

ibm.com/redbooks

Patterns: SOA Foundation
Service Connectivity
Scenario

Carla Sadtler
Luciana Calcagno

Ryan Cox
Jerry Denman

Abdul Shad
Rodrigo Vargas

Cheng Zhou

Learn key concepts and architecture of
the IBM SOA Foundation

Apply patterns to the Service
Connectivity scenario

Service Connectivity
using WebSphere ESB

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: SOA Foundation Service Connectivity
Scenario

August 2006

International Technical Support Organization

SG24-7228-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (August 2006)

This edition applies to WebSphere Enterprise Service Bus V6.0.1, WebSphere Integration
Developer V6.0.1, Rational Software Architect V6.0.1, IBM Tivoli Monitoring 6.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xv
Become a published author . xviii
Comments welcome. xix

Chapter 1. IBM SOA Foundation . 1
1.1 SOA Foundation life cycle . 2
1.2 SOA Foundation Reference Architecture . 5
1.3 SOA Foundation scenarios . 9
1.4 Service Connectivity scenario . 11

1.4.1 Secure connections to third parties and trading partners 13
1.4.2 Internal connectivity based on open standards. 15
1.4.3 Adapt from third-party systems to Web services. 17
1.4.4 Deliver an existing process through new business channels 19

Chapter 2. Process for applying SOA scenarios . 21
2.1 Process for using SOA scenarios and patterns. 22

2.1.1 SOA scenario selection table . 24
2.2 Reuse patterns assets to accelerate the solution architecture 26

2.2.1 Introduction to the Patterns for e-business . 27
2.2.2 Patterns for the SOA scenarios. 30

Chapter 3. Patterns for e-business and Service Connectivity 31
3.1 The enterprise service bus . 32

3.1.1 The role of an enterprise service bus . 35
3.2 Business pattern and Application pattern selection. 36
3.3 Runtime pattern selection . 39

3.3.1 SOA profiles of the Runtime patterns . 39
3.3.2 Runtime nodes . 39

3.4 Self-Service business pattern . 44
3.4.1 Directly Integrated Single Channel application pattern 44
3.4.2 Router application pattern . 47
3.4.3 Decomposition application pattern . 49

3.5 Application Integration pattern. 52
3.5.1 Direct Connection application pattern . 53
3.5.2 Broker application pattern . 56
© Copyright IBM Corp. 2006. All rights reserved. iii

3.5.3 Router variation of the Broker application pattern. 58
3.6 Extended Enterprise business pattern . 60

3.6.1 Exposed Direct Connection application pattern 60
3.6.2 Exposed Broker application pattern . 63
3.6.3 Exposed Router variation of Exposed Broker application pattern. . . 65

3.7 For more information . 66

Chapter 4. Planning for connectivity . 67
4.1 The ITSOMart scenario . 68

4.1.1 ITSOMart overview . 68
4.1.2 Business objectives. 68
4.1.3 Customer registration business requirements. 69
4.1.4 Business context diagram for ITSOMart . 70
4.1.5 Functional requirements for ITSOMart . 71

4.2 Considering SOA as a solution for ITSOMart . 71
4.2.1 Incremental solution delivery. 72
4.2.2 Integration cost reduction . 73
4.2.3 Changing business/IT needs. 73
4.2.4 Value delivery . 73
4.2.5 Security . 73
4.2.6 Management/monitoring . 74
4.2.7 Readiness . 74

4.3 Elements of an SOA solution . 75
4.3.1 Using the SOA Foundation Reference Model 75

4.4 Selecting the SOA scenario and pattern . 79
4.4.1 Fit gap analysis . 79
4.4.2 Select the SOA scenario . 80
4.4.3 Reuse patterns assets to accelerate solution architecture 80

4.5 Enterprise service bus product selection. 82
4.5.1 WebSphere Enterprise Service Bus . 84
4.5.2 WebSphere Message Broker . 91
4.5.3 WebSphere DataPower SOA Appliance . 96
4.5.4 Enterprise service bus implementations compared 99

4.6 ITSOMart product selection. 101
4.6.1 Deployment . 101
4.6.2 Modeling and design . 103
4.6.3 Development and assembly . 103
4.6.4 Monitoring and management . 105

4.7 Installation considerations . 105
4.7.1 Rational Software Architect, WebSphere Integration Developer . . 107
4.7.2 WebSphere ESB . 109
4.7.3 WebSphere Application Server . 112
4.7.4 ITCAM for SOA . 113
iv Patterns: SOA Foundation Service Connectivity Scenario

4.7.5 Environments for testing and production. 116
4.8 Security considerations . 116

4.8.1 Securing communication using WebSphere ESB 116
4.8.2 Messaging security . 117
4.8.3 Transport security using HTTPS . 117

4.9 Scalability and performance considerations . 118
4.10 System management and monitoring . 119

4.10.1 IBM Tivoli Management Framework . 119
4.10.2 IBM Tivoli Composite Application Manager for SOA. 120

4.11 Where to find the implementation details . 121
4.12 Summary . 121
4.13 For more information . 123

Chapter 5. Model with Rational Software Architect 125
5.1 Introduction to Rational Software Architect . 126

5.1.1 Rational Unified Process guidance . 126
5.1.2 Model-driven development . 126
5.1.3 Modeling . 128
5.1.4 Asset-based development. 129

5.2 Modeling the ITSOMart sample. 130
5.3 Tools used to model the application . 131

5.3.1 Modeling perspective . 132
5.3.2 UML projects . 134
5.3.3 UML models . 136
5.3.4 UML diagrams. 137

5.4 Solution requirements . 140
5.4.1 Use case diagram . 141
5.4.2 Activity diagrams . 142

5.5 Domain analysis . 144
5.5.1 Sequence diagrams . 144
5.5.2 Component diagram . 148

5.6 Architectural design. 149
5.6.1 Service components . 151
5.6.2 Connecting services through the ESB . 151
5.6.3 Mediations on the ESB . 154

5.7 Modeling business objects: Transform UML to XSD. 164
5.7.1 Create an XSD model . 166
5.7.2 Create a package . 169
5.7.3 Create a class . 171
5.7.4 Create a class diagram . 174
5.7.5 Run the UML to XSD transformation. 175
5.7.6 Import the XSD into WebSphere Integration Developer 178

5.8 Modeling messaging resources: Transform UML to JACL 180
 Contents v

5.8.1 Import the WebSphere Platform Messaging Patterns asset 181
5.8.2 Model messaging resources . 186
5.8.3 Run the UML-to-JACL transformation. 204
5.8.4 Running the JACL script from a command line. 208

5.9 Resources . 209

Chapter 6. Assemble with WebSphere Integration Developer 211
6.1 Technology overview. 212

6.1.1 Service Component Architecture . 212
6.1.2 Service Data Objects . 216
6.1.3 Service Message Objects . 219

6.2 Introduction to WebSphere Integration Developer 220
6.2.1 Starting WebSphere Integration Developer 220

6.3 Development environment settings . 224
6.3.1 Disable automatic build . 224
6.3.2 Set the default target runtime . 226
6.3.3 Configure Web services workspace preferences 226
6.3.4 Workspaces and test environment . 229

6.4 Development process . 230
6.4.1 Create a library . 232
6.4.2 Create business objects . 233
6.4.3 Define interfaces . 236
6.4.4 Create a mediation module . 240
6.4.5 Complete the module assembly . 244
6.4.6 Implement the mediation flow component. 251
6.4.7 Build the mediation flow . 253

6.5 Testing mediations . 256
6.5.1 Test servers . 256
6.5.2 Test client . 259

6.6 Packaging the mediation for deployment . 260

Chapter 7. Building the Credit Rating and Credit Score mediations . . . 263
7.1 Scenario overview . 264

7.1.1 Business scenario . 264
7.1.2 Get Credit Rating scenario stage 1 . 265
7.1.3 Get Credit Rating scenario stage 2 . 266

7.2 Preparing for the ITSOMart mediations. 268
7.2.1 Create a library . 268
7.2.2 Create the common business objects . 269

7.3 Developing the Credit Rating mediation . 275
7.3.1 Mediation development steps . 275
7.3.2 Define the interface for the mediation . 276
7.3.3 Define the interface to the Credit Rating Service Web service 278
vi Patterns: SOA Foundation Service Connectivity Scenario

7.3.4 Create the mediation module . 281
7.3.5 Add the components to the module assembly 281
7.3.6 Build the mediation flow . 285
7.3.7 Test the mediation. 303

7.4 Developing the Credit Score mediation. 309
7.4.1 Mediation development steps . 310
7.4.2 Create the mediation module . 310
7.4.3 Define the business objects . 313
7.4.4 Define the interface to the Credit Score Service Web service 313
7.4.5 Add the components to the module assembly 315
7.4.6 Build the mediation flow . 316
7.4.7 Test the mediation. 337

7.5 Calling the service from the application. 341
7.5.1 Import or copy the WSDL files . 342
7.5.2 Generate the Web service client proxy . 343
7.5.3 Update the application to call the service using the proxy 346

Chapter 8. Building the CRM mediation . 347
8.1 Scenario overview . 348

8.1.1 Business scenario . 348
8.1.2 CRM mediation . 349

8.2 Developing a mediation to update a CRM system 351
8.2.1 Mediation development steps . 351
8.2.2 Create the mediation module . 352
8.2.3 Create an interface for each EIS system . 352
8.2.4 Define the interface for the mediation . 369
8.2.5 Add the components to the module assembly 372
8.2.6 Build the mediation flow . 373

8.3 Calling the service from the application. 415
8.4 For more information . 416

Chapter 9. Building the Register Shipping mediation 417
9.1 Scenario overview . 418

9.1.1 Business scenario . 418
9.1.2 Register Shipping mediation . 419

9.2 Creating the Register Shipping Service emulator 421
9.2.1 Define the RegisterShippingService interface. 422
9.2.2 Create the Java component that implements the service 423
9.2.3 Implement the mediation flow for the service 426
9.2.4 Create the SOAP/JMS export binding. 427

9.3 Developing the Register Shipping mediation . 429
9.3.1 Mediation development steps . 429
9.3.2 Define the ShippingRegistration interface. 429
 Contents vii

9.3.3 Create the mediation module . 430
9.3.4 Implement the mediation flow . 433
9.3.5 Export the module as a Web service . 442

9.4 Testing the mediation . 442
9.4.1 Testing the RegisterShippingService emulator 443
9.4.2 Test the Register Shipping mediation . 444

9.5 Calling the service from the application. 445
9.6 Considerations for handling arrays, decomposition 447

9.6.1 Handling an unknown number of input request elements 447
9.6.2 Handling multiple responses . 448

Chapter 10. Building Log Registration mediation 449
10.1 Scenario overview . 450

10.1.1 Business scenario . 450
10.1.2 Log Registration mediation . 451

10.2 Developing the mediation . 452
10.2.1 Create the mediation module . 454
10.2.2 Create the business object . 454
10.2.3 Build the interface . 456
10.2.4 Assemble the mediation components . 457
10.2.5 Bind the imports to JMS . 459
10.2.6 Build the mediation flow . 462

10.3 Testing the mediation . 467
10.3.1 Prepare the runtime . 467
10.3.2 Test the mediation. 468

10.4 Calling the service from the application. 475

Chapter 11. Deploy with WebSphere ESB. 479
11.1 Introduction to WebSphere ESB . 480

11.1.1 Applications. 481
11.1.2 Administration . 481
11.1.3 Service integration bus . 481
11.1.4 Web services support . 482
11.1.5 Messaging support . 484
11.1.6 Client support . 485
11.1.7 Tivoli Access Manager . 485
11.1.8 Common Event Infrastructure (CEI) . 485

11.2 Working with profiles . 486
11.2.1 Starting the profile creation wizard . 486

11.3 Administrative console . 487
11.4 Deploying mediation modules . 490
11.5 Creating a service integration bus. 490
11.6 Configuration for databases . 491
viii Patterns: SOA Foundation Service Connectivity Scenario

11.6.1 Create a J2C authentication data entry for the database 491
11.6.2 Create a JDBC provider . 492
11.6.3 Create a data source. 494

11.7 Configuration for adapter support . 498
11.7.1 Create a J2C authentication data entry for Siebel 498
11.7.2 Create an output folder for the flat file. 501

11.8 Configuration for JMS bindings . 501
11.8.1 Create a queue destination on the bus . 502
11.8.2 Create a queue connection factory . 503
11.8.3 Create a JMS queue . 504
11.8.4 Creating a JMS activation specification . 505

11.9 Connecting to WebSphere MQ . 506
11.9.1 Configure WebSphere MQ . 508
11.9.2 Configure the bus . 514
11.9.3 Define a WebSphere MQ link . 515
11.9.4 Create alias queues . 519
11.9.5 Start the bus and WebSphere MQ connections 521

11.10 Deploying applications . 523
11.10.1 Use the serviceDeploy command . 523
11.10.2 Deploy an EAR file . 524
11.10.3 Installing the ITSOMart applications . 525

11.11 Testing ITSOMart . 530
11.12 Network Deployment and clustering topologies 531

11.12.1 Workload management with a single cluster. 533
11.13 For more information . 553

Chapter 12. Service monitoring and management with IBM Tivoli Composite
Application Manager SOA . 555

12.1 Tivoli Composite Application Manager (ITCAM) 556
12.1.1 Composite applications . 558

12.2 IBM Tivoli Enterprise Monitoring framework . 560
12.3 IBM Tivoli Composite Application Manager for SOA. 564
12.4 Tracking performance with ITCAM for SOA . 566

12.4.1 Workspaces . 566
12.4.2 Attributes . 571
12.4.3 Situations . 573
12.4.4 Policies . 574
12.4.5 Take Action commands. 575
12.4.6 Log files. 576

12.5 Monitoring ITSOMart . 577
12.5.1 Configure data collection. 578
12.5.2 Generate Web services traffic . 580
12.5.3 Enable Web service data logging . 581
 Contents ix

12.5.4 Content filtering . 583
12.5.5 Using Web Services Navigator to analyze data 584

12.6 Summary . 587
12.7 For more information . 588

Appendix A. Sample application install summary 589
Overview . 590
Prepare the development environment . 591

Configure the workbench . 591
Import the projects into the workbench . 591

Prepare the runtime environment. 593
Create a service integration bus . 594

MessageLogApp application . 595
Registration processor service . 596

Runtime. 596
Install the application. 597

ITSOMart application . 597
Credit check mediations . 597

Create the database and configure the JDBC data source. 597
Install the applications. 600

CRM mediation. 601
Register Shipping mediation . 601
Registration Log Mediation. 601

Create the bus destinations . 601
Create the JMS queue connection factory . 602
Create the JMS queues . 602
Install the application. 602

Common errors: . 603

Appendix B. Tips and techniques . 605
Creating a top-down SOAP/JMS Web service . 606

Create the business object . 606
Build the interface . 607
Create an EJB project . 608
Modify the WSDL file. 610
Create JMS resources . 619
Create the Web service. 620
Implement the Web service. 631
Create the Web service client . 632
Test the Web service . 638

Server errors in the test environment . 639
Errors using XML Mapper without Internet connectivity 639
Creating a new server in the test environment. 640
x Patterns: SOA Foundation Service Connectivity Scenario

Create the WebSphere ESB Server profile . 640
Changing WebSphere Integration Developer to use the new profile 651
Create a new server in the test environment to use the new profile 652

Installing WebSphere MQ Explorer as a plug-in . 654

Appendix C. Installation details . 657
Installing WebSphere Integration Developer . 658

Using Rational Product Updater . 662
Installing WebSphere Adapters . 667

IBM WebSphere Adapter for Siebel Business Applications 668
IBM WebSphere Adapter for Flat Files . 669

Installing Tivoli Composite Application Manager . 671
IBM DB2 Universal Database installation . 672
IBM Tivoli Monitoring installation. 678
ITCAM for SOA Application Support installation . 687
ITCAM for SOA Monitoring Agent installation and configuration 691
Web Services Navigator installation . 698
Verify the installation . 699

Appendix D. Additional material . 701
Locating the Web material . 701
Using the Web material . 702

System requirements for downloading the Web material 702
How to use the Web material . 703

Related publications . 705
IBM Redbooks . 705
Other publications . 706
Online resources . 706
How to get IBM Redbooks . 709
Help from IBM . 709

Index . 711
 Contents xi

xii Patterns: SOA Foundation Service Connectivity Scenario

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements or changes in the product(s) or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
z/OS®
Ascendant®
AIX®
Candle®
Cloudscape™
CICS®

DataPower®
DB2 Universal Database™
DB2®
IBM®
IMS™
NetView®
OMEGAMON Monitoring Agent®
OMEGAMON®
Power PC®
Rational Unified Process®

Rational®
Redbooks™
RequisitePro®
RUP®
Tivoli Enterprise™
Tivoli Enterprise Console®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

EJB, Java, JavaBeans, JavaServer, JavaServer Pages, JDBC, JSP, JVM, J2EE, Solaris, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Active Directory, Expression, Microsoft, Visio, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xiv Patterns: SOA Foundation Service Connectivity Scenario

Preface

The IBM® SOA Foundation is an integrated, open standards based set of
software, best practices, and patterns that is designed to provide you with what
you need to get started with SOA. A set of SOA scenarios is being developed by
IBM that describe key architectural scenarios for SOA solutions and bridge the
gap between SOA and IBM products that can be used to implement these
architectures.

This IBM Redbook focuses on the Service Connectivity scenario, which
describes architectural solutions using an ESB. The focus of this scenario is the
integration of service consumers and service providers across multiple channels.

You can find more information about the IBM SOA Foundation and the SOA
scenarios in the following IBM Redbooks™:

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240

� Patterns: SOA Foundation - Business Process Management Scenario,
SG24-7234

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Carla Sadtler is a certified IT Specialist at the ITSO, Raleigh Center. She writes
extensively about the WebSphere® and Patterns for e-business areas. Before
joining the ITSO in 1985, Carla worked in the Raleigh branch office as a Program
Support Representative. She holds a degree in mathematics from the University
of North Carolina at Greensboro.

Luciana Calcagno is an IT Specialist in Uruguay. She joined IBM in 2000.
Luciana focuses on e-business application development, in particular Java™
and J2EE™ and WebSphere Application Server in projects with different lines of
businesses. She became a specialist in WebSphere and in its related
technologies. She holds a degree in Systems Engineering from Catholic
University, Uruguay. Currently, she is also involved in pre-sales activities and in
the development of projects based on SOA using WebSphere platform.

Ryan Cox is a software architect/technical specialist on the Cross-Brand
Solution team in the IBM US sales organization. Ryan has provided pre-sales
© Copyright IBM Corp. 2006. All rights reserved. xv

technical support in various capacities for the IBM WebSphere brand for the past
eight years. His expertise is in the design and implementation of enterprise
solutions on the WebSphere platform, which over the years has included
Component Broker, WebSphere Application Server, WebSphere Business
Integration Server Foundation, WebSphere Portal Server, and more recently,
WebSphere Process Server and WebSphere ESB. His current area of focus is
around SOA technologies. He holds a BS in Computer Science from the
University of North Texas, and currently lives in a small mountain town called
Nederland, Colorado.

Jerry Denman is a Certified Executive IT Architect for IBM Global Business
Services, based in Florida, USA. He has more than 20 years of IT experience,
and his interests are in enterprise integration, service-oriented architect,
event-driven architecture, business process management, integration patterns,
and enterprise service bus architecture. His SOA and integration architecture
experience includes projects for many of the world's largest enterprises. He is a
member of the IBM SOA Center of Excellence and the Distribution Sector SOA
Client Accelerator Team.

Abdul Shad is a Staff Software Engineer with the WebSphere Portal Server -
Document Conversion Services team, India Software Lab, Bangalore. Prior to
joining this team he was part of the WebSphere Adapters test team. Abdul joined
IBM in 2003. He has six years experience in the IT industry. His areas of
expertise include Java/J2EE, WebSphere Business Integration adapters,
WebSphere Adapters, and WebSphere Application Server V6. He holds a
Masters degree in Computer Applications.

Rodrigo Vargas is a Consulting IT Specialist working from San Diego for the
IBM Software Services for WebSphere. His main area of expertise is Transaction
Processing Systems. Rodrigo holds a degree in Computer and Systems
Engineering from Universidad de los Andes in Bogota, Colombia, and a Master’s
degree in Computer Science from San Diego State University.

Cheng Zhou is the Business Integration Practice Lead at Ascendant®
Technology. His areas of expertise include Java EE, SOA, and business process
integration. While at Ascendant, he has led numerous engagements involving
WebSphere Application Server, Portal, and various flavors of WebSphere
Business Integration. A graduate of the University of Texas at Austin, he has
more than 10 years of experience designing and building enterprise-class
applications for Fortune 500 companies.

Thanks to the following people for their contributions to this project:

John Ganci
International Technical Support Organization, Raleigh Center
xvi Patterns: SOA Foundation Service Connectivity Scenario

Martin Keen
International Technical Support Organization, Raleigh Center

Jonathan Adams
Patterns for e-business leadership and architecture, IBM UK

Paula Díaz de Eusebio
AMS Integrated Delivery, IBM Spain

Adrian Spender
WebSphere ESB Development, IBM UK

Gabriel Telerman
WebSphere Software Services Consultant, IBM UK

Charlie Redlin
WebSphere Application Server WLM, IBM US

Erica Carmel
SOA User Experience, IBM US

Rachel Reinitz
SOA Senior Consultant, IBM US

Greg Flurry
IBM Enterprise Integration Solutions, IBM US

David Currie
EMEA Software Lab Services, IBM UK
 Preface xvii

Figure 1 Clockwise from top left: Ryan Cox, Carla Sadtler, Abdul Shad, Luciana Calcagno, Cheng Zhou,
Rodrigo Vargas (Jerry Denman not pictured)

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and customers.
xviii Patterns: SOA Foundation Service Connectivity Scenario

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx Patterns: SOA Foundation Service Connectivity Scenario

Chapter 1. IBM SOA Foundation

The IBM SOA Foundation is an integrated, open standards based set of IBM
software, best practices, and patterns designed to provide what you need to get
started with SOA from an architecture perspective. The key elements of the IBM
SOA Foundation are the SOA life cycle (model, assemble, deploy, manage),
reference architecture, and SOA scenarios.

The SOA Foundation scenarios (or simply SOA scenarios) are representative of
common scenarios of use of IBM products and solutions for SOA engagements.
The SOA scenarios communicate the business value, architecture, and IBM
open standards-based software used within the SOA scenario. The SOA
scenarios can be used as a reference architecture (starting point) to accelerate
the SOA architecture and implementation of your customer scenario. The SOA
scenarios can be implemented using an incremental SOA adoption approach,
whereby a customer can incrementally add elements of other SOA scenarios to
the environment to achieve their business objectives.

In this chapter we explore the following defining elements:

� SOA Foundation life cycle
� SOA Foundation Reference Architecture
� SOA Foundation scenarios
� Service Connectivity scenario

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 SOA Foundation life cycle
IBM customers have indicated that they think of SOA in terms of a life cycle. As
seen in Figure 1-1, the IBM SOA Foundation includes the following life-cycle
phases:

� Model
� Assemble
� Deploy
� Manage

There are a couple of key points to consider about the SOA life cycle. First, the
SOA life cycle phases apply to all SOA projects. Second, the activities in any part
of the SOA life cycle can vary in scale and the level of tooling used depending on
the stage of adoption.

Figure 1-1 IBM SOA Foundation life cycle

Model
Modeling is the process of capturing the business design from an understanding
of business requirements and objectives. The business requirements are
translated into a specification of business processes, goals, and assumptions for
creating a model of the business. Many businesses do not go through a formal
modeling exercise. In some cases, businesses that do perform modeling use

Discover
Construct & Test
Compose

Gather requirements
Model & Simulate
Design

Integrate people
Integrate processes
Manage and integrate
information

Manage applications & services
Manage identity & compliance
Monitor business metrics

Financial transparency
Business/IT alignment
Process control
2 Patterns: SOA Foundation Service Connectivity Scenario

primitive techniques such as drawing the design in Visio® or using text
documents.

Capturing the business design using a sophisticated approach that includes the
use of specialized tooling lets you perform what-if scenarios with various
parameters the business may experience. The process can then be simulated
using those parameters to predict the effect that process will have on the
business and IT systems. If the achieved results do not match the business
objectives, then the process definition can be refined.

The model will also capture key performance indicators, such as business
metrics, that are important measurements of your business. For example, this
could include a measure of the new accounts that you have opened in a given
month. These key performance indicators are input to the assembly of the
application. In addition, the indicators can be monitored in production to capture
the critical data to measure whether the objectives are being met.

Assemble
The business design is used to communicate the business objectives to the IT
organization that will assemble the information system artifacts that implement
the design. The enterprise architect works closely with the business analyst to
convert the business design into a set of business process definitions, as well as
activities used to derive the required services from the activity definitions. The
enterprise architect and business analyst work with the software architect to flesh
out the design of the services.

During the process of resolving the design and implementation of the modeled
business processes and services, a search should be performed of existing
artifacts and applications in an effort to find components that meet the needs of
the design. Some applications will fit perfectly, some will have to be re-factored,
and some will have to be augmented to meet the requirements of the design.

These existing assets should be rendered as services for assembly into
composite applications. Any new services required by the business design will
need to be created. Software developers should use the SOA programming
model to create these new services.

Lastly, the assemble phase includes applying a set of policies and conditions to
control how your applications operate in the production runtime environment. For
example, these policies and conditions include business and government
regulations. In addition, the assemble phase includes critical operational
characteristics such as packaging deployment artifacts, localization constraints,
resource dependency, integrity control, and access protection.
 Chapter 1. IBM SOA Foundation 3

Deploy
The deploy phase of the life cycle includes a combination of creating the hosting
environment for the applications and the deployment tasks of those applications.
This includes resolving the application’s resource dependencies, operational
conditions, capacity requirements, and integrity and access constraints.

A number of concerns are relevant to the construction of the hosting environment
including the presence of the already existing hosting infrastructure supporting
applications and pre-existing services. Beyond that, you must consider
appropriate platform offerings for hosting the user interaction logic, business
process flows, business services, Access Services, and information logic.

Manage
The manage phase includes the tasks, technology, and software used to
manage and monitor the application assets such as services and business
processes that are deployed to the production runtime environment.

Monitoring is a critical element of ensuring that the underlying IT systems and
application are up and running to maintain the service availability requirements of
the business. Monitoring also includes monitoring performance of service
requests and timeliness of service responses. In addition, monitoring includes
maintaining problem logs to detect failures in various services and system
components, as well as localizing failures and restoring the operational state of
the system.

Managing the system also involves performing routine maintenance;
administering and securing applications, resources, and users; and predicting
future capacity growth to ensure that resources are available when the demands
of the business call for it. The security domain includes such topics as
authentication, single sign-on, authorization, federated identity management,
and user provisioning.

The manage phase also includes managing the business model, tuning the
operational environment to meet the business objectives expressed in the
business design, and measuring the success or failure of meeting those
objectives. SOA is distinguished from other styles of enterprise architecture by its
correlation between the business design and the software that implements that
design, and its use of policy to express the operational requirements of the
business services and processes that codify the business design. The manage
phase of the life cycle is directly responsible for ensuring that those policies are
being enforced, and for relating issues with that enforcement back to the
business design.
4 Patterns: SOA Foundation Service Connectivity Scenario

Governance and processes
Governance and processes are critical to the success of any SOA project.
Governance helps clients extend the planned SOA across the enterprise in a
controlled manner. This new SOA governance capability helps customers set a
baseline for measuring improvements, tracking SOA projects, building a pool of
skilled resources, and establishing the structure for making decisions about SOA
initiatives. Additionally, this services capability helps keep all SOA initiatives,
architectures, and investments aligned to with business goals.

A key aspect of governance is that it defines rules, processes, metrics, and
organizational constructs for support planning, decision making, steering, and
control of IT and the SOA to achieve business objectives.

1.2 SOA Foundation Reference Architecture
This section describes the SOA Foundation Reference Architecture, which
includes the components and middleware services used by applications in the
runtime environment.

Figure 1-2 SOA Foundation Reference Architecture: solution view

Atomic Service Composite Service Registry

Services
atomic and composite

Operational Systems

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata Architecture (m

eta-data) &
B

usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
 Chapter 1. IBM SOA Foundation 5

Figure 1-2 on page 5 depicts the SOA Foundation Reference Architecture
solution view used to decompose an SOA design. SOA puts a premium on the
role of the enterprise architect, who is responsible for spanning between the
business design and the information system that codifies that design.

When taking a top-down approach1, the enterprise architect starts by identifying
the business processes and business services used by the business users. The
business users are consumers of the processes and services. Business
processes should be treated as compositions of other business processes and
services, and therefore should be decomposed into their subordinate
sub-processes and services.

Services and business processes are then detailed into service components.
Service components include a detailed set of definition metadata used to
describe the service to the information system. Services can be aggregated into
module assemblies. The module assemblies are used to establish related design
concerns and begin the planning to determine what teams will collaborate to
implement the related services to be deployed as a single unit.

The resulting set of business process definitions, services, and schemas make
up the logical architecture of the application. The enterprise architect must then
map that logical architecture to a physical architecture.

Figure 1-3 SOA Foundation Reference Architecture: middleware services view

1 This flow describes a top-down approach. Other variations include a bottom-up approach and
the more common meet-in-the-middle approach.

Business Innovation & Optimization Services
Facilitates better decision-making

with real-time business information

Interaction Services
Enables collaboration

between people,
processes & information

Process Services
Orchestrate and

automate business
processes

Information Services
Manages diverse

data and content in a
unified manner

Facilitates communication ESB between services

Partner Services
Connect with trading

partners

Business App Services
Build on a robust,

scaleable, and secure
services environment

Access Services
Facilitates interactions

with existing information
and application assets

Infrastructure Services
Optimizes throughput,

availability and performance

Integrated
environment

for design
and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

D
ev

el
op

m
en

t S
er

vi
ce

s

IT
 S

er
vi

ce
M

an
ag

em
en

t

6 Patterns: SOA Foundation Service Connectivity Scenario

We include a summary description for each of the services found in the logical
architecture displayed in Figure 1-3 on page 6. The services found in the center
of Figure 1-3 on page 6 (Interaction, Process, Information, Partner, Business
Application, Access) are the core set of services used by the application within
the runtime environment when deployed. The other services displayed in the
Figure 1-3 on page 6 (outer services) are used in support of the core services.

Core components of the logical architecture
This section includes a brief description of the following core components of the
logical architecture:

� Interaction Services
� Process Services
� Business Application Services
� Information Services
� Access Services
� Partner Services

Interaction Services
Interaction Services provide the capabilities required to deliver IT functions and
data to users, meeting their specific preferences.

Process Services
Process Services provide the control capabilities required to manage the flow
and interactions of multiple services in ways that implement business processes.

Business Application Services
Business Application Services are called by service consumers. Service
consumers include other components in the logical architecture such as portal or
business processes.

Information Services
Information Services provide the capabilities necessary to federate, replicate,
and transform disparate data sources.

Access Services
Access Services provide bridging capabilities between core applications,
prepackaged applications, enterprise data stores, and the ESB to incorporate
services that are delivered through existing applications into an SOA.

Partner Services
Partner Services provide the document, protocol, and partner management
capabilities for business processes that involve interactions with outside partners
and suppliers.
 Chapter 1. IBM SOA Foundation 7

Supporting components of the logical architecture
This section includes a brief description of the supporting components of the
SOA Foundation logical architecture used in support of the core components:

� Enterprise Service Bus
� Business Innovation and Optimization Services
� Development Services
� IT Service Management
� Infrastructure Services

Enterprise Service Bus
The Enterprise Service Bus (ESB), or simply bus, provides an infrastructure that
removes the direct connection dependency between service consumers and
providers. Consumers connect to the bus and not the provider that actually
implements the service. This type of connection further decouples the consumer
from the provider. A bus also implements further value-add capabilities such as
security and delivery assurance. We prefer that you implement these capabilities
centrally within the bus at an infrastructure level rather than within the
application. The primary driver for an ESB, however, is that it increases
decoupling between service consumers and providers.

Although building a direct link between a consumer and provider is relatively
straightforward, these links can lead to an Interaction pattern that consists of
building multiple point-to-point links that perform specific interactions. With a
large number of interfaces this quickly leads to the buildup of a complex mass of
links with multiple security and transaction models. When routing control is
distributed throughout the infrastructure, there is typically no consistent approach
to logging, monitoring, or systems management. This type of environment is
difficult to manage or maintain and inhibits change.

Business Innovation and Optimization Services
Business innovation and optimization services are primarily used to represent
the tools and the metadata structures for encoding the business design,
including the business policies and objectives.

Note: An ESB can be thought of as an architectural pattern, with an
implementation to match the deployment needs. There are two IBM ESB
products:

� IBM WebSphere Enterprise Service Bus
� IBM WebSphere Message Broker

In addition, there are a number of products that extend the capabilities of
these ESBs, including DataPower® XML Security Gateway XS40.
8 Patterns: SOA Foundation Service Connectivity Scenario

Business innovation and optimization services exist in the architecture to help
capture, encode, analyze, and iteratively refine the business design. The
services also include tools to help simulate the business design. The results are
used to predict the effect of the design, including the changes the design will
have on the business.

Development Services
Development services encompass the entire suite of architecture tools,
development tools, visual composition tools, assembly tools, methodologies,
debugging aids, instrumentation tools, asset repositories, discovery agents, and
publishing mechanisms needed to construct an SOA-based application.

IT Service Management
Once the application has been deployed to the runtime environment it needs to
be managed along with the IT infrastructure on which it is hosted. IT service
management represents the set of management tools used to monitor your
service flows, the health of the underlying system, the utilization of resources, the
identification of outages and bottlenecks, the attainment of service goals, the
enforcement of administrative policies, and recovery from failures.

Infrastructure Services
Infrastructure services form the core of the information technology runtime
environment used for hosting SOA applications. These services provide the
ability to optimize throughput, availability, performance, and management.

1.3 SOA Foundation scenarios
The SOA Foundation scenarios (or simply SOA scenarios) are representative of
common scenarios of use of IBM products and solutions for SOA engagements.
The SOA scenarios quickly communicate the business value, architecture, and
IBM open standards-based software used within the SOA scenario. The SOA
scenarios can be implemented as part of an incremental adoption of SOA
growing from one scenario to using elements of multiple scenarios together. The
concept of realizations are used to provide more specific solution patterns and
IBM product mappings within the SOA scenarios.

The SOA scenarios can be used as a reference architecture implementation
(starting point) to accelerate the SOA architecture and implementation of your
customer scenario.
 Chapter 1. IBM SOA Foundation 9

Figure 1-4 SOA scenarios and entry points

Figure 1-4 displays the SOA scenarios and the relationships between them:

� Service Creation

More details about this scenario can be seen in Patterns: SOA Foundation
Service Creation Scenario, SG24-7240.

� Service Connectivity

This book focuses on the Service Connectivity scenario.

� Interaction and Collaboration Services

� Business Process Management

More details about this scenario can be seen in Patterns: Business Process
Management with the SOA Foundation, SG24-7234.

� Information as a Service

The scenarios can be used together and adopted incrementally. For example,
the other scenarios commonly include service creation and often want
connectivity. In addition, the scenarios can be used together, such as a portal
10 Patterns: SOA Foundation Service Connectivity Scenario

accessing a business process or a portal accessing an information service
through an ESB from a service consumer.

SOA Design, Governance, Security, and Management can be used in each of
the SOA scenarios based on customer requirements.

SOA Governance can be used to adopt SOA across the enterprise in a
controlled manner with the objective of aligning the SOA initiative with the
business objectives. Governance includes setting a baseline for measuring
improvements, tracking SOA projects, building a pool of skilled resources, and
establishing the structure for making decisions about SOA initiatives.

Companies that adopt an SOA need a solution for managing and monitoring
services. In addition, they need of a security model that enables secure business
transactions across enterprises and the Internet. The security domain includes
topics such as authentication, single sign-on, authorization, federated identity
management, and user provisioning.

1.4 Service Connectivity scenario
The Service Connectivity scenario is used to demonstrate the integration of
service providers and consumers, allowing for the reuse of existing and new
services across multiple channels. This scenario is appropriate for an enterprise
that has a set of core services or systems that are to be made available as
services to a variety of internal and external clients. Flexibility to make changes
to service providers and make changes to service clients independent from each
other is a requirement.

The focus of this scenario is on the underlying connectivity used to support
business-centric SOA. An enterprise service bus provides decoupling between
clients and providers, providing the flexibility to implement applications more
quickly. In circumstances where services are provided to or consumed from a
third party, an ESB gateway can be used in conjunction with the ESB to add
security measures. An ESB gateway alone may be sufficient if all of your service
interactions are with third parties and you have basic requirements to mediate
between service consumers and providers.

Implementations of this scenario have the following features:

� Enables changes to the implementation of a service without affecting clients

� Registers services to a service registry

� Uses an enterprise service bus as the integration point between service
providers and service consumers
 Chapter 1. IBM SOA Foundation 11

� Enables clients to access a service with a different interface and protocol than
what the service consumer supports

� Uses an ESB gateway to isolate and protect services

� Enables management and monitoring of services to insure service level
agreements

� Provides security and credential mapping (where needed) to insure proper
use of the services

Specific connectivity and integration requirements for an enterprise ultimately
drive product selection of the ESB and supporting products. The choice of
runtime products may include one or more of the following:

� WebSphere Message Broker

� WebSphere Enterprise Service Bus

� IBM DataPower SOA Appliances

� Web Services Gateway (WebSphere Application server Network
Deployment V6)

� WebSphere Adapters

� WebSphere Service Registry and Repository (available 2H06)

The choice of SOA life cycle products depends largely on the runtime products
selected. The following products can be used to support the runtime
environment:

� WebSphere Message Broker Toolkit

� Rational® Application Developer

� WebSphere Integration Developer

� IBM Tivoli® Composite Application Manager for SOA (ITCAM for SOA)

� IBM Tivoli Composite Application Manager for WebSphere (ITCAM for
WebSphere)

� IBM Tivoli Composite Application Manager for RTT V6.0 (TCAM for RTT)

� OMEGAMON® for Messaging

� Tivoli Access Manager

� Tivoli Federated Identity Manager
12 Patterns: SOA Foundation Service Connectivity Scenario

Realizations have been developed that will help you understand how the
scenario can be used and how products are selected. A realization is an example
business case that describes a customer situation and the solution. We have
included a summary of the following common realizations of the Service
Connectivity scenario:

� Secure connections to third parties and trading partners: For use when
interactions with third parties are present and mediation requirements are
basic

� Internal connectivity based on open standards: For use with standards-based
interactions that require routing capabilities

� Adapt from third-party systems to Web services: For use when requiring
access to EIs systems

� Deliver an existing process through new business channels: For use in a
diverse, non-standards based environment

1.4.1 Secure connections to third parties and trading partners
An ESB gateway can be used alone or in conjunction with an ESB to provide
controlled and secure service interaction between internal or external domain
boundaries. In this realization, its primary function is to provide secure access to
resources when interacting with third parties. An ESB gateway can also provide
basic functionality such as protocol switching and message switching to enable
interaction between service consumers and service providers.

This realization assumes that the customer has adopted standards-based
technology, has an existing infrastructure, and has the following business
requirements:

� Standards-based requestors/providers use SOAP/HTTP for transport.

� Dynamically add new providers and requestors at runtime.

� Support a defined, high response time with a moderate load.

� SOA security for interaction with requestors and providers. Security may need
to be adapted between the requestors and providers.

� Requests and responses must be logged to a file.

The following technical requirements have been identified:

� Many services deployed require the same mediation flow. An ESB gateway
minimizes administration and streamlines the process for making new
services available.

� Services must be monitored for performance and usage.
 Chapter 1. IBM SOA Foundation 13

� Monitoring for all components must be integrated into the existing
management infrastructure.

The IBM products used for this realization are as follows:

� Deploy: IBM DataPower XML Security Gateway XS40

The customer chooses the DataPower XS40 model for the runtime. The
XS40 is designed specifically to provide XML acceleration and SOA security
and can provide the basic mediation functions required. Because the
requirements for mediating the interaction between consumers and providers
is met, the XS40 as an ESB gateway is sufficient and no ESB product is
required.

� Assemble: DataPower Toolkit

� Manage: IBM Tivoli Composite Application Manager for SOA

ITCAM for SOA is used to monitor Web services flowing through the
DataPower appliance.

� Manage: Tivoli Access Manager

The XS40 can be integrated with Tivoli Access Manager to secure
applications.
14 Patterns: SOA Foundation Service Connectivity Scenario

Figure 1-5 shows an overview of the runtime topology.

Figure 1-5 Gateway runtime topology

1.4.2 Internal connectivity based on open standards
This solution provides multi-channel access for clients to an existing service with
a range of connectivity options for standards-based clients and services. With
this type of connectivity, a client can request a secure service without knowledge
of its location. Transparent to the client, requests can be routed to the service
that can best handle the request. Also transparent to the client is the message
format and transport protocol required to access the provider. The response
could be immediate or delayed.

This realization assumes that the customer has adopted standards-based
technology, has an existing WebSphere Application Server infrastructure, and
has the following business requirements:

� Provide integration of multiple client channels to service providers.

� Provide routing of client requests to the appropriate service provider.

� Intranet environment that does not require WS-Security or other complex
security considerations.

� Support moderate volume of requests.

WebSphere
Application Server

Standalone
Java

.NET client

WebSphere
Portal Server SOAP/HTTP

SOAP/HTTP

SOAP/HTTP

SOAP/HTTP

WebSphere Web
serviceSOAP/HTTP

.NET Web service
SOAP/HTTP

Tivoli Access
Manager

Tivoli Composite
Application

Manager for SOA

IBM DataPower XML Security
Gateway XS40
 Chapter 1. IBM SOA Foundation 15

The following technical requirements have been identified:

� Message data from clients must be examined in order to determine the
service provider to route the request to.

� Clients and service providers use JMS, SOAP/JMS, or SOAP/HTTP.

� Data transformation is required. This should be done with XSLT.

The core IBM products used for this realization are as follows:

� Deploy: WebSphere Enterprise Service Bus

WebSphere ESB provides the transport flexibility to support the transports
required by the customer. WebSphere ESB also has the mediation
capabilities required to perform the message routing and transformation
required.

� Assemble: WebSphere Integration Developer

WebSphere Integration Developer is the development and assembly tool for
building WebSphere ESB mediations.

� Manage: IBM Tivoli Composite Application Manager for SOA

ITCAM for SOA will be used to monitor and manage message traffic between
Web services.

� Governance: WebSphere Service Registry and Repository

WebSphere Service Registry and Repository is used to register business
services for endpoint lookup.
16 Patterns: SOA Foundation Service Connectivity Scenario

Figure 1-6 shows an overview of the runtime topology.

Figure 1-6 Local integration runtime

1.4.3 Adapt from third-party systems to Web services
An ESB can be used to provide access to EIS systems through the use of
adapters. Mediations in the ESB are used to adapt the client request to a form
understood by the adapter, and then to adapt the response to the client’s format.

This realization assumes that the customer has adopted standards-based
technology, has an existing WebSphere Application Server infrastructure, and
has the following business requirements:

� Provide Web service access to functionality in an enterprise information
system such as SAP R/3, PeopleSoft, or Oracle Financials.

� The intranet environment does not require WS-Security or other complex
security considerations.

� The integration is based on message exchange/data replication scenarios —
there is no business process or data synchronization between clients and EIS
systems.

� It supports a moderate volume of requests.

The following technical requirements have been identified:

� The targeted integration is point-to-point, although multiple EISs can be
exposed as Web services at the same time.

Web service
client SOAP/JMS

SOAP/HTTP

WebSphere MQ

Web service
providerSOAP/JMS

Tivoli Composite
Application

Manager for SOA

WebSphere ESB

Web service
client

Web service
providerSOAP/HTTP

MQMessaging client JMS

WebSphere
Service Registry
and Repository
 Chapter 1. IBM SOA Foundation 17

� Data transformation is required. This should be done with XSLT.

� Log the messages as they flow through the hub — we want to log
asynchronously to a file.

The IBM products used for this realization are as follows:

� Deploy: WebSphere Enterprise Service Bus and WebSphere Adapters

WebSphere ESB supports the SOAP/HTTP transport required by the
customer. WebSphere Adapters provide the EIS adapters required.
WebSphere ESB also provides the mediation capability required to do XSLT
transformation on the data and includes a logging function to log messages
as they flow through the mediation.

� Assemble: WebSphere Integration Developer

WebSphere Integration Developer is the development and assembly tool for
building WebSphere ESB mediations. It includes the enterprise discovery
capabilities needed to incorporate the WebSphere Adapters into the
mediation applications.

� Manage: IBM Tivoli Composite Application Manager for SOA and IBM Tivoli
Federated Identity Manager

ITCAM for SOA will be used to monitor and manage message traffic between
Web services. Tivoli Federated Identity Manager is used to manage identity
and access to resources that span companies or security domains.

Figure 1-7 shows an overview of the runtime topology.

Figure 1-7 Adapt from third-party systems to Web services - runtime

Web service
client SOAP/JMS

SOAP/HTTP

SAP R/3
SAP adapter

Siebel
Siebel adapter

Tivoli Composite
Application

Manager for SOA

WebSphere ESB

Web service
client

PeopleSoft
PeopleSoft

adapter

Tivoli Federated
Identity Manager
18 Patterns: SOA Foundation Service Connectivity Scenario

1.4.4 Deliver an existing process through new business channels
An integration solution that includes a range of diverse business applications
must provide connectivity for a wide range of service consumers and service
providers as well as advanced options for message mediation, including
message augmentation, message routing, and the ability to decompose
messages into multiple requests and to recompose the responses.

This type of connectivity would provide the most advanced options for integrating
dissimilar and wide-spread service consumers and service providers. Clients can
request a secure service that may be provided by one or more service providers
with the service composition occurring within the ESB. Services and clients also
have a wide range of connectivity options. Connectivity to heritage applications
as well as standards-based applications are managed by the ESB.

This realization assumes that the customer has extensive heritage systems as
well as newer Web services based systems and has the following business
requirements:

� Providers use a variety of heterogeneous protocols.

� Any provider must be accessible via basic Web services that will be used by a
variety of clients.

� They must support moderate volume of requests.

� The intranet environment does not require SOA security or other complex
security considerations.

� Global transactions across multiple heterogeneous transaction managers for
some providers.

The following technical requirements have been identified:

� The ESB must support communication protocol conversion.

� The ESB must support flexible data model conversion, with acceptable
performance and adequate tooling.

� There must be an enterprise class persistent messaging backbone.

� There must be global transactions management.

� The ESB must adapt the service definitions between the requestors and
providers.

The IBM products used for this realization are as follows:

� Deploy: WebSphere Message Broker, WebSphere MQ, and WebSphere
Adapters

WebSphere Message Broker is selected to provide the ESB capabilities,
including mediation support. WebSphere MQ will be used to provide an
 Chapter 1. IBM SOA Foundation 19

enterprise class persistent messaging backbone. This combination supports
the wide variety of transport protocols and conversions required for the
integration solution. WebSphere Adapters provide connectivity to traditional
systems.

� Assemble: Message Brokers Toolkit

The Message Brokers Toolkit is the development tool for building mediation
message flows in WebSphere Message Broker and provides the runtime
configuration and management tools.

� Manage: IBM Tivoli Federated Identity Manager, IBM Tivoli Access Manager

Tivoli Access Manager provides a centralized, flexible, and scalable access
control solution that enables you to control user access to protected
information and resources. Tivoli Federated Identity Manager is used to
manage identity and access resources that span companies or security
domains.

� Manage: IBM Tivoli OMEGAMON XE for Messaging

Tivoli OMEGAMON XE for Messaging is used to monitor and manage the
WebSphere MQ and WebSphere Message Broker environments.

Figure 1-8 shows an overview of the runtime topology for this realization.

Figure 1-8 Expose existing systems to heterogeneous clients - runtime

WebSphere
Application Server

.NET client

WebSphere
Portal Server SOAP/JMS

SOAP/HTTP

SOAP/HTTP

WebSphere Message
Broker WebSphere

Application ServerSOAP/JMS

.NET provider
SOAP/HTTP

Perl provider
XML/HTTP

CICSCOBOL
Copybook / MQ

IMS
XML/MQ

WebSphere MQ

Tivoli Federated
Identity Manager

Tivoli Access
Manager

OMEGAMON XE
for Messaging
20 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 2. Process for applying SOA
scenarios

A process for selecting SOA scenarios and related reusable patterns assets has
been designed and documented in Patterns: SOA Foundation Service Creation
Scenario, SG24-7240. This process can be use by specialists in pre-sales and
post-sales roles, and by architects in a customer/consulting engagement.

Within this process, generic use cases have been designed to be representative
of SOA capabilities possible with the software used in the SOA scenarios. The
process includes a selection table that maps the generic use cases to the
appropriate SOA scenario. Once the SOA scenario is identified, the user can
then reference the related reusable patterns assets to help accelerate the
solution design.

This chapter gives a brief overview of the SOA scenario selection process and
discusses the generic use cases that lead to the Service Connectivity scenario. It
then gives a brief introduction to Patterns for e-business.

This chapter contains the following topics:

� Process for using SOA scenarios and patterns
� Reuse patterns assets to accelerate the solution architecture

2

© Copyright IBM Corp. 2006. All rights reserved. 21

2.1 Process for using SOA scenarios and patterns
This section gives a brief overview of the process for using SOA scenarios and
patterns. This process is discussed in detail in Patterns: SOA Foundation
Service Creation Scenario, SG24-7240.

Figure 2-1 depicts the high-level process for applying the SOA scenarios and
related patterns.

Figure 2-1 Process for using SOA scenarios and patterns

Below is a brief description of each phase of the high-level process depicted
Figure 2-1:

1. Capture the Customer Requirements.

The collection of the customer requirements is a standard activity for
development methodologies (for example, RUP® or IBM Method). This

Fit-Gap Analysis
of Generic
Use Cases

Select SOA
scenario

Capture Customer
Requirements

Reuse patterns
assets to accelerate
solution architecture

Implementation
Guides
22 Patterns: SOA Foundation Service Connectivity Scenario

includes an initial context, a vision of where the customer wants to be, and
use cases representing the refined customer requirements.

2. Fit-gap analysis of generic use cases.

The business analyst or architect evaluates which of the generic use cases
are representative of the defined customer requirements (use cases).

3. Select the SOA scenario.

The business analyst or architect can use the SOA scenario selection table
(see Table 2-1 on page 24), which lists the generic uses cases and the SOA
scenario that enables the use case.

Once you have selected the SOA scenario, you have two options of where to
go next:

– Reuse patterns assets to accelerate the solution architecture.

This option is appropriate if you are interested in reusable assets for the
architecture and design of the solution. This option also leads to the
implementation guides.

or

– Select the implementation guide (model, assemble, deploy, manage).

This option is appropriate if you are interested in a working example that
demonstrates how to implement the scenario (model, assemble, deploy,
manage).

4. Reuse patterns assets to accelerate the solution architecture.

We have mapped the reusable assets found in the Patterns for e-business for
each of the SOA scenarios. The reusable assets are used to accelerate the
solution architecture.

If you select this option, you will first learn about Patterns for e-business in
2.2, “Reuse patterns assets to accelerate the solution architecture” on
page 26, and then proceed to Chapter 3, “Patterns for e-business and
Service Connectivity” on page 31.

5. Select the implementation guide (model, assemble, deploy, manage).

Note: The upward pointing arrow in Figure 2-1 on page 22 between Select
the SOA scenario and Fit-Gap Analysis is a special case where the user
already owns the software representative of an SOA scenario, and wants
to know how to leverage the SOA capabilities of the software. As is the
case in this book, the user knows the SOA scenario and will look at what
generic use cases are possible in the SOA scenario selection table (see
Table 2-1 on page 24).
 Chapter 2. Process for applying SOA scenarios 23

Once you have identified the SOA scenario, and optionally the corresponding
patterns, you can go to the corresponding implementation guide. The
implementation guides provide detailed examples demonstrating how to
implement selected use cases for the SOA offering. This includes
implementation details for each phase of the life cycle using the solution
offering software (model, assemble, deploy, manage).

This book is the implementation guide for the Service Connectivity scenario.
Details about designing and implementing the ITSOMart solution can be seen
starting with Chapter 4, “Planning for connectivity” on page 67.

Other works of interest are:

– Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212
– Patterns: Implementing Self-Service in an SOA Environment, SG24-6680
– Enabling SOA Using WebSphere Messaging, SG24-7163

2.1.1 SOA scenario selection table
A set of generic use cases has been developed to be used as selection criteria to
determine the appropriate SOA scenario. Table 2-1 lists the generic use cases
and corresponding SOA scenarios that fulfill the use case requirement.

Table 2-1 SOA scenario selection criteria

Generic use cases selection criteria S
er

vi
ce

 C
re

at
io

n

S
er

vi
ce

 C
o

n
n

ec
ti

vi
ty

In
te

ra
ct

io
n

 a
n

d
C

o
lla

b
o

ra
ti

o
n

 S
er

vi
ce

s

B
u

si
n

es
s

P
ro

ce
ss

M
an

ag
em

en
t

In
fo

rm
at

io
n

 a
s

a
S

er
vi

ce

U1: Reuse existing or create new application logic as a service within
the enterprise.

X

U2: Reuse existing or create new application logic as a service beyond
the enterprise.

X

U3: Point-to-point integration of enterprise applications using services. X

U4: Point-to-point integration of intra-enterprise applications using
services.

X

U5: Allow users to invoke services simply. X
24 Patterns: SOA Foundation Service Connectivity Scenario

Because this book focuses on the Service Connectivity scenario, we next look
specifically at the use cases that lead you to this scenario. If these use cases do
not apply to your situation, consider going back to Patterns: SOA Foundation
Service Creation Scenario, SG24-7240, to explore the remaining use cases.

U6: Enable loose coupling of service consumers and providers using
static routing.

X

U7: Enable loose coupling of service consumers and providers using
dynamic routing based on standards-based protocols.

X

U8: Enable loose coupling of service consumers and providers using
advanced dynamic routing and diverse protocols.

X

U9: Improve an existing business process flow through business
process and policy modeling and simulation.

X

U10: Implement a new business process flow. X

U11: Analyze existing business process flow using monitoring. X

U12: Allow single-sign-on access to different services. X

U13: Personalize information based on user profile. X

U14: Allow users to create and manage content. X

U15: Allow users to Access Services through client devices. X X

U16: Allow users to perform information inquiries. X

U17: Populate information. X

U18: Allow users seamless access to diverse data sources. X

Generic use cases selection criteria S
er

vi
ce

 C
re

at
io

n

S
er

vi
ce

 C
o

n
n

ec
ti

vi
ty

In
te

ra
ct

io
n

 a
n

d
C

o
lla

b
o

ra
ti

o
n

 S
er

vi
ce

s

B
u

si
n

es
s

P
ro

ce
ss

M
an

ag
em

en
t

In
fo

rm
at

io
n

 a
s

a
S

er
vi

ce
 Chapter 2. Process for applying SOA scenarios 25

Generic use cases for the Service Connectivity scenario
The following generic use cases have been identified as leading to the Service
Connectivity scenario:

� U6: Enable loose coupling of service consumers and providers using static
routing.

A customer wishes to decouple the point-to-point connections between
service consumers and service providers. A middle tier is added to provide
routing between the consumer and provider. The middle tier provides static
routing, where a request for a particular service from a consumer is always
routed to the same service provider. The middle tier provides connection
security and basic protocol and message transformation between consumers
and providers.

� U7: Enable loose coupling of service consumers and providers using dynamic
routing and standards-based protocols.

A customer wishes to decouple the point-to-point connections between
service consumers and service providers. A middle tier is added to provide
routing between the consumer and provider. Dynamic routing determines the
service provider to use based on routing rules applied to the request received
from the service consumer. The middle tier provides connection security. It
also provides basic protocol and message transformation between
standards-based consumers and providers.

� U8: Enable loose coupling of service consumers and providers using
advanced dynamic routing and diverse protocols.

A customer wishes to extend the loose coupling between service consumers
and service providers to include conversion of the message format or protocol
used by the service consumer to a suitable message format and protocol
understood by the service provider. This requires a middle tier between the
service consumer and provider to perform the conversion. The middle tier
provides an advanced degree of routing logic, allowing the invocation of
multiple services providers from a single service consumer request, in which
case the middle tier must disaggregate and aggregate requests and
responses from the service providers. The middle tier provides connection
security. It also provides advanced protocol and message transformation
between a diverse set of consumers and providers.

2.2 Reuse patterns assets to accelerate the solution
architecture

The target audience of this section is IT architects interested in leveraging the
knowledge captured in the Patterns for e-business, with the objective of
accelerating the solution architecture.
26 Patterns: SOA Foundation Service Connectivity Scenario

2.2.1 Introduction to the Patterns for e-business
The role of the IT architect is to evaluate business problems and build solutions
to solve them. The architect begins by gathering input about the problem,
developing an outline of the desired solution, and considering any special
requirements that need to be factored into that solution. The architect then takes
this input and designs the solution, which can include one or more computer
applications that address the business problems by supplying the necessary
business functions.

To improve the process over time, we need to capture and reuse the experience
of the IT architects in such a way that future engagements can be made simpler
and faster. We do this by capturing knowledge gained from each engagement
and using it to build a repository of assets. IT architects can then build future
solutions based on these proven assets. Reusing proven assets saves time,
money, and effort and helps ensure delivery of a solid, properly architected
solution.

IBM Patterns for e-business (P4eb) facilitate this reuse of assets. Their purpose
is to capture and publish e-business artifacts that have been used, tested, and
proven to be successful. The information captured by them is assumed to fit the
majority, or 80/20, situation.

Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last and include:

� Customer requirements, which ultimately define the selected solution. We
have developed a series of generic use cases that are representative of
common SOA scenarios. The customer requirements are analyzed and when
appropriate mapped to the generic use cases. The generic use cases are
used as selection criteria to identify the appropriate SOA scenario and
reusable patterns assets.

� Business patterns, which identify the interaction between users, businesses,
and data.

� Integration patterns, which tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns, which represent commonly occurring combinations of
Business patterns and Integration patterns.
 Chapter 2. Process for applying SOA scenarios 27

� Application patterns, which provide a conceptual layout that describes how
the application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns, which define the logical middleware structure that supports
and Application pattern. Runtime patterns depict the major middleware
nodes, their roles, and the interfaces between these nodes.

� Product mappings, which identify proven and tested software
implementations for each Runtime pattern.

� Best-practice guidelines, which discuss design, development, deployment,
and management of e-business applications.

Figure 2-2 shows these assets and their relationships to each other.

Figure 2-2 The Patterns for e-business layered asset model

Best-Practice Guidelines
Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology Runtime

patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
28 Patterns: SOA Foundation Service Connectivity Scenario

Summary description of Business patterns
Table 2-2 provides a brief description of the Business, Integration, and
Composite patterns.

Table 2-2 Summary description for the Business, Integration, and Composite patterns

Patterns for e-business Web site
The layers of patterns, along with their associated links and guidelines, allow the
architect to start with a problem and a vision for the solution and then find a
pattern that fits that vision. In order to navigate from top down from one level to

Business, Integration,
Composite Pattern

Description

Self-Service The Self-Service business pattern captures the essence of direct
interactions between interested parties and a business. Interested parties
include customers, business partners, stakeholders, employees, and all
other individuals with whom the business intends to interact.

Collaboration The Collaboration business pattern enables interaction and collaboration
between users. This pattern can be observed in solutions that support
small or extended teams that need to work together in order to achieve a
joint goal.

Extended Enterprise The Extended Enterprise business pattern covers interactions between
applications from different enterprises. This pattern can be observed in
solutions that implement programmatic interfaces to connect
inter-enterprise applications.

Information Aggregation The Information Aggregation business pattern exists in e-business
solutions that allow users to access and manipulate data that is
aggregated from multiple sources. This Business pattern captures the
process of taking large volumes of data, text, images, video, and so on,
and using various user-controlled tools to extract useful information from
them.

Application Integration The Application Integration pattern serves to integrate multiple Business
patterns or to integrate applications and data within an individual Business
pattern.

Access Integration The Access Integration pattern gives users a single, consistent, and
seamless access mechanism to various applications that would otherwise
require the use of several different access mechanisms.

Portal Composite The Portal Composite pattern leverages various mechanisms (for
example, content management, user interface formatting and display, data
aggregation) to bring together the appropriate information and existing
systems to serve the goals of the business.
 Chapter 2. Process for applying SOA scenarios 29

another, a decision matrix will be provided to assist the architect in making the
right decision.

Then, by drilling down using the patterns process, the architect can further define
the additional functional pieces that the application needs to succeed. Finally, the
architect can build the application using coding techniques that are outlined in
the associated guidelines.

The Patterns Web site provides an easy way of navigating through the layered
Patterns assets to determine the most appropriate assets for a particular
engagement.

For easy reference, see the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

2.2.2 Patterns for the SOA scenarios
Once we know which SOA scenario meets our customer requirements, the next
step is to identify reusable assets found in the Patterns for e-business that we
can leverage to accelerate the creation of our solution architecture.

This book is the primary reference for the Service Connectivity scenario.

For a description of patterns that apply to the Service Connectivity scenario, see
Chapter 3, “Patterns for e-business and Service Connectivity” on page 31.

Other works of interest are:

� Self-Service business pattern

– The Self-Service business pattern found at:

http://www.ibm.com/developerworks/patterns/u2b/index.html

– Patterns: Implementing Self-Service in an SOA Environment, SG24-6680

� Application Integration pattern

– The Application Integration pattern found at:

http://www.ibm.com/developerworks/patterns/application/index.html

– Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

� Extended Enterprise business pattern

– The Extended Enterprise business pattern found at:

http://www.ibm.com/developerworks/patterns/b2bi/index.html

– Patterns: Extended Enterprise SOA and Web Services, SG24-7135
30 Patterns: SOA Foundation Service Connectivity Scenario

http://www.ibm.com/developerworks/patterns/b2bi/index.html
http://www.ibm.com/developerworks/patterns/application/index.html
http://www.ibm.com/developerWorks/patterns/
http://www.ibm.com/developerworks/patterns/u2b/index.html

Chapter 3. Patterns for e-business and
Service Connectivity

A process for selecting SOA scenarios and related reusable patterns assets was
outlined in Chapter 2, “Process for applying SOA scenarios” on page 21. Within
this process, you were given the option to reuse patterns assets to accelerate
solution architecture. That option leads you to this chapter, which gives a brief
overview of the patterns relevant to the Service Connectivity scenario.

In Chapter 4, “Planning for connectivity” on page 67, you will see an example of
using the process to select a SOA scenario and the appropriate Business and
Application pattern.

This chapter contains the following topics:

� The role of an enterprise service bus
� Business pattern and Application pattern selection
� Runtime pattern selection
� Self-Service business pattern
� Application Integration pattern
� Extended Enterprise business pattern

3

© Copyright IBM Corp. 2006. All rights reserved. 31

3.1 The enterprise service bus
One of the first questions we often encounter is “What is an enterprise service
bus?” The favorite answer is “It depends.” This is due to the overloading of the
term. You must understand the context of the question before the answer is
apparent. The enterprise service bus is a physical component of the IBM SOA
Foundation and a design pattern that is widely accepted throughout the industry.

An ESB runtime pattern has been identified and detailed in Patterns: SOA with
an Enterprise Service Bus in WebSphere Application Server V6, SG24-6494.

Figure 3-1 illustrates the IBM Patterns for e-business ESB Pattern.

Figure 3-1 ESB Pattern

There are a few key differences between this design pattern and previous design
patterns (for example, hub-and-spoke). The ESB design pattern has specific
components that are not a part of previous integration design patterns. For
example, most EAI design patterns did not show a namespace directory. The
concept of a namespace comes from XML and allows two elements to have the
same name so long as their name spaces are different. It is also important to
note that an ESB is under the control of a single administrative services
infrastructure.

E n terp rise

ESB N am espace
D irectory

O
utbound

P
ort 1

O
utbound

P
ort 2

O
utbound

Port 3

Inbound
Port 1

Inbound
Port 2

Inbound
P

ort 3

Zone: ESB

ESB

The Service
R equester-specific
invocation protocol

A s ingle adm inistration
in frastructure

Adm inistration
Services

Service R equesters

The ESB N am espace
nam e has been m apped
to an outbound port
address

The outbound port
m aps the m essage to
m eet the Serv ice
Provider's
requirem ents

An ESB N am espace
nam e is used over
these connections

This m aps all the ESB
N am espace nam es to
their endpoints

D E F

A B C

Service Providers

H ub
32 Patterns: SOA Foundation Service Connectivity Scenario

In Figure 3-2 the ESB is depicted as a logical component in a service-oriented
architecture. It acts as the mediator between the service consumers and service
providers. The service providers and service consumers never interact directly.
They always use the ESB as a mediator. The ESB provides services to resolve
differences in protocol and format, and decouples the service consumer from the
service provider.

Figure 3-2 ESB and SOA

Tip: For more information about IBM Patterns for e-business go to:

http://www.ibm.com/developerworks/patterns

Infrastructure components
for service-oriented
architecture

Internal
Service

Providers

ESB Gateway

Business
Service

Choreography

Business Service
Directory

 ESB Namespace
Directory

Enterprise Service Bus

Routing, transformation,
mediations, security, and so forth

External
Service

Providers

Internal
Service

Requesters

External
Service

Requesters
 Chapter 3. Patterns for e-business and Service Connectivity 33

http://www.ibm.com/developerworks/patterns

The ESB is a software package. IBM currently offers two ESB products that
serve two different markets. WebSphere ESB is built on proven messaging and
Web services technologies, and it provides standards-based Web services
connectivity and XML data transformation. WebSphere Message Broker is an
advanced ESB product that provides universal connectivity (including Web
services) and any-to-any data transformation. See Figure 3-3.

Figure 3-3 IBM ESB products

As you can see, the ESB is a powerful addition to an enterprise integration
architecture. It enables faster, simpler, and more flexible integration, which
allows your integration to respond at the speed of the business. It also shrinks
the number of interfaces and improves the reusability of interface components to
cut cycle time from design to deployment.

Tip: More information about IBM ESB can be found here:

http://www-306.ibm.com/software/info/middleware/applications/index.jsp

Tip: Additional reading material on ESB patterns, products, and how they fit
into a service-oriented architecture can be found at:

http://www-128.ibm.com/developerworks/architecture/application.html

If all your applications conform
to the Web Services
standards…

If not all your applications
conform to the Web Services
standards…

…then all you may require is an ESB
focused on standards-based service
integration.

…then you may require a more advanced ESB
focused on the integration of services with
existing non-services assets.

Enterprise Service Bus

Book Flight
Application

Check Credit
Application

Book Hotel
Application

Book Car
Application

Check
Traveler

Application

Flight
Availability
Application

Travel
Reservation

Process

Check
Traveler
Service

Book Flight
Service

Check Credit
Service

1 2

Book Hotel
Service

Hotel
Availability

Service
Book Car
Service

Flight
Availability

Service

Travel
Reservation

Process

Hotel
Availability

Service

ADVANCED Enterprise Service Bus
34 Patterns: SOA Foundation Service Connectivity Scenario

http://www-306.ibm.com/software/info/middleware/applications/index.jsp
http://www-128.ibm.com/developerworks/architecture/application.html
http://www-128.ibm.com/developerworks/architecture/application.html

3.1.1 The role of an enterprise service bus
The use cases that lead you to the Service Connectivity scenario consistently
refer to a middle tier that provides the functionality that allows the decoupling of
the service consumer and the service provider. This middle tier can be a simple
gateway that provides basic security and static routing features. More likely, it will
be an enterprise service bus that provides advanced features to facilitate
intelligent message handling and advanced connectivity options.

An ESB introduces features that can improve responsiveness, customer service,
transaction time, and partner interactions. An ESB provides capabilities that
enhance both direct connection between applications and routing requests
among applications.

An ESB supports the concepts of SOA implementation by:

� Decoupling the consumer’s view of a service from the implementation of a
service

� Decoupling technical aspects of service interactions

� Integrating and managing services in the enterprise

Decoupling the consumer’s view of a service from the actual implementation
greatly increases the flexibility of the architecture. It allows the substitution of one
service provider for another (for example, because another provider offers the
same services for lower cost or with higher standards) without the consumer
being aware of the change or without the need to alter the architecture to support
the substitution.

This decoupling is better achieved by having the consumers and providers
interact through an intermediary. Intermediaries publish services to consumers.
The consumer binds to the intermediary to access the service, with no direct
coupling to the actual provider of the service. The intermediary maps the request
to the location of the real service implementation.

In an SOA, services are described as being loosely coupled. However, at
implementation time, there is no way to loosely couple a service or any other
interaction between systems. The systems must have some common
understanding to conduct an interaction. Instead, to achieve the benefits of loose
coupling, consideration should be given to how to couple or decouple various
aspects of service interactions, such as the platform and language in which
services are implemented, the communication protocols used to invoke services,
and the data formats used to exchange input and output data between service
consumers and providers.
 Chapter 3. Patterns for e-business and Service Connectivity 35

Further decoupling can be achieved by handling some of the technical aspects of
transactions outside of applications. This could apply aspects of interactions
such as:

� How service interactions are secured

� How the integrity of business transactions and data are maintained (for
example, through reliable messaging, the use of transaction monitors, or
compensation techniques)

� How the invocation of alternative service providers is handled in the event
that the default provider is unavailable

The role of the ESB is to fulfill these needs by providing functions such as:

� Map service requests from one protocol and address to another.

� Transform data formats.

� Support a variety of security and transactional models between service
consumers and service providers and recognize that consumers and
providers might support or require different models.

� Aggregate or disaggregate service requests and responses.

� Support communication protocols between multiple platforms with
appropriate qualities of service.

� Provide messaging capabilities such as message correlation and
publish/subscribe to support different messaging models such as events and
asynchronous request/response.

3.2 Business pattern and Application pattern selection
The benefits of an ESB can be seen in the following client-to-application and
application-to-application interaction types:

� Direct connectivity

Direct connectivity implies a one-to-one topology between the client or source
application and the target application. A direct connection is appropriate for
applications with a small number of interfaces that are not likely to be reused
by other applications. Communication can be a one-way request or follow a
request/reply pattern.

Although communication is direct, the connection can benefit from the
decoupling of the source and target and from advanced capabilities such as
protocol or data transformation, message augmentation, or security that an
ESB can provide.
36 Patterns: SOA Foundation Service Connectivity Scenario

� Router connectivity

Router connectivity is based on one-to-one connections where an interaction
is between a client or source application and, at most, one of multiple
possible target applications. Between the source and the target is a Router
tier that intercepts the request and makes a determination as to which target
to send the request to. The Router tier should provide the same capabilities
that you find in a direct connection and must be able to inspect the incoming
message for information that helps determine to which target to send the
request.

Routing features are common to ESB implementation products.

� Broker connectivity

Broker connectivity is based on one-to-N connections. An interaction from a
single client or source application is distributed to multiple target applications
concurrently. Between the source and target is a Broker tier that intercepts
the request and determines which targets to send the request to.

The Broker tier should provide the same capabilities that you find in the
Router tier. In addition, the capability of decomposing a request into multiple
requests for distribution to target applications and then recomposing the
responses for the reply to the client or source application is required. This
requirement is more advanced and may be a differentiator in the ESB product
selected.
 Chapter 3. Patterns for e-business and Service Connectivity 37

These connectivity types can be seen in the Application patterns found in
Table 3-1. This table shows Business and Integration patterns with their relevant
Application patterns that fulfill the generic use cases for the Service Connectivity
scenario.

Table 3-1 Summary of patterns for the Service Connectivity scenario

Each of these Application patterns has one or more corresponding Runtime
patterns that have a defined SOA profile. These Runtime patterns are particularly
well-suited for implementation using the Service Connectivity scenario.

Business and
Integration pattern Application pattern

Generic use cases

U
6:

 E
n

ab
le

 lo
o

se
 c

o
u

p
lin

g
 o

f
se

rv
ic

e
co

n
su

m
er

s
an

d
 p

ro
vi

d
er

s
u

si
n

g

st
at

ic
 r

o
u

ti
n

g

U
7:

 E
n

ab
le

 lo
o

se
 c

o
u

p
lin

g
 o

f
se

rv
ic

e
co

n
su

m
er

s
an

d
 p

ro
vi

d
er

s
u

si
n

g
 d

yn
am

ic

ro
u

ti
n

g
 a

n
d

 s
ta

n
d

ar
d

s-
b

as
ed

 p
ro

to
co

ls

U
8:

 E
n

ab
le

 lo
o

se
 c

o
u

p
lin

g
 o

f
se

rv
ic

e
co

n
su

m
er

s
an

d
 p

ro
vi

d
er

s
u

si
n

g
 a

d
va

n
ce

d

d
yn

am
ic

 r
o

u
ti

n
g

 a
n

d
 d

iv
er

se
 p

ro
to

co
ls

Self-Service Directly Integrated Single Channel X

Router X

Decomposition X

Application
Integration

Direct Connection X

Router variation of the Broker X

Broker X

Extended Enterprise Exposed Direct Connect X

Exposed Router variation of the Broker X

Exposed Broker X
38 Patterns: SOA Foundation Service Connectivity Scenario

3.3 Runtime pattern selection
Runtime patterns are used to define the logical middleware structure supporting
the Application patterns. In other words, Runtime patterns describe the logical
architecture required to implement an Application pattern. Runtime patterns
depict the major middleware nodes, their roles, and the interfaces between these
nodes.

When a Runtime pattern is depicted in a diagram, the corresponding Application
pattern is overlaid, illustrating the logical placement of the Application pattern
tiers within the Runtime pattern.

3.3.1 SOA profiles of the Runtime patterns
Each Runtime pattern discussed in this book has both a generic and an SOA
profile. The generic profile describes the basic implementation of each Runtime
pattern in the context of the Business pattern. The generic profile specifies an
infrastructure that can be used by all applications, including services in an SOA.

The SOA profile describes an infrastructure tailored specifically for services in an
SOA. When moving to an SOA, existing applications must first be exposed as
services.

The distinction between SOA solutions designed using the generic profile and
the SOA profile is that the SOA profile introduces and exploits more specific SOA
concepts such as an ESB. In this book we specifically focus on the use of an
ESB and only look at the SOA profiles of the Runtime patterns.

3.3.2 Runtime nodes
A Runtime pattern consists of nodes representing specific functions. Most
Runtime patterns consist of a core set of common nodes, with the addition of one
or more nodes unique to that pattern. To understand the Runtime patterns you
must review the following node definitions.

User node
The user node is most frequently a personal computing device (PC) supporting a
commercial browser, for example, Netscape Navigator or Internet Explorer. The
browser is expected to support SSL and some level of DHTML. Increasingly,
designers must also consider that this node might be a pervasive computing
device, such as a personal digital assistant (PDA).
 Chapter 3. Patterns for e-business and Service Connectivity 39

Domain Name Server (DNS) node
The DNS node assists in determining the physical network address associated
with the symbolic address (URL) of the requested information. The Domain
Name Server node provides the technology platform to provide host-to-IP
address mapping, allowing for the translation of names (URLs) into IP addresses
and vice versa.

Public Key Infrastructure (PKI)
PKI is a system for verifying the authenticity of each party involved in an Internet
transaction, protecting against fraud or sabotage, and for nonrepudiation
purposes to help consumers and retailers protect themselves against denial of
transactions. Trusted third-party organizations called certificate authorities issue
digital certificates, which are attachments to electronic messages that specify
key components of the user's identity.

During an Internet transaction using signed, encrypted messages, the parties
can verify that the other’s certificate is signed by a trusted certificate authority
before proceeding with the transaction. PKI can be embedded in software
applications or offered as a service or a product. e-business leaders agree that
PKI is critical for transaction security and integrity, and the software industry is
moving to adopt open standards for their use.

Web server redirector node
The Web server redirector node includes the function of an HTTP server (also
known as a Web server) and a redirector that can forward, or redirect, requests
to an application server. The Web server serves HTTP pages and the redirector
forwards servlet and JSP™ requests to the application servers. The advantage
of using a redirector is that you can move the application server behind the
domain firewall into the secure network, where it is more protected than within
the DMZ.

Application server node
The application server node provides the infrastructure for application logic. It is
capable of running both presentation and business logic, but generally does not
serve HTTP requests. When used with a Web server redirector, the application
server node can run both presentation and business logic. In other situations, it
can be used for business logic only.

Directory and security services node
The directory and security services node supplies information about the location,
capabilities, and attributes (including user ID and password pairs and
certificates) of resources and users known to this Web application system. This
node can supply information for various security services (authentication and
40 Patterns: SOA Foundation Service Connectivity Scenario

authorization) and can also perform the actual security processing (for example,
verifying certificates). The authentication in most current designs validates the
access to the Web application server part of the Web server, but this node also
authenticates for access to the database server.

Firewall nodes
A firewall is a hardware and software or just software system that manages the
flow of information between the Internet and an organization's private network.
Firewalls can prevent unauthorized Internet users from accessing private
networks connected to the Internet, especially intranets, and can block some
virus attacks coming from the Internet. A firewall can separate two or more parts
of a local network to control data exchange between departments. Components
of firewalls include filters or screens, each of which controls the transmission of
certain classes of traffic. Firewalls provide the first line of defense for protecting
private information, but comprehensive security systems combine firewalls with
encryption and other complementary services, such as content filtering and
intrusion detection.

Firewalls control access from a less trusted network to a more trusted network.
Traditional implementations of firewall services include:

� Screening Routers (the protocol firewall), typically implemented as an IP
Router.

� Application gateways (the domain firewall), typically implemented as a
dedicated server node

A pair of firewall nodes provides increasing levels of protection at the expense of
increasing computing resource requirements.

Existing applications and data node
Existing applications are run and maintained on nodes, which are installed in the
internal network. These applications provide for business logic that uses data
maintained in the internal network. The number and topology of these existing
application and data nodes is dependent on the particular configuration used by
these existing systems.

Business service directory
The role of the business service directory is to provide details of services that are
available to perform business functions identified within a taxonomy. The
business service directory can be implemented as an open-standard UDDI
registry. Catalogs, such as a UDDI registry, can achieve one of the primary goals
of a business service directory: to publish the availability of services and
encourage their reuse across the development activity of an enterprise. The
vision of Web services defines an open-standard UDDI registry that enables the
 Chapter 3. Patterns for e-business and Service Connectivity 41

dynamic discovery and invocation of business services. However, although
technologies mature toward that vision, more basic solutions are likely to be
implemented in the near future.

ESB node
The ESB is a key enabler for a SOA, as it provides the capability to route and
transport service requests from the service requester to the correct service
provider. The true value of the ESB concept, however, is to enable the
infrastructure for SOA in a way that reflects the needs of today’s enterprise: to
provide suitable service levels and manageability and to operate and integrate in
a heterogeneous environment. Furthermore, the ESB needs to be centrally
managed and administered and have the ability to be physically distributed.

App server/services node
These nodes represent applications that request a service from the ESB or
provide a service to the ESB. These applications can be implemented in any
technology as long as they are able to interact using one of the protocols and
messaging models that is supported by the ESB.

Services can be implemented in a variety of technologies and can be
custom-developed enterprise applications, such as those typically implemented
in CICS® Transaction Server, IMS™ Transaction Manager, and software
packages.

Network infrastructure
Inter-enterprise network infrastructure includes the network infrastructure
allowing connectivity between enterprises. Network infrastructure has
unspecified internal characteristics. Only the means with which to interact with it
is specified.

Connector
This node, which is deployed in the demilitarized zone (DMZ) between two
firewalls, provides a communication link over the Internet for incoming requests
from external applications as well as outgoing requests to external services. It
provides connectivity from the enterprise secure zone to the interenterprise zone.
It might be a low-level component (for example, a TCP/IP infrastructure) that is
omitted from the runtime pattern diagrams, or it might have more advanced
capabilities such as caching of reusable content (for example, a Web server).
42 Patterns: SOA Foundation Service Connectivity Scenario

Depending on the required level of detail, a connector can be:

� A primitive (or unmodeled) connector, represented by a simple line between
components

� A component (or modeled) connector, represented by a rectangle on a line
between components

A connector can be an adapter connector, a path connector, or both.

Adapter connectors are concerned with enabling logical connectivity by bridging
the gap between the context schema and protocols used by the source and
target components. An adapter connector is one that supports the transformation
of data and protocols.

Path connectors are concerned with providing physical connectivity between
components. A path connector can be very complex (for example, the Internet)
or very simple (an area of shared storage).

Exposed ESB Gateway
An Exposed ESB Gateway makes the services of one organization available to
others, and vice versa, in a controlled and secure manner. Although this might
require capabilities such as partner provisioning and management, which are
distinct from ESB capabilities, the intent of this component is different from the
intent of the ESB, which is to provide a service infrastructure within an
organization. For both of these reasons, the Exposed ESB Gateway is likely to
be integrated with, but not be a part of, the ESB.

The Exposed ESB Gateway provides a single point of access between:

� External service consumers and service providers in the enterprise secure
zone

� Service consumers in the enterprise secure zone and external service
providers

The Exposed ESB Gateway provides namespace mapping.

Rules directory
This node holds the read-only process execution rules that support the process
flow execution. These rules control the sequencing of activities and, therefore,
support flow control within the context of an end-to-end process flow. The
implementation of this node involves persistent data technologies, such as a flat
file or a DBMS.
 Chapter 3. Patterns for e-business and Service Connectivity 43

3.4 Self-Service business pattern
The Self-Service business pattern captures the essence of direct interactions
between interested parties and a business. Interested parties include customers,
business partners, stakeholders, employees, and all other individuals with whom
the business intends to interact. For simplicity, these interested parties are
referred to as users. In this definition business represents various types of
organizations including large enterprises, small and medium businesses,
government agencies, and so on.

The Self-Service business pattern covers a wide range of uses. Applications of
this pattern can range from the very simple function of allowing users to view
data built explicitly for one purpose, to taking requests from users, decomposing
them into multiple requests to be sent to multiple, disparate data sources,
personalizing the information, and recomposing it into a response for the user.

For this reason, there are currently seven defined Application patterns that fit this
range of functions. Three of these have been identified in Table 3-1 on page 38
as candidates for the Service Connectivity scenario. They are:

� Directly Integrated Single Channel application pattern
� Router application pattern
� Decomposition application pattern

3.4.1 Directly Integrated Single Channel application pattern
The Directly Integrated Single Channel application pattern provides point-to-point
connectivity between the user and the existing back-end applications. It assumes
that one delivery channel and the user interface is handled by the presentation
tier. The business logic can reside in the Web application tier and in the back-end
application.

The Web application tier has access to local data that exists primarily as a result
of this application, for example, customer profile information or cached data. It is
also responsible for accessing one or more back-end applications. The back-end
applications contain business logic and are responsible for accessing the

Product mappings: Once a Runtime pattern has been selected, the next step
is to select the appropriate products for implementation. Product mappings
show possible product selection combinations for a specific Runtime pattern.
This book will use an example to illustrate the design and implementation of a
Service Connectivity scenario.

The example is based on the Self-Service business pattern and we will extend
our discussion of the Runtime patterns to include a sample product mapping.
44 Patterns: SOA Foundation Service Connectivity Scenario

existing back-end data. The communication between the presentation tier and
Web application tier is synchronous. The communication between the Web
application tier and the back-end can be either synchronous or asynchronous,
depending on the characteristics and capabilities of the back-end application.

Runtime pattern: SOA profile
The Runtime pattern shown in Figure 3-4 represents a solution for the Directly
Integrated Single Channel application pattern that takes advantage of the
functionality provided by an ESB. Note that the Directly Integrated Single
Channel application pattern is shown in the box at the bottom.

Figure 3-4 Directly Integrated Single Channel application pattern::Runtime pattern: SOA profile

This Runtime pattern uses a Web server redirector node in the DMZ to serve
static HTML pages to the client. Requests for dynamic data are forwarded to the
application server in the internal network. Together, these two nodes provide the
presentation tier, capable of handling multiple, diverse, presentation styles.
Using a redirector allows you to place the bulk of the business logic behind the
protection of both the protocol and the domain firewalls.

In addition to presentation logic, primarily in the form of JavaServer™ Pages™
(JSPs), the application server contains some business logic. This is primarily in
the form of the controlling servlets required to access the back-end applications.

Internal Network
Demilitarized Zone

(DMZ)Outside World
Pr

ot
oc

ol
 F

ire
w

al
l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

Presentation

Directly Integrated Single Channel application pattern
Application

ApplicationApplication

ESB
Application

Server
Existing

Applications
and Data

<service consumer> <service provider>

Business
Service

Directory
 Chapter 3. Patterns for e-business and Service Connectivity 45

The application server builds a request based on user input and invokes services
that can fulfill the request.

The application server node becomes the service consumer with the back-end
applications acting as service providers. The connection between service
consumer and service provider is implemented with a simple enterprise service
bus.

Direct connections can benefit from the majority of the functions provided by the
ESB node (see “ESB node” on page 42). The obvious exception to this for direct
connections is routing capability.

The ESB approach:

� Minimizes the number of adapters required to link service consumers to
service providers

� Improves reuse

� Addresses any technical and information model discrepancies amongst
services

� Provides a single configuration point for distributed deployment

� Decouples service requesters from providers

� Provides a common access point for service requesters

� Provides centralized security for services

Note: Implementing the SOA profile with an ESB adds extra capabilities to the
runtime pattern, for example, routing and decomposition capability. Because
of this, the SOA profile for the Directly Integrated Single Channel runtime
pattern can be applicable to multiple Self-Service application patterns. This
highlights the fact that using SOA facilitates the future expansion of solution
functionality without requiring major changes to the middleware structure.
46 Patterns: SOA Foundation Service Connectivity Scenario

Product mapping
Figure 3-5 shows a Product mapping for the SOA profile of the Runtime pattern.
This product mapping shows a Web services provider, but any type of service
provider supported by the ESB could be substituted.

Figure 3-5 Directly Integrated Single Channel application pattern:: Product mapping

3.4.2 Router application pattern
The Router application pattern provides intelligent routing from multiple channels
to multiple back-end applications using a hub-and-spoke architecture. The
interaction between the user and the back-end application is a one-to-one
relation, meaning the user interacts with applications one at a time. The Router
maintains the connections to the back-end applications and pools connections
when appropriate, but there is no true integration of the applications themselves.
The Router can use a read-only database, most probably to look up routing
information. The primary business logic still resides in the back-end application
tier.

This pattern assumes that the users are accessing the applications from a variety
of client types such as Web browsers, voice response units (VRUs), or kiosks.
The Router application pattern provides a common interface for accessing
multiple back-end applications and acts as an intermediary between them and
the delivery channels. In doing this, the Router application pattern can use
elements of the Integration patterns.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server Application

Server
Existing

Applications
and Data

IBM WebSphere Application
Server HTTP Plug-in
IBM HTTP Server 6.0

<service provider>

ESB

Business
Service

Directory

Directory and
Security
Services

IBM WebSphere Application
Server Network Deployment
V6.0 - IBM WebSphere
UDDI Registry.

IBM WebSphere
Application Server

Network
Deployment

V6.0.2.3

IBM WebSphere Enterprise
Service Bus V6.0.1 (including
IBM WebSphere Application
Server Network Deployment
V6.0.2.3)

<service consumer>

Web Services Option:
IBM WebSphere Application
Server Network Deployment
V6.0.2.3
IBM DB2 UDB ESE 8.2
Web service EJB application
 Chapter 3. Patterns for e-business and Service Connectivity 47

Runtime pattern: SOA profile for Router
The Runtime pattern shown in Figure 3-6 represents a solution for the Router
application pattern that takes advantage of the functionality provided by an ESB.
You can see the Router application pattern overlayed on the Runtime pattern at
the bottom of the figure.

Figure 3-6 Router application pattern::Runtime pattern: SOA profile

This Runtime pattern is very similar to the SOA profile for the Directly Integrated
Single Channel. The difference lies in the interaction pattern between the service
consumer and service provider and the ESB capabilities required to provide the
connection.

Because a single request from the service consumer can be destined for any one
of multiple service providers, routing capability must be present in the ESB.
When a request from a service consumer is sent to the ESB node, the ESB must
examine the request, determine the appropriate destination, and forward it to the
chosen back-end application where the primary business logic resides. This may
involve activities such as message transformation, protocol conversion, security
management, and session concentration.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

ESB
Application

Server
Existing

Applications
and Data

<service consumer> <service provider>

Business
Service

Directory

Presentation

Router application pattern
Application

Application
Presentation

Router
48 Patterns: SOA Foundation Service Connectivity Scenario

Product mapping
Figure 3-7 shows a Product mapping for the SOA profile of the Runtime pattern.

