

ibm.com/redbooks

Front cover

Powering SOA with
IBM Data Servers

Paolo Bruni
Marcos Henrique Simoes Caurim

Alexander Koerner
Christine Law

Michael Liberman
Wolfgang Schuh

Egide Van Aerschot
Jianhuan Wang

Peter Wansch

Understand the role of data servers within
service-oriented architecture (SOA)

Map the current portfolio of
products to the architecture

Follow an implementation
premised on diversity

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Powering SOA with IBM Data Servers

December 2006

SG24-7259-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2006)

This edition applies to DB2 UDB for z/OS Version 8 (program number 5625-DB2) and DB2 Version 9.1 for
z/OS (program number 5635-DB2). It also applies to DB2 UDB for Linux, UNIX and Windows Version 9.1,
IMS Version 9 and Informix Dynamic Server Version 9.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xxvii.

Contents

Figures . xi

Tables . xix

Examples . xxi

Notices . xxvii
Trademarks .xxviii

Preface . xxix
The team that wrote this redbook. xxix
Become a published author . xxxii
Comments welcome. xxxii

Part 1. General introduction to SOA . 1

Chapter 1. SOA: Why it is good for you . 3
1.1 What is service-oriented architecture? . 4
1.2 Why is SOA important to our clients? . 4
1.3 How is IBM delivering SOA solutions? . 4
1.4 The service-oriented enterprise . 7

1.4.1 SOA at work . 8
1.4.2 The need for governance . 8

Chapter 2. SOA: From abstract to concrete . 11
2.1 The business value of SOA. 12
2.2 Business-centric starting points for SOA. 12
2.3 Infrastructure starting points for SOA . 16

2.3.1 Connectivity: Underlying connectivity to support business-centric SOA. 16
2.3.2 Reuse: Creating flexible, service-based business applications 17

2.4 An implementation roadmap for SOA . 18
2.5 The scope of this redbook. 19

Part 2. SOA technologies . 21

Chapter 3. Web services and service-oriented architecture . 23
3.1 Drivers for Web services and SOA . 24
3.2 Standards and technologies for Web services and SOA . 27

3.2.1 Overview of Web services standards . 27
3.2.2 eXtensible Markup Language . 33
3.2.3 SOAP and WSDL . 37
3.2.4 Universal Description, Discovery and Integration . 39

3.3 An overview of SOA and Web service . 40
3.3.1 Coupling and decoupling of aspects of service interactions 42
3.3.2 Designing connectionless services . 46
3.3.3 Service granularity and choreography . 47
3.3.4 Implications of service-oriented architecture. 49
3.3.5 Web services interoperability . 49

3.4 Web services (WS) and SOA work together . 50
3.5 SOA and Web service architecture design considerations . 52
© Copyright IBM Corp. 2006. All rights reserved. iii

3.5.1 e-business application design considerations. 52
3.5.2 Design considerations for Web services. 53
3.5.3 The key challenges in Web services. 62
3.5.4 Security considerations. 62

3.6 Additional information for SOA . 66

Chapter 4. SOA and user interfaces with portals . 69
4.1 An introduction to portals and portlets. 70

4.1.1 What is a portal? . 70
4.1.2 Portal applications. 71
4.1.3 Portal page . 72
4.1.4 The portal engine . 73
4.1.5 What is a portlet? . 74
4.1.6 Portlet container . 76
4.1.7 Portlet life cycle and request processing. 77

4.2 The standardization of portlets (Java standardization request - JSR-168) 77
4.2.1 JSR 168 portlet modes . 78
4.2.2 JSR 168 specific concepts . 79
4.2.3 JSR 168 and Web Service for Remote Portlets (WSRP) 80
4.2.4 Portlet development guidelines with JSR 168. 82
4.2.5 Building JSR 168 portlets with Rational Application Developer (RAD) 83

4.3 Portals and SOA . 84
4.3.1 User access to service . 85
4.3.2 Web service and portals . 92
4.3.3 Development tools . 96
4.3.4 Conclusion . 101

4.4 Additional information for portals and SOA . 102

Chapter 5. Development tools . 103
5.1 DB2 Developer Workbench. 104

5.1.1 Creating a stored procedure using Developer Workbench 107
5.1.2 New XML support in DB2 Developer Workbench . 111

5.2 Rational Application Developer . 113
5.2.1 The IBM Rational Software Development Platform. 114
5.2.2 IBM Rational Application Developer . 115

5.3 WebSphere Developer for zSeries . 120
5.3.1 Product overview . 120
5.3.2 Development tools . 121

5.4 WebSphere Integration Developer . 123
5.4.1 What business integration is . 123
5.4.2 WebSphere Integration Developer . 124

5.5 Enterprise Generation Language (EGL) and SOA . 126
5.5.1 Application development with EGL . 128
5.5.2 EGL and Web services support . 130

Part 3. IBM data servers and SOA access services. 137

Chapter 6. DB2 for z/OS and SOA . 139
6.1 DB2 for z/OS and Web services . 140
6.2 DB2 for z/OS providing Web services. 140
6.3 Web services object runtime framework (WORF). 142

6.3.1 What does WORF do? . 143
6.3.2 WORF security . 143

6.4 How WORF processes a Web service . 145
iv Powering SOA with IBM Data Servers

6.5 Creating a DADX file . 145
6.6 Why use stored procedures? . 147

6.6.1 Stored procedure as a Web service . 147
6.7 Connecting your services to DB2 for z/OS through JCC (JDBC) 152

6.7.1 Accessing DB2 for z/OS from Java Environment . 152
6.7.2 How JDBC applications connect to a data source . 156
6.7.3 Specifying a user ID and password for a connection . 160
6.7.4 Which is the better JDBC driver type to Web Services?. 160
6.7.5 Other JDBC considerations. 161

6.8 DB2 for z/OS consuming Web services . 162
6.8.1 Using DB2 for z/OS UDFs. 162
6.8.2 SOAPHTTPC and SOAPHTTPV . 164

Chapter 7. DB2 for Linux, UNIX and Windows and SOA . 169
7.1 DB2 Web service components: Provider and consumer. 170
7.2 Web services provider. 170

7.2.1 Web service provider operations and DADX. 172
7.2.2 Syntax of a DADX . 172
7.2.3 DADX operations . 176
7.2.4 Exposing a stored procedure as a Web service . 179

7.3 Web services consumer . 182
7.3.1 Web services consumer user-defined functions . 182
7.3.2 Generating Web services consumer functions from WSDL 184

7.4 Development tools . 190

Chapter 8. IMS and SOA . 201
8.1 Introduction . 202
8.2 IMS Connect . 203

8.2.1 IMS example . 205
8.3 Web Services with SOAP Gateway . 205

8.3.1 Creating the WSDL file . 206
8.3.2 Enabling the z/OS Developer role. 207
8.3.3 Generating a WDSL file using WebSphere Developer for zSeries 208
8.3.4 Deploying to IMS Connect . 219
8.3.5 Deploying to IMS SOAP Gateway. 219
8.3.6 Accessing from a SOAP client . 224
8.3.7 Preparation at the z/OS host. 225

8.4 IMS Services through WebSphere . 228
8.4.1 HTTP Web Service built with RAD . 230
8.4.2 A Service built with WebSphere Integration Developer (WID) 257
8.4.3 Importing with WID, a Service built by RAD . 274

8.5 Accessing DLI data . 291
8.5.1 Hierarchical . 292
8.5.2 Metadata . 293
8.5.3 Conclusion . 295

Chapter 9. Informix IDS and SOA. 297
9.1 IBM Informix Dynamic Server: An overview . 298

9.1.1 The IDS architecture . 298
9.1.2 Extensibility in IDS: Key for SOA integration. 301

9.2 IDS as a Web services provider . 303
9.2.1 IDS Web services based on Enterprise Java Beans (EJBs). 303
9.2.2 IDS and simple Java Beans Web services . 304
9.2.3 IDS and EGL Web services . 304
 Contents v

9.2.4 IDS and WORF (DADX Web services) . 304
9.2.5 IDS and other Web services environments (.NET, PHP) 317

9.3 IDS as a Web services consumer . 319
9.3.1 Utilizing J/Foundation and Apache’s Axis for Web services consumption 320
9.3.2 Installation and configuration of IDS 10 and AXIS 1.3 for the examples. 321
9.3.3 The basic IDS Web service consumer development steps. 324
9.3.4 The AXIS WSDL2Java tool . 325
9.3.5 A simple IDS Web service consumer example . 325

9.4 XML related DataBlades . 331
9.4.1 XML generating UDRs . 331
9.4.2 XSLT DataBlade . 332
9.4.3 Web DataBlade. 332

9.5 Using WebSphere MQ with Informix applications . 333
9.5.1 Brief description of WebSphere MQ . 333
9.5.2 How do Informix and other database applications use WMQ? 334
9.5.3 IDS support for WebSphere MQ . 335
9.5.4 Programming for WMQ . 336
9.5.5 Transactions . 342
9.5.6 Summary. 344

9.6 Integrating I4GL applications with SOA through EGL . 344
9.6.1 Why convert 4GL to EGL for SOA integration?. 345
9.6.2 What the required steps are . 346

Part 4. Setting up the environment . 347

Chapter 10. The z/OS products for SOA . 349
10.1 The z/OS products for SOA implementation . 350

10.1.1 z/OS products used in this redbook . 351
10.2 Setting up Web services in z/OS. 352

10.2.1 Enabling Web service provider in DB2 for z/OS . 352
10.2.2 Enabling Web service consumer in DB2 for z/OS. 354
10.2.3 Installing the DB2 Universal JDBC driver . 354
10.2.4 Binding the DB2 Universal JDBC driver packages . 355
10.2.5 Installing IMS Java . 357

Chapter 11. The Linux, UNIX, and Windows products for SOA 359
11.1 DB2 V9.1 for Linux, UNIX, and Windows installation and its development software

support . 360
11.1.1 Linux and UNIX operating systems. 360
11.1.2 Windows operating systems . 361

11.2 Connecting Web services to DB2 via JDBC . 361
11.2.1 Changes to development software support. 363

11.3 Preparing the installation of the Web services provider . 363
11.4 Installation of the Web services consumer UDFs . 364
11.5 Migrating from XML Extender . 366

Chapter 12. WebSphere Application Server . 369
12.1 Introduction to WebSphere Application Server Version 6 . 370

12.1.1 What is new in WebSphere Application Server Version 6? 372
12.2 Highlights and benefits . 373
12.3 Supported platforms and software . 373

12.3.1 Operating systems . 374
12.3.2 Database servers . 374

12.4 WebSphere Application Server V6 architecture . 375
vi Powering SOA with IBM Data Servers

12.4.1 Architecture configurations . 375
12.4.2 z/OS base infrastructure . 378

12.5 Web services. 379
12.5.1 Web Services Gateway. 381
12.5.2 Service integration bus . 383
12.5.3 Summary. 385

Chapter 13. WebSphere Information Server . 387
13.1 Information as a service . 388
13.2 A closer look at information services. 388
13.3 Introducing the IBM WebSphere Information Server . 389

13.3.1 Unified SOA deployment. 390
13.4 WebSphere Information Services Director architecture . 391

13.4.1 Design concepts . 391
13.4.2 Product architecture . 392
13.4.3 Conclusion . 394

Part 5. Assembling and developing a scenario . 395

Chapter 14. SOA scenario . 397
14.1 Problem space . 398
14.2 Strategy space . 399
14.3 Solution space usage scenario . 399

Chapter 15. Developing SOA access services . 401
15.1 Scenario exposing DB2 business logic as Web Services . 402

15.1.1 Overview . 402
15.1.2 Implementation of the Web Services using WORF. 404
15.1.3 Additional WORF capabilities . 414
15.1.4 Web Service implementation using Java wrappers . 417
15.1.5 Comparison of WORF-based and Java-based implementations 425

15.2 Scenario using DB2 as Web Service consumer . 426
15.2.1 Overview . 426
15.2.2 Implementation of the Credit Score function using RAD. 428
15.2.3 Best practices . 434
15.2.4 Considerations using DB2 Version 9.1 . 439
15.2.5 DB2 SOAP functions and Web Service interoperability 440
15.2.6 Consuming Web Services using Information Integrator 441

15.3 Scenario exposing I4GL business logic as Web services. 442
15.3.1 Overview . 442
15.3.2 The Informix Bank 4GL credit card application . 442
15.3.3 4GL to EGL conversion of the Informix Bank application 445
15.3.4 Expose the converted I4GL library functions as an EGL Web service 449
15.3.5 Test the new EGL based Web service . 452
15.3.6 Summary. 455

15.4 Scenario aggregating services as portlets . 455
15.4.1 Overview . 456
15.4.2 Setting up the portlet project . 458
15.4.3 Creating Data Access Objects to retrieve database information. 462
15.4.4 Creating Java client proxies for Web Service interfaces. 469
15.4.5 Creating the credit score portlet . 475
15.4.6 Creating the foreign exchange calculator portlet. 484
15.4.7 Creating the mortgage accounts portlet . 491
15.4.8 The whole picture . 502
 Contents vii

Part 6. SOA operations . 505

Chapter 16. PHP client design . 507
16.1 A brief introduction to PHP . 508

16.1.1 What PHP is . 508
16.2 Implementing Web services with PHP . 509

16.2.1 XML-RPC . 509
16.2.2 NuSOAP . 512
16.2.3 PHP 5 SOAP extension . 514

16.3 Using native XML with PHP 5 . 515
16.3.1 DOM . 515
16.3.2 Validation . 518
16.3.3 XSLT . 519

16.4 Connecting PHP to data servers. 519
16.4.1 Unified ODBC . 520
16.4.2 ibm_db2 extension . 523
16.4.3 PHP data objects (PDO) . 524

16.5 Access an enterprise application using PHP . 528
16.5.1 Lab environment description. 528
16.5.2 Usage scenario . 528

16.6 Zend Core for IBM. 534
16.7 Conclusion . 535

Chapter 17. WebSphere Application Server administration . 537
17.1 WebSphere foundation . 538
17.2 Responsibilities of a WebSphere Application Server administrator 538
17.3 What does WebSphere Application Server Administrator do involving databases . . 539

17.3.1 Creating connection pooling . 539
17.3.2 Best practices . 541
17.3.3 Data Sources . 542
17.3.4 JDBC providers. 542
17.3.5 Create a data source . 543
17.3.6 Security . 544
17.3.7 Problem determination . 546
17.3.8 Database connection problems . 547
17.3.9 JDBC trace configuration . 548
17.3.10 WebSphere exceptions. 549

Chapter 18. Managing and monitoring SOA applications . 553
18.1 IBM Tivoli Composite Application Manager V6 Family . 554

18.1.1 Why manage?. 554
18.1.2 IBM Tivoli system management portfolio . 554
18.1.3 Tivoli composite application solution. 555

18.2 ITCAM for product features. 556
18.3 ITCAM for SOA product components . 558

18.3.1 Monitoring agent data collector . 558
18.3.2 IBM Web Service Navigator . 559

18.4 Monitoring performance in DB2 . 561
18.5 Stand alone monitoring tools for SOA. 561

18.5.1 IBM Web Services Navigator . 561
18.5.2 Data Collector for IBM Service Navigator . 562

Part 7. Appendixes . 563
viii Powering SOA with IBM Data Servers

Appendix A. XML and DB2 . 565
A.1 Why use XML in DB2? . 566
A.2 Native XML support versus XML Extender . 566
A.3 DB2 native XML store. 567
A.4 The XML Data Type . 569
A.5 Comparing various XML stores . 570
A.6 XML Index for DB2 . 570
A.7 SQL/XML . 571

Appendix B. XML and DB2 for z/OS . 575
B.1 The XML support in DB2 for z/OS . 576

B.1.1 What has DB2 already provided?. 576
B.1.2 The XML publishing functions reference . 578

B.2 What DB2 Version 9.1 for z/OS brings to XML support . 585
B.2.1 Native XML storage . 585
B.2.2 Using XMLEXISTS to select XML data. 586
B.2.3 Query performance using XML. 587
B.2.4 The XPath functions reference . 587

Appendix C. XML and DB2 for Linux, UNIX and Windows . 593
C.1 New features of native XML data store in DB2 V9.1 for Linux, UNIX and Windows . 594
C.2 Using the native XML data store in DB2 V9.1 for Linux, UNIX and Windows 596
C.3 XML schema support . 599

C.3.1 XMl schema repository . 600
C.4 SQL/XML examples . 601

C.4.1 Update, Delete and Query using SQL/XML . 601
C.4.2 Publishing XML as relational data . 605

C.5 XQuery in DB2 V9.1 for Linux, UNIX and Windows . 610
C.5.1 FLWOR expressions . 612
C.5.2 Path expressions . 614
C.5.3 XQuery examples for DB2 for Linux, UNIX and Windows 616

C.6 Comparison of XML data access methods. 620
C.7 Annotated XML schema decomposition . 621

C.7.1 XML Extender shredding versus annotated XML schema decomposition 621
C.7.2 DB2 V9.1 for Linux, UNIX, and Windows and its annotated XML schema

decomposition. 621
C.8 XML APIs and application support . 623

C.8.1 Embedded SQL . 624
C.8.2 JDBC or SQLJ . 626
C.8.3 ODBC/CLI . 627
C.8.4 .NET . 628
C.8.5 PHP . 628

C.9 Create and register an XML schema using Developer Workbench 629
C.10 Restrictions on native XML store . 644
C.11 XML schema for the DADX file . 645
C.12 Syntax of the DADX file . 653
C.13 Dynamic query service operations in the Web services provider 659

Appendix D. Setting up IMS services . 665
D.1 Database . 666

D.1.1 Database descriptor . 666
D.1.2 Database load . 666

D.2 Programs and PSBs . 669
D.2.1 PSBs . 669
 Contents ix

D.2.2 JDBC access to DLI data . 672
D.2.3 Java Message Processing Program preparation . 674

D.3 Definitions for the application . 680
D.3.1 Database and application definitions in Stage 1. 680
D.3.2 The JMP preparation . 680

Appendix E. Additional material . 685
Locating the Web material . 685
Using the Web material . 685

System requirements for downloading the Web material . 685
How to use the Web material . 686
Setup of the example DB2 databases . 686

Glossary . 689

Abbreviations and acronyms . 701

Related publications . 705
IBM Redbooks . 705
Other publications . 705
Online resources . 706
How to get IBM Redbooks . 707
Help from IBM . 707

Index . 709
x Powering SOA with IBM Data Servers

Figures

2-1 Existing IT assets. 12
2-2 Business centric SOA . 13
3-1 Web service decouples interfaces from applications . 25
3-2 Enterprise Service Bus (ESB) to manage Web services . 26
3-3 SOA conceptual structure . 27
3-4 Web services Model. 28
3-5 SOA standard stack with Web service. 30
3-6 Category of the standard . 31
3-7 Core technologies for SOA . 32
3-8 IBM SOA Reference Architecture with product mapping . 33
3-9 Conceptual SOAP model . 38
3-10 IBM WebSphere service registry and repository service life cycle - an example. . . . 41
3-11 Service granularity and choreography . 48
3-12 Web service provider architecture . 55
3-13 Web service requester architecture . 56
3-14 SOAP messaging operations. 57
3-15 Web services discovery methods . 58
3-16 Securing Web services . 63
3-17 WS-Security road map. 64
3-18 Web Service Security (WS-Security) Example . 66
4-1 Basic portal architecture . 71
4-2 Basic portal page components. 73
4-3 Portal engine . 74
4-4 The portlet concept . 76
4-5 JSR 168 sample portlet . 78
4-6 WSRP with existing Web service technologies . 80
4-7 Use of WSRP Services in Portals . 81
4-8 Portal sharing Portlets as WSRP services. 81
4-9 IBM WebSphere Portal framework . 85
4-10 Finding and binding to remote portlets. 89
4-11 Remote Portlet Invocation (RPI) . 90
4-12 Portals and Web services . 93
4-13 Web Services client portlet scenario . 94
4-14 A portlet using a Web service . 95
4-15 WPS - publishing, finding, binding and using remote portlets 101
5-1 Welcome view in Developer Workbench . 104
5-2 Developer Workbench User Interface . 105
5-3 New project wizard in Developer Workbench . 107
5-4 New Stored Procedure wizard . 108
5-5 Create Java stored procedure in our WebProject . 108
5-6 Specifying stored procedure name . 109
5-7 Specifying your SQL statement in the New Stored Procedure wizard. 109
5-8 Stored procedure code . 110
5-9 Stored procedure settings summary and CREATE PROCEDURE statement. 110
5-10 Messages in Data Output view when deploying the Java stored procedure 111
5-11 Messages in the Data Output view when running the stored procedure 111
5-12 XQuery builder user interface . 113
5-13 IBM Rational Software Development Platform tooling . 114
© Copyright IBM Corp. 2006. All rights reserved. xi

5-14 RAD Database Explorer view . 118
5-15 RAD stored procedure editor . 119
5-16 Business integration problem. 123
5-17 Integration sample . 125
5-18 EGL integrates easily with different deployment environments 128
5-19 A simple EGL program accessing an IBM data service (Informix IDS) via JDBC . . 129
5-20 Using the Web Services Explorer to test the EGL Web service 132
5-21 The ITSO Currency Converter EGL example application . 135
6-1 DB2 for z/OS providing and consuming Web services . 140
6-2 Web application out of z/OS . 141
6-3 Web application inside z/OS . 142
6-4 WORF’s flow . 143
6-5 DADX file using WORF to access DB2 . 145
6-6 Calling a stored procedure. 148
6-7 DB2 and JDBC. 155
6-8 Java using Universal JDBC driver type 2. 157
6-9 Java using Universal JDBC driver type 4. 157
6-10 Syntax to use URL for Universal JDBC driver type 4. 159
6-11 Syntax to use URL for Universal JDBC driver type 2. 159
6-12 DB2 for z/OS consuming Web services. 162
6-13 UDF SOAP accessing Web services . 163
6-14 Syntax command to use SOAP UDFs . 164
6-15 SPUFI screen. 165
7-1 DB2 Web service components - Provider and consumer . 170
7-2 WORF architecture . 171
7-3 Syntax diagram of a DADX file . 173
7-4 DADX operations . 176
7-5 Relationship between DB2, DADX runtime, DADX group and DADX file 179
7-6 Development scenario for a Web service provider . 179
7-7 New Project Wizard in Rational Application Developer . 191
7-8 New Database Connection wizard. 191
7-9 Connection parameters specification. 192
7-10 Specifying the home directory . 193
7-11 New Web Service User-Defined Function wizard . 194
7-12 Inputting the location of WSDL file. 194
7-13 Copy the data definitions if Browse is disabled . 195
7-14 Browse and select the database schema . 196
7-15 Creating UDF from a WSDL file. 196
7-16 Specifying UDF options . 197
7-17 Viewing the parameters of the UDF. 197
7-18 Reviewing UDF settings. 198
7-19 Run the UDF to test it in RAD . 198
7-20 Testing the getTemperature UDF . 199
8-1 IMS composed of IMSDC and IMSDB. 202
8-2 IMS connectivity functions . 203
8-3 IMS Connect . 204
8-4 Soap Gateway . 206
8-5 WSDL contents . 207
8-6 Enable the z/OS Modernization Developer Role . 208
8-7 Selecting a z/OS project . 208
8-8 Enabling Web Service . 210
8-9 Options for the Gateway definition. 211
8-10 Change COBOL options and select Input, Output . 211
xii Powering SOA with IBM Data Servers

8-11 Target Platform Options. 212
8-12 INDATA structure selection . 212
8-13 OUTDATA structure selection . 213
8-14 XML Converter options . 213
8-15 WSDL and XSD Options . 214
8-16 Correlation Properties . 215
8-17 XML converter names . 216
8-18 Member selection. 217
8-19 Extended SOAP gateway Generated files . 218
8-20 SOAP Gateway Administrative Console . 224
8-21 IMSClient project for SOAP Gateway client. 224
8-22 J2C services with RAD . 230
8-23 Web services solution built with J2C wizard . 231
8-24 Project references . 231
8-25 Project list . 232
8-26 Libraries with J2EE jar . 232
8-27 After adding libraries . 233
8-28 h include file inoutcust4rad . 233
8-29 IMSv92006Connector project . 234
8-30 DataBinding phase selection . 234
8-31 Data import for inputmessage . 235
8-32 Input message properties . 235
8-33 Input Saving properties . 236
8-34 Outline for input CCI Databinding Javabean . 237
8-35 Project with CCI input/ouput beans . 237
8-36 J2C Bean phase selection . 238
8-37 Resource Adapter selection. 238
8-38 Connection Factory definition with lookup ims/IMSSJ . 240
8-39 Managed Connection. 240
8-40 Postpone managed connectFactory define . 241
8-41 Package,Interface, Implementation . 241
8-42 Add business method . 241
8-43 Add cquery method . 242
8-44 Indicate input/output for business method . 243
8-45 InteractionSpec properties . 244
8-46 IMSv92006Connector project outline withJ2C bean and databindings 245
8-47 Web Services phase selection. 246
8-48 J2C bean selection for Web services. 246
8-49 Web services deployment . 247
8-50 Dynamic Webproject for Web services . 247
8-51 WebProject IMSv92006WS for Web Services access. 248
8-52 Testing the Web Service . 249
8-53 Test Browser window. 249
8-54 Input browser screen . 250
8-55 Inbound SOAP envelope . 251
8-56 Web Service Client selection . 252
8-57 Client proxy options . 252
8-58 WSDL selection . 253
8-59 Client-Side Environment server . 253
8-60 Web service client project . 254
8-61 Proxy . 254
8-62 Client project . 255
8-63 Modules in IMSv92006WSRouterEAR with Web services 257
 Figures xiii

8-64 SOA built with enterprise service discovery. 258
8-65 Business Module creation . 259
8-66 Business Module SOAIMSv92006. 259
8-67 Module with copy of inoutcust4rad.h . 260
8-68 C include (h file) . 261
8-69 Starting the Enterprise Data Discovery wizard . 261
8-70 Select of the C include file . 262
8-71 Initial Data Discovery panel . 263
8-72 Contents of the C include. 263
8-73 Select input structure and folder(package) . 264
8-74 Look of module after preparation of Data Objects . 264
8-75 Starting the Enterprise Service Discovery . 265
8-76 Selection of Resource Adapter . 265
8-77 Managed Connection reference. 266
8-78 Adding operation and importing C to business objects . 267
8-79 Operation Interaction specification. 268
8-80 Generation of artifacts . 268
8-81 Final SOAIMSv92006 Business Module . 269
8-82 Open of Assembly editor . 269
8-83 Assembly editor for the Business Module . 270
8-84 Interface with 1 operation. 270
8-85 Using an import component . 271
8-86 SOAIMSv92006App enterprise project . 272
8-87 SOAIMSv92006, SOAIMSv92006EJB. 272
8-88 Test the CQuery component . 273
8-89 Input for SCA component test . 274
8-90 Import possibilities by WID. 275
8-91 RAD, WID solution . 275
8-92 SCA import from EJB. 276
8-93 Selected J2C JavaBean. 276
8-94 Select EJB . 277
8-95 Definition of the EJB project. 278
8-96 Copy J2C Bean code. 278
8-97 Ejb project IMSv92006EJB with imbedded J2C bean and databindings 279
8-98 Stateless Session EJB on J2C JavaBean . 280
8-99 Picking an import component from the palette and name change. 281
8-100 Business Dependency . 282
8-101 Adding an interface . 282
8-102 Interface selection . 283
8-103 Binding generation . 284
8-104 Complete binding with JNDIname of Connector EJB . 284
8-105 INDATA . 285
8-106 OUTDATA . 285
8-107 WSDL description of the interface . 286
8-108 Import component with frontal Java component . 286
8-109 Generate skeleton for implementation . 287
8-110 Layout of SOAIMSv92006RADEJB business module . 290
8-111 Test component from SOA accessible Java component . 290
8-112 Test panel . 291
8-113 Accessing DLI data with JDBC solution. 292
8-114 Hierarchical to relational transformation . 293
8-115 DLIModel . 294
8-116 IMS and Web services deployment . 295
xiv Powering SOA with IBM Data Servers

9-1 IBM IDS architectural overview . 298
9-2 Benefits of IBM IDS parallel data query feature. 301
9-3 How WORF and IDS work together . 305
9-4 The New Database Connection wizard window with IDS settings. 306
9-5 The InsertOneCustomer Statement is being constructed in the SQL Builder 308
9-6 Testing the selectOneCustomer DADX service with RAD Web Services Explorer . 312
9-7 The InsertOneCustomer DADX Web service. 313
9-8 Available .NET integration options for IDS developers . 317
9-9 Generating and compiling the CurrencyExchange AXIS classes 327
9-10 Compile the UDR wrapper and create the jar file . 328
9-11 Register the Java “Wrapper” UDR with the stores_demo database 330
9-12 Test of the CurrencyExchange() UDR from within dbaccess. 331
9-13 WebSphere MQ for enterprise business application integration 334
9-14 Applications using WMQ . 335
9-15 WMQ - Sending and receiving messages . 335
9-16 WMQ transaction management . 343
9-17 The 4GL / EGL development timeline . 345
10-1 z/OS products providing SOA . 350
11-1 db2ls output . 360
11-2 Enabling Web service in DB2 Control Center . 365
12-1 WebSphere product family. 370
12-2 WebSphere Application Server product overview by functions 371
12-3 Stand-alone server WebSphere Application Server architecture. 376
12-4 Distributed server environment architecture . 377
12-5 WebSphere Application Server cluster utilizing the zSeries infrastructure 379
12-6 Exposing Web services through the gateway . 382
12-7 Enterprise Service Bus . 384
13-1 IBM WebSphere Information Server turns data into information 390
13-2 Information Services are organized into hierarchies . 391
13-3 WebSphere Information Services Director Architecture . 392
14-1 Project ISOA . 398
15-1 ITSO Bank account management with DB2 for z/OS . 402
15-2 Example of the logical structure of a WORF-based J2EE Web application. 405
15-3 Database connection details of DB2ACCTD in RAD. 407
15-4 Create Web project for WORF application. 408
15-5 Add a new DADX group to project . 408
15-6 New DADX group in Project Explorer view . 409
15-7 Enter name of new DADX file . 410
15-8 Review and update DADX operation names . 410
15-9 WORF application account Web Services listing. 413
15-10 RAD Web Service wizard: select operations . 423
15-11 Java Web Service endpoint . 424
15-12 GetCreditScore() stored procedure . 426
15-13 New database connection wizard in RAD . 429
15-14 Web Service UDF wizard: Select WSDL file . 430
15-15 Web Service UDF wizard: Select database schema . 430
15-16 Web Service UDF wizard: Select operations . 430
15-17 Web Service UDF wizard: General options page . 431
15-18 Informix Bank: The Account maintenance form and menu 443
15-19 Informix Bank: The credit card form while browsing an accounts credit cards 444
15-20 The 4GL to EGL conversion log file after converting the Informix Bank application 446
15-21 The Informix Bank Account screen, after the conversion to EGL 449
15-22 Usage of the Web Services Explorer to test the IfxBankService 453
 Figures xv

15-23 Overview of ITSOBank customer Web portal . 456
15-24 System context diagram of credit score portlet . 457
15-25 System context diagram of foreign exchange calculator portlet 457
15-26 System context diagram of mortgage accounts manager portlet. 458
15-27 WebSphere Portal Server showing up in RAD Servers view. 459
15-28 RAD Portlet Project (JSR 168) wizard . 460
15-29 Add JAAS entry for PORTALDB access in portal server configuration 461
15-30 Add data source for PORTALDB in portal server configuration. 461
15-31 DAO class relationships. 462
15-32 Class diagram showing portal-related DAO implementation 463
15-33 Enter WSDL location for Web Service client proxies . 470
15-34 Environment configuration for Web Service clients . 470
15-35 Custom packages for WSDL namespaces . 471
15-36 View of the credit score portlet. 475
15-37 Select portlet type in New portlet wizard . 476
15-38 Enter portlet settings in New portlet wizard . 477
15-39 Define action and preferences options in New portlet wizard 477
15-40 Resources created by the New portlet wizard . 478
15-41 Add initialization parameters for credit score portlet . 480
15-42 Add service endpoint initialization parameter for credit score portlet. 481
15-43 Add portlet project to portal test environment . 484
15-44 View of the foreign exchange calculator portlet . 485
15-45 Foreign exchange calculator portlet application. 485
15-46 Picture of the mortgage accounts manager portlet . 492
15-47 Flowchart of mortgage accounts manager portlet . 492
15-48 Mortgage accounts manager portlet application . 493
15-49 DAO initialization parameters for mortgage accounts manager portlet 494
15-50 ITSOBank portal login portlet. 502
15-51 ITSOBank portal test page. 503
16-1 Left: Standard request for a Web page; Right: Request with PHP 508
16-2 XML-RPC implementation . 510
16-3 Web service summary . 513
16-4 XML DOM tree node representation . 516
16-5 Usage scenario . 529
16-6 Currency convertor WSDL. 532
16-7 ITSO Currency converter Web service consumer result . 534
17-1 WebSphere job roles . 538
17-2 Connection pooling example . 540
17-3 Configuring data sources . 543
17-4 Configuring JAAS. 545
18-1 IBM IT service management . 554
18-2 Tivoli software portfolio . 555
18-3 Application management . 556
18-4 ITCAM for SOA workspace . 557
18-5 ITCAM for SOA structure . 559
18-6 Web Service Navigator . 560
A-1 DB2 Architecture . 568
B-1 Shredding. 577
B-2 Syntax command to use XML2CLOB . 578
B-3 Syntax command to use XMLELEMENT. 579
B-4 Syntax command to use XMLNAMESPACES. 581
B-5 Syntax command to use XMLFOREST . 582
B-6 Syntax command to use XMLCONCAT. 583
xvi Powering SOA with IBM Data Servers

B-7 Syntax command to use XMLAGG . 584
B-8 Trees model to store XML . 586
B-9 Syntax command to use XMLQUERY . 588
B-10 Syntax command to use XMLPI. 589
B-11 Syntax command to use XMLSERIALIZE . 589
B-12 Syntax command to use XMLDOCUMENT . 590
B-13 Syntax command to use XMLCOMMENT . 590
B-14 Syntax command to use XMLTEXT. 591
C-1 DB2 CLP . 596
C-2 Hierarchical structure of the customer info XML document 598
C-3 Control Center allows you to register and view XML Schema Document 601
C-4 Results for query in Example C-15 . 605
C-5 Results for query in Example C-16 . 605
C-6 Staff table in DB2 SAMPLE database . 607
C-7 XML data generated from the SQL columns in Staff table. 608
C-8 Output for the XMLAGG query. 610
C-9 XQuery structure showing the optional prolog followed by a query body 611
C-10 FLWOR expressions syntax diagram . 613
C-11 Syntax of path expressions . 615
C-12 All names of our customers . 618
C-13 Resulting XML fragment for the query in Example C-25 . 619
C-14 Transforming into a phone list sorted by customer’s first name. 619
C-15 Creating a new database connection in Developer Workbench 630
C-16 New Connection wizard . 631
C-17 New Data Development Project. 632
C-18 New XMLDB connection properties . 633
C-19 XMLSchema project in the Data Project Explorer . 634
C-20 XML Schema wizard . 635
C-21 XSD Editor . 636
C-22 Register an XML Schema wizard. 637
C-23 Continuing with Registering the employee XML schema. 637
C-24 Accessing the New SQL Statement wizard . 638
C-25 New SQL Statement wizard. 638
C-26 Running a SQL in Developer Workbench . 639
C-27 Accessing Table Editor . 640
C-28 XML Cell Editor . 641
C-29 Setting up validation for XML document . 642
C-30 Developer Workbench showing one row of XML data . 643
C-31 Error due to an invalid XML document. 644
C-32 Syntax of the DADX file . 654
 Figures xvii

xviii Powering SOA with IBM Data Servers

Tables

3-1 Service aspects, relationships and implementation techniques in SOA 43
3-2 Connected and connectionless service interactions . 46
3-3 Web services transports type. 60
5-1 Rational Software Development Platform tools . 114
6-1 XML elements used in the DADX files . 146
6-2 XML elements and its descriptions . 150
6-3 XML attributes . 150
6-4 Differences between the types 2 and 4 . 160
6-5 SQL errors with DB2 consuming Web services . 165
8-1 Our input for the Wizard. 229
9-1 MQ functions in IDS. 337
9-2 IDS and WMQ platforms support . 344
10-1 SOA z/OS products . 351
10-2 The z/OS products and versions . 351
10-3 URL variables . 356
11-1 SDK for Java support for the IBM DB2 Driver for JDBC and SQLJ 361
11-2 IBM DB2 Driver for JDBC and SQLJ license file . 362
12-1 Web services standards in WebSphere Application Server Version 6 372
12-2 Supported operating systems and versions. 374
12-3 WebSphere Application Server and operating systems. 374
12-4 WebSphere Application Server Web service support . 379
15-1 DADX group properties used for the data source JNDI lookup versus the JDBC con-

nection . 414
15-2 FICO.CREDIT_SCORE_CACHE database table layout . 432
15-3 Java classes generated by RAD Web Service Client wizard. 471
17-1 JDBC traces. 548
A-1 Performance involving XML stores . 570
A-2 SQL/XML functions . 572
C-1 FLWOR expression clauses . 613
C-2 DB2 XQuery expressions. 615
C-3 Comparison of XML data access methods . 621
C-4 XML decomposition annotations grouped by tasks . 623
C-5 XML host variables in embedded SQL applications . 624
C-6 DB2Xml methods, data types, and added encoding specifications 626
C-7 DB2 .NET provider Getxxx methods to retrieve XML data 628
C-8 Operations for metadata retrieval . 660
C-9 Operations to run queries and stored procedures . 660
C-10 Input data types for the extended parameters . 661
C-11 Input data types for callInputParameter . 661
C-12 Input data types for the tablesInputData type . 662
C-13 Input data types for columnsInputData types. 663
C-14 Output data types for the callOutputData types. 663
C-15 Output data types for the executeOutputData types . 664
© Copyright IBM Corp. 2006. All rights reserved. xix

xx Powering SOA with IBM Data Servers

Examples

3-1 XML and WSDL . 36
3-2 A SOAP request. 38
3-3 A SOAP response . 39
4-1 Stock quote portlet code sample . 87
4-2 WSRP getMarkup request issued through SOAP . 90
4-3 EmployeeDetailsPortlet.wsdl file . 96
5-1 A simple EGL Web services providing example . 131
5-2 The CurrencyExchangeService.wsdl file . 133
5-3 CurrencyExchangeService.egl. 134
5-4 CurrencyExchangeService_ServiceBindingLib.egl . 134
5-5 The finalized EGL Web application which calls the getRate() Web service. 134
6-1 SQL query using DADX . 146
6-2 Defining parameter . 146
6-3 DADX file . 146
6-4 Calling stored procedures . 148
6-5 DDL . 148
6-6 <result_set_metada> element . 149
6-7 DDL to create a stored procedure . 151
6-8 DDL creating a stored procedure that does a tables join. 152
6-9 Loading DB2 universal JDBC driver . 158
6-10 Connect to a database using JDBC. 158
6-11 Setting up ID and password. 160
6-12 Using commit statement . 161
6-13 Setting autocommit . 161
6-14 Selecting data using SOAP UDF . 164
6-15 Inserting data using SOAP UDF . 165
7-1 <result_set_metadata> element . 173
7-2 <operation> element . 174
7-3 Web service provider operations used with DADX file. 176
7-4 ListDepartment.dadx . 177
7-5 DADX that contains the dynamic query service tag. 178
7-6 DADX file: CALL to the TWO_RESULT_SETS stored procedure 180
7-7 Calling the TWO_RESULT_SETS with an input value of 20000.00 180
7-8 Web service consumer UDFs provided by DB2. 182
7-9 A DB2 constructed SOAP request envelope . 183
7-10 Using DB2 to extract the contents of the SOAP response envelop 184
7-11 DemoTemperatureService.wsdl. 185
7-12 Testing the temperature Web service from the DB2 CLP . 187
7-13 Result from the temperature Web service . 187
7-14 getTemperature UDF. 187
7-15 Reader friendly version of the getTemperature UDF. 188
7-16 Invoking the wrapper UDF from the DB2 CLP. 188
7-17 Integrating your UDF within a SQL statement . 189
7-18 New getTemperature UDF using native XML functions in DB2 V9.1. 189
8-1 IMS Connect configuration. 204
8-2 input/output IMS messages Cobol copybook. 209
8-3 JCL for compiling COBOL XML converter . 219
8-4 Main menu for deployment utility . 220
© Copyright IBM Corp. 2006. All rights reserved. xxi

8-5 Start of Gateway server . 221
8-6 Prompted input for deployment . 221
8-7 Generating Java client code . 222
8-8 Java CQuery client program . 224
8-9 Populating the IMS Connect XML adapter data sets . 226
8-10 New HWS Configuration member . 228
8-11 Generated code with static proxy. 256
8-12 Remote interface . 280
8-13 Skeleton code generated by wizard. 287
8-14 Changed custQuery method . 288
9-1 The ITSOCustomerService.dadx file . 309
9-2 DADX call operation (XML schema definition). 314
9-3 Simple UDR call in DADX syntax. 314
9-4 IDS UDR with an out parameter (in SPL) . 315
9-5 DADX syntax fragment for the IDS UDR from Example 9-4 315
9-6 IDS stored procedure with display labels for the result set 316
9-7 DADX syntax fragment for the UDR in. 316
9-8 IDS .NET provider based sample code . 318
9-9 A simple PDO_INFORMIX application. 318
9-10 J/Foundation settings for the AXIS framework in the IDS ONCONFIG file 322
9-11 jvp_classpath file for the AXIS integration . 323
9-12 The informix.policy file with AXIS support . 323
9-13 Classpath settings for AXIS UDR development. 324
9-14 The wsdl2java.bat file (for Windows platforms) . 325
9-15 The CurrencyExchange WSDL file . 326
9-16 CurrencyExchangeUDRs.java . 327
9-17 The register_CurrencyExchange.sql script . 329
9-18 The genxml function (stored procedure) . 332
9-19 WMQ - Sending and receiving . 336
9-20 Rollback the transaction. 336
9-21 Trace output. 340
9-22 Creating a READ table. 341
9-23 MQCreateVTIRECEIVE() created table. 341
9-24 SELECT on RECEIVE tables. 342
10-1 JDBC binding. 356
10-2 JDBC binding. 356
10-3 HFSALLOC Job . 357
10-4 HFSMOUNT job. 357
15-1 Mortgage account stored procedure signatures . 403
15-2 Generated DADX file . 411
15-3 SOAP engine selection in web.xml . 415
15-4 Skeleton of AccountService Java class . 417
15-5 DBConnectionProvider class handling JDBC connectivity 419
15-6 Implementation of AccountService.getAccountNumbers() method 421
15-7 WSDL for credit score Web service . 427
15-8 FICO.CREDIT_SCORE_CACHE database creation statements 432
15-9 Code of GetCreditScore() stored procedure . 433
15-10 SOAP result with scalar value . 435
15-11 SOAP result with some attributes . 435
15-12 Wrapper UDF. 436
15-13 SOAP result with complex hierarchy . 436
15-14 SOAP result in RPC/encoded style, using <multiRef> elements 437
15-15 Information Integrator Web Service data source . 441
xxii Powering SOA with IBM Data Servers

15-16 ifxbank_lib.4gl with the get_all_cards() and the get_one_card() functions 444
15-17 The generated ifxbank_lib.egl file . 446
15-18 IfxBankService.egl . 449
15-19 The IfxBankService.wsdl file . 450
15-20 SOAP message being sent to the EGL Web service. 454
15-21 Results of the Web service call in SOAP format . 454
15-22 DAOFactory class interface . 464
15-23 DB2DAOFactory class implementation . 465
15-24 DB2PortalUserDAO class implementation. 466
15-25 FICOScoreDAO interface . 468
15-26 DB2FICOScoreDAO class implementation . 468
15-27 Java interface of the PHP exchange rate Web Service client 472
15-28 Calling the PHP Currency Converter Web service . 472
15-29 Java interface of the DADX accounting Web Service client 473
15-30 Calling the DADX Web Service . 473
15-31 Custom wrapper for IMS Web service call. 474
15-32 Implementation of PortalUserInfo.getCurrentUsername() method 478
15-33 Implementation of PortalDBConnector class . 480
15-34 Extend FICOScore portlet class with application logic. 481
15-35 Method updateFICOScore() sets the credit score portlet session attribute 482
15-36 Credit score portlet view defined in FICOScore.jsp . 483
15-37 Interface of the CurrencyConverterSessionBean class . 486
15-38 Implementation of the CurrencyConverter.processAction() method 487
15-39 Content of CurrencyConverterView.jsp portlet view . 489
15-40 Interface of the MortgageRequestSessionBean class . 495
15-41 Implementation of the MortgageRequest.processAction() method 497
15-42 Implementation of the MortgageRequest.doView() method. 498
15-43 Implementation of the MortgageAccountsView.jsp page . 499
16-1 include statements . 510
16-2 ITSOcalcTax function. 510
16-3 Instantiation and serialization. 511
16-4 instantiate the XML-RPC client . 511
16-5 Assign value. 511
16-6 Sending and receiving response from the server . 511
16-7 require_once . 512
16-8 locate WSDL and create client instance . 512
16-9 Send parameters and get response. 512
16-10 Definition of the service namespace . 513
16-11 instantiate SOAP server and define WSDL settings . 513
16-12 Register PHP tax calculation function . 513
16-13 taxcalc function . 514
16-14 Invoking the service . 514
16-15 instantiate the client . 514
16-16 Remotely call the calctax method . 514
16-17 Sample XML file - books.xml . 515
16-18 Reading the books XML file using the DOM . 516
16-19 DOM read results. 517
16-20 Writing a new “books.xml” with the DOM. 517
16-21 Output from the DOM build script . 518
16-22 Connecting to a database using PHP . 520
16-23 Create the AUTHOR table . 520
16-24 Static INSERT statement . 521
16-25 Simple SELECT statement . 522
 Examples xxiii

16-26 ibm_db2 extension. 523
16-27 Connect to DB2 using PDO . 525
16-28 Repeated inserts using prepared statements . 526
16-29 Fetching the data using prepared statements . 526
16-30 Calling stored procedure with an output parameter . 527
16-31 Calling a stored procedure with an input/output parameter 527
16-32 Rate table structure . 529
16-33 itso.exchange_rate stored procedure . 530
16-34 Connect DB2 using ibm_db2 extension. 530
16-35 Publishing getExchangeRate as a Web service . 531
16-36 ITSO currency converter- WSDL structure . 532
16-37 ITSO currency converted Web service consumer program. 533
17-1 DataStoreHelper class . 544
17-2 DB2 for z/OS typical errors . 548
B-1 Using XML2CLOB . 578
B-2 Using XMLELEMENT . 580
B-3 Result of XMLELEMENT SELECT . 580
B-4 Selecting XML . 580
B-5 Using XMLNAMESPACES . 581
B-6 Selecting namespaces. 581
B-7 Nested elements . 582
B-8 Using XMLFOREST. 583
B-9 Using XMLFOREST. 583
B-10 XMLCONCAT . 583
B-11 Concatenating names . 584
B-12 Using XMLAGG . 585
B-13 Using XMLEXISTS. 586
B-14 Select statement . 587
B-15 Using XMLQUERY. 588
B-16 Using XMLPI . 589
B-17 Using XMLSERIALIZE. 589
B-18 Using BLOB . 590
B-19 Using XMLDOCUMENT. 590
B-20 Using XMLCOMMENT. 591
B-21 Using XMLTEXT . 591
B-22 XMLAGG with XMLTEXT. 592
C-1 Database Configuration (DB CFG) for the xmldb database. 596
C-2 customer.xsd . 597
C-3 Insert statements to insert rows into Customer table. 598
C-4 Registering a XML schema. The schema document is PO.xsd. 599
C-5 XML Schema validation during insert . 600
C-6 Current XML contents in the Info column of the Customer table 601
C-7 Update customer Jim Noodle’s address . 602
C-8 Using XMLQUERY. 603
C-9 Result for query in Example C-8 . 603
C-10 Using XMLEXISTS. 603
C-11 Results for query in Example C-10 . 603
C-12 Incorrect statement that uses XMLEXISTS . 603
C-13 The value of the Info XML column in the Customer table for CId = 1000 603
C-14 Delete customer with Cid=1003. 604
C-15 Using XMLTABLE to return a table listing of customers phone numbers 604
C-16 Using XMLTABLE to display address . 605
C-17 Constructing XML data from SQL column . 607
xxiv Powering SOA with IBM Data Servers

C-18 Using XMLFOREST and XMLELEMENT together . 608
C-19 Using XMLAGG and ORDER BY. 609
C-20 Current content of the Info XML column in the Customer table 616
C-21 Retrieve XML from the Info column . 618
C-22 Path expression to retrieve names for all customers . 618
C-23 FLWOR expression to retrieve names for all customer . 618
C-24 Using the text() function to retrieve customer’s name . 618
C-25 Adding the where clause to filter the results in a FLWOR expression 619
C-26 Path expressions equivalent to the FLWOR expression in Example C-25 619
C-27 Transforming the XML output . 619
C-28 Sample embedded C application. 625
C-29 Sample embedded Cobol application . 626
C-30 Sample JDBC code that reads and insert XML data . 627
C-31 Updating XML data in an XML column . 627
C-32 Retrieving XML data with .NET . 628
C-33 Creating an XML document for XML schema . 635
C-34 dadx.xsd describes the DADX schema . 645
D-1 DBD for HDAM database SJCUSTDB. 666
D-2 Asm/Lked for DBD generation . 666
D-3 Allocation of VSAM cluster for Database. 667
D-4 IMSDALLOC for database . 667
D-5 Short sample(3 records) input data used by DFSDDLT0 utility 668
D-6 Load with DFSDDLT0 . 668
D-7 Load PSB for Java. 669
D-8 PSB for Java MPP(JMP) . 670
D-9 PSB for HDAM retrieve . 670
D-10 PSB for HDAM update . 670
D-11 PSBgen . 670
D-12 ACBgen . 671
D-13 SJDLIMOD. 672
D-14 SJDLMOCN, input for DLIModel Utility . 672
D-15 java class dlicust.SJCUSTDLIDatabaseView . 673
D-16 SJCUSTDatabaseViewJavaReport . 674
D-17 inoutcust4rad.h . 674
D-18 inoutcust4rad.cb. 675
D-19 java class imstmcust.INDATA . 676
D-20 java class imstmcust.OUTDATA . 676
D-21 JMP program imstmcust.CQuery. 677
D-22 DBDgen . 680
D-23 APPLCTN . 680
D-24 SJHFSJMP . 680
D-25 DFSJVEMS member . 681
D-26 DFSJVEEV member . 682
D-27 DFSJVEWK member . 682
D-28 DFSJVMAP member . 682
D-29 JVMJMP Proc . 683
D-30 Java message region. 683
 Examples xxv

xxvi Powering SOA with IBM Data Servers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2006. All rights reserved. xxvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

developerWorks®
eServer™
ibm.com®
iSeries™
i5/OS®
pSeries®
z/OS®
zSeries®
AIX®
ClearCase®
ClearQuest®
Cloudscape™
CICS®
Database 2™
DataBlade™
DataPower®
Distributed Relational Database

Architecture™
Domino®
DB2 Connect™
DB2 Universal Database™
DB2®

DRDA®
Encina®
Enterprise Storage Server®
Everyplace®
Informix®
IBM®
IMS™
Language Environment®
Lotus Notes®
Lotus®
MVS™
MVS/ESA™
Notes®
OMEGAMON®
OS/2®
OS/390®
OS/400®
Parallel Sysplex®
Power PC®
PowerPC®
PurifyPlus™
Rational Suite®

Rational Unified Process®
Rational®
Redbooks™
Redbooks (logo) ™
RequisitePro®
RACF®
System z™
Team Unifying Platform™
Tivoli Enterprise™
Tivoli®
VisualAge®
VTAM®
WebSphere®
Workplace™
Workplace Client Technology™
Workplace Collaborative Learning™
Workplace Forms™
Workplace Managed Client™
Workplace Messaging®
Workplace Team Collaboration™
Workplace Web Content

Management™

The following terms are trademarks of other companies:

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

ITIL, is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

EmbeddedJava, Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaMail, JavaOS,
JavaScript, JavaServer, JavaServer Pages, JDBC, JDK, JRE, JSP, JVM, J2EE, Solaris, Streamline, Sun, Sun
Microsystems, 100% Pure Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

ActiveX, Expression, Internet Explorer, Microsoft, Visual Basic, Visual Studio, Windows NT, Windows Server, Windows,
and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

i386, Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xxviii Powering SOA with IBM Data Servers

Preface

Flexibility in business has become equal in importance with operational efficiency.
Service-oriented architecture (SOA) can help businesses respond more quickly and
cost-effectively to the changing market conditions by promoting reuse and interconnection of
existing IT assets rather than time-consuming and costly reinvention.

SOA has been the top fashionable topic in IT for a few years now. This is because there is a
consensus of opinions among enterprise architects that SOA is the key to making the IT
department a catalyst for growth and innovation.

This IBM® Redbook helps you get started with SOA by showing the implementation of the
minimum requirements: The creation of Web services that allow access to data that is stored
in data servers or applications and the realization of interaction services for business to
consumer integration. The data servers included in our scenario are DB2 for z/OS, DB2 for
Linux, UNIX and Windows, Informix Dynamic Server and IMS.

This redbook is a roadmap showing how SOA can significantly improve the IT business
value.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the
International Technical Support Organization, San Jose Center.

Paolo Bruni is an Information Management Project Leader at the International Technical
Support Organization, San Jose Center, since 1998. In this capacity he has authored several
Redbooks on DB2® for z/OS® and related tools, and he has conducted workshops and
seminars worldwide. During Paolo’s many years with IBM, in development and in the field, his
work has been related mainly to database systems.

Marcos Henrique Simoes Caurim is a Senior IT Specialist in the DBA Service Center at
IBM Brazil, São Paulo. He has been working in IT for eight years. During this time, he has
worked on several projects with a Brazilian Bank and six of these years while working with
DB2 for z/OS. He holds a master’s degree of Computer Science from the University Paulista,
São Paulo, Brazil. He is a certified DB2 administrator on OS/390®. During the past two years
Marcos has worked in the DBA Service Center (IBM Services), supporting DB2 for z/OS IBM
internal accounts.

Alexander Koerner is a certified Senior IT Specialist in the EMEA Information Management
Technical Sales organization, based in Munich, Germany. He joined Informix® in October
1989. He was instrumental in starting and leading the SAP/R3 on Informix project, developing
an Informix adaptor to Apple's (NeXT's) Enterprise Object Framework, and contributing to the
success of many strategic projects across the region. Alexander is currently leading the
technical sales activities in EMEA for Informix 4GL to EGL conversions, internal and external
enablements on EGL, and also actively covers topics such as IDS, XML, Web services, and
DataBlade™ technology. His activities also include presentations at conferences and events,
such as the IBM Information Management Conference, IBM Informix Infobahns, regional
IUGs, XML One, and ApacheCon. He is a member of the German Informatics Society and
holds a master’s degree in Computer Science from the Technical University of Berlin.
© Copyright IBM Corp. 2006. All rights reserved. xxix

Christine Law is an IBM Certified Solutions Expert with the DB2 Advanced Support Team at
the IBM Toronto Laboratory. She holds a bachelor’s degree of Mathematics in Computer
Science from the University of Waterloo, Canada. She has extensive application
development experience on Linux®, UNIX® and Windows® platforms with different
programming languages and scripting languages. She is a developerWorks® author and her
expertise is in DB2 application development, specializing in JDBC™, SQLJ, stored
procedures and embedded SQL.

Michael Liberman is a Senior Consultant and an IT Architect, working for Tangram Soft in
Israel. He has 10 years of experience in the Information Technology field as a Consultant,
Developer, Designer, Analyst, Architect, and Team Leader. He is an IBM DB2 Certified
Solution Expert. His areas of expertise include DB2 administration on all platforms,
WebSphere® Application Server, Java™ technology, object-relational mapping, and the
design of large scale information systems. He was a member of the International DB2 User
Group planning committee (IDUG). He holds a bachelor’s degree in Computer Science from
the Singalovski College in Tel-Aviv.

Wolfgang Schuh is an IT Architect within BCS Application Services, IBM Austria. He has
worked in various business transformation projects for the last six years. During that time,
Wolfgang has assumed a variety of IT project roles, including Systems Analyst, IT Team
Lead, and Application Architect. His current involvement is in J2EE™-based projects,
employing Portal and Web Services technologies. He holds a master’s degree in Computer
Science from the University of Technology, Vienna.

Egide Van Aerschot has been working for the IBM Program Support Center in Montpellier,
France since 1998 and is a member of the New Technology Center team, supporting and
providing education for J2EE projects, IBM WebSphere Business Integration, and
connections to established systems. Before his current position, he worked for IBM Belgium
as an Account Systems Engineer, responsible for many projects related to transactional
processing with major Belgium customers. During this period, he also participated in several
residencies in the United States. He graduated from the University of Louvain as a Civil
Engineer.

Jianhuan Wang (Max) is a Senior Certified IT Architect at the IBM Service organization,
based in South Carolina. Before joining IBM, he worked at the Verizon Telecommunication
Corp. in Atlanta, Georgia. He has 15 years experience in the IT industry. His areas of
expertise include cross-platform architecture design, OOA, SOA and infrastructure solution.
Max holds a bachelor’s degree from East China University of Science and Technology in
Shanghai, China; a master’s degree in Computer Science from the University of Maryland;
and an MBA from Salisbury University in Maryland, U.S.A.

Peter Wansch is a Software Engineer in DB2 for z/OS at IBM Silicon Valley Laboratory in
San Jose, California. He has nine years of experience in DB2 client and Web application
development as a Consultant, Developer, Architect, and Project Manager. He holds a
master’s degree in Computer Engineering from the University of Technology, Vienna, Austria.
He is a Sun™ Certified Java developer, certified DB2 administrator on Linux, UNIX, Windows
and OS/390, and a certified AIX® administrator. He has written extensively about Java
network programming and media streaming. Peter worked for three years at the Toronto
Laboratory where he was responsible for the development of the DB2-provided stored
procedures that are used by Control Center and SAP® Management Console CCMS.
xxx Powering SOA with IBM Data Servers

Left to right: Christine, Wolfgang, Marcos, Michael, Paolo, Alexander, Max, Egide and Peter (photo
courtesy of Nagraj Alur)

Special thanks to Keshava Murthy and Sitaram Vemulapalli, developers of IBM Informix
Dynamic Server's SQL and Extensibility component, for providing the section on WebSphere
Message Queuing and IDS.

Thanks to the following people for their contributions to this project:

Rich Conway
Bob Haimowitz
Emma Jacobs
Leslie Parham
Sangam Racherla
International Technical Support Organization

Kenneth Blackman
Stephen Brodsky
Kyle Charlet
Curt Cotner
Haley Fung
Shyh-Mei Ho
Christopher Holtz
Rose Levin
Susan Malaika
Kevin McBride
Angela Migliaccio
Roger Miller
Betty Patterson
Bryan Patterson
Vivek Prasad
 Preface xxxi

Klaus Roder
Michael Schenker
Maryela Weihrauch
Peggy Zagelow
Maureen Zoric
IBM Silicon Valley Lab

Scott Lashley
IBM Portland

Mac Devine
IBM Raleigh

Jonathan Leffler
IBM Menlo Park

Peter Kovari
EMEA Software Lab Services, Hursley, UK

Rod Fleming
IBM Dallas

Keshava Murthy
Sitaram Vermulapalli
IBM Menlo Park, CA,Informix Development

Srini Bhagavan
Shawn Moe
Lenexa

Peter Kohlmann
Randy Horman
Tim Vincent
IBM Toronto Lab

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!
xxxii Powering SOA with IBM Data Servers

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

We want our Redbooks™ to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xxxiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xxxiv Powering SOA with IBM Data Servers

Part 1 General
introduction to
SOA

In Part 1 we provide a brief introduction to SOA in these chapters:

� Chapter 1, “SOA: Why it is good for you” on page 3
� Chapter 2, “SOA: From abstract to concrete” on page 11

SOA is being implemented by many enterprises, and several vendors are accelerating the
pace in providing tools and services to help in the implementation.

This Web site is a good starting point to verify what IBM provides in this area:

http://www-306.ibm.com/software/solutions/soa/?ca=dti-tilesoa&S_TACT=106AH51W

Part 1
© Copyright IBM Corp. 2006. All rights reserved. 1

http://www-306.ibm.com/software/solutions/soa/?ca=dti-tilesoa&S_TACT=106AH51W

2 Powering SOA with IBM Data Servers

Chapter 1. SOA: Why it is good for you

Have you been worried about the increasing cost and complexity of IT solutions? Do you
want to integrate different systems together? Do you want to intelligently recycle existing
strategic applications?

This chapter briefly introduces the main concepts of Standard Oriented Architecture (SOA) in
these topics:

� What is service-oriented architecture?
� Why is SOA important to our clients?
� How is IBM delivering SOA solutions?
� The service-oriented enterprise

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 What is service-oriented architecture?

Service-oriented architecture (SOA) is a collection of services on a network where they
communicate with one another in order to carry out business processes. The communication
can either be either data passing or trigger several services implementing some activity. The
services are loosely coupled, have platform-independent interfaces and are fully reusable.
SOA can be considered an evolution in the architecture for IT solutions: It capitalizes on best
practices of previous architectures. SOA brings the framework from which to build the
solutions required today: more dynamic and with less integration costs. SOA is the
architectural style whose goal is to achieve loose coupling among interacting software
agents. A service is a unit of work done by a service provider to achieve desired end results
for a service consumer. Both provider and consumer are roles played by software agents on
behalf of their owners.

For more information about SOA, see IBM Systems Journal Vol. 44, No. 4, 2005 -
Service-Oriented Architecture, and the redbook The Value of the IBM System z and z/OS in
Service-Oriented Architecture, REDP-4152, and this Web site:

http://www.ibm.com/software/solutions/soa/?ca=dti-tilesoa&S_TACT=106AH51W

1.2 Why is SOA important to our clients?

The main problem of most corporate IT systems is due to the way companies automate their
activities. This has typically involved separate departments and lines of business
independently trying to optimize their own functions, and as a result, paying less attention to
broader business objectives.

IT client today want open rather than proprietary software; quantifiable business benefits,
rather than technology for its own sake; and fully integrated business processes and solutions
tailored to their needs, rather than piece-part products that do not work together.

Change and flexibility are key to innovation, and a service-oriented architecture enables the
high levels of business adaptability that companies need to truly innovate.

1.3 How is IBM delivering SOA solutions?

A service-oriented approach means looking at a business as linked services and considering
the outcomes they bring. Built on Web services and open standards, IBM’s SOA solutions
help businesses tap into their existing technology investments and link together previously
fragmented data and business processes on demand – creating a more complete view of
operations, potential bottlenecks and areas for growth.

The ideas behind SOA are not new, but advances in standards and development tools have
now made them easier to develop. Rather than designing applications from the ground up,
SOA allows developers to reuse code between departments and combine resources from all
over the company. SOA applications are also designed so that different parts can operate
independently of one another. Because of this, any one feature can be changed without
breaking other parts of the application. This makes an SOA much more responsive to
changing business requirements than traditional software development, where one feature
change could derail an entire application.

Companies that master SOA technology are able to operate more efficiently than their
competitors and are quicker to adapt to changing business conditions in their industries.
4 Powering SOA with IBM Data Servers

http://www.ibm.com/software/solutions/soa/?ca=dti-tilesoa&S_TACT=106AH51W

For example, a retailer deciding whether to issue a credit card to a customer could use the
technology to tap different sources and pull together information about a customer's
credit-worthiness and buying habits. A bank can use the same computing services to handle
account transfer requests, whether they are coming from a teller, an ATM, or a Web
application, avoiding the need for multiple applications. A manufacturer could measure more
closely what is happening in its production process, then make adjustments that feed back
instantly through its chain of suppliers.

The bottom line is more flexible, less costly solutions.

Products
IBM announced new software supporting the entry points, a set of industry-specific models to
support SOA and several new services designed for the successful creation of an SOA
throughout its life cycle. In addition, IBM Global Business Services (formerly BCS)
consultants continue to enhance their SOA skills and knowledge of the entry points to assist
clients in implementing successful SOA projects.

This new software helps with the integration across the solution islands implemented through
the years and currently available on existing systems.

IBM has announced new software and services to enable customers to take advantage of the
strategic trend towards SOA.

Major barriers to SOA success are often related to determining how to get into an SOA,
avoiding additional costs and ensuring that investments are allocated toward a business
strategy that will withstand market fluctuations and company changes. The new software and
services are said to help address these challenges and are based on IBM's expertise with
SOA customer engagements in companies of all sizes across all industries.

IBM has identified five entry points to enable customers to more easily approach and initiate
an SOA project. These entry points include people-, process- and information-centric
approaches as well as connectivity and the ability to reuse existing assets. The company has
announced four new software releases targeted toward these SOA starting points as well as a
set of industry-specific models to support SOA. The company has also announced new SOA
services.

For supporting a people-centric approach to SOA, WebSphere Portal version 6.0 integrates
IBM Workplace™ and collaborative technologies, making it easier for users to build and
deploy composite applications that can be tailored by industry, role or task. The new release
takes advantage of AJAX to create a more responsive user environment. It provides a
workflow builder that uses the process engine from WebSphere Process Server, open
standards-based software powered by WebSphere Enterprise Service Bus (ESB) that helps
simplify the integration of business processes. These capabilities, along with templates
designed to accelerate application deployment, allow organizations to increase the
effectiveness of their business and IT staff through the application of an SOA.

To improve business visibility and deliver a process-centric approach to SOA, IBM announced
WebSphere Business Monitor version 6.0. The software provides an aerial view of the
business and enables customers to proactively identify potential issues before they impact
productivity. New features in WebSphere Business Monitor include business alerts, links to
third-party reports that combine real-time performance and historical analysis, and
scorecards to track the status and metrics of projects. For example, the software allows a
business user to create an automated alert signaling each time a competitor makes a
market-shifting move. The alert can be integrated with third-party research, customer
feedback and recommended next steps that could help minimize the impact of a competitor's
move on the market.
Chapter 1. SOA: Why it is good for you 5

For an information-centric approach to SOA, IBM has delivered industry-specific models to
help clients successfully launch their SOA initiatives. The enhanced IBM Banking Information
FrameWork and IBM Insurance Application Architecture models provide a set of critical
processes, workflows and activities to help organizations re-engineer their business
processes to implement strategic initiatives such as master data management. These IBM
models, methodologies and services bring together key components to provide a single view
of customer information, thereby enabling a successful SOA and enterprise master data
management strategy.

WebSphere Application Server
WebSphere Application Server provides the runtime environment for J2EE applications.
WebSphere Application Server provides the J2EE containers required to execute the
applications, as well as the services that enable the execution of specific Java application
components. WebSphere Application Server hosts a JMS-based messaging engine that
provides enhanced messaging functionality and a Web services engine that is capable of
hosting and invocating SOAP-based Web services.

WebSphere MQ
WebSphere MQ provides the transport mechanism for messages. WebSphere MQ supports
assured, asynchronous, once-only delivery of messages across a broad range of hardware
and software platforms like Windows, z/OS, .NET, and J2EE and is accessible using various
programming languages and interfaces like Visual Basic®, C++, Java, COBOL, PL/I, as well
as MQI and JMS.

WebSphere Enterprise Service Bus
The enterprise service bus (ESB) layer provides flexible connectivity and integration for Web
services and messaging-focused applications.

WebSphere Enterprise Service Bus (WebSphere ESB) provides ESB functionality for
standards-based applications. Built on WebSphere Application Server, WebSphere ESB
takes advantage of its many features, including high availability, scalability, and performance.
Beyond the basic programming-based mediation functionality available in WebSphere
Application Server, WebSphere ESB provides a mediation layer with pre-built mediations for
XML transformation, content-based routing, and message logging. Like WebSphere Process
Server, WebSphere ESB supports Service Component Architecture (SCA) and Service Data
Objects (SDO) to provide a unified programming model.

WebSphere Message Broker
WebSphere Message Broker provides advanced ESB functionality for universal support of
messaging applications. Built on WebSphere MQ, WebSphere Message Broker takes
advantage of the services provided by the messaging infrastructure and enhances them by
adding a runtime environment that supports message processing like message
transformation and routing.

WebSphere Process Server
WebSphere Process Server provides services to enable the integration of composite
applications. It addresses issues of system and technology heterogeneity by applying the IBM
SOA programming model consisting of SCA and SDO. SCA and SDO allow the definition of
service component interfaces, implementations, and references in a technology-neutral way
that can be bound later to the technology chosen. On top of this technology-neutral service
component layer is a Business Process Execution Language (BPEL)-based orchestration and
runtime environment for the dynamic composition of the service components to processes.
6 Powering SOA with IBM Data Servers

WebSphere DataPower SOA Appliances
IBM WebSphere DataPower® SOA Appliances represent an important element in IBM's
holistic approach to service-oriented architecture (SOA). IBM SOA appliances are
purpose-built, easy-to-deploy network devices that simplify, help secure, and accelerate your
XML and Web services deployments while extending your SOA infrastructure. These new
appliances offer an innovative, pragmatic approach to harness the power of SOA while
simultaneously enabling you to leverage the value of your existing application, security, and
networking infrastructure investments.

IBM Rational Software
The IBM Rational® Software Development Platform helps companies transition to a
business-driven development environment for SOA by providing tools and process guidance
that leverage industry-standard and emerging programming models to simplify and accelerate
business process modeling and the design, construction and assembly of service-oriented
applications.

The Rational Software Development Platform helps companies to:

� Ensure business requirements drive services design and construction

� Model and assemble service-oriented applications that automate and integrate business
processes

� Re-purpose existing assets as services to extend their utility and assemble them into new
solutions

� Deliver high quality services-based solutions on time and on budget

Services
IBM Global Services is strengthening its SOA capabilities with new services designed for the
successful creation of an SOA throughout its life cycle - model, assemble, deploy, manage,
while ensuring customers are equipped with the knowledge and skills to independently
extend an SOA. These new services help customers with readiness, implementation and
management of an SOA.

The services include the Infrastructure Services Readiness Engagement for SOA to help
assess and ensure that the customers' infrastructure is prepared to undergo the creation of
an SOA. The additional IBM Design and Implementation Services for SOA include support for
WebSphere middleware, DataPower appliances, and Tivoli® management and security for
SOA. For management, IBM now offers the IT Service Management Design for SOA, IBM
Performance Management Testing for SOA, and the SOA Business Dashboard and new
maintenance services for SOA.

IBM's new SOA entry points skills training program, based on the five entry points to SOA, will
also be delivered throughout IBM Global Services. All of the SOA services complement IBM's
software and appliances, yet are not a requirement for SOA success.

What clients of IT seek today is very different than what they sought in the past: open rather
than proprietary software; quantifiable business benefits, rather than technology for its own
sake; and fully integrated business processes and solutions tailored to their needs, rather
than piece-part products that do not work together.

1.4 The service-oriented enterprise

A service-oriented approach means looking at a business as linked services and considering
the outcomes they bring. Built on Web services and open standards, SOA is a way for
Chapter 1. SOA: Why it is good for you 7

businesses to tap into their existing technology investments and link together previously
fragmented data and business processes on demand – creating a more complete view of
operations, potential bottlenecks, and areas for growth.

1.4.1 SOA at work

The companies that master SOA technology are able to operate more efficiently than their
competitors and be quicker to adapt to changing business conditions in their industries.

For example, a retailer deciding whether to issue a credit card to a customer could use the
technology to tap different sources and pull together information about a customer's
credit-worthiness and buying habits. A bank can use the same computing services to handle
account transfer requests, whether they are coming from a teller, an ATM, or a Web
application, avoiding the need for multiple applications. A manufacturer could measure more
closely what is happening in its production process, then make adjustments that feed back
instantly through its chain of suppliers. The bottom line: More flexible, less costly solutions.

1.4.2 The need for governance

SOA requires an efficient technology governance mechanism to make sure that IT efforts
meet business needs, and as a means of controlling what services are deployed and how
those services are used. Without some level of governance in place, companies could end up
producing overlapping and redundant point services that add minimal value to the business
as a whole.

� Reduce or focus on synchronous, HTTP-based Web service invocation

Our redbook greatly focusses on synchronous HTTP Web services calls. In reality a
product like Message Broker would be used more prominently to queue Web service
requests within an intranet infrastructure. For instance in our scenario, the create account
Web service call from the e-banking application to the backend data server is an excellent
candidate for queuing using message broker. We do not have to implement this, but we
should certainly elaborate on alternative implementations. A message broker in fact is a
highly integrated part of the Enterprise Service Bus concept.

