

ibm.com/redbooks

Enabling SOA Using
WebSphere Messaging

Carla Sadtler
Philipp Huber

SangMin Yi

Service-oriented architecture and
messaging

ESB implementation with
WebSphere Message Broker

ESB implementation with
WebSphere ESB

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Enabling SOA Using WebSphere Messaging

March 2006

International Technical Support Organization

SG24-7163-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (March 2006)

This edition applies to WebSphere Message Broker Version Version 6.0, WebSphere Application
Server Version 6.0.2, WebSphere Enterprise Service Bus V6.0.1, and WebSphere MQ V6.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . x
Comments welcome. x

Chapter 1. Introduction . 1
1.1 SOA overview . 2

1.1.1 The driver for SOA . 2
1.1.2 Architectural approach . 2
1.1.3 Design principles. 3

1.2 SOA and messaging . 8
1.3 Using an enterprise service bus . 10
1.4 The IBM SOA Foundation . 13

1.4.1 SOA life cycle . 14
1.4.2 SOA Reference Architecture. 14

1.5 For more information . 17

Chapter 2. Product selection . 19
2.1 IBM SOA Foundation products for messaging . 20
2.2 WebSphere Application Server . 22
2.3 WebSphere MQ. 28
2.4 WebSphere ESB . 31

2.4.1 Mediation functions in WebSphere ESB versus WebSphere Application
Server . 33

2.5 WebSphere Message Broker . 34
2.6 ESB product comparison. 37
2.7 WebSphere Process Server . 40

Chapter 3. Runtime topology selection. 45
3.1 Getting started. 46

3.1.1 Starting with simple messaging connections 46
3.1.2 Adding an ESB for enhanced connectivity . 47
3.1.3 Adding a business process engine for service orchestration 49

3.2 Advanced topologies . 50
3.2.1 WebSphere MQ . 51
3.2.2 WebSphere Message Broker . 54
© Copyright IBM Corp. 2006. All rights reserved. iii

3.2.3 WebSphere ESB and WebSphere Process Server 55
3.2.4 Application server and queue manager cluster 59

3.3 End-to-end scenario . 60

Chapter 4. Application design . 63
4.1 Introduction to messaging . 64
4.2 Messaging models . 65

4.2.1 Point-to-point . 65
4.2.2 Publish-subscribe . 66
4.2.3 Point-to-point versus publish-subscribe . 67

4.3 Messaging styles. 68
4.3.1 Asynchronous communication . 68
4.3.2 Pseudo-synchronous communication . 69

4.4 Messaging patterns . 70
4.4.1 Fire-and-forget . 70
4.4.2 Request-reply . 71
4.4.3 Selecting a messaging pattern . 76

4.5 Messaging application design . 77
4.5.1 Application design in general . 77
4.5.2 Message consumers . 80
4.5.3 Message producers. 85
4.5.4 Message producer and consumer in combination 87

4.6 Designing a messaging-based SOA . 89
4.6.1 SOA approach. 89
4.6.2 Service identification . 90
4.6.3 Service specification . 92
4.6.4 Service realization. 93
4.6.5 Design considerations. 94

4.7 For more information . 108

Chapter 5. Point-to-point runtime configuration 109
5.1 WebSphere MQ configuration . 110

5.1.1 Create the queue managers . 111
5.1.2 Create a remote queue definition . 112
5.1.3 Create a transmission queue . 113
5.1.4 Create a sender channel. 114
5.1.5 Create a local queue . 115
5.1.6 Create a receiver channel . 116
5.1.7 Start the sender channel . 116
5.1.8 Test the connection. 117

5.2 Connect WebSphere ESB to WebSphere MQ . 118
5.2.1 Configure the service integration bus . 122
5.2.2 Configure WebSphere MQ . 131
iv Enabling SOA Using WebSphere Messaging

5.2.3 Start the connection . 132
5.2.4 Test the connection. 134

5.3 Configuring a queue sharing group . 138
5.3.1 Set up the DB2 environment to support MQ shared queue 138
5.3.2 Set up the CFRM policy with the MQ structures 163
5.3.3 Add the MQ data sharing group entry to the DB2 table 163
5.3.4 Update the ZPARM . 166
5.3.5 Update the queue manager procedures . 169
5.3.6 Define the shared queues between the two MQ subsystems 171
5.3.7 Starting WebSphere MQ . 173
5.3.8 For more information. 179

Chapter 6. Integration scenarios with WebSphere ESB 181
6.1 Using WebSphere ESB . 182

6.1.1 Developing mediations . 186
6.1.2 Deploying mediations . 187

6.2 Integration scenario. 187
6.3 XML-to-XML mapping using a mediation flow. 188

6.3.1 Mediation overview . 188
6.4 XML-to-XML transformation using XSLT mapping 189

6.4.1 Create the mediation module . 190
6.4.2 Create the business objects . 190
6.4.3 Build the interfaces . 197
6.4.4 Build the mediation module. 199
6.4.5 Bind the export and import nodes to JMS . 208
6.4.6 Prepare the runtime . 209

Chapter 7. Integration scenarios with WebSphere Message Broker . . . 217
7.1 Using WebSphere Message Broker . 218

7.1.1 Message flow development. 221
7.1.2 Message flow deployment and broker administration 222
7.1.3 Sample message flow . 223

7.2 Integration scenarios . 226
7.3 XML-to-XML mapping using a Mapping node . 227

7.3.1 Create the message sets containing the XML DTD files. 228
7.3.2 Create the message flow . 230
7.3.3 Deploy the message flow to the broker. 234
7.3.4 Create the WebSphere MQ queues . 236
7.3.5 Test the message flow . 236
7.3.6 Using JMS nodes . 237

7.4 XML-to-XML transformation using XSLT. 245
7.4.1 Create the message sets . 246
7.4.2 Create the mapping. 246
 Contents v

7.4.3 Create the message flow . 251
7.4.4 Create the WebSphere MQ queues . 253
7.4.5 Deploy and test the message flow . 253

7.5 XML-to-COBOL mapping . 255
7.5.1 Create the message sets . 256
7.5.2 Create the message flow . 257
7.5.3 Create the WebSphere MQ queues . 261
7.5.4 Test the message flow . 261

7.6 Routing messages. 262
7.6.1 Create the message flow . 263
7.6.2 Define the filters . 265
7.6.3 Create the WebSphere MQ queues . 266
7.6.4 Deploy and test the message flow . 266

Appendix A. Sample files . 269
Sample XML files . 270
Sample DTD files . 271

Related publications . 275
IBM Redbooks . 275
Other publications . 275
Online resources . 276
How to get IBM Redbooks . 277
Help from IBM . 277

Index . 279
vi Enabling SOA Using WebSphere Messaging

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
z/OS®
CICS®
DB2®

Everyplace®
HACMP™
IBM®
IMS™
Parallel Sysplex®
Rational®
Redbooks™

RETAIN®
SupportPac™
Tivoli®
WebSphere®
Workplace™

The following terms are trademarks of other companies:

EJB, Java, Java Naming and Directory Interface, JDBC, JSP, J2EE, and all Java-based trademarks are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Visual Basic, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
viii Enabling SOA Using WebSphere Messaging

Preface

Successfully implementing an SOA requires applications and infrastructure that
can support the SOA principles. Applications can be enabled by creating service
interfaces to existing or new functions hosted by the applications. The service
interfaces should be accessed using an infrastructure that can route and
transport service requests to the correct service provider. As organizations
expose more and more functions as services, it is vitally important that this
infrastructure should support the management of SOA on an enterprise scale.

This IBM® Redbook looks at how the IBM messaging products support an SOA
environment. In particular, it will look at WebSphere® Application Server,
WebSphere Enterprise Service Bus, WebSphere MQ, and WebSphere Message
Broker in an SOA environment. It discusses how they support SOA, compare the
potential ESB product implementations, and show examples of building the
infrastructure and creating mediations.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Carla Sadtler is a certified IT Specialist at the ITSO, Raleigh Center. She writes
extensively about the WebSphere and Patterns for e-business areas. Before
joining the ITSO in 1985, Carla worked in the Raleigh branch office as a Program
Support Representative. She holds a degree in mathematics from the University
of North Carolina at Greensboro.

Philipp Huber is an Advisory IT Specialist at IBM Switzerland. He has been with
IBM for six years, working primarily on design and development of
J2EE™-based e-business applications. Philipp holds a degree in Technical
Computer Science from the University of Applied Science Aargau, Switzerland.
His areas of expertise include object-oriented analysis and design, messaging
and J2EE application design and development using Rational® Application
Developer, WebSphere Application Server, and WebSphere MQ.

SangMin Yi is a an Advisory IT Specialist of WebSphere Business Integration
solutions. He joined IBM seven years ago and works in the IBM Software Group.
He is a specialist for IBM Web services technologies and service-oriented
architecture and lectures on these topics in a major company in Korea. Before
joining IBM, he worked as a producer in a broadcasting system.
© Copyright IBM Corp. 2006. All rights reserved. ix

Thanks to the following people for their contributions to this project:

Rich Conway and Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Geert Van de Putte
International Technical Support Organization, Raleigh Center

Katie Johnson
Product Manager, WebSphere Enterprise Service Bus, IBM US

Adrian Spender
WebSphere ESB Development, IBM UK

Joerg Wende
IBM Germany

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com
x Enabling SOA Using WebSphere Messaging

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xi

xii Enabling SOA Using WebSphere Messaging

Chapter 1. Introduction

This chapter provides an introduction to service-oriented architecture (SOA), the
enterprise service bus (ESB), and the IBM SOA strategy. The purpose of this
chapter is to solidify the concept of SOA as it pertains to messaging.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 SOA overview
SOA defines integration architectures based on the concept of a service.
Applications collaborate by invoking each others’ services, and services are
composed into larger sequences to implement business processes.

1.1.1 The driver for SOA
The main driver for SOA is to define an architectural approach that assists in the
flexible integration of IT systems. Organizations spend a considerable amount of
time and money trying to achieve rapid, flexible integration of IT systems across
all elements of the business cycle. The drivers behind this objective include:

� Increasing the speed at which businesses can implement new products and
processes, can change existing ones, or can recombine them in new ways

� Reducing implementation and ownership costs of IT systems and the
integration between them

� Enabling flexible pricing models by outsourcing more fine-grained elements of
the business than were previously possible or by moving from fixed to
variable pricing, based on transaction volumes

� Simplifying the integration work that is required by mergers and acquisitions

� Achieving better IT utilization and return on investment

� Achieving implementation of business processes at a level that is
independent from the applications and platforms that are used to support the
processes

SOA prescribes a set of design principles and an architectural approach to
achieve this rapid, flexible integration.

1.1.2 Architectural approach
SOA is an integration architecture approach based on the concept of a service.
The business and infrastructure functions that are required to build distributed
systems are provided as services that collectively, or individually, deliver
application functionality to end-user applications or other services.

SOA specifies that within any given architecture, there should be a consistent
mechanism for services to communicate. That mechanism should be loosely
coupled and support the use of explicit interfaces.

SOA brings the benefits of loose coupling and encapsulation to integration at an
enterprise level. It applies successful concepts proved by Object Oriented
2 Enabling SOA Using WebSphere Messaging

development, Component Based Design, and Enterprise Application Integration
technology to an architectural approach for IT system integration.

Services are the building blocks of SOA, providing interfaces to functions out of
which distributed systems can be built. Services can be invoked independently
by either external or internal service consumers to process simple functions, or
can be chained together to form more complex functionality and so to quickly
devise new functionality.

What a service is
A service can be defined as any discrete function that can be offered to an
external consumer. This can be an individual business function or a collection of
functions that together form a process. For example, the process of a car dealer
selling a car to a new client involves process steps like:

1. Create client.

2. Correlate car and client.

Each of these steps can be designed as an independent service. A higher-level
service could use both and bind the single process steps to one process.

A service consists of the following three parts, which together are able to deliver
usable service functionality:

� Service contract

The service contract provides the formal specification of a service and
contains information like purpose, functionality, format of request and reply,
pre-conditions and post-conditions, exception handling, quality of service, and
so on. A formal interface definition provided by IDL or WSDL can be seen as
an optional part of the service contract.

� Service interface

The service interface exposes the implementation of the functionality.
Although the description of the interface is part of the service contract, the
physical implementation is contained in the service producer and consumer.

� Service implementation

The service implementation provides the business logic that is exposed by
the service interface.

1.1.3 Design principles
To meet the requirements of the drivers, a set of design principles is needed to
refine the desired characteristics of the system. Because services are a crucial
part of SOA, the principles mostly define their behavior and interaction.
 Chapter 1. Introduction 3

Granularity
Services should be delivered at a level of granularity and abstraction that is
meaningful to the service requestor. Many descriptions of SOA refer to the use of
large-grained services; however, some powerful counter examples of successful,
reusable, fine-grained services exist. For example, getBalance is a very useful
service, but hardly large grained.

More realistically, there will be many useful levels of service granularity in most
SOAs. For example, all of the following are services; however, they have
different granularity. Some degree of choreography or aggregation is required
between each granularity level for them to be integrated in an SOA:

� Technical Function Services

For example, auditEvent, checkUserPassword, and checkUserAuthorization

� Business Function Services

For example, calculateDollarValueFromYen and getStockPrice

� Business Transaction Services

For example, checkOrderAvailability and createBillingRecord

� Business Process Services

For example, openAccount, createStockOrder, reconcileAccount, and
renewPolicy

A service can be any business or technical function; however, in an SOA it is
preferable that the function is genuinely reusable. It is therefore inevitable that
conventions will need to be defined for assigning services to corresponding
abstraction layers. A criteria for this definition may be the level on which a service
provides a reasonable amount of reuse.

Figure 1-1 on page 5 provides an overview of the different abstraction levels
within an SOA.
4 Enabling SOA Using WebSphere Messaging

Figure 1-1 SOA abstraction layers

Figure 1-1 is described below:

� Functional domain

Acts as the owner of different business processes. For example, a car dealer
needs to have a process for selling cars.

� Business process

A business process typically has a state attached to it and often acts as a
controller or workflow engine by calling different lower-level services
providing parameters that reflect the actual state of the process. For example,
the selling of a car involves the credit check for a client as well.

� Business services

A business service is atomic in nature but orchestrates the invocation of
lower-level component services into a business-level process. A business
service is stateless from the view of the requestor but may hold internal state
while calling lower-level services. Business services can be called
synchronously or asynchronously. For example, a car business service
provides the functionality of checking if a specific car is reserved for a client
before it performs the selling.

� Component services
 Chapter 1. Introduction 5

A component service is a simple atomic action on a simple entity that does
not depend on another service to function. For example, database access to
a single table like the car table can be thought of as a component service.

� Software components

This layer contains enterprise resources, existing systems, or applications
including packaging application and historical application. For example, the
car table within the database is a software component.

Fine-grained services are best consumed by more coarse-grained services
instead of directly by the end applications. If an application is built using
fine-grained services, the application will have to invoke multiple services over
the network, each of which exchanges a small amount of data. Consumers of
coarse-grained services are not exposed to the fine-grained services that they
use.

Modularity
In an SOA, services are described as being modular and self-contained. A
service supports a set of interfaces. These interfaces should be cohesive, which
means they should all relate to each other in the context of a module. An
appropriate service modularity in an SOA enables the aggregation of the
services into an application with a few well-known dependencies.

There exists a set of criteria to help determine wether a service is sufficiently
modular:

� Modular decomposability (top-down approach)

The modular decomposability of a service refers to the breaking of an
application into many smaller modules. The goal is to identify the smallest unit
of software that can be reused in different contexts.

� Modular composability (bottom-up approach)

The modular composability of a service refers to the implementation of
services that can be reused as they are to implement a new system. In
contrast to the bottom-up approach, which is more focused on the application
functions, the top-down approach is focused on the business problem.

� Modular understandability

The modular understandability of a service refers to the ability of a person to
understand the function of a service without knowing the others. For example,
a service name called CustomerSellCar that mixes the semantics of the
customer service and a car service limits the modular understandability. If a
service is not understood from a functional perspective, it might never be
reused.

� Modular continuity
6 Enabling SOA Using WebSphere Messaging

The modular continuity of a service refers to the impact of a change in one
service requiring a change in others or in the consumers of the service. An
interface that does not sufficiently hide the implementation details of a service
creates a domino effect when changes are needed.

� Modular protection

The modular protection of a service is sufficient if an abnormal condition in
the service does not cascade to other services or consumers. For example,
validating user input at its source prevents the propagation through the
application.

Taking these criteria into consideration noticeably increases the modular design
of services.

Loose coupling
Services are described as being loosely coupled. The systems must have some
common understanding to conduct an interaction. Instead, to achieve the
benefits of loose coupling, consideration should be given to how to couple or
decouple various aspects of service interactions, such as the platform and
language in which services are implemented, the communication protocols used
to invoke services, and the data formats used to exchange input and output data
between service consumers and providers.

� Language independence

The language independence of services refers to their ability to communicate
with other services independent of the programming language that both are
written with.

� Transport protocol transparency

The transport protocol transparency of services refers to their ability to
communicate with other services independent of the protocol that both are
connected with. From a requestor’s perspective, the transport protocol that
the provider is using has no impact on how a request is made.

� Location transparency

The location transparency of services refers to their ability to communicate
with other services without knowledge of where they really reside. From a
requestor’s perspective, the location of the service has no impact on how a
request is made.

� Data format independence

Data format independence of services refers to their ability to communicate
with each other without using exactly the same schema (structure, element
types) for the data they need to exchange. From a requestor’s perspective,
the schema that a provider expects has no impact on how a request is made.
 Chapter 1. Introduction 7

� Platform independence

The platform independence of services refers to their ability to communicate
with others independent of the kind of platform they are located on.

� Communication model transparency

The communication model transparency of services refers to their ability to
communicate with each other independent of whether they are connected
through a synchronous or asynchronous medium.

1.2 SOA and messaging
Successfully implementing an SOA requires applications and infrastructure that
can support the SOA principles. Applications can be enabled by creating service
interfaces to existing or new functions hosted by the applications. The service
interfaces should be accessed using an infrastructure that can route and
transport service requests to the correct service provider. As organizations
expose more and more functions as services, it is vitally important that this
infrastructure should support the management of SOA on an enterprise scale.

Benefits of messaging in an SOA environment
The design principles of granularity and modularity are resolved primarily at the
application level. In contrast, the aspect of loose coupling can be greatly
addressed by using messaging middleware. The use of such middleware
supports the principles of an SOA implementation by:

� Decoupling the consumer’s view of a service from the actual implementation
of the service

� Decoupling technical aspects of service interactions

� Integrating and managing services in the enterprise

Decoupling the consumer’s view of a service from the actual implementation
greatly increases the flexibility of the architecture. It allows the substitution of one
service provider for another (for example, because another provider offers the
same services for lower cost or with higher standards) without the consumer
being aware of the change, or needing to be altered to support it.

This decoupling is better achieved by having the consumers and providers
interact via an intermediary. Intermediaries publish services to consumers. The
consumer binds to the intermediary to access the service, with no direct coupling
to the actual provider of the service. The intermediary maps the request to the
location of the real service implementation.
8 Enabling SOA Using WebSphere Messaging

Figure 1-2 shows the requestor and the provider connected using a messaging
infrastructure as an intermediary.

Figure 1-2 Decoupling requestor and provider using messaging as intermediary

Table 1-1 shows an overview of the coupling aspects related to the use of
messaging middleware.

Table 1-1 Coupling aspects of messaging middleware

Coupling aspect Justification

Language independence The payload of a message can be passed in a
language-independent manner. An appropriate
interface to the messaging middleware needs
to exist for requestor and provider.

Transport protocol transparency The transport protocol used is encapsulated by
the interface of the messaging infrastructure. A
requestor does not need to know if a provider is
connected using the same transport protocol.

Location transparency For a service requestor or provider the
messaging infrastructure is just a
communication medium. A requestor does not
need to know the route a message takes as
long as it gets the result it expects.

Data format independence The payload of a message is passed in a data
format independent manner.

Platform independence Messaging infrastructure supports the
communication between different platforms
and even provides mapping functionality
between different data and encoding formats.

Communication model transparency Messaging not only supports the synchronous
communication model but also the
asynchronous, thus providing enhanced
flexibility in binding and orchestrating services.
 Chapter 1. Introduction 9

1.3 Using an enterprise service bus
An enterprise service bus (ESB) provides an infrastructure that removes any
direct connection between service consumers and providers. Consumers
connect to the bus and not the provider that actually implements the service. This
type of connection further decouples the consumer from the provider. A bus also
implements further value add capabilities. For example, security and delivery
assurance can be implemented centrally within the bus instead of having this
buried within the applications.

Integrating and managing services in the enterprise outside of the actual
implementation of the services in this way helps to increase the flexibility and
manageability of SOA. The primary driver for an ESB, however, is that it
increases decoupling between service consumers and providers. Protocols such
as Web services define a standard way of describing the interface to a service
provider that allow some level of decoupling, as the actual implementation details
are hidden. However, the protocols imply a direct connection between the
consumer and provider.

Although it is relatively straightforward to build a direct link between a consumer
and provider, these links can lead to an interaction pattern that consists of
building multiple point-to-point links (Figure 1-3) that perform specific
interactions. With a large number of interfaces this quickly leads to the build up of
a complex spaghetti of links with multiple security and transaction models.
Routing control is distributed throughout the infrastructure, and probably no
consistent approach to logging, monitoring, or systems management is
implemented. This environment is difficult to manage or maintain and inhibits
change.

Figure 1-3 Direct connection integration style

Direct Connection

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider
10 Enabling SOA Using WebSphere Messaging

A common approach to reduce this complexity is to introduce a centralized point
through which interactions are routed, as shown in Figure 1-4.

Figure 1-4 Central hub integration style

This hub and spoke architecture is a common approach that is used in
application integration architectures. In a hub, the distribution rules are separated
from applications. The applications connect to the hub and not directly to any
other application. This type of connection allows a single interaction from an
application to be distributed to multiple target applications without the consumer
being aware that multiple providers are involved in servicing the request. This
connection can reduce the proliferation of point-to-point connections.

Note that the benefit of reducing the number of connections only truly emerges if
the application interfaces and connections are genuinely reusable. For example,
consider the case where one application needs to send data to three other
applications. If this is implemented in a hub, the sending application must define
a link to the hub, and the hub must have links that are defined to the three
receiving applications, giving a total of four interfaces that need to be defined. If
the same scenario was implemented using multiple point-to-point links, the
sending application would need to define links to each of the three receiving
applications, giving a total of just three links. A hub only offers the benefit of
reduced links if another application also needs to send data to the receiving
applications and can make use of the same links as those that are already
defined for the first application. In this scenario, the new application only needs
to define a connection between itself and the hub, which can then send the data
correctly formatted to the receiving applications.

Hubs can be federated together to form what is logically a single entity that
provides a single point of control but is actually a collection of physically
distributed components. This is commonly termed a bus. A bus provides a

Hub and Spoke

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Hub:
ESB
 Chapter 1. Introduction 11

consistent management and administration approach to a distributed integration
infrastructure.

ESB capabilities
This section discusses the capabilities an ESB must have to support the
requirements of an SOA enabling infrastructure component. Understanding the
capabilities allows you to assess the suitability of individual technologies or
products for implementing an ESB by analyzing the functionality that they offer.
In discussions on ESB, the most commonly agreed upon elements for defining
an ESB are:

� The ESB is a logical architectural component that provides an integration
infrastructure that is consistent with the principles of SOA.

� The ESB can be implemented as a distributed, heterogeneous infrastructure.

� The ESB provides the means to manage the service infrastructure and the
capability to operate in a distributed, heterogeneous environment.

Table 1-2 summarizes the capabilities that an ESB should have in order to
provide an infrastructure consistent with these elements, and thus consistent
with the benefits of SOA.

Table 1-2 Capabilities of an ESB

Category Capabilities Reason

Communication � Routing
� Addressing
� At least one messaging

style (request/response,
publish/subscribe)

� At least one transport
protocol that is or can be
made widely available

Provides location
transparency and supports
service substitution

Integration � Several integration styles or
adapters

� Protocol transformation

Supports integration in
heterogeneous
environments and
supports service
substitution

Service interaction � Service interface definition
� Service messaging model
� Substitution of service

implementation

Separates application
code from specific service
protocols and
implementations

Management � Administration capability A point of control over
service addressing and
naming
12 Enabling SOA Using WebSphere Messaging

Let us take a closer look at each of these categories:

� Communication

The ESB needs to supply a communication layer to support service
interactions. It should support communication through a variety of protocols. It
should provide underlying support for message and event-oriented
middleware and integrate with existing HTTP infrastructure and other
enterprise application integration (EAI) technologies. As a minimum
capability, the ESB should support at least the protocols that make sense
given the requirements of a specific situation. The ESB should be able to
route between all these communication technologies through a consistent
naming and administration model.

� Integration

The ESB should support linking to a variety of systems that do not directly
support service-style interactions so that a variety of services can be offered
in a heterogeneous environment. This includes existing systems, packaged
applications, and other EAI technologies. Integration technologies might be
protocols (for example, JDBC™, FTP, or EDI) or adapters such as the J2EE
Connector Architecture resource adapters or WebSphere Business
Integration Adapters. It also includes service client invocation through client
APIs for various languages (Java™, C+, or C#) and platforms (J2EE or .Net),
CORBA, and RMI.

� Service interaction

The ESB needs to support SOA concepts for the use of interfaces and
support declaration service operations and quality of service requirements.
The ESB should also support service messaging models consistent with
those interfaces, and be capable of transmitting the required interaction
context, such as security, transaction, or message correlation information.

� Management

As with any other infrastructure component, the ESB needs to have
administration capabilities so that it can be managed and monitored to
provide a point of control over service addressing and naming. In addition, it
should be capable of integration into systems management software.

1.4 The IBM SOA Foundation
IBM SOA Foundation is an integrated, open-standards-based set of software,
best practices, and patterns that can help you get started with your SOA. It is
designed to help you extend the value of the applications and business
processes that currently run your business.
 Chapter 1. Introduction 13

You can read about the IBM SOA Foundation in IBM SOA Foundation: providing
what you need to get started with SOA at:

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf

The following is a quick summary of the highlights.

1.4.1 SOA life cycle
SOA can be thought of in terms of a life cycle consisting of the following stages:

� The model phase consists of gathering business requirements and designing
business processes.

� In the assemble phase the processes are implemented by assembling new
and existing services to form these business processes.

� In the deploy phase, these assets are deployed into a secure integrated
services environment.

� And last, in the manage phase, these business processes are monitored and
managed from both an IT and business perspective. Information gathered in
this phase is fed back into the life cycle to enable improvement.

Governance and processes underpin these life-cycle stages to provide guidance
and oversight for the SOA project.

Each life-cycle stage is supported by software that has been chosen to be a part
of the IBM SOA Foundation.

1.4.2 SOA Reference Architecture
IBM SOA Foundation is based on the SOA Reference Architecture, which
defines the comprehensive IT services required to support your SOA at each
stage in the SOA life cycle. The SOA Reference Architecture includes
development environment, services management, application integration, and
runtime process services. The capabilities of the architecture can be
implemented on a build-as-you-go basis as new requirements are addressed
over time.

Figure 1-5 on page 15 shows the SOA Reference architecture and a sampling of
the supporting software.
14 Enabling SOA Using WebSphere Messaging

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf

Figure 1-5 SOA Reference Architecture with product mapping

The following services are defined in the SOA Reference Architecture:

� Infrastructure services optimizes throughput availability and performance.

� Partner services connects with trading partners.

� Business application services provides a scalable, highly available, and
secure application environment.

� Access services facilitates interaction with existing information and application
assets using application adapters or host access services.

� Interaction services manages collaboration between people, processes, and
information.

� Process services orchestrates and automates business processes.

� Information services manages diverse data in a unified manner.

� Business innovation and optimization services provide real-time business
information monitoring to facilitate better decision making.

� Enterprise service bus facilitates communication between services.

� Development services provides an integrated environment to design and
create solution assets.

� IT service management manages and secures services, applications, and
resources.

Interaction Services
WebSphere Portal

Server

Process Services
WebSphere Process

Server

Information Services
WebSphere

Information Integration

Partner Services
WebSphere

Partner Gateway

Business App Services
WebSphere

Application Server

Access Services
WebSphere Business

Integration Adapters/HATS

Infrastructure Services

WebSphere ESB WebSphere Message BrokerESB

Rational
Application
Developer

WebSphere
Integration
Developer

WebSphere
Business

Integration
Modeler

Business Innovation & Optimization Services
WebSphere Business Integration Monitor

IBM Tivoli
Composite
Application

Manager

D
ev

el
op

m
en

t
Se

rv
ic

es

IT
 S

er
vi

ce
s

M
an

ag
em

en
t

 Chapter 1. Introduction 15

Model and assemble phases
The Development Services provide services for the model and assemble phases
of the SOA life cycle. The IBM development tools are based on a common
platform, making the learning curve easy as you progress from tool to tool. These
development tools are tailored to the task at hand and align with the runtime
environments.

Rational Application Developer is the primary development tool for WebSphere
Application Server applications. With this tool, you can create J2EE assets such
as servlets and EJBs, test the code, and deploy to the runtime server. Among the
many useful features are the Web services tools that provide wizards to assist
you in creating Web services clients, Web services providers, and in wrapping
existing applications as services.

WebSphere Integration Developer is the primary development tool for
WebSphere Process Server and WebSphere ESB. With this tool you can create
a business process with BPEL, configure adapters, create mediations, test the
code, and deploy to the runtime server.

Manage phase
The IT Service Management provides services for the manage phase, including
the management and security of services, applications, and resources. The
following IBM products support the manage phase:

� IBM WebSphere Business Monitor
� IBM Tivoli® Composite Application Manager
� IBM Tivoli Identity Manager and IBM Tivoli Access Manager

Deploy phase
The remainder of the services are involved in the deploy phase, providing
runtime services. The following IBM products support the deploy phase:

� IBM WebSphere Process Server
� IBM WebSphere ESB and IBM WebSphere Message Broker
� IBM WebSphere Partner Gateway and IBM WebSphere Adapters
� IBM WebSphere Portal
� IBM WebSphere Everyplace® Deployment
� IBM Workplace™ Collaboration Services
� IBM WebSphere Information Integrator
� IBM WebSphere Application Server
� IBM WebSphere Extended Deployment
16 Enabling SOA Using WebSphere Messaging

1.5 For more information
For more information about the concepts covered in this chapter, see:

� IBM Service Oriented Architecture (SOA) Web page

http://www-306.ibm.com/software/solutions/soa/

� IBM SOA Foundation: providing what you need to get started with SOA

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

� Patterns: Implementing Self-Service in an SOA Environment, SG24-6680
 Chapter 1. Introduction 17

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf
http://www-306.ibm.com/software/solutions/soa/

18 Enabling SOA Using WebSphere Messaging

Chapter 2. Product selection

This chapter discusses the IBM products that form the foundation for messaging
in the IBM SOA strategy. It will help you determine what products may be
appropriate for your situation.

2

© Copyright IBM Corp. 2006. All rights reserved. 19

2.1 IBM SOA Foundation products for messaging
In this book we take a look at the set of products shown in Figure 2-1. These
products form the heart of the IBM SOA strategy. In particular, we take these
within the context of a messaging solution.

Figure 2-1 IBM SOA products for messaging

Figure 2-1 is explained below:

� Foundation and messaging infrastructure

WebSphere Application Server provides the runtime environment for J2EE
applications. WebSphere Application Server provides the J2EE containers
required to execute the applications, as well as the services that enable the
execution of specific Java application components. WebSphere Application
Server hosts a JMS-based messaging engine that provides enhanced
messaging functionality and a Web services engine that is capable of hosting
and invocating SOAP-based Web services.

WebSphere MQ provides the transport mechanism for messages.
WebSphere MQ supports assured, asynchronous, once-only delivery of

WebSphere MQ

Messaging Provider

Foundation and
Messaging
Infrastructure

Business
Process WebSphere

Process Server
Business processes using BPEL
+ WebSphere ESB

WebSphere ESB
Enterprise Service Bus functions
Web services connectivity
+ WebSphere Application Server
Network Deployment

ESB WebSphere
Message Broker

Advanced Enterprise Service
Bus functions
Messaging connectivity

WebSphere
Application Server

J2EE applications
Default Messaging Provider
Connectivity with WebSphere MQ
20 Enabling SOA Using WebSphere Messaging

messages across a broad range of hardware and software platforms like
Windows®, z/OS®, .NET, and J2EE and is accessible using various
programming languages and interfaces like Visual Basic®, C++, Java,
COBOL, PL/I, as well as MQI and JMS.

� ESB

The enterprise service bus (ESB) layer provides flexible connectivity and
integration for Web services and messaging-focused applications.

WebSphere Enterprise Service Bus (WebSphere ESB) provides ESB
functionality for standards-based applications. Built on WebSphere
Application Server, WebSphere ESB takes advantage of its many features,
including high availability, scalability, and performance. Beyond the basic
programming-based mediation functionality available in WebSphere
Application Server, WebSphere ESB provides a mediation layer with pre-built
mediations for XML transformation, content-based routing, and message
logging. Like WebSphere Process Server, WebSphere ESB supports Service
Component Architecture (SCA) and Service Data Objects (SDO) to provide a
unified programming model.

WebSphere Message Broker provides advanced ESB functionality for
universal support of messaging applications. Built on WebSphere MQ,
WebSphere Message Broker takes advantage of the services provided by the
messaging infrastructure and enhances them by adding a runtime
environment that supports message processing like message transformation
and routing.

� Business process

WebSphere Process Server provides services to enable the integration of
composite applications. It addresses issues of system and technology
heterogeneity by applying the IBM SOA programming model consisting of
SCA and SDO. SCA and SDO allow the definition of service component
interfaces, implementations, and references in a technology-neutral way that
can be bound later to the technology chosen. On top of this
technology-neutral service component layer is a Business Process Execution
Language (BPEL)-based orchestration and runtime environment for the
dynamic composition of the service components to processes.
 Chapter 2. Product selection 21

2.2 WebSphere Application Server
The foundation of the WebSphere brand is the application server, which provides
the runtime environment and management tools for J2EE and Web services
based applications. WebSphere Application Server provides qualities of service
like clustering, failover, scalability, and security. It also includes a built-in
messaging provider, which can be configured to connect to an existing
WebSphere MQ network.

WebSphere Application Server is available in three packages:

� WebSphere Application Server Express

The Express package is geared to those who need to get started quickly with
e-business. It is specifically targeted at medium-sized businesses or
departments of a large corporation, and is focused on providing ease of use
and ease of application development. It contains full J2EE 1.4 support but is
limited to a single-server environment. WebSphere Application Server -
Express is bundled with the Rational Web Developer application development
tool.

� WebSphere Application Server

The WebSphere Application Server package provides the next level of server
infrastructure. Though the server is functionally equivalent to the server
shipped with Express, this package differs slightly in packaging and licensing.

IBM Message Service API (XMS):

This book focuses on JMS applications; however, you should be aware of the
IBM Message Service API (XMS). XMS is a programming API that allows
access from C, C++, and .NET applications to the following IBM messaging
servers:

� WebSphere MQ
� WebSphere Message Broker real-time transport
� WebSphere Application Server V6 default messaging provider

Similar to JMS, it provides a mechanism for non-Java applications to
participate in point-to-point and pub/sub messaging. It supports both
synchronous and asynchronous messaging styles.

� Introducing XMS -- The IBM Message Service API

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509
_phillips/0509_phillips.html
22 Enabling SOA Using WebSphere Messaging

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509_phillips/0509_phillips.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509_phillips/0509_phillips.html

The development tool included is a trial version of a Rational Application
Developer, full J2EE 1.4 compliant development tool.

� WebSphere Application Server Network Deployment

WebSphere Application Server Network Deployment is an even higher level
of server infrastructure in the WebSphere Application Server family. It
extends the WebSphere Application Server base package to include
clustering capabilities, Edge components, and high availability for distributed
configurations. These features become more important at larger enterprises,
where applications tend to service a larger client base, and more elaborate
performance and availability requirements are in place.

The basic architectural model for WebSphere Application Server is shown in
Figure 2-2 on page 24.
 Chapter 2. Product selection 23

Figure 2-2 Architectural model of WebSphere Application Server

The architectural model for Network Deployment is similar to this, but adds a
deployment manager for central administration and management for all
application servers grouped together in a cell. In Network Deployment, the admin
services resides in the deployment manager. Multiple servers are possible and
application server clustering is used for workload management and high
availability.

WebSphere Application Server V6 provides full support for the J2EE 1.4
specification. The J2EE specification defines the concept of containers to provide
runtime support for applications. There are three types of containers in the
application server implementation:

� Web container

Web container

Web
browser

client HTTP server

Web server
plug-in

Application Server
Admin
tools Admin service

EJB container
Java client

Client container

Name Server (JNDI)

Security server

Web Services engine

Messaging engine

Web Service
Provider or
Gateway

Bus
Msg

Queue service
destinations

Application
DatabaseJCA services

EIS
24 Enabling SOA Using WebSphere Messaging

The Web container processes HTML, servlets, JSP™ files, and other types of
server-side includes. It provides infrastructure support like Web container
transport chains, session management, and Web services engine.

� EJB™ container

The EJB container provides all the runtime services that are needed to deploy
and manage enterprise beans. It is a server process that handles requests for
both session and entity beans. The container provides low-level services
including threading and transaction support.

� Client container

The client container is a separately installed component on the client’s
machine. It allows the client to run applications in an environment that is
compatible with J2EE.

In addition to the definition of containers as a runtime environment for application
components, J2EE prescribes the support of the J2EE Connection Architecture
(JCA) that provides connection management for access to enterprise information
systems (EIS). The connection between the enterprise application hosted by the
application server and the EIS is done through the use of EIS-provided
resource-adapters, which are plugged into the application server. The
architecture specifies the connection management, transaction management,
and security contracts that exist between the application server and the EIS.

Each application server hosts a name service that provides a Java Naming and
Directory Interface™ (JNDI) name space. The service is used to register
resources hosted by the application server. The JNDI implementation in
WebSphere Application Server is built on top of a Common Object Request
Broker Architecture (CORBA) naming service (CosNaming). The naming
architecture is used by clients of WebSphere applications to obtain references to
objects related to those applications. These objects are bound into a mostly
hierarchical structure, referred to as a namespace. The namespace can be
accessed and manipulated through a name server.

WebSphere Application Server security provides flexibility by providing pluggable
modules that can be configured according to requirements and existing IT
resources. The application server’s security features sit on top of the operating
system security and the security features provided by other components,
including the Java language. The WebSphere Application Server supports J2EE
security with the required role mapping as well as Java 2 security and JAAS
support. The authentication features support LTPA and SWAM and the applied
user registry can be based on the local operating system, LDAP, or a custom
registry.
 Chapter 2. Product selection 25

The WebSphere Application Server supplies messaging providers for its own
messaging implementation (default messaging provider) and for WebSphere MQ
(WebSphere MQ JMS provider). It also supports generic JMS providers.

The default messaging provider is WebSphere Application Server’s JMS API
implementation (connection factories, JMS destinations, and so on) for
messaging. The concrete destinations (queues and topic spaces) behind the
default messaging provider are implemented in the service integration bus.
(Similarly, the WebSphere MQ JMS provider is the JMS API implementation with
WebSphere MQ implementing the real destinations for the JMS interface.)
Application server access to the service integration bus is managed by the
messaging engine.

WebSphere messaging provides a consolidation of support for queuing, pub/sub,
and Web services, thus providing a platform for several key messaging and
interaction patterns. For example, both pseudo-synchronous request-reply
messaging and asynchronous fire-and-forget messaging are supported.
Messaging engines connect to a service integration bus that provides message
transport. Message producers and consumers communicate by interacting with
the bus, not directly with each other. A key feature of the bus is the ability to use
a variety of protocols to send and receive messages to and from the bus. For
example, a message can be sent into the bus as a Web services request
message based on the SOAP protocol over HTTP. The bus can then forward this
message to a JMS consumer. The messaging engine supports the concept of
mediations. A mediation is a piece of code that is associated with a destination,
the logical target for a message. Mediation code operates on a message as it
traverses that destination and thus supports, for example, message
transformation and routing.

The Web services engine of the WebSphere Application Server supports
SOAP-based Web service hosting as well as invocation. It contains support for
various Java and Web services standards including WS-I Basic Profile,
WS-Security, JAX-RPC, JAXR, SAAJ, and UDDI.

Web server plug-ins enable the Web server to send requests for dynamic
content, such as servlets, to the application server. A configuration file that
contains information about the application server configuration is generated at
the application server and copied to the Web server for use by the plug-in. The
plug-in provides load balancing among application servers.

With Network Deployment, clustering application servers automatically enables
plug-in workload management for the application servers and the servlets they
host. The routing is based on weights associated with the cluster members. If all
cluster members have identical weights, the plug-in sends equal requests to all
members of the cluster. Workload management for EJB containers can be
performed by configuring the Web container and EJB containers on separate
26 Enabling SOA Using WebSphere Messaging

application servers. Multiple application servers with the EJB containers can be
clustered, enabling the distribution of EJB requests between the EJB containers.

WebSphere Application Server Network Deployment also provides high
availability features. The following is a quick overview of the failover capabilities:

� Web container failover

The Web server plug-in in the Web server is aware of the configuration of all
Web containers and can route around a failed Web container in a cluster.
Sessions can be persisted to a database or in-memory using data replication
services.

� EJB container failover

Client code and the ORB plug-in can route to the next EJB container in the
cluster.

� Critical services failover

Hot standby and peer failover for critical services (such as workload
management routing, PMI aggregation, JMS messaging, transaction
manager, and so on) is provided through the use of high availability domains.
A high availability domain defines a set of WebSphere processes (core
group) that provides high availability functions to each other.

One or more members of the core group can act as a high availability
coordinator, managing the HA activities within the core group processes. If a
high availability coordinator server fails, another server in the core group
takes over the duties of that coordinator. High availability policies define how
the failover occurs. Workload management information is shared between
core members and failover of critical services is done among them in a
peer-to-peer fashion. Little configuration is necessary, and in many cases,
this function works with the defaults that are created automatically as you
create the processes.

� JMS messaging failover

The messaging engine keeps messages in a remote database. When a
server in a cluster fails, WebSphere selects an online server to run the
Messaging Engine and the workload manager routes JMS connections to that
server.

WebSphere Application Server provides a browser-based administrative console
for administration. Command-line and scripting administration is also provided.

You can find more information about the WebSphere Application Server at the
WebSphere Application Server home page:

http://www.ibm.com/software/webservers/appserv/was/
 Chapter 2. Product selection 27

http://www.ibm.com/software/webservers/appserv/was/

2.3 WebSphere MQ
IBM WebSphere MQ is an established and reliable message queuing
middleware platform. A message queuing infrastructure built upon WebSphere
MQ technology can provide an available, reliable, scalable, secure, and
maintainable transport for messages with exactly once delivery assurance.