Figure 3-7 Router application pattern::Product mapping

WebSphere ESB provides the ESB functionality in the mapping. It provides basic
content-based routing and other services for standards-based consumers and
providers. In addition to standard Web services support, this mapping shows
additional connectivity options.

WebSphere Adapters provide EIS connectivity from the ESB. WebSphere
Adapters are compliant with J2EE Connector Architecture (JCA 1.5).

JMS connectivity can be managed through the WebSphere ESB service
integration bus or in conjunction with a WebSphere MQ network.

3.4.3 Decomposition application pattern
The Decomposition application pattern expands on the Router application
pattern, providing all the features and functions of that pattern and adding
recomposition and decomposition capability. It provides the ability to take a user
request and decompose it into multiple requests to be routed to multiple
back-end applications. The responses are recomposed into a single response for

Web Services Option:
IBM WebSphere Application
Server Network Deployment
V6.0.2.3
IBM DB2 UDB ESE 8.2
Web service EJB application

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server Application

Server
Existing

Applications
and Data

IBM WebSphere Application
Server HTTP Plug-in
IBM HTTP Server 6.0

<service provider>

ESB

Business
Service

Directory

Directory and
Security
Services

IBM WebSphere Application
Server Network Deployment
V6.0 - IBM WebSphere
UDDI Registry.

IBM WebSphere
Application Server

Network
Deployment

V6.0.2.3

IBM WebSphere Enterprise
Service Bus V6.0.1 (including
IBM WebSphere Application
Server Network Deployment
V6.0.2.3)
IBM WebSphere Adapters
IBM WebSphere MQ V6

JMS Option:
IBM WebSphere Application
Server Network Deployment
V6.0.2.3
IBM WebSphere MQ V6
Message-driven bean application

JCA Option:
Siebel Enterprise
Server 7.7

<service consumer>
 Chapter 3. Patterns for e-business and Service Connectivity 49

the user. This moves some of the business logic into the decomposition tier, but
the primary business logic still resides in the back-end application tier.

From a service-oriented architecture (SOA) perspective, the decomposition tier
of this application pattern facilitates the invocation of business services hosted
by a number of back-end applications. In doing so, the Decomposition
application pattern fully leverages the integration capabilities described by the
Application Integration::Broker pattern.

If an interaction initiated by a user requires the execution of an end-to-end
business process or workflow where process and workflow rules are better
externalized, the Decomposition application pattern would leverage the
integration capabilities of more advanced process integration alternatives such
as the Application Integration::Serial Process or Serial Workflow and the
Application Integration::Parallel Process or Parallel Workflow. Since the end
result is the decomposition/recomposition capability discussed above, these
variations are not documented as Decomposition application pattern variations,
but rather may be captured as different runtime patterns where applicable.
50 Patterns: SOA Foundation Service Connectivity Scenario

Runtime pattern: SOA profile for Decomposition
The Runtime pattern shown in Figure 3-8 represents a solution for the
Decomposition application pattern that takes advantage of the functionality
provided by an ESB.

Figure 3-8 Decomposition application pattern::Runtime pattern: SOA profile

Similar to the SOA profile for the Router, this Runtime pattern provides the next
level of complexity. Where the interaction in the Router is between one service
consumer and any one of a number of service providers, the Decomposition
pattern takes a single request from a consumer and decomposes it into multiple
requests to be sent to multiple service providers.

The ESB node can take a single complex message from a service consumer,
decompose it into multiple messages, and route those messages to the
appropriate service providers. It is also capable of managing these messages
such that it can wait for responses and recompose them into a single response to
be sent back to the service consumer. This effectively takes multiple, diverse
back-end applications and unifies them into one interface for the user.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Directory and
Security
Services

ESB
Application

Server
Existing

Applications
and Data

<service consumer> <service provider>

Business
Service

Directory

Presentation

Decomposition application pattern
Application

Application
Decomposition

Presentation
 Chapter 3. Patterns for e-business and Service Connectivity 51

Product mapping
The requirement for decomposition leads us to WebSphere Message Broker as
the ESB of choice. See Figure 3-9.

Figure 3-9 Decomposition application pattern:: Product mapping

WebSphere Message Broker provides a wide range of connectivity options to
non standards-based consumers and providers. This product mapping shows
Web services and JMS connectivity.

3.5 Application Integration pattern
The Application Integration (also known as Enterprise Application Integration or
EAI) pattern serves to integrate multiple Business patterns or to integrate
applications and data within an individual Business pattern. The requirements
that gave rise to this pattern call for the seamless execution of multiple
applications and access to their respective data in order to automate a complex,
new business function. Reliable integration of applications — be they traditional

Web Services Option:
IBM WebSphere Application
Server Network Deployment
V6.0.2.3
IBM DB2 UDB ESE 8.2
Web service EJB application

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server Application

Server
Existing

Applications
and Data

IBM WebSphere Application
Server HTTP Plug-in
IBM HTTP Server 6.0

<service provider>

ESB

Business
Service

Directory

Directory and
Security
Services

IBM WebSphere
Application Server
Network Deployment
V6.0.2.3
IBM WebSphere MQ V6

IBM WebSphere
Message Broker V6
IBM WebSphere MQ V6

JMS Option:
IBM WebSphere Application
Server Network Deployment
V6.0.2.3
IBM WebSphere MQ V6
Message-driven bean application

<service consumer>
52 Patterns: SOA Foundation Service Connectivity Scenario

stovepipe applications, packaged software applications, or custom applications
— requires the use of proven replicable patterns. At its highest level, application
integration can be divided into two essentially different approaches:

� Process Integration - The integration of the functional flow of processing
between the applications

� Data Integration - The integration of the information used by applications

Neither approach is necessarily better than the other. Rather, specific integration
requirements dictate which approach best solves a given business problem. For
example, the integration of an e-commerce application with an Enterprise
Resource Planning (ERP) system for a newly created sales order would most
definitely be a Process integration activity. However, in the same solution, the
master data synchronization of the product catalog between the ERP system and
the e-commerce system would be a data integration activity.

The following Process Integration Application patterns were identified in
Table 3-1 on page 38 as potential solutions for the Service Connectivity scenario:

� Direct Connection application pattern

– Message Connection variation
– Call Connection variation

� Broker application pattern

– Router variation

3.5.1 Direct Connection application pattern
The Direct Connection application pattern represents the simplest interaction
type and is based on a 1-to-1 topology. It allows a pair of applications within the
organization to directly communicate with each other. Interactions between a
source and a target application can be arbitrarily complex. Generally, complexity
can be addressed by breaking down interactions into more elementary
interactions.

More complex point-to-point connections will have modeled connection rules
such as business rules associated with them, as shown above. Connection rules

Note: This section gives you a brief look at these Application patterns and the
SOA profile of at least one Runtime pattern for each. Much work has been
done in this area. If you are planning on using the Application Integration
pattern, please consult the Application Integration section of the IBM Patterns
for e-business Web site at:

http://www-128.ibm.com/developerworks/patterns/application/index.html
 Chapter 3. Patterns for e-business and Service Connectivity 53

http://www-128.ibm.com/developerworks/patterns/application/index.html

are generally used to control the mode of operation of a connector depending on
external factors. Examples of connection rules are:

� Business data mapping rules (for adapter connectors)
� Autonomic rules (such as priority in a shared environment)
� Security rules
� Capacity and availability rules

The Direct Connection application pattern has two variations:

� Message Connection variation

This variation applies to solutions where the business process does not
require a response from the target application within the scope of the
interaction.

� Call Connection variation

The Call Connection variation applies to solutions where the business
process depends on the target application to process a request and return a
response within the scope of the interaction.

All applications of the Direct Connection application pattern will be one variation
or the other. The variation required depends on whether the initiating source
application needs an immediate response from the target application in order to
continue with execution.

Both variations may be used either with synchronous or asynchronous
communication protocols. However, there are preferences for a specific protocol
type depending on the variation. For example, the Call Connection variation has
a more natural fit with synchronous protocols while the Message Connection
variation favors asynchronous protocols.
54 Patterns: SOA Foundation Service Connectivity Scenario

Runtime pattern: SOA profile
The variations of the Direct Connection application pattern share the same
Runtime pattern. Figure 3-10 shows the SOA profile of a Runtime pattern for the
Direct Connection application pattern.

Figure 3-10 Direct Connection runtime pattern: SOA profile

The source and target applications both rely on services provided by their
respective hosting servers. These are modeled using the App Server/Services
node.

Figure 3-10 shows a service consumer connected to two other service providers
via a simple service bus. The application pattern overlays in the figure above
show that multiple Direct Connection application patterns can be deployed using
the service bus. The service consumer (or Source Application) can use the
service bus to initiate direct connections to two service providers — one to target
application 1 and the other to target application 2.

<Service Consumer> <Service Provider> <Service Provider>

Application
Server/

Services

Application
Server/

Services

<Service Bus>

Direct Connection application pattern

Target
Application 2

Target
Application 1

Source
Application

Source
Application

Direct Connection

Application
Server/

Services

Internal Network
 Chapter 3. Patterns for e-business and Service Connectivity 55

The service bus approach:

� Minimizes the number of adapters required for each point-to-point connection
to link service consumers to service providers

� Improves reuse in multiple point-to-point scenarios

� Addresses any technical and information model discrepancies among
services

3.5.2 Broker application pattern
The Broker application pattern is based on a 1-to-N topology that separates
distribution rules from the applications. It allows a single interaction from the
source application to be distributed to multiple target applications concurrently.
This application pattern reduces the proliferation of point-to-point connections.

The Broker application pattern applies to solutions where the source application
starts an interaction that is distributed to multiple target applications that are
within the organization. It separates the application logic from the distribution
logic based on Broker rules. The decomposition/recomposition of the interaction
is managed by the Broker rules tier.

The Broker pattern reuses the Direct Connection pattern to provide connectivity
between the tiers. The Broker rules may support Message variation or Call
variation (or both variations) of the Direct Connection pattern.

Runtime pattern: SOA profile
The Broker tier in the Application pattern is implemented in this Runtime pattern
with an ESB. The ESB is responsible for the routing and distribution of incoming
messages to the target applications. It has the ability to decompose and
recompose messages.
56 Patterns: SOA Foundation Service Connectivity Scenario

The App Server/Services nodes execute the logic of the target and source
applications.

Figure 3-11 Broker runtime pattern: SOA profile

The use of an ESB offers the following benefits:

� The ESB is a bus with a single configuration and distributed deployment.
Managing communications through the bus provides many advantages,
including decoupling of service requesters and providers, and centralized
control of a service namespace.

� Protocol conversion occurs inside the ESB (for example, SOAP/HTTP to
SOAP/JMS). Requesters using one protocol can invoke services that are
exposed using a different protocol.

� The ESB can provide logging and transformation of service requests and
service responses.

<Service Consumer>

Application
Server/

Services

Enterprise

Source
Application

Target
Application

Broker
rules

Broker application pattern

<Service Consumer>

Application
Server/

Services

<Service Consumer>

Application
Server/

Services

<Service Provider>

Application
Server/

Services

<Service Provider>

Application
Server/

Services

<Service Provider>

Application
Server/

Services

ESB

WIP
 Chapter 3. Patterns for e-business and Service Connectivity 57

� The ESB can provide centralized security for Web services invocations. It
can, for example, authenticate all service requesters centrally.

� The ESB provides a common access point for service requesters that need
access to services providers. The ESB intercepts and routes requests to the
relevant service provider. A change in the location of the service provider only
affects the ESB routing. The service provider location remains transparent to
the service requester.

3.5.3 Router variation of the Broker application pattern
The Router variation of the Broker application pattern applies to solutions where
the source application initiates an interaction that is forwarded to at most one of
multiple target applications.

Where the Broker application pattern enables 1:N connectivity, the Router
application pattern enables 1:1 connectivity, where the Router Rules tier selects
the target.

Runtime pattern: SOA profile
The Router tier in the Application pattern is implemented in this Runtime pattern
with an ESB. The ESB is responsible for the routing and distribution of incoming
messages to the target applications.
58 Patterns: SOA Foundation Service Connectivity Scenario

The Application Server/Services nodes execute the logic of the target and source
applications.

Figure 3-12 Router variation runtime pattern: SOA profile

The use of an ESB offers the same benefits seen in the Broker. Specifically, we
use the ESB in the Router variation to provide:

� Service routing of requests from service requesters to the relevant service
provider based on a routing table

� Protocol transformation to allow the decoupling of the protocol that is used
between the service requesters and service providers

<Service Consumer>

Application
Server/

Services

Enterprise

Source
Application

Target
Application

Router
rules

Router application pattern

<Service Consumer>

Application
Server/

Services

<Service Consumer>

Application
Server/

Services

<Service Provider>

Application
Server/

Services

<Service Provider>

Application
Server/

Services

<Service Provider>

Application
Server/

Services

ESB

R/O

Router Rules
 Chapter 3. Patterns for e-business and Service Connectivity 59

3.6 Extended Enterprise business pattern
The Extended Enterprise business pattern addresses the interactions and
collaborations between business processes in separate enterprises. This pattern
can be observed in solutions that implement programmatic interfaces to connect
inter-enterprise applications. In other words, it does not cover applications that
are directly invoked using a user interface by business partners across
organizational boundaries.

For this reason, there are currently six defined Application patterns that fit this
range of functions. Three of these are shown Table 3-1 on page 38 as candidates
for the Service Connectivity scenario. They are:

� Exposed Direct Connection application pattern
� Exposed Broker application pattern
� Exposed Router variation of Exposed Broker application pattern

3.6.1 Exposed Direct Connection application pattern
The Exposed Direct Connection application pattern represents the simplest
interaction type based on a 1-to-1 topology. It allows a pair of applications to
directly communicate with each other across organization boundaries.
Interactions between a source and a target application can be arbitrarily
complex. Generally, complexity can be addressed by breaking down interactions
into more elementary interactions.

More complex point-to-point connections will have modeled connection rules
such as business rules associated with them. Connection rules are generally
used to control the mode of operation of a connector depending on external
factors. Examples of connection rules are:

� Business data mapping rules (for adapter connectors)
� Autonomic rules (such as priority in a shared environment)
� Security rules
� Capacity and availability rules

Note: This section gives you a brief look at these Application patterns and the
SOA profile of at least one Runtime pattern for each. Much work has been
done in this area. If you are planning on using the Application Integration
pattern, please consult the Extended Enterprise section of the IBM Patterns
for e-business Web site at:

http://www-128.ibm.com/developerworks/patterns/b2bi/index.html
60 Patterns: SOA Foundation Service Connectivity Scenario

http://www-128.ibm.com/developerworks/patterns/b2bi/index.html

The Exposed Direct Connection application pattern has two variations:

� Message Connection variation

The Message Connection variation applies to solutions where the business
process does not require a response from the exposed target application
within the scope of the interaction.

� Call Connection variation

The Call Connection variation applies to solutions where the business
process depends on the exposed target application to process a request and
return an response within the scope of the interaction.

All applications of the Direct Connection application pattern will be one variation
or the other. The variation required depends on whether the initiating source
application needs an immediate response from the target application in order to
proceed with execution. Both variations may be used either with synchronous or
asynchronous communication protocols. However, there are preferences for a
specific protocol type depending on the variation. For example, the Call
Connection variation has a more natural fit with synchronous protocols, while the
Message Connection variation favors asynchronous protocols.
 Chapter 3. Patterns for e-business and Service Connectivity 61

Runtime pattern: SOA profile for Exposed Direct Connection
The Runtime pattern for the Exposed Direct Connection application pattern,
shown in Figure 3-13, allows two different organizations to talk to each other with
a mutually agreed-upon message format and protocol. Each partner can use its
own internal messaging format, then use a connector adapter to convert from the
internal format to the external format.

Figure 3-13 Exposed Direct Connection runtime pattern: SOA profile

The ESB node provides the connectivity between two partner enterprises. It
gives support for the SOA infrastructure by providing for service location
transparency and interoperability, encapsulated reusable business function, and
explicit implementation-independent interfaces within the enterprise.

If needed, the ESB node uses a persistent data technology to hold the read-only
execution rules that support these processes. These rules control the
sequencing of activities, and therefore support flow control within the context of
an end-to-end process flow.

We do not have separate Runtime patterns for the message and Call variations
of the Exposed Direct Connection application pattern. It is still important to
identify that your business scenario requires a message or call application
pattern because you can use this knowledge as a consideration when selecting a
Product mapping.

Inter-enterprise
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n

Fi
re

w
al

l
D

om
ai

n
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Target
Application

Connection
Rules

Source
Application

Exposed Direct Connection
62 Patterns: SOA Foundation Service Connectivity Scenario

3.6.2 Exposed Broker application pattern
The Exposed Broker application pattern is based on a 1-to-N topology that
separates distribution rules from the applications. It allows a single interaction
from an enterprise's source application to be distributed to multiple target partner
applications concurrently.

The Exposed Broker application pattern applies to solutions where the source
application starts an interaction that is distributed to multiple target applications
across organization boundaries. It separates the application logic from the
distribution logic based on Broker rules. The decomposition/recomposition of the
interaction is managed by the Broker rules tier.

The Exposed Broker pattern reuses the Exposed Direct Connection pattern to
provide connectivity between the tiers. The Broker rules tier may support
Message variation or Call variation (or both variations) of the Exposed Direct
Connection pattern.
 Chapter 3. Patterns for e-business and Service Connectivity 63

Runtime pattern: SOA profile for Exposed Broker
The Runtime pattern shown in Figure 3-14 represents a solution for the Exposed
Broker application pattern that takes advantage of the functionality provided by
an ESB.

Figure 3-14 Exposed Broker runtime pattern: SOA profile

This Runtime pattern is similar to the SOA profile for the Exposed Direct
Connection. The difference lies in the ESB functions required for the
connections.

In this pattern, the ESB node fulfills the requirements of a Broker, allowing
distribution, decomposition, and recomposition of messages so a single
interaction from a source component can be switched, split, and joined to
multiple target components concurrently. The ESB separates the application
logic from the distribution logic based on Broker rules and manages the
decomposition and recomposition of the interaction using these rules.

The Exposed ESB Gateway node exposes external processes to the Broker
functions within the ESB node. A variation of this would be to use the Exposed
ESB Gateway Node to expose internal processes to external partners.

Inter-enterprise
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB

D
om

ai
n

Fi
re

w
al

l
D

om
ai

n
Fi

re
w

al
l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Broker
Rules

Source
Application

Exposed Broker

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

WIP

Broker Rules &
WIP Results
64 Patterns: SOA Foundation Service Connectivity Scenario

The ESB node also provides the Rules Directory node functionality. It also gives
support for the SOA infrastructure by providing for service location transparency
and interoperability, encapsulated reusable business function, and explicit
implementation-independent interfaces within the enterprise.

3.6.3 Exposed Router variation of Exposed Broker application
pattern

The Exposed Router variation of the Exposed Broker application pattern applies
to solutions where the enterprise's source application initiates an interaction that
is forwarded to, at most, one of multiple target applications. The selection of the
target application is controlled by the distribution rules that govern functioning of
the connector component.

Runtime pattern: SOA profile for Exposed Router
The Runtime pattern shown in Figure 3-15 represents a solution for the Exposed
Router application pattern that takes advantage of the functionality provided by
an ESB.

Figure 3-15 Exposed Router runtime pattern: SOA profile

Inter-enterprise
Zone

Enterprise
Demilitarized Zone Enterprise Secure ZonePartner Zone

App Server/
Services

App Server/
Services

Network
Infrastructure

ESBESBESB
D

om
ai

n
Fi

re
w

al
l

D
om

ai
n

Fi
re

w
al

l

Exposed
ESB

Gateway

Pr
ot

oc
ol

 F
ire

w
al

l
Pr

ot
oc

ol
 F

ire
w

al
l

Connector

App Server/
Services

App Server/
Services

<Service Consumer>

App Server/
Services

<Service Provider>

Directory
& Security
Services

Router
Rules

Source
Application

Exposed Broker: Router variation

Target
Application

Partner A

Target
Application

Partner B

Target
Application

Partner C

R/O

Router Rules
 Chapter 3. Patterns for e-business and Service Connectivity 65

In this pattern, the ESB node fulfills the requirements of a Router, allowing a
single interaction from a source component to be switched and adapted to only
one of multiple target components. It separates the application logic from the
distribution logic based on Router rules. In addition, the ESB node provides the
functionality of a Rules Directory node.

The Exposed ESB Gateway exposes external processes to the Router functions
in the ESB node. A variation of this would be to use the Exposed ESB Gateway
to expose internal processes to external partners.

3.7 For more information
For more information see the following:

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240

� IBM Patterns for e-business

http://www-128.ibm.com/developerworks/patterns/

� Patterns: Extended Enterprise SOA and Web Services, SG24-7135
66 Patterns: SOA Foundation Service Connectivity Scenario

http://www-128.ibm.com/developerworks/patterns/

Chapter 4. Planning for connectivity

This chapter is an introduction to connectivity solution planning. It discusses
planning for integration in general and product selection and describes how a
fictional company, ITSOMart, applied these principles to plan for a customer
registration solution.

This chapter includes the following topics:

� The ITSOMart scenario
� Considering SOA as a solution for ITSOMart
� Elements of an SOA solution
� Selecting the SOA scenario and pattern
� Enterprise service bus product selection
� ITSOMart product selection
� Installation considerations
� Security considerations
� Scalability and performance considerations
� System management and monitoring
� Where to find the implementation details

4

© Copyright IBM Corp. 2006. All rights reserved. 67

4.1 The ITSOMart scenario
ITSOMart is a fictional business scenario designed to illustrate some of the key
concepts of the Service Connectivity scenario. The primary business objective of
ITSOMart is to provide customers with the capability of placing online orders and
then having those orders delivered to their home or place of business. As the
project will almost certainly change in scope over time and as each phase is
brought into production, the application must be flexible enough to quickly
respond to new business opportunities as they arise.

4.1.1 ITSOMart overview
ITSOMart is a well-established grocery chain that has been operating for the past
40 years. The target customers are in the high income group. ITSOMart focuses
on higher margin, luxury, and speciality products. It has 1,000 stores
nation-wide. The business is currently geared toward business and residential
customers. In the future, ITSOMart would like to have additional lines of
business, starting with institutional service.

Product types, quantities, marketing strategy, and delivery services differ
depending on the customer type. Although there is one common warehouse, the
company has created two divisions to handle these customer types. Each
division has its own account database with information specific to the customer.

4.1.2 Business objectives
Market research has shown that there is a growing demand in the high-income
group for full-service, online home shopping. ITSOMart wants to capitalize on
this demand by taking their store services and delivery online. ITSOMart wants to
put the customer management and order systems online and make them
accessible over the Web. In the process, the company wants to use, rather than
replace, their significant investment in the existing customer relationship
management (CRM) application. Also, ITSOMart would prefer to use a
third-party Credit Rating Service rather than implementing one from scratch. The
solution delivery is expected over several phases, beginning with online
customer self-registration.
68 Patterns: SOA Foundation Service Connectivity Scenario

4.1.3 Customer registration business requirements
The basic features of customer self-registration include:

� Automated customer credit checking
� Additional processing steps if a customer has insufficient credit
� CRM application update
� Shipping address update
� Auditing

Credit checking
The credit checking function is a third-party credit checking application that
determines a customer’s credit rating. The credit rating system accepts the
customer’s first and last name as well as a billing address. From this information
the credit rater returns a numerical credit rating score for the customer. ITSOMart
plans to segment customers based on credit in order to reduce risk as well as
offer premium services to high-value customers in the future. One other
requirement of this credit checking function is that the underlying credit check
must easily be transferable to a different third-party for credit checking. ITSOMart
wishes to maintain the ability to leverage lower-priced vendors for similar
services should the current vendor raise the price charged for the credit
checking.

Insufficient credit processing
While the third-party credit checking returns a numerical score, the company
wishes to segment customers into one of three separate customers based on
their credit rating: gold, silver, or bronze. The company plans to offer premium
services and target specific marketing campaigns at gold customers, while silver
customers will receive standard service. Customers with a gold credit rating are
registered immediately. Customers with a silver credit rating are considered
potential credit risks and the business has decided that such customers must
submit to additional credit validation per current business rules before the
company is willing to accept their orders. Customers with a bronze status are
denied the opportunity to register.

CRM application update
In order to more effectively gather information about customers, every customer
that self-registers will automatically be added to the CRM system. ITSOMart has
a significant investment in the current CRM implementation and does not wish to
adopt a new system.
 Chapter 4. Planning for connectivity 69

Shipping address update
ITSOMart will allow up to two shipping addresses to be entered. This allows a
customer to enter a home and a business shipping address. As ITSOMart
expands it is possible that multiple shipping providers will be used.

Audit
ITSOMart wants to keep track of all incoming customer registration attempts,
whether successful or not. The company invested in an audit system some time
ago. However, the old system is slow and has many problems. To resolve these
problems, the IT department has decided to implement a new auditing system.
That system is expected to launch in approximately 18 months. ITSOMart would
like to make the customer self-registration functionality available sooner and
would like to continue to use the system while the replacement system is being
developed. However, once the new auditing system has been launched, the
company wishes to avoid additional development costs in order to integrate with
the new system.

4.1.4 Business context diagram for ITSOMart
Figure 4-1 illustrates the proposed high-level business context for the ITSOMart
example scenario.

Figure 4-1 High-level business context for the ITSOMart example scenario

ITSOMart Grocery

<service consumer>

Customer Registration Process

ITSOMart internal services / applications

<service provider>

External services / applications

<service provider>

Internet

Potential Customer

CRM update
Shipping Address update
Audit control

Credit check
70 Patterns: SOA Foundation Service Connectivity Scenario

4.1.5 Functional requirements for ITSOMart
This section highlights the functional requirements for the ITSOMart working
example. We have outlined the key functional requirements:

� FR1: Expose a new business function to customers.

Expose a new business function, the ITSOMart customer registration, to
external customers. The user interface is to be a Web application that will
invoke the process as a Web service.

� FR2: Create a Web services client application to consume services.

Create an application that performs the tasks required to register a customer.

� FR3: Expose internal applications as Web services.

Expose internal applications as services that can be called during the
customer registration process.

� FR4: Integrate applications so that they can function together to perform a
business task.

Allow the service consumer (customer registration process) to call the
required services with little to no knowledge of their location, message format,
or transport requirements.

� FR5: Incorporate simple routing logic to allow dynamic decisions based on
customer input and responses from invoked services.

Use routing logic to determine the appropriate flow through the process, in
particular, to determine how a customer request is processed based on the
results of a credit check.

� FR6: Incorporate flexibility to easily change or add services.

Allow service providers to be changed without affecting the service
consumers.

4.2 Considering SOA as a solution for ITSOMart
Service-oriented architecture (SOA) is an approach to transforming the way
business and IT operate. An organization's SOA transformation is a gradual
process of continuous improvement, made possible by the business and IT
agility gained through service orientation. There are many different stages to the
adoption of SOA. These include:

� Services-based implementation in which new applications are built around
services (perhaps Web Services) and inherited applications are wrapped by
services so that they may participate in a services-based environment.
 Chapter 4. Planning for connectivity 71

� Service Connectivity where applications are composed of many loosely
coupled services. As business needs change, IT can quickly create new
applications through a combination of building new services and combining
them with existing services.

� Enterprise Level IT Transformation in which SOA is the unifying theme in all
IT applications. Creation of new applications primarily involves assembly of
existing services rather than development of new functionality. Applications
are rarely rewritten due to technology constraints.

� On Demand Business Transformation is a fundamental shift in the way
business and IT collaborate. SOA pervades the entire line of business (LOB)
application development process. Businesses are able to rapidly deploy new
business processes and transform existing processes to accommodate
market needs.

ITSOMart has a number of challenges in satisfying the business needs of
customer self-registration. The application must be able to deal with the
introduction of new applications as the online shopping system evolves, as well
as the ever-changing needs of both IT and business.

In order to evaluate service connectivity as a solution for the ITSOMart
implementation, the enterprise architect must consider the following:

� Is delivery of the solution going to be incremental or all at once?

� Are there ongoing costs of integration that could be reduced by adopting a
more flexible integration architecture?

� Are business/IT needs expected to change?

� How soon does the effort need to demonstrably have a return on investment?

� Will the solution meet corporate security guidelines?

� How difficult will solution management be over so many disparate systems?

� Is the IT organization ready for service connectivity?

4.2.1 Incremental solution delivery
ITSOMart does not expect to produce a complete online shopping solution all at
once. Initially, customers should be able to self-register and communicate
information such as delivery location. As new solution components are deployed,
the solution must integrate with these components with minimal cost of change.
A solution based on SOA would allow new components to easily be added to the
current environment without rewriting existing functionality to support the new
system.
72 Patterns: SOA Foundation Service Connectivity Scenario

4.2.2 Integration cost reduction
Point-to-point application integration solutions are often expensive to maintain
because all of the integration logic lies within the application. A solution based on
SOA has distinct advantages due to reduced maintenance costs. All integration
logic resides in an enterprise service bus. By using an assembly technique to
build integration solutions, such logic may easily be changed without high
development costs. While ITSOMart does not have an existing integration
framework, the lower cost of maintaining an SOA solution makes it a more
attractive solution approach.

4.2.3 Changing business/IT needs
ITSOMart is a dynamic application whose needs are expected to change over
time. IT wishes to replace older systems with updated ones, and the business
may decide to switch to different service vendors. An SOA solution gives both
business and IT the ability to make these changes quickly and efficiently without
the costly and error-prone process of application re-engineering. The
loose-coupling and encapsulation properties of SOA allow components to
change independently. Centralized deployment leads to lower cost of integration.
Finally, the Service Connectivity scenario is a great step towards a more
enterprise-wide transformation towards a full SOA environment.

4.2.4 Value delivery
The business stakeholders of the ITSOMart solution need to realize a return on
their investment as soon as possible. Building the solution around SOA allows
immediate return on investment from the reduced costs of maintenance as well
as the indirect gains from increased business/IT agility. One of the keys to
lowering effort comes from the loosely coupled way in which developers build
SOA solutions. By encapsulating integration logic in a single layer of the
architecture, the integration logic can be easily understood and widely known,
making changes to business processes less cumbersome. The increased
visibility of integration logic and the ease of modifying that logic combined with
increased business flexibility helps an SOA deliver value as soon as the first
project moves into production. For ITSOMart, this is an important factor because
the company is unwilling to invest a large amount of development time and
money into any projects that cannot quickly show business value.

4.2.5 Security
The prevalence of heterogeneous environments within the enterprise IT
environment makes implementing and enforcing security increasingly difficult.
ITSOMart requires all applications to comply with relevant regulatory rules and
 Chapter 4. Planning for connectivity 73

internal corporate standards. An ESB helps reduce some of the complexity
involved in enforcing security through enforcing the use of a centralized security
policy. Security is enforced at the bus, making enforcement less complex.

4.2.6 Management/monitoring
As IT applications become increasingly complex, management and monitoring of
those applications becomes more difficult. Applications consisting of many tiers
on disparate hardware must be monitored as an end-to-end application rather
than a collection of components. Solutions built using a distributed architecture,
like an SOA, are more difficult to monitor than monolithic applications. However,
the componentized approach of SOA also means that, unlike monolithic
applications, individual parts of the system can be easily monitored. Also, service
levels many be centralized in the enterprise service bus, which reduces the
management overhead.

4.2.7 Readiness
ITSOMart does not wish to engage in an enterprise-wide business and IT
transformation. However, the company still wishes to leverage some of the
advantages of using service orientation when creating applications. Service
connectivity gives the company the ability to adopt SOA in phases. ITSOMart
has already begun experimenting with Web services, although there are some
traditional queue-based applications using Java Messaging Service (JMS) as
well. Service connectivity allows all such systems to function as parts of the new
composite application without rewriting heritage applications. Existing heritage
applications can participate in an SOA environment using service wrappers.
Service creation uses many of the same tools that already exist within most IT
development organizations. Finally, since SOA is protocol and technology
neutral, it allows IT to focus on solving business problems using familiar tools
and technologies rather than learning a new set of technologies. These factors
make service connectivity easy to introduce into most IT organizations and can
provide a great entry into SOA.
74 Patterns: SOA Foundation Service Connectivity Scenario

4.3 Elements of an SOA solution
A service-oriented architecture solution includes the a number of characteristics
of SOA. These include:

� An architectural style consisting of service providers, requestors, and service
descriptors

� A set of design principles including loose-coupling, encapsulation, and ease
of composition

� A set of standards-based tools and technology to support the SOA
programming model

The ITSOMart self-registration business scenario provides opportunities to
embody each of these characteristics in the final solution. During the solution
planning stage, enterprise architects should carefully consider the consequences
that architectural decisions have on design, implementation, deployment, and
governance. The following sections highlight those decisions and provide a
suggested approach to planning an SOA solution.

4.3.1 Using the SOA Foundation Reference Model
The SOA Foundation Reference Model defines the comprehensive IT services
required to support your SOA at each stage in the SOA life cycle. The Reference
Model includes development environment, services management, application
integration, and runtime Process Services. The capabilities of the architecture
can be implemented on a build-as-you-go basis as new requirements are
addressed over time.

The reference architecture provides all of the architecture elements needed to
support the ITSOMart solution. According to the reference architecture, the SOA
system is divided into a number of service types, each with different concerns
and functionality. The ITSOMart solution focuses primarily on the integration
aspects of these services and leaves some elements as heritage components.
However, because the solution design segments these heritage components into
individual service areas, the solution may evolve and replace heritage
components with those built using SOA principles.
 Chapter 4. Planning for connectivity 75

As ITSOMart began the process of solution design, they considered each
element of the architecture and how, and if, it applied to their situation. Figure 4-2
shows the elements of the SOA Foundation Reference Model that apply to the
ITSOMart solution (in bold).

Figure 4-2 Elements of ITSOMart within the SOA Foundation Reference Architecture

Development Services provide IT architects, service developers, and integration
developers with the tools and methodologies needed to design and create an
open standards-based solution. These services support a variety of activities that
occur during the course of the SOA life cycle.

The ITSOMart solution illustrates the use of each of these types of services:

� Design includes creating both high and detailed designs of the overall
system, as well as interactions between the assembled components. The
solution design also includes the mediations necessary to support the
interactions between service providers and requestors.

� Service Implementation involves the creation of new services or wrapping
existing applications with service facades in order for those applications to
participate in the solution.

� Integration Assembly consists of assembling services together in order to
achieve the desired business functionality. Integration developers may
frequently recompose applications as the IT and business requirements
evolve.

Interaction Services Process Services Information Services

Partner Services Business App Services Access Services

Infrastructure Services

ESB

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

IT
 S

er
vi

ce
s

M
an

ag
em

en
t

76 Patterns: SOA Foundation Service Connectivity Scenario

Runtime Services provide the deployment, monitoring, and governance functions
necessary to implement the solution.

� Interaction Services are the points of contact between end users and the
system. Ideally, application developers should also be able to create
composite applications using various Interaction Services. A portal is an
example of the Interaction Services layer that supports composition. The
ITSOMart solution uses a traditional Web application in place of a portal. The
solution design allows this layer to easily be replaced when the need arises.

� Process Services provide the composition logic that binds various services.
Typically, Process Services refer to either business process flow execution or
a business state machine (a finite state machine that orchestrates the service
interaction).

Because the primary purpose of the ITSOMart solution is to demonstrate
integration patterns, the solution currently uses a single fixed service to
provide business process flow control. As business needs evolve over time,
this process flow component could be replaced by a business process flow
controlled by BPEL or a business state machine.

� Business Application Services represent fundamental business logic and
represent the building blocks for composition. Typically, a business process
orchestration service combines multiple Business Application Services to
produce a flexible, coarse-grained service that can then be consumed by
other service requestors.

ITSOMart contains a number of such Business Application Services. These
are:

– Credit check

In reality, a credit check process would most likely itself be a composite
service orchestrated by a business process flow. However, because this
service component is entirely opaque to the ITSOMart solution, the design
treats this service as an atomic building block that cannot be further
decomposed.

– CRM update

– Shipping address registration

– Audit log

� Access Services augment heritage applications, often with a simple service
wrapper so that such applications may participate in the SOA ecosystem
without modification. Previous architectures treat Access Services as
adapters. In the reference architecture, these adapters are explicitly treated
as services so that they may be used in the same way as other services.

ITSOMart will require adapters to access the CRM system and functions that
require flat file access.
 Chapter 4. Planning for connectivity 77

� Infrastructure Services refer to services provided by the integration runtime.
The primary purpose of these services is to abstract the underlying execution
platform so that service implementors and integration developers are
concerned only with their specific responsibilities. In addition, infrastructure
services may consist of boundary services whose purpose allows service
creators to focus on core functionality rather than meeting the needs of an
entire enterprise. For example, a service that is only available via SOAP over
HTTP should not be restricted from participating in environments requiring
SOAP over JMS or SOAP over HTTPS — these are not the concerns of the
service creator. Rather, a boundary service can seamlessly perform protocol
transformation to extend the reach of the service beyond the original intended
scope.

� ESB provides the connectivity for intercommunication between various
services. For example, a traditional point-to-point integration style would use
a mesh-style connectivity model. A messaging hub style integration, on the
other hand, would use a hub and spoke connectivity model. In an SOA
architecture, the preferred connectivity model is an enterprise service bus.

ITSOMart currently has no ESB implementation, but plans to add this
capability as part of the new solution.

� IT Service Management involves monitoring and managing the operational
aspects of services. This includes service uptime, performance, and resource
utilization. Management also includes preventing invalid or erroneous
requests from reaching the service and filtering these earlier in the sequence
of service processing steps. Service management is essential to maintaining
a healthy SOA environment so that problems may be dealt with proactively
rather than in a reactive fashion.

ITSOMart will require that the systems be monitored for use and
performance.

The SOA Foundation Reference Architecture provides a complete enterprise
architecture for delivering SOA solutions. By considering the ITSOMart solution
as an entire integration ecosystem rather than a single application, the solution
architecture may easily be broken down into a core set of services that can be
delivered by developers focused on service implementation and assembled by
integration developers. The flexibility to compose and recompose applications
allows for the re-use of existing services as well as greater IT agility to meet the
evolving needs of business.
78 Patterns: SOA Foundation Service Connectivity Scenario

4.4 Selecting the SOA scenario and pattern
This section demonstrates how to use the process defined in Chapter 2,
“Process for applying SOA scenarios” on page 21, to accelerate the design of the
solution architecture for the ITSOMart working example scenario.

4.4.1 Fit gap analysis
In 4.1.5, “Functional requirements for ITSOMart” on page 71, we identified the
functional requirements for the ITSOMart solution. As part of the defined
process, we now perform a fit-gap analysis of the ITSOMart functional
requirements with the generic use cases.

Table 4-1 provides a summary of the ITSOMart functional requirements that map
to the generic use cases. There may be functional requirements that are not
mapped to a generic use case specific to your business scenario. There may
also be functional requirements that map to generic use cases for multiple SOA
scenarios.

Table 4-1 ITSOMart - fit gap analysis

ITSO car rental example
functional requirements

Generic use cases

� FR1: Expose a new business function to
customers.

� FR3: Expose internal applications as Web
services.

� U1: Reuse existing or create new application logic
as a service within the enterprise.

� FR2: Create a Web services client
application to consume services.

� U3: Point-to-point integration of enterprise
applications.

� U5: Allow users to invoke services simply.

� FR4: Integrate internal applications so they
can function together to perform a
business task.

� FR5: Incorporate simple routing logic to
allow dynamic decisions based on
customer input and responses from
invoked services.

� FR6: Incorporate flexibility to easily
change or add services.

� U7: Enable loose coupling of service consumers
and providers using dynamic routing based on
standards-based protocols.
 Chapter 4. Planning for connectivity 79

4.4.2 Select the SOA scenario
At this stage in the process we have identified the generic use cases that apply to
the ITSOMart example. Now we use the generic use cases as criteria to select
the appropriate SOA scenario containing software capable of fulfilling the
requirements. This task is accomplished by using the SOA scenario selection
table.

Table 4-2 shows a subset of the generic use cases found in Table 2-1 on page 24
that fulfill the functional requirements of the ITSOMart example scenario (Service
Connectivity).

Table 4-2 SOA scenario selection criteria identifying the Service Connectivity scenario

Because the solution requires routing capability, the Service Connectivity
scenario is the most appropriate. The Service Connectivity scenario, with the
appropriate product selection, can also provide the function required by the use
cases identified for Service Creation.

4.4.3 Reuse patterns assets to accelerate solution architecture
This section demonstrates how to apply the reusable assets found in the
Patterns for e-business to accelerate the design of the solution architecture.

Generic use cases selection criteria

SOA scenarios

S
er

vi
ce

 C
re

at
io

n

S
er

vi
ce

 C
o

n
n

ec
ti

vi
ty

In
te

ra
ct

io
n

 a
n

d

C
o

lla
b

o
ra

ti
o

n
 S

er
vi

ce
s

B
u

si
n

es
s

P
ro

ce
ss

 M
an

ag
em

en
t

In
fo

rm
at

io
n

 a
s

a
S

er
vi

ce

U1: Reuse existing or create new application logic as a service within
the enterprise.

X

U3: Point-to-point integration of enterprise applications. X

U5: Allow users to invoke services simply. X

U7: Enable loose coupling of service consumers and providers using
dynamic routing based on standards-based protocols.

X

80 Patterns: SOA Foundation Service Connectivity Scenario

Select the Business pattern
Looking at the overall business context diagram, we can identify three potential
Business or Integration patterns that might come into play (Figure 4-3).

Figure 4-3 Potential Business pattern choices

The patterns are:

� Self-Service business pattern

Because the intent of the ITSOMart solution allows consumer access to
internal resources, the Self-Service business pattern is clearly the pattern that
defines the overall functionality of the solution. This is the pattern that the
ITSOMart solution designers will use as their guide.

For details refer to 3.4, “Self-Service business pattern” on page 44.

� Application Integration pattern

The interaction between the Customer Registration Process and the
ITSOMart internal services and applications is indicative of an Application
Integration pattern. As the ITSOMart solution is designed, guidelines defined
for this pattern will be consulted for best practices information.

For details refer to 3.5, “Application Integration pattern” on page 52.

� Extended Enterprise business pattern

The invocation of external services brings the Extended Enterprise business
pattern into play. The concerns addressed by this pattern focus on the unique
requirements exposed by the integration of applications in separate

ITSOMart Grocery

Customer Registration Process

ITSOMart internal services / applications

External services / applications

Internet

Potential Customer

CRM update
Shipping Address update
Audit control

Credit check

Self-Service Application Integration

Extended Enterprise
 Chapter 4. Planning for connectivity 81

enterprises, for example, security concerns. Enterprises must address these
concerns up front when designing a solution, although, for simplicity, the
ITSOMart example will not address these in this book.

For details refer to 3.6, “Extended Enterprise business pattern” on page 60.

Select the Application pattern
Now that we know the focus is on the Self-Service business pattern, we can
select an Application pattern. Application patterns are used to provide a
conceptual layout of how the application components and data within a Business
pattern or Integration pattern interact.

Table 3-1 on page 38 provides a summary of the Business and Integration
patterns and corresponding Application patterns that map to the generic use
cases representative of the Service Connectivity scenario. As you can see from
this table, there is one Application pattern for Self-Service that is most suitable to
fulfill the use cases that describe the ITSOMart requirements. In particular, the
routing requirement of use case U7 drives this selection, the Router application
pattern. For details refer to 3.4.2, “Router application pattern” on page 47.

Runtime patterns
In the previous section we identified the Application patterns that apply to the
Service Connectivity scenario. Each of the Application patterns has a
corresponding Runtime pattern, which is used to define the logical middleware
structure and interaction between nodes to support the Application pattern.

The Runtime pattern selected is shown in “Runtime pattern: SOA profile for
Router” on page 48. The Directory and Security Services, and Business Service
Directory nodes are optional for the scenario. We did not implement the
functionality of these nodes for the ITSOMart example. In a production
environment, they typically would be implemented.

Product mapping
The Product mapping used for the ITSOMart example is shown in “Product
mapping” on page 49. The product mapping was a result of the selection of the
ESB implementation and the services required for the customer registration
process. We discuss the options for ESB implementation and the choices made
by ITSOMart in the next sections.

4.5 Enterprise service bus product selection
What makes the ESB so important in a Service Connectivity scenario is that it
allows a higher level of abstraction for service integration. The ESB hides the
82 Patterns: SOA Foundation Service Connectivity Scenario

details of service locations and transport so that service implementations only
need to deal with invoking the service via the ESB.

ESBs also exist to resolve differences between service requestors and service
providers, a common problem in loosely coupled systems. For example, the
target service may not implement the same service interface or message
structure as the client. The bus must provide a mechanism to resolve the
differences between the service requestor and provider so that these details are
hidden from the actual service implementation.

Another common issue is that many services may provide the same fundamental
business function but with subtle differences (for example, performance). The
enterprise service bus performs service request routing based on predefined
rules that stipulate which of the available service providers receives the request.
For example, in a credit-checking scenario, one provider may return faster
results but charge more per transaction versus a slower but cheaper provider.
The service bus could route credit check requests to the more optimal provider
based on factors such as the urgency of the request.

All of the functions of the service bus (routing, logging, and message
transformation) are hosted within the bus in the components called mediations.
The mediation logic may often consist of a set of predefined basic logic functions
such as message logging, message augmentation, or transformation. A
mediation development environment such as WebSphere Integration Developer
could leverage these patterns to allow consistent mediation development.
However, there are instances when the demands on the mediation exceed the
basic mediation logic, in which case the ESB should be capable of hosting more
complex, custom mediation logic.

When considering which ESB implementation is suitable for your solution, you
should consider the product capabilities with regard to the following:

� Transport protocol support and conversion capability

� Interactions supported (one-way, synchronous request/response,
asynchronous request/response, pub/sub, aggregation, and so on)

� Routing capabilities

� Dynamic configuration capabilities

� Mediation capabilities

� Ease of development and administration

� Quality of Service capabilities

� Existing conditions in the enterprise and customer skill set
 Chapter 4. Planning for connectivity 83

The following sections will describe two products from IBM that may be used to
implement an enterprise service bus, WebSphere Message Broker, and
WebSphere Enterprise Service Bus. In addition, we give a brief description of the
IBM DataPower SOA appliances that can fulfill the requirement of an ESB
gateway. The products are from different backgrounds and have varying levels of
capabilities, but each can be used separately, or together, to achieve the
functionality of an enterprise service bus.

The ESB product selected will drive the choice of products for the other life-cycle
phases. Table 4-3 shows suggested combinations of products.

Table 4-3 Possible product selections for implementing SOA connectivity

4.5.1 WebSphere Enterprise Service Bus
WebSphere ESB is an ESB runtime that allows rapid implementation of the ESB
pattern.

Deploy Model/assemble Manage

DataPower XS40 DataPower Tooling
(included with DP)

Tivoli Access Manager

WebSphere ESB 6.0.1 WebSphere Integration
Developer 6.0.1

Tivoli Composite
Application Monitor for
SOA

Tivoli Composite
Application Monitor for
RTT

WebSphere Message
Broker V6

WebSphere Message
Brokers Toolkit

Rational Application
Developer

OMEGAMON
84 Patterns: SOA Foundation Service Connectivity Scenario

Connectivity
WebSphere ESB is built on top of WebSphere Application Server and provides
all of the same connectivity capabilities. The service bus can seamlessly perform
message transport and protocol transformation for any of the supported
protocols, which include:

� Java Messaging Service (JMS)
� SOAP over HTTP
� SOAP over JMS

WebSphere ESB supports all of the common messaging models including:

� Request/response
� Publish/subscribe
� One-way message distribution

Adapters
WebSphere ESB supports connectivity for WebSphere Adapters, both
JCA-based WebSphere Adapters and the WebSphere Business Integration
(WBI) Adapters.

The WBI Adapters provide a wide range of connectivity that support interaction
with suppliers, trading partners, and customers. WBI Adapters attach packaged,
traditional, custom, mainframe, and Web applications to the ESB.

WebSphere Adapters are compliant with J2EE Connector Architecture
(JCA 1.5). JCA is the J2EE standard for EIS connectivity. EIS Import and EIS
Export provide SCA components with the uniform view of the services external to
the module. This allows components to communicate with the variety of external
EIS systems using the consistent SCA programming model. WebSphere
Adapters are assembled in WebSphere Integration Developer from imported
RAR files and then exported within an Enterprise Application Archive (EAR) file
and deployed on WebSphere ESB.

WebSphere Adapters include the following:

� IBM WebSphere Adapter For Flat Files, Version 6.0
� IBM WebSphere Adapter for JDBC™, Version 6.0
� IBM WebSphere Adapter for PeopleSoft Enterprise, Version 6.0
� IBM WebSphere Adapter for Siebel Business Applications, Version 6.0
� IBM WebSphere Adapter for SAP Applications, Version 6.0

For information about adapters see:

http://www-306.ibm.com/software/integration/wbiadapters/
 Chapter 4. Planning for connectivity 85

http://www-306.ibm.com/software/integration/wbiadapters/

Mediation modules
At its core, WebSphere ESB is a runtime environment capable of hosting
message mediations. Mediations are deployed to the runtime as a type of SCA
module called a mediation module. Mediation modules contain imports, exports,
and SCA components that typically include a mediation flow component and
optionally, Java SCA components. Mediation flow components contain mediation
flows that operate on the message requests and responses. Figure 4-4 illustrates
a mediation module.

Figure 4-4 Mediation module
86 Patterns: SOA Foundation Service Connectivity Scenario

Mediation modules may use other mediation modules to perform a complete
message mediation. This allows more flexible service assembly, and developers
may reuse mediation modules across several mediations. Figure 4-5 illustrates
how multiple modules may be used together to produce a complete message
mediation.

Figure 4-5 Multiple mediation modules

In the example, the service consumer sends a request to module A, which uses
an SCA import from module B to invoke the mediation flow within module B,
which eventually calls the service.

Mediation flow
A mediation module can contain one mediation flow component that contains
mediation flows. Mediation flows within WebSphere ESB support a number of
basic mediation patterns:

� Message protocol transformation
� Content-based message routing
� Message format transformation
� Message augmentation

Mediation
Module A

Service
Consumer Mediation

Module B

Web Service
Export

SCA
Export

Service
Imports

Service
 Chapter 4. Planning for connectivity 87

Message protocol transformation
Message protocol transformation allows service requestors to use one particular
protocol while the service provider uses a different protocol. This functionality is
useful because otherwise service providers would need to support every
potential service request protocol. Figure 4-6 shows an example of protocol
transformation.

Figure 4-6 Protocol translation

In this example the service request travels over a secure SOAP-over-HTTPS
channel. The mediation module makes a request to the service that operates
using SOAP over HTTP. However, this service could have been SOAP over
JMS, or even JMS over an MQ queue.

Content-based message routing
Sometimes a service request may be fulfilled by more than one service provider.
During service invocation, the service requestor may not and should not know
about the details of the service provider that is ultimately servicing the request.
Content-based request routing allows WebSphere ESB to dynamically decide
how to route messages using filtering rules.

Figure 4-7 Content-based routing

Figure 4-7 shows a service request that then can be handled either by service A
or service B. The mediation module decides based on the message attributes
(content, sender, and so on) which of the services will be used to handle the

Mediation
Module

Request

HTTPS HTTP

Service
Consumer

Request

Service

Mediation
Module

Request

Service
Consumer

Service
B

Service
A

88 Patterns: SOA Foundation Service Connectivity Scenario

request. A typical use case for this type of functionality is quality of service. For
example, with a stock quote service, premium clients can receive real-time
quotes while regular clients receive delayed quotes.

Message format transformation
Service requestors and service providers may use different syntax for requests.
WebSphere ESB is able to rewrite requests and responses as they flow through
the bus so that the service request and response are in the correct syntax for the
requestor and provider.

Figure 4-8 Message format transformation

Figure 4-8 shows a service whose specification uses schema2.xsd. However, the
service consumer creates requests according to schema1.xsd. In this case, the
mediation module can translate requests using the consumer schema into
requests using the provider schema, as well as translate the response
messages. This allows the consumer and provider to communicate even though
they use different syntax.

Mediation
Module

SCHEMA1.XSD

Service
Consumer

SCHEMA2.XSD

<request>

<firstname>Bob</firstname>

<lastname>Asker</lastname>

<dob>08-April-76</dob>

</request>

<request>

<name>Bob Asker</name>

<birthyear>1976</year>

<birthmonth>04</birthmonth>

<birthday>08</birthday>

</request>

Service
 Chapter 4. Planning for connectivity 89

Message augmentation
In addition to message format transformation, WebSphere ESB is also able to
perform additional message augmentation. For example, suppose that the
service requester provides a first and last name but no account number. The
mediation can perform a database lookup to find the account number for the user
and add it to the message before sending it on to the service provider.

Figure 4-9 Database lookup message augmentation

Figure 4-9 shows a request message augmentation that uses a database to look
up user account numbers. The service consumer provides a first name and a last
name. The mediation module uses an accounts database to look up the user’s
account number and sends the request to the service using this account number.

Messaging clients
WebSphere ESB provides Message Service Clients that extend the connectivity
of the enterprise service bus.

� Message Service Clients for C/C++ and .NET enable non-Java applications
to connect to WebSphere ESB.

Message Service Clients for C/C++ and .NET provide an API called XMS that
provides a set of interfaces similar to the Java Message Service (JMS) API.
Message Service Client for C/C++ contains two implementations of XMS, one
for use by C applications and another for use by C++ applications. Message

Mediation
Module

Request

Service
Consumer

Request

Accounts DB

<request>

<firstname>Rob</firstname>

<lastname>Asker</lastname>

<accountNo></accountNo>

</request>

<request>

<firstname>Rob</firstname>

<lastname>Asker</lastname>

<accountNo>122575</accountNo>

</request>

Name = Rob Asker acountNo = 122575

Service
90 Patterns: SOA Foundation Service Connectivity Scenario

Service Client for .NET contains a fully managed implementation of XMS,
which can be used by any .NET compliant language.

� Web Services Client for C++ provides a set of libraries and Java tools that
enable you to build ANSI C++ Web service client applications from existing
Web Service Description Language (WSDL) files.

The ANSI C++ Web service client applications that you build from existing
WSDL files, using the Web Services Client for C++ libraries and Java tools,
are able to communicate with applications over HTTP using TCP/IP with
SOAP protocols.

You can also install and use the Application Client for WebSphere Application
Server to provide J2EE client support. This includes the Web services Client,
EJB™ Client, and JMS Client.

4.5.2 WebSphere Message Broker
WebSphere Message Broker may also be used for implementing an ESB.

Unlike WebSphere ESB, WebSphere Message Broker is not based on
WebSphere Application Server but is built around a traditional message-based
integration approach, leveraging WebSphere MQ, and provides a robust and
flexible messaging hub for mediation. However, the product can be implemented
and deployed as an enterprise service bus pattern. Other features include the
ability to extend the reach of the enterprise service bus to non-SOAP messages
such as AL3, HL7, Switft, HIPAA, EDI, and so on. The product also includes
support for creating complex message transformations without the need for
complex programming.

Like WebSphere ESB, WebSphere Message Broker provides the following
capabilities:

� Message protocol transformation
� Content-based message routing
� Message format transformation
� Message augmentation

In WebSphere Message Broker terminology, the mediation hosted by an ESB
implemented using WebSphere Message Broker consists of two key
components: message models and message flows.

Message models
WebSphere Message Broker includes parsers capable of parsing and emitting a
broad range of message formats. Some formats such as XML are
self-describing, that is, these formats include the message metadata as well as
 Chapter 4. Planning for connectivity 91

message data, enabling generic parsers to understand the message. Other
formats such as COBOL and C binary messages contain no such metadata.
Thus, WebSphere Message Broker requires message models to describe the
format of messages so that the parser can correctly interpret the incoming
message. Message models also improve message flow development, as the
development tool is capable of importing the message model to document the
message format. WebSphere Message Broker includes a number of parsers that
operate on different types of message formats. The use of a particular parser is
defined by the message domain. The following message domains are available:

� MRM handles a wide variety of message types including binary, formatted
text, as well as XML.

� XML handles XML message formats.

� JMS handles messages produced by JMS providers, such as
WebSphere MQ.

� IDOC handles messages produced in the SAP IDoc format.

� MIME handles multi-part MIME messages such as SOAP attachments.

� Custom for a user-defined parser.
92 Patterns: SOA Foundation Service Connectivity Scenario

Although XML messages do not need a message model, implementing one is
helpful for WebSphere Message Broker to properly interpret attribute data types
(otherwise everything is treated as a text string), as well as aiding the message
flow development process.

Figure 4-10 WebSphere Message Broker message model
 Chapter 4. Planning for connectivity 93

Message flows
Like WebSphere ESB, message flows within WebSphere Message Broker define
the set of processing steps to execute when a message is flowing through the
system. Message flows consist of a set of nodes that define a particular action to
take against the message. All message flows must include an input node that
specifies the message source. In addition, the following nodes are available for
building message flows:

� Built-in nodes are nodes that are shipped with WebSphere Message Broker
(includes input, output, decision, and error handling nodes).

� User-defined nodes are extensions to standard WebSphere Message Broker
built-in nodes. User-defined nodes must use the standard C or Java APIs
provided by WebSphere Message Broker.

� Subflow nodes consist of additional message flows that are part of a larger
message flow. Subflows allow sharing of commonly used message flows.

Applying the graph paradigm to message flows, with nodes being vertices in the
graph, connections are the edges. Connections link the output terminal of one
message node to the input terminal of a subsequent message node.
Connections represent the flow of data through the message flow.

Figure 4-11 WebSphere Message Broker message flow

ESQL
WebSphere Message Broker includes a built-in message manipulation language
called Extended Structured Query Language (ESQL). Based on Structured
Query Language (SQL), ESQL allows message flow nodes to perform
94 Patterns: SOA Foundation Service Connectivity Scenario

computations based on the message content as well as database content. For
example, an ESQL compute node might augment the message content using
data from a relational database. Example 4-1 shows a sample ESQL that
performs different actions based on the type of credit the user is submitting.

Example 4-1 Sample ESQL

IF InputBody.Order.Payment.CreditCardType=’VISA’ THEN
DO;

-- SOME ACTION
END IF;
IF InputBody.Order.Payment.CreditCartType=’MASTERCARD’ THEN

DO;
-- SOME OTHER ACTION

END IF;

Developing for WebSphere Message Broker
Integration developers create message models and message flows using a
development tool called the Message Brokers Toolkit. Like the WebSphere
Integration Developer, the Message Brokers Toolkit is an Eclipse
framework-based application. The primary component of the Message Brokers
Toolkit is called the workbench. The workbench consists of a collection of Eclipse
perspectives and views that provide the development functions. The workbench
also includes a flow debugger that can aid in testing message flows. The flow
debugger can attach to running flow engines and observe and manipulate
in-flight messages as they pass through the nodes in the message flow. Finally,
the workbench is capable of deploying message flow applications to the runtime
environment, both for testing and production.

Runtime
The WebSphere Message Broker runtime consists of a various runtime
components, including Broker domains, configuration managers, Brokers, and
execution groups. Broker domains are a a group of Brokers along with a shared
configuration manager that controls all of the Brokers. The configuration
manager is responsible for communicating between the workbench and the
Brokers. The configuration manager controls the Broker domains’ runtime
configuration, manages deployment of message flows, and communicates with
the other components of the Broker runtime. A Broker hosts execution groups
that are a set of message flows grouped together. The Broker isolates the
message flows within its execution groups from each other and allows separate
 Chapter 4. Planning for connectivity 95

runtime configuration (each execution group receives its own thread pool).
Figure 4-12 illustrates the components of the WebSphere Message Broker
runtime.

Figure 4-12 WebSphere Message Broker runtime

4.5.3 WebSphere DataPower SOA Appliance
Extensible Markup Language (XML) has proven to be a great force in the
software industry. XML’s flexible, self-describing, language-independent format
makes decoupling partner systems much easier. However, the heavy reliance on
XML for data transfer between services also presents some problems. For
example, XML can result in lengthy message payloads and large amounts of
overhead for schema validation and parsing. The processing overhead of dealing
96 Patterns: SOA Foundation Service Connectivity Scenario

with XML can tax application servers and middleware infrastructure, drastically
decreasing performance.

The evolution of network infrastructure has seen an increasing trend toward
replacing general purpose software systems with dedicated hardware for
increased performance. As shown in Figure 4-13, there has been a move from
network Routers based on UNIX® towards dedicated hardware Routers, from
software Web servers towards load-balancing infrastructures, content switches,
and SSL accelerators.

Figure 4-13 Evolution towards hardware-based network devices

In this same way, there is an evolution towards using dedicated hardware for
performing repetitive XML tasks such as parsing, schema validation, and XML
Stylesheet Language (XSL) translation.

Service protocols based on XML also lack any inherent built-in security
mechanisms. SOAP over HTTP passes potentially sensitive data in plaintext
over the network. While there have been emerging standards such as
WS-Security to help deal with security concerns, implementing these standards
further drains computing resources on critical servers.

The IBM line of DataPower SOA appliances helps address the performance and
security needs of enterprise-level SOA architectures by off-loading the XML
processing onto dedicated hardware, freeing the CPU resources of application
servers and middleware platforms to provide higher service throughput.
DataPower SOA appliances provide a range of features including:

� XML/SOAP firewall, filtering based on message content, headers, or other
network variables

Cost
&

Inefficiency

Performance & Time

Routers

SSL Accelerators,
Load Balancers,

Proxy Caches, CDNs

XML Accelerators
XML Security

XML Management

Unix BSD
Routing

Web Servers

Application Servers
 Chapter 4. Planning for connectivity 97

� Incoming/outgoing data validation

� Schema validation

� XML security, access control, authentication, and authorization

� Integration with various security and monitoring products such as IBM Tivoli
Enterprise™ Monitoring, Tivoli Access Manager, Netegrity SiteMinder, and so
on

The performance advantage of DataPower appliances are often close to seventy
times higher than when using general purpose systems alone. Figure 4-14
shows the relative performance costs of various infrastructure-type XML tasks.
As shown, when digital signature checking and message encryption/decryption
take place, there is a great deal of overhead in processing messages. The XML
appliance can off-load this processing from application servers onto dedicated
hardware capable of performing these tasks in a fraction of the time.

Figure 4-14 Performance costs for XML processing tasks

For more information about DataPower SOA Appliances see:

http://www-306.ibm.com/software/integration/datapower/index.html

DataPower in a WebSphere ESB environment
DataPower and WebSphere ESB are very complementary products in that
organizations will typically build message mediations and transformations inside
of the service bus using WebSphere Integration Developer. The DataPower
appliance can then be deployed to the edges of the network to perform message
98 Patterns: SOA Foundation Service Connectivity Scenario

http://www-306.ibm.com/software/integration/datapower/index.html

security, authentication, and authorization. Figure 4-15 illustrates a federated
extranet involving XML security appliances that filter inbound and outbound
traffic while allowing valid messages to be mediated through the service bus.

Figure 4-15 A federated extranet with XML security appliances protecting traffic

DataPower appliances can also be used to extend the reach of WebSphere ESB
by translating messages consisting of non-XML formats for use by the service
bus. DataPower’s built-in translation engine allows powerful message
transformations between XML and non-XML or binary formats, making it possible
for heritage systems to participate in the SOA environment. The appliances can
also route requests based on message content to different branch installations of
WebSphere ESB. In this way, the appliance acts as a central message
concentrator that routes message traffic as appropriate.

4.5.4 Enterprise service bus implementations compared
In summary, IBM offers two ESB products to help build your SOA solution:

� IBM WebSphere Enterprise Service Bus
� IBM WebSphere Message Broker (an advanced ESB)

In addition, there are a number of products that work in concert with these ESBs
including IBM WebSphere DataPower SOA Appliances. This section is designed
 Chapter 4. Planning for connectivity 99

to help solution planners decide which of these products is the most appropriate
for their situation.

IBM WebSphere Enterprise Service Bus (WebSphere ESB), a core component
of the WebSphere software platform, is built on WebSphere Application Server.
WebSphere ESB targets a predominantly Web services based environment.
WebSphere ESB adds a mediation layer based on the SCA programming model
on top of WebSphere Application Server foundation to provide intelligent
connectivity using the native WebSphere Application Server transports.

Building an ESB that is based entirely on WebSphere ESB is an option when
Web services support is critical and the service provider and consumer interact
via open standards. WebSphere ESB is most suitable for environments that are
based on Web services standards and provides facilities to integrate services
that are offered via other sources. However, if interaction with non-Web service
standards-based services with fast throughput is a major requirement, then
WebSphere Message Broker may be better suited for those projects.

IBM WebSphere Message Broker delivers an advanced enterprise service bus
providing connectivity and universal data transformation for both standard and
non-standards-based applications and services to power your service-oriented
architecture. Message Broker intelligently routes and transforms messages and
data in real-time from multiple device types, business units, and locations to
virtually all systems and applications throughout your enterprise — and beyond.
Message Broker offers transactional processing, near universal connectivity over
multiple transports including WebSphere MQ, JMS, and HTTP, and reliability and
performance unmatched by others in the market.

WebSphere Message Broker is an option when quality-of-service requirements
demand the use of mature middleware and deployment requirements go beyond
Web services integration. WebSphere Message Broker can support all the ESB
capabilities that WebSphere Enterprise Service Bus does, offer broader
transformation and mediation features, and support integration assets that may
or may not be Web services enabled.

The extensive use of XML and Web services brings new challenges and
requirements to your IT environment. WebSphere DataPower simplifies SOA
infrastructure with specialized software/hardware devices, expedites SOA XML
processing, and enhances SOA security management with XML-level protection.
WebSphere DataPower can be used on its own as an ESB Gateway or in
conjunction with either WebSphere ESB or WebSphere Message Broker.
100 Patterns: SOA Foundation Service Connectivity Scenario

4.6 ITSOMart product selection
One of the principal goals of SOA is technology agnosticism. This allows IT to
freely choose best-of-breed tools to fulfill their needs in each area, without
requiring that services be built using a particular tool, language, or protocol.
However, the importance of product selection cannot be ignored and should be
considered when planning a solution. IBM offers a broad set of standards-based
tools that encompass the SOA life cycle.

This section discusses the set of products selected to design and implement the
ITSOMart solution. We have mapped these products to the SOA Foundation
Reference Architecture in Figure 4-16.

Figure 4-16 ITSOMart product selection

4.6.1 Deployment
Services deployment/runtime support requires containers that can manage
runtime concerns such as service invocation, life cycle, and access to underlying
resources such as databases. The runtime environment should also be able to
support management/monitoring functions or allow plug-ins that enable such
functions. The runtime products chosen are driven by the technology choice
made for service creation. For example, services created as Web services in
Java might run in a J2EE container product, while services created using
Microsoft®.NET would run in a .NET application server. Ultimately the

Interaction Services
WebSphere Application Server

(Web application)

Process Services
WebSphere Application Server

(EJB application)

Information Services

Partner Services
Business App Services

WebSphere Application Server

Access Services
WebSphere Adapters

Infrastructure Services
WebSphere Application Server

WebSphere Enterprise Service Bus ESB

Rational
Software
Architect

WebSphere
Integration
Developer

Business Innovation & Optimization Services

IBM Tivoli
Composite
Application
Manager for

SOA

D
ev

el
op

m
en

t
Se

rv
ic

es

IT
 S

er
vi

ce
s

M
an

ag
em

en
t

 Chapter 4. Planning for connectivity 101

deployment environment is largely based on the technologies chosen during
service development.

Server infrastructure
WebSphere Application Server is the base deployment component within IBM
services enablement offerings. Developers can create basic Business
Application Services using Enterprise Java Beans (EJBs) and Plain Old Java
Objects (POJOs) and expose these services via standard Web services
methods. In addition to the J2EE 1.4 standards, WebSphere Application Server
supports a variety of Web services standards including:

� Enterprise Web Services (JSR 109)
� Java API for XML-based RPC (JAX-RPC)
� WS-Interoperability Basic Profile (WS-I)
� Web Services Security (WS-Security)
� Web Services Transactions (WS-TX)

WebSphere Application Server is available in several versions that support
various uses. The most basic flavor is the Community Edition, which is based on
Apache Geronimo, while the most robust version, WebSphere Application Server
Network Deployment, includes enterprise-class features such as high availability,
workload balancing, and dynamic failover.

In addition to the basic service hosting role, WebSphere Application Server also
provides the underlying layer for both WebSphere Process Server and
WebSphere ESB. The tight integration between all these products provides a
number of benefits including the possibility of a single point of administration in a
mixed product cell. This approach allows deployment processes and procedures
to share common elements for all such platforms. The runtime deployment uses
the same approach for installation, configuration, clustering, and administration.

Enterprise service bus
ITSOMart has chosen to use WebSphere ESB to implement their solution. They
have evaluated their needs, including the connectivity issues of connecting to
existing services they plan to use and feel that WebSphere ESB provides all the
functionality they require. They anticipate that in the future, though their solution
may grow, their connectivity issues will remain fairly simple.

WebSphere ESB provides the ability to abstract transport protocols between two
services. WebSphere ESB also includes service bus mediations that can resolve
message syntax differences between the service provider and requestor. The
product also includes support for content-based routing and message logging for
audit purposes.
102 Patterns: SOA Foundation Service Connectivity Scenario

4.6.2 Modeling and design
ITSOMart has decided to use Rational Software Architect for their application
design activities and for the limited J2EE development their solution will require.

Rational Software Architect targets software architects to help modeling
application software components and the relationships between components.
Rational Software Architect uses the standards-based Unified Modeling
Language (UML) for use case analysis, class diagrams, state diagrams, and
sequence diagrams.

Rational Software Architect also supports software patterns to encourage
software re-use. There is a set of prepopulated patterns, and users may create
their own custom patterns as well.

Rational Software Architect also includes structural analysis tools that help
software architects navigate and visualize the complex code base of modern
applications. The structural analysis also compares the existing code against
known software patterns to allow architects to more quickly understand the code.

In addition to the modeling capabilities, Rational Software Architect provides a
comprehensive set of tools for developers to create, test, and deploy Java
applications, including EJBs, Web, XML, and database applications. These are
the same tools found in Rational Application Developer, the Rational product that
targets application developers.

For full details on Rational Software Architect see the product page:

http://www.ibm.com/software/awdtools/architect/swarchitect/index.html

4.6.3 Development and assembly
Developing a solution consists of two distinct tasks: development and assembly.

� Development refers to the actual creation of services for the solution. This
may involve building Web services to implement core Business Application
Services or perhaps creating service wrappers around inherited applications.
In most cases these tasks involve using an integrated development
environment to create and test basic services.

� Assembly involves composing services together in order to deliver the needed
functionality. Assembly may involve message mediation between two
different systems or protocol transformation between systems or perhaps
using application adapters to reach backend systems.

The major difference between development and assembly is that development
focuses on creating core business functionality without worrying about who will
access that functionality and what methods will be used to access the services.
 Chapter 4. Planning for connectivity 103

http://www.ibm.com/software/awdtools/architect/swarchitect/index.html

Assembly focuses only on creating the connections between various services.
Service implementations are considered opaque, and application assembly
generally does not require detailed knowledge about the specifics of how a
particular service has been implemented. By creating this separation between
service creation and application assembly, development teams are free to focus
on building the needed functionality without being distracted by issues related to
integration. This creates a much more efficient programming model when
compared to traditional application development where brittle interdependencies
between various application components meant that changes in one system
propagated throughout the entire system.

Development
ITSOMart will have some limited J2EE development required to implement their
solution. Since they have chosen to use Rational Software Architect for their
modeling activities, they will also use the extensive J2EE development
capabilities to create the elements of their solution that require J2EE or Web
services development.

Assembly
Service assembly involves orchestrating the flow of messages between services.
Services are created as standalone components that may participate with any
other components in a composite application. Service assembly often involves
creating message mediation flows that transform message data between
systems with different message formats or routing service requests based on the
request content.

WebSphere Integration Developer is the integration tool that creates assemblies
for both WebSphere ESB and WebSphere Process Server. WebSphere
Integration Developer supports a variety of integration standards including
Business Process Execution Language (BPEL) and BPEL extensions that allow
human tasks, and SCA. Also included are unit test environments that allow
integration developers to test the integration flow without involving the actual
services being integrated.

ITSOMart has chosen to use WebSphere ESB as the ESB in their solution,
making WebSphere Integration Developer the natural choice. Many of the J2EE
and Web services features available in Rational Software Architect are also
available in WebSphere Integration Developer.

Development and assembly tool coexistence
Rational Software Architect and WebSphere Integration Developer are built on a
common foundation. This means that they contain common features and have
the same look and feel. It also means that they can coexist in the same
installation. WebSphere Integration Developer may be installed into an existing
104 Patterns: SOA Foundation Service Connectivity Scenario

Rational Application Developer or Rational Software Architect installation. This
allows features from both IDEs to be available from a single, integrated
development environment.

4.6.4 Monitoring and management
The highly distributed nature of SOA solutions can present difficulties for
monitoring and management. Diagnosing application performance issues across
a range of distributed systems is difficult without end-to-end monitoring tools.
The IBM offering in this space includes the Tivoli Enterprise Monitoring package
as well as IBM Tivoli Composite Application Manager. In particular, for
Web-services based solutions, IBM Tivoli Composite Application Manager for
SOA provides a detailed view of Web services performance within the Tivoli
Enterprise Portal and allows basic message filtering and alerts based on
performance thresholds.

For more information about IBM Tivoli Composite Application Manager for SOA
see Chapter 12, “Service monitoring and management with IBM Tivoli
Composite Application Manager SOA” on page 555.

4.7 Installation considerations
Physical topology is an important issue to consider when planning the solution.
There must be an adequate number of environments and resources to support
on-going development as well as product systems.

The examples in this section illustrate a single line of development for the
ITSOMart application. More environments and resources would be needed if
other applications were being developed. The physical topology also assumes
that the development and deployment environment is based on WebSphere
Integration Developer and WebSphere ESB. Physical topology and resources
needs would be different for another service bus approach.

Differences between development and production must also be considered when
planning the environments. Typically, the mediation modules for WebSphere
ESB are created in a workstation development environment and deployed to a
server environment. Differences in operating systems, physical resources, and
system tuning may yield very different performance results between
development and production environments.
 Chapter 4. Planning for connectivity 105

Figure 4-17 illustrates a typical WebSphere ESB deployment environment,
including development environment, application servers, back-end servers, the
service bus runtime, management and monitoring, and client applications.

Figure 4-17 WebSphere ESB deployment architecture

In this environment, the development of applications, services, and integration
processes occurs independently. Unit testing is performed with the local unit test
environment. End user applications are deployed either to client workstations or
to application servers in the case of Web applications. These applications then
connect to back-end services or inherited applications via a clustered
106 Patterns: SOA Foundation Service Connectivity Scenario

WebSphere ESB managed by WebSphere Application Server Network
Deployment. All service traffic is monitored by IBM Tivoli Monitoring Server,
which stores the information in a data warehouse. The IBM Tivoli Enterprise
Portal Server then makes this information available to system administrators for
system health monitoring, fault detection, and service level monitoring.

A copy of this production environment would be used for testing so that changes
can be validated in a production-like environment without affecting the running
production environment.

4.7.1 Rational Software Architect, WebSphere Integration Developer
WebSphere Integration Developer is based on the Rational Software
Development Platform, which is shared by several IBM products. Note that the
Rational Software Development Platform is installed only once when the first
product is installed. Subsequent products use the common user interface and
add product-specific functionality that is provided by the plug-ins. WebSphere
Integration Developer is available for Windows® and Linux® operating systems.

If your current environment has any existing Rational Software Development
Platform products installed, the installation of WebSphere Integration Developer
will integrate into the existing Rational Software Development Platform.

WebSphere Integration Developer V6.0.1 is based on Rational Software
Development Platform V6.0.1 and is only compatible with other products that are
based on this level. If you have a product that uses an earlier version of Rational
Software Development Platform, you will be required to upgrade that product or
uninstall it so that WebSphere Integration Developer V6.0.1 can be installed.

WebSphere Integration Developer can coexist with WebSphere Studio
Application Developer Integration Edition V5.1.1 and previous releases.
WebSphere Integration Developer V6.0.1 cannot coexist with WebSphere
Integration Developer V6.0.

System requirements
WebSphere Integration Developer, Rational Software Architect, and Rational
Application Developer are all capable of running on Linux or Microsoft Windows.
 Chapter 4. Planning for connectivity 107

For information regarding the hardware and software requirements for each
product see:

� Rational Software Architect system requirements:

http://www.ibm.com/software/awdtools/architect/swarchitect/sysreq/index.html

� Rational Application Developer system requirements:

http://www-306.ibm.com/software/awdtools/developer/application/index.html

� WebSphere Integration Developer system requirements:

http://www-306.ibm.com/software/integration/wid/

Installation steps
Below is the recommended order in which to install Rational Software Architect
and WebSphere Integration Developer.

The order is:

1. Install Rational Software Architect 6.0.1.

2. Install the Rational Software Architect fixpack 6.0.1.1.

Installation instructions for all Rational Software Architect updates can be
found at:

http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rsa/60/install_
instruction/

3. Install WebSphere Integration Developer 6.0.1. Install into the same directory
to which you installed Rational Software Architect so that the WebSphere
Integration Developer tools will be available in the same Eclipse workbench.

The steps taken to install WebSphere Integration Developer on a Windows
system in our test environment can be seen in “Installing WebSphere
Integration Developer” on page 658.

Tip: The test server environment uses profiles created under the WebSphere
Integration Developer installation directories. If you tend to use long names for
mediation modules, you can run into a problem with the 256 URI length
limitation in Windows when you deploy to the test environment. One way to
avoid this is to choose a short path name for the installation. Another is to
create new profiles in a different, shorter directory for use by the test
environment (see “Creating a new server in the test environment” on
page 640).
108 Patterns: SOA Foundation Service Connectivity Scenario

http://www.ibm.com/software/awdtools/architect/swarchitect/sysreq/index.html
http://www-306.ibm.com/software/awdtools/developer/application/index.html
http://www-306.ibm.com/software/integration/wid/
http://www3.software.ibm.com/ibmdl/pub/software/rationalsdp/rsa/60/install_instruction/

4. Install the WebSphere Integration Developer interim fixes. Installation
instructions for all WebSphere Integration Developer updates can be found
at:

http://www3.software.ibm.com/ibmdl/pub/software/websphere/studiotools/wid/
install_instructions/

The following interim fixes were available during the development of the
ITSOMart sample:

– 6.0.1 interim fix 001
– 6.0.1 interim fix 002
– 6.0.1 interim fix 003

We found that we could also install the WebSphere MQ Explorer as a plug-in to
the Rational Software Architect shell. This worked for us. However, you should
note that this is an unsupported configuration. For more information see
“Installing WebSphere MQ Explorer as a plug-in” on page 654.

4.7.2 WebSphere ESB
WebSphere ESB should be installed separately from the development
environment on different physical servers. This separates development from
testing and production so that changes in one environment do not affect another.
In addition, server tuning may differ between a development environment (for
example, hot-deploying code changes) and a testing or production environment.

A WebSphere ESB installation may coexist with any version of WebSphere
Application Server, WebSphere Process Server, or WBI Server Foundation
Version 5.1.

Note: Since the development of the sample in this book, WebSphere
Integration Developer 6.0.1.1 became available. The instructions above
reflect the product levels used to illustrate and test the samples in this
book.

Always check to ensure that the current version of WebSphere Integration
Developer is compatible with the installation of the Rational Software
Development Platform. You will find a compatibility matrix at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=
/com.ibm.wbit.help.install.doc/topics/cinsdp.html
 Chapter 4. Planning for connectivity 109

http://www3.software.ibm.com/ibmdl/pub/software/websphere/studiotools/wid/install_instructions/
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.install.doc/topics/cinsdp.html

WebSphere ESB supports a variety of operating systems and hardware
architectures. For information regarding supported hardware/software please
see WebSphere ESB system requirements at:

http://www-306.ibm.com/software/integration/wsesb/sysreqs/

During installation planning, consider the following:

� Installing WebSphere ESB to a physical disk separate from the disk used by
the operating system can help prevent disk contention during mediation
execution.

� WebSphere ESB should not be installed to a directory containing spaces in
the directory name. This occasionally causes unexpected behavior.

� On Microsoft Windows operating systems, ensure that the WebSphere ESB
profile is created using a shallow directory structure (that is, C:\PF\ESB
instead of C:\IBM\WebSphere\EnterpriseServiceBus\profiles\ESB). Long
directory structures can cause you to encounter the Windows limit on path
names longer than 256 characters during deployment and mediation
execution.

Installation options
A WebSphere ESB server is an application server that has been augmented to
run mediation modules. It is built on WebSphere Application Server Network
Deployment V6.0.2.3. An installation consists of installing Network Deployment,
installing WebSphere ESB in the same directories, and then creating one or
more profiles that define the application server environment. The profiles can be
done as part of the installation or manually afterward.

When you install WebSphere ESB there are two possibilities for the installation:

� If you have an existing WebSphere Application Server Network Deployment
installation, you can choose to extend this installation with WebSphere ESB
(updating Network Deployment to V6.0.2.3 in the process) or you can create
a new, separate set of install libraries.

If you choose to extend an existing environment, you can create a new
application server as part of the install, create no server during the install, or
you can choose to augment an existing application server for WebSphere
ESB.

� If there is no existing WebSphere ESB or Network Deployment environment,
the installation process will install Network Deployment first, then WebSphere
ESB.
110 Patterns: SOA Foundation Service Connectivity Scenario

http://www-306.ibm.com/software/integration/wsesb/sysreqs/
http://www-306.ibm.com/software/integration/wsesb/sysreqs/

You can choose to create a stand-alone WebSphere ESB server as part of
the install, or you can elect to create the application server environment after
the install. The following are the options you will see during install:

– Complete install

A complete install includes all the optional features (samples and
Javadocs). A stand-alone application server is created using the default
values, and the First Steps wizard is launched at the end of the installation
process.

– Custom install

No application server is created and the installation of the optional
features can be disabled. The Profile creation wizard is launched at the
end of the installation to allow you to create the runtime environment.

You can install using the installation wizard or you can perform a silent
installation. Sample response files for silent installation are contained on the
installation CD.

Topologies for a standalone server
A stand-alone server profile has its own administrative console and all of the
sample applications (if you installed the sample applications gallery feature). You
can have multiple stand-alone servers on a single machine, each managed
independently.

The following are possibilities for installing and configuring stand-alone servers
on a single machine:

� Single-machine installation with one stand-alone server

The simplest scenario is to install WebSphere ESB on a single machine with
a stand-alone server profile. Each stand-alone application server profile
includes an application server called server1. You can do this by choosing the
Complete option during installation.

� Single-machine installation with multiple stand-alone servers

After installing the WebSphere ESB system files once on a machine, you can
use the Profile Creation wizard to create additional stand-alone server profiles
on the same machine. This topology lets each profile have unique modules
and applications, configuration settings, data, and log files, while sharing the
same set of system files. There is no high availability or load balancing
among machines. Each server would have its own set of applications and
serve its own purpose.
 Chapter 4. Planning for connectivity 111

� Single-machine, with multiple installations

Multiple installations of WebSphere ESB on one system are also possible,
each with its own set of core files and profiles. This might come in handy when
testing new services.

Installing WebSphere ESB creates the set of system files. The Profile Creation
wizard is then used, either as part of the installation or started later manually, to
create the runtime environment.

Topologies for clustering
WebSphere Application Server Network Deployment includes the ability to
cluster application servers for load balancing, failover, and central management.
Because WebSphere ESB is built on Network Deployment, the issues for setting
up a clustered environment are essentially the same.

Designing a system for workload management and failover can be complex. If
you plan to do this, we recommend that you use the following documents to
thoroughly understand how clustering works and how to design a clustered
environment that includes the service integration bus:

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

For examples of clustering topologies specifically geared toward load balancing
and failover for mediation modules, see 11.12, “Network Deployment and
clustering topologies” on page 531.

4.7.3 WebSphere Application Server
Services used by WebSphere ESB can run in many different environments.
These include WebSphere Application Server, other J2EE application servers,
.NET servers, mainframe systems, and any number of other systems capable of
using the communications protocols understood by WebSphere ESB. Because
the mediation hosting layer utilizes WebSphere Application Server, services may
be deployed to the same application server that is hosting the mediation
modules. We do not recommend this for production, as these two runtimes
generally require different tuning parameters, but may be useful in test
environments.
112 Patterns: SOA Foundation Service Connectivity Scenario

4.7.4 ITCAM for SOA
The monitoring and management tools of choice for composite applications is
IBM Tivoli Enterprise Monitoring and IBM Tivoli Composite Application Manager.
These tools allow system administrators to observe the flow of information
through an entire composite application end-to-end instead of observing
performance at a single application tier at a time. In particular, ITCAM for SOA is
suited for a SOA solution. ITCAM for SOA is a participant in the Tivoli Enterprise
Monitoring framework and, as such, requires several supporting components to
be installed and configured (see 12.2, “IBM Tivoli Enterprise Monitoring
framework” on page 560).

In particular, you will need to install and configure the following:

� IBM DB2®
� Tivoli Enterprise Monitoring Server
� Tivoli Enterprise Portal Server
� Tivoli Enterprise Portal
� ITCAM for SOA application support
� ITCAM for SOA monitoring agents

Installation planning
It is important to have a good understanding of the managed environment and
the capability of the product. You will also need to design a topology for the
installation, including which servers will be used to host each function
(monitoring server, portal server, and so on).

In a production environment, the IBM Tivoli Enterprise Monitoring Server should
be installed on a set of servers dedicated for application monitoring and
management. The minimum recommended production system consists of three
separate servers: a monitoring service, a database server for storing the
monitoring data, and an enterprise portal server for viewing and analyzing the
collected data. If there is a requirement to install both the monitoring node and
the application server node on the same host (such as for demonstration or
proof-of-concept purposes), extra consideration must be taken during the install
process. Refer to the installation instructions in the online documentation for
ITCAM for SOA at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/ com.ibm.
itcamsoa.doc/toc.xml

Monitoring agents for different application domains such as operating system,
application server, Web services, and so on must be installed and configured to
report data from the instrumented layers. The presence of these monitoring
agents must be included during server planning, and appropriate network access
 Chapter 4. Planning for connectivity 113

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/�com.ibm.itcamsoa.doc/toc.xml
http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/�com.ibm.itcamsoa.doc/toc.xml

must be granted in order for the monitoring agents to communicate with the
enterprise monitoring server.

In addition to reviewing the product documentation, we recommend that you
review the IBM Redbook IBM Tivoli Composite Application Manager V6.0 Family:
Installation, Configuration, and Basic Usage, SG24-7151.

Installation overview
This is the overall implementation procedure for ITCAM for SOA:

1. IBM Tivoli Enterprise Monitoring Server requires a database to support the
historical data warehousing functions. The default database is IBM DB2 UDB
V8.2 Fixpack 10. DB2 installation requires various system users depending
on the operating system. IBM DB2 needs to be installed on the monitoring
server node prior to installing the IBM Tivoli Monitoring Server.

2. Installation of IBM Tivoli Monitoring V6.1 on the node that will act as the
monitoring server must be performed before any other ITCAM for SOA
component.

The following components will be installed on the server:

– Tivoli Enterprise Monitoring Server (TEMS)
– Tivoli Enterprise Portal Server (TEPS)
– Tivoli Enterprise Portal (TEP)

In a fully distributed production environment, these components would most
likely reside on separate nodes.

Tivoli Monitoring installation information can be found in the IBM Tivoli
Monitoring Installation and Setup Guide, GC32-9407.

3. Install the application support component for ITCAM for SOA on your Tivoli
Enterprise Monitoring Server, Tivoli Enterprise Portal Server, and Tivoli
Enterprise Portal systems.

Application support augments the enterprise monitoring server with additional
capabilities necessary to receive monitoring data from the ITCAM for SOA
Monitoring Agent. The application support installation will enable the Web
services monitor and management functions in the Tivoli Enterprise Portal.

4. Install and configure the monitoring agents of ITCAM for SOA on the server
nodes that you will monitor, for example, on the WebSphere ESB server. If
there were other servers hosting Web services, the monitoring agent would
need to be installed on those servers as well.

5. Metrics collected by the ITCAM for SOA data collector (DC) can be stored in
the Tivoli Data Warehouse. The Data Warehouse Proxy must be configured
on the Tivoli Enterprise Monitoring Server in order to enable historical data
collection for ITCAM for SOA.
114 Patterns: SOA Foundation Service Connectivity Scenario

6. The Web Services Navigator allows offline analysis of services flows and
patterns. You can install Web Services Navigator into an existing Eclipse
environment or into a new environment.

The steps taken to install the ITCAM environment for the ITSOMart solution are
shown in Table 4-4.