See: http://publib-b.boulder.ibm.com/abstracts/sg247137.html

� Show alternatives that our customers already use for bringing their earlier or existing data
to the Web

Many customers use classic federation.

See: http://www.ibm.com/software/data/integration/iicf/

to connect their z/OS data sources to a SOA architecture, by coding their own services
and using connectors from classic federation. Also using federation may provide a useful
alternative to connect data sources to SOA especially when you have to leverage a large
number of not necessarily IBM servers but including IBM servers, for example, a Web
service that federates a request to File.Net, Documentum, Oracle and DB2 for z/OS. Both
federation products are part of the Information Server platform and make sense to be
positioned here. While federation comes with a performance trade-off, it is real time. Data
Stage can be used to build consolidated data from different sources. In our example, Data
Stage would be used to build the "offering" database for customers that is then quickly
accessed by the Web application. Federating that would not be the right approach in this
particular example.

Ascential already has extremely useful development tools that let you point to a stored
procedure for instance, and automatically generate and deploy a Web service as part of
the Information Server platform. However, Information Server is not for free and will only
8 Powering SOA with IBM Data Servers

http://www.ibm.com/software/data/integration/iicf/
http://publib-b.boulder.ibm.com/abstracts/sg247137.html

be used if many, complex data sources exist that need to be managed as a whole. For a
shop that only has DB2 for z/OS, it is not the right choice and our focus is on data servers,
but it would be worth it's weight in gold if we can intelligently position it. If a shop only has
SQL data sources and simple data consolidation needs (for instance to build a combined
warehouse), even SQL replication may be a good, simple way to implement that instead of
the expensive Information Server platform. The answer what products to use depends on
the particular business requirements.
Chapter 1. SOA: Why it is good for you 9

10 Powering SOA with IBM Data Servers

Chapter 2. SOA: From abstract to concrete

In this chapter we describe the key propositions of implementing a service-oriented
architecture (SOA) in these topics:

� The business value of SOA
� Business-centric starting points for SOAs
� Infrastructure starting points for SOA
� An implementation roadmap for SOA
� The scope of this redbook

2

© Copyright IBM Corp. 2006. All rights reserved. 11

2.1 The business value of SOA

The key value proposition for implementing a SOA is to enable growth and lower the total cost
of ownership (TCO) of your IT assets including data and applications by service-enabling
them.

Service-enablement of these assets will improve utilization and integration of existing assets
and will allow you to change and adapt your business model in an agile way by building new
applications that fully reuse your existing assets.

Existing assets in your portfolio, see Figure 2-1, may include:

� Industry-specific system to manage the products and services you offer such as banking
software

� CRM systems manage to manage customer information including all operational data as
well as offers for each customer or customer segment

� Calendaring, e-mail, messaging and contact management systems to schedule activities
and communication between employees and customers

� Human resource systems to manage employee information and employee services

� Document and records management systems to manage physical and electronic
documents and records.

Figure 2-1 Existing IT assets

Typically, these systems are implemented using vendor-provided or in-house software
solutions using a variety of technologies on different hardware and software platforms using
middleware from a number of vendors. In addition, there exist business processes that define
who and how these assets are used for your business to provide products and services to
customers while meeting strategic revenue and profit objectives.

2.2 Business-centric starting points for SOA

Through business-centric SOA, companies can tie IT projects to the business need, directly
addressing the firm's immediate pain points (Figure 2-2 on page 13).
12 Powering SOA with IBM Data Servers

Figure 2-2 Business centric SOA

The starting points for implementing SOA are:

� People

Improve productivity though people collaboration using Interaction Services

In today’s challenging business environment, enabling people to rapidly act upon and
interact with targeted business process and information is critical to achieving operational
efficiency and agility. A business can improve people productivity by aggregating views
that deliver information and interaction in the context of a business process. This enables
human and process interaction with consistent levels of service.

You can start by building a view of a key business process by aggregating information to
help people make better decisions. Next steps: tighter management of performance with
alert-driven dashboards that link to more processes.

Businesses must also focus on growth – driving the need for tools and solutions that can
adapt business processes and tasks and enable greater collaboration and interaction.

IBM’s approach to SOA is a business-centric one, focused on how to enable people’s
action and interaction. IBMs Workplace software and solutions such as Business
Dashboards help to drive business results.

– Increase organizational productivity and operational efficiency

– Drive innovation and responsiveness through collaborative interactions

– Help reduce integration costs and the time to build/deploy new services

– Increase access and simplify process change and control

IBM's offerings to improve collaboration through composite applications are:

– IBM WebSphere Portal
Chapter 2. SOA: From abstract to concrete 13

The foundation for deploying composite applications.

– IBM Workplace Collaboration Services

A range of reusable collaborative components.

– IBM WebSphere Portlet Factory

Automate portlet development.

– IBM Workplace Forms™

Create XML forms-based processes.

– IBM WebSphere Everyplace® Deployment

Bring information and applications to a wide range of devices.

– IBM Workplace Dashboards

Prebuilt portlets for real-time visibility to business processes.

– IBM WebSphere Everyplace Connection Manager

Security-rich access to E-mail, PIM, and Lotus® Domino® and WebSphere-based
applications.

– IBM Workplace for Business Strategy Execution

Helps manage and execute business objectives.

– IBM Workplace Designer

Easily create components for IBM Workplace applications.

– IBM Workplace for Business Controls & Reporting

Simplify risk assessment and control management.

– IBM Lotus Notes® - "Hannover"

Next release of IBM Lotus features composite applications.

– IBM Workplace Managed Client™

A rich user experience with innovative productivity tools.

� Process

Improve business process management for continuous innovation through process
services.

Deploy innovative business models quickly with re-usable and optimized processes,
adapting the enterprise to changing opportunities and threats.

IBM offers WebSphere software to help improve the efficiency, flexibility, and control of key
business processes. IBM combines expertise in your industry with world-class software to
deliver a comprehensive approach to business process management (BPM). IBM delivers
rich functionality through WebSphere and allows you to model an existing process,
remove bottlenecks, optimize and deploy enhanced processes. You can also monitor the
process and expand across and beyond the enterprise to suppliers and partners. Leaders
in the industry are already using WebSphere to leverage leading best practices,
unmatched industry expertise, and the ability to employ hundreds of pre-existing process
models to speed time to value.

– WebSphere Business Modeler and WebSphere Business Monitor

Metrics of critical business processes and services, and prompted actions to improve
performance

Key Performance Indicators for business units

National language availability
14 Powering SOA with IBM Data Servers

– WebSphere Process Server and WebSphere Integration Developer

Multiple platforms including Systems z availability, and national language support for
BPM

• Complete toolbox for building composite SOA applications
• Virtual Real-time process enhancements
• Architected for reuse and flexibility

� Information

Delivering information as a service through Information Services.

Improve business insight and reduce risk with trusted information services delivered
in-line and in-context.

Information availability is crucial for meeting key business challenges, such as
streamlining business processes, meeting customer expectations, and driving employee
productivity.

However, most companies face daunting complexity in their information architectures. The
average Fortune 500 company has over 48 disparate financial systems and 3 enterprise
resource planning systems. This complexity means that business-critical information can
be disaggregated, disorganized and difficult to understand - making it hard to provide the
consistent and timely information needed for effective business management.

In the midst of this information glut, many companies are introducing more flexibility into
their applications and processes by re-architecting their systems into smaller, more
accessible and reusable services, by leveraging service-oriented architecture (SOA). SOA
is an approach that treats elements of business processes and the underlying IT
infrastructure as secure, standardized services that can be managed, reused and
combined to address changing business priorities.

As companies go through this transformation process, the maturity of their information
architectures can have a large impact upon their results. In fact, Gartner advises that you
should “develop an enterprise information management strategy as part of your SOA
architecture. You will waste your investment in SOA unless you have enterprise
information that SOA can exploit.”

IBM offers a range of capabilities for deploying and managing information within a SOA
that span the SOA life cycle:

� Model

Understand information assets and link to business context

– Discover information metadata
– Develop data & content models
– Map information to business processes

� Assemble

Compose information services

– Extract, cleanse, transform & federate heterogeneous information

� Deploy

Service information requests

– Deliver unified data & content
– Deliver business context
– Discover relationships

� Manage

Monitor and manage Information
Chapter 2. SOA: From abstract to concrete 15

– Ensure performance, availability and security meet service levels

� Governance and processes

Align business with IT information needs

– Monitor information usage over time
– Define and refine information management rules & policies

The IBM Information Management portfolio delivers the necessary building blocks for an
information infrastructure – enabling businesses to model, assemble, deploy and manage
information to create insight.

� Information Integration services

Allows real-time, integrated access to business information regardless of location or
format. Provides the broadest set of information integration capabilities to semantically
align information across disparate sources.

� Content Management services

Allows information management through its life cycle once it is declared as a critical asset.
IBM empowers you to access, protect and deliver more forms of information than any
other vendor.

� Business Intelligence services

Gives you the tools for powerful analysis from integrated data so you can derive insights
that give you a competitive advantage.

� Master Data management services

Enables you to create and manage consolidated “master” data for customer and product
information across heterogeneous environments.

� Information accelerators

Decreases time to value and risk associated with providing information in an SOA,
leveraging best practices to support innovative applications and processes developed by
IBM or our partner network

2.3 Infrastructure starting points for SOA

From an IT perspective, there are two key starting points to build an Infrastructure that
connects your existing services into a SOA: connectivity and reuse.

2.3.1 Connectivity: Underlying connectivity to support business-centric SOA

Connectivity has always been a requirement. But SOA brings new levels of flexibility. As well
as acting as a building block for additional SOA initiatives, connectivity provided through SOA
has distinct, standalone value.

Flexible business requires flexible IT. Your connectivity infrastructure is critical for integrating
your existing and new applications, processes and services. Establish higher levels of service
while providing a reliable, highly secure and assured delivery of data across all processes.

IBM can connect more of your assets and services and has the product breadth to support
the most connected SOA platforms, to help you maximize re-use.

Start your SOA with WebSphere MQ for reliable service connectivity, WebSphere Enterprise
Service Buss (ESB) for Web service-based mediated connectivity or WebSphere Message
16 Powering SOA with IBM Data Servers

Broker, the advanced ESB for robust connectivity beyond Web services. In addition, SOA
appliances can enable specialized connectivity needs in an alternate form factor. Now you
can add flexibility and speed when developing new customer service processes.

� WebSphere ESB and Message Broker

IBM Systems z support

– Expose non-services applications as services
– WebSphere DataStage TX plug-in for Advanced ESB
– Additional support for 64 bit platforms

� WebSphere DataPower Appliances

ESB functionality in an appliance form factor

– Simplify SOA with drop-in devices
– Help secure Web services
– Accelerate and scale SOA with high-performance XML processing

� WebSphere MQ and Extended Security Edition

Supports message-based connectivity between applications or files

– Enhances security for your SOA messaging backbone

� WebSphere Adapters

Rapid connection for hundreds of endpoints into your SOA

– First class support for SAP and Oracle applications
– Enhanced support for data, messaging, and Web services

2.3.2 Reuse: Creating flexible, service-based business applications

Cut costs, reduce cycle times and expand access to core applications through reuse.
Analysts estimate it is up to five times less expensive to re-use existing applications than to
write new applications.

Create and reuse services to increase time to value, plus allow expanded access to core
applications-quickly. Start with identifying high-value existing IT assets and service, enable
them for reuse or create new services for later reuse and employ a registry or repository to
facilitate oversight and control of how you reuse services.

Use portfolio management to consider which assets you need to run your company. Identify
high-value existing IT assets and service-enable them for reuse. Satisfy remaining business
needs by creating new services. Finally, create a registry/repository to provide centralized
access to and control of these reusable services.

Did you know it is five time less expensive to re-use existing applications than to write new
applications?

� WebSphere Application Server

– Enhanced tools and JDK™ 5 innovations make creating and deploying re-usable
services quicker and easier

– New Web services standards make interactions more flexible and secure

– New, integrated support for virtual real-time multimedia elements, like voice, video and
instant messaging

� WebSphere Application Server Community Edition

– New Web-tier clustering and simplified deployment
– Improved application portability to WebSphere Application Server Family
Chapter 2. SOA: From abstract to concrete 17

– WebSphere Extended Deployment
– Now available on IBM System z™
– Supports new workloads: process server, commerce, and portal
– Enhanced Reuse of IBM Systems z Assets

� CICS®

– Enhanced Web services for better access to trusted, high quality applications

� WebSphere Developer for System z and WebSphere Studio Asset Analyzer

– Visually compose services into process flows

� WebSphere Commerce

– New cross-channel business services for gift registry and contact center

– Reuse of e-commerce processes in other channels such as point of sale, call center
and kiosk

– Web services integration with existing order management systems for seamless,
cross-channel order and inventory

– Integrated development environment for Web services

2.4 An implementation roadmap for SOA

Why is SOA different and here to stay?

Its objective is clearly to help businesses grow faster and lowering their total cost of
ownership at the same time. SOA is built on open industry standards for which all key vendors
in the industry offer components that integrate at some level. It does not lock you into a
proprietary technology that ties you to a specific vendor. It ultimately gives customers more
choices.

The entry cost for service-enabling your existing IT assets is low so that you can implement
proof of concepts solutions quickly. Most vendors provide free of charge ways to enable your
existing middle-ware or applications as services and there exist open source or community
offerings that will allow you to implement infrastructure as well as interaction and process
services for complete SOA solutions so you can immediately see a return on investment. As
your adoption of SOA grows, you can choose to add SOA offerings from vendors that will pay
off in a very short time by increasing your revenue and decreasing your TCO.

It is no big bang approach. A SOA typically starts in the following sequence:

1. Implementing Access Services to your applications and data

This gets you started on SOA. The minimum requirement is that you create Web services
that allow access to data stored in data servers or applications.

2. Implementing Partner services for business to business process integration

At a minimum you make Web services available to business partners.

3. Implementing Interaction services for business to consumer integration

At a minimum you allow employees or customer representatives to access data and
application services through Web or client technologies

4. Implementing Information services to leverage data from all your enterprise data for
competitive

Cleans, transform, aggregate information so that they can be consumed by partner and
interaction services
18 Powering SOA with IBM Data Servers

5. Implementing Process services to orchestrate your services across your entire SOA

Fully automate business process by orchestrating access, partner, interaction and
information services

6. Implement an Enterprise service bus to improve availability and implement quality of
service objectives

Make your services robust and meet quality of service expectations through implementing
an enterprise service bus

7. Implement infrastructure services to connect your SOA to your enterprise infrastructure
such as call centers

Extend the reach of your services infrastructure to infrastructure not typically connected or
well integrated in all of your business services

8. Implement Business Application Services to rapidly plug new service offerings into your
existing infrastructure

Plug-in new applications that are integrated into your SOA from day one to rapidly pay off
your investment

Depending on your business needs and the size and complexity of your business you may
choose to incrementally implement all services in your SOA, or simply up to Step 2 (or any
higher).

2.5 The scope of this redbook

This redbook will help you implement Steps 1, 2, 3 listed in the previous section.

Most business applications use a data server to hold enterprise data and they frequently use
stored procedures as the business logic that operates on data stored in data servers.

Chapter 3, “Web services and service-oriented architecture” on page 23 describes the
technologies used for Web services. If you are already familiar with these technologies,
proceed to Chapter 5, “Development tools” on page 103 for an overview of the development
tools used for SOA. These chapters will enable you to develop Web services to access data
and stored procedures in IBM data servers and how to enable them with partners (for both
providing Web services to partners and consuming Web services from partners).

Part 5, “Assembling and developing a scenario” on page 395 shows you how to assemble
and develop interaction services using WebSphere portal technology as an example.

Steps 4 to 8 are covered in different Redbooks. In particular, if you want to coordinate your
Web services using WebSphere Integration Developer and WebSphere Process Server as
described in the redbook Getting Started with WebSphere Integration Developer and
WebSphere Process Server, SG24-7130.

To learn more about Web services technology in WebSphere Application Server 6 refer to
WebSphere Version 6 Web Services Handbook Development and Deployment, SG24-6461.
Chapter 2. SOA: From abstract to concrete 19

20 Powering SOA with IBM Data Servers

Part 2 SOA technologies

In Part 2 we introduce the fundamental technical components of the SOA. We look at
standards and technologies, Web services, XML, and portals in these chapters:

� Chapter 3, “Web services and service-oriented architecture” on page 23
� Chapter 4, “SOA and user interfaces with portals” on page 69
� Chapter 5, “Development tools” on page 103

Part 2
© Copyright IBM Corp. 2006. All rights reserved. 21

22 Powering SOA with IBM Data Servers

Chapter 3. Web services and
service-oriented architecture

In this chapter we provide an introduction to service-oriented architecture (SOA). We also
introduce Web services as an implementation of SOA. The main goal is to explicitly state the
design principles in order to assist architects and designers in creating SOAs that are likely to
achieve the benefits of SOA.

In this chapter we discuss these topics:

� Drivers for Web services and SOA
� Standards and technologies for Web services and SOA
� An overview of SOA and Web service
� Web services (WS) and SOA work together
� SOA and Web service architecture design considerations
� Additional information for SOA

3

© Copyright IBM Corp. 2006. All rights reserved. 23

3.1 Drivers for Web services and SOA

SOA is currently often implemented with Web services. The sources listed in 3.6, “Additional
information for SOA” on page 66 provide more information, but since there is some variation
in their description we provide he an introduction in order to place the remaining content of
this redbook in context. The IT industry has strived to achieve rapid, flexible integration of IT
systems across all elements of the business cycle. The key benefit of the Web service model
is that it permits different distributed services to run on variety of software platforms and
architectures, and allows them to be written in different programming languages.

The drivers behind this vision include:

� Increasing the speed at which businesses can implement new products and processes or
change existing ones. The greatest strength of Web services is their ability to enable
interoperability in a heterogeneous environment. As long as the various systems are
enabled for Web services, they can use the services to easily interoperate with each other.

� Reducing implementation and ownership costs. Most enterprises have an enormous
amount of data stored in existing enterprise information systems, and the cost to replace
these systems may not meet businesses’ expectations. Web services let enterprises
application developers reuse and even commodify these existing information assets.

� Enabling flexible pricing models by outsourcing elements of the business or moving from
fixed to variable pricing, based on transaction volumes. Web service standards have
opened a large marketplace for tools, products, and technologies. This gives organizations
a wide variety of choices, and they can select configurations that best meet their
application requirements.

� Simplifying the integration work that is required by mergers and acquisitions. Since a main
objective of Web services is improving interoperability, exposing existing applications or
services as Web services increases their reach to different clients. This occurs regardless
of the client’s platform: it does not matter if the client is based on the Java or Microsoft®
platforms or even if it is based on a wireless platform. In short, a Web service can help you
extend your applications and services to a rich set of client types.

� Achieving better IT utilization and return on investment. Because Web services introduce
a common standard across the Web, vendors in the interest of staying competitive, are
more likely to develop better tools and technologies. These tools and technologies will
attract developers because they emphasize increased programming productivity. As a
result, the entire industry benefits.

� Simplifying the enterprise architecture and computing model.

Really achieving these goals affects the entire scope of a business’s processes and IT
systems. Although several systems that cover some elements of this scope have been
implemented, there has not been a single, broadly accepted approach.

The combination of SOA, an approach that draws together proven techniques from several
proceeding architecture and design styles, with new open standards and integration
technologies has the potential to provide a consistent approach.

Figure 3-1 on page 25 illustrates how Web services decouples interfaces from applications.
SOA uses a programming model that allows a rich abstraction of both the business
application and the interface. By abstracting, the interfaces can be clearly separated from the
business applications. This enables you to reduce the number and complexity of those
interfaces. Also it allows you to reuse both the interfaces and the business applications.
24 Powering SOA with IBM Data Servers

Figure 3-1 Web service decouples interfaces from applications

While we can use a programming model to decouple interfaces with applications, IBM has
developed a much efficient tool Enterprise Service Bus (ESB) to manage those interfaces.
Figure 3-2 on page 26 illustrates the use of ESB to manage Web services. It virtualizes the
interface, or in other words, it decouples the point-to-point connections from the interfaces
themselves. The interfaces are put into a third party broker which helps you manage the
interfaces better. This enables faster and more flexible coupling and decoupling of
applications. Because you can find all of the applications and the interfaces, you can then
reuse both. All of these elements are connected through WebSphere ESB which provides
connectivity infrastructure for integrating applications and services to power your SOA
systems.

Web service decouples interfaces from applications
Chapter 3. Web services and service-oriented architecture 25

Figure 3-2 Enterprise Service Bus (ESB) to manage Web services

To get the most of advantages from SOA, there is a strong synergy between SOA and
consistency of business processes across the enterprise. Full scale implementation will
involve business process improvement. SOA can be delivered with existing technology. Most
of today’s production service-oriented architectures do not yet use Web services – they use
existing mature technologies, such as XML and asynchronous messaging. Web services offer
the benefits of standards and the promise of interoperability. Figure 3-3 on page 27 illustrates
an SOA conceptual structure: how the major SOA components work together, and include:
presentation layer, business process, services, components and existing resources.
26 Powering SOA with IBM Data Servers

Figure 3-3 SOA conceptual structure

SOA and enables new opportunities for more flexible, rapid, and widespread integration in a
model that is consistent with the exposure of business functions as services. In order to
achieve those goals, we must follow some common SOA standards and technologies.

3.2 Standards and technologies for Web services and SOA

SOA is an integration architecture approach that is based on the concept of service. The
business and infrastructure functions that are required to build distributed systems are
provided as services that collectively, or individually, deliver application functionality to either
user applications or other services. Web services are a recent set of technology
specifications that leverage existing proven open standards such as XML, URL, and HTTP to
provide a new system-to-system communication standard. Based on this communication
model, additional higher-level Web services standards have also been defined to address
transactions, security, business processes, and so forth: the higher-order functions that are
required to get systems, applications, and processes (rather than objects and components)
talking to each other.

3.2.1 Overview of Web services standards

The Web has brought new customers, new business models, extensions of opportunity, new
transparency and improved collaboration between employees and employers, and in some
cases reductions in infrastructure costs and complexity. The key to these successes was a
universal server-to-client model that is consistent with a highly distributed environment, based
on simple open standards and industry support.

Web services promises to do the same thing for the way systems talk to systems: integrating
one business directly with another so that the process doesn't have to wait for people. The

SOA conceptual structure

Integration Architecture
(Enterprise Service Bus)

service m
odeling

Existing Application Resources and Assets
PackageCustom

Application

Services

Business Process

Components

Q
oS, Security, M

anagem
ent &

M
onitoring (Infrastructure Service)

Process Choreography

Simple and Composite Services

4

3

2

1

6 7

Enterprise Components

Custom
Application

Package

Service C
onsum

er
Service Provider

Presentation Layer

D
ata Architecture & Business Intelligence

85

Industry
Models

Composite service

Simple service

Decomposition
Separation of Concern
Chapter 3. Web services and service-oriented architecture 27

key is a universal program-to-program communication model based on simple open
standards and industry support.

Web service standards establish a base of commonality and enable Web services to achieve
wide acceptance and interoperability. Some of standards are core elements such as
eXtensible Markup Language (XML), Simple Object Access Protocol (SOAP), Web services
Description Language (WSDL), and Universal Description, Discovery, and Integration
(UDDI):

One of the main aims of Web services is to provide a loose coupling between service
consumer and service providers. While this is limited to a certain extent by a requirement for
the consumers and providers to agree on a WSDL interface definition, Web services have
been created with significant flexibility with regard to their location. Figure 3-4 shows the basic
interaction model supported by Web services.

Figure 3-4 Web services Model

� Service Provider: Provides e-business services and publishes availability of these
services through a registry. Each provider must decide which services to expose, how to
implement trade-off between security and easy availability, how to price the services (or, if
they are free, how to exploit them for other value). The provider also has to decide what
category the service should be listed in for a given broker service and what sort of trading
partner agreements are required to use the service.

� Service Consumer: Contacts the service registry to obtain a reference to a service
provider, and the location of the service provider, then makes calls on the service provider.

� Service Directory: Provides support for publishing and locating services like telephone
yellow pages. The service directory (also known as the service broker) is responsible for
making the Web service interface and implementation access information available to any
potential service requestor. The implementers of a broker have to make a decision about
the scope of the broker. Public brokers are available all over the Internet, while private
brokers are only accessible to a limited audience, for example users of a company-wide
intranet. Furthermore, the scope of the offered information has to be decided. Some
brokers will specialize in breadth of listings. Others will offer high levels of trust in the listed

Role of UDDI in a Web services

Web
Service
Provider

Web
Service

Requestor

UDDI
Registry

1. Registers its
services with

2. Finds services
with

3.Binds with and uses
the services of
28 Powering SOA with IBM Data Servers

services. Some will cover a broad landscape of services and others will focus on a given
industry. Brokers will also be available that simply catalog other brokers. Depending on the
business model, a broker may attempt to maximize look-up requests, number of listings, or
accuracy of the listings.

� Service Requestor: Locates required services via the Service Broker binds to services
via Service Provider. One important issue for users of services is the degree to which
services are statically chosen by designers compared to those dynamically chosen at
runtime. Even if most initial usage is largely static, any dynamic choice opens up the
issues of how to choose the best service provider and how to assess quality of service.
Another issue is how the user of services can assess the risk of exposure to failures of
service suppliers.

The service-oriented architecture offers the following properties:

� Web services are self-contained.

On the client side, no additional software is required. A programming language with XML
and HTTP client support is enough to get you started. On the server side, merely a Web
server and a SOAP server are required. It is possible to Web services enable an existing
application without writing a single line of code.

� Web services are self-describing.

Neither the client nor the server knows or cares about anything besides the format and
content of request and response messages (loosely coupled application integration). The
definition of the message format travels with the message; no external metadata
repositories or code generation tool are required.

� Web services can be published, located, and invoked across the Web.

This technology uses established lightweight Internet standards such as HTTP. It
leverages the existing infrastructure. Some additional standards that are required to do so
include SOAP, WSDL, and UDDI.

� Web services are language-independent and interoperable.

Client and server can be implemented in different environments. Existing code does not
have to be changed in order to be Web service enabled.

� Web services are inherently open and standard-based.

XML and HTTP are the major technical foundation for Web services. A large part of the
Web service technology has been built using open-source projects. Therefore, vendor
independence and interoperability are realistic goals this time.

� Web services are dynamic.

Dynamic e-business can become reality using Web services because, with UDDI and
WSDL, the Web service description and discovery can be automated.

� Web services can be composed.

Simple Web services can be aggregated to more complex ones, either using workflow
techniques or by calling lower-layer Web services from a Web service implementation.
Web services can be chained together to perform higher-level business functions. This
shortens development time and enables best-of-breed implementations.

� Web services build on proven mature technology.

There are a lot of commonalities, as well as a few fundamental differences to other
distributed computing frameworks. For example, the transport protocol is text based and
not binary.
Chapter 3. Web services and service-oriented architecture 29

� Web services are loosely coupled.

Traditionally, application design has depended on tight interconnections at both ends. Web
services require a simpler level of coordination that allows a more flexible re-configuration
for an integration of the services in question.

� Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code level. Service
consumers have to know the interfaces to Web services but do not have to know the
implementation details of services.

� Web services provide the ability to wrap existing applications.

Already existing stand-alone applications can easily be integrated into the
service-oriented architecture by implementing a Web service as an interface.

There are a lot of SOA technologies in the marketplace. How can all those technologies and
standards work together? Figure 3-5 shows the major SOA component standard stack.

Figure 3-5 SOA standard stack with Web service

Also, we can view SOA technologies by categories. Figure 3-6 on page 31 shows the
category of the standards, include: core technologies, description and discovery, messaging,
management, business process transactions, security, user experience, J2EE and Java JSR.

SOA Standard Stack

W
eb S

ervice Interoperability (W
S

-I)

Transports: HTTP/HTTPS, JMS, RMI/IIOP

XML family of Specifications

SOAP, SOAP Attachments WS -
Notification

WSDL WS - Policy UDDI

WS -
Addressing

WS – Security
family of Specifications

WS – Reliable
Messaging

WSDM WS - Coordination

Business Process
Execution Language WS - Transaction

Web Service for Remote Portlets

Foundation

Messaging &
Encoding

Description &
Discovery

QoS
(Security & Reliability)

Enterprise
(Management, Service

Composition &
Transactions)

User Experience
30 Powering SOA with IBM Data Servers

Figure 3-6 Category of the standard

Figure 3-7 on page 32 shows the relationship between the core elements of the SOA. All
elements use XML including XML namespaces and XML Schemas. Service requestor and
provider communicate with each other. WSDL is one of technologies to make service
interfaces and implementations available in the UDDI registry. WSDL is also the base for
SOAP server deployment and SOAP client generation.

Category of Standard
Chapter 3. Web services and service-oriented architecture 31

Figure 3-7 Core technologies for SOA

IBM has been a leader in SOA space. For SOA life cycle development, IBM has a set of tools
and methods to develop, deploy and manage SOA applications. The IBM SOA Reference
Architecture defines the IT services required to support an SOA. It includes development
environment, services management, application integration, and runtime process services.
The capabilities of the architecture can be implemented on a build-as-you-go basis as new
requirements are addressed over time.

Figure 3-8 on page 33 shows the IBM SOA reference architecture and the supporting
software.
32 Powering SOA with IBM Data Servers

Figure 3-8 IBM SOA Reference Architecture with product mapping

3.2.2 eXtensible Markup Language

Extensible Markup Language (XML) and Extensible Stylesheet Language (XSL) stylesheets
can be used on the server side to encode content streams and parse them for different
clients, enabling you to develop applications for both a range of PC browsers and for
emerging pervasive devices. The content is in XML and an XML parser is used to transform it
to output streams based on XSL stylesheets that use Cascading Style Sheets (CSS).

This general capability is known as transcoding and is not limited to XML-based technology.
The appropriate design decision here is how much control over the content transforms you
need in your application. You will want to consider when it is appropriate to use this dynamic
content generation and when there are advantages to having servlets or JavaServer™
Pages™ (JSPs) specific to certain device types.

XML is also used as a means to specify the content of messages between servers, whether
the two servers are within an enterprise or represent a business-to-business connection. The
critical factor here is the agreement between parties on the message schema, which is
specified as an XML Document Type Definition (DTD) or Schema. An XML parser is used to
extract specific content from the message stream. Your design will need to consider whether
to use an event-based approach, for which the Simple API for XML (SAX API) is appropriate,
or to navigate the tree structure of the document using the Document Object Model (DOM)
API.

IBM SOA Reference Architecture with product mapping
Chapter 3. Web services and service-oriented architecture 33

IBM’s XML4J XML parser was made available through the Apache open source organization
under the Xerces name. For open source XML frameworks, see:

http://xml.apache.org/

Defining XML documents
XML documents are defined using DTDs or XML Schemas. DTDs are a basic XML definition
language, inherited from the Standard Generalized Markup Language (SGML) specification.
The DTD specifies what markup tags can be used in the document along with their structure.
DTDs have two major problems:

� Poor data typing

In DTD elements can only be specified as EMPTY, ANY, element content, or mixed
element-and-text content, and there is no standard way to specify null values for elements.
Data typing such as date formats, numbers, or other common data types cannot be
specified in the DTD. As a result, an XML document might comply with the DTD but still
have data type errors that can only be detected by the application.

� Not defined in XML

DTD uses its own language to define XML syntax that is not compliant to the XML
specification. This makes it difficult to manipulate a DTD.

To solve these problems, the World Wide Web Consortium (W3C) defined a new standard to
define XML documents called XML Schema. XML Schema provides the following advantages
over DTDs:

� Strong typing for elements and attributes
� Standardized way to represent null values for elements
� Key mechanism that is directly analogous to relational database foreign keys
� Defined as XML documents, making them programmatically accessible

Even though XML Schema is a more powerful technology to define XML documents, it is also
a lot harder to work with, so DTDs are still widely used to define XML documents. Additionally,
simple documents can be easily defined using DTDs with similar results to using XML
Schema.

Whether you use one or the other will depend on the complexity of the messages and the
validation requirements of the application. Actually, in many cases both DTD and XML
Schema are provided, so they can be used by the application depending on its requirements.

XSLT
Extensible Stylesheet Language Transformations (XSLT) is a W3C specification for
transforming XML documents into other XML documents. The XSLT is built on top of the
Extensible Stylesheet Language (XSL), which is a stylesheet language for XML. Unlike CSS,
XSL is also a transformation language.

A transformation expressed in the XSLT language defines a set of rules for transforming a
source tree to a result tree, and it is expressed in the form of a stylesheet. An XSLT processor
is used for transforming a source document to a result document. There are currently a
number of XSLT processors available on the market. DataPower has introduced an XSL
just-in-time (JIT) compiler, which speeds up the time taken for the XSL transformation.

The XSLT processor has a performance overhead, so online processing of larger documents
can be slow.
34 Powering SOA with IBM Data Servers

http://xml.apache.org/

XML security
XML security is an important issue, particularly where XML is being used to by organizations
to interchange data across the Internet. Several new XML security specifications are working
their way through three standards bodies:

� World Wide Web Consortium (W3C)
� Internet Engineering Task Force (IETF)
� Organization for the Advancement of Structured Information Standards (OASIS)

We highlight a few specifications here:

� XML Signature Syntax and Processing is a specification for digitally signing electronic
documents using XML syntax.

A key feature of the protocol is the ability to sign parts of an XML document rather than the
document in its entirety. This is necessary because an XML document might contain
elements that will change as the document is passed along or various elements that will
be signed by different parties.

IBM WebSphere Studio provides you with the ability to create and verify XML digital
signatures using a wizard.

� XML encryption will allow encryption of digital content, such as Graphical Interchange
Format (GIF) images or XML fragments. XML Encryption allows parts of an XML
document to be encrypted while leaving other parts open, encryption of the XML itself, or
the super-encryption of data (that is, encrypting an XML document when some elements
have already been encrypted).

� XML Key Management Specification (XKMS) establishes a standard for XML-based
applications to use Public Key Infrastructure (PKI) when handling digitally signed or
encrypted XML documents. XML signature addresses message and user integrity, but not
issues of trust that key cryptography ensures.

� Security Assertion Markup Language (SAML) is the first industry standard for secure
e-commerce transactions using XML. It aims to standardize the exchange of user
identities and authorizations by defining how this information is to be presented in XML
documents, regardless of the underlying security systems in place

Advantages of XML
There are many advantages of XML in a broad range of areas. Some of the factors that
influenced the wide acceptance of XML are:

� Acceptability of use for data transfer

XML is a standard way of putting information in a format that can be processed and
exchanged across different hardware devices, operating systems, software applications,
and the Web.

� Uniformity and conformity

XML gives you an common format that could be developed upon and is accepted
industry-wide.

� Simplicity and openness

Information coded in XML is human readable.

� Separation of data and display

The representation of the data is separated from the presentation and formatting of the
data for display in a browser or other device.
Chapter 3. Web services and service-oriented architecture 35

� Industry acceptance

XML has been accepted widely by the information technology and computing industry.
Numerous tools and utilities are available, along with new products for parsing and
transforming XML data to other data, or for display.

Disadvantages of XML
Some XML issues to consider are:

� Complexity

While XML tags can allow software to recognize meaningful content within documents,
this is only useful to the extent that the software reading the document knows what the
tagged content means in human terms, and knows what to do with it.

� Standardization

When multiple applications use XML to communicate with each other they need to agree
on the tag names they are using. While industry-specific standard tag definitions often do
exist, you can still declare your own nonstandard tags.

� Large size

XML documents tend to be larger in size than other forms of data representation.

Example 3-1 is a XML and WSDL example for stock quote. It includes trade price, ticker
symbol, price and so on.

Example 3-1 XML and WSDL

<?xml version="1.0"?>
<wsdl:definitions name="StockQuote" xmlns:wsdl="http://www.w3.org/2006/01/wsdl"
 targetNamespace="http://example.com/stockquote"
 xmlns:tns="http://example.com/stockquote"
 xmlns:wsoap="http://www.w3.org/2006/01/wsdl/soap">

 <wsdl:types>
 <xs:schema targetNamespace="http://example.com/stockquote"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="TradePriceRequest">
 <xs:complexType>
 <xs:all>
 <xs:element name="tickerSymbol" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name="TradePrice">
 <xs:complexType>
 <xs:all>
 <xs:element name="price" type="xs:float"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </wsdl:types>

 <wsdl:interface name="StockQuoteInterface">
 <wsdl:operation name="GetLastTradePrice"
 pattern="http://www.w3.org/2006/01/wsdl/in-out">
 <wsdl:input element="tns:GetLastTradePriceInput"/>
36 Powering SOA with IBM Data Servers

 <wsdl:output element="tns:GetLastTradePriceOutput"/>
 </wsdl:operation>
 </wsdl:interface>

 <wsdl:binding name="StockQuoteSoapBinding" interface="tns:StockQuoteInterface"
 type="http://www.w3.org/2006/01/wsdl/soap"
 wsoap:version="1.1"

wsoap:protocol="http://www.w3.org/2006/01/soap11/bindings/HTTP">
 <wsdl:operation ref="tns:GetLastTradePrice"
 wsoap:action="http://example.com/GetLastTradePrice"/>
 </wsdl:binding>

 <wsdl:service name="StockQuoteService" interface="tns:StockQuoteInterface">
 <wsdl:documentation>My first service</wsdl:documentation>
 <wsdl:endpoint name="StockQuoteEndPoint" binding="tns:StockQuoteBinding"
 address="http://example.com/endpoint/stockquote"/>
 </wsdl:service>

</wsdl:definitions>

3.2.3 SOAP and WSDL

Simple Object Access Protocol (SOAP) is an-XML based format for constructing messages in
a transport independent way and a standard on how the message should be handled. SOAP
messages consist of an envelope containing a header and a body. It also defines a
mechanism for indicating and communicating problems that occurred while processing the
message. These are known as SOAP faults.

The headers section of a SOAP message is extensible and can contain many different
headers defined by different schemas. The extra headers can be used to modify the behavior
of the middleware infrastructure. For example, the headers can include information about
transactions that can be used to ensure that actions performed by the service consumer and
service provider are coordinated.

The body section contains the content of the SOAP message. When used by Web services,
the SOAP body contains XML-formatted data. This data is specified in the WSDL describing
the Web service.

When talking about SOAP, it is common to talk about SOAP in combination with the transport
protocol used to communicate the SOAP message. For example, SOAP transported using
HTTP is referred to as SOAP over HTTP or SOAP/HTTP.

The most common transport used to communicate SOAP messages is HTTP. This is to be
expected because Web services are designed to make use of Web technologies. However,
SOAP can also be communicated using JMS as a transport. When using JMS the address of
the Web service is expressed in terms of a JMS connection factory and a JMS destination.
Although using JMS provides a more reliable transport mechanism it is not an open standard,
it requires extra and potential expensive investment and does not interoperate as easily as
SOAP over HTTP.

The SOAP version 1.1 and 1.2 specifications are available from the World Wide Web
Consortium.

Figure 3-9 on page 38 shows the conceptual model for SOAP and Web service.
Chapter 3. Web services and service-oriented architecture 37

Figure 3-9 Conceptual SOAP model

Web Services Description Language (WSDL) is an XML-based interface definition
language that separates function from implementation, and enables design by contract as
recommended by SOA. WSDL descriptions contain a port type (the functional and data
description of the operations that are available in a Web service), a binding (providing
instructions for interacting with the Web service through specific protocols, such as SOAP
over HTTP), and a port (providing a specific address through which a Web service can be
invoked using a specific protocol binding). It is common for these three aspects to be defined
in three separate WSDL files, each importing the others.

WSDL describes Web services as a collection of communication endpoints, called ports.
Messages also describe the data being exchanged. Operation is every action allowed at an
endpoint. Port types are collections of operations possible on an endpoint.

The protocol and data format specifications for a port type are specified as a binding. A port is
defined by associating a network address with a reusable binding, and a collection of ports
define a service. In addition, WSDL specifies a common binding mechanism to bring together
all protocol and data formats with an abstract message, operation, or endpoint. See
Figure 3-7 on page 32.

The code samples in Example 3-2 and Example 3-3 on page 39 show how WSDL works with
SOAP.

Example 3-2 A SOAP request

A SOAP Request

POST /EndorsementSearch HTTP/1.1
Host: www.snowboard-info.com
Content-Type: text/xml; charset="utf-8"
Content-Length: 261

The basics of Web services – SOAP

Footstone of WS

1. XML 2. WSDL 3. SOAP

Core of SOAP

It’s a XML-Document-based messaging and remote procedure call
standard encapsulation mechanism.
38 Powering SOA with IBM Data Servers

SOAPAction: "http://www.snowboard-info.com/EndorsementSearch"
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetEndorsingBoarder xmlns:m="http://namespaces.snowboard-info.com">
 <manufacturer>K2</manufacturer>
 <model>Fatbob</model>
 </m:GetEndorsingBoarder>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In response to the SOAP request of Example 3-2 on page 38, the server can send the SOAP
response (HTTP header) message for the foregoing request as shown in Example 3-3. In
natural language, it encapsulates the simple string response "Chris Englesmann".

Example 3-3 A SOAP response

A SOAP Response

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetEndorsingBoarderResponse xmlns:m="http://namespaces.snowboard-info.com">
 <endorsingBoarder>Chris Englesmann</endorsingBoarder>
 </m:GetEndorsingBoarderResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The value of WSDL is that it enables development tooling and middleware for any platform
and language to understand service operations and invocation mechanisms. For example,
given the WSDL interface to a service that is implemented in Java, running in a WebSphere
environment, and offering invocation through HTTP, a developer working in the Microsoft .Net
platform can import the WSDL and easily generate application code to invoke the service. As
with SOAP, the WSDL specification is extensible and provides for additional aspects of
service interactions to be specified, such as security and transactions.

3.2.4 Universal Description, Discovery and Integration

Universal Description, Discovery and Integration (UDDI) servers act as a directory of
available services and service providers. SOAP can be used to query UDDI to find the
locations of WSDL definitions of services, or the search can be performed through a user
interface at design or development time. The original UDDI classification was based on a U.S.
government taxonomy of businesses, and recent versions of the UDDI specification have
added support for custom taxonomies. Figure 3-4 on page 28 shows the famous triangle for
Web services model. There are three elements: provider, register and requestor. A Web
service provider registers its services with the UDDI registry. A Web service requestor looks
up required services in the UDDI registry and, when it finds a service, the requestor binds
directly with the provider to use the service.

The UDDI specification defines an XML schema for SOAP messages and APIs for
applications wanting to use the registry. A provider registering a Web service with UDDI must
Chapter 3. Web services and service-oriented architecture 39

furnish business, service, binding, and technical information about the service. The UDDI
specification includes two categories of APIs for accessing UDDI services from applications:

� Inquiry APIs - enable lookup and browsing of registry information
� Publishers APIs - allow applications to register services with the registry

UDDI APIs behave in a synchronous manner. In addition, to ensure that a Web service
provider or requestor can use the registry, UDDI uses SOAP as the base protocol. Note that
UDDI is a specification for a registry, not a repository. As a registry it functions like a catalog,
allowing requestors to find available services. A registry is not a repository because it does
not contain the services itself.

A public UDDI directory is provided by IBM, Microsoft, and SAP, each of whom runs a mirror
of the same directory of public services. However, there are many patterns of use that involve
private registries. For more information, see the following articles:

� “The role of private UDDI nodes in Web services, Part 1: Six species of UDDI”, available
at:

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� “The role of private UDDI nodes, Part 2: Private nodes and operator nodes”, available at:

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

3.3 An overview of SOA and Web service

Service-oriented architecture is an approach to defining integration architectures based on
the concept of a service. It applies successful concepts proved by Object Oriented
development, Component Based Design, and Enterprise Application Integration technology.
The goal of SOA can be described as bringing the benefits of loose coupling and
encapsulation to integration at an enterprise level.

In order to describe SOA, it is first necessary to define what we understand by a “service” in
this context. This is key as, unless we are confident that the services that we define really are
well designed, we cannot be sure to achieve the promoted benefits of SOA. The most
commonly agreed-on aspects of the definition of a service in SOA are:

– Services are defined by explicit, implementation-independent interfaces.

– Services are loosely bound and invoked through communication protocols that stress
location transparency and interoperability.

– Services encapsulate reusable business function.

The use of explicit interfaces to define and encapsulate services function is of particular
importance. The interface encapsulates those aspects of process and behavior that are
common to an interaction between two systems, while hiding the specifics of each
implementation. By explicitly defining the interaction in this way, those aspects of either
system (for example the platform they are based on) that are not part of the interaction are
free to change without affecting the other system. Figure 3-10 on page 41 shows an example
about IBM WebSphere service registry and repository service life cycle.
40 Powering SOA with IBM Data Servers

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

Figure 3-10 IBM WebSphere service registry and repository service life cycle - an example

After the function has been encapsulated and defined as a service in an SOA, it can be used
and reused by one or more systems that participate in the architecture. For example, when
the reuse of a Java logging API could be described as “design time” (when a decision is made
to reuse an available package and bind it into application code), the intention of SOA is to
achieve the reuse of services at:

� Runtime: Each service is deployed in one place and one place only, and is remotely
invoked by anything that must use it. The advantage of this approach is that changes to
the service (for example, to the calculation algorithm or the reference data it depends on)
need only be applied in a single place.

� Deployment time: Each service is built once but redeployed locally to each system or set
of systems that must use it. The advantage of this approach is increased flexibility to
achieve performance targets or to customize the service.

Note that in contrast to reusing service implementations at runtime, the encapsulation of
functions as services and their definition using interfaces also enables the substitution of one
service implementation for another. For example, the same service might be provided by
multiple providers (such as a car insurance quote service, which might be provided by
multiple insurance companies), and individual service requesters might be routed to
individual service providers through some intermediary agent.

The encapsulation of services by interfaces and their invocation through location-transparent,
interoperable protocols are the basic means by which SOA enables increased flexibility and

IBM WebSphere service registry and repository service
lifecycle - an example

WebSphere Service Registry and Repository

XSD Classification

WSDLSemantic
Annotation

SCDL WS-Policy

Development Development
Asset RepositoryAsset Repository

Service Development Lifecycle

Publish, Deploy
Discover, Harvest

Service Endpoint Registries /
Repositories

Partners and Platforms

UDDI discovery, Retrieve
Publish

Discovery Utilities

Change and Release
Management

ITSM Processes

Operational Efficiency and
Resilience

ITCAM / Service Management

Publish, Deploy
Retrieve Operational

policies
Service descriptions

CMDBCMDB

ProcessESB MB WAS

Runtime access: search,
select,
bind, route, filter, transformPortal

Rational DB2

Tivoli

WebShpere
Chapter 3. Web services and service-oriented architecture 41

reusability. In order to really understand how these benefits can be achieved we delve a little
further into the details of good service design by considering these topics:

� Coupling and decoupling of aspects of service interactions
� Designing connectionless services
� Service granularity and choreography
� Implications of service-oriented architecture
� Web services interoperability

3.3.1 Coupling and decoupling of aspects of service interactions

A basic tenet of SOA is that the use of explicit service interfaces and interoperable,
location-transparent communication protocols means that services are loosely coupled with
each other. To understand how this is implemented in practice, and how it enables the
benefits of SOA, we explore the meaning of loose coupling in more detail.

By loosely coupling services, we mean restricting the number of things that the requester
application code and the provider application code know about each other. If a change is
made to any aspect of a service that is coupled, then either the requester or the provider
application code (or, more likely, both) will have to change. If a change is made by any party
(the requester, provider, or mediating infrastructure) to any aspect of a service that is
decoupled, then there should be no need to make subsequent changes in the other parties.

Notice that we are no longer discussing loosely coupled services, but coupled and decoupled
aspects of services. We can also ask whether coupled and decoupled are the only two
relationships that can exist for an aspect of a service between the requester and the provider.
For example, the business behavior (the function and data model) obviously must be coupled
in order for the requester and provider to interact. In order to flexibly integrate systems in a
heterogeneous environment, it is best that the requester and provider platforms (for example
AIX or Windows) be decoupled.

However, in a realistic situation, the interactions between requester and provider must also be
secured, and the relationship between their transactional models will have to be understood
in order to define how failures will be handled. These and other characteristics fall somewhere
between coupled and decoupled the sense that those terms are used here.

As a working framework, we define the following relationship styles for service aspects
among requesters and providers:

� An aspect is coupled if changes to the aspect by one party in the interaction (requester,
provider, or mediating infrastructure) require corresponding changes by the other parties.

� An aspect is declared if its behavior is specified in the interface to the service, and service
requesters and providers can only interact if they have matching declared behavior, and
this behavior is consistent with the capabilities of the intermediary infrastructure
supporting the interaction.

There are two variations of declared behavior that provide some additional levels of
flexibility:

– An aspect is transformed if it is declared by both service requesters and service
providers, but the infrastructure provides some transformation capability to enable
interactions between service requesters and providers that declare mismatched
behavior.

– An aspect is negotiated if both requester and provider declare a spectrum of behaviors
that they are able to support, and if the intermediary infrastructure is capable of
negotiating an agreed behavior between them for each interaction.
42 Powering SOA with IBM Data Servers

� An aspect is decoupled if changes to the aspect by one party in the interaction do not
require corresponding changes by the other parties. In order to clarify these ideas, it is
useful to consider an example of each type of coupling:

– Business data models are usually coupled between service requesters and providers;
the application code of each must understand the information that is required to
describe (for example) a Customer, Account, or Order.

– Communication protocols can be declared in the service interface. In practice, this
requires that applications code to a protocol-independent service API, such as a
suitable implementation of JAX-RPC. If this is the case, then the protocol binding in the
service interface definition can be changed (for example, from SOAP/HTTP to
SOAP/JMS). This does not require changes to the application code, but it affects the
behavior of the service API implementation, which will execute the service interaction
through a different protocol.

– Data formats are often transformed: It is very common, that is, to convert former or
existing formats, such as COBOL copybooks, to XML formats when enabling service
interfaces to earlier systems. Alternatively, different XML schema may be used by
different systems in an SOA to describe the same data models. In either case, the
supported format is, or can be, defined in a service interface, and middleware
transformation capabilities can be used in the service infrastructure to perform the
required transformations without affecting application code or behavior.

– The identity of a service provider might be negotiated through a third-party broker
component. The broker might use geographical location, client identify, membership
scheme information, transaction value, or several other criteria to match the service
requester with a suitable service provider.

– The implementation platform is often decoupled; if two systems interact through
interoperable protocols such as SOAP/HTTP or messaging middleware, then neither is
aware in any way of the hardware, operating system, or perhaps even the application
server platform supporting the other; either party can change any or all of these
aspects without affecting the other.

We can apply these relationships to various aspects of service that can be identified in a
SOA. For some aspects, SOA or other design principles specify the desired style of
relationship; for other aspects, several relationships might be appropriate depending on
specific scenarios. For each aspect, different techniques can be applied to implement the
desired relationship. Table 3-1 identifies some service aspects, relationships, and techniques.
It should be noted, however, that this area is the subject of ongoing debate and evolution, and
the table should not be taken as definitive. Similarly, the available technologies are evolving
rapidly, for example, the emerging WS-Policy specification will affect this area of design
deeply in coming years.

Table 3-1 Service aspects, relationships and implementation techniques in SOA

Aspect SOA intention SOA intention techniques

Semantic
interface

Coupled � Business systems must share an understanding of the tasks
and data that are processed by the service.

� Shared business object libraries or XML schemas can be
exploited.

� Some transformations, aggregations or enrichments of data
might be consistent with the interface semantics and
implemented by the bus infrastructure; more likely such
transformations would be related to service granularity and
choreography.
Chapter 3. Web services and service-oriented architecture 43

Language and
platform

Decoupled � Language and platform-independent interface definition
such as IDL, WSDL, XSD.

� Language and platform-independent data formats such as
XML.

� Language and platform-independent communication
protocols such as IIOP, SOAP, WebSphere MQ.

� Invocation APIs (for example, JAX-RPC), adapters, or ESB
infrastructure to integrate applications to the interface
definitions and data formats.

Data format Declared or
Transformed

� Language and platform-independent data formats such as
XML.

� Adapters, XSL style sheets, or bus infrastructure required to
support transformations between data formats, such as
between COBOL copybooks and XML.

� Application development tool wizards can create
language-specific representations of some data formats,
particularly XML.

� Other aspects of data format that are critical to real-world
SOA implementations are data encoding, code pages, and
data compression, including XML compression techniques.

Protocol Declared or
Transformed

� Service invocation mechanisms for service requesters and
providers that do not specify service protocol or locations; for
example, an implementation of JAX-RPC with support for
multiple protocols.

Service
provider
identity or
implementa-
tion

Declared or
Negotiated

� Service invocation mechanisms that enable service
substitution, for example JAX-RPC.

� Adapters or ESB infrastructure can perform service routing
to different providers.

� Directory (for example, UDDI) or broker intermediary to
decide who fulfills the service each time.

� An ESB might identify a suitable service provider based on
WS-Policy, for example by selecting the cheapest or
most-responsive provider available at the time.

Time Declared or
Negotiated

� As IT systems show many differing planned and unplanned
availability characteristics (such as 24/7 versus working
hours), service interactions will sometimes have to span
systems with different characteristics.

� Declared by WSDL or negotiated through WS-Policy.
� Use of asynchronous transport protocols, for example

WebSphere MQ, WS-ReliableMessaging.
� ESB or intermediary store and forward capability for

asynchronous request /response, message correlation, and
so forth.

� Message correlation and transaction identifiers used to
associate individual service interactions with longer ongoing
business process interactions.

Aspect SOA intention SOA intention techniques
44 Powering SOA with IBM Data Servers

It is interesting to note in the table that the only aspect of the service that is specified as
coupled is the business behavior. By specifying other aspects to be declared, transformed,
negotiated, or decoupled, the intention is to build the maximum possible flexibility into the
architecture, enabling other aspects of service implementation and interaction to vary as
freely as possible.

In combination with the flexibility of business behavior that is achieved by encapsulating
well-designed business function as services, SOA attempts to maximize the overall flexibility
of integrated business systems. The next two sections discuss some aspects of what is
meant by encapsulating well-designed business function as services, in order to ensure that
the flexibility of behavior really is achieved.

Delivery
assurance,
integrity, and
error handling

Declared or
Negotiated

� Assured delivery communication protocols; for example
WebSphere MQ, WS-ReliableMessaging.

� Error and exception handling processes, for example for
SOAP faults.

� Use the features and deployment descriptors of containers,
such as J2EE, in service implementations.

� Advanced WS standards, for example
WS-ReliableMessaging and WS-Transaction.

� Negotiated through WS-Policy by the ESB.
� In order to provide a consistent end-to-end approach to

delivery assurance, integrity, and error handling for a chain
of service interactions, it will often be necessary to combine
several techniques that are used for individual interactions.
These techniques might include handling communication
failures, the use of synchronous two-phase commit, the
ability to handle duplicate messages, and compensation
schemes.

Security Declared or
Negotiated

� Declared by WS-Security or negotiated through WS-Policy.
� Point-to-point or communication-based security and trust

models.
� Implemented through applications or through third-party or

intermediary components in the SOA architecture.

Service
version

Declared or
Negotiated

� Service naming standards.
� Version-based routing in the bus infrastructure.
� Service request / provider tolerance of changes in optional

data attributes.

Interaction
state

Declared � Matching of messages or events to long-lived processes by
explicit process or transaction IDs in semantic interface, or
by application data (for example, customer ID).

� Service Choreography technology may provide some facility
to use a variety of input data to associate messages with
specific instances of processes.

� Primary key matching technology such as provided by
WebSphere InterChange Server.

� The emerging WS-ResourceFramework provides a standard
model for associating services with stateful resources.

� Enterprise Application Integration middleware support for
message aggregation and correlation.

� Customized solutions involving custom message headers.

Aspect SOA intention SOA intention techniques
Chapter 3. Web services and service-oriented architecture 45

3.3.2 Designing connectionless services

The question of whether services should be stateful or stateless has been discussed
frequently in relation to SOA. However, the issue is complicated by whether it really is
possible to draw a clear line between state and business data. Many service interactions must
be stateful in order to play a role in ongoing business processes or interactions; the issue is
how we should design such services so as to maximize the flexibility of the architecture and
the processes it supports.

To answer this issue, we return to the key to SOA: defining behavior in the interface. In doing
so, we do away with considering stateful and stateless services, and instead declare that
services, whether they deal with stateful business behavior (for example, the renewal process
for an insurance policy) or stateless business behavior (such as performing an exchange rate
calculation) should be connectionless. Connectionless services are those that do not allow or
require a service requester and a specific, executable instance of the service provider to
maintain a relationship between service invocations. The successful implementation of
connectionless services depends on two considerations:

1. The use of technology that prevents handles being retained to specific executable
instances.

2. The design of service interfaces that do not depend on implicit, shared knowledge created
through a sequence of interactions between a specific requester and provider.

The first consideration is relatively easy to address: When stateless protocols such as
asynchronous messaging are used to invoke services, this criterion is fulfilled. When
technologies that are capable of supporting stateful behavior are used, the features of the
technology that manipulate state (for example, HTTP Session or cookies) should not be used.
Meeting this criterion might imply the use or assessment of specific communication
technologies, or the application of design and development guidelines to the implementation
of systems that participate in the SOA.

The second criterion can only be fulfilled through its application as a design principle to the
design of the individual service interface. Table 3-2 shows an example of both a connected
and connectionless design for two services. In this example, a store system in a consumer
electronics shop is trying to charge the cost of an expensive television to a card account that
belongs to Bruce; the cost is high enough that the store system must explicitly authorize the
transaction with the card supplier.

Table 3-2 Connected and connectionless service interactions

The connectionless example in the table shows that the interface to each call specifies all of
the data that is required to perform the service, other than business information owned by the
service provider. For example, Bill’s card balance and credit limit are not part of the service
interface because they are business information owned by the card provider. However, the
fact that Bill is the owner of the account that is relevant to this specific transaction is a part of
the interface, because both the service to authorize the payment and the service to make the
payment must relate to the same cardholder. If this information were not part of the service

Connectionless Connected

Service Client: Can Bill pay $1000 for a new television?
Service Provider: Yes
Service Client: Charge Bill $1000 for a new television.
Service Provider: OK

All of the business data is defined in the
interface.

Part of the business data (the fact that we are
dealing with Bill) is implied in the sequence.
46 Powering SOA with IBM Data Servers

interface (as in the Connected example), then the specific, executable instances of the
service client and the service provider would have to maintain a reference to each other in
order to identify the correct context.

This could cause difficulty if, for example, the physical server that supports the instance of the
service provider crashed; in such as case, what happens to the instance of the service that
remembers that it was dealing with Bill? Was the state of that instance safely stored
somewhere prior to the failure, perhaps in a database? If so, how does the service requester
then connect to another executable instance of the service that somehow knows which
information to read from the database? All of these issues should be familiar to anyone who
has developed stateful distributed applications, such as J2EE or WebSphere applications that
make use of the Java HTTP Session object.

The principle that services should be designed to be connectionless is really saying that for a
shared sequence of activity, each instance of that activity should be identified uniquely (for
example, through a transaction ID or, in this case through a customer ID, Bill), and that the
identity should form part of all service calls. Even better would be to explicitly define and
share the process definition, as the emerging Business Process Execution Language for Web
Services (BPEL4WS) standard could do.

3.3.3 Service granularity and choreography

Many descriptions of SOA also refer to the use of “large-grained” services. However, some
powerful counterexamples of successful, reusable, fine-grained services exist. For example,
getBalance is a very useful service, but hardly large-grained.

More realistically, there will be many useful levels of service granularity in most SOAs; for
example:

� Technical functions (such as logging)
� Business functions (such as getBalance)
� Business transactions (such as openAccount)
� Business processes (such as applyForMortgage)

Some degree of choreography or aggregation is required between each granularity level. It is
unlikely that all organizations will share identical definitions of granularity, but each will
undoubtedly find it beneficial to define their own. At each level of granularity, it is important
that service definitions encapsulate function well enough that it is reusable. Figure 3-11 on
page 48 shows an example of service granularities and choreographies.
Chapter 3. Web services and service-oriented architecture 47

Figure 3-11 Service granularity and choreography

Figure 3-11 describes these interactions among services of various granularities:

� A user submits a request to a self-service application to create a mortgage account. The
self-service application submits the business process service request
createMortgageAccount through the service infrastructure to a service choreographer
component, whose purpose is to choreograph business transaction services into business
process services.

� On receiving the request for the createMortgageAccount business process service, the
service infrastructure first invokes authentication and authorization technical function
services to ensure that the request is valid, then a log technical function service before
finally invoking the createMortgageAccount business process service in the service
choreographer.

� The service choreographer executes the createMortgageAccount business process
service. If the request is valid, then when the other process elements are complete the
choreographer invokes the createCustomerRecord business transaction service through
the service infrastructure to store the details of the new customer. (Before doing this, it
may already have invoked storeMortgageDetails.)
48 Powering SOA with IBM Data Servers

� In the implementation of the Customer Management System createCustomerRecord
business transaction service, it is necessary to validate the information for the new
customer. Part of this validation is checking whether the post code and address match. In
order to do this, a CheckPostCode business function service is invoked through the
service infrastructure.

To summarize, three aggregations or choreographies are performed by distinct components
for distinct granularity levels:

� Service choreographer

It choreographs business transaction services into higher level business process services.

� Service Infrastructure (may be an Enterprise Service Bus)

It choreographs technical function services to control the invocation of business process
services, business transaction services, and business function services.

� Individual application components

It is responsible for invoking business function services where they are required in order to
implement business transaction services.

Of course, this is just one hypothetical example. Real organizations must formulate their own
definitions.

3.3.4 Implications of service-oriented architecture

The encapsulation of reusable business function, the achievement of loose coupling, the
definition of appropriate levels of granularity, and so forth are analysis issues as much as a
technology issues. They are difficult issues to grasp, so SOA cannot be successful without
skilled architects and designers who understand and are able to articulate them. It is easy to
see these concerns becoming hostage to time, skill, and cost issues, leading to another
generation of isolated systems that will require integration.

Widespread implementation of an SOA and infrastructure is a long-term endeavour that
involves all of the usual hard business decisions, questions of data, and process ownership. It
requires serious, long-term commitment by business and by the IT organization that supports
it. It may involve up front costs, centralized costs, and many other challenges:

� No specific technologies are ruled in or ruled out.

� Legacy implementations are possible (for example, CICS Transaction Server “super
router” transactions with simplified, text-based interfaces)

� EAI implementations are commonplace (for example, XML over MQ WebSphere Business
Integration Message Broker)

� Web services are potentially a very good fit, but are still maturing.

3.3.5 Web services interoperability

A unique feature of Web services is that it is a relatively high-level integration protocol with
near-ubiquitous support in the IT industry; this alone is an important reason for its success
and is behind why many individual projects have used the Web services standards to perform
integrations between different platforms.

In order to facilitate the development of truly interoperable Web services standards from this
widespread support, the Web Services Interoperability Organization (often referred to as the
WS-I) was formed in February 2002. The WS-I aims to promote interoperability of Web
services implementations by publishing profiles, which are descriptions of conventions and
Chapter 3. Web services and service-oriented architecture 49

practices for the use of specific combinations of Web services standards through which
systems can interact. Technology vendors can then produce compliant implementations and
publicize that compliance, offering some level of assurance to technology customers as to the
level of Web services interoperability that can be achieved with different implementations.

The WS-I published the first profile for interaction, the Basic Profile, in July 2003, and many
technology vendors provide product implementations of Web services that are compliant with
this profile. The WS-I is creating a Basic Security Profile to describe interoperability using the
Web services security (WS-Security) standards. A draft specification of this profile was
published in February 2004. Of course, interoperability can be achieved using Web services
where WS-I profiles do not exist; however, it may be more limited or require additional work to
achieve. Therefore, the WS-I is an important mechanism for assuring and simplifying
interoperability between implementations of Web services standards as those standards
mature and evolve.

The Web Services Interoperability Organization Web site contains links to published, draft,
and planned interoperability profiles and information about vendor compliance:

http://www.ws-i.org/

3.4 Web services (WS) and SOA work together

The link between Web services and SOA is threefold:

� Web services provide an open standard and machine-readable model (WSDL) for creating
explicit, implementation-independent descriptions of service interfaces.

� Web services provide communication mechanisms that are location-transparent and
interoperable.

� Web services are evolving through Business Process Execution Language for Web
Services (BPEL4WS), document-style SOAP, and WSDL, and emerging technologies
such as WS-ResourceFramework to support the technical implementation of
well-designed services that encapsulate and model reusable function in a flexible manner.

Together, Web services and SOA have the potential to address the following technical issues
that we may face:

� (WS) A multitude of technologies and platforms support your business systems.

Web services are a set of open-standard technologies that are supported by most of the
IT industry and by the Web Services Interoperability organization. Their basis in simple,
text-based, and open-standard technologies such as XML and HTTP, and the fact that
they can leverage more sophisticated interoperable technologies such as asynchronous
messaging, means that they can be supported in the vast majority of IT environments.
Increasing ubiquity and maturity of product support means that implementing and
integrating Web services will become increasingly efficient.

� (SOA) Business process models are a mixture of people practices, application code, and
interactions among people and systems or systems and systems. Although SOA is an
approach to architecture that must be applied to systems and integrations, it specifies a
set of principles and techniques that encourage the encapsulation and modeling of
reusable business functions and processes. Recent and emerging trends in Web services,
such as BPEL4WS and WS-Resource Framework, will increasingly support the modeling
concepts of SOA.

� (SOA) Changes to one system tend to imply ripples of change at many levels to many
other systems.SOA specifies several principles and techniques for achieving the
encapsulation of service function and the loose coupling of service interactions. These
50 Powering SOA with IBM Data Servers

http://www.ws-i.org/

techniques minimize the cases where change to one part of a system implies changes to
other parts to those cases where the implied changes are necessary to support the
underlying changes to the way the system supports the business.

� (WS) No single, fully functional integration solution will talk to them all.

At one level, the use of widely available and interoperable basic Web services open
standards such as SOAP/HTTP with existing Internet and intranet infrastructure provide
an integration solution that already has impressive reach, and it will become increasingly
ubiquitous. Where increased manageability and qualities of service are required,
emerging Enterprise Service Bus middleware, which combine Web services and SOA
concepts with the power of traditional Enterprise Application Integration middleware
technology, will provide a sophisticated and widely interoperable integration infrastructure.

� (WS) Deployment of any single, proprietary integration solution across the enterprise is
complex, costly, and time consuming. Where basic Web services that utilize existing
infrastructure are appropriate, deployment costs and efforts are minimal. The increasing
availability of Web services support in Enterprise Application Integration middleware also
enables the integration of different middleware infrastructures. Similarly, emerging
Enterprise Service Bus technologies will interact with existing integration infrastructure
rather than automatically replace it. So, although SOA and Web services cannot remove
the cost and effort of deploying integration infrastructure, they offer several characteristics
to minimize it.

� (WS) Assuming that you create the services, will your integration solution talk to your
partners? Your future partners?

The Web services technologies have proven effective in many B2B integrations, where
their open standards basis and use of simple, existing infrastructure and protocols makes
them particularly effective. Recent and emerging standards such as WS-Security add to
the sophistication of interaction that is possible when using Web services in this model.

� (SOA) There is no single data, business, or process model across (or beyond) the
enterprise.

Although they are not a magic solution, the SOA principles define an approach that
enables organizations to progressively expose functions across their business as services
and to combine those services into process. Over time, businesses that take this approach
will improve the consistency of their business and process models, and will leverage the
use of business process modeling and automation technology to more explicitly control
and monitor their execution of processes.

� (WS) Not all integration technologies work as well across a wide area network or the
Internet as they do across a local area network.

The Web services technologies support multiple protocols, so they can use the simplest
protocols available, such as HTTP when that offers an advantage, or leverage other
infrastructures such as WebSphere MQ when that is more appropriate.

We have discussed how the key features of SOA and Web services enable us to address
those technical issues, and we have offered new opportunities for more flexible, rapid, and
widespread integration, in a model that is consistent with the exposure of business function as
services, and the choreography of those services into processes that can be modeled,
executed, and monitored: SOA and WS. These techniques and technologies give companies
the tools that are required to implement flexible SOAs and evolve toward an on demand
business model. However, at the current time and for some time to come, the technologies
will be evolving rather than mature and stable. Therefore, individual SOA solutions must make
carefully balanced solutions among customized, proprietary, and open-standard
technologies, which characteristics and components of SOA to implement, and which areas
of business function and process to apply them to.
Chapter 3. Web services and service-oriented architecture 51

Of course, these decisions will be balanced between business benefits, technology maturity,
and implementation or maintenance efforts.

3.5 SOA and Web service architecture design considerations

Previous sections in this chapter described various SOA and Web service components and
motivations for Web services. They also described the various SOA technologies used for
implementing Web services and showed how business might apply these technologies in an
application. Where possible, the sections offered guidelines for good design and highlighted
the advantages and disadvantages among the technologies.

In this sections, we illustrate how to apply these guidelines to the design and implementation
of a Web service application, the adventure builder enterprise. When architecting and
designing Web service applications, you are faced with the significant challenge of
constructing the various application modules so that they work together smoothly. We explain
the motivational factors and issues that need to be considered, and make these issues
concrete by showing how we came to the decisions we eventually made as we architected.
Through this examination, we hope to make it easier for you to determine how best to
architect and design your own Web service applications.

Application design for e-business presents some unique challenges compared to traditional
application design and development. The majority of these challenges are related to the fact
that traditional applications were primarily used by a defined set of internal users, whereas
e-business applications are used by a broad set of internal and external users such as
employees, customers, and partners. Web applications must be developed to meet the varied
needs of these end users.

3.5.1 e-business application design considerations

The following list provides key issues to consider when designing e-business applications:

� The user experience and the look and feel of the site need to be constantly enhanced to
leverage emerging technologies and to attract and retain site users.

� New features have to be constantly added to the site to meet customer demands.

� Such changes and enhancements will have to be delivered at record speed to avoid losing
customers to the competition.

� e-business applications in essence represent the corporate brand online. Developers have
to work closely with the marketing department to ensure that the digital brand effectively
represents the company image. Such intra-group interactions usually present content
management challenges.

� It is hard to predict the runtime load of e-business applications. Based on the marketing of
the site, the load can increase dramatically over time. If the load increases, the design
must allow such applications to be deployed in various high-volume configurations. It is
important to be able to move Web applications between these runtime configurations
without making significant changes to the code.

� Security requirements are significantly higher for e-business applications compared to
traditional applications. To execute traditional applications from the Web, a special set of
security-related software might be needed to access private networks.

� The emergence of the personal digital assistant (PDA) and broadband Internet markets
will require the same information to be presented in various UI formats. PDAs will require a
lightweight presentation style to accommodate the low network bandwidth. Broadband
users, on the other hand, will demand a highly interactive, rich, GUI.
52 Powering SOA with IBM Data Servers

To meet these challenges, it is critical to design Web applications to be flexible. This section
helps you understand some of these design challenges and presents various design options
that promote loosely coupled design to provide a maximum degree of flexibility in a Web
application. We also provide application integration design guidelines and best practices for
Web services, J2EE Connectors, and Java Message Service (JMS).

3.5.2 Design considerations for Web services

Web services are deployed on the Web by service providers. The functions provided by the
Web service are described using the Web Services Description Language (WSDL). Deployed
services are published on the Web by service providers.

A service broker helps service providers and service requestors find each other. A service
requestor uses the Universal Discovery Description and Integration (UDDI) API to ask the
service broker about the services it needs. When the service broker returns the search
results, the service requestor can use those results to bind to a particular service.

As we can see in Figure 3-4 on page 28:

� Web service descriptions can be created and published by service providers.

� Web services can be categorized and searched by specific service brokers.

� Web services can be located and invoked by service requesters.

Building blocks for Web services
We can now look at the building blocks of Web services: SOAP, UDDI and WSDL.

The characteristics of SOAP
SOAP is a network-, transport-, and programming language-neutral protocol that allows a
client to call a remote service. The message format is XML. The currently adopted standard is
W3C’s SOAP 1.1 specification, while SOAP 1.2 is in the review process.

SOAP has the following characteristics:

� SOAP is designed to be simple and extensible.

� All SOAP messages are encoded using XML.

� SOAP is transport protocol independent. HTTP is one of the supported transports. Hence,
SOAP can be run over an existing Internet infrastructure.

� There is no distributed garbage collection. Therefore, call by reference is not supported by
SOAP; a SOAP client does not hold any stateful references to remote objects.

� SOAP is operating system independent and not tied to any programming language or
component technology. It is object model neutral.

Due to these characteristics, it does not matter what technology is used to implement the
client, as long as the client can issue XML messages. Similarly, the service can be
implemented in any language, as long as it can process XML messages.