Figure 2-3 shows the architectural overview for WebSphere MQ, including the
interface for Java Message Service (JMS) and the Message Queuing Interface
(MQI).

Figure 2-3 Architectural model of WebSphere MQ

MQI is the core API provided by WebSphere MQ. It is a procedural API suitable
for applications developed within procedural programming languages. The MQI
also defines structures, constants, and basic data types required to interact with
WebSphere MQ. Procedural languages like C and COBOL most likely utilize
MQI directly, while object-oriented languages like Java and C++ are supported
with object-oriented APIs built upon MQI.

JMS Interface

Message Queuing Interface Channel

Queue
Manager Queues Message

Channel Agent

Object Authority
Manager Channel Exits
28 Enabling SOA Using WebSphere Messaging

WebSphere MQ also supports XMS, a programming API that allows access from
C, C++, and .NET applications.

Queue managers are the core element within a WebSphere MQ messaging
infrastructure. They provide queuing services to applications and manage the
queues that belong to them. Queue managers ensure that object attributes are
changed according to the commands they receive. They trigger special events
when certain conditions are met and they put messages onto the correct queue.
Every application that wants to access a WebSphere MQ messaging
infrastructure needs to be connected to a queue manager within this
infrastructure. Applications can only retrieve messages from queues hosted by
the queue manager to which they are connected, but they can send messages to
queues hosted by other queue managers, as long as a network link exists
between both queue managers. A machine with a WebSphere MQ installation
can host multiple queue managers; the amount is limited only by the resources of
the machine.

WebSphere MQ defines different kinds of queues:

� Local queues

Local queues are the only type of queues that represent a real queue and
hold messages.

� Transmission queues

Transmission queues utilize message channels to transmit messages to
remote queue managers. They provide a queue manager with knowledge of
how to route messages to a single destination queue manager. Any
messages sent with a queue manager name the same as the name of the
transmission queue are placed upon that transmission queue.

� Alias queues

An alias queue is a representation of another target queue, which has a
different name. Alias queues can be used to enhance flexibility regarding
naming.

� Model queues

Model queues provide the attributes of a local queue that can be created
dynamically by an application. Dynamically created queues are instances of
local queues and can hold messages. They can, for example, be used as
dynamic reply queues in request-reply scenarios.

� Remote queues

Remote queues are used to define routes to other queue managers within the
WebSphere MQ messaging infrastructure. This involves mapping queue
manager names to transmission queues, and mapping queue names to
different queue names on remote queue managers.
 Chapter 2. Product selection 29

A channel is a communication object used by distributed queue managers. There
are two types of channels:

� Message channels, which are unidirectional and transfer messages from one
queue manager to another

� MQI channels, which are bidirectional and transfer MQI calls from a
WebSphere MQ client to a queue manager and responses from a queue
manager to the client

Every channel in WebSphere MQ is a network link between two Message
Channel Agents (MCAs). A connection performed by an application connecting
to a queue manager is also performed by an MCA, even though it is not
performed from within a queue manager.

Channel exits are user-written libraries that are called at defined places in the
processing sequence of an MCA. They can be used to do additional processing
on messages, for example, encryption or data compression. Based on the
functionality and place where they are called, there are different types of exits
(message exit, message-retry exit, receive exit, security exit, send exit, and
auto-definition exit).

WebSphere MQ provides features to assure security of access, authentication of
identity, and security and integrity of communication. The Object Authority
Manager (OAM) is the default authorization service for command and object
management. All actions performed by an application connected to a queue
manager are authenticated by the OAM.

WebSphere MQ provides high availability through workload balancing and
failover capabilities. It supports the concept of queue manager clusters
consisting of a set of queue managers. Applications requesting a particular
service can connect to any queue manager within the cluster. The queue
manager to which the application is connected automatically load balances the
request with the others. Queue managers can dynamically join or leave clusters
and can be hosted on different machines, which is especially useful in a
distributed environment where capacity is scaled to accommodate the current
load through multiple servers rather than one mainframe or high-capacity server.

WebSphere MQ provides reliability and data integrity by supporting units of work
as well as persistent and non-persistent messages.

Units of work performed by applications accessing a WebSphere MQ
infrastructure can include sending and receiving messages, as well as updates
to databases. WebSphere MQ can coordinate all resources to ensure that a unit
of work is only completed if all actions within that unit of work complete
successfully. WebSphere MQ can also participate in units of work that are
coordinated by other products. For example, actions against a WebSphere MQ
30 Enabling SOA Using WebSphere Messaging

infrastructure can be included in units of work that are coordinated by
WebSphere Application Server.

WebSphere MQ supports the concept of persistent and non-persistent
messages. Persistent messages are retained during system failures but provide
comparable low performance, while non-persistent messages provide high
performance but may be lost during system failures.

WebSphere MQ contains monitoring and accounting functionality. It provides
real-time performance information about flow of messages, it allows report
generation for queue manager usage on application level base, and it provides
facilities to identify the route that a messages took through a WebSphere MQ
infrastructure or interconnected WebSphere MQ infrastructures.

Administration of WebSphere MQ is typically done using control commands or
the WebSphere MQ Explorer administrative interface (Windows or Linux® only).

You can find more information about IBM WebSphere MQ at the WebSphere MQ
home page:

http://www.ibm.com/software/integration/wmq/

2.4 WebSphere ESB
WebSphere ESB is designed to provide an enterprise service bus for IT
environments built around open standards and SOA. It delivers easy-to-use
functionality built on the messaging and Web services technologies of
WebSphere Application Server.

The WebSphere ESB architectural model is shown in Figure 2-4 on page 32.
 Chapter 2. Product selection 31

http://www.ibm.com/software/integration/wmq/

Figure 2-4 Architectural model of WebSphere ESB

WebSphere Application Server is the foundation for WebSphere ESB, providing
not only the required quality of service, the J2EE runtime environment, and the
messaging engine, but also by providing broad support regarding open
standards and Web services. WebSphere ESB is built on the Network
Deployment package, providing a wide range of capabilities for large enterprise
networks, including clustering, failover, and scalability features.

On top of the infrastructure provided by WebSphere Application Server,
WebSphere ESB implements a mediation layer consisting of a mediation base
and mediation functions. The newly provided mediation framework is different
from the one implemented by WebSphere Application Server, as it is based on
the Service Component Architecture (SCA). It allows enhanced flexibility,
encapsulation, and reuse. Mediations implemented for WebSphere Application
Server can still be used together with WebSphere ESB, but the new tooling
provided for WebSphere ESB does not support the modification of these
mediations.

The mediation base is provided by SCA and Service Message Objects (SMO).
SCA supports the description of every mediation module through a
technology-neutral interface. SMO is based on SDO and supports the
representation of a binding-specific data format in a common, neutral way. The
application of this SCA/SMO-based programming model allows for the
configurable assembly of different mediation modules to a mediation flow, thus
enabling a very flexible and encapsulated solution.

Service Component
Architecture

Service Message
Objects

Mediation
Functions

Database
Lookup

Message Filter
and Router

Custom

Message
Logger

XSLT Message
Transformation

WebSphere Application Server (J2EE Runtime)

Mediation
Base
32 Enabling SOA Using WebSphere Messaging

Mediation functions are built upon the mediation base and consist of one or more
mediation modules. An SCA/SMO-based mediation module is composed of
different parts such as imports representing providers, exports representing
service consumers, and mediation flow components representing integration and
mediation functionality.

WebSphere ESB provides pre-built components called mediation primitives that
can be used in mediation flows to perform XSLT message transformation,
logging, routing, and database lookup. It also supports the implementation of
custom mediation primitives.

WebSphere ESB supports different binding types for imports and exports, thus
allowing the connection of different kinds of service consumers and providers.
Supported binding types are JMS binding, Web services binding, WebSphere
adapter binding, as well as a default binding used for module to module
communication.

The mediation framework and its mediation modules separate the processing of
requests from the processing of replies. They allow the mediation flow
components to pass a potentially modified request from a service consumer to a
service provider and to pass a potentially modified reply from a service provider
to a service consumer. The request processing within a mediation flow
component can send a reply back to the consumer without necessarily needing
to contact a service provider.

2.4.1 Mediation functions in WebSphere ESB versus WebSphere
Application Server

Before the announcement of WebSphere ESB, the service integration bus in
WebSphere Application Server was often positioned as a basic ESB. Though
this is still a useful strategy for development environments, WebSphere ESB is
now the recommended solution for environments where the service integration
bus was used.

WebSphere ESB adds the following functionality to the service integration bus:

� Easy-to-build mediation layer
� Simplified administration
� Pre-built mediation functions
� Broad connectivity

Mediation functions in WebSphere ESB are service intermediaries that:

� Operate on interactions between service endpoints (consumer and provider).

� Are administered as part of WebSphere ESB.
 Chapter 2. Product selection 33

� Are created using visual tooling exploiting supplied and custom mediation
functions.

� Have access to binding-specific header data like SOAP and JMS headers.

Mediation handlers in the WebSphere Application Server service integration bus
are message handlers that:

� Operate on messages traversing the bus.
� Are administered as part of the bus.
� Are created by implementing Java programs.
� Allow access to the full WebSphere messaging header information.

You can find more information about the WebSphere ESB at the WebSphere
ESB home page:

http://www.ibm.com/software/integration/wsesb/

2.5 WebSphere Message Broker
WebSphere Message Broker enhances the flow and distribution of information
by enabling the transformation and intelligent routing of messages without the
need to change either the applications that are generating the messages or the
applications that are consuming them.

Figure 2-5 on page 35 shows a high-level architectural view of WebSphere
Message Broker.
34 Enabling SOA Using WebSphere Messaging

http://www.ibm.com/software/integration/wsesb/

Figure 2-5 Architectural model of WebSphere Message Broker

The broker is a set of application processes that host and run message flows
consisting of a graph of nodes that represent the processing needed for
integrating applications.

When a message from a business application arrives at the broker, the broker
processes the message before passing it on to one or more other business
applications. The broker routes, transforms, and manipulates messages
according to the logic that is defined in message flow applications. A broker uses
WebSphere MQ as the transport mechanism both to communicate with the
Configuration Manager, from which it receives configuration information, and to
communicate with any other brokers to which it is associated. Each broker has a
database in which it stores the information that it needs to process messages at
run time.

Execution groups enable message flows within the broker to be grouped
together. Each broker contains a default execution group. Additional execution
groups can be created as long as they are given unique names within the broker.
Each execution group is a separate operating system process and, therefore, the
contents of an execution group remain separate from the contents of other
execution groups within the same broker. This can be useful for isolating pieces
of information for security because the message flows execute in separate
address spaces or as unique processes. Message flow applications are

Configuration
Manager

WebSphere MQ

Configuration
Manager
Database

User Name
Server

Broker

Execution Group

Message Flow

Broker Domain
 Chapter 2. Product selection 35

deployed to a specific execution group. To enhance performance, the same
message flows and message sets can be running in different execution groups.

The Configuration Manager is the interface between the Message Brokers
Toolkit and the brokers in the broker domain. The Configuration Manager stores
configuration details for the broker domain in an internal repository, providing a
central store for resources in the broker domain. The Configuration Manager is
responsible for deploying message flow applications to the brokers and
delivering reports on the progress of the deployment and on the status of the
broker. When the Message Brokers Toolkit connects to the Configuration
Manager, the status of the brokers in the domain is derived from the
configuration information stored in the Configuration Manager’s internal
repository.

Brokers are grouped together in broker domains. The brokers in a single broker
domain share a common configuration that is defined in the Configuration
Manager. A broker domain can also contain a User Name Server. The
components in a broker domain can exist on multiple machines and operating
systems, and are connected together with WebSphere MQ channels. A broker
belongs to only one broker domain.

A User Name Server is an optional component that is required only when
publish/subscribe message flow applications are running, and where extra
security is required for applications to be able to publish or subscribe to topics.
The User Name Server provides authentication for topic-level security for users
and groups that are performing publish/subscribe operations.

WebSphere Message Broker together with WebSphere MQ provide high
availability features. This is quite important since WebSphere Message Broker
acts as a hub and therefore needs to be eliminated as a single point of failure.

Load balancing and high availability can be achieved by providing multiple broker
instances serving the same logical hub with each instance mapped to its own
WebSphere MQ queue manager. The different broker instances could reside on
different machines. You can run multiple message broker instances with identical
execution groups and message flows deployed so that each broker can process
any message. It is also possible to run multiple brokers, each with specific
message flows deployed to enable the distribution of specific processing to
specific brokers (for prioritization purposes, for example). WebSphere MQ
provides the base services for WebSphere Message Broker and must be set up
for high availability.

WebSphere Message Broker provides the Message Broker Toolkit, a graphical
environment for developing and deploying message flow applications.
36 Enabling SOA Using WebSphere Messaging

For more information
You can find more information about IBM WebSphere Message Broker at the
WebSphere Message Broker home page:

http://www.ibm.com/software/integration/wbimessagebroker/

2.6 ESB product comparison
The product you select to implement an ESB depends on the requirements of
your solution. We have introduced two strategic products and described them.
Now we provide a quick comparison of the two.

WebSphere ESB is designed to provide the core functionality of an enterprise
service bus for a predominantly Web services based environment. It is built on
WebSphere Application Server, which provides the foundation for the transport
layer. WebSphere ESB adds a mediation layer based on the SCA programming
model on top of this foundation to provide intelligent connectivity. If the client has
a lot of Web services in their environment, WebSphere ESB is likely to be the
better product to use.

WebSphere Message Broker provides a more advanced ESB solution with
advanced integration capabilities such as universal connectivity and any-to-any
transformation for data-centric deployments. It can handle services integration as
well as integration with non-services applications. WebSphere MQ provides the
transport backbone for messaging applications. Typically, clients who need a
higher performance and throughput product in a message-centric environment
would use Message Broker.

For a quick comparison of WebSphere MQ and WebSphere Message Broker
see Table 2-1 on page 38.
 Chapter 2. Product selection 37

http://www.ibm.com/software/integration/wbimessagebroker/

Table 2-1 WebSphere ESB versus WebSphere Message Broker

WebSphere ESB WebSphere Message Broker

Connectivity � MQ/JMS (via MQLINK
configuration) JMS 1.1
(point-to-point, pub/sub)

� TCP/IP, SSL, HTTP(S), IIOP

� Native MQ, JMS 1.1
(point-to-point, pub/sub)

� Supports input handling for
virtually all third-party JMS
systems

� TCP/IP, SSL, HTTP(S), CICS®,
VSAM, flat-files

� Supports MQ Enterprise
Transport, MQ Mobile Transport,
MQ Multicast Transport, MQ
Realtime Transport, MQ
Telemetry Transport, MQ Web
Services Transport, JMS
Transport

Web services support � SOAP/HTTP(S), SOAP/JMS,
WSDL 1.1

� Supports WS-I Basic Profile 1.1
� UDDI 3.0 Service Registry
� WS-Security, WS-Atomic

Transactions
� Comprehensive client support by

Message Service Client for
C/C++ and .NET, Web Services
Client, and J2EE Client

� SOAP/HTTP(S), SOAP/JMS,
WSDL 1.1

� Supports WS-I Basic Profile 1.0
38 Enabling SOA Using WebSphere Messaging

Adapter support (JCA and WBI adapters � WBI adapters
� WebLogic JMS
� Biztalk
� TIBCO Rendezvous
� MQe
� Multicast
� Tuxedo
� FTP
� TIBCO EMS JMS
� COBOL Copybook
� HIPAA
� EDI-FACT
� ACORD
� Real-time IP
� SonicMQ JMS
� SWIFT
� FIX
� ebXML
� EDI-X.12
� MQTT
� AL3
� Word/Excel/PDF
� Custom Formats
� HL7

Message logging � Provides prebuilt mediations for
message logging

� Supports message logging

Message transformation � Protocol transformation between
HTTP, JMS, and IIOP

� Supports transformation of XML,
SOAP JMS message data format
(many more if used with
adapters)

� Provides prebuilt mediations for
XML transformation

� Protocol transformation between
HTTP and JMS

� Custom transformation logic can
be implemented in Java, ESQL,
or XSLT

� Supports transformation between
any protocols available as input
our output nodes (see Table 7-1
on page 218)

Message routing � Content and
transport/protocol-based routing

� Supports through custom-built
mediations using Java and the
IBM SOA programming model
(SCA and SDO)

� Provides prebuilt mediations for
message routing

� Content and transport/protocol
based routing

� Custom routing logic can be
implemented in Java or ESQL

WebSphere ESB WebSphere Message Broker
 Chapter 2. Product selection 39

To summarize:

� WebSphere ESB

Building an ESB that is based entirely on WebSphere ESB is an option when
Web services support is critical and the service provider and consumer
environment is predominantly built on open standards. WebSphere ESB is
most suitable for environments that are based on Web services standards
and provides facilities to integrate services that are offered via enterprise
application integration messaging and other sources. However, if integration
with non-Web service standards-based services is a major requirement then
WebSphere ESB may not be the right choice.

� WebSphere Message Broker

WebSphere Message Broker is considered to be suitable where advanced
ESB functionality is required. WebSphere Message Broker is an option when
Web services support is not critical and quality-of-service requirements
demand the use of mature middleware. WebSphere Message Broker can
support all the ESB capabilities that WebSphere ESB does but is not limited
to open standards. However, in comparison with WebSphere ESB, it lacks
the sophistication of Web services support that might be required in an ESB
implementation, which makes extensive use of these standards.

2.7 WebSphere Process Server
WebSphere Process Server is built on WebSphere ESB, thus providing it with
the mediation functionality of WebSphere ESB and the qualities of service that
WebSphere Application Server provides (for example, clustering, failover,
scalability, and security). To this, WebSphere Process Server adds the ability to
build business processes that orchestrate multiple services to achieve a
business goal.

The WebSphere Process Server architectural model consists of the three layers
shown in Figure 2-6 on page 41.

Event-driven processing � Supports event-driven
processing by leverage adapters
for capture and dissemination of
business events

� Supports complex event
processing (processing of events
formed by several earlier ones)

WebSphere ESB WebSphere Message Broker
40 Enabling SOA Using WebSphere Messaging

Figure 2-6 Architectural model of WebSphere Process Server

Above the infrastructure provided by WebSphere Application Server,
WebSphere Process Server implements a layer called the SOA Core that
includes the following:

� Service Component Architecture (SCA)

Using SCA, every integration component is described through an interface.
These services can then be assembled in a Component Assembly editor,
thus enabling a very flexible and encapsulated solution.

� Business objects

Business objects are the universal data description. They are used as data
going in and out of services and are based on the Service Data Object (SDO)
standard. SCA bindings contain the physical description of components.
Services can be accessed as Java objects (POJOs), EJBs, Web services,
JMS messages, and adapters.

� Common Event Infrastructure

The Common Event Infrastructure is the foundation for monitoring
applications. IBM uses this infrastructure throughout its product portfolio, and
monitoring products from Tivoli as well as WebSphere (WebSphere Business
Monitor) exploit it. The event definition (Common Business Event, CBE) is
being standardized through the OASIS standards body so that other
companies as well as clients can use the same infrastructure to monitor their
environment.

On top of this SOA Core layer lie the service components and supporting
services layers. WebSphere Process Server implements a number of

Service Component
Architecture

WebSphere Application Server Network Deployment (J2EE Runtime)

Business
Objects

Common Event
Infrastructure

Business
State

Machines

Business
Processes

Human
Tasks

Business
Rules

Interface
Maps

Business
Object
Maps

Relation-
ships

Service
Components

Supporting
Services

SOA Core

Mediation
(ESB)

Dynamic
Service

Selection
 Chapter 2. Product selection 41

components and services that can be used in an integration solution. In the
service components layer you will find the following:

� Business processes

The business process component in WebSphere Process Server implements
a WS-BPEL compliant process engine. Clients can develop and deploy
business processes with support for long-running and short-running business
processes and a robust compensation model in a highly scalable
infrastructure. WS-BPEL models can be created in WebSphere Integration
Developer or imported from a business model that has been created in
WebSphere Business Modeler.

� Human tasks

Human tasks in the WebSphere Process Server are standalone components
that can be used to assign work to employees or to invoke any other service.
Additionally, the Human Task Manager supports the ad-hoc creation and
tracking of tasks. Existing LDAP directories (as well as operating system
repositories and the WebSphere user registry) can be used to access staff
information. Of course, WebSphere Process Server supports multi-level
escalation for human tasks including e-mail notification.

The WebSphere Process Server also includes an extensible Web client that
can be used to work with tasks or processes. This Web client is built based on
a set of reusable Java Server Faces (JSF) components that can also be used
to create custom clients or embed human task functionality into other Web
applications.

� Business state machines

A business state machine provides another way of modeling a business
process. This enables businesses to represent their business processes
based on states and events, which are sometimes easier to model than a
graph-oriented business process model. One example would be an ordering
process where the order can be cancelled or modified at any time during the
order process.

� Business rules

Business rules are a means of implementing and enforcing business policy
through externalization of business function. This enables dynamic changes
of a business process for a more responsive businesses environment.
Business rule authoring is supported within an Eclipse-based desktop tool.
The WebSphere Process Server also includes a Web-based runtime tool for
the business analyst so that business rules can be updated as business
needs dictate without affecting other SCA services.

These components can use the features of a number of supporting services in
the WebSphere Process Server. Most of these can be classified as some form of
42 Enabling SOA Using WebSphere Messaging

transformation, which is not surprising. There are a number of transformation
challenges when connecting components and external services, each of which is
being addressed by a component of WebSphere Process Server:

� Interface maps

Very often interfaces of existing components match semantically but not
syntactically (for example, updateCustomer versus updateCustomerInDB2).
This is especially true for already existing components and services that need
to be accessed. Interface maps allow the invocation of these components by
translating these calls. Additionally, business object maps can be used to
translate the actual business object parameters of a service invocation.

� Business object maps

A business object map is used to translate one type of business object into
another type of business object. These maps can be used in a variety of
ways, for example, in an interface map to convert one type of parameter data
into another.

� Relationships

In business integration scenarios it is often necessary to access the same
data (for example, client records) in various backend systems (for example,
an ERP system and a CRM system). A common problem for keeping
business objects in sync is that different backend systems use different keys
to represent the same objects. The relationship service in the WebSphere
Process Server can be used to establish relationship instances between
objects in these disparate backend systems. These relationships are typically
accessed from a business object map when translating one business object
format into another.

� Dynamic service selection

A selector component allows dynamic selection and invocation of different
services, which all share the same interface. For example, a customer
support process could use different human tasks implementations during
different times of day. This would enable routing of work to different support
centers (Americas, Europe, Asia-Pacific) based on the time of day. Just like
for the business rule component, WebSphere Process Server offers a
Web-based interface to enable dynamic updates to the selection criteria and
target services.

� Mediation

The mediation component can act on messages flowing between the
requestor and the service. For example, it can transform messages from the
format used by the requestor to the format required by the service. Other
typical actions include routing based on message content and protocol
transformation.
 Chapter 2. Product selection 43

The primary development tool for the WebSphere Process Server is WebSphere
Integration Developer. This is the same tool used for WebSphere ESB
development tasks.

You can find more information about IBM WebSphere Process Server V6 at:

� WebSphere Process Server home page:

http://www.ibm.com/software/integration/wps/

� Technical Overview of WebSphere Process Server and WebSphere
Integration Developer, REDP-4041

� Getting Started with WebSphere Process Integration V6, SG24-7130
44 Enabling SOA Using WebSphere Messaging

http://www.ibm.com/software/integration/wps/

Chapter 3. Runtime topology selection

This chapter shows how IBM messaging products can be introduced into an
existing or new solution to enable SOA technology. It starts with the basics and
proceeds to include high availability and scalability considerations.

3

© Copyright IBM Corp. 2006. All rights reserved. 45

3.1 Getting started
This section shows how WebSphere products can be applied to form topologies
able to evolve systems based on direct application connections to decoupled
solutions following the SOA principles.

The move to an SOA can be considered as stages of complexity and
functionality. The first stage introduces messaging to directly connected
applications, thus providing an initial move towards decoupled applications and
flexibility. In environments where no messaging exists, this is a simple way to
start with connections of similar messaging applications. The second stage
further enhances decoupling by introducing an enterprise service bus providing
mediation functionality. In the third stage, service integration and orchestration
functionality are introduced to provide a configurable environment for reusable
services.

3.1.1 Starting with simple messaging connections
In the most basic form of connectivity, two applications connect directly to each
other. Each is aware of the other application’s location and connectivity
requirements. Special needs, such as data transformation, are handled within
the applications themselves.

If this is your starting point, you can begin moving toward decoupling the service
consumers and service providers by introducing middleware that provides
connectivity logic for the applications. The applications only need to be aware of
the location of the connectivity infrastructure, rather than the location of each
application they connect to. In this instance, each application is still aware of any
transformation or logic required to use the data from the other application.

In terms of a messaging environment, this first step would equate to two
messaging applications putting and getting messages from a queue managed by
WebSphere MQ, the WebSphere Application Server service integration bus, or a
combination of the two. An application can place a message directly onto a
WebSphere MQ queue or onto a queue hosted on the service integration bus.

When the service provider and service consumer are both WebSphere
Application Server applications, the default messaging provider and service
integration bus can provide this connectivity. Two applications within the same
WebSphere Application Server cell can communicate directly through the bus. If
there are multiple cells involved, each with a bus, the buses can be linked
together. In the event that one application is a WebSphere Application Server
application and the other is capable of connecting to WebSphere MQ, the bus
can be linked to WebSphere MQ to provide connectivity. This connectivity is
shown in Figure 3-1 on page 47.
46 Enabling SOA Using WebSphere Messaging

Figure 3-1 Direct connections

With the service integration bus or WebSphere MQ, you can integrate
applications across a broad set of platforms and application environments.
However, as your applications become more complex, more connections must
be defined and maintained.

3.1.2 Adding an ESB for enhanced connectivity
The next step in moving toward an SOA environment is to start moving the
mediation-type logic from the applications to a central location. Basic
mediation-type logic would include things like:

� Routing based on the content of a message

� Augmenting a message

� Transforming a message from one format to another

� Converting transport protocols to allow communication between disparate
messaging products

Of course, more complex actions are also possible, such as decomposing a
single message into multiple messages, sending those messages to multiple
service providers, and then recomposing the responses into a single response.

Service
Requestors

Service
Providers

Messaging
application

Application server

Messaging
application

Application server

MDBWebSphere MQ

MQ
client

queue

Messaging
application

Application server

service integration bus queue
 Chapter 3. Runtime topology selection 47

In an SOA environment, these mediation actions are handled by an enterprise
service bus. Figure 3-2 shows a topology using an enterprise service bus to
enhance flexibility and connectivity.

Figure 3-2 Application mediation

The choice of implementation depends on the current requirements for the
interaction between the service consumers and service providers, and with
consideration of future needs. For information that will help you determine the
ESB product that is right for your situation, see “ESB product comparison” on
page 37.

WebSphere ESB has the capability to participate in a WebSphere MQ network
as a queue manager, making it possible for WebSphere ESB and WebSphere
Message Broker to coexist in a solution. This combination can give you access to
the best features of both products.

For example, an existing messaging environment using WebSphere MQ and
WebSphere Message Broker that would like to extend their infrastructure to use
Web services would benefit by adding WebSphere ESB to provide the enterprise
service bus functionality for the Web services. A second example would be a
situation where WebSphere Message Broker is being used as a central hub for

Enterprise Service Bus

Service
Requestors

Service
Providers

Messaging
application

Application server

Messaging
application

Application server

WebSphere MQ

MQ
client

MQ
client

queue queue

Messaging
application

Application server

MDB

queue queue

Transformation Routing

Messaging
application

Application server

MDB

queue
48 Enabling SOA Using WebSphere Messaging

J2EE applications running in WebSphere Application Server. The use of
WebSphere ESB gives you the ability to do mediations within the application
server environment using a single technology stack.

3.1.3 Adding a business process engine for service orchestration
Once you have the enhanced connectivity of the ESB in place, you can move
forward by composing services into processes that span people, workflows,
applications, systems, platforms, and architectures. An SOA requires the ability
to develop and modify applications dynamically, creating the need for
infrastructure on the top of the SOA stack that provides this functionality.

The WebSphere Process Server is designed to simplify the integration of
business services into processes by providing not only graphical tools for
designing process flows but also by providing a technology-neutral way of
describing interfaces using open standards for enabling the dynamic exchange
of module implementations.

The WebSphere Process Server utilizes SCA and business objects based on
SDO to provide an open-standards based approach for describing the interfaces
for all integration artifacts. Integration artifacts can be processes, business rules,
human tasks, and so on. This approach creates a very flexible environment
where one module can be exchanged easily with another as long as the interface
is the same.

The WebSphere Process Server implements a Web Services Business Process
Execution Language (WS-BPEL) compliant process engine that supports
long-running and short-running business processes as well as a compensation
model for rollback operations. WS-BPEL models can be created in WebSphere
Integration Developer or imported from a business model created in WebSphere
Business Modeler.

Figure 3-3 on page 50 shows the orchestration of business services to process
flows within the process server. The different process steps are mapped to
service calls for providers.
 Chapter 3. Runtime topology selection 49

Figure 3-3 Service composition

3.2 Advanced topologies
A messaging infrastructure is suited for and often intended to act as the
backbone of a service-oriented environment, not only for single applications but
for whole enterprises. It is therefore inevitable that you need to consider and
design for high availability, failover, and load balancing.

There are two basic methods for implementing high availability:

� Hardware clustering

Hardware clustering, also referred to as operating system clustering or
shared disk, is a hardware-based approach of turning multiple servers into a
cluster. Within the cluster there exists a controlling server that monitors the
cluster and performs administrative tasks such as deciding when failover is
necessary and assigning the load of a failed node to a functioning server. A
hardware cluster may be set up in an active-passive mode or an active-active
mode. Active-passive (cold-standby) means that a server is reserved for

Enterprise Service Bus

Service Requestors

Service
ProvidersMessaging

application

Application server

WebSphere MQ

QMGR

MQ
client

MQ
client

queue queue

Step 1

Step 2a

Step 2b

Step 3

Process Server
Process flow

Messaging
application

Messaging
application

Application server
50 Enabling SOA Using WebSphere Messaging

failover duties and does not normally run applications. Active-active (mutual
takeover) means that each server in the cluster runs its own applications but
each has some resources left that could be used to perform failover for the
others.

An example for this approach is High Availability Cluster Multi-Processing
(HACMP™), an IBM clustering solution for IP-based cluster failover.

� Software clustering

Software clustering, also referred to as application clustering, is a
software-based approach of turning multiple servers into a cluster. Clustering
software is installed on each of the servers in the group, while each server
maintains the same information and collectively they perform the same
administrative tasks such as load balancing, determining node failures, and
assigning failover duties.

This approach is more flexible and scalable than the hardware clustering
approach in the sense that it does not require special hardware. Servers can
be added and removed from clusters dynamically.

Both clustering methods can effectively be used to implement high availability for
messaging systems.

3.2.1 WebSphere MQ
Both hardware and software clustering can be used for failover of WebSphere
MQ. This section discusses both.

Hardware clustering
Hardware clustering in a WebSphere MQ context means that a WebSphere MQ
installation exists on a primary and a secondary server. Both servers have a
queue manager configured to store data on a reliable storage medium. The
storage has failover capabilities between the servers. This configuration is shown
in figure Figure 3-4 on page 52.
 Chapter 3. Runtime topology selection 51

Figure 3-4 WebSphere MQ active-passive failover scenario

This approach is an active-passive scenario because the two queue managers
cannot run concurrently and access the same data. The clustering software
switches the reliable storage between the two servers if a failure is detected.

Queue manager clusters
WebSphere MQ supports the joining of single queue managers together in a
queue manager cluster. Queue manager clusters allow multiple instances of the
same service to be hosted through multiple queue managers.

Applications requesting a particular service can connect to any queue manager
within the cluster. When applications make requests for the service, the queue
manager to which they are connected automatically workload balances these
requests across all available queue managers.

This allows a pool of machines to exist within the queue manager cluster, each
hosting a queue manager and the application required to provide the service.
This is especially useful in a distributed environment, where capacity is scaled to
accommodate the current load through multiple servers, rather than one
mainframe or high capacity server.

Queue managers can dynamically join or leave the queue manager cluster to
cope with varying loads placed upon a particular service provided by a system.
Configuration only needs to be performed on the queue manager joining or
leaving the cluster, not the queue managers already within the cluster.

A queue manager can be a member of multiple queue manager clusters,
allowing segregation of the components of a WebSphere MQ infrastructure
based on the services provided or organizing into groups. These queue

WebSphere MQ

QMGR 1

Server 1 Server 2

WebSphere MQ

QMGR 1

Shared Disks

Failover
52 Enabling SOA Using WebSphere Messaging

managers can provide a bridge between queue manager clusters as well as
bridging between a queue manager cluster and an existing WebSphere MQ
infrastructure based on distributed channels.

If a queue manager fails, subsequent messages sent to the cluster are not
routed to the failed queue manager. However, any persistent messages that
have been already sent to the queue manager but not yet processed are
marooned on this failed queue manager.

z/OS high availability options
WebSphere MQ for z/OS supports high availability features based on z/OS
system architecture and capabilities. WebSphere MQ features specific to z/OS
are described within this section.

Shared queues
WebSphere MQ shared queues depends on the coupling facilities provided by
joining z/OS systems together in a sysplex and a shared DB2® database to allow
queue managers to form a queue sharing group (QSG). Multiple queue
managers that are members of a QSG have access to shared queues contained
within that QSG. Each shared queue is available to all queue managers in the
QSG, similar to hosting that queue locally.

Figure 3-5 shows the concept of a QSG. QMGR1 and QMGR2 both have access
to the same shared queue Q1.

Figure 3-5 z/OS QSG

One application connected to a queue manager can put a message to a shared
queue. A second application connected to a second queue manager within the
QSG can get that message from the shared queue. Without utilizing the
functionality of shared queues, this message would need to be transferred to a

QMGR 1

Q1

z/OS

QMGR 2

DB 2

Coupling Facility

QSG
 Chapter 3. Runtime topology selection 53

queue hosted on the second queue manager by a distributed or cluster message
channel before the second application could get the message.

Applying shared queues addresses the problem of message availability when a
queue manager becomes unavailable while messages are on its queues. When
a clustered queue manager fails, new requests are routed around that queue
manager, but messages that exist on the failed queue manager cannot be
accessed until the queue manager is made available again. However, if the
queue manager is a member of a QSG, other queue managers within the QSG
can access the messages in the queue, preventing those messages from being
unavailable.

3.2.2 WebSphere Message Broker
WebSphere Message Broker benefits from WebSphere MQ high availability
capabilities such as queue manager clustering and the z/OS shared queue
functionality. To be able to lay out a high availability design for a WebSphere
Message Broker application, the concepts of WebSphere MQ and the
possibilities that they offer must be understood.

There are different levels in a WebSphere Message Broker environment that
need to be considered in order to provide high availability.

First, WebSphere MQ provides the transport layer for WebSphere Message
Broker, utilizing queue managers not only for administering services and
resources but also for providing the connection point for the brokers. These
queue managers should be configured for high availability through queue
manager clustering, hardware clustering, and shared queues (for z/OS).

Also consider the case where a clustered queue manager does not recognize
that a connected broker has failed and is still served messages to be processed.
These messages are not processed until the failed broker is up and running
again. One possible solution would be to provide more than one broker instance
per queue manager. Another possible solution is to set up a monitor for the
broker and input queue that triggers an alert in the event of a failure.

Second it must be guaranteed that the broker functionality is highly available.
This can be achieved by providing multiple message broker instances serving
the same logical hub. The different brokers could even reside on different
machines. Each broker instance could either be mapped to a single queue
manager or to a queue manager cluster.

Figure 3-6 on page 55 shows a topology using two broker instances together with
z/OS shared queues and queue manager clustering. Note that Node C is not
54 Enabling SOA Using WebSphere Messaging

included in the queue sharing group; therefore, it is not required to be a z/OS
node.

Figure 3-6 Multiple message brokers using MQ clustering and shared queue

WebSphere Message Broker supports the cloning as well as tailoring of
execution groups over different broker instances. It is possible for all message
broker instances to have identical execution groups and message flows
deployed so that each broker can process any message. An alternative is to
deploy specific message flows to each broker, which enables the distribution of
specific processing to specific brokers.

3.2.3 WebSphere ESB and WebSphere Process Server
WebSphere ESB and WebSphere Process Server are built on WebSphere
Application Server Network Deployment, and thus inherit its high availability
capabilities.

Application server clusters
WebSphere Application Server Network Deployment provides the capability to
cluster application server instances for load balancing and high availability.

WebSphere MQ

QMGR 1

z/OS Node A

Message flow
Message Broker A1

WebSphere MQ

QMGR 2

z/OS Node B
Message Broker B1

Node C

WebSphere MQ

QMGR 3

Message flow

Shared Q

WMQ cluster

Queue Sharing Group

Q1
 Chapter 3. Runtime topology selection 55

Application changes such as installation, updates, or deletes are automatically
distributed to all members in the cluster. The rollout update option allows you to
update an application and then restart the servers on each node, one node at a
time, providing continuous availability of the application.

The following failover capabilities are provided by application server clustering:

� Web container failover

The HTTP server plug-in in the Web server is aware of the configuration of all
Web containers and can route around a failed Web container in a cluster.
Sessions can be persisted to a database or in-memory using data replication
services.

� EJB container failover

Client code and the ORB plug-in can route to the next EJB container in the
cluster.

The members of a cluster can be located on a single machine (vertical cluster),
across multiple machines (horizontal cluster), or on a combination of the two.
Vertical scaling allows the machine’s processing power to be more efficiently
allocated. Horizontal scaling provides failover in case a machine becomes
unavailable. You can combine the two to reap the benefits of both, as shown in
Figure 3-7.

Figure 3-7 Combination of vertical and horizontal application server scaling

Web
Container

Node A

EJB
Container

Cluster 1, Member 1

Web
Container

EJB
Container

Cluster 1, Member 2

Web
Container

Node B

EJB
Container

Cluster 1, Member 3

Web
Container

EJB
Container

Cluster 1, Member 4

Cluster 1
56 Enabling SOA Using WebSphere Messaging

Normal workload management and failover would apply to each cluster. In the
event that Node A becomes unavailable, the application servers on Node B
would still be available to process incoming requests.

High Availability Manager
WebSphere Application Server V6 introduces a new feature for advanced
failover called the High Availability Manager (HAManager). The concept is based
on high availability domains called core groups consisting of a set of WebSphere
processes that provide high availability functions to each other.

Core groups are not based on application server clustering but implement their
own logical resource grouping that can contain stand-alone servers, cluster
members, node agents, or the deployment manager. Grouping these
components in core groups provides hot standby and peer failover for critical
services such as workload management routing, PMI aggregation, JMS
messaging, transaction manager, and so on.

As depicted in Figure 3-8 on page 58, each application server process runs an
HAManager component and shares information through the underlying
Distribution and Consistency Services (DCS) communication infrastructure such
that no single point of failure will exist in the topology. Every member in a
WebSphere cluster knows where singleton services are running.
 Chapter 3. Runtime topology selection 57

Figure 3-8 Core group

One or more members of the core group can act as a high availability
coordinator, managing the high availability activities within the core group
processes. If a high availability coordinator server fails, another server in the core
group takes over the duties of that coordinator. High availability policies define
how the failover occurs. Workload management information is shared between
core members and failover of critical services is done among them in a
peer-to-peer fashion. Little configuration is necessary and, in many cases, this
function works with the defaults that are created automatically as you create the
processes.

HAManager leverages the latest storage technologies, such as IBM Storage
Area Network File System (SAN FS) to provide fast recovery time of two-phase
transactions. In addition, it adds the possibility of hot standby support to high
availability solutions using conventional failover middleware such as IBM High
Availability Clustered Multi-Processing (HACMP) or Tivoli System Automation
(TSA).
58 Enabling SOA Using WebSphere Messaging

3.2.4 Application server and queue manager cluster
The clustering capabilities of WebSphere Application Server Network
Deployment and WebSphere MQ can be used to design a solution that provides
high availability across different product lines.

Figure 3-9 shows a sample topology that combines application server clustering
with queue manager clustering. Both cluster types are vertically and horizontally
scaled. Note that as long as one node is available the solution is able to deliver
its functionality. Each queue manager serves a minimum of two application
servers. In the event that an application or application server fails, the messages
can be processed by another server in the cluster. Remember that a queue
manager does not recognize whether a connected client is available and is
served with messages according to the load balancing policy in the queue
manager cluster.

Figure 3-9 Application server clustering with queue manager clustering

WebSphere MQ
QMGR 1

Q1

Node A

Messaging
application

Application server A1

WebSphere MQ

QMGR 2
Q1

Node B
Application server B1

Application server B2

Node C

WebSphere MQ

QMGR 4
Q1

Messaging
Engine

Messaging
application
Messaging

Engine

Messaging
application
Messaging

Engine

WMQ clusterWAS cluster

QMGR 3
Q1
 Chapter 3. Runtime topology selection 59

3.3 End-to-end scenario
To illustrate an end-to-end scenario, consider the following travel bureau
application. The travel bureau company services requests from clients wishing to
book various travel services through their Web site. In addition to airline ticket
purchases, these services include car rental, hotel reservations, and visa
applications.

The travel bureau has a Web application that runs in WebSphere Application
Server. Clients access this application through a Web site to book the various
travel services. The scenarios in this book deal with the airline ticket booking
service.

The travel bureau is supplied tickets by four airline companies. Each airline
company has its own system and programming language:

� Airline A: COBOL
� Airline B: J2EE (WebSphere Application Server)
� Airline C: MQ (Pub/Sub)
� Airline D: SAP Application

To integrate the travel bureau systems with these suppliers, mediation services
are required. We can add these mediation services using WebSphere ESB
and/or WebSphere Message Broker as an ESB. In this scenario, both products
are used.
60 Enabling SOA Using WebSphere Messaging

Figure 3-10 End-to-end scenario

The scenario is:

� When a client requests a flight reservation through the Web page, the
WebSphere ESB converts the incoming BLOB data to XML format.

� If Airline A is selected, the request is put on a queue to be processed by a
message flow in WebSphere Message Broker. The message flow converts
the XML data to COBOL format using the defined COBOL message sets and
message definitions.

� If Airline B is selected, the XML data is put on a queue in WebSphere ESB for
delivery to the J2EE application running on a WebSphere Application Server.

� If Airline C is selected, the XML data is put on a JMS destination. The
destination is an alias for a queue on WebSphere MQ.