Table 4-4 ITCAM installation steps for ITSOMart

For information about ITCAM for SOA see:

� IBM Tivoli Composite Application Manager for SOA home page:

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/

� Information about system requirements and support can be found in the data
sheet at:

ftp://ftp.software.ibm.com/software/tivoli/datasheets/ds-tcam-for-soa.pdf

For a brief look at monitoring and management with IBM Tivoli Composite
Application Manager for SOA see Chapter 12, “Service monitoring and
management with IBM Tivoli Composite Application Manager SOA” on page 555.

Step References

Install IBM DB2 UDB on the monitoring
server node.

“IBM DB2 Universal Database installation”
on page 672

Install IBM Tivoli Monitoring, including:
� Tivoli Enterprise Monitoring Agent

Framework
� Tivoli Enterprise Monitoring Server
� Tivoli Enterprise Portal Server
� Tivoli Enterprise Portal Desktop Client

“IBM Tivoli Monitoring installation” on
page 678

Install IBM Tivoli Composite Application
Manager for SOA installation, including:
� ITCAM for SOA Application Support

installation
� ITCAM for SOA Monitoring Agent

installation and configuration

“ITCAM for SOA Application Support
installation” on page 687

“ITCAM for SOA Monitoring Agent
installation and configuration” on
page 691

Web services navigator. “Web Services Navigator installation” on
page 698

Test and verify the installation. “Verify the installation” on page 699
 Chapter 4. Planning for connectivity 115

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/
ftp://ftp.software.ibm.com/software/tivoli/datasheets/ds-tcam-for-soa.pdf

4.7.5 Environments for testing and production
Discussions about general testing methodology and approach are beyond the
scope of this book. However, as a general rule, there should be at least one
testing environment that is roughly equivalent to the production system for the
purposes of test. This not only helps ensure that the services and mediations will
operate in the prescribed manner during production, this approach also helps
validate that the production system will be capable of tolerating a product-sized
workload. Although development systems include a built-in unit test environment,
the integrated test environment should consist of complete deployments of
WebSphere ESB, preferably with clustering if clusters are going to be used in
production. Finally, care should be taken to properly isolate the testing system
from production (using separate, isolated subnets for example) to avoid conflicts
and confusion due to the existence of both environments. For example, care
should be taken when moving a release from testing to production to ensure that
the production mediations do not inadvertently refer to services provided by test
systems.

4.8 Security considerations
Enterprise service buses simplify security management by centralizing the point
of access for service requests. ESBs can also perform security functions such as
digital signatures, message encryption/decryption, and authentication and
authorization.

Complex business applications have diverse security requirements that must all
be obeyed. Implementing a service bus in the integration environment makes
security governance easier by providing a central point of administration. By
distributing security policies through the service bus, system administrators can
ensure that security standards and procedures are being observed throughout
the enterprise without individually securing each application.

4.8.1 Securing communication using WebSphere ESB
WebSphere ESB provides a rich set of security functions because the foundation
of WebSphere ESB is the WebSphere Application Server. All of the security
mechanisms available in the WebSphere Application Server such as digital
signatures and encryption are also available in WebSphere ESB. The service
bus can also use authentication features such as Lightweight Third Party
Authentication (LTPA) and use Lightweight Directory Access Protocol (LDAP) as
its user registry. Also, all of the security products designed to work in conjunction
with WebSphere Application Server such as Tivoli Access Manager will also
work with WebSphere ESB. By leveraging the WebSphere Application Server
116 Patterns: SOA Foundation Service Connectivity Scenario

platform, the service bus provides a broad set of standard security features and
integrates with a wide array of complementary security products.

4.8.2 Messaging security
Securing WebSphere ESB consists of a complex set of authentication and
authorization checks to ensure that protected resources are being accessed by
clients with proper credentials. The integrity of communications through the
service bus are protected by four separate factors:

� Authentication and authorization of clients (users or mediations) that initiate
connections to the service bus or try to utilize bus resources

� Ensuring the security and integrity of message transports between the client
and the bus and between messaging engines used by the bus.

� Authentication of messaging engines that are joining the bus

� Authentication of users who are trying to access the message store

The messaging security model in WebSphere ESB provides client authentication
and authorization as well as ensuring message privacy and integrity. When the
service bus has security enabled, clients that wish to connect to the bus must
supply a user name and a password. These credentials are then checked
against the user registry (as configured for the underlying WebSphere
Application Server) for authentication.

If the authentication check is successful, then authorization checks are
performed to ensure that the client has sufficient access to the bus, as well as
any specific resources such as destinations on the bus or foreign buses. A user
could be authorized to access the bus (in which case the connection would
succeed) but not authorized to access the destination, in which case the
operation would fail.

Message bus topics may also be secured in addition to destinations that contain
the topic. This is known as topic access checking. When topic access checking is
enabled, a further authorization check against the topic is performed once the
destination authorization check is complete and, if unsuccessful, the connection
is denied.

4.8.3 Transport security using HTTPS
In addition to securing access to protected service bus resources, WebSphere
ESB leverages the transport security features within WebSphere Application
Server to protect the confidentiality and integrity of in-flight messages.
Administrators may configure messaging engines to accept or require SSL when
connecting to them by disabling the non-SSL transports. By selectively enabling
 Chapter 4. Planning for connectivity 117

and disabling security on the various transports, messages can be protected
while en-route over non-trusted paths.

The protocol translation features of WebSphere ESB also extend to security
protocols. For example, external services may be offered with security enabled,
while internal services operating on secure networks are provided without
security. By creating secure versions of internal services and using messaging
security, internal services may be externalized without significant
re-implementation. As a best practice, however, a security review is always
advisable before providing a new internal service to potentially untrusted clients.

4.9 Scalability and performance considerations
WebSphere ESB supports all of the application server clustering features
available in WebSphere Application Server Network Deployment. Clustering can
provide both workload management and high-availability options.

Clustering WebSphere ESB allows system administrators to distribute the
workload of mediations across the cluster, providing better overall throughput.

High availability features help eliminate single points of failure by allowing
requests to be processed by multiple servers. WebSphere ESB allows in-flight
message processing to fail over to alternate servers if a server stops functioning
during message mediation. The messaging engines used by the service bus may
also be clustered so that alternate servers in a cluster may process messages if
the preferred server ceases to function.

In practical terms, due to the importance of the enterprise service bus to the
applications that depend on the services it provides, WebSphere ESB should
always be deployed in a clustered configuration to provide workload balancing
and fault tolerance. Depending on an organization’s down time and data
protection needs, automatic failover may or may not be a requirement. If an
organization needs very high availability for the service bus, the hosted services,
and other non-WebSphere resources, the components of WebSphere ESB may
be integrated into other high-availability frameworks such as HACMP. Also,
architects may need to consider the need for disaster recovery scenarios that
involve alternate geographic sites, standby servers, and network connections.

Examples of clustering for WebSphere ESB can be seen in 11.12, “Network
Deployment and clustering topologies” on page 531.
118 Patterns: SOA Foundation Service Connectivity Scenario

For more information about scalability and high availability for WebSphere
Application Server Network Deployment see:

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

4.10 System management and monitoring
The diverse set of environments that comprise a modern, services-oriented
integration solution present a great deal of difficulty in terms of management and
monitoring. The elevated importance of such applications leads to greater
demands on application availability and make resolving performance problems
even more critical. However, when such a system is performing poorly,
determining the problem area or resource can be very difficult. Is the network
behaving properly? Is the services layer responding in adequate time? Is the
enterprise service bus performing mediations quickly enough? These are all
questions that administrators must answer quickly when faced with performance
issues in production. Traditional monitoring tools may not be sufficient to take on
this challenge, as they are typically focused on observing individual tiers of the
application rather than viewing transactions from end-to-end. They also provide
little to no ability to correlate events in one tier with events in another tier, which
makes diagnosing issues more difficult.

4.10.1 IBM Tivoli Management Framework
The challenges presented by modern composite applications require a new
approach to monitoring such applications. The IBM Tivoli Management
Framework provides an approach so that system administrators can gain a
complete view of the enterprise from physical server and operating system
health to high-level application performance and health.

IBM Tivoli Composite Application Manager integrates into the Tivoli Management
Framework to bring increased awareness to application monitoring and
management. Tivoli Composite Application Manager works as a series of
monitoring agents that report application status to IBM Tivoli Enterprise
Monitoring Server. The monitoring server stores performance and event data in a
data warehouse, which is then used by the Tivoli Enterprise Portal Server to
provide analysis. This approach makes it possible to monitor composite
applications end-to-end as a complete environment rather than a collection of
disjoint components.
 Chapter 4. Planning for connectivity 119

4.10.2 IBM Tivoli Composite Application Manager for SOA
IBM Tivoli Composite Application Manager for SOA is the component of the IBM
Tivoli Composite Application Manager family that provides monitoring and
management of Web services. IBM Tivoli Composite Application Manager for
SOA can:

� Perform automated service mediation.
� Proactively recognize and quickly isolate Web service performance problems.
� Verify that Web services are available and performing to specification.
� Alert you when Web service performance is degraded.
� Report results against committed service levels.
� Visualize entire Web service flows, end-to-end, as they cross the enterprise.
� Pinpoint the source of service bottlenecks.

Also included is a tool called Web Services Navigator, an Eclipse
framework-based tool that allows analysis of Web services usage and gives
insight into service flows and invocation patterns.

Web services has become the de facto standard for implementing
service-oriented solutions. As organizations adopt an increasingly
services-oriented approach to service integration, IBM Tivoli Composite
Application Manager for SOA can help manage the growth of Web services. Web
services support includes a number of different platforms including WebSphere,
Microsoft .NET, and BEA WebLogic.

WebSphere ESB is a fully supported environment that may be monitored and
managed by IBM Tivoli Composite Application Manager for SOA. System
administrators can view individual service performance as well as mediation
performance through the Tivoli Enterprise Portal client. The client can also allow
the definition of filters that mediate service requests and responses, discarding
or modifying in-flight messages based on established rules.
120 Patterns: SOA Foundation Service Connectivity Scenario

4.11 Where to find the implementation details
This section highlights where to go next to find the implementation details for the
ITSOMart working example, which is an instance of the Service Connectivity
scenario. The ITSOMart example implementation chapters illustrate how to
model, assemble, deploy, and manage.

� Model:

– Chapter 5, “Model with Rational Software Architect” on page 125

� Assemble:

– Chapter 6, “Assemble with WebSphere Integration Developer” on
page 211

– Chapter 7, “Building the Credit Rating and Credit Score mediations” on
page 263

– Chapter 8, “Building the CRM mediation” on page 347

– Chapter 9, “Building the Register Shipping mediation” on page 417

– Chapter 10, “Building Log Registration mediation” on page 449

� Deploy:

– Chapter 11., “Deploy with WebSphere ESB” on page 479

� Manage:

– Chapter 12, “Service monitoring and management with IBM Tivoli
Composite Application Manager SOA” on page 555

4.12 Summary
The Service Connectivity scenario is an important stage in the SOA adoption
road map. It allows IT organizations to experiment with SOA without requiring
enterprise-wide organization changes necessary to support the efforts of a new
IT strategy. Incremental adoption of SOA also delivers value quickly by reducing
application construction costs and delivering more agile line of business
applications. Finally, SOA benefits from application assembly tools that can
make the job of creating new applications and modifying existing applications
much less complicated.

When planning an SOA solution, there a many elements to consider. The overall
application architecture must meet the current demands of business while
remaining flexible and able to respond to changing business needs over time.
The product selection for both development and runtime services must deliver on
the promise of simpler application creation. Finally, there must be sufficient
 Chapter 4. Planning for connectivity 121

management and monitoring tools that can assist system administrators in
proactively preventing application downtime and removing performance
bottlenecks.

The IBM Soa Foundation Reference Architecture provides a detailed
architectural map for developing SOA applications. The entire application
integration environment is divided into separate service types, each responsible
for a specific functional area. By applying the Soa Foundation Reference
Architecture to an SOA solution, architects can build on a robust and flexible
architecture capable of meeting current application demands as well as being
agile enough to meet future business needs through IT services.

IBM offers a broad range of products serving the needs of SOA design,
development, deployment, and management. Development products such as
Rational Application Developer, Rational Software Architect, and WebSphere
Business Modeler help developers and architects design and develop services
and application components. WebSphere Integration Developer allows
integration developers to quickly and easily assemble software assets using the
Service Component Architecture to create composite applications. WebSphere
ESB and WebSphere Message Broker provide a robust runtime environment for
mediating service requests across the enterprise, and DataPower SOA
appliances can extend the reach of services and can be used to build
high-performance, secure service transport infrastructures. Finally, IBM Tivoli
Composite Application Manager and IBM Tivoli Enterprise Monitoring give
administrators the ability to monitor and diagnose performance problems and
monitor message flows and service invocation patterns end-to-end across the
entire enterprise application infrastructure.

By combining best-of-breed products with proven architectural patterns,
organizations can gain many of the benefits of a service-oriented architecture
while still maintaining organizational structure and gradually changing the
enterprise IT environment. The Service Connectivity scenario provides an ideal
way to enter into SOA while preserving technology investments. The following
chapters illustrate the steps to implement a Service Connectivity scenario using
the ITSOMart scenario.
122 Patterns: SOA Foundation Service Connectivity Scenario

4.13 For more information
For information regarding the Enterprise Service Bus pattern see the following:

� What Is an ESB, and Do You Really Need One?

http://www.computerworld.com/developmenttopics/development/webservices/
story/0,10801,108478,00.html

� Simplify integration architectures with an Enterprise Service Bus

http://www-128.ibm.com/developerworks/webservices/library/ws-esbia/index.html

� Web services programming tips and tricks: Learn simple, practical Web
services design patterns, Part 4

http://www-128.ibm.com/developerworks/webservices/library/ws-tip-altdesign4

� SOA programming model for implementing Web services, Part 4: An
introduction to the IBM Enterprise Service Bus

http://www-128.ibm.com/developerworks/library/ws-soa-progmodel4/
 Chapter 4. Planning for connectivity 123

http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www-128.ibm.com/developerworks/webservices/library/ws-esbia/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-tip-altdesign4
http://www-128.ibm.com/developerworks/library/ws-soa-progmodel4/

124 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 5. Model with Rational
Software Architect

Modeling business processes helps to accurately capture business requirements
and establish a closer alignment of IT delivery with business goals by using a
common language. The product of choice for modeling J2EE applications and
mediations is Rational Software Architect. This chapter discusses the features of
Rational Software Architect and models the sample ITSOMart solution to
illustrate the process of modeling a business solution.

This chapter includes the following topics:

� Introduction to Rational Software Architect
� Modeling the ITSOMart sample
� Tools used to model the application
� Solution requirements
� Domain analysis
� Architectural design
� Modeling business objects: Transform UML to XSD
� Modeling messaging resources: Transform UML to JACL

5

© Copyright IBM Corp. 2006. All rights reserved. 125

5.1 Introduction to Rational Software Architect
Rational Software Architect contains the features found in Rational Application
Developer, in addition to features that appeal to software architects. Rational
Software Architect is a design and development tool that leverages model-driven
development with the Unified Modeling Language (UML) for creating
well-architected applications and services.

5.1.1 Rational Unified Process guidance
You can access process guidance content and features directly in the Rational
Software Development Platform to guide you and other team members in your
software development project. A configuration of the Rational Unified Process®
(RUP) platform is provided with topics on software development best practices,
tool mentors, and other process-related information.

5.1.2 Model-driven development
Model-driven development (MDD) is the concept of using models as the basis of
application development. One approach to model-driven development, called
Model Driven Architecture (MDA), is in the process of being defined by the
Object Management Group (OMG). MDA defines development using UML
models at different levels of abstraction. Transformations are used to take a
model at one level and transform it to a model at a different level. You can see
the MDA standards at:

http://www.omg.org/mda

Rational Software Architect provides full support for MDD with UML 2 modeling,
transformations, code generation from models, and patterns. As a part of the
model-driven development support, Rational Software Architect also supports
the current principles of MDA.

Unified Modeling Language 2.0 editor
Rational Software Architect includes a Modeling perspective (and editors that
support the major UML 2.0 diagrams).

UML profile support
UML profiles allow you to customize the language for a particular domain or
method. UML profiles introduce a set of stereotypes that extend existing
elements of UML for use in a particular context. This technique is used in MDD to
allow designers to model using application domain concepts.
126 Patterns: SOA Foundation Service Connectivity Scenario

http://www.omg.org/mda

Rational Software Architect ships with a set of UML profiles and also supports
the creation of new profiles. One of the sample profiles is the Rational Unified
Process Analysis profile that provides stereotypes for producing analysis models
using the RUP approach.

Transformations
A transformation converts elements of a source model to elements of a target
model. For example, the source and target model can be text files, code models,
or UML models. When the source and target models are both UML models, the
transformation usually converts the elements from one level of abstraction to
another. You can apply a transformation to an entire model or a subset of model
elements in a model to generate output such as code.

Rational Software Architect comes with the following set of transformations:

� Business tier transformations

– UML → EJB Business Tier

� Integration tier transformations

– UML → EJB Integration Tier
– UML → EJB UML

� Presentation tier transformations

– UML → IBM Portlet (JSF)

� RSA transformations

– EMF Deployment → UML2
– UML → EMF Deployment
– UML → C++
– UML → EJB
– UML → Java
– UML → XSD

Additional transformations may be available on the Web.

Patterns
Rational design patterns capture frequently used or complex structures and
processes for reuse. They are used to integrate repeatable software design
solutions into UML 2.0 models. Rational patterns are a type of transform.

Rational Software Architect provides the tools needed to create design patterns.
When developers recognize repeatable structures or processes they can create
patterns from them, allowing others to use these designs.
 Chapter 5. Model with Rational Software Architect 127

Patterns are stored in an RAS repository as a unique type of reusable asset in
the form of a plug-in. Users can browse the repository for useful patterns as they
model systems. The pattern user relies on the pattern documentation for
information about selecting and applying a pattern. Depending on the pattern
design, the pattern applier has the flexibility to apply all or only part of a pattern,
as needed.

A set of sample patterns is supplied with Rational Software Architect and can be
seen in the RAS perspective. Another set of patterns is included with the product
and can be installed as an example.

5.1.3 Modeling
UML modeling provides a way of architecting systems in such a way they can be
communicated to the stakeholders. UML models show a specific perspective of a
system. Models are visual representations and as such are easily verified and
communicated. Models start at the conceptual levels and can be refined down to
detailed levels. Rational Software Architect supports UML Version 2 (UML 2).

Rational Software Architect supports modeling through all phases of software
development:

1. Capturing system requirements

The first step in any system design is to determine the requirements for the
solution. The IBM Rational RequisitePro® solution is a requirements and use
case management tool. This tool can be integrated with Rational Software
Architect, allowing you to map existing requirements to existing UML model
elements. You can also create requirements from existing model elements, or
create model elements from existing requirements definitions. The result of
this development phase is one or more use case diagrams that describe how
the system will be used.

2. Domain analysis

The next step is to build on the use case model by describing the high-level
structure of the system based on the system domain requirements. An
analysis model is used to capture this information. The analysis model
consists of class diagrams that model the static structure of the system and of
sequence diagrams that model the interactions between participants. The
analysis model describes the logical structure of the system but does not
define how it will be implemented.

3. Architectural design

The next step is to create a design model to define the architecture and
implementation choices for the application. The design model builds on the
analysis model by adding details about the system structure and how
128 Patterns: SOA Foundation Service Connectivity Scenario

implementation will occur. Classes that were identified in the analysis model
are refined to include the implementation constructs.

You can use a variety of diagrams for this purpose, including sequence, state
machine, component, and deployment diagrams. It is during this stage that
you can apply proven design patterns and automated model-to-model
transformations.

4. Implementation

Developers transition from design to implementation by using automated
transformations to convert the model to code (such as Java, EJB, or C++)
and by continuing to develop and deploy the application by using software
and Web development, debugging, testing, and deployment capabilities.

The Modeling perspective is the primary workbench interface for working with
models.

5.1.4 Asset-based development
As business needs are increasingly solved using more and more complex
software solutions, it has become apparent that many of these solutions are
created using the same integral key components structured in a similar manner.
The idea that the same actions can be performed over and over in a variety of
ways to create a solution has given rise to many of the fundamental concepts
used in software development today, namely the use of patterns to structure
solutions, and the reuse of assets within a context to build the key components of
a solution.

Asset-based development embodies the idea of developing solutions by reusing
defined and documented assets. These assets are made up of software artifacts
that detail the requirements, design elements, development and testing process,
and deployment requirements. Reusing these assets streamlines the
development process and leverages previous investments.

The success of asset-based development within a department, organization, or
on a more widespread basis, the community, lies in the ability to identify potential
assets for reuse. Once a potential asset is identified, often through repeated
experiences during development and deployment processes, it must be defined
and made available for reuse by storing it in a central repository.

Potential consumers browse the repository for assets they can use.
Documentation, an integral part of each asset, is key to the successful use
effectiveness of an asset. The documentation details not only how the asset is to
be used, but should give enough information that a potential consumer knows if
the asset is appropriate for their use.
 Chapter 5. Model with Rational Software Architect 129

As a final step, feedback to the managers of the asset will help in tracking the
effectiveness and value of the asset.

Figure 5-1 Asset-based development cycle

The following platforms deliver asset-based development:

� Rational Unified Process (RUP) has defined processes for producing and
consuming assets.

� The IBM Software Development platform has incorporated asset-based
development capabilities into its products. Rational Software Architect and
Rational Software Modeler both contain tools for producing, consuming, and
managing assets.

The Reusable Asset Specification (RAS) defines a standard way to package
assets and describe their contents. Rational Software Architect provides a
reusable asset (RAS) perspective for working with reusable assets.

5.2 Modeling the ITSOMart sample
This section describes how we modeled the ITSOMart sample application
throughout the software development phases.

Asset
Production

Asset
Identification

Asset
Consumption

Asset
Management

Asset
Repository

Asset
Artifact Artifact

Asset
Artifact Artifact

Asset
Artifact Artifact

Candidate Asset

Feedback

Feedback
130 Patterns: SOA Foundation Service Connectivity Scenario

While comprehensive instruction on using Rational Software Architect for
software analysis and design is out of the scope of this book, we use the
modeling tools Rational Software Architect provides to clearly define the
application domain and use case scenario we implement throughout the book,
and focus primarily on the areas of the solution design that involve the following:

� Identifying and describing services

� Identifying and describing mediations for services

� Using reusable assets provided by Rational Software Architect to transform
UML models into implementation and deployment artifacts targeted for
WebSphere ESB

5.3 Tools used to model the application
This section identifies the primary tools and modeling structures used to design
the ITSOMart solution, including the following:

� Modeling perspective
� UML projects
� UML models
� UML diagrams
 Chapter 5. Model with Rational Software Architect 131

5.3.1 Modeling perspective
The primary perspective used in modeling is the Modeling perspective
(Figure 5-2).

Figure 5-2 Modeling perspective

The modeling perspective is the default perspective when you open a workspace
in Rational Software Architect. If you do not have this perspective open, you can
open it by selecting Window → Open Perspective → Other → Modeling.

Among the views found in the Modeling perspective are:

� The Model Explorer view, which allows you to navigate your UML models in a
tree structure.

� The main editor view displays models and diagrams in their respective
editors.
132 Patterns: SOA Foundation Service Connectivity Scenario

� The Properties view shows the individual properties for the model, diagram,
or UML element currently selected in the editor or Model Explorer view.

� The Outline view (Figure 5-3) allows you to navigate through large diagrams
by moving a selected area box around with the mouse.

Figure 5-3 Outline view

� The Diagram Navigator view (Figure 5-4) gives you a view of only the
diagrams in your projects.

Figure 5-4 Diagram Navigator view
 Chapter 5. Model with Rational Software Architect 133

5.3.2 UML projects
You can create a UML model in any type of project. For example, you can place
a UML model that contains a class diagram in a Java project to keep your model
and Java code together. For the ITSOMart application, we created a separate
UML project to contain all of the UML models used to describe the application.

To create a UML project:

1. Right-click anywhere in the Model Explorer view and select New →
Project → UML Project.

2. In the UML Modeling project window (Figure 5-5) specify a name for your
project and click Next.

Figure 5-5 UML modeling project
134 Patterns: SOA Foundation Service Connectivity Scenario

3. In the Create UML Model page (Figure 5-6) you can choose to create a UML
model in the new project from a list of UML Model templates and name the
model file.

Figure 5-6 UML Modeling Project: create a UML model
 Chapter 5. Model with Rational Software Architect 135

5.3.3 UML models
To create a new UML model:

1. In the Model Explorer view, right-click an existing modeling project and select
New → UML Model.

2. In the New UML Model window (Figure 5-7) select the type of UML model to
create from a list of templates and name the model file.

Figure 5-7 New UML Model
136 Patterns: SOA Foundation Service Connectivity Scenario

When you first create a UML model, it is opened for editing. When you close a
model, you only see the model file in the Model Explorer (Figure 5-8).

Figure 5-8 Unopened model file

3. To open a model, double-click the model file (Figure 5-9).

Figure 5-9 Opened model file

For the ITSOMart application, we created the following types of UML models:

� Use Case model
� Analysis model
� Design model
� XSD model
� Blank model (to contain the Topology and Deployment model diagrams)

5.3.4 UML diagrams
You can create various types of UML diagrams from the UML elements within a
model.

To create a UML diagram:

1. In an opened model, right-click the model or a package in the model, and
select Add Diagram.
 Chapter 5. Model with Rational Software Architect 137

2. Then select the type of UML diagram you want to create (Figure 5-10).

Figure 5-10 Add diagram
138 Patterns: SOA Foundation Service Connectivity Scenario

The diagram editors provide a palette of UML elements (Figure 5-11) specific for
the type of diagram you are working in. For example, if you have a Use Case
diagram open in the editor, the palette will provide Use Case modeling elements
such as actor, use case, and subsystem that you can drag and drop on the
diagram.

Figure 5-11 Use case diagram palette
 Chapter 5. Model with Rational Software Architect 139

Whereas if you are working in an Activity diagram, then the palette will have an
Activity Diagram folder (Figure 5-12) with elements such as actions and control
nodes specific to that type of diagram.

Figure 5-12 Activity diagram palette

In the following sections you will see these types of UML diagrams that we
created to model the ITSOMart application:

� Use Case diagram
� Sequence diagrams
� Activity diagrams
� Component diagrams
� Class diagrams

5.4 Solution requirements
The business and non-functional requirements of the ITSOMart sample
application are described in 4.1, “The ITSOMart scenario” on page 68. In this
section we visually describe these requirements in a use case model. A use case
model describes the scope of the application domain, what actors are involved in
the system, and interactions between those actors and the system. Our model
contains a use case diagram and activity diagrams.
140 Patterns: SOA Foundation Service Connectivity Scenario

5.4.1 Use case diagram
The use case diagram we created for the ITSOMart Customer Registration use
case (Figure 5-13) shows the five discrete actors that interact with the customer
registration system as defined in the ITSOMart business requirements.

Figure 5-13 ITSOMart Customer Registration use case diagram

The actors are:

� Customer - represents an ITSOMart customer.

� Credit Check - represents a third-party credit rating system that determines a
customer’s credit rating.

� Insufficient Credit - represents a secondary use case to handle the
requirement for insufficient credit processing for customer’s who have bad
credit. We do not design or implement the solution for this secondary use
case, but we show how the customer registration interacts with it.
 Chapter 5. Model with Rational Software Architect 141

� Registration - represents a customer relationship management (CRM) system
that ITSOMart owns and maintains in-house.

� Shipping Registration - represents a system that maintains customer shipping
address information for ITSOMart fulfillment centers.

� Registration Log - represents the ITSOMart customer registration audit log
system.

5.4.2 Activity diagrams
Then to better understand the interactions between the customer registration
system and the actors involved, we created a couple of activity diagrams.

The first activity diagram shows that the customer’s role is to initiate the
Customer Registration use case (Figure 5-14).

Figure 5-14 Use case model: customer interaction activity diagram
142 Patterns: SOA Foundation Service Connectivity Scenario

Then the second activity diagram (Figure 5-15) describes the interactions
between the Customer Registration system and the rest of the actors. This
activity diagram clearly communicates the individual tasks that need to occur to
complete the registration process required for ITSOMart to begin offering their
online services to a customer.

Figure 5-15 Use case model: Customer Registration Interaction activity diagram

The Customer Registration system gets the customer’s credit rating, then makes
a decision about how to proceed based on the category that customer rating falls
under. If the credit rating category is gold, then the customer is registered in the
CRM system, the shipping addresses are registered with the fulfillment centers,
and the registration details are logged in the audit system. If the credit rating
category is silver, then further credit validation must occur for the customer and

Customer Registration

Log
Customer

Registration
Details

Registration Complete

BRONZE SILVER

GOLD

Credit Rating?

Receive
Credit Rating

Registration
Denied

Register Customer

Process
Insufficient

Credit

Register
Customer

Register
Shipping

Addresses

Log
Customer

Registration

Credit Check Insufficient Check Registration Shipping Reg Reg Log

>

Customer Registration Interaction

Register
Customer
Shipping
Address

Register
Customer in

CRM

Get
Customer

Credit Rating
Get

Credit
Rating

Customer Registration Credit Check Insufficient Check Registration Shipping Reg Reg Log

> >
 Chapter 5. Model with Rational Software Architect 143

is handled by the Insufficient Credit use case. If the credit rating category is
bronze then the customer is denied online registration with ITSOMart.

5.5 Domain analysis
The next step in the solution is to capture the application domain in an analysis
model, where you model the use case in terms of interactions between actors
using sequence diagrams, and describe the static structures of the use case in
component and class diagrams.

5.5.1 Sequence diagrams
Sequence diagrams conform to the interactions described by the activity
diagrams in the use case model and can be quite similar. However, sequence
diagrams define interactions in chronological order and help to identify how the
use case actors can be represented as components or services in your solution,
what operations need to be defined for those components, and what messages
need to flow between them.
144 Patterns: SOA Foundation Service Connectivity Scenario

We start by creating a sequence diagram that shows the customer’s interaction
with the customer registration system. You can see from this diagram how the
Customer Registration use case itself can be represented as a component with a
register operation on it. The registration process may take longer to complete
than a customer is willing to wait for an immediate response, so we show that
this interaction is best represented as a one-way asynchronous message sent to
the system. See Figure 5-16.

Figure 5-16 Analysis model: Customer Interaction sequence diagram

Then we describe the various interactions that the customer registration system
can have with the other actors in the system while processing a registration
request. More specifically, the interactions that occur in the customer registration
system are different depending on the whether the customer’s credit rating is
gold, silver, or bronze.
 Chapter 5. Model with Rational Software Architect 145

The sequence diagram for the case that the credit rating is gold shows a
successful customer registration (Figure 5-17).

Figure 5-17 Analysis model: customer registration - gold credit rating sequence diagram
146 Patterns: SOA Foundation Service Connectivity Scenario

The sequence diagram for the case that the credit rating is silver shows that
insufficient credit processing must take place for this customer (Figure 5-18).

Figure 5-18 Analysis model: customer registration - silver credit rating sequence diagram
 Chapter 5. Model with Rational Software Architect 147

The sequence diagram for the case that the credit rating is bronze shows that the
customer is denied registration due to terrible credit (Figure 5-19).

Figure 5-19 Analysis model: customer registration - bronze credit rating sequence
diagram

5.5.2 Component diagram
Looking at the sequence diagrams, it is easy to see that each of the actors in the
use case can be represented in the solution as high-level components that can
be modeled in a component diagram.

In a component diagram, you can apply stereotypes to the components to
indicate what types of components you think these might represent. The
stereotypes applied to the components here during domain analysis may change
as you get deeper into the solution through the architectural design and
implementation of the solution.
148 Patterns: SOA Foundation Service Connectivity Scenario

As you can see in Figure 5-20, we represent the use case itself as a process
component because it performs the main processing of the customer registration,
but we may or may not want to refer to this component as a process in the actual
implementation. We represent the customer actor as a boundary component
because there will need to be some component in the application that interfaces
with and represents the customer. The Insufficient Credit component case is
described as a boundary component as well because it encapsulates the
interaction with the Insufficient Credit use case. The Registration component has
a stereotype of subsystem because it represents the CRM system that ITSOMart
runs in-house. The rest of the actors in the use case are simply described as
services.

Figure 5-20 Analysis model: component diagram

5.6 Architectural design
The architectural design phase of a solution is where you create a design model
that provides more details about how the system will be implemented such as
what interfaces look like, what messages flow between components, what actual
systems the application communicates with, what protocols are used, and where
and how your application is deployed.
 Chapter 5. Model with Rational Software Architect 149

The decisions around the use of an ESB most likely will occur during the
architectural design of your solution. These will be decisions about what services
or components will be deployed to your ESB and what mediations, if any, are
required for those services.

For designing services in the ESB layer, you can create models to describe
implementation details such as what protocols will be used to invoke services,
what types of specific transformations need to take place in the mediations for
those services, and what mediation primitives will be used to implement the
mediations.

For the design of the ITSOMart sample application, we looked at each of the
components individually in the use case and the interactions between them and
came up with the design described in the following sections.
150 Patterns: SOA Foundation Service Connectivity Scenario

5.6.1 Service components
We modified the component diagram from the analysis model. In that diagram, all
the components used for registration processing were defined as services. We
changed the name of the Customer Registration use case component to
Registration Processor, which we think better reflects its function of processing
customer registration requests. Then we added a new component called
Customer Registration, which consolidates the functionality for deciding whether
to insert the customer information into the CRM Registration Service or to send it
to the insufficient credit service for further credit validation. The changes can be
seen in Figure 5-21.

Figure 5-21 Modified component diagram

5.6.2 Connecting services through the ESB
For our design, we decided to access the services used by the Registration
Processor component through the ESB. This sample is contrived, of course, to
highlight the use of the ESB since that is what this book is about, but using an
ESB as illustrated by the sample scenario provides a lot of value in a solution
that focuses on connectivity.
 Chapter 5. Model with Rational Software Architect 151

We view the components that the Registration Processor interacts with as
boundary services for communicating with systems that may or may not be
maintained by ITSOMart. Accessing these services through an ESB allows the
ITSOMart solution to use well-defined interfaces and protocols to fulfill a
customer registration request. The actual services that implement those
interfaces are virtualized by the ESB. For example, the interface and protocol
that is required by the third-party provider that ITSOMart chooses to use for its
Credit Rating Service is hidden from the registration processor, and thus from the
implementation of ITSOMart’s internal customer registration application. In
addition, we can now apply mediations to these services that handle message
transformations, augmentation, routing, and logging.
152 Patterns: SOA Foundation Service Connectivity Scenario

Virtualizing these services on the ESB (Figure 5-22) also allows them to be
easily re-used by other applications. These services provide discrete but very
important coarse-grained functionality that ITSOMart needs in its enterprise. The
interfaces we define for these services are specific for the sample scenario (what
the customer’s credit rating is, register a customer in the CRM system), but by
specifying additional operations for these services, such as retrieving and
updating the customer information in the CRM system, you can easily see the
value of providing this type of functionality in a central architectural layer in the
enterprise.

Figure 5-22 Services defined to the ESB

We can go one step further and implement the registration processor as a
service, accessible via the ESB (Figure 5-23 on page 154). This service provides
the orchestration of the other services on the ESB.
 Chapter 5. Model with Rational Software Architect 153

Figure 5-23 Services defined to the ESB

5.6.3 Mediations on the ESB
So far in the design we have identified the services required for the application
and have determined that we will access them through the ESB. We have not
indicated how these services will be implemented. Each of these services
provides an interface, or a facade, through which applications can access
systems ITSOMart maintains in-house, as well as third-party systems. In the
sample application, we define these services to the ESB and implement
mediations that route requests to the required services, or systems, outside of
the ESB.
154 Patterns: SOA Foundation Service Connectivity Scenario

Figure 5-24 shows the mediations and the services invoked from the mediations.
The implementation of each of these mediations and the purposes for them are
discussed in the following sections.

Figure 5-24 Mediations on the ESB

Credit Rating mediation
We want to provide a mediation on the ESB that will virtualize the interaction with
whatever Credit Rating Service provider ITSOMart chooses to use. In addition,
we can easily keep a log of interactions with the Credit Rating Service provider
by logging requests through this mediation layer. This mediation will be called the
Credit Rating mediation.
 Chapter 5. Model with Rational Software Architect 155

This mediation is an example of the Directly Integrated Single Channel
application pattern (3.4.1, “Directly Integrated Single Channel application
pattern” on page 44) because it provides a direct one-to-one connection between
the client request and the service invocation, as shown in Figure 5-25.

Figure 5-25 Credit Rating mediation on the ESB
156 Patterns: SOA Foundation Service Connectivity Scenario

The activity diagram in Figure 5-26 shows this mediation separated into request
and response flows. The registration processor sends a SOAP/HTTP request for
the customer’s credit rating, the mediation transforms the request message into
the appropriate format that the Credit Rating Service requires, and then invokes
the Credit Rating Service using SOAP/HTTP. The opposite occurs on the
response, where the mediation transforms the response message from the
service to the correct response message specified in the interface for the
mediation.

Figure 5-26 Credit Rating mediation activity diagram

The Credit Rating mediation itself is exposed as a SOAP/HTTP Web service with
the credit check interface, so client applications will always use the credit check
interface to retrieve a customer’s credit rating no matter what the actual Credit
Rating Service interface looks like.
 Chapter 5. Model with Rational Software Architect 157

The component diagram in Figure 5-27 shows the relationships between the
mediation and the Credit Rating Service and how each of the interfaces are
realized, or implemented.

Figure 5-27 Credit Rating mediation component diagram
158 Patterns: SOA Foundation Service Connectivity Scenario

You can see how this simple component diagram easily fits into the SCA when
we overlay the diagram with how these components will be represented in an
SCA mediation module.

Figure 5-28 Credit Rating mediation SCA component diagram

The Credit Rating mediation implements the Credit Check interface, which is
exposed as an export with a SOAP/HTTP Web service binding. It has a
reference to the SOAP/HTTP Credit Rating Service through an import
component. The actual implementation of the mediation is a mediation flow
component.

Credit Score mediation
For the ITSOMart sample, we wanted to show how easy it is to actually switch
out the use of an existing Credit Rating Service with a service from another
provider if ITSOMart should decide to use another credit rating provider, as well
as show an example of chaining together mediations, so we created a second
mediation called the Credit Score mediation.
 Chapter 5. Model with Rational Software Architect 159

For this scenario, the new Credit Rating Service provider that ITSOMart has
chosen provides a service called the Credit Score Service. This service returns a
credit score number, rather than a rating category (gold, silver, bronze) that the
original Credit Rating Service returned. The new Credit Score mediation
(Figure 5-29) takes care of this difference between the old and the new services.

Figure 5-29 Credit Score mediation on the ESB

The Credit Score mediation has the same interface as the Credit Rating Service
so that it can logically take the place of the Credit Rating Service. The original
Credit Rating mediation invokes the Credit Score mediation, which in turn
mediates the request to and response from the new Credit Score Service, as
shown in Figure 5-29.

Note: The decision as to whether you should create a new mediation to
accommodate the new service or to extend the original mediation with a
second is an architectural choice that will rely on factors such as performance,
ease of creating a new mediation, simplicity of mediation structure, and future
maintenance. In the ITSOMart case, adding a second mediation is a simple
solution to the problem and illustrates a technique you can use to call one
mediation from another. In many real-life cases, a new mediation would
probably be the better choice.
160 Patterns: SOA Foundation Service Connectivity Scenario

The assembly diagram in Figure 5-30 shows the implementation of the Credit
Score mediation. In the response flow of the mediation, a database call is
performed to look up the credit rating category that matches the credit score
number returned from the Credit Score Service.

Figure 5-30 Credit Score mediation activity diagram

CRM mediation
A mediation for the customer registration service, called CRM mediation, routes
registration requests depending on the customer’s credit rating. This mediation is
 Chapter 5. Model with Rational Software Architect 161

an example of the Router application pattern discussed in 3.4.2, “Router
application pattern” on page 47.

Figure 5-31 shows this mediation. The registration processor sends a registration
request to the mediation synchronously via SOAP/HTTP. The mediation then
routes the request to the CRM registration system using the Siebel J2C Adapter
if the credit rating is gold and returns a registration status of success to the
registration processor. If the credit rating is silver, then the registration request is
written to the file system using the Flat File J2C Adapter to be handled by the
insufficient credit service. If the credit rating is bronze, then the customer is
denied registration.

Figure 5-31 CRM mediation activity diagram
162 Patterns: SOA Foundation Service Connectivity Scenario

Register Shipping mediation
The mediation for the shipping registration service, called Register Shipping
mediation, takes an input parameter of an array of shipping addresses to
register. Because the Register Shipping Service can only register a single
shipping address at a time, the mediation will decompose the message into
separate messages, each containing a single address from the array to be
passed as request messages to the Register Shipping Service.

The activity diagram in Figure 5-32 shows this mediation and indicates that all
communication with the mediation service and the Register Shipping Service is
asynchronous with the use of SOAP/JMS.

Figure 5-32 Register Shipping mediation activity diagram

Log Registration mediation
The last step in the customer registration process is to log the registration details
in the audit system. The audit system maintains registration log messages in
three different queues, depending on the results of the registration process. We
use a mediation to provide a single service interface with one operation that
takes the customer registration details and routes the log message to the
appropriate queue based on the registration status.
 Chapter 5. Model with Rational Software Architect 163

This mediation is another example of the Router application pattern. Also, by
providing an ESB mediation between the caller and the audit system, we can
effectively expose the audit system via an asynchronous SOAP/JMS Web
service, while the actual communication to the audit system is through the JMS
API.

The activity diagram in Figure 5-33 shows how this mediation routes messages
to either the success, denied, or failure queues, depending on the registration
status in the registration log message.

Figure 5-33 Log Registration activity diagram

5.7 Modeling business objects: Transform UML to XSD
Rational Software Architect provides an XSD model template for defining your
XML schema in UML. An XSD model has a UML profile called XSDProfile
applied to it. This profile allows you to apply a XSD schema stereotype to
packages and specify XSD types (primitives, simple types, complex types) as
attribute types in your classes. Then once you have created a model of the
classes that logically represent the data entities required for your application, you
164 Patterns: SOA Foundation Service Connectivity Scenario

can apply a UML to XSD transformation to your model, which will generate an
XSD representation of your model.

This type of model is perfect for modeling data, or business objects, that will be
passed between components in your ESB. You can describe your data entities in
a normal UML class diagram, then transform them into XML schema that can be
imported directly into WebSphere Integration Developer, where these entities will
be represented as business objects and can be used in the assembling of ESB
mediations. The diagram in Figure 5-34 is an UML diagram of the Customer
class and its associated classes. The Customer class is the main data entity
used through the ITSOMart sample application.

Figure 5-34 XSD model

Notice that you can have all the normal UML notations for object-oriented design
such as generalizations (or inheritance) and associations between classes.
 Chapter 5. Model with Rational Software Architect 165

These classes are contained in packages that have a stereotype of schema. You
can specify the XML namespace for schemas in the properties of the schema
stereotype.

In this example, each class is contained in a separate package. This is not a
requirement for the UML-to-XSD transformation tooling. We only represented our
model this way to show that a separate XSD file will be generated for each
package in the model, and where there are associations across packages, the
XSD will correctly import the associated schemas.

Example 5-1 is what the XSD looks like that was generated by applying the
UML-to-XSD transformation on this model.

Example 5-1 Customer.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:billingAddress="http://ITSOMartLib/BillingAddress" xmlns:customer="http://ITSOMartLib/Customer"
xmlns:shippingAddress="http://ITSOMartLib/ShippingAddress" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ITSOMartLib/Customer">
 <xsd:import namespace="http://ITSOMartLib/ShippingAddress" schemaLocation="ShippingAddress.xsd"/>
 <xsd:import namespace="http://ITSOMartLib/BillingAddress" schemaLocation="BillingAddress.xsd"/>
 <xsd:complexType name="Customer">
 <xsd:sequence>
 <xsd:element name="accountNo" type="xsd:string"/>
 <xsd:element name="firstName" type="xsd:string"/>
 <xsd:element name="lastName" type="xsd:string"/>
 <xsd:element name="companyName" type="xsd:string"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:element name="password" type="xsd:string"/>
 <xsd:element name="billingaddress" type="billingAddress:BillingAddress"/>
 <xsd:element maxOccurs="unbounded" name="shippingaddress" type="shippingAddress:ShippingAddress"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The following sections show you the basic steps for creating a XSD model of
your data entities, generating the XSD representation of those entities, and
importing the XSD into WebSphere Integration Developer where the entities can
be used as business objects. The steps are:

1. Create an XSD model.
2. Create a package.
3. Create a class.
4. Create a class diagram.
5. Run the UML to XSD transformation.
6. Figure 5.7.6 on page 178.

5.7.1 Create an XSD model
To create an XSD model:

1. Open the Modeling perspective.

2. Create a UML Project if you do not already have one in your workspace by
selecting File → Project → UML Project.
166 Patterns: SOA Foundation Service Connectivity Scenario

3. Right-click your UML Project in the Model Explorer view and select New →
UML Model.

4. In the New UML Model window, under Templates, select XSD Model, then
Finish (Figure 5-35).

Figure 5-35 New XSD model
 Chapter 5. Model with Rational Software Architect 167

The model is created and opened. In the UML Model Editor, you can see
under Applied Profiles that the XSDProfile is applied to this model.

Figure 5-36 XSD profile
168 Patterns: SOA Foundation Service Connectivity Scenario

5.7.2 Create a package
To create a package:

1. Right-click XSD Model.emx → XSD Model, and select Add UML →
Package. Name the package Address.

2. In the properties for the address package, select the Profiles tab, then Add
Profile, and select the profile XSD Transformation (Figure 5-37).

Figure 5-37 XSD Transformation profile

You will now see the XSDProfile under Applied Profiles.

Figure 5-38 XSD profile
 Chapter 5. Model with Rational Software Architect 169

3. Still in the properties for the address package, select the Stereotypes tab,
then Add Stereotypes. In the Apply Stereotypes window, select schema
(Figure 5-39).

Figure 5-39 Apply schema stereotype to package
170 Patterns: SOA Foundation Service Connectivity Scenario

4. In the stereotype properties, set the schema target namespace properties
(Figure 5-40):

– targetNamespace: http://ITSOMartLib/Address
– targetNamespacePrefix: address

Figure 5-40 Schema target namespace

5.7.3 Create a class
To create a class:

1. Right-click <<schema>> Address and select Add UML → Class. Name the
class Address.
 Chapter 5. Model with Rational Software Architect 171

2. In the Properties for the Address class, select the Attributes tab, then click
the little red square to the right to add an attribute to the class (Figure 5-41).

Figure 5-41 Insert new property

3. Give the attribute a name of name. Set the type by clicking the box
under Type and select string under XSDDataTypes.

Notice that all of the standard XSD types are available.

Figure 5-42 XSDDataTypes
172 Patterns: SOA Foundation Service Connectivity Scenario

The name attribute will look like that shown in Figure 5-43 in the Attribute
properties.

Figure 5-43 Name attribute

4. Add the attributes listed in Table 5-1 to the Address class.

Table 5-1 Attributes

Name Type

street string

city string

state string

zipCode string

country string

phone string
 Chapter 5. Model with Rational Software Architect 173

The attribute properties for the Address class will look like those shown in
Figure 5-44.

Figure 5-44 Address attributes

5.7.4 Create a class diagram
To create a class diagram:

1. Under your model project, right-click XSD Model.emx → XSD Model, and
select Add Diagram → Class Diagram. Name the diagram BO Diagram.
174 Patterns: SOA Foundation Service Connectivity Scenario

2. Drag and drop the <<schema>> Address package and the Address class
from the Model Explorer view onto the BO Diagram. The diagram will now
look like Figure 5-45.

Figure 5-45 BO Diagram

5.7.5 Run the UML to XSD transformation
To run the transformation:

1. Right-click anywhere inside the BO Diagram and select Transform → Run
Transformation → UML to XSD.
 Chapter 5. Model with Rational Software Architect 175

2. In the Run Transformation window (Figure 5-46) select a target project to
generate the XSD into, then click Run.

Figure 5-46 Run UML-to-XSD transformation
176 Patterns: SOA Foundation Service Connectivity Scenario

If you have the XSD Building Blocks package that was automatically added to
your XSD model when you created it, then you will see the error shown in
Figure 5-47 when running the UML-to-XSD transformation.

Click OK and ignore the error. This package does not have anything inside of
it to generate a XML schema from. The XSD for the address package will still
be generated.

Figure 5-47 Error generating XSD for XSD Model Building Blocks package

Look at the generated XSD
XSD files are not displayed in the Model Explorer, so you need to switch to a
different view to see the XSD that was generated for your model.

1. Add the Navigator view to your Modeling perspective by selecting Window →
Show View → Other → Basic → Navigator. The Navigator view gets added
to the bottom pane.
 Chapter 5. Model with Rational Software Architect 177

2. The XML schema for your model will now be displayed in the Navigator view,
under your UML project under a directory called schema.

Figure 5-48 Generated XSD files

3. Open Address.xsd.

Notice that the schema has the targetNamespace and prefix that you
specified in the schema stereotype properties, and the Address class is
represented as a complex type.

Example 5-2 Address.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:address="http://ITSOMartLib/Address"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ITSOMartLib/Address">
 <xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zipCode" type="xsd:string"/>
 <xsd:element name="country" type="xsd:string"/>
 <xsd:element name="phone" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

5.7.6 Import the XSD into WebSphere Integration Developer
Now you have XML schema that you can bring into the your libraries or
mediation modules in WebSphere Integration Developer where the complex
types within this schema will be represented as business objects.
178 Patterns: SOA Foundation Service Connectivity Scenario

If you have Rational Software Architect and WebSphere Integration Developer
installed into the same Eclipse workbench, then you can simply copy the
Address.xsd from your UML project to a library or mediation module.

Otherwise, you can export the Address.xsd to the file system and then import it
into WebSphere Integration Developer.

Either way, once you place the XSD file into a library or mediation module, the
Business Integration view will display Address under Data Types.

Figure 5-49 XSD in WebSphere Integration Developer

And if you double-click Address, it will be opened in the Business Object editor
(Figure 5-50).

Figure 5-50 Address business object
 Chapter 5. Model with Rational Software Architect 179

5.8 Modeling messaging resources: Transform UML to
JACL

The Registration Processor Service in the ITSOMart sample application is a
SOAP/JMS Web service, which means that there must be JMS resources
configured in WebSphere ESB to support this service. For the sample
application, the Registration Log mediation will also need JMS queues to
represent the audit system with which this mediation is interacting.

In this section, you will learn how to model JMS resources and how they are
configured to use the service integration bus within WebSphere ESB.

Note: You must be connected to the Internet to install the WebSphere
Platform Messaging Patterns Reusable Asset.
180 Patterns: SOA Foundation Service Connectivity Scenario

5.8.1 Import the WebSphere Platform Messaging Patterns asset
Support for modeling the service integration bus and JMS queues is not provided
by default in Rational Software Architect. This support is provided by a reusable
asset called WebSphere Platform Messaging Patterns that you can import into
your workbench from the publicly available developerWorks® Repository.

1. Select File → New → Other, then select RAS → DeveloperWorks
Repository (Figure 5-51).

Figure 5-51 DeveloperWorks Repository
 Chapter 5. Model with Rational Software Architect 181

2. Click Next. You will be prompted to enable the Reusable Asset Management
capability if you do not already have this enabled for your workspace. Click
OK to enable it (Figure 5-52).

Figure 5-52 Enable Reusable Asset Management capability

3. Click Finish on the New IBM Rational developerWorks Repository
Connection page (Figure 5-53) to create the connection to this repository.

Figure 5-53 New developerWorks Repository connection

4. Open the Reusable Assets perspective by selecting Window → Open
Perspective → Other → RAS (Reusable Assets).
182 Patterns: SOA Foundation Service Connectivity Scenario

5. In the Asset Explorer, expand IBM Rational developerWorks →
design_soa. Right-click WebSphere Platform Messaging Patterns and
select Import (Figure 5-54).

Figure 5-54 Import WebSphere Platform Messaging Patterns
 Chapter 5. Model with Rational Software Architect 183

6. An Information window displays and shows the plug-ins that will be imported
into your Eclipse workbench (Figure 5-55). Click OK.

Figure 5-55 Asset plug-ins

7. In the Import RAS Asset window (Figure 5-56), click Next.

Figure 5-56 Import RAS Asset: Select the Asset to Import
184 Patterns: SOA Foundation Service Connectivity Scenario

8. On the next page (Figure 5-57) accept the license agreement for the asset by
selecting the check box, then Next.

Figure 5-57 Accept license
 Chapter 5. Model with Rational Software Architect 185

9. The next page (Figure 5-58) shows the location in which the plug-ins for this
asset will be installed to the file system. You can change this location if you
like, or accept the default, and select Finish.

Figure 5-58 Install location

10.When the asset is finished importing, you will see a window containing
messages about the import (Figure 5-59). One message indicates that you
need to restart Eclipse for the asset features to be available. Click OK.

Figure 5-59 Import results

11.Another window will prompt you to restart the workbench. Click OK.

5.8.2 Model messaging resources
The following instructions show you how to model the service integration bus for
the ITSOMart sample and the JMS resources required for the registration
processor SOAP/JMS Web service.

1. Open the Modeling perspective.
186 Patterns: SOA Foundation Service Connectivity Scenario

2. In a UML project, create a new UML model using the Blank Model template
and name it something like Deployment Model.

3. Add the Pattern Explorer view to the Modeling perspective. Select
Window → Show View → Pattern Explorer.

4. In the Pattern Explorer view, expand WebSphere Platform Messaging
Patterns → Topology and you can see pattern components for defining JMS
resources and service integration bus resources. See Figure 5-60.

Figure 5-60 Pattern Explorer
 Chapter 5. Model with Rational Software Architect 187

5. Select the Service Integration Bus collaboration under Topology and drag
and drop it onto your model diagram.

Figure 5-61 Service Integration Bus pattern
188 Patterns: SOA Foundation Service Connectivity Scenario

The Pattern Explorer view minimizes every time you click outside of it. To see
this view again, click the small blue Pattern Explorer icon in the bottom left
corner of the workspace (Figure 5-62 on page 190).
 Chapter 5. Model with Rational Software Architect 189

6. The Service Integration Bus pattern requires a Bus component and at least
one Queue component as parameters. To add a Bus component:

a. In the Service Integration collaboration on the diagram, click the
component icon next to the Bus parameter. Then in the pop-up menu,
select the component icon.

Figure 5-62 Add a Bus component

Now you will have a Bus component created in your model and it will show
up in the Model Explorer view (Figure 5-63). This Bus represents the
actual service integration bus instance that will be configured in your
WebSphere ESB environment.

Figure 5-63 Bus component in the Model Explorer
190 Patterns: SOA Foundation Service Connectivity Scenario

b. Select the Bus component and in the Properties view, select the General
tab and change the component name to ITSOMartBus (Figure 5-64).

Figure 5-64 Bus name

c. In the Model Explorer view, under the Bus component, select the node
property. Switch to the General tab of the Properties view.

In the Default Value field, enter a name for the ESB node, for example,
esbNode. This is the WebSphere node that your service integration bus will
be configured on. See Figure 5-65.

Figure 5-65 Bus node name
 Chapter 5. Model with Rational Software Architect 191

d. Select the server property of the Bus component. In the Default Value
field, set the name of the application to server1 (Figure 5-66).

Figure 5-66 Bus server name

e. Drag and drop the Bus component from the Model Explorer view onto your
diagram.

Figure 5-67 Bus component in the diagram

7. Add a Queue component to the Service Integration Bus pattern similar to how
you added a Bus component as a parameter in step 6. A queue on the
service integration bus is a physical destination where messages are stored.
192 Patterns: SOA Foundation Service Connectivity Scenario

a. In the Service Integration collaboration on the diagram, click the
component icon next to the Queue parameter. Then in the pop-up menu,
select the component icon (Figure 5-68).

Figure 5-68 Add a Queue component

b. Select the Queue component in the Model Explorer view.

Use the Properties View to give it a name of
ITSOMart.RegistrationProcessorServiceQ (Figure 5-69).

Figure 5-69 Queue name
 Chapter 5. Model with Rational Software Architect 193

c. Drag and drop the Queue component onto the diagram.

Figure 5-70 Queue component in the diagram

8. Add a JMS Connection pattern to the model.

a. In the Pattern Explorer view, drag and drop a JMS Connection pattern
onto the diagram.

Figure 5-71 JMS Connection pattern
194 Patterns: SOA Foundation Service Connectivity Scenario

In the diagram, you can see that the JMS Connection pattern takes
parameters for configuring the resources a J2EE application needs for
connecting to a JMS queue. These parameters are:

• JMS Connection - This component is specific to the JMS Connection
pattern and will not result in any actual configuration component in
WebSphere ESB.

• Queue - This is a Queue component on the Service Integration Bus.

• Connection Factory JNDI Name - This is the name by which the JMS
Connection Factory will be registered in JNDI.

• Queue JNDI Name - This is the name by which the JMS Queue will be
registered in JNDI.

• Activation Specification JNDI Name - This is the name by which an
activation specification will be registered in JNDI that will provide a
listener for the queue specified for this JMS Connection pattern.

Figure 5-72 JMS Connection pattern
 Chapter 5. Model with Rational Software Architect 195

9. Create the JMS Connection component parameter.

a. Click the component icon next to the JMS Connection parameter, then in
the pop-up menu, select the component icon (Figure 5-73).

Figure 5-73 Create JMS Connection component

b. Select the new JMS Connection component in the Model Explorer view. In
the Properties view, change its name to
ITSOMart.RegistrationProcessorServiceJMSConnection.

c. Drag and drop the JMS Connection component you just created onto the
diagram (Figure 5-74).

Figure 5-74 JMS Connection component in the diagram
196 Patterns: SOA Foundation Service Connectivity Scenario

10.Specify the Queue component parameter.

a. Click the component icon next to the Queue parameter, then in the pop-up
menu, select the icon on the right (Figure 5-75). The hover text for this icon
is Enter argument name/value.

Figure 5-75 Specify Queue component

b. In the Queue parameter field, type in the name of the queue that you
defined on the service integration bus in step 7 above (Figure 5-76):

ITSOMart.RegistrationProcessorServiceQ

Figure 5-76 Queue name
 Chapter 5. Model with Rational Software Architect 197

c. To show the association between the Queue component and the JMS
Connection pattern in the diagram, right-click the JMS Connection pattern
and select Filters → Show/Hide Relationships.

In the Show/Hide Relationships window, make sure Associations is
checked then click OK.

The diagram will now show the association with the Queue component
(Figure 5-77).

Figure 5-77 Association between the Queue component and JMS Connection pattern
198 Patterns: SOA Foundation Service Connectivity Scenario

11. Specify the Connection Factory JNDI Name parameter.

a. Click the “S” icon next to the Connection Factory JNDI Name parameter,
then in the pop-up menu, select the “S” icon to create a literal string for
the parameter (Figure 5-78).

Figure 5-78 Specify Connection Factory JNDI Name
 Chapter 5. Model with Rational Software Architect 199

b. Select the Connection Factory JNDI Name field, then in the Properties
view, select the Advanced tab, and under the UML properties, change the
Value field to jms/RegistrationProcessorServiceQCF (Figure 5-79).

Figure 5-79 Connection Factory JNDI Name value

12.Specify the Queue JNDI Name parameter the same way you specified the
Connection Factory JNDI Name in the previous step.

a. Click the “S” icon next to the Queue JNDI Name parameter, then in the
pop-up menu, select the “S” icon to create a literal string for the
parameter.
200 Patterns: SOA Foundation Service Connectivity Scenario

b. Select the Queue JNDI Name field, then in the Properties view, select the
Advanced tab, and under the UML properties, change the Value field to
jms/RegistrationProcessorServiceQ (Figure 5-80).

Figure 5-80 Queue JNDI Name value

13.Specify the Activation Specification JNDI Name parameter.

a. Click the “S” icon next to the Activation Specification JNDI Name
parameter, then in the pop-up menu, select the “S” icon to create a literal
string for the parameter.
 Chapter 5. Model with Rational Software Architect 201

b. Select the Activation Specification JNDI Name field, then in the Properties
view select the Advanced tab, and under the UML properties, change the
Value field to jms/RegistrationProcessorServiceActivationSpec
(Figure 5-81).

Figure 5-81 Activation specification JNDI name value
202 Patterns: SOA Foundation Service Connectivity Scenario

The complete diagram should now look like Figure 5-82.

Figure 5-82 Deployment model diagram
 Chapter 5. Model with Rational Software Architect 203

5.8.3 Run the UML-to-JACL transformation
The UML-to-JACL transformation that is provided by the WebSphere Platform
Messaging asset will generate a JACL script that you can use to configure the
service integration bus and JMS resources in WebSphere ESB.

1. Right-click your model in the Model Explorer and select Transform → Run
Transformation → UML to JACL.

2. In the Run Transformation window, specify the source model on which the
transformation will run. This should be filled in already if you selected the
model in step 1, but if it is not, then next to the Source field, click the square
button and browse to select your model. See Figure 5-83.

Figure 5-83 Select Transformation Source
204 Patterns: SOA Foundation Service Connectivity Scenario

3. In the Run Transformation window, select a project for the target where you
want the JACL script to be generated (Figure 5-84).

Figure 5-84 Run Transformation - Target

4. Click Run to run the transformation and generate the JACL script.

Look at the generated JACL script
Files with an extension of JACL are not displayed in the Model Explorer view, so
you must switch to a different view to see the JACL file that was generated for
your model:

1. Add the Navigator view to your Modeling perspective by selecting Window →
Show View → Other → Basic → Navigator. The Navigator view gets added
to the bottom pane.
 Chapter 5. Model with Rational Software Architect 205

2. The JACL file will now be displayed in the Navigator view, under your UML
project. This file will have the name of the Bus component in your model. For
example, for the model built for the sample, the file will be named
ITSOMartBus.jacl (Figure 5-85).

Figure 5-85 ITSOMartBus.jacl in the Navigator view

3. Open the ITSOMartBus.jacl file (Example 5-3) and you can see the set of
commands for the configuration each component you defined in the model for
the service integration bus and JMS resources.

Example 5-3 ITSOMartBus.jacl

Setup basic variables for which server etc to create bus on
set node esbNode
set server server1
set scope [$AdminConfig getid /Node:$node/Server:$server/]

Create Bus
set busName ITSOMartBus
puts "Create messaging bus and assign the server as a member"
set params [list -bus $busName]
puts "\$AdminTask createSIBus $params"
$AdminTask createSIBus $params
set params [list -bus $busName -node $node -server $server -createDefaultDatasource true]
puts "\$AdminTask addSIBusMember $params"
$AdminTask addSIBusMember $params

Create destination
set queueName ITSOMart.RegistrationProcessorServiceQ
set queueJNDIName jms/RegistrationProcessorServiceQ
206 Patterns: SOA Foundation Service Connectivity Scenario

puts "Create SIB Queues"
set params [list -bus $busName -name $queueName -type queue -node $node -server $server]
puts "\$AdminTask createSIBDestination $params"
$AdminTask createSIBDestination $params
puts "Create JMS JNDI Resources"

Create queue
set params [list -name $queueName -jndiName $queueJNDIName -queueName $queueName -busName

$busName]
puts "\$AdminTask createSIBJMSQueue $scope $params"
$AdminTask createSIBJMSQueue $scope $params

Create Connection Factory
set cfName RegistrationProcessorServiceQCF
set cfJNDIName jms/RegistrationProcessorServiceQCF
set params [list -name $cfName -jndiName $cfJNDIName -busName $busName -type queue]
puts "\$AdminTask createSIBJMSConnectionFactory $scope $params"
$AdminTask createSIBJMSConnectionFactory $scope $params

Create JMS Activation specification to be used with MDB's
set asName RegistrationProcessorServiceActiviationSpec
set asJNDIName jms/RegistrationProcessorServiceActiviationSpec
set params [list -name $asName -jndiName $asJNDIName -destinationJndiName $queueJNDIName

-busName $busName -destinationType javax.jms.Queue]
puts "\$AdminTask createSIBJMSActivationSpec $scope $params"
$AdminTask createSIBJMSActivationSpec $scope $params

Save the configuration
$AdminConfig save
puts "Configuration saved."

4. Notice the following naming conventions the transformation used to generate
the JACL script:

– The JMS queue name is the same as the Queue destination on the
Service Integration Bus: ITSOMart.RegistrationProcessorServiceQ.

– The JMS connection factory name is taken from the Connection Factory
JNDI Name specified in the model. The prefix jms is removed from the
JNDI name jms/RegistrationProcessorServiceQCF to form the name for
the JMS connection factory that will be displayed in the WebSphere
administration console.

– The JMS activation specification name is formed also from the JNDI name
specified in the model with the prefix jms removed.
 Chapter 5. Model with Rational Software Architect 207

5.8.4 Running the JACL script from a command line
You can now use the generated JACL script to configure the service integration
bus and JMS resources for your application.

1. Start your WebSphere ESB server.

2. Copy the generated JACL script to somewhere on the file system where
WebSphere ESB is installed.

3. Run the following command from the bin directory of your WebSphere ESB
profile.

wsadmin -f ITSOMartBus.jacl

If you are using the default WebSphere ESB profile in WebSphere Integration
Developer, this directory will be <wid_install>\pf\esb\bin.

You should see the following messages in your command shell (Figure 5-86).

Figure 5-86 wsadmin message

In the WebSphere Administration console, you can see the JMS resources
(connection factory, queue, and activation specification) that were created under
Resources → JMS Providers → Default Messaging at the Server scope. The
JMS connection factory is actually created as a JMS queue connection factory.

WASX7209I: Connected to process "server1" on node esbNode using SOAP connector; The type of process
is: UnManagedProcess
Create messaging bus and assign the server as a member
$AdminTask createSIBus -bus ITSOMartBus
$AdminTask addSIBusMember -bus ITSOMartBus -node esbNode -server server1 -createDefaultDatasource true
Create SIB Queues
$AdminTask createSIBDestination -bus ITSOMartBus -name ITSOMart.RegistrationProcessorServiceQ -type
queue -node esbNode -server server1
Create JMS JNDI Resources
$AdminTask createSIBJMSQueue
server1(cells/esbCell/nodes/esbNode/servers/server1|server.xml#Server_1140500861281) -name
ITSOMart.RegistrationProcessorServiceQ -jndiName jms/RegistrationProcessorServiceQ -queueName
ITSOMart.RegistrationProcessorServiceQ -busName ITSOMartBus
$AdminTask createSIBJMSConnectionFactory
server1(cells/esbCell/nodes/esbNode/servers/server1|server.xml#Server_1140500861281) -name
RegistrationProcessorServiceQCF -jndiName jms/RegistrationProcessorServiceQCF -busName ITSOMartBus
-type queue
$AdminTask createSIBJMSActivationSpec
server1(cells/esbCell/nodes/esbNode/servers/server1|server.xml#Server_1140500861281) -name
RegistrationProcessorServiceActiviationSpec -jndiName jms/RegistrationProcessorServiceActiviationSpec
-destinationJndiName jms/RegistrationProcessorServiceQ -busName ITSOMartBus -destinationType
javax.jms.Queue
Configuration saved.
208 Patterns: SOA Foundation Service Connectivity Scenario

5.9 Resources
For more information see the following:

� Rational Software Architect

http://www-306.ibm.com/software/awdtools/architect/swarchitect/

� Patterns: Model-Driven Development Using IBM Rational Software Architect,
SG24-7105

� Rational Software Architect: SOA design resources

http://www-306.ibm.com/software/info/developer/solutions/soadev/dtoolkit2.jsp

� UML Profile for Software Services, RSA Plug-In

http://www-128.ibm.com/developerworks/rational/library/05/510_svc/

� Architecting on demand solutions, Part 11: Build ESB connectivity with
Rational Software Architecture (RSA) WebSphere Platform Messaging
Patterns

http://www-128.ibm.com/developerworks/ibm/library/i-odoebp11/

� Modeling Web services, Part 1

http://www-128.ibm.com/developerworks/rational/library/05/1129_johnston/

� Modeling Web services, Part 2

http://www.ibm.com/developerworks/rational/library/06/0411_johnston/
 Chapter 5. Model with Rational Software Architect 209

http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/info/developer/solutions/soadev/dtoolkit2.jsp
http://www-128.ibm.com/developerworks/rational/library/05/510_svc/
http://www-128.ibm.com/developerworks/ibm/library/i-odoebp11/
http://www-128.ibm.com/developerworks/rational/library/05/1129_johnston/
http://www.ibm.com/developerworks/rational/library/06/0411_johnston/

210 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 6. Assemble with WebSphere
Integration Developer

WebSphere Integration Developer is the development environment for building
integrated business applications targeted for WebSphere ESB and the
WebSphere Process Server. One of the primary purposes of WebSphere
Integration Developer is to provide the appropriate tools to easily build and test
SCA-based applications.

This chapter discusses WebSphere Integration Developer key concepts and
common tasks in terms of mediation module development for deployment to
WebSphere ESB. Subsequent chapters provide more details about building and
deploying mediations using the ITSOMart scenario as an example.

This chapter includes the following topics:

� Technology overview
� Introduction to WebSphere Integration Developer
� Development environment settings
� Development process
� Testing mediations
� Packaging the mediation for deployment

For a complete look at WebSphere Integration Developer, WebSphere ESB, and
the process of building and deploying mediations, see Getting Started with
WebSphere Enterprise Service Bus V6, SG24-7212.

6

© Copyright IBM Corp. 2006. All rights reserved. 211

6.1 Technology overview
This book focuses on the use of WebSphere ESB as the enterprise service bus
in a solution. Understanding the following technology is key to designing efficient
solutions. This section gives a brief introduction to each technology.

6.1.1 Service Component Architecture
Service Component Architecture (SCA) and Service Data Objects (SDOs)
provide the underpinnings for the SOA programming model used to build
business processes in WebSphere Process Server and mediations in
WebSphere ESB.

SCA is a universal model for business services that publish or operate on
business data. It separates business logic from infrastructure logic so that
application programmers can focus on the business problem. The
implementation of business processes is contained in service components. SDO
defines a model for the information exchanged between these components.

Figure 6-1 shows the main terms of an SCA service component.

Figure 6-1 Service component overview

WebSphere ESB: The service component in WebSphere ESB is referred to
as a mediation flow component.

Human
Task

Human
TaskJavaJava WS_BPELWS_BPEL Business

Rule
Business

Rule SelectorSelectorState
Machine

State
Machine

Implementation Types

Java

WSDL
Port Type Interface Reference

JavaJava

WSDL
Port Type

Component

Implementation

Mediation
Flow

Mediation
Flow
212 Patterns: SOA Foundation Service Connectivity Scenario

Interfaces
A component exposes business-level interfaces so that the service can be used
or invoked. The interface of a component defines the operations that can be
called and the data that is passed, such as input arguments, returned values,
and exceptions.

A service interface is defined by a Java interface or WSDL port type. Arguments
and return values are described with Java classes, simple Java types, or XML
schema. SDO-generated Java classes are the preferred form of Java class
because of their integration with XML technologies. Arguments described in XML
schema are exposed to programmers as SDOs. All components have interfaces
of the WSDL type. Only Java components support Java-type interfaces. If a
component has more than one interface, all interfaces must be the same type.

A component can be called synchronously or asynchronously. This is
independent of whether the implementation is synchronous or asynchronous.
The component interfaces are defined in the synchronous form and
asynchronous support is also generated for them. You can specify a preferred
interaction style as synchronous or asynchronous. The asynchronous type
advertises to users of the interface that it contains at least one operation that can
take a significant amount of time to complete. As a consequence, the calling
service must avoid keeping a transaction open while waiting for the operation to
complete and send its response. The interaction style applies to all the
operations in the interface.

You can also apply a role-based permission qualifier to an interface so that only
authorized applications can invoke the service with that interface. If the
operations require different levels of permission for their use, you must define
separate interfaces to control their access.

Implementation
A service can be implemented in a range of languages, for example, Java,
BPEL, state-machine definitions, and so on. When implementing a service, the
focus is on the business purpose and less on infrastructure technology.

SCA and non-SCA services can use other service components in their
implementations. They do not hard-code the other services they use. They
declare soft links called service references. Service wires resolve service
references. You can use SCA wiring to assemble components and create an
SCA application.

WebSphere ESB: The implementation of a mediation flow component is a
mediation flow.
 Chapter 6. Assemble with WebSphere Integration Developer 213

References
When a component wants to use the services of another component, it must
have a partner reference or simply a reference. An in-line reference means that
the referenced service component is defined within the same scope of the
referencing component. In other words, both components are defined within the
same module.

Applications that are not defined as SCA components (for example, JSPs) can
still invoke SCA components. They do so through the use of stand-alone
references. Stand-alone references contain partner references that identify the
components to call. Alone, stand-alone references do not have any
implementation or interface.

Service modules
Components are assembled in a module, as shown in Figure 6-2, which is a
basic unit of deployment in the WebSphere Process Server or WebSphere ESB.

Figure 6-2 Service module overview

The module assembly is a diagram of the integrated business application,
consisting of components and the wires that connect them. In WebSphere
Integration Developer, the module assembly is exposed as an assembly diagram
where components can be assembled.

The implementations of components that are used in a module assembly can
reside within the module or can be external. Components that belong to other
modules can be used through imports. Components in different modules can be

Import

Export

Stand-alone
Reference

Service
Component

Service
Component

Service Module

Wire
214 Patterns: SOA Foundation Service Connectivity Scenario

wired together by publishing the services as exports and dragging the exports
into the assembly diagram to create imports.

When wiring components, you can also specify quality of service qualifiers on the
implementations, partner references, and interfaces of the component.

Imports
An import allows you to use functions that are not part of the module that you are
assembling. Imports can be from components in other modules or non-SCA
components such as stateless session EJBs and Web services. Available
function or business logic that is implemented in remote systems such as Web
services, EIS functions, EJBs, or remote SCA components is modeled as an
imported service.

Imports have interfaces that are the same as or a subset of the interfaces of the
remote service that they are associated with so that those remote services can
be called. Imports are used in an application in exactly the same way as local
components. This provides a uniform assembly model for all functions,
regardless of their locations or implementations. The import binding does not
have to be defined at development time; it can be done at deployment time.

WebSphere ESB: A mediation module is a type of SCA module for service
requests over an enterprise service bus. Mediation modules consist of
imports, exports, mediation flow components, and (optionally) Java SCA
components.

WebSphere ESB: WebSphere ESB supports the following import bindings:

� Web service bindings

– SOAP over HTTP (SOAP/HTTP)
– SOAP over JMS (SOAP/JMS)

� SCA bindings (to connect SCA modules to other SCA modules).

� Java Message Service (JMS) 1.1 bindings

JMS can exploit various transport types, including TCP/IP and HTTP(S).

� WebSphere Adapter bindings

WebSphere Adapters enable interaction with Enterprise Information
Systems (EIS).

� Stateless session bean binding

This allows you to invoke a stateless session EJB as an SCA component.
 Chapter 6. Assemble with WebSphere Integration Developer 215

Export
An export is a published interface from a component that offers the component
business service to the outside world, for example, as a Web service. Exports
have interfaces that are the same as or a subset of the interfaces of the
component that they are associated with so that the published service can be
called. An export dragged from another module into an assembly diagram
automatically creates an import.

The service component details are stored in an XML file using a new definition
language, Service Component Definition Language (SCDL).

6.1.2 Service Data Objects
Business data that is exchanged in an integrated application in WebSphere ESB
is represented by business objects. The objects are based on SDO, which is a
new data access technology.

SDO unifies data representation across disparate data stores. It supports a
disconnected programming model and is integrated with XML. SDO provides
dynamic and static (strongly typed) data APIs. The SDO proposal was published
jointly by IBM and BEA as JSR 235. SDO Version 1.0 support is introduced in
WebSphere Application Server V6 and IBM Rational Application Developer V6.
The SDO V2.0 specification is currently available.

In addition to providing a programming model that unifies data access, there are
several other key design features to note about SDO. First, built into the SDO
architecture is support for some common programming patterns. Most
significantly, SDO supports a disconnected programming model. Typically, with
this type of pattern, a client might be disconnected from a particular data access
service (DAS) while working with a set of business data. However, when the
client has completed processing and needs to apply changes to a back-end data
store by way of a DAS, a change summary is necessary to provide the
appropriate level of data concurrency control. This change summary information
has been built into the SDO programming model to support this common data
access scenario.

WebSphere ESB: WebSphere ESB supports the following export bindings:

� Web service bindings
– SOAP/HTTP
– SOAP/JMS

� SCA bindings to connect SCA modules to other SCA modules
� Java Message Service (JMS) 1.1 bindings
� WebSphere Adapter bindings
216 Patterns: SOA Foundation Service Connectivity Scenario

Another important design point to note is that SDO integrates well with XML. As a
result, SDO naturally fits in with distributed service-oriented applications where
XML plays a very important role.

Finally, SDO has been designed to support both dynamic and static data access
APIs. The dynamic APIs are provided with the SDO object model and provide an
interface that allows developers to access data even when the schema of the
data is not known until runtime. In contrast to this, the static data APIs are used
when the data schema is known at development time, and the developer prefers
to work with strongly typed data access APIs.

Data objects
The fundamental concept in the SDO architecture is the data object. In fact, the
term SDO is often used interchangeably with the term data object. A data object
is a data structure that holds primitive data, multi-valued fields (other data
objects), or both. The data object also has references to metadata that provide
information about the data found in the data object. In the SDO programming
model, data objects are represented by the commonj.sdo.DataObject Java
interface definition. This interface includes method definitions that allow clients to
obtain and set the properties associated with DataObject.

Data graph
Another important concept in the SDO architecture is the data graph shown in
Figure 6-3. A data graph is a structure that encapsulates a set of data objects.
From the top-level data object in the graph, all other data objects can be reached
by traversing the references from the root data object. In the SDO programming
model, data graphs are represented by the commonj.sdo.DataGraph Java
interface definition.

Figure 6-3 Data graph consisting of data objects and change summary

Data Graph

Root

Data Object

Change
Summary
 Chapter 6. Assemble with WebSphere Integration Developer 217

An important feature of the data graph is a change summary that is used to log
information about what data objects in the graph have changed during
processing. The change summary information is defined by the
commonj.sdo.ChangeSummary interface.

Business objects and the business object framework
The business object framework provides a data abstraction for SCA. Business
objects are based on SDO v1.0 technology but provide additional functionality
not found in SDO.

Both SCA and SDO, the basis of business objects, have been designed to be
complimentary service-oriented technologies. Figure 6-4 illustrates how SCA
provides the framework to define service components and to compose these
services into integrated applications, and it further shows that business objects
represent the data that flows between each service. Whether the interface
associated with a particular service component is defined as a Java interface or
a WSDL port type, the input and output parameters are represented by business
objects.

Figure 6-4 Exchanging data in an SCA runtime

The business object framework consists of the following four concepts:

Business object (BO) Fundamental data structure for representing
business data

Service Module

BO

BO BO

BO

BO

BO = Business Object

Web

Web
218 Patterns: SOA Foundation Service Connectivity Scenario

Business graph (BG) Wrapper for a business object or hierarchy of
business objects to provide enhanced information
such as change summary, event summary, and verb

BO Type Metadata Metadata that provides the ability to annotate
business objects with application-specific
information

BO Services A set of services provided to facilitate working with
business objects, available in addition to the
capabilities already provided by SDO V1.0

The business object is directly related to the SDO data object concept. In fact,
business objects in WebSphere Process Server and WebSphere ESB are
represented in memory with the SDO type commonj.sdo.DataObject. Business
objects are modeled as XML schema. Two types of business objects are found in
the business object framework:

� Simple business objects, which are composed only of scalar properties

� Hierarchical business objects, which are composed of attributes that refer to
nested business objects

In the business object framework, a business graph is used to wrap a top-level
business object and provide additional information that can enhance the data. In
particular, the business graph includes the change summary for the data in the
graph similar to the SDO change summary information, the event summary, and
verb information used for data synchronization between EISs.

The business graph is similar to the SDO data graph. However, the event
summary and the verb portion of the enhanced information is not included with
the SDO data graph concept.

6.1.3 Service Message Objects
Within WebSphere ESB, mediation flows process messages as Service
Message Objects (SMOs). SMOs are enhanced SDOs.

All SMOs have the same basic structure, consisting of the following:

� A root data object called a ServiceMessageObject that contains other data
objects representing header, body, and context data.

Note: The term business object is occasionally used to refer to the entire
framework. However, here the term refers to the fundamental data structure
for representing business data and not to the overall architecture. For the
overall architecture, the term business object framework is used.
 Chapter 6. Assemble with WebSphere Integration Developer 219

� A body that contains the message payload. The payload is the application
data (business object) exchanged between service endpoints.

� Header information that originates from a specific import or export binding.
The message headers handled by WebSphere ESB are:

– Web service message header
– SCA message header
– JMS message header
– WebSphere Adapter message header

� Context information, which is data other than the message payload.

All of this information is accessed as SDO DataObjects, and there is a schema
declaration that specifies the overall structure of the SMO. The schema is
generated by the WebSphere Integration Developer.

6.2 Introduction to WebSphere Integration Developer
WebSphere Integration Developer is the development environment for
WebSphere Enterprise Service Bus and WebSphere Process Server. It provides
an environment for building and testing integrated applications based on a
services-oriented architecture.

The application development in WebSphere Integration Developer is based on
SCA. Besides developing SCA components and modules, WebSphere
Integration Developer is also used to assemble mediations, components using
mediation primitives, and to create mediation modules. WebSphere Integration
Developer includes an integrated unit test environment for WebSphere Process
Server, WebSphere ESB, and WebSphere Application Server, allowing
developers to deploy their modules to the integrated test server and perform unit
testing using the integration test client.

6.2.1 Starting WebSphere Integration Developer
To start WebSphere Integration Developer, perform the following tasks:

1. Click Start → Programs → IBM WebSphere → Integration Developer
V6.0.1 → WebSphere Integration Developer V6.0.1.

2. This launches the Workspace Launcher window shown in Figure 6-5 on
page 221. A workspace is a directory where your work is stored. You can
create many workspaces and choose which one to work on at any time. A
common scenario is to have separate workspaces for different projects you
may be working on.

Enter a path where a workspace should be created and click OK.
220 Patterns: SOA Foundation Service Connectivity Scenario

Figure 6-5 Workspace Launcher

Note: On Windows systems, we recommend using short path names for
the workspace directory, to minimize the chances of encountering the
Windows limit on path names longer than 256 characters.
 Chapter 6. Assemble with WebSphere Integration Developer 221

3. WebSphere Integration Developer will start and open the Welcome page
(shown in Figure 6-6). From this screen you can access information such as
the product overview, tutorials, samples, migration information, and Web
resources.

Figure 6-6 WebSphere Integration Developer welcome page

4. Clicking the arrow in the top right corner will close the Welcome screen and
open the workbench using the Business Integration perspective.

The workbench is where you will spend most of your time developing
mediation modules. It offers the developer a choice of perspectives and an
array of toolbars and menu items that are used to accomplish a variety of
tasks.

Access the Workbench
222 Patterns: SOA Foundation Service Connectivity Scenario

A perspective is a role-based collection of views and editors. The primary
WebSphere Integration Developer perspective is the Business Integration
perspective. We will use this perspective almost exclusively because it
contains all the tools we need to create, develop, and manage business
integration projects. Figure 6-7 shows the Business Integration perspective on
the workbench.

Figure 6-7 The Business Integration perspective

Each frame represents one or more views. A view is used to present
information about a resource. Views are also used for navigating the
 Chapter 6. Assemble with WebSphere Integration Developer 223

information in the workspace. Views might appear by themselves or stacked
with other views in a tabbed notebook.

For example, in the lower right portion of the screen in Figure 6-7 on
page 223 you can see the Servers view, which is used to manage the test
environment application servers. Clicking the Properties tab at the top of the
view will switch that frame to show the Properties for a selected resource.

The frame in the upper right corner contains resources that you are editing.
One way to open a resource for editing is to double-click it in the Business
Integration view. For example, in Figure 6-7 on page 223 you can see that an
assembly diagram of a module assembly is open for editing. Each resource
type is associated with an editor specifically designed for editing that object
type.

As we go through the development of the ITSOMart mediations, you will see
how many of the views, wizards, and editors make up the Business
Integration perspective are used.

6.3 Development environment settings
As the Redbook team built the sample mediations, we discovered that certain
preference settings in WebSphere Integration Developer made our tasks easier.

6.3.1 Disable automatic build
The automatic build feature of WebSphere Integration Developer is designed to
keep resources current as you work with them. If you do not turn off this feature,
the workspace will rebuild every time you save a resource. This takes time, and if
you save additional resources before the build completes, could cause problems.

Tip: You can maximize any frame by double-clicking the view titles in the
frame or on the bar at the top of the frame. To return to the previous size,
double-click the bar or title once more. This is particularly useful when
working with editors or the server console.
224 Patterns: SOA Foundation Service Connectivity Scenario

To turn off this feature, select Project → Build Automatically. A check to the
left of the option (as shown in Figure 6-8) means that it is enabled. Selecting this
option will turn the feature off or on.

Figure 6-8 Automatic build option

With the feature turned off, you will need to periodically build the projects in your
workspace.

� You can build the project you are working in by selecting Project → Build
Project.

� You can build all the projects in the workspace by selecting Project → Build
All.

� You can force a clean build of all projects by cleaning your workspace.
Performing a workspace clean deletes all derived artifacts and staging
projects, forcing an automatic build and regeneration to occur. To do this
select Project → Clean from the menu bar, select Clean all projects, and
click OK.

The instructions in this book assume that you have turned off the automatic build
feature and will occasionally prompt you to build your projects.
 Chapter 6. Assemble with WebSphere Integration Developer 225

6.3.2 Set the default target runtime
Select the WebSphere ESB Server v6.0 runtime as your target test server as
follows:

1. Open your workspace preferences by selecting Window → Preferences.
2. Expand Server → Installed Runtimes.
3. Check the box to the left of WebSphere ESB Server v6.0.
4. Click OK.

6.3.3 Configure Web services workspace preferences
It is almost inevitable that you will end up working with Web services when
building mediations. Whether you are creating a Web service, generating a Web
service client, or testing a SOAP/HTTP mediation, you will require some level of
Web Services Developer support.

We recommend that you set the following preferences before you begin:

1. Open your workspace preferences by selecting Window → Preferences.

2. Under Workbench → Capabilities, enable the Web Service Developer
capability, as shown in Figure 6-9.

Figure 6-9 Preferences: Web Service Developer capability

Click OK to save the changes and close the preferences.
226 Patterns: SOA Foundation Service Connectivity Scenario

3. Re-open the preferences so that the Web Services preferences option will be
available.

4. Select Web Services → Server and Runtime and specify the following
values, as shown in Figure 6-10:

– Server: WebSphere ESB Server v6.0
– Web service runtime: IBM WebSphere
– J2EE version: 1.4

Figure 6-10 Preferences: Web Services → Server and Runtime
 Chapter 6. Assemble with WebSphere Integration Developer 227

5. Select Web Services → SOAP Transports. Select JMS as the preferred
transport when using the Web Services wizard, as shown in Figure 6-11.

Figure 6-11 Preferences: Web Services → SOAP Transports
228 Patterns: SOA Foundation Service Connectivity Scenario

6. Select Web Services → WS-I Compliance. For the WS-I SSBP compliance
level select Suggest compliance, as shown in Figure 6-12.

This preference will validate WSDL files against the WS-I Simple SOAP Basic
Profile and show warnings in the Problems view if anything is out of
compliance with this specification.

Figure 6-12 Preferences: Web Services → WS-I Compliance

Click OK to save your workspace preferences changes.

6.3.4 Workspaces and test environment
We also found that it was easier to organize our test efforts by creating a new
workspace and corresponding WebSphere ESB test server profile for each
mediation. This is not necessary, but intended to simplify things.
 Chapter 6. Assemble with WebSphere Integration Developer 229

To create a new server profile and associate it with the workspace, see “Creating
a new server in the test environment” on page 640.

6.4 Development process
This section gives a very brief overview of the mediation development process.
Details about the development process and the various options can be found in
the WebSphere Enterprise Service Bus 6.0.1 Information Center. In the following
chapters you will also see examples of the process.

A module project represents a single deployable unit and encapsulates SCA
components, J2EE projects, Java projects, and required libraries. When
deploying to WebSphere ESB your choice of module type is limited to mediation
modules.
230 Patterns: SOA Foundation Service Connectivity Scenario

Figure 6-13 shows a typical structure for a mediation module
(ITSO_CreditRatingMed), including a dependent library (ITSOMartLib). The view
is the Business Integration view in the Business Integration perspective.

