Figure 9-9 shows the Product mappings that were selected for the Router
scenario.

Figure 9-9 ESB runtime pattern::Product mapping=WebSphere Application Server V6, Router scenario

In this Product mapping, the WebSphere Application Server V6.0 base product is
used across the board. The service consumer application provides a user
interface which is executed in WebSphere Application Server initiating a
SOAP/HTTP service requests to the ESB. Other service consumers can use
SOAP/JMS to communicate with the ESB. The ESB hub is run on WebSphere
Application Server and routes the requests to provider applications which are
also running under WebSphere Application Server.

The Administration Services and namespace directory are provided by
WebSphere Application Server. The business service directory is supported by
the IBM HTTP server.

A local Cloudscape database, which is shipped with WebSphere Application
Server V6, is used to store the Service Data Objects (SDO) repository.

Enterprise

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Administration &
Security Services

Hub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

• Service Integration Bus
(part of WebSphere
Application Server
V6.0.1
+ PK02919, PK05354)

• Cloudscape

WebSphere
Application
Server V6.0.1

WebSphere Administration
(part of WebSphere
Application Server V6.0.1)

WebSphere Administration
(part of WebSphere
Application Server V6.0.1)

WebSphere
Application
Server V6.0.1

IBM HTTP server V2
 Chapter 9. Enterprise Service Bus pattern: router scenario 201

9.2 Development guidelines

This section describes how to modify the WS-I sample scenario that was used in
Chapter 8, “SOA Direct Connection pattern” on page 153 to make use of an
ESB. For more information about how this scenario worked using point-to-point
connections instead of an ESB, see 8.2, “Development guidelines” on page 157.

This section works with Rational Application Developer V6.0.0.1 to modify the
enterprise application that is used in Chapter 8, “SOA Direct Connection pattern”
on page 153.

To complete the steps in this section, you need to import the
\ProjectInterchange\DirectConnection.zip file into a Rational Application
Developer workspace. For instructions on how to import these necessary files,
see “Working with the WS-I sample scenario enterprise applications” on
page 368.

Note: We used WebSphere Application Server V6.0.1 with the i-fixes
PK02919 and PK05354 for this scenario. Versions of WebSphere Application
Server beyond V6.0.1 will not require the i-fix.

Note: This section requires the use of Rational Application Developer
V6.0.0.1 or later.

Note: You need to have completed the steps in 8.3.8, “Hosting the WSDL
files” on page 171 (to configure an HTTP server with the relevant WSDL
definitions) before completing any of the steps in this section. You also need to
ensure that the machine on which you are running Rational Application
Developer has access to this HTTP server.

To verify that Rational Application Developer is running, enter the following
URL in a Web browser on the machine where Rational Application Developer
is installed.

http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl

If the URL returns a WSDL document, then you are ready to follow the steps in
this section.
202 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

9.2.1 Scenario implementation: ESB router interaction
In the scenario, each of the Web services calls are made through the ESB rather
than have the service consumer directly interact with the service provider. In
addition, the Retailer Web service is invoked by SOAP over JMS and invokes the
Warehouse Web service by SOAP over JMS. The SCMSampleUI enterprise
application continues to call the Retailer by SOAP over HTTP and the
Warehouse is ultimately invoked by SOAP over HTTP. The ESB transforms the
protocols from HTTP to JMS or vice versa as and when necessary.

Figure 9-10 on page 204 illustrates this scenario.
 Chapter 9. Enterprise Service Bus pattern: router scenario 203

Figure 9-10 Scenario implemented with ESB router interactions

As shown in Figure 9-10, there are few changes with regard to the enterprise
applications and the Web services, other than the Retailer is using SOAP over
JMS instead of SOAP over HTTP.

LoggingFacility

logEvent

getEvents

LoggingFacility

Retailer

getCatalog

submitOrder

Retailer

Warehouse

shipGoods
Warehouse

submitSN

errorPO

Warehouse
Callback

SCMSampleUI

SCMSampleUI

Key:

Operation name A Web service operation or onMessage

Indicates a one-way operation Indicates a Web service request

Indicates a JMS related operation

Indicates a request/response operation

shipGoods

logEvent

logEvent

submitPO

logEvent

getEvents

getCatalog

submitOrder

submitPO
Manufacturer

Manufacturer
MDB

logEvent

onMessage

submitSN

errorPO

Manufacturer

ESB
204 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

9.2.2 Creating a SOAP over JMS Web service
This section describes how to modify an existing Web service from supporting
SOAP over HTTP messages from service consumers to supporting SOAP over
JMS messages. In this example, we use the Retailer Web service for illustration
purposes.

In the Direct Connection scenario, all the interactions are SOAP over HTTP. This
includes the Retailer Web service, which allows service consumers to invoke its
getCatalog() and submitOrder() operations by sending SOAP messages over
HTTP as shown in Figure 9-11.

Figure 9-11 Retailer Web service with SOAP over HTTP support

To satisfy the requirements of this scenario, the Retailer Web service must
expose these operations with support for SOAP over JMS as shown in
Figure 9-12 on page 206.

Note: This and all remaining sections in 9.2, “Development guidelines” on
page 202 assume that you have imported the
\ProjectInterchange\DirectConnection.zip file into a Rational Application
Developer workspace. If you have not imported this file, follow the instructions
in “Working with the WS-I sample scenario enterprise applications” on
page 368.

Retailer

getCatalog

submitOrder

Retailer

Retailer

getCatalog

submitOrder

Retailer SOAP / HTTP

SOAP / HTTP
 Chapter 9. Enterprise Service Bus pattern: router scenario 205

Figure 9-12 Retailer Web service with SOAP over JMS support

The remainder of this section provides step-by-step instructions on how to
convert the SOAP/HTTP Retailer Web service to a SOAP/JMS Web service. The
following steps are described:

� Creating an EJB project.

The EJB project is used to store the generated message-driven bean which
processes the SOAP/JMS messages and the EJB Web service
implementation.

� Configuring Rational Application Developer for Web services

The Web services support in Rational Application Developer should be
enabled before creating Web services clients.

� Creating a skeleton EJB Web service.

The EJB Web service is the only Web service type that is supported for
SOAP/JMS messages. The Retailer Web service is initially created as a Java
Web service. Therefore, a new EJB Web service must be created.

� Removing the dummy EJB and assigning a JNDI name.

Remove the temporary EJB and assign a JNDI name to the skeleton EJB
Web service.

� Copying the business logic into the generated EJB.

The business logic defined in the Java Web service must be copied to the
generated EJB Web service.

� Removing the Web project.

The EJB Web service and the message-driven bean which processes the
SOAP/JMS messages are both stored in the EJB project. Because we no
longer require support for SOAP/HTTP, we need to remove this support by
deleting the relevant Web project.

Retailer

getCatalog

submitOrder

Retailer SOAP / JMS

SOAP / JMS

Retailer

getCatalog

submitOrder

Retailer
206 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Creating an EJB project
WebSphere Application Server V6 only supports SOAP over JMS when the
enterprise bean implementation type is used. In the Direct Connection scenario,
the Retailer uses the Java bean implementation type. Therefore, in this scenario,
the Retailer must be ported to an enterprise bean. Porting the Retailer is simple
because the generated Web service binding code delegates to another class that
provides the business logic.

To port the Retailer:

1. Create an EJB project. Select File → New → EJB project. The window
shown in Figure 9-13 appears.

Figure 9-13 Creating a new EJB project

2. Within this dialog box:

a. Enter a Name of RetailerEJB.
b. Click Show Advanced.
c. Select the EAR project called Retailer.
d. Deselect Create an EJB Client JAR Project to hold the client interfaces

and classes. You do not need this facility because the client is a Web
service client rather than an EJB client.

e. Click Finish.
 Chapter 9. Enterprise Service Bus pattern: router scenario 207

You now have an EJB Project.

3. Rational Application Developer requires an enterprise bean. You need to
create an enterprise bean to exist in the EJB project in order to create an EJB
Web service. To create an enterprise bean:

a. Open the deployment descriptor for the RetailerEJB project. In the Project
Explorer view, select EJB Projects → RetailerEJB.

b. Double-click Deployment Descriptor: RetailerEJB. The deployment
descriptor editor opens.

c. Select the Bean tab, and click Add. The wizard shown in Figure 9-14
appears.

Figure 9-14 Creating the enterprise bean

4. To create the enterprise bean:

a. Enter Tmp as the Bean name.

b. Enter tmp as the Default package.

c. Click Finish.

d. Save the contents of the deployment descriptor. (Remember, you will
delete this enterprise bean later.)
208 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Configuring Rational Application Developer for Web services
To help in the development of Web services in Rational Application Developer,
you can turn on the Web services development support and turn off the
automatic publishing of projects. After you configure Rational Application
Developer, you can then start the unit test environment server.

To configure Rational Application Developer:

1. Enable the full Web services development environment on Rational
Application Developer as shown in Figure 9-15.

a. Click Window → Preferences.
b. In the Preferences window, select Workbench → Capabilities.
c. Turn on the Web services development support by expanding Web

Service Developer and then selecting Web Services Development.
d. Click OK.

Figure 9-15 Preferences window

2. Turn off the automatic publishing.

a. Locate the Servers view and double-click the server configuration called
WebSphere Application Server V6.0.

b. In the Server Overview screen, deselect Enable automatic publishing.

c. Save your changes and close the editor.

3. Start the server by right-clicking WebSphere Application Server V6.0 and
selecting Start.

Although you will not use the unit test environment to test the Web services, a
running server instance is required by the Web service wizards. If you do not
start the server, the relevant Web service wizard would start it when required.
 Chapter 9. Enterprise Service Bus pattern: router scenario 209

Creating a skeleton EJB Web service
Now that you have a pre-existing EJB project containing a dummy enterprise
bean, you can create a skeleton EJB Web service. The skeleton service allows
you to build a Web service with an EJB implementation that is based on existing
WSDL.

To create a skeleton EJB Web service:

1. Select File → New → Other. The New dialog box opens.

2. Inside this dialog box, expand Web Services, select Web Service, and click
Next. If this is the first time that you have used Web services in this Rational
Application Developer workspace, you are prompted to enable Web service
deployment support.

3. The next page (shown in Figure 9-16 on page 211) allows you to specify the
type of Web service to create. The most common types are:

– Java bean Web Service
– EJB Web Service
– Skeleton Java bean Web Service
– Skeleton EJB Web Service

The first two types are used when an implementation has been written and
the implementation now needs to be exposed an a Web service. The latter
two (which are the options in which we are interested) are for when the WSDL
exists and some skeleton code needs to be created. In this scenario, you
want you Web service to be invokable via SOAP over JMS. Thus, you can
choose Skeleton EJB Web Service.
210 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 9-16 Web service type selection wizard page

In this Wizard page:

a. Select Skeleton EJB Web Service from the drop-down list under Web
service type.

b. Deselect Start Web service in Web project.

c. Click Next.

4. In the next page (shown in Figure 9-17 on page 212), you specify the WSDL
for the Web service. In this example, take the WSDL from the existing
RetailerWeb project.
 Chapter 9. Enterprise Service Bus pattern: router scenario 211

Figure 9-17 Web service WSDL selection page

The WSDL file is Retailer_Impl.wsdl, which is located in the RetailerWeb
project. There are two ways of locating the WSDL file. You can either enter
the name in the text box or click Browse and browse to the file.

/RetailerWeb/WebContent/wsdl/org/ws_i/www/Retailer_Impl.wsdl

5. Click Next.

6. In the next page (shown in Figure 9-18), select the EJB project and EAR
project in which the Web service will be created.

Figure 9-18 Selecting the EJB project

In this Wizard page:

a. Select or enter RetailerEJB in the Service project pull-down list.

b. Select the Retailer project in the EAR project pull-down box.

c. Click Next. A WebSphere Application Server unit test server will start if
one is not already running.
212 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

7. Specify how the Web service will be invoked (Figure 9-19).

Figure 9-19 Options for creating a SOAP over JMS Web service

In this Wizard page:

a. In the Select Router Project pull-down list, select RetailerEJB.

b. Select the option Define custom mapping for namespace to package.
 Chapter 9. Enterprise Service Bus pattern: router scenario 213

c. In the Select transports group of radio buttons, select SOAP over JMS.
This will present some new options that are required in order to invoke the
Web service via JMS. These options are:

• Queue kind

Which specialization of JMS destination to use. The choices are queue
or topic. It only makes sense to use a topic with one way request
interaction. Requests sent to a topic will be distributed to all
subscribers to that topic, in a request response interaction this would
result in multiple responses to a single request which is unlikely to be
the desired behavior.

Select queue in the pull-down list.

• WSDL service name

The name of the Web service port to be invoked. Specify a value of
Retailer.

• Connection factory

The JNDI name of a JMS connection factory. Specify a value of
Sample/WSI/RetailerCF.

• Destination

The JNDI name of a JMS destination where messages to that Web
service will be sent. Specify a value of Sample/WSI/RetailerQueue.

• MDB deployment mechanism

This property specifies what mechanism will be used to deliver
messages to the Web service. The valid values are:

JMS ActivationSpec: used for JMS providers that have a J2EE
Connector Architecture V1.5 compliant inbound resource adapter.

Listener Port: used for JMS providers that do not have a J2EE
Connector Architecture V1.5 compliant inbound resource adapter, but
do support the JMS Application Server Facilities part of the JMS
specification.

Select JMS ActivationSpec from the pull-down list.

Tip: When using SOAP over JMS each WSDL service should have
a unique JMS destination for requests. That is to say that when
looking at messages on a destination they will all be destined for the
same Web service.
214 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

• ActivationSpec JNDI name

The JNDI name of an Activation Spec that will be used to drive the
message-driven bean. Specify a value of Sample/WSI/RetailerAS.

• Listener port name

The name of a listener port in the application server that will be used to
deliver messages to a message-driven bean. This fields is greyed out
because we are using a JMS ActivationSpec.

d. Click Next.

8. You must now import the mapping pairs. You use a mapping to ensure that all
generated Java implementations of XSD elements are placed in the same
Java package. This page is shown in Figure 9-20.

Figure 9-20 Mapping pairs

In this Wizard page:

a. Click Import.

b. Expand namespace mappings, highlight the namespace mapping file,
and click OK.

Note: The SOAP over JMS support is implemented with a
message-driven bean receiving messages from a destination for a
Web service. The message-driven bean then extracts the SOAP
message from the JMS message and invokes the Web service.
 Chapter 9. Enterprise Service Bus pattern: router scenario 215

c. Click Finish. At this point a warning message box appears that is similar
to the one shown in Figure 9-21. These warnings are generated because
some types defined in XML Schema and SOAP cannot be directly mapped
to Java types. This message is warning that some types have been
mapped to the javax.xml.soap.SOAPElement class instead. As a result the
message can safely be ignored.

Figure 9-21 Warning issued when generating a Web service

Removing the dummy EJB and assigning a JNDI name
Earlier, you created a temporary enterprise bean. Now, you need to delete it.
You also need to assign a JNDI name to the RetailerSOAPBindingImpl EJB.
Setting the JNDI name in Rational Application Developer means you will not
need to set it manually at deployment time.

To remove the dummy EJB and assign a JNDI name:

1. Open the deployment descriptor for the RetailerEJB project using the
deployment descriptor editor.

2. Select the Bean tab.

3. Select the bean named Tmp.

4. Click Remove.

5. A window appears asking for confirmation. Accept the defaults and click OK.

6. Highlight the RetailerSOAPBindingImpl EJB.

7. In the WebSphere Bindings section, enter a JNDI name of
Sample/WSI/RetailerEJB.

8. Save the deployment descriptor.
216 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Copying the business logic into the generated EJB
Now, you have generated a skeleton EJB Web service, you need to add
business logic to that skeleton. You will reuse the business logic from the
RetailerWeb project by copying the relevant business logic class and adding
code to the skeleton EJB:

1. Copy the Retailer business logic class from the RetailerWeb project into the
RetailerEJB project:

a. From the Project Explorer, select Dynamic Web Projects →
RetailerWeb → Java Resources → JavaSource.

b. Right-click the package org.ws_i.www.Impl and select Copy.

c. Select EJB Projects → RetailerEJB.

d. Right-click ejbModule and select Paste. The org.ws_i.www.Impl package,
and the RetailerLogic.java class within it, will be copied into the
RetailerEJB project.

2. Modify the skeleton EJB (class RetailerSOAPBindingImpl.java) so that it
contains useful business logic. You will find the Java class in the package
org.ws_i.www in the RetailerEJB project. Make the changes that are shown in
bold in Example 9-1.

Example 9-1 Content of RetailerSOAPBindingImpl.java

private org.ws_i.www.Impl.RetailerLogic rl = null;

public void ejbCreate() {
rl = new org.ws_i.www.Impl.RetailerLogic();

}

public CatalogItem[] getCatalog() {
return rl.getCatalog();

}

public PartsOrderResponseItem[] submitOrder(PartsOrderItem partsOrder,
CustomerDetailsType customerDetails
ConfigurationType configurationHeader)

throws InvalidProductCode, BadOrderFault, ConfigurationFaultType {
return rl.submitOrder(partsOrder, customerDetails, configurationHeader);

}

Note: At this point, you will get some compile errors because you have
not generated the Web service clients that the EJB uses. Do not worry
about these errors for now. We will discuss these errors later in 9.2.3,
“Updating Web service clients to use the ESB” on page 219.
 Chapter 9. Enterprise Service Bus pattern: router scenario 217

Removing the Web project
Now that you have created a EJB Web service for Retailer, you can delete the
Java Web service in the RetailerWeb project:

1. Expand Dynamic Web Projects.

2. Right-click the RetailerWeb project.

3. Select Delete. The dialog box that is shown in Figure 9-22 appears.

Figure 9-22 Deleting the module options dialog

4. Select Also delete references to selected project(s) and click OK. The
dialog box that is shown in Figure 9-23 appears.

Figure 9-23 Confirm project delete dialog

5. Select the option to delete the contents and click OK.

The Retailer Web service has now been converted to be an enterprise bean
based Web service.
218 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

9.2.3 Updating Web service clients to use the ESB

This section describes how to modify existing Web service clients to point to the
WebSphere Application Server service integration bus rather than directly to a
service provider. This modification changes the following:

� The Endpoint address that is used by Web service consumers to invoke a
Web service provider changes to invoke the service integration bus inbound
service rather than the provider directly.

� By going through the service integration bus, the WSDL definitions
namespace changes. This requires that you regenerate the Web service
client stubs and the service references in your J2EE applications. It does not
affect the in transit SOAP message.

When an inbound service is exported from WebSphere Application Server, it is
packaged in a zipped file. The zipped file contains four WSDL files. Each WSDL
file describes a portion of the service.

Assuming that our sample bus is called TESTBUS and that the service we are
looking at is called LoggingFacilityService, these files are called:

� TESTBUS.LoggingFacilityServiceBindings.wsdl

Defines the binding and transport for each operation in the service.

� TESTBUS.LoggingFacilityServicePortTypes.wsdl

Defines the port type, operations, and messages for the service.

� TESTBUS.LoggingFacilityServiceService.wsdl

Defines the service and port for the service.

� TESTBUS.LoggingFacilityServiceNonBound.wsdl

Imports a port type and defines a non-specific binding and service. Not used
in this scenario.

Note: Before you can attempt this section, you must configure the service
integration bus in WebSphere Application Server, and you must define the
WS-I sample application Web services as inbound services to this service
integration bus. To do this, follow the steps in the 9.3, “Runtime guidelines” on
page 231. You need to complete all the steps up to and including 9.3.9,
“Exporting the service integration bus WSDL for development” on page 253.
After you have exported the service integration bus WSDL files, return to this
section in the development guidelines to generate the Web service clients.
 Chapter 9. Enterprise Service Bus pattern: router scenario 219

This section describes how to regenerate the Web service client code using the
RetailerEJB that is generated in the previous section and the
LoggingFacilityService. The procedure is the same for regenerating all the stubs.

Removing existing Web service clients
This step is only required when updating Web service consumers. It is not
required for the RetailerEJB project as it does not have any existing Web service
references. Therefore, you can skip this step for the RetailerEJB project.

If you already have service references, you need to remove these references
before continuing by doing the following:

1. Open the Deployment Descriptor in the deployment descriptor editor

2. Click the Reference tab (or References if you are editing a Web project).

3. Each bean in the project is listed. Expand the bean you are interested and all
the references will be shown as in Figure 9-24. Select the service reference
for the service you are about to regenerate the Web service for and click
Remove then save the deployment descriptor.

Figure 9-24 Service references in deployment descriptor

Importing the generated WSDL
The WSDL files that are generated by WebSphere Application Server for an
inbound service should now be imported into your Rational Application
Developer workspace. To import the LoggingFacility service WSDL:

1. In Rational Application Developer select File → Import

2. The import dialog box is shown. Scroll down and select Zip file and click
Next.

Note: Ensure that the Rational Application Developer unit test environment is
started prior to completing these steps. You can check to see if it is running by
examining the status of the server in the Servers view of the J2EE
perspective.
220 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

3. From the dialog box that appears, you import the service integration bus
WSDL.

a. Specify the location of the zipped file that contains the WSDL by either
entering the path or by clicking Browse and selecting the file.

b. In the right panel, deselect
TESTBUS.LoggingFacilityBindingNotFound.wsdl. You will import only
the port type, binding, and service WSDL files.

c. Select the project to import the WSDL files into. Click Browse and expand
RetailerEJB → ejbModule → META-INF. Select wsdl, and click OK.

d. Click Finish. The files are imported into the RetailerEJB project in the
ejbModule/META-INF/wsdl folder.

4. The port types WSDL file contains an XSD import statement. The WSDL
assumes the XSD file is local to the WSDL file. In our scenario, all XSD files
are located on an HTTP server, so the import statement should be adjusted
accordingly:

a. Double-click TESTBUS.LoggingFacilityServicePortTypes.wsdl to open
it in the WSDL editor.

b. Click the Source tab.

c. Locate the line that imports the LoggingFacility.xsd file:

<xs:import
namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement/
2002-08/LoggingFacility.xsd"
schemaLocation="LoggingFacility.xsd"/>

d. Change the schemaLocation attribute to point to the HTTP server:

schemaLocation="http://appsrv1a.itso.ral.ibm.com/wsdl/
LoggingFacility.xsd"

e. Save and close the WSDL file.

Creating a namespace mapping file
When you generate a Web service client, Rational Application Developer creates
Java class implementations of all the XSD components defined by the Web
service. The name of each Java class is derived from the name of the XSD
component. The package name of each Java class is derived from the
namespace of the XSD component.

The Java package name is based on the host part of the namespace name. For
example, an XSD component that belongs to the following package would be
stored in a Java package called org.ws_i.www:

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/
LoggingFacility.wsdl
 Chapter 9. Enterprise Service Bus pattern: router scenario 221

It is common to have multiple namespaces defined with a common host part.
Examples include www.ws-i.org, www.w3c.org, and schemas.xmlsoap.org. It is
possible in these cases that some schemas will define elements with the same
name. Without namespace mapping these elements will generate classes with
the same name and in the same package. This would result in one of the
generated classes overwriting the other. Namespace mapping allows a
namespace to be mapped to an arbitrary package name allowing the problem to
be removed.

Additionally, namespace mapping is useful to map XSD components from
multiple namespaces into a single Java package. This is useful for the service
integration bus generated WSDL, which is in a namespace with of host name of
www.ibm.com and the generated code to be in the package org.ws_i.www.

There are three namespaces that you need to map:

� The targetNamespace, which is the same for all service definitions generated
by the service integration bus.

� The sibusbinding namespaces, which are unique to each Web service we are
working with.

� The other namespaces used by the XSD components.

To map the namespaces:

1. Determine the namespaces that are defined by the Web service. Open the
service WSDL file TESTBUS.LoggingFacilityServiceService.wsdl and
examine the namespace definitions defined in the <definitions> tag
(Example 9-2 on page 223).

Note: Certain characters that are valid in a host part of a URI are not valid in a
package name, such as a hyphen (-). In these cases, those characters are
mapped to a different character. In the example, the hyphen is converted to an
underline character (_).
222 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Example 9-2 Definitions attribute of a service WSDL file

<wsdl:definitions
targetNamespace=

"http://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/Service"
xmlns:sibusbinding=

"http://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/
LoggingFacilityService/Binding"

xmlns:tns=
"http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/

LoggingFacility.wsdl"
xmlns:intf=

"http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/
LoggingFacility.wsdl"

2. From this file, you can determine that the value of the targetNamespace is:

http://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/
TESTBUS/Service

You can also determine the value of the sibusbinding namespace is:

http://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/
LoggingFacilityService/Binding

Notice that these namespaces incorporate the cell and name of the service
integration bus used.

3. Create a namespace mapping file to map these two namespaces to the Java
package org.ws_i.www:

a. Select File → New → Other from the main menu.

b. In the New dialog select Simple → File then click Next.

c. Set the parent folder to namespace mappings. Then, enter
nsmappings.properties in the File name text field, and click Finish. This
creates the file and opens an editor for it.

d. The file is formatted so that the namespace comes first followed by equals
and then the package name, all on one line. You can specify multiple
lines. The namespace mappings are e unique to your system, so you must
determine the namespace names yourself by examining the WSDL file
TESTBUS.LoggingFacilityServiceService.wsdl. For this example, use the
mappings as shown in Example 9-3.

Example 9-3 Namespace mapping file - part one

http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/Service=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/LoggingFacilityService/
Binding=org.ws_i.www
 Chapter 9. Enterprise Service Bus pattern: router scenario 223

e. You need to create mappings for the namespaces that assigned to the
sibusbinding attribute in each of the other Web services for which you will
create clients. You can determine these namespaces by opening the
relevant service WSDL file of each Web service. Example 9-4 shows all of
the namespace mappings (including LoggingFacility). Copy this into the
nsmappings.properties file. Be sure to change all occurrences of
w2kssp4Node01Cell in the namespace name to the cell name of your
installation.

Example 9-4 Namespace mapping file - part two

http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/Service=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/LoggingFacilityService/
Binding=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/ManufacturerService/Bin
ding=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/ManufacturerBService/Bi
nding=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/ManufacturerCService/Bi
nding=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/RetailerService/Binding
=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/WarehouseCallBackServic
e/Binding=org.ws_i.www
http\://www.ibm.com/websphere/sib/webservices/w2kssp4Node01Cell/TESTBUS/WarehouseService/Bindin
g=org.ws_i.www

Note: Although one of the namespace mappings shown in Example 9-3
spans multiple lines, it should each be entered on a single line in the
namespace mapping file. This convention also applies to Example 9-4 and
Example 9-5 on page 225. Also note that the namespace must be modified
from using http:// to using http\:// in the namespace mapping file.
224 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

f. You need to add mappings for the other XSD components. These
namespaces are not system-specific so copy the declarations shown in
Example 9-5 into nsmappings.properties.

Example 9-5 Namespace mapping file - part three

http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/ManufacturerPO.xsd=org.ws
_i.www.po
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-10/ManufacturerSN.xsd=org.ws
_i.www.sn
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Configuration.xsd=org.ws_
i.www
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/RetailCatalog.xsd=org.ws_
i.www
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/RetailOrder.xsd=org.ws_i.
www
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Retailer.wsdl=org.ws_i.ww
w
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Warehouse.wsdl=org.ws_i.w
ww
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Manufacturer.CallBack=org
.ws_i.www
http\://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Manufacturer.wsdl=org.ws_
i.www

g. Save the changes to nsmapping.properties.

Generating a Web service client
You are now ready to generate a Web service client for the LoggingFacility
service. This client points to the LoggingFacility inbound service on the service
integration bus. To generate a Web service client, do the following:

1. Select File → New → Other. Then select Web Services → Web Service
Client and click Next.

2. You want to create a Java proxy client, so ensure that Client proxy type is set
to Java proxy and then click Next.

3. Use the browse button to locate the WSDL file
RetailerEJB/ejbModule/META-INF/wsdl/TESTBUS.LoggingFacilityServiceSe
rvice.wsdl and click Next.
 Chapter 9. Enterprise Service Bus pattern: router scenario 225

4. On the page shown in Figure 9-25, specify the information about how the
application the Web service client will be generated.

– Client type, which specifies the type of the Web service client to generate.
Select EJB. The other options are Web, Application client, and Java.

– Client Project, which specifies the project where the Web service client will
be generated. Select RetailerEJB.

– EAR Project, which specifies the EAR project with which the Web service
client will be associated. Select Retailer.

Figure 9-25 Specify Web service client type

5. Click Next to move to the next page

6. You specify security information in the next page. Select Define custom
mappings for namespace to package and click Next.

7. Import the namespace mappings file. Click Import, expand namespace
mapping, highlight nsmappings.properties, and click OK. This will fill in the
Mapping pairs table with the relevant information as shown in Figure 9-26 on
page 227.
226 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 9-26 Namespace mappings

8. Click Finish and the Web service client is generated. Acknowledge any
warning messages that you receive during the Web service client generation.