� If Airline D is selected, the XML data is transformed to SAP format through a
JCA adapter, then delivered to the target application through the existing
network environment.

The Web servers, application servers, and broker servers are clustered for high
availability.

Airline A COBOL
Application

J2EE WebSphere
Application Server

(XML)
Airline B

SAP
ApplicationAirline D

WebSphere MQAirline C

Message Broker Toolkit

WebSphere
Message
Broker

Adapter Toolkit

WebSphere
Integration
Developer

HTTP
Server

End User

WebSphere
ESB

JCA
Adapter
 Chapter 3. Runtime topology selection 61

62 Enabling SOA Using WebSphere Messaging

Chapter 4. Application design

This chapter provides an introduction to messaging and messaging design. It
describes the different messaging models, styles, and patterns, and shows how
they can effectively be applied to implement service consumers and service
providers. Next, it describes an approach to develop service-oriented
architectures and provides guidelines and best-practices to meet principles
required for a service-oriented architecture.

The intent of this chapter is to show the capabilities as well as possible issues
that may arise by applying messaging for a service-oriented architecture.

4

Attention: The term consumer is used both when discussing messaging (a
message consumer) and services (a service consumer). Note that a service
provider can in fact be a message consumer as well. The intent should be
clear within the context of the discussion.

The following pairs relate to each other:

� Message producer <--> message consumer
� Service consumer <--> service provider
© Copyright IBM Corp. 2006. All rights reserved. 63

4.1 Introduction to messaging
A message is a collection of data sent by one program and intended for another
one. A message consists of the message payload and the message header
containing technical fields like message ID, correlation ID, and reply address. A
message queue, known simply as a queue, is a named destination to which
messages can be sent. Messages accumulate on queues until they are retrieved
by programs that service those queues.

Messaging applications communicate by sending each other data in messages
rather than calling each other directly. Applications can open a queue, put
messages on it, get messages from it, and close the queue. They can also set
and inquire about the attributes of queues.

To send a message, the application places the message on a queue. As the
message traverses the messaging network to its destination it is stored at
intermediate nodes until the system is ready to forward it to the next node. At the
final destination, the message is stored until the receiver is ready to read it.
Retrieval of the message by the receiver is done independently of the sender.

The use of messaging provides features that function well in an SOA
environment:

� Communication between applications is done indirectly through the
messaging middleware versus through direct connections. This reduces the
complexity of the applications, adds flexibility in the location of the messaging
partners, and helps accommodate differences in platforms.

� The message sender and receiver act independently of each other.
Messages are held until the receiver is available to handle them.

� Messaging lends itself to the use of modularity in program design. Instead of
a single large program performing all the parts of a job sequentially, you can
spread the job over several smaller independent programs. The requesting
program sends messages to each of the separate programs, asking them to
perform their function and the results are sent back as one or more
messages.

� Programs can be controlled according to the state of queues. For example,
you can arrange for a program to start as soon as a message arrives on a
queue, or you can specify that the program does not start until there are, for
example, ten messages above a certain priority on the queue, or ten
messages of any priority on the queue.

� A program can assign a priority to a message when it puts the message on a
queue. This determines the position in the queue at which the new message
is added. Programs can get messages from a queue either in the order in
which the messages appear in the queue, or by getting a specific message.
64 Enabling SOA Using WebSphere Messaging

� Data integrity is provided by units of work. The synchronization of the start
and end of units of work is supported as an option on each get or put, allowing
the results of the unit of work to be committed or rolled back.

4.2 Messaging models
There are two basic messaging models in common use, the point-to-point and
the publish-subscribe (pub/sub). A point-to-point model is applied when a
message producer needs to send a message to exactly one message consumer.
A publish-subscribe model is applied when a producer (publisher) needs to send
a message to one or more consumers (subscribers) that are interested in the
message.

4.2.1 Point-to-point
In the point-to-point messaging model a message is intended to be consumed by
one consumer at most. The messaging infrastructure makes sure that a
message is retained until it is either consumed or expired.

Using a point-to-point messaging model, the messaging infrastructure ensures
that only one message consumer gets any given message. If the queue has
multiple consumers attached only one of them can successfully consume a
particular message. Attaching many consumers to the same queue can make
the consuming and the processing of messages highly scalable by providing
failover and load balancing. For example, to increase the throughput of a system
you would just need to attach another consumer to the queue. Or assuming one
of the consumers crashes, there would still be others processing the incoming
messages.

Figure 4-1 shows a conceptual overview of the point-to-point messaging model.

Figure 4-1 Point-to-point messaging

An example where a point-to-point messaging model would be appropriate is an
online store. Each message represents one order; therefore, each order must be
processed exactly once.
 Chapter 4. Application design 65

4.2.2 Publish-subscribe
In the publish-subscribe messaging model a message is intended for each
consumer who is interested in it. Each consumer can consume a specific
message not more than once. The messaging infrastructure makes sure that a
message is retained until it is either consumed or expired.

Within the publish-subscribe model the message producer is called the
publisher, the message consumer is called the subscriber, and the queue is
called a topic.

Using a publish-subscribe messaging model, messages are broadcast from a
publisher to multiple subscribers. The publisher and subscribers are related by a
topic that represents the category of data in which the subscribers are interested.
Each subscriber that subscribes to a topic receives a copy of every message that
is published to that topic.

Figure 4-2 shows a conceptual overview of the publish-subscribe messaging
model.

Figure 4-2 Publish-subscribe messaging

The functionality of delivering a message just once to each subscriber is
implemented using a private queue for each subscriber. A message published to
a topic is automatically placed as a copy on the private queue of each subscriber.
Typically there is some latency coming from the fact that messages observed by
subscribers depend on the capability of the underlying infrastructure to
propagate them.

In the publish-subscribe model publishers and subscribers can be added
dynamically, thus allowing the system to grow or shrink dynamically.

Durable and non-durable subscriptions
There are two types of subscriptions, durable and non-durable. The difference
lies in whether a subscribing application wants to receive messages published
while the application is not running.
66 Enabling SOA Using WebSphere Messaging

While a durable subscriber is disconnected from the topic, the messages
published for the topic are stored. When the subscriber reconnects, the
messages that the subscriber otherwise would have missed are delivered. A
durable subscriber has to explicitly unsubscribe from a topic to cancel its
subscription.

While a non-durable subscriber is disconnected from the topic, the subscriber
does not receive any messages published to the topic. A non-durable subscriber
is unsubscribed when it disconnects and re-subscribed when it reconnects.

Topic hierarchies
When publishing information, the publisher specifies an identifier that defines the
topic for which a message is destined. Topics may be defined within a hierarchy.
Subscribing to a topic in the hierarchy that contains subtopics allows the
subscriber to receive all messages published to the topic and its subtopics.

Figure 4-3 shows an example of a hierarchically structured topic.

Figure 4-3 Example of topic hierarchy

If a subscriber is interested in dark and light red cars, it only needs to subscribe
to the red topic.

4.2.3 Point-to-point versus publish-subscribe
Table 4-1 on page 68 shows a comparison of the two messaging models,
point-to-point and publish-subscribe.
 Chapter 4. Application design 67

Table 4-1 Point-to-point versus publish-subscribe

4.3 Messaging styles
Messaging can be applied in either an asynchronous or in a
pseudo-synchronous way. The distinction is made based on the whether the
same consumer thread that issued a request needs to handle a possible reply.

4.3.1 Asynchronous communication
Using asynchronous communication, the consumer thread follows a
fire-and-forget approach. After sending a request the thread is not blocked even
if a reply is expected.

Figure 4-4 shows the behavior of the consumer and provider in case of an
asynchronous communication style.

Figure 4-4 Thread behavior using asynchronous communication

Point-to-point Publish-subscribe

� Exactly one consumer consumes and
processes a message.

� More natural fit with request-reply
pattern.

� Less complex than publish-subscribe
(configuration and administration).

� Faster than publish-subscribe.

� Natural fit where a message needs to
be sent to multiple providers

� Works well with changing delivery
requirements as new subscribers can
be added easily

� Additional decoupling between
producer and consumer as the
publisher does not know about
subscribers

Note: JMS 1.1 unifies the point-to-point and the publish-subscribe domain by
providing one common interface for both messaging models. The
differentiation is made with the destination settings of the JMS resource
configuration.
68 Enabling SOA Using WebSphere Messaging

There are two pattern variants for asynchronous communication:

� Fire-and-forget
� Request-reply

4.3.2 Pseudo-synchronous communication
Using pseudo-synchronous communication, the consumer thread follows a
synchronous request-reply approach. After sending a request it is blocked until
the expected reply from the provider arrives.

Figure 4-5 shows the behavior of consumer and provider in case of a
pseudo-synchronous communication call.

Figure 4-5 Thread behavior using pseudo-synchronous communication

The behavior of the pseudo-synchronous communication style is in fact
synchronous, but because the underlying medium is asynchronous the
communication style is called pseudo-synchronous.

Unlike asynchronous communication, the pseudo-synchronous style just
supports one variant: Request-reply.

Asynchronous versus pseudo-synchronous communication
Table 4-2 on page 70 shows a comparison between the two communication
styles.
 Chapter 4. Application design 69

Table 4-2 Asynchronous versus pseudo-synchronous communication

4.4 Messaging patterns
Messaging products are inherently asynchronous in that no fundamental time
dependency between the message production and the message consumption
exists. Applying appropriate patterns can turn communication over an
asynchronous infrastructure in a quasi synchronous manner.

There are two basic messaging patterns and variants of them. The
fire-and-forget pattern supports one-way communication while the request-reply
pattern provides functionality for a two-way communication between consumer
and provider.

4.4.1 Fire-and-forget
Fire-and-forget is the simplest of the messaging patterns. It supports one-way
communication from a service consumer to a provider. It can be thought of as a
request for which a reply is neither expected nor needed. The fire-and-forget
pattern exists just for asynchronous communication. The consumer does not
expect any reply from the provider; thus, after sending the request it immediately
continues with processing. The fire-and-forget pattern provides a high level of
decoupling between consumer and provider.

Figure 4-6 on page 71 shows a sequence diagram of the fire-and-forget pattern.
Thread A continues processing directly after sending the request.

Asynchronous Pseudo-synchronous

� Natural fit for purely fire-and-forget
driven systems.

� Loose coupling because of the fully
asynchronous style.

� Supports fire-and-forget as well as
request-reply.

� If a consumer crashes while waiting
for a reply, on restart it can continue
waiting for the reply; thus the reply is
not lost.

� Resource efficient because of the fully
asynchronous nature.

� Natural fit where a synchronous call
would be required.

� Tighter coupling because of the quasi
synchronous nature.

� Supports just request-reply.

� If a consumer crashes while blocking
until the reply arrives, on restart it has
no way of reconnecting to the
invocation in progress and the
response is lost. The consumer must
repeat the invocation.

� More resource inefficient as there is a
blocked thread on consumer side.
70 Enabling SOA Using WebSphere Messaging

Figure 4-6 Sequence diagram fire-and-forget

4.4.2 Request-reply
Sometimes it is not reasonable to send a message without expecting a reply.
Although there are advantages to decoupling consumer and provider, there are
scenarios in which confirmation or results of the remote processing is needed in
the form of a reply.

The request-reply pattern supports two-way communication between a
consumer and a provider. Based on the request from the consumer, the provider
sends back a reply. The reply may either contain an acknowledge for the arrival
of the request or a result based on the provider’s request processing.

The request-reply pattern exists for both asynchronous and pseudo-synchronous
communication. The difference is based on the blocked or running consumer
thread during the request processing on the provider side.

The request-reply pattern provides a tighter coupling between consumer and
provider. Additional logic is needed to correlate request and reply, to handle reply
delays or even failures in receiving replies.

Figure 4-7 on page 72 shows two sequence diagrams of the request-reply
pattern. With asynchronous communication thread A continues processing after
triggering thread B. The reply of thread B is handled on the consumer side by a
third thread C. With pseudo-synchronous communication thread A blocks its
processing after triggering thread B until it receives the reply.
 Chapter 4. Application design 71

Figure 4-7 Sequence diagram request-reply

Consider the case where a data store is not only used in an interactive manner
from a Web interface and also in a batch mode for data replication purposes.

With the Web interface, where the user will be automatically forwarded to the
inquiry result page when the service result is available, the pseudo-synchronous
solution is suitable. Since polling from the Web interface is not an option, the
technical implementation requires a blocked consumer thread until the reply
arrives.

For batch mode the asynchronous request-reply scenario is suitable as there is
no need to wait for the reply and therefore no reason to block a thread.

Request-reply design considerations
To support the asynchronous or pseudo-synchronous request-reply behavior, a
couple of issues must be addressed that do not exist when replies are made
synchronously.

Request and reply correlation
Because of the asynchronous nature of messaging there is no link between
request and reply. A service consumer sends a request and sometime later the
reply arrives. But what if the consumer made multiple requests and no longer
knows which reply matches what request?

The consumer could ensure that only one reply is due at a time, thus establishing
an implicit correlation between the request and the reply. Unfortunately, this
scenario is rarely applicable, as it greatly slows down the message processing.
Relying on the message order does not solve the problem either. Since the
duration of message processing may vary, the order of the requests may not
relate to the order of the replies.
72 Enabling SOA Using WebSphere Messaging

There are two common approaches:

1. Correlation identifier

A correlation identifier is a unique ID that indicates to which request message
a reply is related. In addition to the payload, a message contains a field for
the message ID and a field for the correlation ID that, when used together,
relate request and reply.

A consumer creates a request message and assigns it a unique message ID.
A provider that receives the request processes it, creates the reply, and
assigns the message ID from the request to the correlation ID field of the
reply. The consumer now is able to correlate request and reply by matching
the correlation ID of the reply to the message ID of a request.

Figure 4-8 shows a request-reply round trip implementing the correlation ID
scenario. Note that the correlation ID of the reply matches the message ID of
the request, while the message ID of the reply is completely new.

Figure 4-8 Sample of a correlation identifier scenario

An extension of this scenario would be the chaining of multiple request-reply
round trips. For example, the reply from the provider could at the same time
be a request that the original service consumer would have to answer. The
use of message ID and correlation ID could be applied in the same way as
already described.
 Chapter 4. Application design 73

For the pseudo-synchronous approach we still have the issue that there may
be more than one reply message within the same queue and we need to
select a specific one. The messaging system addresses this by providing
selection functionality for messages. The consumer can define specific
selection criteria for messages to be consumed. This could in our case be the
correlation ID in the reply message, thus making sure that the correct reply is
read from the queue.

2. Dynamic point-to-point queue

Some messaging systems support the dynamic creation of queues that, for
example, can be used as reply queues.

Before sending a request, a consumer creates a reply queue. Within the
request message it supplies the name of the queue to the provider. The
provider receives the request with the name of the reply queue, processes the
message, and sends the reply back to the consumer using the reply queue
created by the consumer. The consumer now reads the reply and removes
the queue afterwards.

The use of dynamic queues provides strong isolation between individual
applications, as the reply queue is completely separate.

There are two types of dynamic queues, temporary and permanent dynamic
queues. Temporary dynamic queues are automatically removed by the
infrastructure when the application that created the queue no longer accesses
it. Temporary dynamic queues do not support persistent messages.
Permanent dynamic queues are never automatically removed. Instead, the
application that created the queue must remove it. In contrast to the
temporary dynamic queue, the permanent dynamic queue supports persistent
messages.

Reply address determination
There must be an agreed-upon mechanism to identify the return address to
which to send a reply. Two common approaches are:

� Implicit addressing

With implicit addressing, the name of the request queue leads to the name of
the reply queue based on naming conventions. This approach is easy to
implement but makes the software less flexible by hard coding the reply
queue within the provider. It reduces location transparency and may not

Note: Some messaging systems do not allow users to set the message ID,
but instead provide their own unique identifier. In this case, an alternative
to the previous design would be to fill the correlation ID field already in the
request and have the provider copy the correlation ID for the reply.
74 Enabling SOA Using WebSphere Messaging

always be appropriate. Consider, for example, a provider that needs to serve
multiple consumers over the same request queue or a consumer that does
not want the reply sent back to itself but instead wants to address another
receiver selected based on some internal logic.

� Explicit addressing

With explicit addressing the request message contains a return address
indicating where the reply should be sent to. This approach supports greater
flexibility and enhanced location transparency. The knowledge of which reply
queue to use is encapsulated in the message and does not have to be hard
coded in the provider.

To support the transfer of the reply address, a message normally provides a
field for the reply address in addition to the message payload.

Missed or delayed replies
Applications should not be designed without appropriate timeout or retry
capability. Waiting indefinitely on a queue for the reply message to arrive can
cause, at best, a poor user experience, and at worst can result in a consumption
of system resources to the point where the entire application fails or stops
responding. Applications should not be designed without a mechanism to purge
queues of orphaned messages that may, for example, result from resubmitted
requests. Orphaned messages in the queues can lead to poor performance and
maintenance issues.

Decisions regarding how to behave in these situations is generally governed by
the business requirements. For example, an online query of a data store has
different functional and non-functional requirements than a batch job that
updates the data store’s data. In the case of the query, the same request may be
submitted many times with the reply needed within a reasonable amount of time.
In the case of the update batch job, the update must only occur once, but the
response time is not that important.

Resubmitting a request when a reply does not arrive in a reasonable amount of
time is usually an appropriate approach and leads to self-healing systems. A
pseudo-synchronous call is driven by the consumer who puts a message on the
request queue and immediately starts listening for the reply. After a couple of
seconds a listener timeout occurs notifying the consumer that a reply did not
arrive yet. The consumer now has the option to put the same request with the
same message ID once more onto the request queue and wait for the reply. If the
reply arrives now, the consumer may continue its processing, repeat the
procedure, or take an exception path.

Figure 4-9 on page 76 shows the sequence diagram for resubmit and exception
handling after a listener timeout of the consumer. The timeout occurs after the
consumer invokes a get on the reply queue between steps 1.2 and 1.3.
 Chapter 4. Application design 75

Figure 4-9 Resubmit and exception handling after a timeout

When resubmitting a request, consider the following:

� Ensure that the original request and the resubmits do not influence each
other.

In cases where requests lead to persistent data manipulation, ensure that
only one of the requests is executed, either the original request or one of the
resubmits. A way of achieving this is by maintaining a request log containing
message ID, request, and reply message. For further information see
“Request-reply logging” on page 78.

� Ensure that neither request nor reply messages reside on the queue for an
indefinite amount of time.

Consider a resubmit that leads to two reply messages with the same
correlation ID because of a delayed reply. The pseudo-synchronous
consumer expects just one, and is therefore never going to read the second
message. For this reason messaging systems provide expiration functionality
for messages, meaning that after a defined time a message is discarded and
removed from the queue. For further information see “Message expiration” on
page 78.

4.4.3 Selecting a messaging pattern
None of these options is incorrect if implemented correctly. The user’s
requirements and experience will dictate which decision is the correct one. A
fire-and-forget communication pattern is applied if a consumer does not need to
get a reply. A request-reply communication pattern needs to be applied if a
consumer needs to get a reply based on the request.
76 Enabling SOA Using WebSphere Messaging

You need to decide if the communication should be fully asynchronous or
pseudo-synchronous. Either is valid in a Web environment. If using the
asynchronous, provide a page where the user can poll for the reply. If using the
pseudo-synchronous style, lead the user automatically to the next page when the
reply arrives.

4.5 Messaging application design
After the adoption of the messaging model and pattern, the next step is to refine
the design with regard to the message producer, the message consumer, and
the messages to be exchanged.

4.5.1 Application design in general
This section contains general messaging guidelines related to message
producers, consumers, and the underlying infrastructure.

Message types
Based on the intent, messages can be classified as one of the following:

� Command messages that enable procedures call semantics to be executed
on another system

� Document messages enabling a messaging system to transport a document
or information

A command message in fact is a simple regular message containing a command
together with its parameters. Command messages are usually sent point-to-point
so that each command will be consumed and executed once.

A message does not necessarily need to trigger some functionality on another
system. Sometimes it just needs to pass information. For this reason there are
document messages. A document message can be seen as one parameter of a
command message or the result of a command message, with no intention of
triggering a specific function on the other system. Document messages are not
only used in point-to-point but also in publish-subscribe scenarios in case a
number of recipients need to be addressed.

A request-reply scenario is a sample where both message types are used. The
request represents a command message, triggering some remote functionality.
The reply only transmits the result of the functionality and therefore tends to be a
document message.
 Chapter 4. Application design 77

Message expiration
Sometimes guaranteed delivery without time constraint makes no sense. For that
reason an expiration duration can be attached to each message to indicate after
what amount of time a message becomes unusable and therefore should just be
discarded.

Purging old messages from queues is an important consideration in the design of
a messaging-based application. Not doing so will lead to poor performance and
maintenance issues as more and more messages are jamming the queues.

In the event that discarding messages by expiration is not possible, another
approach needs to be applied, like adding application logic to a client for
monitoring the queues and handling old messages. For this reason messaging
systems provide browse functionality for queues in their API to support the
scanning of messages without reading them out of the queue.

Message persistency
Another design consideration is whether messages need to be persistent or
non-persistent. Non-persistent messages do not survive process failure, but
because of their nature they can be processed much faster by the messaging
infrastructure and are less resource consuming. The decision to use persistent or
non-persistent messages is generally governed by the business requirements.

Request-reply logging
Both the service consumer and service provider should maintain a request-reply
log containing the message ID, the request and reply message, as well as
related key information like the request and reply timestamps and the reply
address. In addition, the system should be designed such that each request
belongs to a unique message ID and can thus be identified using the message
ID. In other words, two messages containing the same message ID reflect the
same request.

Maintaining a request-reply log is considered a best practice and shows
advantages in different areas:

� Eases system maintenance

By maintaining a request-reply log we always know the requests a service
consumer issued, the requests a provider got, which requests have been

Note: Some messaging systems do not allow users to set the message ID,
but provide their own unique identifier. In such cases the correlation ID should
be used for the request identification.
78 Enabling SOA Using WebSphere Messaging

processed, and what the outcome of the processing was. This provides a
solid background for debugging purposes and performance measurement.

� Prevents the execution of the same request more than once

In cases where requests lead to persistent data manipulation we need to
make sure that each request is processed only once. However, we need to
support resubmit functionality so application logic is required to implement
this constraint.

� Supports the concept of self-healing systems

The concept of self-healing systems leads to the ability of a system to recover
itself from certain failures. By maintaining a request-reply log the service
consumer always knows which requests are due and is therefore able to
decide whether a specific request should be resubmitted.

Recovery can be needed if, for example, a service consumer crashes during
the processing of the reply and the reply message may be lost. To recover
and successfully process the reply, the service consumer would need to force
the provider to send the reply again. This can be achieved by resubmitting a
request using the same message ID.

Figure 4-10 on page 80 shows the activity diagram of a provider’s request
handling using an applied request-reply log. A request only gets processed if
there is no log entry with the same message ID. If an entry exists, the reply is
taken from the log and put on the reply queue. Further processing is skipped,
thus guaranteeing consistency between request and reply.
 Chapter 4. Application design 79

Figure 4-10 Activity diagram of the request handling using a request log

4.5.2 Message consumers
This section contains design guidelines and best practices applied to message
consumers. It discusses the synchronous as well as the asynchronous
implementation approach. A behavior that needs to be supported by both types
is the ability to select specific messages from a queue, for example, to get just
the corresponding reply for a request.

Selective consumer
The selective consumer enables selective reading of specific messages in a
queue. This ability is required because it is often not possible to create a specific
queue for each message type, either because this would involve too many
queues or because dynamic queues are preferred and not known in advance.

Messaging addresses this issue by providing a mechanism that allows message
producers to set message header properties that can be used from message
consumers as selection criteria for specific messages.

Selective consumers can be used to implement filtering, dispatching, and
ordering functionality.

Message ID not found Message ID found

Get request

Check log

Message ID found Message ID not found

Get reply from log Process request

Rollback
processing

Log record

Put reply
80 Enabling SOA Using WebSphere Messaging

Consider, for example, a car purchase process. An employee may buy cars
without telling someone until a specific price limit; above that limit there is
notification to his manager needed. The notification process can be implemented
using messaging by copying the purchase price as a property into the message
header, thus allowing two different consumers to select messages based on the
price. One consumer would have to consume the messages below the critical
price, the other one above this price, providing notification functionality.

Example 4-1 shows a code sample of a producer that sets the price as a header
property in the message.

Example 4-1 Message producer

public class JmsSelectionSupportedProducer {
public void sendMessage(String msg, String price, String conFactoryName,

String destName) throws NamingException, JMSException {
...
//Create the message, set the property and send the message
TextMessage message = session.createTextMessage(msg);
message.setIntProperty(“price“, price);
producer.send(message);
...

}
}

Example 4-2 shows a code sample of a selective consumer. The consumer only
reads messages whose value of the price attribute in the message header is
higher than 10000.

Example 4-2 Selective consumer

public class JmsSelectiveConsumer {
public String receiveMessage(String conFactoryName, String destName)

throws NamingException, JMSException {

String messageSelector = “price > 10000”;

//Use the session, destination and selector to create the consumer
consumer = session.createConsumer(destination, messageSelector);

//Reveive the message
TextMessage message = consumer.receive();
...

}
}

 Chapter 4. Application design 81

The selection criteria should be chosen in a way that guarantees all possible
variants are served. If this is not the case messages that do not expire may stay
in the queue without ever being read by a consumer.

Polling consumer
The polling consumer acts in a synchronous manner since the receiver thread is
blocked until a message is available. Normally, it is the application or service that
controls polling consumers by telling them when to start polling.

A pseudo-synchronous request-reply scenario is a sample where polling
consumers are applied. The service consumer triggers the receiver functionality
immediately after sending the request. The receiver thread is then blocked until
either the reply message arrives or a receiver timeout occurs.

Design considerations that should be made during the design of polling
consumers involve the definition of receiver timeouts as well as definitions about
exception paths to take if expected messages do not arrive. Additional design is
needed for consumers that may just read specific messages, for example,
messages with a specific correlation ID.

Example 4-3 shows a code sample of a simple polling consumer. The consumer
could be used as a receiver on the service consumer side to support a
pseudo-synchronous request-reply scenario. Note the selector, which enables
the consumer to listen for a message with a specific correlation ID.

Example 4-3 Polling consumer

public class JmsPollingConsumer {
public String receiveMessage(String conFactoryName, String correlationId,

String destName, int timeout) throws NamingException, JMSException {

Session session = null;
Connection connection = null;
MessageConsumer consumer = null;
String msg = null;
String messageSelector = “JMSCorrelationID=’ID:“ + correlationId + “‘“;

try {
//Get the specified connection factory and queue
Context jndiConext = new InitialContext();
ConnectionFactory factory = (ConnectionFactory)

jndiContext.lookup(conFactoryName);
Destination destination = (Destination)jndiContext.lookup(destName);

//Create the connection and session
Connection conenction = factory.createConnection();
Session session = connection.createSession(false,
82 Enabling SOA Using WebSphere Messaging

Session.AUTO_ACKNOWLEDGE);

//Use the session, destination and selector to create the consumer
consumer = session.createConsumer(destination, messageSelector);

//Reveive the message
TextMessage message = consumer.receive(timeout);
msg = (String)msg.getText();

}
finally {

if (consumer != null) {
consumer.close();

}
if (session != null) {

session.close();
}
if (connection != null) {

connection.close();
}

}

return msg;
}

}

Event-driven consumer
An event-driven consumer acts in an asynchronous manner since it
automatically consumes messages as they become available. Unlike the polling
consumer, the event-driven consumer does not have a blocked receiver thread.
Instead, a new thread is started as soon as a message is available.

Using event-driven consumers instead of polling consumers allows systems to
behave more responsively because messages are processed as they arrive and
not as the application decides.

Event-driven design provides the following benefits:

� Eases implementation of applications and services involving unpredictable
and asynchronous occurrences

� Eases assembling of existing applications and services

� Supports component and service reuse

� Supports loose coupling between message producer and consumer
 Chapter 4. Application design 83

The design of event-driven consumers should include message throttling.
Because event-driven consumers are triggered by the arrival of messages, the
design needs to make sure that the system is not overloaded. A simple way to
achieve throttling is to limit the number of threads that can be created
dynamically to process incoming messages.

Example 4-4 shows a code sample of a simple event-driven consumer.
Event-driven consumers are supported by message driven beans (MDBs). MDBs
provide an onMessage method, which is called by the infrastructure for each
incoming message.

Example 4-4 Event-driven consumer

public class JmsEventDrivenConsumer implements MessageDrivenBean,
MessageListener {

...
public void onMessage(Message msg) {

//This method is triggered by each incomming message
}

}

Handling of poison messages
A poison message is a message that an event-driven consumer is not able to
process. It might be corrupt or just in an unexpected format. If an event-driven
consumer discovers a poison message it has several options for dealing with it:

� Roll back the message.

By triggering rollback on an event-driven consumer the message is put back
on the queue where it came from. This approach only works if the consumer
runs within a transaction.

� Move the message to another queue.

Moving the message to another queue enables special processing for that
message. This approach is useful if the consumer does not run within a
transaction.

� Discard the message.

The message is deleted, and thus lost without being processed.

The rollback approach needs special consideration, as it can lead to possible
loops. Consider the case of the rollback of a corrupt message back into the
queue where it came from. The same message stays corrupt and will therefore
be rolled back again and again and again. A useful approach for resolving this
issue (also provided by MDBs) is the definition of a maximum retries property
that defines how many times a consumer tries to read the same message before
84 Enabling SOA Using WebSphere Messaging

the listener port automatically stops listening. Unfortunately, this stops all
processing. In fact, there are two more properties needed, and provided by JMS:

� The redelivery count message property

This property defines how many times a message has already been read
from the queue.

� The backout threshold destination property

When the same message has been read a number of times equal to the
backout threshold, the infrastructure moves the message to a default queue
for messages that could not be delivered. The queue is called the dead letter
queue.

A rollback behavior that supports multiple (but not unlimited) processing retries
without stopping the listener can be achieved by setting the maximum retries
higher than the backout threshold. This allows the consumer to try to process a
message for the number of times specified by the backout threshold without
reaching the maximum retries number. Each time the redelivery fails the
redelivery count is incremented. When the redelivery count equals the backout
threshold, the message is moved to the dead letter queue. Maximum retries is
never reached and the listener port is not stopped.

4.5.3 Message producers
Message producers are triggered by programs to deliver messages. Producers
wrap messages they get from the application as payload in messaging-specific
messages; make sure the header attributes like expiry, reply address, message
ID, and maybe correlation ID are set correctly; and put the messages onto a
queue.

Example 4-5 shows a code sample of a simple message producer that does not
set any header attributes on the message.

Example 4-5 Simple message producer

public class JmsProducer {
public void sendMessage(String msg, String conFactoryName, String destName)

throws NamingException, JMSException {

Session session = null;
Connection connection = null;
MessageProducer producer = null;

try {
//Get the specified connection factory and queue
Context jndiConext = new InitialContext();
ConnectionFactory factory = (ConnectionFactory)
 Chapter 4. Application design 85

jndiContext.lookup(conFactoryName);
Destination destination = (Destination)jndiContext.lookup(destName);

//Create the connection and session
Connection conenction = factory.createConnection();
Session session = connection.createSession(false,

Session.AUTO_ACKNOWLEDGE);

//Use the session and destination to create the producer
producer = session.createProducer(destination);

//Create and send the message
TextMessage message = session.createTextMessage(msg);
message.setJMSMessageID(messageId);
producer.send(message);

}
finally {

if (producer != null) {
producer.close();

}
if (session != null) {

session.close();
}
if (connection != null) {

connection.close();
}

}
}

}

Example 4-6 shows an extension of the previous example by setting some
header attributes on the message. This producer implementation could be used
as a sender on the service consumer side to support a pseudo-synchronous
request-reply scenario. Note the reply queue and the message ID are set.

Example 4-6 Message producer setting message header attributes

public class JmsProducer {
public void sendMessage(String msg, String conFactoryName, String destName,

String replyDestName, long messageTimeout, String messageId)
throws NamingException, JMSException {

...
//Set header properties
Destination replyDestination = (Destination)

jndiContext.lookup(replyDestName);
message.setJMSReplyTo(replyDestination)
86 Enabling SOA Using WebSphere Messaging

message.setJMSExpiration(messageTimeout);
message.setJMSMessageID(messageId);
...

}
}

Special design consideration is needed for the generation of the message ID.
The algorithm calculating it needs to support globally unique ID generation
across multiple systems and environments.

4.5.4 Message producer and consumer in combination
This section shows the combination of message consumers and providers to
implement an end-to-end sample of a pseudo-synchronous request-reply
scenario.

Service consumer
Example 4-7 shows a code sample of a service consumer implementing a
pseudo-synchronous request-reply approach. Note that the consumer triggers
the receive functionality directly after the message is sent, thus blocking its
thread until the reply with the specific correlation ID arrives or a receiver timeout
occurs.

The ServiceConsumer class makes use of the previous message producer and
consumer samples by incorporating the JmsProducer as well as the
JmsPollingConsumer code.

Example 4-7 Service consumer

public class ServiceConsumer {
...
public String pseudoSyncReqRpl(String msg) {

String messageId = generateMessageId();
String correlationId = messageId();
String conFactoryName = “aConnectionFactory“;
String destName = “aDestination“;
String replyDestName = “aReplyDestination“;
long messageTimeout = 6000;
long receiverTimeout = 5000;

JmsProducer producer = new JmsProducer();

Note: Some messaging systems provide their own unique identifier for
message IDs. If this is the case, a generator can be used for the correlation
ID.
 Chapter 4. Application design 87

JmsPollingConsumer consumer = new JmsPollingConsumer();

try {
producer.sendMessage(msg, conFactoryName, destName, replyDestName,

messageTimeout, messageId);
msg = consumer.receiveMessage(conFactoryName, correlationId,

replyDestName, receiverTimeout)
return msg;

}
catch(...) {

...
}

}
}

Service provider
Example 4-8 shows a code sample of a service provider implementing a
request-reply approach. The service provider does not know the communication
actually is pseudo-synchronous, as the messaging style is influenced by the
behavior of the service consumer.

Example 4-8 Service provider

public class JmsEventDrivenConsumer implements MessageDrivenBean,
MessageListener {

...
public void onMessage(Message msg) {

String conFactoryName = “aConnectionFactory“;

//Get needed information from the message
String correlationId = msg.getJMSMessageID();
String replyDestName = msg.getJMSReplyTo().getQueueName();
String msg = (String)((TextMessage)msg).getText();

//Process the message
msg = processMessage(msg);

//Send the reply back
JmsProducer producer = new JmsProducer();
producer.sendMessage(msg, correlationId, conFactoryName, replyDestName)

}
}

88 Enabling SOA Using WebSphere Messaging

4.6 Designing a messaging-based SOA
SOA has implications not just at the technology level but at the junction point
between business and technology. It helps bridge the gap by bringing a
business-driven focus to how we expose and orchestrate services. The principles
of an SOA must therefore not just be addressed on a technology design level, but
need to be considered from the beginning. This section goes through the
different steps of the SOA approach at a high level, and then looks at how to
meet the following SOA principles when designing a messaging solution:

� Granularity

Services should be delivered at a level of granularity and abstraction that is
meaningful to the service requestor.

� Modularity

Services should be modular to enable the aggregation of the services into an
application with a few well known dependencies.

� Loose coupling

Services should be loosely coupled to minimize the impact of changes across
dependencies.

4.6.1 SOA approach
Figure 4-11 on page 90 shows the different steps of the SOA approach, leading
from service identification to service specification and then to service realization.
 Chapter 4. Application design 89

Figure 4-11 Steps of the SOA approach

Depending on the stage of the SOA approach, the different principles have more
or less weight. The service granularity can be seen as crucial during the service
identification and specification phase, while the modularity is mostly addressed
during service specification. The loose coupling is quite technology dependent
and needs special consideration during service realization. Of course, there is no
strict assignment of a principle to a specific phase of the approach, but a decision
taken within a specific step influences a particular principle more or less.

4.6.2 Service identification
The service identification process combines the three techniques of the
top-down, bottom-up, and middle-out approach.

During the top-down approach the business domain is decomposed into
subsystems and high-level business use cases that provide a specification for
business services. The bottom-up approach focuses on asset harvesting through
the analysis of existing systems and historical applications to determine those
that could be turned into reusable services. The middle-out approach applies the
90 Enabling SOA Using WebSphere Messaging

goal-service modeling technique where business services are identified based
on the service requirements of a goal in scope.

Top-down: Domain decomposition
Decomposition describes an iterative approach of taking a piece of something
and breaking it down into smaller pieces until the level reaches a desired
granularity. In the case of service identification we talk about a business domain
that gets decomposed into its functional areas and subsystems, processes,
subprocesses, and high-level business use cases.

Business use cases are intended to be exposed as business services and should
be kept on a granularity where they still offer a reusable amount of business
functionality.

Middle-out: Goal-service modelling
Goal-service modelling is similar to the domain decomposition technique
described above. Instead of decomposing a specific business domain, the
goal-service modelling technique decomposes a business goal within the scope
of work.

A goal can normally be identified by interviewing a business owner. The goal is
then broken down into sub-goals. Again this is an incremental approach that is
continued until the sub-goals reflect a desired granularity. The sub-goals are
then mapped to services that can fulfill the sub-goals.

Note that the technique between domain decomposition and goal-service
modeling is very similar but starts at different points. Choosing another starting
point changes the question, and therefore the answer may be different.

Bottom up: Existing system analysis
The analysis of existing systems should always be considered, not just in cases
where an integration of the whole or a part of it is planned. It must be seen as the
complement to the domain decomposition and goal-service modelling approach,
which is primarily driven by the business. System analysis is normally based on
information gathered from documentation (a good starting point), from interviews
with the maintenance team, and of course from code reviews.

As with the other service identification approaches, decomposition works here as
well. In addition, it helps deal with the complexity of the systems. Existing
systems can be broken into applications, modules, and transactions, as well as
into business rules. The information gathered during this process either provides
input for some system componentization decisions leading to services, or in case
of a replacement it provides input for new services.
 Chapter 4. Application design 91

4.6.3 Service specification
The service specification step transforms the conceptual business-related view
into a more design and architecture-driven view. Service specification means the
definition and specification of business and technical components as well as the
mapping of the use cases and services onto these components.

Subsystem analysis
Subsystem analysis involves the exposition of the identified business use cases
as services on the subsystem interface, the refinement of the business use
cases into system use cases, and the structuring of the subsystem into business
and technical components.

Each business use case relies on a set of system use cases encapsulated in the
subsystem. The subsystem leverages the business and technical components to
realize the use case and support the exposed business service.

During subsystem analysis business and technical components can be
discovered by:

� Analyzing the process flow within the subsystem.

� Using non-functional requirements to find technical components.

� Identifying the required functionality for each business component. In fact,
these are the system-level use cases that each component must support.

Service allocation
During service allocation we ensure that each service is assigned to a
component and leads to a business goal. This not only gives us certainty that all
services have been identified, but also that they contain business value and are
therefore justified.

We identified a set of justified services, but as we have already seen in
“Granularity” on page 4, within an SOA there exist different levels of abstraction.
Large-grained services are composed of finer-grained services that live on a
lower level of abstraction. Justifying the existence of a service is not enough. The
layer on which the service should reside must be defined.

An important part of service allocation is the categorization of the services and
components into hierarchies and layers. This not only prevents the design and
implementation of too many fine-grained services, which can lead to
performance issues and limited reuse, but also gives an indication about their
composition and dependencies.
92 Enabling SOA Using WebSphere Messaging

Component specification
The component specification step involves capturing and developing the
properties of the business and technical components:

� Rules that need to be implemented
� Services offered
� Used data elements
� Component dependencies
� Configurable profile settings like pluggable rules and strategies

4.6.4 Service realization
The service realization step needs to answer the question of how a specific
service or component is realized and which technologies and products should be
used.

Realization decision
Once the needed components are specified in detail there is enough of a
decision base to decide how they should be implemented. This is done during
the realization decision step. At the extremes, everything can be built from
scratch or can be completely outsourced. In between there are various other
approaches:

� Build new component functionality.
� Transform previous components to enable reuse of functionality exposed as

services.
� Integrate by wrapping previous systems.
� Buy and integrate with third-party products.
� Outsource parts of the functionality.

Technology and product selection
After the realization decision is made, the next step involves the selection of the
technologies and products that should be used for the realization of the service.
Criteria affecting this decision are:

� Feature compliance

Features need to be supplied to meet the functional and non-functional
requirements of the system.

� Specific technology and product standards

Already defined and established technology and product standards need to
be considered and met if possible.

� Existing systems and platform investments
 Chapter 4. Application design 93

If there are already systems and platforms that fulfill a specific need there
should be good reasons for not using them. This consideration normally has
crucial side effects on the development skills.

� Existing skills

Already existing team skills and experiences are key for the success of each
project and therefore need special considerations.

Often a proof of concept for the use of technologies and products is a good
approach, as it addresses possible issues and shortcomings already at an early
stage within a project. Issues and shortcomings may not only be technology or
product-related, but may also be based on some skill gaps within the team.

4.6.5 Design considerations
This section contains more information about service specification and
realization and discusses approaches to key issues related to SOA and with
guidance for achieving design principles.

Design for interface and implementation separation
An important aspect of SOA is the separation of the service interface from its
implementation, thus providing flexibility, reusability, and loose coupling. The
interface should encapsulate only those aspects of process and behavior that
are used in the interaction between service consumer and service provider.
Everything else, for example, the implementation of the service, needs to be
hidden. By explicitly defining the interaction in this way, those aspects of either
system that are not part of the interaction are free to change without affecting the
other system.

Patterns providing separation
Table 4-3 on page 95 shows an overview of application patterns that can be
applied to support the separation of service interface and implementation.

WebSphere ESB users: The patterns discussed in this section (Business
Delegate, Service activator, Service facade, Service adaptor) are provided for
you by SCA. They are not so much patterns to be used in the identification
and creation of services themselves, but rather implicit capability that the SCA
programming model gives you.
94 Enabling SOA Using WebSphere Messaging

Table 4-3 Application patterns that support separation of interface and implementation

Figure 4-12 shows how patterns can be applied to support looser coupling. The
base infrastructure can be messaging or some other infrastructure support.

Figure 4-12 Overview of the pattern arrangement

Pattern Description Supported coupling aspect

Business
delegate/service proxy

The business delegate hides
service invocation and
service implementation
details from clients.

� Transport protocol
transparency

� Location transparency

� Communication model
transparency

Service activator The service activator
enables asynchronous
event-driven processing.

� Transport protocol
transparency

� Communication model
transparency

Service facade The service facade
encapsulates and
orchestrates components
within a service
implementation, and thus
can be used to control
granularity and provide a
unified logical interface to
clients.