The characteristics of WSDL
The Web Services Description Language (WSDL) is an XML-based interface and
implementation description language. WSDL1.1 provides a notation to formally describe both
the service invocation interface and the service location.

WSDL allows a service provider to specify the following characteristics of a Web service:

� The name of the Web service and addressing information
Chapter 3. Web services and service-oriented architecture 53

� The protocol and encoding style to be used when accessing the public operations of the
Web service

� Type information, including operations, parameters, and data types comprising the
interface of the Web service, plus a name for the interface

A WSDL specification uses XML syntax, therefore, there is an XML schema for it.

The characteristics of UDDI
UDDI is both a client-side API and a SOAP-based server implementation that can be used to
store and retrieve information on service providers and Web services.

UDDI is a technical discovery layer. It defines:

� The structure for a registry of service providers and services
� The API that can be used to access registries with this structure
� The organization and project defining this registry structure and its API

UDDI is a search engine for application clients rather than human beings. However, there is a
browser interface for human users as well.

Business roles
Next we look at the roles a business and its Web service-enabled applications can take.
Three roles can be identified:

� Service broker
� Service provider
� Service requester

Service broker
The Web service broker is responsible for creating and publishing the UDDI registry. UDDI
registries can be provided in two forms:

� Public registries, such as the IBM UDDI Business Registry and the IBM UDDI Business
Test Registry:

http://www.ibm.com/services/uddi/protect/registry.html
http://www.ibm.com/services/uddi/testregistry/protect/registry.html

� Private registries such as the UDDI registry provided with IBM WebSphere Application
Server

The service broker does not have to be a public UDDI registry. There are other alternatives,
for example a direct document exchange link between the service provider and the service
requester.

Service provider
The service provider creates a Web service and publishes its interface and access
information to the service registry.

Figure 3-12 on page 55 Web service provider architecture shows in more detail the
application architecture of a Web service provider. Using this architecture, we do not have to
change the existing business logic or business objects in order to create a Web service from
the existing enterprise business objects.
54 Powering SOA with IBM Data Servers

http://www.ibm.com/services/uddi/protect/registry.html
http://www.ibm.com/services/uddi/testregistry/protect/registry.html

Figure 3-12 Web service provider architecture

A WSDL specification consists of two parts, the service interface and the service
implementation. Hence, service interface provider and service implementation provider are
the two respective subroles for the service provider. The two roles can, but do not have to, be
taken by the same business.

Service requester
The service requester locates entries in the broker registry using various find operations and
then binds to the service provider in order to invoke one of its Web services.

In Figure 3-13 on page 56 Web service requester architecture shows the architecture of a
Web service requester. Note that the architectural model follows the Model-View-Controller
(MVC) pattern, with the servlet as the main component of the controller; the JSP™ the main
component of the View; and the commands and the Web services residing the Model layer.
Web services provide a link to another system within the Model layer.

This is considered a best practice for building Web-based applications. We can see that Web
services fit very easily into this model.

Web service provider architecture
Chapter 3. Web services and service-oriented architecture 55

Figure 3-13 Web service requester architecture

SOAP messaging mechanisms
The next design point in architecting a Web service is to choose the SOAP messaging
mechanism to use. Figure 3-14 on page 57 shows the two general categories of Web
services SOAP messaging mechanisms:

� SOAP Remote Procedure Calls (RPC)-based Web services
� SOAP message-oriented Web services

Web service requester architecture
56 Powering SOA with IBM Data Servers

Figure 3-14 SOAP messaging operations

RPC versus message-oriented

The advantages and disadvantages of the SOAP RPC approach versus the SOAP
message-oriented Web service approach can be summarized as follows:

� SOAP RPC advantage:

– Simpler development.

� SOAP RPC disadvantages:

– Requester is too dependent on the availability of the Web service provider.

� SOAP message-oriented advantages:

– Less dependency on the Web service provider availability

– Works well for exchanging large documents

– Works well from a nonrepudiation perspective because documents can be signed
digitally and stored at both ends

– Enables extended enterprise electronic workflow and business process integration
using asynchronous integration

� SOAP message-oriented disadvantage:

– Relatively more complex development because it uses assured delivery of
asynchronous messages and can require compensating transactions.

Static versus dynamic Web services discovery
Our next design point is to decide if the Web service requester will use static or dynamic
discovery of available Web services. The requester has to begin with the WSDL file that

SOAP messaging operations
Chapter 3. Web services and service-oriented architecture 57

describes the interface and implementation specification of the Web service to be invoked.
This WSDL file can be retrieved dynamically using a service registry, or statically, as shown in
Figure 3-15.

Figure 3-15 Web services discovery methods

Three types of discovery methods for requesters can be identified. They import interface and
implementation information at different points in time (build time versus. runtime):

� Static service

No public, private, or shared UDDI registry is involved. The service requester obtains a
service interface and implementation description through a proprietary channel from the
service provider (an e-mail, for example), and stores it in a local configuration file.

� Provider-dynamic

The service requester obtains the service interface specification from a public, private, or
shared UDDI registry at build time and generates proxy code for it. The service
implementation document identifying the service provider is dynamically discovered at
runtime (using the same or another UDDI registry).

� Type-dynamic

The service requester obtains both the service interface specification and the service
implementation information from a public, private, or shared UDDI registry at runtime. No
proxy code is generated; the service requester directly uses the more generic SOAP APIs
to bind to the service provider and invoke the Web service.

Message structure
The Web services specification does not mandate any particular message structure. The
message structure is defined by the service provider. Message structures can be anything
from simple strings to complex XML documents.

Web services discovery methods
58 Powering SOA with IBM Data Servers

SOAP encoding versus literal encoding
SOAP encoding, the infamous set of rules often referred to as Section 5 encoding (W3C
SOAP 1.1 Section 5, http://www.w3.org/TR/2000/NOTE-SOAP-20000508) after its location in
the specification, was introduced to provide standard rules for encoding data within SOAP
envelopes. Simple services and clients could simply agree to follow a set of rules for encoding
data to XML in order to make writing services and clients easier. But SOAP encoding is only a
suggestion in the specification. Thus, when a product claims SOAP compatibility, it is not
explicitly claiming SOAP encoding compatibility. This is why the available higher-level APIs
cannot be correct in general when they do automatic marshalling of data types. Just as the
extensibility of SOAP with regard to transports often causes implicit assumptions that create
compatibility problems, so does this extensibility with regard to payload data encoding. To
know whether the client API will generate SOAP envelopes that a specific Web service will
understand, we must be explicitly aware of the data encoding that the Web service expects
and whether that encoding is supported by the client API.

An alternative is to use literal encoding where the payload of a SOAP message is defined
completely by a specific schema, often an XML Schema. Instead of having the Web service
and the client agree to follow a set of rules for serializing the data, they agree on the exact
format of the data. If the format is described by using an XML Schema, a development tool
can read it and provide automatic marshalling of the data from the native language structures
into XML. In this case, all the toolkit has to understand is the entire XML Schema specification
instead of the combination of the particular encoding rules as well as the chosen type system.
The only issue left with using literal encoding is how the tool finds the particular service's XML
Schema. This issue is solved by WSDL.

Currently, no machine-understandable standard exists for describing data models for use with
SOAP Section 5 encoding, so developers are leaning towards literal encoding with XML
Schema. Development tools often provide features such as syntax assistance and data
model validation with XML Schema. This may change soon, however, as the Web Services
Description working group is considering creating a language to describe SOAP Section 5
data models as part of the WSDL binding for SOAP in WSDL Version 1.2.

Synchronous versus asynchronous Web services
Our next design point is selecting the kind of messaging we want to implement. Our choices
are synchronous or asynchronous. The Web services specifications define synchronous
operations only. However, Web services are by their very nature somewhat asynchronous.
From the perspective of the Web service provider it must, in effect, be a listener and be
prepared to accept requests asynchronously from the requester. From the consumer or
requester side, the application can be designed for either synchronous or asynchronous
operation.

Although Web services defines synchronous operations only, there is nothing in the
specifications to preclude asynchronous operations. Generally, the Web services requester
has no guarantee of when, or if, it will receive a response. Beyond that, there are also
situations where the Web service provider needs to perform some external operation, or wait
for human intervention, or call another service that would introduce a delay in the response.
Synchronous Web services are suitable when the Web service provider can provide the
required response instantaneously, such as when getting a stock quote. Here we are, in
effect, using Web services as another RPC mechanism. Current tools are more focused on
this type of Web service. Asynchronous Web services are suitable when the Web service
provider is unable to provide the required response instantaneously, for a variety of reasons
as mentioned above.

Asynchronous operations are usually driven by the asynchronous nature of the business
transaction itself. Asynchronous Web services are suitable for document exchange between
Chapter 3. Web services and service-oriented architecture 59

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

enterprises. It is important to separate this design point from the reliability of the underlying
transport mechanism. We will discuss this in further detail in the next sections.

The designer of a Web services requester needs to decide how to handle asynchronous
responses and how to ensure that his or her implementation is compatible with the way in
which a service provider supports asynchronous operations. One option for the requester is
to issue a request and then block its thread of execution waiting for a response, but for
obvious reasons this is not a good alternative; among other problems, it results in resource
inefficiencies and raises transactional and scalability issues. The preferred solution is to build
asynchronous behavior into the Web services requester. The requester makes a request as
part of one transaction and carries on with the thread of execution. The response message is
then handled by a different thread within a separate transaction. In this model, the requester
requires a notification mechanism and a registered listener component to receive responses.
Likewise, there must be a correlator (a correlation or transaction ID) exchanged between the
service requester and the service provider for associating responses with their requests.

Transports and local interfaces
The transports that can be used for Web services communications vary in their capabilities to
facilitate the support of asynchronous operations. Thus, it is not only Web services behavior
that can be described as either asynchronous or synchronous; the transport used for
exchanging Web services messages also falls into one category or the other. Transports
whose interfaces inherently support the correlation of response messages to request
messages for application use and support a push and pull type of message exchange are
often described as being asynchronous transports. Synchronous transports do not provide
these facilities and, when used for asynchronous operations, require that the applications (the
client and service provider, for the purposes of this discussion) manage the correlation of
messages exchanged by not only defining how the correlator will be passed within each
message, but by also matching responses with requests. Examples of transports that can be
used in support of asynchronous operations are listed in Table 3-3.

Table 3-3 Web services transports type

Typically, when business partners use Web services to integrate their business processes,
they prefer to use Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol over
Secure Socket Layer, or HTTP over SSL (HTTPS), and Hypertext Transfer Protocol Reliable,
HTTPR as transports for communications across the Internet:

See: http://www-128.ibm.com/developerworks/library/ws-httprspec/

Correlation ID
Regardless of the transport being used for an asynchronous operation, because the
response to a request is expected to be received at a later time, there must be a mechanism
to correlate the response with the request. Web services requesters and providers must
agree upon a correlation ID scheme. They also must agree upon who is responsible for
generating the correlation ID.

Asynchronous transports Synchronous transports

HTTPR
JMS
IBM WebSphere MQ Messaging
MS Messaging

HTTP
HTTPS
RMI/IIOP
SMTP
60 Powering SOA with IBM Data Servers

http://www-128.ibm.com/developerworks/library/ws-httprspec/

Return address
In addition there must be an agreed-upon mechanism to identify the return address to which
to send the response. You could set up a return address in a profile database or its return
address could be part of every request.

The asynchronous transports enable a client to continue processing on its thread of execution
immediately after requesting a service invocation. They also provide mechanisms to enable a
client to determine the status of its Web service requests, and to retrieve responses to those
requests.

Web service implementations that do not provide the ability to initiate the transmission of a
response on a separate thread of execution cannot be used for asynchronous operations.
Examples of such implementations would be those that use EJBs to front-end database
applications or implementations that provide access to enterprise systems through the use of
local interfaces such as Java Connector Architecture (JCA).

Asynchronous Web services approaches
When implementing an asynchronous mechanism in Web Services, the preferred solution is
to build asynchronous behavior into the Web services requester. The requester makes a
request as part of one transaction and carries on with the thread of execution. The response
message is then handled by a different thread within a separate transaction. In this model, the
requester requires a notification mechanism and a registered listener component to receive
responses. Similarly, there must be a correlator (a correlation or transaction ID) exchanged
between the service requester and the service provider for associating responses with their
requests.

A typically asynchronous scenario would include the following:

� Production and transmission of a request message by a service requester
� Consumption of the request message by the service provider
� Production and transmission of a response message by the service provider
� Consumption of the response message by the service requester

Development strategies for Web service providers
A service provider can choose between three different development styles when defining the
WSDL and the Java implementation for her Web service:

� Top-down

When following the top-down approach, both the server-side and client-side Java code are
developed from an existing WSDL specification.

� Bottom-up

If some server-side Java code already exists, the WSDL specification can be generated
from it. The client-side Java proxy is still generated from this WSDL document.

� Meet-in-the-middle

The meet-in-the-middle (MIM) development style is a combination of the two previous
ones. There are two variants:

– MIM variant 1

Some server-side Java code is already there. Its interface, however, is not fully suitable
to be exposed as a Web service. For example, the method signatures might contain
unsupported data types. A Java wrapper is developed and used as input to the WSDL
generation tools in use.
Chapter 3. Web services and service-oriented architecture 61

– MIM variant 2

There is an existing WSDL specification for the problem domain; however, its
operations, parameters, and data types do not fully match with the envisioned solution
architecture. The WSDL is adopted before server-side Java is generated from it.

In the near future, we expect most real-world projects to follow the meet-in-the-middle
approach, with a strong emphasis on its bottom-up elements. This is MIM variant 1, starting
from and modifying existing server-side Java and generating WSDL from it.

Level of integration between requester and provider
In a homogeneous environment, client and server (requester and provider) use the same
implementation technology, possibly from the same vendor. They might even run in the same
network.

In such an environment, runtime optimizations such as performance and security
improvements are possible. We expect such additional vendor-specific features to become
available as the Web services technology evolves.

We do not recommend enabling such features, however, because some of the main
advantages of the Web service technology such as openness, language independence, and
flexibility can no longer be exploited. Rather, you should design your solution to loosely
couple requester and provider, allowing heterogeneous systems to communicate with each
other.

3.5.3 The key challenges in Web services

Web services can potentially revolutionize application integration by providing a layer of
abstraction between the technology that requests a service and the technology that provides
the service. In order to achieve this, though, there are still technical challenges that have to be
addressed. This section briefly describes a few key issues, such as the Extended Web
Services Architecture, security, interoperability, quality of service, and distributed
transactions.

In February 2004, W3C released a draft Web Service Architecture specification that identifies
the functional components, the relationships among those components, and establishes a set
of constraints to guide the desired properties of the overall architecture.

See the W3C Web Services Architecture specification for more detail:

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

3.5.4 Security considerations

Web services security is one of the bigger challenges in implementing Web services-based
systems. Threats to Web services involve threats to the host system, the application and the
entire network infrastructure. According to W3C, “at this time, there are no broadly-adopted
specifications for Web services security”. In this section we will discuss the requirements for
providing security for Web service, and a few of approaches.

At high level, the requirements for security are as following:

� Identity, which enables a business or service to know who you are

� Authentication, which enables you to verify that a claimed identity is genuine

� Authorization, which lets you establish who has access to specific resources
62 Powering SOA with IBM Data Servers

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

� Data integrity, which lets you establish that data has not been tampered with

� Confidentiality, which restricts access to certain messages only to intended parties

� Nonrepudiation, which lets you prove a user performed a certain action such that the user
cannot deny it

� Auditing, which helps you to keep a record of security events

With IBM WebSphere Application Server V6, you have the following options for securing Web
services:

� Message-level security using Web services security (WS-Security)

� Transport-level security using TLS/SSL

Figure 3-16 provides an overview of Web services security.

Figure 3-16 Securing Web services

For a full discussion of Web services security and implementation examples, see WebSphere
Version 6 Web Services Handbook Development and Deployment, SG24-6461.

WS-Security
The WS-Security specification defines message-level security that provides for message
content integrity and confidentiality. Unlike SSL, WS-Security can provide end-to-end
message-level security. This means that the message security can be protected even if the
message goes through multiple services, called intermediaries. WS-Security is independent
of the transport layer protocol and can be used for any Web service binding (for example,
HTTP, SOAP, RMI).

Here are some simple guidelines as to when WS-Security should be used:

Securing Web services
Chapter 3. Web services and service-oriented architecture 63

� Multiple parts of message can be secured in different ways.

You can apply multiple security requirements, such as integrity on the security token (user
ID and password) and confidentiality on the SOAP body.

� Intermediaries can be used.

End-to-end message-level security can be provided through any number of
intermediaries.

� Non-HTTP transport protocol is used.

WS-Security works across multiple transports (also change of transport protocol) and is
independent of the underlying transport protocol.

� User authentication is possible.

Authentication of multiple party identities is possible.

WS-Security represents only one of the layers in a complex, secure Web services solution
design. A more general security model is required to cover other security aspects, such as
logging and non-repudiation. The definition of those requirements is defined in a common
Web services security model framework.

The Web services security model introduces a set of individual interrelated specifications to
form a layering approach to security. It includes several aspects of security: identification,
authentication, authorization, integrity, confidentiality, auditing, and non-repudiation. It is
based on the WS-Security specification, co-developed by IBM, Microsoft, and VeriSign.

The Web services security model is schematically shown in Figure 3-17.

Figure 3-17 WS-Security road map

These specifications include different aspects of Web services security:

WS-Security road map
64 Powering SOA with IBM Data Servers

� WS-Policy - Describes the capabilities and constraints of the security policies on
intermediaries and endpoints (for example, required security tokens, supported encryption
algorithms, and privacy rules).

� WS-Trust - Describes a framework for trust models that enables Web services to securely
interoperate, managing trusts and establishing trust relationships.

� WS-Privacy - Describes a model for how Web services and requestors state privacy
preferences and organizational privacy practice statements.

� WS-Federation - Describes how to manage and broker the trust relationships in a
heterogeneous federated environment, including support for federated identities.

� WS-Authorization - Describes how to manage authorization data and authorization
policies.

� WS-SecureConversation - Describes how to manage and authenticate message
exchanges between parties, including security context exchange and establishing and
deriving session keys.

The combination of these security specifications enables many scenarios that are difficult or
impossible to implement with today's more basic security mechanisms such as transport
securing or XML document encryption.

 For more information, see: Security in a Web Services World: A Proposed Architecture and
Roadmap, proposed by IBM and Microsoft.

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

Transport-level security
To secure HTTP, transport-level security can be applied. Transport-level security is a
well-known and often used mechanism to secure HTTP Internet and intranet
communications. Transport-level security is based on Secure Sockets Layer (SSL) or
Transport Layer Security (TLS) that runs beneath HTTP.

HTTPS allows client-side and server-side authentication through certificates, which have
been either self-signed or signed by a certification agency.

For Web services bound to the HTTP protocol, HTTPS/SSL can be applied in combination
with message-level security (WS-Security).

Unlike message-level security, HTTPS encrypts the entire HTTP data packet. There is no
option to apply security selectively on certain parts of the message. SSL and TLS provide
security features including authentication, data protection, and cryptographic token support
for secure HTTP connections.

SOAP/HTTP transport-level security
Although HTTPS does not cover all aspects of a general security framework, it provides a
security level regarding party identification and authentication, message integrity, and
confidentiality. It does not provide authentication, auditing, and non-repudiation. SSL cannot
be applied to other protocols, such as JMS. To run HTTPS, the Web service port address
must be in the form https://.

Even with the WS-Security specification, SSL should be considered when thinking about Web
services security. Using SSL, a point-to-point security can be achieved.

Here are a few simple guidelines to help decide when transport-level security should be used:

� No intermediaries are used in the Web service environment.
Chapter 3. Web services and service-oriented architecture 65

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

With intermediaries, the entire message has to be decrypted to access the routing
information. This would break the overall security context.

� The transport is only based on HTTP.

No other transport protocol can be used with HTTPS.

� The Web services client is a stand-alone Java program.

WS-Security can only be applied to clients that run in a J2EE container (EJB™ container,
Web container, application client container). HTTPS is the only option available for
stand-alone clients.

Figure 3-18 provides examples of how to implement WS-S. There are two code examples,
one of them has WS-S, another without WS-S.

Figure 3-18 Web Service Security (WS-Security) Example

3.6 Additional information for SOA

For more information, see:

� WebSphere Version 6 Web Services Handbook Development and Deployment,
SG24-6461

� Patterns: Implementing Self-Service in an SOA Environment, SG24-6680

Web Service Security (WS-Security) Example

WS-S implementation

SOAP Msg
without WS-S

SOAP Msg
with WS-S
66 Powering SOA with IBM Data Servers

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6,
SG24-6494

� Patterns: Implementing an SOA Using an Enterprise Service Bus, SG24- 6346

� XML for DB2 Information Integration, SG24-6994

� WebSphere Application Server Version 6.0 Information Center, available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

� The XML Encryption workgroup home page is available at:

http://www.w3.org/Encryption/

� The WS-Security specification 1.0 is available at:

http://www.ibm.com/developerworks/library/ws-secure/

� Security in a Web Services World: A Proposed Architecture and Roadmap, proposed by
IBM and Microsoft.

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

� OASIS WS-Security 1.0 and token profiles is available at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

� Web Services Security: SOAP Message: Errata 1.0

http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wsssoap-mes
sage-security-1%200-errata-003.pdf
Chapter 3. Web services and service-oriented architecture 67

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://www.w3.org/Encryption/
http://www.ibm.com/developerworks/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wsssoap-message-security-1%200-errata-003.pdf

68 Powering SOA with IBM Data Servers

Chapter 4. SOA and user interfaces with
portals

In Chapter 3, we provided an introduction to service-oriented architecture (SOA), technical
standards and implementation guidelines. In this chapter we describe the relationship
between enterprise portals and SOA. Many enterprises that adopted an enterprise portal are
now turning their attention to the IT infrastructure and increasingly utilizing SOA as an
approach and strategy. By applying SOA along with portals and settings in a standard-based,
service-oriented environment, different systems are being service enabled that can be
orchestrated to directly support changing business needs.

Portals are becoming the de facto, front-end, user interfaces for IBM SOA strategy - by
offering the customers products that simplify development and deployment of composite
applications, of applications that flexibly combine data services from multiple existing
investments, to realizing the benefits of SOA. A service-oriented programming model can
simplify the development of program-to-human interactions by abstracting interfaces,
standardizing messages, and aggregating independent information sources at the
presentation layer under the control of a user or administrator.

SOA gives organizations unprecedented flexibility to compartmentalize the business
processes trapped within their application silos, and to re-purpose and integrate them into
new business process applications as needed. Portals let organizations extend this new class
of applications, quickly and inexpensively, to all the different users that may be involved in
executing these business processes. Plus when you need to, you can quickly change those
applications. In today's business world, end-user demands continue to outpace the ability of
the IT organization to respond. The key is giving end-user communities a managed
environment in which they can be more self-sufficient.

SOA and composite applications are very powerful concepts for enabling companies to
provide more responsive and flexible business solutions. Portals extend this even further by
enabling IT to give process analysts and business users additional tools for assembling IT
assets, applications and processes in a way that meets their needs.

SOA is taking process applications created years ago, based on the idea that everything
takes place in house or in one user community, and extending them, rather than rewriting
them, so that others with a role in the process can participate. And portals can be the

4

© Copyright IBM Corp. 2006. All rights reserved. 69

interface for these extended applications, the way these new communities of users will
interact with these business processes.

As Web services will become the predominant method for SOA, making information and
applications available programmatically via the Internet, portals need to allow for integration
of Web services as data sources and as remote application components.

We see two important options for the use of Web services in conjunction with portals:

� Portlets running on a portal server can access a Web service to obtain information or
invoke remote methods provided by the Web service.

� Portals can publish portlets as remote portlet Web services to make them available to
other portals in a way to easily find and integrate them.

This chapter contains the following topics:

� An introduction to portals and portlets
� The standardization of portlets (Java standardization request - JSR-168)
� Portals and SOA
� Additional information for portals and SOA

4.1 An introduction to portals and portlets

A portal offers a single point of personalized, unified access to applications, content,
processes, and people. A portal delivers integrated content and applications, plus offers a
unified, collaborative workplace. A portal also provides other valuable functions such as
security, search, and workflow. A portal is an open, standards-based framework supporting a
wide array of options across databases, directories, platforms, and security. Portals are the
next-generation desktop, delivering e-business applications over the Web to many different
client devices.

Portals are designed to meet the needs of all enterprises, from small and medium businesses
to the largest enterprises that demand the most scalable, secure, and robust infrastructure.
Portal applications have several important features. They can collect content from a variety of
sources and present them to the user in a single unified format. The presentation can be
personalized so that each user sees a view based on their own characteristics or role. The
presentation can be customized by the user to fulfill their specific needs. They can provide
collaboration tools, which allow teams to work in a virtual office. They can provide content to a
range of devices, formatting and selecting the content appropriately according to the
capabilities of the device.

A consistent, integrated user experience is achieved by portals that do not only aggregate
components into a single view, but in addition allow integration of these components within
the context. This is often called integration on the glass, because all the applications are
integrated in context by the portal into one single window on the monitor of the portal end
user. This is a very powerful concept that in today’s world of widely fractured IT infrastructures
enables the delivery of consistent and integrated views on multiple IT services. Integration on
the glass improves the user experience and productivity of the IT user; instead of dealing with
different IT systems with potential different user interfaces, integration on the glass provides a
single, consistent view.

4.1.1 What is a portal?

A portal is a Web based application that –commonly – provides personalization, single sign
on, content aggregation from different sources and hosts the presentation layer of Information
70 Powering SOA with IBM Data Servers

Systems. Aggregation is the action of integrating content from different sources within a Web
page. A portal may have sophisticated personalization features to provide customized
content to users. Portal pages may have different sets of portlets to create content for
different users.

A complete portal solution should provide users with convenient access to everything they
need to get their tasks done anytime, anywhere, in a secured manner.

Figure 4-1 Basic portal architecture

Figure 4-1 depicts the basic architecture of a portal. The client request is processed by the
portal Web application, which retrieves the portlets that appear on the current page for the
current user. The portal Web application then calls the portlet container for each portlet to
retrieve its content. The portlet container provides the runtime environment for the portlets
and calls the portlets via the Portlet API.

4.1.2 Portal applications

An organization has many types of users that rely on its information and services. Customers,
partners, and employees each have specific and often diverse needs. To address these
needs, many different kinds of portals have been implemented. These can be categorized as
follows:

Business-to-Consumer (B2C)
This type of extended enterprise portal (extranet) is associated with customer relationship
management (CRM) and provides consumers with direct access to a variety of content, for
example, product manuals and availability or price lists. Portal customers might also purchase

Basic portal architecture

H
TTP Portal Web App

P
ortal P

rovider S
P

I

P
ortal App

P
ortal Invoker A

P
I P
ortal A

P
I

P
ortlet/ServletC

ontainer

H
TM

L, W
M

L, V
oicw

X
M

L

P
ortal App

P
ortal App
Chapter 4. SOA and user interfaces with portals 71

products, check order status, and communicate with customer support. Like any other portal,
a B2C portal is usually tailored to match customer needs.

Business-to-Business (B2B)
Another type of extended enterprise portal, B2B portals participate in supply chain
management (SCM) by providing personalized access to business information by suppliers,
resellers, and distributors. A typical B2B portal might provide a business partner with access
to purchase orders, invoices, statements, and confirmations. Application integration is also
required to integrate business processes in procurement, billing, manufacturing, and
distribution areas.

Business-to-Employee (B2E)
B2E portals (also known as intranet portals) generally serve as a means to aggregate and
disseminate corporate information and services to an organization's employees. There are
two basic types of B2E portals:

� Employee portals provide access to relevant content such as company news, HR
information, search engines, sources of expertise, reports, and other types of information
generally applicable to all employees. These portals can enable employees to
communicate and collaborate via chat rooms, discussion groups, and so on. Typically, an
employee portal also allows for self-service, where an employee can sign up for classes or
benefits, change personal information, and so on.

� Knowledge worker portals are aimed a particular role or set of roles such as sales.
These portals often integrate content in order to support a particular process or
processes. For example, an automotive technician might require resources from a number
of applications such as service history, scheduling, or parts availability.

Portal applications have several important features:

� They can collect content from a variety of sources and present them to the user in a single
unified format.

� The presentation can be personalized so that each user sees a view based on their own
characteristics or role.

� The presentation can be customized by the user to fulfill their specific needs.

� They can provide collaboration tools, which allow teams to work in a virtual office.

� They can provide content to a range of devices, formatting and selecting the content
appropriately according to the capabilities of the device.

4.1.3 Portal page

In Figure 4-2 on page 73, basic portal page components depicts the basic portal page
components. The portal page itself represents a complete markup document and aggregates
several portlet windows. A portlet window consists of a title bar with the title of the portlet,
decorations, and the content produced by the portlet (markup fragment). The decorations
may include buttons to change the window state of the portlet (for example, maximize or
minimize the portlet) and buttons to change the mode of a portlet (for example, show help or
edit the predefined portlet settings).
72 Powering SOA with IBM Data Servers

Figure 4-2 Basic portal page components

4.1.4 The portal engine

A portal provides a pure Java engine whose main responsibility is to aggregate content from
different sources and serve the aggregated content to multiple devices. The portal engine
also provides a framework that allows the presentation layer of the portal to be decoupled
from the portlet implementation details. This allows the portlets to be maintained as discrete
components.

Figure 4-3 on page 74 shows the WebSphere Portal Engine components.

Basic portal page components
Chapter 4. SOA and user interfaces with portals 73

Figure 4-3 Portal engine

The Authentication Server is a third-party authentication proxy server that sits in front of the
Portal engine. Access to portlets is controlled by checking access rights during page
aggregation, page customization, and other access points.

The Portal Servlet is the main component of the Portal engine. The portal servlet handles the
requests made to the portal. The portal requests are handled in two phases. The first phase
allows portals to send event messages between themselves. In the second phase, the
appropriate Aggregation Module for the requesting device renders the overall portal page by
collecting information from all the portlets on the page and adding standard decorations such
as title bars, edit buttons, and so on.

4.1.5 What is a portlet?

A portlet is a Java technology based Web component, managed by a portlet container, that
processes requests and generates dynamic content. Portlets are used by portals as
pluggable user interface components that provide a presentation layer to Information
Systems.

The content generated by a portlet is also called a fragment. A fragment is a piece of markup
(for example, HTML, XHTML, WML) adhering to certain rules and can be aggregated with

Portal engine
74 Powering SOA with IBM Data Servers

other fragments to form a complete document, the portal page. The life cycle of a portlet is
managed by the portlet container.

Web clients interact with portlets via a request/response paradigm implemented by the portal.
Normally, users interact with content produced by portlets, for example by following links or
submitting forms. This user interaction results in a portlet action being received by the portal
that is forwarded to the portlet targeted by the user's interactions.

The content generated by a portlet may vary from one user to another depending on the user
configuration for the portlet. Also from a user's perspective, a portlet is a window on a portal
site that provides a specific service or information, for example, a calendar or news feed.
From an application development perspective, portlets are pluggable modules that are
designed to run inside a portlet container of a portal server.

Tools like WebSphere Portlet Factory is a comprehensive portlet development environment
that automates the process of creating service-oriented architecture (SOA)-based portlets.
With WebSphere Portlet Factory, developers can quickly and easily leverage their company’s
core assets, using automation to assemble them into custom, high-value portlets. These
portlets are dynamic, robust Enterprise Edition (J2EE) applications, based on SOA. In
addition, portlets created with WebSphere Portlet Factory can automatically present
themselves as stand-alone Web applications, Web services, or native WebSphere and Java
Standardization Request 168 (JSR-168) portlets, without requiring any coding or duplicating
assets. Business users can also then modify these portlets in real time to meet changing
business requirements without having to go back to IT.

Portlets are pluggable components running inside a portal’s portlet container, similar to
servlets in many aspects. Portlets are written to a portlet API similar to the servlet API.
However, portlets run in a portal environment, while servlets run stand-alone in a servlet
container. While servlets communicate directly with their clients, portlets are invoked
indirectly via the portal application. In order to properly run in the context of a portal, portlets
must produce content that is suited for aggregation in larger pages, for example, portlets
should produce markup-fragments adhering to guidelines that assure that the content
generated by many different portlets can be aggregated.

When the portal receives a servlet request, it generates and dispatches events for any portlet
affected by parameters in the request and then invokes all portlets that have to be displayed
through the portlet invocation interface (see Figure 4-4 on page 76).
Chapter 4. SOA and user interfaces with portals 75

Figure 4-4 The portlet concept

While portlets must implement the invocation methods required by the Portlet API, internally
they may be implemented differently. A pattern that has proven very suitable for portlet
programming is the Model-View-Controller pattern. It separates the portlet functionality into a
controller receiving incoming requests, invoking commands operating on a model that
encapsulates application data and logic and finally calling views for presentation of the
results.

Portlets have access to portal related functions and data through Portlet Service Interfaces.
These interfaces provide portlets with functions including access to user profile information,
persistent per-portlet instance data, action handling, and so on. Apart from portal specific
functions, portlets can use all the J2EE services that are available to servlets as well as
vendor-provided connectors to access back-end data and applications or even services in the
Internet.

For easier deployment, portlets can be grouped in Portlet Applications packaged into Portlet
Archive files containing a deployment descriptor, Java classes, jar files, and resources.

4.1.6 Portlet container

A portlet container runs portlets and provides them with the required runtime environment. A
portlet container manages the portlet life cycle. It also provides persistent storage for portlet

The Portlet Concept

LD A P DB
76 Powering SOA with IBM Data Servers

preferences. A portlet container receives requests from the portal to execute requests on the
hosted portlets. A portlet container is not responsible for aggregating the content produced by
the portlets. It is the responsibility of the portal to handle the aggregation. A portal and a
portlet container can be built together as a single component of an application suite or as two
separate components of a portal application.

4.1.7 Portlet life cycle and request processing

The basic portlet life cycle in the Portlet API is:

� init - to initialize the portlet and put the portlet into service.

� handle requests - process different kinds of action and render requests.

� destroy - to put portlet out of service.

The portlet receives requests based on the user interaction with the portlet or portal page.
The request processing is divided into two major phases:

� Action processing

A click on an action link in the markup of a portlet triggers an action call for this portlet. The
action processing must be finished before any rendering of the portlets on the page is
started. In the action phase the portlet has the ability to change state.

� Rendering content

In the render phase the portlet produces its markup to be sent back to the client.
Rendering should not change any state, allowing a page re-fresh without modifying the
portlet state. The rendering of all portlets on a page can be performed in parallel.

4.2 The standardization of portlets (Java standardization
request - JSR-168)

With the emergence of an increasing number of enterprise portals, a variety of different APIs
for portal components (portlets), has been created by different vendors. The variety of
incompatible interfaces creates problems for application providers, portal customers and
portal server vendors. To overcome these problems, the Java Portlet Specification (JSR 168)
standard will provide interoperability between portlets and portals. JSR 168 by the Java
Community Process (JCP), provides a standard for interoperability between portlets and
portals.

The JSR 168 was co-leaded between IBM and Sun and had a large expert group that helped
to create the final version now available. This expert group consisted of Apache Software
Foundation, Art Technology Group Inc.(ATG), BEA, Boeing, Borland, Citrix Systems, Fujitsu,
Hitachi, IBM, Novell, Oracle, SAP, SAS Institute, Sun, Sybase, Tibco, Vignette. More details
about this JSR can be found at:

http://jcp.org/en/jsr/detail?id=168

Portlets written to this portlet API can be deployed on any JSR 168 compliant portal and run
out-of-the-box. The portlet architecture is an extension to the Java Servlet architecture.
Therefore, many aspects of portlet development are common to typical Web application
development. However, the unique aspects of a portal add complexity to the application
model, such as: multiple portlets per Web page, portlet URL addressing, portlet page flow
control, user interface rendering restrictions and Inter-portlet communication.
Chapter 4. SOA and user interfaces with portals 77

http://jcp.org/en/jsr/detail?id=168

4.2.1 JSR 168 portlet modes

Portlets will perform different tasks and create different output depending on the function they
are currently performing. Modes will allow the portlets to provide different function for the task
that is required. JSR 168 supports three modes, View, Edit, and Help. JSR 168 also supports
custom modes. Figure 4-5 shows a sample of JSR 168 portlet.

Figure 4-5 JSR 168 sample portlet

Portlet can change the mode programmatically in the processAction method. You can also
specify the mode when creating an action or render link.

View
The View mode is used for displaying content reflecting the current state of the portlet. View
mode may included multiple screens the user can navigate. The doView() method of the
GenericPortlet class is invoked for this mode. All portlets are required to support the View
mode.

Edit
The Edit mode is used for customizing the behavior of the portlet by modifying the
PortletPreferences object. As with View mode the Edit mode may contain multiple screens for
navigation. The doEdit() method of the GenericPortlet class is invoked for this mode. Portlets
are not required to support the Edit mode.

JSR 168 sample portlet
78 Powering SOA with IBM Data Servers

Help
Help should be used to provide the user with information about the portlet. This could be
generic or it could provide context-sensitive help. The doHelp() method of the GenericPortlet
class is invoked for this mode. Portlets are not required to support the Help mode.

4.2.2 JSR 168 specific concepts

This section covers concepts like Persistent state, Transient state and Navigational state. Also
we will indicate that are significantly different in the JSR 168 compared to the IBM Portlet API
for portlet and servlet relationship.

Persistent state
A portlet can access two different types of persistent data: initialization parameters and
portlet preferences. Initialization parameters are read-only data which you specify in the
portlet deployment descriptor to define settings that are the same for all portlet entities
created from this portlet description. You can use them to specify basic portlet parameters,
such as the names of the JSPs that render the output.

Transient state
A portlet has access to two different kinds of transient state: session state and navigational
state. The session state is available to the portlet for each user. The session concept is based
on the Http Session defined for Web applications. Because portlet applications are Web
applications, they use the same session as servlets. To allow portlets to store temporary data
private to a portlet entity, the default session scope is the portlet scope. In portlet scope, the
portlet can store information, needed across user requests, that are specific to a portlet entity.
Attributes stored with portlet scope are prefixed in the session by the portlet container to
avoid two portlets (or two entities of the same portlet definition) overwriting each other's
settings.

The second scope is the Web application session scope, in which every component of the
Web application can access the information. The information can be used to share transient
state among different components of the same Web application (such as between portlets, or
between a portlet and a servlet).

Navigational state
Navigational state defines how the current view of the portlet is rendered and is specific to the
portlet window in which the portlet is rendered. Navigational state can consist of data such as
the portlet mode, window state, a sub-screen ID, and other data. The navigational state is
represented in the JSR 168 portlet API through the portlet mode, window state, and the
render parameters. The portlet receives the render parameter for each render call. The data
can only be changed in an action, or by clicking on a render link with new render parameters.

The different in IBM portlet API and JSR 168 for portlet and servlet
In the IBM Portlet API, portlets extend servlets and all the major interfaces (such as Request,
Response, and Session) extend the corresponding servlet interfaces. In JSR 168, portlets are
separate components that may be wrapped as servlets, but they do not need to be servlets.

This separation was made to enable the different behavior and capabilities of portlets.
Because a portlet is not a servlet, in JSR 168 it is possible to define a clear programming
interface and behavior for portlets. However, in order to reuse as much as possible of the
existing servlet infrastructure, JSR 168 leverages functionality provided by the servlet
specification wherever possible, including:

– Deployment
Chapter 4. SOA and user interfaces with portals 79

– Classloading
– Web applications
– Web application life cycle management
– Session management
– Request dispatching

Many concepts and parts of the portlet API have been modeled similar to the servlet API.

4.2.3 JSR 168 and Web Service for Remote Portlets (WSRP)

JSR 168 establishes a standard API for creating portlets, the integration component between
applications and portals that enables delivery of an application through a portal. Without this
standard, each version of an application will need its own portlet API, and each of the various
portals required that these portlets be specifically tailored for implementation through that
portal. This has increased portlet developer time, effort, and costs with the net effect that
fewer applications have been made available through fewer portals to the detriment of the
end-users, ISVs, developers, and portal vendors. Now, when portal developers and portal
vendors adhere to this standard, applications can be delivered through any portal almost
immediately.

WSRP specification is a product of the Organization for the Advancement of Structured
Information Standards (OASIS), which is a consortium that facilitates the adoption of
technical standards. WSRP defines a Web service interface for accessing and interacting with
interactive presentation-oriented Web services.

WSRP is built upon existing Web services standards like SOAP, WSDL, and UDDI. Figure 4-6
shows how WSRP fits into the technology stack.

Figure 4-6 WSRP with existing Web service technologies

WSRP with existing Web service technologies

HTML cHTML Voice XML

WSRP

SOAP

(invocation)

WSDL

(description)

UDDI

(publish/find/bind)
80 Powering SOA with IBM Data Servers

There is a mapping of all concepts between JSR and WSRP. This allows implementing JSR
168 portlet containers that can be accessed via WSRP and therefore expose JSR 168
portlets as WSRP services. Figure 4-7 shows how those two work together.

Figure 4-7 Use of WSRP Services in Portals

Figure 4-8 shows how the portal shares portlets as WSRP services.

Figure 4-8 Portal sharing Portlets as WSRP services

Use of WSRP Services in Portals

P o rta l s h a rin g P o rtle ts a s W S R P s e rv ic e s
Chapter 4. SOA and user interfaces with portals 81

4.2.4 Portlet development guidelines with JSR 168

As with any coding practice, there are exceptions to every rule. These guidelines are intended
to help you produce best-of-breed JSR 168 portlets for the WebSphere Portal environment.
The guidelines must ultimately be adapted to your development environment and product
architecture.

� Do not use instance variables.

Portlets, like servlets, exist as a singleton instance within the server’s JVM™. Therefore, a
single memory image of the portlet services all requests, and it must be thread-safe. Data
stored in instance variables will be accessible across requests and across users and can
collide with other requests. Data must be passed to internal methods as parameters.

� Pass data to the view JSP as a bean in the request object.

Use the RenderRequest object to pass data to the view for rendering, so that when the
request is complete, the data falls out of scope and is cleaned up. Passing it as a bean lets
the JSP simply refer to the data as properties on the bean using intrinsic functions in the
JSP syntax.

� Adopt good code documentation habits.

While commenting of code is not required for the functionality of the portlet, it is essential
for its maintenance. A portlet’s maintenance can change hands over time, and well-written
portlets serve as models for other portlets. Therefore, someone else must understand
what you wrote. Well documented code implies more than simply inserting comments; it
also implies good naming practices for Java resources.

� Follow Struts design guidelines for Struts portlets.

Struts is an emerging standard for Model-View-Controller Web application design and
implementation. The Struts framework has been adapted to the portlet development
environment and is available as a plug-in (stand-alone WAR file) for WebSphere Portal.
This support lets you incorporate Struts into your portlet application without having to work
through the details of including Struts support in WebSphere Portal.

� Categorize the portlet state early in the design phase.

As mentioned in the introduction, the JSR 168 supports different kind of states. The portlet
programmer should very carefully and early on decide the category of information for each
state.

The categories are: navigational state, session state, persistent state.

– Use navigational state for all view-related data that will let the user navigate forwards
and backwards using the browser buttons. The scope of navigational state information
is the current request. Examples of navigational state information include the current
selected article in a news portlet, and the current selected stock quote for which the
portlet should render more details.

– Use session state for all information which is relevant for the duration of the user
session. Do not use session state as caching store. An example of session state
information is the content of a shopping cart.

– Persistent state has a life-time beyond the current user session. Use it to store
customization data and user-specific personalization data. Examples include the
server to retrieve the stock quotes from, the default list of stock quotes to display, or the
news topics of interest for a specific user.

� Internationalize the portlets using resource bundles.

Use a resource bundle per portlet to internationalize the portlet output, and declare this
resource bundle in the portlet deployment descriptor.
82 Powering SOA with IBM Data Servers

4.2.5 Building JSR 168 portlets with Rational Application Developer (RAD)

Creating a JSR 168 portlet project and generating a portlet are the first steps to build a JSR
168 portlet. RAD provides a wizard to generate both a JSR 168 portlet project and portlet. To
create a sample JSR 168 portlet project and portlet:

1. Start RAD and open Web Perspective.

2. Select File > New > Project > Portlet Project (JSR 168).

3. On the Portlet Project (JSR 168) panel, specify a name and location for the new portlet
project. Be sure to check the Create a portlet box so the following steps display. Click
Next.

4. On the Portlet Type panel, select Basic portlet (JSR 168). Click Next.

5. On the Features panel, click Next.

6. On the Portlet Settings panel, enter values for Define a Portlet Name and the Portlet
Display Name.

7. Check the Change code generation options box to add a package prefix and a class
prefix. Click Next.

8. On the Action and Preferences panel, make sure the box for Portlet action handling is
checked. Click Finish

When portlet generation has completed, a JavaServer Pages (JSP) file, several portlet class
files, a Web.xml file, and a portlet.xml file will be created. Selecting the action handling
indicates generation of an additional portlet method, public void
processAction(ActionRequest request, ActionResponse response), a portlet JSP tag
<portlet:actionURL/>, a portlet session bean class, and a getter method to retrieve this class
within the portlet.

You must manually create three more regular Java class files, using the following information.

A back-end bean

Contains two methods:

public TaskManagerDelegate getTaskManager() retrieves the
TaskManagerDelegate object

public SampleTaskBean getInputMsg(TaskManagerDelegate taskManager, String
taskID) first retrieves the input message of the task identified by the taskID, then
obtains the input message fields and stores them into the data bean.

A data bean

Contains the attributes includes the getter and setter methods for these attributes. This
bean provides the input message fields to the view bean.

A view bean

Contains the above attributes and a String variable imageURL, boolean isApproved and
String comments variables. The imageURL stores the fully qualified name of the image
file, which consists of location and name of the image file. The view bean contains getter
and setter methods of its attributes. This bean is used to display input message fields,
boolean isApproved and String comments, and the image file on the browser.
Chapter 4. SOA and user interfaces with portals 83

4.3 Portals and SOA

This section provides an overview and some samples for creating a sample portlet that will
work as a Web Service client to interact with a Web Service. The Web Service client portlet is
created using the wizard provided by the WebSphere Portal Toolkit. The samples in this
section will allow you to understand the techniques used to develop portlets that retrieve
information using Web Services.

In addition to contextual integration capabilities, portals can provide rich programming
frameworks for building user interfaces for component-oriented applications in SOA is an
approach for building distributed systems that deliver application functionality as services to
either end-user applications or other services. SOA provides means to integrate and manage
these different services. For more information, refer to the following Web page:

http://www.ibm.com/SOA

Portals provide first-class user interface (UI) support in service-oriented architectures.
Portlets, their basic building block, let developers focus on unique aspects of their application,
while the middleware handles common functions for life cycle, per-user customization,
aggregation, and integration with other components. In addition, portals might provide
valuable service functions such as security, search, collaboration, and workflow. Portals
provide the ability to aggregate and integrate the UI in a similar way SOA run times can
combine and integrate services. Component UIs are aggregated into larger, higher value UIs,
giving users a single view of IT services with a single UI to master. Applications originally
designed separately can be integrated (aggregation and context) together to enable new
function. The portal model allows for improved agility for on-demand businesses. Portal
administrators become application integrators who create new applications for their users
without programming: by defining new pages, adding portlets to them, connecting the portlets
together in context, and setting entitlements. With portal technologies, end users can become
their own application assemblers by customizing their portal-based workspaces. There are
many reasons why a portal would benefit your organization, for example:

� Control information glut
� Improve cycle times
� Empower knowledge workers
� Reduce it complexity
� Enhance partner and supplier communication
� Streamline™ processes

WebSphere Portal (Portal for short) supports multiple industry portals and various
communities within a company. Portal consists of four basic services: Framework, Integration,
Content, and Collaboration. Figure 4-9 on page 85 illustrates the IBM WebSphere Portal
framework.
84 Powering SOA with IBM Data Servers

http://www.ibm.com/SOA

Figure 4-9 IBM WebSphere Portal framework

4.3.1 User access to service

Service-oriented architecture specifies the use of interfaces to define encapsulated, reusable
business function: in part, those interfaces identify a business function and specify the data
required to interact with it. This is precisely the purpose of many application user interfaces:
to enable users to identify a function, collect the data required to invoke it, and return the
outcome to the user.

This correspondence has led to several interesting patterns emerging in providing user
access to services and Web services:

Portal technologies, such as WebSphere Portal Server, offer the capability to automatically
present some Web services as portlets; however, this is often dependent on the addition of
specific display-related information to the Web services description.

The (Organization for the Advancement of Structured Information Standards) OASIS Remote
Portlet Web Services specification provides an open standards means to exposed Web
services in a manner that is suitable for display by portal technology, but the standard is
relatively recent so full product support may take some time to emerge.

The World Wide Web Consortium (W3C) recently published the xForms specification for
device-independent description of the data model for user interfaces. The content of xForms
descriptions bears several similarities with that of Web Services Description Language

IBM WebSphere Portal framework
Chapter 4. SOA and user interfaces with portals 85

(WSDL) descriptions of the data that is required by and returned from a service. If a service
interface can be transformed manually or programmatically into an xForms definition, then
xForms UI generators can be used to generate a variety of Web-based, desktop, or other UIs.
The xForms specification can be found at:

http://www.w3.org/TR/xforms/

In the SOA approach, the environments that host components are abstracted as containers,
which provide well-known sets of infrastructure services. From a UI perspective, the three
major containers for hosting client-side UI components are the:

� Basic Web browser.

� Web browser augmented with JavaScript™ and dynamic HTML.

� IBM Workplace Client Technology™ - the Eclipse-rich client plus native IBM WebSphere
Application Server client support.

These containers can be augmented by supporting technologies such as servlets,
JavaServer Pages (JSP), and JSP Tags; Struts for page sequencing; JavaServer Faces (JSF)
for advanced page composition; and portlets to combine views of multiple applications on the
same page.

Frameworks for UI development
UI development frameworks can simplify the creation of complex user-facing applications.
The following UI frameworks are often used to create UI components:

� Struts, with the largest developer community and exceptional tools support, is an Apache
open source project predating the Java Portlet Specification, JSR 168 (see Resources for
a link to the Struts Web site). Struts is a multi-page MVC framework for server-based UI
development using the servlet/JSP paradigm. A special version of the Struts, Version 1.1
library supports JSR 168 portlets on IBM WebSphere Portal.

� JavaServer Faces (JSF) is an MVC realization for Java Web applications and builds
incrementally on prior technologies. It is well suited for portlet development, offering
portlets and servlets, state handling, validation, and events. A JSF page has one or more
local models that interact with UI controls on the page. These controls render UI
properties into outputs, and sophisticated logic ensures their presentation is at the "right"
place. The client-side model can be wired into the Enterprise Service Bus to send and
receive events.

� Java Widget Library (JWL), an extended widget set usable by portal and portlet
programmers, adds JavaScript client-side processing to JSF and will be supported by IBM
Rational Suite® Development Studio. Updating the view locally on the client saves round
trips to the server, shortens response time by orders of magnitude, and dramatically
improves the user experience.

Portals provide first-class UI support. In the portal architecture, a portlet (typically developed
using one of the above-mentioned UI frameworks) is the basic building block. This
architecture lets developers focus on unique aspects of their application and delegate
common functions for life cycle, per-user customization, aggregation, and integration with
other components to the middleware.

The following sections describe portlet components for individual services and portals as a
service aggregation mechanism.

Portlets for the service-oriented UI
The portlet component implements a standardized service interface and protocol. The Java
Portlet Specification and Web Services for Remote Portlet (WSRP) standard define this
86 Powering SOA with IBM Data Servers

http://www.w3.org/TR/xforms/

interface for Java and Web services, respectively. The two standards are similar enough that
portlets written to either interface are interchangeable if the proper containers or proxies are
present.

Java portlet example
Every Java portlet implements the portlet interface or extends a class that implements it. This
interface defines the service contract between the portlet and its container and defines the
portlet life cycle:

� Initializing the portlet and putting it into service (init method)

� Request handling (processAction and render methods)

� Taking the portlet out of service (destroy method)

During request handling, the portlet container calls the portlet's:

� processAction method to notify the portlet of a user action. Only one user-based action
per client request is triggered. The portlet can issue a redirect, change its portlet mode or
window state, or modify its state.

� render method to request a markup fragment.

Portlets can also invoke further services to perform desired functions. Example 4-1 uses a
Web service to retrieve and display stock quotes for a specific user.

Example 4-1 Stock quote portlet code sample

public class StockQuotePortlet extends GenericPortlet {
private ServiceManager serviceManager;

public void init(PortletConfig config) throws PortletException {
serviceManager = new ServiceManager();

}

public void doView(RenderRequest request, RenderResponse response) throws
PortletException, IOException {

response.setContentType("text/html");

// invoke autogenerated wrapper to locate service
NetXmethodsServicesStockquoteStockQuoteServiceLocator loc =

new NetXmethodsServicesStockquoteStockQuoteServiceLocator();
NetXmethodsServicesStockquoteStockQuotePortType port =

loc.getNetXmethodsServicesStockquoteStockQuotePort();

// loop through all stock quotes the user is interested in
PortletPreferences prefs = request.getPreferences();
Iterator quoteKeys = prefs.getMap().keys().iterator();
String key;
Float quote;
StockBean quoteBean = new StockBean();
while (quoteKeys.hasNext()) {

key = quoteKeys.next();
quote = port.getQuote (key);
quoteBean.add(key, quote);

}

request.setAttribute("StockQuoteBean", quoteBean);
Chapter 4. SOA and user interfaces with portals 87

// render stock quotes using a JSP
PortletRequestDispatcher rd =
getPortletContext().getRequestDispatcher("jsp/View.jsp");
 rd.include(request,response);

}
}

This section illustrated how you can implement a UI service using the Java Portlet
Specification, and how your portlet can invoke additional Web services. The next section
shows how to publish your UI as a Web service using WSRP.

Web Services for Remote Portlets
WSRP is the standard for remote rendering of portlets, enabling a portal to aggregate content
from multiple sources. WSRP extends the integration capabilities of Web services to
presentation-oriented components, and exposes the view layer to sharing across platforms,
implementation languages, and vendors. Content and application provider services can be
discovered and plugged into standards-compliant applications without any extra programming
effort

Typical Web services employ a remote presentation paradigm, meaning all view logic
executes on the client, whereas the application logic and the data layer (controller and model)
reside on the server. By contrast, WSRP splits presentation between the client and the server
in a distributed paradigm.

In order to allow for dynamic integration of portlets in portals without installing a portlet
archive file with the entire portlet code locally, portlets themselves have to be provided as
Web services. This requires a Remote Portlet Web Service Interface description in WSDL.

The WSDL description defines a common set of methods for all remote portlets and the
required parameters as well as the return values, corresponding to the Portlet API. This
means that remote portlet services do not have to be implemented in Java, they could as well
be implemented in other languages.

Web service providers who want to publish remote portlet Web services must publish
appropriate entries to a UDDI directory, referencing the Remote Portlet Web Services
Interface WSDL description.

Once a remote portlet has been published, portal administrators can use their portal
administration tools to search the UDDI directory for Web services that implement the
Remote Portlet Web Services Interface and pre-select some of the matching portlet Web
services for use in their portal by adding them to the portal’s portlet registry (see Figure 4-10
on page 89).

Once the portlets are in the registry, users can select them to be displayed on their personal
pages. Alternatively, portals may be set up in a way that allows portal users themselves to
browse the directory for portlet Web services and add references to remote portlets to their
personal pages.
88 Powering SOA with IBM Data Servers

Figure 4-10 Finding and binding to remote portlets

When a page that references a remote portlet gets rendered, the portal uses a portlet proxy
to invoke the remote portlet Web service through the Remote Portlet Invocation (RPI) protocol
(see Figure 4-11 on page 90). The portlet invokes the portlet proxy exactly like it would invoke
a local portlet, passing PortletRequest and PortletResponse objects. The portlet proxy
internally invokes a SOAP proxy to marshals all parameters into a SOAP request and sends it
to the remote server hosting the portlet Web service. The SOAP wrapper on the Web service
side unmarshals all information in the incoming request and calls on the remote portlet.

Finding and binding to remote portlets

Portlet
Registry

Portlet
Registry

Portlet Proxy Entry Portlet Entry

Portlet
Proxy

Remote
Portlet

Portlet Info
Chapter 4. SOA and user interfaces with portals 89

Figure 4-11 Remote Portlet Invocation (RPI)

For the remote portlet, it is transparent whether it is invoked directly by a portal engine or
indirectly through the Web service interface. In each case, it processes the input parameters
and returns a PortletResponse object.

The SOAP wrapper marshals the response into a SOAP response and sends it back as the
reply to the SOAP proxy that in turn unmarshals the response for the portlet proxy that finally
returns a PortletResponse object to the portal engine that initiated the request.

WSRP and Web service example
Example 4-2 shows a WSRP getMarkup request issued through Simple Object Access
Protocol (SOAP) from a WSRP consumer.

Example 4-2 WSRP getMarkup request issued through SOAP

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<getMarkup xmlns="urn:oasis:names:tc:wsrp:v1:types">
<registrationContext>

<registrationHandle>192.168.66.57_1096235652731_0</registrationHandle>
</registrationContext>
<portletContext>

<portletHandle>0.1</portletHandle>

Remote Portlet Invocation (RPI)
90 Powering SOA with IBM Data Servers

</portletContext>
<runtimeContext>

<userAuthentication>wsrp:none</userAuthentication>
<portletInstanceKey>ProxyTest_row1_col1_p1</portletInstanceKey>
<namespacePrefix>Pluto_ProxyTest_row1_col1_p1_</namespacePrefix>

</runtimeContext>
<userContext>

<userContextKey>dummyUserContextKey</userContextKey>
</userContext>
<markupParams>

<secureClientCommunication>false</secureClientCommunication>
<locales>en</locales>
<locales>de</locales>
<mimeTypes>text/html</mimeTypes>
<mode>wsrp:view</mode>
<windowState>wsrp:normal</windowState>
<clientData>
<userAgent>WSRP4J Proxy Portlet</userAgent>
</clientData>
<markupCharacterSets>UTF-8</markupCharacterSets>
<validNewModeswsrp:view</validNewModes>
<validNewModes>wsrp:help</validNewModes>
<validNewModes>wsrp:edit</validNewModes>
<validNewWindowStates>wsrp:normal</validNewWindowStates>>
<validNewWindowStates>wsrp:maximized</validNewWindowStates>
<validNewWindowStates>wsrp:minimized</validNewWindowStates>

</markupParams>
</getMarkup>

</soapenv:Body>
</soapenv:Envelope>

The response of the WSRP producer to this request is an HTML fragment that the consumer
(typically a portal) can aggregate into a full document, such as a portal page. Instead of
deploying each application or portlet on every server that intends to use it, there are obvious
advantages to sharing applications across network boundaries. WSRP enables:

� Easier administration - Instead of managing local deployments of pluggable components,
portal administrators can browse a registry for WSRP services to offer. Users benefit from
timely availability of new services and content integration on demand.

� Load distribution - Loads are distributed across multiple servers.

� Reduced infrastructure cost - Applications can share hosting infrastructure. For example,
distributing just the presentation layer (through WSRP) of a back-end banking application
preserves the application provider's secured computing environment, yet users can
interact with the shared UI.

� Control over content presentation - Content and application providers can vastly expand
their reach to new users as portals redistribute content.

Portals: dynamic aggregation for the service-oriented UI
A portal's view-layer integration of several backend services' UIs into a centrally-managed UI
can unify the fractured IT infrastructure and give users a single view of IT services with a
single UI to master. Applications originally designed separately can be wired together into
composite applications, enabling new functions. For example, an e-mail portlet wired to a
collaboration portlet could filter the inbox to display received e-mail only when the sender is
online and available for a chat - a capability absent from both original applications.
Chapter 4. SOA and user interfaces with portals 91

A surprising consequence of the portal model is improved agility for On Demand Businesses.
Administrators become application integrators who create new compound applications -
without programming - by defining new pages, adding portlets to them, wiring the portlets
together, and setting entitlements (access controls). A self-service portal lets users adapt
their work environment to their unique needs. The portal architecture frees application
developers to concentrate on building new business value.

In the future, portals may even be able to aggregate compound services and, thus, be able to
aggregate UIs on a higher level. Portals may seamlessly integrate content from other portals,
providing a horizontal, enterprise-wide integration of content.

4.3.2 Web service and portals

WebSphere Portal provides services for exposing and integrating portlets as remote portlets
hosted on another portal platform via Web Services technology. The entire process of
packaging and responding to a SOAP request is hidden from the developer and the
administrator.

As Web services will become the predominant method for making information and
applications programmatically available via the Internet, portals will need to allow for
integration of Web services as data sources and as remote application components very
soon. A typical example is a news portlet that allows the user to configure the news
categories to track and then gets the news for these categories live from a Web service
whenever it is displayed. In this case, the portlet code runs locally on the portal and uses the
Web service to access information. Rendering is done by the local portlet while the Web
service only provides the information to be rendered, for example as an XML document (see
Figure 4-12 on page 93, search portlet and news portlet).
92 Powering SOA with IBM Data Servers

Figure 4-12 Portals and Web services

Another scenario for use of Web services by portals is sharing of portlets with other portals. In
this scenario, a remote server, for example, another portal publishes portlets as remote
portlet Web services in a UDDI directory. The portal can now find the remote portlet services
in the directory and bind to them. As a result, the remote portlets become available for portal
users without requiring local installation of portlet code on the portal itself (see Figure 4-12,
portlet proxies for stocks and banking).

Figure 4-13 on page 94 shows how portlet applications can be easily integrated with existent
Web Services without the need to write extra code with WebSphere Studio Site Developer
tool. See more details in the redbook: IBM WebSphere Portal V5 A Guide for Portlet
Application Development, SG24-6076.

Portals and Web services
Chapter 4. SOA and user interfaces with portals 93

Figure 4-13 Web Services client portlet scenario

For a portlet to be a source of data, programmers can use a custom JSP tag library to flag
sharable data on their output pages. The tags require a data type to be specified as well as a
specific value corresponding to an instance of this type. If you want to use wires source
portlets, you must register properties by using a declarative or programmatic approach.
Target portlets associate their actions with an input property which has been declared as an
XML type. The actions are declared using WSDL, with a custom binding extension which
specifies the mapping from the abstract action declaration to the actual action
implementation. Associated with each action is a single input parameter described by an XML
type and zero or more output parameters, each described by an XML type. Each input or
output parameter encapsulates exactly one property. Example 4-3 on page 96 the target
cooperative portlet Employee Details Portlet displays a list of employees working in the same
department.

In the intranet it typically happens using database connections, LDAP connections, Java RMI,
DCOM, CORBA, and so on. Over the Internet, in most cases the HTTP protocol is used to
send requests to remote applications and receive results. Within short time, SOAP will be the
primary communication mechanism for invocation of remote services by portlets and will
incrementally replace the mechanisms listed above.

With SOAP and UDDI, communication between Web services and their clients and
management of Web services in global and corporate directories is unified. This allows
programmatic finding, binding and usage of Web services. Web services can be formally
described using WSDL descriptions that can be used by appropriate tools to generate SOAP
proxies for specific programming languages. Also, there are tools that can create Web
services and WSDL descriptions from existing code.

Web services client portlet scenario
94 Powering SOA with IBM Data Servers

Figure 4-14 on page 95 shows how a portlet that uses a Web service. When a portlet
receives a request that requires invocation of a remote service, the portlet makes calls on a
SOAP proxy object. The proxy takes the parameters, marshals them into a programming
language-independent SOAP request, and sends this request to the remote Web service.
The Web service has a SOAP wrapper that receives the SOAP request, unmarshals the
parameters and invokes the local service implementation with these parameters. When the
service returns the result, the SOAP wrapper marshals the result data into a
programming-language independent SOAP response and sends it back to the SOAP proxy.
The SOAP proxy finally unmarshals the result data and returns it to the calling portlet in the
form of an appropriate object.

Figure 4-14 A portlet using a Web service

To simplify writing portlets using Web services, IBM provides a service proxy generator tool
that automatically produces client code from a WSDL interface document, and optionally a
service implementation document. If only a service interface document is used, the service
proxy generator tool generates a generic service proxy which can be used to access any
implementation of the given service interface. If both a service interface and a service
implementation are used, the service proxy generator tool generates a service proxy that will
only access the specified service implementation. The service proxy contains code that is
specific to a binding within the service interface. For example, if the binding is a SOAP
binding, then the service proxy will contain SOAP client code that is used to invoke the
service.

A portlet using a Web service
Chapter 4. SOA and user interfaces with portals 95

Example 4-3 EmployeeDetailsPortlet.wsdl file

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="GetResults_Service"

targetNamespace="http://www.ibm.com/wps/c2a/examples/hrdetails"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:portlet="http://www.ibm.com/wps/c2a"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.ibm.com/wps/c2a/examples/hrdetails"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/wsdl/

http://schemas.xmlsoap.org/wsdl/ http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema.xsd">

<types>
<xsd:simpleType name="DEPT_NO">

<xsd:restriction base="xsd:string"></xsd:restriction>
</xsd:simpleType>

</types>

<message name="GetResultsMessageNameRequest">
<part name="get_ResultsPartName" type="tns:DEPT_NO" />

</message>

<portType name="GetResults_Service">
<operation name="get_ResultsOperation">

<input message="tns:GetResultsMessageNameRequest" />
</operation>

</portType>

<binding name="GetResultsBinding" type="tns:GetResults_Service">
<portlet:binding />
<operation name="get_ResultsOperation">

<portlet:action name="hrportlet.HRPortletDetailsAction" type="simple"
caption="Show all employees from this department."
description="Get.Results.for.specified.sql.string" />

<input>
<portlet:param name="DEPT_NOParam" partname="get_ResultsPartName"

caption="Show all employees from this department." />
</input>

</operation>
</binding>
</definitions>

4.3.3 Development tools

There are a lot of Portal development tools in the marketplace. We introduce some of IBM
tools in this section:

� IBM Rational Application Developer V6
� Workplace Collaboration Services
� IBM WebSphere Portal Server
96 Powering SOA with IBM Data Servers

IBM Rational Application Developer V6
Rational Application Developer is an integrated development environment with full support for
the J2EE programming model including EJB development, Web services, Web applications
and Java. In previous releases this product was known as WebSphere Studio Application
Developer. This tool includes integrated portal development, UML editing, code analysis,
automated test and deployment tools, built in version control, and team tools. Everything you
need to be productive and to make sure written code is well designed, scalable, and ready for
production is included in Rational Application Developer. Additionally, everything is provided
for version control and protection when developers work in large teams or on complex
projects. Rational Application Developer is optimized for IBM WebSphere software.

Rational Application Developer V6.0 is part of the Rational Software Development Platform
used to develop applications to be deployed to IBM WebSphere Application Server V6.0,
V5.0.x, and IBM WebSphere Portal V5.0.2.2 and V5.1. The Rational Software Development
Platform provides an integrated development environment (IDE) and tooling used to design,
develop, test, debug, and deploy applications in support of the application development life
cycle.

The IBM Rational Software Development Platform is built upon the IBM Eclipse SDK 3.0,
which is an IBM supported version of the Eclipse V3.0 Workbench containing many new
features, and a new look and feel. When used with the IBM Software Development Platform,
you can access a broad range of requirements directly from Rational Application Developer
for WebSphere Software with features such as the following:

Rational Web Developer tools allow accelerated use of portal, SOA, and J2EE.

� You can shorten the Java learning curve by using drag-and-drop components and
point-and-click database connectivity.

� You can improve code quality by using automated tools for applying coding standard
reviews, component, and Web service unit testing and multi-tier runtime analysis.

� Business applications can be integrated with Web services and SOA.

You can find more information about IBM Rational Application Developer at:

http://www.ibm.com/software/awdtools/developer/application

Workplace Collaboration Services
Workplace Collaboration Services is built on anarchitecture of components that is adaptable
to enable people and teams to react quickly to changing business needs. IBM Workplace
products provide the front-end to the IBM service-oriented architecture (SOA) strategy. The
following services are provided by Workplace Collaboration Services:

� Team Collaboration Services
� Document Services
� Messaging Services
� Web Content Management Services
� Learning Services
� Workplace Managed Client

Team Collaboration Services
The IBM Workplace Team Collaboration™ Services component provides users with the
capability to participate in online meetings, create libraries, and interact with team members
through online chats, threaded discussion forums, and document sharing. It includes the
following features:

� Applications provide users with access to Workplace applications, HTML-enabled Domino
applications, and custom applications. Workplace applications include: Team Spaces,
Chapter 4. SOA and user interfaces with portals 97

http://www.ibm.com/software/awdtools/developer/application

where members can participate in discussions/chats, share documents and a team
calendar, and search for information; and Documents for managing online document
libraries. Users can create and maintain a list of favorite document libraries.

� Web Conferences are online meetings in which moderators make presentations to
conference participants.

� Templates provide tools for creating, customizing, and managing application templates,
which are used in applications.

Document Services
The IBM Workplace Document Services component provides systematic, controlled access
to critical documents and provides a fundamental document-management capability that is
standards-based and has integrated collaborative capabilities. Workplace Documents
supports both the IBM Workplace browser and the IBM Workplace rich client.

The IBM Workplace Document Services component provides access to the following:

� Document library capabilities provide document check-in and check-out, document
locking, and version control.

� Structured access provides an easy method for setting up library access so that
information needed organization-wide can be easily viewed, but selective information can
be viewed only by a limited audience.

� Document editors provide the power to modify popular document types even when native
editors are unavailable.

� Document author/owner/editor awareness through integrated instant messaging and chat
capabilities.

� Security lets users store documents outside the file system to increase protection from
viruses and other risks.

The IBM Workplace Messaging® Services component for the rich client provides the
following:

� Offline support provides a secure method for users to create, import, edit, and save
documents, presentations, and spreadsheets by supporting offline use and
synchronization between local and server stores.

� Productivity tools provide the power to modify popular document types even when native
editors are unavailable.

Messaging Services
IBM Workplace Messaging Services component is a cost-effective, standards-based
messaging product that is security-rich, scalable, and easily deployed. It integrates with an
organization's existing corporate infrastructure and uses the organization's LDAP directory to
automatically create, delete, and authenticate user accounts; resolve addresses; and route
mail. Workplace Messaging supports both the IBM Workplace browser and the IBM
Workplace rich client.

The IBM Workplace Messaging Services component provides access to the following:

� Mail lets users send and receive e-mail messages.

� Calendar and Scheduling lets users maintain and manage calendar events and schedule
meetings.

� Personal Address Book lets users maintain and manage contact information for people
and for group mailing lists.
98 Powering SOA with IBM Data Servers

� Offline support that allows users to read, edit, and create mail while disconnected from the
network.

� Integrated Instant Messaging and chat, including the ability to save chats. (To make this
available to users, you must have a license for IBM Workplace Collaboration Services or a
license for IBM Workplace Team Collaboration, and you must configure instant
messaging.)

Web Content Management Services
The IBM Workplace Web Content Management™ Services component delivers powerful
end-to-end Web content management through multiple Internet, intranet, extranet, and portal
sites.

IBM Workplace Web Content Management is not installed as part of IBM Workplace
Collaboration Services (installed separately):

� Content authoring is template-based, with a WYSIWYG rich text editor providing a guided
process that does not require technical skills.

� Versioning and rollback provides a method for creating multiple content versions that can
be used at different times or restored to previous versions, as needed.

� Automatic workflow processing ensures that the right people approve Web content before
it is published and assures accuracy and relevancy of content.

� Integration of information from various sources allows reuse of information from back-end
systems, improving transactional performance.

� Personalized delivery lets authors create content once and reuse it in different sites for
users with different roles or preferences.

� Multiple database support allows use of IBM Lotus Domino, IBM DB2, Oracle, or IBM DB2
Content Manager as repositories.

Learning Services
IBM Workplace Learning Services component (Collaborative Learning) provides access to a
scalable, flexible product for managing classroom-based and online learning activities,
resources, curricula, and courseware catalogs.

IBM Workplace Collaborative Learning™ provides access to these features:

� The learning student experience provides an easy-to-use interface where students access
courses. Students can search for courses and organize them in personalized folders, as
well as preview, enroll in, and participate in courses online. Information about courses is
stored on the Learning Server, while the courses themselves are presented on the
Delivery Server.

� The learning management and delivery system components provide a Web-based
administrative interface that course developers and instructors access to manage
resources, learning programs, and skills development.

� The Authoring Tool is used by course developers on their own workstations to create
course structure and content, assemble course packages, and import courses to Learning
servers.