9. You can confirm the Web service client has been generated by examining the
[Service]Locator.java file, which in this case is
LoggingFacilityServiceLocator.java. You can find this file in the org.ws_i.www
package. Open the file and look for the following line of code, which indicates
the address of the LoggingFacility service and points to the service
integration bus:

private final java.lang.String loggingFacility_address =
"http://localhost:9080/wsgwsoaphttp1/soaphttpengine/TESTBUS/LoggingFacility
Service/LoggingFacility";

Generating other Web service clients
You have now generated one Web service client for the Retailer enterprise
application. This Web service client will be used to call the logEvent() operation
of the LoggingFacility service. Figure 9-10 on page 204 shows that the Retailer
also makes a call to the shipGoods() operation of the Warehouse service.
Therefore, you must generate a second Web service client for the Warehouse.

Using Figure 9-10 on page 204, you can derive the Web service clients that you
need to generate for each of the enterprise applications. This section
summarizes the tasks necessary to generate these Web services clients.

RetailerEJB enterprise application
You still need to generate a Web service client for the Warehouse service. This
Web service client will fix the error in org.ws_i.www.Impl.RetailerLogic.java
because this generates the required Java classes that are used in this class.
 Chapter 9. Enterprise Service Bus pattern: router scenario 227

To generate this Web service client:

1. Import the Warehouse WSDL files into the
RetailerEJB/ejbModule/META-INF/wsdl folder as described in “Importing the
generated WSDL” on page 220. Remember to import only three files: the
ones ending in PortTypes.wsdl, Service.wsdl, and Binding.wsdl.

2. Modify the PortTypes.wsdl file import statements to ensure that the XSD files
are retrieved from the HTTP server.

3. Generate a new Web service client as described in “Generating a Web
service client” on page 225. Be sure to specify the
TESTBUS.WarehouseServiceService.wsdl file when working through the
wizard.

When the Web service client for Warehouse is complete, the RetailerEJB project
should contain no errors.

SampleSCMUIWeb enterprise application
This is the first enterprise application that contains existing Web service clients.
You will re-create these clients so that they point to the service integration bus
inbound service instead of pointing directly to the service provider. The service
integration bus inbound service uses a different namespace and location URL.

Generate Web service clients for the LoggingFacility and Retailer services:

1. Delete the existing Web service client references as described in “Removing
existing Web service clients” on page 220.

2. Import the LoggingFacility WSDL files into the
SampleSCMUIWeb/WebContent/WEB-INF/wsdl folder as described in
“Importing the generated WSDL” on page 220. Alternatively, copy the three
WSDL files from the RetailerEJB project. Copying will save you from fixing the
WSDL files in the next step.

3. If you imported the WSDL files, modify the PortTypes.wsdl file import
statements to ensure that the XSD files are retrieved from the HTTP server.

4. Generate a new Web service client as described in “Generating a Web
service client” on page 225.

After the LoggingFacility Web service client has been generated, repeat the
steps to generate a Retailer Web service client.
228 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

WarehouseEJB enterprise application
Add Web service clients for LoggingFacility, and the three Manufacturer Web
services. Remember to:

1. Delete the existing Web service client references.

2. Import the LoggingFacility and Manufacturers WSDL.

3. Modify the PortTypes.wsdl files to point the XSD import statements to the
HTTP server.

4. Generate new Web service clients.

Manufacturer enterprise applications
Add Web service clients for LoggingFacility and WarehouseCallBack to the three
Manufacturer EJB projects: ManufacturerEJB, ManufacturerBEJB, and
ManufacturerCEJB.

The Manufacturer enterprise applications require a slightly different procedure:

1. Do not delete the existing Web service client references. You reuse the
original ones. The service references are not regenerated automatically when
you create Web service clients in the Manufacturer, because the
Manufacturer EJB project uses a message-driven bean instead of a session
bean.

2. Import the LoggingFacility and WarehouseCallBack WSDL files into the
Manufacturer EJB project, and modify the XSD import statements as usual.

3. Delete the org.ws_i.www.po package and all classes within it. These classes
are regenerated when you generate a Web service client for the
WarehouseCallBack service.

4. Generate new Web service clients for both of these services.

5. Modify the classloader for the Manufacturer enterprise application to ensure
that it loads the SubmitPOFaultType class from the Web project rather than
from the EJB project:

a. In the Project Explorer view, expand Enterprise Applications and expand
the relevant Manufacturer enterprise application.

b. Double click the Deployment Descriptor to open it in the editor.

c. Click the Deployment tab.

d. Locate the Application section and click the appropriate Web application,
for example ManufacturerWeb.war.

e. Set the classloader mode to PARENT_LAST (Figure 9-27 on page 230).

f. Save and close the deployment descriptor.
 Chapter 9. Enterprise Service Bus pattern: router scenario 229

Figure 9-27 Setting the classloader for the Manufacturer

Exporting the enterprise applications
Each enterprise application must be exported from the Rational Application
Developer workspace to an EAR file, so that hey can be deployed to WebSphere
Application Server.

To export the LoggingFacility enterprise application:

1. Click File → Export.

2. In the Export wizard, highlight EAR file and click Next.

3. In the EAR project pull-down, select LoggingFacility. Click Browse and
locate a directory to where you want to store the enterprise application. Click
Save. The enterprise application is called LoggingFacility.ear by default.

4. Click Finish to generate LoggingFacility.ear.

Export the remaining enterprise applications using these same steps:

� SCMSampleUI
� Retailer
� Warehouse
� Manfacturer
� ManufacturerB
� ManufacturerC

Note: After you have exported the enterprise applications, you can import and
test them in WebSphere Application Server, as described in 9.3.11, “Installing
and testing the new enterprise applications” on page 255. You must have
completed all the remaining steps in 9.3, “Runtime guidelines” on page 231
before installing the enterprise applications into WebSphere Application
Server.
230 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Development alternative: Using the command line tools
WebSphere Application Server provides a set of command line tools that you can
use to generate the client and server stubs. You can use these tools instead of
Rational Application Developer or similar graphical tools. These tools are:

� WSDL2Java, which is used to generate the Web service consumer and
provider artifacts from a WSDL file. You can then use the output from this tool
to write the Web service function. This tool allows top-down development
where the interface has already been defined.

� Java2WSDL, which is used to generate the Web service artifacts from a Java
bean or enterprise bean. The output includes the WSDL interface definition.
This tool allows bottom-up development where some function has been
created and needs to be converted into a Web service where no WSDL
interface definition exists.

� wsdeploy, which can be used to regenerate the generated Web service code
in an ear file based on an updated WSDL. A typical example of when this
would be used is when all that has changed about the WSDL is the address.
In this case replacing the WSDL and running wsdeploy will update the EAR
file to use the new address.

� endptenabler, which takes an EAR file and adds in the routing project
required to deliver the message to the deployed Web service. For SOAP over
HTTP a routing WAR file will be created. For SOAP over JMS an EJB JAR file
will be added containing a message-driven bean.

9.3 Runtime guidelines

This section describes how to configure the Enterprise Service Bus runtime
pattern with router interactions using WebSphere Application Server.

Note: This section assumes that you have installed and are using WebSphere
Application Server V6.0.1 with the i-fixes PK02919 and PK05354 applied. You
can download PK02919 at:

http://www.ibm.com/search?en=utf&v=11&lang=en&cc=us&q=PK02919

You can download PK05354 at:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24009729

Versions of WebSphere Application Server beyond V6.0.1 will not require
these i-fixes.
 Chapter 9. Enterprise Service Bus pattern: router scenario 231

http://www.ibm.com/search?en=utf&v=11&lang=en&cc=us&q=PK02919
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24009729

This section describes how to perform the following tasks:

� Using the service integration bus to route Web service requests

In this chapter we will send all Web service consumer requests to the service
integration bus. The service integration bus will then route these requests to
the relevant Web service provider, and perform any necessary
transformation.

� Installing the SDO repository

The Web service support in the service integration bus requires an SDO
repository to store WSDL and XSD schema files.

� Installing the Web services support

The service integration bus Web service support is installed through running
a number of Jacl scripts.

� Creating the endpoint listeners

Endpoint listeners are used to receive requests from Web service consumers.
HTTP and JMS endpoint listeners are created.

� Creating the JMS resources for the Retailer Web service

As the Retailer Web service provides support for JMS, the relevant JMS
resources need to be defined for it in the service integration bus.

� Creating the outbound services and Creating the inbound services

Inbound services define how Web service consumers communicate with the
service integration bus. Outbound services define how the service integration
bus communicates with the Web service providers. An inbound and outbound
service needs to be defined for each Web service routed through the service
integration bus.

� Exporting the service integration bus WSDL for development

WSDL files are created for each inbound service describing how a Web
service consumer should invoke the service integration bus. This WSDL must
be exported from the service integration bus and used to generate a Web
service client in the service consumer.

Note: These instructions assume that you have configured the SOA Direct
Connection scenario as described in Chapter 8, “SOA Direct Connection
pattern” on page 153. This section describes the required modifications to
convert that configuration into this one. You can quickly import the Direct
Connection configuration into WebSphere Application Server using a set of
Jacl scripts. For information about how to do this, see “Configuring the Direct
Connection scenario” on page 368.
232 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� Importing the schemas into the SDO repository

� Installing and testing the new enterprise applications

� Runtime alternatives

9.3.1 Using the service integration bus to route Web service requests
In this scenario, we use the service integration bus to act as a Web services
intermediary between services consumers and service providers. We use the
service integration bus Web services support to:

� Route Web service consumer requests to the correct Web service provider,
using a simple one-to-one mapping (meaning a request for a particular Web
service is always sent to the same Web service provider).

� Transform the protocol that is used by the Web service consumer (HTTP or
JMS) to the protocol supported by the Web service provider.

This scenario represents three protocol interaction styles where Web service
consumer requests are sent through the service integration bus. These
interactions can be seen by studying Figure 9-10 on page 204. The three types
of protocol interaction styles are:

� SOAP over HTTP requests with no transformation.
� SOAP over JMS requests transformed to SOAP over HTTP.
� SOAP over HTTP requests transformed to SOAP over JMS.

SOAP over HTTP requests with no transformation
In this instance, a Web service consumer sends a SOAP over HTTP request,
which is illustrated in Figure 9-28 on page 234. This request is received by the
HTTP endpoint listener and routed to the relevant inbound service defined for
this Web service. The relevant outbound service is then called, which forwards a
new SOAP over HTTP message to the relevant Web service provider. The
message body of the original SOAP over HTTP message is preserved in the new
SOAP over HTTP message.

Two Web service consumers send SOAP over HTTP requests to invoke an
operation on the LoggingFacility Web service. These requests are routed
through the service integration bus. In the case of the getEvents operation, a
response is returned to the Web service consumer because it is a
request-response operation.

Note: Chapter 10, “Enterprise Service Bus pattern: broker scenario” on
page 259 uses a more complex mapping to route Web service requests with
mediation handlers.
 Chapter 9. Enterprise Service Bus pattern: router scenario 233

Figure 9-28 SOAP over HTTP messages sent to the LoggingFacility service

The LoggingFacilityService inbound service defines where the Web service
consumers should send their SOAP over HTTP requests to for the
LoggingFacility service. This inbound service points to the HTTP endpoint
listener. The LoggingFacility outbound service defines where the real
LoggingFacility Web service implementation is located.

SOAP over JMS requests transformed to SOAP over HTTP
The service integration bus can be used to transform the protocol used to
transport a SOAP message, which is illustrated in Figure 9-29 on page 235. This
becomes necessary if the Web service consumer and Web service provider use
different protocols.

The Retailer Web service consumer sends a request to the shipGoods operation
of the Warehouse service using SOAP over JMS. However the Warehouse
service only supports SOAP over HTTP requests. The Warehouse inbound
service defines a SOAP over JMS interaction and the Warehouse outbound
service defines a SOAP over HTTP interaction. The service integration bus
automatically performs the protocol transformation, preserving the message
body of the SOAP request.

Inbound
Services

Retailer

logEvent

SCMSampleUI

getEvents

H
TT

P
en

dp
oi

nt

lis
te

ne
r

Lo
gg

in
gF

ac
ilit

yS
er

vi
ce

SOAP/HTTP

SOAP/HTTP

Outbound
Services

Lo
gg

in
gF

ac
ilit

yS
er

vi
ce

LoggingFacility

getEvents

logEvent

SOAP/HTTP

SOAP/HTTP
234 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 9-29 A SOAP over JMS message transformed to a SOAP over HTTP message

The SOAP over JMS message that is generated by the Retailer Web service
consumer is placed on the JMS queue destination specified by the
WarehouseService inbound service. The message that is placed on the JMS
queue destination is consumed by the JMS endpoint listener.

SOAP over HTTP requests transformed to SOAP over JMS
The opposite form of protocol transformation can also be performed by the
service integration bus. This type of protocol transformation occurs when an
inbound service is defined with a SOAP over HTTP and the outbound service is
defined with a SOAP over JMS binding.

This type of protocol transformation is commonly required when a Web service
consumer is located in a different enterprise to the Web service provider. In this
instance the Web service request is sent using HTTP which is the protocol most
suited to requests sent over the internet. The Web service provider might choose
to use JMS as this offers a reliable transport mechanism.

The SOAP over HTTP to SOAP over JMS transformation is illustrated in
Figure 9-30 on page 236 for two requests between the SampleSCMUI Web
service consumer and the Retailer Web service provider.

Inbound
Services

Retailer

shipGoods

JM
S

 e
nd

po
in

t
lis

te
ne

r

W
ar

eh
ou

se
S

er
vi

ce

SOAP/JMS

Outbound
Services

Warehouse

shipGoods
SOAP/HTTP

W
ar

eh
ou

se
S

er
vi

ce
 Chapter 9. Enterprise Service Bus pattern: router scenario 235

Figure 9-30 SOAP over HTTP messages transformed to SOAP over JMS messages

The Retailer Web service waits for a JMS message to be placed on a predefined
queue. Once a message is received, the Retailer service consumes it and
executes the Web service business logic. When the Web service completes, a
response message is placed on a reply-to queue, which is consumed by the
service integration bus and used to construct a SOAP over HTTP response to
send back to the Web service consumer.

9.3.2 Removing the existing enterprise applications
The first task to perform is the enterprise applications that is deployed in the SOA
Direct Connection scenario. These enterprise applications use point-to-point
connections. We ultimately will replace these applications with a new set of
enterprise applications that make use of the ESB.

To remove the existing enterprise applications:

1. Access the WebSphere Application Server administrative console at
http://localhost:9060/ibm/console and log in.

2. Expand Applications and click Enterprise Applications.

3. Select the applications LoggingFacility, Manufacturer, ManufacturerB,
ManufacturerC, Retailer, SCMSampleUI and Warehouse (as shown in
Figure 9-31 on page 237), and click Stop.

Inbound
Services

SCMSampleUI

getCatalog

H
TT

P
en

dp
oi

nt

lis
te

ne
r

R
et

ai
le

rS
er

vi
ceSOAP/HTTP

Outbound
Services

Retailer

getCatalog

submitOrder

SOAP/JMS

SOAP/JMSsubmitOrder SOAP/HTTP

R
et

ai
le

rS
er

vi
ce
236 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 9-31 Selecting the applications before stopping them

4. Select the applications LoggingFacility, Manufacturer, ManufacturerB.ear,
ManufacturerC, Retailer, SCMSampleUI, and Warehouse and click
Uninstall.

5. Confirm the uninstallation of the applications by clicking OK.

6. Save the changes. The enterprise applications have now been removed from
the server.

9.3.3 Installing the SDO repository
The service integration bus Web services support stores the WSDL and
schemas for the Web services in the SDO repository. When WebSphere
Application Server is installed it does not install the SDO repository, so this step
must be performed manually.

The SDO repository uses a database to store its information. The SDO
repository supports a wide variety of databases. In this scenario we will use
embedded Cloudscape database. The SDO repository installation script will
automatically setup the relevant resources for the database configuration.
 Chapter 9. Enterprise Service Bus pattern: router scenario 237

To install the SDO repository:

1. In a command prompt window, navigate to the WAS_HOME/bin directory,
where WAS_HOME is the directory where you installed WebSphere
Application Server.

2. Run the following command:

wsadmin -f installSdoRepository.jacl -createDb

3. After the script completes successfully, the SDO repository has been
installed. You can confirm the install by examining the installed enterprise
applications. You should see a new enterprise application added and started
that is called SDO Repository. Before you can use the SDO repository, you
must restart the application server. However, you can wait to restart the
application and proceed to the next steps.

9.3.4 Installing the Web services support
The service integration bus Web services support is not installed by default when
you install WebSphere Application Server, so this need to be performed
manually. There are several steps involved in setting up this support.

Creating the JMS resources
In order to support inbound Web service requests via SOAP over JMS, some
JMS resources need to be created. These resources are used by the JMS
endpoint listener, which you will create later. To create the JMS resources:

1. Create two service integration bus queue type destinations. For instructions
on how to create queue type destinations, see 8.3.4, “Creating the
destinations” on page 164.

The queue type destinations should be called wsqmjmsQ1 and wsqmjmsQ2.

2. Create two JMS queue connection factories. For instructions on how to create
JMS connection factories, see 8.3.5, “Creating a JMS connection factory” on
page 165. However, instead of selecting JMS connection factory, select
JMS queue connection factory. Use the settings that are specified in
Table 9-7 on page 239 and Table 9-8 on page 239.
238 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Table 9-7 JMS queue connection factory settings

Table 9-8 JMS queue connection factory settings

3. Create two JMS queues that point to the service integration bus queue type
destinations that you created in step 1 on page 238. For instructions on how
to create JMS queues, see 8.3.6, “Creating the JMS queues” on page 167.
Use the settings that are specified in Table 9-9 and Table 9-10.

Table 9-9 JMS queue settings

Table 9-10 JMS queue settings

4. Create two activation specifications. For instructions on how to create
activation specifications, see 8.3.7, “Creating the JMS activation
specifications” on page 169. Use the settings that are specified in Table 9-11
on page 240 and Table 9-12 on page 240.

Field Value

Name SOAPJMSConnFac1

JNDI name jms/SOAPJMSFactory1

Bus name TESTBUS

Field Value

Name SOAPJMSConnFac2

JNDI name jms/SOAPJMSFactory2

Bus name TESTBUS

Field Value

Name SOAPJMSQueue1

JNDI Name jms/SOAPJMSQueue1

Bus name TESTBUS

Queue name wsqmjmsQ1

Field Value

Name SOAPJMSQueue2

JNDI Name jms/SOAPJMSQueue2

Bus name TESTBUS

Queue name wsqmjmsQ2
 Chapter 9. Enterprise Service Bus pattern: router scenario 239

Table 9-11 JMS activation specification settings

Table 9-12 JMS activation specification settings

5. Save the changes.

6. Restart the application server before proceeding, so that the JMS resources
are bound into the JNDI namespace.

Installing the Web services applications
The service integration bus Web services support is packaged in four different
applications. To get support for SOAP over HTTP it is only necessary to install
three of them. The fourth package is required for SOAP over JMS support. You
need to install all four applications for this scenario. To install these applications:

1. Install the resource adapter first. To install the resource adapter navigate to
WAS_HOME/bin and execute the following command:

wsadmin -f WAS_HOME/util/sibwsInstall.jacl INSTALL_RA -installRoot WAS_HOME
-nodeName NODE_NAME

In this command, WAS_HOME is the directory where you installed
WebSphere Application Server and NODE_NAME is the name of the
application server node.

Field Value

Name SOAPJMSChannel1

JNDI name eis/SOAPJMSChannel1

Destination type Queue

Destination JNDI name jms/SOAPJMSQueue1

Bus name TESTBUS

Field Value

Name SOAPJMSChannel2

JNDI name eis/SOAPJMSChannel2

Destination type Queue

Destination JNDI name jms/SOAPJMSQueue2

Bus name TESTBUS
240 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

2. Install the Web services support application from the WAS_HOME/bin
directory by executing the following command:

wsadmin -f WAS_HOME/util/sibwsInstall.jacl INSTALL -installRoot WAS_HOME
-nodeName NODE_NAME -serverName server1

In this command WAS_HOME is the directory where you installed
WebSphere Application Server, and NODE_NAME is the name of the
application server node.

3. Although the Web services support has now been installed, you cannot use it
until at least one endpoint listener application is installed. There are two
endpoint listener applications: one for SOAP over HTTP and one for SOAP
over JMS. For this scenario, you need to install both of them. Install these
applications by running the following command to install the HTTP endpoint
listener application:

wsadmin -f WAS_HOME/util/sibwsInstall.jacl INSTALL_HTTP -installRoot
WAS_HOME -nodeName NODE_NAME -serverName server1

Then, run the following command to install the JMS endpoint listener
application:

wsadmin -f WAS_HOME/util/sibwsInstall.jacl INSTALL_JMS -installRoot
WAS_HOME -nodeName NODE_NAME -serverName server1

In these commands, where WAS_HOME is the directory where you installed
WebSphere Application Server, and NODE_NAME is the name of the
application server node.

9.3.5 Creating the endpoint listeners
Next, you need to create some endpoint listeners (which will use the endpoint
listener applications at runtime). Endpoint listeners listen for incoming Web
service requests and forward them onto the relevant inbound service. Inbound
services get bound to an endpoint listener when they are created.

The process is similar for creating both the JMS and an HTTP endpoint listener:

1. Access the administrative console at http://localhost:9060/ibm/console
and log in.

2. Expand Servers and click Application Servers.

3. Click server1.

Important: The second WAS_HOME must have elements in the path
separated by a forward slash (/) even on Windows system. So a path of
c:\WebSphere\AppServer becomes c:/WebSphere/AppServer.
 Chapter 9. Enterprise Service Bus pattern: router scenario 241

4. Under Additional Properties, click Endpoint Listeners.

5. Click New.

6. Create an endpoint listener using the dialog box as shown in Figure 9-32.

Figure 9-32 Creating an endpoint listener

In this dialog box, enter the following information:

– Name, which is the name of the endpoint listener. It must have the name
SOAPHTTPChannel1.

– URL root, which is the base URL for Web service requests into this
endpoint listener. The URLs that are used for making Web service
requests to the service integration bus will have this root at the beginning.
Set this to:

http://localhost:9080/wsgwsoaphttp1

You can replace localhost with the server’s host name and 9080 with the
correct port number for your server.

– WSDL serving HTTP URL root, which is the location of the HTTP URL that
is serving your Web service WSDL. Enter a value of
http://appsrv1a.itso.ral.ibm.com/wsdl, which corresponds to the
HTTP server configuration that you completed in 8.3.8, “Hosting the
WSDL files” on page 171.

7. Click OK.

8. Repeat steps 5 through 7 for the JMS endpoint listener. Use the settings
shown in Table 9-13 on page 243.
242 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Table 9-13 SOAP over JMS endpoint listener settings

9. Save the changes.

9.3.6 Creating the JMS resources for the Retailer Web service
The Retailer Web service is invoked using SOAP over JMS, so you must create
some JMS resources. To create the necessary resources:

1. Create a service integration bus queue type destination. The queue type
destination should be called wsqmjmsQ3.

2. Create two JMS queue connection factories. Use the settings that are
specified in Table 9-14 and Table 9-15.

Table 9-14 JMS queue connection factory settings

Table 9-15 JMS queue connection factory settings

Field Value

Name SOAPJMSChannel1

URL root jms:/queue?destination=jms/SOAPJMSQ
ueue1&connectionFactory=jms/SOAPJM
SFactory1&

WSDL serving HTTP URL root http://appsrv1a.itso.ral.ibm.com/wsdl

Field Value

Name RetailerCF

JNDI name Sample/WSI/RetailerCF

Bus name TESTBUS

Field Value

Name WebServicesCF

JNDI name jms/WebServicesReplyQCF

Bus name TESTBUS
 Chapter 9. Enterprise Service Bus pattern: router scenario 243

3. Create a JMS queue that points to the service integration bus queue type
destination that you created in step 1 on page 238. Use the settings that are
specified in Table 9-16.

Table 9-16 JMS queue settings

4. Create an activation specification. Use the settings that are specified in
Table 9-17.

Table 9-17 JMS activation specification settings

5. Finally save the changes.

9.3.7 Creating the outbound services
Outbound services define Web service requests that leave the service
integration bus and are received by a service provider. To define an outbound
service for the LoggingFacilityService Web service:

1. From the administrative console, expand Service integration and click
Buses.

2. Click TESTBUS.

3. Under Additional Properties, click Outbound Services.

4. Click New.

5. The first page of the wizard (Figure 9-33 on page 245) requires you to specify
a URL or UDDI repository where a WSDL definition of the service can be

Field Value

Name SOAPJMSQueue3

JNDI Name Sample/WSI/RetailerQueue

Bus name TESTBUS

Queue name wsqmjmsQ3

Field Value

Name RetailerAS

JNDI name Sample/WSI/RetailerAS

Destination type Queue

Destination JNDI name Sample/WSI/RetailerQueue

Bus name TESTBUS
244 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

found. In this case, use a URL. The URL option allows you to specify an
HTTP URL or a file system path. Enter the following URL and click Next.

http://appsrv1a.itso.ral.ibm.com/wsdl/LoggingFacility_Impl.wsdl

Figure 9-33 Web service definition selection

6. The next page displays the available services that are defined in the WSDL
file. You can select the service for which you want to create an outbound
service. In this case, there is only one service to select
(LoggingFacilityService). Click Next.

7. The next page (Figure 9-34 on page 246) displays the ports that are defined
for the selected service. There is only one port in our service, so select
LoggingFacility and click Next.
 Chapter 9. Enterprise Service Bus pattern: router scenario 245

Figure 9-34 Port selection page

8. You change the name of the outbound service, service destination name, and
port destination name. You also specify a port selection mediation. Accept the
defaults and click Next.

9. You to select the bus member to which to assign the outbound service.
Accept the defaults and click Finish. The outbound service is created.

10.Repeat steps 4 on page 244 to 9 for each of the additional Web services,
using the URL locations that are specified in Table 9-18 on page 247.
246 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Table 9-18 Outbound service settings

11.Save the changes.

12.A Web service destination and port destination are created for each inbound
service. You can see these destinations by selecting Destinations in the bus
details page.

9.3.8 Creating the inbound services
Inbound services define Web service requests that are received by the service
integration bus. These requests are then routed to the appropriate outbound
service. To define an inbound service for the LoggingFacilityService Web
service:

1. From the bus details page under Additional Properties, click Inbound
Services.

2. Click New.

3. Select the service destination name and supply the template WSDL service
definition, as shown in Figure 9-35 on page 248.

Web service WSDL location

ManufacturerService http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturer_Impl.wsdl

ManufacturerBService http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerB_Impl.wsdl

ManufacturerCService http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerC_Impl.wsdl

RetailerService http://appsrv1a.itso.ral.ibm.com/wsdl/Ret
ailerJMS_Impl.wsdl

WarehouseService http://appsrv1a.itso.ral.ibm.com/wsdl/War
ehouse_Impl.wsdl

WarehouseCallBackService http://appsrv1a.itso.ral.ibm.com/wsdl/War
ehouseCallBack_Impl.wsdl
 Chapter 9. Enterprise Service Bus pattern: router scenario 247

Figure 9-35 Service destination and template WSDL settings page

– Service destination name, which is the destination on which the inbound
service requests should be placed. In this case, you want to specify the
Web service destination that was created for the LoggingFacility outbound
service.

Select the following:

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/Log
gingFacility.wsdl:LoggingFacilityService

– Template WSDL location, which specifies the WSDL definition of the Web
service to be invoked. While the WSDL that is used by client applications
will be slightly different, it is based on this WSDL. In this scenario, you
specify the WSDL of the Web service endpoint that will ultimately be
invoked after the request has been routed through the bus:

Enter the following:

http://appsrv1a.itso.ral.ibm.com/wsdl/LoggingFacility_Impl.wsdl

4. Click Next.

5. Enter the template WSDL that should be used. Our WSDL has only one entry,
so accept the default, and click Next.

6. Rename the inbound service and specify which endpoint listener is to be
used, as shown in Figure 9-36 on page 249.
248 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 9-36 Specify inbound service name and endpoint listener

– Inbound Service name, which is the service in the WSDL. It affects the
code that is generated by the application development tooling. By default,
the name is based on the service destination name with InboundService at
the end. Enter LoggingFacilityService.

– Endpoint listener, which defines what mechanism is used to get Web
service requests into the inbound service. Listed will be the endpoint
listeners that you created in 9.3.5, “Creating the endpoint listeners” on
page 241. It is possible to choose multiple endpoint listeners.

Select the endpoint that ends in SOAPHTTPChannel1.

7. Click Next.

8. Specify UDDI specific properties. Because you are not using UDDI, you can
accept the defaults and click Finish.

9. The default port name for the inbound service is based on the endpoint
listener name followed by the phrase InboundPort. In this case, the inbound
port name is SOAPHTTPChannel1InboundPort. Because our clients are
calling a port called LoggingFacility, the clients are unable to invoke the
service. To fix this issue:

a. From the Inbound service listing page, click LoggingFacilityService.

b. Under Additional Properties, click Inbound Ports.

c. Click the port named SOAPHTTPChannel1InboundPort.