Figure 6-13 Mediation module and library structure

There are many ways to go about building a mediation module. Your path
through the process may vary depending on the type of mediation, existing
resources you will use, connectivity options, and individual preferences. The
following steps will provide general guidance on the process:

1. Create a library.
2. Create business objects.
3. Define interfaces.
4. Create a mediation module.
5. Complete the module assembly.
6. Build the mediation flow.
 Chapter 6. Assemble with WebSphere Integration Developer 231

6.4.1 Create a library
A library can be used to hold resources for use by one or more mediation
modules. During development, the library is defined as a dependency for the
mediation modules. At runtime, the libraries are deployed with each module that
depends on it.

If you are deploying to WebSphere ESB, you can create two types of artifacts in
a library: business objects and interfaces. The mapping folder only applies to
WebSphere Process Server projects. Additionally, you can use libraries to hold
WSDL bindings in a Web Service Bindings folder, which is created when you
copy WSDL files into your library.

To create a library in WebSphere Integration Developer, do the following:

1. Right-click in the white space of the Business Integration view and select
New → Library, as shown inFigure 6-14.

Figure 6-14 Create new library
232 Patterns: SOA Foundation Service Connectivity Scenario

2. Enter a name for the new library and click Finish, as shown in Figure 6-15.

Figure 6-15 Naming a new library

6.4.2 Create business objects
Business objects are containers for application data that represent business
functions or elements, such as a customer or an invoice. A business object
contains attributes, each of which has a name, a type (scalar type or another
business object), a default value (for scalar types), and cardinality. Business
objects can extend (define a super-set of attributes) other business objects
through parent/child relationships. However, a business object can only inherit
from a single parent.

Business objects can be created in the Data Types folder of mediation modules
or their dependent libraries. If the business object is to be shared between
modules then it should be created in a library.
 Chapter 6. Assemble with WebSphere Integration Developer 233

To create a business object, do the following:

1. Select the Data Types folder in the library or project you want to create the
objects in.

2. Right-click and select New → Business Object, as shown in Figure 6-16.

Figure 6-16 Create new business object

3. Enter the name for the business object in the Name field, as shown in
Figure 6-17, and click Finish.

Figure 6-17 Defining the new business object

The new business object will be created and opened for editing.

To add an attribute to a business object, perform the following steps:

1. Select the object, right-click, and select Add Attributes. You can also select
the icon in the canvas. A new attribute entry will appear in the business
object with the default name attribute1 and default type string.
234 Patterns: SOA Foundation Service Connectivity Scenario

2. In the new entry, type over the name of the attribute with the new name or
change it in the Properties view. In Figure 6-18 you can see that we have
named the new attribute name.

Figure 6-18 Add attribute to address business object
 Chapter 6. Assemble with WebSphere Integration Developer 235

3. Select the correct type of attribute. The default is string, but you can change
this by clicking string and selecting the new type from a drop-down menu, as
shown in Figure 6-19.

Figure 6-19 Select the attribute type

4. Continue to add attributes until the object is defined and save and close the
object.

6.4.3 Define interfaces
An interface provides the input and output of a component. It is created
independently of the internal implementation of the component. Interfaces can be
created in mediation modules or libraries. If the interface is common to more than
one module then it should be created in a library.

An interface consists of one or more operations and a Web Services Description
Language (WSDL) type.

Note: You can save a file in WebSphere Integration Developer by
selecting File → Save or pressing Ctrl+S. You can close an open file by
selecting File → Close or clicking the X beside the object name at the top
of the view. If you close a file and it needs to be saved, you will be
prompted to save it.
236 Patterns: SOA Foundation Service Connectivity Scenario

An operation is a description of an action implemented by the component. An
operation may be a request/response type, meaning a request is sent and a
response returned to the interface, or a one-way type, meaning only an input is
sent and there is no response needed. Each operation in the interface defines
the data that can be passed in the form of input to and output from the
component when the operation is invoked. Each operation may have one or
more faults to handle error conditions. A one-way operation only has an input.
The WSDL type specifies the protocol and data format of the operation.

To build an interface, perform the following tasks:

1. Select the Interfaces folder in the library or module where you want to create
it.

2. Right-click and select New → Interface, as shown in Figure 6-20.

Figure 6-20 Create an interface

3. Enter the name for the interface in the Name field and click Finish.

Figure 6-21 Naming the new interface

The new interface will open in the editor area.
 Chapter 6. Assemble with WebSphere Integration Developer 237

4. Add a new operation (one-way or request/response) by selecting the
appropriate icon (Figure 6-22).

Figure 6-22 Add request response operation

A new operation will be added to the interface with the default name of
Operation1. Change this name to an appropriate name by typing over it, as
shown in Figure 6-23. When the new operation has been successfully added,
the rest of the icons at the top of the panel will be activated.

Figure 6-23 Give the operation a name

5. Add input, output, or fault information to the operation by clicking the
appropriate icons and completing the information.

A request/response operation will have an input describing the data that flows
into the component from the interface and an output describing the data that
flows back from the interface. It can also have a fault to handle error
conditions.

A response operation will only have an input defined.
238 Patterns: SOA Foundation Service Connectivity Scenario

Figure 6-24 Add input

Regardless of the type (input, output, or fault), a new entry will appear on the
canvas under the new operation, as shown in Figure 6-25. It will have a
default for the name and type specified.

Figure 6-25 New input

Change the name by typing over the default name.

Figure 6-26 Give the input a name
 Chapter 6. Assemble with WebSphere Integration Developer 239

Change the type by clicking the default type (string) and selecting a new type
from the pull-down. This will contain a list of legitimate types and business
objects to choose from (Figure 6-27).

Figure 6-27 Select the type field

You can also use the Properties view to change these values.

6. Save and close the interface.

6.4.4 Create a mediation module
The wizard provided in WebSphere Integration Developer to create the
mediation module allows you to do several things during the process:

1. Name the module.

2. Specify that the wizard also create the mediation flow component. Select this
option.

3. Specify the target server. Select WebSphere ESB Server.

4. Select required libraries. Be sure to select your library with the business
objects and interfaces.
240 Patterns: SOA Foundation Service Connectivity Scenario

To create a mediation module, perform the following tasks:

1. Right-click in the Business Integration view and select New → Mediation
module, as shown in Figure 6-28.

Figure 6-28 New mediation module

2. Name the mediation module and allow the wizard to create the mediation flow
component. This option is checked by default (Figure 6-29). Click Next.

Figure 6-29 Name the mediation module
 Chapter 6. Assemble with WebSphere Integration Developer 241

3. Select the libraries you want to include as a dependency, as shown in
Figure 6-30, and click Finish.

Figure 6-30 Add library

The new mediation module will be created. You will see the new structure in
the Business Integration view, including an entry for the module assembly, as
highlighted in Figure 6-31.

Figure 6-31 Module assembly
242 Patterns: SOA Foundation Service Connectivity Scenario

Adding dependent libraries to a mediation module
As you just saw, dependent libraries can be added to a mediation module when
you create it. If you want to add more libraries in the future after creating the
mediation module, perform the following steps:

1. Double-click the mediation module in the Business Integration view. This will
open the module dependencies in the editing area, as shown in Figure 6-32.
Click Add under the Libraries section.

Figure 6-32 ITSO_CreditRatingMed Dependencies

2. Select the library you want to add in the next window, as shown in
Figure 6-33, and click OK.

Figure 6-33 Library selection
 Chapter 6. Assemble with WebSphere Integration Developer 243

You will see the library added in the list of required libraries, as shown in
Figure 6-34.

Figure 6-34 Required libraries

3. Save the changes and close dependencies.

6.4.5 Complete the module assembly
Once the new module is created you can double-click the module assembly in
the Business Integration view to open it. Initially, the assembly will consist of a
mediation flow component labeled Mediation1, as shown in Figure 6-35.

Figure 6-35 Mediation flow component

Completing the module assembly consists of adding an export for the module
and imports for services you plan to use, and wiring these components together
to create the necessary interfaces and references. Imports and exports are then
bound to a particular transport with the details required for the runtime
environment.
244 Patterns: SOA Foundation Service Connectivity Scenario

Adding and binding imports and exports
There are a variety of methods you can use to add import and export
components to a module assembly:

� You can drag and drop a Web service port to the assembly diagram.

� You can drag and drop an interface to the assembly diagram.

� You can create an export using the context menu of the mediation flow
component.

� You can use the Import and Export tools to add a component.

Figure 6-36 Import and export tool

Most of these methods allow you to create a binding at the same time, or you can
delay and add the binding later using the context menus of the import and export
components.

Here are common ways to add and bind imports and exports.

Import with Web service binding
When you are working with Web services as imports, you will need to obtain a
copy of the WSDL describing the service and copy it to your mediation module or
library. When you do this, new entries for the data types, interfaces, and Web
service ports required by the Web service are created automatically. You will see
an example of this later in 7.3.3, “Define the interface to the Credit Rating Service
Web service” on page 278.
 Chapter 6. Assemble with WebSphere Integration Developer 245

To create an import for a Web service, drag and drop the Web service port to the
canvas. You will be prompted to select a component and binding type, as shown
in Figure 6-37.

Figure 6-37 Select component and binding type

Export with Web service, SCA, or JMS binding
You can create an export from the context menu of the mediation flow
component, as shown in Figure 6-38.

Figure 6-38 Create an export from the mediation flow component

The new export will be wired automatically to the mediation flow component, and
the appropriate interface and reference will be automatically added.
246 Patterns: SOA Foundation Service Connectivity Scenario

Import or export with JMS binding
To create an import and bind it to JMS, drag and drop an interface onto the
canvas. You will be prompted for the component and binding type, as shown in
Figure 6-39.

Figure 6-39 Select component type and binding for a new component

To use a JMS binding, select the import or export with no binding option and click
OK.

Once the import has been added, you can generate the binding by selecting
Generate Binding → JMS Binding from the context menu for the component.

Import with adapter binding
For adapter services, use the Enterprise Service Discovery wizard to create an
import or export. The wizard also creates the bindings.

Note: If you drop the interface onto a mediation flow component, you will only
get the interface defined to the component, but not a new import or export
component.
 Chapter 6. Assemble with WebSphere Integration Developer 247

Adding binding details
The binding contains implementation-specific details for the transport. The
details are added using the Properties view for an import or export component
that has been bound. For example, a Web service binding would provide the port
and service information for the Web service, as shown in Figure 6-40. This
information is generated automatically from the WSDL information.

Figure 6-40 Web service binding
248 Patterns: SOA Foundation Service Connectivity Scenario

For JMS bindings, you can enter data that includes information such as the JNDI
lookup name of the destination queue and queue connection factory, as shown in
Figure 6-41. Many of these fields reflect resources defined on the WebSphere
ESB server. If they are not filled in, values will be automatically generated for you
and the required server configuration will be performed when you deploy the
mediation module.

Figure 6-41 JMS binding details

Adapter binding information shown in Figure 6-42 on page 250 is usually filled in
by the Enterprise Service Discovery wizard.
 Chapter 6. Assemble with WebSphere Integration Developer 249

Figure 6-42 Adapter binding information

Wiring components
To complete the assembly diagram, any remaining unwired components need to
be wired together.

1. Click the wire icon and then click the first component.

2. Drag the wire from one component to the interface of the next.

3. You will be prompted and told that by adding the wire, a matching reference
will be created on the source node. Click OK.

Figure 6-43 Wire the components

4. Click the arrow at the top left of the palette to get out of the wiring mode.

The assembly diagram is now complete. It contains the export that exposes the
mediation to users, a mediation flow component that can be implemented to
contain a mediation flow, and one or more imports to invoke services used by the
mediation. At this stage we have only defined the flow of information, but not
what happens to it as it passes through the mediation module. We do that next
by generating the implementation for the mediation flow component.
250 Patterns: SOA Foundation Service Connectivity Scenario

6.4.6 Implement the mediation flow component
The implementation for the mediation flow component is the mediation flow. To
generate the mediation flow, perform the following steps:

1. Right-click the mediation flow component and select Generate
Implementation, as shown in Figure 6-44.

Figure 6-44 Generate implementation

2. Click OK in the next window. The Mediation Flow Editor will open with the
new flow, as shown in Figure 6-45.

Figure 6-45 Mediation flow editor

target operation

source operation
 Chapter 6. Assemble with WebSphere Integration Developer 251

3. The starting and endpoints of the mediation flow component are defined by
source interfaces and target references. Source operations are connected to
target operations and a flow is defined for each connection.

In the Operation connections window, you will see the interface and the
reference used in this flow.

Click the source operation (you will see an input node in the Mediation flow
pane) and drag it to the target operation.

This will create an operation connection between the two and generate the
starting point and end-point nodes in the flow. The nodes generated will
depend on the source and target. See Figure 6-46.

Figure 6-46 Mediation flow editor

If the interface to the mediation contains a request/response operation, you
will have a request and response flow generated. You can switch between the
two in the editor by clicking the appropriate tab at the bottom of the screen. In
the case of a one-way operation (request), you will only have the request
flow.
252 Patterns: SOA Foundation Service Connectivity Scenario

6.4.7 Build the mediation flow
A mediation flow consists of mediation primitives wired together. As a message
flows through it, actions are performed by the mediations.

Table 6-1 lists the primitives supplied with WebSphere ESB and their toolbar icon
and description.

Table 6-1 Mediation primitive types

Mediation primitives Symbol Description

Message Logger To log message
information to a database.

Message Filter To filter messages,
selectively forwarding
them on to output terminals
based on a simple
condition expression.

Database Lookup To access information in a
database and store it in the
message.

XSLT To manipulate or transform
messages using XSL
transformation.

Stop To stop a path in the flow
without generating an
exception.

Fail To stop a path in the flow
and generate an
exception.

Custom For custom processing of a
message. Uses a custom
SCA Java component for
custom message
processing.
 Chapter 6. Assemble with WebSphere Integration Developer 253

Adding primitives
To add a mediation primitive to the canvas, use the toolbar on the left side of the
mediation flow pane. Select the primitive and drop it on the canvas, as shown in
Figure 6-47.

Figure 6-47 Adding a mediation flow primitive
254 Patterns: SOA Foundation Service Connectivity Scenario

Each mediation primitive has properties that detail what it does and how it does
it. To set the properties for a primitive, select the primitive. The properties appear
in the Properties view. The view will have the properties organized within tabs.
You can rename the primitive on the Description tab. The Details tab, as shown
in Figure 6-48, will have properties that detail what the primitive is to do.

Figure 6-48 Properties for a mediation primitive

Wiring a mediation flow
Wiring the mediation flow defines the sequence in which mediation primitives are
executed and assigns their terminal’s message type.

Each primitive has an input terminal and one or more output terminals. Most
primitives have at least an out and a fail terminal. In the case of the Message
Filter primitive, the number of out terminals can vary depending on the filter
implementation. Wiring connects an output terminal of one primitive or input
node to the input terminal of another primitive or callout node.

As primitives are added to the mediation flow, they have no assigned message
type. As one primitive is wired to the next, the next primitive is assigned the
message type.

In a request flow, the input node represents the entry point to the mediation flow.
In a response flow, the callout response node represents the entry point to the
mediation flow.
 Chapter 6. Assemble with WebSphere Integration Developer 255

To wire one node to another, click the out terminal of the first node and drag the
wire to the in terminal of the next node. A wired mediation flow will look like
Figure 6-49.

Figure 6-49 Wired mediation flow

6.5 Testing mediations
WebSphere Integration Developer provides a full array of test server
environments and clients that support testing for integration and J2EE modules.

6.5.1 Test servers
WebSphere Integration Developer provides a test environment for integration
modules. Three server configuration modes are supported:

� Local test environments

At installation time you have the option of installing the integrated test
environment and associated profiles. Each workspace that you start will have
a pointer to the profiles that you install.

� Local separate installations of WebSphere ESB

You can use a separate installation of the runtime as your test environment. If
you have installed a separate instance of WebSphere ESB, WebSphere
Application Server, or WebSphere Process Server on your local machine, you
can create a new workspace server configuration within WebSphere
Integration Developer that points at the profile of your choice.
256 Patterns: SOA Foundation Service Connectivity Scenario

� Remote test environments

When configuring a test environment, the server can be either a local
integrated server or a remote server. Once the server itself is installed and
configured, the server definition within WebSphere Integration Developer is
very similar for local and remote servers.

You can see the pointers to the local test environment profiles when you start the
Workspace by switching to the Servers view, as shown in Figure 6-50.

Figure 6-50 Local test servers

Mediation modules can run in the WebSphere Process Server test server or in
the WebSphere ESB test server. The testing for the ITSOMart solution was done
using the local WebSphere ESB Server V6.0 test server environment.

Using icons or the context menu, you can manage the servers. You can start
 or stop a server from this view, add or remove a project, open the

administrative console, and do other common administrative tasks.

Tip: The profile is independent of the workspace, meaning that changes you
make or applications you install using one workspace will be there even if you
switch workspaces. If you would like to use a separate profile (server) for each
workspace, you can create a new profile and change the workspace pointer to
the profile. See “Creating a new server in the test environment” on page 640
for information about how to do this.
 Chapter 6. Assemble with WebSphere Integration Developer 257

Applications and integration modules can be automatically packaged and
deployed to a test server using the context menu for the server. Simply right-click
the server and select Add and remove projects. The screen shown in
Figure 6-51 will open. Select the projects you want to run on the server and click
Add. WebSphere Integration Developer will start the server and deploy the
applications to it.

Figure 6-51 Add projects to the server

The servers are full servers running in a normal environment, and as such, can
also be managed using the standard WebSphere Application Server
administrative tools. Once the application has been deployed, you can open the
WebSphere administrative console and view or manage the application.
258 Patterns: SOA Foundation Service Connectivity Scenario

The Console view will show the runtime messages produced by the server, as
shown in Figure 6-52.

Figure 6-52 Test server console

Remember, you can maximize this view by double-clicking the bar at the top.

6.5.2 Test client
Once the module is deployed or published to the test server you can test it with
the Integration Test Client. Typically you will perform module tests and
component tests.

Module test
In the Business Integration view, right-click the module and select Test → Test
Module. This will launch the Integration Test Client with all emulation disabled.

Component test
In the module assembly diagram, right-click the mediation flow component and
select Test Component. This will launch the Integration Test Client with
emulators configured to emulate any component references so you can test the
component in isolation.

You will see examples of these later as the ITSOMart solution is developed and
tested.
 Chapter 6. Assemble with WebSphere Integration Developer 259

6.6 Packaging the mediation for deployment
Mediation modules are deployed to the WebSphere ESB server as EAR files. To
deploy to the server you must first export the module as an EAR file and make it
available to the server. Then you can install the module as an application using
the WebSphere administrative console.

To export modules as EAR files:

1. Select File →Export.

2. Select Integration module and click Next.

3. Check the box to the left of the mediation module. Select EAR files for
server deployment and click Next.

Figure 6-53 Integration module export
260 Patterns: SOA Foundation Service Connectivity Scenario

4. In the Target directory field, type the path and name of the target directory
where you want to export the EAR file. Note the EAR file name and click
Finish.

The exported EAR file will be stored in the target directory and is ready to be
installed on a WebSphere application server or cluster. If the application
server does not have access to the target directory, you will need to move the
EAR file to a location where the server has access.

For information about deploying EAR files to WebSphere Application Server, see
11.10.2, “Deploy an EAR file” on page 524.
 Chapter 6. Assemble with WebSphere Integration Developer 261

262 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 7. Building the Credit Rating
and Credit Score mediations

This chapter shows an example of using the capabilities of WebSphere ESB to
enhance direct connectivity between a service requester and a service provider.
Direct connectivity implies a one-to-one connection between requester and
provider, and in a SOA environment that connection can benefit from the use of
an ESB for protocol and message transformation, security, and shielding the
requester from the connection details of the service provider. The mediation built
for this example illustrates the following:

� SOAP/HTTP transport
� Request/response operation
� XML transformation of messages
� Message logging
� Database access
� Invoking one mediation from another
� Fault handling

This chapter includes the following topics:

� Scenario overview
� Preparing for the ITSOMart mediations
� Developing the Credit Rating mediation
� Developing the Credit Score mediation
� Calling the service from the application

7

© Copyright IBM Corp. 2006. All rights reserved. 263

7.1 Scenario overview
This chapter focuses on the Get Credit Rating scenario of the ITSOMart solution.

7.1.1 Business scenario
The first step in the Register Customer process is to evaluate the customer credit
rating. The process will use the rating to determine how to proceed with the
registration. The expected format of the rating is one of three values: gold, silver,
or bronze.

In the first stage of the solution implementation, ITSOMart uses a credit service
that returns these values. In the second stage, a new credit service is
substituted. The new service returns a numerical value that must be converted to
the expected value of gold, silver, or bronze. this conversion will be done in the
ESB based on values stored by ITSOMart financial executives in a database.

The activity diagram for the Get Credit Rating scenario of the ITSOMart solution
can be seen in Figure 7-1. The activity diagram for the entire process can be
seen in Figure 5-15 on page 143.

Figure 7-1 Get Credit Rating scenario

Note: The samples included in this chapter can be downloaded from the Web.
See Appendix A, “Sample application install summary” on page 589, for
instructions on downloading and importing the sample projects.
264 Patterns: SOA Foundation Service Connectivity Scenario

7.1.2 Get Credit Rating scenario stage 1
The call from the Register Customer process will call the Credit Rating Service
via the ESB. The call will be mediated in the ESB to transform the request into
the proper format for the service.

Figure 7-2 shows the activity diagram for the mediation.

Figure 7-2 Credit Rating mediation activity diagram

As you can see, SOAP/HTTP will be used as the transport protocol for invoking
the mediation and for calling the Credit Rating Service.

The interface for the mediation will define the input and output for the mediation.
The input will consist of customer registration data. The response will consist of a
string (gold, silver, or bronze) that describes the customer’s credit rating.
 Chapter 7. Building the Credit Rating and Credit Score mediations 265

7.1.3 Get Credit Rating scenario stage 2
In stage 2, ITSOMart has switched Credit Rating Services. The new service
returns a numerical value for the credit rating. The Register Customer process
expects a text value. Rather than change the process, ITSOMart will use a
mediation in the ESB to convert the numerical value to an acceptable text rating
value.
266 Patterns: SOA Foundation Service Connectivity Scenario

Rather than call (import) the Credit Rating Service, the Credit Rating mediation
will now call the Credit Score mediation, which will call the Credit Score Service
to get the rating and convert the response, sending it back to the Credit Rating
mediation. You can see this new flow in Figure 7-3.

Figure 7-3 Credit Score mediation activity diagram
 Chapter 7. Building the Credit Rating and Credit Score mediations 267

Once again, the mediation and service are invoked using SOAP/HTTP. A JDBC
call is used in the mediation to access the database containing the numerical
credit score to credit rating comparison tables.

7.2 Preparing for the ITSOMart mediations

To build and test this scenario you will need the following projects in your
workspace:

� ITSOMartUtils: This Java project contains a utility class that is required for
some of the XSLT functions.

� ITSO_CreditRatingService: This project contains a Web service that returns a
credit rating (gold, silver, or bronze).

� ITSO_CreditScoreService: This project contains a Web service that returns a
numerical credit score.

� MessageLogApp: This project contains a J2EE application that can be used
to display the contents of the logs populated by the Message Logger
mediation primitives.

To prepare for the mediation, we are going to do the following:

� Create a library.
� Create the common business objects.

These resources are common to all the mediations illustrated in this book.

7.2.1 Create a library
The first step in preparing for building the mediation is to create a library to hold
common resources that will be used across the mediations in this sample. The
library can be added as a dependency library to any mediation modules that
require its resources.

Note: The decision on whether to call one mediation from another is an
architectural decision. In this case we are attempting to illustrate the
capabilities of mediations and not necessarily the best practices.

Note: If you are not familiar with using WebSphere Integration Developer to
develop mediations, review Chapter 6, “Assemble with WebSphere Integration
Developer” on page 211, before proceeding.
268 Patterns: SOA Foundation Service Connectivity Scenario

To create the library, do the following using the Business Integration perspective
in WebSphere Integration Developer:

1. Right-click in the white space of the Business Integration view and select
New → Library.

2. Enter ITSOMartLib as the library name and click Finish.

7.2.2 Create the common business objects
Next we take you through the process of creating the business objects listed
under the Data Types folder shown in Figure 7-4. These data objects provide the
common basis for the data that flows through all of the mediations.

Figure 7-4 Create business objects

Create the Address business object
The Address business object contains fields that hold customer billing or
shipping address data. This object will be used as the basis for several other
business objects.

1. Select the Data Types folder in ITSOMartLib, right-click, and select New →
Business Object.

2. Enter Address in the Name field.

3. Click Finish. The business object will open in the editing area.

4. Add the following attributes to the Address business object. All have an
attribute type of string.

– name
– street
– city
– zipcode
– country
– phone
 Chapter 7. Building the Credit Rating and Credit Score mediations 269

To add an attribute:

a. Click the icon above the business object in the editing area.

b. Type over the name of the attribute with the new name or change it in the
Properties view.

c. Click the type and select the new type from the pull-down. Since string is
the default, you will not need to do this for the attributes in Address.

The final results for the Address business object should look like Figure 7-5.

Figure 7-5 Address business object attributes

5. Save and close the business object.

Create the BillingAddress and ShippingAddress objects
The steps to create the BillingAddress and the ShippingAddress business
objects are the same. We will take a look at one of them, and the other is built
following the same steps. Both business objects will inherit the characteristics
from the Address business object.

1. Select the Data Types folder in ITSOMartLib and right-click.

2. Select New → Business Object.

a. Enter BillingAddress in the Name field.
270 Patterns: SOA Foundation Service Connectivity Scenario

b. Select Address in the Inherit from field (Figure 7-6).

Figure 7-6 Defining the new business object
 Chapter 7. Building the Credit Rating and Credit Score mediations 271

3. Click Finish. The new business object will have the same attributes as
Address. We will not be adding new attributes. The results should look like
Figure 7-7.

Figure 7-7 BillingAddress business object attributes

4. Save and close the business object.

5. Use the same steps to create the ShippingAddress business object.

Note: Although the BillingAddress and the ShippingAddress both inherit their
attributes from the Address business object and do not add new ones, they
are different in concept and we may want to add new attributes to one of them
later.
272 Patterns: SOA Foundation Service Connectivity Scenario

Create the Customer business object
The last business object will be used to hold customer registration data.

1. Create a new business object and name it customer.

2. Add the following attributes to the Customer business object:

– The following String attributes:

• accountNo
• firstName
• lastName
• companyName
• email
• password

– An attribute called billingAddress with an attribute type of BillingAddress.
You can select the BillingAddress business object from the list of
drop-downs for type (click string to get the list; see Figure 7-8).

Figure 7-8 Adding attributes to Customer business object
 Chapter 7. Building the Credit Rating and Credit Score mediations 273

– An attribute called shippingAddress with an attribute type of
ShippingAddress[]. The ShippingAddress attribute will represent an array.

First, add the shippingAddress attribute and select the ShippingAddress
business object as the type. Then, with the attribute selected, check the
Array setting in the Properties view (Figure 7-9).

Figure 7-9 Adding the ShippingAddress attribute to the Customer business object

3. Save and close the business object.
274 Patterns: SOA Foundation Service Connectivity Scenario

7.3 Developing the Credit Rating mediation
In this section we describe how to build the Credit Rating mediation described in
7.1.2, “Get Credit Rating scenario stage 1” on page 265. This mediation contains
a simple mediation flow that transforms a message in one XML format to another
XML format, a function that is provided by the XSL Transformation primitive. We
also use the Message Logger primitive to see how the message changes at
every stage. These primitives will be removed before deploying the mediation in a
production environment.

7.3.1 Mediation development steps
Figure 7-10 shows the mediation module contents we are going to build.

Figure 7-10 Credit Rating mediation assembly diagram

The steps required to build the mediation in WebSphere ESB are the following:

1. Define the interface for the mediation.
2. Define the interface to the Credit Rating Service Web service.
3. Create the mediation module.
4. Add the components to the module assembly.
5. Build the mediation flow.
6. Test the mediation.

Note: The sample zip file contains the ITSOMartUtils Java project containing
utility classes used in our mediations.

Note: Bindings for the import and export will be generated when they are
added to the module assembly.
 Chapter 7. Building the Credit Rating and Credit Score mediations 275

7.3.2 Define the interface for the mediation
An interface to a component contains one or more operations that describe the
action implemented by the component. An operation may be a request/response
type (which means that a request is sent and a response returned to the
interface) or a one-way type (which means that only an input is sent and there is
no response needed).

Define the business objects
Each operation in the interface defines the data that can be passed in the form of
inputs to and outputs from the component when the operation is invoked. This
step will create the business objects that will represent the data as it flows
through the mediation.

1. Create a business object called CreditCheckRequest. Add one attribute
called customer with an attribute type of customer. The results should look like
Figure 7-11.

Figure 7-11 Create the CreditCheckRequest business object

2. Create a business object called CreditCheckResponse with the attribute type
of string.

3. Create a business object called CreditCheckFault. Add the following
attributes:

– errorMessage with an attribute type of string.
– creditCheckRequest with an attribute type of CreditCheckRequest.
276 Patterns: SOA Foundation Service Connectivity Scenario

The results should look like Figure 7-12.

Figure 7-12 Create the CreditCheckFault business object

Build the interface
In this scenario we define an interface that represents the functions provided by
the mediation. It includes a request/response operation called getCreditRating.
The input to the interface will be defined by the CreditCheckRequest business
object, while the output will be defined by the CreditCheckResponse object. The
new interface will look like Figure 7-13.

Figure 7-13 Mediation interface

To build the interface:

1. Select the Interfaces folder in ITSOMartLib. Right-click and select New →
Interface.

2. Enter CreditCheck in the Name field.
 Chapter 7. Building the Credit Rating and Credit Score mediations 277

3. Click Finish. The new interface will open in the editor area.

4. Since our example is expecting a response to be returned, the operation is a
request response operation. In the edit area, click the Add Request Response
Operation icon .

5. A new operation will be added to the interface with the default name of
Operation1. Change this name to getCreditRating by typing over it.

6. Click the getCreditRating operation and click the Add Input icon . A new
input entry will appear on the canvas.

– Enter creditCheckRequest in the Name field.

– Click string in the Type field and select the CreditCheckRequest
business object.

7. Click the getCreditRating operation and click the Add Output icon . A
new output entry will appear on the canvas.

– Enter creditCheckResponse in the Name field.

– Click in the Type field and select the CreditCheckResponse business
object.

8. Click the getCreditRating operation and click the Add Fault icon. A new Fault
entry will appear on the canvas.

– Enter creditCheckFault in the Name field.

– Click in the Type field and select the CreditCheckFault business object.

9. Save and close the interface.

7.3.3 Define the interface to the Credit Rating Service Web service
The mediation will use an external Web service that provides the credit rating for
the customer. We will be using a Web Service provided by the
ITSO_CreditRatingService project.

Note: We do not need any new business objects. When building the
interfaces, we will be using a WSDL file from an existing Web service. When
copying the WSDL file, we will see that the data types used by the interface
are also copied.
278 Patterns: SOA Foundation Service Connectivity Scenario

To create an interface to the Web service, we will first need to get a copy of the
Web service WSDL file and make it available to our mediation module. In this
case, we have the Web service project in our workspace so we can simply copy
the WSDL file from one project to another.

1. Right-click in the Business Integration view and select Show Files
(Figure 7-14).

Figure 7-14 Open Physical Resources view

2. This will open a different view where all of the available resources can be
seen. Select the ITSO_CreditRatingService project and navigate to the
CreditRatingService.wsdl.

3. Right-click CreditRatingService.wsdl and select Copy (Figure 7-15).

Figure 7-15 Copy CreditRatingService.wsdl

4. Since this Web service will be used by more than one mediation module, we
will be copying it to the ITSOMartLib library. This way, all the modules can
have access to it.
 Chapter 7. Building the Credit Rating and Credit Score mediations 279

Select the ITSOMartLib library, right-click, and select Paste.

This will add the service to ITSOMartLib. If we change to the Business
Integration view, we will see that the resources circled in Figure 7-16 were
added. In addition to the CreditRatingService interface and Web service port,
the CreditRatingFault, CreditRatingRequest, and CreditRatingResponse data
types are also copied because they are used by the CreditRatingService
interface.

Figure 7-16 CreditRatingService
280 Patterns: SOA Foundation Service Connectivity Scenario

7.3.4 Create the mediation module
With the business objects and interfaces in place, the next step is to create the
mediation module.

1. Create a mediation module by right-clicking in the Business Integration view
and selecting New → Mediation module.

– Enter ITSO_CreditRatingMed for the module name.
– Select WebSphere ESB Server v6.0 for the target runtime.
– Check the Create mediation flow component box.

2. Click Next. Select ITSOMartLib as a dependency.

3. Click Finish.

7.3.5 Add the components to the module assembly
Next we populate the mediation module. The mediation flow component was
added when the mediation module was created. First we add the import that
invokes the Credit Rating Service. Then we add the export to be used to invoke
the module. Then we wire the components together. The final assembly looks
like Figure 7-17.

Figure 7-17 ITSO_CreditRatingMed module assembly

Note: This module is named CRMed in the sample zip file.
 Chapter 7. Building the Credit Rating and Credit Score mediations 281

The steps are:

1. Navigate to the module assembly in the Business Integration view
(Figure 7-18). This was created automatically when you created the
meditation module. Open the module assembly by double-clicking it.

Figure 7-18 Module assembly

The assembly editor will open and you will see that a mediation flow
component called Mediation1 has been added for you.

2. Select the mediation flow component. In the Description tab of the Properties
view, change the display name from Mediation1 to CreditRatingMediation.
Later we will generate an implementation for this component. That
implementation will be the mediation flow that will perform the mediation
functions.

Figure 7-19 Change the name of the mediation flow component
282 Patterns: SOA Foundation Service Connectivity Scenario

3. Add an import that allows the mediation to invoke the Credit Rating Service:

a. Select the CreditRatingService Web service port from ITSOMartLib and
drag and drop it onto the assembly diagram to the right of the mediation
flow component (Figure 7-20).

Figure 7-20 Select CreditRatingService service

b. When you drop the service on the assembly diagram, you will be asked to
choose which type of component you want to create. Select Import with
Web Service Binding and click OK.

c. An import component will appear on the assembly diagram. Move the new
import (Import1) to the right of the mediation flow component. Note that
the interface for the import has been automatically defined.

Select the import component and in the Properties view, change the
display name to CreditRatingService (Figure 7-21).

Figure 7-21 Change import component name
 Chapter 7. Building the Credit Rating and Credit Score mediations 283

4. Right-click the CreditRatingMediation component and select Add →
Interface. Select CreditCheck and click OK.

5. Add an export component that makes the mediation available for use:

a. Right-click the CreditRatingMediation component and select Export →
Web Service Binding.

b. You will be asked whether you want to have a WSDL file with
binding/service/port elements defined inside generated for you. Click Yes.

c. Select soap/http in the Select Transport window.

d. The export component and its interface will be added for you and will be
already wired to the CreditRatingMediation component.

6. To complete the assembly diagram, wire the mediation flow component to the
import for the CreditRatingService.

a. Click the Wire icon and then click the CreditRatingMediation component.

b. Drag the wire onto the interface on CreditRatingService.

c. You will be prompted and told that by adding the wire a matching
reference will be created on the source node. Click OK.

d. Click the arrow at the top left of the palette to get out of the wiring mode.

This completes the assembly diagram (Figure 7-17 on page 281). Leave it open,
and in the next step we use it to generate the implementation (mediation flow) for
the mediation flow component, CreditRatingMediation.
284 Patterns: SOA Foundation Service Connectivity Scenario

7.3.6 Build the mediation flow
Next we generate and refine the implementation for the mediation flow
component. The implementation is the mediation flow.

1. Right-click CreditRatingMediation and select Generate Implementation to
generate the mediation flow. Click OK in the next window. The Mediation Flow
editor will open with the new flow (Figure 7-22).

Figure 7-22 Mediation flow editor
 Chapter 7. Building the Credit Rating and Credit Score mediations 285

2. Click the getCreditRating operation under CreditCheck and drag it to the
getCreditRating operation under CreditRatingServicePartner.

This will create an operation connection between the two and generate nodes
needed to represent the source and target operations. If you do not see these
nodes, select the wire between the operations.

Figure 7-23 Mediation flow editor

Note that there are two flows, a request flow labeled Request:
getCreditRating and a response flow labeled Response: getCreditRating.
This is because the getCreditRating operation on the CreditCheck interface is
a request/response operation. You can switch between the two in the editor
by clicking the appropriate tab at the bottom of the screen.

First we build the request flow, and then the response flow.

Input node

Callout node

Input response node

Input fault node
286 Patterns: SOA Foundation Service Connectivity Scenario

Request flow
The request flow we will build will look like Figure 7-24.

Figure 7-24 CreditRatingMediation request flow

In the request flow, you can see that several nodes have been automatically
generated:

� The CreditCheck_getCreditRating_Input input node (left) for the source
operation. The input node is the starting point for the request flow. It sends
the message from the source operation into the request flow.

� The CreditRatingServicePartner_getCreditRating_Callout callout node (top
right) for the target service that sends the processed message to the target
operation.

� The CreditCheck_getCreditRating_InputResponse input response node
(middle right) that returns the processed message as a response to the
source operation.

� The CreditCheck_InputFault input fault node (bottom right). It has an input
terminal for each fault message type defined in the source operation
(CreditCheck). Any message propagated to an input fault terminal will result
in a WSDL fault of the source operation.
 Chapter 7. Building the Credit Rating and Credit Score mediations 287

To build the request flow we will add mediation primitives between these nodes
and wire the flow together.

1. Click the icon for the Message Logger primitive, and then click in the editor
pane to add the primitive between the generated nodes. The new primitive
will have a default name of MessageLogger1.

Use the Properties view to change the display name to Log Mediation
Request.

Figure 7-25 Change display name for Message Logger
288 Patterns: SOA Foundation Service Connectivity Scenario

2. Click the icon for the XSL Transformation primitive, and then click in the editor
pane to add the primitive under the Message Logger primitive.

Change the display name to Set Credit Rating Request.

Figure 7-26 Change display name for XSL transformation

3. Add another Message Logger primitive under the XSL Transformation
primitive. Change the display name to Log Credit Rating Request.

4. The next step is to wire the nodes in the flow together. Each node has one or
more input and output terminals. To wire one node to another, click the out
terminal of the first node and drag the wire to the in terminal of the next node.
Using this method, wire the following:

– The out terminal of the CreditCheck getCreditRating Input node to the in
terminal of the Log Mediation Request node

– The out terminal of the Log Mediation Request node to the in terminal of
the Set Credit Rating Request node

– The out terminal of the Set Credit Rating Request node to the in terminal
of the Log Credit Rating Request node
 Chapter 7. Building the Credit Rating and Credit Score mediations 289

– The Out terminal of the Log Credit Rating Request node to the In terminal
of the CreditRatingServicePartner getCreditRating Callout node

The results of the wiring are shown in Figure 7-27. The message type has
been depicted on the image as well.

Figure 7-27 Connect the nodes in the flow

Note: When you dropped the primitives onto the canvas, the message
types of the in and out terminals were null. As you wire the input node to
the Message Logger primitive and then the Message Logger to the XSL
Transformation primitive, the message type of the input node’s out terminal
(getCreditRatingRequestMsg) is propagated to the in and out terminals of
the Message Logger primitive and to the in terminal of the XSL
Transformation primitive. Similarly, when you wire the out terminal of the
XSL Transformation primitive to the Message Logger primitive and this one
to the callout node, the message type of the callout node’s in terminal
(getCreditRatingRequest) is propagated to the out terminal of the XSL
Transformation primitive and to the in an out terminals of the Message
Logger primitive.

This becomes important later when the mapping editor is used to define
the mapping for the XSL Transformation primitive.

type:getCreditRatingRequestMsg

type:getCreditRatingRequestMsg

type:getCreditRatingRequest

type:getCreditRatingRequest
290 Patterns: SOA Foundation Service Connectivity Scenario

5. Now we need to define the mapping to be performed by the XSL
Transformation primitive. The mapping needs to take the input message
format and map the fields to the output message format. To set the properties
of the Set Credit Rating Request node, do the following:

a. Select the node.

b. In the Properties view click the Details tab.

Figure 7-28 XSL transformation properties

The Root field specifies the root of the SMO message to use for the
source and target message during transformation. Valid values are:

• / for the complete SMO
• /body for the body section of the SMO
• /headers for the headers of the SMO
• /context for the context of the SMO.

For this example, we want to use the message body, so we select /body.

c. Click New to create an XML mapping. (You could choose an existing map
by selecting the Pick Map button instead.)
 Chapter 7. Building the Credit Rating and Credit Score mediations 291

d. Since the XSL Transformation primitive is wired, the wizard knows the
input and output message types to be mapped (Figure 7-29). Click Finish
to create an XML mapping.

Figure 7-29 New XSLT Mapping

A mapping editor will be opened.
292 Patterns: SOA Foundation Service Connectivity Scenario

Elements can be mapped by dragging the source element and dropping it on
the target element or by selecting a source element and a target element,
right-clicking, and selecting Create Mapping.

Figure 7-30 Create mapping

This will generate a new entry in the Overview view.

Figure 7-31 New mapping

e. Map the elements as shown in Table 7-1.

Table 7-1 XML mapping

CreditCheckRequest CreditRatingRequest

billingAddress/street address

billingAddress/city city

billingAddress/country country

1To map firstName and lastName to fullName, click both source fields using the Ctrl key,
and then drag and drop them onto fullName.
 Chapter 7. Building the Credit Rating and Credit Score mediations 293

f. Add a blank in fullName between firstName and lastName:

i. Select fullName in the Overview view. Right-click and select Define
XSLT Function (Figure 7-32).

Figure 7-32 Define XSLT Function

ii. Select String and click Next.

firstName1 fullName1

lastName1 fullName1

billingAddress/phone phoneNo

billingAddress/state state

billingAddress/zipcode zip

CreditCheckRequest CreditRatingRequest

1To map firstName and lastName to fullName, click both source fields using the Ctrl key,
and then drag and drop them onto fullName.
294 Patterns: SOA Foundation Service Connectivity Scenario

iii. Select concat as the function (default). Then click Add. See
Figure 7-33.

Figure 7-33 Define an XSLT Function

iv. Enter a blank surrounded by single quotation marks (‘ ‘) as the
parameter value and click OK.
 Chapter 7. Building the Credit Rating and Credit Score mediations 295

v. Select the quotes in the Input Parameters window and move them
between FirstName and LastName using the up and down buttons, as
shown in Figure 7-34.

Figure 7-34 Define an XSLT function

vi. Click Finish. If the function is defined correctly, you will see the concat
function listed in the Applied Function column (Figure 7-35).

Figure 7-35 New applied XSLT function

g. Close and save the map.
296 Patterns: SOA Foundation Service Connectivity Scenario

6. In the Properties view click the Regenerate XSL button to generate an XSL
style sheet from the XML map. Click OK at the prompt.

Response flow
Next we populate the response flow for both normal and fault responses. The
final flow will look like Figure 7-36.

Figure 7-36 CreditRatingMediation response flow
 Chapter 7. Building the Credit Rating and Credit Score mediations 297

To build the flow we will add mediation primitives between these nodes and wire
the flow together.

1. In the mediation flow editor switch to the Response flow by selecting the tab
at the bottom of the pane. You will see the nodes that were automatically
generated:

– The CreditRatingServicePartner_getCreditRating_CalloutResponse
callout response node that receives the message from the target service.

– The CreditRatingServicePartner_CalloutFault callout fault node containing
an output terminal for each fault message type defined in the target
operation. When a WSDL fault occurs, the callout fault node propagates
the message to the primitive or node to which it is wired.

– The CreditCheck_getCreditRating_InputResponse input response node
that returns the processed message as a response to the source
operation.

– The CreditCheck_InputFault input fault node containing a terminal for
each fault message type defined in the source operation. Any message
propagated to an input fault terminal will result in a WSDL fault of the
source operation.

2. Add a Message Logger primitive between the generated nodes and change
the name to Log Credit Rating Response.

3. Add an XSL Transformation primitive under the Message Logger mediation
primitive and change the name to Set Mediation Response.

4. Add another Message Logger primitive under the XSL Transformation
primitive and change the name to Log Mediation Response.

5. Wire the nodes as follows:

– The out terminal of the CreditRatingServicePartner getCreditRating
CalloutResponse node to the in terminal of the Log Credit Rating
Response node

– The out terminal of the Log Credit Rating Response node to the in terminal
of the Set Mediation Response node

– The out terminal of the Set Mediation Response node to the in terminal of
the Log Mediation Response node

– The Out terminal of the Log Mediation Response node to the In terminal of
the CreditCheck getCreditRating InputResponse node

As you wire the nodes, the message types are propagated to the next node.
298 Patterns: SOA Foundation Service Connectivity Scenario

The results are shown in Figure 7-37, with the message type overlaid on the
image.

Figure 7-37 Connect the nodes in the flow

type:getCreditRatingResponse

type:getCreditRatingResponseMsg
 Chapter 7. Building the Credit Rating and Credit Score mediations 299

6. Create a new XML mapping for the Set Mediation Response XSL
Transformation primitive with the mapping shown in Table 7-2. The final
mapping should look like Figure 7-38.

Table 7-2 XML mapping

Figure 7-38 XSLT mapping

h. Close and save the map.

7. In the Properties view click the Regenerate XSL button to generate an XSL
style sheet from the XML map. Click OK at the prompt.

Handling faults
In the Response flow, you will see the starting point and endpoint nodes for the
flow. Next we populate the flow with mediation primitives to handle a fault
condition:

1. Add a Message Logger primitive between the input and callout node and
change the display name to Log Credit Rating Fault.

2. Add an XSL Transformation primitive under the Message Logger primitive
and change the display name to Set Credit Check Fault.

3. Add another Message Logger primitive under the XSL Transformation
primitive and change the display name to Log Credit Check Fault.

CreditRatingResponse CreditCheckResponse

rating creditRating
300 Patterns: SOA Foundation Service Connectivity Scenario

4. Wire the following nodes:

– The out terminal of the CreditRatingServicePartner CalloutFault node to
the in terminal of the Log Credit Rating Fault node

– The out terminal of the Log Credit Rating Fault node to the in terminal of
the Set Credit Check Fault node

– The out terminal of the Set Credit Check Fault node to the in terminal of
the Log Credit Check Fault node

– The Out terminal of the Log Credit Check Fault node to the In terminal of
the CreditCheck InputFault node

Wiring the nodes propagates the message type to each terminal. The results
are shown in Figure 7-39.

Figure 7-39 Connect the nodes in the flow

type:CreditRatingFaultMsg

type:getCreditRating_creditCheckFaultMsg
 Chapter 7. Building the Credit Rating and Credit Score mediations 301

5. Create a new mapping for the Set Credit Check Fault node. Map the
elements as shown in Table 7-3.

Table 7-3 XML mapping

The final mapping should look like Figure 7-40.

Figure 7-40 XSLT mapping

i. Close and save the map.

CreditRatingFault CreditCheckFault

errorMessage errorMessage

fullName billingAddress/name
302 Patterns: SOA Foundation Service Connectivity Scenario

6. In the Properties view click the Regenerate XSL button to generate an XSL
style sheet from the XML map. Click OK at the prompt.

7. Close and save the mediation flow.

7.3.7 Test the mediation
To test the mediation, WebSphere Integration Developer provides the integration
test client. This is a useful tool for testing and debugging integration modules.
For information about using it, refer to the WebSphere Integration Developer
help.

Runtime requirements
To test the mediation you will need to add the following applications to the server
and start them:

� ITSO_CreditRatingService: This is the Credit Rating Service called by the
import.

� (Optional) MessageLogApp.

To add an application to the server, do the following:

1. Start the WebSphere ESB Server test environment.

2. In the Servers view, select WebSphere ESB Server v6.0, right-click the
server, and select Add and remove projects.

3. Select each application that you want to add to the server in the Available
projects and click Add.

4. Click Finish.

Test the flow
To test our mediation flow:

1. Rebuild all projects (select Project → Build All).

2. Add the mediation application, ITSO_CreditRatingMedApp, to the server.

3. Launch the test client for the ITSO_CreditRatingMed module.

You can test the module by doing one of the following:

– Select the module in the Business Integration view, right-click, and select
Test → Test Module.

– Open the module assembly. Right-click in the open space of the module
assembly diagram and select Test Module.

– Open the module assembly. Select the export component, right-click, and
choose Test Component.
 Chapter 7. Building the Credit Rating and Credit Score mediations 303

4. In the Component field, select CreditRatingMediationExport.

5. Set the values in the test client. Fill in some test data for the request. See
Figure 7-41.

– To see a bronze rating, enter a last name less than five characters.
– To see a silver rating, enter a last name of five or six characters.
– To see a gold rating, enter a last name of seven or eight characters.
– Any last name nine characters or greater in length will throw a fault.

Figure 7-41 Test client values for ITSO_CreditRatingMed
304 Patterns: SOA Foundation Service Connectivity Scenario

i. Check the test client Events pane to verify that everything ran
successfully (Figure 7-42).

Figure 7-42 Test client events generated during the test

ii. Look at the messages that were logged inside the mediation using the
Message Logger primitives.

Open the sample MessageLogApp application using the following
URL:

http://localhost:9080/MessageLogWeb/faces/MessageLogView.jsp

You can see the log messages in descending order of when they were
inserted into the database.
 Chapter 7. Building the Credit Rating and Credit Score mediations 305

In Figure 7-43 you can see the messages logged by the Login
Mediation Request, Log Credit Rating Request, Log Credit Rating
Response, and the Log Mediation Response Message Logger
primitives in the flow.

Figure 7-43 Message Logger messages
306 Patterns: SOA Foundation Service Connectivity Scenario

iii. Click anywhere in one of the rows of the table displayed to see the
contents of the message that was logged. For example, the message
for the Log Mediation Response entry shows the result for the credit
check returning the user’s corresponding rate.

Figure 7-44 Log Mediation Response log message
 Chapter 7. Building the Credit Rating and Credit Score mediations 307

j. To test the flow for a fail condition, enter a surname that has nine or more
characters.

i. Check the test client Events pane to verify that it failed (Figure 7-45).

Figure 7-45 Test Client - events - failure

ii. Look at the messages logged by the Message Logger primitives.

In Figure 7-46 you can see the messages logged by the Login
Mediation Request, Log Credit Rating Request, Log Credit Rating
Fault, and the Log Credit Check Fault Message Logger primitives in the
flow.

Figure 7-46 Message Logger messages
308 Patterns: SOA Foundation Service Connectivity Scenario

iii. Click anywhere in one of the rows of the table displayed to see the
contents of the message that was logged. For example, the message
for the Log Credit Check Fault entry shows the result for the credit
check returning the user´s corresponding rate.

Figure 7-47 Log Credit Check Fault log message

7.4 Developing the Credit Score mediation
This section discusses how to build the Credit Score mediation described in
7.1.3, “Get Credit Rating scenario stage 2” on page 266.

The credit check service we used in the Credit Rating mediation returned a value
of gold, silver, or bronze. This value is obtained by invoking the Credit Rating
Service. This service will no longer be available, and in its place another service,
the Credit Score Service, will return a score that corresponds with the rates we
used before. The relation between the new numerical values and the old text
must be made within a mediation. To do this, we build a new mediation called the
Credit Score mediation and alter the Credit Rating mediation to call the new
mediation instead of the Credit Rating Service. The new mediation will call the
 Chapter 7. Building the Credit Rating and Credit Score mediations 309

new Credit Score Service and translate the numerical values to the proper text
values expected by the rest of the solution.

The new mediation will use a Database Lookup primitive to access a table that
correlates the new scores to the ratings.

7.4.1 Mediation development steps
Figure 7-48 shows the mediation module contents we are going to build.

Figure 7-48 ITSO_CreditScoreMediation

The steps required to build the mediation in WebSphere ESB are the following:

1. Create the mediation module.
2. Define the business objects.
3. Define the interface to the Credit Score Service Web service.
4. Add the components to the module assembly.
5. Build the mediation flow.
6. Test the mediation.

7.4.2 Create the mediation module
The first step is to create a mediation module. As we did with the Credit Rating
mediation, we will be using some of the business objects and interfaces that are
in the ITSOMartLib library we created earlier. We will be adding it as a
dependency while creating the mediation module.

1. Create a mediation module by right-clicking in the Business Integration view
and selecting New → Mediation module.

a. Enter ITSO_CreditScoreMed for the name of the mediation module.
b. Select WebSphere ESB Server v6.0 for the target runtime.
c. Check the Create mediation flow component box and click Next.
d. Add ITSOMartLib as a dependency.
e. Click Finish.
310 Patterns: SOA Foundation Service Connectivity Scenario

.

Next we add the ITSOMartUtils Java project to the dependent Java projects. We
need to do this to have the project deployed as a utility JAR file at runtime. We
will be using this Java project in one of the following sections:

1. Open the ITSO_CreditScoreMed Dependencies by double-clicking the
ITSO_CreditScoreMed mediation module.

2. Expand the Java section to see the Java dependencies.

Figure 7-49 Java dependencies

Note: This module is named CSMed in the sample zip file.
 Chapter 7. Building the Credit Rating and Credit Score mediations 311

3. Click Add on the Java dependencies and select ITSOMartUtils in the next
window, as shown in Figure 7-50.

Figure 7-50 Java Project Selection

4. Click OK. You will see the ITSOMartUtils project added in the Java
dependencies.

Figure 7-51 Added Java dependency

5. Save the changes and close the ITSO_CreditScoreMed Dependencies.
312 Patterns: SOA Foundation Service Connectivity Scenario

7.4.3 Define the business objects
Since the data carried in the SMO body is the operation defined by the interface
specification and the inputs/outputs/faults specified in the message parts set in
the business object definition, we need to be able to save the data returned by
the Web service in order to access it from the Database Lookup primitive. The
transient context of the SMO maintains application data across mediation
primitives in one direction. In order to do so, we need to specify a business object
for the Transient context. The object we use is the CreditScoreMediationContext.

1. Create the CreditScoreMediationContext business object in ITSOMartLib.
Add one string attribute called creditRating. The results should look like
Figure 7-52.

Figure 7-52 Create the CreditScoreMediationContext business object

2. Save and close the business object.

7.4.4 Define the interface to the Credit Score Service Web service
The mediation will use the ITSO_CreditScoreService Web service. The service
will provide a numerical credit score for the customer. We will copy the WSDL file
from this existing Web service to ITSOMartLib, where it will be available to the
mediation module. When we do this, WebSphere Integration Developer will
automatically build the interface and the data types required.

To copy the WSDL file and create the interface:

1. Right-click in the Business Integration view and select Show Files.
 Chapter 7. Building the Credit Rating and Credit Score mediations 313

2. This will open a different view, where all the available resources can be seen.
Select the ITSO_CreditScoreService project and navigate to the
CreditScoreService.wsdl.

Figure 7-53 Navigate to CreditScoreService

3. Right-click CreditScoreService.wsdl and select Copy.

4. Select the ITSOMartLib, right-click, and select Paste.

This will make the service available to the ITSO_CreditScoreMed mediation
module. If we change to the Business Integration view, we will see that the
CreditScoreService interface and Web service port have been added to
ITSOMartLib.
314 Patterns: SOA Foundation Service Connectivity Scenario

7.4.5 Add the components to the module assembly
Next we populate the mediation module with the necessary export and import
(the mediation flow component was added while creating the mediation module).
The final module assembly will look like Figure 7-54.

Figure 7-54 ITSO_CreditScoreMed

First we add the import that invokes the Credit Score Service. Then we add the
export to be used to invoke the module. Then we wire the components together.

1. Open the module assembly for the mediation.

2. Select the mediation flow component called Mediation1 and use the
Properties view to change the name to CreditScoreMediation.

3. Select the CreditScoreService Web service port from ITSOMartLib and drag
and drop it onto the assembly diagram to the right of the mediation flow
component.

– When you drop the service onto the assembly diagram, you will be asked
to choose which type of component you want to create. Select Import
with Web Service Binding.

– Select the new Import component and in the Properties view and change
the display name to CreditScoreService.

4. Right-click the CreditScoreMediation component and select Add →
Interface. Select CreditRatingService.

5. Right-click the CreditScoreMediation component and select Export → SCA
Binding. This export type will allow you to call the ITSO_CreditScoreMed
module from another mediation module. The export component will be added
for you and will already be wired to the CreditScoreMediation component.

6. Click the Wire icon and then click the CreditScoreMediation component.
Drag the wire to the interface on CreditScoreService. You will be prompted
and told that by adding the wire a matching reference will be created on the
source node. Click OK.
 Chapter 7. Building the Credit Rating and Credit Score mediations 315

7. Click the arrow at the top left of the palette to get out of the wiring mode.

Leave the assembly diagram open. We will use it in the next step to generate
the implementation for the mediation flow component, CreditScoreMediation.

7.4.6 Build the mediation flow
Next we generate and refine the implementation for the mediation flow
component. The implementation is the mediation flow.

1. Right-click CreditScoreMediation and select Generate Implementation to
generate the mediation flow.

Click OK in the next window. The Mediation Flow editor will open with the new
flow.
316 Patterns: SOA Foundation Service Connectivity Scenario

2. Click the getCreditRating operation under CreditRatingService (you will see
an input node in the Mediation flow pane) and drag it to the getCreditScore
operation under CreditScoreServicePartner.

This will create an operation connection between the two and generate the
starting point and endpoint nodes in the flow. See Figure 7-55.

Figure 7-55 Mediation flow editor

Note that there are two flows, a request flow labeled Request:
getCreditRating and a response flow labeled Response: getCreditRating.
This is because the getCreditRating operation on the CreditRatingService
interface is a request/response operation. You can switch between the two
flows in the editor by clicking the appropriate tab at the bottom of the screen.

First we will build the request flow, and then the response flow.
 Chapter 7. Building the Credit Rating and Credit Score mediations 317

Request flow
In the request flow, you will see the starting point and endpoint nodes for the flow
that were automatically generated. To the left you will find icons representing
mediation primitives. To build the flow:

1. Add a Message Logger primitive. Change the display name to Log Credit
Rating Request.

2. Add an XSL Transformation primitive. Change the display name to Set
Credit Score Request.

3. Add a Message Logger primitive. Change the display name to Log Credit
Score Request.

4. Wire the nodes in the flow so that it will look like Figure 7-56.

Figure 7-56 Connect the nodes in the flow

The response flow will use the transient context to store the credit score from
the response message. Using the transient context makes the credit score
available to the response flow.
318 Patterns: SOA Foundation Service Connectivity Scenario

5. Specify the Transient context business object (Figure 7-57):

a. Click the CreditRatingService_getCreditRating_Input node.
b. Click the Details tab in the Properties view.
c. On the Transient Context line click Browse.
d. Select the CreditScoreMediationContext business object.
e. Click OK.

Figure 7-57 Transient context

6. Create a new XML mapping for the Set Credit Score Request node. Map the
elements as shown in Table 7-4.

Table 7-4 XML mapping

CreditRatingService CreditScoreService

phoneNo phone

fullName firstName

fullName lastName
 Chapter 7. Building the Credit Rating and Credit Score mediations 319

a. The attributes firstName and lastName will be obtained from the fullName
by parsing it:

i. Select firstName in the Overview view. Right-click and select Define
XSLT Function.

ii. Select Custom Java Bean and click Next.

iii. For Java project select ITSOMartUtils.

iv. For Java bean select MediationUtils.

v. For Method select parseFirstName.

vi. For Input parameters select fullName.

Figure 7-58 Define an XSLT Function

vii. Click Finish.
320 Patterns: SOA Foundation Service Connectivity Scenario

b. Repeat the procedure for lastName, selecting the parseLastName
method instead.

If the functions are defined correctly, you will see the functions listed in the
Applied Function column (Figure 7-59).

Figure 7-59 New applied XSLT Functions

c. Close and save the map.

7. In the Properties view click the Regenerate XSL button to generate an XSL
style sheet from the XML map.
 Chapter 7. Building the Credit Rating and Credit Score mediations 321

Response flow
The Response flow is a little more complex than the ones we have seen so far.
The final response flow looks like Figure 7-60.

Figure 7-60 Response flow

To populate the response flow:

1. In the mediation flow editor switch to the response flow by selecting the tab at
the bottom of the pane. You will see the starting point and endpoint nodes for
the flow. To the left you will find icons representing mediation primitives.

2. Add a Message Logger primitive. Change the display name to Log Credit
Score Response.
322 Patterns: SOA Foundation Service Connectivity Scenario

3. Add a Database Lookup primitive (Figure 7-61). Change the display name to
Lookup Credit Rating.

Note that the Database Lookup primitive has an additional output terminal for
key not found.

Figure 7-61 Change display name

4. Add an XSL Transformation primitive. Change the display name to Set
Credit Rating Response.

5. Add a Message Logger primitive. Change the display name to Log Credit
Rating Response.

6. Connect the nodes in the flow so that it looks like Figure 7-62.

Figure 7-62 Connect the nodes in the response flow
 Chapter 7. Building the Credit Rating and Credit Score mediations 323

7. To set the properties of the Database Lookup primitive do the following:

a. Select the Lookup Credit Rating node.

b. In the Properties view click the Details tab.

c. Enter the following settings:

i. Data source name: jdbc/ITSOMartDataSource

ii. Table name: ITSOMART.CREDIT_SCORE_XREF

iii. Key column name: SCORE

iv. Click the Custom XPath button and navigate to and select
getCreditScoreReturn:int. See Figure 7-63. The resulting XPath
location field should look like the following:

/body/getCreditScoreResponse/getCreditScoreReturn

Figure 7-63 Key path
324 Patterns: SOA Foundation Service Connectivity Scenario

v. Click OK.

d. In the Data elements section, click Add and enter the following:

• Value column name: RATING

• Message value type: java.lang.String

• Message element:

/context/transient/creditRating

To enter this, select Custom XPath, as shown in Figure 7-64.

Figure 7-64 Message element XPath
 Chapter 7. Building the Credit Rating and Credit Score mediations 325

The properties for the Database Lookup primitive should look as shown in
Figure 7-65.

Figure 7-65 Database Lookup mediation primitive properties

8. To set the properties of the XSL Transformation primitive do the following:

a. Select the Set Credit Rating Response node.

b. In the Properties view click the Details tab.
326 Patterns: SOA Foundation Service Connectivity Scenario

c. Change the Root field of the SMO message to a slash (/) so the complete
SMO is used (Figure 7-66).

Figure 7-66 Creating a new mapping

d. Click New and take the default input and output message types specified.

Click Finish to launch the XML mapping editor.

e. In the mapping editor, do the following:

i. Expand the source and target tns:smo tree.

ii. Select context in both the source and target panels, then right-click
context in the source panel and select Match Mapping.

iii. Select headers in both the source and target panels, then right-click
headers in the source panel and select Match Mapping.

iv. In the source panel select context/transient/creditRating, and drag
and drop it onto the target element
body/getCreditRatingResponse/getCreditRatingReturn/rating.
 Chapter 7. Building the Credit Rating and Credit Score mediations 327

The final mapping should look like Figure 7-67.

Figure 7-67 XSLT Mapping

v. Close and save the map.

f. In the Properties view click the Regenerate XSL button to generate an
XSL style sheet from the XML map. Click OK.

Database Lookup primitive key not found terminal
The key not found terminal propagates the original message to the output
terminal if the key is not found in the database. We now add primitives to handle
this condition and wire them to this terminal:

1. Add a Message Logger primitive. Change the display name to Log Key Not
Found.

2. Add an XSL Transformation primitive. Change the display name to Set Key
Not Found Fault.
328 Patterns: SOA Foundation Service Connectivity Scenario

3. Add a Message Logger primitive. Change the display name to Log Key Not
Found Fault.

4. Wire the nodes in the flow so the mediation flow looks like Figure 7-68. Note
that we are wiring these nodes (in the order we created them) from the
KeyNotFound terminal of the Database Lookup primitive, and ending with the
CreditRatingService_InputFault callout node.

Figure 7-68 Connect the nodes in the response flow

5. Create a new XML mapping for the Set Key Not Found Fault node.

a. In the mapping editor, right-click body/CreditRatingFault/errorMessage
on the target panel and select Define XSLT Function.

i. Select string for the function.
ii. Select string for the function name and click Add.
 Chapter 7. Building the Credit Rating and Credit Score mediations 329

iii. Enter the error message shown in Figure 7-69. Click OK.

Figure 7-69 New XSLT message

iv. Click Finish to close the XSLT Function wizard.

The final mapping should look like Figure 7-70.

Figure 7-70 XSLT mapping

b. Close and save the map.

6. Regenerate the XSL.
330 Patterns: SOA Foundation Service Connectivity Scenario

Database Lookup primitive Fail terminal
We now add primitives for the fail terminal:

1. Add a Message Logger primitive. Change the display name to Log DB Lookup
Error.

2. Add a Fail primitive (Figure 7-71). Change the display name to DB Lookup
Error.

Figure 7-71 Show Fail mediation primitive
 Chapter 7. Building the Credit Rating and Credit Score mediations 331

3. Connect the nodes in the flow so that it will look like Figure 7-72. Start with
the fail terminal on the Lookup Credit Rating primitive and end with the in
terminal of the DB Lookup Error primitive.

Figure 7-72 Connect the nodes in the flow

4. To set the properties of the Fail primitive, do the following:

a. Select the DB Lookup Error node.

b. In the Properties view click the Details tab.

c. Set the error message to Unexpected error occurred looking up credit
rating in the database (Figure 7-73).

Figure 7-73 Fail error message

5. Save and close the Mediation Flow Editor.
332 Patterns: SOA Foundation Service Connectivity Scenario

Invoke the new mediation module
Now that we have a mediation to invoke the new service and translate the credit
scores, we want to invoke it from the original mediation. In order to keep the
original mediation flow intact, we work with a copy.

The steps required to complete the new mediation are:

1. Make a copy of the ITSO_CreditRatingMed mediation module.

2. Invoke the Credit Score mediation from the copy of the Credit Rating
mediation.

The new assembly module looks like Figure 7-74.

Figure 7-74 ITSO_CreditRatingMedV2 assembly module

Make a copy of the ITSO_CreditRatingMed mediation module
To make a copy of the ITSO_CreditRatingMed:

1. Right-click in the Business Integration view and select Show Files to open
the Physical Resources view.

2. Right-click ITSO_CreditRatingMed and select Copy.

3. Right-click in the blank area of the Physical Resources view and select Paste.

A window will open indicating that a copy of the project is made. Change the
Project name to ITSO_CreditRatingMedV2.

4. Click OK.

5. The mediation module will be copied and an error will appear. This is because
when you copy the module, it does not rename all the references.

Note: The same problem occurs when renaming a mediation module.
 Chapter 7. Building the Credit Rating and Credit Score mediations 333

6. Select ITSO_CreditRatingMedV2 and navigate to the sca.module.
Right-click and select Open with → Text Editor (Figure 7-75).

Figure 7-75 Open sca.module

7. The sca.module will open in an XML format. In the scdl:module element look
for the name attribute. Change it to ITSO_CreditRatingMedV2 (Figure 7-76).

Figure 7-76 sca.module

8. Save and close the sca.module.
334 Patterns: SOA Foundation Service Connectivity Scenario

Invoke the Credit Score mediation from the Credit Rating mediation
Next we need to alter the copy of the Credit Rating mediation to import the Credit
Score mediation:

1. Navigate to the module assembly of the ITSO_CreditRatingMedV2 in the
Business Integration view. Open the module assembly by double-clicking it.

2. Select the CreditRatingService node and press the Delete key, or right-click
and select Delete to remove the node from the assembly editor.

Tip: We recommended that after doing this you do the following:

1. Open the assembly diagram and delete the CreditRatingMediationExport
component.

2. Delete the CreditRatingMediationExport_CreditCheckHttpPort Web
service port.

3. Add the Export component back to the diagram (and create the new WSDL
file). To do this, right-click the mediation component and select Export →
Web service binding.

4. Close the project. To do this from the Physical Resources view, right-click
the project, and select Close project from the context menu.

5. Reopen the project and rebuild it.

This will force a regeneration of all the J2EE integration modules and
eliminate any errors that are still around.

Note: It may happen that when trying to open the module assembly it
opens it in XML format. To open the Assembly Editor right-click the module
assembly and select Open With → Assembly Editor.
 Chapter 7. Building the Credit Rating and Credit Score mediations 335

3. Navigate to the CreditScoreMediationExportSCA (Figure 7-77).

Figure 7-77 CreditScoreMediationExportSCA

4. Select the CreditScoreMediationExportSCA and drag and drop it on to the
ITSO_CreditRatingMedV2 assembly diagram to the right of the mediation
flow component.

When you drop the component onto the assembly diagram, you will be asked
to choose which type of component you want to create. Select Import with
SCA binding.

5. An import component will appear on the assembly diagram. Move the new
import to the right of the mediation flow component.

6. Select the new import component and in the Properties view and change the
display name to CreditScoreMediation.

This allows you to call the ITSO_CreditScoreMed module from the new
mediation module.
336 Patterns: SOA Foundation Service Connectivity Scenario

7. Wire the components as shown in Figure 7-78.

Figure 7-78 Wire the components.

8. Save and close the assembly diagram.

7.4.7 Test the mediation
The new mediation is ready to test with the integration test client.

Runtime requirements
For the test you will need the following:

� ITSO_CreditScoreService will need to be installed and running on the
application server.

� The ITSOMart database will need to be built and available.

The ITSOMart database holds the values used to correlate numbers returned
from ITSO_CreditScoreService to the values gold, silver, or bronze. In our
tests we used both DB2 and Cloudscape™.

Instructions for creating both types of databases can be found in “Create the
database and configure the JDBC data source” on page 597.

Note: ITSO_CreditScoreService is zipped with the sample using the name
CSSvc.
 Chapter 7. Building the Credit Rating and Credit Score mediations 337

So you can get a feel for what the database looks like, we have included the
DB2 SQL statements in Example 7-1.

Example 7-1 SQL statements for database

CREATE SCHEMA ITSOMART;

CREATE TABLE ITSOMART.CREDIT_SCORE_XREF
 (SCORE INTEGER NOT NULL,
 RATING VARCHAR(10) NOT NULL);

ALTER TABLE ITSOMART.CREDIT_SCORE_XREF
 ADD CONSTRAINT CREDIT_SCORE_PK PRIMARY KEY (SCORE);

COMMENT ON COLUMN ITSOMART.CREDIT_SCORE_XREF.SCORE IS 'credit score';

COMMENT ON COLUMN ITSOMART.CREDIT_SCORE_XREF.RATING IS 'ITSOMart credit rating';

INSERT INTO ITSOMART.CREDIT_SCORE_XREF (SCORE, RATING) VALUES (100,'BRONZE');
INSERT INTO ITSOMART.CREDIT_SCORE_XREF (SCORE, RATING) VALUES (200,'SILVER');
INSERT INTO ITSOMART.CREDIT_SCORE_XREF (SCORE, RATING) VALUES (300,’GOLD’);

In our scenario, we unzipped the Cloudscape database into the
<profile_name>/databases directory (Figure 7-79).

Figure 7-79 ITSOMART Cloudscape database location

� The data source for the ITSOMart database needs to be defined to the
application server. The WebSphere ESB application server has a JDBC
driver for Cloudscape predefined at the server level. We defined the data
source using this JDBC driver:

– JDBC driver (server scope): Cloudscape JDBC Provider (XA)

– Name: ITSOMART

– JNDI name: jdbc/ITSOMartDataSource

This has to match what you specified in the data source name field of the
Database Lookup primitive (page 324).
338 Patterns: SOA Foundation Service Connectivity Scenario

– Database name: c:\e1\databases\ITSOMART

Test the flow
To use the tool to test our mediation flow:

1. Rebuild all projects (select Project → Build All).

2. Start the WebSphere ESB Server test environment.

3. Add the mediation application, ITSO_CreditRatingMedV2App, to the server.

4. Launch the test client for the ITSO_CreditRatingMedV2 module.

5. Set the values in the test client. Fill in some test data for the request. The only
values actually required for this mediation to work properly are the first name
and the last name (Figure 7-80).

a. For a success flow, enter a surname that has less than nine characters.

Figure 7-80 Test client - ITSO_CreditRatingMedV2
 Chapter 7. Building the Credit Rating and Credit Score mediations 339

You may be prompted to select the deployment location. If so, select
WebSphere ESB Server v6.0.

Check the test client Events pane to verify that everything ran successfully
(Figure 7-81).

Figure 7-81 Test client - Events

In the detail properties we can see the return parameters (Figure 7-82).

Figure 7-82 Return parameters
340 Patterns: SOA Foundation Service Connectivity Scenario

v. Look at the messages logged by the Message Logger primitives
(Figure 7-83).

Open the sample MessageLogApp application using the following
URL:

http://localhost:9080/MessageLogWeb/faces/MessageLogView.jsp

Figure 7-83 Message Logger messages

b. For a key not found flow, enter a last name that has nine or more
characters.

i. Check the test client Events pane to verify that it failed.

ii. Look at the messages that were logged by the Message Logger
primitives.

7.5 Calling the service from the application
The Register Customer process application calls the Credit Rating mediation via
a Web service proxy that makes a SOAP/HTTP request. This Web service proxy
is generated based on the WSDL file that describes the mediation. This is the
WSDL file generated when you create the export for the mediation.

For example, to generate a Web service proxy that calls the Credit Score
mediation (the second version), use the WSDL file
CreditRatingMediationExport_CreditCheckHttp_Service.wsdl.
 Chapter 7. Building the Credit Rating and Credit Score mediations 341

Your application will also need access to any WSDL files referenced in this file,
and the XSD files for the data objects used. The best way to pick up the files you
need is to build the mediation module and go through the test process for the
mediation. Then copy the files found under the wsdl folder for the mediation EJB
to the application EJB.

You can find these files using the Physical Resources view under
<mediationEJB>/ejbModule/wsdl.

The Register Customer process application, ITSO_RegProcServiceApp, uses a
Java utility project to hold the proxies for the services it calls. This utility project is
called ITSO_RegProcService_Proxies.

The steps required to generate the proxy are:

1. Copy or import the required files to the utility project.

2. Generate the Web service client proxy using the Web Service Client wizard.
Use the service WSDL file as input.

3. Add code to the application to call the service via the proxy.

7.5.1 Import or copy the WSDL files
You will need to obtain a copy of the WSDL files for the service and put them in
your workspace. In our example, we have the EAR files for the Web services in
our workspace and thus have the WSDL available.
342 Patterns: SOA Foundation Service Connectivity Scenario

Using the J2EE perspective, we have created a folder called wsdl in the
ITSO_RegProcService_Proxies project to hold a copy of the files. You can see in
Figure 7-84 the files we copied from the EJB project to the utility project.

Figure 7-84 WSDL files copied to utility project

7.5.2 Generate the Web service client proxy
You are now ready to generate the Web service client proxy. Enable the Web
Service Developer capability for your workspace (see 6.3.3, “Configure Web
services workspace preferences” on page 226).

1. Switch to the J2EE perspective, and in the Project Explorer view, navigate to
the WSDL files you saved.
 Chapter 7. Building the Credit Rating and Credit Score mediations 343

2. Right-click the service file and select Web Services → Generate Client
(Figure 7-85).

Figure 7-85 Start the Web Service Client wizard

This will start the Web Service Client wizard.

a. Select Java proxy for the client proxy type and click Next.

b. The WSDL file that you selected should already be filled in. Click Next.

c. Select the following values to indicate how the client proxy will be
generated (Figure 7-86 on page 345):

• Web service runtime: IBM WebSphere.

• Server: WebSphere ESB Server v6.0.
344 Patterns: SOA Foundation Service Connectivity Scenario

• J2EE version: You can leave N/A as the value here because the proxy
is getting generated into a Java project, not a J2EE project.

• Client type: Java.

• Client project: ITSO_RegProcService_Proxies.

See Figure 7-86.

Figure 7-86 Web Service Client: Client Environment Configuration

d. Click Finish to generate the Web service client proxy. Acknowledge any
warning messages you receive during the Web service client generation.
 Chapter 7. Building the Credit Rating and Credit Score mediations 345

7.5.3 Update the application to call the service using the proxy
The following code in ITSO_RegProcServiceApp calls the service using the
proxy (Example 7-2).

Example 7-2 Invoking the credit check service

 try {
 CreditCheckRequest creditCheckRequest = new CreditCheckRequest();
 creditCheckRequest.setCustomer(customer);

 CreditCheckProxy creditCheckProxy = new CreditCheckProxy();
 System.out.println("ITSOMart RegistrationProcessorService.registerCustomer >>

invoking CreditCheck Service (soap/http) w/ endpoint: " + creditCheckProxy.getEndpoint());
 CreditCheckResponse creditCheckResponse =

creditCheckProxy.getCreditRating(creditCheckRequest);

 creditRating = creditCheckResponse.getCreditRating();
 System.out.println("ITSOMart RegistrationProcessorService.registerCustomer >>

credit rating: " + creditRating);
 } catch (Exception creditCheckException) {
 registrationProcessStatus = FAILURE;
 registrationStatusDetails = "CreditCheck Service exception: " +

creditCheckException;
 }
346 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 8. Building the CRM mediation

This chapter shows an example of using the capabilities of WebSphere ESB to
provide routing between a service requester and one of multiple service
providers based on the request.

The mediation built for this example illustrates the following:

� Connectivity to EIS systems using WebSphere Adapters
� Request/response operation
� XML transformation of messages
� Message routing
� Using the mediation as an endpoint
� Message logging
� Building a custom mediation

This chapter includes the following topics:

� Scenario overview
� Developing a mediation to update a CRM system
� Calling the service from the application

If you are not familiar with the process of building mediations, review Chapter 6,
“Assemble with WebSphere Integration Developer” on page 211, and Chapter 7,
“Building the Credit Rating and Credit Score mediations” on page 263.

8

© Copyright IBM Corp. 2006. All rights reserved. 347

8.1 Scenario overview
This chapter focuses on the CRM Registration scenario of the ITSOMart
solution.

8.1.1 Business scenario
The first step in the Register Customer process is to evaluate the customer credit
rating. The rating is used to determine how to proceed with the registration. This
step of the process was built in Chapter 7, “Building the Credit Rating and Credit
Score mediations” on page 263.

We now look at the next step in the process. This step evaluates the credit rating
and determines which action should be taken with the request. The possibilities
are to deny registration, send the registration to a queue for manual handling, or
register the customer.

Based on the credit rating, the following actions are taken:

� Gold

ITSOMart uses a Siebel system to manage its Customer Relationship
Management (CRM) data. If the credit rating is gold, the customer data is sent
to the Siebel system for registration.

� Silver

The customer registration request is sent to an internal department for
manual handling. Currently these requests are stored in a file on the server.
Other than logging the transaction, no further processing by the Register
Customer process is required.

� Bronze

The customer registration request is denied. Other than logging the
transaction, no further processing by the Register Customer process is
required.

Note: The samples included in this chapter can be downloaded from the Web.
See Appendix A, “Sample application install summary” on page 589, for
instructions on downloading and importing the sample projects.
348 Patterns: SOA Foundation Service Connectivity Scenario

The activity diagram for the CRM Registration scenario of the ITSOMart solution
can be seen in Figure 8-1. The activity diagram for the entire process can be
seen in Figure 5-15 on page 143.

Figure 8-1 CRM Registration scenario

8.1.2 CRM mediation
The call from the Register Customer process will call the CRM Registration
Service via the ESB. Since only gold level customers are automatically
registered, a mediation in the ESB will be used to determine the proper
destination for the request and to transform it to the appropriate format.
 Chapter 8. Building the CRM mediation 349

Figure 8-2 shows the activity diagram for the mediation.

Figure 8-2 CRM mediation activity diagram

The primary purpose of the mediation is to route the customer registration
request to the appropriate service. The mediation is invoked using SOAP/HTTP.
However, two of the services used in the mediation are called using J2C
adapters. The first is the Siebel system, which is accessed using the IBM
WebSphere Adapter for Siebel Business Applications. The second is a flat file on
the server, which is accessed using IBM WebSphere Adapter for Flat Files.

The interface for the mediation defines the input and output for the mediation.
The input will consist of customer registration data and the customer credit
rating.

CRM Mediation CRM Registration Insufficient CreditRegistration Processor

CRM Mediation
Insufficient Credit

(Flat File Adapter)
CRM Registration
(Siebel Adapter)

CRM MediationRegistration Processor

Register
Customer in
CRM

soap/http

soap/http

soap/http

J2C

J2C

J2CReceive Results
from CRM

Registration

<<Response Flow>>
Mediate Response

Set SUCCESS
Registration

Status

<<Request Flow>>
Mediate Response

<<XSL Transform>>
Format

Siebel Msg

<<Message Filter>>
Credit Rating?

GOLD

SILVER

BRONZE

<<Custom Mediation>>
Format Flat

File Msg

Set DENIED
Registration

Status

Place
Registration
Request on
File System

Register
Customer in

CRM
350 Patterns: SOA Foundation Service Connectivity Scenario

The response consists of a string (SUCCESS, DENIED) that describes the
registration status.

8.2 Developing a mediation to update a CRM system
This example builds a mediation to update a CRM system using two WebSphere
JCA Adapters, one for Siebel Business Applications and a second one to interact
with flat files on the file system. The decision of whether to update the Siebel
System or to write a file to the file system is made by a Message Filter primitive
based on the credit rating of the customer. Once the Message Filter primitive
selects a path, we use a combination of XSLT and Custom primitives to
transform the input request to the format required by the destination system. This
mediation will also use a Message Logger primitive to log the messages at
different points in the flow.

8.2.1 Mediation development steps
Figure 8-3 shows the mediation module contents we are going to build.

Figure 8-3 ITSO_CRMMed mediation components

The steps required to build the mediation in WebSphere Integration Developer
having a target deployment in the WebSphere ESB Test Environment are:

1. Create the mediation module.
2. Create an interface for each EIS system.
3. Define the interface for the mediation.
4. Add the components to the module assembly.
5. Build the mediation flow.
 Chapter 8. Building the CRM mediation 351

To build and test this scenario you must have the following projects in your
workspace:

� ITSOMartLib: This project was built in Chapter 7, “Building the Credit Rating
and Credit Score mediations” on page 263.

� MessageLogApp: This project contains a J2EE application that can be used
to display the contents of the logs populated by the Message Logger
mediation primitives.

You will also need to have access to the following:

� IBM WebSphere Adapter for Flat Files
� IBM WebSphere Adapter for Siebel Business Applications
� A running Siebel system

8.2.2 Create the mediation module
The first step is to create a mediation module. You can optionally create a library
first to hold resources, such as business objects or interfaces, that you may use
in other modules. If you create a library, you can add it as a dependency while
you create the mediation module. In this example, the ITSOMartLib library will be
used (see 7.2.1, “Create a library” on page 268).

To create the new mediation module for this sample, do the following:

1. While in the Business Integration view, select File → New → Other →
Mediation module.

2. Name the mediation module ITSO_CRMMed and be sure to check the box that
allows the wizard to create the mediation flow component. Click Next.

3. Check the box by the ITSOMartLib library to include it as a dependency
library and click Finish.

8.2.3 Create an interface for each EIS system
This mediation will use the IBM WebSphere Adapter for Siebel Business
Applications to access a Siebel system and IBM WebSphere Adapter for Flat
Files.

Note: If you are not familiar with using WebSphere Integration Developer to
develop mediations, review Chapter 6, “Assemble with WebSphere Integration
Developer” on page 211, and Chapter 7, “Building the Credit Rating and
Credit Score mediations” on page 263, before proceeding.
352 Patterns: SOA Foundation Service Connectivity Scenario

When using a WebSphere Adapter in a mediation, you deploy the adapter as
part of the application. The RAR files should be imported into the WebSphere
Integration Developer workspace and included in the mediation application. (You
do not install stand-alone adapters in the WebSphere Application Server.)

WebSphere Integration Developer provides an enterprise service discovery
wizard that can use the adapters to query the EIS systems to discover services
available, then use that information to build interfaces and import/export
components to be used in the mediations.

Guidance for using the enterprise service discovery for each WebSphere
Adapter can be found in the product documentation for the adapter. You can find
this documentation at:

http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/doc/
index.html

IBM WebSphere Adapter for Siebel Business Applications
This section shows how to import the WebSphere Adapter for Siebel into the
workspace. This assumes that you have installed the adapter product (see
“Installing WebSphere Adapters” on page 667).

1. Start WebSphere Integration Developer. Select File → Import →RAR file
and click Next.

a. In the Connector file field, browse to the location of the installed adapter
RAR file. Normally it is <install_root>/adapter/<adapter_name>/deploy.
Click Open.

The Connector project value and EAR project name will be automatically
filled in for you.
 Chapter 8. Building the CRM mediation 353

http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/doc/index.html

b. Check the Add module to an EAR project and click Finish.

Figure 8-4 Browse the location of the RAR file

c. Click Yes to allow the switch to the J2EE perspective.

2. The next step is to copy the adapter-specific dependent JAR files to the
connector module folder in the workspace and add them as an internal
dependency so that when we create the EAR file for the project, this will also
become part of it.

For our sample, we used Siebel Version 7.7 and thus required Siebel.jar and
SiebelJI_enu.jar to be copied from the Siebel server for use as the dependent
JAR files.

Right-click the connector project, CWYEB_SiebelAdapter, select
Properties → Java Build Path → Libraries → Add External Jars, and add
these two JAR files as external library files.

3. Switch back to the Business Integration perspective.
354 Patterns: SOA Foundation Service Connectivity Scenario

Create an import for the target Siebel server
You can use the enterprise service discovery wizard to create imports and
exports for the Siebel system. The wizard uses the resource adapter to connect
to the Siebel system. You can then query the Siebel system for metadata that
describes the business service objects available. The result will be services
generated for use in the mediation.

In this example we create an import for the Siebel system for use in our
mediation. To do this:

1. Right-click in the white space of the Business Integration view, select New →
Other → Business Integration → Enterprise Service Discovery, and click
Next.

2. Select IBM WebSphere Adapter for Siebel Business Applications
(Figure 8-5) and click Next.

Figure 8-5 Select an enterprise service resource adapter
 Chapter 8. Building the CRM mediation 355

3. Fill the connection details of the server you wish to connect to. You will need
to supply the connection information, user name, password, and the language
code to connect to the Siebel application (Figure 8-6). Check check with your
Siebel administrator for these values.

Figure 8-6 Configure settings for the enterprise service discovery

Click Next.

Tip: If you have problems connecting to the Siebel system, check the
following possible reasons:

1. The dependent JAR files have not been added in the classpath.

2. The connect string you specified is wrong.

3. The Siebel application instance is not started on the server. Try pinging
the machine so that you can make sure that you are able to connect to
the machine. If the connect string uses a host name instead of an IP
address, ensure that you can resolve the host name to an IP address.
356 Patterns: SOA Foundation Service Connectivity Scenario

4. Click Edit Query to enter the filter for the business objects you would like to
retrieve. If you do not enter a filter the service will return all the business
objects and it may take a long time, depending on the network traffic and the
infrastructure.

Figure 8-7 Edit query
 Chapter 8. Building the CRM mediation 357

5. Enter the name of the business service you want to retrieve. You can enter
values using a wild card as well. For example, to see all the business services
starting with A, enter A *.

Enter EAI Siebel Adapter as the filter value and click OK (Figure 8-8).

Figure 8-8 Business service filter
358 Patterns: SOA Foundation Service Connectivity Scenario

6. Click Run Query (Figure 8-7 on page 357). The enterprise service discovery
will return the business services matching your filter and the supported
operations it finds that match in the Siebel application.

Click the plus sign (+) to get the list of supported operations.

Figure 8-9 Query result
 Chapter 8. Building the CRM mediation 359

7. Select the operations you want to import. Operations are the activities you
can perform on a business service. For example, to create an EAI Siebel
Adapter object in the in Siebel application you can select Insert, to update a
record select Update, and so on (Figure 8-10).

Figure 8-10 Select operations

a. Select each operation you want to include and click >>Add. For the
ITSOMart sample, you will only need the Upsert operation.
360 Patterns: SOA Foundation Service Connectivity Scenario

b. Select Account (PRM ANI) from the drop-down menu in the
SiebelMessage field (Figure 8-11). There is no need to give a value for the
Event Method field since we are going to do an outbound operation (an
import) here. Click OK.

Figure 8-11 Select Siebel Message

Figure 8-12 Adding objects
 Chapter 8. Building the CRM mediation 361

c. Repeat this step for each operation. When done adding the operations,
click Next.