Workplace Managed Client
The IBM Workplace Managed Client provides rich client capabilities to the IBM Workplace
Collaboration Services product. Users can access collaboration capabilities from their
desktop, rather than from a browser. The IBM Workplace Managed Client is a separate
component, which provides users with access to offline use and replication, as well as to
these features:
Chapter 4. SOA and user interfaces with portals 99

� IBM Activity Explorer is used to track and manage activities related to a project or process.
Users can capture and manage real-time communications and leverage the collaboration
features of shared workspaces.

� The IBM data access tool is used to create relational database applications. Users can
create forms, grids, and reports in order to add, edit, delete, and view summaries of
database records stored in IBM Cloudscape™ databases.

� On Embedded browser is what users use to open and navigate Web pages directly from
within the rich client.

IBM WebSphere Portal Server (WPS)
In order to be easy to use, the mechanisms for publishing portlets as remote portlet Web
services, finding remote portlet Web services, binding to them and using remote portlets must
be integrated seamlessly into portal products. We can identify four different dialog flows that
need to be provided (see Figure 4-15 on page 101).

� Publishing portlets: Administrators can publish portlets to make them available for use by
other portals as remote portlet Web services.

� Finding and binding portlets: Administrators can find remote portlet Web services and bind
to these portlets.

� Using remote portlets: Users must be able to select and use remote portlets transparently,
just as easily as local portlets.

� Finding and using remote portlets: “Power users” should be able to find remote portlet
Web services by browsing the directory themselves.

Publishing portlets may either include two or three steps, depending on whether the portal
has already been associated with a UDDI business. If this is not the case, WebSphere Portal
Server prompts the administrator to enter the required business descriptions and publishes a
business entry to the UDDI directory and associates the portal with that entry. Once the portal
is associated with a business entry in UDDI, publishing portlets only requires two steps – in
the first step, the administrator selects the portlet to be published and in the second step he
provides a description for the new UDDI service entry to be created for the portlet.
100 Powering SOA with IBM Data Servers

Figure 4-15 WPS - publishing, finding, binding and using remote portlets

Finding portlets requires three steps. First, the administrator uses the built-in UDDI browser to
find remote portlet Web services and selects one of them. Second, he finds the desired
portlet provided by the selected business and selects it. Finally, he lets WPS add the remote
portlet to its portlet registry to make it available for portal users.

Using a remote portlet is as simple as using a locally installed portlet – users can select
remote portlets in the customizer. To allow more sophisticated users to find and bind to
remote portlets themselves, a portal may be configured to allow access to these functions for
users. In this case, the dialog flow for the user would be identical to the workflow for
administrators to find/bind portlets described above.

4.3.4 Conclusion

There is only one standard Web Services for Remote Portlets (WSRP) in this category,
because it is a relatively new trend and might also lead to the creation of other standards and
specifications.

WSRP is a Web services standard that allows for the plug-and-play of portals, other
intermediary Web applications that aggregate content, and applications from disparate
sources. WSRP Version 1.0 is an approved OASIS standard.

WPS - publishing, finding, binding and using remote portlets
Chapter 4. SOA and user interfaces with portals 101

More information can be found at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

4.4 Additional information for portals and SOA

� WebSphere Version 6 Web Services Handbook Development and Deployment,
SG24-6461

� Best practices: Developing portlets using JSR 168 and WebSphere Portal V5.02, by
Stefan Hepper and Marshall Lamb:

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0403_heppe
r/0403_hepper.html

� “Comparing the JSR 168 Java Portlet Specification with the IBM Portlet API”, by Stefan
Hepper:

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0312_heppe
r/hepper.html

� “Why you should take an early look at the Java Portlet Specification V2.0”, by Stephan
Hepper:

http://www-128.ibm.com/developerworks/websphere/techjournal/0608_col_hepper/060
8_col_hepper.html

� Patterns: Extended Enterprise SOA and Web Services, SG24-7135

� XML on z/OS and OS/390: Introduction to a Service-Oriented Architecture, SG24-6826

� DB2 for z/OS and WebSphere: The Perfect Couple, SG24-6319

� “Developing business process portal applications using WebSphere tooling”, by Andreas
Nauerz , Juergen Schaeck and Thomas Schaeck

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0505_nauer
z/0505_nauerz.html

� Web Services for Remote Portlets Specification, found at:

http://www.oasis-open.org/committees/wsrp

� Java Portlet Specification, Version 1.0, found at:

http://jcp.org/aboutJava/communityprocess/final/jsr168

� Architecting Portal Solutions, SG24-7011

� Develop and Deploy a Secure Portal Solution Using WebSphere Portal V5 and Tivoli
Access Manager V5.1, SG24-6325

� IBM Rational Application Developer V6 Portlet Application Development and Portal Tools,
SG24-6681

� IBM Workplace Web Content Management for Portal 5.1 and IBM Workplace Web
Content Management 2.5, SG24-6792
102 Powering SOA with IBM Data Servers

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://www-128.ibm.com/developerworks/websphere/techjournal/0608_col_hepper/0608_col_hepper.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0403_hepper/0403_hepper.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0312_hepper/hepper.html
http://www-128.ibm.com/developerworks/websphere/library/techarticles/0505_nauerz/0505_nauerz.html
http://www.oasis-open.org/committees/wsrp
http://jcp.org/aboutJava/communityprocess/final/jsr168

Chapter 5. Development tools

In this chapter, we introduce various IBM development tools that you can use in the course of
creating database objects, and then later on expose these database objects as Web services.

� DB2 Developer Workbench
� Rational Application Developer
� WebSphere Developer for zSeries
� WebSphere Integration Developer
� Enterprise Generation Language (EGL) and SOA

5

© Copyright IBM Corp. 2006. All rights reserved. 103

5.1 DB2 Developer Workbench

The Development Center from DB2 for Linux, UNIX and Windows Version 8 is replaced in
DB2 V9.1 by an Eclipse-based tool called Developer Workbench. The Developer Workbench
is a graphical application that supports rapid development. Using the Developer Workbench,
you can create new stored procedures, build stored procedures on local and remote DB2
servers, test and debug stored procedures. Developer Workbench allows you to manage your
work in projects. Each Developer Workbench project saves your connections to specific
databases, such as DB2 for z/OS servers, or DB2 servers on Linux, UNIX or Windows
platforms.

DB2 Developer Workbench is supported on:

� Microsoft Windows 2000 Server and Professional, Microsoft Windows 2003 Server, and
Microsoft XP Professional

� Red Hat Enterprise Linux 3 and SUSE Linux Enterprise Server 9

When you first open DB2 Developer Workbench Eclipse, the Welcome view gives you access
to an overview, tutorials, samples and a description of what's new for this release. In addition,
the icon at the upper right of the home page of the Welcome view opens the workbench.

Figure 5-1 Welcome view in Developer Workbench

Developer Workbench is a comprehensive development environment for creating, editing,
debugging, deploying and testing DB2 stored procedures and user-defined functions (UDFs).

Note: At the time of writing this redbook, Developer Workbench is only supported on 32-bit
platforms on Windows and Linux.
104 Powering SOA with IBM Data Servers

You can then later expose these stored procedures and UDFs that you have created in
Developer Workbench as Web services. You can also use Developer Workbench to develop
SQLJ applications, and create, edit, and run SQL statements and XML queries. Figure 5-2
shows the Developer Workbench user interface which looks very similar to the rest of the IBM
Eclipse-based development tools.

Figure 5-2 Developer Workbench User Interface

In addition to existing Development Center functionality, Developer Workbench provides
additional new features as described below:

� Developer Workbench information center and tutorials

Developer Workbench help and tutorials are available in an information center that is
installed with Developer Workbench. This information is for Developer Workbench only,
and it is not installed with the DB2 information center CD. To access the Developer
Workbench help and tutorials, click Help → Help Contents from the main menu in the
product. You can also link directly to important getting started information from the
Welcome page in Developer Workbench by clicking Help → Welcome.

� Migrate existing Development Center projects

You can use a wizard to migrate existing Development Center projects into Developer
Workbench.

� Compare routines

You can compare and make changes between two routines that are contained within a
data development project in Developer Workbench. You can also compare routine
attributes for routines that are stored on a server.
Chapter 5. Development tools 105

� Deploy routines to unlike servers

You can deploy routines that were created for one DB2 database to a DB2 database on a
different platform. For example, you can create a routine for a DB2 for Linux, UNIX, and
Windows database and then deploy it to a DB2 for z/OS database. (Note that not all server
combinations are supported)

� Binary deploy

For SQL or Java stored procedures targeting DB2 for z/OS Version 8 or higher, you can
deploy without going through a full rebuild. The binaries for a SQL procedure or the JAR
for a Java procedure are copied from the source to the target system.

� Launch Visual Explain

You can launch Visual Explain for DB2 for z/OS or DB2 for Linux, UNIX, and Windows
SQL statements from either the routine editor for SQL routines or from the wizard that is
used to create a routine.

� Develop SQLJ applications

You can develop SQLJ applications by using the following features:

– Generate an SQLJ template file by using a wizard
– Translate and compile automatically
– Customize by using a wizard
– Print the profile file
– Edit SQLJ applications by using code assist and templates
– Debug SQLJ files

� Team support

You can share your Developer Workbench data development project by using either CVS
or ClearCase®. After you share your project, you can manage all changes and update
history, and you can synchronize your files with the repository.

� Multiple JAR support

You can create Java stored procedures that depend on code that is contained in multiple
JAR files that are installed on the server. You can also package multiple Java stored
procedures within the same JAR file on the server.

� SQL procedure versioning for z/OS

There is support for native SQL stored procedures and versioning of native SQL stored
procedures targeting DB2 for z/OS servers.

� Package variation support for SQL and SQLJ Java stored procedures

You can create package variations from the Database explorer for SQL and SQLJ stored
procedures targeting DB2 for z/OS. These package variations are used for creating copies
of existing packages with different bind options.

� Table data editing

You can use an editor to edit the data that is contained in a table. You can edit existing
values, delete an existing row, or insert a new row.

� Data extract and load

You can extract the data from a table or view into a file on the local file system. You can
use this file to load the data into a table.

� Stored procedure debugger

Developer Workbench includes integrated stored procedure debugging capabilities. You
can debug SQL or Java stored procedures that target supported DB2 servers, or Java
stored procedures that target supported Derby servers.
106 Powering SOA with IBM Data Servers

� XML support

Developer Workbench contains support for XML functions, the XML data type, and XML
schema registration. You can also create XQueries with the XQuery builder. We discuss
XML support further in 5.1.2, “New XML support in DB2 Developer Workbench” on
page 111, and Appendix C.1, “New features of native XML data store in DB2 V9.1 for
Linux, UNIX and Windows” on page 594.

5.1.1 Creating a stored procedure using Developer Workbench

Since DB2 Developer Workbench is a new tool, we provide an example that shows how to
create a Java stored procedure with Developer Workbench so you can familiarize with the
new user interface. You will see that Developer Workbench is very similar to the DB2 V8
Development Center and provides much more functionalities.

You can create new stored procedures and UDF in a new project or in existing projects. You
can also migrate your existing DB2 V8 Development Center project to DB2 V9 Developer
Workbench. To create new project, select Data Development Project in the New Project
wizard. To migrate an existing Development Center project from DB2 V8 to DB2 V9 Developer
Workbench, select DB2 Development Center Project instead. Figure 5-3 shows the New
Project wizard.

Figure 5-3 New project wizard in Developer Workbench

Suppose you already have a WebProject created in Developer Workbench, Figure 5-4 on
page 108 shows how you create a simple Java stored procedure that queries DB2’s
SYSCAT.PROCEDURE catalog to list the stored procedures we currently have in the
SAMPLE database.
Chapter 5. Development tools 107

Figure 5-4 New Stored Procedure wizard

In Figure 5-5 we specify that a new Java stored procedure is to be created in our WebProject.

Figure 5-5 Create Java stored procedure in our WebProject
108 Powering SOA with IBM Data Servers

Click Next. Then enter QueryCatalog as the stored procedure name. Choose Java in the
Language drop down list. Keep the defaults for the rest of the fields in this dialog as shown in
Figure 5-6.

Figure 5-6 Specifying stored procedure name

Click Next. We keep the default query and return only one result set as shown in Figure 5-7.

Figure 5-7 Specifying your SQL statement in the New Stored Procedure wizard

Click Next → Next → Next to take the default settings for the next three screens. Then you
see the stored procedure code that is generated for you, as shown in Figure 5-8 on page 110.
Chapter 5. Development tools 109

Figure 5-8 Stored procedure code

Click Next to show a summary of the stored procedure settings. You can also click Show
SQL to see the CREATE PROCEDURE statement being issued on your behalf. See Figure 5-9.

Figure 5-9 Stored procedure settings summary and CREATE PROCEDURE statement

Click Close to close the SQL Statement if you have the SQL statement dialog opened. Then
click Finish to complete creating the stored procedure. At this point the Java stored
procedure source will be displayed as shown in Figure 5-10 on page 111.
110 Powering SOA with IBM Data Servers

In Data Project Explorer, locate the QueryCatalog stored procedure then right-click
QUERYCATALOG → Deploy to deploy the stored procedure. You shall see output
messages in the Data Output view similar to what is shown in Figure 5-10 at the bottom of the
Developer Workbench.

Figure 5-10 Messages in Data Output view when deploying the Java stored procedure

In Data Project Explorer, right-click QUERYCATALOG → Run to run the QueryCatalog
stored procedure, test the procedure and confirm it returns the result set as expected.

Figure 5-11 Messages in the Data Output view when running the stored procedure

As you can see, DB2 Developer Workbench allows you to create, deploy, test and run your
stored procedures quickly and efficiently.

5.1.2 New XML support in DB2 Developer Workbench

The upcoming DB2 V9.1 for Linux, UNIX and Windows, and DB2 V9 for z/OS, now features
the new support for XML as a first class data type just like any other SQL type. The XML data
type can be used in a CREATE TABLE statement to define a new column of type XML. You can
Chapter 5. Development tools 111

now seamlessly integrate XML with their existing relational data, and exploit both tabular and
hierarchical data models, and enjoy the flexibility of using both SQL and XQuery (on DB2 for
Linux, UNIX and Windows only) in your applications. The new DB2 Developer Workbench
contains the following types of XML support:

� Support for the XML data type
� Support for XML schemas
� XML document validation
� XQuery builder

Stored procedure support
� You can create stored procedures that contain XML data type parameters or return XML

data types.

� You can run stored procedures that contain XML data types as input or output parameters.

� You can import XML queries that were generated by the XQuery builder into the procedure
body when you are creating a stored procedure.

Data Output view support
� You can view XML data type columns on the Results page.

� For any column that can contain XML documents, you can view the content as a tree or
the document text.

SQL builder support
� The XML data type is displayed anywhere that other data types are displayed.

� You can select XML functions in the Expression® builder.

� You can run SQL statements that contain host variables where the column associated with
the host variable is an XML data type.

� You can insert or update column values when the column value is an XML data type.

XML schema support
� From the Database Explorer in Developer Workbench, you can load existing XML

schemas and XML schema documents from the XML schema repository in the database
and view properties such as target namespace or schema location.

� You can register a new XML schema with its corresponding XML schema documents from
the file system.

� You can drop XML schemas and XML schema documents from the XML schema
repository in the database.

� You can view and edit the source for XML schema documents that make up an XML
schema.

XML document validation
� You can edit and update an XML data type column.

� You can perform XML value validation for the XML document in the column against a
registered XML schema.

XQuery builder
The Developer Workbench also provides an XQuery builder for creating queries without
having to understand the details of XQuery semantics. The XQuery builder is an
Eclipse-based tool to help you create queries against XML data that is in DB2 databases. The
XQuery builder is part of the DB2 Developer Workbench. With the XQuery builder, you can
create complete queries without needing to understand XQuery semantics. You can build an
112 Powering SOA with IBM Data Servers

XML query visually by selecting sample resultant nodes from a tree representation of a
schema or XML document, and dragging the nodes onto a return grid. After a node is listed
on the return grid, you can drill down into the query to add predicates and sorting
preferences. You can drill down multiple levels in a query to specify nested predicates,
clauses, and expressions. After you build your query, you can run it directly from Developer
Workbench to test the query. Figure 5-12 shows the XQuery builder user interface.

Figure 5-12 XQuery builder user interface

In C.9, “Create and register an XML schema using Developer Workbench” on page 629, we
provide a step-by-step example of how to create XML schema, and later on use the same
XML schema to validate XML column data in Developer Workbench.

5.2 Rational Application Developer

The creation of high-quality service-oriented systems requires a development environment
which brings all parts of SOA (access to data servers, integration of Web Services,
composition of portal solutions) together. In this section we describe IBM Rational Application
Developer (RAD) V6.0 which is a component of the IBM Rational Software Development
Platform and helps developers to quickly create, test and deploy SOA and J2EE applications.
Chapter 5. Development tools 113

5.2.1 The IBM Rational Software Development Platform

The IBM Rational Software Development Platform is an integrated set of products which
cover the management of the entire software development process. Software modelers,
architects, developers, and testers can use the same tooling to be more efficient in
exchanging assets, following common processes, managing change and requirements,
maintaining status, and improving quality.

The products of this platform are built upon the Eclipse 3.0 framework, thus allowing a
seamless integration of the different modules. It provides a team-based environment with
capabilities that are optimized for the key roles of a development team and enables a high
degree of team cohesion through shared access to common requirements, test results,
software assets, workflow, and process guidance. Combined, these capabilities improve both
individual and team productivity.

Figure 5-13 shows the platform tooling covering the different roles of the software
development process.

Figure 5-13 IBM Rational Software Development Platform tooling

A number of selected tools of the Rational Software Development Platform is listed in
Table 5-1 on page 114.

Table 5-1 Rational Software Development Platform tools

Key areas Rational Software Development Platform products

Requirements and architecture IBM Rational Software Modeler
IBM Rational Software Architect
IBM WebSphere Business Integration Modeler
IBM Rational RequisitePro®

IBM Rational Team Unifying Platform
Requirements management, test management, change management (iTeam),

software configuration management, IBM Rational Unified Process
Integrate with IBM WebSphere Portal, DB2 IBM Tivoli, and IBM Lotus Workplace

IBM Rational Software Development Platform
based on Eclipse 3.0, EMF (UML, J2EE, Web services, ...) models

Business
architect

Business process
and information

modeling

IT architect
Application logic,

data modeling and
pattern creation

Developer
Traditional

corporate Java 2
Platform,

Enterprise Edition
(J2EE), IBM DB2

and Microsoft
.NET technical

Tester
Functional and

load testing
114 Powering SOA with IBM Data Servers

For more information about the platform visit the IBM DeveloperWorks site at:

http://www.ibm.com/developerworks/platform/

5.2.2 IBM Rational Application Developer

This section introduces the data server- and SOA-related features of the IBM Rational
Application Developer (RAD) V6.0.

Overview
RAD helps developers to quickly design, develop, analyze, test, profile, and deploy
service-oriented architecture (SOA), Java, J2EE and portal applications. It includes full
support for the J2EE programming model, integrated portal development features, Unified
Modeling Language (UML) visual editing capabilities, code analysis functions and automated
test and deployment tools. RAD is optimized for IBM WebSphere software and provides
capabilities for deploying to other runtime platforms as well.

Some of the features RAD provides are:

� Support of SOA development

RAD includes visual construction tools for developing the services needed in SOA
applications and provides the tools you need to discover, create, build, test, deploy and
publish the services that comprise SOA applications. You can build new applications from
scratch or enable existing applications for the SOA architecture.

� Easy to build, test and deploy J2EE applications

The RAD environment includes full support for the J2EE programming model, including
Web, Java, Web services and EJB development. A visual editor enables drag-and-drop
creation of interfaces, as well as binding data to interface components. You can visualize
and graphically edit the code through a UML-based visual editor and automate many
functions.

Design and construction IBM DB2 Information Integrator
IBM Rational Application Developer
IBM Rational Web Developer
IBM Rational Suite for Technical Developers
IBM WebSphere Development Studio for iSeries™
IBM Workplace Designer

Testing tools IBM Rational Functional Tester
IBM Rational Manual Tester
IBM Rational Performance Tester
IBM Rational PurifyPlus™

Software Configuration Management IBM Rational ClearCase family
IBM Rational ClearQuest® family

Deployment management IBM Tivoli Access Manager
IBM Tivoli Configuration Manager
IBM Tivoli Enterprise™ Console

Process and Portfolio Management IBM Rational Portfolio Manager
IBM Rational Team Unifying Platform™
IBM Rational Unified Process®

Key areas Rational Software Development Platform products
Chapter 5. Development tools 115

http://www.ibm.com/developerworks/platform/

� Database connectivity tools

RAD provides a number of tools to ease the integration and creation of heterogeneous
data sources. Wizards allow you to connect to data sources, edit and manipulate the data
source metadata, support the access of data using APIs with different abstraction levels
(JDBC, API, data beans, EJB) and include connectors for a number of relational
databases from vendors like IBM, Microsoft, Oracle and Sybase.

� Automated deployment tools

RAD provides support for testing and debugging of local and server-side code on IBM
WebSphere Application Server, WebSphere Application Server Express, WebSphere
Portal Server and Apache Tomcat. You can create and configure many elements of your
unit test including server instances and breakpoints. In addition you have the ability to step
through the code and even modify it without restarting the unit test server.

RAD V6.0 supports the following operating systems:

� Microsoft Windows:

– Windows XP with Service Packs 1 and 2
– Windows 2000 Professional with Service Packs 3 and 4
– Windows 2000 Server with Service Packs 3 and 4
– Windows 2000 Advanced Server with Service Packs 3 and 4
– Windows Server® 2003 Standard Edition
– Windows Server 2003 Enterprise Edition

� Linux on Intel®:

– Red Hat Enterprise Linux Workstation V3 (all service packs)
– SuSE Linux Enterprise Server (SLES) V9 (all service packs)

The Rational Application Developer includes a vast range of features targeting on J2EE
development and Web development. In the following section we focus on the features related
to the backing of data servers and SOA technologies.

Basic RAD concepts
When you start RAD, you see the Workbench, which refers to the desktop development
environment of this application. The Workbench window includes the toolbar, the window
menu, and a set of views and editors. The built-in views and editors allow you to perform a
variety of tasks, like browsing through your project, editing different resources (for example,
Java source files, dynamic Web pages, SQL stored procedures, J2EE Web deployment
descriptors, EGL scripts, and many more), review your project tasks, debugging your code,
configuring your data sources and much more.

The appearance of the Workbench window (the views which are shown, their position in the
Workbench, and the toolbar and menu options which are available) is defined by the
Perspective. RAD has a number of built-in perspectives, but you can also define your own
customized perspectives. You switch between different perspectives during your work (for
example, if you finish developing a Java class and start debugging the application, you switch
from the Java perspective to the debug perspective). The perspectives we use when going
through our examples are:

� Data perspective: Shows the Database Explorer and Data Definition views which allow
you to connect to existing databases and work locally with their relational data objects.

Note: The Rational Application Developer V6 Programming Guide, SG24-6449, redbook
contains a comprehensive description of the features provided by RAD.
116 Powering SOA with IBM Data Servers

Also includes the DB Output view which displays messages and results that are related to
the database objects you work with.

� J2EE perspective: Contains Workbench views that you can use when developing
resources for J2EE enterprise applications, EJB modules, Web modules, application client
modules, and connector projects or modules. One of these views is the Project Explorer
that provides an integrated view of your projects, grouped by type, and their artifacts
related to J2EE. When you perform Web Services development, you will usually work with
this perspective.

� Web perspective: Combines views and editors that assist you with Web application and
Web services development. This is the perspective in which you typically edit Web project
resources, such as HTML and JSP files, and deployment descriptors.

� Java perspective: Is designed for working with Java code. It contains the Package Explorer
view which lets you browse easily through your Java code, the Outline view providing a
structured view of your Java class, and a Java type hierarchy browser.

� Debug perspective: Provides convenient access to debugging information. You can define
breakpoints in the source editor, manage threads in the Debug view, view console output
and the run-time content of variables and manage Application Server configurations in the
Server view.

The RAD workspace is a directory on your local file system which is used by RAD to store the
following information:

� RAD environment metadata, such as configuration information and temporary files.

� All projects that you’ve created as part of the development process, including the source
code, project definitions, config files, and generated files such as Java class files.

Resources that are modified and saved are reflected on the local file system. You can have
many workspaces on your local file system to contain different projects that you are working
on or differing versions. Each of these workspaces may be configured differently, since they
will have their own copy of metadata that will have configuration data for that workspace.

You put your development output into different projects. The number and type of projects you
use depends on the work items you create as part of your development activities. We use the
following project types in our examples:

� Simple project: Intended for projects which do not follow a specific structure. We use this
project type to store our local database definitions (for example, when we create a DB2
SQL stored procedure).

� Dynamic Web project: Used for all types of J2EE-based Web applications, that is,
applications which result in a Web application archive (WAR) structure; this kind of Web
application usually contains Java Servlets, JSPs, Web Services, Java libraries, static
content and supporting metadata. We create such projects when we write Web Services.

� Portlet project: A portlet project, like a dynamic Web project, is a J2EE Web application.
The main difference between a portlet project and a Web project is that the portlet project
has an extra deployment descriptor, portlet.xml, in the WEB-INF directory.

� Enterprise Application project: An enterprise application project contains the hierarchy of
resources that are required to deploy a J2EE enterprise application, often referred to as an
EAR file. Our Web projects are bundled together with enterprise application projects so
that we can deploy the projects as EAR files.

RAD database connectivity
RAD includes facilities to manage a number of aspects of the integration of relational
databases into the development process. The database products supported are IBM DB2
Chapter 5. Development tools 117

Universal Database™, IBM Cloudscape, IBM Informix Dynamic Server, Microsoft SQL
Server, Oracle, and Sybase.

Database connections
RAD allows to explore the structure of an existing external database (schemas, tables, views,
stored procedures, user-defined functions). A wizard helps to create a connection to a local or
remote database which is stored permanently in the user’s workspace. Figure 5-14 shows the
Database Explorer view which lists all stored database connections and allows to browse the
database structure, down to the table column level. RAD imports the structure of databases
utilizing the JDBC database metadata API. You can copy the complete database structure to
a local project to modify and update it.

Figure 5-14 RAD Database Explorer view

Structural database changes
RAD contains wizards and editors to create or modify database tables, columns, relationships
and constraints of an existing database. The modifications are first stored in the local
workspace and can be propagated to the database server. You can also create and edit
stored procedures and user-defined functions.

Figure 5-15 on page 119 shows the Data Definition view which provides access to database
objects and allows to add new database objects to existing databases. You can edit the
database objects by using special editors, for example, the stored procedure editor which is
also shown in Figure 5-15 on page 119. In addition, you can create and test SQL statements
(to select or modify data within tables).

RAD stores the database metadata in the XML Metadata Interchange (XMI) format, and
provides conversions between the XMI format and the SQL format, which is used when
communicating with the database server.
118 Powering SOA with IBM Data Servers

Figure 5-15 RAD stored procedure editor

These features allow developers to develop test databases and work with production
databases as part of the overall development process. They could also be used by database
administrators to manage database systems, although they may prefer to use dedicated tools
provided by the vendor of their database systems.

Databases and Web Services
RAD includes a number of wizards which use the database metadata to speed up the
development process of Web Services applications, for example, a wizard to create a DADX
Web Services file based on a stored procedure definition, and a wizard to create a UDF
wrapper for a DB2 Web Services client.

Tools for Web services development
RAD provides tools to assist you with the following aspects of Web services development:

� Service discovery. You can browse UDDI Business Registries or WSIL documents to
locate existing Web Services for integration.

� Creation of new services. You can turn existing artifacts such as Java beans, Enterprise
JavaBeans™ or HTTP URLs into Web Services. RAD maps methods of the beans to Web
Service operations and creates a WSDL document containing the service interface and
the service binding. In the following chapters we show how to create Web Service
interfaces from existing Java beans, DB2 stored procedures and SQL queries.
Chapter 5. Development tools 119

� Build service-aware applications. RAD supports an easy integration of Web Services into
your Java application or DB2 database. Wizards assist you in the creation of Java client
proxies. The proxies can be used within your application to greatly simplify the client
programming required to access a Web Service. RAD wizards also support the creation of
DB2 wrapper user-defined functions which consume Web Services.

RAD can create a sample Web application which uses the proxies mentioned above and
adds a JSP-based Web interface to call the Web Services. You can use this Web
application to create simple Web Service test frameworks.

� Testing facilities. Apart from the sample Web application, RAD includes the Universal Test
Client, the Web Services Explorer and a TCP/IP monitor to assist you in the testing of Web
Services.

� Service deployment. RAD supports the deployment of Web applications which contain
Web Services into IBM WebSphere Application Server or Apache Tomcat environments.
You can enable security for the Web Services using configuration tools.

� Publishing of services. RAD assists you when publishing Web Services to a UDDI
Business Registry.

5.3 WebSphere Developer for zSeries

In this section we describe WebSphere Developer for zSeries® Version 6. This product
provide a set of capabilities that help make traditional mainframe and Web developments
more efficient. In addition, the product provides a set of tools that leverage your ability to
create Web service as part of SOA architecture for your existing COBOL and PL/I programs.

This section contains the following:

� Product overview
� Development tools

5.3.1 Product overview

WebSphere developer for zSeries consist of a common workbench and integrated set of tools
that support end-to-end development of on demand applications and help to make traditional
mainframe development, Web development, and integrated mixed workload or composite
development faster and more efficient.

WebSphere Developer supports a broad range of developers with added flexibility and the
ability to integrate with existing applications. It accelerates the development of:

� Dynamic Web applications including JAVA and JAVA 2 Enterprise Edition (J2EE).
� Traditional COBOL and PL/I applications.
� High level Enterprise Generation Language (EGL) applications.
� Web services to integrate these applications together.

The WebSphere Developer for zSeries application development workbench and tools provide
these features and benefits:

� Deploys applications to multiple run times including WebSphere, CICS, IMS™, batch, and
DB2 via stored procedures.

� Leverages existing skills to write Web or COBOL applications by using the high level
Enterprise Generation Language.
120 Powering SOA with IBM Data Servers

� Improves the productivity for developers to create, maintain, debug and deploy traditional
transactional and batch applications to the z/OS platform, while providing additional tools
for assisting them in their Web integration efforts.

� Supports SOA and Web service creation, That can be deployed on WebSphere, CICS and
IMS environments. Provides the option to publish COBOL and PL/I application as Web
service as part of a SOA architecture.

� Helps developers create dynamic Web applications including support for J2EE, XML, and
Web services technologies.

� Provides the option to create on demand system that integrate WebSphere software and
traditional transactional environments, including CICS, IMS, and batch processing.

WebSphere developer for zSeries help make traditional mainframe development, Web
development, and integrated mixed workload or composite development faster and more
efficient.

5.3.2 Development tools

WebSphere Developer for zSeries Version 6 provides a set of development tools that intend
to make the SOA development process easier and faster. This section provides a short
description of these development tools.

z/OS application development tools
z/OS application development tools are interactive, workstation-based environment where
you can develop mainframe applications in assembler language, COBOL, or PL/I. The
environment gives you a seamless way to edit on the workstation and prepare output on the
mainframe. The interaction with z/OS include the following steps:

� Create or modify the code in the z/OS LPEX editor. The editor maintains fixed record
lengths, sequence numbers, and file locking (ISPF ENQ/DEQ) as appropriate.

� Validate the source using the syntax check function.

� Debug the code.

� Generate and customize JCL as needed.

� Transfer the source to the host, where z/OS tools submit the JCL or otherwise prepare the
source, including pre-preparation steps for CICS and DB2.

� Inspect the results of code preparation.You can access z/OS data sets by way of a
workstation

z/OS application developer tools provider you the option to access z/OS data sets in a
workstation-like directory structure. This mean that you can process CLISTs and REXX
scripts by editing it on the workstation, transferring it to the z/OS, and run it. Another feature is
that you can view the output in the workstation environment.

XML services for the enterprise
XML Services for the Enterprise lets you easily adapt COBOL-based business applications
so that they can process and produce XML messages. The tool provides a new kind of
access to a called application, so that an Internet user, for example, can access an existing
CICS application.The tool can also help you embed a COBOL application in a larger system
that uses XML for data interchange.

New XML to COBOL Mapping tools allow you to enable existing COBOL applications to
process and produce XML documents when the XML documents do not identically match the
names or data types of COBOL data items. This situation can occur when the XML
Chapter 5. Development tools 121

documents are derived from sources other than the target COBOL data structure. These tools
are very useful when various parts of separate enterprise information systems (EIS) need to
be merged and consolidated. The interfaces between various enterprise applications most
likely do not precisely match.

Enterprise Generation Language (EGL)
Enterprise Generation Language (EGL) is a development environment and programming
language that enables you to write full-function applications quickly, thereby freeing you to
focus on the business problem your code is addressing, rather than on software technologies.
You can use similar I/O statements to access different types of external data stores, whether
those data stores are files, relational databases, or message queues. In addition, the details
of Java and J2EE are hidden from you so that you can deliver enterprise data to browsers
even if you have minimal experience with Web technologies.

After you code an EGL program, you generate it to create Java source, then EGL prepares
the output to produce executable objects. EGL can also provide these services:

� Places the source on a deployment platform outside of the development platform

� Prepares the source on the deployment platform

� Sends status information from the deployment platform to the development platform,
allowing you to check the results

EGL can also produce output that facilitates the final deployment of the executable objects.

An EGL program written for one target platform can be converted easily for use on another.
The benefit is that you can code in response to current platform requirements, and many
details of any future migration are handled for you. EGL can also produce multiple parts of an
application system from the same source.

Service Flow Modeler
Flow Modeler is a multifunctional tool supporting modern application architectures and the
transformation and reuse of existing application processes.

Service Flow Modeler enables the move towards service-oriented architecture (SOA). You
can use Service Flow Modeler to perform the following tasks:

� Model a newly composed business service, or flow, by defining an interface and outlining
execution steps.

� Capture existing EIS (screen or communication area) interfaces to implement steps in the
flow.

� Map data between elements in the flow and the request and response messages used in
its invocation.

� Expose business flows as a service or Web service.

Adapter services and Web services generated using the Service Flow Modeler can be
deployed to multiple runtime environments.

Common Access Repository Manager (CARMA)
Common Access Repository Manager (CARMA) provides a generic interface to z/OS
software configuration managers (SCMs), such as IBM Source Code Library Manager
(SCLM) from WebSphere Developer for zSeries. When making use of CARMA, you can avoid
writing specialized code for accessing SCMs and allow support for virtually any SCM.
122 Powering SOA with IBM Data Servers

For information about the prerequisites, refer to the product page at:

http://www-306.ibm.com/software/awdtools/devzseries

5.4 WebSphere Integration Developer

Business integration means integrating applications, data, and processes within an enterprise
or amongst a set of enterprises. The challenge of this task and how it is met by WebSphere
Integration Developer is discussed in this chapter.

In this section we describe the following topics:

� What business integration is
� WebSphere Integration Developer

5.4.1 What business integration is

Business integration means integrating applications, data and processes with an enterprise
or amongst a set of enterprises.

The best way to present business integration is by using a scenario. Let us assume that your
manager asked you to build a portal for the company customers. The portal have to provide
access to ten of the company’s critical applications and the data spread through all of the
company’s business units. In addition, you have also asked to add the company’s business
partners application to the portal. Another requirement is that the portal have to be available
on the Web 24 hours a day. Figure 5-16 illustrates the challenge that you are facing when
approaching this problem.

Figure 5-16 Business integration problem
Chapter 5. Development tools 123

http://www-306.ibm.com/software/awdtools/devzseries

It looks overwhelming, but not impossible. The most difficult problem will probably be the time
and resources that you going to need to complete this mission.

There are two major problems that you will have to face approaching this problem are
integration between business units within an enterprise (two or more different application on
your company information system) and integration between enterprises (integration with the
company’s customer information systems). We describe these problems shortly.

Integration between business unit
Business units frequently find themselves collaborating today, creating a need for close
integration of their applications.

Formerly autonomous business units are being integrated because technology allows them to
be connected and because efficiency says they must operate in a more cooperative way to
minimize overhead and maximize output. A common corporate goal also drives business
units together. A marketing unit and a research-and-development unit both want to produce a
profitable product. By integrating the knowledge of the market with the product development
information, the odds of producing that successful product increase. Collaboration between
business units also lets corporations leverage their many existing business applications by
permitting their reuse in different business contexts. Integration between business units is
easier than integration between enterprises because there is less security risk, and managing
the interactions between the units should not be as difficult. The business units are probably
using the same protocols, operating systems, and computer languages. In other words, it is a
relatively homogenous environment. The key, however, is to have the right tools to quickly
integrate the applications.

Integration between enterprises
The forces driving the integration of applications between business units also applies
between enterprises, as partnerships or takeovers require shared data and processes.
Technology enables enterprises to be linked in mutually beneficial areas. For example, an
automobile manufacturer can set up an integrated process with a tire supplier so that when
the stock of tires is low the supplier is notified automatically. Integration between enterprises
is being driven by economic necessity. Having closer ties amongst corporations means less
time delays and less overhead to get things done. These automated processes mean that
people spend less time to process transactions between enterprises and travel costs and
face-to-face meeting time can be reduced significantly. Administration costs are similarly
reduced and turnaround time between notification, delivery and invoices is improved. But
different enterprises have different histories. Their applications are coded in different
languages on different platforms using different communication protocols. There are also
greater security risks when working with different organizations. Whatever the benefits and
even the necessity of integration between enterprises, the costs in development time can be
significant without the right tools.

5.4.2 WebSphere Integration Developer

WebSphere Integration Developer has been designed as a complete integration development
for building integrated applications.The WebSphere Integration Developer provides a layer of
abstraction that separate the visually-presented components you work with from the
underlying implementation.

Integrated applications can call applications on Enterprise Information Systems (EIS), involve
business processes across departments or enterprises, and invoke applications locally or
remotely written in a variety of languages and running on a variety of operating systems. For
example, in Figure 5-17 on page 125 eMerged Corporation was created by merging DOM
124 Powering SOA with IBM Data Servers

bank and M&M Discount brokers. The merger meant all of the above: applications on EIS
systems, business processes, and applications within each former corporation had to be
shared between the corporations and presented in a seamless way to the new set of
customers. However, eMerged accomplished the task and, as shown in the following
diagram, customers from both of the former separate businesses can access all their financial
information online.

Figure 5-17 Integration sample

eMerged used WebSphere Integration Developer’s tools to build the integrated applications
for themselves and their customers. These tools present applications, including applications
that exist remotely on EIS systems, and business processes as components. The
components are created and assembled into other integrated applications (that is,
applications created from a set of components) through visual editors. The visual editors
present a layer of abstraction between the components and their implementations. A
developer using the tools can create an integrated application without detailed knowledge of
the underlying implementation of each component. The tools allow both a top-down design
approach to building an integrated application, where the implementation for one or more
components does not exist and is added later; or a bottom-up approach, where the
components are already implemented and the developer assembles them by dragging and
dropping them in a visual editor and then creates a logical flow amongst them by joining them
with lines.

A debugging and test environment means full testing before your applications are deployed to
a production server. Setting monitoring points lets you see how an application is used in real
time in order to fine-tune it for optimal performance. WebSphere Integration Developer’s tools
are based on a service-oriented architecture. Components are services and an integrated
application involving many components is a service. The services created comply to the
leading, industry-wide standards. Business processes, which also become components, are
similarly created with easy-to-use visual tools that comply to the industry-standard Business
Process Execution Language (BPEL). WebSphere Integration Developer is available on both
Windows and Linux platforms.

For complete information about the WebSphere Integration Developer refer to the product
overview at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp
Chapter 5. Development tools 125

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp

5.5 Enterprise Generation Language (EGL) and SOA

Enterprise Generation Language (EGL) is a simplified high level programming language that
lets you write full-function applications quickly. It frees you to focus on the business problem
rather than on complex software technologies. The details of middleware programming and
Java/J2EE are hidden from you, so you can deliver enterprise data to browsers even if you
have minimal experience with Web technologies.

EGL supports an easy way to connect to basically any kind of data server and allows the
retrieval and manipulation of the underlying data source through a very powerful but still
simple data access abstraction layer.

Due to the introduction of Web services support in a recent version of EGL, in combination
with easy access to data sources, EGL makes a great development environment for
developers who want create SOA based solutions in a Java/J2EE environment without the
requirement to actually learn Java and J2EE technologies.

What is EGL?
IBM EGL is a procedural language used for the development of business application
programs. The IBM EGL compiler outputs Java/J2SE or Java/J2EE code, as needed. With
IBM EGL, one can develop business application programs with no user interface, a text user
interface, or a multi-tier graphical Web interface.

Additionally, IBM EGL delivers the software re-use, ease of maintenance, and other features
normally associated with object oriented programming languages by following the MVC
design pattern. Because IBM EGL outputs Java J2EE code, IBM EGL benefits from and
follows the design pattern of MVC and Java/J2EE. EGL will cause the programmer to
organize elements of a business application into highly structured, highly reusable, easily
maintained, and high performing program components.

IBM EGL is procedural, but it is also fourth generation. While IBM EGL supports all of the
detailed programming capabilities one needs to execute in order to support business
(procedural), it also has the higher level constructs that offer higher programmer productivity
(fourth generation). In another sense, IBM EGL is also declarative. There are lists of
properties that can be applied to various EGL components; these properties greatly enhance
or configure the capability of these objects. Lastly, the term enterprise, as in Enterprise
Generation Language, connotes that EGL can satisfy programming requirements across the
entire enterprise. For example, with EGL, one can deliver intranet, extranet, and Internet
applications, including Web services.

EGL provides a simplified approach to application development that is based on these simple
principles:

� Simplifying the specification: EGL provides an easy to learn programming paradigm
that is abstracted to a level that is independent from the underlying technology. Developers
are shielded from the complexities of a variety of supported runtime environments. This
results in a reduced training costs and a great improvement in productivity.

� Code generation: High productivity comes from the ability to generate the technology
neutral specifications (EGL) or logic into optimized code for the target runtime platform.
This results in less code that is written by the business oriented developer and in turn a
reduced number of bugs in the application.

� EGL Based Debugging: Source level debugging is provided in the technology neutral
specification (EGL) without having to generate the target platform code. This provides
complete, end-to-end isolation from the complexity of the underlying technology platform.
126 Powering SOA with IBM Data Servers

Benefits of EGL
Many companies are under business pressure to quickly roll out new systems with the overall
strategy to adopt the emerging J2EE and Web Services standards because of the obvious
benefits of these technologies.

However, the pool of available developers, although extremely valuable because of their
expertise in the business domain and their comfort in understanding the business
requirements and how to implement them, cannot be simply re-trained in Java and J2EE. The
costs of such training have been estimated to be in the order of well over $20,000 per
developer and the time required to reach a level of proficiency in new technologies may not be
compatible with the business pressures. Considering the degree of complexity in the new
technologies and the relative inexperience of the developer pool, the results may not be ideal.

As a development environment, EGL can address many of today’s development challenges.
Integrated into the IBM/Rational development tool offerings, EGL can be the enabling
technology that breaks through these challenges. It can allow you to leverage your current
business-domain knowledgeable staff to use the latest technologies with minimal costs and
effort. The result will allow your company to be more flexible and responsive to new business
opportunities.

Who should consider using EGL?
Simply put - developers who will benefit most from the EGL technology are developers who
need to solve business problems, not technology problems. If your developers fall into any of
the following categories, they would probably be an excellent candidate for adopting EGL:

� Developers who need higher productivity.

� Developers who need to deploy to diverse platforms.

� “Business Oriented” Developers:

– Database Developers: EGL takes the pain out of having to learn the database
manipulation language and code the Create, Read, Update, Delete (CRUD)
functionality by simply doing it for you.

– Informix 4GL Developers: As a new capability in the portfolio, IBM is now enabling
Informix 4GL based applications to easily migrate to a modern extensible IBM Rational
development tools.

– Visual Age Generator Developers: IBM provides time tested and easy to use and
highly automated migration capabilities that can bring your valued former or existing
Visual Age based application to a modern development environment and to a modern
set of runtime technologies.

– Visual Basic Developers: EGL offers similar but more powerful development
efficiencies for the less technically skilled developers as does VB.

– Other 4GL Developers (Oracle Forms, etc…): A community of IBM Business
Partners can help you transform your former or existing 4GL applications to the
IBM/Rational development platform with EGL.

– RPG Developers: EGL offers a procedural language that is familiar to RPG
developers. This will enable developers to move to a modern platform with minimal
training costs while reaping the benefits of the latest technologies.

– COBOL/PLI Developers: By generating COBOL from EGL, your COBOL developers
can move to a new platform that leverages the latest technologies. Moving to EGL
within the IBM/Rational development tools will free developers that have been trapped
in earlier platforms but who can contribute greatly to new projects with their business
domain expertise.
Chapter 5. Development tools 127

5.5.1 Application development with EGL

This section describes elements of EGL that are important to developing applications.

EGL language
The EGL language is a full featured, procedural language that abstracts out the details of a
target technology from developers.

EGL has verbs like “get” that simplify the programming model by providing a consistent
specification to a variety of target data sources. For example, a “get” statement can refer to
records in a database or messages in a message queue. Developers are not required to learn
and code technology dependent database manager or message oriented middleware
programming.

Figure 5-18 EGL integrates easily with different deployment environments

Writing your applications in EGL can also protect your development investment. The
abstracted language can be cast or generated into any other language. Currently, EGL can
generate Java or COBOL. As technology changes and evolves, your investment is protected
by having the ability to re-generate into new target platform that have been improved or to
entirely new platforms – without the need to modify your application.

EGL Libraries
EGL has a construct called a Library. An EGL Library is simply a file that includes EGL code.
EGL libraries provide the application developer with the ability to easily decouple the business
logic from other application code. EGL Libraries provide a variety of entry points – one per
function. These functions can be called from other functions in other Libraries or from EGL
code in EGL Programs or EGL Page Handlers.

EGL Programs
EGL Programs can also be used to package up business logic, but with a single entry point.
128 Powering SOA with IBM Data Servers

EGL Page Handler
In an EGL based Web application, every page will have a “shadow” page handler. The EGL
page handler controls a user's run-time interaction with a Web page. Specifically, the page
handler provides data and services to the JSP that displays the page. The page handler itself
includes variables and the following kinds of logic:

� An OnPageLoad function, which is invoked the first time that the JSP renders the Web
page

� A set of event handlers, each of which is invoked in response to a specific user action
(specifically, by the user clicking a button or link)

� Optionally, validation functions that are used to validate Web-page input fields

� Private functions that can be invoked only by other page-handler functions

It is considered a best practice that the page handler should have no logic. It implements the
controller component of the MVC model. Although the page handler might include lightweight
data validations such as range checks, it's best to invoke other programs or functions to
perform complex business logic so that you follow MVC principles.

Database connectivity with EGL
Accessing data from databases can sometimes be challenging to developers whose primary
objective is to provide their users with the information that is optimal for them to make
business decisions. To be able to access data, a developer needs to:

� Connect to a database
� Know and use the database schema
� Be proficient in SQL in order to get the appropriate data
� Provide the primitive functions to perform the basic CRUD database tasks
� Provide a test environment to efficiently test your application

EGL provides capabilities that make this task very easy for that business oriented developer.

Figure 5-19 A simple EGL program accessing an IBM data service (Informix IDS) via JDBC

Connectivity: Wizards will take these developers through a step by step process of defining
connectivity.
Chapter 5. Development tools 129

Database Schema: If you are using an already existing database, EGL provides an easy to
use import capability that will make the schema structure available to your application.

SQL Coding: EGL provides the generation of SQL statements based on your EGL code. You
then have the option to use the SQL that was generated or for those power SQL users, you
can alter the generated SQL to suit your needs.

Primitive functions: The EGL generation engine will automatically generate the typical
CRUD – Create, Read, Update, and Deleted functions that are the workhorse functions for
database driven applications.

Test capabilities: The IBM/Rational development tools have a test environment that
eliminates the complexities that are associated with deploying and running your application in
complex target platforms.

5.5.2 EGL and Web services support

Since version 6.0.1 of the Rational Software Development Platform (SDP), EGL offers a
simple but powerful way of supporting Web services. You can write EGL applications which
can provide Web services and/or consume Web services.

The current Web services support in EGL relies on the WebSphere Application Server Web
services runtime framework, but future releases of EGL will likely support all standard J2EE
application servers in combination with standard Web services runtime frameworks (like for
instance Apache’s Axis).

The combination of easy data server access in EGL and the included Web services support
makes EGL a very interesting alternative to coding SOA applications in Java, especially for
developers who have a non-Java background.

Since EGL is an already established conversion path for VisualAge® Generator and Informix
4GL applications, the recently added EGL Web services support allows those customers to
easily integrate their earlier or existing applications into a modern SOA framework by just
converting their existing applications into EGL.

In the next two sections we will show how easily EGL can be utilized to provide and consume
Web services on top of an IBM data server.

EGL Web service providing
Before we start on the details on how to develop an EGL based Web service, one should
mention that EGL actually supports two kind of services:

� EGL Service - a type of service for applications written entirely in EGL

� EGL Web service - a type of service that is created using EGL, but can be accessed from
both EGL and non-EGL clients

This section focuses only on EGL Web services which can be also called from any standards
compliant Web service client.

The high-level steps to create an EGL Web service are:

1. Configure your project for Web services: In this first step you set project and Workspace
properties to enable Web Service development and testing.

a. Specify Workspace Capabilities to support Web services development

b. Specify Web service-specific Build Options
130 Powering SOA with IBM Data Servers

2. Define the Web Service EGL Part: Here you will create a new EGL file of type Service

3. Code the Web Service Business Logic: In this new Service EGL file, you will add EGL
functions and variables (statements), that perform the service (for example, business
logic) required by your application

4. Generate the Web Service: After you've finished coding you will save and generate Java
for your Service

5. Optional: Test the Web Service interactively: You can then test your Web service
interactively using the Rational SDP Web service testing tools. If there are logic issues,
you can return to step3 and fix them.

6. Optional: Create the Web service Binding Library: When you are satisfied with your
logic/testing results, you will create a Web Service Binding Library, which contains entries
that allow you to deploy and call your new Web service from an EGL client (a Pagehandler
file, program, library or some other Service Part)

7. Optional: Create a JSP page to test the Web service as a client: Finally, you can create a
page and EGL Pagehandler to call the Web service from an Internet application.

A simple EGL Web service providing example
To better understand EGL Web services, let us look at the simple example in Example 5-1.

The task is to provide a Web service called getAllCustomers which returns a list of all banking
customers from the customer table in the underlying database. The service has one
parameter which is actually being used to return the customer record entries and one return
value which contains the actual number of customer records returned.

Example 5-1 A simple EGL Web services providing example

// EGL Web service

package EGLWebServices;

record Customer type SQLRecord
{tableNames = [["customer"]], keyItems = ["customer_num"]}

customer_num int;
lname char(15);
fname char(15);
company char(20);
city char(15);

end

Service CustomerService

function getAllCustomers(customers Customer[]) returns(int)
get customers;
return (size(customers));

end

end

After coding and generating the EGL service part (Example 5-1), you will notice that the EGL
code generator already generated the necessary WSDL file for the newly developed Web
service into the WebContent/WEB-INF/wsdl folder.

In order to test the new EGL Web service within the Rational SDP first of all make sure that
the integrated WebSphere Application Server test environment is up and running. In the next
Chapter 5. Development tools 131

step simply navigate to the Web Services/Services/CustomerServiceService folder. Then
right-click the WSDL file and select Test with Web Services Explorer.

After selecting the getAllCustomers Web service operation you see a result like in
Figure 5-20.

Figure 5-20 Using the Web Services Explorer to test the EGL Web service

EGL Web service consuming
In order to consume a Web service in EGL the following basic three steps are necessary:

1. Obtain the WSDL file of the desired Web service and import it into an EGL Web project

2. Right-click the WSDL file within the project → Generate EGL binding lib

3. Call the Web service function from the generated EGL binding lib / interface

A simple EGL Web service consuming example
For this example we want to access one of the public accessible Web services like the
CurrencyExchangeService provided by www.xmethods.net.
132 Powering SOA with IBM Data Servers

The finished application should be a Web based application which allows to enter two
currency codes and returns the current exchange rate after call the xmethods.net Web
service.

So in the first step we need to create a new EGL Web project and then import the
downloaded WSDL file for the CurrencyExchangeService (Example 5-2).

Example 5-2 The CurrencyExchangeService.wsdl file

<?xml version="1.0"?>
<definitions name="CurrencyExchangeService"
targetNamespace="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
xmlns:tns="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="getRateRequest">
<part name="country1" type="xsd:string"/>
<part name="country2" type="xsd:string"/>

</message>
<message name="getRateResponse">

<part name="Result" type="xsd:float"/>
</message>
<portType name="CurrencyExchangePortType">

<operation name="getRate">
<input message="tns:getRateRequest" />
<output message="tns:getRateResponse" />

</operation>
</portType>
<binding name="CurrencyExchangeBinding" type="tns:CurrencyExchangePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getRate">

<soap:operation soapAction=""/>
<input >

<soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output >

<soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="CurrencyExchangeService">

<documentation>Returns the exchange rate between the two
currencies</documentation>

<port name="CurrencyExchangePort" binding="tns:CurrencyExchangeBinding">
<soap:address location="http://services.xmethods.net:80/soap"/>

</port>
</service>

</definitions>

In step two, we right-click the imported WSDL file and choose Create EGL Interfaces and
Binding Library to generate the necessary files to actually call the Web service from within an
EGL application (Example 5-3 on page 134 and Example 5-4 on page 134).
Chapter 5. Development tools 133

Example 5-3 CurrencyExchangeService.egl

package net.xmethods.www;

interface CurrencyExchangePortType{@wsdl {elementName="CurrencyExchangePortType",
namespace="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"}}

function getRate(country1 string in, country2 string in)
returns(smallfloat){@wsdl {elementName="getRate"}};
end

Example 5-4 CurrencyExchangeService_ServiceBindingLib.egl

package net.xmethods.www;

library CurrencyExchangeService_ServiceBindingLib type ServiceBindingLibrary

CurrencyExchangePort CurrencyExchangePortType{@WebBinding {
 wsdlFile="WebContent/WEB-INF/wsdl/CurrencyExchangeService.wsdl",
 wsdlService="CurrencyExchangeService",
 wsdlPort="CurrencyExchangePort",
 endpoint="http://services.xmethods.net:80/soap"}};
end

In our last step we just need to write a simple EGL based Web application which refers to the
two generated files (see above) and then calls the Web service function getRate() with two
valid country codes (like usa and euro).

Example 5-5 The finalized EGL Web application which calls the getRate() Web service

package pagehandlers;

import net.xmethods.www.*;

PageHandler ITSOCurrencyConverter
{onPageLoadFunction = "onPageLoad",

 view = "ITSOCurrencyConverter.jsp"}

country1 string;
country2 string;
rate float;

Function onPageLoad()
country1 = "usa";
country2 = "euro";

End

Function convertCurrency()
rate =

CurrencyExchangeService_ServiceBindingLib.CurrencyExchangePort.getRate(country1,
country2);

end
End

After finalizing the EGL example above, just give it a test run by right-clicking on the
ITSOCurrencyConverter.jsp file and then select Run → Run on Server. After a short while
134 Powering SOA with IBM Data Servers

you should see the ITSO Currency Converter example application in the built-in Web browser
of the Rational development tool. Just enter two valid values for the county codes (for
example, euro and usa) and click the button. The button click will call the EGL function
convertCurrency() which itself calls the external Web service (see also Figure 5-21).

Figure 5-21 The ITSO Currency Converter EGL example application
Chapter 5. Development tools 135

136 Powering SOA with IBM Data Servers

Part 3 IBM data servers
and SOA access
services

In Part 3 we discuss the contributions brought by the data servers to the SOA solution within
these four chapters:

� Chapter 6, “DB2 for z/OS and SOA” on page 139
� Chapter 7, “DB2 for Linux, UNIX and Windows and SOA” on page 169
� Chapter 8, “IMS and SOA” on page 201
� Chapter 9, “Informix IDS and SOA” on page 297

Part 3
© Copyright IBM Corp. 2006. All rights reserved. 137

138 Powering SOA with IBM Data Servers

Chapter 6. DB2 for z/OS and SOA

In this chapter we describe what the DB2 for z/OS brings to SOA. We look at both sides of
DB2 involving Web services - a provider side and a consumer side.

We provide the introduction and the facilities to use Web Services Object Runtime
Framework (WORF) in a DB2 for z/OS environment, which covers the benefits of exposing
DB2 objects, such as SQL statements and stored procedures on the provider side, and also
how to consume Web Services from DB2 using user-defined functions (UDFs) on the
consumer side.

We describe the benefits for using stored procedures to provide Web services and the best
way to use JCC to connect to the Database.

This chapter contains these topics:

� DB2 for z/OS and Web services
� DB2 for z/OS providing Web services
� Web services object runtime framework (WORF)
� How WORF processes a Web service
� Creating a DADX file
� Why use stored procedures?
� Connecting your services to DB2 for z/OS through JCC (JDBC)
� DB2 for z/OS consuming Web services

6

© Copyright IBM Corp. 2006. All rights reserved. 139

6.1 DB2 for z/OS and Web services

Since Version 7 DB2 for z/OS allows you to enable your DB2 data and applications as Web
services like a Provider or Consumer.Enabling DB2 as a Web service provider allows you to
create Web services on z/OS with your DB2 data and applications. Enabling DB2 as a Web
service consumer allows you to receive Web service data in your DB2 applications.

Figure 6-1 shows how DB2 for z/OS can be a provider and consumer of Web services.

Figure 6-1 DB2 for z/OS providing and consuming Web services

6.2 DB2 for z/OS providing Web services

In this section we describe how DB2 for z/OS provides data to Web services.

Figure 6-2 on page 141 shows a scenario with DB2 for z/OS as a provider, and the Web
application is not local in z/OS.

SELECT
AVG(salary) getRate("USA","Canada"), job
FROM staff
GROP BY job
ORDER BY 1;

DB2

<Part>
<Number>128</Numbers>
<Quantify>28>/Quantity>
</Part>

SQL Statements

Stored Procedure

DB2 for z/OS as a
Web services provider

WebSphere
Application

Server

WebSphere
DADx
Server

Apache SOAP

Browser
Client

DB2

getRate0

DB2 for z/OS as a
Web services consumer

DB2 Optimizer

SOAP
(XML/HTTP)

SOAP
(XML/HTTP)

DB2
Client
140 Powering SOA with IBM Data Servers

Figure 6-2 Web application out of z/OS

In reference to Figure 6-2:

1 - The server that runs the Web application

2 - The server that runs WORF and the DADX files

3 - The z/OS server that access the DB2 for z/OS

Figure 6-3 on page 142 shows a scenario with DB2 for z/OS as a provider, and the Web
application is local in z/OS.

DB2
Stored

Procedure

HTTP
Via

TCP/IP

DB2
Database

Web Server
Plug-In

Directs request to
J2EE App Server

TCP/IP

TCP/IP

XML

1 2

3

Chapter 6. DB2 for z/OS and SOA 141

Figure 6-3 Web application inside z/OS

In reference to Figure 6-3:

1- The z/OS server that contains the Web application running in the WebSphere
Application Server for z/OS and accessing DB2 for z/OS.

The WebSphere Application Server can be used local or out of z/OS to access Web services,
in the next section we describe a feature in the WebSphere called Web Services Object
Runtime Framework (WORF) that provides Web services with DB2.

6.3 Web services object runtime framework (WORF)

DB2 for z/OS allows you to enable your DB2 data and applications as Web services through
the Web Services Object Runtime Framework (WORF).WORF is included in Rational
Application Developer and is also available as a separate download in DB2. It needs to be run
with WebSphere Application Server. It provides an environment to create XML-based Web
services that access DB2.

WORF uses Apache SOAP 2.2 or later, Apache Axis 1.1 and the WebSphere SOAP engine.
You can define a Web service in DB2 by using a Document Access Definition Extension
(DADX). In the DADX file, you can define Web services based on SQL statements and stored
procedures.Accessing DB2 for z/OS data using DADX requires a Java Web Application
Server, regardless of platform. If the WebSphere Application Server is hosted on zSeries the
native DB2 for zSeries JDBC driver is required. Alternately, the WebSphere environment can
be hosted on UNIX, Windows, or Linux platforms and use the DB2 UDB UNIX, Windows, or
Linux JDBC driver via JDBC using DRDA®.

DB2
Stored

Procedure

HTTP
Via

TCP/IP

DB2
z/OS

Web
Server

SOAP
Req

WAS
zOS

WAS
zOS

JDBC

XMLWeb Server
Plug-In

Directs request to
J2EE App Server

1

Note: WORF is available on DB2 for z/OS since Version 7 with the PTF for APAR
PQ91315.
142 Powering SOA with IBM Data Servers

The Web services that are created from a DADX file are called DADX Web services or DB2
Web services. A Java properties file describes for each DADX environment how to identify the
DB2 JDBC driver details to connect to the DB2 database, including the user information. The
operation is executed within the authorization scope of the defined user within the DADX
descriptor.

Figure 6-4 shows a flow involving the user and providers using DADX files to access DB2.

Figure 6-4 WORF’s flow

6.3.1 What does WORF do?

Based on your definitions in the DADX file, WORF performs the following actions:

� Resource-based deployment and invocation.

� Automatic service redeployment at development time when defining resources change.

� HTTP GET and POST bindings in addition to SOAP.

� Handles the generation of any Web Services Definition Language (WSDL) and an XML
description of all Web services via the Web Service Inspection Language (WSIL).

� Automatic documentation and test page generation.

� Provides DB2 JDBC connection information for the target database.

� Can be easily generated via WSAD/RAD tooling.

� Formats the result into XML, converting types as necessary.

� Provides a URL to invoke Web Service identifies the DADX file as well as the SQL
Operation (Method) within it that is to be invoked.

6.3.2 WORF security

Security of a Web application or a Web Service application can consist of many parts. Many
of these security aspects are known to a database administrator.

1

DB2 WS
Provider

WebSphereWS client

5) SOAP
-Tables
-Stored

Procedures6) SQL

UDDI
registry

2) Publish WSDL

3) Find
WSDL

DBA

1) create

4) Develop
Client

Web
App

SELECT *
FROM
CALENDAR

DADX files

SELECT *
FROM
CALENDAR

DB2
Chapter 6. DB2 for z/OS and SOA 143

This section explains how this works in WebSphere. The things we focus on here are:

� Authentication
� Authorization
� Integrity/Confidentiality

Authentication means that you tell the service who you are. Of course that doesn't mean
much without authentication where you supply a proof that shows that you really are who you
claim you are. This proof could be a password or some security token.

Authorization deals with allowing or disallowing certain things for users. In database
systems this is done with "GRANT" statements. We will explain how the user would do
something like "GRANT SELECT, INSERT ON CALENDAR TO USER PHIL" in the Web
Service context.

Integrity is a means of ensuring that the message has not been tempered with. By using
Confidentiality we can make sure that nobody can read the message that is sent over
insecure communication channels. One example to ensure confidentiality is to use
encryption.

DB2 Web Service provider security
The problems of an administrator who sets up security for the DB2 Web Service provider are
the problem of identification and authentication, which we have already mentioned. We are
going to solve this by requiring the user to have the client authenticate with HTTP
authentication. HTTP authentication means that the HTTP request has to have an HTTP
header field with the user ID and password. When you encounter a Web page in a browser
that requires authentication you usually get a dialog box that lets you enter your user ID and
password for this Web page. In the case of SOAP, the client program has to be modified to
send the user ID and password.

We address authorization by using the J2EE (Java enterprise edition) mechanism of
authorization for URLs. Since all of the Web Service requests are based on sending a
message to a certain URL, we can configure the Web application so that only certain users
can send requests to a certain URL. A URL could be either one DADX or a whole group of
DADX files.

There is one last problem of mapping the users that authenticate with WebSphere to a
database user that executes the statements in a DADX. Since our runtime cannot determine
the user ID and password that is used in HTTP authentication, we cannot use this to connect
to the database. In some cases this is not even realistic if the application server users are
different from database users. An example is the case that the application server and
database server run on different machines and both use the operating system as a user
registry. Instead, on a group (that contains multiple DADX files) you can specify one user ID
and password. This user will be used to execute all SQL statements in DADX in that group. If
you want to distinguish users who execute SQL, you can create a separate group, such as a
group for users in accounting and one for users in engineering.

Confidentiality and integrity can simply be solved by requiring the user to use HTTPS. This
means that all network traffic is encrypted, and tampering with messages is also detected.

Note: We describe Web Services security in Chapter 3, “Web services and
service-oriented architecture” on page 23.

Note: For more information refer to:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0404wollscheid
144 Powering SOA with IBM Data Servers

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0404wollscheid

6.4 How WORF processes a Web service

Figure 6-5 shows how WORF processes a Web service request.

Figure 6-5 DADX file using WORF to access DB2

The Web services client sends a service request using the SOAP client. The WORF
processes the received URL request and checks for a DADX and the requested action. The
action can be TEST, XSD, or WSDL.

When WORF receives the request, it performs the following steps in response to a Web
service request:

1. Load the DADX file specified in the URL or request from file systems or internal cache.

2. Check whether the request is for operation (SQL) or command (TEST, XSD, or WSDL).

If the DADX includes SQL operations:

� Replace parameters in the statement string inside the DADX file with requested values.

� Connect to DB2 and execute any SQL statements or SQL calls specified in DADX file.

� Format the result into XML.

� Return the response to the service requestor.

If the request is for a command, generate the required files, test pages, or other responses
and return the response to the service requestor.

6.5 Creating a DADX file

A document access definition extension (DADX) file specifies how to create a Web service by
using a set of operations that are defined by SQL statements. The DADX file can contain
standard SQL statements, such as SELECT, INSERT, UPDATE, DELETE, and CALL
statements, to query and update a database and call stored procedures.

Table 6-1 shows what you can describe in the DADX file.

II/DB2

SOAP Service

DB2

SOAP Request

Stored
Procedures

JDBC
(Connection Pool)

WORF
(DADX Processor)

Tables

DADX File
Chapter 6. DB2 for z/OS and SOA 145

Table 6-1 XML elements used in the DADX files

In these example, we perform SQL operation to get CARS information. The operation
listCars, lists information about all Cars in a Rental Car. To pass SQL parameters, use a
colon prefix as shown in the Example 6-1.

Example 6-1 SQL query using DADX

<SQL_query>SELECT * FROM CARS WHERE CAR_NUM =:CARNUMBER</SQL_query>

To define a parameter, use the <parameter> element as shown in the Example 6-2.

Example 6-2 Defining parameter

<parameter name="CARNUMBER" type="xsd:string"/>

The second operation, getEmpInfo, takes the employee number as its input parameter and
returns employee information for that number. See Example 6-3 that shows the DADX file
which contains the definition for both SQL operations.

Example 6-3 DADX file

<?xml version="1.0" encoding="UTF-8"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx">
<operation name="listDepartments">
<documentation> Lists all the departments in the DEPARTMENT table of
the SAMPLE database </documentation>
<query>
<SQL_query>SELECT * FROM department</SQL_query>
</query>
</operation>
<operation name="listSales">
<query>
<SQL_query>SELECT * FROM sales WHERE SALES_PERSON = :name</SQL_query>
<parameter name="name" type="xsd:string"/>
</query>
</operation>
</DADX>.

Operations Element Description

SQL Operations <query> Queries the database.

<update> Updates the database.

<call> Call stored procedures.

Note: DADX files also can execute XML collections operations using elements
<retrieveXML> and <storeXML>, it needs the installation of XML Extender. In this book, we
are not considering using XML extender, because DB2 for z/OS V8 and mainly V9 support
XML/SQL using publishing functions and Native XML. See Appendix B, “XML and DB2 for
z/OS” on page 575 about XML support in z/OS.

Note: See Chapter 15, “Developing SOA access services” on page 401 for more
information and examples developing DADX files.
146 Powering SOA with IBM Data Servers

6.6 Why use stored procedures?

When you expose DB2 data to Web services clients using DADX, consider embedding data
access logic into DB2 stored procedures. Each DADX operation is currently limited to a single
SQL statement and executes within a single unit of work. DB2 stored procedures provide a
very powerful technique for creating an abstraction layer for DB2 data access. DB2 stored
procedures can be created in various programming languages, including Java and the
standard SQL procedure language.

Other stored procedures advantages using DB2 for z/OS:

� Reduce network traffic.

� Simplify development and maintenance.

� Remove client dependency on database design at the server.

� Allow for the ability to dynamically change application programs.

� Changed and refreshed code at the server.

� No need to change client code.

� Can continue to run client code while changes are made.

� Allow most of an application to exist at the server, not the client.

� Need less code to be globally changed at all client locations.

� Reusable code.

� Improve security.

� Eliminate the need for end user table authority.

� Move processing away from end users.

� Provide the ability to access and update data that is not stored in DB2, such as VSAM IMS
data.

.

6.6.1 Stored procedure as a Web service

Everything we have worked through so far has given us all we need to move on to the other
features and functionality of DB2 Web services. In this section we show you how to expose a
DB2 stored procedure as a Web service. This will include a simple stored procedure as well
as a stored procedure which will require input variables and join a few tables together.

See Figure 6-6 for a graphical representation of how to call a stored procedure.

Note: Note that in DB2 Version 8, the Java stored procedure infrastructure has been
rearchitected to improve performance.
Chapter 6. DB2 for z/OS and SOA 147

Figure 6-6 Calling a stored procedure

See Example 6-4 a short example to call a stored procedure using DADX file.

Example 6-4 Calling stored procedures

<?xml version="1.0" encoding="UTF-8"?>
<dadx:DADX xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://schemas.ibm.com/db2/dxx/dadx dadx.xsd">
 <dadx:operation name="StoredProcForSOA">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 <![CDATA[]]>
 </dadx:documentation>
 <dadx:call>
 <dadx:SQL_call>
 <![CDATA[
 CALL PAOLOR1.SPSOA2(:NUMBER, :DESC1, :DESC2)
]]>
 </dadx:SQL_call>
 <dadx:parameter name="NUMBER" type="xsd:int" kind="in"/>
 <dadx:parameter name="DESC1" type="xsd:string" kind="out"/>
 <dadx:parameter name="DESC2" type="xsd:string" kind="out"/>
 </dadx:call>
 </dadx:operation>
</dadx:DADX>

Example 6-5 shows the DDL to create the stored procedure used in the previous example in
z/OS.

Example 6-5 DDL

CREATE PROCEDURE SPSOA2 (IN NUMBER INTEGER,

II/DB2

SOAP Request

call procedure()

WORF
(DADX Processor)

SOAP Service
Stored

Procedure

DB2 z/OS

DADX
148 Powering SOA with IBM Data Servers

 OUT DESC1 CHAR(10),
 OUT DESC2 CHAR(30))

RESULT SETS 1
LANGUAGE SQL
FENCED
COLLID TEST
WLM ENVIRONMENT DB8AWLM1
RUN OPTIONS 'NOTEST(NONE,*,*,*)'

--
-- SQL Stored Procedure

-- NUMBER
-- DESC1
-- DESC2

--
P1: BEGIN

-- Declare variables
DECLARE DESC1_TMP CHAR(10) DEFAULT ' ';
DECLARE DESC2_TMP CHAR(30) DEFAULT ' ';

-- Declare cursor
DECLARE cursor1 CURSOR WITH RETURN FOR

SELECT DESC1_SOA, DESC2_SOA
 FROM TBSOA
 WHERE NUM_SOA = NUMBER;

-- Cursor left open for client application
OPEN cursor1;
SET DESC1 = DESC1_TMP;
SET DESC2 = DESC2_TMP;

END P1

Result sets
Stored procedures can return one or more result sets. These result sets are included in the
message, but you have to define its structure in the DADX file.

<result_set_metadata> - Metadata for a stored procedure result set must be defined
explicitly in the DADX using the element.

At run-time, you obtain the metadata of the result set. The metadata must match the definition
contained in the DADX file. Therefore, you can only invoke stored procedures that have result
sets with fixed metadata. This restriction is necessary in order to have a well-defined WSDL
file for the Web service.

A single result set metadata definition can be referenced by several <call> operations, using
the <result_set> element.

The result set metadata definitions are global to the DADX and must precede all of the
operation definition elements.

See Example 6-6 on page 149 that shows of a <result_set_metadata> element.

Example 6-6 <result_set_metada> element

<result_set_metadata name="listOrg" rowName="Org">
<column name="DEPTNUMB" type="SMALLINT" nullable="false"/>
<column name="DEPTNAME" type="VARCHAR" nullable="true"/>
Chapter 6. DB2 for z/OS and SOA 149

<column name="MANAGER" type="SMALLINT" nullable="true"/>
<column name="DIVISION" type="VARCHAR" nullable="true"/>
<column name="LOCATION" type="VARCHAR" nullable="true"/>
</result_set_metadata>
<operation name="listOrg">
<documentation> Lists all the Organisations in the Org table of the SAMPLE
database </documentation>
<call>
<SQL_call>CALL <username>.org()</SQL_call>
<result_set name="Orgs" metadata="listOrg"/>
</call>
</operation>

Table 6-2 shows the main XML elements used in the Example 6-6.