Note: In order to see the Additional Properties, you probably will need
to scroll to the right using the horizontal scroll bar.
 Chapter 9. Enterprise Service Bus pattern: router scenario 249

d. Modify the inbound port name as shown in Figure 9-37. Change the name
to LoggingFacility and click OK.

Figure 9-37 Inbound port details page

10.Create more inbound service definitions for each of the other services by
following step 2 on page 247 to 9 and using the settings that are provided in
Table 9-19 on page 251, Table 9-20 on page 251, Table 9-21 on page 251,
Table 9-22 on page 252, Table 9-23 on page 252, and Table 9-24 on
page 252.

11.Save the changes.

Note: When you modify the inbound port for Warehouse, ensure that the
endpoint listener is set to use JMS, not HTTP.
250 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Table 9-19 Inbound service settings for ManufacturerService

Table 9-20 Inbound service settings for ManufacturerBService

Table 9-21 Inbound service settings for ManufacturerCService

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-10/Manufa
cturer.wsdl:ManufacturerService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturer_Impl.wsdl

Inbound service name ManufacturerService

Endpoint listener SOAPHTTPChannel1

Inbound port name Manufacturer

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-10/Manufa
cturer.wsdl:ManufacturerBService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerB_Impl.wsdl

Inbound service name ManufacturerBService

Endpoint listener SOAPHTTPChannel1

Inbound port name ManufacturerB

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-10/Manufa
cturer.wsdl:ManufacturerCService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Man
ufacturerC_Impl.wsdl

Inbound service name ManufacturerCService

Endpoint listener SOAPHTTPChannel1

Inbound port name ManufacturerC
 Chapter 9. Enterprise Service Bus pattern: router scenario 251

Table 9-22 Inbound service settings for RetailerService

Table 9-23 Inbound service settings for WarehouseService

Table 9-24 Inbound service settings for WarehouseCallBackService

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-08/Retaile
r.wsdl:RetailerService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/Ret
ailerJMS_Impl.wsdl

Inbound service name RetailerService

Endpoint listener SOAPHTTPChannel1

Inbound port name Retailer

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-08/Wareh
ouse.wsdl:WarehouseService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/War
ehouse_Impl.wsdl

Inbound service name WarehouseService

Endpoint listener SOAPJMSChannel1

Inbound port name Warehouse

Note: WarehouseService uses an endpoint listener of SOAPJMSChannel1.

Field Value

Service destination name http://www.ws-i.org/SampleApplications/S
upplyChainManagement/2002-08/Wareh
ouse.wsdl:WarehouseCallBackService

Template WSDL location http://appsrv1a.itso.ral.ibm.com/wsdl/War
ehouseCallBack_Impl.wsdl

Inbound service name WarehouseCallBackService

Endpoint listener SOAPHTTPChannel1

Inbound port name WarehouseCallBack
252 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

9.3.9 Exporting the service integration bus WSDL for development
The enterprise applications that are used in the Direct Connection scenario
cannot be used with this scenario, because these applications all contain Web
service clients which point directly to a service provider rather than to the service
integration bus that you have defined. Therefore, you need to modify the
enterprise applications to point to your service integration bus inbound services.

To do this, you must create new WSDL files for each Web service and export
these WSDL files from WebSphere Application Server into zipped files. You can
then give the zipped files to an application developer, who can import them into
Rational Application Developer and change the enterprise applications
accordingly.

To download a zipped file for each inbound service.:

1. In the administrative console, locate the inbound services list. Click
LoggingFacilityService.

2. Under Additional Properties, click Publish WSDL files to ZIP file.

3. Click LoggingFacilityService.zip and save the file to disk.

4. Repeat steps 1 to 3 for each of the other inbound services as follows:

– ManufacturerService
– ManufacturerBService
– ManufacturerCService
– RetailerService
– WarehouseService
– WarehouseCallBackService

The zipped files can now be provided to the application developers to regenerate
the Web service clients.

Note: In order to see the Additional Properties, you probably will need to
scroll to the right using the horizontal scroll bar.
 Chapter 9. Enterprise Service Bus pattern: router scenario 253

9.3.10 Importing the schemas into the SDO repository
When the inbound and outbound services are created, the WSDL is imported
automatically into the SDO repository. Unfortunately, any schemas that were
used are not similarly imported. Therefore, you will need to import the schemas
manually, as follows:

1. Download the following files from http://appsrv1a.itso.ral.ibm.com/wsdl into
the directory c:\tmp\xsd:

– Configuration.xsd
– LoggingFacility.xsd
– ManufacturerPO.xsd
– ManufacturerSN.xsd
– RetailCatalog.xsd
– RetailOrder.xsd
– Warehouse.xsd
– envelope.xsd

2. From the WAS_HOME/bin directory run the following command to load the
WebSphere Application Server command line administrative console:

wsadmin

In this command, WAS_HOME is the directory where you installed
WebSphere Application Server.

3. Obtain a reference to the SDO Repository MBean by entering:

set sdo [$AdminControl queryNames type=SdoRepository,*]

4. Import the schema by entering the following:

$AdminControl invoke $sdo importResource
{http://appsrv1a.itso.ral.ibm.com/wsdl/Configuration.xsd
c:/tmp/xsd/Configuration.xsd}

This command imports the Configuration.xsd file into the SDO repository so
that it can be accessed at runtime by the service integration bus Web
services support.

5. Repeat step 4 for each of the XSD files, replacing both occurrences of
Configuration.xsd with the relevant file name.

6. Type exit to leave the command line administrative console.

Note: This command only works on a single server setup. In a network
deployment environment, there might be multiple instances of the SDO
repository, in which case the sdo command would contain a list of MBean
references rather than a single MBean reference.
254 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

9.3.11 Installing and testing the new enterprise applications

Installing the new enterprise applications
The final configuration task is to take the applications that you created in the 9.2,
“Development guidelines” on page 202 and install them into the application
server.

You need to install the following enterprise applications:

� SCMSampleUI
� LoggingFacility
� Retailer
� Warehouse
� Manufacturer
� ManufacturerB
� ManufacturerC

For more information about how to install enterprise applications into WebSphere
Application Server, see 8.3.9, “Installing the applications” on page 172. Be sure
to use the EAR files that you exported from Rational Application Developer in
9.2.3, “Updating Web service clients to use the ESB” on page 219.

When all the enterprise applications are installed, restart the application server.

Testing the sample application
You can test the sample application by opening a Web browser and entering:

http://localhost:9080/SCMSampleUI/

Note: In order to complete this scenario, you must now complete section
9.2.3, “Updating Web service clients to use the ESB” on page 219. In this
section, you use the zipped files that were exported by the service integration
bus to modify the Web service clients that is defined in each enterprise
application.

This task requires the use of Rational Application Developer and is considered
a development task. Thus, this step is described in the development
guidelines of this chapter.

Note: You cannot complete this section until you have regenerated the Web
service clients as described in 9.2.3, “Updating Web service clients to use the
ESB” on page 219.
 Chapter 9. Enterprise Service Bus pattern: router scenario 255

http://localhost:9080/SCMSampleUI/

You can find full instructions on how to test the application in 8.3.10, “Running
and using the sample application” on page 174.

9.3.12 Runtime alternatives
This section discusses some alternative runtime guidelines.

Runtime alternative: multiple services in a single WSDL file
Some Web services might define multiple services in a single WSDL service
implementation file. For example, the LoggingFacility Web service can define two
services, one for a SOAP/HTTP service and another for a SOAP/JMS service as
shown in Example 9-6.

Example 9-6 LoggingFacility with multiple services

<wsdl:service name="LoggingFacilityService">
 <wsdl:port binding="intf:LoggingFacilitySoapBinding"
name="LoggingFacility">

<wsdlsoap:address
location="http://localhost:9080/LoggingFacility/services/LoggingFacility" />
 </wsdl:port>
</wsdl:service>

<wsdl:service name="LoggingFacilityJMSService">
 <wsdl:port binding="intf:LoggingFacilitySoapJMSBinding"
name="LoggingFacility">
 <wsdlsoap:address
location="jms:/queue?destination=jms/LoggingFacilityQ&

connectionFactory=jms/LoggingFacilityQCF&targetService=LoggingFacility"/>
 </wsdl:port>
</wsdl:service>

When deploying such services to the service integration bus, it is not sufficient to
simply supply the WSDL location, as the service integration bus is unable to
determine which service is intended to be deployed. Therefore, you must also
specify the correct target service name and the target service namespace.

For example, to define the LoggingFacility service which uses SOAP/HTTP, we
specified:

� Inbound service name set to LoggingFacilityHTTPService

� Endpoint Listener set to SOAPHTTPChannel1
256 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� WSDL location set to:

http://appsrv1a.itso.ral.ibm.com/wsdl/LoggingFacility_Impl.wsdl

� WSDL target service name set to LoggingFacilityService

� WSDL target service Namespace set to:

http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-08/L
oggingFacility.wsdl

Similarly, we defined a second LoggingFacility inbound service (which uses
SOAP/JMS) called LoggingFacilityJMSService with the same settings, except
with endpoint listener set to SOAPJMSChannel1 and the WSDL target service
name set to LoggingFacilityJMSService.

Runtime alternative: multiple target ports
Instead of defining two service definitions in a single WSDL file, you can define
multiple WSDL ports with a single WSDL service, as shown in Example 9-7.

Example 9-7 Multiple ports in a single service definition

<wsdl:service name="LoggingFacilityService">
 <wsdl:port name="LoggingFacilityHTTP"
binding="intf:LoggingFacilitySoapBinding">

<wsdlsoap:address

location="http://appsrv1a:9080/LoggingFacility/services/LoggingFacility"/>
 </wsdl:port>
 <wsdl:port name="LoggingFacilityJMS"
binding="intf:LoggingFacilitySoapJMSBinding">
 <wsdlsoap:address
 location="jms:/queue?destination=jms/LoggingFacilityQ&

connectionFactory=jms/LoggingFacilityQCF&targetService=LoggingFacility"/>
 </wsdl:port>
</wsdl:service>

In this instance, you would deploy a single Web service for both ports. The
service integration bus detects that multiple ports are defined in the service and
creates target service ports for each of them.

You must define a JAX-RPC handler to select the appropriate target port for the
target service. Failure to do so will mean that service integration bus always
selects the first target service port in the list.
 Chapter 9. Enterprise Service Bus pattern: router scenario 257

258 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 10. Enterprise Service Bus
pattern: broker scenario

This chapter expands on the capability of the Enterprise Service Bus (ESB) using
the service-oriented architecture (SOA). Chapter 9, “Enterprise Service Bus
pattern: router scenario” on page 179 discussed the implementation of the router
pattern to replace point-to-point connections. This chapter describes an ESB
implementation that reduces the number of service invocations by using the ESB
runtime pattern with broker interactions.

10
© Copyright IBM Corp. 2005. All rights reserved. 259

10.1 Design guidelines
This section discusses the business needs that are addressed by the sample
scenario, the use of ESB runtime pattern for broker interactions, and the design
decisions that were made in order to implement the chosen scenario.

The business scenario that is implemented in this chapter is one of the
interactions of the WS-I SCM sample scenario that is defined in Chapter 6, “The
business scenario that this book uses” on page 125.

Figure 10-1 shows an overview how to design a solution that addresses
particular business requirements. This chapter discusses each of these steps.

Figure 10-1 Design approach

10.1.1 Business scenario
The business scenario represents a variation of the internal supply chain
management on demand scenario as defined in 6.2.2, “Stage 2: Additional
warehouses” on page 128. The scenario shows how you can develop solutions
to real-world business requirements within an single enterprise by applying an
SOA using an Enterprise Service Bus .

The Supply Chain Management application makes requests to the Retail system
to help customers buy electronics goods online. The Retailer gets stock from the
Warehouses and the Warehouses replenishes stock from the Manufacturers, on
a one-to-one basis, as seen in Figure 10-2 on page 261.

Design and
implement
the solution

Select a
product

Analyze
design
options

Select a
Pattern

Analyze the
business
needs

Design and
implement
the solution

Select a
product
Select a
product

Analyze
design
options

Analyze
design
options

Select a
Pattern
Select a
Pattern

Analyze the
business
needs

Analyze the
business
needs

Analyze the
business
needs

Analyze the
business
needs
260 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 10-2 High-level business context showing the existing infrastructure

The company is facing several issues with the existing infrastructure, which it is
looking to overcome. In addition to those discussed in 9.1.1, “Business scenario”
on page 180 there are additional issues as follows:

� The parts that are offered to customers are now stocked in multiple
Warehouses, where each part is held in only one Warehouse. However, the
client must see the order as a single transaction through the company.
Therefore, an order must be split within the company so that requests for
shipment by a Warehouse are only made for the parts stocked at that
particular Warehouse. The responses from the Warehouses must be merged
to provide a single response to the client.

� The company is looking to grow its product line through acquisition. Thus,
they want to bring additional Warehouses online and also broaden the supply
chain by allowing more manufacturing facilities to make the company’s
goods.

Intranet

Manufacturer
Manufacturer

Manufacturer

Logging
Facility

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse

Intranet

Manufacturer
Manufacturer

Manufacturer

Logging
Facility

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse
 Chapter 10. Enterprise Service Bus pattern: broker scenario 261

10.1.2 Selecting an SOA pattern
The business scenario states that the Retailer gets stock from multiple
Warehouses, where each part is held in only one Warehouse. Additionally,
acquired companies need to be easily integrated into the organization’s
infrastructure.

From this description, there are three interaction requirements:

� Requests must be distributed between multiple service providers and must
return a single response.

� Additional Warehouses must be added in order to support the client request
from the Retailer.

� Additional Manufacturers could be accessed to provide goods to the
Warehouses

Choosing and applying the relevant SOA pattern
We used the Patterns for e-business to determine the appropriate Runtime
pattern to apply to this scenario. Because this is an intra-enterprise scenario, we
selected the Process Integration application patterns. The business scenario
requires routing of a single request to multiple providers, which is described by
the Broker application pattern. Our business scenario describes SOA, so we
selected the SOA profile of the Broker runtime pattern, which is the ESB runtime
pattern (described in 5.1.2, “ESB runtime pattern” on page 98).

The ESB implementation for this business scenario is applied to the level 0
decompostion of the ESB runtime pattern, as shown in Figure 10-3 on page 263.

Select a
Pattern
Select a
Pattern
262 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 10-3 ESB runtime pattern that is applied to our scenario

The scenario implementation in this chapter requires multiple Warehouses to be
invoked, potentially concurrently, from a single Retailer. This scenario
requirement is met by using broker interactions. These interactions are described
by the Broker application pattern, which is described in 3.1.4, “Broker” on
page 51 and is illustrated in Figure 10-4.

Figure 10-4 Broker application pattern

Enterprise

ESB

App Server/
Services Manufacturer

App Server/
Services ManufacturerB

App Server/
Services ManufacturerC

App Server/
Services

SCM
Application

App Server/
Services

Business
Event Log

App Server/
ServicesRetail System

App Server/
Services Warehouse

App Server/
Services WarehouseB

App Server/
ServicesWarehouseC

Target
Application

Source
Application

Router
Rules

Target
Application

Target
ApplicationR/O

Router Rules
 Chapter 10. Enterprise Service Bus pattern: broker scenario 263

ESB capabilities addressed
ESB capabilities are discussed in 2.2.4, “Minimum ESB capabilities” on page 37
and 2.2.6, “Extended ESB capabilities” on page 39. In this scenario, the
Enterprise Service Bus runtime pattern with broker interactions is used to exploit:

� Communications

Routing of requests from service consumers to the relevant service provider
based on endpoint definitions.

� Integration

Protocol transformation to allow decoupling of the protocol that is used
between the service consumers and service providers. This allows service
consumers to invoke services that are exposed using a different protocol (for
example, SOAP/HTTP, to SOAP/JMS).

� Message processing

Particularly message decomposition, recomposition and distribution based on
a mediation model. This allows invocation of multiple targets concurrently and
customization of message processing.

By introducing an Enterprise Service Bus with broker interactions, service
invocations can be hidden behind a single service request to the ESB from a
client. This pattern is used to simplify the request by the Retailer to fulfill the
order across several of the Warehouses; instead of implementing a service call
to each Warehouse, as in the router scenario, a single service request can be
made to the ESB. The ESB makes a request to each of the required Warehouses
based on the content of a SOAP message, aggregates the responses, and
returns the results to the Retailer.

10.1.3 Broker interaction design
This section discusses the architectural decisions that were made and their
options for implementing the scenario using broker interactions with the
Enterprise Service Bus runtime pattern.

Most of the design decisions made in the Router scenario, described in 9.1.3,
“Router interaction design” on page 184, also apply to Broker interactions:

� Location of service definitions: Web service definition language (WSDL) files
are published on a HTTP server.

� Topology considerations: A single node with a single bus topology is used.

� Security: No security solution is implemented.

� Logging: Application level logging is used.

� Communication protocols: Both HTTP and JMS are used.

Analyze
design
options

Analyze
design
options

Analyze
design
options
264 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

One design decision that has to change to meet the requirements of the scenario
is the routing method. Static routing is no longer appropriate. An order has to be
divided between several Warehouses that have specific parts in stock. The
SOAP message has to be split apart in order to invoke the Warehouse services
concurrently and has to be merged in order to return one response to the client.
In this case, we need to use dynamic routing.

There are also additional design decisions that are specific to this scenario,
which are discussed in the following sections.

Service invocation
Table 10-1 summarizes the design alternatives that are available when deciding
how to invoke multiple services. Each design alternative is then discussed in
more detail in the sections that follow.

Table 10-1 Design decision: service invocation

Decision title Multiple service invocation implementation

Problem statement In this scenario, multiple requests are made
concurrently to multiple service providers by the
ESB on behalf of a single request by a service
consumer. The responses from each service
provider also have to be combined into a single
response to the service consumer.
A decision has to be made on how this is going to
be implemented.

Alternative 1 Aggregation and disaggregation of SOAP
messages.

Alternative 2 Serial invocations.

Decision Aggregation and disaggregation of SOAP
messages through implementation of mediations.

Justification This scenario requires splitting and merging of
messages so aggregation and disaggregation is
the most appropriate choice.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 265

Alternative 1: Aggregation and disaggregation
Disaggregation can be done by parsing the body of SOAP messages that flow
through the system and by breaking down the information into multiple
messages that can be sent to the relevant service providers. Aggregation can be
done by merging and transforming responses to create a single response to the
original request.

� Reasons for using this alternative include:

– The duration of an aggregated or diaggregated process is the duration of
the longest individual call so performance is greatly improved. This is
particularly relevant when there are many requests being made to service
providers for each consumer request

– This alternative reduces the number of service invocations. This improves
the performance of the system and allows for greater throughput

� Reasons for not using this alternative include:

– Programming is required in order to do the disaggregation or aggregation.
For example a mediation can be implemented.

– Product choice might not be capable of disaggregation and aggregation.

Alternative 2: Serial invocations
Not all products are capable of disaggregation and aggregation, and it is not
always the most suited method of implementation. In these cases, you should
consider serial calls from the ESB to the service provider.

� Reasons for using this alternative include:

– Product choice might dictate use of serial invocations.

� Reasons for not using this alternative include:

– Performance is low because the duration of a serial process
implementation is the sum of the duration of all the steps.

– Number of service invocations is increased. This reduces system
performance and reduces overall throughput.
266 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Dynamic service provider routing methods
Table 10-2 summarizes the design alternatives that are available when deciding
which method of dynamic routing to use. Each design alternative is then
discussed in more detail in the sections that follow.

Table 10-2 Design decision: dynamic service provider routing

Alternative 1: JAX-RPC handlers
JAX-RPC handlers interact with messages as they pass in and out from a
service integration bus. Handlers monitor messages at ports and take
appropriate action, depending upon the sender and content of each message.

A JAX-RPC handler is a Java class that performs handling tasks, which can
include:

� Logging messages

� Transforming a message from one format to another

� Terminating an incoming request

� Routing messages to one or more targets that were not specified by the
sending application

JAX-RPC handlers are specific to SOAP requests, and are service specific. They
are associated with a particular port component or port of a service interface,
with the association being made through the consumer and provider Web
services.

Decision title Which method of dynamic routing

Problem statement In this scenario there are multiple Warehouses to
communicate with and the messages need to be
split and merged in order to meet the scenario
requirements. A decision needs to be made on how
dynamic routing can be implemented, keeping in
mind that some message transformation is needed.

Alternative 1 Java API for XML (JAX-RPC) based remote
procedure call Handlers.

Alternative 2 Mediations.

Decision Mediations are implemented.

Justification Both alternatives can meet the brokering
requirements but mediations easily support
features such as aggregation and disaggregation.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 267

To enable JAX-RPC handlers to perform more complex operations, they can be
chained together into a handler list. Each handler list is then associated with one
or more ports, so that the handler list can monitor the activity at the port and take
appropriate action depending on the sender and content of each message that
passes through the port.

If a proxy configuration is created a JAX-RPC handler must also be created that
can set the target endpoint for the proxy service. When a proxy is configured, a
single proxy Web service is defined without any target services. Any SOAP
request can be made to this service but as a consequence of not defining target
services another mechanism is needed to provide routing. A JAX-RPC handler
can be used to select the appropriate target service and set the necessary
message property.

� Reasons for using this alternative include:

– JAX-RPC handlers are widely implemented

– Any JAX-RPC handlers written for use in other systems can also be
configured for use with a service integration bus

– Already accepted as standard approach to message-level security in Java

– Good support for request/response messages

� Reasons for not using this alternative include:

– Programming is required

– Not intended for dealing with cloning or aggregation and disaggregation

Alternative 2: Mediations
A mediation, in WebSphere Application Server V6.0, processes messages that
are between production by one application and consumption by another
application. Mediations provide functionality that allows customization of the
messaging behavior of the service integration bus, which can include processing
such as:

� Transforming a message from one format to another

� Routing messages to one or more targets that were not specified by the
sending application

� Augmenting messages by adding data from a data source

� Distributing messages to multiple target destinations

A mediation is associated with a destination. A destination is a virtual location
within a service integration bus, which can be used to exchange messages by
the applications connected to the service integration bus. When a mediation is
applied to a destination it becomes a mediated destination that has two parts:
pre-mediated and post-mediated. Applications send messages to the
268 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

pre-mediated part and receive them from the post-mediated part. The mediation
receives messages from the pre-mediated part, transforms them in some way
and then places them on the post-mediated part. In this way the mediation
controls the progress of the messages to their intended target destination.

The behavior of a mediation is defined by a mediation handler list which contains
mediation handlers and can be identified by:

� A unique name
� A description of the message processing provided by the mediation
� A set of properties that control behavior during message processing

A mediation handler list is a collection of mediation handlers that are invoked in
sequence. A mediation handler is a Java program that performs the function of a
mediation and can be deployed in a mediation handler list. The unique name for
a mediation handler list is determined by the programmer who deployed the
mediatiion.

A mediation is configured for a particular destination within a service integration
bus whose physical location is referred to as a mediation point. The message
processing by the mediation is started when the mediation point receives a
messages from the messaging runtime.

� Reasons for using this alternative include:

– Several mediations can operate at the same time to improve the
throughput of messages at destinations.

– A mediation can operate within a global unit of work to ensure
transactional integrity.

– Messages can be routed to one or more targets.

– Better support for cloning messages or aggregation and disaggregation.

� Reasons for not using this alternative include:

– Programming is required.

– Poor support for request/response processing.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 269

Externalizing service lookup
Table 10-3 summarizes the design alternatives that are available when deciding
how to externalize service lookup. Each design alternative is then discussed in
more detail in the sections that follow. This applies to the WebSphere Application
Server SDO repository which is used by the service integration bus to lookup
service definitions.

Table 10-3 Design decision: externalizing service lookup

Alternative 1: UDDI registry implementation
The UDDI specification defines a way to publish and discover information about
Web services. For more information about UDDI registries, see 9.1.3, “Router
interaction design” on page 184. UDDI is oriented towards information that is
accessed by one or more service clients.

� Reasons for using this alternative include:

– A single point of control over routing irrespective of the transport
mechanism.

– The address information can be maintained in the directory without having
to maintain the logic that is defined in the ESB. For example, the services
might change physical location over time.

– Dynamic discovery of service interfaces at runtime.

– Allows the use of different providers of the same service.

Decision title Performing externalization of service lookup

Problem statement In any particular situation, there might be multiple
namespaces, but one of particular importance to an
ESB is that which contains the service names. The
use of an external directory creates a manageable
namespace but a decision needs to be made about
the external directory implementation.

Alternative 1 UDDI registry implementation.

Alternative 2 Database implementation.

Decision Database implementation.

Justification In this case, it is only the ESB that needs access to
information so a database seems most suitable.
Also a prototype setup is being implemented and
not a production ready system so a UDDI
implementation would be over kill.
270 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� Reasons for not using this alternative include:

– In this scenario, the only client that would use a UDDI is the ESB. In this
case most UDDI features are not used and not needed.

– UDDI publication should be used for production ready systems.

– UDDI is more complicated to set up.

Alternative 2: Database implementation
A database table can be used to store service location and namespace
information.

� Reasons for using this alternative include:

– Allows a single point of control over routing irrespective of the transport
mechanism.

– The address information can be maintained in the directory without having
to maintain the logic that is defined in the ESB.

– Simple implementation of directory for ESB use only.

– A number of database products can be used.

� Reasons for not using this alternative include:

– Only set up for use by ESB. Multiple clients cannot access service
information.

10.1.4 Products
In 10.1.3, “Broker interaction design” on page 264 several design decisions are
made which influence product choice. This section looks at the products that you
can use to implement these design decisions and the product choices that were
made for this particular implementation.

Product implementation options
This section discusses the products that were used to implement this scenario.
Product choice is based on:

� The ESB capabilities being exploited, as discussed in “ESB capabilities
addressed” on page 264.

� The design decisions made, as discussed in 10.1.3, “Broker interaction
design” on page 264.

� Products that are currently available.

Select a
Product
Select a
Product
 Chapter 10. Enterprise Service Bus pattern: broker scenario 271

You can use the following currently available products to implement an
Enterprise Service Bus with broker interactions:

� WebSphere Application Server V6.0

� WebSphere Application Server Network Deployment V6.0

� WebSphere Application Server Network Deployment V5.1.1 Web Services
Gateway

� WebSphere Business Integration Message Broker V5.0

� WebSphere Business Integration Connect V4.2

A comparison between available products and ESB capabilities is made in 4.3.1,
“Assessment of ESB capabilities by product” on page 82. WebSphere
Application Server V6.0 meets all of the requirements of the broker interactions
scenario. Thus, this is the product of choice.

This scenario is o concerned with service lookup externalization. For this, a
database is needed so that the second product of choice is IBM DB2 Universal
Database V8.2. In the ESB router scenario, IBM Cloudscape is used by default
because it comes with WebSphere Application Server V6.0. You could use IBM
Cloudscape instead of IBM DB2 UDB in this scenario. However, this example
would not show product interaction.
272 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Product mappings
Figure 10-5 shows the Product mappings for the Broker scenario.

Figure 10-5 ESB runtime pattern::Product mapping=WebSphere Application Server V6, Broker scenario

In this Product mapping, we use the base offering of WebSphere Application
Server V6.0 across the board. The service consumer provides a user interface
which is executed in WebSphere Application Server initiating a SOAP/HTTP
service requests to the ESB. Other service consumers can use SOAP/JMS to
communicate with the ESB. The ESB hub is run on WebSphere Application
Server and routes the requests to multiple service provider applications which
are also running under WebSphere Application Server. The hub also exploits the
mediation capabilities in WebSphere Application Server V6 to disaggregate and
aggregate messages.

The Administration Services and namespace directory are provided by
WebSphere Application Server. The business service directory is supported by
the IBM HTTP server.

A local DB2 database is used to store the SDO repository.

Enterprise

Business Service
Directory

Zone: Enterprise Service Bus

Namespace
Directory

Administration &
Security Services

Hub
App Server/

Services

<Service Consumer>

App Server/
Services

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Provider>

<Service Provider>

• Service Integration Bus
(part of WebSphere
Application Server
V6.0.1
+ PK02919, PK05354)

• Cloudscape

WebSphere
Application
Server V6.0.1

WebSphere Administration
(part of WebSphere
Application Server V6.0.1)

WebSphere Administration
(part of WebSphere
Application Server V6.0.1)

WebSphere
Application
Server V6.0.1

IBM HTTP server V2
 Chapter 10. Enterprise Service Bus pattern: broker scenario 273

10.2 Development guidelines

This section describes how to modify the scenario built in Chapter 9, “Enterprise
Service Bus pattern: router scenario” on page 179 to use mediation. It presents a
detailed description of the development steps that are taken to implement the
broker scenario. It describes how to develop the artifacts required to implement
mediation support in the service integration bus component of WebSphere
Application Server V6.