8. Next configure the business objects based on the configuration of Siebel
objects. To configure the object properties, enter the following (Figure 8-13):

– Service type: Outbound

This will cause an import to be created.

– Namespace: http://www.ibm.com/xmlns/prod/wbi/j2ca/siebel

– BO location: bo

This is the folder in the mediation module where imported objects (.xsd
files) will be stored.

Figure 8-13 Configure service type, namespace, and BO location

Click Next.

9. In the next panel:

a. Select ITSO_CRMMed as the module.

b. Click the Use discovered connection properties radio button.
362 Patterns: SOA Foundation Service Connectivity Scenario

c. Enter <your_server_node>/CRM as the J2C authentication data entry
(Figure 8-14). This will point to the J2C authentication data defined in the
application server that will contain the user ID and password needed to log
in to Siebel. We will define this entry to the WebSphere runtime later.

Figure 8-14 Specify J2C authentication data entry

Scrolling further down on this panel, you will find settings that allow you to
configure adapter-specific properties, such as log file name, log file size, trace
file name, trace file size, and so on.

Click Finish.

Now you have successfully generated the artifacts needed to use the adapter in
the CRM mediation.
 Chapter 8. Building the CRM mediation 363

IBM WebSphere Adapter for Flat Files
The next step is to install and import the IBM WebSphere Adapter for Flat Files.

1. Install the IBM WebSphere Adapter for Flat Files. The installation is similar to
the installation for the IBM WebSphere Adapter for Siebel Business
Applications (see “Installing WebSphere Adapters” on page 667).

2. Import the RAR files into the workspace. The procedure to this is similar to
that outlined in “Create an interface for each EIS system” on page 352. In the
case of the Flat File adapter you do not need to import any extra dependency
JAR files. The RAR file name is CWYFF_FlatFile.rar.

Create an import for the flat file applications
This step uses the Enterprise Service Discovery wizard to create the imports
associated with each Partner Application Adapter into the mediation module.

1. Right-click in the white space of the Business Integration view, select New →
Other → Business Integration → Enterprise Service Discovery, and click
Next.

2. Select the Flat File adapter and click Next.

Figure 8-15 Enterprise Service Discovery
364 Patterns: SOA Foundation Service Connectivity Scenario

3. Keep the default values for the discovery agent settings (Figure 8-16). Click
Next.

Figure 8-16 Configure settings
 Chapter 8. Building the CRM mediation 365

4. Click Run Query to get a list of the objects. Select the Outbound object and
click Add (Figure 8-17).

Figure 8-17 Enterprise service discovery - flat file

Click Next.

5. To configure the objects:

a. Remove all operations but CREATE.

b. Select CREATE and click Add.

c. Select CREATE from the pop-up window.

d. Click OK.
366 Patterns: SOA Foundation Service Connectivity Scenario

e. Enter bo as the BO location (Figure 8-18). This is the folder in the
mediation module where imported objects (.xsd files) will be stored.

Figure 8-18 Select operations

Click Next.
 Chapter 8. Building the CRM mediation 367

6. Select ITSO_CRMMed as the module, and select Use discovered
connection properties. Take the defaults for the rest of the fields
(Figure 8-19).

Figure 8-19 Generate Artifacts - flat file

Click Finish.
368 Patterns: SOA Foundation Service Connectivity Scenario

After running the enterprise service discovery wizard, you will see the new
interfaces in ITSO_CRMMed (Figure 8-20).

Figure 8-20 Mediation module contents at this point

8.2.4 Define the interface for the mediation
The next step in building the mediation is to create an interface that can be used
to call the mediation.

Define the business objects
Each operation in the interface defines the data that can be passed in the form of
inputs to and outputs from the component when the operation is invoked. This
step creates the business objects that represent the data as it flows through the
mediation.
 Chapter 8. Building the CRM mediation 369

Create two business objects:

� CustomerRegistrationRequest business object (Figure 8-21) with the
following attributes:

– customer of type Customer business object
– creditRating of type string

Figure 8-21 CustomerRegistrationRequest business object

� CustomerRegistrationResponse business object (Figure 8-22) with the
following attributes:

– registrationStatus of type string
– statusDetails of type string
– crmAccountId of type string

Figure 8-22 CustomerRegistrationResponse business object

Build the interface
In this scenario we define an interface that represents the functions provided by
the mediation. It includes one operation, registerCustomer. The input to the
370 Patterns: SOA Foundation Service Connectivity Scenario

interface will be defined by the CustomerRegistrationRequest business object,
while the output will be defined by the CustomerRegistrationResponse object.

The interface will look like Figure 8-23.

Figure 8-23 registerCustomer Interface is complete

To build the interface:

1. Create a new interface in ITSOMartLib. Name it CustomerRegistration.

2. Since our example is expecting a response to be returned, add a new
Request Response operation. A new operation will be added to the interface
with the default name of Operation1. Change this name to registerCustomer
by typing over it.

3. Click the registerCustomer operation and click the Add Input icon. A new
Input entry will appear on the canvas.

– Enter customerRegistrationRequest in the Name field.
– Select the CustomerRegistrationRequest business object as the type.

4. Click the registerCustomer operation and click the Add Output icon. A new
Output entry will appear on the canvas.

– Enter customerRegistrationResponse in the Name field.
– Select the CustomerRegistrationResponse business object as the type.

5. Save and close the interface.
 Chapter 8. Building the CRM mediation 371

8.2.5 Add the components to the module assembly
Now that we have the interfaces required for the mediation, let us complete the
module assembly. The module assembly we will build is shown in Figure 8-24.

Figure 8-24 ITSO_CRMMed assembly diagram

To begin, switch to the Business Integration perspective and do the following:

1. Double-click the module assembly in the Business Integration view to open
the assembly diagram. You will see the new interfaces for the Siebel and flat
file systems and the mediation flow component. Note that both of the
components for the adapters are for outbound operations (imports).

2. What is missing is the export that is used to call the mediation. To create an
export, expand the contents of the ITSOMartLib library and expand the
Interfaces folder.

Select the CustomerRegistration interface and drag and drop it in onto the
assembly diagram. This will start a wizard.

a. In the Component Creation window, select Export with Web Service
Binding, and click OK.

b. In the Binding File Generation prompt window, select Yes. We want the
tool to automatically generate the wsdl file associated with the export.

c. On the Select Transport window, select soap/http and click OK.

The export will be generated and placed in the assembly diagram.

3. Change the name of the export from Export1 to CRMReqOn.

4. Change the name of the mediation flow component from the default,
Mediation1, to CRMMed.
372 Patterns: SOA Foundation Service Connectivity Scenario

5. Next wire the following components:

– CRMReqOn to CRMMed
– CRMMed to FlatFileOutboundInterface
– CRMMed to SiebelOutboundInterface

6. Save the assembly diagram but do not close it. We will be using it in the next
step.

7. Rebuild the project. After rebuilding the project, the only remaining warning at
this point should be that shown in Figure 8-25. We will take care of that in the
next step.

Figure 8-25 We must implement the Mediation Flow component CRMMed

8.2.6 Build the mediation flow
Next we generate the mediation flow component implementation (the mediation
flow) and populate it with mediation primitives that will perform the mediation
functions.

1. In the assembly diagram, double-click the CRMMed mediation flow
component to start defining the mediation flow.

a. Click Yes in the Open window prompt. We want to implement the
CRMMed component.

b. In the Generate Implementation window, create a new folder and name it
impl. Click OK.

2. In the Operation connections window, you will see the interface and the two
references used in this flow.

Click the registerCustomer operation under CustomerRegistration and drag
it to the create operation under FlatFileOutboundInterfacePartner. This will
create an operation connection between the two and generate the Callout
node in the flow.

3. Create a second operation connection by clicking registerCustomer and
dragging it to the upsertEAISiebelAdapterUpsertAccountPRMANI operation.
 Chapter 8. Building the CRM mediation 373

The results should look like Figure 8-26.

Figure 8-26 Mediation Flow Editor after the operations are wired

Note that there are two flows, a request flow labeled Request:
registerCustomer and a response flow labeled Response: registerCustomer.
This is because the registerCustomer operation on the CustomerRegistration
interface is a request/response operation.

First we will build the request flow, and then the response flow.
374 Patterns: SOA Foundation Service Connectivity Scenario

Request flow
The request flow will do the following:

� Record the incoming message using a Message Logger primitive.

� Route the message based on the creditRating information provided in the
Customer Registration request using a Message Filter primitive.

– If the credit rating is gold, an XSL Transformation primitive is used to
transform the message before sending it to the Siebel system. The
response flow will set a status of success in the message.

– If the credit rating is silver, an XSL Transformation primitive is used to
transform the message. A Custom primitive is then used to create the file
contents and set the file name and location before sending the request to
the flat file adapter. The response flow will set a status of success.

– If the credit rating is bronze, an XSL Transformation primitive is used to
set the status to denied.

To build this flow, do the following:

1. Add a Message Logger primitive and change the name to InLog.

a. Wire the Customer Registration input node to the Inlog Message Logger
primitive. The results will look like Figure 8-27.

Figure 8-27 Wiring the Customer Registration input to the InLog Message Logger

b. Select the InLog primitive. In the Details tab of the Properties view,
change the Root field from /body to /.
 Chapter 8. Building the CRM mediation 375

We will do this for all the Message Logger primitives so that we will be able
to see the entire contents of the SMO including context and headers. The
Properties tab should look like Figure 8-28.

Figure 8-28 Setting the Root element to /

2. Next we add a Message Filter primitive to route the message based on the
creditRating information provided in the Customer Registration request.
There are three possible creditRating values that will be used to route the
message: gold, silver, and bronze.

To create this filter, do the following:

a. Add the Message Filter primitive to the mediation flow and change the
name to CRMFilter.

b. Add three terminals named Bronze, Silver, and Gold.

To add each new terminal, select the filter in the flow, right-click, and
select Add Output Terminal.

i. Enter the terminal name.
ii. Select match for the terminal type (the only selection).
iii. Click OK.
376 Patterns: SOA Foundation Service Connectivity Scenario

You can see the values used for the first terminal, Gold, in Figure 8-29.

Figure 8-29 Adding an Output Terminal to the Filter

3. Wire the CustomerRegistration node to CRMFilter. Note that this is the
second wire coming from CustomerRegistration (the first went to the
Message Logger primitive).

We need the wire in place so the message type is set for the filter. This will
populate the fields that we can choose from in the input message to use to
route the message.

4. Select CRMFilter and switch to the Details tab of the Properties view.

a. Select First as the distribution mode.

b. To add the XPath associated with each terminal, click Add to the right of
the Filters list. When the Add/Edit window comes up, click Custom XPath.

c. Expand the body of the message until you see the creditRating field, and
select it.

d. Click in the Condition box. Select self::node().

e. Click in the value box and enter “GOLD” (including the quotes).
 Chapter 8. Building the CRM mediation 377

The results should look like Figure 8-30.

Figure 8-30 XPath Expression® Builder window for the “GOLD” case

f. Click OK. You should be back to the Add/Edit window.

g. Click Finish.

5. Repeat the same process for the Silver and Bronze terminals. Note that the
names of the terminals are in mixed case, while the string values used in the
XPath expressions are in uppercase.
378 Patterns: SOA Foundation Service Connectivity Scenario

When you are done, the Filters list should look like Figure 8-31.

Figure 8-31 Filter Table for Filter CRMFilter

6. Save the mediation flow.

Request flow - Gold output terminal
Before we can wire the output terminals, we need to add the next primitive in
each path. Let us start with the one associated with the “Gold” terminal.

1. We are going to use an XSL Transformation primitive to map the
CustomerRegistration input message to the message required for the Siebel
create operation.

a. Add an XSL Transformation primitive to the flow between the CRMFilter
and the OutputBound Partner icons.

b. Change the name to XSL1.

c. Wire the “Gold” Terminal of the CRMFilter to the input terminal of the XSL1
transformation and the output terminal of XSL1 to the input terminal of the
SiebelOutBoundInterfacePartner.
 Chapter 8. Building the CRM mediation 379

The mediation flow should look like Figure 8-32.

Figure 8-32 Mediation flow after wiring the XSL1 transformation to the Siebel Outbound input

d. Save the mediation flow and assembly diagram and rebuild the project.

2. Next we create the XML mapping that defines how the XSL1 node transforms
the CustomerRegistration input message to the message required for the
Siebel create operation.

a. Select the XSL1 node.

b. In the Details tab of the Properties view, click the New button to define the
mapping. The new XSLT Mapping window will open.

c. Verify that the input message to the transformation is
registerCustomerRequestMsg and that the output message from the
transformation is
upsertEAISiebelAdapterUpsertAccountPRMANIRequest.

d. Click Finish to open the Mapping Editor.

e. Expand the body of each message until you can see all of the elements.
380 Patterns: SOA Foundation Service Connectivity Scenario

f. First we map the CurrencyCode field in the SiebelMessage. We want to
define an XSLT function for it, so select it, right-click, and select Define
XSLT Function, as in Figure 8-33.

Figure 8-33 Mapping the CurrencyCode in the SiebelMessage

g. On the XSLT Functions window, select String and click Next.

h. In the next screen:

i. Select string for the Function Name.
ii. Click Add to add an input parameter.
iii. Enter ‘USD’, using single quotes, and click OK.
iv. Verify that you have the results shown in Figure 8-34 and click Finish.

Figure 8-34 Mapping the CurrencyCode in the SiebelMessage
 Chapter 8. Building the CRM mediation 381

i. Map the elements as shown in Table 8-1.

Table 8-1 XML mapping

j. Add a blank in Name between firstName and lastName using the same
technique illustrated in the CreditRatingMediation flow (page 294). The
overview of the final map should look like Figure 8-35 on page 383.

customerRegistrationRequest SiebelMessage

email BusinessAddress/EmailAddress

billingAddress/name BusinessAddress/AddressName

billingAddress/street BusinessAddress/StreeAddress

billingAddress/city BusinessAddress/City

billingAddress/city Location

billingAddress/state BusinessAddress/State

billingAddress/zipcode BusinessAddress/PostalCode

billingAddress/country BusinessAddress/Country

billingAddress/phone BusinessAddress/PhoneNumber

firstName1 Name1

lastName1 Name1

1To map firstName and lastName to Name, click both source fields using the Ctrl key,
then drag and drop them onto Name.
382 Patterns: SOA Foundation Service Connectivity Scenario

Figure 8-35 Overview of the map between the SiebelMessage and the customerRegistrationRequest

k. Save and close the map.

3. Regenerate the XSL.

4. Save the mediation flow and the assembly diagram.
 Chapter 8. Building the CRM mediation 383

Response flow - Gold output terminal
At this point we have completed the request flow for the Gold terminal, that
directs the message to the Siebel system. We are now going to do the response
flow for it. The final flow will look like Figure 8-36.

Figure 8-36 CRMMed response flow

The steps are:

1. Select the Response flow tab.

2. Add an XSL Transformation primitive between the
SiebelOutboundInterfacePartner and the
CustomerRegistration_registerCustomer_InputReponse.

a. Name it XSL2.

b. Wire the output terminal of the SiebelOutboundInterfacePartner to the
input terminal of XSL2.

c. Wire the output terminal of XSL2 to the input terminal of
CustomerRegistration_registerCustomer_InputReponse.

3. XSL2 will be implemented using a mapping that transforms the output
message provided by the Siebel upsert operation to the Customer
Registration Output message.

a. Create a new XML mapping for XSL2. Verify that the input message to the
transformation is
upsertEAISiebelAdapterUpsertAccountPRMANIResponse and that the
output message from the transformation is
registerCustomerResponseMsg.

b. Map the statusDetails field in registerCustomerResponse to the constant
‘SUCCESS’.

i. Right-click statusDetails and select Define XSLT Function.
ii. Select String and click Next.
384 Patterns: SOA Foundation Service Connectivity Scenario

In the next screen:

i. Select string for the Function Name.
ii. Click Add to add an input parameter.
iii. Enter ‘SUCCESS’, using single quotes, and click OK.
iv. Click Finish.

c. Map the elements as shown in Table 8-1 on page 382. To create the
mapping, select the element under customerRegistrationRequest and
drag it to the proper element in SiebelMessage.

Table 8-2 XML mapping

The final map (in the Overview view) should look like Figure 8-37.

Figure 8-37 Final map overview for XSL2

d. Save and close the map.

4. Regenerate the XSL.

5. Add a Message Logger primitive named OutLog and wire it to the Siebel
outbound interface.

6. Save the mediation flow and assembly diagram. Rebuild the project.

Test the flow for Gold
At this point you should be able to test the CRMMed mediation and access the
Siebel System.

customerRegistrationRequest SiebelMessage

PrimaryRowId registrationStatus

PrimaryRowId crmAccountId
 Chapter 8. Building the CRM mediation 385

Runtime requirements
The WebSphere Siebel adapter is automatically packaged as an EAR file in
WebSphere Integration Developer.

1. In the Servers view, select the server, right-click, and use the Add and
remove projects menu option to add CWYEB_SiebelAdapterEAR to the
server. This will start the server, install the application, and start the
application.

2. Create the J2C authentication data entry. The application server needs to be
configured with the J2C authentication data entry specified in Figure 8-14 on
page 363. Using the WebSphere administrative console, configure the CRM
entry to contain the user ID and password to connect to the Siebel system.

a. Log in to the administrative console.

b. Click Security → Global security.

c. Expand JAAS configuration on the right panel and click J2C
Authentication data.

d. Click New to create a new authentication alias called CRM with credentials
that will allow you to log in into the Siebel system and click OK.

e. Save the changes.

Note that the new alias will be prefixed with the node name. For example, if
your node is esbNode, the reference to the alias when you use the enterprise
service discovery should be esbNode/CRM.

If you discover that the alias name used in the enterprise service discovery
wizard does not match the alias defined in the application server, you can
change it in the mediation module by doing the following:

a. Open the module assembly.

b. Select the outbound interface for the Siebel adapter.

c. Select the Bindings tab in the Properties view.

d. Click the Connection tab and expand the Authentication Properties.
You will see the alias in the J2C Authentication Data Entry field.

3. Update the JVM™ classpath for the server with the location of the dependent
JAR files for the adapter.

a. In the WebSphere administrative console navigate to Application
Servers → Server1 → Process Definition → Java Virtual Machine.

b. Add the following to the classpath:

c:\cp\SiebelJI_enu.jar
c:\cp\Siebel.jar

c. Click OK and save the changes.
386 Patterns: SOA Foundation Service Connectivity Scenario

d. Restart the server.

4. (Optional) For viewing the message logger entries, add MessageLogApp to
the server (see “MessageLogApp application” on page 595).

Test the module
To do this:

1. Switch to the Server tab and start the WebSphere ESB Server v6.0.

2. Add ITSO_CRMMedApp to the server.

3. In the Business Integration view select the ITSO_CRMMed mediation
module, right-click, and select Test → Test Module.
 Chapter 8. Building the CRM mediation 387

4. This will open the unit test window. Enter values for the input. Be sure to
specify GOLD in the creditRating parameter and click Continue
(Figure 8-38).

Figure 8-38 Testing the Mediation Module accessing the Siebel System

5. Select the WebSphere ESB Server v6.0 as the Deployment Location when
prompted and click Finish.
388 Patterns: SOA Foundation Service Connectivity Scenario

After the mediation executes you should see output similar to that in
Figure 8-39.

Figure 8-39 Output message coming from the Siebel System

6. To make sure the mediation worked properly, you can check the following:

a. Look for a value in the registrationStatus and crmAccountID fields. These
are returned by the Siebel server.

b. Log on to the Siebel system to make sure the account has been added.

Attention: When starting the application in the WebSphere Integration
Developer test environment, you may see a sequence of eight stack
frames in the SystemOut.log, starting with the following:

[3/24/06 10:00:52:844 EST] 00000061 ConnectionFac E J2CA0009E: An
exception occurred while trying to instantiate the
ManagedConnectionFactory class
com.ibm.j2ca.siebel.SiebelManagedConnectionFactory used by resource
TestSiebel/intf/SiebelOutboundInterface_CF :
java.lang.ClassNotFoundException:
com.ibm.j2ca.siebel.SiebelManagedConnectionFactory

at
com.ibm.ws.classloader.CompoundClassLoader.findClass(CompoundClassLoader.
java(Compiled Code))

The module will still work successfully. This exception only seems to
appear in the test environment. It does not appear in a WebSphere ESB
stand-alone server.
 Chapter 8. Building the CRM mediation 389

c. Check the messages logged by the Message Logger primitives. The input
message logged by the InLog mediation primitive should look similar to
Figure 8-40. If you use the MessageLogApp application shipped with the
sample, you can do this without stopping the server.

Figure 8-40 registerCustomerRequest message as logged by the InLog primitive

<?xml version="1.0" encoding="UTF-8"?>
<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:registration="http://ITSOMartLib/CustomerRegistration"
xmlns:smo="http://www.ibm.com/websphere/sibx/smo/v6.0.1">
 <context/>
 <headers>
 <SMOHeader>
 <MessageUUID>bf0600e1-0901-0000-0080-e0137fa86a21</MessageUUID>
 <Version>
 <Version>6</Version>
 <Release>0</Release>
 <Modification>1</Modification>
 </Version>
 <MessageType>Request</MessageType>
 </SMOHeader>
 </headers>
 <body xsi:type="registration:registerCustomerRequestMsg">
 <registerCustomer>
 <customerRegistrationRequest>
 <customer>
 <accountNo>1234</accountNo>
 <firstName>Gabriel</firstName>
 <lastName>Shad</lastName>
 <companyName>IBM</companyName>
 <email>gshad@hotmail.com</email>
 <password>gshad</password>
 <billingAddress>
 <name>home</name>
 <street>4265 Home Rd</street>
 <city>Raleigh</city>
 <state>NC</state>
 <zipcode>27713</zipcode>
 <country>US</country>
 <phone>(900)-898-7777</phone>
 </billingAddress>
 </customer>
 <creditRating>GOLD</creditRating>
 </customerRegistrationRequest>
 </registerCustomer>
 </body>
</smo:smo>
390 Patterns: SOA Foundation Service Connectivity Scenario

The output message that came from the Siebel System that is logged by the
OutLog mediation primitive looks like Figure 8-41.

Figure 8-41 Response message from Siebel as logged by the Outlog primitive

<?xml version="1.0" encoding="UTF-8"?>
<smo:smo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:interface="http://ITSO_CRMMed/intf/SiebelOutboundInterface"
xmlns:smo="http://www.ibm.com/websphere/sibx/smo/v6.0.1">
 <context/>
 <headers>
 <SMOHeader>
 <MessageUUID>82c529e1-0901-0000-0080-fabeb75ae853</MessageUUID>
 <Version>
 <Version>6</Version>
 <Release>0</Release>
 <Modification>1</Modification>
 </Version>
 <MessageType>Reply</MessageType>
 </SMOHeader>
 </headers>
 <body xsi:type="interface:upsertEAISiebelAdapterUpsertAccountPRMANIResponse">
 <upsertEAISiebelAdapterUpsertAccountPRMANIResponse>
 <interface:upsertEAISiebelAdapterUpsertAccountPRMANIOutput>
 <changeSummary/>
 <properties/>
 <EAISiebelAdapterUpsertAccountPRMANI>
 <ErrorCode>0x0</ErrorCode>
 <ErrorContextIntComp></ErrorContextIntComp>
 <ErrorContextSearchSpec></ErrorContextSearchSpec>
 <ErrorSymbol></ErrorSymbol>
 <OMErrorCode></OMErrorCode>
 <OMErrorSymbol></OMErrorSymbol>
 <PrimaryRowId>1-YVV</PrimaryRowId>
 <SiebelMessage>
 <CurrencyCode>USD</CurrencyCode>
 <Location>Raleigh</Location>
 <Name>Gabriel Shad</Name>
 <BusinessAddress/>
 </SiebelMessage>
 </EAISiebelAdapterUpsertAccountPRMANI>
 </interface:upsertEAISiebelAdapterUpsertAccountPRMANIOutput>
 </upsertEAISiebelAdapterUpsertAccountPRMANIResponse>
 </body>
</smo:smo>
 Chapter 8. Building the CRM mediation 391

Request flow - bronze output terminal
At this point the request flow looks like Figure 8-32 on page 380. The flow for the
gold credit rating is complete. Now we are going to continue wiring the output
terminals of CRMFilter to add the flow needed to handle a bronze credit rating.
This flow will also serve as the default flow and be connected to the default
terminal. In both cases, the message processing will be handled within the
mediation and will not need to use any imports.

In the event that the mediation flow is passed a value of bronze, or an invalid
value for the credit rating, the mediation will put “DENIED” in the statusDetail
field of the CustomerRegistrationResponse Business Object associated with the
CustomerRegistration_registerCustomer_InputResponse partner.

To build the mediation, do the following:

1. Add an XSL Transformation primitive between CRMFilter and the output
bound partner icons:

a. Change the name to XSL3.

b. Wire the bronze terminal of CRMFilter to the input terminal of XSL3.

c. Wire the default terminal of CRMFilter to the input terminal of XSL3.

d. Wire the output terminal of XSL3 to the input terminal of the
CustomerRegistration_registerCustomer_InputResponse partner.

The results are shown in Figure 8-42.

Figure 8-42 The Mediation Flow Editor after adding the XSL3 Transformation
392 Patterns: SOA Foundation Service Connectivity Scenario

2. Next we create the XML mapping that defines how the XSL3 node transforms
the CustomerRegistration input message to a direct response to the
requestor.

a. Select the XSL3 primitive.

b. In the Details tab of the Properties view, click New to create a new
mapping.

c. The new XSLT Mapping window pops up. Verify that the input message is
registerCustomerRequestMsg and that the output message is
registerCustomerResponseMsg, and click Finish. This opens the
Mapping Editor.

d. Map the statusDetails field in registerCustomerResponse to the constant
‘DENIED’ (using single quotes). This is done using the same procedure
used in to map the statusDetails field to ‘SUCCESS’ in the Gold response
flow (see page 384).

e. Map firstName and lastName to the registrationStatus field. Concatenate
firstName and lastName using the same procedure used in defining the
Name field (page 382).

The Overview view of the final mapping will look like Figure 8-43.

Figure 8-43 Overview of the XSL3 Transformation

f. Save and close the map.

g. With XSL3 still selected, go to the Details tab of the Properties view and
click Regenerate XSL. Click OK when the regeneration process
completes.

3. Save the mediation flow and the assembly diagram. Rebuild the project.
 Chapter 8. Building the CRM mediation 393

At this point the mediation flow should look like Figure 8-44.

Figure 8-44 Mediation Flow Editor before adding the Custom Mediation for the “Silver” path

Test the flow for Bronze
At this point you should be able to test the Bronze path of the CRMMed
mediation.

1. To test, switch to the Servers tab and start the WebSphere ESB Server v6.0.

2. In the Business Integration Explorer select the ITSO_CRMMed mediation
module. Right-click and select Test → Test Module. This will open the unit
test window for the mediation.
394 Patterns: SOA Foundation Service Connectivity Scenario

3. Enter values for the input and click Continue when done (see Figure 8-45).
Entering the firstName, lastName, and creditRating (BRONZE) fields is
sufficient. The mediation will automatically return a “DENIED” status when it
sees the creditRating is BRONZE.

Figure 8-45 Testing the BRONZE path

4. Select WebSphere ESB Server v6.0 as the Deployment Location when
prompted and click Finish.
 Chapter 8. Building the CRM mediation 395

After execution you should see an output message that will look like
Figure 8-46.

Figure 8-46 Reply coming from the CRMMed Meditation Module for the BRONZE path

Request flow - silver output terminal
Finally, we wire the last output terminal of CRMFilter to handle a credit rating of
silver. In this case we want to send a request to the flat file adapter to create a file
with a subset of the CustomerRegistrationRequestMsg data. That file can be
used later for further offline or asynchronous processing. This last leg of the
mediation flow will illustrate the use of a Custom mediation primitive.

1. Add a Custom primitive between CRMFilter and the OutputBound Partner
icons.

a. Change the name to Custom1.

b. Wire the silver terminal of CRMFilter to the input terminal of Custom1.

c. Wire the output terminal of Custom1 to the input terminal of the
FlatFileOutboundInterfacePartner_create_Callout partner.
396 Patterns: SOA Foundation Service Connectivity Scenario

The mediation flow should now look like Figure 8-47.

Figure 8-47 Mediation flow after adding the Custom mediation for the silver path

2. Custom primitives are used to do functions not covered by the other primitive
types. It calls a Java SCA component, which you create or provide. The target
SCA component must exist within the same mediation module as the Custom
mediation primitive.

To implement Custom1, first select it in the mediation flow. In the Details tab
of the Properties view you will see the following error:

“Service operation: cannot be empty”

a. Click the Define button to start the Define Custom Mediation wizard.
 Chapter 8. Building the CRM mediation 397

b. We do not have an existing interface for this primitive so leave the radio
button “Create a new interface with implementation” checked and click
Next (Figure 8-48).

Figure 8-48 Define Custom Mediation wizard

c. We are going to use the defaults for the message types. This includes
specifying /body as the message root.

The body of the registerCustomerRequestMsg becomes the input to
Custom1 and the body associated with createRequest becomes the return
value of Custom1.

Figure 8-49 Specify message types

Click Next.
398 Patterns: SOA Foundation Service Connectivity Scenario

d. The next panel (Figure 8-50) allows you to specify settings to create the
new interface for the Custom primitive.

Enter impl for the folder name and change the Name to Custom1.

Figure 8-50 Create a new interface

Click Next.
 Chapter 8. Building the CRM mediation 399

e. The next panel helps you generate the implementation for the Custom
primitive. We want the wizard to generate a default implementation, so
use the default selection and click Finish.

Figure 8-51 Generate a Java implementation
400 Patterns: SOA Foundation Service Connectivity Scenario

The Operation Connections view of the mediation flow should look like
Figure 8-52.

Figure 8-52 Adding a Custom mediation primitive

3. Save the mediation flow and assembly editor. Rebuild the project. You may
see the error shown in Figure 8-53.

Figure 8-53 Possible error at this point

To eliminate this message we need to merge the implementation into the
assembly diagram.

a. In the assembly diagram, right-click the CRMMed mediation component
and select Merge Implementation from the context menu.
 Chapter 8. Building the CRM mediation 401

The warning window shown in Figure 8-54 comes up.

Figure 8-54 Merge Implementation warning

b. Click OK.

c. Make sure the Create Java Component check box for CustomPartner1 is
checked and click OK.

Figure 8-55 Merge Implementation - selecting the interface
402 Patterns: SOA Foundation Service Connectivity Scenario

d. Save the assembly diagram and build the project. Any errors should go
away. The assembly diagram should look like Figure 8-56.

Figure 8-56 Assembly diagram after the new Custom interface is merged

4. We will now use the Visual Programming Editor to enter the Java code
associated with Custom1. Select Custom1 in the mediation flow (the bottom
window) and in the Properties tab, select the Implementation tab.
 Chapter 8. Building the CRM mediation 403

5. Copy and paste the code shown in Figure 8-57 inside the implementation box,
replacing the return null; statement that the tool placed there for us.

Figure 8-57 Custom primitive code

The input interface to the Custom node is the customerRegistrationRequest
input of the CustomerRegistration interface. This input type is the
CustomerRegistrationRequest data object. This code takes the firstName,
lastName, and city fields from this object as input. The output interface of the
Custom node is createInput in FlatFileOutboundInterface.

 //Random x = new Random();
 //int i = x.nextInt();
 int i = 456;
 //
 // Obtain the data from the customerRegistrationRequest message
 //
 String fname =
 a_type.getString("customerRegistrationRequest/customer/firstName");
 String lname =
 a_type.getString("customerRegistrationRequest/customer/lastName");
 String city =
 a_type.getString("customerRegistrationRequest/customer/billingAddress/city");

 String contents = "Dear: " + fname + " " + lname + " " + city ;
 com.ibm.websphere.bo.BOFactory factory =
 (com.ibm.websphere.bo.BOFactory)
new com.ibm.websphere.sca.ServiceManager().locateService("com/ibm/websphere/bo/BOFactory");
 //
 // Create all the DataObject required to build the output DataObject
 //
 DataObject createOperation =
 factory.createByElement("http://ITSO_CRMMed/FlatFileOutboundInterface", "create");
 DataObject createInput = createOperation.createDataObject("createInput");

 DataObject flatFile =
 factory.create("http://www.ibm.com/xmlns/prod/websphere/j2ca/flatfile/flatfile",
"FlatFile");
 //
 // Make sure the following directory does exist
 //
 flatFile.setString("directoryPath", "C:\\FF");
 flatFile.setString("fileName", fname + "_" + lname + "_" + i + ".txt");
 flatFile.setBytes("inputBytes", contents.getBytes());
 createInput.setDataObject("FlatFile", flatFile);

 return createOperation;
404 Patterns: SOA Foundation Service Connectivity Scenario

Figure 8-58 shows the SMO associated with customerRegistrationRequest.
From this, we built the XPath statements used in the getString calls above.

Figure 8-58 Input parameter

Tip: It is difficult to build the implementation code without being able to see
the SMOs used for input and output. To view these, we added a temporary
XSL Transformation primitive. We wired the new primitive the same as the
Custom node, with the input wired to the Silver terminal on the Filter and
the output terminal to the FlatFileOutboundInterface. Then we used the
XML mapper to view the input and output message structure. When we
were done, we simply deleted the temporary XSL Transformation primitive.
 Chapter 8. Building the CRM mediation 405

A list of all possible XPath strings available from the input parameter can be
seen in Figure 8-59.

Figure 8-59 Possible XPaths and variables

Figure 8-60 shows the output SMO.

Figure 8-60 Output parameter
406 Patterns: SOA Foundation Service Connectivity Scenario

The contents of the Implementation page should look like Figure 8-61.

Figure 8-61 Implementation page for the Custom primitive

You can see the three ways to implement the custom mediation: via the visual
editor, via a Java snippet (the default view, as above), and via a full Java
editor.

6. We want to generate random names so that we minimize the risk of
overwriting previously generated files. This requires a full-blown Java Editor.

Before going ahead with the Java work, save the contents of the
Implementation box.

7. Click the Open Java Editor button.
 Chapter 8. Building the CRM mediation 407

8. Click OK at the following warning (Figure 8-62).

Figure 8-62 Warning when switching from the snippet editor to the full-blown Java Editor

9. The Custom1PartnerCustomLogic.java file will open for editing. Locate the
code associated with the following method (Figure 8-63).

Figure 8-63 Execute Custom mediation primitive method

You should recognize the contents of this method as the code (Figure 8-57 on
page 404) you entered into the Implementation box.

a. Uncomment the following lines (Figure 8-64) (they should be right at the
top of the execute method).

Figure 8-64 Adding the a random number to the file name to provide file name
uniqueness

b. Comment out the provisional line we inserted to provide an integer
variable of name i (Figure 8-65).

Figure 8-65 Removing the temporary variable i

c. Press Ctrl+S inside the Java editor to save your code.

public DataObject execute(DataObject a_type)

//Random x = new Random();
 //int i = x.nextInt();

 int i = 456;
408 Patterns: SOA Foundation Service Connectivity Scenario

10.You will see an error by the line where the variable x is created. To fix this,
add the import required by the Random type:

a. Right-click inside the Java editor and select Source → Organize Imports,
as shown in Figure 8-66.

Figure 8-66 Adding the import required by the use of the Random type

b. Press Ctrl+S inside the Java editor again to save your code. This should
remove the error. Close the Java editor window. We are done with the
code.

11.Save the mediation flow and assembly diagram. Rebuild the project.
 Chapter 8. Building the CRM mediation 409

Response flow - silver
At this point we have completed the request flow for the silver terminal path. We
are now going to do the response flow.

1. At the bottom of the Mediation Flow Editor select the Response:
registerCustomer tab. It should look like Figure 8-67.

Figure 8-67 Response flow at this point

2. Add an XSL Transformation primitive between
FlatFileOutboundInterfacePartner and
CustomerRegistration_registerCustomer_InputReponse.

a. Rename it to XSL4.

b. Wire the output terminal of FlatFileOutboundInterfacePartner to the input
terminal of XSL4.

c. Wire the output terminal of XSL4 to the input terminal of
CustomerRegistration_registerCustomer_InputReponse.
410 Patterns: SOA Foundation Service Connectivity Scenario

The Response flow should look like Figure 8-68.

Figure 8-68 Response flow after adding XSL4

3. Create a new XML mapping that will take the output message provided by the
create operation of the flat file adapter and map it to the Customer
Registration Output message.

a. Verify that the input message to the transformation is createResponse and
that the output message from the transformation is
registerCustomerResponseMsg.

Figure 8-69 Building the map for XSL4
 Chapter 8. Building the CRM mediation 411

b. Map the statusDetails field in the registerCustomerResponse to the
constant ‘SUCCESS’ (using single quotes). This will require you to define
an XSLT function (we did this XSL2 on page 384).

c. Map fileName to registrationStatus.

The Overview view should look like Figure 8-70.

Figure 8-70 Overview of the final map for XSL4

d. Save and close the map.

4. Regenerate the XSL.

5. Save the mediation flow and assembly diagram. Rebuild the project.

Test the flow for silver
At this point you should be able to test the CRMMed mediation for the Silver
credit rating.

1. Switch to the Server tab and start the WebSphere ESB Server v6.0.

2. In the Business Integration Explorer right-click the ITSO_CRMMed mediation
module and select Test → Test Module.

This will open the unit test window for the mediation module.

Runtime requirements: The custom Java code assumes the following:

� C:\FF directory exists. This directory is specified in the implementation
code for the Custom primitive.

� Install and start CWYFF_FlatFileEAR. This is the adapter EAR file. It is
packaged automatically by WebSphere Integration Developer.

� For viewing the message logger entries, install MessageLogApp (see
“MessageLogApp application” on page 595).
412 Patterns: SOA Foundation Service Connectivity Scenario

3. Enter values for the input and click Continue (Figure 8-71). Minimum input
values are firstName, lastName, billingAddress/city, and creditRating SILVER.

Figure 8-71 Testing the SILVER path using the flat file adapter

4. Select WebSphere ESB Server v6.0 as the Deployment Location when
prompted and click Finish.
 Chapter 8. Building the CRM mediation 413

After execution you should see an output message that will look like
Figure 8-72.

Figure 8-72 CRMMed test response for the SILVER path

You should also have a new file created in the directory specified in the
custom node implementation code. In our example, this is C:\FF.

Attention: When starting the application in the WebSphere Integration
Developer test environment, you may see a sequence of stack frames in
the SystemOut.log, starting with the following:

[3/24/06 9:46:46:031 EST] 00000069 ConnectionFac E J2CA0009E: An
exception occurred while trying to instantiate the
ManagedConnectionFactory class
com.ibm.j2ca.flatfile.FlatFileManagedConnectionFactory used by resource
ITSO_CRMMed/intf/FlatFileOutboundInterface_CF :
java.lang.ClassNotFoundException:
com.ibm.j2ca.flatfile.FlatFileManagedConnectionFactory

at
com.ibm.ws.classloader.CompoundClassLoader.findClass(CompoundClassLoader.
java(Compiled Code))

The module will still work successfully. This exception only seems to
appear in the test environment. It does not appear in a WebSphere ESB
stand-alone server.
414 Patterns: SOA Foundation Service Connectivity Scenario

8.3 Calling the service from the application
The Register Customer process application calls the CRM mediation via a Web
service proxy that makes a SOAP/HTTP request. This Web service proxy is
generated based on the WSDL file that describes the mediation. This is the
WSDL file generated when you create the export for the mediation, or if you are
using the service integration bus to manage Web services, it is the WSDL file for
the inbound service that defines the mediation.

To generate a Web service proxy that calls the CRM mediation, use the WSDL
file CRMReqOn_CustomerRegistrationHttp_Service.wsdl.

Your application will also need access to any WSDL files referenced in this file,
and the XSD files for the data objects used. The best way to pick up the files you
need is to first go through the test process for the mediation. Then copy the files
found under the wsdl folder for the mediation EJB to the application EJB.

You can find these files using the Physical Resources view under
<mediationEJB>/ejbModule/wsdl.

The Register Customer process application, ITSO_RegProcServiceApp, uses a
Java utility project to hold the proxies for the services it calls. This utility project is
called ITSO_RegProcService_Proxies.

The steps required to generate the proxy are:

1. Copy or import the required files to the utility project.

2. Generate the Web service client proxy using the Web Service Client wizard.
Use the service WSDL file as input.

3. Add code to the application to call the service via the proxy.

You can see an example of this process in 7.5, “Calling the service from the
application” on page 341.
 Chapter 8. Building the CRM mediation 415

The following code (Example 8-1) in ITSO_RegProcServiceApp calls the service
using the proxy.

Example 8-1 Invoking the CRM mediation

if (registrationProcessStatus == SUCCESS) { //nothing went wrong with the CreditCheck Service

// register customer in CRM system
try {

System.out.println("ITSOMart RegistrationProcessorService.getCreditRating >> invoking
CustomerRegistration Service (soap/http)");

// check for registration denied, if denied, set registrationProcessStatus = DENIED

CustomerRegistrationRequest customerRegistrationRequest = new
CustomerRegistrationRequest();

customerRegistrationRequest.setCreditRating(creditRating);
customerRegistrationRequest.setCustomer(customer);
CustomerRegistrationProxy customerRegistrationProxy = new CustomerRegistrationProxy();
CustomerRegistrationResponse customerRegistrationResponse =

customerRegistrationProxy.registerCustomer(customerRegistrationRequest);
String accountId =customerRegistrationResponse.getCrmAccountId();
customer.setAccountNo(accountId);
String crmStatus = customerRegistrationResponse.getRegistrationStatus();
if (crmStatus.equals("SUCCESS")) registrationProcessStatus = SUCCESS;
else if (crmStatus.equals("DENIED")) registrationProcessStatus = DENIED;

//customerRegistrationResponse.getStatusDetails();
} catch (Exception customerRegistrationException) {

registrationProcessStatus = FAILURE;
registrationStatusDetails = "Failure occurred during registration process.

CustomerRegistration Service exception: " + customerRegistrationException;
}

}

8.4 For more information
For more information about the WebSphere Adapters see the following:

� WebSphere Adapter home page

http://www-306.ibm.com/software/integration/wbiadapters/

� WebSphere Adapter product documentation

http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/
doc/index.html
416 Patterns: SOA Foundation Service Connectivity Scenario

http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/doc/index.html
http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/doc/index.html
http://www-306.ibm.com/software/integration/wbiadapters/

Chapter 9. Building the Register
Shipping mediation

This chapter focuses on the Register Shipping scenario of the ITSOMart
solution.

The sample in this chapter illustrates:

� SOAP/JMS transport
� Using a mediation to simulate a service for testing
� Working with arrays in Filter and XSL Transformation primitives
� Using a Stop primitive to stop a mediation flow

This chapter includes the following topics:

� Scenario overview
� Creating the Register Shipping Service emulator
� Developing the Register Shipping mediation
� Testing the mediation
� Calling the service from the application
� Considerations for handling arrays, decomposition

9

© Copyright IBM Corp. 2006. All rights reserved. 417

9.1 Scenario overview
The Register Shipping mediation takes an incoming request and breaks it down
into multiple, simpler messages for handling by the mediation and target service.
The idea allows service requestors to use a relatively complex format for service
requests while the mediation within the ESB breaks down the request into
separate, smaller requests to send to the target services. This gives the ability to
provide a batch interface to a service when no such interface exists and allows
requestors using different message formats to continue using services even if
the service interface changes or if the service provider changes.

9.1.1 Business scenario
The first step in the Register Customer process is to evaluate the customer credit
rating. The rating is used to determine how to proceed with the registration. This
step of the process was built in Chapter 7, “Building the Credit Rating and Credit
Score mediations” on page 263.

The next step evaluates the credit rating and determines what action should be
taken with the request. The possibilities are to deny registration, send the
registration to a queue for manual handling, or register the customer. This step of
the process was built in Chapter 8, “Building the CRM mediation” on page 347.

In the event that a customer has a gold credit rating, the previous step registered
the customer in the CRM. The address registered is the customer billing address.

The Register Shipping scenario will supplement that by registering the shipping
addresses for the customer. The Register Shipping Service can only take one
address as input, but the ITSOMart solution will allow up to two addresses to be
entered. A mediation will determine whether two addresses have been entered
and send them to the Register Shipping Service one at a time.

Note: In this instance, using a mediation to perform this simple function
makes sense. However, more complex actions may need to be incorporated
into the application itself. The decision about whether to do this in the
mediation is an architectural decision that should be made after considering
the topics covered in 9.6, “Considerations for handling arrays, decomposition”
on page 447.

Note: The samples included in this chapter can be downloaded from the Web.
See Appendix A, “Sample application install summary” on page 589, for
instructions on downloading and importing the sample projects.
418 Patterns: SOA Foundation Service Connectivity Scenario

The activity diagram for the Register Shipping scenario of the ITSOMart solution
can be seen in Figure 9-1. The activity diagram for the entire process can be
seen in Figure 5-15 on page 143.

Figure 9-1 Register Shipping scenario

9.1.2 Register Shipping mediation
The call from the Register Customer process will call the Register Shipping
Service via the ESB. Since the customer can enter up to two shipping addresses,
a mediation in the ESB will determine the number of addresses entered and
register each one.
 Chapter 9. Building the Register Shipping mediation 419

Figure 9-2 shows the activity diagram for the mediation.

Figure 9-2 Register Shipping mediation activity diagram

The primary purpose of the mediation is to parse the input array of shipping
addresses, then send each to the Register Shipping Service in the format
required by the service. The mediation is invoked using SOAP/JMS. Figure 9-3
shows an overview of the Register Shipping mediation.

Figure 9-3 Register Shipping scenario

ITSO_RegisterShippingMediation
420 Patterns: SOA Foundation Service Connectivity Scenario

9.2 Creating the Register Shipping Service emulator
Unlike the other mediations in this book, we do not only create the mediation
using WebSphere Integration Developer, we also create a simple service using a
mediation module. This approach can be useful to quickly create a service using
SCA and expose that service to a variety of clients.

The following steps must be completed to create the shipping registry service:

1. Define the RegisterShippingService interface.
2. Create the Java component that implements the service.
3. Implement the mediation flow for the service.
4. Create the SOAP/JMS export binding.

Preparation
This mediation example will use the library ITSOMartLib (see 7.2.1, “Create a
library” on page 268). This library contains business objects common to all the
sample scenarios in this book. If you are working in a new workspace, you will
need to import ITSOMartLib into your workspace or recreate it and the business
objects it contains.

This chapter assumes that you have been through the earlier samples and are
familiar with the steps required to build and edit mediations, business objects,
and interfaces. If you are not familiar with these steps, review Chapter 6,
“Assemble with WebSphere Integration Developer” on page 211, and Chapter 7,
“Building the Credit Rating and Credit Score mediations” on page 263.

Note: For testing purposes, this example uses a second mediation to emulate
the service that will eventually provide the registration service. This is to
illustrate a technique that we found to be useful for a quick test. WebSphere
ESB is not intended to host services.

Important: If you are going to follow along with the instructions and build
these samples, and if you are using a Windows operating system, shorten the
mediation module names to something much shorter than what we used here
to avoid the encountering the Windows limit on path names longer than 256
characters.
 Chapter 9. Building the Register Shipping mediation 421

9.2.1 Define the RegisterShippingService interface
The following steps demonstrate how to define the RegisterShippingService
interface.

1. Create an interface named RegisterShippingService in the ITSOMartLib
project.

2. Add a one-way operation to the interface named sendShippingInfo.

3. Add an input parameter to the operation named inputSendShippingInfo and
select New as the parameter type.

4. In the New Business Object window, enter RegisterShippingServiceRequest
in the Name field and click Finish.

5. Now edit the RegisterShippingServiceRequest business object you just
created and add the fields listed in Table 9-1.

Table 9-1 RegisterShippingServiceRequest Business object

The RegisterShippingServiceRequest business object should look like
Figure 9-4.

Figure 9-4 RegisterShippingServiceRequest business object

Field Type

accountNo string

address Address
422 Patterns: SOA Foundation Service Connectivity Scenario

The interface should look like Figure 9-5.

Figure 9-5 RegisterShippingService interface

6. Save the business object and interface.

9.2.2 Create the Java component that implements the service
Unlike the other target service implementations used in the scenario, the
RegisterShippingService will be implemented as a mediation module that resides
within the service bus. This approach allows developers to quickly create a
service and provide a simple implementation without requiring additional
resources or development tools. Because the service is hosted as an SCA
module within WebSphere ESB, the service may be quickly tested and used by
other SCA modules using a number of different export bindings without
re-generating the service. This allows the developer to focus on the basic service
implementation without worrying about generating Web service client proxies, or
testing with network bindings.

Now that the RegisterShippingService interface has been defined, you must
create the mediation module that will implement the service. Do this using the
following steps:

1. Create a new mediation module:

a. Enter ITSO_ShippingRegistrationService for the name.
b. Select WebSphere ESB Server v6.0 as the target runtime.
c. Select Create mediation flow component.
d. Add ITSOMartLib as a required library.

Note: This approach is very useful for testing and debugging the mediation
without requiring additional services or resources. However, for production,
Web services should be implemented using traditional means (not as
mediation modules).

Note: This module is named SRSvc in the sample zip file.
 Chapter 9. Building the Register Shipping mediation 423

2. Open the assembly diagram for the new mediation module you have created.

3. Drag a new Java component onto the diagram. To do this, click the mediation
flow icon. You will then see both the mediation flow icon and a Java
component icon (Figure 9-6).

Figure 9-6 Selecting the Java component

Rename the component ShippingRegistrationServiceComponent.

4. Drag and drop the RegisterShippingService interface to the new Java
component. Be sure to drop this onto the component and not as a new
component in the assembly. You will see the interface icon added to the
component.

5. Right-click the component and select Generate Implementation.

Create the component into a new package named
com.ibm.itso.shippingregsistrationservice.

6. Implement the sendShippingInfo method with code from Example 9-1.

Example 9-1 Sample service implementation

public void sendShippingInfo(DataObject inputSendShippingInfo) {
System.out.println("ShippingAddressServiceComponentImpl.registerShippingAddress");
String accountNo = inputSendShippingInfo.getString("accountNo");
System.out.println("registerShipingAddress accountNo: " + accountNo);
DataObject address = inputSendShippingInfo.getDataObject("address");
if (address != null) {

String name = address.getString("name");
String street = address.getString("street");
String city = address.getString("city");
String state = address.getString("state");
String zipcode = address.getString("zipcode");
String country = address.getString("country");
String phone = address.getString("phone");
System.out.println("registerShippingAddress address: [" +

name + ", " +
street + ", " +

Mediation flow icon

Java icon
424 Patterns: SOA Foundation Service Connectivity Scenario

city + ", " +
state + ", " +
zipcode + ", " +
country + ", " +
phone + "]");

}
else {

System.out.println("No address provided!");
}

}

7. If you see errors that indicate that the class does not import the correct
classes, right-click in the Java editor window and select Source → Organize
Imports from the Source menu.

8. Close the Java editor.

9. Save the assembly diagram (but leave it open).

You have now created the service implementation. The assembly diagram
should look like Figure 9-7.

Figure 9-7 The assembly diagram after completing the Java component implementation

Tip: If you attempt to generate an implementation before adding the
RegisterShippingService interface, the generated class will not have the
sendShippingInfo method.

To fix this, add the interface to the component and select Regenerate
Implementation. Be aware that doing this will erase any changes you
have already made to the implementation class.

At times we found that WebSphere Integration Developer did not add the
new method when regenerating the implementation. In this case, simply
remove the component, drop a new Java component onto the assembly
diagram, and add the interface before generating the implementation.
 Chapter 9. Building the Register Shipping mediation 425

9.2.3 Implement the mediation flow for the service
If the service were being implemented in a business module to be hosted by
WebSphere Process Server, you could add an export with whatever binding you
like and wire that export directly to the Java component. However, WebSphere
ESB does not support business modules, only mediation modules.

In order to properly create a mediation module, the module must contain a
mediation flow component. Otherwise, WebSphere ESB will return error
messages when trying to deploy the module. Because you are trying to use this
module to create a service implementation, the mediation flow does not need to
do anything. However, the mediation module allows a message logger to be
attached to the incoming request flow for debugging purposes so the example
will demonstrate this.

To implement the mediation flow, complete the following steps:

1. Rename the mediation flow component (Mediation1) to
ShippingRegistrationService.

2. Wire the mediation flow component to the Java component you created
earlier and click OK if you are asked about creating a matching reference.

3. Add an export component to the assembly diagram and rename the export to
ShippingRegistrationServiceExport.

4. Wire the export component to the mediation flow component:

a. Select OK to the Add Wire message.
b. Select the RegisterShippingService interface.

Your assembly diagram should look like Figure 9-8.

Figure 9-8 Service mediation - ITSO_ShippingRegistrationService

Note: The example code does not perform any concrete actions. Rather, its
only purpose is to demonstrate the shipping registration service function so
that when the mediation is implemented, you can see the service working.
426 Patterns: SOA Foundation Service Connectivity Scenario

5. Right-click the ShippingRegistrationService mediation flow component and
select Generate Implementation. Select the default folder. The new
mediation flow will open.

6. In the Mediation Flow editor, wire the RegisterShippingService to the
RegisterShippingServicePartner, as shown in Figure 9-9. You should now see
the starting and endpoint nodes in the window below (Figure 9-9). In this case
there is one input node and one callout node.

Figure 9-9 Mediation flow

7. Add a Message Logger primitive to the mediation flow and rename it
RegisterShippingServiceRequestLogger.

8. Wire the mediation flow as shown in Figure 9-10.

Figure 9-10 Mediation flow with Message Logger

9. Save and close the mediation flow.

10.Save the assembly diagram but leave it open.

You have now completed the mediation flow for the service.

9.2.4 Create the SOAP/JMS export binding
With the service implementation and the mediation flow completed, you will now
need to generate a binding for the export. In this example you will select
 Chapter 9. Building the Register Shipping mediation 427

SOAP/JMS (though realistically almost any binding would suffice). To test
alternate bindings, you could create additional exports on the assembly diagram
or regenerate the existing export binding. This allows rapid testing of different
client access protocols without regenerating the service implementation.

1. In the module assembly, right-click the ShippingRegistrationServiceExport
component and select Generate Binding → Web Service Binding.

a. Select Yes when asked about automatic wsdl file generation.
b. Select soap/jms as the transport.

2. Save and close the assembly diagram. Rebuild the project.

You have now created a SOAP/JMS binding for your service implementation.
The export module should look like Figure 9-11 (note the change in the icon).

Figure 9-11 The SOAP/JMS export

Additionally, you should now see a Web Service Ports folder and a port for the
Web service under the mediation module in the Business Integration view, as
shown in Figure 9-12.

Figure 9-12 Web Service Ports

The service implementation is now complete and available. You will now create
the mediation module to decompose the array of shipping addresses into
individual requests.
428 Patterns: SOA Foundation Service Connectivity Scenario

9.3 Developing the Register Shipping mediation
Now that you have created the shipping registration service, you will need to
create the mediation that transforms the Customer object used throughout the
process into the ShippingRegistrationServiceRequest message object.

9.3.1 Mediation development steps
Figure 9-13 shows the mediation module contents we are going to build.

Figure 9-13 Register Shipping mediation assembly diagram

Building this mediation involves the following steps:

1. Define the ShippingRegistration interface.
2. Create the mediation module.
3. Implement the mediation flow.
4. Export the module as a Web service.

9.3.2 Define the ShippingRegistration interface
The following steps demonstrate how to define the ShippingRegistration
interface that will be used by the registration process. When you are finished, the
interface should look like Figure 9-15 on page 430. The request message object
definition should look like Figure 9-14 on page 430.

1. Create an interface named ShippingRegistration in the ITSOMartLib project.

2. Add a one-way operation to the interface named registerCustomerShipping.

3. Add an input parameter to the operation named
shippingRegistrationRequest and select New as the parameter type.

In the New Business Object window, enter ShippingRegistrationRequest in
the Name field and click Finish.
 Chapter 9. Building the Register Shipping mediation 429

4. Edit the new ShippingRegistrationRequest business object and add a single
field named customer of type Customer (Figure 9-14).

Figure 9-14 ShippingRegistrationRequest business object

5. Save and close the business object.

6. You have now created the ShippingRegistration interface. It should look like
Figure 9-15.

Figure 9-15 ShippingRegistration mediation interface

Save and close the new interface.

9.3.3 Create the mediation module
Now that you have created the mediation interface, you will need to create the
mediation module that performs the actual message mediation. Do this using the
following steps:

1. Create a new mediation module:

a. Enter ITSO_RegisterShippingMediation for the name.
b. Select WebSphere ESB Server v6.0 as the target runtime.
c. Select Create mediation flow component.
430 Patterns: SOA Foundation Service Connectivity Scenario

d. Select ITSOMartLib as a required library.

2. Open the assembly diagram for the new mediation module.

3. You will now need to import the WSDL file for the SOAP/JMS Web service
you created earlier. To do this, switch to the Physical Resources view.

a. Find and select the WSDL file under the
ITSO_ShippingRegistrationService project (Figure 9-16).

Figure 9-16 Physical resources

b. Right-click and select Copy from the context menu.

c. Right-click the ITSO_RegisterShippingMediation module and select
Paste.

This copies the WSDL file from the service implementation module into the
mediation module.

Note: This module is in the sample zip file as RSMed.

Tip: To switch to the Physical Resources view, right-click in the Business
Integration view and select Show Files.
 Chapter 9. Building the Register Shipping mediation 431

4. Once done, the Business Integration view for your mediation module should
show a Web Service Ports item for the Web service. Figure 9-17 shows the
imported Web service.

Figure 9-17 Imported Web service ports

5. To use the Web service, select the Web service port and drop it onto the
assembly diagram.

Select Import with Web Service Binding from the Component Creation
pop-up and click OK.

6. Rename the new import component to RegisterShippingServiceImport.

7. Drop an export component onto the assembly diagram and rename it to
RegisterShippingMediationExport.

8. Add the ShippingRegistration interface to the export component.

9. Rename the mediation flow component (Mediation1) to
RegisterShippingMediation.

10.Create a wire from the export component to the mediation flow component.

Click OK in the Add Wire message dialog.

11.Create a wire from the mediation flow component to the import component.

Click OK in the Add Wire message dialog.
432 Patterns: SOA Foundation Service Connectivity Scenario

The assembly diagram should look like Figure 9-18.

Figure 9-18 ITSO_RegisterShippingMediation assembly diagram

12.Save the assembly diagram.

9.3.4 Implement the mediation flow
The mediation flow is responsible for splitting the incoming Customer business
object into a series of messages that conform to the RegisterShippingService
interface. To do this you will need to use the Message Filter primitive to
decompose the message and the XSL Transformation primitive to extract the
message content for the downstream service.

Create the mediation flow
To create the mediation flow, do the following:

1. In the module assembly, right-click the mediation flow component and select
Generate Implementation from the menu. Select the default location. This
will open the new mediation flow.
 Chapter 9. Building the Register Shipping mediation 433

2. In the Operation Connections view, draw a wire between the
ShippingRegistration and the RegisterShippingServicePartner. You should
now see the input and callout nodes in the mediation flow view.

Figure 9-19 Mediation flow

Add the Message Filter primitive for routing
The first primitive in the mediation flow is a Message Filter primitive. The filter
determines the number of shipping addresses in the incoming Customer
business object, separates the addresses in the array, and routes each request
to the shipping service.

In the mediation flow:

1. Drop a Message Filter primitive onto the mediation flow diagram. Connect the
ShippingRegistration_registerCustomShipping_Input to the message filter
input terminal. Change the name to FilterAddresses.

2. Right-click the filter and select Add Output Terminal.

a. Change the terminal name to Address1.
b. Click OK.
434 Patterns: SOA Foundation Service Connectivity Scenario

3. Add a second output terminal:

a. Change the terminal name to Address2.
b. Click OK.

4. Select the filter, and in the Details tab of the Properties view:

a. Change the distribution mode to All.

b. Click Add next to the filters.

i. Select Address1 as the terminal name.

ii. Click Custom XPath.

iii. Expand the nodes under the body node in the XPath Expression
Builder until you reach the shippingAddress[] node (the [] indicates that
this is an array). When you click the shippingAddress[] node, a pop-up
will appear asking for the index for the repeating element. Enter a 1 into
this pop-up to indicate the first element in the array and click OK.

iv. Click Finish in the Add/Edit window.

The XPath expression should match Example 9-2 and the terminal name
should be Address1.

Example 9-2 XPath expression for terminal Address1

/body/registerCustomerShipping/shippingRegistrationRequest/customer/shippingAddress[1]

c. Click Add next to the filters and select Address2 as the terminal name.

Rather than using the XPath Expression Builder, enter the XPath
expression, as show in Example 9-3.

Example 9-3 XPath expression for terminal Address2

/body/registerCustomerShipping/shippingRegistrationRequest/customer/shippingAddress[2]

5. When you are finished, the details for the filter should appear as shown in
Figure 9-20.

Figure 9-20 Details of the filter
 Chapter 9. Building the Register Shipping mediation 435

6. Save the mediation flow and assembly diagram.

Add an XSL Transformation primitive
The message containing the address must be transformed into a format as
appropriate for the downstream shipping registration service. You will use XSL
Transformation primitives to achieve this.

1. Drop two XSL Transformation primitives onto the mediation flow. Rename
them XSLAddress1 and XSLAddress2, respectively.

2. Wire the output from the filter’s Address1 terminal to XSLAddress1 and
Address2 to XSLAddress2.

3. Connect the output terminals from both XSLAddress1 and XSLAddress2 to
the RegisterShippingServicePartner.

4. In the Details tab of the Properties view for XSLAddress1:

a. Click New to create a new XML mapping.

The New XSLT Mapping window should automatically populate
registerCustomerShippingRequestMsg as the input message body and
sendShippingInfoRequestMsg as the output message body.

b. Click Finish.

c. Expand the nodes in the source and target frames.
436 Patterns: SOA Foundation Service Connectivity Scenario

d. Map the customer[0..1] array to inputSendShippingInfo. To do this, drag
customer[0..1] to inputSendShippingInfo (Figure 9-21).

Figure 9-21 XSL Mapping

e. Map accountNo to accountNo.

To do this, select accountNo in the source pane, then select accountNo
in the target pane. With both highlighted, right-click accountNo in the
target pane and select Match Mapping from the menu.

f. Map shippingAddress to address.

To do this, select shippingAddress in the source pane and then select
address in the target pane. With both highlighted, right-click address in
the target pane and select Match Mapping from the menu.

g. Save and close the XSLT Mapping window.

5. Click Regenerate XSL to generate an XSL style sheet for the mapping you
have just created. Click OK.

6. You will now need to customize the XSL style sheet manually to select only
the appropriate shipping address from the array. Since this is the XSL for
XSLAddress1, you will need to modify the XSL to only match the first shipping
address element. To do this, click Edit next to the XSL.
 Chapter 9. Building the Register Shipping mediation 437

7. Replace the XSL that reads:

<xsl:apply-templates select=”shippingAddress”/>

with:

<xsl:apply-templates select=”shippingAddress[1]”/>

And replace the XSL that reads:

<xsl:template match=”shippingAddress”>

with:

<xsl:template match=”shippingAddress[1]”>

Save and close the XSL file.

Example 9-4 shows the relevant listing for XSLAddress1.

Example 9-4 XSL for XSLAddress1

</xsl:template>

 <!-- Composed element template -->
 <xsl:template match="customer">
 <inputSendShippingInfo>
 <accountNo>
 <xsl:value-of select="accountNo/text()"/>
 </accountNo>
 <xsl:apply-templates select="shippingAddress[1]"/>
 </inputSendShippingInfo>
 </xsl:template>

 <!-- Rename transformation template -->
 <xsl:template match="shippingAddress[1]">
 <address>
 <xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>
 </address>
 </xsl:template>

 <!-- Identity transformation template -->

8. Repeat the previous steps to create an identical mapping for XSLAddress2.
However, when modifying the XSL, replace shippingAddress with
shippingAddress[2].

Note: What you are doing here is ensuring that the XSL only matches the
first shippingAddress element in the incoming message.
438 Patterns: SOA Foundation Service Connectivity Scenario

Example 9-5 shows the relevant list for XSLAddress2.

Example 9-5 XSL for XSLAddress2

</xsl:template>

 <!-- Composed element template -->
 <xsl:template match="customer">
 <inputSendShippingInfo>
 <accountNo>
 <xsl:value-of select="accountNo/text()"/>
 </accountNo>
 <xsl:apply-templates select="shippingAddress[2]"/>
 </inputSendShippingInfo>
 </xsl:template>

 <!-- Rename transformation template -->
 <xsl:template match="shippingAddress[2]">
 <address>
 <xsl:apply-templates
select="*|@*|comment()|processing-instruction()|text()"/>
 </address>
 </xsl:template>

 <!-- Identity transformation template -->

9. Save the mediation flow.

The mediation flow should look like Figure 9-22.

Figure 9-22 RegisterShippingMediation mediation flow
 Chapter 9. Building the Register Shipping mediation 439

Add a Stop primitive to stop the flow if no address is provided
Although you have completed all of the basic functionality required for the
mediation flow, there a few other things that would make the mediation flow more
usable. For example, what if the incoming customer message had no shipping
addresses at all? Currently, the registration user interface does not permit this
situation, but other services that use the mediation might not have similar
checks. Also, it would be nice to log the separate addresses that were output by
the XSL primitive for testing.

To log requests that contain no shipping addresses do the following.

1. Add a Message Logger primitive to the mediation flow:

a. Change its name to NoAddress.

b. Wire the default output terminal of the message filter to the NoAddress
logger. The default output terminal is the top output terminal shown on the
primitive and has the name default.

2. Add a Stop primitive to the mediation flow. Connect the output terminal from
the NoAddress Message Logger to the Stop primitive. This prevents further
processing of the message. The completed mediation flow appears in
Figure 9-23.

Figure 9-23 Mediation flow

3. Save the mediation flow.
440 Patterns: SOA Foundation Service Connectivity Scenario

Add message logging for debugging
For initial debugging, it may be useful to insert Message Logger primitives to the
output terminals of XSLAddress1 and XSLAddress2 to ensure that the
appropriate shipping address is being extracted by the XSL transform. To do this:

1. Add two Message Logger primitives to the mediation flow. Name them
Address1Log and Address2Log, respectively.

2. Remove the two wires from the output of XSLAddress1 and XSLAddress2.

3. Wire the output of XSLAddress1 to Address1Log.

4. Wire the output from Address1Log to the RegisterShippingServicePartner.

5. Wire the output of XSLAddress2 to Address2Log.

6. Wire the output from Address2Log to the RegisterShippingServicePartner.

The mediation flow appears in Figure 9-24.

Figure 9-24 Mediation flow with logging

7. Save the mediation flow.

You have now completed the implementation of the mediation flow.
 Chapter 9. Building the Register Shipping mediation 441

9.3.5 Export the module as a Web service
You will now need to generate an export binding on the
RegisterShippingMediationExport so that the mediation may be invoked by the
registration processor. This is done in the same way as with the shipping
registration service using the following steps:

1. In the assembly diagram, right-click the RegisterShippingMediationExport
and select Generate Binding → Web Service Binding.

a. Select Yes when asked about automatic wsdl file generation.
b. Select soap/jms as the transport.

2. Save the assembly diagram and rebuild the project.

You have now created a SOAP/JMS binding for your mediation module.
Additionally, you should now see a Web Service Ports item in the mediation
module and a port for the Web service.

You have now completed all of the steps necessary for the shipping registration
mediation and the service implementation.

9.4 Testing the mediation
Now that you have built the mediations, it is time to test them. As a best practice,
try to test the modules with the smallest number of dependencies first to ensure
that the module is working before moving on to test the multiple modules
together. In this case, you will first test the shipping registration service and then
test the mediation.

Runtime configuration
Because the mediation uses a service that also resides in the bus, no services
need to be installed.

For viewing the log entries made by the Message Logger primitives, install the
MessageLogApp sample application. (See Appendix A, “Sample application
install summary” on page 589.) You can open the application to view the log
entries using the following URL:

http://localhost:9080/MessageLogWeb/faces/MessageLogView.jsp

Note: Because there was originally a port for the WSDL you copied from the
service implementation, you should now see two Web service ports in the
mediation module.
442 Patterns: SOA Foundation Service Connectivity Scenario

Because you are using SOAP/JMS as a transport, JMS objects and bus
destinations will be required. However, these are created for you automatically
when you deploy the mediation.

9.4.1 Testing the RegisterShippingService emulator
First, test the service that handles the shipping address registration:

1. Start the WebSphere ESB Server test environment.

2. Add the ITSO_ShippingRegistrationService application to the server.

3. Open the assembly diagram for the ITSO_ShippingRegistrationService
mediation. Right-click in the assembly diagram and select Test Module to
launch the test client.

4. Set the values in the test client:

a. The test client allows you to set details for the test, including the
component to test. The default component is the mediation flow
component. Change this to select the ShippingRegistrationServiceExport
component so that you are testing the complete module, from the export
through the mediation and all the way to the Java component.

b. Fill in some test data for the request. The service does not require any test
data at all, but it is a good idea to fill in complete test data so that you can
see the service working properly. Sample test data can be found in
Figure 9-25.

Figure 9-25 Sample data for testing
 Chapter 9. Building the Register Shipping mediation 443

5. Check the test client events pane to make sure that requests were generated
for the export, through the mediation, and ultimately to the Java component.
Also check the output logs for messages, as shown in Example 9-6.

Example 9-6 Sample content from output log

... ShippingAddressServiceComponentImpl.registerShippingAddress

... registerShipingAddress accountNo: 2112

... registerShippingAddress address: [John Doe, 123 Fake St,
Faketown, CA, 90101, US, 555.555.1212]

6. You can also use the MessageLogApp sample application to examine the
database entries in the Message Logger database. You should see a log
entry for the RegisterShippingServiceLogger. Clicking that entry, you should
see the contents of the logged message, as in Example 9-7.

Example 9-7 Sample message logger content

<sendShippingInfo>
 <inputSendShippingInfo>
 <accountNo>2112</accountNo>
 <address>
 <name>John Doe</name>
 <street>123 Fake St</street>
 <city>Faketown</city>
 <state>CA</state>
 <zipcode>90101</zipcode>
 <country>US</country>
 <phone>555.555.1212</phone>
 </address>
 </inputSendShippingInfo>
 </sendShippingInfo>

9.4.2 Test the Register Shipping mediation
Next, test the mediation that calls the service. This will test the application
end-to-end:

1. Start the WebSphere ESB Server test environment.

2. Add the mediation application for RegisterShippingService and
RegisterShippingMediation to the server. Note that all JMS configuration
required for the export using soap/jms transport is done automatically when
you deploy.

3. Launch the test client for the RegisterShippingMediation module.

4. Set the values in the test client.
444 Patterns: SOA Foundation Service Connectivity Scenario

a. Make sure to select the RegisterShippingMediationExport component so
that you are testing the complete module, from the export through the
mediation, and all imports that then call the service module.

b. Fill in some test data for the request. The service does not require any test
data at all, but it is a good idea to fill in complete test data so that you can
see the service working properly.

5. Check the test client events pane to make sure that requests were generated
for the export, through the mediation and the service import, and ultimately
through the service export to the Java component. Also check the output logs
for messages. You should see a separate output message for each of the
shippingAddress[] elements you added.

6. You can also use the MessageLogApp sample application to examine the
database entries in the Message Logger database. You should see log
entries for the Address1Logger, Address2Logger, or NoAddressLogger and
RegisterShippingServiceLogger based on the number of shipping addresses
you entered.

7. Try testing the service with no shipping addresses, one shipping address, and
then two shipping addresses to ensure that all of the cases in the mediation
flow work properly.

9.5 Calling the service from the application
The Register Customer process application calls the Register Shipping
mediation via a Web service proxy that makes a SOAP/JMS request. This Web
service proxy is generated based on the WSDL file that describes the mediation.
This is the WSDL file generated when you create the export for the mediation, or
if you are using the service integration bus to manage Web services, it is the
WSDL file for the inbound service that defines the mediation.

To generate a Web service proxy that calls the Register Shipping mediation, use
the RegisterShippingMediationExport_ShippingRegistrationJms_Service.wsdl
WSDL file.

Your application must also have access to any WSDL files referenced in this file,
and the XSD files for the data objects used. The best way to pick up the files you
need is to first go through the test process for the mediation. Then copy the files
found under the wsdl folder for the mediation EJB to the application EJB.

Tip: In order to test the shippingAddress array elements, right-click
shippingAddress[] and select Add Element from the menu.
 Chapter 9. Building the Register Shipping mediation 445

You can find these files using the Physical Resources view under
<mediationEJB>/ejbModule/wsdl.

The Register Customer process application, ITSO_RegProcServiceApp, uses a
Java utility project to hold the proxies for the services it calls. This utility project is
called ITSO_RegProcService_Proxies.

The steps required to generate the proxy are:

1. Copy or import the required files to the utility project.

2. Generate the Web service client proxy using the Web Service Client wizard.
Use the service WSDL file as input.

3. Add code to the application to call the service via the proxy.

You can see an example of this process in 7.5, “Calling the service from the
application” on page 341.

The following code in ITSO_RegProcServiceApp calls the service using the
proxy (Example 9-8).

Example 9-8 Invoking the Register Shipping mediation

if (registrationProcessStatus == SUCCESS) { // if nothing went wrong with the
CustomerRegistration Service and the customer was not denied registration

 // register shipping addresses

 try {
 System.out.println("ITSOMart RegistrationProcessorService.getCreditRating

>> invoking ShippingRegistration Service (soap/jms)");
 ShippingRegistrationProxy shippingRegistrationProxy = new

ShippingRegistrationProxy();
 ShippingRegistrationRequest shippingRegistrationRequest = new

ShippingRegistrationRequest();
 shippingRegistrationRequest.setCustomer(customer);

shippingRegistrationProxy.registerCustomerShipping(shippingRegistrationRequest);
 } catch (Exception shippingRegistrationException) {
 registrationProcessStatus = FAILURE;
 registrationStatusDetails = "Failure occurred during registration process.

ShippingRegistration Service exception: " + shippingRegistrationException;
 }

 }
446 Patterns: SOA Foundation Service Connectivity Scenario

9.6 Considerations for handling arrays, decomposition
Although this scenario successfully uses a filter to handle an array in the input
data, you should note that there are aspects of this implementation that could be
considered limitations to building a more advanced mediation.

If you want to implement a true decomposition/recomposition scenario where the
mediation can handle a message with an unknown number of address
sub-elements (0..* cardinality) and gather a set of responses from the target
services, WebSphere ESB may not be the proper choice to implement your ESB.

9.6.1 Handling an unknown number of input request elements
The first aspect of the scenario to consider is the fairly limiting assumption that
there can be at most two shipping addresses in the incoming message.

The Message Filter primitive requires an output terminal for each outbound
request invocation. That is, a single terminal may only result in a single call to the
partner service. There is no way to dynamically create terminals on the Message
Filter primitive at runtime.

In addition, the XPath expression used to determine whether to fire a terminal
was based on a specific occurrence of the shippingAddress sub-element. For
example, the Address1 terminal XPath ends with shippingAddress[1], which only
fires if there is at least one shippingAddress sub-element. The Address2 terminal
XPath ends with shippingAddress[2], which only fires if there are at least two
shippingAddress sub-elements.

Without knowing the maximum number of shippingAddress sub-elements, there
is no way to determine how many output terminals should fire. These restrictions
mean that there is a non-trivial amount of work that must be done to handle each
shippingAddress within the incoming message.

While none of the mediation primitives include a looping mechanism that would
allow you to invoke a downstream service multiple times, this type of functionality
is easily handled in BPEL.

One possibility is to use a Custom mediation. A custom mediation is
implemented using Java code and may directly manipulate the message as it
flows through the mediation. Using Java, the integration developer could
decompose the message regardless of the number of shippingAddress
sub-elements. However, this approach also has limitations. Like any other
mediation primitive, the custom mediation may only invoke a Partner service
once for each output terminal. To get around this, you could have the Java
component access the service directly and invoke the service (for example, drop
 Chapter 9. Building the Register Shipping mediation 447

messages onto a JMS queue if the service is operating over JMS or generate
SOAP requests for Web service implementations). This direct approach would
solve both the output terminal issue as well as the issue of recomposing replies
from the service. However, doing this would defeat the componentry of the
mediation flows, as the call to the downstream service is now hard coded into the
mediation. Changes to the downstream service now could require significant
changes to the custom mediation, which would not be desirable. Alternatively,
you could create a mediation module with an SCA export wired directly to the
appropriate service import. The custom mediation module performing the
disaggregation then invokes the SCA export rather than calling the service
directly.

9.6.2 Handling multiple responses
The other anomaly in the shipping registration scenario is that the shipping
registration service sendShippingInfo operation is a one-way operation rather
than a request-response. The reason for this is because WebSphere ESB offers
no easy way to accept multiple response messages for a single request.

The separation of mediating the request and response flow also means that in
the response flow, the mediation has no easy way of determining how many
outbound requests were sent and thus how many responses the mediation
should wait to receive. WebSphere Integration Developer allows the mediation to
be created, but when the mediation module is run within WebSphere ESB, an
exception stating that multiple responses were received for a single invocation,
which is an error condition.

If handling multiple responses is a requirement of your solution, you should
consider using WebSphere Message Broker.
448 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 10. Building Log Registration
mediation

This chapter shows an example of using messaging to Access Services. In
previous chapters, SOAP/JMS and SOAP/JMS were the transport mechanisms
used. In this chapter we look at using JMS to put messages on a queue. The
queues exist on the service integration bus during the testing phase. Later in
Chapter 11., “Deploy with WebSphere ESB” on page 479, we show you how to
integrate WebSphere MQ into the environment.

The mediation built for this example illustrates the following:

� SOAP/JMS and JMS transport
� One-way operation
� XSL transformation of the message
� Routing messages
� Message logging in the mediation
� Fault handling
� WebSphere MQ integration

This chapter includes the following topics:

� Scenario overview
� Developing the mediation
� Testing the mediation
� Calling the service from the application

10
© Copyright IBM Corp. 2006. All rights reserved. 449

10.1 Scenario overview
This chapter focuses on the Log Registration scenario of the ITSOMart solution.

10.1.1 Business scenario
The first step in the Register Customer process is to evaluate the customer credit
rating. The rating is used to determine how to proceed with the registration. This
step of the process was built in Chapter 7, “Building the Credit Rating and Credit
Score mediations” on page 263.

The next step evaluates the credit rating and determines what action should be
taken with the request. The possibilities are to deny registration, send the
registration to a queue for manual handling, or register the customer. This step of
the process was built in Chapter 8, “Building the CRM mediation” on page 347.

In the event that a customer has a gold credit rating, the previous step registered
the customer in the CRM. The address registered is the customer billing address.
The Register Shipping scenario supplements that by registering the shipping
addresses for the customer. This step of the process was built in Chapter 9,
“Building the Register Shipping mediation” on page 417.

Last, the transaction is logged into an audit system. There are three possible
values for the status of the customer registration:

� SUCCESS: The customer has a gold or silver credit rating.

� DENIED: The customer has a bronze credit rating.

� FAILURE: An exception has occurred during normal processing. For
example, an exception is thrown by the CRM mediation if the credit rating is
gold and the Siebel system is not available. A FAILURE condition will also
occur if the Credit Score mediation throws an exception during the database
lookup for a key not found condition.

A separate log is kept for each status. A mediation is used to route the request to
the proper log in the audit system.

Note: The samples included in this chapter can be downloaded from the Web.
See Appendix A, “Sample application install summary” on page 589, for
instructions on downloading and importing the sample projects.
450 Patterns: SOA Foundation Service Connectivity Scenario

The activity diagram for the Log Registration scenario of the ITSOMart solution
can be seen in Figure 10-1. The activity diagram for the entire process can be
seen in Figure 5-15 on page 143.

Figure 10-1 Log Registration scenario

10.1.2 Log Registration mediation
The call from the Register Customer process will call the Audit System service
via the ESB. Since the log used to record the transaction depends on the status
of the customer registration request, a mediation will be used to route the request
to the proper log.
 Chapter 10. Building Log Registration mediation 451

Figure 10-2 shows the activity diagram for the mediation.

Figure 10-2 Log Registration mediation activity diagram

The mediation is invoked using SOAP/JMS. The audit system uses messaging
and WebSphere MQ for transport.

10.2 Developing the mediation
This sample demonstrates how a mediation flow can be invoked as a SOAP/JMS
Web service and then have the inbound message payload passed on to
WebSphere MQ queues. We do this by binding import components to JMS
queues and then configuring an MQLINK on the service integration bus to move
messages over to queues that reside in a WebSphere MQ queue manager.

We also show how enumerations can be used in a business object to provide
constraints on attribute values (a scenario in which you can use the Stop
mediation primitive to dispose of invalid messages) and how to perform
content-based routing to route messages to different JMS queues.
452 Patterns: SOA Foundation Service Connectivity Scenario

Figure 10-3 shows the mediation module contents we are going to build.

Figure 10-3 Log Registration mediation assembly diagram

The steps required to build the Log Registration mediation are:

1. Create the mediation module.
2. Create the business object.
3. Build the interface.
4. Assemble the mediation components.
5. Bind the imports to JMS.
6. Build the mediation flow.

Preparation
This mediation example uses the library ITSOMartLib (see 7.2.1, “Create a
library” on page 268). This library contains business objects common to all the
sample scenarios in this book. If you are working in a new workspace, you must
import ITSOMartLib into your workspace or recreate it and the business objects it
contains.

This chapter assumes that you have been through the earlier samples and are
familiar with the steps required to build and edit mediations, business objects,
and interfaces. If you are not familiar with these steps, review Chapter 6,
“Assemble with WebSphere Integration Developer” on page 211, and Chapter 7,
“Building the Credit Rating and Credit Score mediations” on page 263.
 Chapter 10. Building Log Registration mediation 453

10.2.1 Create the mediation module
The first step is to create a mediation module. The interfaces and business
objects for this mediation will be added to the Library project, ITSOMartLib. You
will add this library as a dependency when you create the mediation module.

Create a mediation module by right-clicking in the Business Integration view and
selecting New → Mediation module.

1. Name the mediation module ITSO_RegLogMed and be sure to check the box
that allows the wizard to create the mediation flow component.

2. Select WebSphere ESB Server as the target runtime and click Next.

3. Check the box by the library ITSOMartLib and click Finish.

10.2.2 Create the business object
We only need one additional business object for this mediation. This is the
business object that will be passed to the mediation.

1. Create a business object in ITSOMartLib:

a. Enter RegistrationLogRequest as the name.
b. Add the attributes in Table 10-1.

Table 10-1 Attributes to add

Attribute Type

customer Customer

creditRating string

registrationStatus string

registrationStatusDetails string

registrationDate dateTime
454 Patterns: SOA Foundation Service Connectivity Scenario

This business object should now look like Figure 10-4.

Figure 10-4 RegistrationLogRequest business object

2. Select the registrationStatus attribute and look at its properties in the
Properties view.

A useful feature we want to demonstrate with this business object is the use
of enumerations as a type of constraint that you can specify on the values that
can be entered for this attribute.

a. Indicate that this attribute is required by selecting the Required check
box.

b. Select Only permit certain values and then Enumerations.
 Chapter 10. Building Log Registration mediation 455

c. Click Add. A new string called value will appear in the window. Type
SUCCESS over the name. Click Add two more times to enter DENIED and
FAILURE.

Figure 10-5 Enumerations

d. Save and close the business object.

You will see how these enumerations can be used later when you build
the mediation flow.

10.2.3 Build the interface
We only need one interface for this mediation. This will be the interface to the
mediation as well as the interface to all of the import components with which the
the mediation will interact.

1. Create an interface in ITSOMartLib. Enter RegistrationLog as the name.

2. Define a one-way operation. Enter logCustomerRegistration as the name.

3. Add an input parameter:

a. Enter registrationLogRequest as the name.
b. Select RegistrationLogRequest as the type.
456 Patterns: SOA Foundation Service Connectivity Scenario

The RegistrationLog interface should look like Figure 10-6.

Figure 10-6 RegistrationLog interface

4. Save and close the interface.

10.2.4 Assemble the mediation components
Next we add the SCA components (export, imports, and mediation flow
component) to the assembly diagram and wire them together.

1. Open the assembly diagram by double-clicking it in the Business Integration
view.

Figure 10-7 ITSO_RegLogMed module assembly

2. Select the mediation flow component. In the Properties view, change the
display name from Mediation1 to RegistrationLogMediation.

3. Add the RegistrationLog interface to the mediation:

a. Select RegistrationLogMediation in the assembly diagram.
b. Click the Interface pop-up.
 Chapter 10. Building Log Registration mediation 457

c. Select RegistrationLog from the list of interfaces.
d. Click OK.

An alternative method is to drag and drop the interface onto the mediation
component. Make sure you drop it on the component and not in the window
as a new component.

4. Create an export for the RegistrationLogMediation with a Web service binding
using SOAP/JMS for the transport.

a. Right-click RegistrationLogMediation.

b. Select Export → Web Service Binding.

c. Select Yes in the Binding File Generation window to have a wsdl file
automatically generated.

d. Select soap/jms for the transport.

e. Click OK.

The export component called RegistrationLogMediationExport will be
created.

5. Add the first of three imports to the assembly diagram with the
RegistrationLog interface.

a. Select the RegistrationLog interface under the ITSOMartLib project, then
drag and drop it onto the assembly diagram.

b. Select Import with no Binding.

c. Rename the import component to Log Success.

6. Repeat the process to add an import component named Log Denied.

7. Repeat the process to add an import component named Log Failure.
458 Patterns: SOA Foundation Service Connectivity Scenario

8. Wire all three import components to the RegistrationLogMediation. The
assembly diagram should now look like Figure 10-8.

Figure 10-8 ITSO_RegLogMed assembly diagram

9. Save the assembly diagram and leave it open.

10.2.5 Bind the imports to JMS
Now we bind all of the imports to JMS, which means that when the mediation
passes its message from the mediation flow to these imports, the outbound
message will be serialized in XML format and sent to a JMS queue.

1. Select the Log Success import in the assembly diagram, right-click, and
select Generate Bindings → JMS Binding.

a. In the JMS Binding Attributes Selection window, select Point-to-Point as
the JMS messaging domain and Text for data serialization.

b. Click OK.

2. In the Properties view for the Log Success import:

a. Select the Binding tab.

Note: There are predefined JMS bindings to support JMS text
messages containing Business Object (BO) XML and JMS object
messages containing serialized Java Business Objects. You can use
JMS custom bindings to support other types of JMS message. For
information about custom bindings for JMS, see the WebSphere
Enterprise Service Bus 6.0.1 Information Center article titled JMS
Custom Bindings at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm
.websphere.wesb.doc/concepts/cwesb_jmscustombindings.html
 Chapter 10. Building Log Registration mediation 459

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.wesb.doc/concepts/cwesb_jmscustombindings.html

b. In the JMS Import Binding tab, enter jms/ITSOMart/LogQCF as the JNDI
lookup name.

This is the queue connection factory that the JMS binding will use to
establish a connection to the underlying JMS provider, which in this case
is the default JMS provider of WebSphere Application Server.

Figure 10-9 Binding: JMS Import Binding
460 Patterns: SOA Foundation Service Connectivity Scenario

c. Select the JMS Destinations tab, expand Send Destination Properties,
and enter jms/ITSOMart/LogSuccessQ as the JNDI lookup name.

Figure 10-10 Binding: JMS destinations

3. Generate a JMS binding for the other two imports, the Log Denied and Log
Failure imports, by repeating the steps above. Use the values in Table 10-2 for
the binding properties.

Table 10-2 Values for the binding properties

Import name JMS import binding
JNDI lookup name

JMS destinations
JNDI lookup name

Log Denied jms/ITSOMart/LogQCF jms/ITSOMart/LogDeniedQ

Log Failure jms/ITSOMart/LogQCF jms/ITSOMart/LogFailureQ
 Chapter 10. Building Log Registration mediation 461

The complete assembly diagram with the JMS bindings should now look like
Figure 10-11.

Figure 10-11 ITSO_RegLogMed completed assembly diagram

4. Save the assembly diagram.

10.2.6 Build the mediation flow
Next create and implement the mediation flow component.

1. Right-click RegistrationLogMediation and select Generate
Implementation. Click OK in the next window and the Mediation Flow editor
will open.
462 Patterns: SOA Foundation Service Connectivity Scenario

2. Click the logCustomerRegistration operation of the source RegistrationLog
interface on the left and drag a connection to each of the
logCustomerRegistration operations of the RegistrationLogPartner
references on the right.