Table 6-2 XML elements and its descriptions

Table 6-3 on page 150 shows the XML attributes for each element used in the previous
example.

Table 6-3 XML attributes

XML element Description

<result_set_metadata> The result set metadata definitions are global to the DADX and must
precede all of the operation definition elements.

<operation> The operation element and its children specify the name of an
operation, and the type of operation the Web service performs.

<column> Defines the column. The order of the columns must match that
of the result set returned by the stored procedure. Each column has a
name, type, and nullability, which must match the result set.

<documentation> Document the operation, specifying a comment or statement about
the purpose and content of the operation.

<call> Call the stored procedure.

<SQL_call> Specifies a call to the stored procedure.

<parameter> Required when referencing a parameter in an <SQL_call> element.
This specifies a parameter for an operation. Use a separate
parameter element for each parameter referenced in the operation.
Each parameter name must be unique within the operation.

<result_set> This defines a result set and must follow any <parameter> elements.
The result set element has a name which must be unique among all
the parameters and result sets of the operation. It must refer to a
<result_set_metadata> element. One <result_set> element must be
defined for each result set returned from the stored procedure.

XML element XML attributes Description

<result_set_metadata> name Identifies the root element
for the result set.

rowname Set as the element name for
each row of the result set.
150 Powering SOA with IBM Data Servers

Example 6-7 shows the DDL to create the Stored Procedure called in the previous
Example 6-6 on page 149.

Example 6-7 DDL to create a stored procedure

CREATE PROCEDURE <username>.ORG ()
SPECIFIC <username>.listORG
DYNAMIC RESULT SETS 1
--
-- SQL Stored Procedure
--
P1: BEGIN
-- Declare cursor
DECLARE cursor1 CURSOR WITH RETURN FOR
SELECT *
FROM ORG AS ORG;

<column> name Required. This specifies the
name of the column.

type Required if you do not
specify element. It specifies
the type of column

element Required if you do not
specify type. It specifies the
element of column

as Optional. This provides a
name for a column.

nullable Optional. Nullable is either
true or false. It indicates
whether column values can
be null.

</operation> name unique string that identifies
the operation. The string
must be unique within the
DADX file.

<parameter> name The unique name of the
parameter.

type Use the type attribute to specify
a simple type. kind Specifies
whether a parameter passes
input data, returns output data,
or does both. The valid values
for this attribute are: – in – out –
in/out

<result_set> name unique identifier for the result
sets in the SOAP response

metadata result set metadata definition in
the DADX file. The identifier
must refer to the name of an
element.

XML element XML attributes Description
Chapter 6. DB2 for z/OS and SOA 151

-- Cursor left open for client application
OPEN cursor1;
END P1 @

Example 6-8 shows another DDL.

Example 6-8 DDL creating a stored procedure that does a tables join

CREATE PROCEDURE <username>.STAFFORG (IN SALARY DECIMAL(7,2))
SPECIFIC <username>.STAFFORG
DYNAMIC RESULT SETS 1
--
-- SQL Stored Procedure
--
P1: BEGIN
-- Declare cursor
DECLARE cursor1 CURSOR WITH RETURN FOR
SELECT STAFF.NAME, STAFF.JOB, ORG.DEPTNAME as DEPARTMENT,
ORG.DIVISION, ORG.LOCATION
FROM DB2DAS.STAFF AS STAFF, DB2DAS.ORG AS ORG
WHERE STAFF.ID = ORG.MANAGER AND STAFF.SALARY >
STAFFORG.SALARY
ORDER BY STAFF.NAME ASC;
-- Cursor left open for client application
OPEN cursor1;
END P1 @

6.7 Connecting your services to DB2 for z/OS through JCC
(JDBC)

Java Database Connectivity (JDBC) and embedded SQL for Java (SQLJ) are the two
standards-based Java application programming interfaces (APIs) supported by DB2.

6.7.1 Accessing DB2 for z/OS from Java Environment

JDBC is part of the J2EE standard. The Java 2 Platform, Enterprise Edition (J2EE) is a
specification of the different technologies that are available to developers of enterprise Java
applications. Typically these applications are server based, and may even include multiple
servers of different types. This server focus makes it the architecture of interest for DB2 for
z/OS developers.

JDBC defines the standard Application Programming Interface (API) for accessing relational
database systems, such as DB2, from Java. This API is the fundamental building block for
writing DB2 Java applications.

Both JDBC and SQLJ can be used to create Java applications that access DB2. DB2’s
support for JDBC allows Java applications to access local DB2 for z/OS data or remote
server that supports Distributed Relational Database Architecture™ (DRDA).

Note: You can create this stored procedure using the DB2 Development Center. For
detailed information about stored procedure on z/OS refer to DB2 for z/OS Stored
Procedures: Give Them a CALL Through the Network, G24-7083.
152 Powering SOA with IBM Data Servers

Java applications use SQLJ for static SQL and JDBC for dynamic SQL to access any
relational database. SQLJ applications exploit JDBC as an underlying foundation for tasks
such as connecting to databases and handling SQL errors. This allows SQLJ to inter-operate
with JDBC, making it possible for an application program to use JDBC and SQLJ within the
same unit of work.

JDBC fundamentals
The JDBC API specification was developed by Sun Microsystems™ together with relational
database providers, such as IBM and Oracle, to ensure the portability of Java applications
across databases and platforms. There have been three major releases of the JDBC API
specification to date. The most recent one, at the time of writing this publication, is the JDBC
3.0 specification. The final JDBC 3.0 specification was released in February 2002. However, a
JDBC 4.0 specification was filed in 2003.

JDBC driver types
The role of the JDBC driver is to implement the objects, methods, and data types defined in
the JDBC specification. There are currently four JDBC driver types defined in the JDBC 3.0
specification.

Type 1
Commonly referred to as the JDBC-ODBC bridge driver, type 1 drivers map the JDBC API to
another data access API, such as ODBC. Type 1 JDBC drivers are limited in portability
because of the fact that they are generally dependent on a native library. The overhead
involved in having to use two APIs (JDBC and ODBC) degrades performance.

DB2 for z/OS does not supply a type 1 driver.

Type 2
Type 2 drivers are written partly in the Java programming language and partly in native code.
These drivers use a native client library specific to the data source to which they connect.

Although portability is limited due to the platform-specific native code, the type 2 driver is
currently the most commonly used driver type, as it provides the best performance when local
to the database.

DB2 UDB for OS/390 and z/OS offers two type 2 drivers:

� IBM DB2 JDBC/SQLJ 2.0 Driver, also known as the IBM DB2 Legacy Driver

� IBM DB2 Universal Driver for SQLJ and JDBC

Type 3
A type 3 driver is a driver that is written in pure Java. With the type 3 driver, a Java client is
used to communicate with a middleware server using a network-specific protocol. The
middleware server translates the client request in order to access the data source.

DB2 for OS/390 and z/OS does not supply a type 3 driver.

Type 4
Type 4 drivers are written in pure Java and implement the database protocol for a specific
data source. The client connects directly to the data source. DRDA is the protocol that is used
when connecting to a DB2 system as a data source. The type 4 driver is fully portable since it
is written purely in Java.

The IBM DB2 Universal Driver for SQLJ and JDBC type 4 connectivity.
Chapter 6. DB2 for z/OS and SOA 153

IBM DB2 Legacy Driver
A DB2 JDBC type 2 driver, referred to as the DB2 JDBC Legacy type 2 driver, was introduced
to DB2 UDB for OS/390 Version 6 via the maintenance stream in APAR PQ36011. DB2 UDB
for z/OS and OS/390 Version 7 integrated the DB2 JDBC Legacy type 2 driver into the base
code. DB2 UDB for z/OS Version 8 still ships the earlier driver for compatibility reasons, but
V8 also ships the IBM DB2 Universal Driver for SQLJ and JDBC.

IBM DB2 Universal Driver for SQLJ and JDBC
The IBM DB2 Universal Driver for SQLJ and JDBC is a unique architecture-neutral JDBC
driver that supports JDBC type 2 and JDBC type 4 connectivity as well as SQLJ for
distributed and local access. The DB2 Universal Driver is not based on any previous DB2
JDBC drivers. It is a completely new driver that is not categorized by the conventional driver
types. This driver is also known as the DB2 Universal Driver for Java Common Connectivity
(JCC).

When the DB2 Universal Driver is loaded by a Java application, a single driver instance is
created, providing JDBC type 2 and type 4 driver connectivity.Type 4 connectivity with the
Universal Driver uses DRDA to connect to a database server (remote or local). This means
that when using type 4 connectivity, Distributed Data Facility (DDF) will be used even when a
Java program runs on the same z/OS system or logical partition (LPAR) as the target DB2
subsystem.

The Universal Driver also supports distributed transaction management (two-phase commit
support) in the z/OS environment when type 2 or type 4 connectivity is used. However, there
is a difference when using type 2 or type 4 connectivity for two-phase commit
transactions.When using type 2 connectivity for distributed transactions, RRS is used as the
transaction manager. In the case of type 4 connectivity for distributed transactions, there is no
need for RRS, as this is handled by the type 4 (XA) driver.

Type 4 connectivity with distributed transaction support (two-phase commit) is bundled
withDB2 for z/OS; IBM z/OS Application Connectivity to DB2 for z/OS and OS/390.

Figure 6-7 on page 155 illustrates the Java application flow with DB2 Universal Driver type 2
and type 4 connectivity.

Note: Additional information about JDBC driver types and the different scenarios when
they can/should be used is available in the DB2 for z/OS and OS/390: Ready for Java,
SG24-6435.

Attention: The DB2 JDBC Legacy Type 2 driver should not be confused with the JDBC
type 2 driver provided with the IBM DB2 Universal Driver. They are not the same driver.

Note: More details on JDBC and SQLJ Universal Driver Type 4 XA connectivity distributed
transaction support are also documented in the DB2 Universal Database for z/OS Version
8 Application Programming Guide and Reference for JAVA, SC18-7414.
154 Powering SOA with IBM Data Servers

Figure 6-7 DB2 and JDBC

How a connection to a data source is made depends on the JDBC specification level being
used. The DriverManager interface is available for all levels of JDBC. The DataSource
interface is available with JDBC 2.0 and later.

Type 4 connectivity with the Universal Driver uses DRDA to connect to a database server
(remote or local). This means that when using type 4 connectivity, DDF will be used even
when a Java program runs on the same z/OS system or logical partition (LPAR) as the target
DB2 subsystem. To avoid using DDF and the associated network overhead, we recommend
using type 2 connectivity with the DB2 Universal Driver when a Java application is accessing
a local DB2 subsystem.

The IBM DB2 Universal Driver for SQLJ and JDBC provides these new features:

� Cursor and stored procedure result set instances: A DB2 for z/OS server now allows
multiple instances of a cursor, or multiple stored procedure result sets, to be open
concurrently under the same thread.

� SQL cancel: A JDBC or CLI application can cancel long-running requests on a DB2 for
z/OS server.

� Cursor extensions: DB2 for z/OS allows a requester to identify:

– Whether the server should release read locks when a query is closed.

– Whether the server should close a query implicitly when no more rows exist for a
non-scrollable cursor, regardless of whether the cursor has the HOLD attribute.

� Better utilization of network capacity: DB2 for z/OS provides more flexibility for requesters
such as DB2 Connect™ to specify larger query block sizes. This helps requesters
optimize their use of network resources.

JAVA application

Driver manager or
Data source

IBM DB2 JDBC
Universal Driver

Type 2 connectivity

DDF DDF

Local DB2
subsystem

Remote DB2
subsystem

Type 4 connectivity
Using DRDA

DRDA
(potential)
Chapter 6. DB2 for z/OS and SOA 155

� Distributed transactions: DB2 for z/OS, Version 8 adds DRDA XA protocol support, which
is needed to support Java Transaction API (JTA)/Java Transaction Service (JTS)
distributed transactions. This support is available only for TCP/IP connections.

� Server location aliases: DB2 for z/OS supports location aliases that reflect the location
names used by applications to route requests to all or a subset of members in a data
sharing group.

� Subsets: DB2 for z/OS allows you to define subsets of data sharing group members in
TCP/IP networks. A non-DB2 for z/OS requester can connect to a subset of data sharing
group members by appending a port number to a location alias.

� Time-out for allocate conversation requests: If a VTAM® request to allocate a
conversation for a remote SQL statement does not complete in three minutes, DDF forces
VTAM to abnormally terminate the remote request.

Java packages for JDBC support
Before you can invoke JDBC methods in JAVA applications, you need to be able to access all
or parts of various Java packages that contain those methods. You can do that either by
importing the packages or specific classes, or by using the fully-qualified class names. You
might need the following packages or classes for your JDBC program:

� java.sql

Contains the core JDBC API.

� javax.naming

Contains classes and interfaces for Java Naming and Directory Interface™ (JNDI), which
is often used for implementing a DataSource.

� javax.sql

Contains JDBC 3.0 standard extensions.

� com.ibm.db2.jcc

Contains the DB2-specific implementation of JDBC for the DB2 Universal JDBC driver and
some functions of the JDBC/SQLJ Driver for z/OS.

� COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

Contains some functions of the DB2-specific implementation of JDBC/SQLJ Driver for
z/OS.

6.7.2 How JDBC applications connect to a data source

Before you can execute SQL statements in any SQL program, you must connect to a
database server. In JDBC, a database server is known as a data source.

Figure 6-8 on page 157 shows how a Java application connects to a data source for a type 2
driver or DB2 Universal JDBC Driver type 2 connectivity.
156 Powering SOA with IBM Data Servers

Figure 6-8 Java using Universal JDBC driver type 2

Figure 6-9 shows how a Java application connects to a data source for DB2 Universal JDBC
Driver type 4 connectivity.

Figure 6-9 Java using Universal JDBC driver type 4

DriveManager
or

DataSource

Java application

JDBC driver

Database
server

Local database
or DB2

subsystem

DriveManager
or

DataSource

DRDA

Java application

JDBC driver*

Database
server

*Java byte code executed under JVM
Chapter 6. DB2 for z/OS and SOA 157

The way that you connect to a data source depends on the version of JDBC that you use.
Connecting using the DriverManager interface is available for all levels of JDBC. Connecting
using the DataSource interface is available with JDBC 2.0 and above.

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName method. After
the application loads the driver, it connects to a database server by invoking the
DriverManager.getConnection method.

For the IBM DB2 Universal Driver for SQLJ and JDBC, you load the driver by invoking the
Class.forName method with the following argument:

com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following argument instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The code in Example 6-9 shows how to load the DB2 Universal JDBC Driver.

Example 6-9 Loading DB2 universal JDBC driver

Try {
 // Load the DB2 Universal JDBC Driver with DriverManager
 Class.forName("com.ibm.db2.jcc.DB2Driver");
} catch (ClassNotFoundException e) {
 e.printStackTrace();
}

After you load the driver, you connect to the data source by invoking the
DriverManager.getConnection method. You can use one of the forms listed in Example 6-10.

Example 6-10 Connect to a database using JDBC

getConnection:
getConnection(String url);
getConnection(String url, user, password);
getConnection(String url, java.util.Properties info);

The url argument represents a data source, and indicates what type of JDBC connectivity you
are using.

For DB2 Universal JDBC Driver type 4 connectivity, specify a URL with the syntax shown in
Figure 6-10 on page 159.

Note: The catch block is used to print an error if the driver is not found
158 Powering SOA with IBM Data Servers

Figure 6-10 Syntax to use URL for Universal JDBC driver type 4

For DB2 Universal JDBC Driver type 2 connectivity, specify a URL of one of the following
forms:

Syntax for a URL for Universal Driver type 2 connectivity, see Figure 6-11

Figure 6-11 Syntax to use URL for Universal JDBC driver type 2

The meanings of the initial portion of the URL are:

� jdbc:db2: or jdbc:db2os390: or jdbc:db2os390sqlj:

Indicates that the connection is to a DB2 for z/OS or DB2 UDB for Linux, UNIX, and
Windows server. jdbc:db2os390: and jdbc:db2os390sqlj: are for compatibility of programs
that were written for the JDBC/SQLJ Driver for OS/390.

� jdbc:default:connection

Indicates that the URL is intended for environments that support an already-existing
connection, such as CICS, IMS, and stored procedures.

� jdbc:db2j:net:

Indicates that the connection is to a remote IBM Cloudscape server.

jdbc:db2: server database

jdbc:db2j:net: :port

property = value ;

jdbc:db2:database
jdbc:db2os390:database
jdbc:db2os390sqlj:database
jdbc:default:connection
jdbc:db2os390:
jdbc:db2os390sqlj:

property = value ;
Chapter 6. DB2 for z/OS and SOA 159

� server

The domain name or IP address of the database server.

� port

The TCP/IP server port number that is assigned to the database server. This is an integer
between 0 and 65535. The default is 446.

� database

A name for the database server. This name depends on whether Universal Driver type 4
connectivity or Universal Driver type 2 connectivity is used.

6.7.3 Specifying a user ID and password for a connection

There are several ways to specify a user ID and password for a connection:

� Use the form of the getConnection method that specifies url with property=value; clauses,
and include the user and password properties in the URL.

� Use the form of the getConnection method that specifies user and password.

� Use the form of the getConnection method that specifies info, after setting the user and
password properties in a java.util.Properties object.

Example 6-11 shows how to set up the user ID and password using the first method.

Example 6-11 Setting up ID and password

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose:" +
 "user=db2adm;password=db2adm;";
 // Set URL for data source
Connection con = DriverManager.getConnection(url);
 // Create connection

6.7.4 Which is the better JDBC driver type to Web Services?

The DB2 Universal JDBC Driver supports two types of connectivity: type 2 connectivity and
type 4 connectivity. For the DriverManager interface, you specify the type of connectivity
through the URL in the DriverManager.getConnection method. For the DataSource interface,
you specify the type of connectivity through the driverType property.

The Table 6-4 summarizes the differences between type 2 connectivity and type 4
connectivity.

Table 6-4 Differences between the types 2 and 4

Function Universal Driver type 2 Universal Driver type 4

Performance Better for accessing a local DB2
server

Better for accessing a remote
DB2 server

Installation Requires installation of native
libraries in addition to Java
Classes

Requires installation of Java
Classes only

Stored Procedures Can be used to call or execute
stored procedures

Can be used only to call stored
procedures

Distributed transaction
processing (XA)

Supported Supported
160 Powering SOA with IBM Data Servers

Use Universal Driver type 2 connectivity under these circumstances
� Your JDBC or SQLJ application runs locally most of the time, local applications have better

performance with type 2 connectivity.

� You are running a Java stored procedure. A stored procedure environment consists of two
parts: a client program, from which you call a stored procedure, and a server program,
which is the stored procedure. You can call a stored procedure in a JDBC or SQLJ
program that uses type 2 or type 4 connectivity, but you must run a Java stored procedure
using type 2 connectivity.

� Your application runs in the CICS environment or IMS environment

Use Universal Driver type 4 connectivity under these circumstances
� Your JDBC or SQLJ application runs remotely most of the time, remote applications have

better performance with type 4 connectivity.

� Web services calling remote DB2.

� You do not have DB2 installed locally.

� Universal Driver type 2 connectivity relies on code that is part of DB2, but Universal Driver
type 4 connectivity does not. Therefore, for Universal Driver type 4 connectivity, you do not
need to have DB2 installed where the driver runs.

6.7.5 Other JDBC considerations

With the DB2 Universal JDBC Driver, you can change the isolation level only at the beginning
of a transaction, after committing or rolling back JDBC transactions.In JDBC, to commit or roll
back transactions explicitly, use the commit or rollback methods.

Example 6-12 shows the commands.

Example 6-12 Using commit statement

Connection con;
...
con.commit();

If autocommit mode is on, DB2 for z/OS performs a commit operation after every SQL
statement completes. To determine whether autocommit mode is on, invoke the statement
shown in Example 6-13.

Example 6-13 Setting autocommit

Connection.setAutoCommit(true);

J2EE 1.4 compliance Compliant Compliant

CICS environment Supported Not supported

IMS environment Supported Not supported

Important: Web services uses Universal Driver type 4 and we recommend it.

Function Universal Driver type 2 Universal Driver type 4
Chapter 6. DB2 for z/OS and SOA 161

6.8 DB2 for z/OS consuming Web services

Web services are increasingly used to integrate information processing within and between
enterprises. When building service-based applications, Web services often have to be
integrated with relational data. To accomplish this, applications must access both Web
services and database management systems.

IBM DB2 for z/OS Web service consumer user-defined functions (UDFs) are now available to
help with this task. These new Web service consumer UDFs enable databases to directly
invoke SOAP-based Web services using SQL. This eliminates the need to transfer data
between Web services and the database. The result is increased productivity and better
performance. The Web services consumer converts existing WSDL interfaces into DB2 table
or scalar functions.Allow mainframe-based enterprise applications to invoke Web Services
regardless of their location DB2 can act as a client for Web services, which allows you to be a
consumer of Web services in your DB2 applications.

Figure 6-12 shows DB2 for z/OS consuming Web services.

Figure 6-12 DB2 for z/OS consuming Web services

6.8.1 Using DB2 for z/OS UDFs

DB2 provides user-defined functions with which you can work with SOAP and consume Web
services in SQL statements.

Figure 6-13 on page 163 shows UDF SOAP accessing Web services.

HTT
P/SO

AP

W eb
W eb Service

Providers
DB2 for z/OS

SOAP
UDFs
162 Powering SOA with IBM Data Servers

Figure 6-13 UDF SOAP accessing Web services

The user-defined functions are two varieties of SOAPHTTPV for VARCHAR data and two
varieties of SOAPHTTPC for CLOB data. The user-defined functions perform the following
actions:

1. Compose a SOAP request

2. Post the request to the service endpoint

3. Receive the SOAP response

4. Return the content of the SOAP body

When a consumer receives the result of a Web services request, the SOAP envelope is
stripped and the XML document is returned. An application program can process the result
data and perform a variety of operations, including inserting or updating a table with the result
data.

DB2 provides these actions when using a SOAP UDF:

� Receive input parameters from SQL statement.

� Compose HTTP/SOAP request based on the input to the UDF.

� Invoke TCP/IP socket call via z/OS USS APIs and send HTTP/POST request.

� Receive reply from Web Service Provider.

� Validate HTTP headers.

� Strip SOAP envelope and return SOAP Body (include namespace referenced in SOAP
envelope) to DB2 client application.

Mainframes

SOAPHTT?

WLM AS1

DB2 for z/OS

Batch Job
Online

Transaction
Adhoc
Query

TCP/IP
Stack

Select/Values DB2XML SOAPHTT?

USS API
TCPIP Socket
HTTP POST

Published
Web

Services

Servers
Chapter 6. DB2 for z/OS and SOA 163

6.8.2 SOAPHTTPC and SOAPHTTPV

SOAPHTTPV and SOAPHTTPC are user-defined functions that allow DB2 to work with
SOAP and to consume Web services in SQL statements. These functions are overloaded
functions that are used for VARCHAR or CLOB data of different sizes, depending on the
SOAP body. Web services can be invoked in one of four ways, depending on the size of the
input data and the result data. SOAPHTTPV returns VARCHAR(32672) data and
SOAPHTTPC returns CLOB(1M) data. Both functions accept either VARCHAR(32672) or
CLOB(1M) as the input body.

For the syntax command, see Figure 6-14.

Figure 6-14 Syntax command to use SOAP UDFs

The SOAPHTTPC function returns a CLOB representation of XML data that results #from a
SOAP request to the Web service specified by the first argument. The #SOAPHTTPV
function returns a VARCHAR representation of XML data that results #from a SOAP request
to the Web service specified by the first argument.

Three input parameters
ENDPOINT_URL: The URL of the Web service endpoint for which DB2 is acting as a client.
Defined as VARCHAR(256)

SOAP_ACTION: A SOAP action URI reference. This parameter is optional depending on the
Web service that is specified in endpoint_url. If it is required, the required value is defined in
the WSDL of the specified Web service. Defined as VARCHAR(256)

SOAP_BODY: The name of an operation with requested namespace URI, an encoding style,
and input arguments. Can include some well-formed XML content for the SOAP body. The
specific operations and arguments for a Web service are defined in the WSDL of the specified
Web service

The input for sapidity must be either VARCHAR(3072) or CLOB(1M) data.

One output parameter
Defined as VARCHAR(32672) or CLOB(1M)

If the arguments can be null, the result can be null; if all of the arguments # are null, the result
is the null value.

The SQL statement in Example 6-14 on page 164 retrieves information (as VARCHAR data)
about a Web service.

Example 6-14 Selecting data using SOAP UDF

SELECT DB2XML.SOAPHTTPV(

Note: Tooling support for DB2 for z/OS is in Rational Application Developer V7 to create a
SQL UDF specifically for a Web services operation.

SOAPHTTPC (endpoint_url, soap_action, soap_body)

SOAPHTTPV
164 Powering SOA with IBM Data Servers

'http://www.myserver.com/services/db2sample/ivt.dadx/SOAP',
'http://tempuri.org/db2sample/ivt.dadx',
'<testInstallation xmlns="http://tempuri.org/db2sample/ivt.dadx" />')
FROM SYSIBM.SYSDUMMY1;

The SQL statement in Example 6-15 inserts the results (as CLOB data) from a request to a
Web service into a table.

Example 6-15 Inserting data using SOAP UDF

INSERT INTO EMPLOYEE(XMLCOL)
VALUES (DB2XML.SOAPHTTPC(
'http://www.myserver.com/services/db2sample/list.dadx/SOAP',
'http://tempuri.org/db2sample/list.dadx',
'<listDepartments xmlns="http://tempuri.org/db2sample/list.dadx">
<deptNo>A00</deptNo>
</listDepartments>'));

Figure 6-15 shows an SQLSTATE error using SOAP UDFs.

Figure 6-15 SPUFI screen

Table 6-5 on page 165 shows SQLSTATE values that DB2 for z/OS returns for error
conditions related to using DB2 as a Web services consumer.

Table 6-5 SQL errors with DB2 consuming Web services

SQLSTATE Description

38301 An unexpected NULL value was passed as input to the function.
Chapter 6. DB2 for z/OS and SOA 165

38302 The function was unable to allocate space.

38304 An unknown protocol was specified on the endpoint URL.

38305 An invalid URL was specified on the endpoint URL.

38306 An error occurred while attempting to create a TCP/IP socket.

38307 An error occurred while attempting to bind a TCP/IP socket.

38308 The function could not resolve the specified hostname.

38309 An error occurred while attempting to connect to the specified server.

38310 An error occurred while attempting to retrieve information from the protocol.

38311 An error occurred while attempting to set socket options.

38312 The function received unexpected data returned for the Web service.

38313 The Web service did not return data of the proper content type.

38314 An error occurred while initializing the XML parser.

38315 An error occurred while creating the XML parser.

38316 An error occurred while establishing a handler for the XML parser.

38317 The XML parser encountered an error while parsing the result data.

38318 The XML parser could not convert the result data to the database codepage.

38319 The function could not allocate memory when creating a TCP/IP socket.

38320 An error occurred while attempting to send the request to the specified
server.

38321 The function was unable to send the entire request to the specified server.

38322 An error occurred while attempting to read the result data from the specified
server.

38323 An error occurred while waiting for data to be returned from the specified
server.

38324 The function encountered an internal error while attempting to format the
input message.

38325 The function encountered an internal error while attempting to add
namespace information to the input message.

38327 The XML parser could not strip the SOAP envelope from the result message.

38328 An error occurred while processing an SSL connection.

38305 An invalid URL was specified on the endpoint URL.

38306 An error occurred while attempting to create a TCP/IP socket.

38307 An error occurred while attempting to bind a TCP/IP socket.

38308 The function could not resolve the specified hostname.

38309 An error occurred while attempting to connect to the specified server.

38310 An error occurred while attempting to retrieve information from the protocol.

SQLSTATE Description
166 Powering SOA with IBM Data Servers

38311 An error occurred while attempting to set socket options.

38312 The function received unexpected data returned for the Web service.

38313 The Web service did not return data of the proper content type.

38314 An error occurred while initializing the XML parser.

38315 An error occurred while creating the XML parser.

38316 An error occurred while establishing a handler for the XML parser.

38317 The XML parser encountered an error while parsing the result data.

38318 The XML parser could not convert the result data to the database codepage.

38319 The function could not allocate memory when creating a TCP/IP socket.

38320 An error occurred while attempting to send the request to the specified
server.

38321 The function was unable to send the entire request to the specified server.

38322 An error occurred while attempting to read the result data from the specified
server.

38323 An error occurred while waiting for data to be returned from the specified
server.

38324 The function encountered an internal error while attempting to format the
input message.

38325 The function encountered an internal error while attempting to add
namespace information to the input message.

38327 The XML parser could not strip the SOAP envelope from the result message.

38328 An error occurred while processing an SSL connection.

38319 The function could not allocate memory when creating a TCP/IP socket.

SQLSTATE Description
Chapter 6. DB2 for z/OS and SOA 167

168 Powering SOA with IBM Data Servers

Chapter 7. DB2 for Linux, UNIX and
Windows and SOA

In this chapter, we look at how DB2 UDB is being extended to provide support for Web
services. DB2 can be a Web service provider as well as a Web service consumer. We show
how Web services can be used in a database environment, and explain how Web services
can be incorporated into SQL.

As a Web service provider, DB2 exposes DB2 objects as a Web service.

As a Web service consumer, DB2 has a set of user-defined functions (UDF) that provide a
high-speed client Simple Object Access Protocol (SOAP) to access Web services over the
Hypertext Transfer Protocol (HTTP) interface.

This chapter contains these topics:

� DB2 Web service components: Provider and consumer
� Web services provider
� Web services consumer

7

© Copyright IBM Corp. 2006. All rights reserved. 169

7.1 DB2 Web service components: Provider and consumer

Web services provide a flexible, programming-language independent technique for accessing
DB2 databases. Web services provide a simple interface between the provider and consumer
of application resources using a Web Service Description Language (WSDL). Web services
can be exploited within a DB2 database in two manners:

� Web Services Provider
� Web Services Consumer

Figure 7-1 shows you how DB2 can be a Web service provider and also a Web service
consumer, and where other Web services components come into the picture.

Figure 7-1 DB2 Web service components - Provider and consumer

7.2 Web services provider

DB2 provides the Web Services Object Runtime Framework (WORF) facility that can be used
in conjunction with WebSphere Application Server to perform SQL queries, utilize DB2 V9.1
native XML data store to manipulate XML data, and invoke stored procedures. WORF
provides an environment in which you can easily create simple XML-based Web services that
can access a DB2 database. WORF uses an XML data format called Document Access
Definition Extension (DADX) to simplify access to DB2 data using Web services
standards.The idea is to define Web Services through simple XML files so that you can list
database operations to be exposed as Web services.

XQuery / SQL

HTTP/SOAP

UDDIs
Tables

Native
XML

DB2

Stored
Procedure

Tables

Native
XML

XQuery / SQL
Applications

Service
Providers

H
TT

P/
SO

A
P

Soap
Client

DB2 provides Web Services Data DB2 consumes Web Services Data

H
TT

P/
G

ET

Web
Browser

DB2 Web
Service
Provider

Web
Service

Wrapper
or UDFs

WebSphere
Application Server
170 Powering SOA with IBM Data Servers

A document access definition extension (DADX) file specifies how to create a Web service.
You can create a Web service by using a set of operations that are defined by SQL
statements, stored procedure calls, or DAD files. Web services store XML documents or
retrieve XML documents. Web services that are specified in a DADX file are called DADX
Web services, or DB2 Web services.

WORF provides the run-time support for invoking DADX documents as Web services. These
Web services use the Apache Axis engine (Version 1.1) or the WebSphere Web services
engine. Both of these SOAP engines are supported by WebSphere Application Server.
Apache Jakarta Tomcat does not support IBM WebSphere SOAP engine. Figure 7-2 shows
the WORF architecture.

Figure 7-2 WORF architecture

WORF provides the following features:

� Resource-based deployment

– A key feature of WORF is that it supports resource-based deployment of Web services.

– WORF can generate the appropriate Web services from resource files. When you
request the resource file, WORF loads the file and makes it available as a Web service.

Note: XML Extender is still supported in DB2 Version 9.1, but the native support presents
several advantages. You can migrate your database application from XML Extender to use
the native XML storage in DB2 Version 9.1. See 11.5, “Migrating from XML Extender” on
page 366 for detail on how to migrate from DB2 XML Extender to native XML.

SOAP
Service
Runtime

WORF

(DADX Processor)

DB2 UDB

Tables

TablesStored
Procedures

DADX

JDBC

SOAP Request
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 171

� Web services automatic reloading

– Automatic reloading makes developing DADX Web services as simple as the
developing of Java Server Pages. If the WebSphere Application Server SOAP engine
is used, the WORF application needs to be restarted if a DADX file got changed.

– If the resource file is updated, WORF automatically detects the change and loads the
new version. Automatic reload of the resource file makes Web service development
more productive.

� Accessing the Web service with HTTP GET, POST bindings, in addition to SOAP bindings

– You can access the Web service by using the HTTP GET, and SOAP bindings.

� Automatic WSDL generation

– The WSDL document is used to describe the interface of business services. The DADX
document contains the information required to implement the Web service, and it also
contains the information required to generate the WSDL document.

� Automatic Web services documentation

– You can include documentation in the DADX file for the Web service as a whole and for
each operation in the Web service.

� Find Web services that exist from Web services provider

– There is a large number of Web Services that you can use on your network. You must
find these Web services and get information about them before you can use them. Web
Services Inspection Language (WSIL) makes this search process easier.

– By using WORF, you can inspect all of the Web services available within an DADX
application. The inspection generator produces an XML document that is a list of
available Web services of your DADX group.

7.2.1 Web service provider operations and DADX

In order to understand Web service provider operations and DADX, we need to first define a
number of common terms.

The document access definition extension (DADX) file specifies a Web service. The DADX
file defines the Web services by specifying a set of operations which you can invoke. The
operation definition contains a list of parameters and actions to be performed. A Web service
developer creates the DADX by using SQL statements, a list of parameters, and optionally,
document access definition (DAD) file references that define a set of operations. A DADX file
makes one Web service - meaning there is one WSDL document for each DADX file.

A DADX group is a grouping of one or more DADX files. Each DADX group has a
group.properties file that defines the properties of the group. The DADX group contains
connection (JDBC and JNDI) and other information that is shared between DADX files within
the group. The implication is that each DADX group can only access one database.

A WORF instance is a J2EE Web application consists of DADX files, DADX group and WORF
libraries.

7.2.2 Syntax of a DADX

The Document Access Definition Extension (DADX) file is an XML document. Figure 7-4 on
page 176 shows the syntax of the DADX file.
172 Powering SOA with IBM Data Servers

Figure 7-3 Syntax diagram of a DADX file

Example 7-1 shows the explanation for the <result_set_metadata> element and its attributes
which we use later to expose a stored procedure as a Web service.

Example 7-1 <result_set_metadata> element

1.3 <result_set_metadata>
Stored procedures can return one or more result sets. You can include them in the
output message. Metadata for a stored procedure result set must be defined
explicitly in the non-dynamic DADX using the <result_set_metadata> element. At
run-time, you obtain the metadata of the result set. The metadata must match the
definition contained in the DADX file.

Note: You can only invoke stored procedures that have result sets with fixed
metadata.

This restriction is necessary in order to have a well-defined WSDL file for the
Web Service. A single result set metadata definition can be referenced by several
<call> operations, using the <result_set> element. The result set metadata

Note: In Figure 7-3, the numbers next to the nodes and elements in DADX syntax
definitions identify the child groupings. The numbering scheme expresses the XML
document hierarchy. For example, when the identifiers change from 1.3
(result_set_metadata) to 1.3.1 (column), this means that the column is a child of
result_set_metadata. A change from 1.1 (documentation) to 1.2 (implements) means that
these elements are siblings.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 173

definitions are global to the DADX and must precede all of the operation
definition elements.

Attributes:
name

Identifies the root element for the result set.
rowname

Used as the element name for each row of the result set.

Children:
1.3.1 <column>
Defines the column. The order of the columns must match that of the result
set returned by the stored procedure. Each column has a name, type, and
nullability, which must match the result set.

Attributes:
name

Required. This specifies the name of the column.
type

Required if you do not specify element. It specifies the type of column.
element

Required if you do not specify type. It specifies the element of column.
as

Optional. This provides a name for a column.
nullable

Optional. Nullable is either true or false. It indicates whether column
values can be null.

Example 7-2 shows the detail about the <operation> element, its attributes and children.
Again we need this information when we expose a stored procedure as a Web service in the
next example.

Example 7-2 <operation> element

1.4 <operation>
Specifies a Web service operation. The operation element and its children specify
the name of an operation, and the type of operation the Web service performs. Web
services can compose an XML document, query the database, or call a stored
procedure. A single DADX file can contain multiple operations on a single database
or location. The following list describes these elements.

Attribute:
name

A unique string that identifies the operation. The string must be unique
within the DADX file. For example: "findByColorAndMinPrice"

Children:
Document the operation with the following element:

...

1.4.6 <call>
Specifies a call to a stored procedure. The processing is similar to the
update operation, but the parameters for the call operation can be defined
as 'in', 'out', or 'in/out'. The default parameter kind is 'in'. The 'out'
and 'in/out' parameters appear in the output message.
174 Powering SOA with IBM Data Servers

1.4.6.1 <SQL_call>
Specifies a stored procedure call.
1.4.6.2 <parameter>
Required when referencing a parameter in an <SQL_call> element. This
specifies a parameter for an operation. Use a separate parameter element
for each parameter referenced in the operation. Each parameter name must
be unique within the operation. A parameter must have its contents
defined by one of the following: an XML Schema element (a complex type)
or a simple type.
Attributes:
name
The unique name of the parameter.
element
Use the "element" attribute to specify an XML Schema element.
type
Use the "type" attribute to specify a simple type.
kind
Specifies whether a parameter passes input data, returns output data, or
does both. The valid values for this attribute are:
- in
- out
- in/out
1.4.6.3 <result_set>
This defines a result set and must follow any <parameter> elements. The
result set element has a name which must be unique among all the
parameters and result sets of the operation. It must refer to a
<result_set_metadata> element. One <result_set> element must be defined
for each result set returned from the stored procedure.
Attributes:
name
A unique identifier for the result sets in the SOAP response.
metadata
A result set metadata definition in the DADX file. The identifier must
refer to the name of an element.

For full listing of DADX elements see Appendix C.12, “Syntax of the DADX file” on page 653.
Also refer to Appendix C.11, “XML schema for the DADX file” on page 645 for the complete
dadx.xsd file that describes the DADX schema.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 175

7.2.3 DADX operations

DADX files support three kinds of Web service operations: non-dynamic SQL operations,
dynamic SQL operations, and XML collection operations.

Figure 7-4 DADX operations

See Example 7-3 for a summary of all the elements.

Example 7-3 Web service provider operations used with DADX file

SQL Operations (non-dynamic)
<query>
Queries the database by using a select operation

<update>
Performs an update, insert or delete operation on the database

<call>
Calls stored procedures

SQL Operations (dynamic query services)
<getTables>
Retrieves a description of available tables.

<getColumns>
Retrieves a description of columns.

<executeQuery>
Issues a single SQL statement.

<executeUpdate>
Issues a single INSERT, UPDATE, DELETE.

<executeCall>
Calls a single stored procedure.

D A D X S Q L
O P E R A T IO N S

D A D X X M L
E X T E N D E R

O P E R A T IO N S
(X M L E X T E N D E R
D E P R E C A T E D I N

D B 2 V 9 . 1)

D A D X
S T O R E D

P R O C E D U R E
O P E R A T IO N S

W S D L

D B 2 D A T A A N D S T O R E D P R O C E D U R E S

S O A P C L IE N T

R E Q U E S T

S P -B A S E D
O P E R A T IO N S

X M L -B A S E D
O P E R A T IO N S S Q L -B A S E D

O P E R A T IO N

W O R F
(D A D X

P R O C E S S O R)

D A D
176 Powering SOA with IBM Data Servers

<execute>
Issues a single SQL statement.

XML collection operations (from DB2 XML Extender)
<retrieveXML>
Generates XML documents

<storeXML>
Stores XML documents

Non-dynamic queries that use the Web service provider
A non-dynamic DADX file defines a set of predetermined SQL operations and contains
information that is used to create the Web service. In Example 7-4, we show a very simple
DADX file that contains only one SQL query. This particular DADX file is used for
non-dynamic queries.

Example 7-4 ListDepartment.dadx

<?xml version="1.0" encoding="UTF-8"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx">
<documentation>
Simple DADX example that accesses the SAMPLE database.
</documentation>
<operation name="listDepartments">

<documentation>Lists the departments.</documentation>
<query>

<SQL_query>SELECT * FROM DEPARTMENT</SQL_query>
</query>

</operation>
</DADX>

Dynamic queries that use the Web services provider
You can also define a set of dynamic Web service operations with a DADX file that contains
only the dynamic query service tag (<DQS/>). A DADX file with a dynamic query services tag
(</DQS>) contains only that tag which acts as a switch to enable dynamic queries for that
group only. If the DADX file contains a dynamic query services tag (<DQS/>), then you can
specify the SQL operations from a browser or embed the operations in an application if you
installed the WORF test Web application. With dynamic query services you can dynamically
build and submit queries at run time that select, insert, update and delete application data,
and call stored procedures rather than run queries that are predefined at deployment time. By
using the dynamic query services of the Web services provider, Web applications can be
more flexible.

To prepare your Web services environment to run dynamic queries on a DB2 Web services
provider, you create a DADX file that includes the XML tag <DQS/>. This tag enables a group
to perform dynamic queries. No other tag is needed in the DADX file. Then you save the file in
the directory of the group for which you will run dynamic queries. Using the WSDL, develop a
client for the application. The client must contain the group name, name of the DADX file, and
the Web service operation. Example 7-5 on page 178 shows a sample DADX file using the

Important: You must define these result sets in the result_set_metadata tag in the DADX
file. This is to let WORF generate the WSDL and XML schema files (XSD) for this Web
service operation.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 177

<DQS/> tag. You want to place the DADX file in the directory of the group for which you will
execute dynamic queries.

Example 7-5 DADX that contains the dynamic query service tag

<?xml version="1.0"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx">
<documentation>Using dynamic query service/documentation>
<DQS/>
</DADX>

Dynamic query tags in the DADX files do not affect static DADX functions. Consider using the
dynamic query service when you do not know the query search criteria until you run your
application.

When the group contains a dynamic query services DADX, the db2WebRowSet.xsd file must
be accessible to Web services consumers. To ensure the location of the db2WebRowSet.xsd
file, the group.imports file defines the necessary schema locations. db2WebRowSet.xsd is
packaged in dxxworf.zip as part of the DB2 installation. In 11.3, “Preparing the installation of
the Web services provider” on page 363 we further discuss how to setup the Web service
provider on supported Web servers.

The dynamic query component of the Web services provider supports Web service
operations that are generally defined by the following categories:

� Obtain metadata

You can retrieve the tables that exist in a database and the column information for those
tables.

� Execute DDL

You can issue a CREATE TABLE statement.

� Execute DML

You can issue SELECT, INSERT, UPDATE and DELETE statements, and the CALL
statement to run stored procedures.

For a full listing of all dynamic query operations, see Appendix C.13, “Dynamic query service
operations in the Web services provider” on page 659.

Figure 7-5 shows the relationship between DB2 and various DADX components.
178 Powering SOA with IBM Data Servers

Figure 7-5 Relationship between DB2, DADX runtime, DADX group and DADX file

The server administrator controls access to a specific database by defining a group with
specific user ID and password settings in the group.properties file. The administrator can also
create a separate WORF instance to handle access to a database.

Figure 7-6 shows a typical development scenario for a Web service provider. A Web service
developer develops the DADX file, then deploys it to the WebSphere Application Server or
any supported Web server. Then a Web application is created to host the DB2 Web Service.
You may then choose to publish your Web Service using UDDI so that other programmers
can search for your Web service and use it.

Figure 7-6 Development scenario for a Web service provider

7.2.4 Exposing a stored procedure as a Web service

To expose DB2 objects and operations as Web services, you create a Document Access
Definition Extension (DADX) file. As explained earlier in 7.2.1, “Web service provider
operations and DADX” on page 172, a DADX file is an XML file that is used to create a Web
service that accesses a relational database.

W ORF

SELECT *
FROM
EM PLO YEE

W ebsphere
Application Server

DADX file

W eb service
client

SOAP

SQL/XQuery

DB2

UDDI
registry

Publish
W SDL

Find W SDL

Developer

Create

Tables

S tored
Procedures

Native XM L

DB2
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 179

You can use the Web services DADX File wizard in the IBM Rational Application Developer to
create a DADX file. The Web Service DADX Group Configuration wizard assists you in
creating a DADX group. Once you have created a DADX group, you can proceed to generate
your DADX file and deploy your new Web service.

In Example 7-6, you see a DADX file that shows a CALL operation to invoke a stored
procedure TWO_RESULT_SETS. A <result_set_metadata> element is generated in the DADX for
each result set returned by the stored procedure.

Example 7-6 DADX file: CALL to the TWO_RESULT_SETS stored procedure

<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<result_set_metadata name="employeeSalaryReport" rowName="employee">

<column name="NAME" type="VARCHAR" nullable="true" />
<column name="JOB" type="CHAR" nullable="true" />
<column name="3" as="SALARY" type="DOUBLE" nullable="true" />

</result_set_metadata>
<operation name="twoResultSets">

<call>
<SQL_call>CALL TWO_RESULT_SETS (:salary)</SQL_call>
<parameter name="salary" type="xsd:double" kind="in" />
<result_set name="employees1" metadata="employeeSalaryReport" />
<result_set name="employees2" metadata="employeeSalaryReport" />

</call>
</operation>
</DADX>

The TWO_RESULT_SETS stored procedure is part of the sample programs shipped with DB2’s
SAMPLE database. The source code for this procedure can be found in SpServer.java.

On Windows: %DB2PATH%\sqllib\samples\java\jdbc (where %DB2PATH% is a variable that
determines where DB2 is installed)

On UNIX: $HOME/sqllib/samples/java/jdbc (where $HOME is the home directory of the
instance owner)

The CREATE PROCEDURE statement for the TWO_RESULT_SETS procedure can also be
found in SpCreate.db2 in the same directory. The TWO_RESULT_SETS procedure takes a
single input parameter of data type double which is the salary input. The procedure queries
the STAFF table in the SAMPLE database, and returns two result sets to the caller. The first
result set consists of employee data of all employees with salaries greater than the salary
input parameter. The second result set contains employee data for employees with salaries
less than the salary input parameter.

Example 7-7 Calling the TWO_RESULT_SETS with an input value of 20000.00

db2 call TWO_RESULT_SETS(20000.00)

 Result set 1

 NAME JOB 3
 --------- ----- ------------------------
 Lu Mgr +2.00100000000000E+004
 Hanes Mgr +2.06598000000000E+004
 Graham Sales +2.10000000000000E+004
180 Powering SOA with IBM Data Servers

 Fraye Mgr +2.11500000000000E+004
 Jones Mgr +2.12340000000000E+004
 Molinare Mgr +2.29592000000000E+004

 6 record(s) selected.

 Result set 2

 NAME JOB 3
 --------- ----- ------------------------
 Quill Mgr +1.98180000000000E+004
 Williams Sales +1.94565000000000E+004
 Daniels Mgr +1.92602500000000E+004
 Wilson Sales +1.86745000000000E+004
 Lea Mgr +1.85555000000000E+004
 Sanders Mgr +1.83575000000000E+004
 Plotz Mgr +1.83528000000000E+004
 Pernal Sales +1.81712500000000E+004
 O'Brien Sales +1.80060000000000E+004
 Koonitz Sales +1.80017500000000E+004
 Edwards Sales +1.78440000000000E+004
 Smith Sales +1.76545000000000E+004
 Marenghi Mgr +1.75067500000000E+004
 Gonzales Sales +1.68582000000000E+004
 Quigley Sales +1.68083000000000E+004
 Rothman Sales +1.65028300000000E+004
 Davis Sales +1.54545000000000E+004
 Wheeler Clerk +1.44600000000000E+004
 Sneider Clerk +1.42527500000000E+004
 James Clerk +1.35046000000000E+004
 Lundquist Clerk +1.33698000000000E+004
 Gafney Clerk +1.30305000000000E+004
 Naughton Clerk +1.29547500000000E+004
 Ngan Clerk +1.25082000000000E+004
 Kermisch Clerk +1.22585000000000E+004
 Abrahams Clerk +1.20097500000000E+004
 Scoutten Clerk +1.15086000000000E+004
 Burke Clerk +1.09880000000000E+004
 Yamaguchi Clerk +1.05059000000000E+004

 29 record(s) selected.

 Return Status = 0

By exposing the TWO_RESULT_SETS stored procedure as a Web service, anyone that has
access to the salary Web Service provided by the TWO_RESULT_SETS stored procedure can
easily query the database and obtain a list of employee records that has salaries above and
below the threshold by providing a specific input salary parameter.

WORF produces WSDL and XML schema for the operations included in the DADX file, and
the client application does not need to be aware that it is invoking DB2 stored procedure or
executing any SQL statements. This opens the possibility of allowing Web services to access
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 181

stored procedures and UDF that perform complex business logics and data processing. Now
you see how Web services can open up many DB2 functionalities to a wide range of users.

In 15.1.2, “Implementation of the Web Services using WORF” on page 404, we walk you
through the steps to creating a Web service from a DADX file using the IBM SOAP runtime
with Rational Application Developer (RAD), when we present our use case.

7.3 Web services consumer

DB2 can also consume data from existing Web services based applications using SQL
language extensions. DB2 Web Service consumer consists of a set of UDFs that provide a
high-speed client Simple Object Access Protocol (SOAP) over Hypertext Transfer Protocol
(HTTP) interface to accessible Web services. These SOAP UDFs allows you to directly
invoke Web Services using SQL statements.

7.3.1 Web services consumer user-defined functions

The following are the SOAP UDFs provided by DB2:

� db2xml.soaphttpv
� db2xml.soaphttpc
� db2xml.soaphttpcl

Example 7-8 Web service consumer UDFs provided by DB2

db2xml.soaphttpv (endpoint_url VARCHAR(256),
 soap_action VARCHAR(256),
 soap_body VARCHAR(3072))
 RETURNS VARCHAR(3072)

db2xml.soaphttpv (endpoint_url VARCHAR(256),
 soap_action VARCHAR(256),
 soap_body CLOB(1M))
 RETURNS VARCHAR(3072)

db2xml.soaphttpc (endpoint_url VARCHAR(256),
 soapaction VARCHAR(256),
 soap_body VARCHAR(3072))
 RETURNS CLOB(1M)

db2xml.soaphttpc (endpoint_url VARCHAR(256),
 soapaction VARCHAR(256),
 soap_body CLOB(1M))
 RETURNS CLOB(1M)

db2xml.soaphttpcl(endpoint_url VARCHAR(256),
 soapaction VARCHAR(256),
 soap_body varchar(3072))
 RETURNS CLOB(1M) as locator

Each UDF takes the endpoint URL, a soap action, a soap body of the SOAP request as input
parameters, and return the body of the SOAP response. These UDFs are overloaded
depending on whether the SOAP body of the request or response is a VARCHAR or a CLOB.
182 Powering SOA with IBM Data Servers

There are two versions of SOAPHTTPV and two versions of SOAPHTTPC, giving you five
SOAP UDFs in total.

These UDFs perform the following sequence of actions:

1. Compose a SOAP request
2. Post the request to the service endpoint
3. Receive the SOAP response
4. Return the content of the SOAP body of the response

A Web services consumer consists of SOAP requests and responses. SOAP is an XML
messaging protocol consisting of the following characteristics:

� An envelope that defines a framework for describing the contents of a message and how
to process the message

� A set of encoding rules for expressing instances of application-defined data types

� A convention for representing SOAP requests and responses

DB2 needs the following information to build a SOAP request and receive a SOAP response:

� A service endpoint, for example:

http://services.xmethods.net/soap/servlet/rpcrouter

� XML content of the SOAP body, which includes:

– Name of an operation with requested namespace URI
– Encoding style
– Input arguments

� An optional SOAP action URI reference which may be an empty string

Example 7-9 shows an Hypertext Transfer Protocol (HTTP) post header to post a SOAP
request envelope to a host. The bold areas show the Web service endpoint (post path and
host) and the content of the SOAP body. The SOAP body shows a temperature request for zip
code 95120.

Example 7-9 A DB2 constructed SOAP request envelope

POST /soap/servlet/rpcrouter HTTP/1.0
Host: services.xmethods.net
Connection: Keep-Alive User-Agent: DB2SOAP/1.0
Content-Type: text/xml; charset="UTF-8"
SOAPAction: ""
Content-Length: 410
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:SOAP-ENC=http://schemas.xmlsoap.org/soap/encoding/
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema >
<SOAP-ENV:Body>
<ns:getTemp xmlns:ns="urn:xmethods-Temperature">
<zipcode>95120</zipcode>
</ns:getTemp>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 183

Example 7-10 shows the HTTP response header with the SOAP response envelope. The
bold content of the SOAP body shows the result of the temperature request. The namespace
definitions from the SOAP envelope are not shown here, but they would also be included.

Example 7-10 Using DB2 to extract the contents of the SOAP response envelop

HTTP/1.1 200 OK
Date: Wed, 31 Jul 2002 22:06:41 GMT
Server: Enhydra-MultiServer/3.5.2
Status: 200
Content-Type: text/xml; charset=utf-8
Servlet-Engine: Lutris Enhydra Application Server/3.5.2
(JSP 1.1; Servlet 2.2; Java 1.3.1_04;
Linux 2.4.7-10smp i386; java.vendor=Sun Microsystems Inc.)
Content-Length: 467
Set-Cookie:JSESSIONID=JLEcR34rBc2GTIkn-0F51ZDk;Path=/soap
X-Cache: MISS from www.xmethods.net
Keep-Alive: timeout=15, max=10
Connection: Keep-Alive
<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV=http://schemas.xmlsoap.org/soap/envelope/
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xmlns:xsd=http://www.w3.org/2001/XMLSchema >
<SOAP-ENV:Body>
<ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature"
SOAP-ENV:encodingStyle=http://schemas.xmlsoap.org/soap/encoding/ >
<return xsi:type="xsd:float">52<return>
</ns1:getTempResponse> </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP UDFs allows DB2 to consume Web services in SQL statements, When a
consumer receives the result of a Web service request, the SOAP envelop is stripped and the
XML document is returned.

Most networks consists of a firewall. The network traffic is restricted to certain machines and
certain ports numbers. The SOAP UDFs support tunneling with SOCKS clients and HTTP
proxies. To use a SOCKS server to tunnel through the firewall you must install SOCKS client
software on your system. To use HTTP proxies you must set two environment variables for
configuring to DB2. Set DB2SOAP_PROXY to include the host name of the machine with the
HTTP proxy. Set DB2SOAP_PORT to the port of the HTTP proxy, such as 8080. In both
cases the SOAP traffic goes through the system that tunnels the firewall.

For more information regarding the installation of the Web services consumer user-defined
functions, refer to Chapter 11, “The Linux, UNIX, and Windows products for SOA” on
page 359.

7.3.2 Generating Web services consumer functions from WSDL

The consumer SOAP UDFs can invoke operations that are defined by a user-specified Web
services description language (WSDL) file. You must construct the SOAP body of the SOAP
request according to the WSDL of a Web service. You want make Web Services a natural
extension to DB2 SQL environment. In order to do this, we have to address a number of
issues. First, we need to map the UDF signature to the Web Services signature it implements.
Second we need to use the data to construct and send the SOAP messages to Web Services
184 Powering SOA with IBM Data Servers

end points. After receiving the response, the reply must be decomposed into the set of result
parameters that the user expects.

DB2’s implementation uses two layers of functions: a set of SOAP UDFs that are specific for
each WSDL operation, and a set of underlying functions that actually perform the Web
service invocation. In simple words, we always create a wrapper UDF to a Web services
consumer function, because invoking the consumer functions directly cluttered the application
code. Further, we have to pass the Web service URL and operating name each time we
make a Web service call when we use the db2xml.soaphttp() functions described above. By
creating a wrapper UDF, we wrap the call to a Web service inside another UDF, so that each
time we call the wrapper UDF, the wrapper UDF internally calls the db2xml.soaphttp()
functions.

Let us look at an example. The WSDL for a Temperature Service is shown in Example 7-11.

DemoTemperatureService.wsdl is also available at:

http://www.xmethods.net/sd/2001/DemoTemperatureService.wsdl

Example 7-11 DemoTemperatureService.wsdl

<?xml version="1.0" ?>
<definitions name="TemperatureService"

targetNamespace="http://www.xmethods.net/sd/TemperatureService.wsdl"
xmlns:tns="http://www.xmethods.net/sd/TemperatureService.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="getTempRequest">
<part name="zipcode" type="xsd:string" />

</message>
<message name="getTempResponse">

<part name="return" type="xsd:float" />
</message>

<portType name="TemperaturePortType">
<operation name="getTemp">

<input message="tns:getTempRequest" />
 <output message="tns:getTempResponse" />
 </operation>
</portType>

<binding name="TemperatureBinding" type="tns:TemperaturePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="getTemp">

 <soap:operation soapAction="" />
 <input>
 <soap:body use="encoded" namespace="urn:xmethods-Temperature-Demo"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>

<output>
 <soap:body use="encoded" namespace="urn:xmethods-Temperature-Demo"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</output>
 </operation>
</binding>
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 185

http://www.xmethods.net/sd/2001/DemoTemperatureService.wsdl

<service name="TemperatureService">
<documentation>Returns current temperature in a given U.S.

zipcode</documentation>
<port name="TemperaturePort" binding="tns:TemperatureBinding">

 <soap:address
location="http://services.xmethods.net:80/soap/servlet/rpcrouter" />
 </port>
</service>
</definitions>

By analyzing the WSDL, you can discover how to map the elements of the WSDL the
parameters of Web service consumer functions. Remember that the Web service consumer
functions takes a service endpoint, a SOAP action URI (optional) and a SOAP body to build a
SOAP request and receive a SOAP response:

db2xml.soaphttp* (endpoint_url VARCHAR(256),
 soap_action VARCHAR(256),
 soap_body VARCHAR(3072) | CLOB(1M))

Refer to DemoTemperatureService.wsdl in Example 7-11 on page 185 as necessary when
you go through steps 1 - 3:

1. To get the service endpoint, we look at the <service> section that contains the <port>
information. Look at DemoTemperatureService.wsdl and we found the following:

http://services.xmethods.net:80/soap/servlet/rpcrouter

2. To get the soap action, we look at the <binding> section that contains a list of all the
operations offered by this Web service. We found the SOAP action, and it is an empty
string "" (As explained earlier, soap action is optional and can either be an empty string or
even be null. DB2 process empty string or null the same way in this context.)

<soap:operation soapAction="" />

3. To get the soap body, we look at the <portType> definition and look at the input and output
elements.

<part name="zipcode" type="xsd:string" />

 ...
<output>

 <soap:body use="encoded" namespace="urn:xmethods-Temperature-Demo"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</output>

Combining all the information we get our SOAP body:

<m:getTemp xmlns:m="urn:xmethods-Temperature-Demo"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<zipcode xsi:type="xsd:string">ZIPCODE input</zipcode> </m:getTemp>

Note: The bold content is important. These are the parameters we need to pass to the
Web service consumer functions. More detail below. Also note that the current temperature
service simply return a hard coded value of 52 degrees. This is not very useful in real life
situations, but for demonstration purposes this suffices.

Note: ZIPCODE input is the actual zip code value the user supplies.
186 Powering SOA with IBM Data Servers

We can test the Web service consumer function in the DB2 Command Line Processor (CLP)
or DB2 Command window. Assuming you have already connected to a database where
SOAP UDFs are enabled, cut and paste the following into a text file and save it. In our case,
we saved the command into a file getTemp.sql. Then enter the following to execute the
command from the file:

db2 -tvf getTemp.sql

Example 7-12 Testing the temperature Web service from the DB2 CLP

VALUES DB2XML.SOAPHTTPV
('http://services.xmethods.net:80/soap/servlet/rpcrouter',
'',
'<m:getTemp xmlns:m="urn:xmethods-Temperature-Demo"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <zipcode
xsi:type="xsd:string">95120</zipcode> </m:getTemp>');

You get the result shown in Example 7-13. It shows that we got a temperature of 52 degrees.

Example 7-13 Result from the temperature Web service

<ns1:getTempResponse xmlns:ns1="urn:xmethods-Temperature-Demo"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<return xsi:type="xsd:float">52.0</return>
</ns1:getTempResponse>

Now we define our wrapper UDF getTemperature which takes a zipcode as input parameter
of type VARCHAR(5), and returns the result as DECIMAL(5,1) in degrees. In Example 7-14,
the user provides SQL input, and the SOAP UDF constructs the XML input according to the
WSDL description of the provider.

Example 7-14 getTemperature UDF

CREATE FUNCTION getTemperature (zipcode VARCHAR(5))
RETURNS DECIMAL (5,1)
LANGUAGE SQL CONTAINS SQL
EXTERNAL ACTION NOT DETERMINISTIC
RETURN
DB2XML.EXTRACTDOUBLE(
 DB2XML.XMLVARCHAR(
 DB2XML.SOAPHTTPV(
 'http://services.xmethods.net:80/soap/servlet/rpcrouter',

 '',
 varchar('<m:getTemp xmlns:m="urn:xmethods-Temperature-Demo" ' ||

'SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">' ||
 '<zipcode xsi:type="xsd:string"> </zipcode>' ||
 '</m:getTemp>'
)
)
),'//return'
);
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 187

The same wrapper UDF getTemperature can also be written in a different manner.
Example 7-15 shows a more reader friendly version of the getTemperature UDF. We have
also added comments in Example 7-15 so you can see clearly where the endpoint URI and
SOAP body from the WSDL file (DemoTemperatureService.wsdl) is used, where the SOAP
UDF constructs the XML input and returns the output, and where the type conversion take
place.

Example 7-15 Reader friendly version of the getTemperature UDF

CREATE FUNCTION getTemperature (zipcode VARCHAR(5))
RETURNS DECIMAL (5,1)
LANGUAGE SQL CONTAINS SQL
EXTERNAL ACTION NOT DETERMINISTIC
RETURN
WITH

--1. Perform type conversions and prepare SQL input parameters for SOAP envelope

soap_input (in)
 AS
 (VALUES varchar(
 '<m:getTemp xmlns:m="urn:xmethods-Temperature-Demo" ' ||
'SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">' ||
 '<zipcode xsi:type="xsd:string"> </zipcode>' ||
 '</m:getTemp>')),

--2. Submit SOAP request with input parameter and receive SOAP response

 soap_output(out)
 AS
 (VALUES DB2XML.SOAPHTTPV(
 'http://services.xmethods.net:80/soap/servlet/rpcrouter',
 '',
 (SELECT in FROM soap_input)))

--3. Shred SOAP response and perform type conversions to get SQL output parameters

 SELECT DB2XML.EXTRACTDOUBLE(DB2XML.XMLVARCHAR(out), '//return')
 FROM soap_output;

Once you have created the wrapper UDF, you can easily invoke the temperature Web service
simply by issuing the following command in DB2 CLP as shown in Example 7-16. Notice how
much simpler the command is compared to the previous example shown in Example 7-12 on
page 187.

Example 7-16 Invoking the wrapper UDF from the DB2 CLP

db2 values getTemperature('95120')

1

Note: DB2XML.EXTRACTDOUBLE and DB2XML.XMLVARCHAR are XML Extender extracting
functions. In Example 7-18 on page 189 we show a new version of the getTemperature
UDF that uses DB2 V9 native XML functions.
188 Powering SOA with IBM Data Servers

 52.0

 1 record(s) selected.

DB2 allows users to define new functions that may be invoked from SQL, thus extending the
SQL language. Example 7-17 is a very simple example that shows you how to incorporate our
getTemperature UDF into a regular SQL statement. In this example, we store the temperature
we received from the temperature Web service into the temperature table TempTable in our
database. If you also keep track of the time stamp each time you invoke the temperature Web
service, you can easily build a table that store historical temperature data for the area
presented by zip code 95120.

Example 7-17 Integrating your UDF within a SQL statement

db2 create table TempTable(t timestamp, temp DECIMAL(5,1))
DB20000I The SQL command completed successfully.

db2 insert into TempTable values (current timestamp, getTemperature('95120'))
DB20000I The SQL command completed successfully.

db2 select * from TempTable

T TEMP
-------------------------- -------
2006-04-07-11.17.59.302001 52.0

 1 record(s) selected.

As mentioned earlier, previous variations of the getTemperature UDF in Example 7-14 on
page 187 and Example 7-15 on page 188 are still using XML Extender extracting functions to
extract data and perform conversions. You could start moving away from these functions and
begin using the native XML functions in DB2 V9.1 for Linux, UNIX and Windows.
Example 7-18 shows the changes we made to the getTemperature function to make use of
the new native XML functions in DB2 V9.1 for Linux, UNIX and Windows. The changes are
highlighted in BOLD.

Example 7-18 New getTemperature UDF using native XML functions in DB2 V9.1

CREATE FUNCTION getTemperature (zipcode VARCHAR(5))
RETURNS DECIMAL (5,1)
LANGUAGE SQL CONTAINS SQL
EXTERNAL ACTION NOT DETERMINISTIC
RETURN
WITH

--1. Perform type conversions and prepare SQL input parameters for SOAP envelope

soap_input (in)
 AS
 (VALUES varchar(
 '<m:getTemp xmlns:m="urn:xmethods-Temperature-Demo" ' ||
'SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">' ||
 '<zipcode xsi:type="xsd:string"> </zipcode>' ||
 '</m:getTemp>')),

--2. Submit SOAP request with input parameter and receive SOAP response
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 189

 soap_output(out)
 AS
 (VALUES XMLPARSE
 (DOCUMENT DB2XML.SOAPHTTPC(
 'http://services.xmethods.net:80/soap/servlet/rpcrouter',
 '',
 (SELECT in FROM soap_input))))

--3. Shred SOAP response and perform type conversions to get SQL output parameters

 SELECT DECIMAL(CAST(XML2CLOB(
 XMLQUERY('$t//return/text()' PASSING out as "t")) AS CHAR(5)))
 FROM soap_output;

Example 7-18 also shows that we made use of XQuery:

SELECT ... XMLQUERY('$t//return/text()' PASSING out as "t")

Since you can still get your DB2 Web services up and running without XQuery, we will not
discuss XQuery in detail here. However, you can read further information about DB2 V9.1 for
Linux, UNIX and Windows new native XML store, XQuery, and our new Developer
Workbench tool in Appendix C, “XML and DB2 for Linux, UNIX and Windows” on page 593.

The above examples show how you can use very simple, yet powerful standard DB2 SQL
queries that utilizes Web services. By invoking Web services as UDFs, you can take
advantage of the full power of SQL to perform queries across combinations of Web services
and persistent data. In the getTemperature example we showed how a Web service that
returns a single value can be integrated with DB2 SQL, but we can also handle multiple return
values. In the case where we want to return multiple values, we will create a table function
instead of a scalar function.

7.4 Development tools

The task of developing Web Services UDF can be simplified with the suites of IBM
Development Tools such as Rational Application Developer (RAD) and WebSphere
Integration Developer (WID). Now we show you how you can easily enable your database for
Web service consumer UDFs, and create the getTemperature UDF in our previous example
using RAD.

At the time of writing this redbook, DB2 V9.1 for Linux, UNIX and Windows is still beta
version, and the latest version of RAD V6 currently only supports DB2 V8.1 and V8.2, but
does not work with DB2 V9.1 for Linux, UNIX and Windows beta version. Therefore, we show
how to create a Web service UDF using RAD V6 against a DB2 V8.2 database. Future
release of RAD will support database connections to DB2 V9.1 for Linux, UNIX and Windows.
Our example uses RAD V6 and DB2 V8.2 on Windows platform.

Note: In DB2 V8 you need to enable XML Extender and SOAP UDFs before proceeding
with the steps below. In DB2 V9.1 for Linux, UNIX and Windows, you only need to enable
SOAP UDFs and may optionally enable XML Extender if your application need backward
compatibility with DB2 V8 XML Extender functions. See 11.3, “Preparing the installation of
the Web services provider” on page 363 and 11.4, “Installation of the Web services
consumer UDFs” on page 364 for further detail.
190 Powering SOA with IBM Data Servers

1. From the menu click File → New → Project.Then click Simple → Project to create a
simple project as shown in Figure 7-7 on page 191.

Figure 7-7 New Project Wizard in Rational Application Developer

2. Enter Temperature as your project name and click Finish

3. Right-click the Database Explorer view and click New Connection. The New Database
Connection wizard opens.

4. Enter a new connection name, in this case we call our connection XMLDB.

Figure 7-8 New Database Connection wizard

5. Click Next.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 191

Figure 7-9 Connection parameters specification

6. Select IBM DB2 Universal in JDBC driver drop down list. Enter your database name,
host name. Port number is 50000 by default on DB2 for Linux, UNIX and Windows. Enter
your user ID and password as necessary. You may optionally choose to click Test
Connection to confirm whether your database connection is successful before you
proceed further.

7. Click Next. You will have the option to apply filters to limit the objects retrieved from the
database.

8. Click Next. You can specify your Java home directory where your Java SDK is installed
here. By default it should have automatically selected the SDK that is installed during the
DB2 installation. See Figure 7-10 on page 193.
192 Powering SOA with IBM Data Servers

Figure 7-10 Specifying the home directory

9. Click Next to review a summary of your settings, and click Finish to complete the
database connection setup. If prompted to copy database metadata to your project
folder, click Yes to copy metadata to the Temperature project. Now our database
connection is setup completely.

10. From the menu File → New → Other

11. Select the Web Service User-Defined Function wizard from the Data folder as shown in
Figure 7-11 on page 194.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 193

Figure 7-11 New Web Service User-Defined Function wizard

12. Click Next.

13. In the WSDL file name or URL field enter the following URL:
http://www.xmethods.net/sd/2001/DemoTemperatureService.wsdl

Figure 7-12 Inputting the location of WSDL file

14. Click Next.

15. Click Browse to select a database schema from the workspace. Then we may select
generate and deploy the UDF, or just generate the UDF but deploy later. If you choose to
194 Powering SOA with IBM Data Servers

deploy later, remember to right-click the UDF after it is generated and click Build before
attempting to run the UDF. Otherwise, Run will be disabled.

Figure 7-13 Copy the data definitions if Browse is disabled

Note: If you are unable to click Browse because it is disabled, it is likely because the
data definitions is not copied into your project yet. In order to fix this, copy the data
definitions by using the Copy to Project wizard. Expand the connection to show the data
definitions in the DB Servers view, then click Copy to Project. Supply the project name
in the next screen (in our case the project name is Temperature) then click Finish. This
is shown in Figure 7-13.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 195

Figure 7-14 Browse and select the database schema

16.The WSDL document DemoTemperatureService.wsdl only provides one operation -
getTemp, so only one UDF will be generated. If there are more operations then one UDF
will be generated for each operation. Figure 7-15 shows that one UDF will be generated
for the WSDL file we supplied.

Figure 7-15 Creating UDF from a WSDL file

17. In the UDF Options we specific that we are creating a scalar function. Further, we can
select a small SOAP envelop since we know that our temperature Web service only
returns a temperature value which is obviously less than 3000 characters. Click the
Parameters tab to view the UDF parameters. You may also optionally specify a specific
name for the UDF, but in our case we choose not to specify a specific name.
196 Powering SOA with IBM Data Servers

Figure 7-16 Specifying UDF options

Figure 7-17 Viewing the parameters of the UDF

18. Click Next to review the UDF settings, and then click Finish to complete generating the
UDF.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 197

Figure 7-18 Reviewing UDF settings

19. Now we can run the UDF to test it. If you have chosen to deploy later instead of deploy
immediately in Step 10 you need to click Build first before you can run the UDF.

Figure 7-19 Run the UDF to test it in RAD

20. We supplied the zip code of 95120 to test the getTemperature UDF.
198 Powering SOA with IBM Data Servers

Figure 7-20 Testing the getTemperature UDF

In Chapter 15, “Developing SOA access services” on page 401, we present a detail user
scenario that shows you how to use Rational Application Developer to develop DB2 Web
Services. The user scenario will give you more information in regards to exposing DB2
business logic as Web services, as well as how to consume Web services.
Chapter 7. DB2 for Linux, UNIX and Windows and SOA 199

200 Powering SOA with IBM Data Servers

Chapter 8. IMS and SOA

IMS has been around for many years and it is currently at Version 9. Many customers have
made major investments in IMS based applications. Traditionally IMS applications were
written in third generation languages (3GL), like PL/I, Cobol and C. Recently it has become
possible to write applications also in Java, both for message (JMP region) and batch
processing (JBP region).