To follow the steps in this section, you need import the
\ProjectInterchange\Router.zip file into a Rational Application Developer
workspace. For instructions on how to do import these files, see “Working with
the WS-I sample scenario enterprise applications” on page 368.

10.2.1 Scenario implementation: ESB broker interaction
In the ESB broker scenario, the WS-I sample application requirements are
extended to illustrate how the company stocks the parts that it offers to
customers in more than one Warehouse. The client must see the order as a
single transaction with the company. If the client makes a request ordering
multiple parts that are stocked in different Warehouses, the ESB is responsible
for disaggregation of the request, meaning it must split the request into separate
orders and route each to the correct Warehouse. It must also aggregate the
responses back from the Warehouses into a single reply to send back to the
consumer.

Figure 10-6 on page 275 illustrates this scenario.

Note: This section requires the use of Rational Application Developer
V6.0.0.1 or later.
274 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 10-6 Scenario implemented with ESB broker interactions

In terms of the enterprise applications and Web services that are used, the
broker scenario has only one difference from the router scenario: multiple
Warehouse Web services are used.

10.2.2 Mediations
In WebSphere Application Server V6.0, the service integration bus component
offers support to process in-flight messages between the production of a
message by one application and the consumption of a message by another

LoggingFacility

logEvent

getEvents

LoggingFacility

Retailer

getCatalog

submitOrder

Retailer

Warehouse

shipGoods
Warehouse

submitSN

errorPO

Warehouse
Callback

SCMSampleUI

SCMSampleUI

Key:

Operation name A Web service operation or onMessage

Indicates a one-way operation Indicates a Web service request

Indicates a JMS related operation

Indicates a request/response operation

shipGoods

logEvent

logEvent

submitPO

logEvent

getEvents

getCatalog

submitOrder

submitPO
Manufacturer

Manufacturer
MDB

logEvent

onMessage

submitSN

errorPO

Manufacturer

ESB

Mediation
Support

Route order to
correct
Warehouse

Disaggregate
orders for
parts from
multiple
warehouses

Aggregate
responses
from multiple
warehouses
 Chapter 10. Enterprise Service Bus pattern: broker scenario 275

application. The support is provided through mediations. Mediations enable the
messaging behavior of a service integration bus to be customized. Examples of
the processing that mediations perform are:

� Transforming a message from one format into another.

� Routing messages to one or more target destinations that were not specified
by the sending application.

� Augmenting messages by adding data from a data source.

� Distributing messages to multiple target destinations.

The mediation support allows WebSphere Application Server V6.0 to provide the
functionality that is required to support our broker scenario.

10.2.3 Creating a mediation handler class
In WebSphere Application Server V6.0, mediations are implemented as
mediation handlers. A mediation handler can be deployed, and each mediation
handler executes some specific message processing at runtime (for example,
transforming a message format or routing a message to a particular destination).
A mediation handler is a Java program framework to which you add the code that
performs the mediation function.

This section describes how to use IBM Rational Application Developer V6.0 to
create the mediation handler. This product provides support for developing
mediation handler code and adding mediation handlers to the J2EE deployment
descriptors. The Application Server Toolkit that is provided with WebSphere
Application Server also provides support for developing mediation handlers.

In Rational Application Developer, a mediation handler class can be defined
either in a Java project or an EJB project. This section describes how to create
mediation handlers in an EJB project. However, the steps are very similar if you
want to create a Java project, because you simply define a target server for
either a Java project or an EJB project and the server runtime plug-in sets the
classpath correctly.

To create a mediation handler, do the following in a Rational Application
Developer workspace:

1. Create a new EJB project:

a. In Rational Application Developer, switch to the J2EE perspective to work
with J2EE projects. Click Window → Open Perspective → Other →
J2EE.

b. From the File menu, select New → Project.
276 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

c. Expand the J2EE folder, and select Enterprise Application Project.
Click Next. The window shown in Figure 10-7 is displayed.

Figure 10-7 New Enterprise Application Project wizard

d. Enter a name for the project, such as WarehouseAggregator, and set the
target server to WebSphere Application Server V6.0.

e. Click Next to take you to the EAR Module Projects window.

f. Click New Module.

g. Create a new EJB module project by selecting only EJB Project and
entering a name for the mediation handler EJB project. We used
WarehouseAggregatorEJB.

h. Click Finish. You are returned to the EAR Module Projects window.

i. Click Finish to create the new enterprise and EJB projects.

2. Create a mediation handler class by implementing the
com.ibm.websphere.sib.mediation.handler.MediationHandler interface.

a. In the Project Explorer window expand EJB Projects.

b. Right-click the EJB project that you just created and select New → Class
(as shown in Figure 10-8 on page 278).

c. Specify a package name of com.ibm.itso.broker.

d. Specify a name for your mediation handler of RequestDisaggregator.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 277

e. Select Superclass java.lang.Object.

f. Select Interface
com.ibm.websphere.sib.mediation.handler.MediationHandler.

g. Select Inherited abstract methods.

h. Click Finish to create the new mediation handler class.

Figure 10-8 New Java Class wizard

Create the second Java class following the steps above. Use the same Java
package name, but name the class ResponseAggregator.

In addition to these classes, you need to import a Java class that is used to hold
a data graph and routing path called DataGraphHolder. The source code for this
class is located in the \ESBBroker\source directory from the additional material
that accompanies this book. To import the source code:

1. In the Project Explorer, right-click the com.ibm.itso.broker package and
select Import.

2. Select File System and click Next.
278 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

3. Browse to the directory where you downloaded the additional material, select
DataGraphHolder.java, and click Finish.

10.2.4 Working with messages in mediations
This section describes some concepts you need to understand to work with
messages in mediations.

Mediation APIs
Several application programming interfaces (APIs) are provided to allow you to
work with the message context and code mediations.

� MediationHandler

This interface defines the method which is invoked by the mediation runtime.
The method returns boolean true if the message passed into this method
should continue along the handler list. Otherwise, it returns false. The API
has just one method handle, handle(), which is used by the runtime to invoke
a mediation.

In addition to the context information that is passed from one handler to
another, it can return a reference to an SIMessage and an
SIMediationSession. The SIMessage is the service integration bus
representation of the message that is processed by the MediationHandler.
The SIMediationSession is a handle to the runtime resources.

� MessageContext

This interface abstracts the message context that is processed by a handler
in the handle method. The MessageContext interface provides methods to
manage a property set. The API has two methods:

– getSIMessage(), which is a method to get the service integration bus
representation of the message being mediated

– getSession(), which is a method to get an SIMediationSession object,
which is a handle to the core runtime.

� SIMessage

This interface is the public interface to a service integration bus message for
use by mediations. The SIMessage interface has many methods which allow
you to work with the message properties, header contents, routing path,
metadata, and others.

In particular, the method getDataGraph() returns the SDO data graph which
contains the SIMessage content in a tree representation. This method allows
you to work directly with the individual fields in the message payload.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 279

Forward and reverse routing paths define a sequential list of intermediary bus
destinations that messages must pass through to reach a target bus
destination. A routing path is used to apply the mediations configured on
several destinations to messages sent along the path. The methods
getForwardRoutingPath(), setForwardRoutingPath(),
getReverseRoutingPath(), and getReverseRoutingPath() allow you to get
and set the contents of the forward routing path and reverse routing path for
this SIMessage.

� SIMediationSession

This interface defines the methods for querying and interacting with the
service integration bus. and also includes methods that provide information
about where the mediation is invoked from, and the criteria that are applied
before the message is mediated.

The API has these methods:

– getBusName(), which returns the name of the bus upon which the
mediation is associated

– getDestinationName(), which returns the name of the destination with
which the mediation is associated

– getDiscriminator(), which returns the discriminator that is defined in the
mediation definition

– getMediationName(), which returns the name of the mediation that is
being executed

– getMessageSelector(), which returns the message selector that is defined
in the mediation definition

– getMessagingEngineName(), which returns the name of the messaging
engine from which the mediation was invoked

– getSIDestinationConfiguration(), which returns the
SIDestinationConfiguration object associated with the destination that is
specified by destinationName or destinationAddress.

– receive(), which receives an SIMessage from the service integration bus

– send(), which sends a copy of an SIMessage to the service integration
bus in addition to the message that is returned by the message interface

SDO DataGraphs
A message published in one format (for instance, a Web services SOAP
message) can be routed to a service provider that requires another format, such
as Java beans, using the Java API for XML-based RPC (JAX-RPC). Equally, the
routing could be in the other direction. If the message is operated on by a
mediation as it passes through the bus, in either direction, the mediation must be
280 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

able to operate on the message regardless of the underlying format. This is
achieved by using a common message model for the data mediators to use. The
model is called SDO DataGraph and it gives an abstract view of the message,
allowing you to concentrate on the information being conveyed (such as the
parameters of the request, the data of the response) without having to worry
about the packaging of that information.

SDO is based on the concept of data graphs. In the data graphs architecture, a
mediation retrieves a data graph (that is, a collection of tree-structured or
graph-structured data objects) from a message, transforms the data graph, and
applies the data graph changes back to the data source.

In general, graphs that are generated from messages is a tree structure. The
service presents a standard SDO data graph representation of the message
payload, whatever the format of the incoming message‘s payload. A data object
holds a set of named properties, each of which contains either a primitive-type
value or a reference to another Data Object. The Data Object API provides a
dynamic data API for manipulating these properties.

Routing paths
A routing path defines a sequential list of intermediary bus destinations that
messages must pass through to reach a target bus destination. A routing path is
used to apply the mediations configured on several destinations to messages
sent along the path.

A forward routing path identifies a list of bus destinations that a message should
be sent to from the producer to the last destination from which receivers retrieve
messages. The reverse routing path is constructed automatically for
request/reply messages, and identifies the list of destinations that any reply
message should be sent to from the receiver back to the producer. Use of
reverse routing path enables a reply message to take a different route back to
the producer, and therefore have more mediations applied.

When a message arrives at a destination in the path, mediations can manipulate
the entries in the forward routing path, to change the sequence of destinations
through which messages pass. If a mediation manipulates the forward routing
path, and the reverse routing path has been set (for a request message that
expects a reply), then the mediation is responsible for making any corresponding
changes to the reverse routing path.

A destination without mediations can be included in a routing path to provide a
future option to apply a mediation assigned to that destination.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 281

10.2.5 Coding the mediations
There are two mediations that are used to implement this scenario:

� The first mediation performs disaggregation of an order message into multiple
order messages to send to the Warehouses. It receives a Web service SOAP
request message the Retailer service that contains an order for one or more
parts. It parses the message and determines which Warehouse each part
contained in the order is stocked by. It creates a new Web service SOAP
request message for each Warehouse that is required to fulfil the order and
routes each new request message to the appropriate Warehouse service.

� The second mediation performs aggregation of the responses from the
Warehouses. It receives the Web service SOAP response message from
each Warehouse and aggregates them to a single response to send back to
the Retailer service.

This section describes how to code these two mediations.

Disaggregation mediation
We implemented the disaggregation mediation by coding it as two Java
methods: the handle() method and the disaggregate() method.

We chose to implement it as two methods to separate the logic to disaggregate a
message in a mediation from the logic that determines how the message should
be disaggregated. Thus, the handle() method could be used unchanged in
another mediation that has different requirements for how the specific message
itself should be disaggregated.

This mediation:

1. Receives the message (SOAP request message from Retailer).

2. Gets the name of the log queue, which is defined as a property of the
mediation within WebSphere Application Server V6.0. The log queue is used
to hold the updated original message and is updated to contain control data
that indicates how many messages were sent out in the disaggregation. This
information is used by the aggregation mediation to indicate how many
responses it should expect.

3. Parses the request message and builds new messages to send to
appropriate Warehouses.

4. Sends these messages to the Warehouse services. Sends a control message
to the log queue that shows how many messages were sent to Warehouses.
282 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The handle() method
The handle() method provides access to the service integration bus in
WebSphere Application Server V6.0 to send and receive messages. It is invoked
by the arrival of a message on the queue that it has been configured to mediate.
This configuration is described in 10.3.3, “Mediation configuration” on page 305.

When the mediation is invoked, the method gets a handle to the
MessageContext interface. The mediation abstracts the message context that is
processed by a handler in the handle() method. The MessageContext interface
provides methods to manage a property set. Message context properties enable
handlers in a handler chain to share processing related state.

In Rational Application Developer, perform the following to modify the handle()
method:

1. Open the RequestDisaggregator.java class in the Java editor.

2. The handle() method is generated automatically and, by default, returns
false. Modify this method to catch java.lang.Exception, as shown in
Example 10-1.

Example 10-1 Modified method to catch all exceptions

public boolean handle(MessageContext arg0) throws MessageContextException {
try{

//enter all code here
} catch (Exception e) {

throw new MessageContextException(e.getMessage());
}
return true;

}

3. The handle() method first casts the message context to SIMessageContext.
This is the object that is required on the interface of a mediation handler. In
addition to the context information that can be passed from one handler to
another, it can return a reference to an SIMessage and an
SIMediationSession. The SIMessage is the service integration bus
representation of the message being processed by the MediationHandler. An
SIMessage contains message properties, header contents, routing path, and
the message body. The SIMediationSession is a handle to the runtime
resources. The RequestDisaggregator then gets handles to SIMessage and
SIMediationSession so that it can use these APIs.

Note: Enter all the remaining code for this method in the try-catch block.
This section currently only contains a comment which reads:

//enter all code here
 Chapter 10. Enterprise Service Bus pattern: broker scenario 283

Add the code that is shown in Example 10-2 to the handle() method in the
try-catch block.

Example 10-2 Retrieving SIMediationSession and SIMessage

// Convert to an SIMessageContext
SIMessageContext ctx = (SIMessageContext)arg0;

// Get the SIMediationSession
SIMediationSession session = ctx.getSession();

// Get the message
SIMessage msg = ctx.getSIMessage();

4. Next, the method retrieves the log queue name. This is set as a property of
the mediation in WebSphere Application Server V6.0. These properties are
included in the MessageContext object passed to the mediation. Add the
code that is shown in Example 10-3 to retrieve this property:

Example 10-3 Retrieving the log queue name

String logQueueName = (String)arg0.getProperty("logQueueName");

5. The handle() method then passes the message object to the disaggregate()
method. The disaggregate() method is responsible for building an array of
type DataGraphHolder. This structure consists of a datagraph, which is used
as the message body that is sent to the appropriate Warehouse and
destination, which is the address of the Warehouse to which to send the
message.

When the DataGraphHolder array is returned the handle() method creates a
new message for each entry in the DataGraphHolder array. It copies the
headers from the original message, sets the message body from the
appropriate datagraph in the array, and sets the ForwardRoutingPath
property, which is the address to which to send the message. It then sends
the message.

Add the code that is shown in Example 10-4 to the handle() method.

Example 10-4 Working with the DataGraphHolder array

DataGraphHolder bodyToSplit = new DataGraphHolder(msg);

DataGraphHolder[] disaggregatedMessages = disaggregate(ctx, bodyToSplit);

int messageCount = disaggregatedMessages.length;
for (int i = 0; i < messageCount; i++)
{

// Clone the message to copy the headers, only really good as we have
// a simple message body. If it were a complex graph this would be bad.
284 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

SIMessage disaggregatedMessage = (SIMessage)msg.clone();
// Copy the API message id from the incomming message.
disaggregatedMessage.setApiMessageId(msg.getApiMessageId());
// override the message body.
disaggregatedMessage.setDataGraph(disaggregatedMessages[i].getDataGraph(),

disaggregatedMessages[i].getFormat());
if (disaggregatedMessages[i].getFrp() != null)
{

disaggregatedMessage.setForwardRoutingPath(disaggregatedMessages[i].getFrp());
}
// Send the message in the current global unit of work.
session.send(disaggregatedMessage, false);

}

6. Finally the handle() method adds a value to the original message that shows
how many messages were sent out in the disaggregation. It adds the log
queue name to the original message’s forward routing path. This means the
message is written to the log queue. Add the code that is shown in
Example 10-5.

Example 10-5 Logging the number of messages sent

DataGraph logMessageBody = msg.getNewDataGraph("JMS:text");

logMessageBody.getRootObject().setString("data/value", "" + messageCount);
msg.setDataGraph(logMessageBody, "JMS:text");
List frp = new ArrayList(1);

frp.add(SIDestinationAddressFactory.getInstance().createSIDestinationAddress(logQueueName,
true));

msg.setForwardRoutingPath(frp);

7. You will see a number of errors in the Java class. To fix these, you need to
add the relevant import statements. Right-click anywhere in the Java source,
and select Source → Organize Imports. When prompted for the type of List
to use, select java.util.List. After the import has completed, all errors should
have been removed, except for the line of code that uses the disaggregate()
method.

8. Save the RequestDisaggregator class.

The disaggregate() method
The disaggregate() method is responsible for implementing the business logic
that determines how the client order message is to be split up. It parses the
original order to determine what parts have been requested and builds
messages for each of the Warehouses that stocks an ordered item.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 285

The disaggregate() method receives the message context and a
DatagraphHolder object, which contains the original request order message
body and forward routing path. The method returns an array of
DatagraphHolders.

Example 10-6 illustrates the SOAP input message body that is processed by the
mediation. It contains an ItemList structure. Within this structure are the Items
that are to be ordered from the Warehouse.

Example 10-6 Example of a SOAP body message

<s:Envelope xmlns:s="http://schemas.xmlsoap.org/envelope/">
<s:Body>
<ns1:ShipGoods
xmlns:ns1="http://www,ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Warehouse.wsdl"
xmlns:ns2="http://www,ws-i.org/SampleApplications/SupplyChainManagement/2002-08
/Warehouse.xsd">
<ItemList>

<ns2:Item>
<ns2:ProductNumber>605006</ns2:ProductNumber>
<ns2:Quantity>23</ns2:Quantity>

</ns2:Item>
<ns2:Item>

<ns2:ProductNumber>605007</ns2:ProductNumber>
 <ns2:Quantity>22</ns2:Quantity>

</ns2:Item>
</ItemList>
<Customer>D22845-W8N349Y-tky</Customer>
</ns1:ShipGoods>
</s:Body>
</s:Envelope>

Note: Although not implemented in this scenario, there could be a
requirement for the number of different items that are ordered, the number of
Warehouses that are used, and the list of items that are stocked in each
Warehouse to be changed dynamically without needing to alter the mediation
handler code. If this were the case, it would be necessary to store the details
of which items are stocked in which Warehouse externally, for example in a
database.

We have assumed that there is no requirement for adding new Warehouses or
items dynamically. So, we have hard coded this information in the method.
286 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

In Rational Application Developer, perform the following to modify the
disaggregate() method:

1. The disaggregate() method needs to create copies of the original request
message datagraph for each of the three Warehouses. You can copy the
original message instead of creating new messages because the message
contains more data than just the items that are ordered. This is data that is
required by each Warehouse. Enter the code that is shown in Example 10-7
into the disaggregate() method.

Example 10-7 Create three datagraphs using the original datagraph

DataGraph WarehouseA = inDataGraphHolder.getNewDataGraph();
DataGraph WarehouseB = inDataGraphHolder.getNewDataGraph();
DataGraph WarehouseC = inDataGraphHolder.getNewDataGraph();

2. The disaggregate() method parses the SOAP body and alters the copies of
each new Warehouse message so that only the items that are stocked by that
particular Warehouse are included in the ItemList structure.

Because we have created a copy of the input message for each Warehouse,
the first step in constructing the Warehouse messages is to remove the
ItemList structure from each Warehouse message. Add the code that is
shown in Example 10-8.

Example 10-8 Removing the ItemList object

//Delete ItemList from copied datagraphs
DataObject warehouseArootNode = WarehouseA.getRootObject();
DataObject warehouseAbodyNode = warehouseArootNode.getDataObject("Info/body");
DataObject warehouseAitemListNode = warehouseArootNode.getDataObject("Info/body/ItemList");
warehouseAitemListNode.delete();

DataObject warehouseBrootNode = WarehouseB.getRootObject();
DataObject warehouseBbodyNode = warehouseBrootNode.getDataObject("Info/body");
DataObject warehouseBitemListNode = warehouseBrootNode.getDataObject("Info/body/ItemList");
warehouseBitemListNode.delete();

DataObject warehouseCrootNode = WarehouseC.getRootObject();
DataObject warehouseCbodyNode = warehouseCrootNode.getDataObject("Info/body");
DataObject warehouseCitemListNode = warehouseCrootNode.getDataObject("Info/body/ItemList");
warehouseCitemListNode.delete();

3. Create an empty ItemList structure that you can use to add the items to be
ordered for each Warehouse. Add the code that is shown in Example 10-9 on
page 288.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 287

Example 10-9 Adding empty ItemList structures

//Create empty ItemList entries
warehouseAbodyNode.createDataObject("ItemList");
warehouseBbodyNode.createDataObject("ItemList");
warehouseCbodyNode.createDataObject("ItemList");
warehouseAitemListNode = warehouseArootNode.getDataObject("Info/body/ItemList");
warehouseBitemListNode = warehouseBrootNode.getDataObject("Info/body/ItemList");
warehouseCitemListNode = warehouseCrootNode.getDataObject("Info/body/ItemList");

4. Parse the original message’s ItemList structure and add each item to the
appropriate Warehouse message ItemList as shown in Example 10-10.

Example 10-10 Add items to each Warehouse’s ItemList

// Navigate to ItemList of the input datagraph
DataObject rootNode = inDataGraphHolder.getDataGraph().getRootObject();
DataObject itemlistNode = rootNode.getDataObject("Info/body/ItemList");
// Get List of items from ItemList
List items = itemlistNode.getList("Item");

//Loop thru items list from input datagraph, update itemlist of appropriate warehouse datagraph
Iterator it = items.iterator();
DataObject newitem = null;

while (it.hasNext())
{

DataObject itemNode = (DataObject)it.next();
String compare = itemNode.getString("ProductNumber");
if (compare.equals("605001") || compare.equals("605004") || compare.equals("605007"))
{

newitem = warehouseAitemListNode.createDataObject("Item");
newitem.setString("ProductNumber", itemNode.getString("ProductNumber"));
newitem.setString("Quantity", itemNode.getString("Quantity"));

}
else if (compare.equals("605002") || compare.equals("605005") || compare.equals("605008"))
{

newitem = warehouseBitemListNode.createDataObject("Item");
newitem.setString("ProductNumber", itemNode.getString("ProductNumber"));
newitem.setString("Quantity", itemNode.getString("Quantity"));

}
else if (compare.equals("605003") || compare.equals("605006") || compare.equals("605009"))
{

newitem = warehouseCitemListNode.createDataObject("Item");
newitem.setString("ProductNumber", itemNode.getString("ProductNumber"));
newitem.setString("Quantity", itemNode.getString("Quantity"));

}
else

System.out.println("invalid item");
}

288 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5. Check whether any items were added to each Warehouse. For each
Warehouse that has items to process we add that Warehouse datagraph and
the forward routing path to the DataGraphHolder array that is returned by this
method. Enter the code that is shown in Example 10-11.

Example 10-11 Adding Warehouse datagraphs to the DataGraphHolder array

//If warehouse has items in ItemList add it to datagraph holder
List graphs = new ArrayList(3);

List newitems = warehouseAitemListNode.getList("Item");
if (newitems.size() > 0)
{

List frp = new ArrayList(1);
frp.add(SIDestinationAddressFactory.getInstance().

createSIDestinationAddress((String) ctx.getProperty("WarehouseA"), false));
graphs.add(new DataGraphHolder(WarehouseA, inDataGraphHolder.getFormat(), frp));

}

newitems = warehouseBitemListNode.getList("Item");
if (newitems.size() > 0)
{

List frp = new ArrayList(1);
frp.add(SIDestinationAddressFactory.getInstance().

createSIDestinationAddress((String) ctx.getProperty("WarehouseB"), false));
graphs.add(new DataGraphHolder(WarehouseB, inDataGraphHolder.getFormat(), frp));

}

newitems = warehouseCitemListNode.getList("Item");
if (newitems.size() > 0)
{

List frp = new ArrayList(1);
frp.add(SIDestinationAddressFactory.getInstance().

createSIDestinationAddress((String) ctx.getProperty("WarehouseC"), false));
graphs.add(new DataGraphHolder(WarehouseC, inDataGraphHolder.getFormat(), frp));

}

return (DataGraphHolder[])graphs.toArray(new DataGraphHolder[0]);

6. Right-click in the Java editor, and select Source → Organize Imports.
When prompted for the type of Iterator to use, select java.util.Iterator.

7. Save RequestDisaggregator.java. You should see no errors. The class is now
complete.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 289

Aggregation mediation
The aggregation mediation is coded as two Java methods: the handle() and the
aggregate() methods. We used two methods to separate the logic to aggregate
messages in a mediation from the logic that determines how the messages
should be aggregated. Thus, the handle() method could be used unchanged in
another mediation that has different requirements for how the message should
be aggregated.

For this aggregation, the mediation must:

� Receive a message (SOAP response message from a Warehouse).

� Get the names of the log queue and the temporary storage queue. These
names are defined as properties of the mediation within WebSphere
Application Server V6.0.

� Read the control message from log queue.

� If messages count on a log queue that is greater than one, then:

– Decrement count field on the control message, rewrite the control
message to the log queue and put a SOAP response message from the
Warehouse on a temporary storage queue.

� If message count on a log queue is equal to one, then:

– Read messages from the temporary storage queue and add them to an
array.

– Build a single SOAP response message for the Retailer service.

– Send the response message back to the Retailer service.

The handle() method
The handle() method is responsible for the message handling and aggregation
of the response messages, and sending the aggregated response back to the
original requester. It provides the interface to the service integration bus and
calls the aggregate() method to implement the business logic that describes the
Warehouse message aggregation.

The handle() method provides access to the service integration bus to send and
receive messages. It is invoked by the arrival of a message on the queue that it
has been configured to mediate, as described in 10.3.3, “Mediation
configuration” on page 305. This message is a response from one of the
Warehouse services.

When the mediation is invoked the handle() method gets a handle to the
MessageContext interface. This abstracts the message context that is processed
by a handler in the handle method. The MessageContext interface provides
290 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

methods to manage a property set. MessageContext properties enable handlers
in a handler chain to share processing related state.

In Rational Application Developer, perform the following:

1. Open the ResponseAggregator.java class in the Java editor.

2. The handle() method is generated automatically and, by default, returns
false. Modify this method to catch java.lang.Exception, as shown in
Example 10-12.

Example 10-12 Modified method to catch all exceptions

public boolean handle(MessageContext arg0) throws MessageContextException {
try{

//enter all code here
} catch (Exception e) {

throw new MessageContextException(e.getMessage());
}
return true;

}

3. The handle() method first casts the message context to an
SIMessageContext. It then retrieves the name of a temporary storage queue
to hold already received messages, and the name of the log queue that the
RequestDisaggregator class wrote an updated copy of the original request
message to. This message was updated by adding a field to show the
number of messages produced by the disaggregation. Enter the code shown
in Example 10-13 on page 292 to the handle() method.

Note: Enter all remaining code for this method in the try-catch block. This
section currently only contains a comment which reads:

//enter all code here
 Chapter 10. Enterprise Service Bus pattern: broker scenario 291

Example 10-13 Retrieving the message and log

// Convert to an SIMessageContext
SIMessageContext ctx = (SIMessageContext)arg0;

// Get the SIMediationSession
SIMediationSession session = ctx.getSession();

// Get the message
SIMessage msg = ctx.getSIMessage();

// Get the name of the log queue
String logQueueName = (String)arg0.getProperty("logQueueName");

// Get the name of the queue used to store already received messages
String tempStorageQueueName = (String)arg0.getProperty("tmpStorageQueueName");

4. The handle() method must then parse the message that is read from the log
queue to see how many response messages from the Warehouses it is still
waiting for. Add the code as shown in Example 10-14.

Example 10-14 Determine the number of responses

// Get the message count log message.
SIMessage logMessage = session.receive(logQueueName, 0, null, "SI_MessageID='"
+

msg.getCorrelationId() + "'", false);

// Get the message body as a datagraph, changes to the datagraph affect message
body.
DataGraph dg = logMessage.getDataGraph();

// Get the body of the message
String body = dg.getRootObject().getString("data/value");
int number = Integer.parseInt(body);

5. If the message count is one, then all required responses from the
Warehouses have been received. The handle() method aggregates the
messages and sends the aggregated messages back to the requester.

The method processes all the messages on the temporary storage queue and
adds them to an array for datagraphs that it passes to the aggregate()
method to aggregate to a single response to the Retailer service.

Note: This example does not include any logic to cater for the aggregation
having a time limit to receive replies from the Warehouses. In a more realistic
scenario, it is likely that you would need to add the code to define what should
happen if not all responses have been received in a specific time. In this
example, the mediation continues to wait for all replies indefinitely.
292 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The method receives a single datagraph as a response from the aggregate()
method and overwrites the body of the original request message it read from
the log queue with the datagraph. This message is then sent back to the
response queue specified in the original request message’s reverse routing
path. Add the code shown in Example 10-15.