Figure 10-12 RegistrationLogMediation Operation connections

3. Select the logCustomerRegistration operation of the source RegistrationLog
interface to display the flow in the bottom pane. Notice that there is only a
request flow labeled Request: logCustomerRegistration and no response
flow for this mediation. This is because the logCustomerRegistration
operation on the RegistrationLog interface is a one-way operation.

4. Drop a Message Logger primitive onto the request flow editor.

– Change its display name to Log Mediation Request.

– Wire the RegistrationLog_logCustomerRegistration_Input output terminal
to the Log Mediation Request input terminal.

5. Drop a Message Filter primitive onto the flow.

– Change its display name to Route Message.

– Wire the Log Mediation Request output terminal to the Route Message
input terminal.

6. Add three terminals to the filter:

a. Right-click the Message Filter primitive and select Add Output
Terminal.

b. Change the Terminal name to registrationSuccess.
 Chapter 10. Building Log Registration mediation 463

c. Repeat to add an output terminal called registrationDenied.

d. Repeat to add an output terminal called registrationFailure.

7. In the Properties view for the Message Filter primitive, select the Details tab.

a. Keep the Distribution mode set to First.
b. Under Filters, click Add to add a filter pattern for the registrationSuccess

terminal.

c. In the Terminal field, select the registrationSuccess terminal.

d. Click Custom XPath to specify the filter pattern.

e. In the XPath Expression Builder, select body/logCustomerRegistration/
registrationLogRequest/ registrationStatus.

Figure 10-13 Route Message filter pattern XPath Location

f. In the Condition field, click Location and select self::node().

.

Figure 10-14 Route Message filter pattern XPath Condition
464 Patterns: SOA Foundation Service Connectivity Scenario

g. Click Value and select SUCCESS.

Note that the XPath Expression Builder displays the enumerated values
you defined for the registrationStatus attribute when you created the
RegistrationLogRequest business object.

Figure 10-15 Route Message filter pattern XPath Value

h. Click OK to close the XPath Expression Builder, then Finish to complete
adding the filter pattern.

8. Add two more filter patterns, one for the registrationDenied and another one
for the registrationFailure terminals. For each make sure that you select the
appropriate terminal and the appropriate matching value.

Once you have added filter patterns for all three output terminals, the Filters
section should look like Figure 10-16.

Figure 10-16 Route Message filter patterns

9. Drop a Message Logger primitive onto the editor to the right of the Route
Message filter.

a. Change its display name to Log No Status.

b. Connect the default terminal of the message filter to the Log No Status
input terminal.

The message will get routed to the default output terminal only if no other
matching filter patterns are met for the other three output terminals.

10.Drop a Stop primitive onto the editor to the right of the Log No Status
message logger.

a. Change its display name to No Status.
 Chapter 10. Building Log Registration mediation 465

b. Connect the output terminal of the Log No Status message logger to the
input terminal of the Stop primitive.

In this mediation example, the Stop primitive will handle the condition where
the message that came into the mediation flow contains invalid or missing
data. In this case, if the registrationStatus value is not set to one of the
defined enumerated values, then the mediation flow stops and effectively
disposes of that invalid message.

11.Drop another Message Logger primitive in the mediation flow to the right of
the Route Message filter.

a. Change its display name to Log Reg Success.

b. Connect the registrationSuccess output terminal of the filter to the Log
Reg Success input terminal.

c. Connect the Log Reg Success output terminal to the
RegistrationLogPartner_logCustomerRegistration_Callout input terminal.

12.Repeat this process to log the messages for each of the other two message
filter terminals, registrationDenied and registrationFailure. Then pass the
message to the corresponding partner callout input terminal.

The completed request flow should look similar to Figure 10-17.

Figure 10-17 RegistrationLogMediation request flow
466 Patterns: SOA Foundation Service Connectivity Scenario

13.Save the mediation flow and the assembly diagram. Rebuilt the project.

10.3 Testing the mediation
To test the mediation in the WebSphere Integration Developer test environment,
you will first need to prepare the runtime. Then you can use the integration test
client for testing.

10.3.1 Prepare the runtime
Before deploying and testing this mediation, there are definitions that need to be
made on the server.

To prepare the test environment for testing the mediation, do the following:

1. Start the WebSphere ESB server from the Servers view and log in to the
administrative console.

2. Create three queue destinations on SCA.APPLICATION.<cell>.Bus with the
following identifiers:

– ITSOMart.LogSuccessQ
– ITSOMart.LogDeniedQ
– ITSOMart.LogFailureQ

If you are not familiar with how to create queues on the bus, see 11.8.1,
“Create a queue destination on the bus” on page 502.

3. Create a JMS queue connection factory for the default messaging provider
with the following values:

– Name: ITSOMartLogQCF
– JNDI Name: jms/ITSOMart/LogQCF
– Bus name: SCA.Application.<cell>.Bus

If you are not familiar with how to create a queue connection factory, see
11.8.2, “Create a queue connection factory” on page 503.

Note: For testing we use the SCA.APPLICATION.<cell>.Bus provided with
WebSphere ESB and assume that the queues reside on the bus. Later, in
Chapter 11., “Deploy with WebSphere ESB” on page 479, you will see how to
create a new bus for use with the sample and connect it to WebSphere MQ.
 Chapter 10. Building Log Registration mediation 467

4. Create three JMS queues under the default messaging JMS provider with the
values shown in Table 10-3. For each definition, use the
SCA.APPLICATION.<cell>.Bus bus.

Table 10-3 Registration Log Mediation JMS queues

If you are not familiar with how to create a JMS queue, see 11.8.3, “Create a
JMS queue” on page 504.

10.3.2 Test the mediation
To do this:

1. Start the WebSphere ESB Server test environment.

2. Add MessageLogApp to the server. This sample application allows you to
easily monitor the entries logged in the Cloudscape database by the Message
Logger primitives.

3. Add the mediation application, ITSO_RegLogMedApp, to the server.

4. Launch the test client for the ITSO_RegLogMed module.

5. Set the values in the test client.

a. Make sure to select the RegistrationLogMediationExport component so
that you are testing the complete module, from the export through the
mediation and all the way to sending the messages to the queues.

JMS queue name JNDI name Queue name

ITSOMart.LogSuccessQ jms/ITSOMart/LogSuccessQ ITSOMart.LogSuccessQ

ITSOMart.LogDeniedQ jms/ITSOMart/LogDeniedQ ITSOMart.LogDeniedQ

ITSOMart.LogFailureQ jms/ITSOMart/LogFailureQ ITSOMart.LogFailureQ
468 Patterns: SOA Foundation Service Connectivity Scenario

b. Fill in some test data for the request (Figure 10-18). The only value
actually required for this mediation to work properly is the
registrationStatus.

Figure 10-18 Test client - RegistrationLogMediationExport
 Chapter 10. Building Log Registration mediation 469

6. Check the test client Events pane to verify that everything ran successfully.
You can see that the export request was made, then the mediation request,
then finally one of the imports (Log Success, Log Denied, or Log Failure) was
invoked.

Figure 10-19 Test client - Events

7. Look at the messages that were logged inside the mediation using the
Message Logger primitives.

Open the sample MessageLogApp:

http://localhost:9080/MessageLogWeb/faces/MessageLogView.jsp

You should see the log messages in descending order of which they were
inserted into the database.

In Figure 10-20 you can see messages that were logged by the Log Mediation
Request and then the Log Reg Success Message Logger primitives.

Figure 10-20 Message Logger messages
470 Patterns: SOA Foundation Service Connectivity Scenario

8. Click anywhere in one of the rows of the table displayed to see the contents of
the message that was logged. For example, the message for the Log Reg
Success entry verifies that the data in the mediation flow was correctly
passed.

Figure 10-21 Log Reg Success log message

9. And, finally, verify that the message was placed on the queue correctly by the
JMS import component.

Viewing messages on the bus
If you configured the JMS queues with the local bus queue destinations, then the
you should be able to see the message on the service integration bus queue.
 Chapter 10. Building Log Registration mediation 471

You can use the queue browser portion of MessageLogApp to see the message,
or you can use the WebSphere administrative console.

Using the sample queue browser
To use MessageLogApp:

1. Open the application with the following URL:

http://localhost:9080/MessageLogWeb/faces/QueueBrowser.jsp

2. Enter the value for the JMS queue connection factory: jms/ITSOMart/LogQCF

3. Enter the JMS queue JNDI name: jms/ITSOMart/LogSuccessQ

All messages on the queue you specified are displayed. Scroll down to the last
message in the window to see the last message placed on that queue.
472 Patterns: SOA Foundation Service Connectivity Scenario

Figure 10-22 shows the registration SUCCESS message placed on
ITSOMart.LogSuccessQ. It contains the contents of the original message
payload that was sent to the mediation and the JMS-specific header attributes.

Figure 10-22 Message on the bus queue

Using the administrative console
You can also find messages on a queue in the bus using the administrative
console:

1. Select Service integration bus → Buses.

2. Click the bus name.

3. In the Topology section, click Messaging engines.

4. Click the messaging engine name for your server.
 Chapter 10. Building Log Registration mediation 473

5. In the Message points section, click Queue points.

6. There is a queue point for each queue. Click the queue point name.

7. Select the Runtime tab.

8. Click Messages.

Viewing messages in WebSphere MQ
For testing we used queues on the bus. In Chapter 11., “Deploy with WebSphere
ESB” on page 479, you can find instructions on using an MQ Link from the bus to
WebSphere MQ to send messages to queues on WebSphere MQ. The queues
defined on the bus are alias queues versus local queues. The alias queues
contain references to queues on WebSphere MQ.

If you have this configuration, you will need to view the messages on the
WebSphere MQ queues. To view the messages:

1. Open the WebSphere MQ Explorer and look at the messages on
LOG.SUCCESS.QUEUE (Figure 10-23).

Figure 10-23 Message on WebSphere MQ queue
474 Patterns: SOA Foundation Service Connectivity Scenario

2. Select the LOG.SUCCESS.QUEUE, right-click, and select Browse
Messages to see the XML message that was sent from the Registration Log
Mediation (Figure 10-24).

Notice that the Put application name shows that the message was sent from
the service integration bus, and the data is the XML representation of the
RegistrationLogRequest business object that was passed to the JMS import.

Figure 10-24 Message data on WebSphere MQ queue

10.4 Calling the service from the application
The Register Customer process application calls the Log Registration mediation
via a Web service proxy that makes a SOAP/JMS request. This Web service
proxy is generated based on the WSDL file that describes the mediation. This is
the WSDL file generated when you create the export for the mediation, or if you
are using the service integration bus to manage Web services, it is the WSDL file
for the inbound service that defines the mediation.

To generate a Web service proxy that calls the Log Registration mediation, use
the WSDL file
RegistrationLogMediationExport_RegistrationLogJms_Service.wsdl.

Your application also needs access to any WSDL files referenced in this file and
the XSD files for the data objects used. The best way to pick up the files you
need is to first go through the test process for the mediation. Then copy the files
found under the wsdl folder for the mediation EJB to the application EJB.

You can find these files using the Physical Resources view under
<mediationEJB>/ejbModule/wsdl.

The Register Customer process application, ITSO_RegProcServiceApp, uses a
Java utility project to hold the proxies for the services it calls. This utility project is
called ITSO_RegProcService_Proxies.
 Chapter 10. Building Log Registration mediation 475

The steps required to generate the proxy are:

1. Copy or import the required files to the utility project.

2. Generate the Web service client proxy using the Web Service Client wizard.
Use the service WSDL file as input.

3. Add code to the application to call the service via the proxy.

You can see an example of this process in 7.5, “Calling the service from the
application” on page 341.

The following code in ITSO_RegProcServiceApp calls the service using the
proxy (Example 10-1).

Example 10-1 Invoking the Register Shipping mediation

try {
 // log customer registration details

 RegistrationLogRequest registrationLogRequest = new RegistrationLogRequest();
 registrationLogRequest.setCustomer(customer);
 if (creditRating != null) registrationLogRequest.setCreditRating(creditRating);

 // registration status
 RegistrationStatus registrationStatus =
 (registrationProcessStatus == FAILURE) ? RegistrationStatus.FAILURE
 : (registrationProcessStatus == DENIED) ? RegistrationStatus.DENIED
 : RegistrationStatus.SUCCESS;

 if (registrationStatusDetails == null) {
 registrationStatusDetails =
 (registrationProcessStatus == FAILURE) ? "Failure occurred during

registration process"
 : (registrationProcessStatus == DENIED) ? "Customer denied registration"
 : "Customer registered";
 }

 registrationLogRequest.setRegistrationStatus(registrationStatus);
 registrationLogRequest.setRegistrationStatusDetails(registrationStatusDetails);
 System.out.println("ITSOMart RegistrationProcessorService.registerCustomer >>

registrationStatus: " + registrationStatus.getValue() + ", registrationStatusDetails: " +
registrationStatusDetails);

 // registration date
 GregorianCalendar registrationDate = new GregorianCalendar();
 registrationLogRequest.setRegistrationDate((Calendar)registrationDate);

 RegistrationLogProxy registrationLogProxy = new RegistrationLogProxy();
 System.out.println("ITSOMart RegistrationProcessorService.registerCustomer >>

invoking RegistrationLog Service (soap/jms)");
476 Patterns: SOA Foundation Service Connectivity Scenario

 registrationLogProxy.logCustomerRegistration(registrationLogRequest);

 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss a

zzzz");

 System.out.println("ITSOMart RegistrationProcessorService.registerCustomer >>

registration log submitted for customer (" + customer.getEmail() + ") at " +
dateFormat.format(registrationDate.getTime()));

 } catch (Exception registrationLogException) {
 System.out.println("ITSOMart RegistrationProcessorService.registerCustomer >>

RegistrationLog Service exception: " + registrationLogException);
 }

 }
 }
 Chapter 10. Building Log Registration mediation 477

478 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 11. Deploy with WebSphere ESB

This chapter presents an overview of WebSphere ESB. It introduces its
capabilities and discusses common topologies. It also illustrates how to integrate
with a WebSphere MQ environment. To illustrate the concepts we discuss, this
chapter describes the steps required to set up the ITSOMART sample, including
configuring the deployment environment and deploying the mediations.

This chapter includes the following topics:

� Introduction to WebSphere ESB
� Working with profiles
� Administrative console
� Deploying mediation modules
� Creating a service integration bus
� Configuration for databases
� Configuration for adapter support
� Configuration for JMS bindings
� Connecting to WebSphere MQ
� Deploying applications
� Testing ITSOMart
� Network Deployment and clustering topologies

11

Note: This chapter assumes that you are familiar with the WebSphere
Application Server and focuses on the enhancements for WebSphere ESB.
© Copyright IBM Corp. 2006. All rights reserved. 479

11.1 Introduction to WebSphere ESB
WebSphere ESB provides the capabilities of a standards-based enterprise
service bus. WebSphere ESB manages the flow of messages between
SCA-defined interaction endpoints and enables the quality of interaction these
components request. Mediation modules within the ESB provide routing, protocol
conversion, message format transformation (with and without database lookup),
and logging services.

WebSphere ESB is a specialized application server built on WebSphere
Application Server Network Deployment. As such, it inherits all of the qualities of
service, including scalability, clustering, and failover features of a Network
Deployment environment.

Figure 11-1 WebSphere ESB technical overview

File > Export > Integration Module

WebSphere Integration Developer

EAR file
Service application
 SCA module
 Imports
 Exports

WAR file
JAR files
EJB JAR files

Application Server - WebSphere ESB-enabled

SCA.Application.xxx.busSCA.System.xxx.bus

Messaging Engine

Mediation Module

SOAP/HTTP
SOAP/JMS
JMS
WebSphere Adapters

Web services

EIS systems

Messaging

WebSphere MQ

WebSphere Administrative Console

Configure & Manage

Develop &
Deploy

WebSphere Integration Developer

WebSphere
Application
Server Network
Deployment
480 Patterns: SOA Foundation Service Connectivity Scenario

11.1.1 Applications
The WebSphere ESB application server is an advanced application server that
can run, not only traditional J2EE 1.4 applications, but also applications with SCA
components.

� Mediation modules

Mediation modules are SCA modules that operate on messages that are
in-flight between service requesters and service providers. They allow you to
route messages to different service providers. They also let you transform
messages: you can amend message content or form. In addition, mediation
modules can provide functions such as message logging and error
processing that is tailored to your requirements.

Using WebSphere Integration Developer you can develop mediation modules
and package them for deployment. The underlying structure of the module is
an EAR file.

� J2EE applications

A WebSphere ESB application server also contains the J2EE structure
required to run J2EE 1.2, 1.3, and 1.4 applications. The application server is
an enhanced version of the application server shipped with WebSphere
Application Server Network Deployment. As such, it provides the full range of
functions and features that come with that product, including configurations
for scalability and high availability.

The standard and preferred development tool for WebSphere Application
Server J2EE applications is Rational Application Developer. However, a set
of J2EE development capabilities are also provided with other Rational and
WebSphere development tools, including WebSphere Integration Developer
and Rational Software Architect.

11.1.2 Administration
WebSphere ESB uses the WebSphere administrative tools available with
WebSphere Application Server. Administration can be done using the
browser-based administrative console, scripting, or commands. Enhancements
have been made to the administrative interface to allow you to list installed SCA
modules and their associated applications, view SCA module details, and modify
SCA imports.

11.1.3 Service integration bus
The service integration bus provides the communication infrastructure for
messaging and service-oriented applications, thus unifying this support into a
common component. The service integration bus is a JMS provider that is JMS
 Chapter 11. Deploy with WebSphere ESB 481

1.1 compliant for reliable message transport and that has the capability of
intermediary logic to adapt message flow intelligently in the network. It also
supports the attachment of Web services requestors and providers. Service
integration bus capabilities have been fully integrated within WebSphere
Application Server, enabling it to take advantage of WebSphere security,
administration, performance monitoring, trace capabilities, and problem
determination tools.

The service integration bus is often referred to as just a bus. When used to host
JMS applications, it is also often referred to as a messaging bus.

WebSphere ESB includes two buses by default:

� SCA.SYSTEM.<cell>.Bus

This bus is used as the underlying communication mechanism for
asynchronous SCA invocations.

� SCA.APPLICATION.<cell>Bus

This bus is provided and used to define queue destinations and other default
messaging provider resources required for modules deployed with JMS
bindings.

You can also create additional buses.

11.1.4 Web services support
WebSphere ESB also leverages advanced Web services support provided with
WebSphere Application Server Network Deployment to incorporate leading edge
capabilities. Those capabilities include:

� SOAP-based Web services (SOAP/HTTP, SOAP/JMS)

SOAP is a lightweight protocol for the exchange of information in a
decentralized, distributed environment.

� Web Services Description Language (WSDL) 1.1

WSDL is an XML-based description language that provides a way to catalog
and describe services. WSDL describes the interface of Web services
(parameters and results), the binding (SOAP, EJB), and the implementation
location.

� Universal Discovery Description and Integration (UDDI) 3.0

UDDI is a global platform-independent, open framework that enables
businesses to discover each other, define their interaction, and share
information in a global registry.
482 Patterns: SOA Foundation Service Connectivity Scenario

UDDI support in WebSphere Application Server V6 includes UDDI V3 APIs,
some UDDI V1 and V2 APIs, UDDI V3 client for Java, and UDDI4J for
compatibility with UDDI V2 registries. It also provides a UDDI V3 Registry that
is integrated in the WebSphere Application Server.

� Web Services Gateway

WebSphere Application Server V6 includes a fully integrated Web Services
Gateway that bridges the gap between Internet and intranet environments
during Web service invocations. The administration is done directly from the
WebSphere administrative console.

The primary function of the Web Services Gateway is to map an existing
WSDL-defined Web service, the target service, to a new service, the gateway
service, that is offered by the gateway to others. The gateway thus acts as a
proxy. Each target service, whether internal or external, is available at a
service integration bus destination. JAX-RPC handlers can be used to
intercept and filter service messages as they pass in and out of the service
integration bus.

� JAX-RPC (JSR 101)

JAX-RPC is the core programming model and bindings for developing and
deploying Web services on the Java platform. It is a Java API for XML-based
RPC and supports JavaBeans™ and enterprise beans as Web service
providers.

� Enterprise Web services (JSR 109) adds EJBs and XML deployment
descriptors to JSR 101.

� WS-Security

WS-Security is the specification that covers a standard set of SOAP
extensions and can be used when building secure Web services to provide
integrity and confidentiality. It is designed to be open to other security models
including PKI, Kerberos, and SSL. WS-Security provides support for multiple
security tokens, multiple signature formats, multiple trust domains, and
multiple encryption technologies. It includes security token propagation,
message integrity, and message confidentiality. The specification is proposed
by IBM, Microsoft, and VeriSign for review and evaluation.

� IBM add-ons

In addition to the requirements of the specifications, IBM has added the
following features to its Web services support:

– Custom bindings

JAX-RPC does not support all XML schema types. Custom bindings allow
developers to map Java to XML and XML to Java conversions.
 Chapter 11. Deploy with WebSphere ESB 483

– Support for generic SOAP elements

In cases where you want generic mapping, this support allows you to
eliminate binding and use the generic SOAPElement type.

– Multi-protocol support

This feature allows a stateless session EJB as the Web service provider,
which provides enhanced performance without changes to the JAX-RPC
client.

– Web services caching

The WebSphere Application Server provides server-side Web service
caching for Web services providers running within the application server. It
also provides caching for Web services clients running within a V6
application server, including the Web Services Gateway.

11.1.5 Messaging support
WebSphere ESB supports the use of the following JMS messaging providers:

� Default messaging provider

The default messaging provider integrated in WebSphere ESB is a pure
Java-based JMS 1.1 implementation. The service integration bus provides
the underlying message provider for the default messaging provider.

The JMS resources (JMS provider, JMS queues, and so on) are defined from
the WebSphere administrative tools. The service integration bus destinations
for the default messaging provider (queues, topics, and so on) are also
managed using the WebSphere administrative tools.

The default messaging provider can be configured to connect to an existing
WebSphere MQ Series network via an MQ link. The messaging provider
looks to MQ like just another queue manager, enabling interoperability with
every WebSphere MQ based application.

� WebSphere MQ

WebSphere ESB supplies a pre-configured JMS provider implementation for
communicating with installations of WebSphere MQ.

� Generic JMS providers

WebSphere ESB supports the use of third-party JMS providers within its
runtime environment through the use a generic JMS provider. Defining a
generic JMS provider ensures that the JMS provider classes are available on
the application server classpath at runtime.
484 Patterns: SOA Foundation Service Connectivity Scenario

11.1.6 Client support
WebSphere ESB provides you with a comprehensive client package that allows
you to extend your environment. The client package includes:

� A message service client for C/C++/.Net application, extending the JMS
model for messaging to non-Java applications.

� A Web services client (JAX-RPC based) for C++, enabling user access to
Web services hosted in the WebSphere environment.

� J2EE client support for WebSphere Application Server including the Web
services client, EJB client, and JMS client.

11.1.7 Tivoli Access Manager
WebSphere ESB includes IBM Tivoli Access Manager, for optional use, to
deliver a secure, unified, and personalized experience that will help manage
growth and complexity, and it integrates with IBM Tivoli Composite Application
Manager for SOA for added monitoring and management capabilities.

Managing composite applications based on service-oriented architectures
presents a mix of new and traditional challenges, as services need to be treated
by the management infrastructure as first-class managed objects, conforming to
defined service characteristics. IBM Tivoli Composite Application Manager for
SOA helps you monitor, manage, and control these service-based applications.
This solution is integrated with IBM Tivoli Enterprise Portal, which enables
end-to-end resource, application, transaction, and service management across
your IT infrastructure.

11.1.8 Common Event Infrastructure (CEI)
Also in the infrastructure is the Common Event Infrastructure, which is the
foundation for monitoring applications. IBM uses this infrastructure throughout its
product portfolio, including monitoring products from Tivoli. The event definition
(Common Business Event, or CBE) is being standardized through the OASIS
standards body, so that other companies as well as customers can use the same
infrastructure to monitor their environment.
 Chapter 11. Deploy with WebSphere ESB 485

11.2 Working with profiles
A profile describes the runtime environment for a server. The profile types are
the same for WebSphere ESB as for WebSphere Application Servers. However,
the profiles themselves are augmented for WebSphere ESB functions.

� Application server profiles describe a runtime environment that consists of a
single application server.

� Custom profiles are empty nodes that are used to federate nodes into a
Network Deployment cell. Once the node is federated, application servers
can be created on it using the administrative console. Nodes that have been
federated into a cell are referred to as managed nodes.

� Deployment manager profiles describe a deployment manager. There is one
deployment manager per cell that manages the administration of the nodes
and servers that belong to the cell. A cell can contain a mixture of WebSphere
Application Server and WebSphere ESB nodes, but in this case the
Deployment Manager must also be augmented with the WebSphere ESB
functionality.

When you create an application server profile or a deployment manager profile,
three buses are created:

� SCA.SYSTEM.<cell>.Bus, used for asynchronous SCA support
� SCA.APPLICATION.<cell>.Bus, used for default JMS bindings
� CommonEventInfrastructure_Bus, used for CEI events

The profile creation wizard can be used to create a new profile after WebSphere
ESB has been installed. If you created the application server during the
installation (Complete install option), you do not need to create another profile
unless you decide to change the topology of your installation or augment an
existing profile for WebSphere ESB. Note that in order to augment a WebSphere
Application Server managed node, it must be unfederated first. After the
augmentation it can be federated again.

When it comes to federating a custom ESB profile, the deployment manager
must be a WebSphere ESB 6.0.1 or WebSphere Process Server 6.0.1
deployment manager node.

11.2.1 Starting the profile creation wizard
The profile creation wizard commands for WebSphere ESB can be found in the
following location:

<wesb_install>/bin/ProfileCreator_wbi
486 Patterns: SOA Foundation Service Connectivity Scenario

The commands are:

� AIX®: pcatAIX.bin
� HP-UX platforms: pcatHPUX.bin
� Linux platforms: pcatLinux.bin
� Linux platforms (Power PC®): pcatLinuxPPC.bin
� Solaris™ platforms: pcatSolaris.bin
� Windows platforms: pcatWindows.exe

You can also start the profile creation wizard from the First Steps menu, and on
Windows, you can use the Start menu and select Start → All Programs → IBM
WebSphere → Enterprise Service Bus 6.0 → Profile Creation Wizard.

The profile creation wizard commands for WebSphere ESB in the WebSphere
Integration Developer test environment can be found in the following location:

<wid_install>/runtimes/bi_v6/bin/ProfileCreator_wbi

The commands are:

� Windows: esbpcatWindows.exe
� Linux: esbpcatLinux.bin

11.3 Administrative console
Administration tasks can be performed from the WebSphere administrative
console. The default URL to open the console for a running stand-alone server
is:

http://localhost:9060/ibm/console

Where 9060 is the value of the WC_adminhost port for the server. If you have
more than one server on the system or are running a deployment manager, this
port number may be different.

If your application server is running in the WebSphere Integration Developer test
environment, you can also open the console by doing the following:

1. Switch to the Business Integration or J2EE perspective and select the
Servers view.

2. Right-click the WebSphere ESB Server entry and select Start. The Console
view opens and you can see the messages from the startup of the server.

3. When you see the Open for e-business message, switch back to the Servers
view. Right-click the server and select Run administrative console.

The administrative console provides a browser-based interface to the
administration tools. You can install, uninstall, and manage applications and
 Chapter 11. Deploy with WebSphere ESB 487

resources for the application server. In a deployment manager environment, you
can manage all the servers and clusters in the cell.

The administrative console for WebSphere ESB is almost identical to the
administrative console for Network Deployment with a few minor changes.

On opening the administration console, the welcome screen presents a task
filtering selector. The available filters are All, Application Integration, and Server
and Bus (Figure 11-2). These filters can be used to reduce the complexity of the
administration console by hiding functionality that is not applicable to the
administrator’s task.

We prefer using the All option.

Figure 11-2 Administrative console task filtering selector

This filtering is in addition to any security constraints applicable to the user’s
administrative role. Once a filter has been selected, it can be modified again by
returning to the Welcome screen. (You may have to scroll down to find it.)

Other new changes have to do with the SCA module support. For example, SCA
modules can be displayed, started, and stopped from the console.
488 Patterns: SOA Foundation Service Connectivity Scenario

To navigate to an SCA module, select Applications → SCA Modules
(Figure 11-3).

Figure 11-3 List of SCA modules

To view details of the SCA module, click the module name (Figure 11-4).

Figure 11-4 SCA module details
 Chapter 11. Deploy with WebSphere ESB 489

11.4 Deploying mediation modules
Depending on the mediation module, an administrator may have some tasks to
complete before deploying the module. This will ensure a successful deploy and
a working application.

The following sections on configuring the runtime for mediations and deploying
mediation modules use the ITSOMart solution for illustration.

When dealing with relatively new WebSphere features such as the service
integration bus, we go into detail on how to perform these tasks. For other tasks
that have remained much the same from previous versions of WebSphere such
as creating JDBC data sources, we simply give you the information you need to
populate those items.

11.5 Creating a service integration bus
The ITSOMart solution uses a service integration bus as the default JMS
provider and for Web service destinations. When testing the mediation modules,
we used a bus that is automatically included with WebSphere ESB. The name of
this bus is SCA.APPLICATION.<cell>.Bus.

To deploy the ITSOMart solution, we have decided to create a new bus called
ITSOMartBus. The following instructions will show you how to create this bus
and add server1 as a bus member.

Assumptions for the sample: In the examples used here we assume the
following:

� The server is a single server operating on a Windows operating system. If
you are not using Windows you may need to refer to the WebSphere ESB
product documentation for platform-specific information such as command
locations or extensions.

� The profile name is esb. The home directory for the profile will be denoted
as <wesb_profile>.

� The node name is esbNode. The server name is server1 and port 9080 is
used for access to the Web container.

� WebSphere ESB file locations will be denoted with <wesb_install>. For
example, if you have WebSphere ESB installed, <wesb_install> will look
similar to C:\WebSphere\AppServer. In the WebSphere Integration
Developer test environment, this will be <wid_install>\runtimes\bi_v6.
490 Patterns: SOA Foundation Service Connectivity Scenario

From the WebSphere administrative console:

1. Select Service integration → Buses.

2. Click New.

3. Enter ITSOMartBus for the name and click Apply.

4. Click the Bus members link under Topology.

5. Click Add.

6. Click Server and select the server on which you will run the application. If you
only have a standalone server, the defaults are correct. Click Next.

7. Click Finish.

8. Restart the server.

11.6 Configuration for databases
The Database Lookup primitive allows you to access a database from a
mediation. The Credit Score mediation uses a Database Lookup primitive in the
response flow to convert a numerical credit score to a text value (gold, silver,
bronze). The instructions for creating the database used in this scenario can be
found in “Create the DB2 database” on page 598).

The JNDI lookup name for the database is specified in the properties for the
Database Lookup primitive (see Figure 7-65 on page 326). You will need an
appropriate JDBC provider and a corresponding data source defined in the
application server.

ITSOMart is set up to use a DB2 database or a Cloudscape database.

11.6.1 Create a J2C authentication data entry for the database
Most database products require a user ID and password for access (the default
setup for Cloudscape does not). If your database requires this, create a J2C
authentication entry containing the user ID and password.

1. From the administrative console select Security → Global security.

2. Expand the JAAS configuration on the right panel and click J2C
Authentication data.

3. Click New.

a. Enter an alias name. This display name is used only for identifying the J2C
entry.

b. Enter the user ID and password required to connect to the database.
 Chapter 11. Deploy with WebSphere ESB 491

Click OK.

The entries used for the DB2 system used with ITSOMart can be seen in
Figure 11-5.

Figure 11-5 J2C authentication data entry for the ITSOMART DB2 database

4. Save the configuration.

11.6.2 Create a JDBC provider
A JDBC provider defines implementation-specific classes needed to access a
specific type of relational database. The WebSphere ESB application server has
the JDBC provider for Cloudscape predefined at the server and cell levels. If you
are using Cloudscape, you will not need to create a new JDBC provider unless
you want it defined at the node scope. The ITSOMart solution will use a DB2
database.

To create a new JDBC provider, do the following:

1. From the administrative console, select Resources → JDBC Providers.

2. Select the scope and click Apply. We chose to create the JDBC provider at
the node scope.

3. Click New.

a. Select the database type from the pull-down.
b. Select the provider type from the pull-down.
492 Patterns: SOA Foundation Service Connectivity Scenario

c. Select the implementation type and Click Next.

The values needed for the DB2 ITSOMart database are shown in Figure 11-6.

Figure 11-6 JDBC driver for the ITSOMART DB2 database

Cloudscape has predefined JDBC drivers at the cell and server levels. The
properties for the Cloudscape JDBC driver are shown in Figure 11-7.

Figure 11-7 JDBC driver for the ITSOMART CloudScape database

4. The next panel allows you to specify the location of the class files required to
access the database. These files are supplied by the database product. The
 Chapter 11. Deploy with WebSphere ESB 493

fields are filled in with default values that use variables, making it likely that
you can take these default values (as is the case for a DB2 provider).

Fill in the values or keep the defaults and click Apply.

Note that the Data sources option under Additional properties is now
available.

11.6.3 Create a data source
Data sources are related to specific JDBC providers. They provide the
information about the database required to access it, specifically the JNDI lookup
name and database name or location.

1. Access the list of data sources for the JDBC provider.

– If you are continuing from the previous section and have just clicked
Apply on the JDBC provider, you will have the Data source link available.
Click this link to see the list of data sources and to begin defining the data
source.

– If you are using an existing JDBC provider, you can access the data
source definitions by doing the following:

i. Select Resources → JDBC Providers.
ii. Select the scope and click Apply.
iii. Click the JDBC provider name.
iv. Click Data sources under Additional properties.

WebSphere variables: Note the variables used on this page and make
sure that you define them at the same scope you created the JDBC
provider at. You can define the variables by selecting Environment →
WebSphere variables.

In the case of DB2, you will need to define the following:

� DB2_UNIVERSAL_JDBC_DRIVER_PATH = C:\IBM\SQLLIB\java

� DB2_UNIVERSAL_JDBC_DRIVER_NATIVEPATH =
C:\IBM\SQLLIB\java

The Cloudscape provider is embedded in WebSphere ESB and the
variables are pre-set for you.
494 Patterns: SOA Foundation Service Connectivity Scenario

2. Click New. Enter the values required to identify the database. These values
vary by database type. In particular, you should pay attention to the following:

– The JNDI name must match the name you specified in the Database
Lookup primitive (see Figure 7-65 on page 326).

– If authentication is required, the component-managed authentication alias
points to the alias you created in 11.6.1, “Create a J2C authentication data
entry for the database” on page 491.

– The database is correctly identified. How you do this will vary depending
on the database type.
 Chapter 11. Deploy with WebSphere ESB 495

The values used for the first two of these items for the DB2 ITSOMart
database are shown in Figure 11-8.

Figure 11-8 Data source for the ITSOMART database - part 1
496 Patterns: SOA Foundation Service Connectivity Scenario

At the bottom of this panel you will see the database information
(Figure 11-9).

Figure 11-9 Data source for the ITSOMart database - part 2

The values used for the first two items for the Cloudscape ITSOMart
database are shown in Figure 11-10.

Figure 11-10 Data source for the Cloudscape version of ITSOMart - part 1
 Chapter 11. Deploy with WebSphere ESB 497

Note that Cloudscape does not require authentication.

The database location is specified as shown in Figure 11-11.

Figure 11-11 Data source for the Cloudscape version of ITSOMart - part 2

This assumes that you created the database in the location suggested in
“Create the Cloudscape database” on page 598. If you created it in a different
location, be sure to specify that location here. To do this simply specify the full
path name. For example:

c:\mydatabases\ITSOMart

3. Click OK.

4. Save the configuration.

5. Test the connection to make sure the access is working. To test, navigate to
the list of data sources. Check the box to the left of the data source and click
Test connection.

11.7 Configuration for adapter support
The configuration requirements vary depending on the adapter you will be using.
The ITSOMart solution uses two adapters:

� IBM WebSphere Adapter for Siebel Business Applications
� IBM WebSphere Adapter for Flat Files

These adapters were installed into the development environment. The adapter
files have been packaged automatically into EAR files by WebSphere Integration
Developer for deployment.

There are two runtime requirements needed for these adapters:

� Create a J2C authentication data entry for Siebel.
� Create an output folder for the flat file.

11.7.1 Create a J2C authentication data entry for Siebel
We are using J2C authentication to connect to the Siebel system. Use the
following steps to create a J2C authentication in the WebSphere ESB:

1. From the administrative console select Security → Global security.
498 Patterns: SOA Foundation Service Connectivity Scenario

2. Expand the JAAS configuration on the right panel and click J2C
Authentication data.

3. Click New.

a. Enter CRM as the Alias name.
b. Enter the user ID and password required to connect to the Siebel system.
c. Click OK.

Figure 11-12 Creating J2C authentication

The new alias should appear in the list (Figure 11-13). Note that the alias name
now includes the node name (esbNode).

Figure 11-13 Administrative console view after J2C authentication got created
 Chapter 11. Deploy with WebSphere ESB 499

Changing the J2C authentication alias
If you need to change the J2C authentication data entry that the adapter will use
after the mediation has been installed, you can do so with the following:

1. Click Enterprise Applications.

2. Click the mediation application ITSOCRMMed.

3. Select Map resource references to resources under Additional Properties.

4. Click the radio button Use default method under Specify authentication
method and select the authentication data entry from the menu.

5. Check the box to the left of the EJB with the reference binding to the
outbound interface. For ITSOMart, this is the ITSO_CRMMedEJB module
entry with the reference binding to SiebelOutboundInterface (Figure 11-14),
and click Apply.

Figure 11-14 Changing the J2C authentication entry

6. Click OK and save the changes.
500 Patterns: SOA Foundation Service Connectivity Scenario

7. Restart the application.

11.7.2 Create an output folder for the flat file
IBM WebSphere Adapter for Flat Files needs the output folder to be created to
write to the file system. For ITSOMart, the folder is called C:\FF. This is defined
by the Java code that implements the Custom primitive (Figure 8-57 on
page 404).

11.8 Configuration for JMS bindings
WebSphere ESB supports multiple JMS providers (see 11.1.5, “Messaging
support” on page 484). ITSOMart will use the default messaging provider
supplied in WebSphere ESB. JMS connections that use the WebSphere
Application Server default messaging provider will use the following resources:

� Destinations on the bus (queues, topic spaces, alias queues, and so on):
These provide the actual transport for the default message provider. These
can be defined on the SCA.APPLICATION.<cell>.Bus bus or a bus you have
configured to use with the application.

� JMS resources: The default messaging provider is predefined. You will need
to add definitions for JMS resources (queues or topic spaces), a queue
connection factory, and possibly JMS activation specs.

The resources required depend on whether you have an import or export, and on
the operation type defined on the interface.

� JMS binding on an import

The resources needed for an import are a queue destination on the bus that
represents the queue, a JMS queue connection factory, and a JMS queue
that provides the JNDI name for the queue destination on the bus.

� JMS binding on an export

The resources needed for an export depend on the type of operation being
used on the interface.

A one-way operation requires the same resources listed for the import. In
addition, an ActivationSpec is needed to register the queue with message
listener in the mediation module.

SOAP/JMS: Destinations and JMS resources required by imports and exports
that use SOAP/JMS transport are defined automatically when you deploy the
module.
 Chapter 11. Deploy with WebSphere ESB 501

A request/response operation needs the same resources as the one-way
operation, with one difference. You will need two queue destinations, one for
the request and one for the response, and the corresponding JMS queues.

11.8.1 Create a queue destination on the bus
The ITSOMart sample requires several message queues. These queues can be
hosted on the bus or on WebSphere MQ. If you want to use queues on the bus,
use the following instructions to create them. If you are planning to use
WebSphere MQ, see 11.9, “Connecting to WebSphere MQ” on page 506.

These steps describe how to create the queue destinations on the bus:

1. Open the details page for the bus by selecting Service integration → Buses.
Click the bus name.

2. Under Destination resources, click Destinations (Figure 11-15).

Figure 11-15 Destinations on the SCA.APPLICATION bus

3. Click New.

4. For the destination type, accept the default of Queue and click Next.

5. Enter the name for the queue and click Next.

6. Select the bus member. In the case of a standalone WebSphere ESB, the
bus member name will be <node_name>:server1. Click Next.
502 Patterns: SOA Foundation Service Connectivity Scenario

7. The final page is just a summary. Click Finish and the destination will be
created.

Use the values in Table 11-1 to create the four queues required by ITSOMartBus.

Table 11-1 Service integration bus queues required for ITSOMart

11.8.2 Create a queue connection factory
A JMS queue connection factory is used to create connections to the associated
JMS provider. To create a basic queue connection factory do the following:

1. From the administrative console, expand Resources → JMS Providers and
click Default messaging.

2. Under Connection Factories click JMS queue connection factory.

3. Click New.

4. The next page allows you to specify the properties for the JMS queue
connection factory. Take the defaults for everything but the following:

– Name

Enter a display name to use for the queue connection factory.

– JNDI Name

Enter the JNDI value of for the queue connection factory. This name must
match the name specified for the JNDI lookup name on the JMS Import
Binding tab when you create a JMS binding (see Figure 10-9 on page 460
for an example).

– Bus name

Select the bus in the pull-down menu.

5. Click OK to create the queue connection factory.

6. Save the changes.

Note: If you plan to use WebSphere MQ to host the queues, do not create the
queues for the Registration Log mediation. These queues will be defined as
aliases and point to queues on WebSphere MQ instead (see 11.9,
“Connecting to WebSphere MQ” on page 506).

Mediation or application Queue names

Registration log mediation � ITSOMart.LogSuccessQ
� ITSOMart.LogDeniedQ
� ITSOMart.LogFailureQ

Registration processor service � ITSOMart.RegistrationProcessorServiceQ
 Chapter 11. Deploy with WebSphere ESB 503

Use the values in Table 11-2 to create the three queue connection factories
required by ITSOMart. For each queue connection factory:

1. Create the queue connection factory under the default messaging provider.
2. Specify ITSOMartBus as the service integration bus.

Table 11-2 Queue connection factories required by ITSOMart

11.8.3 Create a JMS queue
Now we must define a JMS queue for the bus queue destination created earlier.
This step exposes a queue destination on the bus as a JMS queue that can be
accessed in JNDI.

1. From the administrative console expand Resources → JMS Providers and
click Default messaging.

2. Under Destinations click JMS queue.

3. Click New.

4. The next page allows you to specify the values for the queue.

– Name

Enter a display name for the queue.

– JNDI Name

This is where the application’s message reference will be bound to. The
JNDI name must match the JNDI lookup name specified on the JMS
Destinations tab when you create the JMS binding (see Figure 10-10 on
page 461 for an example).

– Bus name

Select the bus where the queue is defined.

– Queue name

Mediation/
application

Field Value

Registration
processor service

Name ITSOMart.RegistrationProcessorServiceReplyQCF

JNDI Name jms/RegistrationProcessorServiceReplyQCF

Registration
processor service

Name ITSOMart.RegistrationProcessorServiceQCF

JNDI Name jms/RegistrationProcessorServiceQCF

Registration log
mediation

Name ITSOMart.LogQCF

JNDI Name jms/ITSOMart/LogQCF
504 Patterns: SOA Foundation Service Connectivity Scenario

This field specifies the queue destination on the bus that will be used to
store the messages sent to this JMS queue.

5. Click OK.

6. Save the changes.

Use the values in Table 11-2 on page 504 to create the three queue connection
factories required by ITSOMart. For each queue connection factory:

1. Create the JMS queue under the default messaging provider.
2. Specify ITSOMartBus as the service integration bus.

Table 11-3 Registration Log Mediation JMS queues

11.8.4 Creating a JMS activation specification
Message-driven beans act as listeners for incoming asynchronous messages. A
JMS activation specification is associated with one or more message-driven
beans and provides the configuration necessary for them to receive messages.

The Register Customer process J2EE application uses a message-driven bean
to listen for incoming messages. The transport used for these messages is
SOAP/JMS. You will need to define the corresponding JMS activation
specification.

Mediation/
application

Field Value

Registration Log
mediation

Name ITSOMart.LogSuccessQ

JNDI name jms/ITSOMart/LogSuccessQ

Queue name ITSOMart.LogSuccessQ

Registration Log
mediation

Name ITSOMart.LogDeniedQ

JNDI name jms/ITSOMart/LogDeniedQ

Queue name ITSOMart.LogDeniedQ

Registration log
mediation

Name ITSOMart.LogFailureQ

JNDI Name jms/ITSOMart/LogFailureQ

Queue name ITSOMart.LogFailureQ

Registration
Processor service

Name ITSOMart.RegistrationProcessorServiceQ

JNDI name jms/RegistrationProcessorServiceQ

Queue name ITSOMart.RegistrationProcessorServiceQ
 Chapter 11. Deploy with WebSphere ESB 505

1. From the administrative console expand Resources → JMS Providers and
click Default messaging.

2. Under Activation Specifications click JMS activation specification.

3. Click New.

4. The next page allows you to specify the values for the activation specification.

Most of the values can keep their default values. Described below are the
ones of most interest.

– Name

An administrative name used for locating the JMS activation specification.
Enter a value of
ITSOMart.RegistrationProcessorServiceActivationSpec.

– JNDI name

This is where the application’s message-driven bean will be bound to for
message delivery. Enter a value of
jms/RegistrationProcessorServiceActivationSpec.

– Destination type

The type of the JMS destination that will be used to deliver messages to
the message-driven bean. Accept the default of Queue.

– Destination JNDI name

The location in JNDI of the JMS destination that should be used to receive
messages from. Enter a value of jms/RegistrationProcessorServiceQ.

– Bus name

The name of the bus the JMS destination will receive messages from. This
is not required, but for consistency select the value of ITSOMartBus.

5. Click OK.

6. Save the changes.

11.9 Connecting to WebSphere MQ
The Registration Log mediation in Chapter 10, “Building Log Registration
mediation” on page 449, can be tested by creating the queues on the bus.
However, in a production environment, it is much more likely that you will use
WebSphere MQ to transport messages. You can integrate the bus and
WebSphere MQ, allowing you to send messages to a WebSphere MQ queue.

In this section we show how to connect WebSphere ESB to WebSphere MQ to
allow the flow of messages from one network to the other.
506 Patterns: SOA Foundation Service Connectivity Scenario

The following configuration is required to connect the two systems.

In WebSphere ESB:

� A service integration bus.

� A foreign bus definition for WebSphere MQ.

� An MQ link that defines the specific queue manager, the listener port, and the
sender channel name for the link to WebSphere MQ. The queue manager
name for the bus is also specified here.

In WebSphere MQ:

� A queue manager in WebSphere MQ.

� A transmission queue

� A sender channel that defines the host and listener port for the bus. It uses a
transmission queue.

� A receiver channel

The following queues are defined to support the Registration Log Mediation
sample that we will use to illustrate integration with WebSphere MQ.

In the WebSphere MQ queue manager:

� LOG.SUCCESS.QUEUE
� LOG.DENIED.QUEUE
� LOG.FAILURE.QUEUE

WebSphere ESB, WebSphere Application Server, and the service
integration bus: The messaging infrastructure of WebSphere Application
Server V6 is implemented in the service integration bus (referred to as the
bus). WebSphere ESB, built on WebSphere Application Server, also uses the
service integration bus as its messaging infrastructure.

For this reason, the process used to connect WebSphere ESB to WebSphere
MQ and WebSphere Application Server to WebSphere MQ are the same.

The sample we show here is simply to illustrate the mechanics of connecting a
bus to a WebSphere MQ environment. Before making any decisions, you
should refer to the product documentation for planning assistance in designing
a service integration topology.
 Chapter 11. Deploy with WebSphere ESB 507

In the bus:

� ITSOMart.LogSuccessQ: This queue is an alias of the
LOG.SUCCESS.QUEUE in the WebSphere MQ queue manager.

� ITSOMart.LogDeniedQ: This queue is an alias of the LOG.DENIED.QUEUE
in the WebSphere MQ queue manager.

� ITSOMart.LogFailureQ: This queue is an alias of the LOG.FAILURE.QUEUE
in the WebSphere MQ queue manager.

The following sections show you how to configure WebSphere MQ and
WebSphere ESB to connect the two and to create the definitions required by
ITSOMart.

11.9.1 Configure WebSphere MQ
This section gives an overview of the elements required in WebSphere MQ to
receive and deliver messages. It covers the basics of creating queue managers
and queues, and connecting one queue manager to another using channels.

The steps required to create and test the connection are:

1. Create a queue manager.
2. Create a transmission queue.
3. Create a sender channel.
4. Create a receiver channel.
5. Create local queues.

The next sections illustrate how this is done for our example. For testing
purposes, we used one machine and one installation of WebSphere MQ.

Create a queue manager
Start by creating a new queue manager in WebSphere MQ using the WebSphere
MQ Explorer:

1. Open the WebSphere MQ Explorer.

2. Right-click Queue Managers and select New →Queue Manager.

a. Type ITSOMART_QM in the Queue Manager Name field and click Next.

b. Take the default for the log values and select Next.

c. Deselect Auto Start Queue Manager and select Next.

d. Enter the listener port number. The default is 1414. If you already have a
queue manager running on the system you will need to select a different
port number.

e. Click Finish.
508 Patterns: SOA Foundation Service Connectivity Scenario

You should now see the started queue manager in the WebSphere MQ Explorer
(Figure 11-16).

Figure 11-16 WebSphere MQ Queue Manager
 Chapter 11. Deploy with WebSphere ESB 509

Create a transmission queue
A transmission queue is a local queue on which prepared messages destined for
a remote queue manager are temporarily stored. To create the transmission
queue:

1. In the WebSphere MQ Explorer, navigate to Queue Managers
ITSOMART_QM → Queues.

2. Right-click Queues and select New → Local Queue.

a. Type TO_WESB_TRANSMISSION.QUEUE in the Name field and click Next.
b. Change the Usage field to Transmission.

Figure 11-17 WebSphere MQ transmission queue

c. Click Finish.
510 Patterns: SOA Foundation Service Connectivity Scenario

Create a sender channel
A sender channel is a channel that initiates transfers, removes messages from a
transmission queue, and moves them over a communication link to a receiver or
requester channel. To create the sender channel:

1. In the WebSphere MQ Explorer, navigate to Queue Managers →
ITSOMART_QM → Advanced → Channels.

2. Right-click Channels and select New → Sender Channel.

a. Type WMQ_TO_WESB.SENDER in the Name field and click Next.

b. In the Connection Name field, type the IP address or host name of the
system hosting the queue manger you want to send messages to,
concatenated with its listener port number in parentheses.

The connection name for this example is localhost(5558). This will connect
the sender channel to the service integration bus.

The default listener port for the bus is 5558 for the first application server
on a node. To check the port for your application server:

i. Open the WebSphere administrative console.

ii. Select Servers → Application servers.

iii. Click the server name to open the details page.

iv. Expand the Ports category under the Communications section. The
port number used by the server is the
SIB_MQ_ENDPOINT_ADDRESS.
 Chapter 11. Deploy with WebSphere ESB 511

c. Enter TO_WESB_TRANSMISSION.QUEUE as the transmission queue
(Figure 11-18). This is the queue defined earlier in “Create a transmission
queue” on page 510.

Figure 11-18 WebSphere MQ sender channel

d. Click Finish.

Create a receiver channel
The receiver channel is a channel that responds to a sender channel, taking
messages from a communication link. To create the receiver channel:

1. In the WebSphere MQ Explorer, navigate to Queue Managers →
ITSOMART_QM → Advanced → Channels.

2. Right-click Channels and select New → Receiver Channel.

a. Type WESB_TO_WMQ.RECEIVER in the Name field. Unlike the sender channel,
the receiver channel does not need the connection name defined.
512 Patterns: SOA Foundation Service Connectivity Scenario

b. Take the default for the transmission protocol of TCP. The properties used
for our sample are shown in Figure 11-19.

Figure 11-19 WebSphere MQ receiver channel

c. Click Finish.

You should now see the sender and receiver channels in the WebSphere MQ
Explorer (Figure 11-20).

Figure 11-20 WebSphere MQ channels

Create local queues
The local queues are specific to the application. To create the local queues for
ITSOMart:

1. Navigate to Queue Managers → ITSOMART_QM → Queues.

2. Right-click Queues and select New → Local Queue.
 Chapter 11. Deploy with WebSphere ESB 513

Type LOG.SUCCESS.QUEUE in the Name field and click Finish.

3. Create two more local queues with the following names:

– LOG.DENIED.QUEUE
– LOG.FAILURE.QUEUE

You should now see these three local queues and the transmission queue in the
WebSphere MQ Explorer (Figure 11-21).

Figure 11-21 WebSphere MQ queues

11.9.2 Configure the bus
The following steps are needed to integrate the service integration bus with
WebSphere MQ:

1. Define WebSphere MQ as a foreign bus.
2. Define a WebSphere MQ link.
3. Create alias queues.
4. Start the bus and WebSphere MQ connections.

This configuration is done using the WebSphere administrative console.

Define WebSphere MQ as a foreign bus
The next step is to define WebSphere MQ to the service integration bus.
WebSphere MQ is represented as a foreign bus.

1. In the WebSphere administrative console, select Service Integration →
Buses.

2. Click the bus name, ITSOMartBus, to open the detail page.

3. Click Foreign Buses.
514 Patterns: SOA Foundation Service Connectivity Scenario

4. Click New.

a. Type ITSOMART_QM in the Name field and click Next.
b. Select Direct, WebSphere MQ link and click Next. Click Next again.
c. Click Finish to add the new foreign bus definition, shown in Figure 11-22.

Figure 11-22 Foreign bus

5. Save the changes.

11.9.3 Define a WebSphere MQ link
A WebSphere MQ link enables the exchange of messages with a WebSphere
MQ network. Defining an MQ link defines the sender and receiver channels used
to transmit messages to and from WebSphere MQ.

WebSphere MQ links are defined at the messaging engine:

1. Select Service Integration → Buses. Click the bus name to open it.
 Chapter 11. Deploy with WebSphere ESB 515

2. Click Messaging Engines. The messaging engine created for the application
server (when you added the server to the bus) should be in Started state. If
not, click Start.

Figure 11-23 Messaging engine for server1

3. Click the messaging engine for your server to open the details page.

4. Click WebSphere MQ Links.

5. Click the New button.

6. In step 1 (Figure 11-24 on page 517):

a. Type MQLINK in the Name field.

b. Select ITSOMART_QM in the Foreign Bus field.
516 Patterns: SOA Foundation Service Connectivity Scenario

c. Type WESB_ITSOMART in the Queue Manager Name field. This is the queue
manager name that this service integration bus MQ Link will be known as
to an external WebSphere MQ network.

Figure 11-24 WebSphere MQ link

Click Next.

7. In step 2 (Figure 11-25 on page 518):

a. Type WESB_TO_WMQ.RECEIVER in the Sender MQ Channel Name field. This
defines the sender channel. The name used here must match the name
you use for the partner receiver channel in WebSphere MQ.

b. Type the IP address of the WebSphere MQ host in the Host Name field.

c. Type the listener port number for the WebSphere MQ queue manager in
the Port field. In this example, the WebSphere MQ queue manager is
listening on the default port 1414.
 Chapter 11. Deploy with WebSphere ESB 517

d. Select OutboundBasicMQLink in Transport Chain field.

Figure 11-25 WebSphere MQ link - Sender channel

e. Click Next.
518 Patterns: SOA Foundation Service Connectivity Scenario

8. In step 3 (Figure 11-26):

a. Type WMQ_TO_WESB.SENDER in the Receiver MQ Channel Name field. This
defines the receiver channel. The name used here must match the name
you use for the partner sender channel in WebSphere MQ.

Figure 11-26 WebSphere MQ link - Receiver channel

b. Click Next.

9. In step 4, click Finish.

10.Save the changes.

11.Restart the server for the new WebSphere MQ link configuration to take
effect.

11.9.4 Create alias queues
The next step prepares the bus for the application-specific queue requirements.
In this example we create a local queue to hold the messages and an alias
queue to represent the WebSphere MQ queue.

1. Select Service Integration → Buses.

2. Click the bus name.

3. Click Destinations.

4. Click New.

5. Select Alias and click Next.
 Chapter 11. Deploy with WebSphere ESB 519

6. In step 1 (Figure 11-27):

a. Type ITSOMart.LogSuccessQ in the Identifier field.

b. Select ITSOMartBus in the Bus field.

c. In the Target Identifier field, select other, please specify, then type:

LOG.SUCCESS.QUEUE@ITSOMART_QM

d. Select the foreign bus, ITSOMART_QM, in the Target Bus field.

Figure 11-27 Alias destination

e. Click Next.

7. In step 2, click Finish.

8. Create two more alias destinations with the values in Table 11-4.

Table 11-4 Values

Identifier Bus Target Identifier Target bus

ITSOMart.LogDeniedQ ITSOMartBus LOG.DENIED.QUEUE@ITSOMART_QM ITSOMART_QM

ITSOMart.LogFailureQ ITSOMartBus LOG.FAILURE.QUEUE@ITSOMART_QM ITSOMART_QM
520 Patterns: SOA Foundation Service Connectivity Scenario

You should now see all three alias destinations under Buses →
ITSOMartBus → Destinations (Figure 11-28).

Figure 11-28 Alias destinations

9. Save all changes.

11.9.5 Start the bus and WebSphere MQ connections
After creating the sender channel in WebSphere MQ and starting it, it should
have gone into standby status waiting for the receiver channel on the bus to
become active. Now that the corresponding channel definitions are defined in the
bus, you will be able to start the sender channels on both sides.

JMS resource definitions: You must create the corresponding JMS queue
connection factory and JMS queues. These are the same whether the queues
reside on the bus or on WebSphere MQ and have an alias on the bus pointing
to them.

Create the following if you have not already done so:

� The ITSOMart.LogQCF queue connection factory created in 11.8.2,
“Create a queue connection factory” on page 503.

� The ITSOMart.LogSuccessq, ITSOMart.LogDeniedQ, and
ITSOMart.LogFailureQ created in 11.8.3, “Create a JMS queue” on
page 504.
 Chapter 11. Deploy with WebSphere ESB 521

In the WebSphere administrative console:

1. Select Services Integration → Buses. Then click the bus name to open its
configuration.

2. Click Messaging Engines. Then click the messaging engine to open it.

3. Click WebSphere MQ Links. Then click the WebSphere MQ link name,
MQLINK, to open it.

4. Click Sender Channel. Note that the status of the channel is standby.

5. Check the box to the left of WESB_TO_WMQ.RECEIVER and click Start.
The channel will start and you can see the status change to Started
(Figure 11-29).

Figure 11-29 Start the sender channel in the bus

In WebSphere MQ Explorer right-click the sender channel
WMQ_TO_WESB.SENDER and select Start.
522 Patterns: SOA Foundation Service Connectivity Scenario

When the channel starts successfully, the status will change to Running and
the icon will turn green (Figure 11-30).

Figure 11-30 Channel status in WebSphere MQ Explorer

11.10 Deploying applications
Depending on the environment, a mediation module can be deployed in one of
the following ways:

� If the server has been defined to WebSphere Integration Developer as a test
environment server, you can deploy mediation modules directly from the
workbench using the Add and remove projects option from the server context
menu. See 6.5, “Testing mediations” on page 256, for more information.

� WebSphere Integration Developer can be used to generate a deployable
EAR file. The file is then installed using the WebSphere administrative tools.
See 6.6, “Packaging the mediation for deployment” on page 260, for
information about generating a deployable EAR file from WebSphere
Integration Developer.

� The deployable EAR file can be generated using a command-line utility,
serviceDeploy, and then installed using the WebSphere administrative tools.

11.10.1 Use the serviceDeploy command
WebSphere ESB provides a command-line utility called serviceDeploy that can
be used to build deployable mediation modules from zip or jar files containing
service components. A mediation module can be exported from WebSphere
Integration Developer to be used later by the serviceDeploy command for
generation of deployable EAR file.

If a mediation module is exported from WebSphere Integration Developer as a
zip file or a jar file, it will not contain any deployable code, only files that describe
the module and its components.
 Chapter 11. Deploy with WebSphere ESB 523

Running serviceDeploy generates an installable EAR file containing all of the
deployable code required for the module to run as a service application on
WebSphere ESB. An example of using serviceDeploy is shown in Example 11-1.

Example 11-1 Usage of serviceDeploy

serviceDeploy.bat c:\temp\MyModule.zip -outputApplication MyModule.ear

The utility serviceDeploy is commonly used by development teams using a
version control system. After developers check in their mediation module
projects into a source code repository, the modules can be extracted and built
into installable EAR files using serviceDeploy. This can be done for deploying the
application in a system test environment or a production environment. Using this
method ensures that the runtime code is not checked in, but generated when
required.

11.10.2 Deploy an EAR file
To deploy the mediation module, open the WebSphere administrative console
and do the following:

1. Select Applications → Install New Applications.

a. Browse to the EAR file you exported and click Next.

b. In the next window, labeled Preparing for the application
installation, click Next.

The next series of steps will take you through the application installation. This
process is the same as for any WebSphere application. The number of steps
and complexity of choices depend on the application and environment. In the
sample we use, all of the default values were correct.

Follow through with the installation process and save your changes.

2. To start the application select Applications → Enterprise Applications.
Place a check in the box to the left of the mediation application and click
Start.

Automating deployment: You can use ANT to automate the deployment of
mediation modules. The ServiceDeploy task will create EAR files for
application JAR files and the InstallApplication task will install the EAR files.

For more information see the Deploying applications using ANT tasks topic in
the WebSphere Enterprise Service Bus 6.0.1 Information Center at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/
com.ibm.wsps.dev.doc/doc/tdep_usingant.html
524 Patterns: SOA Foundation Service Connectivity Scenario

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.dev.doc/doc/tdep_usingant.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wsps.dev.doc/doc/tdep_usingant.html

11.10.3 Installing the ITSOMart applications
The sample application contains the following EAR files:

� ITSOMartApp.ear
� ITSO_CreditRatingMedApp.ear
� ITSO_CreditRatingMedV2App.ear
� ITSO_CreditRatingServiceApp.ear
� ITSO_CreditScoreMedApp.ear
� ITSO_CreditScoreServiceApp.ear
� ITSO_CRMMedApp.ear
� ITSO_RegLogMedApp.ear
� ITSO_RegProcServceApp.ear
� ITSO_RegShipMedApp.ear
� ITSO_ShipShipSvcApp.ear
� MessageLogApp.ear

Refer to Appendix A, “Sample application install summary” on page 589, for an
overview of each application.

These instructions assume a standalone server. You can use the same
instructions to install to a cluster, but will select the cluster instead of a server
when you map modules to servers.

Follow these steps to install each EAR file into WebSphere ESB:

1. Log in to the administrative console.

2. Select Applications → Install New Application.
 Chapter 11. Deploy with WebSphere ESB 525

3. Browse to the EAR file location, select it, and click Next.

Figure 11-31 Select the EAR file

4. Check the box Generate Default Bindings and click Next.
526 Patterns: SOA Foundation Service Connectivity Scenario

5. The number of steps varies with the type of EAR file selected. Normally for a
mediation module you will find eight steps, listed to the left in Figure 11-32.

Figure 11-32 Install steps for a mediation module
 Chapter 11. Deploy with WebSphere ESB 527

6. Click Next to continue the installation. You can directly click Summary if you
do not have any specific settings to perform. The summary page shows the
install options that will be used (Figure 11-33).

Figure 11-33 Install summary

7. Click Finish to install the application. A report shows the status of the
application install. After successful completion, a message is generated, as
shown in Example 11-2.

Example 11-2 Successful application install message

ADMA5013I: Application ITSO_CRMMedApp installed successfully.
Application ITSO_CRMMedApp installed successfully.

8. Save the changes to the master configuration.
528 Patterns: SOA Foundation Service Connectivity Scenario

Installing an application from the administrative console will not start it. You can
start each application after install or wait until all are installed. To start the
applications, check the box to the left of each application and click Start.

Figure 11-34 Starting applications

Make sure that all the applications started successfully.

By default, the applications will start automatically on server startup.
 Chapter 11. Deploy with WebSphere ESB 529

11.11 Testing ITSOMart
The ITSOMart application Web interface can be started with the following URL:

http://localhost:9080/ITSOMartWeb/faces/CustomerRegistration.jsp

To register a new customer, fill in the values and click Submit Registration.

Figure 11-35 ITSOMart Customer Registration page

You will be taken to the Registration Confirmation page. This does not mean that
the customer has been successfully registered. Use the MessageLogApp
supplied with the sample to see whether the registration was successful and to
see the messages logged from each mediation.

The server log contains messages produced by the application and any error
messages that may have occurred. The log is at:

<profile_home>/logs/<server_name>/SystemOut.log
530 Patterns: SOA Foundation Service Connectivity Scenario

If you are running in a WebSphere Integration Developer test environment, you
can use the Console view.

11.12 Network Deployment and clustering topologies
WebSphere Application Server Network Deployment provides failover, workload
management, and scalability features through its ability to cluster application
servers. Each application server in the cluster hosts the same applications, and
workload is distributed among the servers in the cluster. Although the
applications are the same on each server, the server features and configuration
can be unique.

Workload management for an application server cluster involves the following:

� HTTP requests can be distributed across multiple Web containers in a cluster
of application servers using the Web server plug-in.

� EJB requests can be distributed across multiple EJB containers in a cluster of
application servers.

Failover occurs when a cluster member becomes unavailable. With multiple
servers in the cluster to handle workload, the work continues on the remaining
active servers.

Scalability can also be achieved through clustering. Defining multiple cluster
members on the same machine provides vertical scaling. This allows you to
make efficient use of the server and machine resources and provides software
failover. Defining multiple cluster members across machines provides horizontal
scaling. This provides software and hardware failover capabilities and increases
the amount of software and hardware resources available to handle the
workload.

These features do not change for WebSphere ESB. You can use clustering to
provide failover, scalability, and workload management for mediation modules
running on a cluster.

For an excellent reference on workload management, scalability, and failover in
WebSphere Application Server environment, please see the following:

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

An additional consideration for WebSphere ESB is managing workload
associated with messages on queue destinations in the bus. As an ESB, you
 Chapter 11. Deploy with WebSphere ESB 531

may expect large numbers of messages to be handled by the mediation
modules. Clustering the application servers that run the mediation modules will
provide failover by default, but managing workload generated by messages on
queue destinations will require you to do some extra configuration.

The following are topologies to consider:

� High availability with a single cluster

This configuration consists of a cluster of servers that host mediation
modules. A single messaging engine attached to one application server in the
cluster manages the queue destinations. If the application server fails, the
messaging engine is activated on another application server.

There is no workload sharing in this configuration, as there is only one
messaging engine to handle the traffic through the destination.

� Workload management with a single cluster

This topology provides both high-availability and workload management
features. The messaging engines and mediation modules are hosted in the
same cluster of application servers. Each server in the cluster has a
messaging engine active on the bus, giving it local access to the bus and
providing workload management. This topology cannot support deferred
asynchronous responses.

� High availability with two clusters

In this topology, two clusters are used — one for hosting the messaging
engine and a second for hosting the mediation modules. The cluster hosting
the messaging engines does not have to be SCA-enabled. It is configured as
a remote destination for the SCA-enabled cluster that hosts the mediation
modules using the advanced configuration settings for the cluster.

This topology can support deferred asynchronous responses, as there is no
partitioning of the destination. Note, however, that we only have a single
messaging engine to support all of the application servers. This means that
asynchronous messages are not distributed across the cluster. In addition,
when a mediation module accesses a queue, unless it is executing in the
server that has the messaging engine, the access to the queue is remote.
Adding additional messaging engines to the cluster would lead to partitioned
queues and with remote consumers, there is no guarantee that the
consumers will be spread evenly over the partitions (or even that they will not
all connect to one messaging engine).

The following section illustrates how clusters are created and configured for SCA
and for load balancing.
532 Patterns: SOA Foundation Service Connectivity Scenario

11.12.1 Workload management with a single cluster
By default, only one server in a cluster has an active messaging engine on a bus.
If the server fails, the messaging engine on another server in the cluster is
activated. This provides failover, but no workload management. The server with
the active messaging engine has local access to the bus, but the rest of the
servers in the cluster access the bus remotely by connecting to the active
messaging engine. Servers accessing the bus through a remote messaging
engine will not consume asynchronous messages.

In this topology, each server in the cluster will be configured to have an active
messaging engine, thus providing workload management as well as failover.

When a queue destination is assigned to the cluster, the queue is partitioned,
with each messaging engine in the cluster owning a partition of the queue. A
message sent to the queue will be assigned to one partition. The messaging
engine that owns the partition is responsible for managing the message. This
means that requests sent to a destination can be served on any of the
messaging engines running on any of the servers in the cluster.

Considerations for this topology
Several things should be considered when deciding to use this topology:

� Issues with partitioned queues

Queues are used in the WebSphere ESB to implement asynchronous calls to
SCA components, including mediation components. In this topology, the
queues are partitioned with each messaging engine owning a partition. You
should consider the following:

– Connections to the partitioned queues may not be balanced.

One example would be when the number of users of the queues is less
than the number of servers members of the cluster. In that case some
server members may not be used. Another example is when a queue user
has a role of either putting messages in or taking messages from the
queue.

– Affinity.

When applications are stateless any cluster member can process the
message. This means that there is no affinity between the message and
the server member that needs to process the message. However, when
the applications are stateful the message needs to go to the one cluster
member that has the correct state to be able to process the message
correctly. (See the consideration for deferred asynchronous responses
below.)
 Chapter 11. Deploy with WebSphere ESB 533

– Message ordering.

When a user of a queue reconnects to the queue it may be routed to a
different server member (partition) from where the user was connected
previously. This movement between partitions creates a condition where
some messages may be processed prior to subsequent messages.

Partitions also introduce the possibility that messages are processed out
of order on a single server in the cluster. For example, if messages are
sent in the order A-B-C and A and B are routed to server1 and C to
server2, if A fills up the partition on server1, then B may be rerouted to
server2, arriving after message C.

� Deferred responses

This topology cannot be used with mediation modules that may have deferred
responses (for example, a service using SOAP/JMS that contains a
request/response operation) cannot use this topology. There is no guarantee
that responses will be sent back to the same partition of the destination as the
requester is listening on. This is not the case in the ITSOMart application.

� Database requirements for Message Logger primitives

The Message Logger primitive requires a database. In the stand-alone server
topology it is created as a Cloudscape database during the installation
process, but in a clustered environment you will need to create it. SQL
statements have been provided in
<WAS_HOME>/util/EsbLoggerMediation/<db_type>.

For DB2:

a. Locate the DDL file and add a NOT NULL attribute to the
MEDIATIONNAME column in the CREATE TABLE statement.

b. Enter the following commands:

db2cmd
db2 create db medlog
db2 -tvf table.ddl
534 Patterns: SOA Foundation Service Connectivity Scenario

Topology example
Figure 11-36 shows the topology for this example. The SCA.APPLICATION and
SCA.SYSTEM buses are created with the deployment manager profile. In the
ITSOMart application we use an application-specific bus, ITSOMartBus, which
we added to the configuration.

Figure 11-36 Single cluster topology

Install the product
During installation of WebSphere ESB you have the option to create an
application server profile or to delay profile creation. If this is a new installation
and you plan to use clustering, do the following:

1. Choose the Custom install option.
2. Do not install the samples or the javadocs.
3. Elect not to start the Profile Creation Wizard or the First Steps wizard.

This will delay the profile creation process.

If you plan to create clustered servers across multiple machines, you will have to
install WebSphere ESB on those machines as well.

Create the messaging engine data stores
Each messaging engine has its own data store where it stores operating
information and persists those objects that messaging engines need for recovery
in the event of a failure. This data store consists of a set of tables in a database.

Cell
Cluster

esbServer1

ITSOMart Application bus

esbServer2

SCA System bus

SCA Application bus

ME ME

ME ME

ME ME
 Chapter 11. Deploy with WebSphere ESB 535

In a single-server environment, you have the option of using Cloudscape for the
database and have it set up automatically when you add a member to a bus. In a
clustered environment, you no longer have the option to use the Cloudscape
JDBC provider and database. You will need to provide a JDBC provider (for
example, DB2) and create the database manually.

Before getting started with creating profiles, we create the databases we need for
the messaging engines. A common way of deploying these databases is to have
one per bus used in the deployment configuration, and have the tables
associated with every messaging engine created there. Each messaging engine
uses a different schema to create entries in the database.

We created the following DB2 databases:

� SCADB - Persistent repository for the SCA application and system buses
� SCASINGL - Persistent repository for ITSOMartBus

Create the deployment manager
When building a distributed environment, you first need a deployment manager:

1. Start the profile creation wizard and create a deployment manager profile.

The options you select as you go through the wizard depend on your
environment. The following are settings that we used. Our choices were
primarily based on the fact that we were in a lab environment:

– We used the default port numbers.

– We elected not to run the deployment manager as a Windows service.

– We did not configure the bus for secure communication.

– We used very short cell, node, and profile directory names (to avoid any
potential problems with using long names in our deployment environment
on Windows).

2. On the Summary panel, select Next and wait for the profile creation to
complete.

3. When the profile creation process is complete, check the Launch First Steps
check box and click Finish.

4. In the First Steps window, click the option to start the deployment manager
and, once it has started, log in to the administrative console.
536 Patterns: SOA Foundation Service Connectivity Scenario

At this point the bus configuration of our cell looks like Figure 11-37. Note that the
two SCA buses were created during the profile creation process.

Figure 11-37 Cell configuration - deployment manager creation

Create the nodes
You must create a Custom profile that defines the node that will reside on each
machine you will use in the cluster. Nodes can be defined with custom profiles
and then added (federated) to the cell managed by the deployment manager.

A node contains a node agent that works with the deployment manager to
synchronize configuration files and to manage the servers on the node. You
would normally have one node per machine, but it is possible to create multiple
nodes on one machine.

1. Start the Profile Creation Wizard and create a custom profile.

2. Leave “federate this node later using addNode” unchecked. If you did not use
the default ports for the deployment manager, make sure the correct SOAP
port is entered.

The wizard will federate this node to the deployment manager for you. You
need to make sure the deployment manager is up and running before you
continue.

3. On the Summary panel, select Next and wait for the profile creation to
complete.

4. When the profile creation process completes, check the Launch First Steps
check box and finish.

We created two custom profiles, and because this was a lab environment, these
nodes resided on the same machine as the deployment manager:

� Custom01 profile for Node01
� Custom02 profile for Node02

Cell

SCA Application bus

SCA System bus
 Chapter 11. Deploy with WebSphere ESB 537

Create a core group
A core group is a high-availability domain that consists of a set of processes in
the same cell that can directly establish high-availability relationships. Highly
available components can only fail over to another process in the same core
group and replication can occur only between members of the same core group.
Each core group contains a set of high availability policies that are used to
manage the highly available components within that core group.

The cell will have a default core group defined and you can use this core group if
you wish. We opted to create a new core group. Later we will add a cluster to this
core group and define a high-availability policy within this core group for the
cluster.

1. Log in to the deployment manager administrative console and select
Servers → Core groups → Core group settings.

2. Click New.

3. Enter a name for the core group (we used SingleClusterGroup) and click OK
at the bottom.

Figure 11-38 Adding a core group

4. Save and synchronize your changes with the nodes in the cell. To do this,
click Save. Check the box associated with “Synchronize changes with nodes”
and click Save again.

Create the cluster
We are now ready to create our cluster together with the first server member
using the defaultESBServer template.

1. In the administrative console select Servers → Clusters.

2. Click New.
538 Patterns: SOA Foundation Service Connectivity Scenario

3. Enter the cluster name. We used SingleCluster. We will create new servers
for this cluster, so select Do not include an existing server in this cluster
and click Next.

4. This step lets you create one or more servers for the cluster:

a. Provide a name for the first server in the cluster. We used esbServer1.
b. Pick the node in which you want the server to reside.
c. Select the core group SingleClusterGroup.
d. Select the template defaultESBServer.

The contents of the panel for this step should look like Figure 11-39.

Figure 11-39 Creating a cluster - adding a cluster member

Click the Apply button. You could add additional servers by repeating this
process, but for now, we will only create the first server. Click Next.

5. Verify your settings on the Summary panel and click Finish.

6. Save and synchronize your changes.
 Chapter 11. Deploy with WebSphere ESB 539

At this point the cell configuration looks like Figure 11-40.

Figure 11-40 Cell configuration after creating the cluster

Create the data source for the messaging engines
You must create a JDBC provider and a data source for the database associated
with the messaging engines on ITSOMartBus. The JDBC Provider and
configuration for the SCA application and system buses, including the
authentication alias to the database, are created when you complete “Configure
the cluster to support SCA” on page 546.

We first create the J2C authentication data entry containing the user ID and
password required to authenticate with DB2.

1. In the administrative console select Security → Global Security.

2. Under authentication, expand JAAS Configuration.

3. Select J2C Authentication data and create a new alias.

4. Provide a name for the alias (we used db2_alias) and provide a valid user ID
and password for DB2.

5. Save and synchronize your changes.

We now define a JDBC provider for the DB2 database that is going to hold the
messages for the ITSOMartBus.

1. In the administrative console select Resources → JDBC Providers.

2. Set the scope level to the new cluster.

Cell

SCA Application bus

SCA System bus

Cluster

esbServer1
540 Patterns: SOA Foundation Service Connectivity Scenario

3. Click New.

4. Select:

– DB2 for the database type
– DB2 Universal JDBC Provider for the provider type
– Connection pool data source for the implementation type

Click Next.

5. Click Apply.

6. Under Additional Properties select Data sources.

7. On the Data Sources panel, click New.

8. Provide the following input:

– Name: DB2 DataSource for SingleCluster

– JNDI Name: jdbc/single

– Uncheck the “Use this Data source in Container Managed Persistence”
check-box.

– Component-Managed authentication alias: <dmgr_node_name>/db2_alias

Note that it is preferable to define the authentication alias on the
messaging engine versus here. We defined it here so we could test the
data source, but will remove it before going into production.

– Database Name: SCASINGL

– Driver type: 4

– Server Name: <DB2 hostname>

– Port Number: <DB2 port number>

Click OK.

9. Several of the default data source definition fields use standard WebSphere
variables to describe the location of files. You will need to update your
WebSphere variables to contain the correct paths. For a cluster, define these
variables at the cluster scope if DB2 is installed in the same path on all nodes.
Otherwise use the Node scope.

– DB2_UNIVERSAL_JDBC_DRIVER_PATH = C:\IBM\SQLLIB\java
– DB2_UNIVERSAL_JDBC_DRIVER_NATIVEPATH = C:\IBM\SQLLIB\java

10.Save and synchronize your changes.

11.Test the connection to the database by navigating back to the data source.
Check the box to the left and click Test Connection.
 Chapter 11. Deploy with WebSphere ESB 541

Create the bus for the mediations
We have chosen to create a new bus for the queue destinations used by
ITSOMart. To create the bus:

1. From the WebSphere administrative console, select Service integration →
Buses.

2. Click New.

3. Enter ITSOMartBus for the name and click Apply.

4. Click the Bus members link under Topology.

5. Click Add.

Tip: Data sources that use WebSphere variables may function differently
during the test connection function than they would during runtime. The
difference is in how the WebSphere variables are resolved in runtime
versus during the test. If you created the variables and data sources at the
cluster scope, the test connection should work. However, if you defined the
data source at the cluster level then the test connection will most likely fail,
but the connection should function during runtime.

For more information see “Test connection service” in the WebSphere ESB
Information Center:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.
websphere.nd.doc/info/ae/ae/cdat_testcon.html
542 Patterns: SOA Foundation Service Connectivity Scenario

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.nd.doc/info/ae/ae/cdat_testcon.html

6. Click Cluster and select SingleCluster. Enter jdbc/single as the data
source JNDI name (Figure 11-41). Click Next.

Figure 11-41 Adding the cluster as a ITSOMartBus member

7. Click Finish. Click Next.

8. Verify your settings on the Summary panel and click Finish.

9. Save and synchronize the changes.

Since we are using one database to contain the entries from multiple messaging
engines, each messaging engine must use a unique schema for the database.
We also set the authentication alias for the data store.

To change the schema name used by SingleCluster, do the following:

1. In the administrative console select Service Integration → Buses →
ITSOMartBus.

2. Under topology select Bus Members.

3. Select the cluster member we just added, in our case SingleCluster.
 Chapter 11. Deploy with WebSphere ESB 543

4. When the messaging engines panel comes up select the messaging engine
associated with the cluster member above, in our case,
SingleCluster.000-ITSOMartBus.

5. Under Additional Properties, click Data Store.

6. Choose a schema name and change it here (remember the length of this type
of names is restricted to eight characters).

7. Select the authentication alias for the data store. The panel should look like
Figure 11-42.

Figure 11-42 Changing the schema used by a messaging engine

Note that the Create Tables check box is checked, meaning the tables
associated with the messaging engine will be created the first time the cluster
is started. The schema name proves to be a good filter when you want to only
view the tables associated with a particular messaging engine.

Note also that the messaging engine is associated with the cluster and not
with any of the servers in the cluster. Later we assign a messaging engine to
each server member of the cluster.
544 Patterns: SOA Foundation Service Connectivity Scenario

8. Click OK.

9. Save and synchronize your changes.

10.Restart the deployment manager.

Starting nodes and clusters: This may be a good point to start the cluster
and verify that the messaging engine starts successfully. Before starting the
cluster, ensure that the node agent for each cluster has started.

Start the node:

1. Open a command window and navigate to the bin directory for the custom
profile, for example:

cd \pf\Custom01\bin

2. Check the status of the node agent:

serverStatus -all

3. If the status of nodeagent is stopped, start the node agent with the
following command:

startNode

Once each node agent is up and running, you can start the cluster from the
administrative console:

1. Select Servers → Clusters.
2. Check the box to the left of the cluster and click Start.

This starts each server in the cluster. This may take a few minutes. You can
refresh the status column. Once you see the solid green arrow, the servers in
the cluster have started.

To check the messaging engine for the cluster:

1. Select Service integration → Buses.
2. Click ITSOMartBus to open the details page.
3. Select Messaging engines under Topology.

You should see a solid green arrow by the messaging engine name indicating
that it has started.
 Chapter 11. Deploy with WebSphere ESB 545

Our cell configuration at this point looks like Figure 11-43.

Figure 11-43 Cell configuration after adding a cluster as a member to ITSOMartBus

Configure the cluster to support SCA
Now we must configure the cluster to support SCA. This automatically adds the
cluster to the SCA application and system buses.

1. Select Servers → Clusters → SingleCluster.

2. Under Additional Properties select Advanced Configuration.

a. Select the Default Destination Location check button to specify that the
messaging engines are to be created locally. This has the effect of adding
the cluster as a member of the two SCA application and system buses. A
single messaging engine will be created on each bus for the cluster bus
member.

b. Select the proper JDBC provider for your system.

c. Enter values for the following:

• Application bus schema name: ASCH
• System bus schema name: SSCH
• DB2 user name and password
546 Patterns: SOA Foundation Service Connectivity Scenario

d. Make sure the check box for Create tables is checked (Figure 11-44).

Figure 11-44 Advanced Configuration panel

3. Click OK.

4. Save and synchronize your changes.
 Chapter 11. Deploy with WebSphere ESB 547

Our cell configuration at this point looks like Figure 11-45.

Figure 11-45 Cell configuration after enabling SCA for the cluster

Define the high-availability policy
By default, the messaging engine starts in the first available server in the cluster.
To enable workload management for messaging engines in the cluster, we want
each server in the cluster to have its own messaging engine. This is achieved by
defining a high-availability (HA) policy that matches the messaging engine name
and defining a preferred server (the server where the messaging engine is going
to run). We should also enable fail-back so that if the messaging engine starts on
another server, it will fail back to the preferred server when it becomes available.

1. In the administrative console select Servers → Core groups → Core group
settings.

2. Go into the core group we defined for this topology, SingleClusterGroup.

3. Under Additional Properties select Policies.

4. Click New.

a. From the Configuration panel select One of N policy and click Next.

b. We want the name of the policy to reflect its association with a specific
messaging engine, so we use the name of the messaging engine as the
name of the policy. In our case it is SingleCluster.000-ITSOMartBus.

c. Check the Fail-back check box.

d. Click Apply.

Cell
Cluster

esbServer1

ITSOMart Application bus

SCA System bus

SCA Application bus

ME

ME

ME
548 Patterns: SOA Foundation Service Connectivity Scenario

5. The links that were previously disabled under Additional Properties are
available now, and there is a message in red reminding us that we have to
complete the matching criteria for this policy.

Figure 11-46 Warning before the matching criteria for the policy is defined

6. Under Additional Properties select Match Criteria.

7. When the Match Criteria panel comes up, click New and enter the following
name/value pair:

– Name: type
– Value: WSAF_SIB

Enter a second name/value pair. Note that the value is the messaging engine
name.

– Name: WSAF_SIB_MESSAGING_ENGINE
– Value: SingleCluster.000-ITSOMartBus

The list of match criteria for the policy should look like Figure 11-47.

Figure 11-47 Matching criteria for the policy

8. Navigate back to the new policies details page and select Preferred Servers
under Additional Properties.

9. Add the cluster member esbServer1 as the preferred server.

10.Click OK.
 Chapter 11. Deploy with WebSphere ESB 549

11.Repeat these steps to set the preferred server for the SCA System bus to
esbServer1. In our example, the messaging engine name is
SingleCluster.000-SCA.SYSTEM.ESB1.Bus.

12.Save and synchronize your changes.

Our cell configuration at this point looks like Figure 11-48.

Figure 11-48 Cell configuration after the definition of the HA policy

Add additional members to the cluster
Now it is time to grow our cluster by adding a new member.

1. In the administrative console select Servers → Cluster → SingleCluster.

2. Under Additional Properties select Cluster members.

3. Click New.

a. Provide a member name. We used esbServer2.
b. Pick a node from the ones you just federated into the cell.

4. Click Apply.

5. Click Next.

6. Verify your settings on the Summary panel and click Finish.

7. Save and synchronize your changes.

Cell
Cluster

esbServer1

ITSOMart Application bus

SCA System bus

SCA Application bus

ME

ME

ME
550 Patterns: SOA Foundation Service Connectivity Scenario

Our cell configuration at this point looks like Figure 11-49.

Figure 11-49 Cell configuration after adding the second server to the cluster

Add messaging engines
We now add a new messagings engine for ITSOMartBus and the SCA System
bus and assign it to run on the new member of the cluster.

First add the new messaging engine for ITSOMartBus:

1. In the administrative console select Service Integration → Buses →
ITSOMartBus.

2. Under Topology select Bus members.

3. Select the bus member cluster, SingleCluster.

4. When the Messaging Engine Panel comes up, click Add messaging engine.

5. Fill in the following values for the new messaging engine data source:

– Data source JNDI name: jdbc/single
– Schema Name: CLONE2
– Authentication Alias: <node name>/db2_alias

Click OK.

6. Create a new high-availability policy with the name of the second messaging
engine and match criteria for the messaging engine name,
SingleCluster.001-ITSOMartBus. Select esbServer2 as the preferred server.
(see “Define the high-availability policy” on page 548).

Cell
Cluster

esbServer1 esbServer2

ITSOMart Application bus

SCA System bus

SCA Application bus

ME

ME

ME
 Chapter 11. Deploy with WebSphere ESB 551

7. Save and synchronize your changes.

8. Repeat these steps to create a new messaging engine for the SCA system
bus and set the preferred server to be esbServer2. In our example, the new
messaging engine name is SingleCluster.001-SCA.SYSTEM.ESB1.Bus.

This may be a good point to start the cluster and verify that all the messaging
engines start successfully. You should see the messaging engines come up as
follows:

� esbServer1 should come up with the SingleCluster.000-ITSOMartBus and the
SingleCluster.000-SCA.SYSTEM.ESB1.Bus messaging engines.

� esbServer2 should come up the SingleCluster.001-ITSOMartBus messaging
and the SingleCluster.001-SCA.SYSTEM.ESB1.Bus engines.

� The messaging engine for the SCA application bus could come up on either
of the cluster members.

Our cell configuration at this point looks like Figure 11-50.

Figure 11-50 The single cluster topology

Cell
Cluster

esbServer1

ITSOMart Application bus

esbServer2

SCA System bus

SCA Application bus

ME ME

ME ME

ME ME
552 Patterns: SOA Foundation Service Connectivity Scenario

Deploy the mediations to the cluster
Deploying mediations to a cluster environment is basically the same as to a
single server environment. The difference is in the scope you use to define
resources, and the applications will be installed to a cluster versus a to a single
server. Consider the following:

� Create virtual hosts for your servers and clusters or make sure that the alias
list for the default_host virtual server is updated to include the Web container
default host port.