� Reduces coupling by
enlarging interface
granularity

Service adapter The service adapter provides
interface conversions by
mapping signatures and
message formats.

� Data format
transparency
 Chapter 4. Application design 95

Business delegate
The business delegate represents the interface to the consumer’s service access
layer. It decouples the service consumer logic from the service access logic and
provides proxy functionality to the service provider. The business delegate takes
care of lower-level details such as service localization and invocation.

The enhancement of the model with a factory for the creation of the business
delegate supports flexibility and plugability by providing a mechanism of
dynamically exchanging the service access logic without having to change any
client code. The client does not know or care what kind of business delegate it
gets back, whether it is one supporting JMS as the transport protocol or maybe
RMI/IIOP is completely transparent. All the business delegates implement a
common interface.

Figure 4-13 shows the component diagram representing the business delegate
pattern together with a delegate factory.

Figure 4-13 Business delegate pattern

Often business delegates can be found together with implementations of the
service adapter pattern to provide interface conversion for signature as well as
message format mappings. Consider, for example, that the message exchange
format is XML. The right place to implement the marshalling and unmarshalling
between consumer-specific data format and XML would be in the business
delegate that, in this case, also acts as an adapter.

Example 4-9 on page 97 shows the implementation of a class that contains
functionality to determine whether a car identified by an ID is available. The client
retrieves a car service delegate from the DelegateFactory and calls the

Tip: The delegate pattern as well as the adapter pattern can provide a useful
base for test purposes. Instead of calling a remote service they can be
implemented in a way so they reply with predefined static test data.
96 Enabling SOA Using WebSphere Messaging

isCarAvailable method. For the client it appears to be a local service call, when in
fact the service could reside anywhere.

Example 4-9 SellCarClient.class

public class CarServiceClient {
...
private boolean isCarAvailable(String carId) {

try {
CarServiceInterface carService = DelegateFactory.getCarDelegate();
boolean carAvailable = carService.isCarAvailable(carId);

return carAvailable;
}
catch(...) {

....
}

}
}

Example 4-10 shows a simplified implementation of the DelegateFactory. The
factory contains an algorithm that determines what kind of delegate to create. A
client who uses the factory does not know what type of delegate it gets. It just
accesses a generic interface whose concrete implementation was determined by
some logic encapsulated in the factory.

Example 4-10 DelegateFactory.class

public class DelegateFactory {
...
public static CarServiceInterface getCarDelegate() {

String carDelegateType = retrieveDelegateType(“carDelegate”);

if (“Jms”.equals(carDelegateType)) {
return new CarJmsDelegate();

}
else if (“Rmi”.equals(carDelegateType)) {

return new RmiCarDelegate();
}
else {

...
}

}
}

 Chapter 4. Application design 97

Example 4-11 shows a concrete delegate implementation supporting JMS as
transport protocol. The delegate contains the logic for the transport binding as
well as some functionality for service and parameter mappings.

Note that the receive method takes the request object as a parameter. This is
needed to support the correlation between request and reply as well as to pass
some context information like the name of the service that has been called.

Example 4-11 Delegate implementation

public class CarJmsDelegate implements CarServiceInterface {
...
public boolean isCarAvailable(String carId) {

try {
Message request = JmsMsgHandler.marshal(“isCarAvailable”, carId);
send(request);
Message reply = receive(request);

boolean carReserved = JmsMsgHandler.unmarshal(reply);
return carReserved;

}
catch(...) {

...
}

}
}

Service activator
The service activator enables and encapsulates asynchronous event-driven
processing by providing functionality that consumes messages and forwards
them to be processed. The service that has been triggered by the service
activator does not recognize the transport protocol used nor that it has been
executed asynchronously. The service activator provides transport protocol and
communication model transparency.

The service activator may optionally send an acknowledge to the service
consumer to indicate that the request arrived or it may wait until the processing of
the request has been finished and send the reply back to the consumer.

Figure 4-14 on page 99 shows the component diagram representing the service
activator pattern.
98 Enabling SOA Using WebSphere Messaging

Figure 4-14 Service activator pattern

Often service activators can be found together with implementations of the
service adapter pattern to provide interface conversion for signature as well as
message format mappings. Consider, for example, the message exchange
format is XML. The right place to implement the marshalling and unmarshalling
between XML and some provider-specific data format would be directly after
consuming the message, after the service activator.

Using J2EE as the selected technology, the service activator would usually be
implemented by a message driven bean (MDB).

Service adapter
The service adapter provides interface conversion functionality by mapping
signature and message formats of one service to the requirements of a client.
The client in our case is either a service consumer or service provider
functionality that wants to access a concrete service implementation.

The service adapter wraps the implementation of a service and propagates
converted calls to that service to be processed. In the other direction the adapter
takes the reply from the processing and converts it into the desired message
exchange format.

The enhancement of the model with a factory for the creation of the service
adapter supports flexibility and plugability by providing a dynamic way for adding
additional format support. Consider, for example, a scenario where a service
needs to be accessed with XML as well as with some key-value messages. The
only thing that a service provider would have to change to support both formats is
the adapter, which converts between the exchanged message format and the
provider’s language-specific format.

Figure 4-16 on page 103 shows the component diagram representing the service
adapter pattern together with an adapter factory.
 Chapter 4. Application design 99

Figure 4-15 Service adapter pattern

Example 4-12 shows a client implemented with the service activator pattern
using an MDB. The JmsMessageHandler class converts a JMS-specific
message into a more generic ServiceCall object, thus hiding the transport
protocol for the subsequent adapter call. To support plug-in functionality all
adapters would have to provide just one generic method, the execute method.

Example 4-12 CarServiceActivatorBean.class

public class CarServiceActivatorBean implements MessageDrivenBean,
MessageListener {

...
public void onMessage(Message msg) {

try {
ServiceCall srvCall = JmsMsgHandler.unmarshal(msg);
CarAdapterInterface carAdapter =

AdapterFactory.getCarAdapter(srvCall);
srvCall = carAdapter.execute(serviceCall);

Message reply = JmsMsgHandler.marshal(srvCall);
sendReply(reply);

}
catch() {

...
}

}
}

Example 4-13 on page 101 shows a simplified implementation of the adapter
factory. The functionality is similar to the one used for the business delegate. The
adapter factory contains the algorithm that determines what kind of adapter to
create, thus hiding further invocation and processing details. Note the
100 Enabling SOA Using WebSphere Messaging

ServiceCall object that is passed as a parameter is needed to determine the
format of the message. As with the example before, it could be XML as well as
some key-value format.

Example 4-13 AdapterFactory.class

public class AdapterFactory {
...
public static CarAdapterInterface getCarAdapter(ServiceCall srvCall)

throws AdapterException {
String carAdapterType = retrieveAdapterType(srvCall);

if (“Ejb”.equals(carAdapterType)) {
return new CarEjbAdapter();

}
else if (“JavaLocal”.equals(carAdapterType)) {

return new CarLocalAdapter();
}
else {

...
}

}
}

Example 4-14 shows the implementation of the CarAdapter class. The adapter
converts the thin, generic execute method used by the client to a broader
service-specific method provided by the adaptee. The adaptee hosts the
business logic to be executed.

Example 4-14 CarAdapter.class

public class CarAdapter implements CarAdapterInterface {
...
private CarServiceInterface carAdaptee = null

public CarAdapter() {
initialize();

}

public ServiceCall execute(serviceCall) throws AdapterException {
if(serviceCall != null) {

String serviceName = serviceCall.getServiceName();
if (“isCarAvailable”.equals(serviceName)) {

serviceCall = isCarAvailable(serviceCall);
}
else if (...) {

...
 Chapter 4. Application design 101

}
}
else {

...
}

return serviceCall;
}

private ServiceCall isCarAvailable(ServiceCall serviceCall) throws
AdapterException{

String carId = serviceCall.getParam(“carId“);
try {

boolean carAvailable = adaptee.isCarAvailable(carId);
serviceCall.addReplyParam(“carAvailable“, carAvailable);
return serviceCall;

}
catch(...) {

...
}

}
}

Service facade
A service facade encapsulates and orchestrates the various components within a
service implementation and can be used to control granularity and provide a
unified logical interface to producers.

By applying the service facade pattern service, any component dependencies
can be controlled and reduced by allowing service access only through the
interface exposed by the service facade. Components shielded by the facade
can never be accessed directly by clients external to the service implementation,
but just by the service facade and internal components. Everything behind the
facade could be changed without affecting the clients accessing the service.

Figure 4-16 on page 103 shows the component diagram representing the service
facade pattern. Note that clients could either be internal to the provider (for
example, some service activators) or external to the provider (for example, a
consumer’s business delegate could bind an EJB session facade directly using
RMI/IIOP).
102 Enabling SOA Using WebSphere Messaging

Figure 4-16 Service facade pattern

Example 4-15 shows the implementation of the CarFacade class. The facade
provides a coarse-grained interface by orchestrating ReservationComponent and
AccidentComponent, which provide data access functionality to database tables.

Example 4-15 CarFacade.class

public class CarFacade implements CarServiceInterface {
...
public boolean isCarAvailable(String carId) throws FacadeException {

boolean carDamaged = isCarDamaged(carId);
boolean carReserved = isCarReserved(carId);

return !carDamaged && !carReserved;
}

private boolean isCarDamaged(String carId) {
try {

AccidentComponent accComponent = getAccidentComponent();
boolean damagedCar = accComponent.isCarDamaged(carId);
return damagedCar;

}
catch(...) {

...
}

}

private boolean isCarReserved(String carId) throws FacadeException {
try {

ReservationComponent resComponent = getReservationComponent();
boolean reservedCar = resComponent.isCarReserved(carId);
return reservedCar;
 Chapter 4. Application design 103

}
catch(...) {

...
}

}
}

Design for stateless services
Service calls should be independent, self-contained requests. Service providers
should not hold states from earlier processing, but they should receive state as
part of the service parameters. Note that the fact that a service provider can also
act as a service consumer does not break this rule, as its lifetime as a service
consumer is limited to the duration of dependent service calls and so is their
ability of holding state.

Stateless services do not require a service consumer and a specific, executable
instance of the service provider to maintain a relationship between service
interactions. The successful design of stateless services depends primarily on
the design of the service interface, which needs to specify all the data that is
required to perform the service.

Not all technologies and especially not those who support loose coupling are
capable of dealing with retained handles to specific executable service
instances. Consider, for example, asynchronous messaging. There is no
infrastructure support for such functionality. In fact, the implementation of
statefull services would lead to much more dependency, complexity, and
additional implementation effort that finally leads to the following negative
impacts:

� Load balancing and failover capabilities are lost.

The service consumer depends on one provider; if this one crashes the
transaction cannot be finished.

� Coupling is tighter as a consumer depends on one provider.

Some flexibility is lost because of the tight dependency between consumer
and provider.

� Resource consumption increases.

Resources need to be preserved for further processing; therefore, they
cannot be used by other consumers.

� Service management gets more complex.

Special consideration is required for resource pooling and service lease times
that define the maximum duration a provider is assigned to a consumer.
104 Enabling SOA Using WebSphere Messaging

Design for upgradeable services
SOA intends to increase reuse by providing services to multiple service
consumers. Issues that arise out of this intention are related to the management
of changes within service providers that are, because of their nature, propagated
to the service consumers.

In cases where service consumers are affected by provider changes it is
advantageous to provide a mechanism that allows steady consumer migration
instead of forcing all of them to migrate on a specific date. The mechanism that
supports this advantageous compatibility is versioning.

In today’s industry nomenclature there exist two variations for compatibility, both
of which can be addressed using versioning:

� Backward compatibility

A service is considered to be backward compatible if it is compatible with
earlier versions of itself and therefore does not break existing consumers.

� Forward compatibility

A service is considered to be forward compatible if planned future versions
can be deployed without affecting existing consumers.

Table 4-4 on page 106 shows what kind of changes will break consumers and
those that will not. Changes that do not break consumers can be seen as being
backward-compatible as well as forward-compatible.

Note: Versioning is the approach of loosening service consumer and provider
dependencies in order to enhance modification flexibility. An interface or
contract should be designed such that any impact propagated between a
service provider to its consumers is minimized. A good approach to designing
an interface is to use the assumption that once an interface has been
deployed it can no longer be changed.

A methodology focusing on designing systems with well-described, stable
contracts is called design by contract. This methodology not only provides
guidance about how to design but also how to approach.
 Chapter 4. Application design 105

Table 4-4 Effects of service provider changes to service consumers

Versioning approach
The following approach describes just one way of implementing versioning. The
approach is based on data structure versioning where each data structure within
an exchanged message reflects a deployed version. Each data structure carries
a version number that consists of a major and a minor version. The version
numbers are treated based on the following guidelines:

� Minor and major version are numbers that both start with 0.

� The minor version gets incremented if a change is backward compatible. A
minor version change is always based on the last minor version; therefore,
backward compatibility must not be expected over more than one minor
version change.

� The major version is incremented if a change is not backward compatible.

If the major version is incremented the minor version must be set to 0.

Changes that break consumers Changes that do not break consumers

� Removing operations

Existing consumers need to be
modified so that they no longer use a
removed operation.

� Adding mandatory attributes into
existing data structure

Existing consumers need to be
modified to enable them to send the
required attribute.

� Removing mandatory attribute from
existing data structure

Existing consumers need to be
modified to make them aware that
they no longer get an expected
attribute within the reply.

� Change attribute-type

Existing consumers need to be
modified that they are able to deal
with the changed attribute-type.

� Adding new operations

Existing consumers are not aware of
new operations; therefore, it does not
break them. New consumers
nevertheless can use new
functionality.

� Adding new data-structures and
data-types

Existing consumers are not aware of
new data-structures and data-types;
therefore, they do not break.

� Adding optional attribute into existing
data structure

Existing consumers are not aware of
new attributes; therefore, they do not
break.

� Removing optional attribute from
existing data structure

Existing consumers are not aware
that the value of the removed optional
attribute is just skipped on the
provider side; therefore, they do not
break.
106 Enabling SOA Using WebSphere Messaging

Using these guidelines, service consumers, providers, as well as possible
intermediaries are able to determine the compatibility based on the message
exchanged and are able to trigger required message processing like routing and
transformation.

Service enablement
Service enablement is the migration of existing monolithic applications into the
building blocks of SOA. It is the process that creates a service to encapsulate the
functionality provided by an existing application.

There are three approaches for service enablement whose main differences are
characterized by the amount of modifications that must be made on the exiting
functionality:

� Re-engineering

The re-engineering approach limits the reuse of the existing system to
analysis purposes. The design and implementation of the new system is done
independent of the old one.

� Wrapping

The wrapping approach does not change the existing functionality of the
historical application but applies service enablement by wrapping it with
well-defined, accessible interfaces.

� Componentization

The componentization approach supports service enablement by refactoring
the existing application structure into components accessible by well-defined,
accessible interfaces.

Table 4-5 shows an overview of these approaches together with their
characteristics.

Table 4-5 Comparison of service enablement approaches

Approach Advantage Disadvantage

Service enablement by
re-engineering

� Optimal granularity
and reuse

� High design flexibility

� Replacement with
actual technology

� Good performance

� No production proven
functionality

� High risk

� High cost
 Chapter 4. Application design 107

There is no silver bullet for dealing with older system modernization. The
approach taken always depends on factors like cost and time budget, team skills,
quality of the older system, and required flexibility.

4.7 For more information
For more information about this topic you may find the following useful:

� WebSphere MQ Application Programming Guide, SC23-6595

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pb
i.cgi?CTY=US&FNC=SRX&PBL=SC34659500

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Enterprise Integration Patterns Web site

http://www.eaipatterns.com/index.html

� Pattern Solutions Web page on IBM developerWorks®

http://www-128.ibm.com/developerworks/rational/products/patternsolutions/

Service enablement by
wrapping

� Production proven
functionality

� Low risk

� Low cost

� Suboptimal granularity
and reuse

� Suboptimal
performance

� Often temporary
solution

� Difficult to maintain

Service enablement by
componentization

� Production proven
functionality

� Easy to maintain

� Good performance

� High cost

� Suboptimal granularity

Approach Advantage Disadvantage
108 Enabling SOA Using WebSphere Messaging

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659500
http://www.eaipatterns.com/index.html
http://www-128.ibm.com/developerworks/rational/products/patternsolutions/

Chapter 5. Point-to-point runtime
configuration

The simplest scenario in which to begin building an SOA environment is to
introduce connection middleware that can be used to control the connectivity
between applications. This lacks most of the features that make an SOA
architecture, but is a simple way to begin introducing the elements into an
existing environment. Since no mediation is used at this stage, this chapter
focuses on connectivity between messaging transport software. These
techniques form the basis for building more advanced SOA runtime
infrastructures.

We first give an overview of the process required to configure WebSphere MQ
queue managers, queues, and connectivity between queue managers. This will
give you an idea of how the structural elements of WebSphere MQ are created
and connected.

Next, we show how to connect a WebSphere Application Server service
integration bus (or just the bus) to WebSphere MQ. WebSphere ESB is built on
WebSphere Application Server and the bus is used for message transport. Thus,
this process is the same whether you are using WebSphere Application Server
or WebSphere ESB.

Last, we show how to set up shared queues using WebSphere MQ for z/OS.

5

© Copyright IBM Corp. 2006. All rights reserved. 109

5.1 WebSphere MQ configuration
This section gives an overview of the elements required in WebSphere MQ to
receive and deliver messages. It covers the basics of creating queue managers
and queues, and connecting one queue manager to another. If you are not
familiar with WebSphere MQ concepts, review “WebSphere MQ” on page 28.

To illustrate, let us assume that an application wants to input data to node 1 and
another application wants to get the data from node 2. Assured data delivery is a
requirement.

First we need a queue manager on each node. QM1 will be created on node 1
and QM2 on node 2. In QM1, we have to define a remote queue definition,
sender channel, and transmission queue. In QM2, we have to define target
queue, receiver channel, and listener. This configuration is shown in Figure 5-1.

Figure 5-1 WebSphere MQ - WebSphere MQ integration

Note that in this configuration the following is true:

� The MQLINK queue in QM1 is a remote queue definition pointing to the
TARGET queue in QM2.

� QM2 queue in QM1 is a transmission queue.

� There is a pair of sender and receiver channels between the two queue
managers.

When application APP1 puts XML data on the MQLINK queue, the data is
delivered through the channel. Application APP2 gets the XML data from the
TARGET queue.
110 Enabling SOA Using WebSphere Messaging

The steps required to create and test the connection are:

1. Create the queue managers.
2. Create a remote queue definition.
3. Create a transmission queue.
4. Create a sender channel.
5. Create a local queue.
6. Create a receiver channel.
7. Start the sender channel.
8. Test the connection.

The next sections illustrate how this is done for our example. These steps are
performed using the WebSphere MQ Explorer tool. For testing purposes, we
used one machine and one installation of WebSphere MQ, and thus one
instance of WebSphere MQ Explorer. As you go through this example, keep in
mind that under normal circumstances you would be creating a connection
between two machines and two instances of WebSphere MQ.

5.1.1 Create the queue managers
Let us start our configuration by creating the new queue managers using the
WebSphere MQ Explorer. In the Explorer window:

1. Right-click Queue Managers and select New → Queue Manager.

2. In Step 1, type QM1 in the Queue Manager Name field and click Next.

3. In Step 2, take the default for the log values and select Next.

4. In Step 3, deselect Auto Start Queue Manager, and select Next.

5. In Step 4, enter the listener port number. The default is 1414. If you already
have a queue manager running on the system you will need to select a
different port number.

6. Click Finish.

Create QM2 using the same process. Since we used one machine we needed to
use a different listener port number (1415) in step 4.

Figure 5-2 Create two queue managers
 Chapter 5. Point-to-point runtime configuration 111

5.1.2 Create a remote queue definition
Next, we need a remote queue definition in QM1 to point to the TARGET queue
that resides (or will reside) in QM2.

1. Navigate to Queue Managers → QM1 → Queues.

2. Right-click Queues.

3. Select New → Remote Queue Definition.

4. Type MQLINK in the Name field, and click Next.

5. Type TARGET in Remote Queue field and QM2 in the Remote Queue Manager
field (Figure 5-3).

Figure 5-3 Create a remote queue definition

6. Click Finish.
112 Enabling SOA Using WebSphere Messaging

5.1.3 Create a transmission queue
A transmission queue is a local queue on which prepared messages destined for
a remote queue manager are temporarily stored. To create the transmission
queue:

1. Navigate to Queue Managers → QM1 → Queues.

2. Right-click Queues.

3. Select New → Local Queue.

4. Type QM2 in the Name field and click Next.

5. Change the Usage field to Transmission and click Finish.

Figure 5-4 Create a transmission queue

When you are done, you will see the that there are two queues in QM1. The
remote queue definition, MQLINK, and the transmission queue, QM2.
 Chapter 5. Point-to-point runtime configuration 113

Figure 5-5 Queue definitions in QM1

5.1.4 Create a sender channel
A sender channel is a channel that initiates transfers, removes messages from a
transmission queue, and moves them over a communication link to a receiver or
requester channel. To create the sender channel:

1. Navigate to Queue Managers → QM1 → Advanced → Channels.

2. Right-click Channels and select New → Sender Channel.

3. Type QM1.TO.QM2 in the Name field, and click Next.

4. In the Connection Name field, type the IP address or host name of the system
hosting the QM2 queue manager concatenated with its listener port number
in parentheses. In this example, because QM1 and QM2 are both on the
same system, and the listener port for QM2 is 1415, we can use
localhost(1415) or 127.0.0.1(1415).

5. Type QM2 in the Transmission Queue field. This is the queue defined earlier in
“Create a transmission queue” on page 113.

6. Click Finish.
114 Enabling SOA Using WebSphere Messaging

Figure 5-6 Create a sender channel

This completes the configuration of the objects on QM1.

The next series of steps configures the objects on QM2 objects. This includes a
target queue and receiver channel.

5.1.5 Create a local queue
The local queue on QM2 is the target queue of the remote queue definition on
QM1. To create the queue:

1. Navigate to Queue Managers → QM2 → Queues.

2. Right-click Queues.

3. Select New → Local Queue.

4. Type TARGET in the Name field and click Finish. Note that TARGET matches
the name defined in the remote queue field of MQLINK in QM1 (see “Create a
remote queue definition” on page 112).
 Chapter 5. Point-to-point runtime configuration 115

Figure 5-7 Create a local queue of the target

5.1.6 Create a receiver channel
The receiver channel is a channel that responds to a sender channel, taking
messages from a communication link. To create the receiver channel:

1. Navigate to Queue Managers → QM2 → Advanced → Channels.

2. Right-click Channels and select New → Receiver Channel.

3. Type QM1.TO.QM2 in the Name field. Note that the sender and receiver
channels must have the same name. This matches the sender channel
defined in “Create a sender channel” on page 114). Unlike the sender
channel, the receiver channel does not need the connection name defined.

4. Click Finish.

Figure 5-8 Create a receiver channel

5.1.7 Start the sender channel
Now that the definitions are complete, start the sender channel by right-clicking
the QM1.TO.QM2 sender channel under QM1 and selecting Start.

When the channel starts successfully, the status will change to Running and the
icon will turn green. Note that the receiver channel icon also turns green.
116 Enabling SOA Using WebSphere Messaging

Figure 5-9 Start the sender channel

5.1.8 Test the connection
The easiest way to test the connection is using RFHUtil. This utility is provided as
SupportPac™ IH03 and can be downloaded from the following location:

http://www-1.ibm.com/support/docview.wss?rs=203&uid=swg24000637&loc=en_US&cs=ut
f-8&lang=en

An XML file can be used for testing. We used Airline1.xml from “Sample XML
files” on page 270.

To test the connection:

1. Run rfhutil.exe.

2. Select QM1 in the Queue Manager name field.

3. Select MQLINK in Queue Name field.

4. Select Read File to open the XML file.
 Chapter 5. Point-to-point runtime configuration 117

http://www-1.ibm.com/support/docview.wss?rs=203&uid=swg24000637&loc=en_US&cs=utf-8&lang=en

Figure 5-10 RFHUTIL Main panel

5. Click the Write Queue button.

The XML data will be put on the MQLINK and sent to the TARGET queue in
QM2.

6. You can see the message on the TARGET queue using WebSphere MQ
Explorer. Click Queues under QM2. Select TARGET from the list displayed,
right-click, and select Browse Messages.

Figure 5-11 Delivered message in TARGET queue

5.2 Connect WebSphere ESB to WebSphere MQ
In this section we show how to connect WebSphere ESB to WebSphere MQ to
allow the flow of messages from one network to the other.
118 Enabling SOA Using WebSphere Messaging

Consider the travel bureau introduced in “End-to-end scenario” on page 60.
Airline C uses an application to issue tickets that uses the same XML format as
the travel bureau. The message can be used as is with no mediation. The
connection between the applications becomes a simple point-to-point
connection, with the primary concern being the assured data delivery between
the two applications. Airline C has a WebSphere MQ network.

The travel bureau has chosen to use WebSphere ESB as its ESB with the intent
of expanding its integration solution to include airline companies that require
mediation to communicate. However, their immediate need is to simply connect
the application server environment on WebSphere ESB with Airline C’s
WebSphere MQ networks.

Figure 5-12 Integration scenario - Point-to-point with no mediation

WebSphere
ESB

Travel
Bureau

Bus

BLOB

XML

End User
Web Browser

HTTP Server

Servlet
container

Application

WebSphere MQ

Airline
 Chapter 5. Point-to-point runtime configuration 119

To illustrate how to connect a service integration bus to WebSphere MQ, we use
the configuration in Figure 5-13.

Figure 5-13 WebSphere MQ to WebSphere ESB connection

WebSphere ESB, WebSphere Application Server, and the service
integration bus: The messaging infrastructure of WebSphere Application
Server V6 is implemented in the service integration bus (referred to as the
bus). WebSphere ESB, built on WebSphere Application Server, also uses the
service integration bus as its messaging infrastructure.

For this reason, the process used to connect WebSphere ESB to WebSphere
MQ and WebSphere Application Server to WebSphere MQ are the same. In
this discussion we use WebSphere ESB.

The sample we show here is simply to illustrate the mechanics of connecting a
bus to a WebSphere MQ environment. Before making any decisions, you
should refer to the product documentation for planning assistance in designing
a service integration topology.

REPLY
(Alias Queue)

TARGET
(Local Queue)

RESULT
(Local Queue)

REQUEST
(Remote Queue)

WAS
(XMIT Queue)

SOURCE
(Remote Queue)

Destination

 MQ
(queue manager)

TO.WAS
(Receiver Channel)

TO.MQ
(Sender Channel)

WAS
(queue manager)

MQLINK

Application 1 Application 2

Application 3

WebSphere
MQ

WebSphere
ESB

TO.MQ
(Receiver Channel)

TO.WAS
(Sender Channel)
120 Enabling SOA Using WebSphere Messaging

Note that in this configuration the following is required to connect the two
systems:

� In WebSphere ESB

– A service integration bus.

– A foreign bus definition for WebSphere MQ.

– A WebSphere MQ link that defines the specific queue manager, the
listener port, and the sender channel name (TO.MQ) for the link to
WebSphere MQ. The queue manager name for the bus (WAS) is also
specified here.

� In WebSphere MQ

– A queue manager in WebSphere MQ, called MQ.

– A sender channel called TO.WAS. This defines the host and listener port
for the bus. It also defines WAS as the name of the transmission queue.

– A receiver channel called TO.MQ.

– A transmission queue called WAS.

The following queues are defined to support the two message flow scenarios we
use to illustrate the connection between the applications and how the various
queue types function:

� The following queues are defined on the service integration bus:

– A local queue called TARGET.

– An alias queue called REPLY. This queue is an alias of the RESULT
queue in the MQ queue manager and is used to route messages to that
queue.

� The following queues are defined on the WebSphere MQ queue manager to
support the message flow scenarios:

– A local queue called RESULT

– A remote queue called SOURCE that points to the TARGET queue in
WAS

– A remote queue called REQUEST that points to REPLY in WAS

In the first message flow scenario, application APP1 puts a message on the
SOURCE queue in MQ. Because the SOURCE queue is a remote queue
definition pointing to the TARGET queue in WAS, the data is delivered to the
TARGET queue where application APP2 can read it.

In the second message flow scenario, application APP1 puts a message on the
REQUEST queue. Because the REQUEST queue is a remote queue definition
pointing to the REPLY queue in WAS, the data is delivered to the REPLY queue.
 Chapter 5. Point-to-point runtime configuration 121

However, the REPLY queue is an alias for the RESULT queue in WebSphere
MQ, so the message is sent back to MQ.

5.2.1 Configure the service integration bus
The following steps are needed to define WebSphere MQ to the service
integration bus:

1. Create a bus.
2. Add the application server as a member of the bus.
3. Define WebSphere MQ as a foreign bus.
4. Define a WebSphere MQ link.
5. Create the local and alias queues.

This configuration is done using the WebSphere administrative console.

Create a bus
In WebSphere ESB, there are predefind buses for use with mediation modules.
Since we are not using mediation at this time, we create a new bus. In
WebSphere Application Server, there are no predefind buses.

The following steps can be used to create a new bus:

1. In the console, navigate to Service Integration → Buses.

2. Click New and type in the name of the bus in the Name field. In this case, we
use BUS as the name.

3. Click OK to create the new bus.

Note: Before implementing a connection between the service integration bus
and WebSphere MQ, see the following:

� PK15976; 6.0.2.3: Handling of message headers by the WebSphere
default provider

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=D400&dc
=D410&dc=D420&dc=D430&q1=JMS&uid=swg24011220&loc=en_US&cs=utf-8&lang=en
122 Enabling SOA Using WebSphere Messaging

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=D400&dc=D410&dc=D420&dc=D430&q1=JMS&uid=swg24011220&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=D400&dc=D410&dc=D420&dc=D430&q1=JMS&uid=swg24011220&loc=en_US&cs=utf-8&lang=en

Figure 5-14 Add a new bus

Add the application server as a member of the bus
A bus can have multiple application servers or clusters within the same cell as
members of the bus. Adding a member creates the messaging engine for the
server or cluster that manages the message flow to and from the bus.

1. Click the bus name to open the details page.

2. Click Bus Members.

3. Click Add to add a bus member.

4. In Step 1 select the server or cluster to add as the bus member and click
Next.

5. In Step 2 click the Finish button. The application server will be added as a
member to the bus.
 Chapter 5. Point-to-point runtime configuration 123

Figure 5-15 Add the application server as a new bus member

6. Save the changes.

Define WebSphere MQ as a foreign bus
The next step is to define WebSphere MQ to the service integration bus.
WebSphere MQ is represented as a foreign bus.

1. Select Service Integration → Buses. Click the bus name to open the detail
page.

2. Click Foreign Buses.

3. Click New.

4. In Step 1, type WAS in the Name field, and click Next.

5. In Step 2, select Direct WebSphere MQ Link and click Next.

6. In Step 3, just click Next.

7. And in Step 4, click Finish to add the new foreign bus definition.
124 Enabling SOA Using WebSphere Messaging

Figure 5-16 Add a foreign bus

8. Save the changes.

Define a WebSphere MQ link
A WebSphere MQ link enables the exchange of messages with a WebSphere
MQ network. Defining an MQ link defines the sender and receiver channels used
to transmit messages to and from WebSphere MQ.

WebSphere MQ links are defined at the messaging engine:

1. Select Service Integration → Buses. Click the bus name to open it.

2. Click Messaging Engines. The messaging engine created for the application
server (when you added the server to the bus) should be in Started state. If
not, click Start.
 Chapter 5. Point-to-point runtime configuration 125

Figure 5-17 Messaging engine for server1

3. Click the messaging engine for your server to open the details page.

4. Click WebSphere MQ Links.

5. Click the New button.

6. In Step 1:

– Type LINK in the Name field.

– Select WAS in the Foreign Bus field.

– Type WAS in the Queue Manager Name field. This becomes the queue
manager name that WebSphere MQ uses for WebSphere ESB.

Click Next.
126 Enabling SOA Using WebSphere Messaging

Figure 5-18 Create a WebSphere MQ link - Step 1

7. In Step 2:

– Type TO.MQ in the Sender MQ Channel Name field. This defines the
sender channel. The name used here must match the name you use for
the partner receiver channel in WebSphere MQ.

– Type the IP address of the WebSphere MQ host in the Host Name field.

– Type the listener port number for the WebSphere MQ queue manager in
the Port field. In this example, the WebSphere MQ queue manager has
not been created yet, but assume that when it is, port 1414 will be used.
This is the port number you enter here.

– Select OutboundBasicMQLink in the Transport Chain field.

Then click Next.
 Chapter 5. Point-to-point runtime configuration 127

Figure 5-19 Create a WebSphere MQ link - Step 2

8. In Step 3, type TO.WAS in the Receiver MQ Channel Name field and click Next.

9. In Step 4, click Finish. You can see the newly created WebSphere MQ Link
named LINK.

Figure 5-20 New WebSphere MQ link

10.Save the changes.
128 Enabling SOA Using WebSphere Messaging

Create the local and alias queues
The next step prepares the bus for the application-specific queue requirements.
In this example, we create a local queue to hold the messages and an alias
queue to represent the WebSphere MQ queue.

1. Select Service Integration → Buses.

2. Click the bus name.

3. Click Destinations.

4. Click New.

5. Select Queue and click Next.

6. In Step 1, type TARGET in the Identifier field and click Next.

7. In Step 2, select the bus member to host the queue and click Next. In our
example, we use a single server, so the default, server1, is correct.

8. In Step 3, click Finish to create the queue.

Figure 5-21 Add a new local queue in destinations

9. You should be back at the Destinations list. Click New to create the alias
queue.

10.Select Alias and click Next.

11.In Step 1:

a. Type REPLY in the Identifier field.
b. Select BUS in the Bus field.
c. Type RESULT@MQ in the Target Identifier field.
d. Select the foreign bus, WAS, in the Target Bus field.
 Chapter 5. Point-to-point runtime configuration 129

Click Next.

Figure 5-22 Alias destination attributes

12.In Step 2, click Finish. You will be able to see the two destinations, TARGET
and REPLY, that you just created.
130 Enabling SOA Using WebSphere Messaging

Figure 5-23 Create a new alias destination

13.Save all changes, log off, and restart the server.

5.2.2 Configure WebSphere MQ
Let us configure the objects in WebSphere MQ using the same techniques
shown in “WebSphere MQ configuration” on page 110:

1. Create a new queue manager named MQ with 1414 as the listener port.

2. Create the following queues.

– RESULT: Local queue
– SOURCE: Remote queue definition targeting TARGET in WAS
– REQUEST: Remote queue definition targeting REPLY in WAS
– WAS: Transmission queue
 Chapter 5. Point-to-point runtime configuration 131

Figure 5-24 Create the WebSphere MQ queues

3. Create the following channels:

– TO.WAS sender channel

The connection name for this example is localhost(5558). This connects
the sender channel to the service integration bus.

The default listener port for the service integration bus is 5558 for the first
application server on a node. You can check the port for your application
server by going to Servers → Application servers. Click the server name
to open the details page. Expand the Ports category under the
Communications section. The port number used by the server is the
SIB_MQ_ENDPOINT_ADDRESS.

Enter WAS as the transmission queue.

– TO.MQ: receiver channel

Figure 5-25 Create a sender channel and a receiver channel in WebSphere MQ

5.2.3 Start the connection
After creating the sender channel on the service integration bus, it should have
gone into standby status, waiting for the other side to become active. Now that
132 Enabling SOA Using WebSphere Messaging

the corresponding channel definitions are defined in WebSphere MQ, you will be
able to start it the sender channels on both sides.

In the WebSphere administrative console:

1. Select Services Integration → Buses. Then click the bus name to open its
configuration.

2. Click Messaging Engines. Then click the messaging engine to open it.

3. Click WebSphere MQ Links. Then click the WebSphere MQ link name,
LINK, to open it.

4. Click Sender Channel. Note the status of the channel is standby.

5. Check the box to the left of the TO.MQ channel and click Start. The channel
will start and you can see the status change to Started.

Figure 5-26 Start the sender channel in the bus

6. Start the TO.WAS sender channel in WebSphere MQ Explorer. If all channels
are active on both sides, you will see the following status in WebSphere MQ
Explorer.
 Chapter 5. Point-to-point runtime configuration 133

Figure 5-27 Channel status in WebSphere MQ Explorer

5.2.4 Test the connection
You can test the connection by sending a test message from WebSphere MQ to
the WebSphere Application Server using the sample program RFHUtil:

1. Start RFHUtil.

2. Select MQ in the Queue Manager field.

3. Select SOURCE in the Queue Name field.

4. Click the Read File button to select the XML file Airline1.xml (see “Sample
XML files” on page 270).

5. Click the Write Q button to send the message.

Figure 5-28 Put a test message on the queue using RFHUtil
134 Enabling SOA Using WebSphere Messaging

Check that the message is delivered to WebSphere Application Server:

1. In the WebSphere administrative console, select Services Integration →
Buses.

2. Click the bus name.

3. Click Destinations.

4. Click the destination name TARGET.

5. Click Queue Points.

6. Click the queue point name.

7. Select the Runtime tab. You should see that the current message depth is 1.

Figure 5-29 Queue point for TARGET queue in the bus

8. Click Messages.

9. Click the message identifier number.

10.You will see the JMS message properties and runtime message properties.
 Chapter 5. Point-to-point runtime configuration 135

11.Click Message Body. You should see the Airline1.xml message you sent
through WebSphere MQ.

Figure 5-30 Delivered message body

Next, try a request/reply test:

1. Start RFHUtil.

2. Select MQ in the Queue Manager field.

3. Select REQUEST in the Queue Name field.

4. Click the Read File button to read the same XML file.

5. Click Write Q to send the message.
136 Enabling SOA Using WebSphere Messaging

Figure 5-31 Send a test message using RFHUtil

The sample program:

� Puts the message on the REQUEST queue in MQ.

� The message is then transferred to the REPLY queue in WAS through the
TO.WAS channel.

� But the REPLY queue in WAS is an alias queue targeting the RESULT queue
in MQ. So this message is sent to the RESULT queue.

So you should be able to see the message in the RESULT queue in MQ.

Figure 5-32 Result of the request/reply test

To use RFHUTIL to read the data from the RESULT queue:

1. Start RFHUtil.

2. Select MQ in the Queue Manager field.
 Chapter 5. Point-to-point runtime configuration 137

3. Select RESULT in the Queue Name field.

4. Click the Read Q button to read the same XML file.

5. Switch to the Data tab to see the message.

5.3 Configuring a queue sharing group
In this section we describe how to configure WebSphere MQ to use a queue
sharing group in a sysplex, and list the tasks needed to define Q1.QUE and
Q2.QUE shared queues:

1. Set up the DB2 environment to support MQ shared queue.
2. Set up the CFRM policy with the MQ structures.
3. Add the MQ data sharing group entry to the DB2 table.
4. Update the ZPARM.
5. Add the sample queue sharing definitions to the queue manager procedures.
6. Define the shared queues between the two MQ subsystems.

Before we started, MQQ1 and MQQ2 were individual queue managers running
on separate z/OS systems in our sysplex. After we finish the customization,
MQQ1 and MQQ2 will fully participate in a queue sharing group, as shown in
Figure 5-33.

Figure 5-33 z/OS QSG

5.3.1 Set up the DB2 environment to support MQ shared queue
The following jobs must be executed to define the MQ environment on the DB2
data-sharing group:

� Create the storage group.
� Create the database.

MQQ1
queue

manager

Q1.QUE

z/OS

DB 2

Coupling Facility
MQQ2
queue

manager

Storage Group CSQQ1Q2

Q2.QUE

Q1Q2DB

MQQG
queue sharing group
138 Enabling SOA Using WebSphere Messaging

� Create the tablespaces.
� Create the DB2 tables and associated indexes.
� Bind the DB2 plans.
� Grant execute authority.

Create the storage group
The first job, CSQ45CSG, is used to create the storage group that is to be used
for the WebSphere MQ database, tablespaces, and tables.

Example 5-1 Create the storage group - CSQ45CSG

//MQQGCSG JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
//* Sample job to create the DB2 storage group used by WebSphere MQ*
//* using the DB2 TSO batch interface. *
//* *
//**
//* *
//* MORE INFORMATION - See: *
//* "WebSphere MQ for z/OS System Setup Guide" *
//* for information about this customization job *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//CREATESG EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=20
//STEPLIB DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D8QG)
 RUN PROGRAM(DSNTIAD) -
 PLAN(DSNTIA81) -
 LIB('DB8QU.RUNLIB.LOAD')
/*
//SYSIN DD *
 CREATE STOGROUP "CSQQ1Q2"
 VOLUMES('TOTDB9') VCAT DB8QU;
/*
//
 Chapter 5. Point-to-point runtime configuration 139

Create the database
Job CSQ45CDB is used to create the database to be used by all queue
managers that will connect to this DB2 data-sharing group.