Example 10-15 Message count is equal to 1

if (number == 1)
{

// get a list of the messages to be aggregated.
List bodies = new ArrayList();
bodies.add(new DataGraphHolder(msg));
SIMessage otherMessage;
while ((otherMessage = session.receive(tempStorageQueueName, 0, null,

"SI_CorrelationID='" + msg.getCorrelationId() + "'", false)) != null)
{

bodies.add(new DataGraphHolder(otherMessage));
}

// convert the list to an array of DataGraphs.
DataGraphHolder[] bodiesArray = (DataGraphHolder[])bodies.toArray(new
DataGraphHolder[0]);

// call the aggregator
DataGraphHolder newBody = aggregate(ctx, bodiesArray);

// set the body of the response message.
msg.setDataGraph(newBody.getDataGraph(), newBody.getFormat());

}

6. If the message count is greater than 1 the handle() method decrements the
message count and rewrites the control message to the log queue. It then
writes the message it received from the mediation to the temporary storage
queue. Add the code as shown in Example 10-16.

Example 10-16 Message count is not equal to 1

else {
// decrement message count and resend to the log queue.
dg.getRootObject().setString("data/value", "" + (number - 1));
List frp = new ArrayList(1);

frp.add(SIDestinationAddressFactory.getInstance().createSIDestinationAddress(
logQueueName, true));

logMessage.setForwardRoutingPath(frp);
session.send(logMessage, false);

// route the message to the temporary storage queue until the last
message arrives.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 293

frp = new ArrayList(1);

frp.add(SIDestinationAddressFactory.getInstance().createSIDestinationAddress(
tempStorageQueueName, true));

msg.setForwardRoutingPath(frp);
}

7. You will see a number of errors in the Java class. To fix these, you need to
add the relevant import statements. Right-click anywhere in the Java source,
and select Source → Organize Imports. When prompted for the type of List
to use, select java.util.List. After the import has completed, all errors should
have been removed, except for the line of code that uses the aggregate()
method. You will create that method later.

8. Save the ResponseAggregator class.

The aggregate() method
The aggregate() method receives an array of datagraphs and returns a
datagraph. It navigates to the Response structure in the first datagraph in the
array. It then loops through each subsequent datagraph in the array and copies
the ItemStatus structure from each datagraph to the ItemStatus structure of the
first datagraph. It then returns the updated first datagraph.

In Rational Application Developer:

1. Create a new method in the ResponseAggregator class with the following
method signature:

public DataGraphHolder aggregate(MessageContext ctx, DataGraphHolder[]
responses) throws Exception{
}

2. Enter the code that is shown in Example 10-17 into the aggregate() method.

Example 10-17 The aggregate() method

if (responses.length >= 1)
{

// Get ItemList from first message
DataObject firstRootNode = responses[0].getDataGraph().getRootObject();
DataObject firstitemlistNode = firstRootNode.getDataObject("Info/body/Response");

// Loop through all other datagrams, and add items to first datagram
for (int i = 1; i < responses.length; i++)
{

DataObject currentroot = responses[i].getDataGraph().getRootObject();
DataObject currentitemlist = currentroot.getDataObject("Info/body/Response");

// Get List of items from ItemList
List currentitems = currentitemlist.getList("ItemStatus");
294 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Iterator it = currentitems.iterator();
DataObject newitem = null;

while (it.hasNext())
{

DataObject currentitem = (DataObject)it.next();
newitem = firstitemlistNode.createDataObject("ItemStatus");
newitem.setString("ProductNumber", currentitem.getString("ProductNumber"));
newitem.setString("Status", currentitem.getString("Status"));

}
}

}

return responses[0];

3. Right-click in the Java editor and select Source → Organize Imports. When
prompted for which Iterator to use, select java.util.Iterator.

4. Save ResponseAggregator.java. You should see no errors.

10.2.6 Assigning and exporting the mediation handlers
Next, you need to assign the two mediation handlers that you have created to
two mediation enterprise beans. You will then export the entire mediation
application from Rational Application Developer to an EAR file.

Assigning the mediation handlers
Create two mediation handler entries in the EJB deployment descriptor of the
EJB project containing the mediation handlers by following these steps:

1. In the Package Explorer expand EJB Projects →
WarehouseAggregatorEJB, and double-click the Deployment Descriptor
to open it in the editor.

2. Click the Mediation Handlers tab of the deployment descriptor editor. This
section allows you to define your two mediation handlers. To define the
aggregator mediation handler:

a. Click Add to add a new mediation handler.

b. In the Define Mediation Handler window (Figure 10-9 on page 296), set
the Name to Aggregator, and use the Browse button to set the Handler
class to com.ibm.itso.broker.ResponseAggregator.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 295

Figure 10-9 Defining a mediation handler

c. Click Finish to define an Aggregator session bean in the deployment
descriptor. This session bean is implemented by the
GenericEJBMediationHandlerBean class. An environment variable called
mediation/MediationHandlerClass is also created, and this variable points
to your aggregation mediation handler Java class.

3. Follow these same steps to define a second mediation handler called
Disaggregator with a handler class of
com.ibm.itso.broker.RequestDisaggregator.

4. Save and close the deployment descriptor editor.

Saving and exporting the mediation
Having coded the mediation, you now need to export the EJB that contains the
mediation so that it can be installed in WebSphere Application Server V6.0. To
export the EJB in Rational Application Developer:

1. Ensure that the Java classes are saved.

2. Expand Enterprise Applications, right-click your mediation enterprise
application (WarehouseAggregator), and select Export → EAR File.

3. In the Export wizard (Figure 10-10 on page 297), enter a destination where
you want the EAR file saved, and click Finish.
296 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 10-10 Export wizard

Steps for installing this enterprise application into WebSphere Application Server
are described in 10.3.3, “Mediation configuration” on page 305.

10.3 Runtime guidelines

This section describes how to configure the Enterprise Service Bus runtime
pattern with broker interactions using WebSphere Application Server.

Note: This section assumes that you have installed and are using WebSphere
Application Server V6.0.1 with the i-fixes PK02919 and PK05354 applied. You
can download PK02919 at:

http://www.ibm.com/search?en=utf&v=11&lang=en&cc=us&q=PK02919

You can download PK05354 at:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24009729

Versions of WebSphere Application Server beyond V6.0.1 will not require
these i-fixes.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 297

http://www.ibm.com/search?en=utf&v=11&lang=en&cc=us&q=PK02919
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24009729

This section describes how to perform the following tasks:

� Setting up an IBM DB2 UDB database for the SDO repository to externalize
service lookup.

� Adjusting some of the existing WebSphere Application Server configuration
and creating some new resources to accommodate the broker scenario.

� Configuring and deploying mediations to allow aggregation and
disaggregation.

� Installing the new applications, which provide two additional Warehouses.

� Testing the sample application.

10.3.1 Externalizing service lookup
In Chapter 9, “Enterprise Service Bus pattern: router scenario” on page 179, we
used IBM Cloudscape for service lookup. Cloudscape is embedded in
WebSphere Application Server V6.0 as the default database. For the router
scenario, Cloudscape was used as a persistent data store for the service
integration bus and also for the SDO repository. For the broker scenario, we
replaced embedded Cloudscape with IBM DB2 Universal Database V8.2 for the
SDO repository. For a discussion on this design decision, see “Externalizing
service lookup” on page 270.

To implement a database other than embedded Cloudscape, you need to:

� Install the database product.
� Remove existing resources.
� Configure J2C Authentication data.
� Create a JDBC provider.
� Create a JDBC data source.
� Provide current database drivers.

The following sections describe each of these steps are described in detail.

Note: These instructions assume that you have configured the Enterprise
Service Bus router scenario (Chapter 9, “Enterprise Service Bus pattern:
router scenario” on page 179). This section describes the required
modifications to convert that configuration into this one.

You can quickly import the Enterprise Service Bus router configuration into
WebSphere Application Server using a set of Jacl scripts. For more
information, see “Configuring the ESB router scenario” on page 370.
298 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Installing IBM DB2 Universal Database V8.2
After DB2 is installed, you need to create a new database for the SDO repository
called SDOREPOS using the First Steps wizard.

The tables for the SDO repository are not created automatically on start-up, so
you need to do some manual steps. The SDO repository application contains
container-managed persistence (CMP) enterprise beans. When the WebSphere
Application Server deployment tooling deploys an EJB jar file that contains CMP
enterprise beans, it selects the target database and creates a corresponding
Table.ddl file. This file contains the SQL statement necessary to generate the
database table for your CMP beans. You need to run the DDL file on the DB2
server to create the tables. To run the file:

1. Copy the Table.ddl file to a directory of your choice. You can find the relevant
Table.ddl file in the WAS_HOME/util/SdoRepository/DB2UDB_V82 directory,
where WAS_HOME is the WebSphere Application Server install directory.

2. From the directory into which you copied the Table.ddl file, enter db2cmd. A
new command window appears, in which you enter the following commands:

– db2 connect to SDOREPOS (to connect to the database that you created)
– db2 -tf Table.ddl (to create tables for your CMP enterprise bean)
– db2 disconnect all

All of the DB2 databases that are needed for broker interactions should now be
ready for use.

Recreating the SDO repository
You next need to remove the old database resources and SDO repository and
then create a new one. To recreate the SDO repository:

1. The original resources are configured for embedded Cloudscape and will not
work with DB2. Thus, you need to remove them. Run the following command
from the WebSphere Application Server bin directory:

wsadmin -f uninstallSdoRepository.jacl -removeDb

2. Reinstall the SDO repository:

wsadmin -f installSdoRepository.jacl

3. Set the database type of the SDO repository:

wsadmin -f installSdoRepository.jacl -editBackendId DB2UDB_V82

Note: In this scenario, we set the database type to DB2UDB_V82.
However, this setting is dependant on the exact database type and version
that you have selected to use.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 299

Configuring J2C authentication data
The data source that is used by the SDO repository needs to have an
component-managed authentication alias. An authentication alias is used to
allow the same user ID and password combination to be used in many different
places. In this case, the DB2 database has security configured. So, you need to
specify the same user ID and password that was created during the DB2 install.
To create an alias:

1. Access the WebSphere Application Server administrative console and log in.

2. In the navigation pane, click Security → Global Security

3. Under Authentication, expand JAAS Configuration, and click J2C
Authentication data.

4. Click New. The screen shown in Figure 10-11 appears.

Figure 10-11 Creating a new J2C authentication alias

In this screen, enter the following information:

– Alias, which is the name by which this alias will be known in the
administrative console. The alias name can be anything you like.
However, in this case, we specify the name SdoRepDbAuthAlias.

– User ID, which is the user ID that will be used to log in. You must specify a
value. Specify the same value as the ID that was created when installing
DB2. (By default, this user ID is db2admin.)
300 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

– Password, which is the password that is associated with the user ID. You
must specify a value. Specify the same value as the password that was
created when installing DB2.

5. Click OK and save the changes to the master configuration by clicking Save.

Creating a JDBC provider for DB2
You next configure WebSphere Application Server to access the SDO repository
database using DB2. To do this, you need to define a new JDBC provider. In the
administrative console, complete the following steps to create a JDBC provider:

1. In the navigation pane, click Resources → JDBC Providers.

2. You need to create a new JDBC provider. For simplicity, you will create one at
the node scope, the scope that is automatically shown, for this scenario. Click
New.

3. You need to supply some general information about the type of database and
the connection mechanism, as shown in Figure 10-12. Note that the
pull-down boxes are disabled until you have completed the values in the
preceding boxes.

Figure 10-12 Specifying properties for DB2 JDBC provider

In this screen, enter the following information:

– Select the database type, which is used to specify the type of database
to which the JDBC provider will connect. In this case, choose DB2.

– Select the provider type, which is used to specify how the database will
be accessed. In this case choose, DB2 Universal JDBC Driver Provider.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 301

– Select the implementation type, which is used to specify how the
provider will be implemented. In this case, choose XA Data source.

4. Click Next, accept the defaults, and click OK.

5. Save the changes to the master configuration by clicking Save.

Creating the JDBC data source
You next need to create the JDBC data source for accessing DB2. From the
JDBC providers page in the administrative console, complete the following:

1. Click DB2 Universal JDBC Driver Provider (XA).

2. Click Data sources, then click New.

3. You need to configure this data source for the SDO repository as shown in
Figure 10-13.

Figure 10-13 Specifying the data source settings

Use default settings, except for the following:

– Name, which is an administrative entity that only has meaning within the
administrative console. You can specify as anything you like. For this
example, we used Sdo Repository DB2 data source.

– JNDI Name, which is the JNDI name from where applications pick up the
data source. Specify jdbc/com.ibm.ws.sdo.config/SdoRepository.
302 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

– Component-managed authentication alias, which is the alias that is
used when making connections to the database where the application
managed authentication is being used by the application. Select the value
that ends in SdoRepDbAuthAlias.

– Database name, which is the name of the database that you created in
DB2. Specify SDOREPOS.

– Server name, which is the host name where the DB2 server is running.
You can use localhost.

4. Click OK and save the changes to the master configuration by clicking Save.

DB2 drivers
Finally, you need to verify that the current DB2 drivers are accessible by
WebSphere Application Server. You need two .jar files: db2jcc.jar and
db2jcc_license_cu.jar. You can find these files in DB2_HOME\java, where
DB2_HOME is the DB2 installation directory.

Copy these jar files to WAS_HOME\lib, where WAS_HOME is the WebSphere
Application Server installation directory.

The new SDO repository should now be configured and ready to use. Restart the
server to get it all working.

Moving data to the new SDO repository
Because you have now created a new SDO repository, you need to add the
reload the WSDL and XSD files into this repository:

1. Reload the XSD schemas into the SDO repository by following the steps in
9.3.10, “Importing the schemas into the SDO repository” on page 254.

2. Reload the WSDL files for all the inbound services. To change the
LoggingFacility inbound service:

a. In the WebSphere Application Server administrative console select
Service integration → Buses.

b. Click TESTBUS, then click Inbound Services.

c. Select the LoggingFacilityService inbound service.

d. Click Reload template WSDL.

e. Execute the same function for all other inbound services, and save the
configuration.

Note: You must restart the server before you can test the connection to the
data source using the Test Connection button.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 303

3. Reload the WSDL files for all the outbound services, using the same
technique. This time, click Reload WSDL. When complete, save the
changes.

Testing the new SDO repository
Before adding the mediation support, you can test that the new SDO repository is
working. Open a Web browser, and start the SCM sample application with the
following URL:

http://localhost:9080/SCMSampleUI

For a reminder of how to test the application, see 8.3.10, “Running and using the
sample application” on page 174.

10.3.2 Configuration of additional resources
This scenario introduces a number of additional WebSphere Application Server
resources that were not defined in the router scenario. These resources are
required for the two additional Warehouse services and for the mediations.

You need to define the following resources:

1. Define the queue destinations that are shown in Table 10-4 into the
TESTBUS service integration bus. For information about how to define
destinations in WebSphere Application Server, see 8.3.4, “Creating the
destinations” on page 164.

Table 10-4 Queue destinations

2. Set the reply destination of WarehouseService to WarehouseReply as
follows:

a. In the destinations list of the administrative console, click the
WarehouseService destination.

b. Locate the Reply destination field, and set it to WarehouseReply.

c. Click OK.

Name Description

WarehouseReply Destination for aggregator mediation

WarehouseService Destination for disaggregator mediation

logQ Log destination for mediations

tmpStorageQ Temporary storage destination for mediations
304 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

3. Define two additional outbound services for WarehouseB and WarehouseC,
as defined in Table 10-5. For information about how to define outbound
services, see 9.3.7, “Creating the outbound services” on page 244.

Table 10-5 Outbound services

4. Modify the WarehouseService inbound service to use the WarehouseService
destination name. This action is required for the mediation, so that messages
are sent to the disaggregator rather than directly to the Warehouse Web
service. To modify the inbound service:

a. In the TESTBUS properties screen, click Inbound Services, then
WarehouseService.

b. Set the Service destination name to WarehouseService using the
drop-down list.

c. Click OK.

5. Save all of the changes to the master configuration by clicking Save.

10.3.3 Mediation configuration
Section 10.2, “Development guidelines” on page 274 describes how to create an
enterprise application (EAR file) containing a mediation handler that can be
deployed in WebSphere Application Server. This section describes how to install
the application and configure WebSphere Application Server to use the
mediation. To set up working mediations, you need to:

� Install the mediation application
� Create a mediation
� Localize the mediation to a destination
� Configure context properties for the mediation

The following sections describe these steps in detail.

Name WSDL Location Description

WarehouseBService http://appsrv1a.itso.ral.ibm
.com/wsdl/WarehouseB_I
mpl.wsdl

Outbound service for the
warehouse WarehouseB

WarehouseCService http://appsrv1a.itso.ral.ibm
.com/wsdl/WarehouseC_I
mpl.wsdl

Outbound service for the
warehouse WarehouseC
 Chapter 10. Enterprise Service Bus pattern: broker scenario 305

Installing a mediation application

Use the WebSphere Application Server administrative console to install the
mediation EAR file as follows:

1. Click Applications → Install New Application. In the screen that appears,
browse to the location where you exported the mediation handler EAR file. In
this case, locate the WarehouseAggregation.ear file that you exported from
Rational Application Developer in “Saving and exporting the mediation” on
page 296. Click Next.

2. Click Next again.

3. Work your way through the wizard, then click Finish to install the enterprise
application.

4. When the enterprise application is installed, save it, and then start it.

Defining mediations
After the mediation application has been installed, you need to define a
mediation to the deployed handler list. To define the mediations for the
aggregator and disaggregator, use the WebSphere Application Server
administrative console to complete the following steps:

1. Navigate to the mediations pane. Click Service integration → Buses →
TESTBUS → Mediations.

2. Click New to add a new mediation.

3. In the new mediation page (Figure 10-14 on page 307), specify the relevant
properties for the mediation.

Note: The mediation application must be installed on every server where you
intend to use the deployed mediation handler to mediate a destination.
306 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 10-14 Defining a new destination mediation

a. Set the following properties:

• Mediation name, which is a name for the mediation that is unique to
the service integration bus. This name is used to identify the mediation
for administrative purposes. Set this to Aggregator.

• Handler list name, which was determined by the programmer who
deployed the mediation handler. Set this to Aggregator.

• Global transaction, which if selected, starts a global transaction for
each message mediated by the mediation. Select this box.

b. Other properties that you can set are:

• Description, which is a description of the behavior of the mediation.

• Allow concurrent mediation, which mediates multiple messages at
the mediated destination.

• Selector, which controls which messages are mediated.

c. Click OK.

4. Create a second mediation called Disaggregator, specifying a handler list of
Disaggregator, and selecting Global transaction.

� Click Save to save the changes to the master configuration.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 307

Follow these steps for both mediations so that there are two mediations that are
defined for the deployed handler list.

Mediating a destination
Mediating a destination associates a mediation with a selected service
integration bus destination. At run-time, the mediation applies some message
processing to the messages handled by the service integration bus destination.

You need to mediate two destinations, as listed in Table 10-6.

Table 10-6 Mediations and associated destinations

To mediate a destination, use the administrative console to complete the
following steps:

1. Click Service integration → Buses → TESTBUS. Then, under additional
properties, click Destinations.

2. Check the bus destination that you want to mediate (in our case,
WarehouseReply), and click Mediate.

3. In the Select mediation wizard, set the mediation to apply to this destination.
In our case, select Aggregator. Click Next.

4. Select the bus member where the mediation is installed (by default there is
only one), and click Next.

5. Click Finish to mediate the destination.

Repeat these steps to assign the Disaggregator mediation to the
WarehouseService destination. When complete, you should see two mediations
that defined in the destinations list, as shown in Figure 10-15 on page 309. Save
the changes to the configuration.

Note: You can only mediate a destination with a single mediation at a time.
You can mediate more than one destination with the same mediation

Mediation Destination to be mediated

Aggregator WarehouseReply

Disaggregator WarehouseService
308 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 10-15 Mediations assigned to destinations

Configuring context properties for a mediation
The mediation context is used in conjunction with the message header
information to ensure that messages are processed correctly by a mediation.

This scenario needs context properties for both the mediations. Table 10-7
shows the properties that are needed for the Aggregator mediation.

Table 10-7 Aggregator context properties

Name Context Type Context Value

logQueueName String logQ

tmpStorageQueueName String tmpStorageQ
 Chapter 10. Enterprise Service Bus pattern: broker scenario 309

Table 10-8 shows the properties that are needed for the Disaggregator
mediation.

Table 10-8 Disaggregator context properties

To configure context information for a mediation, use the administrative console
to complete the following steps:

1. Find the destination you want to mediate, click Service integration →
Buses → TESTBUS. Then, under additional properties, click Mediations
and choose the mediation in which you are interested.

2. Under Additional Properties, click Context properties.

3. Click New and specify the properties for the context information, the name,
the context type, and the context value. Click OK.

4. Follow these steps for all of the context properties that are listed in Table 10-7
on page 309 and Table 10-8.

5. When complete, save the changes.

Name Context Type Context Value

logQueueName String logQ

WarehouseA String http://www.ws-i.org/Sampl
eApplications/SupplyChai
nManagement/2002-08/W
arehouse.wsdl:Warehouse
Service

WarehouseB String http://www.ws-i.org/Sampl
eApplications/SupplyChai
nManagement/2002-08/W
arehouse.wsdl:Warehouse
BService

WarehouseC String http://www.ws-i.org/Sampl
eApplications/SupplyChai
nManagement/2002-08/W
arehouse.wsdl:Warehouse
CService
310 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

10.3.4 Installing the additional Warehouses
You must install the two additional Warehouse enterprise applications,
WarehouseB and WarehouseC, before you can test the mediation. These
enterprise applications are shipped as WarehouseB.ear and WarehouseC.ear in
the \ESBBroker\ears directory of the additional material that accompanies this
book. For information about how to obtain this additional material, see
Appendix B, “Configuring the scenario environment” on page 367.

Use the WebSphere Application Server administrative console to install
WarehouseB.ear as follows:

1. Click Applications → Install New Application. In this pane, browse to the
WarehouseB.ear file. Click Next.

2. Click Next again.

3. Work your way through the wizard, then click Finish to install the enterprise
application.

4. When the enterprise application is installed, save it, and then start it.

Repeat this process for WarehouseC.ear. When WarehouseC is installed and
started, you are ready to test the sample application.

10.3.5 Testing the sample application
To test that the mediation is working correctly in the sample application:

1. Open a Web browser and enter the following URL:

http://localhost:9080/SCMSampleUI

2. Select Place New Order to make a call from the SCMSampleUI enterprise
application to the Retailer Web service. This action does not test the
mediation.

3. In the next screen, enter a quantity of one (1) for the first three products, and
then click Submit Order, as shown in Figure 10-16 on page 312. This action
invokes the mediation and disaggregates the request from the Retailer to all
three Warehouses. It also aggregates the response.
 Chapter 10. Enterprise Service Bus pattern: broker scenario 311

Figure 10-16 Ordering three products

4. If the mediation is successful, you will see the response that is shown in
Figure 10-17. Note that this only reports that the orders were fulfilled. It does
not state which Warehouse fulfilled the order. Click Track Order to determine
which Warehouse supplied each product.

Figure 10-17 Successful completion of the mediation
312 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5. The Track Order screen should show responses from each Warehouse, as
shown in Figure 10-18. WarehouseA should ship product 605001,
WarehouseB should ship product 605002, and WarehouseC should ship
605003.

Figure 10-18 Responses from all Warehouses
 Chapter 10. Enterprise Service Bus pattern: broker scenario 313

314 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Chapter 11. Exposed ESB Gateway
pattern

This chapter discusses how to expose services outside the enterprise. This
chapter builds on the scenario that is described in Chapter 9, “Enterprise Service
Bus pattern: router scenario” on page 179. The scenario in this chapter adds a
gateway which supports interactions with services that located outside the
enterprise. The Manufacturers are placed outside of the enterprise and
communicate with the ESB using a gateway.

11
© Copyright IBM Corp. 2005. All rights reserved. 315

11.1 Design guidelines
This section discusses the business needs that are addressed by the sample
scenario and the design decisions that were made in order to implement the
chosen scenario using the Exposed ESB Gateway runtime pattern.

The business scenario that is implemented in this chapter is one of the
interactions of the WS-I SCM sample scenario that is defined in Chapter 6, “The
business scenario that this book uses” on page 125.

Figure 11-1 shows an overview of the steps that you can follow when designing a
solution that addresses particular business requirements. This chapter discusses
each of these steps.

Figure 11-1 Design approach

11.1.1 Business scenario
The business scenario is a simplified supply chain for a consumer electronics
retailer as defined in 6.2.3, “Stage 3: Divested inter-enterprise manufacturers” on
page 129. The company has implemented the Enterprise Service Bus pattern to
meet the business requirements.

The company has decided to divest itself of the three Manufacturers. Each will
be sold off to other companies or established as new companies in their own
right. Various interactions must now take place securely over the Internet. These
are:

� The functionality that enables a Warehouse to replenish stock from a
Manufacturer.

� The notification of shipment to a Warehouse of replenishment stock by a
Manufacturer.

� The logging of business tracking information by a Manufacturer.

Figure 11-2 on page 317 shows the business infrastructure.

Design and
implement
the solution

Select a
product

Analyze
design
options

Select a
Pattern

Analyze the
business
needs

Design and
implement
the solution

Select a
product
Select a
product

Analyze
design
options

Analyze
design
options

Select a
Pattern
Select a
Pattern

Analyze the
business
needs

Analyze the
business
needs

Analyze the
business
needs

Analyze the
business
needs
316 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 11-2 High-level business context diagram

11.1.2 Selecting an SOA pattern
The business scenario identifies one key requirement for this scenario, which is
to enable secure business-to-business interactions with the Manufacturers that
are now external companies.

This section describes the pattern chosen from the Patterns for e-business SOA
profile to address this scenario. It also highlights the additional ESB capabilities
that are exploited.

Choosing and applying the relevant SOA pattern
To be able to securely access manufacturers in external organizations, the
following areas must be considered:

� Addressing of remote services
� Security over the internet
� Restricting service access to authorized requesters
� Minimizing impact to current infrastructure

We used the Patterns for e-business to determine the appropriate Runtime
pattern to apply to this scenario. As this is an inter-enterprise scenario, we
selected the Extended Enterprise business pattern. The business scenario
requires routing of requests to one of multiple providers. This is described by the
Exposed Router variation of the Exposed Broker application pattern. Our

Intranet

Logging
Facility

Retail
System

SCM
Application

Manufacturer
Manufacturer

ManufacturerWarehouse

Intranet

In
te

rn
et

Select a
Pattern
Select a
Pattern
 Chapter 11. Exposed ESB Gateway pattern 317

business scenario describes SOA, so we selected the SOA profile of the
Exposed Router runtime pattern, which is the Exposed ESB Gateway runtime
pattern. This pattern is described in 5.1.6, “Exposed ESB Gateway runtime
pattern” on page 113. Figure 11-3 illustrates the application of this pattern to the
scenario.

Figure 11-3 Exposed ESB Gateway pattern applied to this scenario

The three Manufacturers are deployed in the Partner Zone that is outside of the
enterprise. The Manufacturers are able to access only the appropriate Web
services that are provided by the Exposed ESB Gateway. Conversely, the
internal applications are also able to securely access the external services
provided by the Manufacturer via the Exposed ESB Gateway. The Exposed ESB
Gateway provides a restricted view of services and only allows authorized
requesters access.

Inter-enterprise
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server /
Services

App Server /
Services

Network
Infrastructure

D
om

ai
n

Fi
re

w
al

l
D

om
ai

n
Fi

re
w

al
l

ESB
Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Web
Server

App Server /
Services

SCM
Application

App Server /
Services

Retail System

App Server /
Services

Logging
Facility

App Server /
Services

Warehouse

ESBESBESB

Manufacturer

Manufacturer
B

Manufacturer
C

App Server /
Services
318 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The Manufacturers access the enterprise network via a Network Infrastructure
which in this case is the Internet. The enterprise has a two-tier firewall with a
Web server in the demilitarized zone for additional security.

The Exposed ESB Gateway pattern is the SOA profile of the
Exposed Broker=Router variation application pattern that is shown in Figure 11-3
on page 318.

Figure 11-4 Exposed Broker=Router variation

You can find details about this Application pattern in 3.2.5, “Exposed
Broker=Router variation” on page 65.

ESB capabilities exploited
ESB capabilities are discussed in 2.2.4, “Minimum ESB capabilities” on page 37
and 2.2.6, “Extended ESB capabilities” on page 39. This scenario exploits the
following ESB capabilities:

� Communications

Routing of requests from service consumers to the relevant service provider
based on endpoint definitions.

Partner B

Partner A

Inter-
enterprise

Zone

Enterprise
Demilitarized

Zone Enterprise Secure ZonePartner Zones

Source
Application

Router
Rules

Target
Application

Target
Application

Partner C

Target
Application

R/O

Router Rules
 Chapter 11. Exposed ESB Gateway pattern 319

� Integration

Protocol transformation to allow de-coupling of the protocol that is used
between the service consumers and service providers. This allows service
consumers to invoke services that are exposed using a different protocol (for
example, SOAP/HTTP to SOAP/JMS).