IMS provides a variety of solutions for providing access to IMS applications and data as Web
services.

IMS also provides the ability to store and retrieve XML data natively. IMS converts non-XML
data to XML for interchange and converts it back or stores it natively.

When customers need rapid response for business transactions and inquiries from many
locations using numerous types of devices, the IMS Connect function provides transparent
access to IMS applications and data from practically any application environment. Customers
can use their storehouse of IMS applications from IMS Connect client applications to access
their IMS and IBM DB2 data from the Internet. IMS Connect is now integrated with IMS and
acts as a client of the Open Transaction Manager Access (OTMA), a transaction-based,
connectionless client/server protocol that provides an access path and an interface
specification for sending and receiving transactions and data from IMS.

Various IBM-supplied connectivity solutions, such as IMS Connector for Java or IMS SOAP
Gateway, are based on the use of IMS Connect.

In this chapter we discuss solutions based on Web Services with SOAP Gateway as well as
IMS Services through WebSphere.

The chapter contains these topics:

� Introduction
� IMS Connect
� Web Services with SOAP Gateway
� IMS Services through WebSphere
� Accessing DLI data

8

© Copyright IBM Corp. 2006. All rights reserved. 201

8.1 Introduction

Although we always mention IMS as one product, in reality, it has two distinct components
(see Figure 8-1):

� Database Manager for DLI databases (hierarchical databases)

Those databases can also be accessed by other subsystems like CICS, WebSphere
Application Server through a database resource adapter (DRA). Recently IBM made also
JDBC access available for those databases.

� Data Communication Manager

Access via transactions over several communication protocols. Programs dispatched in
IMSDC as a result of those transactions, can access the DLI databases but also DB2
databases.

Figure 8-1 IMS composed of IMSDC and IMSDB

The IMS Open Database Access (ODBA) provides a callable interface to IMS databases from
z/OS programs that are not managed by IMS, such as DB2 stored procedures or any z/OS
application which uses the Resource Recovery Services (RRS) to manage their sync point
processing.

Both DLI access and transactional access can be integrated in a service-oriented architecture
(SOA). The ultimate goal is to have this integration through the Service Component
Architecture (SCA) binding, which is supported by the WebSphere Integration Development
(WID) tooling and deployed in the WebSphere Portal Server (WPS). A SCA binding describes
the physical connection protocol of components. Services that can be accessed include Plain
Old Java Objects (POJOs), EJBs, Web services, JMS messages, and adapters.

We introduce some technologies that make this integration possible for IMS, and also the
tooling which can be used to quickly build the artifacts.

Besides the base product IMS V9, other software components are used to implement the
solutions. Figure 8-2 on page 203 shows the products that we consider:

� IMS Connect is part of IMS V9, it is the gateway on z/OS

� IMS Connect for Java provides Java classes and JNI code to build IMS transaction
connectors through the IMS connect gateway. This can be used in a non-J2EE and in a
J2EE (WebSphere) environment.
202 Powering SOA with IBM Data Servers

� IMS JDBC Connector allows direct access to DLI databases using JDBC.

� IMS SOAP Gateway, only available on Windows, provides Web service access for IMS
transactions through IMS Connect without WebSphere requirement.

Figure 8-2 IMS connectivity functions

More information about these components and downloads can be found at:

http://www-306.ibm.com/software/data/ims/

In the next sections we describe and implement the following solutions.

� Web Services (over SOAP) without WebSphere

� Web Services through the WebSphere Application Server

– J2C Web service built with RAD wizard
– J2C Import built with WID wizard, this is an SCA component
– J2C EJB built with RAD wizard, and then used as an imported SCA component.

� Direct access to DLI data through DLI/JDBC adapter.

The first two solutions are both based on IMS Connect, which starting with IMS V9 is
integrated in the IMS product. We start with a quick overview of IMS Connect.

8.2 IMS Connect

IMS Connect is the building block to be used when we want to have existing IMS transactions
accessible from within intelligent clients, written in C, Java or Web services. We have to build
a connector. Connector code takes the role of the good old terminal like 3270.

The integrated IMS Connect function in IMS Version 9 provides easy-to-install, easy to use,
high-performance, high-volume, and secure transparent access to IMS applications and
operations from any TCP/IP-supported environment. It provides commands to manage the
network environment and assist with workload balancing, resulting in better resource
utilization. It reduces the design and coding effort for client applications and provides easier
access to IMS applications and operations, thereby improving programmer productivity. It can
Chapter 8. IMS and SOA 203

http://www-306.ibm.com/software/data/ims/

be used with IBM WebSphere and Rational development tools to quickly transform static Web
sites into sources of dynamic Web content, improving marketing effectiveness and customer
service, and to transform IMS transactions into Web services for service-oriented architecture
(SOA), enabling quick response to new customer requirements, business opportunities, and
competitive threats.

IMS Connect runs in its own address space. It connects to IMS via an high speed internal
Open Transaction Manager Access (OTMA) interface, while clients connect to it via TCP/IP or
via a local option if the client is on the same z/OS.

This local option has been deprecated, so we only consider the TCP/IP (socket) option. The
redbook IMS Connectivity in an On Demand Environment: A Practical Guide to IMS
Connectivity, SG24-6794, explains all details about the implementation of IMS Connect.

Clients drive IMS Connect and receive their responses through frames which are composed
of headers and data. Composing and understanding those frames is rather complex.
Although it can be done via C and Java client coding, it is much more efficient to use tools to
build and guide the client artifacts (like connectors and proxies).

The header contains information related to the client-server exchange protocol, such as
commit and synchronization level. The data layout is in a format as expected by, or sent from
the IMS transactional program.

The setup used in our examples is very simple. It uses an IMS/V9 system, with subsystem
name IMSH. See Figure 8-3.

Figure 8-3 IMS Connect

This system is front-ended with IMS Connect IMSHCONN. Both have to be member of the
same XCFOTMA group IMSHEXCF for communication. Within the XCFOTMA group IMS is
called SCSIMS9H, and IMS Connect has member name HWS910H. We show the IMS
Connect configuration statements in Example 8-1.

Example 8-1 IMS Connect configuration

HWS (ID=IMSHCONN,RACF=N,XIBAREA=20,RRS=Y)
TCPIP (HOSTNAME=TCPIP,PORTID=(6001,LOCAL),MAXSOC=2000,TIMEOUT=3000)
DATASTORE (ID=IMSH,GROUP=IMSHEXCF,MEMBER=HWS910H,TMEMBER=SCSIMS9H)
204 Powering SOA with IBM Data Servers

8.2.1 IMS example

In our example we tried to include as much as possible elements which are different from the
traditional examples. We include:

� MPP(JMP) in Java
� Input/output message layouts (in C and Cobol (when required))
� DLI HDAM database: accessed by JDBC/DLI

The example is a simple customer query case (transaction CQUERY).

All the IMS definitions are listed in Appendix D, “Setting up IMS services” on page 665.

8.3 Web Services with SOAP Gateway

IMS SOAP Gateway is a Web services solution that enables IMS applications to interoperate
outside of the IMS environment through Simple Object Access Protocol (SOAP) to provide
and request services independently of platform, environment, application language, or
programming model. This solution does NOT use the WebSphere Application Server, and is
available for Windows and Unix (not z/OS).

IMS SOAP Gateway allows you to enable your IMS application to become a Web service.
Different types of client applications, such as Microsoft .NET, Java and third party
applications, can submit SOAP requests into IMS to drive the business logic of your IMS
applications.

IMS SOAP Gateway is compliant with the industry standards for Web services, including
SOAP/HTTP 1.1 and WSDL 1.1. Currently it only exists for Windows.

IMS SOAP Gateway consists of two main components:

� IMS SOAP Gateway deployment utility

The end-to-end deployment utility enables you to set up properties and create runtime
code that IMS SOAP Gateway uses to enable IMS applications as Web services.

� IMS SOAP Gateway server

The IMS SOAP Gateway server processes SOAP messages. It receives the SOAP
message from the client application, converts it to an IMS input message, and sends it to
IMS through IMS Connect. It then receives the output message from IMS and converts it
to a SOAP message to send back to the client.

Two important enhancements have been introduced in the new version of the SOAP gateway

� There is no need anymore to change the IMS application programs. The IMS SOAP
gateway takes care of the XML [de]marshalling, so that the IMS application is unaware of
the usage of SOAP.

� The connection between the Web service client and the Gateway can be over HTTPS
(HTTP over SSL). This is independent of the user ID/password which is transported in the
SOAP envelope and is passed to IMS Connect.

IBM WebSphere Developer for zSeries (WDz) is an application development tool that helps
the development of traditional mainframe applications. WDz version 6 provides the XML
Services for the Enterprise (XSE) feature that helps you to easily generate the artifacts
needed to transform your IMS application into a Web Service to be used with the IMS SOAP
Gateway runtime. With a step as simple as taking a COBOL copybook for your IMS
Chapter 8. IMS and SOA 205

application, describing the input and output message format, you can generate the following
Web service artifacts:

� Web Services Description Language (WSDL) file, which provides a Web service interface
of the IMS application so that the client can communicate with the Web service.

� COBOL converters and driver file, which help you to transform the XML message from the
client into COBOL bytes for the IMS application and then back to XML.

� Correlator file, which contains information that enables IMS SOAP Gateway to set IMS
properties and call the IMS application.

The solution is shown in Figure 8-4.

Figure 8-4 Soap Gateway

We now we give an overview of the tasks required to enable an IMS application as a Web
service using IMS SOAP Gateway. After you create the WSDL file, modifying the IMS
application, and deploy the IMS SOAP Gateway Web service, the IMS application is available
as a Web service and the client application can send SOAP messages.

8.3.1 Creating the WSDL file

To deploy an IMS application as a Web service, you need to create a WSDL (Web service
description language) file. A WSDL file is an XML document that describes a Web service.
WSDL files are used by others (for example, the client that invokes the service) to discover
the service and to understand how to invoke the service. It specifies the location of the
service and the operations that the service exposes. To make your IMS application accessible
as a Web service, you need to describe the functions provided by the IMS application and
how the input and output message looks like for invoking the function in this WSDL file. The
WSDL file serves as the Web service interface for the IMS application.

There are three ways to create the WSDL file:

� Generating the file by using IBM WebSphere Developer for zSeries

� Manually creating the file

� Modifying an existing WSDL file that is generated by IBM WebSphere Application
Developer Integration Edition V5.1.1

To prepare the WSDL file, you need a COBOL copybook that describes the input and output
messages for the IMS application.
206 Powering SOA with IBM Data Servers

The WSDL document, which in a general way is used to describe Services (not only SOAP) is
composed of five parts, which, depending on the options, are located in three physical files or
less. See Figure 8-5.

Figure 8-5 WSDL contents

The five parts are:

1. Definition of parameter types, if composed (structures, objects and so on.)

2. Definition of the input and output messages. A message means the aggregation of all
parameters.

3. Abstract definition of the operations available on this port type, and input and output
message used by them

4. Binding to a particular protocol implementation (HTTP/SOAP, JMS/SOAP, JMS, EJB,
Plain Old Java Object (POJO))

5. Service Endpoint: the point where the service is available (like URL)

8.3.2 Enabling the z/OS Developer role

We assume that you have the product IBM WebSphere Developer for zSeries v6.0.1 installed
on your workstation. If Rational Application Developer (RAD) is already installed then it
installs in the same workbench.

Before doing any work, after starting the tool, you have to be sure that the z/OS
Modernization Developer role has been enabled.
Chapter 8. IMS and SOA 207

Figure 8-6 Enable the z/OS Modernization Developer Role

8.3.3 Generating a WDSL file using WebSphere Developer for zSeries

With WebSphere Developer for zSeries, you can generate a WDSL file that you can use
without modification for IMS SOAP Gateway.

As a prerequisite, to generate a WSDL file, you must have a COBOL copybook that describes
the format of the input and output messages for the application.

To generate a WSDL file using WebSphere Developer for zSeries V6.0.1:

� Start WebSphere Developer for zSeries and open the z/OS Projects perspective.
� Select the z/OS Projects view.
� Create a local COBOL project.

– Select File → New → Project.
– Expand the Workstation COBOL or PL/I folder.
– Select Local Project, as shown in Figure 8-7 and click Next.
– Type a name for the project. For example, IMSv92006SOAPExt. Click Finish.

Figure 8-7 Selecting a z/OS project
208 Powering SOA with IBM Data Servers

A new project IMSv92006SOAPExt is now available in your workspace.

Import the COBOL copybook that describes the format of the input and output messages of
your IMS application into the project you created:

� Select File → Import to open the Import wizard.

� Select File system to import the resources from the local file system. Click Next.

� Click Browse beside the directory field to go to the directory that contains the COBOL
copybook. Click OK.

� Ensure IIMSv92006SOAPExt is the name of the destination folder for the imported
resource.

� Click Finish to import the file and close the wizard.

The layout of the Cobol copybook, representing input/output IMS messages, is shown below.

Example 8-2 input/output IMS messages Cobol copybook

IDENTIFICATION DIVISION.
 program-id. pgm1.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 *
 * IMS Connector for Java, COBOL Transaction Message Source
 *
LINKAGE SECTION.

 01 INDATA.
 02 IN-LL PICTURE S9(3) COMP.
 02 IN-ZZ PICTURE S9(3) COMP.
 02 IN-TRCD PICTURE X(8).
 02 CUSTOMERNR PICTURE X(10).
 02 TRACEX PICTURE X(1).

 01 OUTDATA.
 02 OUT-LL PICTURE S9(3) COMP VALUE +0.
 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.
 02 CUSTOMERNR PICTURE X(10).
 02 SSN PICTURE X(11) VALUE SPACES.
 02 FIRSTNME PICTURE X(20) VALUE SPACES.
 02 MI PICTURE X(2) VALUE SPACES.
 02 LASTNAME PICTURE X(40) VALUE SPACES.
 02 SALUTAT PICTURE X(10) VALUE SPACES.
 02 ADDRESS1 PICTURE X(40) VALUE SPACES.
 02 ADDRESS2 PICTURE X(40) VALUE SPACES.
 02 CITY PICTURE X(30) VALUE SPACES.
 02 STATE PICTURE X(4) VALUE SPACES.
 02 ZIPCD PICTURE X(10) VALUE SPACES.
 02 PHONE PICTURE X(20) VALUE SPACES.
 02 FAX PICTURE X(20) VALUE SPACES.
 02 EMLADDR PICTURE X(40) VALUE SPACES.
 02 MESSAGEX PICTURE X(200) VALUE SPACES.

 PROCEDURE DIVISION.
Chapter 8. IMS and SOA 209

Use the Web Service Runtime and Scenario Selection dialog to start the appropriate XML
services for the Enterprise wizard.

� Highlight and right-click the COBOL copybook and select Enable Enterprise Web
Service. A dialog opens where you can specify the options to start a Web service wizard.

Figure 8-8 Enabling Web Service

� Select a Runtime, Scenario and Conversion as in Figure 8-9 on page 211:

– Runtime: IMS SOAP Gateway
– Scenario: Create New Service Interface (bottom-up)
– Conversion type: Compiled XML Conversion.
210 Powering SOA with IBM Data Servers

Figure 8-9 Options for the Gateway definition

� Click Start.

Figure 8-10 Change COBOL options and select Input, Output

� Set COBOL options first by clicking Change COBOL options.
Chapter 8. IMS and SOA 211

Figure 8-11 Target Platform Options

Set the options as indicated in Figure 8-11 and click Finish.

The Data structures panel appears.

Figure 8-12 INDATA structure selection

For the Inbound data structure, select the COBOL data structure INDATA that corresponds to
the input message of the IMS application.

Switch to the Outbound data structure tab.
212 Powering SOA with IBM Data Servers

Figure 8-13 OUTDATA structure selection

Select the COBOL data structure OUTDATA that corresponds to the output message of the
IMS application.

Click Next to continue.

In the panel of Figure 8-14, specify the generation options:

� In the Host code page field, select the code page that the host uses 1140.
� Be sure to have UTF-8 encoding for the inbound and outbound code pages.
� Specify any additional properties and names.

Figure 8-14 XML Converter options

Select the WSDL and XSD Options tab and the panel of Figure 8-15 on page 214 appears.
Chapter 8. IMS and SOA 213

Figure 8-15 WSDL and XSD Options

� In the Endpoint URI field, change the host and port name to the location of IMS SOAP
Gateway if needed.

This URI specifies the address of the Web service. For this example, take the default
values as IMS SOAP Gateway is going to run on the same machine as the client program.

Click Next to continue.

Specify in the screen of Figure 8-16 on page 215 the IMS SOAP Gateway correlator
properties.
214 Powering SOA with IBM Data Servers

Figure 8-16 Correlation Properties

� Take the default values as specified in Figure 8-16.
� Click Next.

On the screen of Figure 8-17 on page 216 you specify location and names of the Web service
artifacts.
Chapter 8. IMS and SOA 215

Figure 8-17 XML converter names

� Set the value as indicated for COBOL converters and driver.
� Ensure that Generate all to driver is selected.

Select the WSDL and XSD tab as in Figure 8-18 on page 217.
216 Powering SOA with IBM Data Servers

Figure 8-18 Member selection

� Set the names as shown in Figure 8-18.

� Ensure that WSDL file name is selected.

� Optionally, select the inbound and outbound XSD files to be generated. These files are not
required by the IMS SOAP Gateway.

Click Finish and the generation of the required objects for the SOAPGateway is concluded.

Figure 8-19 on page 218 shows in the RAD project the files, artifacts which have been
generated for the SOAP Gateway of this application.
Chapter 8. IMS and SOA 217

Figure 8-19 Extended SOAP gateway Generated files

� CQUERYD.cbl – the COBOL XML Converter driver file
� CQUERY.wsdl - WSDL file
� inoutcust4rad.xml: the correlation file
� CQUERYI.xsd and CQUERYO.xsd - Inbound and outbound XSD files (optional)

The COBOL XML Converter driver program file (CQUERYD.cbl) has to be deployed to IMS
Connect as described in 8.3.4, “Deploying to IMS Connect” on page 219.

You need to store the files in the appropriate IMS SOAP Gateway WSDL and XML directories
before you start the deployment steps. You can use the RAD File export function to store the
files as follows:

� Select the WSDL file (CQUERY.wsdl).

� From the top menu bar, select File → Export. The Export dialog box appears.

� Select File System and click Next.

� Browse to the IMS SOAP Gateway WSDL directory
<installation_directory>\server\webapps\imssoap\wsdl.

For example: c:\Program Files\IBM\IMS SOAP Gateway\server\webapps\imssoap\wsdl.

� Select the XML file (inoutcust4rad.xml). From the top menu bar, select File → Export.
The Export dialog box appears.

� Select File System and click Next.

� Browse to the IMS SOAP Gateway XML directory
<installation_directory>\server\webapps\imssoap\xml.

For example: c:\Program Files\IBM\IMS SOAP Gateway\server\webapps\imssoap\xml

You can store the WSDL anywhere, but you must then specify the entire path when you are
deploying the Web service.
218 Powering SOA with IBM Data Servers

The further action with the WSDL file and the correlator file for deployment is described in
8.3.5, “Deploying to IMS SOAP Gateway” on page 219.

8.3.4 Deploying to IMS Connect

1. Upload the COBOL XML Converter driver file (CQUERYD.cbl) generated by WebSphere
Developer for zSeries using ASCII file transfer mode as a member in a newly allocated
data set on the mainframe host. For example, transfer the file CQUERYD.cbl as member
CQUERYD into a data set called DRIVERS.IMSXML.SOURCE.

2. Compile the member CQUERYD from the source data set DRIVERS.IMSXML.SOURCE
and linkedit it to a new data set that contains the object members
(DRIVERS.IMSXML.OBJECT.

3. Update the IMS Connect startup JCL by concatenating the object data set
DRIVERS.IMSXML.OBJECT to the STEPLIB DD statement. Another option is to linkedit
the COBOL XML Converter driver directly into the IMS Connect XML Adapter reslib so
that the additional object data set is not needed.

In this example, instead of compiling the COBOL XML Converter driver member into a new
data set, we compile and linkedit the driver into the IMS Connect XML Adapter reslib. The
JCL that compiles and link edits the driver is shown in Example 8-3. It assumes the IMS
Connect XML Adapter reslib is in the ‘prefix1.HWS9A00.SHWSRESL data set:

Example 8-3 JCL for compiling COBOL XML converter

//userID JOB LINK,MSGLEVEL=1,REGION=640K,CLASS=G,MSGCLASS=H,
// NOTIFY=&SYSUID
//ORDER JCLLIB ORDER=IGY.SIGYPROC
//COMPILE EXEC IGYWCL,LNGPRFX=IGY,PARM.COBOL=LIST,
// PARM.LKED='LET,LIST,MAP,RENT,REUS,AMODE(31)'
//COBOL.SYSLIB DD DSN=CEE.SCEESAMP,DISP=SHR
// DD DSN=prefix1.HMK9A00.SHWSRESL,DISP=SHR
//COBOL.SYSIN DD DISP=SHR,
// DSN=DRIVERS.IMSXML.SOURCE(CQUERYD)
//LKED.SYSLMOD DD DSN=prefix1.HMK9A00.SHWSRESL,DISP=SHR
//*
//LKED.SYSIN DD *
 ENTRY CQUERYD
 ALIAS CQUERYXX
 NAME CQUERYD(R)
/*

8.3.5 Deploying to IMS SOAP Gateway

The last deployment step helps you to set up properties and create runtime code that will be
used by IMS SOAP Gateway to make your IMS application accessible as Web services.

IMS SOAP Gateway provides you a deployment utility can help you to perform the following
tasks:

� Easy end-to-end deployment

� Setup/modify connection/correlation information (for example, hostname/port, trancode,
timeout)

� Generates runtime code from WSDL that will be used by IMS SOAP Gateway to enable
an IMS application as a Web service
Chapter 8. IMS and SOA 219

The deployment utility can step you through these tasks or you can perform each task
individually either through the interactive mode or the command-line interface.

The following steps show you how to use the IMS SOAP Gateway deployment utility
interactive mode to deploy to IMS SOAP Gateway and make the Customer query application
as a Web service:

1. Before you start, make sure that the WSDL and correlator file generated by WDz are
already stored in the appropriate IMS SOAP Gateway WSDL and XML directories as
described in

– The WSDL file (CQUERY.wsdl) should be stored in the IMS SOAP Gateway WSDL
directory: installation_directory\server\webapps\imssoap\wsdl.

– The correlator file (inoutcust4rad.xml) should be stored in the IMS SOAP Gateway
XML directory: installation_directory\server\webapps\imssoap\xml.

2. Start → All Programs → IBM IMS SOAP Gateway Version 9 → Deployment Utility

– The deployment utility interaction mode will start and the main menu of Example 8-4 is
displayed.

– The main menu lists the different tasks you can perform with the deployment utility.

Example 8-4 Main menu for deployment utility

* *
* Welcome to the IMS SOAP Gateway Deployment Utility *
* *

The IMS SOAP Gateway Deployment Utility provides an interactive
user interface with tasks to enable and maintain your IMS
applications as a Web service.
To get Help for a particular task, go to the IMS SOAP Gateway
documentation.
To return to the main menu, type "cancel" at any point.
===
Enable your IMS application as a Web service:
Task 1: Enable your IMS application as a Web service from start to finish

Administrative tasks:
Task 2: Start IMS SOAP Gateway
Task 3: Stop IMS SOAP Gateway
Task 4: Update IMS SOAP Gateway properties
Task 5: Create, Update or View correlator properties for Web service
Task 6: Create, Update, Delete or View connection bundle
Task 7: Deploy the WSDL file
Task 8: Generate Java client code
Task 9: Undeploy Web service
Task 10: Exit deployment utility
===
> Enter your selection here:

3. Your IMS SOAP Gateway must be started before you can deploy the Web service. To
start IMS SOAP Gateway, you can use task 2 of the deployment tool by typing 2 and hit
enter. In a Windows command window you see the output reported as in Example 8-5 on
page 221.
220 Powering SOA with IBM Data Servers

Example 8-5 Start of Gateway server

[2006-04-13 01:07:03,233] main Catalina
 INFO : Initialization processed in 2361 ms
[2006-04-13 01:07:07,084] main Catalina
 INFO : Server startup in 3851 ms
[2006-04-13 01:07:07,084] main Catalina
 INFO : IMS SOAP Gateway server is now up and running.

4. To deploy the files and setup the properties to make your IMS application accessible as a
Web service. You will use Task 1: Enable your IMS application as a Web service from
start to finish to complete the deployment task.

– To start task 1, type 1 and hit enter

5. The deployment utility now guides you through the following steps to complete the
deployment task:

– Specifying which WSDL file to use for the deployment.

– Specifying the connection and security information for the Web service to create a
connection bundle.

– Specifying the interaction properties of the Web service to create a correlator file.

– Deploying the Web service to IMS SOAP Gateway.

– (Optional) Creating the Java client proxy code.

Example 8-6 shows the items you will be prompted for in input (the sample values are
highlighted).

Example 8-6 Prompted input for deployment

> Enter your selection here: 1
Task 1 guides you through a series of steps to publish your IMS
application as a Web service.
Note: You must have IMS SOAP Gateway started and a WSDL file
created for your IMS application before you enter this task.
Step a: Provide the WSDL file for deployment
--
To enable your IMS application as a Web service, you need a WSDL
file. You can create a WSDL file for your IMS application
manually or use a development tool.
At the prompt, specify the name and location of the WSDL file you
have created (e.g. c:\MyWSDLFile.wsdl).
If you had deployed the WSDL before or you have copied the WSDL
into the IMS SOAP Gateway wsdl directory, provide just the name
for the WSDL file (e.g. MyWSDL.wsdl), the full path is NOT
required.
> Provide the name and location of the WSDL file: CQUERY.wsdl

Step b: Provide Connection properties for connecting to IMS

This step allows you to create or reuse a connection bundle that
consists of properties for connecting to IMS.
> Do you want to view all existing connection bundles? [Y/N]: N
> Do you want to create a new connection bundle? [Y/N]: y
- Provide the following connection bundle properties.
> Provide a name for the connection bundle: connbundlec
Warning: Connection bundle xml file is empty
Chapter 8. IMS and SOA 221

> Provide IMS host name or IP address: WTSC63
> Provide IMS port number(default: 9999): 6001
> Provide IMS datastore name: IMSH
> Provide IMS userid (optional): PAOLOR7
The password will not appear.
> Provide IMS password (optional):
> Provide IMS group name (optional):
- The connection bundle 'connbundle1' has been created.
Step c: Provide Interaction (Correlator) properties for Web service

This step allows you to create or reuse a correlator file that
consists of properties for interacting with the IMS application
for the Web service.
If you use the IBM WebSphere Developer for zSeries (WDz) tooling,
the correlator file is generated for you as part of the process.
Otherwise, you will have to create the correlator file.
> Do you want to use an existing Correlator file? [Y/N]: Y
At the prompt, specify the name and location of the correlator file.
If you had created the correlator file before or you have copied
the correlator file into the IMS SOAP Gateway xml directory,
provide just the name of the correlator file (e.g. MyCorr.xml).
The full path is NOT required.
Note: If you use a correlator file generated by WDz V6.0.1, you
may need to update the IMS transaction code value in the
correlator file after you deploy the Web service.
> Provide the name and full path to the Correlator file: inoutcust4rad.xml
> Do you want to view the correlator file ? [Y/N]: Y
The Correlator file values are :
Soap Action : inout4rad
Program Name : CQUERYD
Socket Timeout : 0
Execution Timeout : 0
Lterm Name :
Adapter type : IBM COBOL XML Adapter
Connection Bundle Name : connbundle1
Step d: Deploy the WSDL to IMS SOAP Gateway
--
This step deploys the WSDL file and make your IMS application
accessible as a Web service.
Note: Ensure that IMS SOAP gateway is already started.
> Do you want to deploy the WSDL file to IMS SOAP gateway?[Y/N]:Y
Processing file C:\Program Files\IBM\IMS SOAP Gateway
V9.1\server\webapps\imssoap\temp\server\deploy.wsdd
- WSDL was successfully deployed.

The deployment is now complete.

In the following step the system asks whether you want Java client code to be generated. See
Example 8-7. If you want to create a java client to invoke the IMS Customer Query Web
service, this step can be useful. This java client code is proxy code that you can utilize in your
client application to wrap the transaction data in a SOAP message and create a connection to
send and receive SOAP messages with IMS SOAP Gateway.

Example 8-7 Generating Java client code

Step e: Generate java client code (optional)
222 Powering SOA with IBM Data Servers

--
This step generates proxy code that you can use to build a Java application to
invoke the Web service.
> Do you want to generate java client code (optional)? [Y/N]: Y
> Please enter the location to output client files (Default : C:\Program
Files\IBM\IMS SOAP Gateway\server\webapps\imssoap\temp\client) :

Client code generation in directory "C:\Program Files\IBM\IMS
SOAP\Gateway\server\webapps\imssoap\temp\client" is complete.

Enable your IMS application as a Web Service :
Task 1: Enable your IMS application as a Web Service from start to finish

Administrative tasks :
Task 2: Start IMS SOAP Gateway
Task 3: Stop IMS SOAP Gateway
Task 4: Update IMS SOAP Gateway properties
Task 5: Create, Update or View correlator properties for Web Service
Task 6: Create, Update, Delete or View connection bundle
Task 7: Deploy the WSDL file
Task 8: Generate Java client code
Task 9: Undeploy Web Service
Task 10: Exit deployment utility
===
> Enter your selection here: 10

Restart IMS SOAP Gateway.

Stop IMS SOAP Gateway. You can stop IMS SOAP Gateway by using option 2 from the
deployment utility menu

Start IMS SOAP Gateway. You can start IMS SOAP Gateway by using option 1, from the
deployment utility menu.

Note: In general, you do not need to restart IMS SOAP Gateway after you deploy a new Web
Service. You only need to restart IMS SOAP Gateway if you create a new connection bundle
during the deployment process.

Your IMS applications are ready to be accessible by a client as a Web Service. To verify the
deployment has completed successfully, do the following:

� Start the IMS SOAP Gateway Administrative Console by

Start → Programs → IBM IMS SOAP Gateway9.1 → Administrative Console.

It will open a Web browser and display the Administrative Console.

� Click View deployed Web Services link. You should see the CQUERYPort listed in
Figure 8-20 on page 224.
Chapter 8. IMS and SOA 223

Figure 8-20 SOAP Gateway Administrative Console

You could also look at the details of the WSDL file by clicking on it.

8.3.6 Accessing from a SOAP client

The HTTP Service EndPoint for the Web services is located in Windows. This information is
also available in the WSDL file in the Service Endpoint section. See Figure 8-21.

Figure 8-21 IMSClient project for SOAP Gateway client

To use the SOAP service we have to use the previously generated client code as a proxy. We
have created a new Java project IMSv9SOAPClient in RAD and imported the client proxy
code (classes and jar) in it.

In the package soap91, you find the java program CQUERYClient.java, which can interact
via the GateWay with IMS. The program is listed in Example 8-8.

Example 8-8 Java CQuery client program

/*
 * Created on July 17, 2006
 */
package soap91;

import files.target.*;
224 Powering SOA with IBM Data Servers

import com.inoutcust4radI.www.schemas.inoutcust4radIInterface.INDATA;
import com.inoutcust4radO.www.schemas.inoutcust4radOInterface.OUTDATA;

public class CQUERYClient {
public static void main(String[] args) {

try {
// Populate the input data
INDATA input = new INDATA();
input.setIn_ll((short) 32);
input.setIn_zz((short) 0);
input.setIn_trcd("CQUERY");
input.setCustomernr("006668");
input.setTracex("Y");

// Invoke the service
CQUERYService cqueryservice = new CQUERYServiceLocator();
CQUERYPortType cquery = cqueryservice.getCQUERYPort();
OUTDATA output = cquery.CQUERYOperation(input);
// Display the output data
System.out.println("Customer: " + output.getCustomernr());
System.out.println("Name: " + output.getSalutat() + " "

+ output.getFirstnme() + " " + output.getMi() + " "
+ output.getLastname());

System.out.println("Address: " + output.getAddress1() + " "
+ output.getAddress2());

System.out.println("City " + output.getZipcd() + " "
+ output.getCity());

System.out.println("Country/State: " + output.getState());
System.out.println("Phone: " + output.getPhone());
System.out.println("Fax: " + output.getFax());
System.out.println("EmlAddr: " + output.getEmladdr());
System.out.println("Message: " + output.getMessagex());

} catch (Exception exception) {
exception.printStackTrace();

}
}

}

8.3.7 Preparation at the z/OS host

In this section we describe the installation and customization processes of IMS Connect XML
Adapter. It requires IMS Version 9 with Integrated IMS Connect.

Installing IMS Connect XML Adapter
� Download IMS Connect XML Adapter (hwsadapterbeta.zip) from the IMS SOAP Gateway

with XML Adapter Web site to your workstation.

Note: The libraries that come with the IMS Connect XML Adapter should be installed on
different data sets from your IMS Connect Version 9.1 installation. You should never
replace your current IMS Connect Version 9 libraries with any of the IMS Connect XML
Adapter libraries.

This IMS Connect XML Adapter distribution is intended for testing of the new XML Adapter
function only. It is not for production use.
Chapter 8. IMS and SOA 225

� Unzip the hwsadapterbeta.zip file and it will extract one file called XMLADPT.

� Upload the XMLADPT file from your workstation to your host environment as follows:

– Allocate a data set (for example, named 'userid.XMLADPT with the following
attributes:

1st extent cylinders: 15
Secondary cylinders : 1
Record format . . . : FB
Record length . . . : 1024
Block size: 6144

� Use FTP to upload the XMLADPT file using BINARY transfer mode:

� Unpack the XMLADPT file back into data sets by using the JCL in Example 8-9.

Example 8-9 Populating the IMS Connect XML adapter data sets

//RESTORE JOB <job parameters>
//*
//**/
//* JOB NAME: RESTORE */
//* */
//* LICENSED MATERIALS - PROPERTY OF IBM */
//* 5655-J38 (C) COPYRIGHT IBM CORP 1974,2003 */
//* ALL RIGHTS RESERVED. */
//* US GOVERNMENT USERS RESTRICTED RIGHTS - */
//* USE, DUPLICATION OR DISCLOSURE RESTRICTED */
//* BY GSA ADP SCHEDULE CONTRACT WITH IBM CORP. */
//* */
//* DESCRIPTION: THIS JCL WILL UNTERSE, ALLOCATE AND POPULATE */
//* THE DATASETS FOR THE IMS CONNECT XML ADAPTER */
//* CAUTION: THIS IS NEITHER A JCL PROCEDURE NOR */
//* A COMPLETE JOB. */
//* YOU WILL HAVE TO MAKE MODIFICATIONS BEFORE */
//* SUBMITTING THIS JOB. */
//* */
//* NOTES: */
//* 1) CHANGE THE JOB CARD TO MEET YOUR SYSTEM'S REQUIREMENTS. */
//* 2) CHANGE userid TO THE USERID FROM STEP 3 ABOVE. */
//* 3) CHANGE outdsn1 TO NAME OF THE OUTPUT DATASET OF UNTERSE.*/
//* 4) CHANGE volid TO THE VOLSER ID OF THE DASD THAT WILL */
//* CONTAIN THE RESTORED DATASETS. */
//* 5) CHANGE prefix1 TO THE PREFIX FOR THE RESTORED DATASETS. */
//* */
//* NOTES: */
//* Changes to this job are Case Sensitive. */
//* The FTP commands MUST be entered in lower case as shown. */
//* THE FOLLOWING ARE SUCCESSFUL RETURN CODES FOR THE */
//* JOB STEPS: */
//* UNTERSE RC=0 */
//* RESTR RC=0 */
//* */
//**/
//UNTERSE EXEC PGM=TRSMAIN,PARM='UNPACK'
//SYSPRINT DD SYSOUT=*,DCB=(LRECL=133,BLKSIZE=12901,RECFM=FBA)
//INFILE DD DISP=SHR,DSNAME=userid.XMLADPT
//OUTFILE DD DISP=(,CATLG,DELETE),
226 Powering SOA with IBM Data Servers

// DSN=outdsn1,
// SPACE=(CYL,(15,2),RLSE),
// UNIT=SYSDA
//RESTR EXEC PGM=ADRDSSU,REGION=2048K
//SYSPRINT DD SYSOUT=*
//INDD1 DD DSN=outdsn1,
// DISP=(OLD,KEEP,KEEP)
//DASD1 DD UNIT=3390,VOL=(PRIVATE,SER=volid),DISP=OLD
//SYSIN DD *

RESTORE DATASET(-
INCLUDE(-
** -
)) -
INDDNAME(INDD1) -
OUTDDNAME(DASD1) -
NULLSTORCLAS -
CANCELERROR -
CATALOG -
SHR -
IMPORT -
TGTALLOC(SOURCE) -
RENAMEUNCONDITIONAL(prefix1) -
WAIT(2,2)

You now have the following data sets:

� prefix1.HMK9A00.AHWSLOAD which contains the load library
� prefix1.HMK9A00.AHWSMAC which contains the macro library
� prefix1.HMK9A00.AHWSSMPL which contains the samples library
� prefix1.HMK9A00.SHWSRESL which contains the reslib (except the samples sources)
� prefix1.HMK9A00.AHWSJCL which contains sample JCL for your reference

IMS Connect with the XML Adapter has now been installed, and is ready for customization.

Configuring IMS Connect XML Adapter
1. Compile and linkedit the following samples from the samples library

– prefix1.HMK9A00.AHWSSMPL into your reslib prefix1.HMK9A00.SHWSRESL
– HWSUINIT (required by IMS Connect)
– HWSJAVA0 (required by IMS Connect)
– HWSSMPL1 (if being used)
– HWSSMPL0 (if being used)
– HWSYDRU (if being used)
– HWSTECL0 (if being used)

2. Create a IMS Connect configuration file as described in the IMS Connect Version 9
documentation.

3. Add a new IMS Connect configuration file statement called ADAPTER

ADAPTER (XML=Y)

where XML=Y means Adapter supported and XML=N means Adapter not supported.

4. Add the User Exit Routine HWSSOAP1 to the IMS Connect configuration file for the
TCPIP statement at EXIT= :

TCPIP=(HOSTNAME=...,EXIT=(HWSSMPL0,HWSSMPL1,HWSSOAP1),...)
Chapter 8. IMS and SOA 227

5. Build the IMS Connect Adapter list by creating a PROCLIB member named HWSEXIT0
with the following content:

EXITDEF(TYPE=XMLADAP,EXITS=(HWSXMLC0),ABLIM=8,COMP=HWS)

6. Update the BPE CONFIG File by adding an EXITMBR statement

#
#DEFINITIONS FOR HWS EXITS
#
XITMBR=(HWSEXIT0,HWS) /* HWS USER EXIT DEF */

7. Create a new procedure for this IMS Connect XML Adapter. The new procedure should be
as defined in the IMS Connect Version 9.1 documentation with
prefix1.HMK9A00.SHWSRESL being the current reslib and with the IMS Connect Version
9 Reslib concatenated behind the prefix1.HMK9A00.SHWSRESL reslib.

The IMS Connect Version 9 is required for the BPE environment when the IMS Connect
XML Adapter is brought up. The HWS modules in IMS Connect Version 9 will not be
loaded.

8. It will also be necessary to APF authorize your Prefix1.HMK9A00.SHWSRESL library.

In Example 8-10 you find the new HSW config member with the ADAPTER statement

Example 8-10 New HWS Configuration member

HWS (ID=IMSHCONN,RACF=N,XIBAREA=20,RRS=Y)
TCPIP (HOSTNAME=TCPIP,PORTID=(6001,LOCAL),MAXSOC=2000,TIMEOUT=3000,
EXIT=(HWSSOAP1))
ADAPTER (XML=Y)
DATASTORE (ID=IMSH,GROUP=IMSHEXCF,MEMBER=HWS910H,TMEMBER=SCSIMS9H)

This concludes the example with the Web Services Soap Gateway.

8.4 IMS Services through WebSphere

WebSphere Application Server (WAS) is a new type of transactional environment. A further
description of WebSphere Application Server can be found in IBM WebSphere Application
Server for z/OS Version 6.0.1: Developing and Deploying Applications, SA22-7959.

WebSphere Application Server is the container for several types of J2EE artifacts (modules),
like Servlets and EJBs. Through these artifacts processing can be dispatched in the
WebSphere Application Server via multiple transports from several types of clients, The
transports include HTTP[S], SOAP over HTTP[S], IIOP[S], JMS, and SOAP over JMS. The
J2EE modules in WebSphere Application Server can behave as a service for external clients
and can also be a consumer of existing services. Within the SOA architecture, Web Services
over SOAP are only one particular form of service. Other services are access to a CICS/IMS
transaction through a J2C connector over TCP/IP or by an internal protocol (EXCI for CICS),
or access over an adapter to a service located on another platform, it could also be a DB2
access over an EJB. Many other examples can be found.

Web services are using SOAP (Simple Object Access Protocol) messages. In theory these
messages can flow over many transports. IBM supports Web services over HTTP and JMS
(Java Message Services). In WebSphere Application Server, an access through Web
services (SOAP) can be built for many types of components like Plain Old Java Objects
(POJOs), Enterprise Java Beans (session).
228 Powering SOA with IBM Data Servers

The build of the required artifacts for a service is supported by tool builders like the Rational
Application Developer (RAD) and the extension WebSphere Integration Developer
(WID). The artifacts that are built by this tooling are all in Java. The use of wizards is straight
forward. In this chapter we concentrate on the build of services for an existing IMS
transaction. Good candidates are all non conversational transactions, using NO Scratch Pad
Area (SPA) in their definition.

For IMS/CICS transactions, we always have to pass through a J2C connector bean. Starting
from an existing implemented transaction, the end to end build requires the following
information during the use of the wizards:

� Layout of the input message (Cobol copybook, c include)

� Layout of output messages (Cobol copybook, c include)

� Property values for the connectionSpec(ification)

– IP address of IMS Connect

– Port number of IMS Connect

– Datastore

– Security information

This information can be made available in two ways:

– managed: a ConnectionFactory definition has been made available in the WebSphere
Application Server or in the WebSphere Test Environment (WTE in RAD). This
definition can be addressed by a lookup.

– non-managed: the data is passed at runtime.

� Data for the interactionSpec(ification)

– commit protocol (send and commit, commit and send)\synclevel (0, 1, 3).

The combination of RAD and WebSphere Application Server provides almost everything that
is needed to build service solutions for IMS transactions. The data that we use in our example
is shown in Table 8-1.

Table 8-1 Our input for the Wizard

The J2C implementation for IMS also requires the installation of the Resource Adapter for
IMS. The latest distribution is v9.1.0.2.2. The distribution is available as a RAR file in a ZIP file
for window platforms and a TAR file for UNIX (including z/OS) platform. The installation of a
RAR is almost the same for all resource types and always explained together with the
distribution. When testing from the RAD development then this resource adapter must also be
installed in this tool.

InputMessage C include inoutcust4rad.h(INDATA)

OutputMessage C include inoutcust4rad.h(OUTDATA)

CommectionSpec IpAddres
IpPort
datastore
userId
pwd
dedicated
SSL

WTSC63
3001
IMSH
PAOLOR7

false
NO

InteractionSpec defaults SYNC_SEND_RECEIVE
SEND_THEN_COMMIT
Request_type_transaction
Chapter 8. IMS and SOA 229

For the IMSCON RAR, you find information and installation instructions at the URL:

http://www.ibm.com/software/data/db2imstools/imstools/imsjavcon.html

RAD and WID support the building of J2C connectors, under the condition that the J2C
plug-in has been installed in the development tool. This can be achieved by updating options
from the tool maintenance site. The plugin/wizard allows the build of J2C connectors for EIS
like IMS, CICS and others. This J2C connector can then be used in several ways, via a simple
command bean, a session EJB or Web Services.

8.4.1 HTTP Web Service built with RAD

An access facility to IMS/DC is always based on a J2C connector layer (layer 2, using the
databinding). In a service-oriented architecture, using Web Services over SOAP is an option.

Several accesses are available. This in shown in Figure 8-22. On each of the indicated
access points, indicated by an arrow, we have a J2C service available. Client code has to be
adapted to the particular access type. In all solutions the layers 1 (databinding) and 2 (J2C
bean) are common.

Figure 8-22 J2C services with RAD

Your choice of solution depends on the particular need of your environment.

In our example we selected a Web Service solution over HTTP. Everything including optional
clientproxy code is prepared with RAD wizards. The path is shown in Figure 8-22.

A Web service solution is built in four phases

1. DataBinding
2. J2C Bean generation
3. Web services enablement
4. (optional) Client stubs, helpers, proxy

The final solution is shown in Figure 8-23 on page 231. It shows also the names of the
projects used in the RAD workbench.
230 Powering SOA with IBM Data Servers

http://www.ibm.com/software/data/db2imstools/imstools/imsjavcon.html

Figure 8-23 Web services solution built with J2C wizard

The generation and preparation is done as much as possible with wizards available in
Rational Application Developer v6 (RAD). Only for the Web service client it is required to do
some basic Java coding.

Preparation of the Connector project
In this Java project in the RAD workbench, we start by building the connector elements, but
first we have to prepare it. Assume that RAD is started on Windows, and that currently we are
in a J2EE perspective.

� In the left upper corner of the RAD window, in the menu bar, click File → New → Project.
� In the New Project pop-up, select the wizard for a Java Project, click Next.
� Give the new project a name, we suggest IMSv92006Connector, click Next.

The new project is created now, but some properties have to be adapted to allow a connector
to be built in it.

In the new pop-up select the Projects menu option. See Figure 8-24.

Figure 8-24 Project references

In the project list, check the Connector project imsico91022, which contains the IMSv9
resource adapter previously installed. This is shown in Figure 8-25 on page 232.

Select the Libraries option.
Chapter 8. IMS and SOA 231

Figure 8-25 Project list

Select the Libraries option.

The project needs to have access to additional Java code (JAR files). We add here the J2EE
library.

Click Add Variable, in the Variable Classpath Entry list that comes up, highlight
WAS_V6_BASE, click Extend in the extensions navigate to the subdirectory lib and expand
it.

From the new list select j2ee.jar, and click OK, as shown in Figure 8-26.

Figure 8-26 Libraries with J2EE jar

This operation has to be repeated for another file marshall.jar.
232 Powering SOA with IBM Data Servers

The pop-up with the Libraries selection is shown in Figure 8-27. Notice the two added
libraries.

Figure 8-27 After adding libraries

Click Finish.

During the databinding phase we intend to use an existing C include with descriptions of the
input/output messages for IMS. The cobol/copybook file inoutcust4rad.h, has to be copied in
the hierarchy of the project. In the project, the file has been placed in folder reference.c.sjcust.

We distinguish the input and output section in the H file shown in Figure 8-28.

Figure 8-28 h include file inoutcust4rad

Now the project is ready for the next phase. An expansion of the project is shown in
Figure 8-29.
Chapter 8. IMS and SOA 233

Figure 8-29 IMSv92006Connector project

DataBinding
Although the messages exchanged with IMS are basically bytestrings (in EBCDIC) the J2C
connector architecture uses as input/output for the CCI (Client Connector Interface), part of
Java Connector Architecture (JCA1.5), special wrapping Java Beans (implementing the CCI
interface). In those beans the input message is assembled and from here the output fields
can be extracted on response. During this phase, the cobol copybooks or c includes can be
imported into the wizard, which as a result builds those databinding java beans.

Select the previously created project IMSv92006Connector.

Right-click New → Other.

In the New pop-up, select in the wizard part for a J2C the option CICS/IMS Java Data
Binding, as indicated in Figure 8-30.

Figure 8-30 DataBinding phase selection

Click Next.

The following Data import screen requests a cobol/copybook or a c/include with the message
mapping. Select the Cobol to Java option as shown, and with the Browse facility, navigate to
file Ex01.cbl in this project, → Open the file, and the result is shown in Figure 8-31 on
page 235.
234 Powering SOA with IBM Data Servers

Figure 8-31 Data import for inputmessage

Click Next.

In the new Import pop-up, set the platform value to z/OS, and codepage to IBM-037. If you
do not see those options, click Show Advanced.

Click Query. This shows the available data sections in the c include. Select as input message
layout INDATA; see Figure 8-32.

Figure 8-32 Input message properties

Click Next.
Chapter 8. IMS and SOA 235

The input CCI resource bean is ready to be generated, the only missing information is the
bean name and its package name. These are free selectable values, look at the example in
Figure 8-33.

Figure 8-33 Input Saving properties

Click Finish

The databinding for the input message is generated now, and the java code is shown in the
right frame of RAD. Instead of looking at the complete Java code, an excerpt of the outline of
the code gives us a good impression of the methods that are available in this class.

For each field that was defined in the c include.h we have two accessors (getter/setter). The
setter that is used for the inputmsg, while getters are used to extract the fields from the
outputmsg bean. See Figure 8-34 on page 237.

We still have to build the outputmsg bean, this happens exactly in the same way as for the
inputmsg. We select the corresponding output section from the c include.h. One item which
eventually could be different for output compared to input, is that we could have several
possible output layouts, which is called MPO (multiple output). Here we keep it simple and
stay with one possible output.
236 Powering SOA with IBM Data Servers

Figure 8-34 Outline for input CCI Databinding Javabean

The new look of the project after the databinding is complete is shown in Figure 8-35.

Figure 8-35 Project with CCI input/ouput beans

Notice the two databinding beans INDATA.java and OUTDATA.java.
Chapter 8. IMS and SOA 237

J2C Bean
The next option of the RAD wizard generates the J2C Java bean. The J2C bean, which is the
kernel of the J2C connector, uses the databinding beans as input and output, and based on
ConnectionSpec and InteractionSpec information, it is generated by the wizard.

Select the previously created project IMSv92006Connector on Figure 8-36.

Right-click New → Other.

Figure 8-36 J2C Bean phase selection

Click Next.

In the pop-up of Figure 8-37 we find, at the right a picture, the J2C bean that we are about to
create and what interactions are possible with other artifacts.

Figure 8-37 Resource Adapter selection
238 Powering SOA with IBM Data Servers

We also have to indicate what resource adapter has to be used. We select the previously
installed imscon adapter, which is compliant with Java Connector Architecture (JCA) level
1.5.

Enter Next.

The new screen that comes up is related to the connection to IMS. It determines the
properties of the connectionFactory. Connecting via TCP/IP to IMS requires following
information:

� Host name (ipaddress)
� Port Number
� Commit Mode 0 dedicated (true/false)
� Datastore (IMSname)
� SSL enabled (true/false)
� Userid/Password

This information can be provided in two ways:

� Managed

The required information has to be defined beforehand and stored in the WebSphere
Application Server (WAS), from where it is retrievable via a JNDI lookup with name
ims/IMSSJ. This retrieved information is used for connection with IMS via a
connectionFactory.

� Non Managed

All information is provided at runtime in the J2C bean.

More information about it can be found in IMS Connectivity in an On Demand Environment: A
Practical Guide to IMS Connectivity, SG24-6794. For this example we select Managed. The
definition shown in Figure 8-38 on page 240 has been made in the WebSphere Test
Environment under the IMSConnect resource. Once the application has been deployed on
WebSphere Application Server on z/OS, this definition has to be made there as well.
Chapter 8. IMS and SOA 239

Figure 8-38 Connection Factory definition with lookup ims/IMSSJ

In the managed case we must also choose a jndiName, which is used during the lookup of
the connection resource. We give it the name ims/IMSSJ. See Figure 8-39.

Figure 8-39 Managed Connection

Click Next.

The jndiName that we have chosen, does not exist yet in the WebSphere Test Environment in
our development platform. We decide to continue and define it later. See Figure 8-40 on
page 241.
240 Powering SOA with IBM Data Servers

Figure 8-40 Postpone managed connectFactory define

Click Yes.

We have to give a name for the Interface and the Implementation of the J2C bean, and also
a name for the package it belongs to; see Figure 8-41.

Figure 8-41 Package,Interface, Implementation

Click Next.

We have now to add names for the business methods mapped to the transactions that have to
be executed via this J2C bean. Enter cquery. See Figure 8-42.

Figure 8-42 Add business method

Click Add.
Chapter 8. IMS and SOA 241

Figure 8-43 Add cquery method

Click Next.

The business method requires an input and output message. This is specified in the panel of
Figure 8-44 on page 243.
242 Powering SOA with IBM Data Servers

Figure 8-44 Indicate input/output for business method

With the Browse button, lookup for input and output the databinding beans that were
generated earlier on and select them.

Click Finish.

Each exchange with IMS (transaction, command) has its own interaction specifications, which
are passed as an InteractionSpec object during the java call in the J2Cbean. Many
combinations are possible within the boundary of the connection specification. More
information about it can be found in IMS Connectivity in an On Demand Environment: A
Practical Guide to IMS Connectivity, SG24-67944. For the transaction invocation
corresponding with the above defined business method on the J2C bean, we select the
options proposed by default. See Figure 8-45 on page 244.
Chapter 8. IMS and SOA 243

Figure 8-45 InteractionSpec properties

Click Finish.

The J2C bean is now generated. The code should be alright, and we can look via the outline.
See Figure 8-46 on page 245.
244 Powering SOA with IBM Data Servers

Figure 8-46 IMSv92006Connector project outline withJ2C bean and databindings

The new look of the IMSv92006Connector project is shown in Figure 8-47 on page 246. It
now contains the J2C bean implementation. You recognize the added cquery method, with
input and output.

Web services on the J2Cbean
To use this J2C bean (connector), several options are available (Java Server Pages (servlet
by JSP), EJB (session), Web services. We could first build an intermediary EJB, and use this
EJB as the Endpoint for the Web Services, or we can generate an HTTP based solution
directly on the J2C bean. The method cquery is the service entrypoint for Web services.

Select the previously created project IMSv92006Connector. Right-click New → Other. You
get to Figure 8-47 on page 246.
Chapter 8. IMS and SOA 245

Figure 8-47 Web Services phase selection

Click Next.

In the new screen of Figure 8-48, Browse to the appropriate J2C bean implementation.

Figure 8-48 J2C bean selection for Web services

Click Next.

Continuing now requires that the connectionFactory be defined in the WebSphere Test
Environment (WTE). We decided to use a managed connection, and as a result a predefined
definition has to be available, retrievable by its jndiName, in our case ims/IMSSJ. This
definition has to be made by the WTE Admin Console. The availability of the definition is
checked by the wizard. If the condition is alright, the panel of Figure 8-49 on page 247 comes
up, otherwise an error message indicates the missing resource.
246 Powering SOA with IBM Data Servers

Figure 8-49 Web services deployment

Select in this screen the Web Service option.

Click Next.

On the next panel Web Service Creation, next to the label Service Web Project, click New if
the Dynamic Web project does not exist otherwise select the project from the list. If creating a
Dynamic Web Project, enter data in the pop-up as indicated in Figure 8-50.

The service endpoint for an HTTP Web Service is a servlet. A servlet resides in a WebApp
and is built in a Dynamic Web Project.

Figure 8-50 Dynamic Webproject for Web services

It is not required to click continue. Click Finish immediately.

It is not advisable now to switch to a Web Perspective. Click No, and verify the new proposed
Web Service Creation parameters.

Click Finish.
Chapter 8. IMS and SOA 247

RAD is now building the Web services, and also deploys it immediately into the WTE. The
WTE server gets started. The entry point into this Web service is through HTTP. The layout of
the new IMSv92006WSRouter project is shown in Figure 8-51.

Figure 8-51 WebProject IMSv92006WS for Web Services access

All contents under WebContent are packaged in a WAR file and will be deployed in the
WebSphere container. Notice, under classes, the helper classes for XML marshalling and
demarshalling, also the additional deployment descriptors and a WSDL file. This WSDL file
can be used for testing the Web Service.

Testing the Web Services from RAD
Select the J2EE perspective, and look under the Project Explorer for Web services. expand
the Services section, and then further expand the service CustQueryImplService, further
expand it and select the WSDL. See Figure 8-52 on page 249.

Right-click Test with Web Service Explorer.
248 Powering SOA with IBM Data Servers

Figure 8-52 Testing the Web Service

The browser window of Figure 8-53 appears.

Figure 8-53 Test Browser window

Within operations in the top/left of the window, click cquery, this brings up another browser
screen from which you can test the J2C connector. Enter the values in the panel of
Figure 8-54 on page 250 as required by the transaction.
Chapter 8. IMS and SOA 249

Figure 8-54 Input browser screen

Enter data as expected by the program, click Go. This initiates the test sequence with the
Web service deployed on Windows. The screen now shows the SOAP envelope as it is
created by the test environment. See Figure 8-55 on page 251.
250 Powering SOA with IBM Data Servers

Figure 8-55 Inbound SOAP envelope

This window shows you the exact format of the SOAP frame that is transferred to the Web
services. Notice the XML tokens for the SOAP envelope and subsections (only Body in this
case) and also the XML transfer of all user data.

Web service client
A Web services is a client/server service. The client, in most of the cases is a programmed
client. To help build this client in Java, the RAD developer has a wizard. With the help of this
tooling artifacts, like proxies, helper classes for [de]marshalling, locator classes can be
generated. Using those artifacts building a client becomes easy.

Verify that you are in a J2EE perspective in RAD, under Dynamic Web Projects, in project
IMSv92006WSRouter, and select WebContent/wsdl/cust/CustQueryImpl.wsdl.

Right-click New → Other.

In the New pop-up, select in the wizard part for Web Services the option Web Services
Client, see Figure 8-56 on page 252.
Chapter 8. IMS and SOA 251

Figure 8-56 Web Service Client selection

Click Next.

In the following pop-up we specify what kind of Java proxy we want to have. See Figure 8-57.

Figure 8-57 Client proxy options

Set the options as indicated, and click Next.

In the next panel (Figure 8-58 on page 253), verify the WSDL selection.
252 Powering SOA with IBM Data Servers

Figure 8-58 WSDL selection

If alright, click Next; otherwise fill in the correct WSDL file reference.

In the next window, by clicking Edit, set first the Web service run time and server to the
values as shown in Figure 8-59.

� It could be that this panel does not come up, if the selection was implicitly made before.

Figure 8-59 Client-Side Environment server

Click OK. Look at Figure 8-59.

Verify the settings of the Web service runtime and Server, change the Client type and Client
project as indicated in Figure 8-60 on page 254.

The client project, if not already existing yet, will be created.
Chapter 8. IMS and SOA 253

Figure 8-60 Web service client project

Click Next. See Figure 8-61.

Figure 8-61 Proxy

Verify the data in panel Web Service Proxy page see Figure 8-61, accept by clicking Finish, if
correct.

The client artifacts are now generated in a newly created Java project. This takes a while as
the server is also started. The final project is in Figure 8-62 on page 255.
254 Powering SOA with IBM Data Servers

Figure 8-62 Client project

Notice the proxyclass that we will use in the client coding.

Building the Java Web services client
Web Services clients can be of two types:

1. Managed clients

Run in a J2EE environment, this can be in the WebSphere Application Server container or
in a J2EE client container.

2. UnManaged clients

Are standalone Java Code.

In each category, we distinguish three techniques for building. The technique you choose
depends on the dynamics to give to the client.

1. Static proxy

We use the generated proxy, which contains also a preconfigured reference to the Web
Service endpoint. We still can change it in the Java program.

2. Dynamic proxy

The service locator is used, to change the service endpoint location at runtime

3. Dynamic Invocation Interface

Those clients do not use pre generated proxy code, but use directly info from a WSDL,
which eventually is acquired at runtime.

More info about this can be found in WebSphere Version 6 Web Services Handbook
Development and Deployment, SG24-6461.

We decided here to keep it simple and to write a Java standalone client using a static proxy,
so that the endpoint URL can be changed.

The code ws91.CQUERYClientStatic located in project IMSClient is listed in Example 8-11 on
page 256.
Chapter 8. IMS and SOA 255

Example 8-11 Generated code with static proxy

package ws91;
import cust.*;
public class CQUERYClientStatic {

public static void main(String[] args) {
 String ipaddr = "127.0.0.1";
 String iport = "9080";
 String custnr = "006668";

try {
// Populate the input data
INDATA input = new INDATA();
input.setLlin((short) 23);
input.setZ1("");
input.setTran("CQUERY");
input.setCustnr(custnr);
input.setTrace("Y");
// Invoke the service
CustQueryImplProxy cqueryproxy = new CustQueryImplProxy();

 String newendpoint = "http://" + ipaddr + ":" + iport
 + "/IMSv92006WSRouter/services/CustQueryImpl";
 cqueryproxy.setEndpoint(newendpoint);

OUTDATA output = cqueryproxy.cquery(input);
// Display the output data
System.out.println("Customer: " + output.getCustnr());
System.out.println("Name: " + output.getSalutat() + " "

+ output.getFirstnme() + " " + output.getMi() + " "
+ output.getLastname());

System.out.println("Address: " + output.getAddress1() + " "
+ output.getAddress2());

System.out.println("City " + output.getZipcd() + " "
+ output.getCity());

System.out.println("Country/State: " + output.getState());
System.out.println("Phone: " + output.getPhone());
System.out.println("Fax: " + output.getFax());
System.out.println("EmlAddr: " + output.getEmladdr());
System.out.println("Message: " + output.getMessage());

} catch (Exception exception) {
exception.printStackTrace();

}
}

} System.out.println("Message: " + output.getOut__msg());
System.out.println("Last name: " + output.getOut__name1());
System.out.println("First name: " + output.getOut__name2());
System.out.println("Extension: " + output.getOut__extn());
System.out.println("Zip: " + output.getOut__zip());

} catch (Exception exception) {
exception.printStackTrace();

}
}

}

This code can be invoked as a Java stand alone, the service_address possibly has to be
adapted.
256 Powering SOA with IBM Data Servers

Deploying in WebSphere Application Server
The enterprise application project IMSv92006WSRouterEAR assembles all the artifacts and
has to be deployed in WTE in Windows or in WebSphere Application Server on z/OS. This
deployment location defines the Web service endpoint address. The content of the EAR that
has to be extracted from the RAD Workbench for deployment is shown in Figure 8-63.

Figure 8-63 Modules in IMSv92006WSRouterEAR with Web services

Explanation, how to deploy in a WebSphere environment, is beyond the scope of this chapter.
After deployment the Web Service can be tested from the client.

Conclusion
With the RAD wizards we have built an HTTP Web Service for an existing IMS transaction.
The service endpoint for this service is located in a WebApp router (servlet) in WebSphere
Application Server. This service can be used in several ways through clients.

This concludes this example.

8.4.2 A Service built with WebSphere Integration Developer (WID)

Integrating applications on Enterprise Information Systems (EIS) with those already
developed locally is a key feature of WebSphere Integration Developer. Examples of EIS
systems include IMS, CICS and database systems. In the previous example all components
have been prepared with the RAD wizard. Recently IBM introduced a new evolution in the
way services can be bound into a SOA. This new architecture, System Component
Architecture (SCA) requires the WebSphere Process Server, which is an extension of
WebSphere Application Server. On the development side a RAD extension, WebSphere
Integration Developer (WID) provides the development ingredients for importing existing
services. In Figure 8-64 on page 258, we see an import component at work. The import
Chapter 8. IMS and SOA 257

component, created by the enterprise service discovery wizard in WID represents an
application in IMS. The import component looks like a local service. Appropriate resource
adapters and binding information provide the means of interaction between the import and
the applications on the EIS systems.

A component exposes business-level interfaces to its application business logic so that the
service can be used or invoked. The interface of a component defines the operations that can
be called and the data that is passed, such as input arguments, returned values, and
exceptions. An import also has interfaces so that the published service can be invoked. The
SCA defines several types of components, this is NOT the scope of this book. We discuss
here one particular type import that makes EIS service available as a component to be used
later in a process assembly.

Figure 8-64 SOA built with enterprise service discovery

You create EIS import components and their interfaces with the enterprise data discovery
and the enterprise service discovery wizards. The interface of the import uses inputs and
outputs which are business objects (BO), also called System Data objects (SDO).You create
business objects from data structures with the enterprise data discovery wizard. Business
objects (BO) are the input and output structures that go with a particular interface. Interfaces
an Business objects could be transformed, mapped by interface and data mapping
components, also part of SCA.

Using the enterprise service discovery wizard is similar no matter what resource adapter you
use and EIS system you access.

Preparation of the Connector Business Integration module
In this module, which is the equivalent to a project, in the RAD workbench, we will start
building the import component, but first we have to prepare the project(module). Assuming
that RAD (WID) is started on Windows, and that currently we are in a Business Integration
perspective, in the left upper corner of the RAD window, in the menu bar, click File → New →
Module.

This starts the create of a new business integration module.

Click Next.
258 Powering SOA with IBM Data Servers

Figure 8-65 Business Module creation

Give the new module a name, we propose SOAIMSv92006 as shown in Figure 8-65. Click
Finish. Note that this module will have to run in a WebSphere Process Server container,
WebSphere Application Server (WAS) is not sufficient.

The project is created, Figure 8-66 shows the layout of the new empty Business module. The
module is the basic unit of deployment in the WebSphere Process Server container.

Figure 8-66 Business Module SOAIMSv92006

The names that you discover in this module layout belong to the WPS domain. They give an
idea of the different elements that can be created as part of a module.

While in the WebSphere Integration Developer (WID), the tooling, which is used, is different
from the one used in RAD.
Chapter 8. IMS and SOA 259

We distinguish two steps:

1. Build of the input/output Data Objects

2. Build of the SCA component, which uses the previous generated Data Objects

The application that we will use, Customer query, is the same as before.

Creating the data objects for input/output of the IMS transaction
We first copy the c include(inoutcust4rad..h) in the module(project); see Figure 8-67.

Figure 8-67 Module with copy of inoutcust4rad.h

Let us look at this “h” file; Figure 8-68 on page 261.
260 Powering SOA with IBM Data Servers

Figure 8-68 C include (h file)

Using the Enterprise Data Discovery wizard, we will create the business objects.

To start the wizard, select the module, right-click → New → Enterprise Data Discovery.

Figure 8-69 Starting the Enterprise Data Discovery wizard

The next pop-up window is a request for data import. Select C to Business Object.
Chapter 8. IMS and SOA 261

Figure 8-70 Select of the C include file

With the Browse option navigate to the inoutcust4rad.h file, Figure 8-70, click Open.

Click Next.
262 Powering SOA with IBM Data Servers

Figure 8-71 Initial Data Discovery panel

Click the option Apply as show in Figure 8-71 to see the available structures in the C include
file.

Figure 8-72 Contents of the C include

Select INDATA. This is the layout of the input message; see Figure 8-72. Click Next.
Chapter 8. IMS and SOA 263

Figure 8-73 Select input structure and folder(package)

Complete the screen information with the folder name, cust; see Figure 8-73.

Click Finish, the data binding is now generated.

Repeat the previous wizard cycle for the output message with the OUTDATA structure. The
new look of the business integration module is shown in the following Figure 8-74.

Figure 8-74 Look of module after preparation of Data Objects

You recognize the new generated Data Types for input and output. Both are XML schema
files (XSD), describing the data objects.

Creating an import for the IMS transaction
Using the enterprise service discovery wizard, we create a SCA component of type
import, based on an existing IMS application. We will use the datatypes, generated in the
previous step, as input and output.
264 Powering SOA with IBM Data Servers

To start the wizard, select the module, right-click → New → Enterprise Service Discovery.
See Figure 8-75.

Figure 8-75 Starting the Enterprise Service Discovery

The panel of Figure 8-76 is presented with a list of installed resource adapters. Here you
indicate for which resource adapter you create this import.

Figure 8-76 Selection of Resource Adapter

Select the IMS Connector for Java as shown in Figure 8-76. This is the adapter distributed
with IMSV9, which previously had to be installed in RAD.

Click Next.

The next panel, in Figure 8-77 on page 266, asks for the connection properties. These can be
specified here, or we can use a connection factory definition inside the WebSphere Process
Server, which is retrievable via a JNDI lookup. The latter is the advisable solution, so we have
Chapter 8. IMS and SOA 265

to specify its JNDIname. It is assumed that previously this definition was made via the Admin
Console of the WebSphere Test Environment (WTE). In the previous screen capture
Figure 8-76 on page 265 you can see that already some connection factories have been
defined. Referring to an explanation in the previous chapter, these are managed connection
definitions.

Figure 8-77 Managed Connection reference

Click Next.

The import component has to be configured with methods, comparable to an API, which will
be part of its interface. Basically a method has a name, takes an input message and returns
an output message. A method is not linked implicitly to an IMS transaction. This link is
established by the transaction code in the contents of the input message.

On the new panel, that comes up, click Add, and complete the information in the Add
operation pop-up with a methodname, input and output messages. The messages, in
System Data Object (SDO) format, do exist from the data discovery phase and are used.
Specify as methodname custQuery.

The wizards, see Figure 8-78 on page 267, will guide you through several self-explanatory
steps, in which you will browse to the generated input/output datatypes and specify them as
input and output.
266 Powering SOA with IBM Data Servers

Figure 8-78 Adding operation and importing C to business objects

Click Finish.

Most of the definitions for the service discovery have been done, we specified:

� Connection properties to IMS via a managed definition
� Operation description with Input and Output

The next element to specify are the characteristics of the IMS Interaction related to this
operation.

Accept the proposed values in Figure 8-79 on page 268.

For more explanation on the meaning of the accepted default values, see IMS Connectivity in
an On Demand Environment: A Practical Guide to IMS Connectivity, SG24-6794.
Chapter 8. IMS and SOA 267

Figure 8-79 Operation Interaction specification

Click Next.

A final request for the name of the import component and package appears in the panel of
Figure 8-80.

Figure 8-80 Generation of artifacts

Fill in a name as indicated and click Finish.

In Figure 8-81 on page 269, find the new look of the SCA module in the Business Integration
perspective.
268 Powering SOA with IBM Data Servers

Figure 8-81 Final SOAIMSv92006 Business Module

Notice the following elements in the module:

� component: Cquery
� interface: Cquery
� datatypes: INDATA, OUTDATA

The basic elements for an import are ready, but have to be used in the SCA import
component. This happens with the graphical Assembly capability of WID.

Assembling the System Component

Click twice on SOAIMSv92006, under the modulename which is also SOAIMSv92006.

Figure 8-82 Open of Assembly editor

This opens the assembly diagram editor of the module in the right pane. The assembly editor
is the primary tool for composing an SCA based application. The module assembly contains a
diagram of the integrated business application, consisting of components and the wires that
connect them. You use an assembly editor to visually compose the integrated application with
elements that you drag/drop from the palette or from the tree in the Business Integration view.

The implementations of components that are used in a module assembly might reside within
the module. Components that belong to other modules can be used through imports.

Notice that there is already a component on the board, this is the import, that was composed
with by the WID wizard. See Figure 8-83 on page 270.
Chapter 8. IMS and SOA 269

Figure 8-83 Assembly editor for the Business Module

This import has already an interface and also a binding. The binding goes directly to the IMS
connectionfactory, combined with a lookup for ims/IMSSJ information, which is the JNDIname
for the lookup of the managed definition, available in the resource definitions of the
WebSphere Test Environment.

By clicking twice on the interface Cquery you see how this interface is composed.
Figure 8-84, shows the interface, operation name and input, output parameters with types.

Figure 8-84 Interface with 1 operation

This component of type import is a real SCA component, which can be used in several ways.

See Figure 8-85 on page 271.
270 Powering SOA with IBM Data Servers

Figure 8-85 Using an import component

� An export component, for example, a listener on a JMS queue, could wire to the import,
with or without an intermediate interface/data mapping.

� A component of other types can always wire to the import.

� The import could be used as such from an other artifact, for example, a servlet by using a
standalone reference.

� It could be used as a partner link in a process composition with the BPEL editor in Process
Choreography.

The service module is the deployment unit in the WebSphere Process Server. In reality we
deploy real J2EE artifacts, combined in an enterprise archive file (EAR). The EARfile,
represented by a project in the workbench has been created and embraces also the required
artifacts. The best way to discover what is enclosed in the module is to open the deployment
descriptor of the EAR project SOAIMSv92006App, which is related to the business module.
This name was derived from the business module name, by appending app. Other projects,
with derived names, have been created by the build of the deployment code, see Figure 8-86
on page 272.

� Ejb project

SOAIMSv92006EJB

� Ejbclient project

SOAIMSv92006EJBClient
Chapter 8. IMS and SOA 271

Figure 8-86 SOAIMSv92006App enterprise project

In the Enterprise Applicationproject, see Figure 8-86 we find 1 Ejb project
(SOAIMSv92006EJB), and two Project Utility projects (SOAIMSv92006,
SOAIMSv92006EJBClient).