Example 5-2 Create the database - CSQ45CDB

//MQQGCDB JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
//* Sample job to create the DB2 database used by WebSphere MQ *
//* using the DB2 TSO batch interface. *
//* *
//**
//* *
//* MORE INFORMATION - See: *
//* "WebSphere MQ for z/OS System Setup Guide" *
//* for information about this customization job *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//CREATEDB EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=20
//STEPLIB DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D8QG)
 RUN PROGRAM(DSNTIAD) -
 PLAN(DSNTIA81) -
 LIB('DB8QU.RUNLIB.LOAD')
/*
//SYSIN DD *
 CREATE DATABASE "Q1Q2DB"
 BUFFERPOOL BP32K1
 STOGROUP CSQQ1Q2;
/*
//

Create the tablespaces
This creates the tablespaces that will contain the queue manager and channel
initiator tables used for queue-sharing groups.
140 Enabling SOA Using WebSphere Messaging

Example 5-3 Create the tablespaces - CSQ45CTS

//MQQGCTS JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
//* Sample job to create the DB2 tablespaces used by WebSphere MQ *
//* using the DB2 TSO batch interface. *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//CREATETS EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=20
//STEPLIB DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D8QG)
 RUN PROGRAM(DSNTIAD) -
 PLAN(DSNTIA81) -
 LIB('DB8QU.RUNLIB.LOAD')
/*
//SYSIN DD *

 CREATE TABLESPACE "CQMGR4K"
 USING STOGROUP CSQQ1Q2
 PRIQTY 1024
 SECQTY 4096
 PCTFREE 20
 SEGSIZE 64
 BUFFERPOOL BP2
 LOCKSIZE ANY
 CLOSE NO
 IN Q1Q2DB;

 CREATE TABLESPACE "CQMGR32K"
 USING STOGROUP CSQQ1Q2
 PRIQTY 1024
 SECQTY 4096
 BUFFERPOOL BP32K2
 LOCKSIZE ANY
 CLOSE NO
 IN Q1Q2DB;

 CREATE TABLESPACE "CCHIN"
 USING STOGROUP CSQQ1Q2
 Chapter 5. Point-to-point runtime configuration 141

 PRIQTY 1024
 SECQTY 4096
 FREEPAGE 10
 PCTFREE 30
 SEGSIZE 64
 BUFFERPOOL BP1
 LOCKSIZE ANY
 CLOSE NO
 IN Q1Q2DB;

 CREATE TABLESPACE "CLOBMB4K"
 USING STOGROUP CSQQ1Q2
 BUFFERPOOL BP7
 NUMPARTS 4
 LOCKSIZE ANY
 CLOSE NO
 IN Q1Q2DB;

 CREATE LOB TABLESPACE "CLOB132K"
 IN Q1Q2DB
 USING STOGROUP CSQQ1Q2
 PRIQTY 7200
 SECQTY 7200
 LOCKSIZE LOB
 GBPCACHE SYSTEM
 BUFFERPOOL BP32K3
 LOG NO
 CLOSE NO;

 CREATE LOB TABLESPACE "CLOB232K"
 IN Q1Q2DB
 USING STOGROUP CSQQ1Q2
 PRIQTY 7200
 SECQTY 7200
 LOCKSIZE LOB
 GBPCACHE SYSTEM
 BUFFERPOOL BP32K3
 LOG NO
 CLOSE NO;

 CREATE LOB TABLESPACE "CLOB332K"
 IN Q1Q2DB
 USING STOGROUP CSQQ1Q2
 PRIQTY 7200
 SECQTY 7200
 LOCKSIZE LOB
 GBPCACHE SYSTEM
 BUFFERPOOL BP32K3
 LOG NO
142 Enabling SOA Using WebSphere Messaging

 CLOSE NO;

 CREATE LOB TABLESPACE "CLOB432K"
 IN Q1Q2DB
 USING STOGROUP CSQQ1Q2
 PRIQTY 7200
 SECQTY 7200
 LOCKSIZE LOB
 GBPCACHE SYSTEM
 BUFFERPOOL BP32K3
 LOG NO
 CLOSE NO;

/*
//

Create the DB2 tables and associated indexes
Job CSQ45CTB is used to create the twelve DB2 tables and associated indexes.

Example 5-4 Create the DB2 tables - CSQ45CTB

//MQQGCTB JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
//* Sample job to create the DB2 tables used by WebSphere MQ *
//* using the DB2 TSO batch interface. *
//* *
//**
//* *
//* MORE INFORMATION - See: *
//* "WebSphere MQ for z/OS System Setup Guide" *
//* for information about this customization job *
//* "WebSphere MQ for z/OS Concepts and Planning Guide" *
//* for information about DB2 table sizes *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//CREATETB EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=20
//STEPLIB DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D8QG)
 Chapter 5. Point-to-point runtime configuration 143

 RUN PROGRAM(DSNTIAD) -
 PLAN(DSNTIA81) -
 LIB('DB8QU.RUNLIB.LOAD')
/*
//SYSIN DD *
 CREATE TABLE CSQ.ADMIN_B_QSG
 (
 QSGNAME CHAR(4) NOT NULL ,
 ARRAY_QMGR CHAR(32) ,
 ARRAY_STRUC CHAR(64) ,
 PRODLVL CHAR(3) NOT NULL ,
 VERSIONCOUNT INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 RECON_STAMP CHAR(8) WITH DEFAULT X'00' ,
 RECON_QMGRNUM SMALLINT WITH DEFAULT 0 ,
 PRIMARY KEY (QSGNAME)
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_QSG
 ON CSQ.ADMIN_B_QSG (QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.ADMIN_B_QMGR
 (
 QMGRNAME CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 QMGRNUM SMALLINT ,
 ACTSTATE CHAR(1) ,
 DESCR CHAR(64) ,
 PLATFORM CHAR(10) ,
 IGQAUT CHAR(10) ,
 CPILEVEL INT ,
 CMDLEVEL INT ,
 CCSID INT ,
 MAXPRTY INT ,
 MAXMSGL INT ,
 SYNCPT CHAR(10) ,
 COMMANDQ CHAR(48) ,
 DEADQ CHAR(48) ,
 TRIGINT INT ,
144 Enabling SOA Using WebSphere Messaging

 MAXHANDS INT ,
 AUTHOREV CHAR(10) ,
 INHIBTEV CHAR(10) ,
 LOCALEV CHAR(10) ,
 REMOTEEV CHAR(10) ,
 STRSTPEV CHAR(10) ,
 PERFMEV CHAR(10) ,
 CHAD CHAR(10) ,
 CHADEXIT CHAR(8) ,
 CLWLDATA CHAR(32) ,
 CLWLEXIT CHAR(8) ,
 REPOS CHAR(48) ,
 REPOSNL CHAR(48) ,
 QMID CHAR(48) ,
 DEFXMITQ CHAR(48) ,
 VERSIONCOUNT INT ,
 MVERSIONL INT ,
 MVERSIONH INT ,
 QSGCREATE CHAR(8) ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 VSOBJECT VARCHAR(2560) ,
 BSDS_NAME1 CHAR(44) WITH DEFAULT ' ',
 BSDS_NAME2 CHAR(44) WITH DEFAULT ' ',
 BSDS_STATUS1 CHAR(1) WITH DEFAULT X'00',
 BSDS_STATUS2 CHAR(1) WITH DEFAULT X'00',
 CONFIGEV CHAR(10) WITH DEFAULT 'DISABLED',
 MAXUMSGS INT WITH DEFAULT 10000,
 SSLTASKS INT WITH DEFAULT 0 ,
 SSLCRLNL CHAR(48) WITH DEFAULT ' ',
 SSLKEYR VARCHAR(256) WITH DEFAULT ' ',
 EXPRYINT INT WITH DEFAULT 0 ,
 PRIMARY KEY (QMGRNAME),
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE RESTRICT
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_QMGR
 ON CSQ.ADMIN_B_QMGR (QMGRNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;
 Chapter 5. Point-to-point runtime configuration 145

 CREATE TABLE CSQ.EXTEND_B_QMGR
 (
 QMGRNAME CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 ACCTQ CHAR(10) WITH DEFAULT 'ON' ,
 MONQ CHAR(10) WITH DEFAULT 'OFF' ,
 CHLEV CHAR(10) WITH DEFAULT 'ENABLED',
 BRIDGEEV CHAR(10) WITH DEFAULT 'ENABLED',
 SSLEV CHAR(10) WITH DEFAULT 'ENABLED',
 CMDEV CHAR(10) WITH DEFAULT 'DISABLED',
 IPADDRV CHAR(10) WITH DEFAULT 'IPV4' ,
 ACTCHL INT WITH DEFAULT 200 ,
 ADOPTCHK CHAR(10) WITH DEFAULT 'ALL' ,
 ADOPTMCA CHAR(10) WITH DEFAULT 'NO' ,
 CHIADAPS INT WITH DEFAULT 8 ,
 CHIDISPS INT WITH DEFAULT 5 ,
 CHISERVP CHAR(32) WITH DEFAULT X'00' ,
 DNSGROUP CHAR(18) WITH DEFAULT ' ' ,
 DNSWLM CHAR(10) WITH DEFAULT 'NO' ,
 LSTRTMR SMALLINT WITH DEFAULT 60 ,
 LUGROUP CHAR(8) WITH DEFAULT ' ' ,
 LUNAME CHAR(8) WITH DEFAULT ' ' ,
 LU62ARM CHAR(2) WITH DEFAULT ' ' ,
 LU62CHL INT WITH DEFAULT 200 ,
 MAXCHL INT WITH DEFAULT 200 ,
 OPORTMIN INT WITH DEFAULT 0 ,
 OPORTMAX INT WITH DEFAULT 0 ,
 RCVTIME INT WITH DEFAULT 0 ,
 RCVTTYPE CHAR(10) WITH DEFAULT 'MULTIPLY',
 RCVTMIN INT WITH DEFAULT 0 ,
 TCPCHL INT WITH DEFAULT 200 ,
 TCPKEEP CHAR(10) WITH DEFAULT 'NO' ,
 TCPNAME CHAR(8) WITH DEFAULT 'TCPIP' ,
 TCPSTACK CHAR(10) WITH DEFAULT 'SINGLE',
 TRAXSTR CHAR(10) WITH DEFAULT 'YES' ,
 TRAXTBL INT WITH DEFAULT 2 ,
 SSLRKEYC INT WITH DEFAULT 0 ,
 SQQMNAME CHAR(10) WITH DEFAULT 'USE' ,
 MONACLS CHAR(10) WITH DEFAULT 'QMGR' ,
 MONCHL CHAR(10) WITH DEFAULT 'OFF' ,
 CLWLMRUC INT WITH DEFAULT 999999999,
 CLWLUSEQ CHAR(10) WITH DEFAULT 'LOCAL' ,
 ROUTEREC CHAR(10) WITH DEFAULT 'MSG' ,
 ACTIVREC CHAR(10) WITH DEFAULT 'MSG' ,
 PRIMARY KEY (QMGRNAME),
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE RESTRICT
)
 IN Q1Q2DB.CQMGR4K;
146 Enabling SOA Using WebSphere Messaging

 CREATE TYPE 2 UNIQUE INDEX CSQ.EXTEND_QMGR
 ON CSQ.EXTEND_B_QMGR (QMGRNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.ADMIN_B_STRUCTURE
 (
 STRUCNAME CHAR(12) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 LH_ARRAY CHAR(64) ,
 STRUC_INTRST CHAR(32) ,
 STRUCNUM SMALLINT ,
 PRODLVL CHAR(3) NOT NULL ,
 CFSTATUS CHAR(1) ,
 VERSIONCOUNT INT ,
 MVERSION INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 RECOVER CHAR(1) WITH DEFAULT 'N',
 DESCR CHAR(64) WITH DEFAULT ' ',
 PRIMARY KEY (STRUCNAME, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_STRUCTURE
 ON CSQ.ADMIN_B_STRUCTURE (STRUCNAME ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.ADMIN_B_STRBACKUP
 (
 STRUCNAME CHAR(12) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 QMGRNAME CHAR(48) ,
 STRUCNUM SMALLINT ,
 FAIL_STAMP CHAR(8) ,
 BSTART_RBA CHAR(6) ,
 BEND_RBA CHAR(6) ,
 Chapter 5. Point-to-point runtime configuration 147

 BSTART_STAMP CHAR(8) ,
 BEND_STAMP CHAR(8) ,
 VERSIONCOUNT INT ,
 MVERSION INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 STRUC_INTRST VARCHAR(256) ,
 PRIMARY KEY (STRUCNAME, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_STRBACKUP
 ON CSQ.ADMIN_B_STRBACKUP
 (STRUCNAME ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.OBJ_B_QUEUE
 (
 QNAME CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 QTYPE CHAR(8) ,
 CFCACHE CHAR(1) ,
 DELCOMMIT CHAR(1) ,
 CLUSTER CHAR(48) ,
 CLUSNL CHAR(48) ,
 DEFBIND CHAR(10) ,
 DEFPRTY INT ,
 DEFPSIST CHAR(10) ,
 QSGDISP CHAR(10) ,
 DEFTYPE CHAR(10) ,
 DESCR CHAR(64) ,
 PUT CHAR(10) ,
 BOQNAME CHAR(48) ,
 BOTHRESH INT ,
 DEFSOPT CHAR(10) ,
 GET CHAR(10) ,
 HARDENBO CHAR(10) ,
 INDXTYPE CHAR(10) ,
 INITQ CHAR(48) ,
 LHNUMBER SMALLINT ,
148 Enabling SOA Using WebSphere Messaging

 MAXDEPTH INT ,
 MAXMSGL INT ,
 MSGDLVSQ CHAR(10) ,
 PROCESS CHAR(48) ,
 QDEPTHHI INT ,
 QDEPTHLO INT ,
 QDPHIEV CHAR(10) ,
 QDPLOEV CHAR(10) ,
 QDPMAXEV CHAR(10) ,
 QSVCIEV CHAR(10) ,
 QSVCINT INT ,
 RETINTVL INT ,
 RNAME CHAR(48) ,
 RQMNAME CHAR(48) ,
 SHARE CHAR(7) ,
 STGCLASS CHAR(8) ,
 STRUCNAME CHAR(12) ,
 STRUCNUM SMALLINT ,
 TARGQ CHAR(48) ,
 TRIGDATA CHAR(64) ,
 TRIGDPTH INT ,
 TRIGGER CHAR(9) ,
 TRIGMPRI INT ,
 TRIGTYPE CHAR(10) ,
 USAGE CHAR(10) ,
 XMITQ CHAR(48) ,
 VERSIONCOUNT INT ,
 MVERSION INT ,
 STRUCSTAMP CHAR(8) ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 VSOBJECT VARCHAR(2560) ,
 ACCTQ CHAR(10) WITH DEFAULT 'ON',
 MONQ CHAR(10) WITH DEFAULT 'QMGR',
 CLWLRANK INT WITH DEFAULT 0,
 CLWLPRTY INT WITH DEFAULT 0,
 CLWLUSEQ CHAR(10) WITH DEFAULT 'QMGR',
 NPMCLASS CHAR(10) WITH DEFAULT 'NORMAL',
 PRIMARY KEY (QNAME, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.OBJ_QUEUE_IX1
 Chapter 5. Point-to-point runtime configuration 149

 ON CSQ.OBJ_B_QUEUE (QNAME ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 FREEPAGE 10
 PCTFREE 20
 CLOSE NO;

 CREATE TYPE 2 INDEX CSQ.OBJ_QUEUE_IX2
 ON CSQ.OBJ_B_QUEUE
 (QSGNAME ASC, QSGDISP ASC, CREATE_STAMP ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 FREEPAGE 10
 PCTFREE 20
 CLOSE NO;

 CREATE TABLE CSQ.OBJ_B_PROCESS
 (
 PROCNAME CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 DESCR CHAR(64) NOT NULL ,
 QSGDISP CHAR(10) ,
 APPLTYPE CHAR(4) ,
 APPLICID VARCHAR(256) ,
 ENVRDATA CHAR(128) ,
 USERDATA CHAR(128) ,
 VERSIONCOUNT INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 VSOBJECT VARCHAR(2560) ,
 PRIMARY KEY (PROCNAME, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.OBJ_PROCESS
 ON CSQ.OBJ_B_PROCESS (PROCNAME ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;
150 Enabling SOA Using WebSphere Messaging

 CREATE TABLE CSQ.OBJ_B_STGCLASS
 (
 STGCNAME CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 DESCR CHAR(64) NOT NULL ,
 QSGDISP CHAR(10) ,
 PSID INT ,
 XCFGNAME CHAR(8) ,
 XCFMNAME CHAR(16) ,
 VERSIONCOUNT INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 VSOBJECT VARCHAR(2560) ,
 PASSTKTA CHAR(8) WITH DEFAULT ' ',
 PRIMARY KEY (STGCNAME, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.OBJ_STGCLASS
 ON CSQ.OBJ_B_STGCLASS (STGCNAME ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.OBJ_B_NAMELIST
 (
 NLNAME CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 DESCR CHAR(64) NOT NULL ,
 QSGDISP CHAR(10) ,
 VERSIONCOUNT INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 VSOBJECT VARCHAR(2560) ,
 NAMES VARCHAR(12288) ,
 NLTYPE CHAR(10) WITH DEFAULT 'NONE',
 PRIMARY KEY (NLNAME, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 Chapter 5. Point-to-point runtime configuration 151

 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR32K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.OBJ_NAMELIST
 ON CSQ.OBJ_B_NAMELIST (NLNAME ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.OBJ_B_CHANNEL
 (
 CHLNAME CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 CHLTYPE CHAR(10) NOT NULL ,
 DESCR CHAR(64) NOT NULL ,
 QSGDISP CHAR(10) ,
 TRPTYPE CHAR(8) ,
 CLUSTER CHAR(48) ,
 CLUSNL CHAR(48) ,
 XMITQ CHAR(48) ,
 BATCHINT INT ,
 BATCHSZ INT ,
 CONVERT CHAR(10) ,
 DISCINT INT ,
 HBINT INT ,
 LONGRTY INT ,
 LONGTMR INT ,
 MAXMSGL INT ,
 MCANAME CHAR(20) ,
 MCAUSER CHAR(12) ,
 MODENAME CHAR(8) ,
 MSGDATA CHAR(32) ,
 MSGEXIT CHAR(128) ,
 NETPRTY INT ,
 NPMSPEED CHAR(10) ,
 PASSWORD CHAR(12) ,
 PUTAUT CHAR(10) ,
 QMNAME CHAR(48) ,
 RCVDATA CHAR(32) ,
 RCVEXIT CHAR(128) ,
 SCYDATA CHAR(32) ,
 SCYEXIT CHAR(128) ,
 SENDDATA CHAR(32) ,
 SENDEXIT CHAR(128) ,
 SEQWRAP INT ,
 SHORTRTY INT ,
 SHORTTMR INT ,
152 Enabling SOA Using WebSphere Messaging

 TPNAME CHAR(64) ,
 USERID CHAR(12) ,
 VERSIONCOUNT INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 CONNAME VARCHAR(264) ,
 VSOBJECT VARCHAR(8190) ,
 BATCHHB INT WITH DEFAULT 0 ,
 KAINT INT WITH DEFAULT 120,
 LOCLADDR CHAR(48) WITH DEFAULT ' ',
 MSGEXITS VARCHAR(1024) WITH DEFAULT ' ',
 MSGDATAS VARCHAR(256) WITH DEFAULT ' ',
 SENDEXITS VARCHAR(1024) WITH DEFAULT ' ',
 SENDDATAS VARCHAR(256) WITH DEFAULT ' ',
 RCVEXITS VARCHAR(1024) WITH DEFAULT ' ',
 RCVDATAS VARCHAR(256) WITH DEFAULT ' ',
 SSLCAUTH CHAR(10) WITH DEFAULT 'REQUIRED',
 SSLCIPH CHAR(32) WITH DEFAULT ' ',
 SSLPEER VARCHAR(256) WITH DEFAULT ' ',
 MREXIT CHAR(8) WITH DEFAULT ' ',
 MRDATA CHAR(32) WITH DEFAULT ' ',
 MRRTY INT WITH DEFAULT 0,
 MRTMR INT WITH DEFAULT 1000,
 COMPHDR CHAR(10) WITH DEFAULT 'NONE',
 COMPMSG CHAR(10) WITH DEFAULT 'NONE',
 MONCHL CHAR(10) WITH DEFAULT 'QMGR',
 CLWLRANK INT WITH DEFAULT 0,
 CLWLPRTY INT WITH DEFAULT 0,
 CLWLWGHT INT WITH DEFAULT 50,
 PRIMARY KEY (CHLNAME, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR32K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.OBJ_CHANNEL
 ON CSQ.OBJ_B_CHANNEL (CHLNAME ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TYPE 2 UNIQUE INDEX CSQ.DEL_OBJ_CHANNEL
 ON CSQ.OBJ_B_CHANNEL (CHLNAME ASC, CHLTYPE ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 Chapter 5. Point-to-point runtime configuration 153

 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.ADMIN_B_SCST
 (
 CHLCRESTAMP CHAR(10) NOT NULL ,
 CHLUPDSTAMP CHAR(10) NOT NULL ,
 XMITQ CHAR(48) NOT NULL ,
 CHLNAME CHAR(20) NOT NULL ,
 REMOTEQMGR CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 OWNINGQMGR CHAR(4) NOT NULL ,
 CHLTOKEN CHAR(20) NOT NULL ,
 REMOTEMACH CHAR(20) ,
 CHANNELSTATUS CHAR(1) ,
 CHANNELTYPE INT ,
 LONGRETRYCOUNT INT ,
 SHORTRETRYCOUNT INT ,
 NEXTRETRYTIME INT ,
 DATA CHAR(4) FOR BIT DATA ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 PRIMARY KEY (XMITQ, CHLNAME, REMOTEQMGR, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CCHIN;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_SCST_IX1
 ON CSQ.ADMIN_B_SCST
 (XMITQ ASC, CHLNAME ASC, REMOTEQMGR ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 FREEPAGE 5
 PCTFREE 30
 CLOSE NO;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_SCST_IX2
 ON CSQ.ADMIN_B_SCST
 (CHLCRESTAMP ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
154 Enabling SOA Using WebSphere Messaging

 FREEPAGE 5
 PCTFREE 30
 CLOSE NO;

 CREATE TYPE 2 INDEX CSQ.ADMIN_SCST_IX3
 ON CSQ.ADMIN_B_SCST
 (QSGNAME ASC, CHLNAME ASC, CHANNELSTATUS ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 FREEPAGE 5
 PCTFREE 30
 CLOSE NO;

 CREATE TYPE 2 INDEX CSQ.ADMIN_SCST_IX4
 ON CSQ.ADMIN_B_SCST
 (QSGNAME ASC, CHLCRESTAMP ASC, CHLUPDSTAMP ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 FREEPAGE 5
 PCTFREE 30
 CLOSE NO;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_SCST_IX5
 ON CSQ.ADMIN_B_SCST
 (QSGNAME ASC, CHLTOKEN ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 FREEPAGE 5
 PCTFREE 30
 CLOSE NO;

 CREATE TABLE CSQ.ADMIN_B_SSKT
 (
 XMITQ CHAR(48) NOT NULL ,
 CHLNAME CHAR(20) NOT NULL ,
 REMOTEQMGR CHAR(48) NOT NULL ,
 KEY INT NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 PRIMARY KEY (XMITQ, CHLNAME, REMOTEQMGR, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 Chapter 5. Point-to-point runtime configuration 155

 ON DELETE CASCADE
)
 IN Q1Q2DB.CCHIN;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_SSKT_IX1
 ON CSQ.ADMIN_B_SSKT
 (XMITQ ASC, CHLNAME ASC, REMOTEQMGR ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 FREEPAGE 5
 PCTFREE 30
 CLOSE NO;

 CREATE TABLE CSQ.OBJ_B_AUTHINFO
 (
 AUTHINFO CHAR(48) NOT NULL ,
 QSGNAME CHAR(4) NOT NULL ,
 AUTHTYPE CHAR(10) NOT NULL ,
 DESCR CHAR(64) ,
 QSGDISP CHAR(10) ,
 MVERSION INT ,
 LDAPPWD CHAR(32) ,
 LDAPUSER VARCHAR(256) ,
 VERSIONCOUNT INT ,
 UPDT_QMGR CHAR(48) ,
 UPDT_QMGRNUM SMALLINT ,
 UPDT_STAMP CHAR(8) ,
 CREATE_QMGR CHAR(48) ,
 CREATE_QMGRNUM SMALLINT ,
 CREATE_STAMP CHAR(8) ,
 CONNAME VARCHAR(264) ,
 VSOBJECT VARCHAR(2560) ,
 PRIMARY KEY (AUTHINFO, QSGNAME) ,
 FOREIGN KEY (QSGNAME) REFERENCES CSQ.ADMIN_B_QSG
 ON DELETE CASCADE
)
 IN Q1Q2DB.CQMGR4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.OBJ_AUTHINFO
 ON CSQ.OBJ_B_AUTHINFO (AUTHINFO ASC, QSGNAME ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 512
 SECQTY 1024
 CLOSE NO;

 CREATE TABLE CSQ.ADMIN_B_MESSAGES
 (
 LEID CHAR(12) NOT NULL ,
156 Enabling SOA Using WebSphere Messaging

 QSGNAME CHAR(4) NOT NULL ,
 SEGMENTNUM SMALLINT NOT NULL ,
 MROWID ROWID NOT NULL GENERATED ALWAYS,
 STRUCNUM SMALLINT ,
 LHNUMBER SMALLINT ,
 MVERSION INT ,
 BASEPART CHAR(2) ,
 MESSAGE BLOB(512K) ,
 DELCOMMIT CHAR(1) WITH DEFAULT 'N' ,
 RECON_STAMP CHAR(8) WITH DEFAULT X'00' ,
 PERSISTENT CHAR(1),
 MSG_STAMP CHAR(8),
 PRIMARY KEY (LEID, QSGNAME, SEGMENTNUM)
)
 IN Q1Q2DB.CLOBMB4K;

 CREATE TYPE 2 UNIQUE INDEX CSQ.ADMIN_MESSAGES_IX1
 ON CSQ.ADMIN_B_MESSAGES
 (LEID ASC, QSGNAME ASC, SEGMENTNUM ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 720
 SECQTY 1024
 CLOSE NO;

 CREATE AUX TABLE CSQ.ADMIN_MSGS_BAUX1
 IN Q1Q2DB.CLOB132K
 STORES CSQ.ADMIN_B_MESSAGES
 COLUMN MESSAGE
 PART 1;

 CREATE INDEX CSQ.ADMIN_MSGS1
 ON CSQ.ADMIN_MSGS_BAUX1
 USING STOGROUP CSQQ1Q2
 PRIQTY 720
 SECQTY 1024
 CLOSE NO;

 CREATE AUX TABLE CSQ.ADMIN_MSGS_BAUX2
 IN Q1Q2DB.CLOB232K
 STORES CSQ.ADMIN_B_MESSAGES
 COLUMN MESSAGE
 PART 2;

 CREATE INDEX CSQ.ADMIN_MSGS2
 ON CSQ.ADMIN_MSGS_BAUX2
 USING STOGROUP CSQQ1Q2
 PRIQTY 720
 SECQTY 1024
 CLOSE NO;
 Chapter 5. Point-to-point runtime configuration 157

 CREATE AUX TABLE CSQ.ADMIN_MSGS_BAUX3
 IN Q1Q2DB.CLOB332K
 STORES CSQ.ADMIN_B_MESSAGES
 COLUMN MESSAGE
 PART 3;

 CREATE INDEX CSQ.ADMIN_MSGS3
 ON CSQ.ADMIN_MSGS_BAUX3
 USING STOGROUP CSQQ1Q2
 PRIQTY 720
 SECQTY 1024
 CLOSE NO;

 CREATE AUX TABLE CSQ.ADMIN_MSGS_BAUX4
 IN Q1Q2DB.CLOB432K
 STORES CSQ.ADMIN_B_MESSAGES
 COLUMN MESSAGE
 PART 4;

 CREATE INDEX CSQ.ADMIN_MSGS4
 ON CSQ.ADMIN_MSGS_BAUX4
 USING STOGROUP CSQQ1Q2
 PRIQTY 720
 SECQTY 1024
 CLOSE NO;

 CREATE TYPE 2 INDEX CSQ.CLUS_INDEX
 ON CSQ.ADMIN_B_MESSAGES
 (BASEPART ASC)
 USING STOGROUP CSQQ1Q2
 PRIQTY 720
 SECQTY 1024
 CLUSTER
 (PART 1 VALUES(X'3FFF'),
 PART 2 VALUES(X'7FFF'),
 PART 3 VALUES(X'BFFF'),
 PART 4 VALUES(X'FFFF'))
 CLOSE NO;

/*
//

Bind the DB2 plans
Job CSQ45BPL is used to bind the DB2 plans for the queue manager, utilities,
and channel initiator.
158 Enabling SOA Using WebSphere Messaging

Example 5-5 Bind the DB2 plans - CSQ45BPL

//MQQGBPL JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
//* Sample job to bind the DB2 plans used by WebSphere MQ *
//* using the DB2 TSO batch interface. *
//* *
//**
//* *
//* MORE INFORMATION - See: *
//* "WebSphere MQ for z/OS System Setup Guide" *
//* for information about this customization job *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//BINDPLAN EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=20
//STEPLIB DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D8QG)

 BIND PLAN(CSQ5A600) -
 MEM(CSQ5A600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5C600) -
 MEM(CSQ5C600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5D600) -
 MEM(CSQ5D600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')
 Chapter 5. Point-to-point runtime configuration 159

 BIND PLAN(CSQ5L600) -
 MEM(CSQ5L600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5M600) -
 MEM(CSQ5M600) -
 ACQUIRE(USE) RELEASE(DEALLOCATE) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5R600) -
 MEM(CSQ5R600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5T600) -
 MEM(CSQ5T600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5U600) -
 MEM(CSQ5U600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5W600) -
 MEM(CSQ5W600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5B600) -
 MEM(CSQ5B600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')
160 Enabling SOA Using WebSphere Messaging

 BIND PLAN(CSQ52600) -
 MEM(CSQ52600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5S600) -
 MEM(CSQ5S600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5K600) -
 MEM(CSQ5K600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

 BIND PLAN(CSQ5Z600) -
 MEM(CSQ5Z600) -
 ACQUIRE(USE) RELEASE(COMMIT) -
 CURRENTDATA(NO) -
 ACT(REP) RETAIN ISOLATION(CS) -
 LIB('MQ600.SCSQDEFS')

/*
//

Grant execute authority
Job CSQ45GEX is used to grant execute authority to the respective plans for the
user IDs that will be used by the queue manager, utilities, and channel initiator.

� The user IDs for the queue manager and channel initiator are the user IDs
under which their started task procedures run.

� The user IDs for the utilities are the user IDs under which the batch jobs can
be submitted.

Example 5-6 Grant execute authority - CSQ45GEX

//MQQGGEX JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
 Chapter 5. Point-to-point runtime configuration 161

//* Sample job to grant execute authority for the DB2 plans used *
//* by the WebSphere MQ queue manager and utility programs. *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//* WARNING: Completion code 04 may be returned if the grantee
//* already has execute authority on the specified plan.
//*
//**
//*
//GRANT EXEC PGM=IKJEFT01,REGION=4M,DYNAMNBR=20
//STEPLIB DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(D8QG)
 RUN PROGRAM(DSNTIAD) -
 PLAN(DSNTIA81) -
 LIB('DB8QU.RUNLIB.LOAD')
/*
//*
//* Repeat the GRANT statement for CSQ5B600
//* for each user ID that may use the CSQ5PQSG utility.
//* Repeat the GRANT statement for CSQ52600
//* for each user ID that may use the CSQUTIL utility.
//* Repeat the GRANT statement for CSQ5Z600
//* for each user ID that may use the CSQUZAP utility.
//SYSIN DD *
 GRANT EXECUTE ON PLAN CSQ5A600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5C600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5D600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5L600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5M600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5R600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5T600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5U600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5W600 TO STC;

 GRANT EXECUTE ON PLAN CSQ5S600 TO STC;
 GRANT EXECUTE ON PLAN CSQ5K600 TO STC;

 GRANT EXECUTE ON PLAN CSQ5B600 TO RCONWAY;
 GRANT EXECUTE ON PLAN CSQ52600 TO RCONWAY;
 GRANT EXECUTE ON PLAN CSQ5Z600 TO RCONWAY;
/*
//
162 Enabling SOA Using WebSphere Messaging

5.3.2 Set up the CFRM policy with the MQ structures
You need to define the coupling facility structures used by the queue managers
in the queue-sharing group in the Coupling Facility Resource Management
(CFRM) policy data set, using IXCMIAPU. All the structures for the queue
sharing group start with the name of the queue sharing group (in our case, it is
MQQG). You must have the following:

� An administrative structure called qsg-name CSQ_ADMIN (in our case, it is
MQQGCSQ_ADMIN). This structure is used by WebSphere MQ itself and
does not contain any user data.

� One or more structures used to hold messages for shared queues. These can
have any name you choose, up to 16 characters in length. The first four
characters must be the queue-sharing group name (in our case, the structure
name is MQQGWEBQUEUE).

Figure 5-34 shows the statements added to the CFRM policy to define the two
MQ structures.

Figure 5-34 Define structures in CFRM policy

When you have defined your structures successfully, activate the CFRM policy
that is being used with the SETXCF command.

5.3.3 Add the MQ data sharing group entry to the DB2 table
You need to define the MQ subsystems that are participating in the MQ
queue-sharing groups and the MQ sharing group itself in the DB2 table. You can
use the CSQ5PQSG utility to add queue-sharing group and queue manager
entries to the WebSphere MQ tables in the DB2 data-sharing group. You can run

STRUCTURE NAME(MQQGCSQ_ADMIN)
 INITSIZE(10240)
 SIZE(20480)
 PREFLIST(CF03,CF06)
 REBUILDPERCENT(5)
 FULLTHRESHOLD(85)

STRUCTURE NAME(MQQGWEBQUEUE)
 INITSIZE(10240)
 SIZE(20480)
 PREFLIST(CF03,CF06)
 REBUILDPERCENT(5)
 FULLTHRESHOLD(85)
 Chapter 5. Point-to-point runtime configuration 163

the utility for the queue-sharing group and for the queue manager that is to be a
member of the queue-sharing group.

To accomplish this requires the following:

� Add a queue sharing group entry.
� Add a queue manager entry for MQQ1.
� Add a queue manager entry for MQQ2.

Add a queue sharing group entry
Add a queue-sharing group entry into the WebSphere MQ DB2 tables using the
ADD QSG function of the CSQ5PQSG program by running the CSQ45AQS job.
Note the following:

� You need to perform this function once for each queue-sharing group that is
defined in the DB2 data-sharing group.

� The queue-sharing group entry must exist before adding any queue manager
entries that reference the queue-sharing group.

Example 5-7 Add a queue-sharing group entry - CSQ45AQS

//MQQGAQS JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
//* Sample job to add a queue-sharing group record into the *
//* DB2 administration table CSQ.ADMIN_B_QSG used by WebSphere MQ *
//* using the CSQ5PQSG utility. *
//* *
//**
//* *
//* MORE INFORMATION - See: *
//* "WebSphere MQ for z/OS System Setup Guide" *
//* for information about this customization job *
//* "WebSphere MQ for z/OS System Administration Guide" *
//* for information about CSQ5PQSG *
//* and managing queue-sharing groups *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//ADDQSG EXEC PGM=CSQ5PQSG,REGION=4M,
// PARM='ADD QSG,MQQG,DB8QU,D8QG'
//SYSPRINT DD SYSOUT=*
//STEPLIB DD DSN=MQ600.SCSQANLE,DISP=SHR
164 Enabling SOA Using WebSphere Messaging

// DD DSN=MQ600.SCSQAUTH,DISP=SHR
// DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//

Add a queue manager entry for MQQ1
Add a queue manager entry for MQQ1 into the WebSphere MQ DB2 tables using
the ADD QMGR function of the CSQ5PQSG program by running the
CSQ45AQM job.

Example 5-8 CSQ45AQM, add a queue manager entry

//MQQGAQM JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//* *
//* Sample job to add a queue manager record into the *
//* DB2 administration table CSQ.ADMIN_B_QMGR used by WebSphere MQ *
//* using the CSQ5PQSG utility. *
//* *
//**
//* *
//* MORE INFORMATION - See: *
//* "WebSphere MQ for z/OS System Setup Guide" *
//* for information about this customization job *
//* "WebSphere MQ for z/OS System Administration Guide" *
//* for information about CSQ5PQSG *
//* and managing queue-sharing groups *
//* *
//**
//* CUSTOMIZE THIS JCL HERE FOR YOUR INSTALLATION
//**
//*
//ADDQMGR EXEC PGM=CSQ5PQSG,REGION=4M,
// PARM='ADD QMGR,MQQ1,MQQG,DB8QU,D8QG'
//SYSPRINT DD SYSOUT=*
//STEPLIB DD DSN=MQ600.SCSQANLE,DISP=SHR
// DD DSN=MQ600.SCSQAUTH,DISP=SHR
// DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//

Add a queue manager entry for MQQ2
Add a queue manager entry for MQQ2 by running the same job and updating the
parm field specifying the queue manager name.
 Chapter 5. Point-to-point runtime configuration 165

5.3.4 Update the ZPARM
You need to update the ZPARM of each MQ subsystem participating in the
sharing group to define the sharing group and provide information about the DB2
sharing group that is holding the MQ tables. In the CSQ6SYSP section of the
ZPARM table, the parameter QSGDATA (queue-sharing group data) needs to be
updated with the following information:

QSGDATA=(Qsgname,Dsgname,Db2name,Db2serv,Db2blob)

Qsgname The name of the queue-sharing group to which the queue
manager belongs

Dsgname The name of the DB2 data-sharing group to which the
queue manager is to connect

Db2name The name of the DB2 subsystem or group attachment to
which the queue manager is to connect

Db2serv The number of server tasks used for accessing DB2

Db2blob The number of server tasks used for processing DB2
blobs

In our case, this was QSGDATA=(MQQG,DB8QU,D8QG,10,4).

Example 5-9 Update ZPARM - CSQ4ZPRM

//MQQGZPRM JOB (999,POK),'CONWAY',CLASS=A,MSGCLASS=T,
// NOTIFY=&SYSUID,TIME=1440,REGION=0M
/*JOBPARM L=999,SYSAFF=SC55
//**
//* IBM WebSphere MQ for z/OS *
//*
//* This job assembles and links a new system parameter module.
//*
//* Edit the parameters for the
//* CSQ6LOGP, CSQ6ARVP, and CSQ6SYSP macros
//* to determine your system parameters.
//*
//**
//* *
//* MORE INFORMATION - See: *
//* "WebSphere MQ for z/OS System Setup Guide" *
//* for information about this customization job *
//* and a full description of the parameters. *
//* *
//**
//*
//* Assemble step for CSQ6LOGP
//*
166 Enabling SOA Using WebSphere Messaging

//LOGP EXEC PGM=ASMA90,PARM='DECK,NOOBJECT,LIST,XREF(SHORT)',
// REGION=4M
//SYSLIB DD DSN=MQ600.SCSQMACS,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&LOGP,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CSQ6LOGP INBUFF=60, ARCHIVE LOG BUFFER SIZES (KB) X
 OUTBUFF=4000, - INPUT AND OUTPUT X
 MAXRTU=2, MAX ALLOCATED ARCHIVE LOG UNITS X
 DEALLCT=0, ARCHIVE LOG DEALLOCATE INTERVAL X
 OFFLOAD=YES, ARCHIVING ACTIVE X
 MAXARCH=500, MAX ARCHIVE LOG VOLUMES X
 TWOACTV=YES, DUAL ACTIVE LOGGING X
 TWOARCH=YES, DUAL ARCHIVE LOGGING X
 TWOBSDS=YES, DUAL BSDS X
 WRTHRSH=20 ACTIVE LOG BUFFERS
 END
/*
//*
//* Assemble step for CSQ6ARVP
//*
//ARVP EXEC PGM=ASMA90,COND=(0,NE),
// PARM='DECK,NOOBJECT,LIST,XREF(SHORT)',
// REGION=4M
//SYSLIB DD DSN=MQ600.SCSQMACS,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&ARVP,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CSQ6ARVP ALCUNIT=BLK, UNITS FOR PRIQTY/SECQTY X
 ARCPFX1=CSQARC1, DSN PREFIX FOR ARCHIVE LOG 1 X
 ARCPFX2=CSQARC2, DSN PREFIX FOR ARCHIVE LOG 2 X
 ARCRETN=9999, ARCHIVE LOG RETENION (DAYS) X
 ARCWRTC=(1,3,4), ARCHIVE WTO ROUTE CODE X
 ARCWTOR=YES, PROMPT BEFORE ARCHIVE LOG MOUNT X
 BLKSIZE=28672, ARCHIVE LOG BLOCKSIZE X
 CATALOG=NO, CATALOG ARCHIVE LOG DATA SETS X
 COMPACT=NO, ARCHIVE LOGS COMPACTED X
 PRIQTY=4320, PRIMARY SPACE ALLOCATION X
 PROTECT=NO, DISCRETE SECURITY PROFILES X
 QUIESCE=5, MAX QUIESCE TIME (SECS) X
 SECQTY=540, SECONDARY SPACE ALLOCATION X
 Chapter 5. Point-to-point runtime configuration 167

 TSTAMP=NO, TIMESTAMP SUFFIX IN DSN X
 UNIT=TAPE, ARCHIVE LOG DEVICE TYPE 1 X
 UNIT2= ARCHIVE LOG DEVICE TYPE 2
 END
/*
//*
//* Assemble step for CSQ6SYSP
//*
//SYSP EXEC PGM=ASMA90,COND=(0,NE),
// PARM='DECK,NOOBJECT,LIST,XREF(SHORT)',
// REGION=0M
//SYSLIB DD DSN=MQ600.SCSQMACS,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSPUNCH DD DSN=&&SYSP,
// UNIT=SYSDA,DISP=(,PASS),
// SPACE=(400,(100,100,1))
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 CSQ6SYSP CTHREAD=300, TOTAL NUMBER OF CONNECTIONS X
 CLCACHE=STATIC, CLUSTER CACHE TYPE X
 CMDUSER=CSQOPR, DEFAULT USERID FOR COMMANDS X
 EXITLIM=30, EXIT TIMEOUT (SEC) X
 EXITTCB=8, NUMBER OF EXIT SERVER TCBS X
 IDBACK=20, NUMBER OF NON-TSO CONNECTIONS X
 IDFORE=100, NUMBER OF TSO CONNECTIONS X
 LOGLOAD=500000, LOG RECORD CHECKPOINT NUMBER X
 OTMACON=(,,DFSYDRU0,2147483647,CSQ), OTMA PARAMETERS X
 QINDXBLD=WAIT, QUEUE INDEX BUILDING X
 QMCCSID=0, QMGR CCSID X
 QSGDATA=(MQQG,DB8QU,D8QG,10,4), X
 RESAUDIT=YES, RESLEVEL AUDITING X
 ROUTCDE=1, DEFAULT WTO ROUTE CODE X
 SMFACCT=NO, GATHER SMF ACCOUNTING X
 SMFSTAT=NO, GATHER SMF STATS X
 STATIME=30, STATISTICS RECORD INTERVAL (MIN) X
 TRACSTR=YES, TRACING AUTO START X
 TRACTBL=99, GLOBAL TRACE TABLE SIZE X4K X
 WLMTIME=30, WLM QUEUE SCAN INTERVAL (SEC) X
 WLMTIMU=MINS, WLMTIME UNITS X
 SERVICE=0 IBM SERVICE USE ONLY
 END
/*
//*
//*
//* Linkedit ARVP, LOGP, and SYSP into a
//* system parameter module.
//*
//LKED EXEC PGM=IEWL,COND=(0,NE),
168 Enabling SOA Using WebSphere Messaging

// PARM='SIZE=(900K,124K),RENT,NCAL,LIST,AMODE=31,RMODE=ANY'
//*
//* APF-authorized library for the new system parameter module
//SYSLMOD DD DSN=MQQ1.USERAUTH,DISP=SHR
//*
//SYSUT1 DD UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=*
//ARVP DD DSN=&&ARVP,DISP=(OLD,DELETE)
//LOGP DD DSN=&&LOGP,DISP=(OLD,DELETE)
//SYSP DD DSN=&&SYSP,DISP=(OLD,DELETE)
//*
//* Load library containing the default system
//* parameter module (CSQZPARM).
//OLDLOAD DD DSN=MQ600.SCSQAUTH,DISP=SHR
//*
//SYSLIN DD *
 INCLUDE SYSP
 INCLUDE ARVP
 INCLUDE LOGP
 INCLUDE OLDLOAD(CSQZPARM)
 ENTRY CSQZMSTR
 NAME CSQZPARM(R) Your system parameter module name
/*
//

Restart the MQ subsystem
During the startup of MQ, you should see the MQ subsystem successfully
connecting to RRS, to DB2, and to the CF structure previously allocated.