� Security

The layering of the solution and deployment into a two tier firewall allows the
Web services to be secured from unauthorized access. Security services
such as confidentiality, authentication and authorization are provided by a
combination of secure protocols such as HTTP/S, and central control by the
Exposed ESB Gateway and the ESB.

� Service interaction

The services are defined using WSDL and made available across
enterprises.

Extending the ESB with the Exposed ESB Gateway for this business-to-business
scenario fulfils the following requirements:

� Addressing of remote services

Remote services are defined in WSDL and the definitions are made available
across enterprises.

� Security over the internet

The layering of the solution into a Web server, Exposed ESB Gateway, ESB
and applications allows for a robust security environment to be configured.

� Restricting service access to authorized consumers

External service consumers can only access services that are provided by the
Exposed ESB Gateway. Furthermore, the Exposed ESB Gateway could be
configured to only allow external service providers to access only a subset of
the services advertised.

� Minimizing impact to current infrastructure

The requirement to support external manufacturers was implemented reusing
the Enterprise Service Bus Pattern: Router interactions scenario. Providing
support for external manufacturers did not impact any of the other services
provided by the ESB and was achieved largely by applying configuration
changes, as opposed to software development.
320 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

11.1.3 Exposed ESB Gateway design
This section discusses the architectural decisions that were made and their
options for implementation of the scenario using the Exposed ESB Gateway
runtime pattern.

Topology considerations
This section discusses the different operational topology options that could be
used to implement the Exposed ESB Gateway scenario. Figure 11-5 on
page 322 shows four alterative operational topologies. The topologies are
conceptual but map to what can be implemented using WebSphere Application
Server V6.

You can find a description of the terminology that this diagram uses in “Topology
considerations” on page 194. In addition, we define inter-bus link as a secure
connection between service integration buses.

Analyze
design
options

Analyze
design
options

Analyze
design
options
 Chapter 11. Exposed ESB Gateway pattern 321

Figure 11-5 Alternative operational topologies for the Exposed ESB Gateway scenario

The four alternatives represent different WebSphere Application Server V6
configurations. These four configurations essentially differ in the number of
nodes that are deployed, whether single or multiple buses are used, and how the
administration domain (cell) is configured. This section first summarizes the
alternatives and the decision applied to this scenario. It then discusses the pros
and cons of each of these alternatives to help you determine which operational
topology is most appropriate for similar scenarios.

Alternative 2: Multiple nodes, single bus

Node 1 Node 2

Alternative 1: Single node, single bus

Cell

Node

Server:
ESB Gateway
ESB &
Application
Services

Bus

Server:
ESB Gateway

Server:
ESB &
Application
Services

Bus

Cell

Alternative 3: Two node layers, multiple buses

Node 1 Node 2

Server:
ESB
Gateway

Server:
ESB &
Application
Services

Bus

Cell 1

Bus
Inter-Bus

Link

Cell 2

Alternative 4: Three node layers, multiple buses

Node 1

Server:
ESB
Gateway

Cell 1

Bus

Node 1

Server:
ESB

Node 3

Cell 2

Inter-Bus
Link

Server:
Application
Services

Bus
322 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Table 11-1 summarizes the problem and various operational topology
alternatives.

Table 11-1 Design decision: topology considerations

Note: These four topologies are not an exhaustive list of possible topologies.
Mission critical production environments will most likely have variations of
these topologies where nodes are replicated to provide high availability and
high performance. ESB design for high availability solutions is not the focus of
this book.

Decision title The most suitable operational topology

Problem statement Different operational topologies can be used
depending on enterprise requirements. We need to
define the operational topology that best fits the
requirements for the Exposed ESB Gateway
scenario.

Alternative 1 Single node topology with single bus.

Alternative 2 Multi node topology with single bus.

Alternative 3 Two node layer topology with multiple buses.

Alternative 4 Three node layer topology with multiple buses.

Decision A topology with two node layers and multiple buses
was used.

Justification The option selected allows us to implement the
chosen Exposed ESB Gateway pattern. It provides
loose coupling between the Exposed ESB Gateway
and the ESB.
 Chapter 11. Exposed ESB Gateway pattern 323

Alternative 1: Single node topology with a single bus
In this alternative, shown in Figure 11-6, we have a server on one node with one
bus. The server runs the Exposed ESB Gateway, the ESB and the applications
services.

Figure 11-6 Single node, single bus topology

This alternative was not selected as an implementation option for this scenario,
because it does not meet some of the architectural principles that are inherent in
the Exposed ESB Gateway runtime pattern that we are trying to implement. In
particular, the Runtime pattern defines the Exposed ESB Gateway as a service
external to the ESB. This implementation tightly couples the ESB and the
Exposed ESB Gateway by implementing them on the same bus. Furthermore,
although the pattern does not explicitly specify that the Exposed ESB Gateway
and the ESB should be deployed in separate nodes, the implication of being part
of the same node and cell is that the Exposed ESB Gateway is part of the same
administration domain as the ESB. In addition to this, a single node would not
provide the qualities of service required for this application, in particular
availability and scalability.

� Reasons for using this alternative include:

– Very simple to set-up and configure for a prototype.

� Reasons for not using this alternative include:

– Tightly couples the Exposed ESB Gateway to the ESB.
– Single point of failure.
– Difficulty scaling.
– Message throughput cannot be increased easily.
– Limitation on number of client connections that can be handled.

Alternative 1: Single node, single bus

Cell

Node

Server:
ESB Gateway
ESB &
Application
Services

Bus
324 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

– The Exposed ESB Gateway and ESB cannot be deployed in different
security zones if required.

Alternative 2: Multiple node topology with a single bus
This alternative, shown in Figure 11-7, is similar to Alternative 1, but here we
deploy two servers in two separate nodes. Node 1 has a server that executes the
Exposed ESB Gateway, and node 2 has a server that executes the ESB and the
application services.

Figure 11-7 Multiple nodes, single bus topology

This alternative expands the first option because it improves the qualities of
service that can be provided. However, it still has the limitations that are
described with respect to having only one bus administered as one cell.
Therefore, this alternative is again not selected.

� Reasons for using this alternative include:

– Valid for a prototype or small production environment.

– Availability is improved although there are still single points of failure.

– Improved scalability.

– More client connections can be handled.

� Reasons for not using this alternative include:

– Tightly couples the Exposed ESB Gateway to the ESB.

– Single points of failure.

– Availability and performance improvements are not significant.

– Might be difficult to deploy the Exposed ESB Gateway and ESB in different
security zones if required.

Alternative 2: Multiple nodes, single bus

Node 1 Node 2

Server:
ESB Gateway

Server:
ESB &
Application
Services

Bus

Cell
 Chapter 11. Exposed ESB Gateway pattern 325

Alternative 3: Two node layers with multiple buses
This alternative, shown in Figure 11-8, extends the previous option by
implementing two buses: one on the server that runs the Exposed ESB Gateway
and one in the server that runs the ESB and application services. The two buses
are connected via an inter-bus link. In addition, each node in this topology is
within a different cell.

Figure 11-8 Two node layers, multiple buses topology

This alternative overcomes the issues discussed in the previous examples with
respect to the tight coupling between the Exposed ESB Gateway and ESB,
providing a controlled and secure link between the two in the form of the
inter-bus link. Also, in this implementation, the Exposed ESB Gateway and the
ESB can be implemented using different technologies, or the Exposed ESB
Gateway might service more than one ESB. The inter-bus link implemented in
WebSphere Application Server V6 is able to integrate with other buses, for
example buses that are built on WebSphere MQ or WebSphere Business
Integration Message Broker.

This alternative is the operational topology that was selected for this scenario. In
a production environment, the ESB is likely to have dedicated nodes. Therefore,
the application services would be deployed on a separate node, which is
discussed in “Alternative 4: Three node layers with multiple buses” on page 327.
However, for the purpose of this book, it was not necessary to go to that extent.

Alternative 3: Two node layers, multiple buses

Node 1 Node 2

Server:
ESB
Gateway

Server:
ESB &
Application
Services

Bus

Cell 1

Bus
Inter-Bus

Link

Cell 2
326 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

� Reasons for using this alternative include:

– Loosely couples the Exposed ESB Gateway and the ESB.

– Improved scalability.

– Services on other buses can be accessed and messages sent to other bus
services.

– Resources provided by other buses can be accessed.

– Different security zones can easily be applied.

� Reasons for not using this alternative include:

– Complicated to set-up and configure.

– In some cases, you might want to deploy application services on a
separate node to the ESB (see alternative 4).

Alternative 4: Three node layers with multiple buses
This alternative, shown in Figure 11-9, is virtually identical to the topology for
Alternative 3 but extends that alternative by deploying the Application Services
on a separate node from the ESB. The server in Node 3 has outbound and
inbound services defined so that the Application Services can be invoked as well
as for Application Services to invoke other provided services.

Figure 11-9 Three node layers, multiple buses topology

Alternative 4: Three node layers, multiple buses

Node 1

Server:
ESB
Gateway

Cell 1

Bus

Node 1

Server:
ESB

Node 3

Cell 2

Inter-Bus
Link

Server:
Application
Services

Bus
 Chapter 11. Exposed ESB Gateway pattern 327

This alternative is a likely scenario where the application services are being
reused from services provided by other departments or are implemented in other
technologies (for example, .Net services). Specific non-functional requirements
can also dictate the need to separate the ESB node from application services
node to provide higher qualities of service in the areas of availability, security,
performance or scalability. In a production environment the ESB infrastructure
would typically be deployed in its own node.

� Reasons for using this alternative include:

– Loosely couples the Exposed ESB Gateway and the ESB

– Improved scalability.

– Improved availability.

– Services on other buses can be accessed and messages sent to other bus
services.

– Resources provided by other buses can be accessed.

– Different security zones can easily be applied.

� Reasons for not using this alternative include:

– Complicated to set-up and configure.

Sharing service definitions across enterprises
The following section discusses options for sharing service definitions across
enterprises. The design consideration is an extension of the architectural
decision made in “Location of service definitions” on page 184 for the Enterprise
Service Bus pattern. Table 11-2 on page 329 summarizes the problem and
various service definition alternatives.
328 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Table 11-2 Design decision: service definition location

Alternative 1: Local copy of WSDL
The WSDL definition files can be provided to partners, in this case, to the
Manufacturers. Thus, the WSDL definitions are common and static across
organizations. Partners can chose where to store the service definitions.

� Reasons for using this option include:

– Can provide higher performance.

– Easy configuration for provider of service.

– Additional security.

� Reasons for not using this option include:

– This approach is generally less flexible.

– More difficult to maintain and administer across enterprises.

– Prone to errors as definitions need to be deployed in multiple places by
multiple organizations.

– New definitions take time to roll out.

Decision title Sharing service definitions across enterprises

Problem statement Invocation of inter-enterprise services implicitly
requires the sharing of service definitions in the
form of WSDL definition files, which define the
interface, binding, and service endpoint.

Alternative 1 Provide service definitions to the partners, who
maintain a local copy.

Alternative 2 Centrally publish WSDL service definitions. WSDL
files can be published either to a UDDI registry or
on an HTTP server.

Decision Centrally publish WSDL files on an HTTP server.

Justification Having one centrally managed copy of the service
definitions is a better option from a management
point of view and is less likely to produce errors
from using wrong or out of date service definitions.
The scenario is a prototype and for simplicity an
HTTP publication is chosen ahead of UDDI as it is
easy to set-up and organize.
 Chapter 11. Exposed ESB Gateway pattern 329

Alternative 2: Centrally publish WSDL service definitions
Refer to “Location of service definitions” on page 184 for detail about the
advantages and disadvantages of centrally publishing service definitions either
on a UDDI registry or on an HTTP server. In general, this alternative provides a
trade-off between gaining substantial flexibility while sacrificing performance. For
example, an unavailable service can be replaced by an alternative service
dynamically.

Security
This section discusses different options for securing the solution. These include
authentication, authorization, confidentiality, and integrity. This section focuses
on the problem of exposing services externally to the enterprise and builds upon
the security options discussed in “Security” on page 187. The alternatives are not
mutually exclusive and, in most cases, complement each other. Table 11-3
summarizes the problem and various security alternatives.

Table 11-3 Design decision: security

Alternative 1: Multi-tier firewall deployment
Using the Exposed ESB Gateway runtime pattern has the advantage of providing
a layered architecture that facilitates implementing a secure inter-enterprise
solution. The different layers include the Web server, the Exposed ESB Gateway,
the ESB, and the enterprise applications, as shown in Figure 11-3 on page 318.

Decision title Providing secure access to services between
enterprises

Problem statement Business-to business solutions increase the
flexibility and productivity of inter-enterprise
business processes. However, this flexibility
provides challenges to protecting the confidentiality
and integrity of potentially critical data and to
protecting against unauthorized access to
resources.

Alternative 1 Multi-tier firewall deployment.

Alternative 2 Securing communication channels.

Alternative 3 XML document level security.

Alternative 4 Do not implement a security solution.

Decision Do not implement a security solution.

Justification This scenario is a prototype, so security was not
implemented. In a production system, one or more
of the alternatives would be implemented.
330 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The Web server deployed in the demilitarized zone receives the external
requests. The Web server can be configured to authenticate the consumer and if
successful forward the request together with the credentials to the Exposed ESB
Gateway, which is in the Enterprise Zone. In the case of this scenario, the
Exposed ESB Gateway is configured to only accept the two valid requests that
Manufacturers are allowed to invoke, these are: the LoggingFaclity and
WarehouseCallBack Web services. The Exposed ESB Gateway then invokes the
services using the ESB.

� Reasons for using this option include:

– Protects the availability, integrity, and confidentiality of enterprise data.

– Protects against attacks from external parties.

� Reasons for not using this option include:

– When implementing prototypes within set time constraints.

Alternative 2: Securing communication channels
Confidentiality and integrity of a message as it makes its way from the service
consumer to the service provider, particularly over the internet, can be provided
by Secure Socket Layer (SSL). HTTP over SSL (HTTPS) is widely used for
secure communication over the Internet. The entire message payload is
encrypted and so there will be a trade-off between security and performance. If
performance is a concern, dedicated hardware can be deployed which is
purpose built to accelerate the encrypting and decrypting of messages. With a
federated ESB implementation, it might make sense to only secure the
communications between the intermediaries on either side of the internet, that is,
between the Exposed ESB Gateways.

The use of SSL allows either or both the client and server to prove identity to the
other. This can be achieved using certificates and provides an authentication
mechanism. Securing the communications channel in conjunction with J2EE
security and JSR 109 can additionally address authorization requirements. The
J2EE role-based authorization model can be assigned to operations of services
exposed by the Exposed ESB Gateway.

An alternative to HTTPS is to use HTTP basic authentication. HTTP basic
authentication uses the HTTP header to carry user ID and password information.

Note: The layered architecture allows for further zones to be defined within
the enterprise if the confidentiality and integrity requirements warrant this
design. For example, critical enterprise applications might be further restricted
in an additional enterprise zone behind a firewall.
 Chapter 11. Exposed ESB Gateway pattern 331

This information is sent over an SSL connection (HTTPS) but everything else is
sent over HTTP in clear text.

� Reasons for using this option include:

– To protect from unauthorized inspection of the content of messages.

– To protect against message tampering.

– To prevent unauthorized users from accessing enterprise services.

� Reasons for not using this option include:

– When implementing prototypes within set time constraints.

– When the messages flowing through the communication channel are
public and integrity is not an issue.

Alternative 3: XML document level security
Integrity and confidentiality requirements can also be addressed at the document
level through the W3C recommendations to use XML Encryption and XML
Signature, as follows:

� XML Encryption

This provides the ability to encrypt certain portions of an XML document, such
as part or all of the SOAP body. An XML syntax is used to represent the
encrypted content and information that enables a service provider to decrypt
it.

� XML Signature

Algorithms are available to sign XML documents, such as a SOAP envelope.
XML Signature provides a mechanism for securely verifying the origin of such
a message by using an XML-compliant syntax for representing the signature.

For more information, see:

http://www.w3c.org

The use of the Structure Assertion Markup Language (SAML) standard allows
the exchange of authentication and authorization information with XML between
business partners. You can find further information at:

http://www.oasis-open.org

The use of these capabilities has several drawbacks:

� Performance might be affected adversely.
� Current tooling might hide the XML layer from service developers.
� A PKI infrastructure is required.

WS-Security is also a consideration and can be implemented between Exposed
ESB Gateways over the Internet to allow encryption of part or all of the SOAP
332 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.w3c.org
http://www.oasis-open.org

body only. WS-Security can be used to provide a high degree of flexibility for
addressing security requirements for services, including the authentication of a
service request from one Exposed ESB Gateway by another. Further information
about WS-Security can be found at:

http://www.ibm.com/developerworks/webservices/library/ws-secure

� Reasons for using this option include:

– Similar to alternative 2, but when requiring finer granularity over what data
is secured and at a higher level of abstraction closer to the application.
This as opposed to HTTPS, where security is implemented at the
transport level.

� Reasons for not using this option include:

– When implementing prototypes within set time constraints
– When the messages flowing through the communication channel are

public and integrity is not an issue

11.1.4 Products
In 11.1.3, “Exposed ESB Gateway design” on page 321, several design
decisions were made which influenced product choice. This section looks at the
products that you can use to implement these design decisions and the product
choices that were made for this particular implementation.

Product implementation options
This section discusses the products used to implement this scenario. Product
choice is based on the following:

� The ESB capabilities being exploited, as discussed in “ESB capabilities
exploited” on page 319.

� The design decisions made, as discussed in 11.1.3, “Exposed ESB Gateway
design” on page 321.

� Products that are currently available.

You can use the following currently available products to implement the Exposed
ESB Gateway:

� WebSphere Application Server V6.0

� WebSphere Application Server Network Deployment V6.0

� WebSphere Application Server Network Deployment V5.1.1 Web Services
Gateway

� WebSphere Business Integration Message Broker V5.0

� WebSphere Business Integration Connect V4.2

Select a
product
Select a
product
 Chapter 11. Exposed ESB Gateway pattern 333

http://www.ibm.com/developerworks/webservices/library/ws-secure

Refer to Chapter 4, “Product descriptions and ESB capabilities” on page 71 for
more details about these products, how they compare, and how they satisfy the
required ESB capabilities.

WebSphere Application Server V6.0 meets all of the requirements of the
Exposed ESB Gateway scenario. So, this is the product of choice.

Product mappings
Figure 11-10 shows the Product mapping for the Exposed ESB Gateway runtime
pattern.

Figure 11-10 Exposed ESB Gateway::Product mappings

This scenario represents an external service consumer accessing services from
an Enterprise over the Internet. The service consumer in this scenario is
implemented using WebSphere Application Server V6.0, however, it could be
implemented in any technology capable of issuing HTTPS requests. The
diagram also shows an external service provider that is implemented using
WebSphere Application Server V6 and provides Web Services using
SOAP/HTTPS.

The requests are received by an HTTP server located in the DMZ, which
receives all incoming requests and sends them to the Exposed ESB Gateway.

Inter-enterprise
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESB

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l

Connector

<Service Provider>

<Service Consumer>

App Server/
Services

App Server/
Services

<Service Consumer>

IBM HTTP
Server V2

WebSphere
Application
Server V6.0.1

Service Integration Bus
(part of WebSphere
Application Server
V6.0.1
+ PK02919, PK05354)

• Service Integration Bus
&and WebSphere
Administration (part of
WebSphere Application
Server V6.0.1 + +
PK02919, PK05354)

• Network Cloudscape

WebSphere
Application
Server V6.0.1

<Service Provider>Internet
334 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

The Exposed ESB Gateway is implemented using WebSphere Application
Server. The Exposed ESB Gateway verifies and maps the request to a service
provided by the ESB. The ESB is implemented using WebSphere Application
Server using a network setup for the Cloudscape database which holds the SDO
repository. Finally, the internal service provider application is implemented using
WebSphere Application Server.

11.2 Development guidelines

In the ESB Exposed Gateway scenario, the Manufacturers are connected to the
ESB via an Exposed Gateway, rather than directly. The ESB is aware of this
connection and any calls to the Manufacturer by the ESB are then forwarded to
the Exposed Gateway. Calls made by the Manufacturers to services that are
defined on the ESB are made via the Exposed Gateway, and it decides whether
to forward the requests to the ESB. Figure 11-11 on page 336 illustrates this
scenario.

Note: This section requires the use of Rational Application Developer
V6.0.0.1 or later.
 Chapter 11. Exposed ESB Gateway pattern 335

Figure 11-11 ESB Exposed Gateway scenario implementation

From a development perspective there is very little to be done for the ESB
Exposed Gateway. However, the Manufacturer applications need to be modified,
because in this scenario they have been moved off the bus. They now connect
via the Exposed Gateway which has a new WSDL namespace and endpoint
address. This connection requires the three Manufacturer services to regenerate
clients to the LoggingFacilityService and the WarehouseCallBackService
services. These steps are described in 9.2.3, “Updating Web service clients to
use the ESB” on page 219.

LoggingFacility

logEvent

getEvents

LoggingFacility

Retailer

getCatalog

submitOrder

Retailer

Warehouse

shipGoods
Warehouse

submitSN

errorPO

Warehouse
Callback

SCMSampleUI

SCMSampleUI

Key:

Operation name A Web service operation or onMessage

Indicates a one-way operation Indicates a Web service request

Indicates a JMS related operation

Indicates a request/response operation

shipGoods

logEvent

logEvent

submitPO

logEvent

getEvents

getCatalog

submitOrder

submitPO
Manufacturer

Manufacturer
MDB

logEvent

onMessage

submitSN

errorPO

Manufacturer

ESB

Exposed
Gateway
336 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

It is not strictly necessary to regenerate these Manufacturer services, because
sample Manufacturer enterprise applications are provided for you, as described
in the runtime guidelines. Therefore, you can skip this step if you wish.

11.3 Runtime guidelines

This section describes how to get the ESB Exposed Gateway scenario up and
running in WebSphere Application Server V6.

This section discusses the following tasks:

� Removing Web services from the ESB
� Migrating the SDO repository to use Network Cloudscape
� Setting up the Exposed Gateway
� Configuring the service integration bus link
� Routing Web service requests between buses
� Testing the sample application

Note: This section assumes that you have installed and are using WebSphere
Application Server V6.0.1 with the i-fixes PK02919 and PK05354 applied. You
can download PK02919 at:

http://www.ibm.com/search?en=utf&v=11&lang=en&cc=us&q=PK02919

You can download PK05354 at:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24009729

Versions of WebSphere Application Server beyond V6.0.1 will not require the
i-fixes.

Note: These instructions assume that you have configured the Enterprise
Service Bus router scenario (Chapter 9, “Enterprise Service Bus pattern:
router scenario” on page 179). This section describes the required
modifications to convert that configuration into this one.

You can quickly import the Enterprise Service Bus router configuration into
WebSphere Application Server using a set of Jacl scripts. For information, see
“Configuring the ESB router scenario” on page 370.
 Chapter 11. Exposed ESB Gateway pattern 337

http://www.ibm.com/search?en=utf&v=11&lang=en&cc=us&q=PK02919
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24009729

11.3.1 Removing Web services from the ESB
First, you need to remove the Manufacturers from the ESB and remove the
WarehouseCallBack inbound service. These Web services now are exposed via
the Exposed Gateway.

Uninstalling the Manufacturer applications
To uninstall the Manufacturer applications:

1. Access the administrative console at http://localhost:9060/ibm/console
and log in.

2. Expand Applications and click Enterprise Applications.

3. Select the applications Manufacturer, ManufacturerB, and ManufacturerC,
as shown in Figure 11-12, and click Stop.

Figure 11-12 Selecting the Manufacturer applications before stopping them

4. Select the applications Manufacturer.ear, ManufacturerB.ear, and
ManufacturerC.ear, and this time, click Uninstall.

5. Confirm the uninstallation of the applications by clicking OK.

6. Save the changes to the master configuration.
338 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Deleting the Manufacturer outbound services
You next need to remove the outbound service definitions for each of the
Manufacturer Web services, because the outbound services are defined on the
Exposed Gateway instead. From the administrative console:

1. Expand Service integration, and click Buses.

2. Click the bus called TESTBUS, as shown in Figure 11-13.

Figure 11-13 The bus selection page

3. On the bus details page (Figure 11-14 on page 340), under Additional
Properties, click Outbound Services.
 Chapter 11. Exposed ESB Gateway pattern 339

Figure 11-14 Bus details page

4. Select the services ManufacturerBService, ManufacturerCService and
ManufacturerService, as shown in Figure 11-15 on page 341, and click
Delete.
340 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 11-15 Selecting the outbound service definitions

5. Save the changes.

Deleting the WarehouseCallBack inbound service
Next, you need to remove the inbound service definition for the Warehouse
Callback Web service, because the inbound services is defined on the Exposed
Gateway instead. From the administrative console:

1. On the bus details page (Figure 11-14 on page 340), under Additional
Properties, click Inbound Services.

2. Select the service WarehouseCallBackService, and click Delete. Save the
changes.
 Chapter 11. Exposed ESB Gateway pattern 341

11.3.2 Migrating the SDO repository to use Network Cloudscape
This section covers the changes that are required for converting the SDO
repository from using Cloudscape as an embedded database to using
Cloudscape as a network database. The network database is required because
both the ESB and the Exposed Gateway need access to the same SDO
database, which is not supported by Embedded Cloudscape.

Starting the Cloudscape network server
To start the Cloudscape network server:

1. Navigate to the WAS_HOME/cloudscape/bin/networkServer directory, where
WAS_HOME is the directory where you installed WebSphere Application
Server.

2. Execute the file named startNetworkServer.bat on Windows or
startNetworkServer.sh on UNIX platforms. This batch file starts the network
server and, if executed from a command prompt, blocks further usage of that
command prompt. If you wish to stop the network server, execute
stopNetworkServer.bat on Windows or stopNetworkServer.sh on UNIX
platforms.

Removing the existing resources
You next need to remove the old database resources. The original resources are
configured for Embedded Cloudscape and will not work with Network
Cloudscape.

You should remove the resources by running uninstallSdoRepository.jacl with
the -removeDb option. Then, run installSdoRepository.jacl without any
options. The -removeDb option removes the WebSphere Application Server
references to the database, but it does not delete the database itself. You will
reuse the database content in the Network Cloudscape implementation.

To run these commands, go to the WebSphere Application Server bin directory
and enter:

wsadmin -f uninstallSdoRepository.jacl -removeDb

Then, enter:

wsadmin -f installSdoRepository.jacl

Configuring J2C authentication data
The data source that the SDO repository uses needs to have a
component-managed authentication alias. An authentication alias is used to
allow the same user ID and password combination to be used in many different
places. In this scenario, the Cloudscape database does not have security
342 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

configured, so it does not matter what you specify as user ID and password.
However, the alias needs to exist. To create an alias:

1. Access the administrative console at http://localhost:9060/ibm/console
and log in.

2. Expand Security, and click Global security.

3. Under Authentication, expand JAAS Configuration, and click J2C
Authentication data.

4. Click New.

5. The screen shown in Figure 11-16 appears.

Figure 11-16 Creating a new J2C authentication alias

In this screen, enter the following information:

– Alias, which is the name by which this alias is known in the administrative
console. This name appears in drop down boxes elsewhere in the
administrative console, so it is a good idea to supply a meaningful name.
Specify a value of SdoRepDb.

– User ID, which is the user ID that is used to log in. You must specify a
value. Specify a value of user.

– Password, which is the password that is associated with the user ID. You
must specify a value. Specify a value of password.

6. Click OK.

7. Save the changes.
 Chapter 11. Exposed ESB Gateway pattern 343

Creating the JDBC provider for Network Cloudscape
The next step is to configure the ESB to access the SDO repository database
using Network Cloudscape. To define a JDBC provider:

1. Access the administrative console at http://localhost:9060/ibm/console
and log in.

2. Expand Resources, and click JDBC Providers.

3. You need to create a new JDBC provider. For simplicity, you will create one at
the node scope, the scope that is automatically shown (see Figure 11-17).
Click New.

Figure 11-17 JDBC provider panel at node scope

4. The next page, shown in Figure 11-18 on page 345, asks for some general
information about the type of database and the connection mechanism to be
used. Note that the pull-down boxes are disabled until you have completed
the values in the preceding boxes.
344 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 11-18 Specifying properties for the Network Cloudscape JDBC provider

Enter the following information:

– Select the database type, which specifies the type of database to which
the JDBC provider connects. In this case select Cloudscape.

– Select the provider type. which specifies how the database is accessed.
The options are:

• Cloudscape Network Server Using Universal JDBC Driver, which is
used for accessing Network Cloudscape

• Cloudscape JDBC Provider, which is used for accessing Embedded
Cloudscape

In this case, select Cloudscape Network Server Using Universal JDBC
Driver.