The real entry to the System Component is via the EJB module. See Figure 8-87.

Figure 8-87 SOAIMSv92006, SOAIMSv92006EJB

In the EJB project we find two EJBs. Both represent a access into the component.

� Session EJB: Module offers synchronous service entry

� Message Driven EJB: ServiceSIBusMessageBean presents an asynchronous service
entry via an inyteractionSpec on the ESB.

Using this component in an SCA project, or in a SOA process developed with the BPEL editor
is beyond the scope of this chapter. The implementation of a simple standalone reference
component is explained in Approach to Problem Determination in WebSphere Application
Server V6, REDP-4073.
272 Powering SOA with IBM Data Servers

Testing the import component from WID
Testing the service could be one of the responsibilities of the developer. This test can take
place from within the Assembly Diagram panel.

Right-click the import component in the assembly diagram → Test Component.

See Figure 8-88. During the test you will learn that the WPS test environment comes up; be
sure also that the Enterprise Application SOAIMSv92006App got deployed in the server.

Figure 8-88 Test the CQuery component

The next screen, Figure 8-89 on page 274, allows you to enter parameters, corresponding
with the layout of the input message to IMS.
Chapter 8. IMS and SOA 273

Figure 8-89 Input for SCA component test

Enter input data as prompted by the layout of the input message and click Continue to enter
the test.

Conclusion
With a WID wizard we have built a SCA Service Component for an existing IMS transaction.
The service endpoints (synchronous, asynchronous) for this service are located in a Ejb
project. This service component, which is really SCA compliant, can be used in several ways
through clients.

Notice that in this example we used a WID wizard, different from RAD.

This concludes this example.

8.4.3 Importing with WID, a Service built by RAD

In 8.4.1, “HTTP Web Service built with RAD” on page 230, we used RAD to build a Web
service for J2C. This is a service, but not really a System Component for SCA.

In 8.4.2, “A Service built with WebSphere Integration Developer (WID)” on page 257, we
developed an SCA import component, ready to be used by a Process flow via the Process
Choreography. This component was completely developed with WID tooling.
274 Powering SOA with IBM Data Servers

In this part we will use a meet in the middle approach, using RAD and WID. For most of the
artifacts built by RAD we can create imports with the WID toolkit. In Figure 8-90 we show the
points at which an import could be created.

� In A: directly on J2Cbean
� In B: on the session EJB, built by the RAD wizard
� In C: on the Web services
� In D: on the proxy for Web services

Figure 8-90 Import possibilities by WID

On each of the indicated access points (A, B, C, D) an SCA import component could be built,
but this requires WID and WPS at runtime.

In all solutions the layers 1 (databinding) and 2 (J2C bean) are common.

We selected to build as a third layer a Session EJB, again with the RAD J2C wizard. The use
of an intermediary EJB can have some advantages

� An EJB with remote interface offers remote method invocation on the methods.
� On each method invocation transactional contexts can be considered.

From this layer on, we will build the import with WID, using an EJB binding. A Java binding
would be possible as well. Look at Figure 8-91 to understand the preparation process.

Figure 8-91 RAD, WID solution

The end result is depicted in Figure 8-92 on page 276. In the picture you recognize the layers,
and also the RAD/WID tool projects, which are used.
Chapter 8. IMS and SOA 275

Figure 8-92 SCA import from EJB

The words import and export in SCA could be very confusing:

� import
From SOA an existing service component is imported (used)

� export
An existing component triggers activity in SOA

For this approach the first thing to do is to build the stateless session EJB on the existing
layers 1 and 2.

Session EJBean
The RAD J2C wizard has an option to generate a Session EJB. It is built upon the J2C bean.
A Session EJB is a J2EE artifact that requires a separate EJB project. This will be created by
the wizard.

In the previously created connector project IMSv92006Connector select the J2CBean
CustQueryImpl.

Right-click New → Other.

Select Web Page, Web Service or EJB from J2C JavaBean.

A J2C JavaBean selection pop-up is presented, see Figure 8-93. Verify the name of the
J2CBean.

Figure 8-93 Selected J2C JavaBean

Click Next.
276 Powering SOA with IBM Data Servers

A verification takes place that the managed connection definition ims/IMSSJ, addressed by
the JNDIname is present in the server. The server should eventually be started and the
information is retrieved by JNDIname.

If alright, the next screen appears. Check EJB on the new screen of Figure 8-94.

Figure 8-94 Select EJB

Click Next.

On the new screen, shown in Figure 8-95 on page 278, the following elements have to be
filled in:

� EJB projectname: IMSv92006EJB, belongs also to the enterprise project IMSv92006EAR

� EJB name: CQuerySessEjb

You have the option, besides the remote interface to select also a local interface. All other
fields are completed automatically by the wizard.
Chapter 8. IMS and SOA 277

Figure 8-95 Definition of the EJB project

Click Finish.

The new project is generated now, an intermediate message asks for copying the J2C code in
the new EJB project. See Figure 8-96.

Figure 8-96 Copy J2C Bean code

Click OK.

After this the generation of the Ejb project is completed. The screen capture of Figure 8-97 on
page 279 shows you the layout of the project.
278 Powering SOA with IBM Data Servers

Figure 8-97 Ejb project IMSv92006EJB with imbedded J2C bean and databindings

The session EJB CQuerySessEjb, has a reference to ims/IMSSJ, which is the managed
connection factory. Before generating deployment code the EJB is composed of five artifacts:

� Local Home
� Local Object
� Remote Home
� Remote Object
� Bean

– Implements the SessionBean interface
– Extends the J2Cbean

Figure 8-98 gives a graphical detailed look at the EJB CQuerySessEjb.
Chapter 8. IMS and SOA 279

Figure 8-98 Stateless Session EJB on J2C JavaBean

By opening the imbedded CustQueryImpl Java code we find the jndiName reference for the
lookup by the EJB, indicated by an annotation. The EJB has besides the life cycle methods
one business method cquery inherited from the J2C Javabean. Like in all EJB’s this is a
remote accessible method, which has been promoted to the CQuerySessEjb, ejb remote
interface and also to the local interface CQuerySessEjbLocal.

Example 8-12 Remote interface

package cust;

/**
 * Remote interface for CQuerySessEjb bean.
 */
public interface CQuerySessEjb extends javax.ejb.EJBObject {

/**
 */
public cust.OUTDATA cquery(cust.INDATA arg)

throws java.rmi.RemoteException, javax.resource.ResourceException;
}

With a RAD Wizard we could now select to build a Web Service SOAP service on it, which
can have HTTP or JMS as transport protocol. This possibility is shown in Figure 8-90 on
page 275. The outcome will be a SCA import component, but with a Java interface. This has
some consequences as explained later

The EJB being ready, in the next step we will create an import on it, This happens in a
Business Integration module with WID.

Preparation of the Connector Business Integration module
We define a new Business Integration Module, that will contain the import of the J2C session
EJB.

Repeat the steps as in “Preparation of the Connector Business Integration module” on
page 258, choose as the name of the module SOAIMSv92006fromRADEJB.

Build the Import of the EJB
Open the Assembly Diagram of the new module, by clicking twice on
SOAIMSv92006fromRADEJB under the same module name. A panel opens in the right part
of the window, but it is empty.
280 Powering SOA with IBM Data Servers

From the palette on the left in this pane, drop an import component on the board. See
Figure 8-99. Change the name of the new component to CQueryImport_java.

Figure 8-99 Picking an import component from the palette and name change

The import component is currently empty without interface and implementation. To be able to
use an existing implementation in this component, we have to make this module dependant
on foreign projects, which contain the implementation.

Select module SOAIMSv92006fromRADEJB.

Right-click Open Dependency Editor.

In the window that comes up, expand the J2EE part, click Add in that part, to include another
J2EE project from which implementations can be included. See Figure 8-100 on page 282.
Chapter 8. IMS and SOA 281

Figure 8-100 Business Dependency

Select project IMSv92006EJB, click OK, close and save the dependency. See
Figure 8-100.

On the Assembly Diagram board, right-click the import component, →Add Interface.

Figure 8-101 Adding an interface

On the pop-up, change the select to Show Java and wait till a selection list comes up. This
can take a while. Eventually change the selection filter to CQ, so that the list becomes very
short. Select CQuerySessEjb which is the remote interface object of the session Ejb
previously created with the RAD wizard, see Figure 8-102 on page 283.
282 Powering SOA with IBM Data Servers

Figure 8-102 Interface selection

Click OK.

An interface has now been added to the import, the next step is to generate the binding to
the EJB implementation. See Figure 8-103 on page 284.

The problem with a Java defined interface is that it cannot participate in processes built with
the Process Choreographer. We have to describe a WSDL interface that can be a partner
link in a process and this WSDL has to be implemented by a Java component which is a
front-end for the EJB invocation. We should also NOT forget that inside a process data are
transported in a Service Data Object(SDO) format, which is different of the format used on the
J2C interface.
Chapter 8. IMS and SOA 283

Figure 8-103 Binding generation

Select import component.

Right-click Generate Binding → Stateless Session Bean Binding.

In the right bottom part of the window, select Properties in the menu, select Binding on the left
and verify/complete the jndiName information with the jndiName of the CQuerySessEjb.

See Figure 8-104.

Figure 8-104 Complete binding with JNDIname of Connector EJB

The Business Integration import definition should now be complete, but as we explained it
cannot be used from the process choreographer because of the missing WSDL interface.

We build this WSDL interface manually. Most of it was already prepared by the WID
generated system component in project SOAIMSv92006. This WSDL is simply an metadata
XML representation of:

OUTDATA = CQUERY(INDATA);

We use two datatypes (INDATA,OUTDATA) and a WSDL(CQUERY) representing the cquery
entry. Everything can be copied from SOAIMSv92006 into the current project.
284 Powering SOA with IBM Data Servers

Figure 8-105 shows the generated datatypes.

Figure 8-105 INDATA

By clicking on the INDATA and OUTDATA we can have a graphical look at the data objects.
See Figure 8-106.

Figure 8-106 OUTDATA

In Figure 8-107 on page 286 you the presentation of the WSDL interface.
Chapter 8. IMS and SOA 285

Figure 8-107 WSDL description of the interface

To accommodate the problem of non supported Java interface by the Process builder, we
add as a frontal to the import component a Java component which will use the prepared
WSDL interface and function as a mapper between the supported WSDL based partner and
the Java based import.

From the palette on the left take and drop a Java component on the Assembly editor.
Change the name to CQueryPassThru4Java.

This component, for functioning needs the following

� An interface (CQuery.wsdl)
� A reference connection to the import
� An implementation

As before we add an interface CQuery.wsdl to the Java component.

We add a reference connection by drawing the arrow from the tail of the Java component to
the import component. After arranging the picture it looks like in the following capture. See
Figure 8-108

Figure 8-108 Import component with frontal Java component

The next step is to add the implementation on the Java component. It is always possible to
generate a skeleton that later on has to be completed. Generate the skeleton as indicated.

Select Java component, right-click and select Generate Implementation.
286 Powering SOA with IBM Data Servers

Figure 8-109 Generate skeleton for implementation

Choose cusjava as the directory/folder, click Finish. A Java skeleton
CQueryPassThru4JavaImpl is generated now, This has to be completed.

In the generated skeleton code, see Example 8-13, several method entries are important to
understand.

public CQuerySessEjb locateService_CQuerySessEjbPartner()

Location of the EJB service for the J2C implementation

public DataObject custQuery(DataObject custQueryInput)

Mapping between SDO and regular classes (this will be implemented)

void onCqueryResponse(Ticket __ticket, DataObject returnValue

It not used here

Example 8-13 Skeleton code generated by wizard

package cusjava;

import com.ibm.websphere.sca.Ticket;
import commonj.sdo.DataObject;
import cust.CQuerySessEjb;
import com.ibm.websphere.sca.ServiceManager;

public class CQueryPassThru4JavaImpl {
/**
 * Default constructor.
 */
public CQueryPassThru4JavaImpl() {

super();
}
private Object getMyService() {

return (Object) ServiceManager.INSTANCE.locateService("self");
}
/**
 * This method is used to locate the service for the reference
 * named "CQuerySessEjbPartner". This will return an instance of
 * {@link CQuerySessEjb}. If you would like to use this service
 * asynchronously then you will need to cast the result
 * to {@link CQuerySessEjbAsync}.
 * @return CQuerySessEjb
 */
public CQuerySessEjb locateService_CQuerySessEjbPartner() {

return (CQuerySessEjb) ServiceManager.INSTANCE
Chapter 8. IMS and SOA 287

.locateService("CQuerySessEjbPartner");
}
/**
 * Method generated to support implemention of operation "custQuery" defined for WSDL

port type
 * named "interface.Cquery".
 *
 * The presence of commonj.sdo.DataObject as the return type and/or as a parameter
 * type conveys that its a complex type. Please refer to the WSDL Definition for more

information
 * on the type of input, output and fault(s).
 */
public DataObject custQuery(DataObject custQueryInput) {

//TODO Needs to be implemented.
return null;

}
/**
 * Method generated to support the async implementation using callback
 * for the operation (@link cust.CQuerySessEjb#cquery(DataObject aINDATA))
 * of java interface (@link cust.CQuerySessEjb)
 * @see cust.CQuerySessEjb#cquery(DataObject aINDATA)
 */
public void onCqueryResponse(Ticket __ticket, DataObject returnValue,

Exception exception) {
//TODO Needs to be implemented.

}
}

The following logic has to be implemented in this code. On input and output we have SDO
objects for the data in INDATA and OUTDATA, but the EJB entry expects a regular INDATA
J2C databinding class object on input and returns a regular J2C OUTDATA object. In the java
code we have to code the mapping between the SDO format and the regular class format.

Example 8-14 follows the changed custQuery method.

Example 8-14 Changed custQuery method

public DataObject custQuery(DataObject indataBO) {
DataObject outdataDO = null;
String trace = null;
boolean debugOn = true;
System.out.println("++CQuery4JavaImpl_custQuery enter");
try {

BOFactory boFactory = (BOFactory) new ServiceManager()
.locateService("com/ibm/websphere/bo/BOFactory");

cust.OUTDATA outdata = null;
cust.INDATA indata = new INDATA();
trace = indataBO.getString("trace");
if (trace.equalsIgnoreCase("Y")) {

debugOn = true;
}
if (debugOn) {

System.out.println("++CQuery4JavaImpl_custQuery tran("
+ indataBO.getString("tran") + ") custnr("
+ indataBO.getString("custnr") + ") trace("
+ indataBO.getString("trace") + ")");

}
indata.setLlin(indataBO.getShort("llin"));
288 Powering SOA with IBM Data Servers

indata.setZ1(indataBO.getString("z1"));
indata.setZ2(indataBO.getString("z2"));
indata.setTran(indataBO.getString("tran"));
indata.setCustnr(indataBO.getString("custnr"));
indata.setTrace(indataBO.getString("trace"));
outdataDO = boFactory.create("http://SOAIMSv92006fromRADEJB/cust",
"OUTDATA");
if (debugOn) {

System.out.println("++CQuery4JavaImpl_custQuery before EJB call");
}
outdata = locateService_CQuerySessEjbPartner().cquery(indata);
if (debugOn) {

System.out.println("++CQuery4JavaImpl_custQuery after EJB call
outdata(" + outdata + ")");

}
outdataDO.setShort("llout", outdata.getLlout());
outdataDO.setString("z1", outdata.getZ1());
outdataDO.setString("z2", outdata.getZ2());
outdataDO.setString("custnr", outdata.getCustnr());
outdataDO.setString("ssn", outdata.getSsn());
outdataDO.setString("firstnme", outdata.getFirstnme());
outdataDO.setString("mi", outdata.getMi());
outdataDO.setString("lastname", outdata.getLastname());
outdataDO.setString("salutat", outdata.getSalutat());
outdataDO.setString("address1", outdata.getAddress1());
outdataDO.setString("address2", outdata.getAddress2());
outdataDO.setString("city", outdata.getCity());
outdataDO.setString("state", outdata.getState());
outdataDO.setString("zipcd", outdata.getZipcd());
outdataDO.setString("phone", outdata.getPhone());
outdataDO.setString("emladdr", outdata.getEmladdr());
outdataDO.setString("z1", outdata.getZ1());
outdataDO.setString("message", outdata.getMessage());

} catch (Exception ex) {
System.err.println("++CQuery4JavaImpl_custQuery exception "

+ ex.toString());
outdataDO.setString("message", "+CQuery4JavaImpl_custQuery exception "

+ ex.toString());
}
if (debugOn) {

System.out.println("++CQuery4JavaImpl_custQuery leaving");
}
return outdataDO;

}

This SCA component is now completed and can be tested, but the J2EE artifacts have to be
generated for deployment in the J2EE container.

Build the module
The Business module is now like in Figure 8-110 on page 290. You recognize the Datatypes,
Interfaces and the Javacode.
Chapter 8. IMS and SOA 289

Figure 8-110 Layout of SOAIMSv92006RADEJB business module

A complete build of all artifacts is now required. The best way to perform this build of the
whole module is to switch to a J2EE perspective and to select the Business Integration
project, and Clean on the menu. Clean for this project should be the only choice.

Testing the SCA component
The SCA component can now be tested. Select the Java component, and select Test
Component as indicated in Figure 8-111.

Figure 8-111 Test component from SOA accessible Java component
290 Powering SOA with IBM Data Servers

The WebSphere Process Server is started and testing can be done from Figure 8-112.

Figure 8-112 Test panel

Conclusion
With a WID wizard we have built a import component from an existing RAD solution for an
IMS transaction access. Although we did the exercise for an EJB, we could have done for
other configurations as shown in Figure 8-91 on page 275.

8.5 Accessing DLI data

IMS Java class libraries (the JDBC driver is included in these libraries) provide direct IMS
database access from multiple environments. Direct access means just that - it is direct and
there is no need for an IMS transaction (although the driver can be used within an IMS
transaction as well to access IMS data). The ODBA interface which was introduced in IMS V7
allows for direct DB access from non-IMS controlled environments. The front-end to the JDBC
driver is a JCA resource adapter which allows for deployment in a WebSphere Application
Server (much like IMS Connector for Java - which is another JCA resource adapter offered by
IMS which provides access to existing IMS transactions).

The WebSphere Application Server can either be WebSphere Application Server z/OS or
WebSphere Application Server distributed (in which case you will need to use the RDS
solution offered in IMS V9 which allows for WebSphere Application Server distributed to
WebSphere Application Server z/OS IIOP communication to offer DB access from a
distributed WebSphere Application Server). Your non-z/OS applications can access IMS data
over the Internet using a secure protocol with local or global transaction semantics and the
standard JDBC API.

Figure 8-113 on page 292 shows the JDBC/DLI solution.
Chapter 8. IMS and SOA 291

Figure 8-113 Accessing DLI data with JDBC solution

A JDBC resource Adapter is installed in both the z/OS WebSphere Application Server and in
the distributed WebSphere Application Server. The distributed WebSphere Application
Server could be the WebSphere Test Environment (WTE) of the RAD tooling. In both
environments J2EE artifacts (WebApplications, EJB’s), can be developed and tested to
access directly DLI databases. The access to the DLI data occurs also through a
DataSource connection factory.

On the z/OS WebSphere Application Server the JDBC resource adapter, uses the Open Data
Base Access (ODBA) layer, which is the callable interface to IMSDB. The Database
Resource Adapter (DRA) is the bridge between the external subsystem and IMS.

The distributed WebSphere Application Server also has a distributed IMS JDBC Resource
Adapter, which contains a type-3 JDBC driver. For this remote access to have functioning,
two IMS supplied EJBs have to be installed. One of two IMS Java-supplied EJBs is the
host-side component that facilitates communication with and passes transaction information
to the IMS JDBC resource adapter. These EJBs act as listeners for remote requests.
Depending on whether there is a transaction context on the non-z/OS platform, either a
container-managed or bean-managed IMS Java EJB is used. Notice that by remote
WebSphere Application Server we also include a RAD WebSphere Test Environment. More
information about the subject and downloads can be found at:

http://www.ibm.com/software/data/ims/imsjava/

JDBC access is always on relational databases. DLI databases are hierarchical and lack also
descriptive metadata, as it is the case for DB2 with its catalog. Before being able to use JDBC
for DLI databases these two issues have to be overcome.

8.5.1 Hierarchical

A database segment definition defines the fields for a set of segment instances similar to the
way a relational table defines columns for a set of rows in a table. In this way, segments relate
to relational tables, and fields in a segment relate to columns in a relational table. The name
of an IMS segment becomes the table name in an SQL query, and the name of a field
becomes the column name in the SQL query.

A fundamental difference between segments in a hierarchical database and tables in a
relational database is that, in a hierarchical database, segments are implicitly joined with
each other. In a relational database, you explicitly join two tables. Looking at the hierarchical
data, we can consider that all dependant segments have a foreign key, which is a
292 Powering SOA with IBM Data Servers

http://www.ibm.com/software/data/ims/imsjava/

concatenations of the keys its parent path. A segment instance in a hierarchical database is
already joined with its parent segment and its child segments, which are all along the same
hierarchical path. In a relational database, this relationship between tables is captured by
foreign and primary keys.

To be able to be used with JBDC this hierarchical has to be transformed logically in a
relational view. This happens by concatenating all segments in its hierarchical path. The key
of a segment/row in the relational view is a concatenation of all keys in its path. This is shown
in Figure 8-114.

Figure 8-114 Hierarchical to relational transformation

8.5.2 Metadata

Metadata is a requirement for the JDBC functioning. In order for a Java application to access
an IMS database, it needs information about the database. This information is contained in
the PSB (program specification block) and DBDs (database descriptions), but you must first
convert this information into a form that you can use in the Java application: a subclass of the
com.ibm.ims.db.DLIDatabaseView class called the IMS Java metadata class. Metadata is not
available for DLI databases and it has to be built with the DLIModel utility function. The
DLIModel utility generates this metadata from the IMS PSBs, DBDs, COBOL copybooks, and
other input specified by utility control statements.

This can be achieved in two ways:

1. Using Java Batch, see Figure 8-115 on page 294.

The function produces on request three outputs:

– DatabaseView class, these are the metadata
– A Java Report
– Execution trace of the DLIModel function
Chapter 8. IMS and SOA 293

Figure 8-115 DLIModel

2. An Eclipse DLIModel plug-in exists also for WSAD and RAD. At the time of writing this
plug-in was not available for Eclipse 3 (RAD).

The outcome of either of these operations is a DatabaseView Java class, which describes
the views to the data through one particular PSB. The same data can be viewed under
several angles, depending on the presence of secondary indices, logical relationships. The
view to the data can also be partial.

This view can then be considered as the equivalent of a data source, described in the
WebSphere Application Server environment and reached via a lookup in the same way as a
regular DB2 relational database.

Examples of the DLIModel can be found in reference IMS Connectivity in an On Demand
Environment: A Practical Guide to IMS Connectivity, SG24-6794 and IMS Version 9: IMS
Java Guide and Reference, SC18-7821.

It is quite easy to create an Enterprise Java Bean that uses the JCA/DLI resource adapter to
directly access IMS data. With the RAD development toolkit the EJB can be turned into a
Web Service. This is shown in Figure 8-116.
294 Powering SOA with IBM Data Servers

Figure 8-116 IMS and Web services deployment

8.5.3 Conclusion

With a DLI/JDBC adapter it is possible to include access to DLI hierarchical databases in
J2EE design. This access can be local or remote, so that even during design, from within the
RAD toolkit we use real data on the host. DLI databases are existing for a long time, are
stable and well performing, and this additional solution eliminates reasons to migrate to other
types of databases.
Chapter 8. IMS and SOA 295

296 Powering SOA with IBM Data Servers

Chapter 9. Informix IDS and SOA

Informix IDS is a strategic IBM data service with a special focus on high performance OLTP,
easy application integration, low administration and very low total cost of ownership. IDS has
a very modern process-architecture and extensibility-architecture which is key for an easy
integration of IDS into an SOA framework.

In this chapter we introduce the IDS data service and also cover the following SOA related
topics:

� Providing Web services on top of IDS through the WORF framework and exposing IDS
database operations through EGL (Enterprise Generation Language) based Web
services.

� Consuming Web services by using the Apache Axis framework in combination with IDS
J/Foundation.

� IDS foundation technologies like the WebSphere MQ DataBlade and XML related
DataBlades which can help with an easy SOA integration.

� Modernizing existing Informix 4GL applications and integrating them into an SOA
architecture.

This chapter contains these sections:

� IBM Informix Dynamic Server: An overview
� IDS as a Web services provider
� IDS as a Web services consumer
� XML related DataBlades
� Using WebSphere MQ with Informix applications
� Integrating I4GL applications with SOA through EGL

9

© Copyright IBM Corp. 2006. All rights reserved. 297

9.1 IBM Informix Dynamic Server: An overview

IBM Informix Dynamic Server (IDS) is IBM’s flagship data service for industrial-strength,
embedded computing. IDS offers the lowest TCO (total cost of ownership), providing high
performance with low overhead cost, while delivering a robust database platform for on
demand businesses.

IDS is the first database to support rolling application upgrades when built using IBM's
industry-leading Enterprise Replication technology. IDS provides a full-featured relational
database management system (ORDBMS) platform with capabilities to extend its
functionality to meet unique business requirements with the speed of native database
functions.

IDS reduces downtime, improves reliability, and supports a wide-array of platforms and
application development environments including Java TM and Eclipse, and Microsoft .NET
IDEs.

9.1.1 The IDS architecture

The IBM IDS engine architecture is based on advanced technology that efficiently uses
virtually all of today’s hardware and software resources.

Called the Dynamic Scalable Architecture (DSA), it fully exploits the processing power
available in SMP environments by performing similar types of database activities (such as
I/O, complex queries, index builds, log recovery, inserts and backups/restores) in parallel
groups rather than as discrete operations.

The DSA design architecture includes built-in multi-threading and parallel processing
capabilities, dynamic and self-tuning shared memory components, and intelligent logical data
storage capabilities, supporting the most efficient use of all available system resources.

Figure 9-1 IBM IDS architectural overview
298 Powering SOA with IBM Data Servers

Processing
IBM IDS provides the unique ability to scale the database system by employing a dynamically
configurable pool of database server processes called virtual processors. Database
operations such as a sorted data query are broken into task-oriented subtasks (for example,
data read, join, group, sort) for rapid processing by virtual processors that specialize in that
type of subtask. Virtual processors mimic the functionality of the hardware CPUs in that
virtual processors schedule and manage user requests using multiple, concurrent threads.

A thread represents a discrete task within a database server process and many threads may
execute simultaneously, and in parallel, across the pool of virtual processors. Unlike a CPU
process-based (or single-threaded) engine, which leaves tasks on the system CPU for its
given unit of time (even if no work can be done thus wasting processing time), virtual
processors are multi-threaded. Consequently, when a thread is either waiting for a resource
or has completed its task, a thread switch will occur and the virtual processor will immediately
work on another thread. As a result, precious CPU time is not only saved, but it is used to
satisfy as many user requests as possible in the given amount of time. This is referred to as
fan-in parallelism.

Not only can one virtual processor respond to multiple user requests in any given unit of time,
but one user request can also be distributed across multiple virtual processors. For example,
with a processing-intensive request such as a multi-table join, the database server divides the
task into multiple subtasks and then spreads these subtasks across all available virtual
processors. With the ability to distribute tasks, the request is completed quicker. This is
referred to as fan-out parallelism. Together with fan-in parallelism, the net effect is more work
being accomplished quicker than with single-threaded architectures; in other words, the
engine is faster.

Dynamic load balancing occurs within IBM IDS because threads are not statically assigned to
virtual processors. Outstanding requests are serviced by the first available virtual processor,
balancing the workload across all available resources. For efficient execution and versatile
tuning, virtual processors can be grouped into classes, each optimized for a particular
function, such as CPU operations, disk I/O, communications and administrative tasks. An
administrator can configure the system with the appropriate number of virtual processors in
each class to handle the workload. Adjustments can be made while the engine is online
without interrupting database operations in order to handle occasional periods of heavy
activity or different load mixes.

In UNIX and Linux systems, the use of multi-threaded virtual processors significantly reduces
the number of UNIX/Linux processes and, consequently, less context switching is required. In
Microsoft Windows systems, virtual processors are implemented as threads to take
advantage of the operating system’s inherent multi-threading capability. Because IBM IDS
includes its own threading capability for servicing client requests, the actual number of
Windows threads is decreased, reducing the system thread scheduling overhead and
providing better throughput.

In fully utilizing the hardware processing cycles, IBM IDS engines do not need as much
hardware power to achieve comparable to better performance than other database engines.

Memory
All memory used by IBM IDS is shared among the pool of virtual processors. Beyond a small
initial allocation of memory for engine-level management, usually a single shared memory
portion is created and used by the virtual processors for all data operations. This portion
contains the buffers of queried and modified data, sort, join and group tables, lock pointers,
and so on. Should database operations require more (or less) shared memory, additional
Chapter 9. Informix IDS and SOA 299

segments will be dynamically added and dropped from this portion without interrupting user
activities.

An administrator can also make similar modifications manually while the server is running.
When a user session terminates, the thread-specific memory for that session is freed within
the portion and reused by another session.

The buffer pool is used to hold data from the database disk supply during processing. When
users request data, the engine first attempts to locate the data in the buffer pool to avoid
unnecessary disk I/Os. Depending on the characteristics of the engine workload, increasing
the size of the buffer pool can result in a significant reduction in the number of disk accesses,
which can help significantly improve performance, particularly for online transaction
processing (OLTP) applications.

Disks
The parallelism and scalability of the DSA processor and memory components are supported
by the ability to perform asynchronous I/O across database tables and indexes that have
been logically partitioned. To speed up what is typically the slowest component of database
processing, IBM IDS uses its own asynchronous I/O (AIO) feature, or the operating system’s
kernel AIO, when available. Because I/O requests are serviced asynchronously, virtual
processors do not have to wait for one I/O operation to complete before starting work on
another request. To ensure that requests are prioritized appropriately, four specific classes of
virtual processors are available to service I/O requests: logical log I/O, physical log I/O,
asynchronous I/O and kernel asynchronous I/O. With this separation, an administrator can
create additional virtual processors to service specific types of I/O in order to alleviate any
bottlenecks that might occur.

Data partitioning
Table and index data can be logically divided into partitions, or fragments, using one or more
“partitioning schemes” to improve the ability to access several data elements within the table
or index in parallel as well as increase and manage data availability and currency. For
example, if a sequential read of a partitioned table were required, it would complete quicker
because the partitions would be scanned simultaneously rather than each disk section being
read serially from the top to the bottom. With a partitioned table, database administrators can
move, associate or disassociate partitions to easily migrate old or new data into the table
without tying up table access with mass inserts or deletes.

IBM IDS has two major partitioning schemes that define how data is spread across the
fragments. Regardless of the partitioning scheme chosen, or even if none is used at all, the
effects are transparent to end users and their applications. Table partitions can be set and
altered without bringing down the database server and, in some cases, without interrupting
user activity within the table. When partitioning a table, an administrator can specify either:

� Round robin - Data is evenly distributed across each partition with each new row going to
the next partition sequentially.

� Expression-based - Data is distributed into the partitions based on one or more sets of
logical rules applied to values within the data.

Leveraging the strengths of DSA
With an architecture as robust and efficient as IBM IDS, the engine provides a number of
performance features that other engines cannot match.

The speed with which IBM IDS responds to a data operation can vary depending on the
amount of data being manipulated and the database’s design. While many simple OLTP
operations such as single row inserts/updates/deletes can be executed without straining the
300 Powering SOA with IBM Data Servers

system, a properly designed database can leverage IBM IDS features such as parallel data
query, parallel scan, sort, join, group and data aggregation for larger, more complex
operations.

Figure 9-2 Benefits of IBM IDS parallel data query feature

The parallel data query (PDQ) feature takes advantage of the CPU power provided by SMP
systems and the IBM IDS virtual processors to execute fan-out parallelism. PDQ is of
greatest benefit to more complex SQL operations that are more analytical, or OLAP oriented,
than operational, or OLTP oriented. With PDQ enabled, not only is a complex SQL operation
divided into a number of sub-tasks but the sub-tasks are given higher or lower priority for
execution within the engine’s resources based on the overall “PDQ-priority” level requested
by the operation.

9.1.2 Extensibility in IDS: Key for SOA integration

IBM IDS provides a complete set of features to extend the database server, including support
for new data types, routines, aggregates and access methods. With this technology, in
addition to recognizing and storing standard character and numeric-based information, the
engine can, with the appropriate access and manipulation routines, manage non-traditional
data structures that are either modeled more like the business environment or contain new
types of information never before available for business application processing.

Though the data may be considered “nonstandard,” and some types can be table-like in and
of themselves, it is stored in a relational manner using tables, columns and rows. In addition,
all data, data structures created through Data Definition Language (DDL) commands, and
access routines recognize objected-oriented behaviors such as overloading, inheritance and
polymorphism.

This object-relational extensibility supports transactional consistency and data integrity while
simplifying database optimization and administration.

Other database management systems (DBMS) rely on middleware to link multiple servers,
each managing different data types, to make it look as though there is a single processing
environment. This approach compromises not only performance, but also transactional
consistency and integrity because problems with the network can corrupt the data. This is not
the case with IBM IDS. Its object-relational technology is built into the DSA core and can be
used, or not, at will within the context of a single database environment.
Chapter 9. Informix IDS and SOA 301

Data types
IBM IDS uses a wide range of data types to store and retrieve data. The breadth and depth of
the data types available to the database administrator and application developer is significant
allowing them to truly define data structures and rules that accurately mirror the business
environment rather than trying to approximate it through normalized database design and
access constraints.

Some types, referred to as built-in types, include standard data representations such as
character(n), decimal, integer, serial, varchar(n), date, and datetime, alias types such as
money, and simple large objects (LOBs). IBM has also added additional built-in types to
recent releases of IBM IDS, including boolean, int8, serial8 and an even longer variable
length character string, the lvarchar.

Extended data types themselves are of two classes, including:

� Super-sets of built-in data types with enhanced functionality

� Types that were not originally built into the IBM Informix database engine but that, once
defined, can be used to intelligently model data objects to meet business needs.

Extended data types can be used in queries or function calls, passed as arguments to
database functions, indexed and optimized in the same way as the core built-in data types.

Since any data that can be represented in C or Java can be natively stored and processed by
the engine, IBM IDS can encapsulate applications that have already implemented data types
as C or Java structures.

Because the definition and use of extended data types is built into the DSA architecture,
specialized access routines support high performance. The access routines are fully and
automatically recoverable, and they benefit from the proven manageability and integrity of the
IBM Informix database architecture.

User-defined routines, aggregates and access methods
In earlier versions of the IDS engine, developers and administrators who wanted to capture
application logic that manipulated data and have it execute within the engine only had stored
procedures to work with. Although stored procedures have an adequate amount of
functionality, they may not optimize performance.

IDS provides the ability to create significantly more robust and higher performing application
or data manipulation logic in the engine where it can benefit from the processing power of the
physical server and the DSA.

A “user-defined routine” (UDR) is a collection of program statements that - when invoked from
an SQL statement, a trigger, or from another UDR - perform new domain-specific operations,
such as searching geographic data or collecting data from Web site visitors. UDRs are most
commonly used to execute logic in the engine, either generally useful algorithms or business
specific rules, reducing the time it takes to develop applications and increasing the
applications’ speed.

UDRs can be either functions that return values or procedures that do not. They can be
written in IBM Informix Stored Procedure Language (SPL), C or Java. SPL routines contain
SQL statements that are parsed, optimized and stored in the system catalog tables in
executable format - making SPL ideal for SQL-intensive tasks. Since C and Java are
powerful, full-function development languages, routines written in these languages can carry
out much more complicated tasks than SPL routines. C routines are stored outside the
engine with the path name to the shared library file registered as the UDR. Java routines are
first collected into “jar” files, which are stored inside the engine as “smart large objects”
302 Powering SOA with IBM Data Servers

(SLOs). Regardless of their storage location, C and Java routines execute as though they
were a built-in component of the engine.

A “user-defined aggregate” (UDA) is a UDR that can either extend the functionality of an
existing built-in aggregate (for example, SUM or AVG) or provide new functionality that was
not previously available. Generally speaking, aggregates return summarized results from one
or more queries. For example, the built-in SUM aggregate adds values of certain built-in data
types from a query result set and returns their total. An extension of the SUM aggregate can
be created to include user-defined data types, enabling the reuse of existing client application
code without requiring new SQL syntax to handle the functionality of new data types within
the application. To do so, using the example of the SUM aggregate, would require creating
(and registering) a user-defined function that would overload the “plus” function and take the
user-defined data types, which needed to be added together, as input parameters.

DataBlades
IBM Informix DataBlade modules bring additional business functionality to the engine through
specialized user-defined data types, routines and access methods. Developers can use these
new data types and routines to more easily create and deploy richer applications that better
address a company’s business needs. IBM IDS provides the same level of support to
DataBlade functionality that is accorded to built-in or other user-defined types/routines. With
IBM Informix DataBlade modules, almost any kind of information can be easily managed as a
data type within the engine. There is a portfolio of third-party DataBlade modules, or
developers can use the IBM Informix DataBlade Developer’s Kit (DBDK) to create specialized
blades for a particular business need.

Within the context of this redbook the following IBM Informix DataBlades and Bladelets will be
of primary interest:

� WebSphere MQ DataBlade
� Web DataBlade
� XSLT DataBlade
� XML generating UDRs DataBlade

The DBDK is a single development kit for Java-, C- and SPL-based DataBlades and the
DataBlade application programming interface.

The DataBlade API is a server-side “C” API for adding functionality to the database server, as
well as for managing database connections, server events, errors, memory and processing
query results.

9.2 IDS as a Web services provider

There are multiple options to utilize IDS as a Web services provider. Those options heavily
depend on your development environment, programming language preferences and
deployment platforms.

In the following sections we will cover the most common and likely also most interesting Web
services approaches for IDS developers and users.

9.2.1 IDS Web services based on Enterprise Java Beans (EJBs)

This is a very straightforward process. In order to access an IDS based entity bean, you
create a stateless session bean first and then use the Web services wizard in the Rational
SDP to generate the necessary code for accessing the session bean.
Chapter 9. Informix IDS and SOA 303

Since these kind of Web services are more or less database independent due to the
intermediate abstraction layer (session and entity beans) we did not include any example in
this redbook, but instead refer you to another redbook which covers this topic in great detail:
Self-Study Guide: WebSphere Studio Application Developer and Web Services,
SG24-64077.

9.2.2 IDS and simple Java Beans Web services

Using Java beans for IDS Web services is a very flexible and simple approach. The Java
bean could contain either Informix JDBC calls to the database, IBM’s data access bean code
(a different abstraction layer to a pure JDBC application), calls to the SQLToXML and
XMLToSQL class libraries, or even Java bean code which has been generated by any other
3rd party Java development environment.

9.2.3 IDS and EGL Web services

Those developers who have the need to develop robust Web services on top of IDS, but who
do not want to use pure Java technology to achieve that goal, should look at IBM Enterprise
Generation Language and its very powerful Web services support.

For an introduction in the EGL language and examples on how to use the EGL Web services
capabilities, refer to 5.5, “Enterprise Generation Language (EGL) and SOA” on page 126.

Also refer to 9.6, “Integrating I4GL applications with SOA through EGL” on page 344 to learn
how to modernize an existing Informix 4GL application to utilize Web services through the
conversion into EGL.

9.2.4 IDS and WORF (DADX Web services)

The document access definition extension (DADX) Web services had been originally
developed with IBM DB2 and its XML Extender in mind. It allows you to easily wrap IBM DB2
XML Extender or regular SQL statements inside a Web service.

Fortunately, the non XML Extender related operations also work without any problems when
using IBM Informix IDS1. Let us look at the supported DADX functions for IDS:

� Query
� Insert
� Update
� Delete
� Call Stored Procedures (limited support for IDS 72)

The runtime component of DADX Web services is called Web Services Object Runtime
Framework (WORF). WORF uses the SOAP protocol and the DADX files and provides the
following features:

� Resource based deployment and invocation
� Automatic service redeployment, at development time, when defining resource changes
� HTTP GET and POST bindings, in addition to SOAP
� Automatic WSDL and XSD generation, including support for UDDI Best Practices

1 WORF has been already certified against IDS 10.x
2 In IDS 7 you can only call stored procedures which do not return any results!
304 Powering SOA with IBM Data Servers

Figure 9-3 How WORF and IDS work together

So how does WORF handle a Web service request in combination with IDS?

1. WORF receives an HTTP SOAP GET or POST service request.

The URL of the request specifies a DADX or DTD file, and the requested action, which
can be a DADX operation or a command, such as TEST, WSDL, or XSD. A DADX
operation can also contain input parameters. WORF performs the following steps in
response to a Web service request:

2. Loads the DADX file specified in the request.

3. Generates a response, based on the request.

For operations:

– Replaces parameters with requested values
– Connects to IDS and runs any SQL statements, including UDR calls
– Formats the result into XML, converting types as necessary

For commands:

– Generates necessary files, test pages, or other responses required.

4. Returns the response to the service requestor.

Since it is so easy to implement an IDS based Web service with DADX Web services, in the
next section we look at how to develop such a service.

How to build a DADX Web service with IDS
In order to build a DADX Web service, we need to have some SQL statements on which the
service should be based. In this section we are also assuming that the reader knows how to
use the Rational development tools. For the following examples we are using the Rational
Application Developer 6.0.1.1 (RAD).

Before we can actually build the DADX Web service we need to create a new Dynamic Web
Project and define some SQL Statements. To keep the example simple, we will only define
two statements, one SELECT statement and one INSERT statement.
Chapter 9. Informix IDS and SOA 305

Create a Web project and a connection to the database
You should first start RAD, then define a new workspace (or choose an existing one), and
create a new Web Project, by selecting File → New → Dynamic Web Project.

Give the new Web project a name and optionally choose an associated page template while
navigating through the project wizard. In our example we’ll name the project
InformixSOADemo. In the ProjectExplorer window you should see two project folders, one
for the actual Web project (located in the Dynamic Web Projects folder) and a related
Enterprise Archive (EAR) project with a similar name in the Enterprise Applications folder.

In our next step we define a connection to the standard IDS stores demo database and create
a simple SELECT statement to select all customer data from the demo database.

Switch to the RAD Data view by selecting Window → Open Perspective → Data. Right-click
into the Database Explorer window and select New Connection.

On the first screen on the New Database Connection wizard, select Choose a database
manager and JDBC driver and provide a connection name, for example, StoresDemo.

In the New Database Connection fill in the correct connection properties to connect to the
stores_demo database. Choose the appropriate Informix Dynamic Server version in the
Select a database manager field. For IDS 10.x you should use Informix Dynamic Server,
V9.4 and the JDBC driver Class location should point to a JDBC driver jar file of Version
3.30.JC1 or higher.

The database connection window is shown in Figure 9-4.

Figure 9-4 The New Database Connection wizard window with IDS settings

Before you proceed its recommended to use the Test Connection button to verify that all
connection details are correct. On the following wizard screens your have some options
include and exclude some tables from underlying database schema.
306 Powering SOA with IBM Data Servers

Towards the end of the schema import from the IDS database, you will be asked if you want
to copy the schema information into an existing project. After answering that question with
yes, select the newly created Dynamic Web project from above (InformixSOADemo).

Define a SELECT statement by utilizing the Query Builder
In the Data Definition window, navigate to the InformixSOADemo → Web Content →
WEB-INF → InformixSOADemo → stores_demo → Statements folder. Right-click the
Statements folder and choose New → Select Statement. Name the Statement, for example,
selectOneCustomer and click OK.

Now you should see the interactive query builder. In the tables window, you need to select
(by right-clicking) the tables you want to include in the query. In our demo we select only the
table informix.customer, because we want to show the complete customer information.
Since you want to include all attributes from the customer table, select all customer attributes
in the table attribute check boxes.

We want to select only one customer, therefore we need to define a WHERE condition. To do
this, select the Conditions tab in the lower window of the query builder. Select
informix.customer.customer_num as the column, and choose = as the operator. We also
need to provide a host variable, which acts as a placeholder for different customer_num
values later in the process. Let us name the host variable :customernum (the colon is
important!)

Now save your statement into the Web project by selecting File → Save stores_demo -
selectOneCustomer.

Define an INSERT Statement for the demo DADX Web service
Switch to the Data perspective by selecting Window → Open Perspective → Data. In the
Data Definition window open the InformixSOADemo/Web
Content/InformixSOADemo/stores_demo folder. Right-click the Statements folder and
select New → Insert Statement. Name the new statement InsertOneCustomer and click OK.

In the interactive SQL builder window, right-click into the Tables window. Select Add Table
and then from the tables selection menu, select the informix.customer table. Within the
informix.customer table, select all attributes for the INSERT statement. In the window below
the Tables window, we now have to define the host variables as placeholders for the later
inserts which should be executed against the customer table.

To make it simple we’ll name all host variables by using the column name with a colon (:) in
front. To do this, click the Value column for each table attribute and enter the host variable
name, for example, :fname for the fname attribute. Important: since the customer_num
attribute is defined as a SERIAL data type in the database, we set the insert value to zero to
automatically generate a new customer_num value during each insert! So eventually, the
SQL builder window should look like in Figure 9-5 on page 308. As soon as you have defined
the INSERT statement, save it into the demo Web project.

Tip: If your database and its tables are owned by user informix, you might want to uncheck
the “Schema NOT LIKE informix” option on the second wizard screen or otherwise you will
not be able to import the schema information of all the tables which belong to user informix.
Chapter 9. Informix IDS and SOA 307

Figure 9-5 The InsertOneCustomer Statement is being constructed in the SQL Builder

Create a DADX group and define its properties
In preparation for the to be generated DADX file, we need first to create a DADX group, which
combines one or more SQL statement into one logical DADX Web service. So it could make
sense, for example, to group all operations on the customer table into one group, while
operations on the account table will be grouped into another DADX group.

Each DADX group also maintains its own database connection properties, so one could also
use different DADX groups to connect to different databases or even different database
servers (vendors).

To create a new DADX group:

1. Open the Web Perspective by selecting Window → Open Perspective → Web. Then
select the Project Explorer window.

2. Select File → New → Other → Web Services → Web Service DADX Group
Configuration. Click Next.

3. In the next window, select the InformixSOADemo folder and then click Add group.

4. For the group name, enter ITSOCustomerService. Click OK.

5. While still being in the same window, now select the
InformixSOADemo/ITSOCustomerService folder and then click Group properties.
308 Powering SOA with IBM Data Servers

6. In the DADX Group Properties pop-up window, fill in the following information:

DB driver: com.informix.jdbc.IfxDriver

DB URL:
jdbc:informix-sqli://akoerner:1528/stores_demo:INFORMIXSERVER=ol_itso2006;user=
informix;password=informix

7. Leave the other fields as-is. Click OK.

8. In the DADX Group Configuration window, click Finish.

Generate the DADX file
Now we can generate the DADX file for the two SQL Statements. To do this:

1. Select File → New → Other → Web Services → DADX File. Click Next.

2. In the Create DADX window select InformixSOADemo as the project and the
ITSOCustomerService DADX Group. As a filename enter ITSOCustomerService.dadx.
Also select the Generate a DADX file from a list of SQL queries or Stored Procedures.
Click Next.

3. In the Select SQL Statements and Stored Procedures window, open the
InformixSOADemo/Web Content/InformixSOADemo/stores_demo/Statements folder

4. Since we want to select both SQL statements (insertOneCustomer, selectOneCustomer)
we need to do the following: Click the insertOneCustomer statement first and then
control-click the selectOneCustomer too. Now both statements should be selected
(highlighted). Click Next.

5. Just click Next in the Select DAD Files window since DAD files are not yet supported with
IBM Informix IDS.

6. In the DADX operations window click Finish.

The generated ITSOCustomerService.dadx file should look the one in Example 9-1. Notice
the XML compliant format and the specific DADX keywords.

Example 9-1 The ITSOCustomerService.dadx file

<?xml version="1.0" encoding="UTF-8"?>
<dadx:DADX xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://schemas.ibm.com/db2/dxx/dadx dadx.xsd">
 <dadx:operation name="selectOneCustomer">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 <![CDATA[
]]>
 </dadx:documentation>
 <dadx:query>
 <dadx:SQL_query>
 <![CDATA[
 SELECT * FROM informix.customer WHERE
informix.customer.customer_num = :customernum
]]>
 </dadx:SQL_query>
 <dadx:parameter name="customernum" type="xsd:int"/>
 </dadx:query>
 </dadx:operation>
 <dadx:operation name="InsertOneCustomer">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
Chapter 9. Informix IDS and SOA 309

 <![CDATA[

]]>
 </dadx:documentation>
 <dadx:update>
 <dadx:SQL_update>
 <![CDATA[
 INSERT INTO informix.customer (customer_num, fname, lname,
company, address1, address2, city, state, zipcode, phone) VALUES (0, :fname,
:lname, :company, :address1, :address2, :city, :state, :zipcode, :phone)
]]>
 </dadx:SQL_update>
 <dadx:parameter name="fname" type="xsd:string"/>
 <dadx:parameter name="lname" type="xsd:string"/>
 <dadx:parameter name="company" type="xsd:string"/>
 <dadx:parameter name="address1" type="xsd:string"/>
 <dadx:parameter name="address2" type="xsd:string"/>
 <dadx:parameter name="city" type="xsd:string"/>
 <dadx:parameter name="state" type="xsd:string"/>
 <dadx:parameter name="zipcode" type="xsd:string"/>
 <dadx:parameter name="phone" type="xsd:string"/>
 </dadx:update>
 </dadx:operation>
</dadx:DADX>

Since the interactive query builder in RAD only supports SELECT, INSERT, UPDATE and
DELETE statements you might have to edit the generated DADX file manually if you want to
add support for IDS user defined routines (UDR).

Create a DADX Web service based on the generated DADX file
Now let us generate the necessary files for a DADX Web service based on the DADX file we
generated in the previous section.

First we need to prepare the InformixSOADemo Web project for Informix IDS database
access in combination with the DADX Web service:

1. In the Project Explorer right-click the InformixSOADemo project folder and then select
Properties.

2. In the Properties window select Java Build Path and then the Libraries tab.

3. Now add the Informix JDBC driver to the Class Path entries by clicking Add External
JARs. In the file browser select the correct ifxjdbc.jar file and the ifxjdbcx.jar file and
click Open.

4. Close the Properties window by clicking OK.

Now we build the Web service itself:

1. Open the Web perspective and in the InformixSOADemo Web project, click the file Java
Resources/JavaSource/groups.ITSOCustomerService/ITSOCustomerService.dadx

2. Select File → New → Other → Web Services → Web Service. Click Next.

3. In the Web Services window select as the Web service type: DADX Web Services. In
addition, check the Start Web service in Web project option and the options, Overwrite
files without warning and Create folders when necessary. Click Next.

4. In the Object Selection Page verify that have selected the correct DADX file. In our
example it is:
310 Powering SOA with IBM Data Servers

/InformixSOADemo/JavaSource/groups/ITSOCustomerService/ITSOCustomerServi
ce.dadx.

Click Next.

5. In the Service Deployment Configuration leave the default values and as the Service
project choose InformixSOADemo and as the EAR project choose
InformixSOADemoEAR. Click Next.

6. In the Web Services DADX Group properties verify the database connection information.
Click Next.

7. In the Web Service Publication window click Finish.

Let’s test the newly created Web service with the built-in RAD Web services Test client:

1. In the Project Explorer window, in the InformixSOADemo Web project folder, locate the
WebContent/wsdl/ITSOCustomerService/ITSOCustomerService.wsdl file. Right-click
this file and the select Web Services → Test with Web Services Explorer.

2. While in the Web Services Explorer select theService → theSOAPBinding →
selectOneCustomer.

3. In the Actions window enter a valid value (like 104) for the customer_num value and click
GO. You see the result in Figure 9-6 on page 312.
Chapter 9. Informix IDS and SOA 311

Figure 9-6 Testing the selectOneCustomer DADX service with RAD Web Services Explorer

4. Now your can also try the InsertOneCustomer Web service. In this case you need to
provide some values for the customer fields (fname, lname, and so on.). The Web
services explorer is shown in Figure 9-7 on page 313.
312 Powering SOA with IBM Data Servers

Figure 9-7 The InsertOneCustomer DADX Web service

DADX support for user defined routines / stored procedures
In addition to standard SQL statements like SELECT, INSERT, DELETE and UPDATE, the
WORF framework also supports the execution of user defined routines or stored procedures
in IDS. In order to do this, the framework utilizes (internally) the JDBC CallableStatement
class which is a very portable way of calling stored procedures and functions in database
servers.

Since this feature is unfortunately not supported through the interactive SQL builder in RAD,
we need to either create a new DADX file or modify an existing one.

Before we go ahead with an example, let us look at the DADX file syntax for stored
procedures/functions based on the XML schema for DADX files (see Example 9-2 on
page 314).
Chapter 9. Informix IDS and SOA 313

Example 9-2 DADX call operation (XML schema definition)

<element name="call">

 <annotation>
 <documentation>
 Calls a stored procedure.
 The call statement contains in, out, and in/out parameters using host variable
syntax.
 The parameters are defined by a list of parameter elements that are uniquely named
 within the operation.
 </documentation>
 </annotation>

 <complexType>
 <sequence>
 <element name="SQL_call" type="string"/>
 <element ref="dadx:parameter" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="dadx:result_set" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <unique name="callParameterNames">
 <selector xpath="dadx:parameter"/>
 <field xpath="@name"/>
 </unique>

 <unique name="callResultSetNames">
 <selector xpath="dadx:result_set"/>
 <field xpath="@name"/>
 </unique>

</element>

As mentioned earlier, the WORF framework utilizes the JDBC java.sql.CallableStatement
interface for the execution of IDS user defined routines. Therefore the syntax for calling
routines in IDS this way should follow the JDBC guidelines. For a simple example in DADX
syntax how to call a user defined routine which does not return any results, see Example 9-3.

Example 9-3 Simple UDR call in DADX syntax

<dadx:operation name="createOneCustomerSimple">
<dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
</dadx:documentation>
<dadx:call>

<dadx:SQL_call>
<![CDATA[
 { call create_customer_simple (:fname, :lname, :company, :address1, :address2,
:city, :zipcode, :state, :phone)}
]]>

</dadx:SQL_call>
<dadx:parameter name="fname" type="xsd:string" kind="in"/>
<dadx:parameter name="lname" type="xsd:string" kind="in"/>
<dadx:parameter name="company" type="xsd:string" kind="in"/>
<dadx:parameter name="address1" type="xsd:string" kind="in"/>
<dadx:parameter name="address2" type="xsd:string" kind="in"/>
<dadx:parameter name="city" type="xsd:string" kind="in"/>
<dadx:parameter name="zipcode" type="xsd:string" kind="in"/>
<dadx:parameter name="state" type="xsd:string" kind="in"/>
<dadx:parameter name="phone" type="xsd:string" kind="in"/>
314 Powering SOA with IBM Data Servers

</dadx:call>
</dadx:operation>

If you need to return results back to the DADX Web service consumer you might have
different options:

� Starting with IDS 9 you can utilize multiple out parameters in the UDR parameter list. To
use these out parameters in combination with DADX you need to declare them as in/out
parameters and the Web service caller might have to supply dummy values (for example,
zero for integer types) to make it work. This behavior seems to be IDS specific and does
not apply to other databases. The UDR create_customer_out in Example 9-4 shows a
simple SPL UDR which uses one out parameter (newcustomernum).

Example 9-4 IDS UDR with an out parameter (in SPL)

create procedure create_customer_out (fname lvarchar, lname lvarchar,
company lvarchar, address1 lvarchar, address2 lvarchar,
city lvarchar, zipcode lvarchar, state lvarchar,
phone lvarchar, OUT customernum int)

define new_customernum int;
insert into customer values (0, fname, lname, company, address1,

address2, city, state, zipcode, phone);
let new_customernum = dbinfo('sqlca.sqlerrd1');
let customernum = new_customernum;

end procedure;

Example 9-5 shows the correct DADX syntax for calling such a UDR. Notice the in/out
option for the newcustomernum parameter.

Example 9-5 DADX syntax fragment for the IDS UDR from Example 9-4

<dadx:operation name="createOneCustomer">
<dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
</dadx:documentation>
<dadx:call>

<dadx:SQL_call>
<![CDATA[
 { call create_customer_out (:fname, :lname, :company, :address1, :address2,
:city, :zipcode, :state, :phone, :newcustomernum)}
]]>

</dadx:SQL_call>
<dadx:parameter name="fname" type="xsd:string" kind="in"/>
<dadx:parameter name="lname" type="xsd:string" kind="in"/>
<dadx:parameter name="company" type="xsd:string" kind="in"/>
<dadx:parameter name="address1" type="xsd:string" kind="in"/>
<dadx:parameter name="address2" type="xsd:string" kind="in"/>
<dadx:parameter name="city" type="xsd:string" kind="in"/>
<dadx:parameter name="zipcode" type="xsd:string" kind="in"/>
<dadx:parameter name="state" type="xsd:string" kind="in"/>
<dadx:parameter name="phone" type="xsd:string" kind="in"/>
<dadx:parameter name="newcustomernum" type="xsd:int" kind="in/out"/>

</dadx:call>
</dadx:operation>
Chapter 9. Informix IDS and SOA 315

� You could simply return a result for a UDR or even complete results sets. See the
following important tip regarding the support in IDS for that feature.

For information about how the DADX syntax for an UDR and what a result set should look
like, look at the SPL UDR in Example 9-6 and the associated DADX syntax in
Example 9-7. Notice the display label syntax in the stored procedure (returning ... as
...) and also the result_set definition and usage in the DADX file fragment.

Example 9-6 IDS stored procedure with display labels for the result set

create procedure read_address (lastname char(15))
 returning char(15) as pfname, char(15) as plname,
 char(20) as paddress1, char(15) as pcity,
 char(2) as pstate, char(5) as pzipcode;

define p_fname, p_city char(15);
define p_add char(20);
define p_state char(2);
define p_zip char(5);
select fname, address1, city, state, zipcode

into p_fname, p_add, p_city, p_state, p_zip
from customer
where lname = lastname;

return p_fname, lastname, p_add, p_city, p_state, p_zip;
end procedure;

Example 9-7 shows the DADX syntax associated to Example 9-6.

Example 9-7 DADX syntax fragment for the UDR in

<dadx:result_set_metadata name="customerAddress" rowName="customer1">
<dadx:column name="pfname" type="VARCHAR" nullable="true" />
<dadx:column name="plname" type="VARCHAR" nullable="true" />
<dadx:column name="paddress1" type="VARCHAR" nullable="true" />
<dadx:column name="pcity" type="VARCHAR" nullable="true" />
<dadx:column name="pstate" type="VARCHAR" nullable="true" />
<dadx:column name="pzipcode" type="VARCHAR" nullable="true" />

</dadx:result_set_metadata>

<dadx:operation name="readOneCustomer">
<dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
</dadx:documentation>
<dadx:call>

<dadx:SQL_call>
<![CDATA[
 { call read_address (:lname) }
]]>

</dadx:SQL_call>

Tip: This restriction seems to be specific to the DADX/IDS combination, since a similar
restriction had been already removed since the IBM Informix JDBC 2.21.JC4 driver and
is no longer valid. Callers need to use registerOUTparameter() only and they do not
need to use setXXX() method on OUT parameters. A future version of DADX will very
likely address this change in the Informix JDBC driver.

Tip: IDS 10 supports a feature which allows that the columns of a result set for a user
defined routine can have display labels. The WORF framework requires the usage of
those labels in IDS or one could not use UDRs with result sets.
316 Powering SOA with IBM Data Servers

<dadx:parameter name="lname" type="xsd:string" kind="in"/>
<dadx:result_set name="customer1" metadata="customerAddress" />

</dadx:call>
</dadx:operation>

9.2.5 IDS and other Web services environments (.NET, PHP)

Developers have options on choosing the development environment to use for their Web
services development. Some might prefer the Java environment, while others prefer .NET or
other powerful frameworks like PHP. The IBM Informix database development tools support
all major development environments including .NET and PHP database access. For an
introduction into PHP Web services programming, refer to Chapter 16, “PHP client design” on
page 507.

IBM Informix .NET Provider
The IBM Informix .NET Provider is a .NET assembly that lets .NET applications access and
manipulate data in IBM Informix databases. It does this by implementing several interfaces in
the Microsoft .NET Framework that are used to access data from a database. See Figure 9-8.

Figure 9-8 Available .NET integration options for IDS developers

Using the IBM Informix .NET Provider is more efficient than accessing the an IBM Informix
database through either of these two methods:

� Using the Microsoft .NET Framework Data Provider for ODBC along with the IBM Informix
ODBC Driver

Important: The result set metadata definitions (<dadx:result_set_metadata>
</dadx:result_set_metadata> tag) are global to the DADX and must precede all of the
operation definition elements in a DADX file
Chapter 9. Informix IDS and SOA 317

� Using the Microsoft .NET Framework Data Provider for OLE DB along with the IBM
Informix OLE DB Provider

Example 9-8 shows IDS .NET provider based sample code.

Example 9-8 IDS .NET provider based sample code

using IBM.Data.Informix;

IfxConnection MyConn = new IfxConnection();

MyConn.ConnectionString = "Server=ids10; DataBase=db;";

MyConn.Open();

IfxCommand MyCmd = MyConn.CreateCommand();

MyCmd.CommandText = “INSERT INTO customer(custID) VALUES (101)”;

MyCmd.ExecuteNonQuery();

IBM IDS native PDO Driver for PHP 5
An application programing interface for rapid, cost-effective Web development using PHP
Data Objects. IBM's IDS PDO driver supports PHP 5 so developers can take advantage of
IDS's object-relational capabilities for developing high-performance applications.

Features of the native PDO driver for IDS:

� Higher performance; stress tested

� PECL extension built on top of IDS ODBC driver

bash$./configure --with-pdo-informix=/path/to/SDK[,shared]

� Connecting to IDS Databases using PDO_INFORMIX DSN

� PHP 5 only

Example 9-9 shows a simple PDO_INFORMIX application.

Example 9-9 A simple PDO_INFORMIX application

$db = new PDO($dsn,$user,$pass);

$sql = "SELECT name, breed FROM ANIMALS WHERE weight < ?";

$stmt = $db->prepare($sql);

$res = $stmt->execute(array(10));

if($res)
{

while($row = $stmt->fetch(PDO::FETCH_BOTH))
{

print "{$row['NAME']} is a {$row['BREED']}.\n";
}

}

318 Powering SOA with IBM Data Servers

The most recent version of the IDS PDO_INFORMIX driver can be downloaded from here:

http://pecl.php.net/package/PDO_INFORMIX

9.3 IDS as a Web services consumer

In the previous sections we described in detail how to use the different tools to enable IBM
Informix IDS as a Web services provider.

Now we want to focus on IDS as a Web services consumer.

This section is intended as a how-to guide to use IDS 10 as a Web service consumer. It
requires a basic knowledge of the Java language, for example you should know how to edit
and compile a Java program. You should also have a basic understanding of the IDS 10
extensibility features.

Why have IDS as a Web services consumer?
In addition to provide Web services, it can be very interesting for an application developer to
integrate existing Web services. Those Web services could be either special B2B scenarios
or public accessible services like currency conversion, stock ticker information, news,
weather forecasts, search engines, and many more. Wouldn’t it be great to have dynamic
access to an official currency conversion service on a database level if the application needs
to deal with this information? Or if an application wants to relate actual business data stored
in an IDS database against news from news agencies?

Sources for public accessible Web services are, for example:

http://www.webservicelist.com
http://www.xmethods.net

Web services rely on very simple open standards like XML and SOAP and be accessed
through any kind of client application. Typically those applications are written in Java, C++, or
C#. For somebody who already has an existing application which is based on an SQL
database and also already utilizes business logic in the database server through user defined
routines, developers might want to integrate access to Web services on the SQL level.

Some of the advantages of having Web services accessible from SQL would include easy
access through the SQL language and standardized APIs (for example, ODBC, JDBC),
moving the Web service results closer to the data processing in the database server which
could speed up applications, and providing Web service access to the non Java or C++
developers.

What are the basic Web services consumer requirements for IDS?
In order to be able to call a Web service from within IDS, you need to be able to:

� Construct a SOAP message based on a given Web service description and

� Send this SOAP message to the Web services provider via the required protocol (typically
HTTP)

� Finally, be able to receive the Web service response, parse it, and handle the results on
an SQL level.

All of this needs to be executed from the IDS SQL layer to achieve the required portability.
Chapter 9. Informix IDS and SOA 319

http://www.webservicelist.com
http://www.xmethods.net
http://pecl.php.net/package/PDO_INFORMIX

Why IDS 10 and not IDS 7?
Although IDS 7 supports stored procedures with an already very powerful stored procedure
language (SPL), it is somewhat limited if there is a need, for example, to access external
networks or include external libraries.

IDS10 through its very powerful DataBlade technology allows the easy integration of external
routines written in C or Java into so called user defined routines (UDRs). Those UDRs can
also be written in SPL. So one can say that UDRs are the generalized description of SPL, C,
and Java stored procedures. In addition to the very flexible options of writing UDRs, IDS 9
also supports new data types and user defined types (UDTs).

Having these extensibility technologies available in IDS 10 in combination with the
underlying, proven, high-end OLTP architecture of IDS 7 makes it a perfect choice to develop
some database extensions which will provide access to Web services across standard
network protocols.

Since you have the choice as an IDS 10 developer to either use C or Java for the
development of Web service consumer routines, you could either include, for example, a C
based SOAP framework or a Java based SOAP framework in your final solution.

To be as much platform independent as possible, and also to give you a kick-start on this
topic, we chose the Apache AXIS Java framework for the development of IDS 10 Web service
consumer routines.

9.3.1 Utilizing J/Foundation and Apache’s Axis for Web services consumption

IDS 9 with J/Foundation enables database developer's to write server-side business logic
using the Java language.

IDS 10 and J/Foundation
Java User Defined Routines (UDRs) have complete access to the leading extensible
database features of the IDS 10 database. Making IDS 10 the ideal platform for Java
database development.

In addition to Java UDRs, IDS conforms to the SQLJ standard for Java-stored procedures,
enabling the use of the standard Java packages that are included in the Java Development
Kit (JDK). Writing UDRs in Java delivers far more flexible applications that can be developed
faster than C, and more powerful and manageable than stored procedure languages.

IDS with J/Foundation provides these advantages over other Java based solutions:

� Better performance and scalability
� Fully certified and optimized standard JVMs for each supported platform
� Simpler application integration
� Easy migration of existing Java applications
� Transaction control through stored data

J/Foundation is provided with IDS on many of the supported IDS 10 platforms.

Technology
IDS 10 provides the infrastructure to support Java UDRs. The database server binds SQL
UDR signatures to Java executables and provides mapping between SQL data values and
Java objects so that the database server can pass parameters and retrieve returned results.
IDS 10 also provides support for data type extensibility and sophisticated error handling.
320 Powering SOA with IBM Data Servers

Java UDRs execute on specialized virtual processors called Java Virtual Processors (JVPs).
IDS 10 embeds a Java Virtual Machine (JVM) in the code of each JVP. The JVPs are
responsible for executing all server-based Java UDRs and applications.

Although the JVPs are mainly used for Java-related computation, they have the same
capabilities as a CPU VP, and they can process all types of SQL queries. This eliminates the
need to ship Java-related queries back and forth between CPU VPs and JVPs.

For more technical details of J/Foundation, refer to the IBM Informix J/Foundation
Developer’s Guide.

The Apache AXIS framework
So what is the Apache AXIS framework?

The Axis framework is a Java-based, open source implementation of the latest SOAP
specification, SOAP 1.2, and SOAP with Attachments specification from the Apache Group.
The following are the key features of this AXIS framework:

� Flexible messaging framework: Axis provides a flexible messaging framework that
includes handlers, chain, serializers, and deserializers. A handler is an object processing
request, response, and fault flow. A handler can be grouped together into chains and the
order of these handlers can be configured using a flexible deployment descriptor.

� Flexible transport framework: Axis provides a transport framework that helps you create
your own pluggable transport senders and transport listeners.

� Data encoding support: Axis provides automatic serialization of a wide variety of data
types as per the XML Schema specifications and provides a facility to use your own
customized Serializer and Deserializer.

� Additional features: Axis provides full support for WSDL as well as Logging, Error, and
Fault Handling mechanisms.

Axis also provides a simple tool set to easily generate Java classes based on given Web
service description files (WSDL) and has tools to monitor Web services.

The latest Axis distribution and more detailed information about Axis can be obtained at:

http://ws.apache.org/axis

9.3.2 Installation and configuration of IDS 10 and AXIS 1.3 for the examples

AXIS 1.3 installation and preparation
First, download the AXIS release from:

http://ws.apache.org/axis/java/releases.html

The release we have been using for the examples below is based on AXIS 1, Version 1.3
Final After downloading the release, extract the AXIS distribution into a directory of your
choice (for example, directly into the C:\ directory). Make sure that you also extract the folder
structure.

If you are finished, you should have an <install_dir>\axis-1_3 directory.

Tip: All of the configuration and installation information in this section is based on Windows
XP, but can be easily also applied to other platforms like Linux or UNIX.
Chapter 9. Informix IDS and SOA 321

http://ws.apache.org/axis
http://ws.apache.org/axis/java/releases.html

In addition to AXIS we also need a JAXP 1.1 XML compliant parser. The recommended one
is the Apache Xerces: Just download the latest stable version from:

http://xml.apache.org/dist/xerces-j

(for example, Xerces-J-bin.2.5.0.zip) and extract it into a local directory (for example, C:\).
Eventually you should have an <install_dir>\xerces-2_5_0 directory.

For more advanced Axis SOAP handling (for example, SOAP attachments), you also might
want to download the following Java packages: jaf-1_0_2-upd2 (JavaBeans Activation
Framework, http://java.sun.com/products/javabeans/glasgow/jaf.html) and
javamail-1_3_3_01 (Java Mail, http://java.sun.com/products/javamail/). All the classpath
settings in our examples below include the necessary activation.jar and mail.jar files out of
the optional Java packages for completeness.

IDS 10 with J/Foundation configuration for AXIS
Since the AXIS Framework is Java based, we need to configure IDS 10 for Java UDRs.
Before we go ahead, make sure that you’re using an IDS 10 with J/Foundation. You can
verify this by checking the $INFORMIXDIR/extend directory for the existence of a krakatoa
subdirectory. If this directory is missing you do not have the correct version of IDS 10.

First, we need to enable J/Foundation for your IDS 10 instance:

1. Create an sbspace to hold the Java JAR files. The database server stores Java JAR files
as smart large objects in the system default sbspace. If you do not already have a default
sbspace, you must create one. After you create the sbspace, set the SBSPACENAME
configuration parameter in the ONCONFIG file to the name that you gave to the sbspace.

2. Add (or modify) the Java configuration parameters in the ONCONFIG configuration file.
The ONCONFIG configuration file ($INFORMIXDIR/etc/$ONCONFIG) includes the
following configuration parameters that affect Java code:

– JDKVERSION
– JVPPROPFILE
– JVMTHREAD
– JVPCLASSPATH
– JVPHOME
– JVPJAVALIB
– JVPJAVAVM
– JVPLOGFILE
– JVPARGS
– VPCLASS

Make sure that these parameters exist or are not un-commented. For an example
ONCONFIG file fragment, see Example 9-10.

Example 9-10 J/Foundation settings for the AXIS framework in the IDS ONCONFIG file

VPCLASS jvp,num=1 # Number of JVPs to start with

JVPJAVAHOMEC:\informix\extend\krakatoa\jre# JDK installation root directory
JVPHOMEC:\informix\extend\krakatoa# Krakatoa installation directory

JVPLOGFILEC:\informix\extend\krakatoa\ol_itso2006_jvp.log# VP log file
JVPPROPFILEC:\informix\extend\krakatoa\.jvpprops_ol_itso2006# JVP property file

JDKVERSION 1.4 # JDK version supported by this server

The path to the JRE libraries relative to JVPJAVAHOME
322 Powering SOA with IBM Data Servers

http://java.sun.com/products/javabeans/glasgow/jaf.html
http://java.sun.com/products/javamail/
http://xml.apache.org/dist/xerces-j

JVPJAVALIB \bin\

JVPJAVAVM jsig;dbgmalloc;hpi;jvm;java;net;zip;jpeg

Classpath to use upon Java VM start-up (use _g version for debugging)
#JVPCLASSPATH
C:\informix\extend\krakatoa\krakatoa.jar;C:\informix\extend\krakatoa\jdbc.jar
JVPCLASSPATHfile:C:\informix\extend\krakatoa\jvp_classpath

#JVPARGS -Djava.security.policy=C:\informix\extend\krakatoa\informix.policy

In the foregoing example, we also define the JVPCLASSPATH to point to a file in the
krakatoa directory. Having an external file to contain the JVP classpath information gives
us more flexibility regarding the maximal length of the JVPCLASSPATH since the length
in the ONCONFIG file is otherwise limited to 256 characters. See Example 9-11 for an
AXIS compliant classpath file.