5.3.5 Update the queue manager procedures
Sample initialization member CSQ4INSS, found in hlq.SCSQPROC, contains a
set of commands for defining the objects used in a queue-sharing group. Add the
customized member to the CSQINP2 DD in both queue manager procedures, as
shown in Example 5-10.

Example 5-10 mqq1mstr process

// PROC
//PROCSTEP EXEC PGM=CSQYASCP,REGION=0M
//*
//STEPLIB DD DSN=MQQ1.USERAUTH,DISP=SHR
// DD DSN=MQ600.SCSQANLE,DISP=SHR
// DD DSN=MQ600.SCSQAUTH,DISP=SHR
// DD DSN=DB8Q8.SDSNLOAD,DISP=SHR
//*
 Chapter 5. Point-to-point runtime configuration 169

//**
//* BOOTSTRAP DATA SETS *
//* *
//* This sample shows dual BSDS. To run with a single BSDS remove *
//* the BSDS2 entry. *
//**
//BSDS1 DD DSN=MQQ1.BSDS01,DISP=SHR
//BSDS2 DD DSN=MQQ1.BSDS02,DISP=SHR
//*
//**
//* SYSTEM INITIALIZATION INPUT FILES *
//* *
//* This sample shows the IBM supplied samples being used for the *
//* initialization input files. These sample initialization input *
//* files should be copied into a user library and tailored. *
//**
//CSQINP1 DD DSN=MQQ1.INSTALL.JCL(MQQ1INP1),DISP=SHR
//CSQINP2 DD DSN=MQQ1.INSTALL.JCL(MQQ1INSG),DISP=SHR
// DD DSN=MQQ1.INSTALL.JCL(MQQ1INSX),DISP=SHR
// DD DSN=MQQ1.INSTALL.JCL(MQQ1INSS),DISP=SHR
// DD DSN=MQQ1.INSTALL.JCL(MQQ1INYS),DISP=SHR
//* DD DSN=MQQ1.INSTALL.JCL(MQQ1STAC),DISP=SHR
//CSQOUT1 DD SYSOUT=*
//CSQOUT2 DD SYSOUT=*
//*
//**
//* PAGE SET DATA SETS *
//* *
//* This sample shows five page set data sets. *
//* You must have page set 00. *
//**
//CSQP0000 DD DSN=MQQ1.PSID00,DISP=SHR
//CSQP0001 DD DSN=MQQ1.PSID01,DISP=SHR
//CSQP0002 DD DSN=MQQ1.PSID02,DISP=SHR
//CSQP0003 DD DSN=MQQ1.PSID03,DISP=SHR
//CSQP0004 DD DSN=MQQ1.PSID04,DISP=SHR
//*
//**
//* USER EXIT LIBRARY *
//**
//*CSQXLIB DD DSN=++EXITLIB++,DISP=SHR
//*
//**
//* USER EXIT DATA SETS *
//* Add here DD statements for any data sets used by user exits. *
//**
//*
170 Enabling SOA Using WebSphere Messaging

5.3.6 Define the shared queues between the two MQ subsystems
At this point, you can define any shared queue. For this application, two queues
have been defined: Q2.QUE and Q1.QUE. Since they are shared queues, the
definitions need to be done only once and will be accessible from both MQ
subsystems.

Example 5-11 a shows the definitions for Q1.QUE.

Example 5-11 Q1.QUE

QUEUE(Q1.QUE)
TYPE(QLOCAL)
QSGDISP(SHARED)
STGCLASS(DEFAULT)
CFSTRUCT(WEBQUEUE)
CLUSTER()
CLUSNL()
DESCR()
PUT(ENABLED)
DEFPRTY(0)
DEFPSIST(NO)
OPPROCS(0)
IPPROCS(0)
CURDEPTH(0)
MAXDEPTH(1000)
PROCESS()
TRIGGER
MAXMSGL(1000)
BOTHRESH(0)
BOQNAME()
INITQ()
USAGE(NORMAL)
SHARE
DEFSOPT(SHARED)
MSGDLVSQ(PRIORITY)
RETINTVL(999999999)
TRIGTYPE(NONE)
TRIGDPTH(1)
TRIGMPRI(0)
TRIGDATA()
DEFTYPE(PREDEFINED)
NOHARDENBO
CRDATE(2003-08-08)
CRTIME(14.43.13)
GET(ENABLED)
QDEPTHHI(80)
QDEPTHLO(40)
QDPMAXEV(DISABLED)
 Chapter 5. Point-to-point runtime configuration 171

QDPHIEV(DISABLED)
QDPLOEV(DISABLED)
QSVCINT(999999999)
QSVCIEV(NONE)
INDXTYPE(NONE)
DEFBIND(OPEN)

Example 5-12 a shows the definitions for Q2.QUE.

Example 5-12 Q2.QUE

QUEUE(Q2.QUE)
TYPE(QLOCAL)
QSGDISP(SHARED)
STGCLASS(DEFAULT)
CFSTRUCT(WEBQUEUE)
CLUSTER()
CLUSNL()
DESCR()
PUT(ENABLED)
DEFPRTY(0)
DEFPSIST(NO)
OPPROCS(0)
IPPROCS(0)
CURDEPTH(0)
MAXDEPTH(1000)
PROCESS()
TRIGGER
MAXMSGL(1000)
BOTHRESH(0)
BOQNAME()
INITQ()
USAGE(NORMAL)
SHARE
DEFSOPT(SHARED)
MSGDLVSQ(PRIORITY)
RETINTVL(999999999)
TRIGTYPE(NONE)
TRIGDPTH(1)
TRIGMPRI(0)
TRIGDATA()
DEFTYPE(PREDEFINED)
NOHARDENBO
CRDATE(2003-08-08)
CRTIME(14.43.08)
GET(ENABLED)
QDEPTHHI(80)
QDEPTHLO(40)
QDPMAXEV(DISABLED)
172 Enabling SOA Using WebSphere Messaging

QDPHIEV(DISABLED)
QDPLOEV(DISABLED)
QSVCINT(999999999)
QSVCIEV(NONE)
INDXTYPE(CORRELID)
DEFBIND(OPEN)

5.3.7 Starting WebSphere MQ
Example 5-13 shows the messages generated when WebSphere MQ is started.

Example 5-13 MQ syslog

-MQQ1 START QMGR
S MQQ1MSTR
$HASP100 MQQ1MSTR ON STCINRDR
IEF695I START MQQ1MSTR WITH JOBNAME MQQ1MSTR IS ASSIGNED TO USER STC
 , GROUP SYS1
$HASP373 MQQ1MSTR STARTED
IEF403I MQQ1MSTR - STARTED - TIME=01.00.36 - ASID=0061 - SC55
CSQY000I -MQQ1 IBM WebSphere MQ for z/OS V6
CSQY001I -MQQ1 QUEUE MANAGER STARTING, USING PARAMETER MODULE CSQZPARM
CSQ3111I -MQQ1 CSQYSCMD - EARLY PROCESSING PROGRAM IS V6 LEVEL 003-002
CSQY100I -MQQ1 SYSTEM parameters ...
CSQY101I -MQQ1 CTHREAD=300, IDBACK=20, IDFORE=100, LOGLOAD=500000
CSQY102I -MQQ1 CMDUSER=CSQOPR, QMCCSID=0, ROUTCDE=(1)
CSQY103I -MQQ1 SMFACCT=NO (00000000), SMFSTAT=NO (00000000),
STATIME=30
CSQY104I -MQQ1 OTMACON= 522
(, ,DFSYDRU0,2147483647,CSQ)
CSQY105I -MQQ1 TRACSTR=(1), TRACTBL=99
CSQY106I -MQQ1 EXITTCB=8, EXITLIM=30, WLMTIME=30, WLMTIMU=MINS
CSQY107I -MQQ1 QSGDATA=(MQQG,DB8QU,D8QG,10,4)
CSQY108I -MQQ1 RESAUDIT=YES, QINDXBLD=WAIT, CLCACHE=STATIC
CSQY110I -MQQ1 LOG parameters ...
CSQY111I -MQQ1 INBUFF=60, OUTBUFF=4000, MAXRTU=2, MAXARCH=500
CSQY112I -MQQ1 TWOACTV=YES, TWOARCH=YES, TWOBSDS=YES
CSQY113I -MQQ1 OFFLOAD=NO, WRTHRSH=20, DEALLCT=0
CSQY120I -MQQ1 ARCHIVE parameters ...
CSQY121I -MQQ1 UNIT=TAPE, UNIT2=, ALCUNIT=BLK, 532
PRIQTY=4320, SECQTY=540, BLKSIZE=28672
CSQY122I -MQQ1 ARCPFX1=CSQARC1, ARCPFX2=CSQARC2, TSTAMP=NO
CSQY123I -MQQ1 ARCRETN=9999, ARCWTOR=YES, ARCWRTC=(1 ,3 ,4)
CSQY124I -MQQ1 CATALOG=NO, COMPACT=NO, PROTECT=NO, QUIESCE=5
CSQY201I -MQQ1 CSQYSTRT ARM REGISTER for element 536
SYSMQMGRMQQ1 type SYSMQMGR successful
IEC161I 056-084,MQQ1MSTR,MQQ1MSTR,BSDS1,,,MQQ1.BSDS01, 537
IEC161I MQQ1.BSDS01.DATA,MCAT.ZOSR06.Z16CAT
 Chapter 5. Point-to-point runtime configuration 173

IEC161I 056-084,MQQ1MSTR,MQQ1MSTR,BSDS1,,,MQQ1.BSDS01, 538
IEC161I MQQ1.BSDS01.INDEX,MCAT.ZOSR06.Z16CAT
IEC161I 062-086,MQQ1MSTR,MQQ1MSTR,BSDS1,,,MQQ1.BSDS01, 539
IEC161I MQQ1.BSDS01.DATA,MCAT.ZOSR06.Z16CAT
IEC161I 056-084,MQQ1MSTR,MQQ1MSTR,BSDS2,,,MQQ1.BSDS02, 540
IEC161I MQQ1.BSDS02.DATA,MCAT.ZOSR06.Z16CAT
IEC161I 056-084,MQQ1MSTR,MQQ1MSTR,BSDS2,,,MQQ1.BSDS02, 541
IEC161I MQQ1.BSDS02.INDEX,MCAT.ZOSR06.Z16CAT
IEC161I 062-086,MQQ1MSTR,MQQ1MSTR,BSDS2,,,MQQ1.BSDS02, 542
IEC161I MQQ1.BSDS02.DATA,MCAT.ZOSR06.Z16CAT
CSQJ127I -MQQ1 SYSTEM TIME STAMP FOR BSDS=2006-01-18 00:58:31.35
CSQJ001I -MQQ1 CURRENT COPY 1 ACTIVE LOG DATA SET IS 544
DSNAME=MQQ1.LOGCOPY1.DS01, STARTRBA=000000000000 ENDRBA=00000464FFFF
CSQJ001I -MQQ1 CURRENT COPY 2 ACTIVE LOG DATA SET IS 545
DSNAME=MQQ1.LOGCOPY2.DS01, STARTRBA=000000000000 ENDRBA=00000464FFFF
CSQJ099I -MQQ1 LOG RECORDING TO COMMENCE WITH 546
STARTRBA=00000002D000
CSQW130I -MQQ1 'GLOBAL' TRACE STARTED, ASSIGNED TRACE NUMBER 01
CSQ5001I -MQQ1 CSQ5CONN Connected to DB2 D8Q1
CSQH021I -MQQ1 CSQHINSQ SUBSYSTEM security switch set 549
OFF, profile 'MQQ1.NO.SUBSYS.SECURITY' found
CSQP007I -MQQ1 Page set 0 uses buffer pool 0
CSQP007I -MQQ1 Page set 1 uses buffer pool 0
CSQP007I -MQQ1 Page set 2 uses buffer pool 1
CSQP007I -MQQ1 Page set 3 uses buffer pool 2
CSQP007I -MQQ1 Page set 4 uses buffer pool 3
CSQY220I -MQQ1 Queue manager is using 123 MB of local 555
storage, 1643 MB are free
CSQV452I -MQQ1 CSQVXLDR Cluster workload exits not available
CSQR001I -MQQ1 RESTART INITIATED
CSQR003I -MQQ1 RESTART - PRIOR CHECKPOINT RBA=00000002BA1D
CSQR004I -MQQ1 RESTART - UR COUNTS - 559
IN COMMIT=0, INDOUBT=0, INFLIGHT=0, IN BACKOUT=0
IXC582I STRUCTURE MQQGCSQ_ADMIN ALLOCATED BY SIZE/RATIOS. 560
 PHYSICAL STRUCTURE VERSION: BE3AC0D4 085E7A8C
 STRUCTURE TYPE: SERIALIZED LIST
 CFNAME: CF03
 ALLOCATION SIZE: 10240 K
 POLICY SIZE: 20480 K
 POLICY INITSIZE: 10240 K
 POLICY MINSIZE: 0 K
 IXLCONN STRSIZE: 0 K
 ENTRY COUNT: 5189
 ELEMENT COUNT: 10224
 EMC COUNT: 1970
 LOCKS: 256
 ENTRY:ELEMENT RATIO: 1 : 2
 EMC STORAGE PERCENTAGE: 5.00 %
ALLOCATION SIZE IS WITHIN CFRM POLICY DEFINITIONS
174 Enabling SOA Using WebSphere Messaging

CSQE005I -MQQ1 Structure CSQ_ADMIN connected as 563
CSQEMQQGMQQ101, version=BE3AC0D4085E7A8C 00010001
IXL014I IXLCONN REQUEST FOR STRUCTURE MQQGCSQ_ADMIN 561
WAS SUCCESSFUL. JOBNAME: MQQ1MSTR ASID: 0061
CONNECTOR NAME: CSQEMQQGMQQ101 CFNAME: CF03
IXL015I STRUCTURE ALLOCATION INFORMATION FOR 562
STRUCTURE MQQGCSQ_ADMIN, CONNECTOR NAME CSQEMQQGMQQ101
 CFNAME ALLOCATION STATUS/FAILURE REASON
 -------- ---------------------------------
 CF03 STRUCTURE ALLOCATED AC001800
 CF06 PREFERRED CF ALREADY SELECTED AC001800
CSQE018I -MQQ1 Admin structure data building started
CSQI049I -MQQ1 Page set 0 has media recovery 565
RBA=00000002BA1D, checkpoint RBA=00000002BA1D
CSQI049I -MQQ1 Page set 1 has media recovery 566
RBA=00000002BA1D, checkpoint RBA=00000002BA1D
CSQI049I -MQQ1 Page set 2 has media recovery 567
RBA=00000002BA1D, checkpoint RBA=00000002BA1D
CSQI049I -MQQ1 Page set 3 has media recovery 568
RBA=00000002BA1D, checkpoint RBA=00000002BA1D
CSQI049I -MQQ1 Page set 4 has media recovery 569
RBA=00000002BA1D, checkpoint RBA=00000002BA1D
CSQE019I -MQQ1 Admin structure data building completed
CSQR030I -MQQ1 Forward recovery log range 571
from RBA=00000002BA1D to RBA=00000002C3E6
CSQR005I -MQQ1 RESTART - FORWARD RECOVERY COMPLETE - 572
IN COMMIT=0, INDOUBT=0
CSQR032I -MQQ1 Backward recovery log range 573
from RBA=00000002C3E6 to RBA=00000002C3E6
CSQR006I -MQQ1 RESTART - BACKWARD RECOVERY COMPLETE - 574
INFLIGHT=0, IN BACKOUT=0
CSQR002I -MQQ1 RESTART COMPLETED
CSQP018I -MQQ1 CSQPBCKW CHECKPOINT STARTED FOR ALL BUFFER POOLS
CSQP019I -MQQ1 CSQP1DWP CHECKPOINT COMPLETED FOR 577
BUFFER POOL 1, 2 PAGES WRITTEN
CSQP019I -MQQ1 CSQP1DWP CHECKPOINT COMPLETED FOR 578
BUFFER POOL 2, 2 PAGES WRITTEN
CSQP019I -MQQ1 CSQP1DWP CHECKPOINT COMPLETED FOR 579
BUFFER POOL 3, 3 PAGES WRITTEN
CSQP019I -MQQ1 CSQP1DWP CHECKPOINT COMPLETED FOR 580
BUFFER POOL 0, 9 PAGES WRITTEN
-MQQ1 DISPLAY CONN(*) TYPE(CONN) ALL WHERE(UOWSTATE EQ UNRESOLVED)
CSQP021I -MQQ1 Page set 0 new media recovery 582
RBA=00000002DF04, checkpoint RBA=00000002DF04
CSQP021I -MQQ1 Page set 1 new media recovery 583
RBA=00000002DF04, checkpoint RBA=00000002DF04
CSQP021I -MQQ1 Page set 2 new media recovery 584
RBA=00000002DF04, checkpoint RBA=00000002DF04
CSQP021I -MQQ1 Page set 3 new media recovery 585
 Chapter 5. Point-to-point runtime configuration 175

RBA=00000002DF04, checkpoint RBA=00000002DF04
CSQP021I -MQQ1 Page set 4 new media recovery 586
RBA=00000002DF04, checkpoint RBA=00000002DF04
CSQM297I -MQQ1 CSQMDRTC NO CONN FOUND MATCHING REQUEST CRITERIA
CSQ9022I -MQQ1 CSQMDRTC ' DISPLAY CONN' NORMAL COMPLETION
-MQQ1 DISPLAY SYSTEM
-MQQ1 DISPLAY LOG
CSQJ322I -MQQ1 DISPLAY SYSTEM report ... 591
Parameter Initial value SET value
----------- ---------------------- ----------------------
CTHREAD 300
IDBACK 20
IDFORE 100
LOGLOAD 500000
CMDUSER CSQOPR
QMCCSID 0
ROUTCDE 1
SMFACCT NO
SMFSTAT NO
STATIME 30
OTMACON
 GROUP
 MEMBER
 DRUEXIT DFSYDRU0
 AGE 2147483647
 TPIPEPFX CSQ
TRACSTR 1
TRACTBL 99
EXITTCB 8
EXITLIM 30
WLMTIME 30
WLMTIMU MINS
QSGDATA
 QSGNAME MQQG
 DSGNAME DB8QU
 DB2NAME D8QG
 DB2SERV 10
 DB2BLOB 4
 RESAUDIT YES
 QINDXBLD WAIT
 CLCACHE STATIC
 End of SYSTEM report
 CSQ9022I -MQQ1 CSQJC001 ' DISPLAY SYSTEM' NORMAL COMPLETION
 -MQQ1 DISPLAY ARCHIVE
 CSQJ322I -MQQ1 DISPLAY LOG report ... 594
 Parameter Initial value SET value
 ----------- ---------------------- ----------------------
 INBUFF 60
 OUTBUFF 4000
176 Enabling SOA Using WebSphere Messaging

 MAXRTU 2
 MAXARCH 2
 TWOACTV YES
 TWOARCH YES
 TWOBSDS YES
 OFFLOAD NO
 WRTHRSH 20
 DEALLCT 0
 End of LOG report
 CSQJ370I -MQQ1 LOG status report ... 595
 Copy %Full DSName
 1 1 MQQ1.LOGCOPY1.DS01
 2 1 MQQ1.LOGCOPY2.DS01
 Restarted at 2006-01-18 01:00:37 using RBA=00000002D000
 Latest RBA=00000002EF12
 Offload task is AVAILABLE
 Full logs to offload - 0 of 8
 CSQ9022I -MQQ1 CSQJC001 ' DISPLAY LOG' NORMAL COMPLETION
 -MQQ1 DISPLAY USAGE
 CSQJ322I -MQQ1 DISPLAY ARCHIVE report ... 598
 Parameter Initial value SET value
 ----------- ---------------------- ----------------------
 UNIT TAPE
 UNIT2
 ALCUNIT BLK
 PRIQTY 4320
 SECQTY 540
 BLKSIZE 28672
 ARCPFX1 CSQARC1
 ARCPFX2 CSQARC2
 TSTAMP NO
 ARCRETN 9999
ARCWTOR YES
ARCWRTC 1 ,3 ,4
CATALOG NO
COMPACT NO
PROTECT NO
QUIESCE 5
End of ARCHIVE report
CSQJ325I -MQQ1 ARCHIVE tape unit report ... 599
Addr St CorrelID VolSer DSName
---- -- -------- ------ --
No tape archive reading activity
End of tape unit report
CSQ9022I -MQQ1 CSQJC001 ' DISPLAY ARCHIVE' NORMAL COMPLETION
CSQM050I -MQQ1 CSQMIGQA Intra-group queuing agent 601
starting, TCB=0065F828
CSQI010I -MQQ1 Page set usage ... 602
Page Buffer Total Unused Persistent Nonpersistent Expansion
 Chapter 5. Point-to-point runtime configuration 177

set pool pages pages data pages data pages count
_ 0 0 5038 5023 15 0 USER 0
_ 1 0 5038 5038 0 0 USER 0
_ 2 1 5038 5038 0 0 USER 0
_ 3 2 5038 5038 0 0 USER 0
_ 4 3 5038 5037 1 0 USER 0
 End of page set report
CSQP001I -MQQ1 Buffer pool 0 has 50000 buffers
CSQP001I -MQQ1 Buffer pool 1 has 20000 buffers
CSQP001I -MQQ1 Buffer pool 2 has 50000 buffers
CSQP001I -MQQ1 Buffer pool 3 has 20000 buffers
CSQI024I -MQQ1 CSQIDUSE Restart RBA for system as 607
configured=00000002DF04
CSQ9022I -MQQ1 CSQIDUSE ' DISPLAY USAGE' NORMAL COMPLETION
CSQY022I -MQQ1 QUEUE MANAGER INITIALIZATION COMPLETE
CSQ9022I -MQQ1 CSQYASCP 'START QMGR' NORMAL COMPLETION
IXC582I STRUCTURE MQQGAPPLICATION1 ALLOCATED BY SIZE/RATIOS. 611
 PHYSICAL STRUCTURE VERSION: BE3AC0D6 8BEC2882
 STRUCTURE TYPE: SERIALIZED LIST
 CFNAME: CF03
 ALLOCATION SIZE: 10240 K
 POLICY SIZE: 20480 K
 POLICY INITSIZE: 10240 K
 POLICY MINSIZE: 0 K
 IXLCONN STRSIZE: 0 K
 ENTRY COUNT: 2217
 ELEMENT COUNT: 12929
 EMC COUNT: 1970
 LOCKS: 1024
 ENTRY:ELEMENT RATIO: 1 : 6
 EMC STORAGE PERCENTAGE: 5.00 %
 ALLOCATION SIZE IS WITHIN CFRM POLICY DEFINITIONS
 IXL014I IXLCONN REQUEST FOR STRUCTURE MQQGWEBQUEUE 612
 WAS SUCCESSFUL. JOBNAME: MQQ1MSTR ASID: 0061
 CONNECTOR NAME: CSQEMQQGMQQ101 CFNAME: CF03
 IXL015I STRUCTURE ALLOCATION INFORMATION FOR 613
 STRUCTURE MQQGAPPLICATION1, CONNECTOR NAME CSQEMQQGMQQ101
 CFNAME ALLOCATION STATUS/FAILURE REASON
 -------- ---------------------------------
 CF03 STRUCTURE ALLOCATED AC001800
 CF06 PREFERRED CF ALREADY SELECTED AC001800
 CSQE005I -MQQ1 Structure WEBQUEUE connected as 614
 CSQEMQQGMQQ101, version=BE3AC0D68BEC2882 00010001
 CSQY220I -MQQ1 Queue manager is using 714 MB of local 615
 storage, 1052 MB are free
178 Enabling SOA Using WebSphere Messaging

5.3.8 For more information
For more information about WebSphere MQ queue sharing, see the following:

� WebSphere MQ Queue Sharing Group in a Parallel Sysplex environment,
REDP-3636

� WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864

� Patterns: Self-Service Application Solutions Using WebSphere for z/OS V5,
SG24-7092

� IBM WebSphere WAS for z/OS and MQ at:

http://websphere.sys-con.com/read/148226.htm
 Chapter 5. Point-to-point runtime configuration 179

http://websphere.sys-con.com/read/148226.htm

180 Enabling SOA Using WebSphere Messaging

Chapter 6. Integration scenarios with
WebSphere ESB

This chapter provides information and examples that illustrate some of the
mediation functions possible when using WebSphere ESB as an enterprise
service bus. The intent is to give you an idea of how mediations are built using
WebSphere Integration Developer and deployed to WebSphere ESB. We
introduce you to the concept of using predefind mediations that are provided by
WebSphere ESB.

6

© Copyright IBM Corp. 2006. All rights reserved. 181

6.1 Using WebSphere ESB
WebSphere ESB provides basic enterprise service bus capabilities, including
mediation capabilities.

A mediation intercepts and acts on messages that are passed between a service
requester and one or more service providers. Mediations destined for
deployment to WebSphere ESB or WebSphere Process Server are referred to
as mediation service applications. Mediation service applications are
implemented using mediation modules that contain mediation flows. Figure 6-1
shows the elements that make up a mediation service application.

Figure 6-1 Mediation service application

Figure 6-1 is explained below:

� Mediation module

Mediation Service Application
Mediation Module

ImportI

ImportI

ExportI

Source interface

Target Reference

Service

Service

Requester
R

R
I Mediation Flow

Component

Reference

Reference
Mediation Flow (Response)

Mediation Flow (Request)

Interface
Input node

Callout
Primitive Primitive

Callout

Callout Response nodePrimitivePrimitiveInput response node

Service Message
Object

Service Message
Object
182 Enabling SOA Using WebSphere Messaging

Mediation service applications are assembled and deployed as one or more
mediation modules. A mediation module can have the following parts:

– Exports that expose the mediation module to service requesters

– Imports that identify service providers and their interfaces

– A mediation flow component

– Java components that implement custom mediation primitives invoked by
the mediation flow component

� Export node

An export node exposes the mediation module to service requesters.
Mediation modules and business integration modules have interfaces in their
exports, so that the module can be invoked.

� Import node

An import node identifies service providers and their interfaces. It allows you
to use functions that are not part of the module that you are assembling.

� Mediation flow component

A mediation flow component consists of the following:

– One or more interfaces that describe how to invoke the flow. An interface
must match an export wired to the mediation flow.

– Zero or more references that specify the interfaces of partners the flow
can invoke. The references are wired to imports (or Java components)
with matching interfaces.

– Mediation flows. Mediation flows that handle messages going from the
service requester to the service provider are called request flows. Those
that handle responses from the providers to the requester are called
response flows.

� Interfaces

An interface provides access to a service and defines the data exchange
between components. The interface defines the operations that can be called
and the data that is passed. In a mediation flow component, the interface that
allows the service requester to access the mediation through an export is
called a source interface.

� References

A mediation flow component accesses a service provider (or import) through
a reference that specifies the interface that is used by the import to invoke the
service. In a mediation flow component, this reference is called a target
reference.

� Mediation flow
 Chapter 6. Integration scenarios with WebSphere ESB 183

A mediation flow contains the sequence of steps that process the message.

� Mediation primitive

Mediation flows consist of mediation primitives. A ready-made set of
mediation primitives is available from the mediation flow editor palette. If you
need mediation capabilities that are not provided by this set of primitives, you
can create custom mediation primitives to call your own Java implementation
or an imported service.

� Service message objects

Messages in mediation flows are represented as service message objects
(SMOs).

Mediation primitives
The following mediation primitives are available to build your mediation flows in
WebSphere ESB.

� XSLT

The XSLT mediation primitive can be used to transform an XML message
using XSL Transformations (XSLT) 1.0 transformation.

� Message Logger

The Message Logger mediation primitive stores messages in a relational
database.

� Database Lookup

The Database Lookup mediation primitive allows you to modify a message
using data from a database.

� Message Filter

The Message Filter mediation primitive can make decisions based on the
message content, for example, field validation or routing to specific providers
or to a specific path in the message flow. This primitive can be used in
conjunction with the Database Lookup primitive to enhance the
decision-making criteria.

� Fail

The Fail mediation primitive stops a mediation flow and raises an exception.

� Stop

The Stop mediation primitive stops a particular path in the flow.

� Custom mediation

Custom mediation primitives are used to do processing not provided in the
other mediation primitives. A custom mediation primitive calls an SCA
component that you provide to process the message.
184 Enabling SOA Using WebSphere Messaging

For information about developing custom mediations, see the “contributing
your own mediation primitive” plug-in at:

http://www-1.ibm.com/support/docview.wss?rs=2308&context=SSQQFK&uid=swg2
7007001

Figure 6-2 shows an example of a using the mediation primitives in a mediation
flow.

Figure 6-2 Mediation flow

In this example, when a message enters the message flow through the source
interface, the mediation logs the message into a database. It then looks up an
identifier from the database for authentication, filters the message based on its
contents, transforms the message based on XSLT, and routes the message to
the target services.

Bindings
A mediation is made available to clients through its export binding. The mediation
invokes external services through import bindings.

The following bindings are available for use with imports:

� Web services
� JMS
� EIS adapters
� SCA (for connection to other modules)
� Stateless session EJB

The following bindings are available for use with exports:

� Web services
� JMS
� EIS adapters - with the exception of CICS and IMS™
� SCA (for connection to other modules)
 Chapter 6. Integration scenarios with WebSphere ESB 185

http://www-1.ibm.com/support/docview.wss?rs=2308&context=SSQQFK&uid=swg27007001

The EIS adapters supported include the following J2C-compliant IBM
WebSphere Adapters:

� IBM CICS ECI Resource Adapter 6.0.1
� IBM IMS Connector for Java 9.1.0.2
� IBM WebSphere Adapter for Flat Files 6.0
� IBM WebSphere Adapter for JDBC 6.0
� IBM WebSphere Adapter for PeopleSoft Enterprise 6.0
� IBM WebSphere Adapter for SAP Software 6.0
� IBM WebSphere Adapter for Siebel Business Applications 6.0

The IBM WebSphere Business Integration Adapters are also supported. To see
a complete list of supported WebSphere Business Integration Adapters, go to:

http://www-306.ibm.com/software/integration/wbiadapters/

6.1.1 Developing mediations
WebSphere Integration Developer provides the tools required to develop,
deploy, and test mediations for WebSphere ESB. WebSphere Integration
Developer consists of a Workbench window that displays one or more
perspectives. A perspective is a group of views and editors required to perform
tasks associated with a role. Each perspective consists of views that provide
alternative presentations of resources or ways of navigating through information
in the Workbench. As a user works with the Workbench, the data representing
the projects and working environment are stored in a workspace directory on the
local file system.

Mediation development is done using the Business Integration perspective. This
perspective is used to develop and test mediations. The perspective consists of
views designed specifically for development.

� The Business Integration view (top left) lists the mediation modules and their
resources.

� The Editor view (top right) is where you build modules and flows. The view
consists of a canvas where you can assemble and wire components and a
Palette that contains elements, such as mediation primitives, that you can
drag and drop to the canvas. The content and options for the canvas and
Palette vary depending on the editor. For example, there is an assembly
editor for modules and a Mediation Flow editor for working with mediation
flows. The appropriate editor is invoked when you open an element such as a
module or flow for editing.

� The lower-half portion of the screen contains multiple views that you can
access by clicking the appropriate tab. Among these are the Problems and
Outline views. The Problems view shows informational, warning, and error
186 Enabling SOA Using WebSphere Messaging

http://www-306.ibm.com/software/integration/wbiadapters/

messages that indicate problems within resources. The Outline view displays
a structured outline of the file open in the editor area (palette).

6.1.2 Deploying mediations
Mediations are deployed as EAR files to the WebSphere ESB server.
WebSphere Integration Developer builds the files necessary and provides tools
for exporting the EAR files.

6.2 Integration scenario
In the scenario introduced in “End-to-end scenario” on page 60, Airline B uses a
J2EE messaging application that runs in WebSphere Application Server. Both
the travel bureau and Airline B use XML format for messages, but the two
formats are not the same. A mediation is required to transform the XML message
to the proper format. This can be done using WebSphere ESB or WebSphere
Message Broker. In this chapter we look at how to do the mediation with
WebSphere ESB.

Figure 6-3 shows the runtime infrastructure for this sample.

Figure 6-3 XML transformation with WebSphere ESB

WebSphere ESB

Travel
Bureau

Bus

BLOB

End User
Web Browser

HTTP Server

Servlet
Container

 Application

Airline

Mediation
module

XML1

<AirlineRequest>

XML2

<CustomerOrder>
 Chapter 6. Integration scenarios with WebSphere ESB 187

6.3 XML-to-XML mapping using a mediation flow
This section shows how to build a mediation flow that transforms a message in
one XML format to another XML format. WebSphere ESB includes a mediation
primitive called the XSLT mediation primitive that can be placed in a mediation
flow to provide this function.

In this example, two queue destinations are defined in the service integration
bus. Messages enter the flow through the AIRLINE queue destination, are
mediated, and leave the flow through the ORDER queue destination.
Applications access these queues using the JNDI names.

The Export is bound to JMS and specifies jms/AIRLINE as the destination to
receive messages from. The Import is also bound to JMS and specifies
jms/ORDER as the destination to send messages to.

Configuration details are shown in Figure 6-4.

Figure 6-4 XML-to-XML mapping using the XSLT primitive

6.3.1 Mediation overview
Figure 6-5 on page 189 shows the mediation module contents we are going to
build.

Bus

Mediation

Export Import

ORDER
(queue)

AIRLINE
(queue)

XSLT primitive
XML XML

WebSphere Application Server

jms/ORDER

Airline appTravel Bureau
app

jms/AIRLINE
188 Enabling SOA Using WebSphere Messaging

Figure 6-5 XSLT Transformation mediation component

XSLT_Transform is the mediation component. Its mediation flow implementation
looks like Figure 6-6.

Figure 6-6 Mediation flow

This flow uses the XSLT mediation primitive. This performs the translation of the
input XML to the output XML using an XSL style sheet.

6.4 XML-to-XML transformation using XSLT mapping
XSL Transformations (XSLT) is a language for transforming the structure of XML
documents. It is designed for use as part of Extensible Stylesheet Language
(XSL).

The steps required to build the mediation for XML transformation in WebSphere
ESB are:

1. Create the mediation module.
2. Create the business objects.
3. Build the interfaces.
4. Build the mediation module.
5. Bind the export and import nodes to JMS.
 Chapter 6. Integration scenarios with WebSphere ESB 189

6.4.1 Create the mediation module
The first step is to create a mediation module. You can optionally create a library
first to hold resources, such as business objects or interfaces, that you may use
in other modules. If you create a library, you can add it as a dependency while
you create the mediation module.

1. Create a mediation module by right-clicking in the Business Integration view
and selecting New → Mediation module.

2. Name the mediation module XSLTTransformMediationModule. Allow the
wizard to create the mediation flow component.

6.4.2 Create the business objects
Next, we take you through the process of creating the seven business objects
listed under Data Types in Figure 6-7. These data objects will be used to
represent the XML data as it flows through the mediation.

Note that the business objects will be structured in the same manner as the
Airline1.xml and Order1.xml files seen in “Sample XML files” on page 270.

Figure 6-7 Create business objects

To create each business object:

1. Select Data Types in the XSLTTransformMediationModule and right-click.

2. Select New → Business Object.

3. Enter the name in the Name field.

4. Click Finish.
190 Enabling SOA Using WebSphere Messaging

To add an attribute to a business object:

1. Select the object, right-click, and select Add Attributes.

2. Type over the name of the attribute with the new name, or change it in the
Properties view.

3. Select the correct type of attribute (the default is string).

Create the input business objects
The following business objects are used for the XML input:

1. Create the following business objects:

– AirlineRequest
– Customer
– Purchase
– Response

As each business object is created it is opened in the editing area. Leave
them open since we will be adding attributes to them next.

2. Add the following attributes to the Customer business object, as shown in
Figure 6-8 on page 192:

– FirstName - Type string
– LastName - Type string
– Street - Type string
– City - Type string
– Country - Type string
– Zip - Type string

You can add an attribute by clicking the Add icon in the window. The new
attribute will be added to the list under Customer. Type over the name and
choose the proper data type in the Properties view.

Tip: If you are adding a business object as an attribute (versus a string), you
can simply drag and drop the business object from the Business Integration
view onto the business object in the canvas.
 Chapter 6. Integration scenarios with WebSphere ESB 191

Figure 6-8 Create the Customer business object

Close the Customer business object.

3. Add the following attributes to AirlineRequest, as shown in Figure 6-9 on
page 193:

– Purchase - Type Purchase business object
– Response - Type Response business object

Since these are business objects, you can drag and drop them onto the
AirlineRequest object.

Add attribute icon
192 Enabling SOA Using WebSphere Messaging

Figure 6-9 Create the AirlineRequest business object

Close AirlineRequest.

4. Add the following attributes in the Purchase business object, as shown in
Figure 6-10 on page 194:

– Customer - Type Customer business object
– FlightNumber - Type string
– Date - Type string
– Price - Type string
– CreditCard - Type string
 Chapter 6. Integration scenarios with WebSphere ESB 193

Figure 6-10 Create the Purchase business object

Close the Purchase business object.

5. Add the following attributes in the Response business object, as shown in
Figure 6-11:

– Status - Type string
– Details - Type string

Figure 6-11 Create the Response business object

Close the Response business object.
194 Enabling SOA Using WebSphere Messaging

Create the business objects for output
In this section we create the business objects for the XML output:

1. Create the following business objects:

– CustomerOrder
– Address
– FlightInfo

2. In CustomerOrder, add the following attributes:

– CustomerName - Type string
– Address - Type is the Address business object
– FlightInfo - Type is the FlightInfo business object

You can see the changes in Figure 6-12.

Figure 6-12 Create Business Object of CustomerOrder

Close the CustomerOrder business object.

3. Add the following attributes to Address, as shown in Figure 6-13 on page 196:

– Street - Type string
– City - Type string
– Country - Type string
– PostCode - Type string
 Chapter 6. Integration scenarios with WebSphere ESB 195

Figure 6-13 Create the attributes for the Address business object

Close the Address business object.

4. Create the following attributes for the FlightInfo business object, as shown in
Figure 6-14 on page 197:

– FlightNo - Type string
– Date - Type string
– Cost - Type string
– CardNo - Type string
– Membership - Type string
– Status - Type string
196 Enabling SOA Using WebSphere Messaging

Figure 6-14 Create the attributes for the FlightInfo business object

Close the FlightInfo business object.

6.4.3 Build the interfaces
We need two interfaces for this service. A service can be called synchronously or
asynchronously.

A component can be called synchronously or asynchronously; this is
independent of whether the implementation is synchronous or asynchronous.
The interfaces on the component are defined in the synchronous form and
asynchronous support is also generated for them. For an interface you can
specify a preferred interaction style as synchronous or asynchronous.

The asynchronous type advertises to users of the interface that it contains at
least one operation that may take a significant time to complete. As a
consequence, the calling service should avoid keeping a transaction open while
waiting for the operation to complete and send its response. The interaction style
applies to all the operations in the interface.

These interfaces define an asynchronous invocation.

Build the input interface
An interface to a component contains one or more operations that describe the
action implemented by the component. An operation may be a request/response
type, meaning a request is sent and a response is returned to the interface, or a
 Chapter 6. Integration scenarios with WebSphere ESB 197

one way type, meaning only an input is sent and there is no response needed.
Each operation in the interface defines the data that can be passed in the form of
inputs to and outputs from the component when the operation is invoked.

This first interface describes how to call the mediation. It identifies the
AirlineRequest business object as the expected input.

To build the interface:

1. In XSLTTransformMediationModule, select Interfaces, right-click, and select
New → Interface.

– Enter Airline in the Name field.

– Click Finish.

The new interface will open in the editor area.

2. Since our example flow is not expecting a response to be returned, the
operation will be a one-way operation. In the editor area, click the Add One
Way Operation icon (see Figure 6-15).

A new operation will be added to the interface with the default name of
Operation1. Change this name to receive by typing over it.

3. Click the receive operation and click the Add Input icon (see Figure 6-15). A
new Input entry will appear on the canvas.

– Enter request in the Name field.

– Click in the Type field and select the AirlineRequest business object. The
results are shown in Figure 6-15.

(You can also use the Properties view to enter these values.)

Figure 6-15 Interface for Input

4. Close and save the interface.

Add One Way Operation

Add input
198 Enabling SOA Using WebSphere Messaging

Build the output interface
The next interface is used for the import that invokes the Airline company. It
specifies the CustomerOrder business object as the data to pass.

1. Create a second interface named Order.

2. Click the Add One Way Operation icon.

Change the name to record.

3. Click the Add Input icon.

Enter order in the Name field and select the CustomerOrder business object
as the Type. The results are shown in Figure 6-16.

Figure 6-16 Interface for Output

4. Close and save the interface.

6.4.4 Build the mediation module
Next we populate the mediation module. First we add the SCA components
(export, import, and mediation flow components) in the module assembly and
wire them together. Next we generate and refine the implementation for the
mediation flow component. The implementation is the mediation flow.

Add the components to the module assembly
First we add the export to be used to invoke the module. Then we add the import
that invokes the airline service. Then we add the interfaces and references and
wire the components together.

1. Navigate to the module assembly in the Business Integration view
(Figure 6-17 on page 200). This was created automatically when you created
the meditation module. Open the module assembly by double-clicking it.
 Chapter 6. Integration scenarios with WebSphere ESB 199

Figure 6-17 Module assembly

The assembly editor will open and you will see that a mediation flow
component called Mediation1 has been added for you.

Figure 6-18 Mediation flow component

2. Select the mediation flow component. In the Properties view, change the
display name from Mediation1 to XSLT_Transform.

3. Right-click in the canvas and select Add Node → Export. Move the new
Export (Export1) to the left of the mediation flow component.

In the Properties view, change the display name to Airline.

4. Right-click in the canvas and select Add Node → Import. Move the new
Import (Import1) to the right of the mediation flow component.

In the Properties view, change the display name to Order.
200 Enabling SOA Using WebSphere Messaging

5. Right-click the Airline export and select Add Interface. Select Airline.

6. Right-click the XSLT_Transform component and select Add → Interface.
Select Airline and click OK.

7. Right-click the XSLT_Transform component and select Add → Reference.
Select Order. The new reference will be added with the name of
OrderPartner.