– Select the implementation type, which is determined by the two previous
selections. There is only one option allowed, and it is selected by default.

5. Click Next.

6. On the following page, accept the defaults and click OK.

7. Save the changes.
 Chapter 11. Exposed ESB Gateway pattern 345

Creating the JDBC data source
You next create the JDBC data source for accessing the Network Cloudscape
database. From the JDBC providers page:

1. Click the JDBC provider that is named Cloudscape Network Server Using
Universal JDBC Driver.

2. On the next page, shown in Figure 11-19, select Data sources.

Figure 11-19 JDBC provider details page

3. On the Data source details page, click New.

4. In the next page, you enter the details for this data source. Except where
specified, you should keep the defaults. Figure 11-20 on page 347 shows the
first two settings.

Note: The Cloudscape Network Server JDBC provider does not support
Data sources (Version 4).
346 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Figure 11-20 Specifying the data source name, JNDI name and description

Enter the following information:

– Name, which is an administrative entity that only has meaning within the
administrative console. Specify a value of SDO Repository Data source.

– JNDI Name, which is where applications pick up the data source. Specify
a value of jdbc/com.ibm.ws.sdo.config/SdoRepository.

– Description, which is another administrative entity. You can leave this as
is. In this example, as shown in Figure 11-20, we have copied the name
into the description. This step is optional. Specify a value of SDO
Repository Data source.

The options that are different from the defaults are shown in Figure 11-21 on
page 348.
 Chapter 11. Exposed ESB Gateway pattern 347

Figure 11-21 Specifying the Cloudscape database properties

In this screen, enter the following information:

– Component-managed authentication alias, which is the alias that is
used when making connections to the database where the application
managed authentication is used by the application and it does not specify
a user ID and password. Select the value that ends in SdoRepDb.

– Database name, which is the path on the database server to the
cloudscape database. Specify
WAS_HOME/profiles/PROFILE_NAME/databases/SdoRepDb, where
WAS_HOME is the WebSphere Application Server install directory and
PROFILE_NAME is the name of the profile in which your ESB is defined.

– Server name, which is the name of the host where the Network
Cloudscape server is running. Accept the default of localhost.

5. Click OK and save the changes.

6. There is an option to test a connection to a database to check that the
configuration is valid. After defining the data source, attempting to test the
connection will fail because the database is being accessed by the SDO
repository that is running currently in the application server. Therefore, restart
the application server now.
348 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

11.3.3 Setting up the Exposed Gateway
The Exposed Gateway is implemented by a separate application server. In
implementing the Exposed Gateway, we are running two application servers on a
single computer. However, this scenario could equally be implemented using two
machines.

Runtime alternative: Separate profiles
As stated, two application servers can run on a single machine, where each
server is in a different profile. This configuration has several advantages:

� Test environment

For a test environment where a more limited number of computers are
available and checking that the function executes correctly is more important
than checking out how the solution scales or performs, using multiple profiles
is simpler and less expensive.

� Total cost of ownership

Using multiple profiles requires a single licence for WebSphere Application
Server, rather than multiple ones for each installation.

It also has several disadvantages:

� Performance

Having two application servers on a single computer introduces the chance
that the two servers will need to compete for access to the same resources,
for example processor, RAM, hard disc access.

� Availability

Because both servers are running on a single computer, if that computer goes
down, both servers are unavailable.

Note: This section assumes that you have configured a second WebSphere
Application Server profile on your machine. If you have not yet done this, use
the Profile creation wizard that is supplied with WebSphere Application Server
to create a second profile. Ensure that the second profile uses a unique set of
ports. We refer to this second profile as the Exposed Gateway server.
 Chapter 11. Exposed ESB Gateway pattern 349

� Complexity

The two profiles are isolated from each other. So, it would be possible to
configure both servers to use resources which only allow a single connection,
for example:

– Configuring both servers to listen on the same port.

– Configuring both servers to access the same Embedded Cloudscape
database.

Setting up the Exposed Gateway server

To configure the Web services on the Exposed Gateway server:

1. Install the SDO repository without specifying the -createDb option. To run this
command, go to the bin directory of the WebSphere Application Server
Exposed Gateway profile and enter:

wsadmin -f WAS_HOME/bin/installSdoRepository.jacl

In this command, WAS_HOME is the directory where WebSphere Application
Server is installed.

2. Install the Web services support into the Exposed Gateway server. Enter all
commands from the bin directory of the WebSphere Application Server
Exposed Gateway profile:

a. To install the resource adapter, execute the following command:

wsadmin -f WAS_HOME/util/sibwsInstall.jacl INSTALL_RA -installRoot
WAS_HOME -nodeName NODE_NAME

In this command, WAS_HOME is the directory you installed WebSphere
Application Server, and NODE_NAME is the name of the application
server node.

b. Install the Web services support application:

wsadmin -f WAS_HOME/util/sibwsInstall.jacl INSTALL -installRoot WAS_HOME
-nodeName NODE_NAME -serverName server1

Note: This section applies to the configuration that is required on the Exposed
Gateway server.

Important: The second WAS_HOME must have elements in the path
separated by a forward slash (/) even on a Windows system. So, a path of
c:\WebSphere\AppServer, becomes c:/WebSphere/AppServer.
350 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

c. Install the SOAP over HTTP endpoint listener application:

wsadmin -f WAS_HOME/util/sibwsInstall.jacl INSTALL_HTTP -installRoot
WAS_HOME -nodeName NODE_NAME -serverName server1

3. Configure the HTTP endpoint listener in the administrative console of the
Exposed Gateway server by doing the following:

a. Expand Servers, and click Application Servers.

b. Click server1.

c. Under Additional Properties, click Endpoint Listeners.

d. Click New.

e. Enter the following parameters:

i. Set Name to SOAPHTTPChannel1.

ii. Set URL root to http://localhost:9081/wsgwsoaphttp1.

iii. Set WSDL serving HTTP URL root to
http://appsrv1a.itso.ral.ibm.com/wsdl.

f. Click OK, and then save the changes.

4. To create the JDBC provider and data source for the SDO repository, follow
the steps in the following sections. Be sure to use the administrative console
of the Exposed Gateway server.

a. “Configuring J2C authentication data” on page 342.

b. “Creating the JDBC provider for Network Cloudscape” on page 344.

c. “Creating the JDBC data source” on page 346. In this section, set the
Database name field to point the Cloudscape database that is installed in
the ESB server profile.

5. If you have not already done so, restart the application server so that the SDO
repository can connect to the database.

6. Create a bus called TESTBUS1. From the administrative console:

a. Click Service integration → Buses.

b. Click New.

c. Enter TESTBUS1 in the Name field, and then click OK.

d. Save the changes.

Note: This setting assumes that the Exposed Gateway server is
assigned port 9081 for HTTP.
 Chapter 11. Exposed ESB Gateway pattern 351

7. Add the server as a bus member. From the administrative console:

a. Click Service integration → Buses → TESTBUS1. Under Additional
Properties, click Bus members.

b. Click Add.

c. Accept the defaults by clicking Next and then Finish.

d. Save the changes.

8. Define the queue destinations that required by the Manufacturer services:

a. Click Service integration → Buses → TESTBUS1. Under Additional
Properties, click Destinations.

b. Click New.

c. Select Queue, and click Next.

d. In the Identifier field, enter a queue name of ManufacturerSIBQ. Click
Next, Next again, and then Finish.

e. Using the same steps, create four other queue destinations called
ManufacturerBSIBQ, ManufacturerCSIBQ, LoggingFacilityService, and
WarehouseCallBackService.

f. Save the changes.

9. Define the following JMS resources for TESTBUS1:

a. Create a JMS connection factory, as described in 8.3.5, “Creating a JMS
connection factory” on page 165.

b. Create JMS queues for the Manufacturer destinations, as described in
8.3.6, “Creating the JMS queues” on page 167.

c. Create the JMS activation specifications, as described in 8.3.7, “Creating
the JMS activation specifications” on page 169.

10.In 8.3.8, “Hosting the WSDL files” on page 171, you configured an HTTP
server to host the WSDL files of the Web services. Each of the Manufacturer
WSDL files on this HTTP server assumes an HTTP port of 9080. You need to
change these Manufacturer WSDL files to use the HTTP port defined for the
Exposed Gateway server by doing the following:

a. Locate the Manufacturer_Impl.wsdl file in the
<HTTP_Server_home>\htdocs\en_US\wsdl directory.

b. Open the Manufacturer_Impl.wsdl file in a text editor, and locate the
following line:

<wsdlsoap:address location=
"http://localhost:9080/Manufacturer/services/Manufacturer"/>
352 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

c. Modify the 9080 port to reflect the HTTP port that is used by your Exposed
Gateway server. We used port 9081:

<wsdlsoap:address location=
"http://localhost:9081/Manufacturer/services/Manufacturer"/>

d. Save and close file.

e. Make the same change to the ManufacturerB_Impl.wsdl and
ManufacturerC_Impl.wsdl files.

11.Create an outbound service for each of the Manufacturers. The outbound
services allow the service integration bus to interact with the Manufacturer
Web service providers. For instructions on how to do this see 9.3.7, “Creating
the outbound services” on page 244. This creates three outbound services:
ManufacturerService, ManufacturerBService, and ManufacturerCService.
Save your changes.

12.Create inbound services for LoggingFacilityService and
WarehouseCallBackService. The inbound services receive requests from
service consumers. We forward these requests to the ESB service integration
bus to be processed.

Follow the instructions in 9.3.8, “Creating the inbound services” on page 247
to create these two inbound services.

Table 11-4 Inbound Service mappings to destinations

13.New Manufacturer enterprise applications need to be installed that use the
new LoggingFacility and WarehouseCallBack inbound services. This is part
of the development guidelines at 11.2, “Development guidelines” on
page 335.

For convenience, the three Manufacturer enterprise applications that are
designed to work with a service integration bus called TESTBUS1 listening on
HTTP port 8081 have been pre-built and are supplied with the additional
material accompanying this book. For information about how to get this code,
see Appendix A, “Additional material” on page 365. The three Manufacturer
EAR files are supplied in the \ExposedGateway\ears directory.

Important: There is one important difference from the given instructions.
The given instructions use a Web service destination as the inbound
service destination. In this case, each of the inbound services should be
mapped to the appropriate queue destinations, as shown in Table 11-4.

Inbound service name Destination name

WarehouseCallBackService WarehouseCallBackService

LoggingFacilityService LoggingFacilityService
 Chapter 11. Exposed ESB Gateway pattern 353

Install and start the enterprise applications Manufacturer.ear,
ManufacturerB.ear, and ManufacturerC.ear.

14.Save the changes.

11.3.4 Configuring the service integration bus link
You next connect the two buses together. The service integration bus link is the
connection between the ESB server and the Exposed Gateway server.
Configuring this link involves two steps. First, you must create a foreign bus.
Next, you must create the service integration bus link. You need to do these
steps for both the ESB server and the Exposed Gateway server. The same
process is used in each case.

Creating a foreign bus
To create a foreign bus:

1. Go to the administrative console for the ESB server and navigate to the bus
details panel for TESTBUS.

2. Under Additional Properties, click Foreign buses.

3. Click New.

4. A four-step wizard opens. You first enter the name of the foreign bus. It is
important to ensure that the name that you enter is the name of the Exposed
Gateway bus. So, specify a value of TESTBUS1, as shown in Figure 11-22, and
click Next.

Figure 11-22 New foreign bus wizard
354 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

5. In the next page, you select the routing type. There are three options:

– Direct, service integration bus link
– Direct, WebSphere MQ link
– Indirect

The default is Direct, service integration bus link, which is the option we need.
So, just click Next.

6. In the next page, you specify the user ID to be used for inbound and outbound
message authentication. These setting are not needed for this scenario, so
click Next.

7. The last page is a summary page. Click Finish, and the foreign bus is
created.

8. Save the changes.

You should repeat this process for the Exposed Gateway server. When running
through for the Exposed Gateway server, the bus names are swapped round.
So, where you would have entered TESTBUS1 you now enter TESTBUS, and vice
versa.

Creating the service integration bus link
The next step is creating the service integration bus link. You must create a
service integration bus link for each bus. This link connects a messaging engine
on one bus to a messaging engine on another. To create this link:

1. Go to the administrative console for the ESB and navigate to the bus details
panel for TESTBUS.

2. Under Additional Properties, click Messaging engines.

3. Click the messaging engine name.

4. Under Additional Properties, click Service integration bus link.

5. Click New.

6. In the next page, shown in Figure 11-23 on page 356, you set up the service
integration bus link.
 Chapter 11. Exposed ESB Gateway pattern 355

Figure 11-23 Creating a new service integration bus link.

You need to complete only the mandatory information in this page:

– Name, which is an administrative entity. Enter TESTLINK.

– Foreign bus name, which is the foreign bus to which this messaging
engine is linked. This is a drop-down list and contains a single entry.
Select TESTBUS1.

– Remote messaging engine name, which is the name of the messaging
engine on the foreign bus to which this messaging engine is connected.
Enter the name of the messaging engine on the foreign bus. In
Figure 11-23, we entered was60imageNode02.server1-TESTBUS1.
356 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

– Bootstrap endpoints, which specify where to find the messaging engine.
It is a comma separated list of entries. Each entry consists of up to three
parts. If one part is missing, that part assumes a default value. The parts
are separated with a colon:

• Host name, which is the name of the host.

• Port number, which is the port number on which the remote messaging
engine is listening. This setting defaults to 7276. You can determine
the port number of a messaging engine by clicking Servers →
Application Servers → server1 → Ports and by noting the value of
the SIB_ENDPOINT_ADDRESS port name.

• Protocol name, which is the symbolic name of the messaging protocol
that is used. There are currently two: BootstrapBasicMessaging and
BootstrapSecureMessaging. The default is BootstrapBasicMessaging.

In this case, simply enter the host name and messaging engine port that
the Exposed Gateway are using. In Figure 11-23 on page 356, we entered
localhost:7277.

7. Click OK. The service integration bus link has been configured.

8. Save the changes.

You should repeat this process should for the Exposed Gateway server to create
a service integration bus link, also called TESTLINK, to TESTBUS on the ESB
server.

11.3.5 Routing Web service requests between buses
The final step is to route the Web service from the ESB to the Exposed Gateway
and vice versa. Currently, we have inbound services on the ESB for each of the
Manufacturers, and the Exposed Gateway has inbound services for the
LoggingFacility and the WarehouseCallBack.

Configuring inbound service destinations
To configure inbound service destinations, do the following in the ESB server:

1. Create three queue type destinations, one for each Manufacturer inbound
service called:

– ManufacturerService
– ManufacturerBService
– ManufacturerCService

2. From the bus details panel under Additional Properties, click Inbound
Services.

3. Click ManufacturerService.
 Chapter 11. Exposed ESB Gateway pattern 357

4. Under Service destination name, select the destination that is called
ManufacturerService, as shown in Figure 11-24, and click OK.

Figure 11-24 Modifying the service destination name

5. Repeat steps 2 on page 357 to 4 for ManufacturerBService and
ManufacturerCService and choose the appropriate destination as shown in
Table 11-5.

Table 11-5 Inbound Service mappings to destinations

6. Save your changes.

Inbound service name Service destination name

ManufacturerBService ManufacturerBService

ManufacturerCService ManufacturerCService
358 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Configuring destinations to route to the other bus
After you configure inbound service destinations, you modify the queue
definitions to route to the outbound service destinations on the Exposed
Gateway bus by doing the following on the ESB server:

1. From the bus details panel under Additional Properties, click Destinations.

2. Click ManufacturerService.

3. On the page that appears, as shown in Table 11-25, set up a default forward
routing path.

Figure 11-25 Configuring the forward routing path

A default forward routing path is applied to messages sent to a destination if
the forward routing path of that message is available. Thus, messages that
are sent to the ManufacturerService destination can be routed elsewhere,
which in our case is the Exposed Gateway bus. The format of this box is a
comma separated list of qualified destination names. A qualified destination
name consists of a bus name and a destination name separated by a colon.
The bus name is optional if the destination is on the current bus.

Enter the following in the Default forward routing path:

TESTBUS1:http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002-
10/Manufacturer.wsdl:ManufacturerService.

4. Click OK. Requests to the ManufacturerService are forwarded to the Exposed
Gateway.

5. Repeat steps 3 and 4 for each of ManufacturerBService and
ManufacturerCService and choose the appropriate qualified destination
names as shown in Table 11-6 on page 360.
 Chapter 11. Exposed ESB Gateway pattern 359

Table 11-6 Inbound service destination default forward routing paths

6. Save your changes.

7. Configure the Exposed Gateway inbound services to forward to the other bus.
The configuration settings are shown in Figure 11-7.

Table 11-7 Inbound service destination default forward routing paths

8. Save your changes.

Starting the service integration bus link
To start the service integration bus link, restart both application servers. You can
confirm the status of the service integration bus link by checking the
SystemOut.log file for each application server. The ESB server SystemOut.log
file should contain an entry similar to the one below if the service integration bus
link was successful:

CWSIT0032I: The inter-bus connection TESTLINK from messaging engine
was60imageNode01.server1-TESTBUS in bus TESTBUS to messaging engine
was60imageNode02.server1-TESTBUS1 in bus TESTBUS1 started.

Destination Default forward routing path

ManufacturerBService TESTBUS1:http://www.ws-i.org/SampleApplicatio
ns/SupplyChainManagement/2002-10/Manufactur
er.wsdl:ManufacturerBService

ManufacturerCService TESTBUS1:http://www.ws-i.org/SampleApplicatio
ns/SupplyChainManagement/2002-10/Manufactur
er.wsdl:ManufacturerCService

Destination Default forward routing path

LoggingFacilityService TESTBUS:http://www.ws-i.org/SampleApplications
/SupplyChainManagement/2002-08/LoggingFacilit
y.wsdl:LoggingFacilityService

WarehouseCallBackService TESTBUS:http://www.ws-i.org/SampleApplications
/SupplyChainManagement/2002-08/Warehouse.w
sdl:WarehouseCallBackService
360 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

11.3.6 Testing the sample application
To test that the service integration bus link is working correctly in the sample
application:

1. Open a Web browser and enter the following URL:

http://localhost:9080/SCMSampleUI

2. Click Place New Order to make a call from the SCMSampleUI enterprise
application to the Retailer Web service.

3. On the next screen, enter a quantity of six (6) for the first three products, as
shown in Figure 11-26, then click Submit Order. This action triggers the
Warehouse to send orders to all three Manufacturers to replenish stock

Figure 11-26 Submitting three orders

4. On the next screen, the Warehouse should report that it was able to fulfill all
three orders, as shown in Figure 11-27. Click Track Order.

Figure 11-27 Order successfully completed
 Chapter 11. Exposed ESB Gateway pattern 361

The Track Order screen shows that all three Manufacturers were contacted and
returned a response, as shown in Figure 11-28. These Manufacturers were
called using the service integration bus link and the Exposed Gateway.

Figure 11-28 Track Order screen showing a response from all three Manufacturers

You should also see messages in the SystemOut.log files of both the ESB server
an Exposed Gateway server, showing that the sample application made use of
both servers.
362 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2005. All rights reserved. 363

364 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Appendix A. Additional material

This redbook refers to additional material that you can download from the
Internet as described in the following sections.

Locating the Web material
The Web material that is associated with this redbook is available in softcopy on
the Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246494

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number, SG246494.

A

© Copyright IBM Corp. 2005. All rights reserved. 365

ftp://www.redbooks.ibm.com/redbooks/SG246494
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG246494.zip Zipped additional materials for this redbook.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 GB recommended
Operating System: A Windows, AIX®, or Linux® platform
Memory: 1 GB minimum, 2 GB recommended

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zipped file into this folder.
366 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Appendix B. Configuring the scenario
environment

This appendix describes how to configure the scenario environment without
following the detailed step-by-step instructions within each scenario chapter in
the book. It enables you to build an working environment quickly for the Direct
Connection and ESB Router scenarios, both of which are pre-requisite
configurations for other scenarios.

This appendix makes use of resources that are provided in the additional
material that is supplied with this book. To obtain this additional material, see
Appendix A, “Additional material” on page 365.

B

© Copyright IBM Corp. 2005. All rights reserved. 367

Working with the WS-I sample scenario enterprise
applications

The WS-I sample application enterprise applications can be examined and
modified by importing them into Rational Application Developer.

The enterprise applications should be imported into Rational Application
Developer using the Project Interchange feature. A number of Project
Interchange project files are provided in the additional material supplied with this
book. These project files are also located in the \ProjectInterchange directory.
They are:

� DirectConnection.zip

Contains a set of WS-I sample scenario enterprise applications that are
configured to use point-to-point connections. Use this project file to examine
the enterprise applications that are used in Chapter 8, “SOA Direct
Connection pattern” on page 153 and as the starting point for Chapter 9,
“Enterprise Service Bus pattern: router scenario” on page 179.

� Router.zip

Contains a set of WS-I sample scenario enterprise applications that are used
by the ESB router scenario. Use this project file to examine the enterprise
applications that are built in Chapter 9, “Enterprise Service Bus pattern:
router scenario” on page 179.

To install a project file into Rational Application Developer, perform the following:

1. Select File → Import → Project Interchange and click Next.

2. Click Browse and locate the relevant project zipped file to import it. For
example, select \ProjectInterchange\DirectConnection.zip.

3. A list of the enterprise projects contained within this project file is displayed.
Click Select All and then click Finish. The enterprise projects are imported
into your workspace.

Configuring the Direct Connection scenario
This section describes how to work with the materials that are supplied for the
Direct Connection scenario that is described in Chapter 8, “SOA Direct
Connection pattern” on page 153. It describes how to use Jacl scripts to create a
working version of the WS-I sample application, using the SOA Direct
Connection pattern. This section assumes you have a working WebSphere
Application Server server running.
368 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

To configure the Direct Connection scenario:

1. Complete the steps that are described in 8.3.8, “Hosting the WSDL files” on
page 171 to ensure that you have an HTTP server that is configured for this
scenario.

2. Jacl scripts are provided to create the necessary configurations with your
WebSphere Application Server environment. You can find these Jacl scripts
in the \DirectConnection\jacl directory of the additional material that are
supplied with this book.

Issue the following command from the WAS_HOME\bin directory of
WebSphere Application Server:

wsadmin -f DirectConnectionConfig.jacl

This Jacl script modifies the application server configuration to define a
service integration bus, queues, and JMS resources.

3. A second Jacl script is used to install the WS-I sample application enterprise
applications to the application server. You can find these enterprise
applications in the \DirectConnection\ears directory of the additional material
that are supplied with this book.

Issue the following command from the WAS_HOME\bin of WebSphere
Application Server:

wsadmin -f AppInstall.jacl <ear_file_location>

In this command, <ear_file_location> is the location of the enterprise
applications directory. This path must consist of forward slashes, even on a
Windows system. You will also need to qualify AppInstall.jacl with the path
where this file can be found. For example, the complete command might
read:

wsadmin -f C:\DirectConnection\jacl\AppInstall.jacl
C:/DirectConnection/ears/

4. Restart the server so that the new configuration settings take affect and so
that the installed enterprise applications are started.

5. After the server restart, you are ready to test the server. Access the
application using the following URL:

http://localhost:9080/SCMSampleUI

You can find more information about how to test the scenario in 8.3.10,
“Running and using the sample application” on page 174.

Note: DirectConnectionConfig.jacl needs to be qualified with the path
where this file is found.
 Appendix B. Configuring the scenario environment 369

Configuring the ESB router scenario
This section describes how to configure the materials that are supplied for the
ESB router scenario that is described in Chapter 9, “Enterprise Service Bus
pattern: router scenario” on page 179.

To configure the ESB router scenario:

1. Complete all the steps as described in “Configuring the Direct Connection
scenario” on page 368. This ESB router scenario uses resources that are
defined in the Direct Connection scenario.

2. Jacl scripts are provided to create the necessary configurations with your
WebSphere Application Server environment. You can find these Jacl scripts
in the \ESB Router\jacl directory of the additional material supplied with this
book. Run these from the WAS_HOME\bin of WebSphere Application Server:

a. Issue the following command to run the Jacl script to uninstall the existing
enterprise applications that are used in the Direct Connection scenario:

wsadmin -f AppUninstall.jacl

b. Create an SDO repository with Cloudscape.

wsadmin.bat -f [install_root]\bin\installSdoRepository.jacl -createDb

c. Install a resource adapter.

wsadmin.bat -f [install_root]\util\sibwsInstall.jacl INSTALL_RA
-installRoot "[install_root]" -nodeName [nodeName]

d. Install the service integration bus Web service application.

wsadmin.bat -f [install_root]/util/sibwsInstall.jacl INSTALL
-installRoot "[install_root]" -nodeName [nodeName] -serverName server1

e. Install the HTTP endpoint application.

wsadmin.bat -f [install_root]/util/sibwsInstall.jacl INSTALL_HTTP
-installRoot "[install_root]" -nodeName [nodeName] -serverName server1

f. Create the SOAP HTTP resources.

wsadmin -f RouterSOAPHTTPConfig.jacl

Note: AppUninstall.jacl needs to be qualified with the path where this file
can be found.

Note: RouterSOAPHTTPConfig.jacl needs to be qualified with the path
where this file can be found.
370 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

g. Create the SOAP JMS resources.

wsadmin -f RouterSOAPJMSConfig.jacl

h. Install the JMS endpoint application.

wsadmin.bat -f [install_root]/util/sibwsInstall.jacl INSTALL_JMS
-installRoot "[install_root]" -nodeName [nodeName] -serverName server1

i. Create the SOAP JMS endpoint listener.

wsadmin -f SOAPJMSEndpointListenerConfig.jacl

j. Install the enterprise applications built for this scenario. Replace
<earfile_location> with the directory path where the \ESBRouter\ears\
directory (supplied with the additional material) can be found. Remember
to use forward slashes in the path.

wsadmin -f AppInstall.jacl <earfile_location>

3. Download the following files from http://appsrv1a.itso.ral.ibm.com/wsdl into
the directory c:\tmp\xsd:

– Configuration.xsd
– LoggingFacility.xsd
– ManufacturerPO.xsd
– ManufacturerSN.xsd
– RetailCatalog.xsd
– RetailOrder.xsd
– Warehouse.xsd
– envelope.xsd

4. From the WAS_HOME/bin directory, run the following command to load the
WebSphere Application Server command line administrative console:

wsadmin

In this command, WAS_HOME is the directory where WebSphere Application
Server was installed.

Note: RouterSOAPJMSConfig.jacl needs to be qualified with the path
where this file can be found.

Note: SOAPJMSEndpointListenerConfig.jacl needs to be qualified with the
path where this file can be found.

Note: AppInstall.jacl needs to be qualified with the path where this file can
be found.
 Appendix B. Configuring the scenario environment 371

5. Obtain a reference to the SDO Repository MBean by entering:

set sdo [$AdminControl queryNames type=SdoRepository,*]

6. Import the schema by entering in the following:

$AdminControl invoke $sdo importResource
{http://appsrv1a.itso.ral.ibm.com/wsdl/Configuration.xsd
c:/tmp/xsd/Configuration.xsd}

This command imports the Configuration.xsd file into the SDO repository so
that it can be accessed at runtime by the service integration bus Web
services support.

7. Repeat step 6 for each of the XSD files, replacing both occurrences of
Configuration.xsd with the relevant file name.

8. Type exit to leave the command line administrative console.

9. Restart the application server.

10.After the server restart, you are ready to test the server. Access the
application using the following URL:

http://localhost:9080/SCMSampleUI

You can find more information about how to test the scenario in 8.3.10,
“Running and using the sample application” on page 174.

Note: This command only works on a single server setup. In a network
deployment environment, there might be multiple instances of the SDO
repository in which case the sdo command would contain a list of MBean
references rather than a single MBean reference.
372 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

acronyms
API Application Programming
Interface

BLOB Binary Large Object

BPEL4WS Business Process Execution
Language for Web Services

CCI Common Client Interface

CICS Customer Information Control
System

CORBA Common Object Request
Broker Architecture

COTS Commercial-Off-The-Shelf

DBMS Database Management
System

DMZ Demilitarized zone

DNS Domain Name System

DOS Disk Operating System

DTD Document Type Definition

DVD Digital Video Disc

EAI Enterprise Application
Integration

EAR Enterprise Archive

ebXML Electronic Business using
XML

EDI Electronic Data Interchange

EIS Enterprise Information
System

EJB Enterprise JavaBean

EPI External Presentation
Interface

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

FTP File Transfer Protocol

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

Abbreviations and
© Copyright IBM Corp. 2005. All rights reserved.
HTTPS Hypertext Transfer Protocol
Secure

IBM International Business
Machines Corporation

IDE Integrated Development
Environments

IIOP Internet Inter-ORB Protocol

ITSO International Technical
Support Organization

J2C J2EE Connector Architecture

J2EE Java 2 Platform, Enterprise
Edition

JAAS Java Authentication and
Authorization Service

JAR Java archive

JAX-RPC Java API for XML-based
Remote Procedure Calls

JDBC Java database connectivity

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSP JavaServer Pages

JVM Java Virtual Machine

LAN Local Area Network

LDAP Lightweight Directory Access
Protocol

MDB Message Driven Bean

OASIS Organization for the
Advancement of Structured
Information Standards

OGSA Open Grid Services
Architecture

PKI Public-Key Infrastructure

QoS Quality of Service

RAR Resource Adapter Archive
 373

RMI Remote Method Invocation

SAML Security Assertion Markup
Language

SCM Supply Chain Management

SOA Service-Oriented Architecture

SOAP Simple Object Access
Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

TCP/IP Transmission Control
Protocol / Internet Protocol‘

UDDI Universal Description
Discovery and Integration

UML Unified Modeling Language

URL Uniform Resource Locator

WAR Web Archive

WSDL Web Services Description
Language

WS-I Web Services Interoperability
Organization

WSIF Web Services Invocation
Framework

WSIL Web Services Inspection
Language

XML Extensible Markup Language

XSD XML Schema Definition

XSL Extensible Stylesheet
Language

XSLT Extensible Stylesheet
Language Transformations
374 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 378. Note that some of the documents referenced here
might be available in softcopy only.