� Create JDBC resources at the deployment manager node and cluster scope.

� Install the mediation applications to the cluster. You can select the cluster
during the install during the map modules to servers step.

� Create the bus destinations required.

� If you add Web services support for the bus, you will not be able to use the
default Cloudscape database for the SDO repository.

11.13 For more information
See the following resources:

� WebSphere Enterprise Service Bus 6.0.1 Information Center

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.webs
phere.wesb.doc/info/welcome.html

� Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688
 Chapter 11. Deploy with WebSphere ESB 553

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.wesb.doc/info/welcome.html

554 Patterns: SOA Foundation Service Connectivity Scenario

Chapter 12. Service monitoring and
management with IBM Tivoli
Composite Application
Manager SOA

This chapter is an overview of the IBM Tivoli Composite Application Manager for
SOA. System administrators use IBM Tivoli Composite Application Manager for
SOA along with the IBM Tivoli Enterprise Monitoring framework to monitor and
manage Web services in a composite application environment.

This chapter includes a brief overview of the architecture of the composite
application management environment. The ITSOMart application will be used to
illustrate application management using IBM Tivoli Composite Application
Manager for SOA.

This chapter includes the following topics

� Tivoli Composite Application Manager (ITCAM)
� IBM Tivoli Enterprise Monitoring framework
� IBM Tivoli Composite Application Manager for SOA
� Tracking performance with ITCAM for SOA
� Monitoring ITSOMart

12
© Copyright IBM Corp. 2006. All rights reserved. 555

12.1 Tivoli Composite Application Manager (ITCAM)
IBM Tivoli Composite Application Manager is the name for a suite of Tivoli
monitoring products that are positioned for performance monitoring and
management of composite applications. Typically composite applications consist
of many components including Web servers, application servers, database
servers, and back-end systems such as CICS and IMS running on mainframe
systems. Traditional application monitoring tools provide the ability to observe
each individual system layer but do not provide a way to perform end-to-end
monitoring of the entire application. Figure 12-1 shows the complete Tivoli
solution portfolio for storage, security, and systems management.

Figure 12-1 Tivoli solution stack

The complete solution stack offers the following features:

� Resource Monitoring

Measuring and managing IT resource performance including servers,
databases, and middleware.

� Composite Application Management

Monitoring and managing an application and its components and providing a
view on application availability.

� Event Correlation and Automation

Correlates and automates events or faults that are generated by resource
monitoring and application monitoring to provide information about root-cause
analysis of failure in the environment.

Business Service Management

Orchestration and Provisioning

Event Correlation and Automation

Composite Application Management

Resource Monitoring

Security

Storage
556 Patterns: SOA Foundation Service Connectivity Scenario

� Orchestration and Provisioning

Provides the ability to deploy components as required to fulfill processing
needs, if the need arises as indicated by the correlation engine.

� Business Services Management

Provides a high-level view of business status as reflected by its underlying
monitoring components. The view can either be in real time or based on a
service level agreement (SLA).

The IBM Tivoli Composite Application Manager suite consists of the following
products:

� IBM Tivoli Composite Application Manager Response Time Tracking V6.0

Proactively recognizes, isolates, and resolves transaction performance
problems

� IBM Tivoli Composite Application Manager for SOA 6.0

Monitors and manages the Web services layer of an IT architecture

� IBM Tivoli Composite Application Manager for WebSphere V6.0

Can isolate the root cause of bottlenecks in a WebSphere application runtime
environment

� IBM Tivoli Composite Application Manager for CICS Transaction V6.0

Provides data from CICS systems to be used in ITCAM for response time
tracking

� IBM Tivoli Composite Application Manager for IMS Transactions V6.0

Provides data for IMS systems to be used in ITCAM for response time
tracking

� OMEGAMON XE for WebSphere Business Integration V1.1

Can monitor WebSphere MQ family runtimes and provide automatic
corrective actions to improve performance and availability

Table 12-1 Mapping between new IBM terminology and previous Candle terminology

IBM Tivoli terminology Candle/OMEGAMON terminology

IBM Tivoli Monitoring Services OMEGAMON Platform

IBM Tivoli Monitoring OMEGAMON for distributed products

Tivoli Enterprise Monitoring Server Candle® Management Server (CMS)

Tivoli Enterprise Monitoring Agent OMEGAMON Monitoring Agent®

Tivoli Enterprise Portal Server CandleNET Portal Server
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

Table 12-1 on page 557 lists the mapping between the new IBM terminologies
and the previous Candle terminology. It is worth noting that in the documentation
slightly differing Candle terminologies may mean the same in the IBM
terminologies.

12.1.1 Composite applications
Modern SOA applications are increasingly depend on multi-tier, composite
applications. To fully realize the benefits of SOA, it is important that composite
applications provide effective performance metrics in real time to manage
availability and to meet business goals in terms of service level agreements
(SLAs).

In general, composite applications are more difficult to build, test, and manage
for high performance. Although techniques and best practices exist for designing
high-performance systems, monitoring tools that can provide details of
performance metrics for individual components as well as the end-to-end view of
the composite application are needed. See Figure 12-2.

Figure 12-2 Composite Application consisting of several different types of components

Tivoli Enterprise Portal CandleNET Portal

Situation Event Console Enterprise Event Console/Event Console

Tivoli Enterprise Portal Candle Management Workstation

Database Candle Data Warehouse

IBM Tivoli terminology Candle/OMEGAMON terminology

W eb S ervers Application ServersW eb C lients Backend Sys tem s

C om posite Applications
558 Patterns: SOA Foundation Service Connectivity Scenario

To effectively manage composite applications you must consider three aspects
of applications, as summarized in Figure 12-3. There is the management aspect
for an end-to-end transaction, application perspective, and the individual
resources perspective.

From a transaction point of view, it is important that the service level response
time is met and that you are able to isolate problems that cause a degradation in
the overall response time. The transaction perspective provides an end-user
view of performance. ITCAM for response time tracking is positioned for this.

Figure 12-3 Three dimensions of effective application management

To support the end-to-end view, it is important to be able to isolate resource
utilization issues at individual component levels such as application server
metrics or Web service call utilization. This is where the other products in the
family, such as ITCAM for WebSphere or ITCAM for CICS/IMS, come in. They
can provide in-depth analysis of resource utilization and bottlenecks that are
pertinent to that component.

Web Servers Application ServersWeb Clients Backend Systems

Transactions

Resource Monitoring

A
p

p
licatio

n
s

Response
Time Tracking

WebSphere
Application Server

Performance

CICS/IMS
Transactions

Web Services
Calls

WebSphere
Business Integration

Messaging
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

12.2 IBM Tivoli Enterprise Monitoring framework
The ITCAM products are designed to work together within one framework, called
the IBM Tivoli Enterprise Monitoring framework. The framework can be seen in
Figure 12-4.

Figure 12-4 Components of the IBM Tivoli Enterprise Monitoring framework

Tivoli Enterprise Monitoring Server (TEMS)
The Tivoli Enterprise Monitoring Server (or monitoring server) is the initial
component to install to begin building the IBM Tivoli Monitoring Services
foundation. It is the component on which all other architectural components
depend. The TEMS acts as a collection and control point for alerts received from
agents, and collects their performance and availability data. The TEMS is
responsible for tracking the heartbeat request interval for all Tivoli Enterprise
Management Agents connected to it.

The TEMS stores, initiates, and tracks all situations and policies, and is the
central repository for storing all active conditions and short-term data on every
560 Patterns: SOA Foundation Service Connectivity Scenario

Tivoli Enterprise Management Agent. Additionally, it is responsible for initiating
and tracking all generated actions that invoke a script or program on the agent.

The TEMS stores its data in a collection of log files, which can be persisted in a
relational database.

The primary TEMS is configured as a hub. All IBM Tivoli Monitoring installations
require at least one TEMS configured as a hub. Additional remote TEMS can be
installed later to introduce a scalable hierarchy into the architecture.

This hub/remote interconnection provides a hierarchical design that enables the
remote TEMS to control and collect its individual agent status and propagate the
agent status up to the hub TEMS. This mechanism enables the hub TEMS to
maintain infrastructure-wide visibility of the entire environment. This visibility is
passed to the Tivoli Enterprise Portal Server for formatting, ultimately displaying
in the Tivoli Enterprise Portal client.

Tivoli Enterprise Portal Server (TEPS)
The Tivoli Enterprise Portal Server, also known as portal server, is a repository
for all graphical presentation of monitoring data. The portal server database also
consists of all user IDs and user access controls for the monitoring workspaces.
The TEPS provides the core presentation layer, which allows for retrieval,
manipulation, analysis, and formatting of data. It manages this access through
user workspace consoles. The TEPS keeps a persistent connection to the hub
TEMS, and can be considered a logical gateway between the hub TEMS and the
Tivoli Enterprise Portal client. Any disconnection between the two components
immediately disables access to the monitoring data used by the Tivoli Enterprise
Portal client.

A database must be installed on the same host prior to the TEPS installation.
This prerequisite is necessary because the TEPS installation will create the
required TEPS database, along with the supporting tables. Also, an ODBC (data
source name) is configured to connect directly to the Tivoli Data Warehouse
database. This ODBC connection is used whenever a pull of historical data from
the Tivoli Data Warehouse is requested.

Tivoli Enterprise Portal clients
The TEP client (referred to as the portal client) is a Java-based user interface
that connects to the Tivoli Enterprise Portal Server to view all monitoring data
collections. It is the user interaction component of the presentation layer. The
TEP brings all of these views together in a single window so you can see when
any component is not working as expected. There are two TEP clients, namely,
the Java desktop client and an HTTP browser client.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

To invoke the browser-based TEP client, use the URL:

http://<hostname>:1920/cnp/kdh/lib/cnp.html

Where <hostname> is the host name of the Tivoli Enterprise Portal Server.

The following products have integrated interfaces into the TEP:

� OMEGAMON z/OS®
� OMEGAMON Distributed
� IBM Tivoli Monitoring 5.1.2
� IBM Tivoli Monitoring 6.1
� NetView® for z/OS (release 5.2)
� IBM Tivoli Enterprise Console®
� IBM Tivoli Composite Application Manager for Response Time Tracking
� IBM Tivoli Composite Application Manager for WebSphere
� IBM Tivoli Composite Application Manager for SOA

This means that a consolidated view of a composite application has been made
available through a single client.

Tivoli Enterprise Monitoring Agent (TEMA)
The Tivoli agents are installed on the systems or subsystems requiring data
collection and monitoring. The agents are responsible for data gathering and
distribution of attributes to the monitoring servers, including initiating the
heartbeat status.

Monitoring applications are identified by product code, a three-letter identifier that
starts with the letter K. Some identifiers are:

� KUM: Universal Agent
� KNT: Windows OS monitoring
� KD4: ITCAM for SOA
� KYN: ITCAM for WebSphere
� KT2: ITCAM for RTT

These agents test attribute values against a threshold and report these results to
the monitoring servers. The TEP displays an alert icon when a threshold is
exceeded or a value is matched. The tests are called situations.

When a portal workspace is opened or refreshed, the TEPS sends a sampling
request to the hub TEMS. The request is passed to the monitoring agent if there
is a direct connection or through the remote TEMS to which the monitoring agent
connects. The monitoring agent takes a data sampling and returns the results
through the monitoring server and portal server to the portal workspace.
562 Patterns: SOA Foundation Service Connectivity Scenario

The sampling interval for a situation (a test taken at your monitored systems) can
be as often as once per second or as seldom as once every three months. When
the interval expires, the monitoring server requests data samples from the agent
and compares the returned values with the condition described in the situation. If
the values meet the condition, the icons change on the navigation tree.

Optionally, the agents can be configured to transfer data collections directly to
the Warehouse Proxy agent instead of using the remote TEMS. If firewall
restrictions are disabled or minimal, you should configure all the agents to
transfer directly to the Warehouse Proxy agent. Otherwise, firewall security is a
key factor in the location of the Warehouse Proxy agent respective to the firewall
zone and agents. Warehousing data through the remote TEMS is limited and
should be used only as a last resort.

Tivoli Enterprise Management Agents are grouped into two categories:

� Operating system (OS) agents

Operating system agents retrieve and collect all monitoring attribute groups
related to specific operating system management conditions and associated
data.

� Application agents

Application agents are specialized agents coded to retrieve and collect
unique monitoring attribute groups related to one specific application. The
monitoring groups are designed around an individual software application,
and they provide in-depth visibility into the status and conditions of that
particular application.

Common management agents packaged with IBM Tivoli Monitoring include:

� Window OS Agent
� Linux OS Agent
� UNIX OS Agent
� UNIX Log Agent
� i5 OS Agent
� Universal Agent

The Universal Agent is a special agent that leverages an API to monitor and
collect data for any type of software. The Universal Agent can monitor and
retrieve data from any application that produces data values. Essentially, IBM
Tivoli Monitoring can now monitor any unique application regardless of whether
the base product supports it.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

Common optional management agents that are packaged separately include:

� Monitoring Agent for IBM Tivoli Monitoring 5.x Endpoint
� DB2 Agent
� Oracle Agent
� MS SQL Agent
� MS Exchange Agent
� Active Directory® Agent

Tivoli Data Warehouse Proxy agent
The Warehouse Proxy agent is a unique agent that performs only one task:
collecting and consolidating all historical data collections from the individual
agents to store in the Tivoli Data Warehouse. If using the Tivoli Data Warehouse,
one Warehouse Proxy agent is required for each IBM Tivoli Monitoring
installation. It uses ODBC to write the historical data to a supported relational
database.

Warehouse Summarization and Pruning Agent
The Summarization and Pruning agent is a unique agent that performs the
aggregation and pruning functions for the historical raw data on the Tivoli Data
Warehouse. It has advanced configuration options that enable exceptional
customization of the historical data storage.

One Summarization and Pruning agent is recommended to manage the historical
data in the Tivoli Data Warehouse. Due to the tremendous amounts of data
processing necessary, we recommend that the Summarization and Pruning
agent always be installed on the same physical system as the Tivoli Data
Warehouse repository.

Tivoli Data Warehouse (TDW)
The Tivoli Data Warehouse is the database storage that contains all of the
historical data collection. A Warehouse Proxy must be installed to leverage the
TDW function within the environment. In large-scale deployments, a Tivoli Data
Warehouse can be shared among monitoring installations.

12.3 IBM Tivoli Composite Application Manager for SOA
IBM Tivoli Composite Application Manager (ITCAM) for SOA v6.0 provides the
management function for managing services in a SOA environment. It monitors
and performs simple control of message traffic between Web services.

ITCAM works with several application server environments including IBM
WebSphere Application Server, Microsoft .Net, and BEA WebLogic Server.
564 Patterns: SOA Foundation Service Connectivity Scenario

ITCAM supports production IT environments, and status and situation
generation. This release provides Web services as first class manageable
resources in the Tivoli Enterprise Portal environment.

ITCAM is installed and operates within the management infrastructure of the
Tivoli Monitoring Services platform. The Tivoli Monitoring Services works in
conjunction with Tivoli Enterprise Portal to provide graphical views of metrics of
Web services calls.

The following list describes the primary components of ITCAM for SOA:

� A monitoring agent that interacts with the managed application servers and
infrastructure middleware to collect data. The monitoring agent is installed
locally on every application server environment where Web services are to be
managed. The data collected by the monitoring agent is stored in a log file.
The monitoring agent also stores data collector configuration data in a
configuration file that is accessed by the data collectors on each managed
system.

� A set of management data using logical table constructs.

� A set of queries and commands.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

Figure 9-4 shows the user interface for managing the environment. This user
interface is presented via the Tivoli Enterprise Portal.

Figure 12-5 Sample ITCAM for SOA workspace displayed via Tivoli Enterprise Portal

12.4 Tracking performance with ITCAM for SOA
First we cover some of the concepts used in the Tivoli monitoring tools.

12.4.1 Workspaces
Workspaces are at the heart of Tivoli Enterprise Portal (TEP) and provide access
to the collected data for your monitored Web services. Each workspace serves a
unique purpose and displays a specific set of data to monitor or to provide an
overview of all resource data (see Figure 12-6 on page 568). Various nodes
566 Patterns: SOA Foundation Service Connectivity Scenario

relating to the agent and the remote application server are highlighted in the
picture. Notice the toolbar at the top, from which various editors can be invoked
during customization of the workspace. Also, there are icons for tables and
graphs, which can be used to display collected data.

Workspaces are split into multiple views. A view can be a table, graph, notepad,
Web browser, 3270 terminal emulator, and so on. It is used to display data in a
meaningful way. Each workspace contains the Tivoli Enterprise Portal Navigator
view, fixed in the upper left corner of the workspace. The Navigator view
provides tabbed support for one physical topology, or navigation tree, and zero
or more business views.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

Use the Navigator view to navigate through the physical topology of your
enterprise environment. The Services Management Agent Environment node
represents the standard Tivoli Enterprise Portal monitoring agent function
provided by ITCAM for SOA. It is displayed in the Navigator tree under the
managed system node. See Figure 12-6.

Figure 12-6 Example of Workspace in Tivoli Enterprise Portal
568 Patterns: SOA Foundation Service Connectivity Scenario

ITCAM for SOA comes with a set of predefined workspaces that you can select
from the Navigator, each with its own set of views that display Web services data
and metrics in various levels of detail:

� Message Arrival workspace
� Performance Summary workspace
� Message Summary workspace
� Faults Summary workspace
� Services Management Agent workspace
� Services Management Agent Environment workspace

The views included in the workspaces at the Services Management Agent
Environment level or below, except the Fault Details view, are based on the
Services Inventory table. This table contains summarization calculations for the
monitored Web services traffic. The calculations are done on a five-minute
interval. For each interval, the traffic is analyzed to calculate the fields available
within the table. After the five-minute interval is complete, the record is marked
as complete. All queries of the Services Inventory table that are provided with the
product include a check for only complete records.

The Services Management Agent workspace
In the Navigator view, when you click the monitoring agent, the Service
Management Agent workspace is displayed.

The Service Management Agent workspace displays the current configuration
details for the monitoring agent data collectors that are configured in different
application server instances. At the highest level this workspace contains the
following views:

� Data Collector Global Configuration
� Data Collector Monitor Control Configuration
� Data Collector Filter Control Configuration

The Data Collector Global Configuration view includes the name and
environment for the application server where the interception point is running,
and flag settings to enable or disable data collection, tracing, and logging. In this
view you can turn off monitoring by changing the data collector setting to off.

The Data Collector Monitor Control Configuration view includes information
about which services and operations are being monitored for a specific
application server in the specified environment. You can configure which
services to monitor and for which services message content is to be logged. By
default all services are monitored. If you change this setting, only those services
and operations that you specify are monitored. The Message Logging Level
column indicates the level of logging that is configured for each unique
combination of service name and operation name.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

Valid message logging levels are defined in Table 12-2.

Table 12-2 Message logging table

Message Arrival workspace
The Message Arrival workspace provides a summary of the number of
messages that arrive at the data collector for each combination of service name,
operation name, and remote IP address that has been configured as a situation.

This workspace contains the following views:

� Message Arrival Details view
� Message Arrival by Service view
� Message Arrival by Operation view

Service Management Agent Environment workspace
The Services Management Agent Environment workspace represents the agent
monitoring applications for all of the application servers on that system. This
workspace provides a set of views that summarize the performance, message
activity, and fault occurrences associated with the Web services traffic through
this monitoring agent. This workspace contains the following views:

� Average Response Time by Operation view
� Number of Messages by Operation view
� Average Message Size by Operation view

Performance Summary workspace
The Performance Summary workspace provides the inventory of currently active
and monitored services, as well as the response time of the services. This
workspace contains the following views:

� Average Response Time by Operation view
� Services Inventory view

Messaging logging level Comment

None No information about the message is logged.

Body Only the body of the message is logged.

Header Only the header information is logged.

Full Both body and header messages are logged.
570 Patterns: SOA Foundation Service Connectivity Scenario

Messages Summary workspace
The Messages Summary workspace provides details about the number and size
of messages received for services and service/operation combinations. This
workspace contains the following views:

� Number of Messages by Service - Operation - Type view
� Average size of Messages by Service - Operation - Type view

Faults Summary workspace
The Faults Summary workspace provides a general faults summary. This
workspace contains the following views:

� Faults Summary by Operation view
� Fault Details view

Customizing workspaces
Tivoli Enterprise Portal provides a set of predefined workspaces that include
queries, thresholds, and views. You can customize these predefined workspaces
to suit your particular needs or create additional workspaces. When you create
custom views, you select a presentation type such as table, bar chart, pie chart,
and so on and associate a query to that view. The query retrieves data collected
by the monitoring agents and the view displays that data using parameters you
specify.

12.4.2 Attributes
Attributes are measurements that are collected by the IBM Tivoli Monitoring V6.x
family of products. ITCAM for SOA stores specific measurements or attributes
that are pertinent to its functions. Attributes are grouped into tables. The tables
that are available for long-term historical data collection are indicated in the
description of the table and show historical reference information that identifies
each attribute within each table.

Table 12-3 ITCAM for SOA attribute tables

Attributes table name Description

KD4DCMT Data collector monitor control configuration attributes.
Associated Take Action commands: AddMntCntrl,
DelMntCntrl, UpdMntCntrl

KD4DCT Data collector global configuration attributes.
Associated Take Action commands: EnableDC, DisableDC,
updateLogging, updateTracing
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

The columns of these tables correspond to the parameters that are required to
be completed during a Take Action command. Most of the parameters are
self-documenting. Some may require reference to the documentation for ITCAM
for SOA.

KD4FCT Data collector filter control configuration attributes.
Associated Take Action commands: AddFltCntrl,
DelFltrCntrl

KD4FLCT Fault log attributes

KD4INV Service inventory attributes

KD4MATT Message arrival threshold attributes

KD4SMT Service message metric attributes

Attributes table name Description
572 Patterns: SOA Foundation Service Connectivity Scenario

Table 12-4 shows some of the parameters you may need.

Table 12-4 Key parameters used in attribute tables and Take Actions commands

For a full list of details on the attributes and associated tables, refer to the
documentation for ITCAM for SOA, IBM Tivoli Composite Application Manager
for SOA Installation and User's Guide, GC32-9492.

12.4.3 Situations
A situation is a type of an event that is generated in Tivoli Monitoring Services.
ITCAM provides predefined situations. These situations are defined to help you

Term reported for
historic data

Attribute name Description

APPSRVENV Application Server
Environment

Type of environment in
which the data collector is
running. Choose one of the
following:
� WebSphere_Application_

Server
� .NET
� WebLogic_Server

APPSRVNM Application Server Name Name of the application
server from which the data
is collected. If the
Application Server
Environment is set to
WebSphere_Application_
Server then the server
name is something like
server1 as the default or
ITSOCarRentalSvr or
ITSOWebSvcCarRentalSvr, if
you have defined your own
servers.

HOSTNAME Host name This is the fully qualified
name of the host where the
data collector is running.
For example,
itsoapp1.itso.ral.ibm.com

If not sure, use an asterisk
(*) (wild card).
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

monitor critical activity and serve as a template for creating customized situations
of your own.

A situation is a condition where a set of attributes are tested against a threshold.
The situation evaluates the conditions at predefined intervals and invokes the
appropriate automated responses and notification methods.

Predefined situations are activated when they are distributed to the node that you
wish to monitor. Once they have been configured, the situation alerts provide
ITCAM trigger event notification. You can modify an existing situation to create
your own. The default sampling interval for a situation is 15 minutes. If you
modify an existing situation to create your own, do not forget to change the
sampling time.

The predefined situations provided with ITCAM for SOA are:

� Fault: Monitors the messages in the Web services flow to determine whether
a Web service fault has occurred.

� Message Arrival Critical: Raises an alert when an excessive amount of traffic
occurs (when the number of messages received from one or more remote
clients exceeds a user-defined threshold).

� Message Arrival Clearing: Clears a previously triggered Message Arrival
Critical situation. The situation can also be used to alert when message
arrival falls below a specified threshold; perhaps this may be used to alert a
lack of activity.

� Message Size: Monitors the length in bytes of each message during the Web
services flow. If the length of the message is greater than the threshold value,
then the situation is triggered.

� Response Time Critical: Monitors in milliseconds the elapsed round-trip
response time for the completion of a Web services request.

� Response Time Warning: Monitors in milliseconds the response time for the
completion of a Web services request.

The default situations are based on service calls stored in the Service_Metric
table. Analyzing summarized information in the Service_Inventory table can
reduce some of the monitoring overhead.

12.4.4 Policies
Advanced automation uses policies to perform actions, schedule work, or
automate manual tasks. A policy consists of a series of activities. Activities are
automated steps that are connected together to create a workflow. Tivoli
Enterprise Portal gives you a Workflows window for designing and managing
policies.
574 Patterns: SOA Foundation Service Connectivity Scenario

12.4.5 Take Action commands
Take Action commands are directives that can be run from the Tivoli Enterprise
Portal desktop client or included in a situation policy. When included in a
situation, the command runs when the situation becomes TRUE. When you
enable a Take Action command in a situation, you automate the response to
system conditions.

The ITCAM for SOA agent includes the following predefined Take Action
commands that change the configuration file for the agent and control the
operation of the data collector (Table 12-5).

Table 12-5 Predefined Take Action commands for ITCAM

Take Action commands with SI- or SM- prefixes
When you are viewing data in the Services Management Agent Environment
workspace or in any of its lower-level workspaces, several of these Take Action
commands appear in the Action selection list, with the command name prefixed
with either SI- (for example, SI-AddMntrCntrl) or SM- (for example,
SM-DelFltrCntrl). These additional versions of these commands perform the
same function as the regular commands. The difference between these
commands is in how the input fields for each command are pre-filled for you
when you select a command from the list.

Take Action command Description

AddFltrCntrl Creates new filter control settings to reject
messages

AddMntrCntrl Creates new monitor control settings

DelFltrCntrl Deletes existing filter control settings

DelMntrlCntrl Deletes existing monitor control settings

DisableDC Disables data collection and the ability to reject
messages

EnableDC Enables data collection and the ability to reject
messages

updateLogging Defines the level of logging information

UpdMntrCntrl Updates existing message logging levels for
monitor control

updateTracing Enables or disables tracing
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

Figure 12-7 shows the relationship between the Take Action commands and the
effect on attribute tables maintained by the agent.

Figure 12-7 Relationship between the agent, data collection tables, and Take Action commands

The agent maintains a set of logical tables whose attributes can be manipulated
by the Take Action commands such as AddMntrCntrl. It would be difficult to
remember every single attribute that can be manipulated. Fortunately, the Take
Action commands issued in the TEP for predefined workspaces come pre-filled
with parameters such as the name of the application server. You only have to
change the name of a specific operation or the name of the Web service to effect
the behavior during data collection.

12.4.6 Log files
Log files are created as a standard action when starting agents and Tivoli
Enterprise Monitoring Server. Proper management of log files is important, as
their size and the number can grow depending on the managed systems and the
level of activities in the systems.

Tivoli
Monitoring

Services

KD4DCMT

Attribute Tables

KD4DCT

KD4FCT

KD4INV

KD4SMT

Log
Files App

Server

…

Agent

Tivoli Enterprise Portal

+

Take Action Commands

AddMntrCntrl/DelMntrCntrl
AddFltrCntrl/DelFltrCntrl
EnableDC/DisableDC
updateLogging
updateTracing

Data Collector
Monitor Control

Data Collector
Global Config.

Services
Inventory

Services
Message Metric

Data
Collector
576 Patterns: SOA Foundation Service Connectivity Scenario

Some examples of log files are:

� TEMS error log file

� Logs for Tivoli Enterprise Portal or Tivoli Enterprise Portal Server log

� Agent log files for ITCAM for SOA, including metric logs, content logs, action
logs, operation logs and trace logs

12.5 Monitoring ITSOMart
This section illustrates how you can use the Tivoli Enterprise Portal to monitor
Web services traffic. It uses the ITSOMart solution as an example. DB2 is
providing the warehouse function.

1. Ensure that the following services are running on the monitoring server node
(use the Manage Tivoli Enterprise Monitoring Services utility to start and stop
services):

– Tivoli Enterprise Portal Server
– Warehouse Proxy
– Tivoli Enterprise Monitoring Server

2. Ensure that the ITCAM for SOA Monitoring Agent is running on the enterprise
service bus node (use the Manage Candle Services utility to start and stop
the agent).

3. Launch the Tivoli Enterprise Portal Desktop client as shown in Figure 12-8 by
double-clicking it.

Figure 12-8 Launching the portal desktop client
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

4. In the portal Logon screen, enter sysadmin as the logon ID and leave the
password field blank. See Figure 12-9.

Figure 12-9 Tivoli Enterprise Portal login screen

5. Expand the navigation tree on the top right corner of the screen. Do not worry
if you do not see an entry corresponding to the application server, you may
need to generate traffic for the enterprise portal to recognize the monitoring
agent.

12.5.1 Configure data collection
Next we adjust the settings for data collection. We set the collection interval to 5
minutes. This causes data to be collected every 5 minutes. We also set the
warehouse interval to 1 hour. This means that historical data will be sent to the
warehouse every hour. If you do not have a warehouse, set this to off. Last, we
start the data collection.

Note: If the monitoring agent is running and you see an entry in the navigator
but the Service Management Agent Environment is grayed out, the monitoring
agent may not be able to connect to the monitoring server. To look at agent
logs, right-click the ITCAM for SOA entry in the Manage Candle Services
window on the application server node and select Advanced → View Trace
Log from the menu. The trace log is also located in
<tivoli_agent_home>\cma\logs\kd4ras1.log.
578 Patterns: SOA Foundation Service Connectivity Scenario

To set these intervals:

1. Click the Configure History Button in the toolbar.

Figure 12-10 Configure History

2. In the dialog, select ITCAM for SOA from the drop-down menu at the top.

3. Select Services_Inventory from the list of Attribute Groups and change the
collection interval to 5 minutes and set the Warehouse Interval to 1 hour.

4. Click Configure Groups at the bottom of the dialog.

5. Notice that the collection interval and warehouse interval settings you
specified are now in the attributes grid, as shown in Figure 12-11.

Figure 12-11 Configure ITCAM SOA data collector settings

6. Select the Services_Inventory again and click Start Collection at the
bottom of the dialog. Make sure that the Collection column shows Started
next to the Services_Inventory entry.

7. Repeat this process for the Services_Message_Metric.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

12.5.2 Generate Web services traffic
Now that the data collection has started, we can start generating traffic to our
Web services.

1. Start the server hosting the Web service.

2. Generate Web services traffic by navigating to the customer registration page
and submitting a customer registration.

The URL for the ITSOMart customer registration page is
http://localhost:9080/ITSOMartWeb/faces/CustomerRegistration.jsp.

3. Once you have submitted a customer registration, return to the enterprise
portal client. A highlighted green arrow in the top right corner of the screen
(Figure 12-12) indicates that the navigator has an update. Click the green
arrow to update the navigator.

Figure 12-12 Navigator update available

4. Go to the portal client and expand the Services Management Agent node to
see information about the Web services data collection settings.

Note: You may need to wait several minutes for the data collector to post
data to the monitoring server.
580 Patterns: SOA Foundation Service Connectivity Scenario

5. Click Message Arrivals to see details about incoming Web service requests
(Figure 12-13).

Figure 12-13 Message Arrival Summary view

6. Expand the Services Management Agent Environment view to see additional
details about the Web services requests, and then browse through each of
the other views (Message Summary, Performance Summary, and so on).

12.5.3 Enable Web service data logging
Enabling the data logger for a particular service operation allows a more detailed
inspection of service requests, including message headers and payloads.
Logged content may also be used within the Web Services Navigator for
additional analysis.

1. Navigate to the Performance Summary view and select a service from the
Services Inventory list at the bottom of the screen.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

2. Right-click the item and select Take Action → Select from the menu.

3. From the Take Action dialog, select SI-AddMntrlCntrl from the Name
drop-down list.

4. You will now see a dialog allowing you to configure the monitor parameters.
Notice that many of the parameters are already specified. You need to supply
a value for DataCollectMessageLoggingLevel. Valid values include Full,
Body, Header, and None. Enter Full into this field, as in Figure 12-14.

Figure 12-14 Edit Monitor Argument Values

5. Click OK.

6. Select a destination system from the list (there should only be one system).

7. Click OK to enable the trace logger.

Once the command has executed, you will see a status dialog. A return code
of 0 indicates success. Other codes indicate errors, and appropriate
messages accompany the error codes.

8. Select the Services Management Agent in the navigator.

9. The data collector monitor you just enabled should now appear in the Data
Collector Monitor Control Configuration at the bottom left handle corner of the
screen.

Figure 12-15 Monitor control configuration
582 Patterns: SOA Foundation Service Connectivity Scenario

10.Go back to the ITSOMart application and create another customer
registration request.

11.You should now see a file whose name ends with content.log in the
<tivoli_agent_home>/cma/kd4/logs directory. This file contains the data that
was collected. You may open this file using a text editor to view the content.
This file may also be imported using Web Services Navigator for further
analysis.

12.The content logging also generates an additional log at
<tivoli_agent_home>/cma/logs/kd4inv. This log contains the agent data log,
including Web services statistics and service details.

Disable Web service data logging
Content logging should only be used briefly to collect data for error diagnosis or
traffic pattern analysis. Once you have collected sufficient content, you will need
to disable the content logging.

1. Select the Service Management Agent in the navigator.

2. Right-click the monitoring entry in the bottom left-hand corner of the screen.

3. Select Take Action → Select from the menu.

4. Select DellMntrCntrl from the Action Name drop-down list.

5. Select the system from the Destination Systems list and click OK.

6. Once the command has been executed, you will see a status window. Click
OK.

7. Refresh the workspace using the refresh icon in the toolbar at the top of the
screen. The Data Collector Monitor Control Configuration should no longer
contain the monitor control you added earlier.

12.5.4 Content filtering
In the same way that content logging may be enabled, you can also control
content filtering. Content allows you to selectively accept and reject Web service
requests. This allows you to block denial of service (DOS) attacks against your
Web services layer.

1. Navigate to the Performance Summary view and select a service from the
Services Inventory list at the bottom of the screen.

2. Right-click the item and select Take Action → Select from the menu.

Note: Be aware that this file grows quickly. Do not leave logging enabled for
extended periods of time, as this will degrade performance on the application
server node.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

3. From the Take Action dialog, select SI-AddFltrCntrl from the Name
drop-down list.

4. You will now see a dialog allowing you to configure the filter parameters. Note
that many of the parameters are already specified. You need to supply a
value for RemoteIPAddress. This specifies the remote IP addresses to reject.
Enter an asterisk (*) to indicate that all clients should be rejected.

5. Click OK and run the command against the agent by selecting the application
server from the destination systems.

6. Once you have received confirmation that the command was executed,
navigate to the Services Management Agent workspace in the navigator and
verify that a new filter has been created in the Data Collector Filter Control
Configuration view in the lower right-hand side.

7. If you generate traffic once against using the Web application, you should
now see faults in the Faults Summary workspace. The summary should
display a SOAP fault indicating that a service request was rejected.

Disable filtering
To disable filtering:

1. Right-click the filter entry in the Service Manage Agent area.
2. Select Take Action → Select from the menu.
3. Select DelFltrCntrl and select the destination systems and click OK.
4. Refresh the workspace and verify that the filter has now been removed.

12.5.5 Using Web Services Navigator to analyze data
There are two ways of importing data into Web Services Navigator for analysis:
importing from generated log files and importing from the data warehouse.

Web Services Navigator basics
In order to get started with Web Services Navigator, you must first create a
project:

1. Start the Web Services Navigator.
2. Select File → New → Project from the menu.
3. Select Simple → Project and click Next.
4. Give the project a name such as LogProject.
5. Click Finish.

The project is created within the default workspace directory. The default
workspace is <NAVIGATOR_HOME>/workspace, where
<NAVIGATOR_HOME> is the directory in which the Web Services Navigator is
584 Patterns: SOA Foundation Service Connectivity Scenario

installed. On Windows, the default directory is C:\Program Files\IBM\ITCAM for
SOA 6.0.0\IBM Web Services Navigator.

Once you have created a project, you can move on to populating the project with
log files captured from the monitoring agent or import data from the data
warehouse.

Import from log files
In order to import data from log files, you must enable content capture in the
monitor control configuration. Once you have captured log files for your run, you
need to assemble them into a single log file for use by Web Services Navigator
using a tool called the Log Assembler. Finally, you can copy these files into your
project directory and open them using the Web Services Navigator.

The steps to do this are:

1. Gather the log files for analysis. The log files are located on the application
server node in the <tivoli_agent_home>/cma/kd4/logs directory and have file
names ending with .log. In addition, there are archived Web services metric
log files that are stored in the KD4.DCA.CACHE/archive directory within the
logs directory. These files have filenames ending with
metric.log.<timestamp>. Copy all of the log files to the server where Web
Services Navigator is installed.

2. You must now run the Log Assembler tool. The Log Assembler tool is a Java
program that combines all of the data in the log files into a single log file for
use within Web Services Navigator. The Log Assembler tool is located in
<NAVIGATOR_HOME>/IWSNavigator/samples/runLogAssembler.bat on
Windows. The usage for this tool is:

runLogAssembler.bat <logdir> <logfile>

Where <logdir> is the directory where you have copied all of the log files from
the application server node and <logfile> is the name of the combined log file
for use within Web Services Navigator.

3. Once you have generated a combined log file, copy this file to the project
directory for the project you created earlier.

4. Right-click your project in the Navigator view of the Web Services Navigator
and select Refresh from the menu. You should now see the combined log file
you created.

5. Double-click this file to begin analysis.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

Import from a data warehouse
In order to import data from a data warehouse, you must set up a database
connected to the Tivoli Data Warehouse. This can be done during the import.

1. Create a project using the instructions provided.

2. Right-click the Navigator view and select Import from the menu.

3. Select ITCAM for SOA as the import source and click Next.

4. Select your project (or a folder within your project) as the parent folder and
enter a file name. This is the name of the file that will be created for you as
part of the data warehouse import. Click Next.

5. Select a date range for the data import. Only metrics gathered during that
date range will be imported. Click Next.

6. You are now asked to create or use a connection to the data warehouse
database. If you have an existing connection already set up, you may select
Use existing connection at the bottom of the screen and select that
connection. Otherwise, provide the connection information for the data
warehouse data. In this case, you must enter values for the fields shown in
Table 12-6.

Table 12-6 Data warehouse connection information

7. Click Finish to import the data.

Once the data warehouse import is complete, you will be able to open the log file
for analysis.

Note: The file name of the file you create must end with .log.

Field Value

Database WAREHOUS

User ID itmuser

Password The password you selected when creating
the data warehouse data source

Database Vendor Type DB2 Universal Database™ 8.2

JDBC Driver DB2 Universal Driver

Host localhost
586 Patterns: SOA Foundation Service Connectivity Scenario

Analysis
Once you have imported data into the Web Services Navigator, you can begin to
use the analysis tools to better understand the Web services in your system.
There are three primary views of the data: Service Topology, Transaction Flows,
and Flow Patterns.

The Service Topology view provides a call graph that displays the sequence of
service calls throughout the application. In the ITSOMart application, all calls
originate from the enterprise service bus (where the Web application is running)
and flow to the various services through the Register Customer process (which
orchestrates other services).

The Transaction Flow view provides a view of the service’s transactions as they
flow through the system and displays usage statistics and timing information.
This allows you to observe individual transactions as the application information
moves from one service to another. Using this view, you can observe the amount
of time that is spent on each service relative to the length of the overall
transaction. This can help identify problematic performance areas.

The Flow Patterns view helps you identify service call patterns and understand
the relationships between services (for example, if the Credit Rating mediation
always calls the Credit Rating Service). Thus, that particular service call flow
represents a call pattern. More complex patterns exist in the application, for
example, if a user enters the Register Customer process but receives a bronze
credit rating, that user will always be directed to the credit denied flow. By
understanding the usage patterns of the services in your application, you can
better organize service calls to provide the most optimal environment to suit your
application usage patterns.

12.6 Summary
Modern composite applications require end-to-end monitoring tools in order to
adequately meet and maintain system performance. The IBM Tivoli Composite
Application Manager helps system administrators meet the challenges of
monitoring large multi-system application environments. In the case of

Note: If you select a date range that contains no metric information, you will
receive a warning to that effect. In most cases, you must generate some Web
service traffic and wait at least one hour (based on data collector history
configuration) before data is moved to the data warehouse. If you need to
analyze traffic for a specific use case, it may be easier to enable content
logging and use the log assembler to capture the Web services metric data.
 Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA

WebSphere ESB, it is especially critical to be able to monitor the Web services
traffic flowing through the bus. IBM Tivoli Composite Application Manager for
SOA provides the Web services monitoring and management capabilities
needed to properly maintain the enterprise service bus.

In addition to online management and monitoring, IBM Tivoli Composite
Application Manager also includes Web Services Navigator, an offline Web
services analysis tool, to help understand the interactions between various Web
services in a composite application.

12.7 For more information
See the following IBM Redbooks for more information:

� Getting Started with IBM Tivoli Monitoring 6.1 on Distributed Environments,
SG24-7143

� IBM Tivoli Composite Application Manager V6.0 Family: Installation,
Configuration, and Basic Usage, SG24-7151

For information about the IBM Tivoli Composite Application Manager products,
see:

� IBM Tivoli Composite Application Manager Basic for WebSphere home page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-
basic-websphere/

� IBM Tivoli Composite Application Manager for Response Time Tracking
home page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-rtt/

� IBM Tivoli Composite Application Manager for SOA home page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-
soa/

� IBM Tivoli Composite Application Manager for WebSphere home page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-
websphere/
588 Patterns: SOA Foundation Service Connectivity Scenario

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-basic-websphere/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-rtt/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-websphere/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-websphere/

Appendix A. Sample application install
summary

The ITSOMart sample is shipped as a set of project interchange files suitable for
import into WebSphere Integration Developer V6.0.1. You can download the zip
file containing these files from:

ftp://www.redbooks.ibm.com/redbooks/SG247228/

This appendix tells you how to import the project interchange files and set up the
runtime environment for the ITSOMart solution contained in ITSOMartPIFs.zip.

A

© Copyright IBM Corp. 2006. All rights reserved. 589

ftp://www.redbooks.ibm.com/redbooks/SG247228/

Overview
The ITSOMart solution includes a front-end Web application, an application that
manages the customer registration process, and several mediation modules and
services. Figure A-1 shows the high-level overview of the ITSOMart solution.

Figure A-1 ITSOMart solution overview

Flat File Adapter

Siebel Adapter

JMS / WebSphere MQ

SOAP/HTTP

SOAP/JMS

Pattern:
Self-Service::Direct

Pattern:
Self-Service::Router

Mediation:
Database lookup
XSLT
Log
Calling one medation from another
Fault

Mediation:
Filter
Custom

Mediation:
Array handling
Stop

Pattern:
Self-Service::Direct
590 Patterns: SOA Foundation Service Connectivity Scenario

Prepare the development environment
To import the project interchange files and test them on a WebSphere ESB
server, you should upgrade your environment to the latest levels. The ITSOMart
solution has been tested at the following level: WebSphere Integration Developer
6.0.1, plus the following interim fixes:

� 6.0.1 interim fix 001
� 6.0.1 interim fix 002
� 6.0.1 interim fix 003

Configure the workbench
Certain settings are recommended in the WebSphere Integration Developer
workbench when working with mediation modules. You can see these
recommendations in 6.3, “Development environment settings” on page 224.

Import the projects into the workbench
In order to prepare the application for runtime, you must have access to the
application projects inside WebSphere Integration Developer.

1. Extract ITSOMartPIFs.zip, ITSOMart.sql, and ITSOMART_Cloudscape.zip
from SG247228.zip into a temporary directory.

2. Open WebSphere Integration Developer and create a new workspace.

3. Update the workspace preference settings as outlined in 6.3, “Development
environment settings” on page 224.

4. Import the project interchange files included by doing the following:

a. Select File → Import.

b. Select Project Interchange and click Next.
 Appendix A. Sample application install summary 591

c. Browse to ITSOMartPIFs.zip and select all the project interchange files, or
if you only want to see the files associated with one scenario, select the
files you need from Table A-1.

d. Click Finish.

5. Perform a clean build of all the projects. Project → Clean All.

Table A-1 Project interchange files

Project interchange files

Mediation utilities

Common files needed for most or all
scenarios

MessageLogApp

MessageLogWeb

ITSOMartLib

ITSOMartUtils

Front-end applications

ITSOMart Web interface application ITSOMartApp

ITSOMartWeb

ITSOMart_Proxies

Registration processor application ITSO_RegProcServiceApp

ITSO_RegProcServiceEJB

ITSO_RegProcService_Proxies

Mediations

Credit Rating mediation (Chapter 7,
“Building the Credit Rating and Credit
Score mediations” on page 263)1,3

CRMed1,3

Credit Score mediation (Chapter 7,
“Building the Credit Rating and Credit
Score mediations” on page 263)1,2,3

CSMed1,2,3

CRMedV21,3

CRM mediation (Chapter 8, “Building the
CRM mediation” on page 347)1

ITSO_CRMMed1

1 Requires ITSOMartLib
2 Requires ITSOMartUtils
3 The module name has been shortened from the sample instructions to bypass the

Windows limit on path names longer than 256 characters.
592 Patterns: SOA Foundation Service Connectivity Scenario

Prepare the runtime environment
The sample application must be deployed to a WebSphere ESB server or to a
WebSphere ESB test environment on WebSphere Integration Developer. In both
instances, the runtime environment is configured using the WebSphere
administrative console. The difference is in the method of deployment and in the
location of the runtime files for WebSphere ESB.

We recommend that you create a new WebSphere ESB server for your test
environment in order to isolate the ITSOMart runtime from any other applications
you may have in test. You can do this using the instructions in “Creating a new
server in the test environment” on page 640.

Register Shipping mediation (Chapter 10,
“Building Log Registration mediation” on
page 449)

RSMed1,3

SRSvc1,3

Log Registration mediation (Chapter 10,
“Building Log Registration mediation” on
page 449)

ITSO_RegLogMed1

websphere_default_messaging_provider

Imported Services

Credit Rating mediation (Chapter 7,
“Building the Credit Rating and Credit
Score mediations” on page 263)1,3

(Referred to as
ITSO_CreditRatingService)

CRsvcApp3

CRsvc3

Credit Score mediation (Chapter 7,
“Building the Credit Rating and Credit
Score mediations” on page 263)1,3

(Referred to as
ITSO_CreditScoreService)

CSSvcApp3

CSSvc3

Project interchange files

1 Requires ITSOMartLib
2 Requires ITSOMartUtils
3 The module name has been shortened from the sample instructions to bypass the

Windows limit on path names longer than 256 characters.
 Appendix A. Sample application install summary 593

For the sample to run, we assume the following:

� You have a running standalone application server named server1 using port
9080 for access to the Web container.

� You are using a Windows system. If you are not using Windows, most of
these instructions will still work as documented, but you may need to refer to
the WebSphere ESB product documentation for platform-specific information
such as command locations or extensions.

� The installation directory for WebSphere Integration Developer will be
denoted with <wid_install>.

� WebSphere ESB file locations will be denoted with <wesb_install>. For
example, if you have WebSphere ESB installed, <wesb_install> will look
similar to C:\WebSphere\AppServer. In the WebSphere Integration Developer
test environment, this will be <wid_install>\runtimes\bi_v6.

Create a service integration bus
The application sample uses a service integration bus as the default JMS
provider. You need to create the bus and add the application server where the
application will run as a member of the bus.

1. Start the server. In the test environment, you can start the server in the
Servers view. Right-click WebSphere ESB Server v6.0 and select Start.

Installing applications: As you go through the steps for setting up and
deploying the ITSOMart sample, you will be asked to install applications to the
server.

To install an application to the WebSphere Integration Developer unit test
environment, perform the following steps.

1. Select the server in the Servers view, right-click, and select Add and
remove projects.

2. Select the application in the list of available projects and click Add >.

3. Click Finish.

To install an application to WebSphere ESB:

1. Export the mediation module as an integration module from WebSphere
Integration Developer to the <wesb_install>installableApps directory. The
integration module will be packaged as an EAR file.

2. In the administrative console, select Applications → Enterprise
Applications.

3. Click Install and follow the wizard.
594 Patterns: SOA Foundation Service Connectivity Scenario

Switch to the Console view to view messages. When you see Server
server1 open for e-business, the server is started.

2. Log in to the administrative console. You can do this from the Servers view.
Right-click WebSphere ESB Server v6.0 and select Run administrative
console. When the console login screen appears, click Log in (no name is
required).

3. Create a bus called ITSOMartBus and add server1 as a member of the bus
using the instructions found in 11.5, “Creating a service integration bus” on
page 490.

If you prefer, you can skip this step and use the
SCA.APPLICATION.<cell>Bus bus instead. Just be sure to substitute this
bus wherever you see references to ITSOMartBus later.

4. Save the configuration.

MessageLogApp application
The MessageLogApp application is not a mediation application, but rather a
simple program to allow you to easily check the contents of the service
integration bus queues and the messages logged by Message Logger primitives.
We used it to simplify checking the results of our testing.

This application contains a JavaServer Faces (JSF) Web application that
provides the following:

� ESB Mediation Message Log viewer

This is a simple interface for querying the ESB Mediation Message Log
database for messages that have been logged by Message Logger mediation
primitives in mediation flows.

This viewer can be accessed with the following URL:

http://localhost:9080/MessageLogWeb/faces/MessageLogView.jsp

� Queue browser

This provides a basic interface for browsing messages on JMS queues.

The queue browser can be accessed with the following URL:

http://localhost:9080/MessageLogWeb/faces/QueueBrowser.jsp

Install MessageLogApp
No runtime resources are required for this application. Simply install the
MessageLogApp application to the server.
 Appendix A. Sample application install summary 595

Registration processor service
The mediations described in this book can each be developed, deployed, and
tested individually. However, to build a meaningful end-to-end solution, we need
an application that drives the registration process. This application is called
ITSOMartApp.

Runtime
To prepare the runtime you must configure the following on the application
server:

� A queue named ITSOMart.RegistrationProcessorServiceQ defined to the
ITSOMartBus service integration bus. See 11.8.1, “Create a queue
destination on the bus” on page 502.

� A JMS queue connection factory:

– Name: ITSOMart.RegistrationProcessorServiceQCF
– JNDI Name: jms/RegistrationProcessorServiceQCF
– Bus name: ITSOMartBus

See 11.8.2, “Create a queue connection factory” on page 503.

� Another JMS queue connection factory:

– Name: ITSOMart.RegistrationProcessorServiceReplyQCF
– JNDI Name: jms/RegistrationProcessorServiceReplyQCF
– Bus name: ITSOMartBus

See 11.8.2, “Create a queue connection factory” on page 503.

� A JMS queue:

– Name: ITSOMart.RegistrationProcessorServiceQ
– JNDI Name: jms/RegistrationProcessorServiceQ
– Bus name: ITSOMartBus.
– Queue name: ITSOMart.RegistrationProcessorServiceQ

See “Create a JMS queue” on page 504.

� A JMS activation specification:

– Name: ITSOMart.RegistrationProcessorServiceActivationSpec
– JNDI name: jms/RegistrationProcessorServiceActivationSpec
– Destination type: Queue.
– Destination JNDI name: jms/RegistrationProcessorServiceQ
– Bus name: ITSOMartBus

See 11.8.4, “Creating a JMS activation specification” on page 505.

Save the changes to the configuration.
596 Patterns: SOA Foundation Service Connectivity Scenario

Install the application
Install the ITSO_RegProcServiceApp application. All of the mediation modules
provided for the sample must be installed and configured for this Web service
application to work.

ITSOMart application
Install the application ITSOMartApp. This application contains the Web front-end
for driving the ITSOMart sample scenario. The Registration Processor Service
application and all of the mediation module applications must be installed for this
application be work.

The application can be accessed from a Web browser using the following URL:

http://localhost:9080/ITSOMartWeb/faces/CustomerRegistration.jsp

Credit check mediations
Chapter 7, “Building the Credit Rating and Credit Score mediations” on
page 263, contains two scenarios:

� Get Credit Rating scenario
� Get Credit Score scenario

The first is a simple call to a Web service. The second expands on the first to
perform more complex functions, including a database lookup.

The Get Credit Rating scenario does not require any special runtime setup. The
Get Credit Score scenario, however, requires a database and the supporting
JDBC provider and data source resources defined to the application server.

The ITSOMart sample, as shipped, is set up to use the Get Credit Score
scenario.

Create the database and configure the JDBC data source
The Credit Score mediation uses a database named ITSOMART. This database
holds the ITSOMart credit rating values (bronze, silver, gold) that match numeric
credit scores returned by the Credit Score Service. Instructions are provided
here for configuring the ITSOMART database in DB2 and Cloudscape. You will
only need to use one.
 Appendix A. Sample application install summary 597

Create the DB2 database
Use these steps to create the database:

1. Copy the ITSOMART.sql file to a temporary location, for example, C:\temp.

2. Open a DB2 command window and enter the information in Example A-1.

Example: A-1 Creating the database

cd C:\temp

db2cmd

db2 create database itsomart
db2 connect to itsomart
db2 -tvf ITSOMART.sql
db2 connect reset

Create the Cloudscape database
Using a Cloudscape database eliminates the need for access to a DB2 server.
The sample includes a ready-to-use Cloudscape database. Cloudscape
databases can be viewed and manipulated using the cview.bat tool in the
<wesb_install>\cloudscape\bin\embedded directory.
598 Patterns: SOA Foundation Service Connectivity Scenario

The Cloudscape database is contained in ITSOMART_Cloudscape.zip. Unzip
this file into the <wesb_install>\cloudscape\databases directory. Figure A-2
shows the directory structure when unzipped into the directory structure for the
WebSphere Integration Developer test environment.

Figure A-2 Cloudscape database

Create the J2C authentication entry (for DB2)
If you choose to use DB2, you will need a J2C authentication entry containing the
user ID and password required to authenticate with DB2. This user ID must have
write access to the database.

Use the instructions in 11.6.1, “Create a J2C authentication data entry for the
database” on page 491, to create an entry.

Create the JDBC provider
If you chose to use DB2, use the instructions in 11.6.2, “Create a JDBC provider”
on page 492, to create a JDBC provider for DB2. Use the defaults and the
following properties:

� Database type: DB2
� Provider type: DB2 Universal JDBC Driver Provider
� Implementation type: Connection pool data source
 Appendix A. Sample application install summary 599

Be sure to define the DB2_JDBC _DRIVER_PATH WebSphere variable to the
proper location for your system.

Create the data source
Use the instructions in 11.6.3, “Create a data source” on page 494, to create a
data source for the database. You will need to do this regardless of the database
type.

Note that each data source requires a unique JNDI name. You will only be able to
create one or the other of these (DB2 or Cloudscape) unless you use unique
JNDI names. If you choose to do this, be sure to change the JNDI name in the
Database Lookup primitive.

Cloudscape
Using the predefined JDBC Provider Cloudscape JDBC Provider at the server
scope, define the Cloudscape ITSOMart database. Use the defaults and the
following properties:

� Name: ITSOMartDataSource
� JNDI name: jdbc/ITSOMartDataSource
� Database name: databases\ITSOMART

DB2
For DB2, use the defaults and the following properties:

� Name: ITSOMart DataSource
� JNDI name: jdbc/ITSOMartDataSource
� Check Use this Data Source in container managed persistence.
� Component-managed authentication alias: <node_name>/DB2 ITSOMART USER
� Database name: ITSOMART
� Driver type: 4
� Server name: <your_server>

Install the applications
The Get Credit Score scenario requires the following to be installed on the
server:

� CSMedApp

This application contains the Credit Score mediation module.

� CRMedV2App

This application contains version 2 of the Credit Rating mediation module.
600 Patterns: SOA Foundation Service Connectivity Scenario

� CSSvcApp

This application contains the Credit Score Service, a soap/http Web service.
The Credit Score mediation mediates calls to this Web service.

CRM mediation
Install the mediation module application ITSO_CRMedApp. This application
contains the CRM Mediation module.

Note that the sample is not shipped with the WebSphere Adapters and the
bindings for the exports have been removed. The processor code that calls these
services has been commented out.

Register Shipping mediation
Install the following applications:

� RSMedApp

This application contains the Register Shipping mediation module.

� SRSvcApp

This application contains the Register Shipping Service.

Registration Log Mediation
The Registration Log Mediation Module requires three queue destinations to
which it will send registration success, denied, and failure messages. You must
configure the supporting queues and JMS resources on the server.

Create the bus destinations
Create three queue destinations on the ITSOMartBus with the following
identifiers:

� ITSOMart.LogSuccessQ
� ITSOMart.LogDeniedQ
� ITSOMart.LogFailureQ

Save the configuration.
 Appendix A. Sample application install summary 601

For information about how to create a bus destination, see 11.8.1, “Create a
queue destination on the bus” on page 502.

Create the JMS queue connection factory
Create a JMS queue connection factory under the Default Messaging JMS
provider with the following values:

� Name: ITSOMart.LogQCF
� JNDI Name: jms/ITSOMart/LogQCF
� Bus name: ITSOMartBus

For information about how to create a JMS queue connection factory, see 11.8.2,
“Create a queue connection factory” on page 503.

Create the JMS queues
Create three JMS queues under the Default Messaging JMS provider with the
following values (Table A-2).

Table A-2 Registration Log Mediation JMS queues

Save the configuration changes.

For information about how to create a JMS queue, see 11.8.3, “Create a JMS
queue” on page 504.

Install the application
Install ITSO_RegLogMedApp.

JMS queue name JNDI name Bus name Queue name

ITSOMart.LogSuccessQ jms/ITSOMart/LogSuccessQ ITSOMartBus ITSOMart.LogSuccessQ

ITSOMart.LogDeniedQ jms/ITSOMart/LogDeniedQ ITSOMartBus ITSOMart.LogDeniedQ

ITSOMart.LogFailureQ jms/ITSOMart/LogFailureQ ITSOMartBus ITSOMart.LogFailureQ
602 Patterns: SOA Foundation Service Connectivity Scenario

Common errors:
The following is a common error and how to correct it:

� Error

[5/5/05 8:45:59:188 EDT] 00000037 StaleConnecti A CONM7007I: Mapping the
following SQLException, with ErrorCode -30082 and SQLState 08001, to a
StaleConnectionException: java.sql.SQLException: SQL30082N Attempt to
establish connection failed with security reason "24" ("USERNAME AND/OR
PASSWORD INVALID"). SQLSTATE=08001
DSRA0010E: SQL State = 08001, Error Code = -30,082

� Tip

Check the user name and password in the authentication alias defined for the
data source
 Appendix A. Sample application install summary 603

604 Patterns: SOA Foundation Service Connectivity Scenario

Appendix B. Tips and techniques

This appendix contains helpful tips for working with mediations, Web services,
and the runtime environment. These are issues that we came across during the
process of creating the ITSOMart sample and think that they will be of use to
others. This appendix contains the following:

� Creating a top-down SOAP/JMS Web service
� Server errors in the test environment
� Errors using XML Mapper without Internet connectivity
� Creating a new server in the test environment
� Installing WebSphere MQ Explorer as a plug-in

B

© Copyright IBM Corp. 2006. All rights reserved. 605

Creating a top-down SOAP/JMS Web service
This section provides instructions for taking a WSDL created in the Business
Integration perspective using the interface editor and generating a top-down
SOAP/JMS Web service from it.

The service you will create here is the Register Customer process used in the
sample application provided with this book. This Web service has a one-way
operation that is invoked asynchronously using SOAP/JMS and is passed a
Customer business object. This operation provides the implementation for
processing customer registration requests.

Create the business object
This service uses one business object called RegistrationProcessorRequest.
This object, in turn, uses the Customer business object built in “Create the
Customer business object” on page 273 and stored in the ITSOMartLib library.

This process assumes that you have a library called ITSOMartLib, containing the
Customer business object, in your workspace.

To build the new business object:

1. In your WebSphere Integration Developer workspace, open the Business
Integration perspective.

2. Create a business object named RegistrationProcessorRequest in the
ITSOMartLib library.

3. Add one attribute called customer with a type of Customer to the
RegistrationProcessorRequest business object.

4. In the properties for this business object, select the Description tab and give
this business object a unique namespace. We used the name
http://ITSOMartLib/RegistrationProcessorRequest.

This step is important for uniquely identifying your business objects.
Remember that the underlying representations of these business objects are
in the XML schema definition, and this is the namespace that will be used in
that schema when these business object types are imported into WSDL
interface definitions.

Important: Make sure you have configured your workspace with the settings
outlined in 6.3.3, “Configure Web services workspace preferences” on
page 226.
606 Patterns: SOA Foundation Service Connectivity Scenario

The completed business object should look like Figure B-1.

Figure B-1 RegistrationProcessorRequest business object

Build the interface
Next we need an interface for the service:

1. Create an interface named RegistrationProcessor in the ITSOMartLib
library.

2. Define a one-way operation named registerCustomer.
 Appendix B. Tips and techniques 607

3. Add an input parameter named registrationRequest to the registerCustomer
operation and set its type to RegistrationProcessorRequest. The
RegistrationProcessor interface should look like Figure B-2.

Figure B-2 RegistrationProcessor interface

Create an EJB project
When you create a SOAP/JMS Web service, a message-driven bean is created
that will act as the listener for SOAP/JMS messages. For this reason, when
creating a top-down SOAP/JMS Web service using WebSphere Integration
Developer, you have to create an EJB project into which your service will be
generated.

1. Open the J2EE perspective by selecting Window → Open Perspective →
Other → J2EE.

2. In the Project Explorer, right-click EJB Projects and select New → EJB
Project
608 Patterns: SOA Foundation Service Connectivity Scenario

If you do not have the Enterprise Java capability enabled for your workspace,
you will be prompted with the message shown in Figure B-3. Select Always
enable capabilities and do not ask me again and click OK.

Figure B-3 Confirm Enablement

3. In the New EJB Project wizard do the following:

a. Enter a name for the EJB project. We used the name
ITSO_RegProcService for our sample application.

b. Click Show Advanced.

c. Select a Target Server of WebSphere ESB Server v6.0.

d. Enter a name for the EAR project this EJB project will be a part of. We
used the name ITSO_RegProcServiceApp.

e. De-select the check box Create an EJB Client JAR Project to hold the
client interfaces and classes.
 Appendix B. Tips and techniques 609

f. Select the check box Create a default stateless session bean
(Figure B-4).

You will not be using this default stateless session bean for anything, but
you will get errors when using the Web Service Wizard to generate your
Web service if you do not have at least one EJB defined in your EJB
project. One of the first things the Web Service Wizard will do is deploy
this EJB project to the test environment server, and if you do not have at
least one EJB in the project, an error will occur deploying the application
and the Web Service Wizard will fail.

Figure B-4 New EJB Project

g. Click Finish to create the EJB Project.

4. Close and do not save the default.dnx file that is opened in the editor after the
project is created. This is the UML class diagram for the EJB project and we
will not be using it here.

Modify the WSDL file
The WSDL file that was created for the interface you defined in the Business
Integration perspective needs to be modified before you can successfully
generate a top-down Web service from it.
610 Patterns: SOA Foundation Service Connectivity Scenario

In the following steps you will copy the WSDL and XSD files from the
ITSOMartLib library project into your EJB project. You will then modify the WSDL
to define a binding, port, and service definition that will be used for generating the
top-down Web service implementation.

1. Create a new folder under your EJB project to copy the WSDL and XSD files
into.

a. In the Project Explorer, right-click EJB Projects →
ITSO_RegProcService and select New → Source Folder.

b. Enter a folder name of wsdl.

Figure B-5 New source folder

c. Click Finish to create the new folder.

2. Copy the WSDL and XSD files from ITSOMartLib library into the new wsdl
folder you created in the EJB project.

a. In the Project Explorer, navigate to Other Projects → ITSOMartLib.
 Appendix B. Tips and techniques 611

b. Copy the following files into EJB Projects/ITSO_RegProcServices/ wsdl:

• Address.xsd
• BillingAddress.xsd
• Customer.xsd
• RegistrationProcessor.wsdl
• RegistrationProcessorRequest.xsd
• ShippingAddress.xsd

Figure B-6 ITSOMartLib WSDL and XSD files

3. Under the wsdl folder in your EJB project, right-click
RegistrationProcessor.wsdl and select Open with → WSDL Editor.
612 Patterns: SOA Foundation Service Connectivity Scenario

4. Under Bindings, right-click and select Add Binding.

Figure B-7 Add binding

5. In the Binding Wizard:

a. Specify a binding name, such as RegistrationProcessorBinding.
b. Select the existing Port Type: tns:RegistrationProcessor.
c. For the Protocol, select SOAP.
d. Under SOAP Bindings Options, select document literal.
 Appendix B. Tips and techniques 613

e. Click Finish to create the binding.

Figure B-8 Binding Wizard

6. Save the RegistrationProcessor.wsdl with the new binding.

7. In the Problems view, you will see two validation errors for the new binding
definition you just added.

Figure B-9 Errors in binding
614 Patterns: SOA Foundation Service Connectivity Scenario

To correct these errors:

a. Click the Source tab in the WSDL Editor to show the WSDL source and
scroll down to the errors.

Figure B-10 Errors in WSDL source

b. The errors are indicating that the <soap:binding>, <soap:operation>, and
<soap:body> elements cannot have empty values. Fix these errors by
simply removing the end tags for these elements and closing the tag within
the beginning element tag. For example, instead of:

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http">
</soap:binding>

use:

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />

The corrected source should look like Example B-1.

Example: B-1 Corrected WSDL source

<wsdl:binding name="RegistrationProcessorBinding"
type="tns:RegistrationProcessor">
<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="registerCustomer">

<soap:operation

soapAction="http://ITSOMartLib/RegistrationProcessor/registerCustomer" />
<wsdl:input name="registerCustomerRequest">
 Appendix B. Tips and techniques 615

<soap:body use="literal" />
</wsdl:input>

</wsdl:operation>
</wsdl:binding>

8. Switch back to the Graph tab in the WSDL Editor, and under Services,
right-click and select Add Service.

Figure B-11 Add Service

9. In the New Service window, specify a service name such as
RegistrationProcessorService and click OK.

Figure B-12 New Service
616 Patterns: SOA Foundation Service Connectivity Scenario

10.Right-click RegistrationProcessService and select Add Port.

Figure B-13 Add Port

11.In the Port Wizard:

a. Specify a port name, such as RegistrationProcessorJMSPort.

b. Select the binding you created in the previous step,
tns:RegistrationProcessorBinding.

c. For the Protocol, select SOAP.

d. Take the default for the Location field. You will update this value in the
next step to use a SOAP/JMS URI.
 Appendix B. Tips and techniques 617

e. Click Finish to create the port.

Figure B-14 Port Wizard

12.Update the soap:address location with a SOAP/JMS URI.

a. Under RegistrationProcessorService, select
RegistrationProcessorJMSPort → soap:address.

b. In the Properties view, enter the following URI for the location property:

jms:/queue?destination=jms/RegistrationProcessorServiceQ&connectionF
actory=jms/RegistrationProcessorServiceQCF&targetService=Registratio
nProcesorServiceJmsPort

• jms indicates that this is a SOAP/JMS address.

• queue indicates that SOAP messages will be placed on a JMS queue
(rather than a JMS topic).

• The destination property is the JNDI name of the JMS queue on which
this Web service will receive SOAP messages.

• The connectionFactory property is the JNDI name of the JMS queue
connection factory from which connections will be established to the
JMS destination.

• The targetService property is the name of the Web service port that will
be invoked when a SOAP message arrives on the JMS destination.
618 Patterns: SOA Foundation Service Connectivity Scenario

Figure B-15 SOAP address location

13.Save and close the RegistrationProcessor.wsdl file.

Create JMS resources
Create the JMS resources you are going to use for the SOAP/JMS Web service.

The following is a summary of the JMS resources needed. Detailed instructions
for configuring these JMS resources for the sample application are provided in
11.8, “Configuration for JMS bindings” on page 501.

Create the following JMS objects in the test environment server:

� A JMS queue connection factory with the JNDI name:

jms/RegistrationProcessorServiceQCF
 Appendix B. Tips and techniques 619

This is the JNDI name you specified for the connectionFactory property in the
SOAP address location (step 12 on page 618).

� Another JMS queue connection factory with the JNDI name:

jms/RegistrationProcessorServiceReplyQCF

This will be the queue connection factory used by the Web service
message-driven bean for sending reply messages if the Web service contains
request-reply operations.

� A JMS queue with the JNDI name:

jms/RegistrationProcessorServiceQ

This is the JNDI name you specified for the destination property in the SOAP
address location (step 12 on page 618).

� A JMS activation specification. This is required for the message-driven bean
that gets created for you by the Web Service Wizard, which will listen on a
JMS destination for SOAP messages. This activation specification needs to
be configured with the following values:

– JNDI name:

jms/RegistrationProcessorServiceActivationSpec

This JNDI name can be anything you like, but it must match the value you
enter into the Web Service Wizard for your SOAP/JMS Web service.

– Destination JNDI name:

jms/RegistrationProcessorServiceQ

This is the JNDI name of the JMS destination the message-driven bean
will listen on for SOAP messages.

Create the Web service
All of the previous steps have been in preparation for running the Web Service
Wizard to create a top-down SOAP/JMS Web service. In this section you will
generate a skeleton EJB session bean implementation for the Web service
defined in the WSDL you have been working with.

1. Start the WebSphere ESB Server in the test environment.

Note: If you do not define these resources before you generate the Web
service using the Web Service Wizard, then WebSphere Integration
Developer will hang and you will have to kill its Java process. This will occur
when the Web Service Wizard attempts to deploy the application to the test
environment and the deployment fails because the JMS activation
specification specified for the message-driven bean is not configured.
620 Patterns: SOA Foundation Service Connectivity Scenario

2. In the J2EE perspective, navigate to the WSDL file in EJB Projects/
ITSO_RegProcService/wsdl/RegistrationProcessor.wsdl.

3. Right-click RegistrationProcessor.wsdl and select Web Services →
Generate Java bean skeleton.

4. In the Web Service Wizard:

a. For the Web service type, select Skeleton EJB Web Service.

b. De-select Start Web service in Web project.

This option will not be needed since there is no Web project for this
application and you are creating a SOAP/JMS Web service that runs in a
EJB project instead of a Web project.

c. Select Overwrite files without warning.

This option allows you to complete the Web Service Wizard without
getting prompted to overwrite files that get updated through the wizard.
For example, the EJB Deployment Descriptor gets updated with the new
Web service skeleton session bean.

d. Click Next.

Tip: Starting the test environment server before running the Web Service
Wizard will make generating your Web service go much quicker. One of
the first things the Web Service Wizard does is deploy the application to
the server. If the server is stopped, then it will be started automatically, but
the Web Service Wizard shows no indication that it is waiting for the server
to start. So it will appear that the wizard is hung until the server is started.
 Appendix B. Tips and techniques 621

Figure B-16 Web Service Wizard: Web Services
622 Patterns: SOA Foundation Service Connectivity Scenario

5. On the Object Selection Page, ensure that the WSDL file location is correct
and click Next.

Figure B-17 Web Service Wizard: Object Selection Page
 Appendix B. Tips and techniques 623

6. On the Service Deployment Configuration page, the Server-Side Deployment
Selection section should have the settings that you specified in your
workspace preferences, and the project names should already be set to the
project from which you launched the Web Service Wizard:

– Web service runtime: IBM WebSphere

– Server: WebSphere ESB Server v6.0

– J2EE version: 1.4

– Service project: ITSO_RegProcService

Remember, for a SOAP/JMS Web service, this must be an EJB project.

– EAR project: ITSO_RegProcServiceApp

Figure B-18 Web Service Wizard: Service Deployment Configuration

7. Click Next on the Service Deployment Configuration page, and the wizard
then publishes the EAR project ITSO_RegProcServiceApp to the server you
specified. As mentioned earlier, if this server is not started, then the wizard
will not continue to the next page until the server is started.
624 Patterns: SOA Foundation Service Connectivity Scenario

8. On the Web Service Skeleton EJB Configuration page:

a. For Select Router Project, enter the name of your EJB project,
ITSO_RegProcService.

Your EJB project will not be in the drop-down selection, so you have to
type this name into the field.

b. Under Select transports, SOAP over JMS should already be selected
because you specified this as the preferred transport in your workspace
preferences and the SOAP address location in your WSDL file contains a
SOAP/JMS URI.

c. Notice that most of the JMS URI Properties are pre-filled with the values
you specified in the URI you provided for the SOAP address location in the
WSDL:

• Queue kind: queue
• WSDL service name: RegistrationProcesorServiceJmsPort
• Connection factory: jms/RegistrationProcessorServiceQCF
• Destination: jms/RegistrationProcessorServiceQ

d. For the MDB deployment mechanism, select JMS ActivationSpec.

e. For ActivationSpec JNDI name, enter:

jms/RegistrationProcessorServiceActivationSpec

f. Click Next.
 Appendix B. Tips and techniques 625

Figure B-19 Web Service Wizard: Web Service Skeleton EJB Configuration

9. On the next page, accept the defaults and click Finish to close the Web
Service Wizard.

The skeleton session bean implementation class file is automatically opened
for you in the editor for you to implement the operations that were defined in
your WSDL. You will implement this class in the next section.
626 Patterns: SOA Foundation Service Connectivity Scenario

10.Look at what the Web Service Wizard generated for you:

a. In the Project Explorer, expand
EJB Projects/ITSO_RegProcService/Deployment Descriptor.

• Under Session Beans, you will see the stateless session bean that was
generated with the interface defined in the WSDL,
RegistrationProcessorBindingImpl. This bean name comes from the
service binding name in the WSDL.

• Under Message-Driven Beans, you will see a bean named
WebServicesJMSRouter. This bean routes SOAP messages that
arrive on the JMS queue to the session bean that implements the Web
service.

Figure B-20 J2EE artifacts generated by the Web Service Wizard
 Appendix B. Tips and techniques 627

• The deployed WSDL and XSD files for the service were copied into the
ejbModule/META-INF/wsdl directory.

.

Figure B-21 Deployed WSDL for the service

11.You can delete the DefaultSession session bean now if you like. It will not be
used for anything in this sample.

12.Double-click Deployment Descriptor to open it in the EJB Deployment
Descriptor editor.

a. In the Bean tab, select the RegistrationProcessorBindingImpl bean.
Under WebSphere Bindings enter the JNDI name for this bean:

ejb/ITSOMart/RegistrationProcessor
628 Patterns: SOA Foundation Service Connectivity Scenario

Figure B-22 Session bean JNDI name
 Appendix B. Tips and techniques 629

b. Select the WebServicesJMSRouter bean and notice that the JMS
activation specification that you specified in the Web Service Wizard is
specified for this bean under the WebSphere Bindings.

Figure B-23 Message-driven bean ActivationSpec

c. Switch to the deployment descriptor References tab. Select the queue
connection factory, ResourceEnvRef, defined under
WebServicesJMSRouter.
630 Patterns: SOA Foundation Service Connectivity Scenario

Under WebSphere Bindings, change the JNDI name to
jms/RegistrationProcessorServiceReplyQCF (Figure B-24).

Figure B-24 Message-driven bean resource reference

d. Save and close the EJB Deployment Descriptor.

Implement the Web service
The last step is to add code to implement the Web service:

1. In the Project Explorer, expand:

EJB Projects/ITSO_RegProcService/Deployment Descriptor/Session
Beans/RegistrationProcessorBindingImpl

Double-click RegistrationProcessorBindingImpl to open the session bean
implementation class in the Java editor.

2. Scroll down to the registerCustomer method.

Notice that this method has the same signature as the interface defined in the
WSDL.
 Appendix B. Tips and techniques 631

Delete the throws clause (throws java.rmi.RemoteException) that the editor
and the Problems view mark with a warning because this throws clause does
not comply with the EJB 2.0 specification.

Figure B-25 Warning for throws clause in session bean method

3. Implement the registerCustomer method. For example, enter the following
lines of code to print customer information out to the log (Example B-2).

Example: B-2 Print customer information

System.out.println("ITSOMart RegistrationProcessorService >> registerCustomer");
 if (registrationRequest != null) {

 Customer customer = registrationRequest.getCustomer();
 System.out.println("\t customer - " + customer.getEmail());

 }

4. Save and close the file.

Create the Web service client
The next step is to write a client application that invokes your SOAP/JMS Web
service. The Web Services Explorer provided with WebSphere Integration
Developer can only be used to test SOAP/HTTP Web services. It cannot make
SOAP/JMS invocations. So in order to test your SOAP/JMS Web service you
have to generate a Web service client proxy for it, then use that proxy in an
application.
632 Patterns: SOA Foundation Service Connectivity Scenario

The Web application for ITSOMart has a JSF page that invokes a proxy for the
Register Customer process (ITSO_RegProcServiceApp). The ITSOMart
application consists of the following:

� ITSOMartApp
� ITSOMartWeb
� ITSOMart_Proxies

This is the Java utility project for the application that contains only the
generated Web service client proxy. You will re-generate the client proxy into
this project in the following steps.

For this example, we assume that you have these files loaded into your
workspace.

1. Copy the deployed WSDL and XSD files for the service into the client
application.

In this case, the files are located under the
ITSO_RegProcService/ejbModule/META-INF/wsdl folder and must be copied
into the ITSOMart_Proxies/wsdl folder (Figure B-26).

Figure B-26 ITSOMart_Proxies wsdl

2. Start the test environment server.

3. Right-click the WSDL file
ITSOMart_Proxies/wsdl/RegistrationProcessor.wsdl and select Web
Services → Generate Client.

a. In the Web Service Client wizard, for the client proxy type select Java
proxy then click Next.

b. On the Web Service Selection page, the WSDL that you selected should
already be filled in. Click Next.
 Appendix B. Tips and techniques 633

c. On the Client Environment Configuration page, select the following values
that determine how the client proxy will be generated:

• Web service runtime: IBM WebSphere
• Server: WebSphere ESB Server v6.0
• J2EE version: N/A
• Client type: Java
• Client project: ITSOMart_Proxies

Figure B-27 Web Service Client: Client Environment Configuration

d. Click Finish to generate the Web service client proxy. Acknowledge any
warning messages you receive during the Web service client generation.
634 Patterns: SOA Foundation Service Connectivity Scenario

4. Open the Web perspective, then open the sample JSF page by
double-clicking the following file:

Dynamic Web Projects/ITSOMartWeb/Web Content /CustomerRegistration.jsp

Figure B-28 Sample JSF page
 Appendix B. Tips and techniques 635

This JSF page opens in the editor (Figure B-29).

Figure B-29 Sample JSF page
636 Patterns: SOA Foundation Service Connectivity Scenario

5. Scroll down to the bottom of the page and click the Submit Registration
button (Figure 12-16). Then in the Properties view, click the QuickEdit tab.

Figure 12-16 Submit Registration QuickEdit

6. In the QuickEdit view, you can see the piece of code that populates a
RegistrationProcessorRequest with the form data from the page and invokes
the registerCustomer method of RegistrationProcessorProxy.

Example: B-3 Sample code for invoking the RegistrationProcessorProxy

try {
// get customer
Customer cust = getCustomer();
if (cust != null) {

// billingAddress
BillingAddress bAddress = getBillingAddress();
if (bAddress != null) cust.setBillingAddress(bAddress);

Vector v = new Vector();
// shippingAddress1
ShippingAddress sAddress1 = getShippingAddress1();
if (sAddress1 != null) {

v.add(sAddress1);

// shippingAddress2
ShippingAddress sAddress2 = getShippingAddress2();
if ((sAddress2 != null) && (sAddress2.getName() != null) &&

(!sAddress2.getName().equals(""))) v.add(sAddress2);
}
ShippingAddress[] sAddresses = new ShippingAddress[v.size()];
v.copyInto(sAddresses);
 Appendix B. Tips and techniques 637

cust.setShippingAddress(sAddresses);
}

// invoke RegistrationProcessorService (soap/jms)
System.out.println("ITSOMart CustomerRegistration >> submitting registration for " +

getCustomer().getEmail());
RegistrationProcessorProxy proxy = new RegistrationProcessorProxy();
RegistrationProcessorRequest request = new RegistrationProcessorRequest();
request.setCustomer(cust);
proxy.registerCustomer(request);

return "success";
} catch (Exception e) {

System.out.println("ITSOMart CustomerRegistration [Submit Registration] >> exception: " +
e);

return "error";
}

Test the Web service
Now that you have got a client application that invokes the Register Customer
process using a generated Web service client proxy, you can test the Web
service in the test environment.

1. Right-click Dynamic Web Projects/ITSOMartWeb/ Web Content/
CustomerRegistration.jsp and select Run → Run on Server.

The ITSOMartApp will be published to the test environment and the JSF page
is displayed in the browser.

2. Click the Submit Registration button to submit the customer details and
invoke the Registration Processor Service. You should see the following
messages printed in the console for the server log:

ITSOMart CustomerRegistration >> submitting registration for carla@ibm.com
ITSOMart RegistrationProcessorService >> registerCustomer

 customer - carla@ibm.com
638 Patterns: SOA Foundation Service Connectivity Scenario

Server errors in the test environment
In WebSphere Integration Developer 6.0.1, you will see the following error occur
when starting a WebSphere ESB Server in the test environment (Example 12-1).

Example 12-1 Error

[3/17/06 12:55:19:359 MST] 0000000a WsServerImpl A WSVR0002I: Server server1 open for
e-business, problems occurred during startup
[3/17/06 12:54:06:609 MST] 0000000a SystemErr R com.ibm.ws.exception.ConfigurationWarning:
C:\pf\esb2\config\cells\esbNode02Cell\cell-wbi.xml (The system cannot find the file specified)

at
com.ibm.wbiserver.relationshipservice.model.RelationshipServiceConfig.initialize(RelationshipSe
rviceConfig.java:189)

at com.ibm.ws.runtime.component.ContainerImpl.initializeComponent(ContainerImpl.java:1160)
at com.ibm.ws.runtime.component.ContainerImpl.initializeComponents(ContainerImpl.java:979)
at com.ibm.ws.runtime.component.ServerImpl.initialize(ServerImpl.java:277)
at com.ibm.ws.runtime.WsServerImpl.bootServerContainer(WsServerImpl.java:173)
at com.ibm.ws.runtime.WsServerImpl.start(WsServerImpl.java:133)
at com.ibm.ws.runtime.WsServerImpl.main(WsServerImpl.java:387)
at com.ibm.ws.runtime.WsServer.main(WsServer.java:53)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:85)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:58)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:60)
at java.lang.reflect.Method.invoke(Method.java:391)
at com.ibm.ws.bootstrap.WSLauncher.run(WSLauncher.java:218)
at java.lang.Thread.run(Thread.java:568)

You can ignore this error. This is caused, as it says in the exception, by the file
cell-wbi.xml not existing under the WebSphere ESB Server profile. This is a
configuration file that is only needed for WebSphere Process Server
functionality.

The problem has been reported and has a fix available at:

http://www-1.ibm.com/support/docview.wss?uid=swg24011345

Errors using XML Mapper without Internet connectivity
In early releases, there was a defect in WebSphere Integration Developer when
working with XSL Transformation primitives in the Mediation Flow editor on a
workstation that does not have Internet connectivity. The XML map file that gets
generated by the XML Mapper for the XSLT refers to the following schema:

http://www.w3.org/2001/xml.xsd
 Appendix B. Tips and techniques 639

http://www-1.ibm.com/support/docview.wss?uid=swg24011345

This schema was not included in WebSphere Integration Developer. If you tried
to open the XML Mapper to edit the XSLT, WebSphere Integration Developer
hung waiting for a connection to:

http://www.w3.org

A PMR was opened on this issue.

Creating a new server in the test environment
This section contains instructions for creating and using a WebSphere ESB
Server profile in the WebSphere Integration Developer test environment.

In these instructions, we assume the following: File locations denoted with
<wid_install> represent the directory in which you have WebSphere Integration
Developer installed.

During the installation of WebSphere Integration Developer, you are presented
with the option of creating a WebSphere ESB Server profile. If you selected this
option, then you will already have a profile created under the directory
<wid_install>\pf\esb. You will also have a WebSphere ESB Server already
defined for you in the test environment under the Servers view.

If you installed WebSphere Integration Developer on Windows into the default
installation directory located under the c:\Program Files directory, then it is very
likely that you will encounter problems running mediation module applications in
the test environment due to the Windows limit on path names longer than 256
characters. This occurs because deployment artifacts for your applications that
you run in the test environment get placed under long directory structures under
the profile directory.

Instructions are provided here to show you how to configure a new profile into a
short directory structure so that you can get around this restriction.

Create the WebSphere ESB Server profile
First you must have a new application server profile:

1. Launch the WebSphere ESB profile creation wizard located under
<wid_install>\runtimes\bi_v6\bin\ProfileCreator_wbi. The executable
esbpcatWindows.exe (on Windows) or esbpcatLinux.bin (on Linux) is the
WebSphere ESB profile creation wizard.

Important: If you experience this problem and must work without Internet
connectivity, update your WebSphere Integration Developer to 6.0.1.1.
640 Patterns: SOA Foundation Service Connectivity Scenario

http://www.w3.org

2. The first page of the wizard indicates that this is the WebSphere Process
Server 6.0 Profile Wizard (Figure B-30), but do not be fooled — as long as
you launched the correct executable in step 1 that begins with esb, then you
are actually running what should have been labeled the WebSphere ESB
Server Profile Wizard.

Figure B-30 Profile Wizard
 Appendix B. Tips and techniques 641

3. In the Existing profile detection page, select Create a new WebSphere
Process Server profile (Figure B-31). Again, this is simply mislabeled, and
you will actually be creating a WebSphere ESB Server profile.

Figure B-31 Profile Wizard: Existing profile detection

4. In the Profile type selection page, select Stand-alone profile (Figure B-32).

Figure B-32 Profile Wizard: Profile type selection
642 Patterns: SOA Foundation Service Connectivity Scenario

5. In the Profile name page, enter the name you want to call your profile. This
profile name must be unique within the WebSphere ESB installation. The
default WebSphere ESB Server profile created when you installed
WebSphere Integration Developer is named esb.

Enter a value (for example, of esb2) (Figure B-33).

Leave “Make this profile the default” unchecked.

Figure B-33 Profile Wizard: Profile name
 Appendix B. Tips and techniques 643

6. On the Profile directory page, enter a very short path on your file system for
where your new profile will be located (for example, enter c:\pf\esb2).

This step is the main reason we suggest that you create another profile. The
shorter the profile directory path, the less likely you will encounter problems
with the Windows limit on path names longer than 256 characters.

Figure B-34 Profile Wizard: Profile directory
644 Patterns: SOA Foundation Service Connectivity Scenario

7. On the Node and host names page, the node name will be pre-filled with a
unique node name and the host name with the host name of your machine.
For consistency in naming, change the node name to something that more
closely matches the name of your profile. A profile represents the
configuration of a WebSphere node.

Enter a node name (for example, of esbNode2) (Figure B-35).

Also, notice the note in this wizard page that discusses the Windows path
length restriction.

Figure B-35 Profile Wizard: Node and host names
 Appendix B. Tips and techniques 645

8. On the Port value assignment page, all of the port values will be pre-filled with
unique values within the WebSphere ESB installation so that you do not
encounter port conflicts if you happen to run servers in multiple profiles at the
same time. Because we are creating a profile specifically for use in the
WebSphere Integration Developer test environment, we know that we will not
be running multiple WebSphere ESB Servers at the same time.

Change all of the port values to the default values indicated next to each port
name in parenthesis (Figure B-36).

Figure B-36 Profile Wizard: Port value assignment

9. On the Windows service definition page (if you are creating a profile on
Windows), de-select Run the WebSphere Process Server process as a
Windows service (Figure B-37 on page 647). In a test environment, it is
better to stop and start the server manually.
646 Patterns: SOA Foundation Service Connectivity Scenario

Figure B-37 Profile Wizard: Windows service definition

10.On the Service Component Architecture page, leave “Configure the Service
Integration Bus in a secured mode” unchecked. You can always configure
security on the service integration bus after the profile is created using the
administrative console.

Figure B-38 Profile Wizard: Service Component Architecture configuration

11.On the Common Event Infrastructure page:

– User ID and password fields: Even though in the previous step you
selected to not configure security on the service integration bus (which
provides WebSphere Messaging), you must provide a value for these
 Appendix B. Tips and techniques 647

fields. Otherwise, the wizard will not let you continue to the next page. So
enter anything into these fields.

– WebSphere server name: server1

– Choose a database product: Cloudscape V5.1

Figure B-39 Profile Wizard: Common Event Infrastructure Configuration

12.On the Business Process Choreographer Configuration page, leave
“Configure a sample Business Process Choreographer” unchecked.
Technically, this page should not even be in this WebSphere ESB Profile
Wizard since WebSphere ESB does not support the use business processes
that execute in the Business Process Choreographer (Figure B-40).