8. Right-click the Order import and select Add Interface. Select Order.

9. Click the Wire icon and then click the Airline export. Drag the wire to the
interface on XSLT_Tranform. Do the same to connect the XSLT_Transform
reference to the Order import node.

Figure 6-19 Wire the components

Click the arrow at the top left of the palette to get out of the wiring mode.

Build the mediation flow
The implementation of the mediation flow component is the next item we build.
The implementation is a mediation flow.

1. Right-click XSLT_Tranform and select Generate Implementation to
generate the mediation flow. Click OK in the next window. The Mediation
Flow editor opens with the new flow (Figure 6-20 on page 202).

Wire
 Chapter 6. Integration scenarios with WebSphere ESB 201

Figure 6-20 Mediation flow editor

2. The end points of the mediation flow component are defined by source
interfaces and target references. Source operations are connected to target
operations and a flow is defined for each connection.

In the Operation connections window, you will see the interface and the
reference used in this flow. Click the receive operation (you will see an input
node in the Mediation flow pane) and drag it to the record operation, creating
an operation connection between the two. This will generate the Callout node
in the flow.

3. In the pane below, you will see the input and callout nodes. To the left you will
find icons representing mediation primitives.

Click the icon for XSL Transformation, and then click in the editor pane to add
the primitive between the two generated nodes.

The results are shown in Figure 6-21 on page 203.
202 Enabling SOA Using WebSphere Messaging

Figure 6-21 Meditation flow

4. Wire the out terminal of the Airline receive Input node to the in terminal of the
XSLTransformation1 node. To do this, click the out terminal and drag it to the
in terminal.

5. Wire the out terminal of the XSLTransformation1 node to the in terminal of the
OrderPartner record Callout node.

Note: When you dropped the XSLT primitive onto the canvas, the
message types of the in and out terminals were null. As you wire the input
node to the XSLT primitive, the type of the input node’s out terminal
(receiveRequestMsg) is propagated to the in terminal of the XSLT
primitive. Similarly, when you wire the out terminal of the XSLT primitive to
the callout node, the message type of the callout node’s in terminal
(recordRequestMsg) is propagated to out terminal of the XSLT primitive.

This becomes important later when the mapping editor is used to define
the mapping for the XSLT primitive.
 Chapter 6. Integration scenarios with WebSphere ESB 203

Figure 6-22 Connect the nodes in the flow

6. To set the properties of the XSLTransformation1 node, select the node:

a. In the Properties view click the Details tab.

Figure 6-23 XSL transformation properties

The Root field specifies the root of the SMO message to use for the
source and target message during transformation. Valid values are:

• / for the complete SMO
• /body for the body section of the SMO
• /headers for the headers of the SMO
• /context for the context of the SMO

For this example, the Root field has /body specified, so the mapping is
made of the message body.

type:receiveRequestmsg type:recordRequestmsg
204 Enabling SOA Using WebSphere Messaging

If you have an existing XSL style sheet file you can specify it here instead
by using the Pick Map button. If not, click New to create an XML mapping.

b. Since the XSLT primitive is wired to the input and callout nodes, the
wizard knows the input and output message types that to be mapped.
Click Finish to launch the XML Mapping editor.

7. A mapping editor will be opened. Elements can be mapped by dragging the
source element and dropping it on the target element. Map the elements as
shown in Table 6-1.

To map FirstName and LastName to CustomerName, click both source fields
using the Ctrl key, and then drag and drop them onto CustomerName.

Table 6-1 XML Mapping

– The final mapping should look like Figure 6-24 on page 206.

AirlineRequest CustomerOrder

FirstName CustomerName

LastName CustomerName

Street Street

City City

Country Country

Zip PostCode

FlightNumber FlightNo

Date Date

Price Cost

CredirCard CardNo

Status Status

Details Membership
 Chapter 6. Integration scenarios with WebSphere ESB 205

Figure 6-24 XSLT mapping

– To add a blank between FirstName and LastName:

i. Select CustomerName in the Overview view. Right-click and select
Define XSLT Function.

ii. Select String, and click Next.

iii. Select concat as the function (default). Then click Add.

iv. Enter a blank surrounded by quotes (‘ ‘) as the parameter value and
click OK.

v. Select the quotes in the Input Parameters window and move them
between FirstName and Last Name using the Up and Down buttons, as
shown in Figure 6-25 on page 207.
206 Enabling SOA Using WebSphere Messaging

Figure 6-25 Define an XSLT function

vi. Click Finish.

If the function is defined correctly, you will see the concat function listed in
the Applied Function column (Figure 6-26).

Figure 6-26 New applied XSLT function

8. Close and save the map.

9. In the Properties view click the Regenerate XSL button to generate an XSL
style sheet from the XML map.

10.Close the XSL file.
 Chapter 6. Integration scenarios with WebSphere ESB 207

11.Close and save the mediation flow.

6.4.5 Bind the export and import nodes to JMS
The next step is to set up the export and import nodes to use JMS.

Export node setup
Open the XSLTTransformMediationModule in the assembly editor and do the
following:

1. Select the Airline node and right-click. Select Generate Binding → JMS
Binding.

a. In the JMS Binding Attributes Selection window, select Point-to-Point as
the JMS messaging domain and Text for data serialization.

b. Click OK.

2. In the Properties view:

a. Select the Binding tab. Enter jms/AS as the JNDI Lookup Name.

b. Select the JMS Destinations tab and expand Receive Destination
Properties. Enter the JNDI Lookup Name as jms/AIRLINE.

Import node setup
In the Assembly editor:

1. Select the Order node in the Assembly editor and right-click. Select
Generate Bindings → JMS Binding.

a. In the JMS Binding Attributes Selection window, select Point-to-Point as
the JMS messaging domain and Text for data serialization.

b. Click OK.

2. In the Properties view:

a. Select the Binding tab. On the JMS Import Binding tab, enter jms/QCF as
the JNDI Lookup Name.

b. Select the JMS Destinations tab and expand Send Destination
Properties. Enter jms/ORDER as the JNDI lookup name.

The assembly diagram will now look like Figure 6-27 on page 209.
208 Enabling SOA Using WebSphere Messaging

Figure 6-27 Mediation module with a JMS binding

3. Save the changes.

6.4.6 Prepare the runtime
Before building the mediation, some preparation is needed to set up the rest of
the runtime environment.

The following needs to be done to prepare WebSphere ESB:

� Create the bus destinations (queues).
� Create the JMS objects.

Create the bus destinations (queues)
Using the administrative console for the WebSphere ESB server:

1. Select Service Integration → Buses. Note that three buses have been
created for you during installation.

2. Click the SCA.APPLICATION.esbCell.Bus, then click Destinations.

3. Create the following queues using default settings:

– AIRLINE
– ORDER
 Chapter 6. Integration scenarios with WebSphere ESB 209

Figure 6-28 Create the queue destinations in WebSphere ESB

4. Save all changes.

WebSphere ESB and WebSphere MQ integration: Earlier, in “Connect
WebSphere ESB to WebSphere MQ” on page 118, you saw how to connect
the service integration bus in WebSphere ESB to WebSphere MQ. In this
example you can use the same techniques to send the translated message to
a queue on WebSphere MQ. The basic steps are:

1. On WebSphere ESB:

– Define WebSphere MQ as a foreign bus to
SCA.APPLICATION.esbCell.Bus.

– Define the WebSphere MQ link, including the sender and receiver
channels.

– Delete the ORDER queue destination and create an alias destination
named ORDER, pointing to a queue on WebSphere MQ.

2. On WebSphere MQ:

– Create the queue manager, sender channel, receiver channel, and
transmission queue to complete the connection with WebSphere ESB.

– Create the queue that the ORDER alias points to.
210 Enabling SOA Using WebSphere Messaging

Create the JMS objects
Create the JMS objects required by doing the following:

1. Select Resources → JMS Providers → Default Messaging.

2. Click JMS Queue Connection Factory in Connection Factories.

3. Click New.

a. Enter QCF in the Name field.
b. Enter jms/QCF in the JNDI Name field.
c. Select SCA.APPLICATION.esbCell.Bus in the Bus Name field.
d. Click OK.

Figure 6-29 Create a New JMS queue connection factory

4. Save the changes.

5. Select Resources → JMS Providers → Default Messaging.

6. Click JMS Queue.

7. Click New.

a. Enter Airline in the Name field.
b. Enter jms/AIRLINE in the JNDI Name field.
 Chapter 6. Integration scenarios with WebSphere ESB 211

c. Select SCA.APPLICATION.esbCell.Bus as the Bus Name.
d. Select AIRLINE as the queue name.
e. Click OK.

Figure 6-30 Attributes of the JMS queue

8. In the same way create the Order JMS queue using the following values:

– Order queue:

• The name is Order.
• The JNDI name is jms/ORDER.
• The bus name is SCA.APPLICATION.esbCell.Bus.
• The queue name is ORDER.

You can see the new JMS queues in Figure 6-31 on page 213.
212 Enabling SOA Using WebSphere Messaging

Figure 6-31 Create the new JMS queues

9. Save the changes.

10.Select Resources → JMS Providers → Default Messaging.

11.Click JMS Activation Specification.

12.Click New.

a. Enter AS in the Name field.
b. Enter jms/AS in the JNDI Name field.
c. Enter jms/AIRLINE in the Destination JNDI Name field.
d. Select SCA.APPLICATION.esbCell.Bus as the Bus Name.
e. Click OK to create the activation specification.
 Chapter 6. Integration scenarios with WebSphere ESB 213

Figure 6-32 Create a new JMS activation specification

13.Save the changes and restart the server.

Deploy the mediation
Mediation modules are deployed to the WebSphere ESB server as EAR files. To
deploy to the server you must first export the module as an EAR file and make it
available to the server. Then you can install the module as an application using
the WebSphere administrative console.

To export modules as EAR files:

1. Select File → Export.

2. Select Integration module and click Next.

3. Check the box to the left of the mediation module. Select the EAR files for
server deployment option and click Next.

4. In the Target directory field, type the path and name of the target directory
where you want to export the EAR file. Note the EAR file name and click
Finish.
214 Enabling SOA Using WebSphere Messaging

To deploy the mediation, open the WebSphere administrative console and do the
following:

1. Select Applications → Install New Applications.

2. Browse to the EAR file you exported and click Next.

3. In the next window, labeled Preparing for the application installation,
click Next.

4. The next series of steps takes you through the application installation. This
process is the same as for any WebSphere application. The number of steps
and complexity of choices depends on the application and environment. In
the sample we are using, all the default values were correct.

Follow through with the installation process and save your changes.

5. To start the application select Applications → Enterprise Applications.
Place a check in the box to the left of the mediation application and click
Start.

Test the mediation
To test the mediation, WebSphere Integration Developer provides the integration
test client. This is a useful tool for testing and debugging integration modules.
For information about using it, refer to the WebSphere Integration Developer
help.

To use the tool to test our mediation flow:

1. Open the module assembly.

2. Right-click in the canvas and select Test Module.

3. When the test client starts you will see a view that allows you to enter values
for the input. Fill in the test values (Figure 6-33 on page 216) and click
Continue.
 Chapter 6. Integration scenarios with WebSphere ESB 215

Figure 6-33 Enter the values for the test client

The mediation test client sends the data to the mediation and the results are
shown. You can also see the server messages in the server console.
216 Enabling SOA Using WebSphere Messaging

Chapter 7. Integration scenarios with
WebSphere Message Broker

This chapter provides information and examples that illustrate some of the
mediation functions possible when using WebSphere Message Broker as an
enterprise service bus. The intent is to give you an idea of how message flows
are built and deployed, and to introduce you to the concept of using predefind
nodes that are provided by WebSphere MQ.

This chapter shows the following mediation examples:

� XML-to-XML mapping using a Mapping node
� XML-to-COBOL mapping
� XML-to-XML transformation using XSLT
� Routing messages

7

© Copyright IBM Corp. 2006. All rights reserved. 217

7.1 Using WebSphere Message Broker
Messages enter WebSphere Message Broker through an input node and
traverse a set of nodes that form a message flow. The message flow processes
the message before sending it to its final destination through an output node.
This processing can be used to route and transform messages. WebSphere
Message Broker provides you with a set of built-in nodes that facilitate message
flow development.

WebSphere Message Broker provides the following transport support using the
nodes listed.

Table 7-1 Application transport support

Nodes Transport

� JMSInput
� JMSOutput

WebSphere Broker JMS Transport is used to allow a
message flow to receive messages from JMS
destinations or to send messages to JMS destinations.
These destinations are accessible through connection to
a JMS provider. The JMS nodes work with the
WebSphere MQ JMS provider, WebSphere Application
Server Version 6.0, the service integration bus, and any
JMS provider that conforms to the Java Message Service
Specification Version 1.1.

� SCADAInput
� SCADAOutput

WebSphere MQ Telemetry Transport is a lightweight
publish/subscribe protocol flowing over TCP/IP. This
protocol is used by specialized applications on small
footprint devices that require a low bandwidth
communication, typically for remote data acquisition and
process control.

� Real-timeInput
� Real-timeOptimizedFlow
� Publication

WebSphere MQ Multicast Transport is used by
dedicated multicast-enabled JMS application clients to
connect to brokers. Applications communicate with the
broker by writing data directly to TCP/IP ports. This
protocol is optimized for high volume, one-to-many
publish/subscribe topologies.

� HTTPInput
� HTTPReply
� HTTPRequest
� Publication

WebSphere MQ Web Services Transport allows Web
services clients using XML messages and the HTTP
protocol running over TCP/IP to communicate with
applications through message flows in a broker.

� Real-timeInput
� Real-timeOptimizedFlow
� Publication

WebSphere MQ Real-time Transport is a lightweight
protocol optimized for use with non-persistent
messaging. JMS applications communicate with the
broker using TCP/IP ports.
218 Enabling SOA Using WebSphere Messaging

WebSphere Message Broker comes with a set of built-in nodes ready to use in
building message flows. The built-in nodes shown in Table 7-2 show the broad
range of function provided.

Table 7-2 Message manipulation nodes

� MQInput
� MQOutput
� MQGet
� MQReply
� MQOptimizedFlow
� Publication

WebSphere MQ Enterprise Transport supports
WebSphere MQ applications that connect to WebSphere
Business Integration Message Broker by writing data to
and reading data from message queues.

� MQeInput
� MQeOutput
� Publication

WebSphere MQ Mobile Transport is used exclusively by
WebSphere MQ Everyplace clients. WebSphere MQ
Everyplace is an application designed primarily for
messaging to, from, and between pervasive devices.
These are typically small, handheld devices, such as
mobile phones and PDAs. A bridge queue on the
broker's queue manager provides an interface for the
WebSphere MQ Everyplace clients to the broker
services.

Node Function

Nodes for message manipulation

� Compute
� JavaCompute

Used to examine a message and create new messages.
The Compute node logic is written in ESQL. The
JavaCompute node uses logic.

� Database
� DataDelete
� DataInsert
� DataUpdate
� Warehouse

Used to interact with an ODBC datasource.

� Extract Used to extract the exact contents of the input message
that you want to be processed by later nodes in the
message flow.

� Mapping Uses the Mapping node to construct one or more new
messages by creating new messages and populating
them with new information, with modified information
from the input message, or with information taken from a
database.

� XMLTransformation Applies a stylesheet to an XML message.

Nodes Transport
 Chapter 7. Integration scenarios with WebSphere Message Broker 219

If you need to perform processing that is not supported by the built-in nodes,
WebSphere Message Broker allows the development of custom user-defined
nodes. These can be written in either C or Java.

� JMSMQTransform
� MQJMSTransform

Used to send messages to older message flows and to
interoperate with WebSphere MQ JMS and WebSphere
Message Broker publish/subscribe.

� AggregateControl
� AggregateReply
� AggregateRequest

Used to combine the generation and fan-out of a number
of related requests with the fan-in of the corresponding
replies, and compile those replies into a single
aggregated reply message.

Nodes for decision making

� Check Validates the format of a message.

� Filter
� JavaCompute

Routes a message based on conditional logic. The Filter
node uses ESQL logic, while the JavaCompute node
uses Java.

� FlowOrder Used to control the order in which a message is
processed by a message flow.

� Label, RouteToLabel Uses the Label node in combination with a RouteToLabel
node to dynamically determine the route a message
takes through the message flow, based on its content.

� ResetContentDescriptor Used to request that the message is reparsed by a
different parser.

� TimeoutControl
� TimeoutNotification

Used together in a message flow for an application that
requires events to occur at particular times, or at regular
intervals.

� Validate Used to ensure that the message is routed appropriately
through the message flow.

Nodes for error handling

� Throw Used to throw an exception within a message flow.

� Trace Used to generate trace records that can incorporate text,
message content, and date and time information, to help
you to monitor the behavior of the message flow.

� TryCatch Used to provide a special handler for exception
processing.

Node Function
220 Enabling SOA Using WebSphere Messaging

Additional nodes are available as SupportPacs and are free to download from
the IBM Web site.

7.1.1 Message flow development
The Message Brokers Toolkit provides the tools required to develop, deploy, and
test message flows. The Message Brokers Toolkit consists of a Workbench
window that displays one or more perspectives. A perspective is a group of views
and editors required to perform tasks associated with a role. Each perspective
consists of views that provide alternative presentations of resources or ways of
navigating through information in the Workbench. As a user works with the
Workbench, the data representing the projects and working environment are
stored in a workspace directory on the local file system.

Message flow development is done using the Broker Application Development
perspective (shown in Figure 7-1).

Figure 7-1 Broker Application Development perspective

Note: Always check that a specific node is compatible with all of the target
platforms on which the message flow will be deployed.
 Chapter 7. Integration scenarios with WebSphere Message Broker 221

This perspective is used to develop and test message flows and message sets.
You can see in Figure 7-1 on page 221 that the perspective consists of views
designed specifically for development. The Resource Navigator view (top left)
lists the message flow resources. The editing area (top right) contains the canvas
where nodes are placed in the flow, node properties are set, and the nodes
connected together. Nodes can be placed on the canvas using drag and drop
from the Pallete. The Problems view (bottom right) shows informational, warning,
and error messages that indicate problems within resources. The Outline view
displays a structured outline of the file open in the editor area (palette).

7.1.2 Message flow deployment and broker administration
Message flows are packaged into broker archive (bar) files and deployed to
execution groups on a broker. An execution group is a named grouping of
message flows that have been assigned to a broker. The broker does the actual
processing of the message flow.

The Message Brokers Toolkit provides broker administration functions through
the Broker Administration perspective (Figure 7-2).

Figure 7-2 Broker Administration perspective
222 Enabling SOA Using WebSphere Messaging

You can use this interface to:

� Create and manage broker domains and topology.
� Create and manage execution groups.
� Create and deploy broker archive (bar) files to execution groups.
� Manage publish/subscribe topics and subscriptions.
� Manage event logs and alerts.

A single Message Brokers Toolkit can connect to multiple Configuration
Managers, thus allowing it to manage multiple broker domains.

7.1.3 Sample message flow
The message flow shown in Figure 7-3 illustrates some of the functionality you
can achieve in a message flow. This example is a simple scenario for routing
messages from a travel bureau to the proper airline company based on the
message content and transforming the messages if needed. This message flow
was created using built-in nodes.

Figure 7-3 Sample message flow

Each segment of the message flow is discussed in the following sections.

Initial processing
Figure 7-4 on page 224 shows the portion of the sample message flows that
routes the message to the proper destination based on the message contents.
 Chapter 7. Integration scenarios with WebSphere Message Broker 223

Figure 7-4 Message flow for the travel bureau

The process is:

1. A message is placed on a queue and enters the message flow through the
XML.IN MQInput node.

2. If the message is not in XML format it is sent through the failure terminal of
the MQInput node to the MQOutput node, XML.FAIL. The message ends up
on a queue designated for errors and the flow ends.

If the message format is valid, the message is sent to the KE Filter node.

3. The KE Filter node looks at the message data. If the FlightNumber string in
the XML data starts with “KE”, the message is sent over the true terminal to
the portion of the message flow that transforms data for Airline A. (See
“Airline A” on page 224 for a continuation of the scenario.) Otherwise the
message is sent through the false terminal to the OZ Filter node.

4. The OZ Filter node looks at the message data. If the FlightNumber string in
the XML data starts with “OZ”, the message is sent over the true terminal to
the portion of the message flow that transforms the data for Airline B. (See
“Airline B” on page 225 for a continuation of the scenario.)

If the FlightNumber string in the XML data does not start with either, the
message is sent to the Build.Err.Msg compute node, where it is changed to
an error message. The message is then sent to the ERR.MSG MQOutput
node, where it ends up on a queue designated as an error queue.

Airline A
Figure 7-5 on page 225 shows the portion of the message flow that handles data
bound for Airline A. The message sender uses a different XML format than
Airline A uses so transformation of the message is necessary before sending it
on to the airline.

<flow for Airline A>

<flow for Airline B>
224 Enabling SOA Using WebSphere Messaging

Figure 7-5 Message flow for Airline A

The process is:

1. The KE Filter node has determined the message is to be sent to Airline A.
The message is sent to the XMLTransformation node where the XML
message is transformed from its original XML format to a new format required
by Airline A.

The message is then sent to the XML.OUT MQOutput node.

2. The MQOutput node sends the message to the Add.Topic Compute node.
The message is added to the Publication topic and sent to the Publication
node.

3. The Publication node publishes the message to a pub/sub application in
Airline A.

Airline B
Figure 7-6 on page 226 shows the portion of the message flow that handles data
bound for Airline B. Airline B uses a COBOL application so the message must be
transformed before being sent.
 Chapter 7. Integration scenarios with WebSphere Message Broker 225

Figure 7-6 Message flow for Airline Company B

The process is:

1. The Convert.Country Compute node updates the Country string of the XML
data to a type understood by Airline B. The list of countries used by the travel
bureau and their equivalent representation for Airline B is kept in a database.
It then sends the message to the next node in the flow.

2. The XML.TO.COBOL Mapping node transforms the XML data to COBOL
data and sends the message to the next node.

3. The COBOL.OUT MQOutput node puts the COBOL message on a local
queue.

4. The MQJMSTransform node changes the MQ header message to a JMS
header and sends the message to the next node.

5. The JMS.OUT JMSOutput node sends the data to a JMS destination.

6. A reply is sent (HTTPReply node).

7.2 Integration scenarios
In the following sections we show you how to do XML-to-XML and
XML-to-COBOL using WebSphere Message Broker. We use both MQ input and
JMS input.

We show two methods of XML-to-XML mapping. The first uses a Mapping node.
In this method, the message formats to be mapped are stored in a message set.
The example we use loads DTD files that define the message format into the
message set. The Mapping node allows you to map fields from one DTD file to
another.

The second uses the XMLTransformation node. This node allows you to
transform the input XML data to the output format using an XMLT style sheet.
226 Enabling SOA Using WebSphere Messaging

The third scenario shows how to do XML-to-COBOL transformation using a
Mapping node.

The last scenario illustrates how to route a message to a specific destination
based on the message contents.

Figure 7-7 shows the runtime configuration for the scenarios illustrated in this
chapter.

Figure 7-7 Integration scenario with XML to COBOL transformation

7.3 XML-to-XML mapping using a Mapping node
This section shows how to build a message flow that transforms a message in
one XML format to another XML format.

The configuration for this scenario is shown in Figure 7-8 on page 228.

WebSphere
Application

Server

Travel
Bureau

Bus

BLOB

XML

End User
Web Browser

HTTP Server

Servlet
Container

COBOL
Application

WebSphere
MQ

Airline A

WebSphere Message
Broker

Transformation
Engine COBOL

WebSphere Message
Broker

Airline B

J2EE
Application

WebSphere
MQ

Transformation
Engine

XMLXML
 Chapter 7. Integration scenarios with WebSphere Message Broker 227

Figure 7-8 XML-to-XML mapping using a Mapping node

To continue the travel bureau theme, assume that the travel bureau is sending
the airline reservation request in XML. The airline also uses XML, but the format
is different.

The steps required to do this mapping are:

1. Create the message sets containing the XML DTD files.
2. Create the message flow.
3. Define the mapping.
4. Deploy the message flow to the broker.
5. Create the WebSphere MQ queues.
6. Test the message flow.

Last, we alter the message flow to use JMS nodes to illustrate the use of
WebSphere Application Server as the JMS provider for input and output versus a
WebSphere MQ queue.

7.3.1 Create the message sets containing the XML DTD files
A message set is used to contain message definitions. You would typically
populate your message set by importing application message formats described
by XML DTD, XML schema, WSDL definitions, IBM-supplied messages, C
structures, or COBOL structures. In this example, we use document type
definition (DTD) files.

This step shows you how to create two message sets containing the XML DTD
files that define the XML formats to be mapped.

Broker Qmgr

MQInput
node

MQOutput
node

Message flow

ORDER
(queue)

AIRLINE
(queue)

Mapping node
XML XML
228 Enabling SOA Using WebSphere Messaging

Create the airline message set
First, we define the message set for the travel bureau XML format. Using the
Broker Application Development perspective in the Message Brokers Toolkit, do
the following:

1. Create a message set project named AirlineXMLMsgSet.

– Create a message set named AirlineXML.
– Set the XML Wire Format Name to XML1.

The new message set will open in the editor. Close the file.

2. Create a new DTD file that reflects the structure of the input message XML. In
this example, the DTD file is called airline.dtd. You can see the contents in
“Sample DTD files” on page 271.

3. Create a new project (New → Project → Simple) and import airline.dtd into it
(File → Import → File System).

4. Create a new message definition file:

a. Right-click AirlineXMLMsgSet in the Navigator pane.
b. Select New → Message Definition File.
c. Select XML DTD File and click Next.
d. Select airline.dtd and click Next.
e. Select the AirlineXML message set and click Next.
f. Select AirlineRequest in the Global Elements list.
g. Click Finish.

Create the order message set
Next create the message set containing the DTD file that describes the format
used by the airline:

1. Create a message set project named OrderXMLMsgSet:

a. Create a message set named OrderXML.
b. Select XML Wire Format Name XML1.

2. The new message set will open in the editor. Click XML1 under Physical
Properties in the editor and check Suppress XML Declarations.

3. Close the message set.

4. Create a new DTD file that reflects the structure of the output message XML.
In this example, the DTD file is called order.dtd. You can see the contents in
“Sample DTD files” on page 271.

5. Import order.dtd into the same simple project you used to hold airline.dtd.
 Chapter 7. Integration scenarios with WebSphere Message Broker 229

6. Create a new message definition file:

a. Right-click the OrderXMLMsgSet in the Navigator pane.

b. Select New → Message Definition File and click Next.

c. Select XML DTD File, then in next window select the order.dtd file in the
project you create for import and click Next.

d. Select OrderXML MessageSet and click Next.

e. Select only CustomerOrder in the Global Elements list.

f. Click Finish.

You will now have two new XML message sets for the mapping.

Figure 7-9 Message sets used for XML-to-XML mapping

7.3.2 Create the message flow
To do this:

1. Create a message flow project named XMLMapMsgFlow.

2. Create a message flow named XMLMap in this project.

3. Add an MQInput node, MQOutput node, and Mapping node.

4. Double-click the MQInput node.

On the Basic tab enter AIRLINE in the Queue Name field.

On the Default tab:

a. Select MRM in Message Domain field.
b. Select AirlineXML in the Message Set field.
c. Select AirlineRequest in the Message Type.
230 Enabling SOA Using WebSphere Messaging

d. Select XML1 in the Message Format field.

Click OK.

Figure 7-10 MQInput node settings

5. Double-click the MQOutput node.

a. Select the Basic tab.
b. Enter ORDER in the Queue Name field.
c. Click OK.

6. Connect the nodes as shown in Figure 7-11. Be careful to wire the out
terminals to the in terminals.

Figure 7-11 Create a message flow

Define the mapping
The Mapping node contains the information required to map a message in one
XML format to a message using another format. When you build a Mapping
node, you map the source XML fields to the target XML fields.

1. Right-click the Mapping node and select Open Map.

a. Click Next in the first window.
 Chapter 7. Integration scenarios with WebSphere Message Broker 231

b. Select This map is called from message flow node and maps
properties and message body and click Next.

c. Select input message and click Next.

d. The next window lists the existing message sets in the Source and Target
window. Select AirlineRequest as the source and CustomerOrder as the
target.

Figure 7-12 Mapping table for source and target

Click Finish

2. At the end of the wizard, the mapping will open in an editor. To map a source
field to a target field, select the source field and drag and drop it on the target
field. As you create a map between two fields, a line will be drawn between
the source and target, as shown in Figure 7-13 on page 233.
232 Enabling SOA Using WebSphere Messaging

Figure 7-13 Mapping message map

Map the messages as shown in Table 7-3.

Table 7-3 XML mapping

AirlineRequest CustomerOrder

FirstName CustomerName1

LastName CustomerName1

Street Street

City City

Country Country

Zip PostCode

FlightNumber FlightNo

Date Date

Price Cost

CredirCard CardNo

1To map both FirstName and LastName to CustomerName, select both names in the
source (hold down the Ctrl key while selecting both names), drag them to
CustomerName in the target, and drop.
 Chapter 7. Integration scenarios with WebSphere Message Broker 233

3. To add a space between the first and last name in the CustomerName field,
select CustomerName in the Map Script window and change the value to
look like the following (adding a space, ‘ ‘, between FirstName and
LastName):

fn:concat($source/AirlineRequest/Purchase/Customer/FirstName, ‘ ‘,
$source/AirlineRequest/Purchase/Customer/LastName)

4. In the Map Script window, right-click Properties under $target and select
Populate. This will add a list of attributes under Properties. For the following
properties, add the following values:

– ‘OrderXML’ in MessageSet
– ‘CustomerOrder’ in MessageType
– ‘XML1’ in MessageFormat

Figure 7-14 Output message properties

5. Save all changes.

7.3.3 Deploy the message flow to the broker
The next step is to deploy the message flow and message sets to the broker. To
deploy, you need to create a new broker archive (bar) file named deploy.bar and
add the flow and sets, as shown in Figure 7-15 on page 235.

1. To create the bar file, switch to the Broker Administration perspective.

2. Right-click the XMLMapMsgFlow message flow in the navigator and select
New → Message Broker Archive. Select Local Project and enter
deploy.bar as the name.

Status Status

Details Membership

AirlineRequest CustomerOrder

1To map both FirstName and LastName to CustomerName, select both names in the
source (hold down the Ctrl key while selecting both names), drag them to
CustomerName in the target, and drop.
234 Enabling SOA Using WebSphere Messaging

3. Click the Add icon and select the message flow and message sets. The BAR
file should contain the files shown in Example 7-15.

Figure 7-15 Broker archive file

4. Save and close the bar file editor.

5. Connect to the broker.

6. Right-click the bar file and select Deploy File.

7. Select the execution group (Default) to deploy the file to.

8. If the deploy finishes without error, you will see the following (Figure 7-16).

Figure 7-16 Deploy the message flow and message sets to the broker
 Chapter 7. Integration scenarios with WebSphere Message Broker 235

7.3.4 Create the WebSphere MQ queues
The MQInput and MQOutput nodes specified two queues they use for getting
and sending messages. Before testing the message flow, we need to create
these queues.

1. The MQInput node gets messages from the AIRLINE queue. Define AIRLINE
as a local queue on the broker’s queue manager.

2. The MQOutput node puts messages into the ORDER queue. This queue can
be defined on any queue manager accessible by the broker’s queue manager.
For our testing we defined ORDER as a local queue on the broker’s queue
manager.

7.3.5 Test the message flow
Using RFHUtil, put the Airline1.xml file into the AIRLINE queue. (See “Test the
connection” on page 117 for information about using RFHUtil.)

Airline1.xml is in the format defined by the AirlineXML Message Set. If you put
any other type of XML file or a non-XML file on the queue, it will be delivered to
the dead letter queue.

If the message flow is working as expected, you will be able to see the
transformed XML message in the ORDER queue (Figure 7-17). To see the
message in RFHUtil, select ORDER in the Queue Name field, click Read Q, and
select the Data tab.

Figure 7-17 Output XML file <CustomerOrder>
236 Enabling SOA Using WebSphere Messaging

7.3.6 Using JMS nodes
Next we use the same message flow, but change it to work with input from a JMS
destination instead of input from a queue.

The JMSInput and JMSOutput nodes allow a message flow to receive messages
from JMS destinations or to send messages to JMS destinations. These
destinations are accessible through a connection to a JMS provider.

Figure 7-18 shows an overview of the configuration in this example.

Figure 7-18 XML-to-XML mapping using JMS input and output

In this example, a message is placed on the JMS remote queue in WebSphere
MQ, where it is forwarded to the AIRLINE queue on the service integration bus.
The JMSInput node in the message flow picks up the message and transforms it
into a new XML format. The MQOutput node places the transformed message on
the ORDER queue.

MQ Qmgr

Broker Qmgr

TO.WAS
(Rcvr channel)

TO.MQ
(Sender channel)

BUS
(Service integration bus)

Link
(WebSphere MQ Link)

WAS Qmgr

TO.MQ
(Rcvr channel)

TO.WAS
Sender channel)

Message flow

XML-to-XML
Mapping node

MQOutput
node

ORDER
(queue)

JMSMQTransform
node

JMSInput node
jms/QCF

iiop://localhost:2809
jms/AIRLINE

JNDI
jms/QCF

iiop://localhost:2809

AIRLINE

WebSphere
Application Server

JMS
Destination

jms/AIRLINE

JMS
(remote q)

Message
 Chapter 7. Integration scenarios with WebSphere Message Broker 237

Programs use JMS resource objects such as destinations and connection
factories instead of pointing directly to queues. These JMS resources are defined
and added to the JNDI namespace using the WebSphere Application Server
administration tools. The mapping from the JMS resource to the queue is
contained in the namespace entries. The JMSInput node in the message flow
contains the information it needs to access the JNDI namespace in WebSphere
Application Server, where the resource objects are defined.

Important: This scenario requires WebSphere Message Broker to have
access to WebSphere Application Server files. In order for this to happen, you
need to do the following:

1. Install WebSphere Application Server or WebSphere Application Server
Application Client on the same machine as the WebSphere Message
Broker.

To avoid problems with command-length restrictions on Windows systems
when setting the MQSIJVERBOSE variable, install the WebSphere
product in a directory with a short name (for example, c:\WebSphere)
versus using the default install directory.

2. Use the following procedure to set a new environment variable called
MQSIJVERBOSE:

a. Assume the following:

• <MQSI_ROOT> is the directory into which the WebSphere Message
Broker V6 has been installed.

• <CLIENT_ROOT> is the directory into which the WebSphere
Application Server V6 Application Client has been installed

• <SERVER_ROOT> is the directory into which the WebSphere
Application Server V6 Server has been installed

b. Edit the mqsiprofile.cmd file found in <MQSI_ROOT>/bin and add one
of the following commands depending on whether Application Client or
Server is installed:

set
MQSIJVERBOSE=-Djava.ext.dirs=<CLIENT_ROOT>\lib;<MQSI_ROOT>\jre\lib;<MQ
SI_ROOT>\jre\lib\ext;

or

set
MQSIJVERBOSE=-Djava.ext.dirs=<SERVER_ROOT>\installedChannels;<SERVER_R
OOT>\lib;<MQSI_ROOT>\jre\lib;<MQSI_ROOT>\jre\lib\ext;

c. Restart WebSphere Message Broker.
238 Enabling SOA Using WebSphere Messaging

Configure WebSphere Application Server
In WebSphere Application Server, we need to create the destinations and JNDI
definitions for the JMS connection. We assume that you already created a
service integration bus named BUS. If not, create a new one using the previous
stage described in “Configure the service integration bus” on page 122.

Define the queue as a service integration bus destination
First, we define a queue destination on the service integration bus:

1. Log in to the WebSphere Application Server administrative console.
2. Select Service Integration → Buses.
3. Click the bus name.
4. Click Destinations.
5. Create a new queue named AIRLINE.

Define the JMS resources
Next, define the JMS queue connection factory:

1. Select Resources → JMS Providers → Default messaging.

2. Click JMS Queue Connection Factory in Connection Factories.

3. Click New.

a. Enter QCF in the Name field.
b. Enter jms/QCF in the JNDI Name field.
c. Select BUS in the Bus Name field.
d. Click OK.

Define the JMS queue:

1. Select Resources → JMS Providers → Default messaging.

2. Under Destinations, click JMS Queue.

3. Click Add to create a new JMS queue.

a. Enter AIRLINE in the Name field.

b. Enter jms/AIRLINE in the JNDI Name field.

c. Select BUS in the Bus Name field (created in “Create a bus” on page 122).

d. Select AIRLINE in Queue Name field. This links the JMS queue to the
actual destination on the bus.
 Chapter 7. Integration scenarios with WebSphere Message Broker 239

Figure 7-19 Create a JMS queue

4. Save the changes.

Update the message flow to use JMS nodes
To change our existing message flow to use JMS input do the following:

1. Delete the MQInput node and add a JMSInput node instead.

2. Add a JMSMQTransform node between the JMSInput node and the Mapping
node. This node transforms the JMS message into a message that is
compatible with the format of messages that are produced by the WebSphere
MQ JMS provider.

The Mapping node can be used without any changes.

3. Make the connections between the nodes as shown in Figure 7-20 on
page 241.
240 Enabling SOA Using WebSphere Messaging

Figure 7-20 Change the XMLMap message flow to use JMS input

4. Double-click the JMSInput node.

a. On the Basic tab change the following:

• Initial Context Factory:
com.ibm.websphere.naming.WsnInitialContextFactory

This is used to look up the JMS administered objects in the JNDI. In
this case, we want to use the WebSphere Application Server JNDI.

• Location JNDI Bindings: iiop://localhost:2809

The bindings file contains definitions for the JNDI-administered objects
that are used by the JMSInput node. This URL points to the bootstrap
address port of the application server. You can check the port number
in the application server port definitions using the WebSphere
administrative console. It will be listed as the
BOOTSTRAP_ADDRESS port.

• Connection Factory Name: jms/QCF

The connection factory name is used by the JMSInput node to create a
connection to the JMS provider. The corresponding entry in the JNDI
will be created later when you add the JMS resource definitions in
WebSphere Application Server.
 Chapter 7. Integration scenarios with WebSphere Message Broker 241

Figure 7-21 Basic tab in the JMSInput node

b. Click the Default tab and change the following.

• Message Domain: MRM
• MessageSet: AirlineXML
• MessageType: AirlineRequest
• Message Format: XML1

Figure 7-22 Default tab in the JMSInput node

c. On the Point to Point tab enter jms/AIRLINE in the Source Queue field
(thus making the link to the JMS queue resource defined in the application
server JNDI).

d. Click OK.
242 Enabling SOA Using WebSphere Messaging

Figure 7-23 Point to Point tab in the JMSInput node

5. Save the changes.

6. To make the JMS provider client available to the JMS nodes, copy the
necessary JAR files from the WebSphere Application Server runtime to the
shared-classes directory.

a. Copy all files in the <WAS_HOME>\lib directory to C:\Documents and
Settings\All Users\Application Data\IBM\MQSI\shared-classes.

b. Copy all files in the <WAS_HOME>\ installedChannels directory to
C:\Documents and Settings\All Users\Application
Data\IBM\MQSI\shared-classes.

7. Update the BAR file and deploy it to the broker.

Test the message flow
Instead of creating a JMS client for testing, we use RFHUtil and a remote queue
definition to place the message on the queue destination in the application
server.

This assumes that you have done the steps in 5.2, “Connect WebSphere ESB to
WebSphere MQ” on page 118, and the connection between the two is running.

1. Using the WebSphere MQ Explorer, create a remote queue definition named
JMS, targeting the AIRLINE queue of the WAS queue manager (see “Create
a remote queue definition” on page 112).

2. Start RFHUtil.

3. Select MQ in the Queue Manager Name field and JMS in the Queue Name
field.

4. Click Read File to read in the Airline1.XML file.
 Chapter 7. Integration scenarios with WebSphere Message Broker 243

Figure 7-24 Test the flow with RFHUtil

5. Select the MQMD tab, and type MQSTR in the MQ Message Format field.

Figure 7-25 Select the MQ message format

6. Return to the Main tab and click Write Q.

The message will be put on the AIRLINE queue in WAS, and will be
transferred to the ORDER queue via the message flow in WebSphere
Message Broker. The message flow will transform the message from the
original XML format to the new.

7. In RFHUtil, select the ORDER queue and click the Read Q button. Click the
Data tab to see the transformed message.
244 Enabling SOA Using WebSphere Messaging

Figure 7-26 Changed XML data in the target queue

7.4 XML-to-XML transformation using XSLT
This scenario illustrates how to use an XMLTransformation node instead of a
Mapping node to transform a message.

The configuration for this scenario is shown in Figure 7-27 on page 246.
 Chapter 7. Integration scenarios with WebSphere Message Broker 245

Figure 7-27 XML-to-XML mapping using an XMLTransformation node

The steps required to do this mapping are:

1. Create the message sets.
2. Create the mapping.
3. Create the message flow.
4. Create the WebSphere MQ queues.
5. Deploy and test the message flow.

7.4.1 Create the message sets
This scenario uses the same message sets created in “Create the message sets
containing the XML DTD files” on page 228. The two message sets contain the
DTD files describing the XML format for the input and output messages.

7.4.2 Create the mapping
The first step is to create a mapping between the source and target XML formats.
To do this, create a simple project and import the target and XML files into it.
Then map the fields in the source XML to the target XML.

Note that this process also uses the Mapping editor shown in “Build the
mediation module” on page 199. In that scenario, WebSphere Integration
Developer was used as the development tool. In this scenario, the Message
Brokers Toolkit is used. Both tools use the same technology and have the same
XML tools.

Broker Qmgr

MQInput
node

Message flow

XMLTransformation
node

ORDER
(queue)

AIRLINE
(queue)

MQOutput
node
246 Enabling SOA Using WebSphere Messaging

Create the XML files
To perform XML mapping, you need the XSD file for the XML source or the XML
file itself. Using a text editor, create the XML files for the source and target and
store them in a temporary directory. In this scenario, we use the Order1.xml file
for the target and Airline1.xml for the source. You can see these files in “Sample
XML files” on page 270.

Create the mapping
To create the mapping:

1. Create a simple project called XSLT.

2. In the navigator pane, right-click the XSLT project and select New → Other.
Select XML → XML To XML Mapping. If you do not see the XML options, be
sure to check the box that says Show All Wizards.

3. Click Next.

4. Select the XSLT project and click the Next button.

a. Click the Import Files... button and import the two XML files you created
to the XSLT folder.

b. Select Airline1.xml in the Workbench Files pane and send it to the
Selected Files pane. Click Next.

Figure 7-28 Select source file

c. Select Order1.xml as a target and click Next.

d. Confirm that CustomerOrder is the target root element and AirlineRequest
is the source root element. Then click Finish.