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Patterns: Implementing an SOA Using an Enterprise Service Bus,
SG24-6346

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� Patterns: Using Business Service Choreography In Conjunction With An
Enterprise Service Bus, REDP-3908

Other publications
These publications are also relevant as further information sources:

� Jonathan Adams, Srinivas Koushik, Guru Vasudeva, George Galambos,
Patterns for e-business: A Strategy for Reuse, IBM Press, 2001, ISBN
1-931182-02-7

� Olaf Zimmermann, Mark Tomlinson, Stefan Peuser, Perspectives on Web
Services, Springer, 2003, ISBN 3-540-00914-0
© Copyright IBM Corp. 2005. All rights reserved. 375

Online resources
These Web sites and URLs are also relevant as further information sources:

� Patterns for e-business Web site

http://www.ibm.com/developerWorks/patterns/

� IBM WebSphere Application Server

http://www.ibm.com/software/webservers/appserv/was/

� IBM DB2 Universal Database Enterprise Server Edition

http://www.ibm.com/software/data/db2/udb

� IBM Cloudscape

http://www.ibm.com/software/data/cloudscape

� IBM WebSphere MQ

http://www.ibm.com/software/ts/mqseries

� IBM WebSphere Business Integration Message Broker

http://www.ibm.com/software/integration/wbimessagebroker

� IBM WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/

� IBM Rational Application Developer

http://www.ibm.com/software/awdtools/developer/application

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

� Web Services Interoperability Organization

http://www.ws-i.org

� WS-I Basic Profile V1.0

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html

� WS-I Usage Scenarios

http://www.ibm.com/developerworks/webservices/library/ws-iuse/

� Preview of WS-I sample application

http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

� IBM Emerging Technologies Toolkit

http://www.alphaworks.ibm.com/tech/ettk
376 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.ibm.com/developerWorks/patterns/
http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/data/db2/udb
http://www.ibm.com/software/data/cloudscape
http://www.ibm.com/software/ts/mqseries
http://www.ibm.com/software/integration/wbimessagebroker
http://www.ibm.com/software/integration/wbisf/
http://www.ibm.com/software/awdtools/developer/application
http://www.ws-i.org
http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html
http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/
http://www.alphaworks.ibm.com/tech/ettk

� Security in a Web Services World: a Proposed Architecture and Road map

http://www.ibm.com/developerworks/library/ws-secmap/

� Web Services Security: Moving up the stack

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

� Updated: Web Services Reliable Messaging: A new protocol for reliable
delivery between distributed applications

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� Implementation Strategies for WS-ReliableMessaging: How
WS-ReliableMessaging can interact with other middleware communication
systems

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

� BPEL4WS specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Process with BPEL4WS, a series of introductory articles and
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� BPEL4WS support in WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/features/

� BPEL4WS support in WebSphere Studio Application Developer Integration
Edition

http://www.ibm.com/software/integration/wsadie/features/

� WS-AtomicTransaction specification

http://www.ibm.com/developerworks/library/ws-atomtran/

� WS-BusinessActivity specification

http://www.ibm.com/developerworks/webservices/library/ws-busact/

� Transactions in the world of Web Services, part 1 and part 2

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

� WS-Coordination specification

http://www.ibm.com/developerworks/library/ws-coor/

� WS-Policy framework specification

http://www.ibm.com/developerworks/library/ws-polfram/

� Web Services Policy Framework: New specifications improve WS-Security

http://www.ibm.com/developerworks/webservices/library/ws-polfram/
summary.html
 Related publications 377

http://www.ibm.com/developerworks/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secroad/
http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.ibm.com/software/integration/wbisf/features/
http://www.ibm.com/software/integration/wsadie/features/
http://www.ibm.com/developerworks/library/ws-atomtran/
http://www.ibm.com/developerworks/webservices/library/ws-busact/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/
http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, Redpapers, Hints and
Tips, draft publications and Additional materials, as well as order hardcopy IBM
Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
378 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
80/20 situation 3

A
Access control lists 108
Adapter connectors 103
Advanced and future Web services standards 137

Business Process Execution Language for Web
Services 139
Web services security 138

WS-Policy 138
WS-Privacy 138
WS-Security 138
WS-Trust 138

Web services transactions 140
Web Services Policy Framework 141

WS-Policy 141
WS-AtomicTransaction 140
WS-BusinessActivity 140
WS-Coordination 140

WS-ReliableMessaging 138
Alias destinations 146
Application Integration 46

Broker 51
Router 52

Data integration 46
Direct Connection 48

Call Connection 50
Message Connection 49

Parallel Process 56
Parallel Workflow 58

Process integration 46
Serial Process 54

Serial Workflow 55
Application patterns 4, 11

Broker 51
Router 52

Direct Connection 48
Call Connection 50
Message Connection variation 49

Exposed Broker 64
Exposed Router 65

Exposed Direct Connection 61
© Copyright IBM Corp. 2005. All rights reserved.
Call Connection 63
Message Connection 62

Exposed Serial Process 67
Exposed Serial Workflow 68

Parallel Process 56
Parallel Workflow 58

Serial Process 54
Serial Workflow 55

Architecture
Service-oriented 19

Autonomic computing 76

B
Basic Profile 136
Basic Profile V1.0 136
Basic Profile V1.1 136
Best practices 4, 16
BLOB 78
BPEL4WS 79
Broker application pattern

 51
Router variation 52

Broker scenario 259, 281
Design

Dynamic service provider routing methods
267

JAX-RPC handlers 267
Mediations 268

Externalizing service lookup 270
Database implementation 271
UDDI registry implementation 270

Service invocation 265
Aggregation and disaggregation 266
Serial invocations 266

Development 274
Mediations 275

Aggregation mediation 290
Assigning mediation handlers 295
Coding the mediations 282
Creating a mediation handler class 276
Disaggregation mediation 282
Mediation APIs 279
MediationHandler 279
 379

MessageContext 279
Saving and exporting mediations 296
SDO DataGraphs 280
SIMediationSession 280
SIMessage 279
Working with messages in mediations
279

ESB capabilities 264
Message processing 264

Product mappings 273
Runtime 297

Configuring context properties for a media-
tion 309
Configuring J2C authentication data 300
Creating a JDBC data source 302
Creating a JDBC provider for DB2 301
DB2 drivers 303
Defining mediations 306
Externalizing service lookup 298
Installing a mediation application 306
Installing IBM DB2 Universal Database V8.2
299
Mediating a destination 308
Mediation configuration 305
Moving data to a new SDO repository 303
Recreating the SDO repository 299
Testing a new SDO repository 304

BSC runtime pattern 108
App server / services 109
Persistence manager 110
Process manager 109

Branching 110
Correlation 110
Monitoring 110
Non-functional requirements 110
Process abstractions 110
Process definition standards 110

Product mappings 119
Rules directory 110

Business patterns 4, 7
Business Service Choreography 44, 108
Business Service Directory 44

UDDI directory 102

C
Call Connection 50
Centrally publish WSDL service definitions 330
CICS Transaction Server 99

Cloudscape 76
Cloudscape Network server 77
Communication 41
Composite patterns 4, 9
Creating a mediation handler class 281

D
Data integration 46
Data warehouse 76
DB2 Connect 76
DB2 Universal Database Enterprise Server Edition
V8.2 76
Development

Mediations 281
Direct Connection 48
Direct Connection application pattern 48

Call Connection variation 50
Message Connection variation 49

Direct Connection runtime pattern 96

E
e-business on demand 22

business drivers
variable 22

Service-oriented architecture
Automation 23
Integration 22
Open standards 22
Virtualization 23

Eclipse 80
Endptenabler 231
Enterprise Information Systems 144
Enterprise Resource Planning 144
Enterprise Service Bus

Business Service Choreography 44
Business Service Directory 44
Capabilities

Communication 41
Infrastructure Intelligence 42
Integration 41
Management and Autonomic 42
Message Processing 42
Modeling 42
Quality of Service 41
Security 41
Service Interaction 41
Service Level 41

ESB Gateway 44
380 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Mediate 36
Minimum capability

Heterogeneous infrastructure 37
Integration 37
Integration techniques 39
Logical architectural component 37
Manage the service infrastructure 37
Management and Autonomic 37
Service Interaction 37

Product capabilities
WebSphere Application Server Network De-
ployment 83
WebSphere Business Integration Message
Broker 87

Substitution 36
Transform 36

ESB capabilities 82
WebSphere Application Server V6 83

Communication 84
Infrastructure intelligence 87
Integration 84
Management and autonomic 87
Message processing 85
Modeling 86
Quality of service 86
Security 85
Service interaction 86
Service level 86

WebSphere Business Integration Message Bro-
ker V5 87

Communication 87
Infrastructure intelligence 91
Integration 88
Management and autonomic 91
Message processing 89
Modeling 89
Quality of service 90
Security 88
Service interaction 90
Service level 90

ESB Gateway 44
App server / services 107
ESB 107
Gateway endpoint 108
Rules directory 107

ESB Gateway runtime pattern 106
Product mappings 118

ESB runtime pattern 98
Administration and security services 102

Administration 102
Security 102

App server / services 99
Business service directory 102
Connectors 103

Adapter connectors 103
Application adaptation 104
Legacy adaptation 104
Path connectors 103
Technology adaptation 103

Hub node 99
Addressing 100
Infrastructure intelligence 101
Integration 101
Message processing 101
Messaging styles 100
Modelling 101
Quality of service 101
Routing 100
Service interface definition 100
Service level 101
Service messaging model 100
Transport protocols 100

Namespace directory 101
Product mappings 117

ESB, BSC composite pattern 111
BSC 112
ESB 113
Process manager 111
Repository nodes 111

Event driven architectures 36
Exposed Broker application pattern 64

Exposed Router 65
Exposed Direct Connection application pattern 61

Call Connection 63
Message Connection 62

Exposed ESB Gateway runtime pattern
App server / services 114
Connector 114
ESB 114
ESB Gateway 114
Product mappings 120

Exposed ESB Gateway scenario
Design

Security 330
Multi-tier firewall deployment 330
Securing communication channels 331
XML document level security 332

Service definitions across enterprises 328,
 Index 381

330
Sharing service definitions across enterpris-
es

Local copy of WSDL 329
Topology considerations 321

Multiple node topology with a single bus
325
Single node topology with a single bus
324
Three nodes layers with multiple buses
327
Two node layers with multiple buses
326

ESB capabilities 319
Addressing 320
Communications 319
Integration 320
Minimizing impact to current infrastructure
320
Restricting service access 320
Security 320
Service interaction 320

Product mappings 334
Runtime 337

Configuring destinations to route to another
bus 359
Configuring inbound service destinations
357
Creating a foreign bus 354
Creating a service integration bus link 355
Migrating an SDO repository to use Network
Cloudscape 342
Removing Web services from an ESB 338
Routing Web service requests between bus-
es 357
Separate profiles 349
Starting a service integration bus link 360

Exposed ESB Gateway, BSC composite pattern
115
Exposed Serial Process application pattern 67

Exposed Serial Workflow 68
Extended Enterprise 59

Exposed Broker 64
Exposed Router 65

Exposed Direct Connection 61
Call Connection 63
Message Connection 62

Exposed Serial Process 67
Exposed Serial Workflow 68

F
Foreign destinations 146

G
Guidelines 4, 16

H
HTTP authentication 138
HTTP over TLS 136
HTTP State Management Mechanism 136
Hub node 99
HyperText Transfer Protocol 136

I
IBM Emerging Technologies Toolkit 137
IMS Transaction Manager 99
Industry support 30
Infrastructure Intelligence 42
Integration 41
Integration patterns 4, 8
Internet X.509 Public Key Infrastructure Certificate
136

J
J2EE Connector Architecture 144

Common Client Interface 144
Disadvantages 145
Inbound adapters 144
Outbound adapters 144
XA capable 144

Java Message Service 141
Advantages 143
Disadvantages 143
Enterprise messaging API 143
JMS messages 142

Body 142
Header 142
Point-to-point 142
Properties 142
Publish subscribe 142

Java2WSDL 231
JDBC 77

L
Legacy adaptation 104
Location transparency 100
382 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Long-running 79

M
Management and Autonomic 42
Mediate 36
Mediation handler 276
Mediation points 147
Message channels 77
Message Connection variation 49
Message driven architectures 36
Message oriented middleware 141
Message Processing 42
Message Repository Manager 78
Messaging 141
Messaging patterns 73
Messaging provider 73
Microsoft .NET 76
Modeling 42

N
Namespace directory 101

P
Parallel Process application pattern 56

Parallel Workflow variation 58
Parallel Workflow 58
Path connectors 103
Patterns for e-business

Application patterns 4, 11
Best practices 4, 16
Business patterns 4, 7
Composite patterns 4, 9
Guidelines 4, 16
Integration patterns 4, 8
Product mappings 4, 15
Runtime patterns 4, 13
Web site 5

Point-to-point 78
Port destinations 146
Process integration 46
Process management 112
Process Manager 109
Product 116
Product mappings 4, 15, 116

BSC runtime pattern 119
ESB Gateway runtime pattern 118
ESB runtime pattern 117

Exposed ESB Gateway runtime pattern 120
Publication points 147
Publish/subscribe 78

Q
Quality of Service 41
Queue definitions 77
Queue destinations 146
Queue manager 77
Queue points 147

R
Rational Application Developer 75
Rational Application Developer V6 80
Rational Software Development Platform 80
Rational Web Developer 75
RDBMS 77
Redbooks Web site 378

Contact us xvii
Reliable message transport 74
Router 52
Router scenario 179

Design 184
Communication protocols 191

HTTP service bus 191
JMS service bus 192

Location of service definitions 184
HTTP server publication of WSDL 186
Local directory copy of WSDL 185
UDDI registry publication of WSDL 186

Logging 189
Application level logging 190
Service integration bus level logging
190

Security 187
Messaging security 188
WS-Security 187

Service provider routing 193
Dynamic routing 194
Static routing 193

Topology considerations 194
Bus 194
Cell 195
Multi node topology with a single bus
198
Multi node topology with multiple buses
199
Nodes 194
 Index 383

Servers 194
Single node topology with a single bus
197

Development 202
Configuring Rational Application Developer
for Web services 209
Creating a skeleton EJB Web service 210
Creating a SOAP over JMS Web service
205
Creating an EJB project 207
Updating Web service clients to use an ESB
219

Creating a namespace mapping file 221
Exporting enterprise applications 230
Generating a Web service client 225
Importing generated WSDL 220
Removing Web service clients 220

ESB capabilities 183
Centralized control 184
Centralized security 184
Common access point 184
Communications 183, 264
ecoupling 184
Integration 183, 264
Logging 184
Transformation 184

Product mappings 201
Runtime 231

Creating endpoint listeners 241
Creating outbound services 244
Creating the inbound services 247
Exporting the service integration bus WSDL
253
Importing schemas into the SDO repository
254
Installing the SDO repository 237
Installing the Web services support 238
Multiple services in a single WSDL file 256
SOAP over HTTP requests transformed to
SOAP over JMS 235
SOAP over HTTP requests with no transfor-
mation 233
SOAP over JMS requests transformed to
SOAP over HTTP 234
Using the service integration bus to route
Web service requests 233

Routing paths 281
Rules repository 97
Runtime patterns 4, 13, 96

BSC 108
Direct Connection 96
ESB 98
ESB Gateway 106
ESB, BSC composite 111
Exposed ESB Gateway, BSC composite 115

S
Scenarios 126

Stage I 126
Stage II 128
Stage III 129

Secure Sockets Layer Protocol 136
Security 41
Serial Process application pattern 54

Serial Workflow variation 55
Serial Workflow 55
Service bus

Simple 96
Service integration bus 145

Adding a bus member 163
Bus 145
Bus member 146
Creating a bus 162
Creating a JMS connection factory 165
Creating destinations 164
Creating JMS activation specifications 169
Creating JMS queues 167
Destination 146
Destinations

Alias destinations 146
Foreign destinations 146
Port destinations 146
Queue destinations 146
Topic space destinations 146
Web service destinations 146

Endpoint listener 147
Exception destinations 148
Foreign bus 148
Foreign bus link 148
Inbound service 147
Mediation 148

Augmenting messages 148
Disaggregation 148
Dynamically routing messages 148
Transforming a message 148

Message point 147
Mediation points 147
384 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

Publication points 147
Queue points 147

Messaging engine 145
Connection management 145
Message management 145

Outbound service 147
Using for messaging 160

Service Interaction 41
Service Level 41
Service level policies 108
Service provisioning 102
Service substitution 100
Service-oriented architecture 19, 36

Component Based Design 20
Customized 27
Drivers

Flexible pricing 20
Increasing speed 20
Reducing costs 20
Return on investment 20
Simplifying integration 20

Object Oriented development 20
Proprietary 27
Service

Deployment time 24
Implementation-independent 23
Loosely bound 23
Reusable 23
Runtime 24
Substitution 24

Short-running 79
Siebel 104
SOA profile

BSC 108
Direct Connection 96
ESB 98
ESB Gateway 106
ESB, BSC composite 111
Exposed ESB Gateway, BSC composite 115

SOAP 134
Envelope 134
Messages 134

SOAP with Attachments 136
SSL authentication 138
SSL encryption 138

T
Topic space destinations 146

Transform 36
Transport Layer Security Protocol 136

U
U.S. government taxonomy 135
UDDI 135
UDDI directory 102
UML editing 80

W
Web service destinations 146
Web services 132

Loose coupling 132
SOAP

Body 134
Header 134

UDDI 135
Usage models 132

Basic callback 132
One-way 132
Synchronous request/response 132

Web services standards 137
Business Process Execution Language for
Web Services 139
Web Services Policy Framework 141
Web services security 138
Web services transactions 140
WS-ReliableMessaging and SOAP/JMS
138

WSDL 134
Web services architecture

SOAP 134
Universal Description, Discovery, Integration
135
Web Services Description Language 134
Web services interoperability 135

Web Services Interoperability Organization
135

Basic Profile 136
Web Services Gateway 139
Web services interoperability 135
Web Services Interoperability Organization 126,
135
Web services security 138
WebSphere Application Server 75
WebSphere Application Server - Express 74
WebSphere Application Server Network Deploy-
ment 75
 Index 385

WebSphere Application Server Network Deploy-
ment V6 75
WebSphere Application Server V6 72

Highlights and benefits 73
Packaging for distributed platforms 74

WebSphere Application Server - Express V6
74
WebSphere Application Server Network De-
ployment V6 75
WebSphere Application Server V6 75

WebSphere Business Integration Message Broker
V5 78
WebSphere Business Integration Server Founda-
tion V5.1 79
WebSphere MQ V5.3 77
WebSphere Process Choreographer 79
Working with messages in mediations 281
Workload management 78
WS-AtomicTransaction 140
WS-BusinessActivity 140
WS-Coordination 140
wsdeploy 231
WSDL 134
WSDL2Java 231
WS-I sample application 126
WS-I Supply Chain Management Technical Archi-
tecture 126
WS-I Supply Chain Management Use Cases 126
WS-I Usage Scenarios 126
WS-Policy 101, 138, 141
WS-Privacy 138
WS-ReliableMessaging 137–138
WS-Security 138
WS-Trust 138

X
XML Encryption 332
XML Signature 332
386 Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Patterns: SOA w
ith an Enterprise Service Bus in W

ebSphere Application Server V6

®

SG24-6494-00 ISBN 073849058X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: SOA with an
Enterprise Service Bus
in WebSphere Application Server V6
Design and
implement an ESB
using WebSphere V6
technologies

Service-oriented
architecture and
Web services

Learn by example
with practical
scenarios

The Patterns for e-business are a group of proven, reusable
assets that can be used to increase the speed of developing
and deploying e-business applications. This IBM Redbook
focuses on how you can use the service-oriented
architecture (SOA) profile of the Patterns for e-business to
implement an Enterprise Service Bus in WebSphere
Application Server V6.

Part 1 presents a description of service-oriented architecture
and the Enterprise Service Bus.

Part 2 describes the business scenario used throughout this
book and explains the key technologies that you can use to
build an Enterprise Service Bus in WebSphere Application
Server V6, including Web services and the service integration
bus.

Part 3 guides you through the process of architecting and
implementing various Enterprise Service Bus configurations
using WebSphere Application Server V6 and Rational
Application Developer V6. It discusses router and broker
scenarios within an Enterprise Service Bus, along with a
gateway to enable interaction in an inter-enterprise
environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	How to read this redbook
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Patterns for e-business and SOA
	Chapter 1. Introduction to Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Selecting a Business, Integration, or Composite pattern, or a Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Reviewing Product mappings
	1.2.5 Reviewing guidelines and related links

	1.3 Summary

	Chapter 2. SOA and the Enterprise Service Bus
	2.1 Overview of SOA
	2.1.1 Definition of a service
	2.1.2 Web services and SOA
	2.1.3 The advantages of SOA
	2.1.4 SOA summary

	2.2 Overview of Enterprise Service Bus
	2.2.1 SOA infrastructure requirements
	2.2.2 Definition of an ESB
	2.2.3 Enterprise requirements for an ESB
	2.2.4 Minimum ESB capabilities
	2.2.5 ESB and Web services technologies
	2.2.6 Extended ESB capabilities
	2.2.7 The ESB and other SOA components

	Chapter 3. Application Integration and Extended Enterprise patterns
	3.1 Application Integration pattern
	3.1.1 Direct Connection
	3.1.2 Direct Connection=Message Connection variation
	3.1.3 Direct Connection=Call Connection variation
	3.1.4 Broker
	3.1.5 Broker=Router variation
	3.1.6 Serial Process
	3.1.7 Serial Process=Workflow variation
	3.1.8 Parallel Process
	3.1.9 Parallel Process=Workflow variation

	3.2 Extended Enterprise pattern
	3.2.1 Exposed Direct Connection
	3.2.2 Exposed Direct Connection=Message Connection variation
	3.2.3 Exposed Direct Connection=Call Connection variation
	3.2.4 Exposed Broker
	3.2.5 Exposed Broker=Router variation
	3.2.6 Exposed Serial Process
	3.2.7 Exposed Serial Process=Workflow variation

	Chapter 4. Product descriptions and ESB capabilities
	4.1 Runtime product descriptions
	4.1.1 IBM WebSphere Application Server V6
	4.1.2 IBM DB2 Universal Database Enterprise Server Edition V8.2
	4.1.3 IBM Cloudscape
	4.1.4 IBM WebSphere MQ V5.3
	4.1.5 IBM WebSphere Business Integration Message Broker V5
	4.1.6 IBM WebSphere Business Integration Server Foundation V5.1

	4.2 Development product descriptions
	4.2.1 IBM Rational Application Developer V6

	4.3 Product capabilities for the Enterprise Service Bus
	4.3.1 Assessment of ESB capabilities by product
	4.3.2 IIBM WebSphere Application Server V6
	4.3.3 IBM WebSphere Business Integration Message Broker V5
	4.3.4 Conclusion

	Chapter 5. SOA runtime patterns and Product mappings
	5.1 Runtime patterns
	5.1.1 Direct Connection using a service bus
	5.1.2 ESB runtime pattern
	5.1.3 ESB Gateway runtime pattern
	5.1.4 BSC runtime pattern
	5.1.5 ESB, BSC composite pattern
	5.1.6 Exposed ESB Gateway runtime pattern
	5.1.7 Exposed ESB Gateway, BSC composite pattern

	5.2 Product mappings
	5.2.1 ESB runtime pattern::Product mappings
	5.2.2 ESB Gateway runtime pattern::Product mapping
	5.2.3 BSC runtime pattern::Product mapping
	5.2.4 Exposed ESB Gateway Product mapping

	Part 2 Business scenario and guidelines
	Chapter 6. The business scenario that this book uses
	6.1 WS-I sample application
	6.2 Stages of the business scenario
	6.2.1 Stage 1: Internal supply chain management on demand
	6.2.2 Stage 2: Additional warehouses
	6.2.3 Stage 3: Divested inter-enterprise manufacturers

	Chapter 7. Technology options
	7.1 Web services
	7.1.1 Web services interoperability
	7.1.2 Advanced and future Web services standards

	7.2 Java Message Service
	7.2.1 Understanding messaging
	7.2.2 JMS messages
	7.2.3 Advantages of JMS
	7.2.4 Disadvantages of JMS

	7.3 J2EE Connector Architecture
	7.3.1 Advantages of the J2EE Connector Architecture
	7.3.2 Disadvantages of the J2EE Connector Architecture

	7.4 Service integration bus in WebSphere Application Server
	7.4.1 Concepts and architecture
	7.4.2 Further information

	Part 3 Scenario implementation
	Chapter 8. SOA Direct Connection pattern
	8.1 Design guidelines
	8.1.1 Business scenario
	8.1.2 Selecting an SOA pattern
	8.1.3 Products

	8.2 Development guidelines
	8.2.1 Scenario implementation: Direct Connection interaction

	8.3 Runtime guidelines
	8.3.1 Using the service integration bus for messaging
	8.3.2 Creating a bus
	8.3.3 Adding a bus member
	8.3.4 Creating the destinations
	8.3.5 Creating a JMS connection factory
	8.3.6 Creating the JMS queues
	8.3.7 Creating the JMS activation specifications
	8.3.8 Hosting the WSDL files
	8.3.9 Installing the applications
	8.3.10 Running and using the sample application

	Chapter 9. Enterprise Service Bus pattern: router scenario
	9.1 Design guidelines
	9.1.1 Business scenario
	9.1.2 Selecting an SOA pattern
	9.1.3 Router interaction design
	9.1.4 Products

	9.2 Development guidelines
	9.2.1 Scenario implementation: ESB router interaction
	9.2.2 Creating a SOAP over JMS Web service
	9.2.3 Updating Web service clients to use the ESB

	9.3 Runtime guidelines
	9.3.1 Using the service integration bus to route Web service requests
	9.3.2 Removing the existing enterprise applications
	9.3.3 Installing the SDO repository
	9.3.4 Installing the Web services support
	9.3.5 Creating the endpoint listeners
	9.3.6 Creating the JMS resources for the Retailer Web service
	9.3.7 Creating the outbound services
	9.3.8 Creating the inbound services
	9.3.9 Exporting the service integration bus WSDL for development
	9.3.10 Importing the schemas into the SDO repository
	9.3.11 Installing and testing the new enterprise applications
	9.3.12 Runtime alternatives

	Chapter 10. Enterprise Service Bus pattern: broker scenario
	10.1 Design guidelines
	10.1.1 Business scenario
	10.1.2 Selecting an SOA pattern
	10.1.3 Broker interaction design
	10.1.4 Products

	10.2 Development guidelines
	10.2.1 Scenario implementation: ESB broker interaction
	10.2.2 Mediations
	10.2.3 Creating a mediation handler class
	10.2.4 Working with messages in mediations
	10.2.5 Coding the mediations
	10.2.6 Assigning and exporting the mediation handlers

	10.3 Runtime guidelines
	10.3.1 Externalizing service lookup
	10.3.2 Configuration of additional resources
	10.3.3 Mediation configuration
	10.3.4 Installing the additional Warehouses
	10.3.5 Testing the sample application

	Chapter 11. Exposed ESB Gateway pattern
	11.1 Design guidelines
	11.1.1 Business scenario
	11.1.2 Selecting an SOA pattern
	11.1.3 Exposed ESB Gateway design
	11.1.4 Products

	11.2 Development guidelines
	11.3 Runtime guidelines
	11.3.1 Removing Web services from the ESB
	11.3.2 Migrating the SDO repository to use Network Cloudscape
	11.3.3 Setting up the Exposed Gateway
	11.3.4 Configuring the service integration bus link
	11.3.5 Routing Web service requests between buses
	11.3.6 Testing the sample application

	Part 4 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Appendix B. Configuring the scenario environment
	Working with the WS-I sample scenario enterprise applications
	Configuring the Direct Connection scenario
	Configuring the ESB router scenario

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