Figure B-40 Profile Wizard: Business Process Choreographer Configuration
648 Patterns: SOA Foundation Service Connectivity Scenario

13.On the Application Scheduler configuration page, leave “Create an
Application Scheduler configuration” unchecked, as this is another feature of
WebSphere Process Server that is not used by WebSphere ESB.

Figure B-41 Profile Wizard: Application Scheduler configuration

14.On the Database Configuration page, take all the defaults (Figure B-42). For a
WebSphere ESB profile, this database will not get created because it is not
needed.

Figure B-42 Profile Wizard: Database Configuration
 Appendix B. Tips and techniques 649

15.The Profile summary page shows the details of the name and location of the
profile that will be created (Figure B-43). Again, this profile will actually be a
stand-alone WebSphere ESB profile, not a WebSphere Process Server
profile as the wizard indicates.

Figure B-43 Profile Wizard: Profile summary

16.It will take several minutes for the profile to be created. If it seems that the
wizard is hung, be patient — some pieces of the profile creation take a while,
especially on slower machines.

Eventually, you will see the Profile creation is complete page. De-select
“Launch the First Steps console.”

Figure B-44 Profile Wizard: Profile creation is complete
650 Patterns: SOA Foundation Service Connectivity Scenario

17.Now you can see the new esb2 profile created under the directory you
specified, and you can navigate down through the configuration directories to
see that the esbNode2 and the server1 were created under this profile.

Figure B-45 New esb2 profile directory

Changing WebSphere Integration Developer to use the new profile
Follow these instructions for changing an existing WebSphere ESB Server
defined in your WebSphere Integration Developer test environment to use your
new profile.

1. In your workspace, make sure the existing WebSphere ESB Server is
stopped (Figure B-46).

Figure B-46 WebSphere ESB Server stopped

2. Double-click your server to open the Server Overview editor.
 Appendix B. Tips and techniques 651

3. In the Server Overview:

a. For the WebSphere profile name, select your new profile name in the
drop-down list (Figure 12-17).

b. Under Server connection type and admin port, make sure the ORB
bootstrap port is set to the same value that you specified when you
created the profile in the profile creation wizard. If you took the default
ports, then this value should be 2809.

Figure 12-17 Existing WebSphere ESB Server: Server Overview

4. Save and close the Server Overview, and the next time you start the server, it
will be using your new profile.

Create a new server in the test environment to use the new profile
Follow these instructions if you do not have a WebSphere ESB Server defined in
your WebSphere Integration Developer test environment, or you would like to
define a another server to use your new profile.

1. In the Servers view, right-click and select New → Server.
652 Patterns: SOA Foundation Service Connectivity Scenario

2. In the New Server dialog, select WebSphere ESB Server, then Next
(Figure B-47).

Figure B-47 New Server: Define a New Server

3. On the WebSphere Server Settings page:

a. For the WebSphere profile name, select your new profile name in the
drop-down list.

b. Under Server connection type and admin port, make sure the ORB
bootstrap port is set to the same value that you specified when you
created the profile in the profile creation wizard. If you took the default
ports, then this value should be 2809.
 Appendix B. Tips and techniques 653

c. Click Finish to create the new server.

Figure B-48 New Server: WebSphere Server Settings

Installing WebSphere MQ Explorer as a plug-in
The ITSOMart solution will connect to a WebSphere MQ network. To define the
queues, ITSOMart will need to use the WebSphere MQ Explorer.

The prerequisite for support of the WMQ Explorer plug-ins is stated as
WebSphere Eclipse Platform Version 3.0.1. The WebSphere MQ V6 installation
provides an option for installing the MQ Explorer into an existing Eclipse
workbench, but it does not recognize Rational Software Architect or WebSphere
Integration Developer as a valid Eclipse workbench.

However, we found that it is possible to merge them after the install by manually
copying the plug-ins from WebSphere MQ v6 installation (for example,
C:\Program Files\IBM\WebSphere MQ\eclipse\plugins) to
<wid_install>/eclipse/plugins.
654 Patterns: SOA Foundation Service Connectivity Scenario

If multiple Eclipse-based IBM products are installed on the same machine, you
must determining the "true" eclipse/plugins directory. This is because IBM
Eclipse-based products like WebSphere Integration Developer and Rational
Application Developer do shell sharing. This means that the Eclipse/plug-ins
directory under WebSphere Integration Developer’s install location may not be
the "true" Eclipse/plugins directory where new plug-ins needed to go. For
example, if you installed Rational Software Architect and then WebSphere
Integration Developer, the true plug-ins directory will be
<RSA_install>/eclipse/plugins.

Restart WebSphere Integration Developer for the new plug-ins to be available. If
you do not see the WebSphere MQ Explorer perspective in the list of available
perspectives, try launching WebSphere Integration Developer with the -clean
command. For example, type wid.exe -clean from the command line.

Important! This is not a supported configuration. If any problems are
encountered with the WebSphere MQ Explorer plug-ins in such an
environment, you may be required to recreate those problems in a supported
environment before raising an issue with IBM service.
 Appendix B. Tips and techniques 655

656 Patterns: SOA Foundation Service Connectivity Scenario

Appendix C. Installation details

This appendix shows the installation process used to install the products needed
for the ITSOMart solution.

� Installing WebSphere Integration Developer
� Installing WebSphere Adapters
� Installing Tivoli Composite Application Manager

For installation information about WebSphere ESB, we recommend that you
refer to Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212.

C

© Copyright IBM Corp. 2006. All rights reserved. 657

Installing WebSphere Integration Developer
This section takes you through all the steps of installing a default configuration of
WebSphere Integration Developer V6.0.1 on a Windows system. Before
beginning the installation, ensure that you are logged in as a user with
administrative privileges, then perform the following.

1. Start the launchpad.exe from disk 1 of the installation CDs. This opens the
launchpad shown in Figure C-1. We recommend that you review the readme
file and release notes, as they contain late breaking information.

Figure C-1 Install wizard - Launchpad

2. Click Install IBM WebSphere Integration Developer V6.0.1 to start the
installation.

3. The IBM WebSphere Integration Developer V6.0.1 Installer will launch and
display a welcome page. Click Next.

4. The Software License Agreement will be displayed. Accept the agreement,
then click Next.

Silent installation: Instead of using the installation wizard, it is possible to
install WebSphere Integration Developer non-interactively, using a response
file. Silent installation could be very useful when setting up multiple
development environments.
658 Patterns: SOA Foundation Service Connectivity Scenario

5. Specify an installation directory, as shown in Figure C-2, then click Next.

Figure C-2 Install wizard - Install directory

6. The installation of WebSphere Integration Developer is divided into two parts.
The first part is to install the Integrated Development Environment. This part
is required. The second part is the Integrated Test Environment, which allows
you to deploy, run, and test artifacts you have built in the Integrated
Development Environment. This part is optional but strongly recommended if
you want to unit test your artifacts. Click Integrated Test Environment and
click Next (Figure C-3).

Figure C-3 Install wizard - Integrated Test Environment

7. The Integrated Test Environment of WebSphere Integration Developer offers
two server types: WebSphere Process Server and WebSphere Enterprise
Service Bus. We recommend installing both. Select WebSphere Enterprise

Note: We recommend that you change the installation directory to a short
directory name to avoid problems with the Windows limit on path names
longer than 256 characters.
 Appendix C. Installation details 659

Service Bus in addition to WebSphere Process Server and click Next
(Figure C-4).

Figure C-4 Install wizard - Select Integration Test Environment

8. The next screen shows a summary of the installation and shows the disk
space required depending on the options selected (Figure C-5). Click Next to
start the installation.

Figure C-5 Install wizard - Summary and disk space required
660 Patterns: SOA Foundation Service Connectivity Scenario

9. At the end of the installation, a summary is shown along with the status for
each of the components, as shown in Figure C-6. Click Next.

Figure C-6 Install wizard - Complete install summary

10.You will be asked if you wish to view the readme file containing late-breaking
information. Click Next, then Next again.

11.Finally you will be asked if you wish to launch the Rational Product Updater.
You can use this tool to apply interim fixes and product updates. “Using
Rational Product Updater” on page 662 provides more information about this
tool. We recommend that you select Launch Rational Product Updater
(Figure C-7). Click Finish.

Figure C-7 Install wizard - Launch product updater
 Appendix C. Installation details 661

12.The directory structure from a WebSphere Integration Developer installation
is as shown in Figure C-8.

Figure C-8 Directory structure of WebSphere Integration Developer installation

Using Rational Product Updater
Rational Product Updater is the tool provided to install maintenance updates for
WebSphere Integration Developer as well as other products based on Rational

Note: You can create stand-alone server profiles using the profile creation
wizard located in:

� On Windows:

<WID_INSTALL>\runtimes\bi_v6\bin\ProfileCreator_wbi\esbpcatWindows.exe

� Or on Linux:

<WID_INSTALL>\runtimes\bi_v6\bin\ProfileCreator_wbi\esbpcatLinux.bin
662 Patterns: SOA Foundation Service Connectivity Scenario

Software Development Platform. This tool accesses the update server on the
internet and locates and installs product updates as well as optional new
features. After completing a successful install, we strongly recommend checking
for product updates so that you can install fixes and avoid encountering known
problems.

Note: It is possible to change the update site preference within Rational
Product Updater so updates can be installed from a local or a network drive
rather than from the Internet update server. You must download the updates
to a local driver and change the update site preference.

The recommended updates for WebSphere Integration Developer can be
downloaded from:

http://www-1.ibm.com/support/docview.wss?rs=2308&uid=swg27006685

Further information about changing the update site preference can be found
at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/
com.ibm.orca.updater.doc/topics/tupdatesites.html
 Appendix C. Installation details 663

http://www-1.ibm.com/support/docview.wss?rs=2308&uid=swg27006685
http://www-1.ibm.com/support/docview.wss?rs=2308&uid=swg27006685
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.orca.updater.doc/topics/tupdatesites.html

After completing WebSphere Integration Developer install, we installed updates
using Rational Product Updater. We have downloaded the updates and used the
update policy shipped with the fix. Below is each step for installing an update
using Rational Product Updater:

1. If the Rational Product Updater is not running, launch it from Start →
Programs → IBM WebSphere → Integration Developer V6.0.1 → Rational
Product Updater. This opens the Rational Software Development Platform
Product Updates screen, as shown in Figure C-9.

Figure C-9 Rational Product Updater

2. If you wish to provide a local update policy file instead of downloading one
using the default Internet update server, perform the following:

a. Click Preferences → Update Sites.
664 Patterns: SOA Foundation Service Connectivity Scenario

b. Use Browse to locate your policy name, as shown in Figure C-10.

c. Click OK.

Figure C-10 Provide your update policy

3. Under the Installed Products tab, highlight IBM WebSphere Integration
Developer and click Find Updates.
 Appendix C. Installation details 665

4. Once the updates have been located (either locally or using the Internet), the
Product Updater will switch to the Updates view (Figure C-11).

Highlighting each update shown in the update window will provide a brief
description of that update in the Description box, and detailed information
about that update in the Detailed information box. You can select or deselect
an update to install using the check box. After completing selections, click the
Install Updates button to start the install.

Figure C-11 Selecting the updates to install

5. After installation is complete, the installed updates will show on the Installed
Products pane, as shown in Figure C-12 on page 667.
666 Patterns: SOA Foundation Service Connectivity Scenario

Figure C-12 Install updates

Installing WebSphere Adapters
This topic describes the steps to install and configure the IBM WebSphere
Adapter for Siebel Business Applications V6.0.0 and IBM WebSphere Adapter
for Flat Files.

The Adapter installer is available for the Windows and Linux platforms (the same
as the WebSphere Integration Developer platforms). To use the adapter on other
platforms, install on Windows or Linux, build your application using WebSphere
Integration Developer, and then export it to an EAR file. Now you can install this
EAR to any of the platforms supported by WebSphere Process Server.
 Appendix C. Installation details 667

IBM WebSphere Adapter for Siebel Business Applications
To install the adapter, do the following on the WebSphere Integration Developer
system:

1. Click the launchpad_win.exe/launchpad.sh.

2. Select the language for the launchpad. Click OK.

3. When the Launchpad window opens, click Install Product (Figure C-13).

Figure C-13 WebSphere Adapter launchpad

4. Select the language for the adapter installation and click OK.

5. The next page is the adapter installer welcome page. Click Next.

6. Accept the license agreement and click Next.
668 Patterns: SOA Foundation Service Connectivity Scenario

7. Select the folder where you want to install the adapter. Click Next.

Figure C-14 Install location

8. Click Next on the summary page (Figure C-15).

Figure C-15 Summary page

9. Click Finish. The installation will complete and you should see the message
that indicates that the install was successful.

IBM WebSphere Adapter for Flat Files
To install the adapter, do the following on the WebSphere Integration Developer
system:

1. Click the launchpad_win.exe/launchpad.sh.
 Appendix C. Installation details 669

2. Select the language for the launchpad. Click OK.

3. When the Launchpad window opens, click Install Product.(Figure C-13 on
page 668).

Figure C-16 WebSphere Adapter launchpad

4. Select the language for the adapter installation and click OK.

5. The next page is the adapter installer welcome page. Click Next.

6. Accept the license agreement and click Next.

7. Select the folder where you want to install the adapter.

The default (on Windows) is:

C:\Program Files\IBM\ResourceAdapters\FlatFiles

Click Next.
670 Patterns: SOA Foundation Service Connectivity Scenario

8. Click Next on the summary page (Figure C-15 on page 669).

Figure C-17 Summary page

9. Click Finish. The installation will complete and you should see the message
that indicates the install was successful.

Figure 12-18 Installation complete

Installing Tivoli Composite Application Manager
The Tivoli environment for this solution required the following:

� IBM DB2 Universal Database installation
 Appendix C. Installation details 671

� IBM Tivoli Monitoring installation, including:

– Tivoli Enterprise Monitoring Agent Framework
– Tivoli Enterprise Monitoring Server
– Tivoli Enterprise Portal Server
– Tivoli Enterprise Portal Desktop Client

� IBM Tivoli Composite Application Manager for SOA installation, including:

– ITCAM for SOA Application Support installation
– ITCAM for SOA Monitoring Agent installation and configuration

� Web Services Navigator installation

IBM DB2 Universal Database installation
This section provides details about installing IBM DB2. IBM Tivoli Enterprise
Monitoring requires a database for runtime operations as well as historical data
warehousing. For information about other supported database products see the
Tivoli product documentation.

1. Log on to the system as a user with the correct installation privileges (root in
UNIX and Linux operating systems, a user with Administrator privileges on
Microsoft Windows operating systems).

2. Launch the IBM DB2 UDB installation executable as appropriate for the target
operating system (setup.exe on Windows).

3. Click Install Product in the DB2 Setup Launchpad.

Tivoli product documentation: You can find documentation about the
installation and use of the Tivoli Monitoring products at:

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.
ibm.itm.doc/toc.xml
672 Patterns: SOA Foundation Service Connectivity Scenario

http://publib.boulder.ibm.com/infocenter/tivihelp/v3r1/index.jsp?toc=/com.ibm.itm.doc/toc.xml

4. Accept the default product selection in the Select the product you would like
to install screen and click Next, as shown in Figure C-18.

Figure C-18 DB2 setup product selection

5. The next screen is the welcome screen, which confirms the product that the
installer is going to set up. Click Next.

6. Carefully read the license agreement and select I accept the terms in the
license agreement and click Next.
 Appendix C. Installation details 673

7. In the Select the installation type screen select Typical as the installation type
and click Next. Figure C-19 shows the installation type selection screen.

Figure C-19 DB2 Installation type

8. Leave the default values in the Select the installation action screen and click
Next.
674 Patterns: SOA Foundation Service Connectivity Scenario

9. In the next screen, select the directory where DB2 should be installed. The
default installation directory for Microsoft Windows is C:\PROGRAM
FILES\IBM\SQLLIB. For optimal performance, DB2 should be installed to a
disk drive other than the drive that contains the operating system. Click Next.
Figure C-20 shows the installation directory.

Figure C-20 DB2 Installation location

10.Enter the user name and password for the user that the DB2 Administration
Server will use to log on to the operating system. The default user name is
db2admin. Enter db2admin as the password and do so once more as the
 Appendix C. Installation details 675

confirmation password. Ensure that “use the same username and password
for the remaining DB2 services” is checked, as shown in Figure C-21, and
click Next.

Figure C-21 DB2 user name setup

11.Leave the default values in the Setup the administration contact list screen
and click Next.

12.You may receive a warning that the SMTP notification server has not been
configured. This is fine for now. Click OK to continue.

13.Leave the default values in the Configure DB2 instances screen and click
Next.

14.Leave the default values in the Prepare DB2 tools catalog screen and click
Next.

15.In the next screen, you will be asked to enter contact information for the
health monitor. DB2 uses this information to send alerts when certain
676 Patterns: SOA Foundation Service Connectivity Scenario

database health thresholds have been exceeded. For the moment, select
Defer the task until after installation is complete and click Next, as shown
in Figure C-22.

Figure C-22 Specify administrative contact

16.The next screen shows a summary of the installation process. Click Install to
proceed with installation.

17.Click Finish once the setup is complete.

18.The next screen is the DB2 First Steps Launchpad screen. You can perform
initial post-installation tasks such as creating a sample database. Click Exit
First Steps to close this window.

19.If you are installing on Microsoft Windows, you may need to restart the
computer to complete post-installation cleanup.

20.IBM DB2 is now installed and ready for use by Tivoli Monitoring.
 Appendix C. Installation details 677

IBM Tivoli Monitoring installation
The following sections provide detailed information about installing a Hub TEMS
and performing the initial configuration.

1. Log on to the system as a user with the correct installation privileges (root in
UNIX and Linux operating systems, a user with administrator privileges on
Microsoft Windows operating systems).

2. Launch the IBM Tivoli Monitoring installation executable as appropriate for the
target operating system (setup.exe on Windows).

3. Click Accept to accept the license agreement.

4. Choose the directory in which you want to install the product. The default
directory in Windows is C:\IBM\ITM. We strongly recommend that you install
IBM Tivoli Monitoring 6.1 in a different drive from one that holds the operating
system. Click Next.

5. The next window asks you to type a 32-bit encryption key. You can use the
default key.

6. Click Next, then OK to confirm the encryption key.

Note: The setup.exe is located within the Windows directory of the Tivoli
Monitoring installation CD.

Notes: This encryption key is used to established a secure connection
(using SSL protocol) between the Hub TEMS and the other components of
the IBM Tivoli Monitoring 6.1 environment as the Remote TEMS connected
to the hub. Do not use any of the following characters in your key:

� =
� ’
� |

Ensure that you document the value you use for the key. Use this key
during the installation of any components that communicate with this
monitoring server.
678 Patterns: SOA Foundation Service Connectivity Scenario

7. Select the components that you want to install. Figure C-23 shows the
components for the sample installation. Click Next.

Figure C-23 ITCAM component selection

8. Accept the default in the agent deployment selection screen and click Next.

9. Select a program folder and click Next. The default program folder name is
IBM Tivoli Monitoring.
 Appendix C. Installation details 679

10.Review the installation summary details. This summary identifies what you
are installing and where you have chosen to install it. Click Next to begin the
installation of components, as shown in Figure C-24.

Figure C-24 Installation summary details
680 Patterns: SOA Foundation Service Connectivity Scenario

11.After the components are installed, a configuration window (Figure C-25) will
display a list of components that can be configured. Select all the components
and click Next.

Figure C-25 Setup configuration
 Appendix C. Installation details 681

12.Enter the host name of the Tivoli Enterprise Monitoring Server. The default
value (the host name of the current machine) should be correct. Click Next.

13.The next screen is the database configuration screen for the Tivoli Enterprise
Portal. Enter the password for the DB2 administrative user (selected during
DB2 installation) and enter a password for the Tivoli Enterprise Portal Server
user (leave the default value for the user name), as shown in Figure C-26.

Figure C-26 Configure data warehousing

14.A notification window will appear. Click OK.

15.Leave the default users in the warehouse ID and password for Tivoli
Enterprise Portal Server and click Next

16.Leave the default communication protocol in the TEP Server Configuration
screen and click OK.
682 Patterns: SOA Foundation Service Connectivity Scenario

17.Leave the default settings in the protocol configuration screen (Figure C-27)
and click OK.

Figure C-27 Monitoring server configuration

18.If you are asked to reconfigure the Warehouse Proxy information for the
Enterprise Portal Server, click No.
 Appendix C. Installation details 683

19.Figure C-28 shows the different options of monitoring the type of Tivoli
Enterprise Monitoring Server that can be selected. Select Hub.

Figure C-28 Tivoli Enterprise Monitoring Server configuration

20.Verify that the name of this monitoring server is correct in the TEMS field. If it
is not, change it. The default name is HUB_HOSTNAME.

21.Identify the communications protocol for the monitoring server. Possible
choices are IP.UDP, IP.PIPE, IP.SPIPE, and SNA. If multiple methods for
communication are specified, the TEMS server will use alternate
communication protocols when the primary protocol fails. For example, if the
method you have identified as Protocol 1 fails, Protocol 2 is used.
684 Patterns: SOA Foundation Service Connectivity Scenario

22.Accept the default values in the protocol configuration window and click OK.

23.Specify the location of the monitoring server. There are two options:

– On this computer
– On a different computer

Chose the first option and click OK.

24.Because the monitoring server is not currently running, it will start
automatically before the process begins. Click OK when you see Figure C-29.

Figure C-29 Monitoring server start confirmation windows

25.Select the data that you want to add to the monitoring server. By default, all
available application support is selected. Leave all components selected so
that they can be seeded. Click OK.

Note: IP.PIPE protocol uses TCP. Thus a permanent connection is
established between the TEMS and the remote servers. This could have
an impact on the server performance because of the number of RPCs that
it needs to handle. If using UDP will not cause security breaches in your
environment, we recommend that you set up the first protocol as IP.UDP.
Otherwise use IP.PIPE.

If a firewall is between your TEMS and your agents, you cannot use
IP.UDP.
 Appendix C. Installation details 685

26.Verify that each application support added for the components has a return
code (rc) equal to 0, as shown in Figure C-30. Click Next.

Figure C-30 Application addition support window

Note: Seeding adds product-specific data from the monitored resources to
the monitoring server. For Windows, you can seed the monitoring server
both during install and through Manage Tivoli Monitoring Services.

During this process, fields are created in the TEMS database (a flat
file/Btrieve database, not the relational database installed for the TEPS) for
the agents you have chosen. This enables the TEMS to work with the data
from these agents. The same goes for the TEPS, except here of course the
necessary tables are created in the relational database of choice.

If the seed data is for an agent that reports to a remote monitoring server,
complete this process for both the hub and the remote monitoring server. A
hub monitoring server should be running before proceeding with a remote
monitoring server seed.
686 Patterns: SOA Foundation Service Connectivity Scenario

The next configuration step (Figure C-31) configures the default
communication between any IBM Tivoli Monitoring component and the hub
monitoring server.

27.Specify the default values for IBM Tivoli Monitoring components to use when
they communicate with the monitoring server.

a. If agents must cross a firewall to access the monitoring server, select
Connection must pass through firewall.

b. Identify the type of protocol that the agents use to communicate with the
hub monitoring server. Your choices are IP.UDP, IP.PIPE, IP.SPIPE, and
SNA. Leave the default choice and click OK.

28.Click OK in the protocol configuration screen.

29.Once the installation is complete, click Finish.

30.The Manage Tivoli Enterprise Monitoring Services window now appears.
Verify that the following services are configured and started, as shown in
Figure C-31.

– Tivoli Enterprise Portal Server
– Monitoring Agent for Windows OS
– Warehouse Proxy
– Tivoli Enterprise Monitoring Server

Figure C-31 Services that should be started

ITCAM for SOA Application Support installation
In order to view data collected by the ITCAM for SOA monitoring agents in the
Tivoli Enterprise Portal, Tivoli Enterprise Monitoring Server and Tivoli Enterprise
 Appendix C. Installation details 687

Portal Server must have application support for ITCAM for SOA installed.
Application support consists of the following:

� Data structure definition for Tivoli Enterprise Monitoring Server attributes and
attribute groups (tables). ITCAM for SOA contains two tables:
Services_Metrics and Services_Inventory.

� Situation definitions that allow proactive monitoring to be performed in the
IBM Tivoli Monitoring environment.

� Presentation information to be installed in the Tivoli Enterprise Portal Server,
including help resources and workspace definitions.

� Additional resources such as sample workflow and historical collection
information.

The installation for ITCAM for SOA application support is on the CD, which
provides multiple-platform support (Windows, AIX, and Solaris binaries). The
wizard will copy the CD-ROM’s files into the disk. If you install this from disk,
copy the CD content into the same path; otherwise the installation wizard will fail.

1. Navigate to the Application Support Installer directory on the ITCAM for SOA
product CD. The installer is provided to support IBM Tivoli Monitoring V6.1
installation. Select the appropriate operating system platform:

Windows setupwin32.exe
AIX setupaix.bin
Solaris setupSolaris.bin

2. The first screen identifies the product to be installed. Click Next.

3. Enter the installation directory and the location of the installable media. The
default directory installation directory is C:\IBM\ITM.

4. Because the Tivoli Enterprise Monitoring Server, Tivoli Enterprise Portal
Server, and Tivoli Enterprise Portal are installed on one system, all of the
components are selected to install to the local machine. See Figure C-32.

Figure C-32 Installation features
688 Patterns: SOA Foundation Service Connectivity Scenario

5. Select the application support for ITCAM for SOA to be installed in the IBM
Tivoli Monitoring Services environment (Figure C-33).

Figure C-33 Application support component

Note: If you select any of the application support components that are
already installed, a warning window is displayed. You have the choice of
overwriting the existing installation files or unchecking the desired
component to avoid overwriting the files.
 Appendix C. Installation details 689

6. The installation summary provides a brief list of actions it will perform. Click
Next. See Figure C-34.

Figure C-34 Installation action list
690 Patterns: SOA Foundation Service Connectivity Scenario

7. The final installation panel displays the progress bar and the installation
details output (Figure C-35). Once the installation is complete, click Finish.

Figure C-35 Installation completion summary

ITCAM for SOA Monitoring Agent installation and configuration
This section gives an overview of management agent installation. ITCAM for
SOA Monitoring Agent installation includes the data collector, which is installed
into each application server environment where Web services traffic is to be
monitored.

1. Launch the ITCAM for SOA installation:

– For Windows installation, navigate to the /WINDOWS directory and select
setup.exe from the ITCAM for SOA product CD.
 Appendix C. Installation details 691

– For UNIX installation, open a command session and navigate to the root
directory of the ITCAM for SOA CD. Issue this command:

./install.sh

2. At the welcome screen, click Next.

3. Click Next at the prerequisites screen.

4. Carefully read the software license agreement and click Accept.

5. Select the directory where ITCAM SOA should be installed (Figure C-36) and
click Next.

Figure C-36 Installation location
692 Patterns: SOA Foundation Service Connectivity Scenario

6. Select Agent Support for ITCAM for SOA Agent to be installed on the local
system (Figure C-37).

Figure C-37 Agent installation

7. Accept the default program folder on the next screen and click Next.

8. The installation summary displays a brief list of tasks for the current
installation. Click Next.

9. Select both options in the Setup Type screen to configure the ITCAM for SOA
monitoring agent and launch the Tivoli Monitoring Services for additional
configurations (Figure C-38).

Figure C-38 Setup type
 Appendix C. Installation details 693

10.The installation configures the communication protocol for the ITCAM for SOA
monitoring agent to connect to the Tivoli Enterprise Monitoring Server
(Figure C-39).

Figure C-39 Communication configuration

Note: The default protocol type to connect to the Tivoli Enterprise
Monitoring Server using TCP protocol is IP.PIPE. Depending on your Tivoli
Enterprise Monitoring Server configuration, you may select another
protocol as appropriate.
694 Patterns: SOA Foundation Service Connectivity Scenario

11.In the Tivoli Enterprise Monitoring Server configuration window (Figure C-40),
specify the Tivoli Enterprise Monitoring Server host name and IP address of
the Enterprise Monitoring Server. Keep the default port number at 1918 for
the ITCAM for SOA monitoring agent connection unless a different IP.PIPE
port number was specified during the Tivoli Enterprise Monitoring Server
installation.

Figure C-40 Connection to the Tivoli Enterprise Monitoring Server

12.Click Finish to complete the installation.
 Appendix C. Installation details 695

13.When the Tivoli Enterprise Monitoring Server configuration for ITCAM for
SOA is complete, the Manage Tivoli Enterprise Monitoring Services utility
launches. The ITCAM for SOA will be listed as not configured and the status
will be blank. See Figure C-41.

Figure C-41 Manage IBM Tivoli Monitoring Services

ITCAM for SOA Monitoring Agent configuration
This section describes how to enable the ITCAM for SOA monitoring agent data
collector handler in the appropriate application server.

After the ITCAM for SOA monitoring agent is installed, the data collector
directory structure is created in the Tivoli Enterprise Monitoring Agent base
directory as follows:

� For Windows: <tivoli_agent_home>\CMA
� For UNIX: <tivoli_agent_home>/<OS_INTERP>/kd4

Note: You do not have to configure and start the ITCAM for SOA monitoring
agent until the monitoring agent support is enabled for the target application
server. If you start the monitoring agent prior to enabling application server
support, the agent will start but will have to be stopped and restarted after
enabling the application server support.
696 Patterns: SOA Foundation Service Connectivity Scenario

This directory contains the structure shown in Figure C-42.

Figure C-42 Agent directory structure

These directories contain all files required to run the data collector on IBM
WebSphere Application Server, Microsoft .NET, and BEA WebLogic.

A monitoring agent that has been installed on an application server host must be
configured. On J2EE servers, the configuration step installs a JAX-RPC handler
to intercept all Web services calls. To configure the monitoring agent, run the
following command:

KD4configDC.bat -enable -env <x> <application server specific arguments>

The <x> argument after -env specifies the target application server. <x> must be
one of the following:

� 1 = IBM WebSphere Application Server
� 2 = Microsoft .Net platform
� 3 = BEA WebLogic Server

The application server specific arguments for this command vary depending on
the application server environment. Refer to the IBM Tivoli Composite
Application Manager for SOA Installation and User’s Guide, GC32-9492, for
more detailed information about the KD4configDC options.

Note: On non-Windows servers, you would use KD4ConfigDC.sh or as
appropriate for your operating system.
 Appendix C. Installation details 697

Once the monitoring agent configuration is complete, the application server may
need to be restarted in order for the agent to begin reporting monitoring data to
the monitoring server.

Configuring for WebSphere Application Server data collector
For IBM WebSphere Application Server, run this command at a command
prompt:

KD4configDC -enable -env 1 <WAS_HOME>

This command enables IBM WebSphere Application Server to use the KD4 data
collector as a JAX-RPC handler. The kd4dcagent.jar file is installed into the
<WAS_HOME>/lib/ext directory.

After the ITCAM for SOA monitoring agent data collector has been configured,
stop and restart IBM WebSphere Application Server.

Web Services Navigator installation
The Web Services Navigator is a stand-alone application based on the Eclipse
framework. You can install the application into an existing Eclipse framework
application such as Rational Software Architect or WebSphere Integration
Developer or you can install a copy of the Eclipse framework to run Web
Services Navigator.

For the purposes of this sample, you will install Web Services Navigator on the
monitoring server node.

1. Launch the installer by executing the installer executable. On Windows, this is
setupwin32.exe.

2. Click Next on the Welcome screen.

3. Accept the terms of the license agreement and click Next.

4. Select a directory in which to install the Web Services Navigator and click
Next.

5. Select Install Eclipse as part of this installation and click Next.

6. The next screen summarizes the installation about to be performed. Click
Next.

Once the installation is complete, click Finish to exit the installer.

Note: If you have set the WAS_HOME environment variable, the configuration
program can be invoked without any argument. The WAS_HOME
environment variable is typically set using the setupCmdLine program from
WebSphere.
698 Patterns: SOA Foundation Service Connectivity Scenario

Verify the installation
To verify the installation, you will need to verify that both the monitoring agent
and the monitoring server have been installed correctly.

Verifying the monitoring agent installation
After running the KD4configDC script, ensure the following:

� Check for a file named KD4BaseDirConfig.properties that is created
automatically during installation in the system configuration directory. For
Windows operating systems, this file should be located in
%SYSTEMROOT%\system32\drivers\etc. Verify that the file exists and has
the following entry, assuming the monitoring agent is installed in
<tivoli_agent_home>.

INSTALLDIR=C:\\<tivoli_agent_home>\\CMA\\

The value in the INSTALLDIR variable represents the directory location
where the \KD4 folder is located. The \KD4 folder contains logging and
properties files used with ITCAM for SOA.

� For WebSphere Application Server (and servers that are built on WebSphere
Application Server such as WebSphere ESB or WebSphere Process Server)
the JAX-RPC handler should be installed into the application server as well.
The file kd4agent.jar should be copied to <WAS_HOME>/lib/ext.

Verify the monitoring server installation
Open the Manage Tivoli Enterprise Monitoring Services utility and verify that the
Tivoli Enterprise Monitoring Server and Tivoli Enterprise Portal Server are
started. If you are planning to write Web services data to the data warehouse
using the Warehouse Proxy, make sure that the Warehouse Proxy is started as
well. Finally, started either the Enterprise Portal Desktop client or Web client.

Note: The default user name for the portal client is sysadmin. There is no
password by default.
 Appendix C. Installation details 699

700 Patterns: SOA Foundation Service Connectivity Scenario

Appendix D. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247228

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247228.

D

© Copyright IBM Corp. 2006. All rights reserved. 701

ftp://www.redbooks.ibm.com/redbooks/SG247228
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

WID_Resources.zip This is the project interchange file that contains
the WID_Resources project referred in “Errors
using XML Mapper without Internet connectivity”
on page 639.

ITSOMart_UML_Model.zip This zip file contains UML model project
interchange files that can be imported into a
Rational Software Architect V6 workspace.
These models are discussed in Chapter 5,
“Model with Rational Software Architect” on
page 125.

ITSOMartPIFs.zip This zip file contains ITSOMart application
project interchange files that can be imported
into a WebSphere Integration Developer V6
workspace. Instructions for using these files can
be found in Appendix A, “Sample application
install summary” on page 589.

TopDownAppendix.zip This zip file contains project interchange files
with the projects built using the instructions in
“Creating a top-down SOAP/JMS Web service”
on page 606. These files can be imported to a
WebSphere Integration Developer V6
workspace.

ITSOMart.sql This file contains the SQL statements required
to define the ITSOMART database used in the
Get Credit Score scenario.

ITSOMART_Cloudscape.zip This zip file contains the Cloudscape version of
the ITSOMART database used in the Get Credit
Score scenario.

System requirements for downloading the Web material
The following system configuration is recommended:

Operating system Windows or Linux

Software WebSphere Integration Developer V6.0.1, Rational
Software Architect V6.0.1, WebSphere ESB V6.0.1
702 Patterns: SOA Foundation Service Connectivity Scenario

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
 Appendix D. Additional material 703

704 Patterns: SOA Foundation Service Connectivity Scenario

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 709. Note that some of the documents referenced here may
be available in softcopy only.

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server V6 System Management & Configuration
Handbook, SG24-6451

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application
Server V6, SG24-6494

� Patterns: Implementing Self-Service in an SOA Environment, SG24-6680

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� Patterns: Model-Driven Development Using IBM Rational Software Architect,
SG24-7105

� Patterns: Extended Enterprise SOA and Web Services, SG24-7135

� Getting Started with IBM Tivoli Monitoring 6.1 on Distributed Environments,
SG24-7143

� IBM Tivoli Composite Application Manager V6.0 Family: Installation,
Configuration, and Basic Usage, SG24-7151

� Enabling SOA Using WebSphere Messaging, SG24-7163

� Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240
© Copyright IBM Corp. 2006. All rights reserved. 705

Other publications
These publications are also relevant as further information sources:

� Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
1997. ISBN 0-201-63361-2

� IBM Tivoli Monitoring Installation and Setup Guide, GC32-9407

� IBM Tivoli Composite Application Manager for SOA Installation and User's
Guide, GC32-9492

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Patterns for e-business

http://www-128.ibm.com/developerworks/patterns/

� Rational Application Developer system requirements

http://www-306.ibm.com/software/awdtools/developer/application/sysreq/index
.html

� Rational Software Architect home page

http://www.ibm.com/software/awdtools/architect/swarchitect/index.html

� Rational Software Architect system requirements

http://www.ibm.com/software/awdtools/architect/swarchitect/sysreq/index.html

� Tivoli Composite Application Manager Basic for WebSphere home page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-
basic-websphere/

� Tivoli Composite Application Manager for Response Time Tracking home
page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-
rtt/

� Tivoli Composite Application Manager for SOA home page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/

� Tivoli Composite Application Manager for WebSphere home page

http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-
websphere/

� WebSphere Adapter home page

http://www-306.ibm.com/software/integration/wbiadapters/
706 Patterns: SOA Foundation Service Connectivity Scenario

http://www.ibm.com/software/awdtools/architect/swarchitect/index.html
http://www.ibm.com/software/awdtools/architect/swarchitect/sysreq/index.html
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-basic-websphere/
http://www-306.ibm.com/software/awdtools/developer/application/sysreq/index.html
http://www-306.ibm.com/software/awdtools/developer/application/sysreq/index.html
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-rtt/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-websphere/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-websphere/
http://www-306.ibm.com/software/integration/wbiadapters/
http://www-128.ibm.com/developerworks/patterns/

� WebSphere Adapter product documentation

http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/
doc/index.html

� WebSphere Enterprise Service Bus system requirements

http://www-306.ibm.com/software/integration/wsesb/sysreqs/

� WebSphere Enterprise Service Bus home page

http://www-306.ibm.com/software/integration/wsesb/

� WebSphere Enterprise Service Bus product documentation

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/
com.ibm.websphere.wesb.doc/info/welcome.html

� WebSphere Enterprise Service Bus 6.0.1 Information Center

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.webs
phere.wesb.doc/info/welcome.html

� WebSphere Integration Developer system requirements

http://www-306.ibm.com/software/integration/wid/sysreqs/

� What Is an ESB, and Do You Really Need One?

http://www.computerworld.com/developmenttopics/development/webservices/
story/0,10801,108478,00.html

� ESB in Practice

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509_
flurry1/0509_flurry1.html

� IBM WebSphere Developer Technical Journal: Building an Enterprise Service
Bus with WebSphere Application Server V6 -- Part 7

http://www-128.ibm.com/developerworks/websphere/techjournal/0509_reinitz/
0509_reinitz.html

� The Open Applications Group Integration Specification (OAGIS)

http://www-128.ibm.com/developerworks/xml/library/x-oagis/

� Simplify integration architectures with an Enterprise Service Bus

http://www-128.ibm.com/developerworks/webservices/library/ws-esbia/index.html

� Web services programming tips and tricks: Learn simple, practical Web
services design patterns, Part 4

http://www-128.ibm.com/developerworks/webservices/library/ws-tip-altdesign4

� SOA programming model for implementing Web services, Part 4: An
introduction to the IBM Enterprise Service Bus

http://www-128.ibm.com/developerworks/library/ws-soa-progmodel4/
 Related publications 707

http://www-306.ibm.com/software/integration/wsesb/
http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www.computerworld.com/developmenttopics/development/webservices/story/0,10801,108478,00.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0509_flurry1/0509_flurry1.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0509_reinitz/0509_reinitz.html
http://www-128.ibm.com/developerworks/webservices/library/ws-esbia/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-tip-altdesign4
http://www-128.ibm.com/developerworks/library/ws-soa-progmodel4/
http://www-306.ibm.com/software/integration/wsesb/sysreqs/
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.websphere.wesb.doc/info/welcome.html
http://www-306.ibm.com/software/integration/wid/sysreqs/
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.wesb.doc/info/welcome.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/topic/com.ibm.websphere.wesb.doc/info/welcome.html
http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/doc/index.html
http://www-306.ibm.com/software/integration/wbiadapters/library/infocenter/doc/index.html
http://www-128.ibm.com/developerworks/xml/library/x-oagis/

� WebSphere Adapters

http://www-306.ibm.com/software/integration/wbiadapters/

� WebSphere DataPower SOA Appliances

http://www-306.ibm.com/software/integration/datapower/index.html

� Toward a pattern language for Service-Oriented Architecture and Integration,
Part 1: Build a service eco-system

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-soi/

� SOA programming model for implementing Web services, Part 4: An
introduction to the IBM Enterprise Service Bus

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-progmodel4
/index.html

� XQuery: An XML query language

http://www.research.ibm.com/journal/sj/414/chamberlin.pdf

� IBM WebSphere Enterprise Service Bus

http://www-306.ibm.com/software/info/middleware/applications/index.jsp

� developerWorks Architecture Integration

http://www-128.ibm.com/developerworks/architecture/application.html

� Rational Software Architect

http://www-306.ibm.com/software/awdtools/architect/swarchitect/

� Rational Software Architect: SOA design resources

http://www-306.ibm.com/software/info/developer/solutions/soadev/dtoolkit2.jsp

� UML Profile for Software Services, RSA Plug-In

http://www-128.ibm.com/developerworks/rational/library/05/510_svc/

� Architecting on demand solutions, Part 11: Build ESB connectivity with
Rational Software Architecture (RSA) WebSphere Platform Messaging
Patterns

http://www-128.ibm.com/developerworks/ibm/library/i-odoebp11/

� OMG Model Driven Architecture

http://www.omg.org/mda
708 Patterns: SOA Foundation Service Connectivity Scenario

http://www-306.ibm.com/software/integration/wbiadapters/
http://www-306.ibm.com/software/integration/datapower/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-soi/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-progmodel4/index.html
http://www.research.ibm.com/journal/sj/414/chamberlin.pdf
http://www-306.ibm.com/software/info/middleware/applications/index.jsp
http://www-128.ibm.com/developerworks/architecture/application.html
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/info/developer/solutions/soadev/dtoolkit2.jsp
http://www-128.ibm.com/developerworks/rational/library/05/510_svc/
http://www-128.ibm.com/developerworks/ibm/library/i-odoebp11/
http://www.omg.org/mda

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 709

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

710 Patterns: SOA Foundation Service Connectivity Scenario

Index

Symbols
 679
./install.sh 692
.NET 112
.Net 485, 564

Numerics
3270 terminal emulator 567
80/20 situation 27

A
Access Integration pattern 29
access services 77
action log 577
activation specification 195, 201
activationspec 501
Active Directory Agent 564
activity diagram 140, 142
actor 144
adapter 85

runtime configuration 498
adapter services 247
adapter-specific dependent JAR files 354
AddFltrCntrl 575
AddMntCntrl 571
AddMntrCntrl 575
administrative console

starting 487
affinity 533
agent 560
agent data log 583
agent log 578
agent log files for ITCAM for SOA 577
agent status 561
alert 560, 562
alias destination 521
alias queue 474, 519
analysis model 128–129, 137, 144, 151
ANT 524
App Server/Services node 42, 57, 59
application

deploy 523
© Copyright IBM Corp. 2006. All rights reserved.
gateways 41
install 525
patterns 44, 60
server 40
start 524, 529

application agent 563
Application Integration 38, 52
Application Integration pattern 29
Application pattern 28, 38–39
application server profile 486
architectural design 128, 149
array 417, 428, 435, 437, 445
assemble mediations 220
assembly

WebSphere Integration Developer 104
assembly diagram 161, 224, 284, 315, 336, 401,
403
asset-based development 129
asynchronous 213
attribute 234, 270, 273

enumerations 455
attribute tables 571
attributes 571
Audit System 164
Audit system 163
Audit System service 451
augment 486
augmentation 152
automatic build 224
autonomic rules 54, 60
availability data 560
Average Message Size by Operation view 570
Average Response Time by Operation view 570
Average size of Messages by Service - Operation -
Type view 571

B
Binding

SCA 336
Web service 283, 315, 442

binding 248, 611, 613
Adapter 247
JMS 246–247, 452, 459, 501
 711

SCA 246, 315
Web service 245–246, 284, 372, 458
Web service binding 428, 432

blank model 137
blank model template 187
BO location 362
BO Services 219
BO Type Metadata 219
body 220, 436
boundary component 149
boundary service 152
broker 38, 95

connectivity 37
Broker application pattern 56, 58
broker domain 95
Btrieve 686
build project 225
built-in node 94
bus component 190–192
bus member 491, 502
business application services 77
business data mapping rules 54, 60
business graph 219
Business Integration perspective 222–223
Business Integration view 224
business object 165, 216, 218–219, 232–234, 269,
272, 276, 369, 459

create 269–270, 273, 276, 313, 422, 429
ereate 454

business object framework 218–219
Business pattern 27, 29
Business Process Execution Language (BPEL)
104
Business Service Directory

UDDI directory 41
business services management 557
business tier transformations 127

C
C 485
C++ 485
caching 484
Call Connection variation 54, 61
callout fault node 298
callout node 287, 329
callout response node 255, 298
capabilities 226
cefault terminal 465

cell 486
CICS 556–557
CICS Transaction Server 42
class 171
class diagram 128, 134, 140, 144, 174
classpath 386
clean 225
client caching 484
Cloudscape 338, 491, 494, 497–498, 648
cluster 118, 532

add members 550
create 538
start 545

clustering 480
collaboration 188
Collaboration business pattern 29
collection interval 579
com.ibm.j2ca.siebel.SiebelManagedConnection-
Factory 389
commands

./install.sh 692
setup.exe 691
setupaix.bin 688
setupSolaris.bin 688
setupwin32.exe 688

Common Business Event (CBE) 485
Common Event Infrastructure 647
Common Event Infrastructure (CEI) 485
CommonEventInfrastructure_Bus 486
commonj.sdo.ChangeSummary 218
commonj.sdo.DataObject 217, 219
component 144–145, 212

wiring 250
component diagram 129, 140, 144, 148, 151,
158–159
component test 259
component-managed authentication alias 495
composite application 556, 558
composite application management 556
Composite pattern 27
concat function 296
Configuration manager 95
connection factory 199, 207
connection rules 54
connectionFactory 618
connectivity 78

WebSphere ESB 85
Connector node 42
Console view 259, 487, 531
712 Patterns: SOA Foundation Service Connectivity Scenario

content filtering 583
content log 577
content-based message routing 88, 91
core group 538
Credit Rating mediation 155, 265, 267, 275
Credit Rating Service 265, 309

Interface 278
Credit Score mediation 267, 309
Credit Score Service 267, 313, 315
CRM 351
CRM mediation 161, 349, 363
CRM Registration scenario 348
CRM Registration Service 349
CurrencyCode 381
Custom binding 483
custom install 535
custom Java bean 320
Custom mediation 347
Custom primitive 253, 351, 375, 396–397, 501

implementation 400, 403
interface 399

custom profile 486, 537
Custom XPath 464
custom XPath 324–325
Customer Registration 151
Customer Relationship Management (CRM) 348
customer relationship management (CRM) 142
CWYEB_SiebelAdapterEAR 386
CWYFF_FlatFileEAR 412

D
Data access service (DAS) 216
data collection 569, 575
data collector 570
data collector filter control configuration attributes
572
Data Collector Filter Control Configuration view 569
data collector global configuration attributes 571
Data Collector Global Configuration view 569
data collector monitor control configuration at-
tributes 571
Data Collector Monitor Control Configuration view
569
data graph 217, 219
Data Integration 53
data object 217
data serialization 459
data source 338, 540

create 494
data warehouse 586, 672, 699
data warehousing 682
database 161, 263
Database Lookup primitive 253, 323–324, 326,
329, 338, 491, 495

fail terminal 331
key not found 328

database name 339
DataCollectMessageLoggingLevel 582
DataPower 98–99
DataPower Toolkit 14
DataPower XS40 14
DB2 113–114, 540, 682

Install 672
DB2 Agent 564
DB2_UNIVERSAL_JDBC_DRIVER_NATIVEPATH
494, 541
DB2_UNIVERSAL_JDBC_DRIVER_PATH 494,
541
decomposition 38
Decomposition application pattern 44, 49–50
default configuration 658
default flow 392
default messaging provider 467, 484
default terminal 392
default.dnx 610
deferred asynchronous response 532
deferred response 534
DelFltrCntrl 575, 584
DellMntrCntrl 583
DelMntCntrl 571
DelMntrlCntrl 575
demilitarized Zone 40
denial of service (DOS) 583
dependency

JAR files 354, 364
Java 311–312
library 231–232, 242–243, 268, 281, 310, 352,
454

deploy
WebSphere Application Server 102

deployment diagram 129
deployment location 340
deployment manager 486, 536–537
deployment manager profile 486
design 76
design model 128, 137, 149
destination 502
 Index 713

destination JNDI name 620
develop

Message Brokers Toolkit 95
development 104
development services 76
Diagram Navigator view 133
direct connection 38
Direct Connection application pattern 53, 55–56
direct connectivity 36
Directly Integrated Single Channel 156
Directly Integrated Single Channel application pat-
tern 38, 44
Directory services 40
DisableDC 571, 575
disaster recovery 118
Distribution mode

All 435
distribution mode 377, 464
DNS See Domain Name Server
document literal 613
domain analysis 128, 144, 148
Domain Name Server 40
dynamic routing 26

E
EJB cClient 91
EJB client 485
element

Add to an array 445
EnableDC 571, 575
encryption key 678
Enterprise Application Integration (EAI) 52
Enterprise Java Beans (EJBs) 102
enterprise Java capability 609
enterprise level IT transformation 72
Enterprise Resource Planning (ERP) 53
enterprise service bus 32, 35, 82, 102, 480

SOA Foundation Reference Architecture 102
Enterprise Service Bus pattern 84, 123
Enterprise Service Discovery wizard 247, 353, 355,
364, 386
enterprise Web services 483
Enterprise Web Services (JSR 109) 102
enumerated values 465
enumeration 455
error log file 577
ESB 57, 150–151, 154
ESB Mediation Message Log viewer 595

ESB Pattern 32
ESB runtime pattern 41–42
esbpcatLinux.bin 487, 640, 662
esbpcatWindows.exe 487, 640, 662
event correlation and automation 556
execution group 95
Existing applications 41
export 215–216, 247, 426, 432, 445, 457

binding 245
JMS binding 246–247, 501
SCA binding 246, 315
Web service binding 246, 284, 372, 428, 442,
458

Exposed Broker 38
Exposed Direct Connection application pattern 38,
61
Exposed Direct Connection runtime pattern

SOA profile
Exposed ESB Gateway 43
Service Consumers 43
Service Providers 43

Exposed ESB Gateway node 43
Exposed Router variation of the Broker 38
Extended Enterprise business pattern 29, 38, 60
Extended Structured Query Language (ESQL) 94

F
Fail primitive 253, 331–332
failover 118, 480, 531–533
Fault 237–239
fault 263, 278, 300, 556, 574
Fault Details view 569, 571
fault handling 449
Fault Log attributes 572
fault occurrences 570
Faults Summary by Operation view 571
Faults Summary workspace 569, 571, 584
federate 486, 537
filter control settings 575
Filter pattern 464–465
Filter primitive 375–376, 417
Firewall

Protocol 41
firewall 687

and IP.UDP 685
first class manageable resource 565
First Steps 536
flat file 350, 372, 396, 501
714 Patterns: SOA Foundation Service Connectivity Scenario

Flow Patterns view 587
foreign bus 507

create 514

G
Gateway 13
gateway 35
generate Implementation 424
generate implementation 427, 433
generic JMS provider 484
generic profile 39
generic SOAP elements 484
generic use case 26, 38
Get Credit Rating scenario 264, 266

H
HACMP 118
header 220
heartbeat request interval 560
heartbeat status 562
hierarchical business object 219
high availability 118, 532
high availability policy 548, 551
historical data collection 564
horizontal scaling 531
HTTP browser client 561
HTTPS 117
hub 561
hub monitoring server 686–687
Hub TEMS 678

I
i5 OS Agent 563
IBM Patterns for e-business (P4eb) 27
IBM Rational RequisitePro 128
IBM Tivoli Composite Application Manager (ITCAM)
556
IBM Tivoli Composite Application Manager for CICS
Transaction 557
IBM Tivoli Composite Application Manager for IMS
Transactions 557
IBM Tivoli Composite Application Manager for Re-
sponse Time Tracking 562
IBM Tivoli Composite Application Manager for SOA
14, 16, 18, 562
IBM Tivoli Composite Application Manager for SOA
6.0 557

IBM Tivoli Composite Application Manager for Web-
Sphere 557, 562
IBM Tivoli Composite Application Manager Re-
sponse Time Tracking 557
IBM Tivoli Enterprise Console 562
IBM Tivoli Enterprise Monitoring framework 560
IBM Tivoli Monitoring 562
IBM WebSphere Adapter for Flat Files 350, 352,
364, 498
IBM WebSphere Adapter for Siebel Business Appli-
cations 350, 352, 355, 498

import to the workspace 353
Install 667

implementation 213
import 87, 214–215, 247, 283, 361–362, 364, 372,
457

adapter binding 247
binding 245
JMS binding 247, 452, 459, 501
no binding 458
SCA binding 336
Siebel 355
Web service binding 245, 283, 315, 432

import binding 215
imported service 215
IMS 556
IMS Transaction Manager 42
Information Aggregation business pattern 29
infrastructure services 78
in-line reference 214
input 238–239
input fault node 287, 298
input node 252, 287
input response node 287, 298
input terminal 255
install fixes 663
install updates 666
InstallApplication 524
Installation wizard 658
Integrated Development Environment 659
Integrated Test Environment 659
integration assembly 76
Integration pattern 27
Integration Test Client 259, 303, 337, 467
Integration test client 220
Integration Tier Transformations 127
interaction services 77
interaction style 213
interface 215, 232, 237, 247, 276, 315, 369, 422,
 Index 715

432, 457, 501
add 284
create 236, 370, 456
create from WSDL 313
Custom primitive 399
define 277–278, 313
definition 213
EIS 352

interfaces
create 236

Interim fix 591
IP.PIPE 684–685, 687, 695
IP.SPIPE 684, 687
IP.UDP 684–685, 687
ITCAM for CICS/IMS 559
ITCAM for Response Time Tracking 559
ITCAM for RTT 562
ITCAM for SOA 113, 562, 564

Agent installation 691
Application support 688
application support 114
data collector 114
Enable the monitoring Agent 696
Enable the monitoring agent 698
Installation 687
installation 113–114
Monitoring Agent 114

ITCAM for SOA application support 113
ITCAM for SOA Monitoring Agent 577
ITCAM for SOA monitoring agents 113
ITCAM for WebSphere 559, 562
ITSOMart

URL 530
ITSOMart database 337–338
ITSOMart.LogDeniedQ 503
ITSOMart.LogFailureQ 503
ITSOMart.LogSuccessQ 503
ITSOMart.RegistrationProcessorServiceQ 503
ITSOMartBus.jacl 206
ITSOMartLib 269–270, 277, 279–281, 313–314,
352, 372, 421, 453–454
ITSOMartUtils 268, 311–312, 320

J
J2C authentication data 363
J2C authentication data entry 386, 491, 498, 500,
540
J2CA0009E 389

J2EE application 481
J2EE client 485
J2EE client support 91
JAAS configuration 499
JACL script 205, 208
JAR files dependency 354, 364
Java API for XML-based RPC (JAX-RPC) 102
Java component 423–424
Java dependencies 311–312
Java dependency 312
Java desktop client 561
Java project 311
Java proxy 633
java.lang.ClassNotFoundException 389
java.rmi.RemoteException 632
JavaServer Faces (JSF) 595
JavaServer Pages (JSPs) 45
JAX-RPC 483–485, 698
JAX-RPC handler 483
JDBC driver 338
JDBC provider 492, 540, 546
JMS 164, 449
JMS activation specification 505, 620, 630
JMS binding 215–216, 247
JMS client 91, 485
JMS Connection 195
JMS Connection component 196
JMS Connection pattern 194–195, 198
JMS destination 461
JMS message header 220
JMS messaging domain 459
JMS provider 460, 484
JMS queue 180–181, 207, 468, 501, 504, 521, 620
JMS queue connection factory 467, 472
JMS queues 484
JMS resource 204, 206, 208, 619
JNDI lookup name 460–461
JNDI Name 620
JNDI name 495
JSF 633
JSR 101 483
JSR 109 483
JSR 235 216
JVM classpath 386

K
KD4 562
kd4agent.jar 699
716 Patterns: SOA Foundation Service Connectivity Scenario

KD4BaseDirConfig.properties 699
KD4configDC 698–699
key column 324
key Not Found 450
key not found 323, 328, 341
kiosk 47
KNT 562
KT2 562
KUM 562
KYN 562

L
Launchpad 658, 668–669
library

create 232, 268
include in a mediation module 242–243

library dependency 231–232, 242–243, 268, 281,
310, 352, 454
license agreement 678
Lightweight Directory Access Protocol (LDAP) 116
Lightweight Third Party Authentication (LTPA) 116
Linux OS Agent 563
listener port 507, 511, 517
listener port number 508
Local integration 15
local queue 474, 510, 513–514
Log Assembler 585
log file 585
log files 576–577
Log Registration mediation 163, 451
logging 152, 569
logging level 575
loose coupling 26, 35

M
Manage Tivoli Enterprise Monitoring Services 687,
699
Manage Tivoli Monitoring Service 686
managed node 486
Mapping editor 292
Mapping folder 232
match mapping 437
MDD 126
mediation 83, 152, 154

packaging for deployment 260
test 256

mediation flow 87, 213, 250–251, 253, 255, 426,
433

create 285, 316, 373, 462
mediation flow component 159, 212–213, 215,
250–252, 283, 315–316, 336, 372, 426, 432–433,
457

create 240–241, 281, 310, 352, 423, 430, 454
Mediation Flow Editor 251
mediation module 86–87, 215, 230, 480–481, 532

call from another module 333
copy 333
create 240, 281, 310, 352, 423, 430, 454
deploy 490, 523–524
Install 525
start 524

mediation primitive 150
Merge implementation 401
message

viewing on the bus 473
message activity 570
Message Arrival by Operation view 570
Message Arrival by Service view 570
Message Arrival Clearing 574
Message Arrival Critical 574
Message Arrival Details view 570
Message Arrival Summary view 581
message arrival threshold attributes 572
Message Arrival workspace 569–570
Message Arrivals 581
message augmentation 90–91
Message Brokers Toolkit 20, 95
Message Connection variation 54, 61
Message Filter primitive 253, 255, 351, 375–376,
433–434, 447, 463–464
message flow 91, 94
message format transformation 89, 91
message header 220, 581
Message Logger primitive 253, 275, 288–290, 298,
300, 318, 322–323, 328–329, 331, 341, 351,
375–376, 390, 427, 463, 534
message logging 263, 347, 449, 570
message model 91
message order 534
message protocol transformation 88, 91
message routing 347
message service client 485
Message Service Clients 90
Message Service Clients for C/C++ and .NET 90
message Size 574
Message Summary workspace 569
message transformation 48, 152
 Index 717

message type 255, 290, 301
message-driven bean 505, 608, 620, 627
MessageLogApp 303, 305, 595
Messages Summary workspace 571
messaging bus 482
messaging engine 515, 522, 532–533, 540, 544,
548

add 551
schema 543
status 545

messaging engine data store 535
metric log 577
mMatching criteria 549
Model Driven Architecture (MDA) 126
Model Explorer view 132, 136
model-driven development 126
modeling 128

business objects 164
messaging resources 180, 186

Modeling perspective 129
module assembly 214, 224, 244, 281, 315, 335,
372
module test 259
monitor control settings 575
monitoring 119
monitoring agent 113, 562, 565, 578
Monitoring Agent for IBM Tivoli Monitoring 5.x End-
point 564
Monitoring Agent for Windows OS 687
monitoring server 560, 562

communications protocol 684
MQ link 484, 507, 515
MS Exchange Agent 564
MS SQL Agent 564

N
namespace 606
Navigator view 177, 205
Netegrity SiteMinder 98
NetView for z/OS 562
Network infrastructure node 42
no binding 247
node

start 545
node agent 537, 545
Number of Messages by Operation view 570
Number of Messages by Service - Operation - Type
view 571

O
Object Management Group (OMG) 126
OMEGAMON Distributed 562
OMEGAMON XE for WebSphere Business Integra-
tion 557
OMEGAMON z/OS 562
On Demand Business Transformation 72
one of N policy 548
one-way asynchonous message 145
one-way operation 237–238, 422, 429, 449, 456,
463, 501
Operating System (OS) Agent 563
operation 237–238
operation connections 252
operation log 577
Oracle Agent 564
orchestration 557
organize imports 425
Outline view 133
output 238–239
output terminal 255

P
partitioned queue 533
partner reference 214–215
Pattern Explorer view 187, 194
Patterns 127
Patterns for e-business 27

Web site 29
payload 581
pcatAIX.bin 487
pcatHPUX.bin 487
pcatLinux.bin 487
pcatLinuxPPC.bin 487
pcatSolaris.bin 487
pcatWindows.exe 487
PDA See personal digital assistant
performance 118, 570
performance data 560
performance metric 558
Performance Summary view 581, 583
Performance Summary workspace 569–570
personal digital assistant 39
perspective 223
pervasive computing 39
Physical Resources view 333, 431
PKI See Public Key Infrastructure
Plain Old Java Objects (POJOs) 102
718 Patterns: SOA Foundation Service Connectivity Scenario

point-to-point 459
point-to-point connection 26
policies 574
port 611, 617, 646
port type 613
Portal client 561
Portal Composite pattern 29
Portal server 561
Portal server database 561
preferred server 548–549
Presentation Tier Transformations 127
primitive 253–255
process component 149
Process Integration 53
process services 77
Product mapping 28, 44, 47
profile 257, 486
profile creation wizard 486–487, 536
profile directory 644
ProfileCreator_wbi 486, 640
project build 225
Properties view 133, 224, 235
protocol 1 684
protocol 2 684
protocol conversion 48, 57
Protocol firewall 41
protocol transformation 59
provisioning 557
Proxy 343, 445
proxy 341, 415, 475
Public Key Infrastructure 40

Q
quality of service qualifiers 215
queue 192, 195, 200, 471, 473, 502–503

alias 474
Local 474

Queue Browser 595
queue component 190, 192–194, 197–198
queue connection factory 208, 460, 467, 472, 501,
503, 521, 619–620, 630
queue destination 207, 467, 501, 531
queue manager 507–508, 517

R
RAR file 353, 364
RAS perspective 128, 130
RAS repository 128

Rational Application Developer 105, 108, 481
Rational design patterns 127
Rational Product Updater 661, 664
Rational Software Architect 103–105, 108, 125

installation 107
Rational Software Development Platform 107
Rational Unified Process (RUP) 126, 130
Rational Unified Process Analysis profile 127
receiver channel 507, 512–513, 515, 519, 521
Redbooks Web site 709

Contact us xix
reference 214
regenerate implementation 425
Register Customer process 264, 266, 348, 418,
451
Register Shipping mediation 163
Register Shipping scenario 417
Registration Processor 151
remote monitoring server seed 686
remote TEMS 562
RemoteIPAddress 584
request flow 252, 255, 286–287, 317–318,
374–375, 392, 396
request/response operation 238, 252, 263, 277,
347, 374, 502, 534
resource adapter 355
resource monitoring 556
response flow 252, 255, 286, 297, 317–318, 322,
374, 463
Response Time Critical 574
Response Time Warning 574
Reusable Asset Specification (RAS) 130
role-based permission qualifier 213
root 219, 291, 327, 375, 398
router 38, 58
Router application pattern 44, 47, 162, 164
router connectivity 37
Router variation of the Broker 38, 58
routing 152, 434
routing messages 449
RSA transformations 127
Rules Directory node 43
Runtime pattern 28, 39
runtime services 77

S
sampling interval 563
SCA 159, 213
 Index 719

Define cluster support 546
SCA binding 215–216
SCA message header 220
SCA module 423, 481

View from the administrative console 489
SCA.APPLICATION..Bus 467–468, 486, 490, 501
SCA.Application..Bus 467
SCA.APPLICATION.Bus 482, 595
sca.module 334
SCA.SYSTEM..Bus 482, 486
scalability 118, 480, 531
scdl

module 334
schema 170, 543–544
schema stereotype 166
screening routers 41
SDO 213, 218
SDO data graph 219
SDO DataObject 220
security 99, 116

messaging 117
transport 117
Web services 483

Security services 40
seeding 686
self

node() 377, 464
Self Service 38
Self Service business pattern 44
Self-Service business 29
Self-Service business pattern 29, 44
sender channel 507, 511–513, 515, 517, 519,
521–522

start 521
sequence diagram 128–129, 140, 144, 146–147
servers

local test environments 256
remote test environments 257

Servers view 224, 257, 640, 652
serverStatus 545
service 144, 616
service component 151, 212–213
Service Component Architecture (SCA) 212
Service Component Architecture (SCA). See also
SCA
Service Component Definition Language (SCDL)
216
Service Connectivity scenario 11, 21, 31, 38

Service Data Objects (SDO) 212, 216
Service Data Objects (SDO). See also SDO
service definition 611
service implementation 76
service integration bus 180–181, 186–187,
190–192, 204, 206, 208, 452, 481, 484, 507

create 490
foreign bus 514

Service Integration Bus pattern 188, 190, 192
Service Integration collaboration 190, 193
Service interface 213
Service Inventory attributes 572
Service Level Agreement (SLA) 557
Service Level Agreements (SLAs) 558
service management 78
Service Management Agent Environment work-
space 570
Service message metric attributes 572
Service message objects (SMO) 219
Service message objects (SMO). See also SMO
service modules 214
service provider 481
service reference 213
service requester 481
Service Topology view 587
service wires 213
serviceDeploy 523–524
ServiceMessageObject 219
services 149, 151
Services Inventory table 569
Services Inventory view 570
Services Management Agent Environment
568–569
Services Management Agent Environment work-
space 569, 575
Services Management Agent workspace 569, 584
Services Oriented Architecture (SOA) 71
Services_Inventory 579, 688
Services_Metrics 688
services-based implementation 71
session bean 627
setup.exe 691
setupaix.bin 688
setupSolaris.bin 688
setupwin32.exe 688
SI-AddFltrCntrl 584
SI-AddMntrlCntrl 582
SIB_MQ_ENDPOINT_ADDRESS 511
Siebel 162, 354–356, 359, 372, 379, 386, 389,
720 Patterns: SOA Foundation Service Connectivity Scenario

498–499
Siebel.jar 386
SiebelJI_enu.jar 354, 386
simple business object 219
single-machine installation 111
situation 562–563, 573, 688
skeleton EJB session bean implementation 620
Skeleton EJB Web Service 621
SMO 327, 376, 405
SNA 684, 687
SOA Foundation Reference Architecture 75, 78,
101
SOA profile 39
SOAP 613, 617
soap

address 618
SOAP transport 228
SOAP/HTTP 57, 157, 159, 162, 215–216, 263,
265, 268, 284, 372, 482, 632
SOAP/JMS 57, 163–164, 180, 186, 215–216, 427,
442, 449, 452, 458, 482, 501, 534, 608, 618, 620
SOAP/JMS URI 617
stand-alone profile 642
stand-alone reference 214
standalone server 111
standby 521
startNode 545
state machine diagram 129
stateless session bean 610, 627
stateless session bean binding 215
static routing 26
stereotype 148, 166, 170
Stop primitive 253, 417, 440, 465–466
Structured Query Language (SQL) 94
subflow node 94
subsystem 149
Summarization and Pruning agent 564
synchronous 213
system management 119

T
Take Action command 575
Take Action commands 576
target server 609
targetNamespace 178
targetService 618
TEMS error log file 577
terminal

add 376, 434, 463
cefault 465
default 440

test 303, 385, 394, 412, 442, 444, 467–468
mediation module 303

test client 259
starting 303

Test connection 498
test environment 116, 256
threshold 562
Tivoli Access Manager 14, 98, 116, 485
Tivoli agent 562
Tivoli Composite Application Manager 113, 115,
119
Tivoli Composite Application Manager for SOA
120, 485
Tivoli Data Warehouse 114, 561, 564
Tivoli Data Warehouse (TDW) 564
Tivoli Data Warehouse Proxy Agent 564
Tivoli Enterprise Management Agent 563
Tivoli Enterprise Management Agents 560
Tivoli Enterprise Monitoring 98, 113, 672
Tivoli Enterprise Monitoring Agent (TEMA) 562
Tivoli Enterprise Monitoring Agents

Install 679
Tivoli Enterprise Monitoring framework 113
Tivoli Enterprise Monitoring Server 113–114, 119,
577, 687–688, 699

Configuration 682, 684
configuration 695
Hub 678, 684
Install 678

Tivoli Enterprise Monitoring Server (TEMS) 560
Tivoli Enterprise Portal 113–114, 485, 565–566,
687

Configuration 682
Tivoli Enterprise Portal client 561
Tivoli Enterprise Portal clients 561
Tivoli Enterprise Portal Desktop client 577
Tivoli Enterprise Portal monitoring agent 568
Tivoli Enterprise Portal Navigator 567
Tivoli Enterprise Portal Server 107, 113–114, 119,
561–562, 577, 687–688, 699
Tivoli Enterprise Portal Server (TEPS) 561
Tivoli Management Framework 119
Tivoli Management framework 119
Tivoli Monitoring Server 107
top-down Web service 611
trace log 577–578
 Index 721

trace logger 582
tracing 569, 575
Transaction Flow view 587
transformation 126–127, 129, 204–205

UML to JACL 180
UML to XSD 164

transient context 318–319, 327
transmission protocol 513
transmission queue 507, 510, 514

U
UDDI directory 41
UML

transform to XSD 164
UML diagram 137, 165
UML model 135, 187
UML Model Editor 168
UML Model template 135
UML profile 126
UML project 134
UML to JACL transformation 204
UML to XSD transformation 175
Unified Modeling Language (UML) 126
Unified Modeling Language 2.0 editor 126
Universal Agent 562–563
Universal Discovery Description and Integration
(UDDI) 482
UNIX Log Agent 563
UNIX OS Agent 563
updateLogging 571, 575
updateTracing 571, 575
UpdMntCntrl 571
UpdMntrCntrl 575
upsert 360, 384
USD 381
use case diagram 140–141
use case Model 140
use case model 137, 144
User node 39
user-defined node 94

V
vertical scaling 531
view 223, 567
voice response units (VRUs) 47

W
Warehouse Interval 579
Warehouse Proxy 577, 687, 699
Warehouse proxy 683
Warehouse Proxy agent 563–564
Warehouse Summarization and Pruning Agent 564
Web server redirector 40
Web service

create 620
implement 631

Web service binding 216
Web Service Bindings folder 232
Web service client

create 632
Web service client proxy 343
Web service data logging 581, 583
Web Service Developer capability 226
Web service message header 220
Web service port 246, 314–315, 428, 432, 442
Web service proxy 341, 415, 445, 475
Web services Client 91
Web services client 485
Web Services Client for C++ 91
Web Services Description Language (WSDL) 236,
482
Web Services Explorer 632
Web Services Gateway 483–484
Web Services Navigator 581, 583–584

Install 698
Web Services Security (WS-Security) 102
Web Services Transactions (WS-TX) 102
WebLogic Server 564
WebSphere Adapter binding 215–216
WebSphere Adapter For Flat Files 85
WebSphere Adapter for JDBC 85
WebSphere Adapter for PeopleSoft Enterprise 85
WebSphere Adapter for SAP Applications 85
WebSphere Adapter for Siebel Business Applica-
tions 85
WebSphere Adapter message header 220
WebSphere Adapters 49, 347

Install 667
WebSphere Application Server 102
WebSphere Application Server Network Deploy-
ment 107, 110, 480, 482
WebSphere Enterprise Service Bus 16, 84, 110
WebSphere Enterprise Service Bus. See also Web-
Sphere ESB
WebSphere ESB 49, 98, 102, 114
722 Patterns: SOA Foundation Service Connectivity Scenario

administration 481
client support 485
Installation 109–110
Introduction 480
messaging support 484
Security 116
Web services support 482

WebSphere ESB test server 257
WebSphere Integration Developer 16, 18, 108,
211, 220, 303

Assembly 104
Closing files 236
Install 658
Installation 107
Installation planning 107
Saving files 236
starting 220
System requirements URL 108

WebSphere Message Broker 52, 91
WebSphere MQ 49, 449, 452, 474, 484, 503,
506–508, 521, 557

configuration 508
foreign bus 514

WebSphere MQ Explorer 474, 654
WebSphere MQ link 516, 519, 522

create 515
WebSphere Platform Messaging Patterns
180–181, 183, 187
WebSphere Process Server 102, 104, 212, 214,
220, 232, 256–257, 426
WebSphere Studio Application Developer Integra-
tion Edition 107
WebSphere variable 494, 541
Window OS Agent 563
Windows OS monitoring 562
Windows service 646
wire 284, 289–290, 298, 315, 318, 329, 377, 432,
441, 457
wiring a mediation flow 255
Workbench 222
workload management 118, 531–533
workspace 220, 224, 229, 566
workspace clean 225
workspace preferences 226
WSAF_SIB 549
WSDL 278, 284, 313, 431, 458, 606, 610

Import 431
WSDL Editor 612
WS-I compliance 229

WS-I Simple SOAP Basic Profile 229
WS-I SSBP compliance level 229
WS-Interoperability Basic Profile (WS-I) 102
WS-Security 483

X
XML mapping 292, 300, 380, 393, 436
XML schema 164–165, 178
XML schema definition 606
XML transformation 263, 347
XPath 324–325, 377–378, 405–406, 435
XPath Expression Builder 435, 465
XSD 177–178, 611
XSD Building Blocks package 177
XSD Model 167
XSD model 137, 166, 177
XSD model template 164
XSD schema stereotype 164
XSD Transformation 169
XSDProfile 164, 168
XSL

Generate 300, 303
XSL style sheet 303, 321, 328, 437

Generate 297
XSL Transformation primitive 275, 289–292, 298,
300, 318, 323, 326, 328, 375, 379, 384, 392, 410,
417, 433, 436
XSLT function 294, 320, 381, 412
XSLT Function wizard 330
XSLT primitive 253, 289–292, 298, 300, 318, 323,
326, 328, 351, 375, 379, 384, 392, 410, 417
 Index 723

724 Patterns: SOA Foundation Service Connectivity Scenario

Patterns: SOA Foundation Service Connectivity Scenario

Patterns: SOA Foundation
Service Connectivity Scenario

Patterns: SOA Foundation
Service Connectivity Scenario

Patterns: SOA Foundation Service Connectivity Scenario

Patterns: SOA
Foundation Service
Connectivity Scenario

Patterns: SOA
Foundation Service
Connectivity Scenario

®

SG24-7228-00 ISBN 0738495964

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: SOA Foundation
Service Connectivity
Scenario

Learn key concepts
and architecture of
the IBM SOA
Foundation

Apply patterns to the
Service Connectivity
scenario

Service Connectivity
using WebSphere
ESB

The IBM SOA Foundation is a reference architecture used to
build new applications or extend the value of existing
applications and business processes. The IBM SOA
Foundation includes an integration architecture, best
practices, patterns, and SOA scenarios to help simplify the
packaging and use of IBM open standards-based software.

A set of SOA scenarios is being developed by IBM that
describe key architectural scenarios for SOA solutions and
bridge the gap between SOA and the IBM products that can be
used to implement these architectures.

This IBM Redbook focuses on the Service Connectivity
scenario, which describes architectural solutions using an
ESB. The focus of this scenario is the integration of service
consumers and service providers across multiple channels.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. IBM SOA Foundation
	1.1 SOA Foundation life cycle
	1.2 SOA Foundation Reference Architecture
	1.3 SOA Foundation scenarios
	1.4 Service Connectivity scenario
	1.4.1 Secure connections to third parties and trading partners
	1.4.2 Internal connectivity based on open standards
	1.4.3 Adapt from third-party systems to Web services
	1.4.4 Deliver an existing process through new business channels

	Chapter 2. Process for applying SOA scenarios
	2.1 Process for using SOA scenarios and patterns
	2.1.1 SOA scenario selection table

	2.2 Reuse patterns assets to accelerate the solution architecture
	2.2.1 Introduction to the Patterns for e-business
	2.2.2 Patterns for the SOA scenarios

	Chapter 3. Patterns for e-business and Service Connectivity
	3.1 The enterprise service bus
	3.1.1 The role of an enterprise service bus

	3.2 Business pattern and Application pattern selection
	3.3 Runtime pattern selection
	3.3.1 SOA profiles of the Runtime patterns
	3.3.2 Runtime nodes

	3.4 Self-Service business pattern
	3.4.1 Directly Integrated Single Channel application pattern
	3.4.2 Router application pattern
	3.4.3 Decomposition application pattern

	3.5 Application Integration pattern
	3.5.1 Direct Connection application pattern
	3.5.2 Broker application pattern
	3.5.3 Router variation of the Broker application pattern

	3.6 Extended Enterprise business pattern
	3.6.1 Exposed Direct Connection application pattern
	3.6.2 Exposed Broker application pattern
	3.6.3 Exposed Router variation of Exposed Broker application pattern

	3.7 For more information

	Chapter 4. Planning for connectivity
	4.1 The ITSOMart scenario
	4.1.1 ITSOMart overview
	4.1.2 Business objectives
	4.1.3 Customer registration business requirements
	4.1.4 Business context diagram for ITSOMart
	4.1.5 Functional requirements for ITSOMart

	4.2 Considering SOA as a solution for ITSOMart
	4.2.1 Incremental solution delivery
	4.2.2 Integration cost reduction
	4.2.3 Changing business/IT needs
	4.2.4 Value delivery
	4.2.5 Security
	4.2.6 Management/monitoring
	4.2.7 Readiness

	4.3 Elements of an SOA solution
	4.3.1 Using the SOA Foundation Reference Model

	4.4 Selecting the SOA scenario and pattern
	4.4.1 Fit gap analysis
	4.4.2 Select the SOA scenario
	4.4.3 Reuse patterns assets to accelerate solution architecture

	4.5 Enterprise service bus product selection
	4.5.1 WebSphere Enterprise Service Bus
	4.5.2 WebSphere Message Broker
	4.5.3 WebSphere DataPower SOA Appliance
	4.5.4 Enterprise service bus implementations compared

	4.6 ITSOMart product selection
	4.6.1 Deployment
	4.6.2 Modeling and design
	4.6.3 Development and assembly
	4.6.4 Monitoring and management

	4.7 Installation considerations
	4.7.1 Rational Software Architect, WebSphere Integration Developer
	4.7.2 WebSphere ESB
	4.7.3 WebSphere Application Server
	4.7.4 ITCAM for SOA
	4.7.5 Environments for testing and production

	4.8 Security considerations
	4.8.1 Securing communication using WebSphere ESB
	4.8.2 Messaging security
	4.8.3 Transport security using HTTPS

	4.9 Scalability and performance considerations
	4.10 System management and monitoring
	4.10.1 IBM Tivoli Management Framework
	4.10.2 IBM Tivoli Composite Application Manager for SOA

	4.11 Where to find the implementation details
	4.12 Summary
	4.13 For more information

	Chapter 5. Model with Rational Software Architect
	5.1 Introduction to Rational Software Architect
	5.1.1 Rational Unified Process guidance
	5.1.2 Model-driven development
	5.1.3 Modeling
	5.1.4 Asset-based development

	5.2 Modeling the ITSOMart sample
	5.3 Tools used to model the application
	5.3.1 Modeling perspective
	5.3.2 UML projects
	5.3.3 UML models
	5.3.4 UML diagrams

	5.4 Solution requirements
	5.4.1 Use case diagram
	5.4.2 Activity diagrams

	5.5 Domain analysis
	5.5.1 Sequence diagrams
	5.5.2 Component diagram

	5.6 Architectural design
	5.6.1 Service components
	5.6.2 Connecting services through the ESB
	5.6.3 Mediations on the ESB

	5.7 Modeling business objects: Transform UML to XSD
	5.7.1 Create an XSD model
	5.7.2 Create a package
	5.7.3 Create a class
	5.7.4 Create a class diagram
	5.7.5 Run the UML to XSD transformation
	5.7.6 Import the XSD into WebSphere Integration Developer

	5.8 Modeling messaging resources: Transform UML to JACL
	5.8.1 Import the WebSphere Platform Messaging Patterns asset
	5.8.2 Model messaging resources
	5.8.3 Run the UML-to-JACL transformation
	5.8.4 Running the JACL script from a command line

	5.9 Resources

	Chapter 6. Assemble with WebSphere Integration Developer
	6.1 Technology overview
	6.1.1 Service Component Architecture
	6.1.2 Service Data Objects
	6.1.3 Service Message Objects

	6.2 Introduction to WebSphere Integration Developer
	6.2.1 Starting WebSphere Integration Developer

	6.3 Development environment settings
	6.3.1 Disable automatic build
	6.3.2 Set the default target runtime
	6.3.3 Configure Web services workspace preferences
	6.3.4 Workspaces and test environment

	6.4 Development process
	6.4.1 Create a library
	6.4.2 Create business objects
	6.4.3 Define interfaces
	6.4.4 Create a mediation module
	6.4.5 Complete the module assembly
	6.4.6 Implement the mediation flow component
	6.4.7 Build the mediation flow

	6.5 Testing mediations
	6.5.1 Test servers
	6.5.2 Test client

	6.6 Packaging the mediation for deployment

	Chapter 7. Building the Credit Rating and Credit Score mediations
	7.1 Scenario overview
	7.1.1 Business scenario
	7.1.2 Get Credit Rating scenario stage 1
	7.1.3 Get Credit Rating scenario stage 2

	7.2 Preparing for the ITSOMart mediations
	7.2.1 Create a library
	7.2.2 Create the common business objects

	7.3 Developing the Credit Rating mediation
	7.3.1 Mediation development steps
	7.3.2 Define the interface for the mediation
	7.3.3 Define the interface to the Credit Rating Service Web service
	7.3.4 Create the mediation module
	7.3.5 Add the components to the module assembly
	7.3.6 Build the mediation flow
	7.3.7 Test the mediation

	7.4 Developing the Credit Score mediation
	7.4.1 Mediation development steps
	7.4.2 Create the mediation module
	7.4.3 Define the business objects
	7.4.4 Define the interface to the Credit Score Service Web service
	7.4.5 Add the components to the module assembly
	7.4.6 Build the mediation flow
	7.4.7 Test the mediation

	7.5 Calling the service from the application
	7.5.1 Import or copy the WSDL files
	7.5.2 Generate the Web service client proxy
	7.5.3 Update the application to call the service using the proxy

	Chapter 8. Building the CRM mediation
	8.1 Scenario overview
	8.1.1 Business scenario
	8.1.2 CRM mediation

	8.2 Developing a mediation to update a CRM system
	8.2.1 Mediation development steps
	8.2.2 Create the mediation module
	8.2.3 Create an interface for each EIS system
	8.2.4 Define the interface for the mediation
	8.2.5 Add the components to the module assembly
	8.2.6 Build the mediation flow

	8.3 Calling the service from the application
	8.4 For more information

	Chapter 9. Building the Register Shipping mediation
	9.1 Scenario overview
	9.1.1 Business scenario
	9.1.2 Register Shipping mediation

	9.2 Creating the Register Shipping Service emulator
	9.2.1 Define the RegisterShippingService interface
	9.2.2 Create the Java component that implements the service
	9.2.3 Implement the mediation flow for the service
	9.2.4 Create the SOAP/JMS export binding

	9.3 Developing the Register Shipping mediation
	9.3.1 Mediation development steps
	9.3.2 Define the ShippingRegistration interface
	9.3.3 Create the mediation module
	9.3.4 Implement the mediation flow
	9.3.5 Export the module as a Web service

	9.4 Testing the mediation
	9.4.1 Testing the RegisterShippingService emulator
	9.4.2 Test the Register Shipping mediation

	9.5 Calling the service from the application
	9.6 Considerations for handling arrays, decomposition
	9.6.1 Handling an unknown number of input request elements
	9.6.2 Handling multiple responses

	Chapter 10. Building Log Registration mediation
	10.1 Scenario overview
	10.1.1 Business scenario
	10.1.2 Log Registration mediation

	10.2 Developing the mediation
	10.2.1 Create the mediation module
	10.2.2 Create the business object
	10.2.3 Build the interface
	10.2.4 Assemble the mediation components
	10.2.5 Bind the imports to JMS
	10.2.6 Build the mediation flow

	10.3 Testing the mediation
	10.3.1 Prepare the runtime
	10.3.2 Test the mediation

	10.4 Calling the service from the application

	Chapter 11. Deploy with WebSphere ESB
	11.1 Introduction to WebSphere ESB
	11.1.1 Applications
	11.1.2 Administration
	11.1.3 Service integration bus
	11.1.4 Web services support
	11.1.5 Messaging support
	11.1.6 Client support
	11.1.7 Tivoli Access Manager
	11.1.8 Common Event Infrastructure (CEI)

	11.2 Working with profiles
	11.2.1 Starting the profile creation wizard

	11.3 Administrative console
	11.4 Deploying mediation modules
	11.5 Creating a service integration bus
	11.6 Configuration for databases
	11.6.1 Create a J2C authentication data entry for the database
	11.6.2 Create a JDBC provider
	11.6.3 Create a data source

	11.7 Configuration for adapter support
	11.7.1 Create a J2C authentication data entry for Siebel
	11.7.2 Create an output folder for the flat file

	11.8 Configuration for JMS bindings
	11.8.1 Create a queue destination on the bus
	11.8.2 Create a queue connection factory
	11.8.3 Create a JMS queue
	11.8.4 Creating a JMS activation specification

	11.9 Connecting to WebSphere MQ
	11.9.1 Configure WebSphere MQ
	11.9.2 Configure the bus
	11.9.3 Define a WebSphere MQ link
	11.9.4 Create alias queues
	11.9.5 Start the bus and WebSphere MQ connections

	11.10 Deploying applications
	11.10.1 Use the serviceDeploy command
	11.10.2 Deploy an EAR file
	11.10.3 Installing the ITSOMart applications

	11.11 Testing ITSOMart
	11.12 Network Deployment and clustering topologies
	11.12.1 Workload management with a single cluster

	11.13 For more information

	Chapter 12. Service monitoring and management with IBM Tivoli Composite Application Manager SOA
	12.1 Tivoli Composite Application Manager (ITCAM)
	12.1.1 Composite applications

	12.2 IBM Tivoli Enterprise Monitoring framework
	12.3 IBM Tivoli Composite Application Manager for SOA
	12.4 Tracking performance with ITCAM for SOA
	12.4.1 Workspaces
	12.4.2 Attributes
	12.4.3 Situations
	12.4.4 Policies
	12.4.5 Take Action commands
	12.4.6 Log files

	12.5 Monitoring ITSOMart
	12.5.1 Configure data collection
	12.5.2 Generate Web services traffic
	12.5.3 Enable Web service data logging
	12.5.4 Content filtering
	12.5.5 Using Web Services Navigator to analyze data

	12.6 Summary
	12.7 For more information

	Appendix A. Sample application install summary
	Overview
	Prepare the development environment
	Configure the workbench
	Import the projects into the workbench

	Prepare the runtime environment
	Create a service integration bus

	MessageLogApp application
	Registration processor service
	Runtime
	Install the application

	ITSOMart application
	Credit check mediations
	Create the database and configure the JDBC data source
	Install the applications

	CRM mediation
	Register Shipping mediation
	Registration Log Mediation
	Create the bus destinations
	Create the JMS queue connection factory
	Create the JMS queues
	Install the application

	Common errors:

	Appendix B. Tips and techniques
	Creating a top-down SOAP/JMS Web service
	Create the business object
	Build the interface
	Create an EJB project
	Modify the WSDL file
	Create JMS resources
	Create the Web service
	Implement the Web service
	Create the Web service client
	Test the Web service

	Server errors in the test environment
	Errors using XML Mapper without Internet connectivity
	Creating a new server in the test environment
	Create the WebSphere ESB Server profile
	Changing WebSphere Integration Developer to use the new profile
	Create a new server in the test environment to use the new profile

	Installing WebSphere MQ Explorer as a plug-in

	Appendix C. Installation details
	Installing WebSphere Integration Developer
	Using Rational Product Updater

	Installing WebSphere Adapters
	IBM WebSphere Adapter for Siebel Business Applications
	IBM WebSphere Adapter for Flat Files

	Installing Tivoli Composite Application Manager
	IBM DB2 Universal Database installation
	IBM Tivoli Monitoring installation
	ITCAM for SOA Application Support installation
	ITCAM for SOA Monitoring Agent installation and configuration
	Web Services Navigator installation
	Verify the installation

	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