5. A mapping editor will be opened. Map the source elements and the target
elements as shown in Table 7-4 on page 248. Mapping is done by dragging
an element on the left to an element on the right. To select two elements at
once (for example, FirstName and LastName), press the Ctrl key while you
are selecting the elements.
 Chapter 7. Integration scenarios with WebSphere Message Broker 247

Table 7-4 XML mapping

– The mapping will look like that shown in Figure 7-29 on page 249.

AirlineRequest CustomerOrder

FirstName CustomerName

LastName CustomerName

Street Street

City City

Country Country

Zip PostCode

FlightNumber FlightNo

Date Date

Price Cost

CredirCard CardNo

Status Status

Details Membership
248 Enabling SOA Using WebSphere Messaging

Figure 7-29 XSLT mapping

– To add a blank between FirstName and LastName:

i. Select CustomerName in the Overview view. Right-click and select
Define XSLT Function.

ii. Select String, and click Next.

iii. Select concat as the function (default). Then click Add.

iv. Enter quotes (‘ ‘) as the parameter value and click OK.

v. Select the quotes in the Input Parameters window and move them
between FirstName and Last Name using the Up and Down buttons, as
shown in Figure 7-30 on page 250.
 Chapter 7. Integration scenarios with WebSphere Message Broker 249

Figure 7-30 Define an XSLT function

vi. Click Finish.

6. Save the map.

7. Right-click the xmlmap.xmx file in the Navigator view and select Generate
XSLT. When the window appears, click Finish. The new xmlmap.xsl file will
be created.

At the completion of this step, the XSLT project in the Navigator view of the
Broker Application Development perspective should look like Figure 7-31 on
page 251.
250 Enabling SOA Using WebSphere Messaging

Figure 7-31 XSLT mapping

Test the mapping
Now let us test XML mapping with this file:

1. Right-click xmlmap.xsl and select Run → XSL Transformation.

2. Select the Airline1.XML file in the Source XML File field and specify the
location for the output in the Output File field.

3. Click Run.

4. Open the output file and check to see if the XML data is transformed as you
expected.

7.4.3 Create the message flow
To create the message flow:

1. Start the Message Brokers Toolkit and switch to the Broker Application
Development perspective.

2. Create a message flow project named XSLTMapMsgFlow.

3. Create a message flow named XSLTMap in this project.

4. In the message flow, add an MQInput node, an MQOutput node, and an
XMLTransformation node.

5. Double-click the MQInput node.

On the Basic tab, enter AIRLINE in the Queue Name field.

On the Default tab:

a. Select MRM in the Message Domain field.
 Chapter 7. Integration scenarios with WebSphere Message Broker 251

b. Select AirlineXML in Message Set field.
c. Select AirlineRequest in the Message Type.
d. Select XML1 in the Message Format field.

Click OK.

6. Double-click the MQOutput node and enter Order in the Queue Name field.

Note that the MQInput and MQOutput nodes used in this flow are exactly the
same as those used in the Mapping node example earlier. The use of the
XMLTransformation node does not change the input and output requirements
of the flow.

7. Wire the nodes as shown in Figure 7-32.

Figure 7-32 Create a message flow using XSLT mapping

8. Right-click XSLTMapMsgFlow and select Properties.

9. In the Properties window, select the Project References tab and check the
XSLT project with the XSLT mapping (see Figure 7-31 on page 251), and click
OK. This allows you to use the files of the XSLT project in the message flow
project.

Figure 7-33 Select project references
252 Enabling SOA Using WebSphere Messaging

10.In XSLTMap message flow, double-click the XMLTransformation node. Select
the xmlmap.xsl file in the Stylesheet Name field and click OK.

Figure 7-34 Select the stylesheet name

7.4.4 Create the WebSphere MQ queues
This example uses the AIRLINE and ORDER queues defined previously in
“Create the WebSphere MQ queues” on page 236.

7.4.5 Deploy and test the message flow
To do this:

1. Create a bar file for deployment. Select the xmlmap.xsl file in addition to the
message flow and two message sets, as shown in Figure 7-35 on page 254.
 Chapter 7. Integration scenarios with WebSphere Message Broker 253

Figure 7-35 Create the BAR file for deployment

2. Deploy the bar file to the broker. You can see in Figure 7-36 that four files are
deployed to the broker.

Figure 7-36 Deployed files in the broker

To test, use RFHUTIL (see “Test the connection” on page 117) to put the
Airline1.XML file onto the AIRLINE queue. The message should be transformed
and sent to the ORDER queue. If the mapping message flow worked correctly,
you can see the transformed message by reading the message from the ORDER
queue using RFHUTIL.
254 Enabling SOA Using WebSphere Messaging

7.5 XML-to-COBOL mapping
This section shows how to use WebSphere Message Broker to transform an
XML message to COBOL.

Figure 7-37 XML-to-COBOL mapping using a Mapping node

This scenario illustrates how to create a message flow that transforms an XML
message into a COBOL message. In this scenario, the travel bureau sends
messages in the XML format shown in Example A-1 on page 270. The airline
company expects COBOL messages in the format shown in Figure 7-38.

Figure 7-38 Airline company’s COBOL data <msg_AIRLINEREQUEST>

Broker Qmgr

MQInput
node

MQOutput
node

Message flow

ORDER
(queue)

AIRLINE
(queue)

Mapping node
XML COBOL
 Chapter 7. Integration scenarios with WebSphere Message Broker 255

To do this transformation we perform the following steps:

1. Create the message sets.
2. Create the message flow.
3. Define the mapping.
4. Create the WebSphere MQ queues.
5. Test the message flow.

7.5.1 Create the message sets
Two message sets are used to hold the message definitions for this flow. The
first message set contains the DTD file for the XML format seen in Example A-1
on page 270. This message set was created earlier in “Create the airline
message set” on page 229.

To create the new message set for the COBOL messages, use the WebSphere
Message Brokers Toolkit. From the Broker Application Development perspective:

1. Create a message set project named OrderCOBOLMsgSet.

a. Create a message set named OrderCOBOL in this project.
b. Select CWF1 as the Custom Wire Format Name.

2. Create a COBOL copy book file using the statements in Figure 7-1. Name the
file order.cpy.

Example 7-1 COBOL copy book file order.cpy

01 AIRLINEREQUEST.
 10 CUSTOMER.
 15 GIVENNAME PIC X(15).
 15 SIRNAME PIC X(15).
 15 STREET PIC X(30).
 15 CITY PIC X(15).
 15 COUNTRY PIC X(15).
 15 ZIPCODE PIC X(10).
 10 FLIGHTNO PIC X(6).
 10 TRANDATE PIC X(10).
 10 COST PIC X(8).
 10 CCNO PIC X(20).
 10 RESPONSE.
 15 DETAILS PIC X(30).
 15 RESERVATION PIC X(30).

3. Import this file into the same simple project that you used to hold the DTD
files in the previous scenarios.

4. Highlight the OrderCOBOLMsgSet in the Navigator pane, right-click, and
select New → Message Definition File.
256 Enabling SOA Using WebSphere Messaging

a. Select COBOL file and click Next.

b. Select the order.cpy file you imported.

c. Select OrderCOBOL as the message set.

d. Select AIRLINEREQUEST in the Source Structures pane and send it
(using the > button) to Imported Structures.

e. Select the box to the left of AIRLINEREQUEST in the Imported Structures
pane.

f. Click Finish.

Figure 7-39 Create a message definition file using a COBOL copy book file

7.5.2 Create the message flow
The next step is to build the message flow that will take the message from a
WebSphere MQ queue, map it to the new format, and put it on the output queue.

1. Create a message flow project named COBOLMapMsgFlow.

2. Create a message flow named COBOLMap in this project.

3. Add an MQInput node, MQOutput node, and Mapping node. Note that you
could use JMS input or output instead. An example of this is shown in “Update
the message flow to use JMS nodes” on page 240.

4. Double-click the MQInput node.

a. On the Basic tab, enter XML.IN in the Queue Name field.
b. On the Default tab, select:

• MRM in the Message Domain field
 Chapter 7. Integration scenarios with WebSphere Message Broker 257

• AirlineXML in the MessageSet field
• AirlineRequest in the Message Type field
• XML1 in the Message Format field

c. Click OK.

5. Double-click the MQOutput node and enter COBOL.OUT in the Queue Name
field. Click OK.

6. Wire the nodes as shown in Figure 7-40.

Figure 7-40 Create a new message flow for XML-to-COBOL transformation

Define the mapping
Next we need to define the mapping from the XML format to COBOL:

1. Right-click the Mapping node and select Open Map.

a. Click Next in the first window.

b. Select this map is called from message flow node and maps
properties and message body and click Next.

c. Select input message and click Next.

d. Select AirlineRequest in the Source pane and msg_AIRLINEREQUEST
in the Target pane, and click Finish.
258 Enabling SOA Using WebSphere Messaging

Figure 7-41 Select message sets for mapping

2. Map the messages as shown in Figure 7-5.

Table 7-5 XML-to-COBOL mapping

You can see the mapping table in Figure 7-42 on page 260.

XML (AirlineRequest) COBOL (msg_AIRLINEREQUEST)

FirstName GIVENNAME

LastName SIRNAME

Street STREET

City CITY

Country COUNTRY

Zip ZIPCODE

FlightNumber FLIGHTNO

Date TRANDATE

Price COST

CreditCard CCNO

Status RESERVATION

Details DETAILS
 Chapter 7. Integration scenarios with WebSphere Message Broker 259

Figure 7-42 XML to COBOL mapping

3. In the Map Script view, right-click Properties and select Populate. Add the
following attributes:

– ‘OrderCOBOL’ in the MessageSet field
– ‘msg_AIRLINEREQUEST’ in the MessageType field
– ‘CWF1’ in the MessageFormat field

Figure 7-43 Output Message Properties in Map Script

4. Save all changes.

5. Create a bar file containing the message flow and message sets.

6. Deploy the bar file to the broker. If the deploy finishes without any error, you
will see the following in the execution group of your running broker
(Figure 7-44 on page 261).
260 Enabling SOA Using WebSphere Messaging

Figure 7-44 Deploy the message flow and message sets to the broker

7.5.3 Create the WebSphere MQ queues
The input and output queues for the message flow need to be created in
WebSphere MQ. Using WebSphere MQ Explorer, create two local queues called
XML.IN and COBOL.OUT. XML.In is defined in the broker’s queue manager. For
testing, COBOL.OUT was also created in the broker’s queue manager, though in
reality it could be defined under any queue manager accessible to the broker’s
queue manager.

7.5.4 Test the message flow
Using RFHUtil, put the Airline1.xml file into the XML.IN queue.

If the message flow is working properly, you will be able to see the transformed
message in the COBOL.OUT queue.

To see the message in its proper format:

1. Select COBOL.OUT in the Queue Name field and click Read Q.

2. Go to the Data tab, select COBOL in the Data Format field, and select the
order.cpy file.

You should be able to see the transformed COBOL message.
 Chapter 7. Integration scenarios with WebSphere Message Broker 261

Figure 7-45 Output COBOL file <AIRLINEREQUEST>

7.6 Routing messages
The previous scenarios all focused on transformation of messages from one
format to another. This scenario illustrates how a message flow can route a
message depending on the message content.

This scenario assumes that the message flow developed in “XML-to-XML
transformation using XSLT” on page 245 has been created and successfully
deployed. The message flow that we build here takes the transformed message
from the ORDER queue. One of the new elements in the message is the
Membership. The new message flow looks at the value of Membership. If the
value is ‘Skypass’, the message will be sent to the GENERAL queue. If the value
is ‘Morning Calm’, the message will be sent to the UPDATE and PREMIUM
queues.
262 Enabling SOA Using WebSphere Messaging

Figure 7-46 A simple routing scenario

To complete this scenario you will:

1. Create the message flow.
2. Define the filters.
3. Create the WebSphere MQ queues.
4. Deploy and test the message flow.

7.6.1 Create the message flow
To create the new message flow do the following:

1. Create a new message flow project named RoutingMsgFlow.

2. Create a new message flow named Routing.

3. Add a new MQInput node and open it:

a. On the Basic tab, enter ORDER in Queue Name field.
b. On the Default tab, select XML in the Message Domain field.
c. Click OK to close the node.

Rename the MQInput node to ORDER. You can rename a node by right-clicking
the node and selecting Rename.

4. Add a Filter node and open it. Change Filter Expression to Filter1.
 Chapter 7. Integration scenarios with WebSphere Message Broker 263

Figure 7-47 Change the parameter of Filter Expression

Close the properties and rename the Filter node to Skypass.

5. Add a second Filter node. Open it and change the Filter Expression to
Filter2. Close the node and rename it Morning Calm.

6. Add four MQOutput nodes with the following queue names:

– GENERAL
– UPDATE
– FAIL
– PREMIUM

Rename each node to reflect the name of the queue.

7. Connect the nodes as shown in Figure 7-48. You can rename nodes if
necessary. Note that for ease of use, we have renamed the nodes to reflect
their functions.

Figure 7-48 Create a new message flow for routing
264 Enabling SOA Using WebSphere Messaging

7.6.2 Define the filters
To do this:

1. Right-click the first Filter node (Skypass) and select Open ESQL. Change
the ESQL code as shown in Figure 7-2.

Example 7-2 ESQL code for Skypass filter

CREATE FILTER MODULE Filter1
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

If Root.XML.CustomerOrder.FlightInfo.Membership = 'Skypass'
Then Return TRUE;

Else Return FALSE;
End If;

END;
END MODULE;

2. Open the ESQL for the second Filter node (Morning Calm). Note that the
ESQL for both Filter nodes is kept in one file. Change the ESQL code as
shown in Figure 7-3.

Example 7-3 ESQL code for Morning Calm filter

CREATE FILTER MODULE Filter2
CREATE FUNCTION Main() RETURNS BOOLEAN
BEGIN

If Root.XML.CustomerOrder.FlightInfo.Membership = 'Morning Calm'
Then Return TRUE;

Else Return FALSE;
End If;

END;
END MODULE;

The resulting definitions should look like Figure 7-49 on page 266.
 Chapter 7. Integration scenarios with WebSphere Message Broker 265

Figure 7-49 Created ESQL file in message flow

3. Close and save the ESQL files and the message flow.

7.6.3 Create the WebSphere MQ queues
Create the following local queues using WebSphere MQ Explorer:

� GENERAL
� UPDATE
� FAIL
� PREMIUM

Since this scenario builds on the XSLT transformation scenario, we assume that
you have already created the AIRLINE and ORDER queues.

7.6.4 Deploy and test the message flow
To test the message flow:

1. Add the new message flow to the bar file used in “XML-to-XML transformation
using XSLT” on page 245.

2. Deploy the bar file to the broker. You should see five files in the execution
group, including the four files you deployed in the XSLT mapping scenario.
266 Enabling SOA Using WebSphere Messaging

Figure 7-50 Deployed files in the broker

3. Using RFHUtil, put the Airline1.xml file in to the AIRLINE queue.

If the message flow works as expected, you will be able to see the
transformed XML message in the UPDATE queue and PREMIUM queues.

Figure 7-51 Delivered message in the queue

4. Copy the Airline1.XML file and paste it into the same directory. Rename the
new copy to Airline2.XML and change Morning Calm to Skypass in the Detail
element.

5. Using RFHUtil, put this Airline2.xml file into the AIRLINE queue.
 Chapter 7. Integration scenarios with WebSphere Message Broker 267

Figure 7-52 Input changed XML data to AIRLINE queue

If the message flow works as expected, you will be able to see the
transformed XML message in the GENERAL queue.

If you use a value other than Skypass or Morning Calm, the message will be
sent to the FAIL queue.
268 Enabling SOA Using WebSphere Messaging

Appendix A. Sample files

This appendix contains the files used in the various samples throughout this
book.

A

© Copyright IBM Corp. 2006. All rights reserved. 269

Sample XML files
Two XML files are used throughout this book, Airline1.xml and Order1.xml.

Airline1.xml file
Example A-1 shows the text used in the Airline1.xml file.

Example: A-1 Airline1.xml

<?xml version="1.0" encoding="UTF-8" ?>
<AirlineRequest>

<Purchase>
<Customer>

<FirstName>John</FirstName>
<LastName>Doe</LastName>
<Street>123 Main</Street>
<City>Mycity</City>
<Country>US</Country>
<Zip>12345</Zip>

</Customer>
<FlightNumber>KE021</FlightNumber>
<Date>11/15/2005</Date>
<Price>1800000</Price>
<CreditCard>2100-3300-4400-5600</CreditCard>

</Purchase>
<Response>

<Status>Please Schedule</Status>
<Details>Morning Calm</Details>

</Response>
</AirlineRequest>

Order1.xml file
Example A-2 shows the text used in the Order1.xml file.

Example: A-2 Order1.xml

<?xml version="1.0" encoding="UTF-8" ?>
 - <CustomerOrder>
 <CustomerName>SangMin Yi</CustomerName>
 - <Address>
 <Street>467-12 MMAA B/D Dogok GangNam</Street>
 <City>Seoul</City>
 <Country>Korea</Country>
 <PostCode>135-700</PostCode>
 </Address>
 - <FlightInfo>
270 Enabling SOA Using WebSphere Messaging

 <FlightNo>KE021</FlightNo>
 <Date>11/15/2005</Date>
 <Cost>1800000</Cost>
 <CardNo>2100-3300-4400-5600</CardNo>
 <Membership>Morning Calm</Membership>
 <Status>Please Schedule</Status>
 </FlightInfo>

</CustomerOrder>

Sample DTD files
The following DTD files are used in the WebSphere Message Broker samples.

airline.dtd file
Example A-3 shows the text used in the airline.dtd file. Note that this is the DTD
file for the XML file in Example A-1 on page 270.

Example: A-3 airline.dtd

<?xml version='1.0' encoding="UTF-8"?>

 <!ELEMENT FirstName (#PCDATA)>
 <!ELEMENT LastName (#PCDATA)>
 <!ELEMENT Street (#PCDATA)>
 <!ELEMENT City (#PCDATA)>
 <!ELEMENT Country (#PCDATA)>
 <!ELEMENT Zip (#PCDATA)>
 <!ELEMENT FlightNumber (#PCDATA)>
 <!ELEMENT Date (#PCDATA)>
 <!ELEMENT Price (#PCDATA)>
 <!ELEMENT CreditCard (#PCDATA)>
 <!ELEMENT Status (#PCDATA)>
 <!ELEMENT Details (#PCDATA)>

 <!ELEMENT Customer
 (FirstName,
 LastName,
 Street,
 City,
 Country,
 Zip)
 >

 <!ELEMENT Purchase
 (Customer,
 Appendix A. Sample files 271

 FlightNumber,
 Date,
 Price,
 CreditCard)
 >

 <!ELEMENT Response
 (Status,
 Details)
 >

 <!ELEMENT AirlineRequest
 (Purchase,
 Response)
 >

order.dtd file
Example A-4 shows the text used in the order.dtd file. Note that this is the DTD
file for the XML file in Example A-2 on page 270.

Example: A-4 order.dtd

<?xml version='1.0' encoding="UTF-8"?>

 <!ELEMENT CustomerName (#PCDATA)>
 <!ELEMENT Street (#PCDATA)>
 <!ELEMENT City (#PCDATA)>
 <!ELEMENT Country (#PCDATA)>
 <!ELEMENT PostCode (#PCDATA)>
 <!ELEMENT FlightNo (#PCDATA)>
 <!ELEMENT Date (#PCDATA)>
 <!ELEMENT Cost (#PCDATA)>
 <!ELEMENT CardNo (#PCDATA)>
 <!ELEMENT Membership (#PCDATA)>
 <!ELEMENT Status (#PCDATA)>

 <!ELEMENT Address
 (Street,
 City,
 Country,
 PostCode)
 >

 <!ELEMENT FlightInfo
 (FlightNo,
 Date,
 Cost,
 CardNo,
272 Enabling SOA Using WebSphere Messaging

 Membership,
 Status)
 >

 <!ELEMENT CustomerOrder
 (CustomerName,
 Address,
 FlightInfo)
 >
 Appendix A. Sample files 273

274 Enabling SOA Using WebSphere Messaging

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 277. Note that some of the documents referenced here may
be available in softcopy only.

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

� Patterns: Implementing Self-Service in an SOA Environment, SG24-6680

� Technical Overview of WebSphere Process Server and WebSphere
Integration Developer, REDP-4041

� Getting Started with WebSphere Integration Developer and WebSphere
Process Server, SG24-7130

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� WebSphere MQ Queue Sharing Group in a Parallel Sysplex environment,
REDP-3636

� WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864

� Patterns: Self-Service Application Solutions Using WebSphere for z/OS V5,
SG24-7092

Other publications
These publications are also relevant as further information sources:

� WebSphere MQ Application Programming Guide, SC23-6595

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pb
i.cgi?CTY=US&FNC=SRX&PBL=SC34659500
© Copyright IBM Corp. 2006. All rights reserved. 275

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659500
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC34659500

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Service Oriented Architecture (SOA) Web page

http://www-306.ibm.com/software/solutions/soa/

� IBM SOA Foundation: providing what you need to get started with SOA

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf

� WebSphere Application Server home page

http://www.ibm.com/software/webservers/appserv/was/

� WebSphere MQ home page

http://www.ibm.com/software/integration/wmq/

� WebSphere ESB home page

http://www.ibm.com/software/integration/wsesb/

� WebSphere Message Broker home page

http://www.ibm.com/software/integration/wbimessagebroker/

� WebSphere Process Server home page

http://www.ibm.com/software/integration/wps/

� IH03: WebSphere Message Broker V6 - Message display, test, and
performance utility

http://www-1.ibm.com/support/docview.wss?rs=203&uid=swg24000637&loc=en_US&c
s=utf-8&lang=en

� PK15976; 6.0.2.3: handling of message headers by the WebSphere default
provider

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=D400&dc=D
410&dc=D420&dc=D430&q1=JMS&uid=swg24011220&loc=en_US&cs=utf-8&lang=en

� IBM WebSphere Extended Deployment V6.0 Overview

http://www-306.ibm.com/software/info/education/assistant/flow/wxd/6.0/Overv
iew/

� Pattern Solutions Web page on IBM developerWorks

http://www-128.ibm.com/developerworks/rational/products/patternsolutions/

� IBM WebSphere WAS for z/OS and MQ at:

http://websphere.sys-con.com/read/148226.htm

� Introducing XMS -- The IBM Message Service API

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509_p
hillips/0509_phillips.html
276 Enabling SOA Using WebSphere Messaging

ftp://ftp.software.ibm.com/software/soa/pdf/SOA_g224-7540-00_WP_final.pdf
http://www-306.ibm.com/software/solutions/soa/
http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/integration/wmq/
http://www.ibm.com/software/integration/wsesb/
http://www.ibm.com/software/integration/wbimessagebroker/
http://www.ibm.com/software/integration/wps/
http://www-1.ibm.com/support/docview.wss?rs=203&uid=swg24000637&loc=en_US&cs=utf-8&lang=en
http://websphere.sys-con.com/read/148226.htm
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509_phillips/0509_phillips.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509_phillips/0509_phillips.html
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=D400&dc=D410&dc=D420&dc=D430&q1=JMS&uid=swg24011220&loc=en_US&cs=utf-8&lang=en
http://www-306.ibm.com/software/info/education/assistant/flow/wxd/6.0/Overview/
http://www-128.ibm.com/developerworks/rational/products/patternsolutions/

� Contributing your own mediation primitive plug-in

http://www-1.ibm.com/support/docview.wss?rs=2308&context=SSQQFK&uid=swg2700
7001

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 277

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-1.ibm.com/support/docview.wss?rs=2308&context=SSQQFK&uid=swg27007001
http://www-1.ibm.com/support/docview.wss?rs=2308&context=SSQQFK&uid=swg27007001

278 Enabling SOA Using WebSphere Messaging

Index

Symbols

.NET 21

A
Access services 15
ACORD 39
Adapter factory 99–100
Adapter support 39
AggregateControl 220
AggregateReply 220
AggregateRequest 220
AL3 39
Alias queue 29

Create 129
Application clustering 51
Application design 63
Application server

Bus member 123
Assemble phase 14, 16
Asynchronous communication 68
Augmenting 47

B
Backout threshold 85
Backward compatibility 105
Bar file 234
Binding 33, 41, 185, 208
Biztalk 39
Broker 35, 55, 234, 260
Broker administration 222
Broker domain 36, 223
Built-in node 218
Business application services 15
Business delegate 96, 100
Business delegate / service proxy 95
Business innovation and optimization services 15
Business object 41

Create 190, 195
Business object map 43
Business process 5, 42
Business process engine 49
© Copyright IBM Corp. 2006. All rights reserved.
Business rule 42, 49
Business services 5
Business state machine 42

C
C++ 21
Callout node 202–203
CFRM policy 163
Channel exit 30
Check 220
Client container 25
Cluster 59

Application server 55
Hardware 50–51
Horizontal 56
Software 51
Vertical 56
WebSphere Application Server 22–24, 26–27
WebSphere ESB 32

Cluster
WebSphere Process Server 55

WebSphere MQ 30, 52, 59
WebSphere Process Server 40

COBOL 21, 61, 225, 228, 255–256
COBOL copy book 256
COBOL Copybook 39
Command messages 77
Common Business Event 41
Common Event Infrastructure 41
Communication model transparency 8–9, 95, 98
Component services 5
Component specification 93
Componentization 107
Compute 219, 226
Configuration Manager 36, 223
Connection factories 238
Connection Factory Name 241
Consumer 63
CORBA 25
Core group 57–58
Correlation ID 64, 73, 76, 78, 85, 87
CosNaming 25
Coupling facilities 53
 279

Coupling facility 163
Critical services failover 27
Custom Formats 39
Custom Mediation 184

D
Data format independence 7, 9
Data format transparency 95
Data integrity 65
Data sharing group 163
Database 219
Database Lookup 184
DataDelete 219
DataInsert 219
Data-sharing group 140
DataUpdate 219
DB2

Bind plan 158
Grant execute authority 161
Shared queue 138

Decomposition 91
Default binding 33
Default messaging provider 26
Deploy phase 14, 16
Development services 15
Direct connection 10
Distribution and Consistency Services (DCS) 57
Document messages 77
Domain decomposition 91
DTD 226, 228–229
Durable Subscriptions 66
Dynamic point-to-point queue 74
Dynamic queue 74

E
ebXML 39
EDI-FACT 39
EDI-X.12 39
EIS adapter 186
EJB container 25, 27, 56
EJB container failover 27
Enterprise service bus 15

See also ESB
ESB 21, 47

Capabilities 12
Overview

ESQL 219
Event-driven consumer 83

Event-driven processing 40, 98
Execution group 35, 55
Execution groups 223
Existing system analysis 91
Expiry 85
Explicit addressing 75
Export 33, 183, 185, 200, 208
Extract 219

F
Fail 184
Failover 50, 104

EJB container 56
Web container 56

Filter 220, 224–225
Fire-and-forget 68–70, 76
FIX 39
FlowOrder 220
Foreign bus 121

Create 124
Forward compatibility 105
FTP 39
Functional domain 5

G
Goal-service modelling 91
Granularity 4, 89–90, 102

H
HACMP 51, 58
HAManager 57–58
Hardware clustering 50–51
High availability 50, 58

WebSphere Message Broker 36, 54
WebSphere MQ for z/OS 53

High Availability Manager 57
HIPAA 39
HL7 39
Horizontal cluster 56
HTTPInput 218
HTTPReply 218
HTTPRequest 218
Hub and spoke 11
Human task 42, 49

I
IBM High Availability Clustered Multi-Processing
280 Enabling SOA Using WebSphere Messaging

(HACMP) 58
IBM Message Service API (XMS) 22
IBM SAN FS (Storage Area Network File System)
58
IBM SOA Foundation 13
Implicit addressing 74
Import 33, 183, 185, 188, 201, 208
Information services 15
Infrastructure services 15
Initial Context Factory 241
Input node 203
input node 202, 218
Integration test client 215
Interaction services 15
Interface 183, 197, 199, 201–202

Create 197
Interface map 43
IT service management 15

J
JAAS 25
JavaCompute 219–220
JAXR 26
JAX-RPC 26
JCA 25, 61
JCA adapters 39
JMS binding 33, 208
JMS destination 226
JMS messaging failover 27
JMS node 237
JMS objects

Create 211
JMS provider 211, 239
JMS queue 211–212, 239, 242
JMS Queue Connection Factory 211
JMSInput 218, 237, 240–241
JMSMQTransform 220
JMSOutput 218, 226, 237
JNDI 238–239
JNDI binding 241
JNDI name space 25

L
Label 220
Language independence 7, 9
Listener port 121, 127, 132
Listener timeout 75
Load balancing 50, 104

WebSphere Message Broker 36
Local queue 29, 121, 131, 226

Create 115, 129
Location transparency 7, 9, 95
Logging 39
Loose coupling 7, 89–90

M
Manage phase 14, 16
Mapping 219, 226–227, 230–231, 240, 258
Mapping editor 205, 247
Mediation 182

Deploy 187, 214
Developing 186

Mediation component 189
Mediation flow 32–33, 182–183, 188

Create 201
Mediation flow component 183, 200, 202
Mediation framework 33
Mediation module 32–33, 182

Create 190, 199
Mediation primitive 33, 183–184, 202
Mediation service application 183
Message

On bus destination 135
Message body 136
Message Brokers Toolkit 36, 221–223, 246
Message channel 30
Message Channel Agents (MCAs) 30
Message consumer 63, 87
Message consumers 80
Message Definition File 256
message definition file 230
Message Domain 242
Message driven bean (MDB) 84, 99
Message expiration 78
Message Filter 184
Message flow 218, 221–223, 240, 244, 251, 257,
260

Create 230, 251
Deploy 234
Deployment 222
Development 221
Test 236, 243, 253, 261

Message flow application 35
Message flow project 251, 257
Message header 64
Message ID 64, 73, 75–76, 78–79, 85–87
 Index 281

Message Logger 184
Message payload 64
Message persistency 78
Message priority 64
Message producer 63, 87
Message producers 85
Message queue 64
Message Queuing Interface (MQI) 28
Message set 228, 260

Create 229, 256
Message types 77
Messaging 64
Messaging application design 77
Messaging middleware 64
Messaging models 65
Messaging pattern 76
Messaging patterns 70
Messaging styles 68
Model phase 14, 16
Model queue 29
Modular composability 6
Modular continuity 6
Modular decomposability 6
Modular protection 7
Modular understandability 6
Modularity 6, 64, 89–90
Module assembly 199
MQe 39
MQeInput 219
MQeOutput 219
MQGet 219
MQI channel 30
MQInput 219, 224, 230, 236, 240, 251, 257
MQJMSTransform 220, 226
MQOptimizedFlow 219
MQOutput 219, 224–226, 230–231, 236–237,
251–252, 258
MQReply 219
MQTT 39
MRM 230, 242
Multicast 39

N
Network Deployment 23, 26, 32
Non-durable subscription 66
Non-persistent message 31

O
Object Authority Manager (OAM) 30
ODBC 219
One-way operation 198–199
Orphaned messages 75

P
Partner services 15
Persistent message 31
Perspective 186, 221
PL/1 21
Platform independence 8–9
Point-to-point 65, 67
Poison messages 84
Polling consumer 82
Process services 15
Protocol transformation 12, 39
Pseudo-synchronous 82, 86–88
Pseudo-synchronous communication 69, 71
Publication 218–219, 225
Publish/subscribe 218, 223
Publish-subscribe 65–67

Q
QSG 53
Queue 64, 236, 239
Queue connection factory 239
Queue manager 29, 52, 110, 121, 126–127, 163,
165, 243

Create 111
z/OS procedure 169

Queue sharing group 53, 164
Configure 138

R
Real-time IP 39
Real-timeInput 218
Real-timeOptimizedFlow 218
Receiver channel 125, 128

Create 116
Receiver timeout 87
Redbooks Web site 277

Contact us x
Redelivery count 85
Re-engineering 107
Reference 183, 202
Relationship 43
282 Enabling SOA Using WebSphere Messaging

Remote queue 29, 121, 131
Create 112

Reply address 64, 74, 85
Reply queue 86
Request-reply 69–72, 76, 82, 86–87
Request-reply log 79
Request-reply logging 78
ResetContentDescriptor 220
RFHUTIL 137
RFHUtil 117, 134, 236, 244, 261
Rollback 84
RouteToLabel 220
Routing 12, 34, 39, 47

S
SAAJ 26
SAP 61
SCA 32, 49, 185
SCA.APPLICATION.esbCell.Bus 209–210,
212–213
SCADAInput 218
SCADAOutput 218
SDO 49
Selective consumer 80–81
Selector 43
Self-healing systems 79
Sender channel 121, 125, 127, 132

Create 114
Start 116, 132

Service activator 95, 98–100
Service adapter 95, 99
Service allocation 92
Service Component Architecture (SCA) 32, 41
Service consumer 63, 87
Service contract 3
Service enablement 107
Service facade 95, 102
Service identification 90–91
Service implementation 3, 102
Service integration bus 33, 46, 120–121

Configure 122
Create 122
Foreign bus 124
Listener port 132

Service interface 3
Service management 104
Service message object 184
Service Message Objects (SMO) 32

Service orchestration 49
Service provider 63, 88
Service realization 93
Service specification 92
Service-oriented architecture

Component Based Design 3
Drivers

Flexible pricing 2
Increasing speed 2
Reducing costs 2
Return on investment 2
Simplifying integration 2

Messaging 8, 64
Object Oriented development 2
See also SOA

Shared queue 138, 171
Shared queues 53
SIB_MQ_ENDPOINT_ADDRESS 132
SOA

Life cycle 14
SOA Foundation 20
SOA Reference Architecture 14
Software clustering 51
Software components 6
SonicMQ JMS 39
Stateless services 104
Stateless session EJB 185
Stop 184
Storage group 139
Subscriber 66
subscriber 67
Subsystem analysis 92
SWIFT 39

T
Thread 68, 70
Thread behavior 69
Throw 220
TIBCO EMS JMS 39
TIBCO Rendezvous 39
TimeoutControl 220
TimeoutNotification 220
Tivoli System Automation (TSA) 58
Topic 66, 223
Topic hierarchies 67
Trace 220
Transformation 21, 26, 33–34, 39, 43
Transforming 47
 Index 283

Transmission queue 29, 121, 131
Create 113

Transport protocol 98
Transport protocol transparency 7, 9, 95
TryCatch 220
Tuxedo 39

U
UDDI 26
User Name Server 36

V
Validate 220
Versioning 106
Vertical cluster 56
Visual Basic 21

W
Warehouse 219
Web container 24, 27, 56
Web container failover 27
Web services binding 33
WebLogic JMS 39
WebSphere adapter binding 33
WebSphere Adapters 39
WebSphere Application Server 20, 22, 33, 59

Configure 239
WebSphere Broker JMS Transport 218
WebSphere Business Integration Adapters 39
WebSphere Business Monitor 41
WebSphere ESB 21, 31, 33, 40, 55

Connect to WebSphere MQ 118
WebSphere ESB vs. WebSphere Message Broker
37
WebSphere Integration Developer 44, 49, 186, 215
WebSphere Message Broker 21, 34, 40, 54, 218
WebSphere messaging 26
WebSphere MQ 20, 22, 28, 35, 46, 48, 110, 236,
253, 261

Configuration 110
Configure 131
Connect to WebSphere ESB 118
Foreign bus 124

WebSphere MQ Enterprise Transport 219
WebSphere MQ Explorer 243
WebSphere MQ JMS provider 26, 240
WebSphere MQ link 121

Create 125
WebSphere MQ Mobile Transport 219
WebSphere MQ Multicast Transport 218
WebSphere MQ Real-time Transport 218
WebSphere MQ Telemetry Transport 218
WebSphere MQ Web Services Transport 218
WebSphere Process Server 21, 40, 49, 55
Word/Excel/PDF 39
Workbench 221
Workload balancing 30
Workload management 58
workload management 57
Wrapping 107
WS-BPEL 42, 49
WSDL 228
WS-I Basic Profile 26
WS-Security 26

X
XML schema 228
XML-to-COBOL mapping 255
XML-to-XML mapping 188, 226–227
XML-to-XML transformation 245
XMLTransformation 219, 226, 245
XMS 22, 29
XSD 247
XSL

Generate 207
XSL style sheet 189
XSL Transformation (XSLT) 202
XSL Transformations (XSLT) 189
XSLT 39, 184, 205–206
XSLT mediation primitive 184, 188–189

Z
ZPARM 166
284 Enabling SOA Using WebSphere Messaging

Enabling SOA Using W
ebSphere M

essaging

Enabling SOA Using W
ebSphere

M
essaging

Enabling SOA Using
W

ebSphere M
essaging

Enabling SOA Using W
ebSphere M

essaging

Enabling SOA Using
W

ebSphere M
essaging

Enabling SOA Using
W

ebSphere M
essaging

®

SG24-7163-00 ISBN 0738497312

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Enabling SOA using
WebSphere Messaging

Service-oriented
architecture and
messaging

ESB implementation
with WebSphere
Message Broker

ESB implementation
with WebSphere ESB

Successfully implementing a service-oriented architecture
(SOA) requires applications and infrastructure that can
support the SOA principles. Applications can be enabled by
creating service interfaces to existing or new functions hosted
by the applications. The service interfaces should be
accessed using an infrastructure that can route and transport
service requests to the correct service provider. As
organizations expose more and more functions as services, it
is vitally important that this infrastructure supports the
management of SOA on an enterprise scale.

This IBM Redbook looks at how IBM messaging products
support an SOA environment. In particular, it looks at
WebSphere Application Server, WebSphere Enterprise
Service Bus, WebSphere MQ, and WebSphere Message
Broker in an SOA environment. We discuss how they support
SOA, compare the potential ESB product implementations,
and show examples of building the infrastructure and creating
mediations.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 SOA overview
	1.1.1 The driver for SOA
	1.1.2 Architectural approach
	1.1.3 Design principles

	1.2 SOA and messaging
	1.3 Using an enterprise service bus
	1.4 The IBM SOA Foundation
	1.4.1 SOA life cycle
	1.4.2 SOA Reference Architecture

	1.5 For more information

	Chapter 2. Product selection
	2.1 IBM SOA Foundation products for messaging
	2.2 WebSphere Application Server
	2.3 WebSphere MQ
	2.4 WebSphere ESB
	2.4.1 Mediation functions in WebSphere ESB versus WebSphere Application Server

	2.5 WebSphere Message Broker
	2.6 ESB product comparison
	2.7 WebSphere Process Server

	Chapter 3. Runtime topology selection
	3.1 Getting started
	3.1.1 Starting with simple messaging connections
	3.1.2 Adding an ESB for enhanced connectivity
	3.1.3 Adding a business process engine for service orchestration

	3.2 Advanced topologies
	3.2.1 WebSphere MQ
	3.2.2 WebSphere Message Broker
	3.2.3 WebSphere ESB and WebSphere Process Server
	3.2.4 Application server and queue manager cluster

	3.3 End-to-end scenario

	Chapter 4. Application design
	4.1 Introduction to messaging
	4.2 Messaging models
	4.2.1 Point-to-point
	4.2.2 Publish-subscribe
	4.2.3 Point-to-point versus publish-subscribe

	4.3 Messaging styles
	4.3.1 Asynchronous communication
	4.3.2 Pseudo-synchronous communication

	4.4 Messaging patterns
	4.4.1 Fire-and-forget
	4.4.2 Request-reply
	4.4.3 Selecting a messaging pattern

	4.5 Messaging application design
	4.5.1 Application design in general
	4.5.2 Message consumers
	4.5.3 Message producers
	4.5.4 Message producer and consumer in combination

	4.6 Designing a messaging-based SOA
	4.6.1 SOA approach
	4.6.2 Service identification
	4.6.3 Service specification
	4.6.4 Service realization
	4.6.5 Design considerations

	4.7 For more information

	Chapter 5. Point-to-point runtime configuration
	5.1 WebSphere MQ configuration
	5.1.1 Create the queue managers
	5.1.2 Create a remote queue definition
	5.1.3 Create a transmission queue
	5.1.4 Create a sender channel
	5.1.5 Create a local queue
	5.1.6 Create a receiver channel
	5.1.7 Start the sender channel
	5.1.8 Test the connection

	5.2 Connect WebSphere ESB to WebSphere MQ
	5.2.1 Configure the service integration bus
	5.2.2 Configure WebSphere MQ
	5.2.3 Start the connection
	5.2.4 Test the connection

	5.3 Configuring a queue sharing group
	5.3.1 Set up the DB2 environment to support MQ shared queue
	5.3.2 Set up the CFRM policy with the MQ structures
	5.3.3 Add the MQ data sharing group entry to the DB2 table
	5.3.4 Update the ZPARM
	5.3.5 Update the queue manager procedures
	5.3.6 Define the shared queues between the two MQ subsystems
	5.3.7 Starting WebSphere MQ
	5.3.8 For more information

	Chapter 6. Integration scenarios with WebSphere ESB
	6.1 Using WebSphere ESB
	6.1.1 Developing mediations
	6.1.2 Deploying mediations

	6.2 Integration scenario
	6.3 XML-to-XML mapping using a mediation flow
	6.3.1 Mediation overview

	6.4 XML-to-XML transformation using XSLT mapping
	6.4.1 Create the mediation module
	6.4.2 Create the business objects
	6.4.3 Build the interfaces
	6.4.4 Build the mediation module
	6.4.5 Bind the export and import nodes to JMS
	6.4.6 Prepare the runtime

	Chapter 7. Integration scenarios with WebSphere Message Broker
	7.1 Using WebSphere Message Broker
	7.1.1 Message flow development
	7.1.2 Message flow deployment and broker administration
	7.1.3 Sample message flow

	7.2 Integration scenarios
	7.3 XML-to-XML mapping using a Mapping node
	7.3.1 Create the message sets containing the XML DTD files
	7.3.2 Create the message flow
	7.3.3 Deploy the message flow to the broker
	7.3.4 Create the WebSphere MQ queues
	7.3.5 Test the message flow
	7.3.6 Using JMS nodes

	7.4 XML-to-XML transformation using XSLT
	7.4.1 Create the message sets
	7.4.2 Create the mapping
	7.4.3 Create the message flow
	7.4.4 Create the WebSphere MQ queues
	7.4.5 Deploy and test the message flow

	7.5 XML-to-COBOL mapping
	7.5.1 Create the message sets
	7.5.2 Create the message flow
	7.5.3 Create the WebSphere MQ queues
	7.5.4 Test the message flow

	7.6 Routing messages
	7.6.1 Create the message flow
	7.6.2 Define the filters
	7.6.3 Create the WebSphere MQ queues
	7.6.4 Deploy and test the message flow

	Appendix A. Sample files
	Sample XML files
	Sample DTD files

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