Example 9-11 jvp_classpath file for the AXIS integration

C:\informix\extend\krakatoa\krakatoa.jar;C:\informix\extend\krakatoa\jdbc.jar;C:\i
nformix\extend\krakatoa\axis.jar;C:\informix\extend\krakatoa\jaxrpc.jar;C:\informi
x\extend\krakatoa\saaj.jar;C:\informix\extend\krakatoa\commons-logging-1.0.4.jar;C
:\informix\extend\krakatoa\commons-discovery-0.2.jar;C:\informix\extend\krakatoa\w
sdl4j-1.5.1.jar;C:\informix\extend\krakatoa\xercesImpl.jar;C:\informix\extend\krak
atoa\xmlParserAPIs.jar;C:\informix\extend\krakatoa\axis-ant.jar;C:\informix\extend
\krakatoa\log4j-1.2.8.jar;

In addition, we also need to modify the default security settings for the Java VM.

The default security settings for J/Foundation can be defined in the
JVPHOME/informix.policy file. The necessary entries to support the AXIS framework with
J/Foundation are listed in Example 9-12.

Example 9-12 The informix.policy file with AXIS support

grant codeBase "file:/C:/informix/extend/krakatoa/-" {
permission java.security.AllPermission;

};

grant {
permission java.io.SerializablePermission "enableSubstitution";
permission java.lang.RuntimePermission "shutdownHooks";
permission java.lang.RuntimePermission "setContextClassLoader";
permission java.lang.RuntimePermission "reflectionFactoryAccess";
permission java.lang.RuntimePermission "unsafeAccess";
permission java.net.NetPermission "specifyStreamHandler";
permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
permission java.util.PropertyPermission "user.language","write";
permission java.util.PropertyPermission "user.dir","write";
permission java.security.SecurityPermission "getPolicy";
permission java.util.PropertyPermission "java.naming.factory.initial","write";

Tip: In our examples we’re copying the AXIS class libraries directly into the
$INFORMIXDIR\extend\krakatoa directory to avoid any changes to the informix.policy file.
It is probably a cleaner approach to keep the AXIS files in their original directories and
adjust the informix.policy file to allow access for the J/Foundation class loader.
Chapter 9. Informix IDS and SOA 323

permission java.util.PropertyPermission "java.naming.provider.url","write";
};

grant {
permission java.util.PropertyPermission "java.protocol.handler.pkgs","write";

};

3. Create the JVP properties file (optional). It is optional to define the JVP properties, but
they are often used for debugging Java UDRs. You will find a template file in the
$INFORMIXDIR\extend\krakatoa directory.

4. Set environment variables.You do not need any extra environment variables to execute
UDRs written in Java code. However, since we are developing Java UDRs, you must
include JVPHOME/krakatoa.jar in your CLASSPATH environment variable so that JDK
can compile the Java source files that use Informix Java packages. For a complete
description of the CLASSPATH settings for AXIS UDR development, refer to “Java
classpath settings for AXIS UDR development” on page 324.

5. Now copy all Java class libraries from the AXIS distribution (for example, c:\axis-1_3\lib)
into the $INFORMIXDIR\extend\krakatoa directory.

6. Finally, copy the xercesImpl.jar and the xmlParserAPIs.jar class library from the Xerces
distribution (for example, C:\xerces-2_5_0) also into the $INFORMIXDIR\extend\krakatoa
directory.

Java classpath settings for AXIS UDR development
The Java classpath for developing the AXIS based UDRs is shown in Example 9-13.

Example 9-13 Classpath settings for AXIS UDR development

C:\axis-1_3\lib\axis.jar;C:\axis-1_3\lib\jaxrpc.jar;C:\axis-1_3\lib\saaj.jar;c:\ax
is-1_3\lib\commons-logging-1.0.4.jar;C:\axis-1_3\lib\commons-discovery-0.2.jar;C:\
axis-1_3\lib\wsdl4j-1.5.1.jar;C:\xerces-2_5_0\xercesImpl.jar;C:\xerces-2_5_0\xmlPa
rserAPIs.jar;C:\informix\extend\krakatoa\krakatoa.jar;C:\jaf-1.0.2\activation.jar;
C:\javamail-1.3.3_01\mail.jar;.

9.3.3 The basic IDS Web service consumer development steps
Before we start to access some Web services from IDS 10, let us consider the required steps:

1. Obtain access to the WSDL file for the desired Web service, either by downloading it to
the local server or have access to it via the http protocol.

2. Use the AXIS WSDl2Java tool to generate the Web service Java class files.

3. Compile the class files from step 2 (no coding needed!)

4. Write a small Java UDR wrapper to access the generated AXIS classes. You can take the
Java UDR wrappers from the examples below as templates for your own projects.

5. Create a Java jar file which should contain the generated AXIS class files and your Java
UDR wrapper class.

6. Write a simple SQL script to register your Java UDR in the IDS database of your choice.

7. Register your Java UDR in the database of your choice with the SQL script from step 6.

8. Run and test your Java UDRs to access the Web services.
324 Powering SOA with IBM Data Servers

9.3.4 The AXIS WSDL2Java tool
The WSDL2Java tool which part of the org.apache.axis.wsdl.WSDL2Java class is the starting
point to generate Java classes from a given WSDL file.

Its normally being executed by the following command line:

java org.apache.axis.wsdl.WSDL2Java <WSDL-file-URL>

Example 9-14 The wsdl2java.bat file (for Windows platforms)

@echo off
SET TMPCLASSPATH=%CLASSPATH%
SET CLASSPATH=.
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\axis.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\jaxrpc.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\saaj.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\commons-logging-1.0.4.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\commons-discovery-0.2.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\wsdl4j-1.5.1.jar
SET CLASSPATH=%CLASSPATH%;C:\xerces-2_5_0\xercesImpl.jar
SET CLASSPATH=%CLASSPATH%;C:\xerces-2_5_0\xmlParserAPIs.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\axis-ant.jar
SET CLASSPATH=%CLASSPATH%;C:\axis-1_3\lib\log4j-1.2.8.jar
SET CLASSPATH=%CLASSPATH%;C:\jaf-1.0.2\activation.jar
SET CLASSPATH=%CLASSPATH%;C:\javamail-1.3.3_01\mail.jar
echo ---
echo --= Classpath has been set for AXIS needs =--
echo ---
java org.apache.axis.wsdl.WSDL2Java -p %2 -v %1
SET CLASSPATH=%TMPCLASSPATH%

The wsdl2java.bat script file has two parameters: the WSDL file URL and a package name.
The package name becomes also a local subdirectory to the directory in which you’re
executing the wsdl2java.bat file.

The WSDL file URL can be either a local filename or an URL on the Internet (for example,
http://www.someserver.com/webserviceinfo/myservice.wsdl).

9.3.5 A simple IDS Web service consumer example

So let us start with our example project, the currency exchange Web service from:

http://www.xmethods.net

This Web service allows the currency conversion between different foreign currencies. You
only have to provide the source currency country name and then the target currency country
name.

Now follow the development steps we have outlined in 9.3.3, “The basic IDS Web service
consumer development steps” on page 324:

1. Obtain a copy of the Web service WSDL file:

Tip: To make the execution of this tool easier for you throughout the examples in the
following sections, we suggest to create a small batch/script file like the one shown in
Example 9-14. Call this file (in a Windows environment) wsdl2java.bat.
Chapter 9. Informix IDS and SOA 325

http://www.xmethods.net

The WSDL file for this Web service can be obtained from:

http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl

You can either download the WSDL file to your local disk or use the above URL directly as
input to the WSDL2Java tool. For your convenience we have also included the WSDL file
in Example 9-15.

Example 9-15 The CurrencyExchange WSDL file

<?xml version="1.0"?>
<definitions name="CurrencyExchangeService"
targetNamespace="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
xmlns:tns="http://www.xmethods.net/sd/CurrencyExchangeService.wsdl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="getRateRequest">
<part name="country1" type="xsd:string"/>
<part name="country2" type="xsd:string"/>

</message>
<message name="getRateResponse">

<part name="Result" type="xsd:float"/>
</message>
<portType name="CurrencyExchangePortType">

<operation name="getRate">
<input message="tns:getRateRequest" name="getRate"/>
<output message="tns:getRateResponse" name="getRateResponse"/>

</operation>
</portType>
<binding name="CurrencyExchangeBinding" type="tns:CurrencyExchangePortType">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getRate">

<soap:operation soapAction=""/>
<input name="getRate">

<soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output name="getRateResponse">

<soap:body use="encoded" namespace="urn:xmethods-CurrencyExchange"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>
<service name="CurrencyExchangeService">

<documentation>Returns the exchange rate between the two
currencies</documentation>

<port name="CurrencyExchangePort" binding="tns:CurrencyExchangeBinding">
<soap:address location="http://services.xmethods.net:80/soap"/>

</port>
</service>

</definitions>

While looking at the WSDL file, you might have already noticed that the two input
parameter (country1 and country2) are of type String and the result is of type float.

2. Now we need to generate the AXIS Java classes for our Web service.
326 Powering SOA with IBM Data Servers

http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl

To do this, create a directory of your choice (for example, C:\Redbook2006_01\Axis) and
copy the WSDL file into this directory.

From a command line window, run the prepared wsdl2java.bat scrip file with the following
parameters:

wsdl2java CurrencyExchangeService.wsdl CurrencyExchange

This will generate a subdirectory called CurrencyExchange, and this subdirectory should
contain the following files: CurrencyExchangeBindingStub.java,
CurrencyExchangePortType.java, CurrencyExchangeService.java,
CurrencyExchangeServiceLocator.java (Figure 9-9).

Figure 9-9 Generating and compiling the CurrencyExchange AXIS classes

3. Now you need to compile the generated Java classes from step 2 by simply executing:

javac CurrencyExchange*.java

Before you execute the Java compiler, make sure that you have set the CLASSPATH
environment variable correctly (see Example 9-13 on page 324) and also that you have
the Java compiler in your PATH environment variable (for example, C:\j2sdk1.4.2_06\bin).

4. In order to utilize the generated AXIS class files for the CurrencyExchange Web service
we need to write a simple Java wrapper UDR to call the required methods.

So first look at the final code in Example 9-16.

Example 9-16 CurrencyExchangeUDRs.java

import CurrencyExchange.*;

public class CurrencyExchangeUDRs
{

public static double currencyExchange(String country1, String country2)
throws Exception

{
double RetVal;

CurrencyExchange.CurrencyExchangeService service =
new CurrencyExchange.CurrencyExchangeServiceLocator();

Chapter 9. Informix IDS and SOA 327

CurrencyExchange.CurrencyExchangePortType port =
service.getCurrencyExchangePort();

RetVal = port.getRate(country1, country2);

return RetVal;
}

};

The currencyExchange method implements the Web service API by accepting the two
country descriptions as Java strings and returns a Java double type.

First, we need to create a service instance of type CurrencyExchangeService which can
be achieved by creating a new CurrencyExchangeServiceLocator object.

Then we need to obtain the port object of type CurrencyExchangePortType from the
service object.

And finally we need to call the getRate(String, String) method to generate the SOAP
message which is then being sent to the Web service provider.

The getRate() method is defined in the CurrencyExchangeBindingStub.java file.

Save the Java code from Example 9-16 on page 327 into your example directory (for
example, C:\RedBook2006_01\Axis) as CurrencyExchangeUDRs.java.

Now compile the CurrencyExchangeUDRs.java file:

javac CurrencyExchangeUDRs.java

5. In preparation for the registration in your IDS 9 database we need to pack all of our
classes (generated AXIS classes plus the UDR wrapper) into a Java jar file. To do this,
execute this command:

jar cvf CurrencyExchange.jar CurrencyExchangeUDRs.class
CurrencyExchange*.class

(Also see Figure 9-10.)

Figure 9-10 Compile the UDR wrapper and create the jar file

6. Now we need to create a simple SQL script to first store our CurrencyExchange.jar file
which contains the UDR wrapper plus the generated AXIS classes into the database and
328 Powering SOA with IBM Data Servers

then connect the Java classes with the SQL layer by defining a Java UDR with the
CREATE FUNCTION SQL statement.

You can use the SQL script from Example 9-17 on page 329 as a template for similar Java
UDRs in the future. So on the SQL level we’re naming our user defined routine simply
CurrencyExchange. This routine takes two LVARCHARs as parameters and returns a
SQL FLOAT data type which matches the Java double type.

Example 9-17 The register_CurrencyExchange.sql script

execute procedure
install_jar('file:C:/RedBook2006_01/Axis/CurrencyExchange.jar','CurrencyExchange')
;

execute procedure ifx_allow_newline('t');

begin work;

create function CurrencyExchange (lvarchar, lvarchar)
returns float as exchange_rate
external name
'CurrencyExchange:CurrencyExchangeUDRs.currencyExchange(java.lang.String,
java.lang.String)'

language java;

alter function CurrencyExchange (lvarchar, lvarchar)
with (add parallelizable);

grant execute on function CurrencyExchange (lvarchar, lvarchar) to public;

commit work;

The install_jar procedure stores the CurrencyExchange.jar into a smart blob in the default
smart blob space in the IDS 10 instance and gives it the symbolic name
CurrencyExchange. which can be used in the create function statement to reference the
jar file. See Figure 9-11.
Chapter 9. Informix IDS and SOA 329

Figure 9-11 Register the Java “Wrapper” UDR with the stores_demo database

The create function finally registers the Java UDR with the database and makes it
available to any SQL compliant application.

7. In order to register your CurrencyExchange UDR you should have a database with logging
enabled. Assuming you might want to register your UDR with the IDS stores_demo
database you only have to run the SQL script by executing:

dbaccess stores_demo register_CurrencyExchange.sql

See also Figure 9-11 on page 330.

8. Now we’re ready to test the Java UDR to call the Web service. Before you can test the
UDR make sure that you’re connected to the Internet. Then, for example, start dbaccess
to connect to the stores database and execute the CurrencyExchange function. Since
we’re using SQL and SQL does not differentiate between lowercase and uppercase letters
we just simply type:

execute function currencyexchange(“<country1>”, “<country2”>).

For valid values for the country parameters, consult the CurrencyExchange Web service
description on the Web site:

http://www.xmethods.net
330 Powering SOA with IBM Data Servers

http://www.xmethods.net

Figure 9-12 Test of the CurrencyExchange() UDR from within dbaccess

9.4 XML related DataBlades

In this section we describe XML related DataBlades: UDRs, XSLT and Web.

9.4.1 XML generating UDRs

The extensibility features in IDS 10, through extended data types and user defined routines
(UDR) in C Java and Stored Procedure Language (SPL), allow for easy enhancement of the
basic functionality of the underlying database server. Having such flexibility gives you the
capability to implement new features in the server without having to wait for the database
vendor to provide it.

Following this approach one could very easily implement user defined routines which can
return dynamically generated XML, for example, a given table and attributes of this table.

Tip: If you are behind a firewall, then you might have to set additional properties for the
J/Foundation Java VM via the JVPARGS variable.

So if you typically use a SOCKS compliant proxy, replace the JVPARGS value in the
ONCONFIG file with the following line:

-Djava.security.policy=C:\informix\extend\krakatoa\informix.policy;-DsocksProxy
Host=<SocksProxyhostname>;-DsocksProxyPort=<socksProxyPortvalue>

If you’re using a standard HTTP proxy, you might have to use the following value for
JVPARGS instead:

-Djava.security.policy=C:\informix\extend\krakatoa\informix.policy;-Dhttp.proxy
Host=<httpProxyhostname>;-Dhttp.proxyPort=<httpProxyPortvalue>

For more details about proxy support in the Java VM, consult this Web site:

http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html
Chapter 9. Informix IDS and SOA 331

http://java.sun.com/j2se/1.4.2/docs/guide/net/properties.html

A very good example for such a user defined routine (or stored procedure) can be found on
the IBM Informix Developer Zone3. In this article, for example, the author, Jacques Roy,
describes a function genxml, which can be used to generate an XML fragment or, in
combination with some helper routines, a complete XML document.

Example 9-18 shows how the genxml function can be called and how the output might look.

Example 9-18 The genxml function (stored procedure)

SQL Statement:

SELECT genxml("customer", customer)
FROM customer;

Output of the Statement above:

<customer>
<customer_num>101<//customer_num>
<fname>Ludwig </fname>
<lname>Pauli </lname>
<company>All Sports Supplies </company>
<address1>213 Erstwild Court </address1>
<city>Sunnyvale </city>
<state>CA</state>
<zipcode>94086</zipcode>
<phone>408-789-8075 </phone>

</customer>

9.4.2 XSLT DataBlade

In addition to the XML generating function above, there is also an XSLT (XSL
Transformations) DataBlade available on the IBM Alphaworks Web site4. This DataBlade
allows the transformation of XML documents by the means of the XSL/XSLT mechanism into
a new target format. The XSLT DataBlade stores the XSL documents in LVARCHAR or
CLOB data types which allow very complex XSL transformations. It even supports the HTML
data type of the Web DataBlade, discussed in the next section.

9.4.3 Web DataBlade

The Web DataBlade is an optional extension of IDS 10 and supports the dynamic generation
of any kind of markup language in combination with dynamic data from the IDS 9 database.
The initial purpose for the Web DataBlade had been dynamic HTML publishing based on IDS,
but it has been extended, for example, to produce XML or SGML documents.

The Web DataBlade utilizes user defined tags within the used markup language, in this case
XML. The XML template pages are stored in the database which allows the utilization of IDS
10 server features like replication (ER, HDR), transaction security, and centralized backup.

In combination with the XSLT DataBlade it can be a very powerful way of producing dynamic
XML documents, especially for very flexible publishing applications. There is a very detailed
article available on the Informix DeveloperZone which covers the combination of the Web
DataBlade and the XSLT DataBlade5.

3 http://www7b.software.ibm.com/dmdd/zones/informix/library/techarticle/0302roy/0302roy2.html.
4 http://www.alphaworks.ibm.com/tech/xsltblade
332 Powering SOA with IBM Data Servers

Although the Web DataBlade is perfect for producing dynamic XML pages, it does not solve
the issue how to consume XML documents, for example, and map them to database tables.

9.5 Using WebSphere MQ with Informix applications

WebSphere Message Queue (WMQ) software suite provides reliable messaging for
distributed, heterogeneous applications to exchange information, delegate jobs, coordinate
events, and create enterprise service BUS. When Informix applications use WMQ, you write
custom code, manage multiple connections, and route data through your application. Informix
Dynamic server, IDS, version10.00.UC3, introduces built-in support for Informix applications
to interact with WMQ via SQL callable functions with 2-phase commit support. This eliminates
development overhead and encapsulates integration complexity.

9.5.1 Brief description of WebSphere MQ

In its simplest form, WMQ is a method to exchange messages between two end points. It acts
as an intermediary between to systems and provides value added functionalities like
reliability, transactional semantics, and so on.

Whether you buy a book on amazon.com or enroll in e-business with ibm.com®, the order
event triggers a work of the information through multiple modules: user account
management, billing, packaging and shipping, procurement, customer service, partner
services. The execution in triggered modules will generate subsequent work flow. To meet
reliability and scaling requirements, it is typical to have application modules on multiple
machines.

If you are using the same software on all systems, for instance an SAP stack, the software
itself usually comes with workflow management features. If the modules are running in
homogeneous environment – like LINUX machines running WebSphere and Informix – it is
easier to change information via distributed queries or enterprise replication. On the other
hand, if the application is running on heterogeneous systems – combination of WebSphere,
DB2, Oracle and Informix – programming and setup of distributed queries or replication
becomes complex and in many cases will not meet the application requirements. See
Figure 9-13 on page 334.

WMQ is designed to address integration issues like this. It prefers no platform and enforces
no paradigms: WMQ supports more than 80 platforms, and APIs in C, C++, Java, JMS and
visual Basic. WMQ is also the mainstay for designing enterprise service bus (ESB) for SOA.

5 http://www7b.software.ibm.com/dmdd/zones/informix/library/techarticle/0303cline/0303cline.html
Chapter 9. Informix IDS and SOA 333

Figure 9-13 WebSphere MQ for enterprise business application integration

WMQ provides a reliable store-and-forward mechanism so each module can send and
receive messages to and from it. WMQ achieves this by persistent queues and APIs for
programming. In addition, WMQ Message Broker – another software in WebSphere WMQ
product suite – provides message routing and translation services. Simplicity of infrastructure
means the applications have to establish message formats, queue attributes, and so on.
WMQ also supports publish and subscribe semantics for queues making it easy to send a
single message to multiple receivers and subscribing message from queue by need – similar
to mailing list.

The applications predetermine queue names, messages, message formats, just like the two
network applications agree on socket numbers. The application to application message
exchange is asynchronous – one application will not wait for other application to receive the
message. WMQ assures the message will be stored reliably and have the message available
for target application. But, it is the responsibility of the target application to receive the
message from WMQ.

9.5.2 How do Informix and other database applications use WMQ?

The applications have many input sources: user entry, B2B transactions, workflow messages,
data in the database, and so on. The Order Entry Application above needs to store data in
Informix database and send and receive messages to WMQ. The application establishes
connections with Informix and WMQ. In addition, the application will use a transaction
manager to ensure reliability of data exchange. For instance, the order saved in the database
has to be sent to a queue and marked as processed in the database. The order can be
marked as processed only after WMQ receives the message successfully; therefore, the
interaction has to have transactional protection. See Figure 9-14 on page 335.

WebSphere MQ

Application
Integration

WebSphere Application
Server

Custom Appl

Supply chain
management

Databases
(Informix, DB2,
Oracle, etc.)

Enterprise
Resource
Planning

Internet
Customers

Suppliers
80+ platforms
334 Powering SOA with IBM Data Servers

Figure 9-14 Applications using WMQ

The Order Entry application writes custom code to exchange messages from and to WMQ.
Need for custom code development every time an application wants to interact with WMQ is
costly – you need to train your programmers for it or hire consultants to develop, debug and
maintain this code, modify it for new queues and applications. The data exchanged between
the database and WMQ flows through application – not efficient for high volume data and
necessitates transaction manager.

9.5.3 IDS support for WebSphere MQ

IDS provides SQL callable functions to read, receive, send, subscribe, unsubscribe and
publish. See Figure 9-15 on page 335. These SQL callable functions expose WMQ features
to IDS application and integrate the WMQ operations into IDS transaction; that is, fate of the
WMQ operation is tied to fate of the transaction. If the transaction is rolled back, the
operations made on WMQ – messages sent or received – will be rolled back. This is done by
coordinating transactions at IDS and WMQ – not by compensating transaction. So, this is
reliable with high performance.

Figure 9-15 WMQ - Sending and receiving messages
Chapter 9. Informix IDS and SOA 335

Using IDS WMQ functionality, sending and receiving a message to and from an WMQ Queue
is easy. See Example 9-19.

Example 9-19 WMQ - Sending and receiving

select MQSend("CreditService", customerid || ":" || address || ":" || product ":"
|| orderid)
from order_tab
where customerid = 1234;

insert into shipping_tab(shipping_msg) values(MQReceive());

create function get_my_order() returns int;

define cust_msg lvarchar(2048);
define customerid char(12);
define address char(64);
define product char(12);
define corderid char(12);
define snd_status int;

-- Get the order from Order entry application.
execute function MQReceive("OrderQueue") into cust_msg;
let customerid = substr(cust_msg, 1, 12);
let address = substr(cust_msg, 14, 77);
let product = substr(cust_msg, 79, 90);
let corderid = substr(cust_msg, 92, 103);

insert into shipping_table(custid, addr, productid, orderid)
Values(customerid, address, product, corderid);

-- send the status to CRM application
execute function MQSend("CRMQueue", corderid || ":IN-SHIPPING") into snd_status;
return 1;
end function;

When you rollback the transaction as shown in Example 9-20, the message received will be
restored in the queue book order and the row will also be removed from shipping_tab.

Example 9-20 Rollback the transaction

begin work;
INSERT into shipping_tab(shipping_msg)

values (MQReceive(“bookorderservice”));

rollback work; -- Undo previous statement including WMQ operation

9.5.4 Programming for WMQ

IDS provides functions exposing each interface WMQ provides – read, receive, send, publish,
subscribe, unsubscribe – and functions to send and receive large messages. The WMQ
functions can be invoked any where a function can be used: values clause, projection list,
query filters, stored procedures, and triggers. In addition, with IDS, you can map WMQ
Queue into an IDS table. Insert on this table will translate to send operation to WMQ and
select will translate to either read or receive.
336 Powering SOA with IBM Data Servers

While WMQ provides simple abstractions of queue and its operations, each operations
comes with plenty of options like msg expiry time, retry count, and so on. So, IDS has
abstracted these options into service, policy, and optionally correlation ID:

� Service

Maps a queue, queue manager, code set of the messages into the service. The table
“informix”.mqiservice stores the mappings. IDS.DEFAULT.SERVICE is mapped to system
default queue manager, queue named IDS.DEFAULT.QUEUE and default code set.

� Policy

The policy defines the attributes like priority, expiry date, and so on., for each operation.
The table “informix”.mqipolicy stores 37 attributes for each policy. IDS.DEFAULT.POLICY
is the default policy. Depending on your application environment, create one or more
policies.

� Correlation ID

When multiple applications share the same queue, you can control the interaction using
Correlation ID of up to 48 bytes. Once the applications agree on the Correlation ID for their
messages, they can simply get messages matching their correlation ID. They work similar
to filters or predicates in SQL queries. Correlation ID is not mandatory and has no default
value.

Basic programming functions
The MQ programming functions in IDS are listed in Table 9-1.

Table 9-1 MQ functions in IDS

Function name Description

MQSend() Send a string message to a queue

MQSendClob() Send CLOB data to a queue

MQRead() Read a string message in the queue into IDS without removing it
from the queue

MQReadClob() Read a CLOB in the queue into IDS without removing it from the
queue

MQReceive() Receive a string message in the queue into IDS and remove it from
the queue

MQReceiveClob() Receive a CLOB in the queue into IDS and remove it from the queue

MQSubscribe() Subscribe to a Topic

MQUnSubscribe() UnSubscribe from a previously subscribed topic

MQPublish() Publish a message into a topic

MQPublishClob() Publish a CLOB into a topic

CreateMQVTIRead() Create a read VTI table and map it to a queue

CreateMQVTIReceive() Create a receive VTI table and map it to a queue

MQTrace() Trace the execution of MQ Functions

MQVersion() Get the version of MQ Functions
Chapter 9. Informix IDS and SOA 337

Functions for sending messages from IDS to WMQ
� MQSend(Service, Service_Policy, Message, CorrelationID)
� MQSendClob(Service, Service_Policy, ClobMessage, CorrelationID)

You can send a message up to 32739 bytes to an WMQ queue. MQSendClob() behaves
same as MQSend() except it takes CLOB as its message parameter instead of character
type. Message and ClobMessage are the mandatory parameters. IDS will send the message
to the queue managed by the queue manager using the policy in the Service record entry
saved in “informix”.mqiservice table.

Parameter interpretation
Here is how the calls are interpreted for MQSend(). The other functions follow the same
pattern.

When the four parameters are given, translation is straightforward and is executed as given:

MQSend(serviceparam, policyparam, messageparam, correlationparam)

Here is the translation when one or more parameters are missing.

� MQsend(messageparam) is translated to:

MQSend(“IDS.DEFAULT.SERVICE”, “IDS.DEFAULT_POLICY”, messageparam, “”);

� MQsend(serviceparam, messageparam) is translated to:

MQSend(serviceparam, “IDS.DEFAULT_POLICY", messageparam, “”);

� MQsend(serviceparam, policyparam, messageparam) is translated to:

MQSend(serviceparam, policyparam, messageparam, "");

Examples
An example is:

SELECT MQSend(“myservice”, “mypolicy”, orderid || “:” || address)
FROM tab
WHERE orderid = 12345;

All WMQ functions should be run in a transaction. In IDS SELECT, UPDATE, DELETE and
INSERT automatically start a new transaction. Or, you can start a new transaction with
BEGIN WORK statement.

Simply executing the function will give error:

EXECUTE FUNCTION MQSend(“MyService”,
“<order><id>5</id><custid>6789</custid></order>”);

IDS does not implicitly start a new transaction for the EXECUTE statement. So, you’ve to
start a transaction explicitly.

BEGIN WORK;
EXECUTE FUNCTION MQSend("MyService",
 "<order><id>5</id><custid>6789</custid></order>");
COMMIT WORK;

If the transaction gets rolled back, all operations on WMQ will be rolled back just like IDS rolls
back its changes.

BEGIN WORK;
INSERT INTO resultstab(sendval)

VALUES(MQSend("MyService",
338 Powering SOA with IBM Data Servers

 "<order><id>5</id><custid>6789</custid></order>")

ROLLBACK WORK;

Read and Receive functions
� MQRead(Service, Policy, CorrelationID) returns lvarchar(32739)

� MQReadClob(Service, Policy, CorrelationID) returns CLOB

� MQReceive(Service, Policy, CorrelationID) returns lvarchar(32739)

� MQReceiveClob(Service, Policy, CorrelationID) returns CLOB

The Read operation gets the message from the queue without deleting the message from the
queue. Receive operation removes the message from the queue and get the message.
These functions can be called with zero or more parameters. The parameters are interpreted
similar to MQSend() above. The transactional behavior of receive functions is same as
MQSend.

MQRead() and MQReceive() can return up to 32739 bytes. The maximum size of the
message itself is a WMQ configuration parameter. The larger messages should be read or
received as CLOB. For MQ, message is a message. Depending on the length, IDS
differentiates between messages to map the messages to data types.

If correlation ID is given, WMQ get the next message in the queue matching correlation ID,
otherwise a NULL message is returned. Policy determines the wait time when no applicable
message is present on queue. So, using predefined correlation ID, multiple applications can
share the same queue and for different purposes.

Examples are:

SELECT mqread('SHIPPING.SERVICE','My.DEFAULT.POLICY')
 FROM systables where tabid = 1;

SELECT mqreceive('SHIPPING.SERVICE','My.DEFAULT.POLICY')
 FROM systables where tabid = 1;

Publish and Subscribe functions
Publishing and subscribing to a queue is an effective configuration for exchanging information
between multiple applications on multiple subjects. When an order entry has to go to credit
card application, shipping, CRM, and partner application, order entry application publishes
the order once to a queue and target applications can subscribe to the queue and obtain the
message using either read or receive function. Within this scheme, WMQ also supports
categorizing messages into topics for finer control. For example, the order entry message can
categorize the order into books, electronics, clothing topics.

You have to configure the queue for publishing and define the topics. WMQ allows defining
topics statically or dynamically. The message broker provides the publish and subscribe
features and it has to be running in addition to queue manager. Message Broker component
provides message routing, message translation easing business integration challenges.

Subscribers subscribe to a topic and specify the queue on which you want to receive the
messages; when a publisher inserts a message on that topic into the queue, the WMQ broker
routes the messages to all of the queues of each specified subscriber. The subscribers
retrieve the message from the queue via read or receive functions.
Chapter 9. Informix IDS and SOA 339

The publish and subscribe functions are:

� MQPublish(publisher_name, policyparam, message, topic, correlationid);
� MQSubscribe(subscriber_name, policy_name, topic)
� MQUnsubscribe(subscriber_name, policy_name, topic)

The publisher name and subscriber names have to be defined in “informix”.mqipubsub table.
We have discussed other parameters before.

Examples:

SELECT mqSubscribe(‘WeatherChannel’,"Weather")
 FROM systables WHERE tabid = 1;

SELECT mqPublish(‘WeatherChannel’,
"<weather><zip>94501</zip><date>7/27/2006</date><high>89</high><low>59</low></w
eather>","Weather")
FROM systables WHERE tabid = 1;

SELECT mqreceive('WeatherChannel',"Weather")
FROM systables WHERE tabid = 1;

MQ Utility functions
They are MQVersion() and MQTrace().

MQVersion() returns the current version of the WMQ blade in IDS.

MQTrace(trace_level, trace_file) enables you to trace execution path of WMQ functions and
interaction between IDS and MQ. The tracing level can be from 10 to 50 – multiple of 10.

An example of Trace output is shown in Example 9-21.

Example 9-21 Trace output

14:19:38 Trace ON level : 50
14:19:47 >>ENTER : mqSend<<
14:19:47 status:corrid is null
14:19:47 >>ENTER : MqOpen<<
14:19:47 status:MqOpen @ build_get_mq_cache()
14:19:47 >>ENTER : build_get_mq_cache<<
14:19:47 status:build_get_mq_cache @ mi_get_database_info()
14:19:47 status:build_get_mq_cache @ build_mq_service_cache()
14:19:47 >>ENTER : build_mq_service_cache<<
14:19:47 <<EXIT : build_mq_service_cache>>

MQ Table mapping functions
Invoking the WMQ functions in IDS is easy, not the easiest way to use MQ. IDS can map a
WMQ queue to IDS table. SELECT on the table will fetch the messages in the queue and
INSERT on the table will send the message. We discuss its usage in this section. Other
operations like UPDATE and DELETE are disallowed on the table.

Note: Before using the publish and subscribe services, you have to setup the
“informix”.mqipubsub table. See the Informix dynamic server documentation for its
schema and examples.
340 Powering SOA with IBM Data Servers

The functions are:

� MQCreateVtiRead(readtable, servicename, policy, maxMessage)
� MQCreateVtiReceive(receivetable, servicename, policy, maxMessage)

SELECT on read table imitates MQRead() – fetches the message without deleting it from the
queue where as SELECT on receive table deletes the message on the queue as well. The
maxMessage parameter determines size of the column, but it also determines the size of the
column and the type of message. Positive length creates a column Maximum length of the
message is you can define is 32607. Use -1 as maxMessage to retrieve the message as a
CLOB and -2 to retrieve the message as BLOB.

An example is shown in Example 9-22.

Example 9-22 Creating a READ table

-- Create a READ table with max message length 4096.
execute function MQCreateVTIREAD("myreadtable",
 "myservice", "mypolicy", 4096);

-- Below is the table created by MQCreateVTIREAD() function.

create table myreadtab
(msg lvarchar(4096),

 correlid varchar(24),
 topic varchar(40),
 qname varchar(48),
 msgid varchar(12),
 msgformat varchar(8))

using "informix".mq (SERVICE = "myservice", POLICY = "mypolicy", ACCESS = "READ");

-- Get the top 10 messages from the queue.
SELECT first 10 * from myreadtable;
-- INSERT a message into the table
INSERT into myreadtable values("IBM:81.98;Volume:1020");
-- SELECT the first message matching correlation id
SELECT FIRST 1 * from myreadtable where correlid = 'abc123';

IDS is aware of the correlation id predicate and sends the correlation id request to MQ. WMQ
matches the correlation ID and sends the matched message.

You create a table to transport BLOB data with:

execute function MQCreateVTIRECEIVE("mydoctable", "myservice", "mypolicy", -2);

The table created by MQCreateVTIRECEIVE() function is shown in Example 9-23.

Example 9-23 MQCreateVTIRECEIVE() created table

create table mydoctable
(msg BLOB,
 correlid varchar(24),

 topic varchar(40),
 qname varchar(48),
 msgid varchar(12),
 msgformat varchar(8))

using "informix".mq (SERVICE = "myservice", POLICY = "mypolicy",
ACCESS = "RECEIVE");
Chapter 9. Informix IDS and SOA 341

INSERT into mydoctable(msg) select blobcol from ordertab;

-- insert using blob, get through blob
INSERT into mydoctable(msg) values(filetoblob("/etc/passwd", "client"));

select lotofile(msg, '/tmp/blob.dat','client') from mydoctable;

How not to use this feature
Both INSERT and SELECT operations on RECEIVE tables and INSERT on READ tables
change the data on MQ. You should be aware of these nuances.

See the statements listed in Example 9-24.

Example 9-24 SELECT on RECEIVE tables

-- Find all the golf orders in the message queue.
SELECT * from myrecvorder where msg matches ‘%golf%’;
-- Find all the orders from zip 94501.
SELECT * from myrecvorder where msg[12,15] = ‘94501’;
-- Find all the messages greater than a correlation ID
SELECT * from myrecvorder where correlid > “abc123”;
-- Find the number of messages for my correlation id
SELECT count(*) from myrecvorder;

To complete the two first SELECT statements, IDS retrieves all the messages in the service
myrecvorder, then applies the filters and returns the qualified rows. The unqualified
messages are lost. Use READ tables if you want to apply these predicates, but be aware of
the message fetch overhead.

9.5.5 Transactions

When you invoke any WMQ function exchanging message with MQ, you have to be in a
transaction – implicit or explicit. To provide reliable interaction between IDS and MQ,
transactions are necessary. When the commit is successful, application needs all changes to
data at IDS and WMQ are persisted and when the application rolls back, any operation at
WMQ are rolled back just like operations on IDS are rolled back. IDS implicitly starts a
transaction when you issue DML (UPDATE, DELETE, INSERT or SELECT) and DDL
statements (CREATE statements). Or you can explicitly start a new transaction with BEGIN
WORK statements and APIs like JDBC start a new transaction when you set autocommit off.
Note EXECUTE FUNCTION/PROCEDURE statement does not start one, so you need to
start a transaction before invoking WMQ function in an EXECUTE statement. See
Figure 9-16.
342 Powering SOA with IBM Data Servers

Figure 9-16 WMQ transaction management

The transaction management is transparent to application. Application simply uses WMQ
functionality under a transaction and IDS handles the commit or rollback co-ordination
between IDS and WMQ using the open 2-phase commit protocol. This is integrated into IDS
transaction manager; IDS handles WMQ along with its distributed transactions involving other
IDS instances. During IDS-MQ interaction, IDS opens a connection to WMQ and when
application the application invokes an the fist WMQ function within a transaction, IDS begins
a corresponding transaction at MQ. During commit or rollback, IDS transaction manager is
aware of WMQ participation in the transaction and co-ordinates the transaction with it.

Environment
MQ functionality is provided with Informix Dynamic Server and the datablade is installed into
$INFORMIXDIR/extend when you install IDS. You've to register the datablade in the
database you to want to invoke MQ Functions. We currently support WMQ interaction
Informix logged database. IDS communicates with WebSphere MQ using the server API and
therefore WebSphere MQ needs to be installed on the same machine as the server. This
WebSphere MQ can channel the messages to one or more remote WebSphere MQ servers.
Each Dynamic Server instance can connect to only one WMQ queue manager.

Please send in the request the authors or your favorite IBM Informix support team if you want
to use it in non-logged or ANSI mode database.

Platform support
Table 9-2 summarizes IDS and WMQ versions by supported platforms.

Informix Dynamic Server

IDS client

IDS client

IDS client

IDS XA Transaction manager
Infrastructure

MQ
Functions

M
Q
I

MQSeries UDR
and XA support
UDRs [xa_open,
xa_commit,
xa_rollback, etc]

WebSphere MQ
Message Broker

Backorder Queue

ACME queue Manager

Inventory Queue

Orders Queue

MQ Queue Manager

MQ Queue

Informix and WMQ
Transaction Management
Chapter 9. Informix IDS and SOA 343

Table 9-2 IDS and WMQ platforms support

If you are on a different platform, refer to the machine notes to see if the support has been
added.

9.5.6 Summary

IDS WMQ functionality eliminates need for custom code development for IDS applications
interacting with MQ. Once you setup the queues, services, and policies, developers can use
WMQ functions like other built-in functions in the development environment of their choice.
Even better, set up the READ and RECEIVE tables, get developers to SELECT from and
INSERT into it.

9.6 Integrating I4GL applications with SOA through EGL

Informix 4GL (I4GL) has been (and still is) a very successful 4th generation programming
language which has been initially developed by Informix in the mid 80’s.

At one point in time I4GL was the 3rd most important development language for database
oriented applications worldwide. I4GL’s success was heavily related to the ease of
programming around character based, Informix database server centric applications. Due to
I4GL’s popularity, one still find literally thousands of I4GL applications in production with
millions line of 4GL code.

Over the recent years I4GL became slowly out of date since more and more developers and
users requested more modernized applications, specifically supporting graphical user
interfaces (GUI) and Web deployment. In addition many I4GL developers and customers
have been asking for an easy SOA integration of existing Informix 4GL applications.

Informix Dynamic server
Version

Support platforms WebSphere MQ Version

10.00.xC3 and Higher Solaris™ – 32 bit
HP/UX (PA-RISC) – 32 bit
AIX – 32bit
Windows – 32bit.

Needs V5.3 and higher

10.00.xC4 and Higher AIX – 64bit
HP/UX (PA-RISC) – 64 bit

Needs v6.0 and higher

10.00.xC5 and Higher Linux (Intel) – 32 bit
Linux (pSeries®) – 64bit
Solaris – 64 bit

Needs v6.0 and higher
344 Powering SOA with IBM Data Servers

Figure 9-17 The 4GL / EGL development timeline

The Informix 4GL development team has been actively looking for ways to modernize existing
4GL applications without the need of rewriting existing code or directly converting the 4GL
code into (for typical I4GL developers unfamiliar) development environments like pure Java
or similar. Shortly after the Informix acquisition through IBM in 2001, the Informix 4GL lab
team joined forces with the EGL development team to jointly develop an enhanced version of
EGL in combination with a sophisticated I4GL to EGL conversion tool.

Starting with version 5.1.2 of EGL, I4GL began to heavily influence the EGL language and
since version 6.0, the I4GL to EGL conversion tool comes bundled with the Rational
development tools to make a conversion from existing I4GL applications to the new EGL
language as easy as possible (see also Figure 9-17 on page 345).

In addition the recommended conversion path from I4GL to EGL, IBM still maintains the
classic Informix 4GL with (at the time of writing this redbook) no stated end of life for the
product. The latest version of I4GL is 7.32 which is also the only supported I4GL version for
conversions into EGL.

9.6.1 Why convert 4GL to EGL for SOA integration?

The Informix 4GL language never provided the required technology on the I4GL language
level to easily integrate with a SOA environment.

Some I4GL developers and customers came up with some very creative ideas of adding SOA
support to existing applications by either extending their 4GL applications with external
C-functions (which is supported through the I4GL language) for services consumption or to
write complex wrappers around I4GL applications to be able to offer service interface to
already existing valuable business logic written in I4GL.

On the other hand, EGL supports a very easy integration of Web services on an EGL
language level (see 5.5.2, “EGL and Web services support” on page 130 for more details).
Chapter 9. Informix IDS and SOA 345

Since the conversion process from I4GL to EGL leaves the existing 4GL business logic as is
and since the converted EGL application behaves like the original I4GL application, it makes
lots of sense to use this approach for easy SOA integration.

In the next sections we will discuss the required steps to successfully approach such a
solution and we will show based on a simple I4GL banking demo application what’s needs to
be done to the achieve the SOA integration goal.

9.6.2 What the required steps are

Before we start with the actual application example, let us briefly look at the required steps to
a) successfully convert the existing I4GL application to EGL, and then b) how to further
enhance that converted application towards Web services integration.

For a) you need to do the following:

1. Locate all the required Informix 4GL files (the actual .4gl modules and libraries, .per forms
definition files, message files and so on.)

2. Make sure that the I4GL application compiles without any major problem with a recent
I4GL 7.32 compiler version

3. Extract the database schema of the I4GL application database for the following
conversion steps

4. Convert all existing I4GL libraries into EGL

5. Now convert the actual I4GL application to EGL

For b) you should follow these steps:

1. Create a new EGL Web Project to act as a container for your to be provided Web service.

2. Include a reference to the necessary EGL projects which have been create in part a) to
allow the access to the converted I4GL business logic (which is now EGL coded).

3. Create a new EGL service part as a wrapper around your existing former I4GL functions
that you want to expose as a Web service.

4. Create the Web services WSDL file.

5. And finally, deploy the newly created EGL Web service to your Web application server (for
example, WebSphere Application Server).

That is basically it! Depending on the complexity of your existing I4GL business logic and
your choice of which part of your application you want to expose as a Web service, this
process can take only a few minutes without the need to do complex additions or changes to
the converted code.

15.3, “Scenario exposing I4GL business logic as Web services” on page 442 leads you
through a scenario which exposes a simplified banking application as a Web Service using
EGL.
346 Powering SOA with IBM Data Servers

Part 4 Setting up the
environment

In Part 4 we describe how to set up the environment for an SOA solution involving the
platforms and the tools for our data servers.

� Chapter 10, “The z/OS products for SOA” on page 349
� Chapter 11, “The Linux, UNIX, and Windows products for SOA” on page 359
� Chapter 12, “WebSphere Application Server” on page 369
� Chapter 13, “WebSphere Information Server” on page 387

Part 4
© Copyright IBM Corp. 2006. All rights reserved. 347

348 Powering SOA with IBM Data Servers

Chapter 10. The z/OS products for SOA

In this chapter we describe the z/OS products that IBM currently provides to support SOA
implementation on a mainframe, and which products we used in this redbook for accessing
the Data Servers. We explain what you need to set up to enable SOA and Web services in
the z/OS environment.

This chapter contains these topics:

� The z/OS products for SOA implementation
� Setting up Web services in z/OS

10
© Copyright IBM Corp. 2006. All rights reserved. 349

10.1 The z/OS products for SOA implementation

A rich set of SOA-compliant products introduces service oriented offering and new process
management capabilities to the enterprise-class mainframe customer. For example,
WebSphere Asset Analyzer helps identify modules for reuse. WebSphere Developer for
zSeries helps create Web service interfaces, rich new Web user interfaces and service flows
for existing CICS and IMS applications. And the latest versions of CICS, IMS, DB2 and MQ
are enabled for SOA to deliver legendary mainframe availability, security, and recoverability
to an SOA solution.

Other System z/OS products featured in the announcement include: enhancements to the
WebSphere Business Modeler (a simple to use process modeling for the business analyst); a
new WebSphere Integration Developer (replacing WebSphere Application Developer
Integrated Edition) that gives easy-to-use integration to simplify and speed the assembly of
composite applications; a new WebSphere Process Server (replacing WebSphere Business
Integration Server Foundation) for flexible deployment of business processes; and an
enhanced WebSphere Business Monitor for real-time visibility into process performance
enabling process intervention and continuous improvement. All of these elements are
connected through the new WebSphere ESB, which provides connectivity infrastructure for
integrating applications and services to power your SOA.

WebSphere Enterprise Service Bus (ESB) that connects applications with standards-based
interfaces. It delivers a new version of WebSphere Message Broker providing universal
connectivity along with advanced message routing, transformation, and enrichment.
WebSphere Message Broker is unmatched in its ability to integrate virtually the entire
enterprise whether they are standards-based or not.

Figure 10-1 shows the z/OS environment with the main products in general that IBM provides
to enable an environment to use SOA inside mainframe.

Figure 10-1 z/OS products providing SOA

IBM provides a general SOA foundation family with tools and features to z/OS.

1 SOA on your terms and our expertise

LinuxNew
Applications

LinuxPortals

LinuxLinuxLinuxWAS
LinuxLinuxLinuxIMS

LinuxLinuxLinuxCICS
LinuxLinuxLinuxDB2

Departmental
and Partner

Systems

Customers
Employees
Suppliers

Web User
Interfaces

Web
Services

Server Farms

Core
Applications

Core
Applications

Core
Applications

Core
Applications

Core
Applications

Core
Applications

Linux, z/OS, VSE, TPFLinux, z/OS, VSE, TPFLinux, z/OS, zVSE, zTPF
350 Powering SOA with IBM Data Servers

Table 10-1 show these products.

Table 10-1 SOA z/OS products

10.1.1 z/OS products used in this redbook

In this section we discuss which products we used to enable z/OS to Web services.

Table 10-2 on page 351 shows the z/OS products used for this redbook.

Table 10-2 The z/OS products and versions

Product Name Current Version

Model

WebSphere Business Modeler Advanced 5.1.1.2

Rational Software Architect 6.0.1

Assemble

WebSphere Integration Developer 6.0

WebSphere Developer for zSeries 6.0

Deploy

WebSphere Application Server for z/OS 6.0.2

WebSphere Process Server for z/OS 6.0

WebSphere Enterprise Service Bus for z/OS 6.0.1

WebSphere Message Broker for z/OS 6.0

CICS Transaction Gateway for z/OS 6.0

WebSphere Partner Gateway 6.0

WebSphere Adapters (on WPS & ESB for z/OS) 6.0

 WebSphere Portal Server Enable for z/OS* 5.1.0.2

WebSphere Everyplace Deployment 6.0

Workplace Collaboration Services 2.5

WebSphere Extended Deployment for z/OS 6.0.1

WebSphere Information Integrator Classic Event Publisher 8.2.3

Manage

WebSphere Business Monitor 4.2.4

Tivoli Composite Application Manager for SOA 6.0

Tivoli Composite Application Manager for WebSphere 6.0

Tivoli Federated Identity Manager 6.0

Tivoli Access Manager for e-business 5.1

Product Name Version

z/OS 1.7
Chapter 10. The z/OS products for SOA 351

10.2 Setting up Web services in z/OS

In this section we describe how to setup a Web service in the z/OS environment, see these
sections to perform it:

� Enabling Web service provider in DB2 for z/OS
� Enabling Web service consumer in DB2 for z/OS
� Installing DB2 Universal JDBC in z/OS
� Installing IMS Java

10.2.1 Enabling Web service provider in DB2 for z/OS

Enabling Web service provide in DB2 allows you to create Web services on z/OS with your
DB2 data and applications.

It has the following prerequisites:

� Enable JDBC in DB2
� Install WebSphere Application Server Version 5 or later
� Download mail.jar from JavaMail™ Version 1.2 or later
� Download activation.jar from JavaBeans Activation Framework Version 1.0.1 or later

To use DB2 Web Services Object Runtime Framework (WORF), you need to make the
runtime services available to WebSphere Application Server (WAS). By default, WORF is
installed in the HFS directory:

/usr/lpp/db2/db2910_worf/

The base install directory contains the lib/ subdirectory that contains the runtime JAR file
worf.jar.

To begin using WORF, copy worf.jar, mail.jar, and activation.jar to a WebSphere Application
Server shared library directory that you have already set up and restart WAS.

Work Load Manager

DB2 for z/OS 8 or higher

IMS 9.1

IMS JDBC Connector (IMS Java)

DB2 Universal JDBC Driver Provider

IBM XML Toolkit for z/OS, C++ Edition 1.8

XML Toolkit for z/OS and OS/390 1.6 or higher

IBM SDK Java 2 Technology Edition 1.3.1 or higher

Product Name Version

Note: If mail.jar is not present, download JavaMail Version 1.2 or later. If #activation.jar is
not present, download JavaBeans Activation Framework Version 1.0.1 or later. You can
download these products from the following Web site:

http://java.sun.com
352 Powering SOA with IBM Data Servers

http://java.sun.com

WORF provides an application that contains sample Document Access Definition Extension
(DADX) files in the following directory:

lib/services.war

To set up this application with sample DADX files:

1. Follow the instructions in the job prolog to customize and run job DSNTEJWS, #which is
located in the prefix.SDSNSAMP directory. #DSNTEJWS creates the DB2 tables that are
used by the sample application.

2. By default, the sample application uses the former or existing JDBC driver connectivity #
to connect to a DB2 server. If you configure WebSphere Application Server with JDBC
providers that #use the universal JDBC driver, you need to perform the following actions
to #configure the sample application to use the universal JDBC driver:

a. Copy services.war to a temporary directory.

b. Unjar services.war by issuing the following command:

jar -xvf services.war

c. Open the group.properties files, which are located in the following #directories:

WEB-INF/classes/groups/dxx_sample
WEB-INF/classes/groups/dxx_travel

Modify the dbDriver, dbURL userID, #and password fields to have the following values:

dbDriver=com.ibm.db2.jcc.DB2Driver
dbURL=jdbc:db2://server:port/database
userID=DB2 userid
password=DB2 userid password

d. Jar the files by issuing the following command:

jar -cvf services.war *

3. Use a Web browser to connect to your WebSphere Application Server Administrative
Console.

4. Under Applications, select Install New Application.

5. Select the Server Path option, and type the location of the services.war file in the text box.
If you installed WORF in the default location, the server path is:

/usr/lpp/db2810_worf/lib/services.war

6. Fill in a context root for the application (for example, services). Click Next.

7. On the following screens, respond as necessary for your local setup. You #can accept the
default settings.

8. On the last screen, click Finish. Click Save to Master Configuration to apply your changes.

To load the application:

1. On the WebSphere Application Server Administrative Console’s main page, under
Applications, select Enterprise Applications. Select the application and click Start to load
the application.

2. After the application loads, point a browser to your server with the context root that you
chose (for example, http://server/services/). The welcome page lists the sample DADX
files that are provided in services.war.

Note: WORF and WebSphere setup are covered with more informations on Chapter 12,
“WebSphere Application Server” on page 369.
Chapter 10. The z/OS products for SOA 353

10.2.2 Enabling Web service consumer in DB2 for z/OS

Enabling Web service consumer in DB2 allows you to receive Web service data in your DB2
applications.

It has the following prerequisites:

� Install z/OS V1R4 or later.

� Install IBM XML Toolkit for z/OS, C++ Edition 1.8.

� Install XML Toolkit for z/OS and OS/390 V1.6 or later.

� Configure TCP/IP.

� Installation job DSNTIJMV contains sample startup procedure DSNWLM, which you can
use as a model for your startup procedures. Change the following items in each startup
procedure:

a. Change the procedure name from DSNWLM to the procedure name that you specified
when you set up the WLM environment.

b. Change the value of APPLENV to the name of the WLM environment that you set up
for the Web services consumer user-defined functions.This name must match the
name in the WLM ENVIRONMENT parameter in the CREATE PROCEDURE
statement in DSNTIJIM.

c. Change the value of DB2SSN to your DB2 subsystem name.

d. Add the data set name of the XML Toolkit load library to the STEPLIB concatenation. If
you used the default data set names when you installed the XML Toolkit, the load
library data set name is userid.SIXMLOD1.

� After you set up the WLM application environment, create a JCL startup procedure for the
stored procedure address space.

� To create the load modules to enables Web service consumer to DB2, customize job
DSNTIJWL as indicated in its prolog and run the job.

� To define the Web service consumer user-defined functions to DB2, customize job
DSNTIJWS as indicated in its prolog and run the job.

10.2.3 Installing the DB2 Universal JDBC driver

The procedures in this section describe what you need to do to install the DB2 Universal
JDBC Driver. to provide DB2 Universal JDBC Driver type 2 connectivity and DB2 Universal
JDBC Driver type 4 connectivity on a z/OS system that has a DB2 UDB for z/OS subsystem.

To install the DB2 Universal JDBC Driver as part of a DB2 UDB for z/OS installation, follow
|these steps:

1. Install Java 2 Technology Edition, SDK 1.3.1 or higher. If you plan to |implement Java
stored procedures and user-defined functions on this DB2 subsystem, install Java 2
Technology Edition, SDK 1.3.1, SDK 1.4.1, or higher.

2. If you plan to use DB2 Universal JDBC Driver type 4 connectivity to connect to DB2 UDB
for z/OS Version 7 servers, install OS/390 Support for Unicode or z/OS Support for
Unicode on those servers.

3. On z/OS, enable TCP/IP.

Attention: Be sure to apply Language Environment® APARs PQ63045 and PQ84190 on
z/OS.
354 Powering SOA with IBM Data Servers

4. When you allocate and load the DB2 UDB for z/OS libraries, include the steps |that
allocate and load the DB2 Universal JDBC Driver libraries.

5. On DB2 UDB for z/OS, enable distributed data facility (DDF) and TCP/IP support.

6. On DB2 UDB for z/OS, set subsystem parameter DESCSTAT to YES. DESCSTAT
corresponds |to installation field DESCRIBE FOR STATIC on panel DSNTIPF.

7. In z/OS UNIX System Services, edit your profile file to customize the environment variable
|settings. You use this step to set the libraries, paths, and files that the DB2 Universal
JDBC Driver |uses.

8. Optionally you can customize the DB2 Universal JDBC Driver configuration properties.

9. On DB2 UDB for z/OS, enable the DB2-supplied stored procedures and define the |tables
that are used by the DB2 Universal JDBC Driver.

10.In z/OS UNIX System Services, run the DB2binder utility to bind the packages for the DB2
Universal JDBC Driver.

11.If you plan to use Universal Driver type 4 connectivity to implement distributed
|transactions against DB2 UDB for OS/390 and z/OS Version 7 servers: In z/OS UNIX
System Services, |run the DB2T4XAIndoubtUtil utility on the z/OS system on which you
are |installing z/OS Application Connectivity to DB2 for z/OS. Run the utility once for each
of the DB2 UDB for OS/390 |and z/OS Version 7 servers.

12.If you plan to use LOB locators to access DBCLOB columns in DB2 tables on DB2 UDB
for z/OS servers: In z/OS UNIX System Services, run the |DB2LobTableCreator utility on
each of those servers to create tables that |are needed for fetching LOB locators.

13.Verify the installation by running a simple JDBC application.

10.2.4 Binding the DB2 Universal JDBC driver packages

You must bind your JDBC driver packages on your z/OS systems.To bind the JDBC driver
packages on z/OS systems, complete the following steps:

1. If you are not using the latest level JDBC driver, migrate your z/OS JDBC Driver to the new
DB2 Universal JDBC Driver. Change the DB2_HOME environment variable in the
JAVAENV data set to JCC_HOME. For example, change
DB2_HOME=/u/DSN/DSN7/usr/lpp/db2/db2710 to
JCC_HOME=/u/DSN/DSN7/usr/lpp/db2/db2710/jcc.

2. Bind the required DB2 Universal JDBC driver packages. The Universal JDBC driver does
not use the same JDBC packages as the z/OS JDBC drivers. It also uses a different
process for binding its packages. The Universal JDBC driver uses a DRDA-based
connection to the target DB2 system when creating the required packages.

There are two ways to bind the JCC drivers. Run the supplied batch job AHXJBIND or
complete the following steps, which require UNIX System Services (USS) access.

� Update your CLASSPATH and PATH.

If you are using your own USS directory to perform the bind, then you need to make sure
that you have the correct CLASSPATH and PATH settings to run the JCC Binder. You can
avoid doing this manually by ensuring that the USS profile is updated correctly with the
CLASSPATH and PATH information or by ensuring that your USERIDs profile contains the
correct CLASSPATH, LIBPATH and PATH information.

Important: See DB2 UDB for z/OS Version 8 Installation Guide, GC18-7418 for
information about all these steps.
Chapter 10. The z/OS products for SOA 355

CLASSPATH
CLASSPATH=/usr/lpp/db2/db2710/jcc/classes/db2jcc_license_cisuz.jar
CLASSPATH=/usr/lpp/db2/db2710/jcc/classes/db2jcc.jar:$CLASSPATH
CLASSPATH=/usr/lpp/Printsrv/classes:$CLASSPATH
PATH
PATH=/usr/lpp/java/IBM/J1.3/bin:$PATH
PATH=/usr/lpp/db2/db2710/jcc/bin:$PATH

� Invoke the JDBC bind from the command line; see Example 10-1.

Example 10-1 JDBC binding

java com.ibm.db2.jcc.DB2Binder
-url<url> -user<user> -password<pswd> -collection NULLID

The URL identifies the target DB2 system. Table 10-3 shows the variable parts of the URL.

Table 10-3 URL variables

See Example 10-2 for the invocation.

Example 10-2 JDBC binding

java com.ibm.db2.jcc.DB2Binder
-url jdbc:db2://stlmvs1.ibm.com:446/stlec1 -user SYSADM
-password PASSWRD -collection NULLID

Edit and run the sample DSNTIJSG bind job:

1. Update all BIND PACKAGE lines in the DSNTIJSG job (BIND PACKAGE(DSNUTIL)) to
include the name of the location that you want to bind. For example:

BIND PACKAGE(MYLOCATION.DSNUTIL)

2. Submit the updated DSNTIJSG job.

Variable Description

server_name The IP address or domain name of the host system where the target DB2
system resides.

port_number The server port number that is configured for the TCP/IP communications on
the target DB2 system.

database_name The database name of the target DB2 system. On DB2 for z/OS systems,
this is referred to as a location name.

user The user name that you use to connect to the target DB2 system. The user
name that you specify must have bind authority.

password The password that you use to connect to the target DB2 system.

collection The collection ID for the JDBC packages. You must use NULLID.

Important: You must insert the location name in front of all the BIND PACKAGE statement
packages.
356 Powering SOA with IBM Data Servers

10.2.5 Installing IMS Java

IMS Java is delivered in a separate FMID. Before you can install the IMS Java FMID with
SMP/E, you must prepare HFS, which is described in this topic.

Prerequisite:
Install IMS Version 9 and run the standard IMS IVPs.

To install IMS Java:

1. Allocate a data set for HFS, see the Example 10-3 that shows the JCL.

Example 10-3 HFSALLOC Job

//HFSALLOC JOB parameters
//**/
//* To run this job: */
//* 1) Add JOB statement parameters to meet your requirements. */
//* 2) For DSNAME, change hfsdsn to the name of the new file */
//* system. */
//* 3) For VOLUME, change volid to the volser ID of the DASD */
//* that will contain the IMS Java HFS data set. */
//**/
//ALLOCATE EXEC PGM=IDCAMS,DYNAMNBR=200
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ALLOCATE -
 DSNAME('hfsdsn') -
 RECFM(U) -
 LRECL(0) -
 BLKSIZE(32760) -
 DSORG(PO) -
 VOLUME(volid) -
 DSNTYPE(HFS) -
 NEW CATALOG -
 SPACE(15,5) CYL -
 DIR(200) -
 UNIT(SYSALLDA)
/*

2. Define the mount point directory to mount the HFS, see Example 10-4 on page 357.

Example 10-4 HFSMOUNT job

//HFSMOUNT JOB parameters
//**/
//* To run this job: */
//* 1) Add JOB statement parameters to meet your requirements. */
//* 2) For FILESYSTEM, change hfsdsn to the name of the file */
//* system that you specified in the HFSALLOC job. */
//* 3) For MOUNTPOINT, change /PathPrefix to the high-level */
//* directory name. The directory name must be preceded with*/
//* a forward slash (/), for example, /apps or /ims/apps. */

Note: For details about how to run the IMS IVPs and all complete setup, see IMS Version
9: Installation Volume 1: Installation Verification,GC26-9429-05.
Chapter 10. The z/OS products for SOA 357

//* This string must match the PathPrefix */
//* string in the DFSJSMKD job. */
//**/
//MOUNT EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 MOUNT FILESYSTEM('hfsdsn') /* MOUNT HFS */ +
 MOUNTPOINT('/PathPrefix') TYPE(HFS) MODE(RDWR)
/*

3. Run the sample installation job DFSJSMKD. DFSJSMKD runs the DFSJMKDR REXX
script, which creates the HFS paths for IMS Java.

4. Using SMP/E, install the IMS Java FMID.

The next step varies. It depends on the environment that your application will run in:

� JMP region: Running the IMS Java IVP in a JMP Region
� JBP region: Running the IMS Java IVP in a JBP Region
� WebSphere Application Server for z/OS
� WebSphere Application Server on a non-z/OS platform
� DB2 UDB for z/OS stored procedure
� CICS
358 Powering SOA with IBM Data Servers

Chapter 11. The Linux, UNIX, and Windows
products for SOA

In this chapter, we look at the steps to prepare and set up a Web services environment in
DB2 V9.1 for Linux, UNIX, and Windows. We also highlight certain new system requirements
and discuss important changes from previous versions of DB2 that you need to be aware of.

This chapter contains these topics:

� DB2 V9.1 for Linux, UNIX, and Windows installation and its development software support
� Connecting Web services to DB2 via JDBC
� Preparing the installation of the Web services provider
� Installation of the Web services consumer UDFs
� Migrating from XML Extender

11
© Copyright IBM Corp. 2006. All rights reserved. 359

11.1 DB2 V9.1 for Linux, UNIX, and Windows installation and its
development software support

DB2 V9.1 for Linux, UNIX and Windows now allows coexistence of multiple DB2 versions and
fix packs on Windows, and concurrent copies of DB2 database systems on Linux and UNIX.
You can install multiple copies of DB2 database systems on Linux or UNIX operating systems
without the need for alternate FixPaks. Key benefits of this feature include:

� Install anywhere: You can install DB2 database systems using any path that you choose.

� Install any number of times: You can install two or more copies of the same database
system on one computer. The code levels can be different as well.

� Service each copy independently: You can update one copy without affecting any of the
other copies.

This means that database administrators can have independent copies of DB2 database
systems for different purposes. This allows different databases on the same computer to run
at different fix pack levels. Therefore, you can install DB2 V9.1 for Linux, UNIX and Windows
on a system that is already running DB2 V8. Please check DB2 V9.1 for Linux, UNIX and
Windows Information Center for prerequisites and system requirements:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

Current DB2 system requirements are also available here:

http://www-306.ibm.com/software/data/db2/udb/sysreqs.html

11.1.1 Linux and UNIX operating systems

For AIX, HP-UX, Solaris Operating Environment, the default installation path is:

/opt/IBM/db2/V9.1

For Linux systems, the default installation path is:

/opt/ibm/db2/V9.1

If you are installing on a system where this directory is already being used, the DB2 product
installation path will have _xx added to it, where _xx are digits, starting at 01 and increasing
depending on how many DB2 copies you have installed. You can also specify your own DB2
product installation path.

On supported Linux and UNIX operating systems, a new command, db2ls, provides
information about DB2 database systems and features installed on your system. You can use
this command to first list where DB2 database systems are installed and which level of the
DB2 database system is installed. Figure 11-1 shows you an example of the db2ls output
where we have installed DB2 V9.1 for Linux, UNIX and Windows in an installation path we
specified.

Figure 11-1 db2ls output

/usr/local/bin> ./db2ls

Install Path Level Fix Pack Special Install Number Install Date

/usr/opt/db2_09_00 9.0.0.0 0 0 Fri Mar 31 16:09:56 2006 PST
360 Powering SOA with IBM Data Servers

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://www-306.ibm.com/software/data/db2/udb/sysreqs.html

11.1.2 Windows operating systems

Similar to DB2 Version 9.1 on Linux and UNIX systems, you can have multiple DB2 copies on
the same Windows system.

When only one DB2 copy is installed, a unique Default DB2 copy name is generated during
installation, which you can change later. Applications use the Default DB2 copy in an
environment similar to the DB2 Version 8 environment.

When multiple DB2 copies are installed on the same system, DB2 Version 8 can coexist with
DB2 Version 9.1, with certain restrictions described below.

� DB2 Version 8 and DB2 Version 9.1 can coexist, but DB2 Version 8 is set as the Default
DB2 copy. This cannot be changed unless you uninstall Version 8.

� Each DB2 copy must have unique instance names.

11.2 Connecting Web services to DB2 via JDBC

To develop and deploy Java applications that run against DB2 databases, you need to use
supported development software and operating systems. During the installation process for
DB2 for Linux, UNIX and Windows, the installation process also installs the latest SDK for
Java that is available. Table 11-1 lists the DB2 V9.1 for Linux, UNIX and Windows supported
SDK levels for Java.

Table 11-1 SDK for Java support for the IBM DB2 Driver for JDBC and SQLJ

Important: In Version 9.1, the db2ls command is the only method for querying a DB2
product. You can no longer query DB2 products using Linux or UNIX operating system
native utilities such as pkgadd, rpm, SMIT, or swinstall. You must change any scripts
containing a native installation utility that you use to interface with and query DB2
installations. You cannot use the db2ls command on Windows operating systems.

Restriction: For Win x64 platforms, DB2 does not support multiple DB2 32-bit and 64-bit
versions installed on Windows system. If you install the DB2 64-bit version, the 32-bit
version will be removed from the system.

Operating system 31-bit, 32-bit, or 64-bit
operating system

Supported levels of SDK for
Java for the IBM DB2 Driver
for JDBC and SQLJ

AIX 5 32-bit/64-bit 1.4.2, 5

HP-UX 11i 32-bit/64-bit 1.4.2

Linux on Intel x86 32-bit 1.4.2, 5

Linux on IA64 64-bit 1.4.2

Linux on AMD64/EM64T 32-bit/64-bit 1.4.2, 5

Linux on PowerPC® 32-bit/64-bit 1.4.2, 5

Linux on zSeries 31-bit/64-bit 1.4.2, 5

Solaris 32-bit/64-bit 1.4.2
Chapter 11. The Linux, UNIX, and Windows products for SOA 361

Any JVMs that run Java applications that access DB2 databases must include native threads
support. You can specify native threads as the default thread support for some JVMs by
setting the THREADS_FLAG environment variable to "native".

Before you begin using the DB2 JDBC and SQLJ Driver, ensure you have setup the following:

� Include db2jcc.jar and sqlj.jar in your CLASSPATH

� Include license files for the IBM DB2 Driver for JDBC and SQLJ

Table 11-2 IBM DB2 Driver for JDBC and SQLJ license file

On Windows: The files are located in %DB2PATH%\sqllib\java (where %DB2PATH% is a
variable that determines where DB2 is installed)

On UNIX: The files are located in $HOME/sqllib/java (where $HOME is the home directory
of the instance owner)

� Install IBM DB2 Driver for JDBC and SQLJ native libraries for support of IBM DB2 Driver
for JDBC and SQLJ type 2 connectivity.

For AIX, HP-UX on IPF, Linux, and Solaris: libdb2jcct2.so

For HP-UX on PA-RISC: libdb2jcct2.sl

For Windows: db2jcct2.dll

On Windows: The files are located in %DB2PATH%\sqllib\bin (where %DB2PATH% is a
variable that determines where DB2 is installed)

On UNIX: The files are located in $HOME/sqllib/lib (where $HOME is the home directory
of the instance owner)

If you use the Type 4 connectivity, it is especially important to configure TCP/IP:

db2set DB2COMM=TCPIP

db2 update DBM CFG using SVCENAME <TCP/IP service name>

If you plan to run Java procedures and UDFs then also ensure the JDK_PATH in the DBM
CFG is setup to include the PATH where the SDK for Java is located.

Windows on Intel x86 32-bit 1.4.2, 5

Windows on IA64 64-bit 1.4.2

Windows on x64 32-bit/64-bit 1.4.2, 5

License File Server to which license file
permits a connection

Product that includes license file

db2jcc_license_c.jar Cloudscape(TM) Cloudscape Network Server

db2jcc_license_cu.jar Cloudscape
All DB2 for Linux, UNIX, and
Windows servers

All DB2 for Linux, UNIX, and
Windows products

db2jcc_license_cisuz.jar Cloudscape
All DB2 for Linux, UNIX, and
Windows servers
DB2 for z/OS
DB2 UDB for iSeries

All DB2 Connect products
362 Powering SOA with IBM Data Servers

For example on Windows:

db2 update dbm cfg using JDK_PATH c:\Program Files\jdk142

And on UNIX:

db2 update dbm cfg using JDK_PATH /home/db2inst/jdk142

If you plan to run Java stored procedures that work with XML data on DB2 for Linux, UNIX,
and Windows servers, you need to set the IBM DB2 Driver for JDBC and SQLJ as the default
JDBC driver for running stored procedures. To do that, set the
DB2_USE_DB2JCCT2_JROUTINE environment value to YES, yes, ON, on, TRUE, true, or 1.

To set the IBM DB2 Driver for JDBC and SQLJ as the default driver at the instance level:

db2set DB2_USE_DB2JCCT2_JROUTINE=YES -i instance-name

Where instance-name is the actual instance name.

To set the IBM DB2 Driver for JDBC and SQLJ as the default driver at the global level:

db2set DB2_USE_DB2JCCT2_JROUTINE=YES -g

11.2.1 Changes to development software support

DB2 V9.1 for Linux, UNIX and Windows supports C, C++, Java, COBOL, Fortran, REXX, Perl,
PHP and .NET languages. Refer to the following URL for more information about the latest
development software support.

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.ud
b.rn.doc/doc/c0023012.htm

11.3 Preparing the installation of the Web services provider

The Web services provider is part of DB2 Version 9.1. The Web services provider is in the
following path in DB2 Version 9.1:

On Windows: %DB2PATH%\sqllib\samples\webservices\dxxworf.zip (where %DB2PATH% is
a variable that determines where DB2 is installed)

On UNIX: $HOME/sqllib/samples/webservices/dxxworf.zip (where $HOME is the home
directory of the instance owner)

The DB2 Web Service provider is an extension to Java application servers such as
WebSphere Application Server and Jakarta Tomcat. After you have located dxxworf.zip, you
will unzip the zip file to extract worf.jar and copy into your WebSphere Server or Tomcat
environment.

You can install the Web services provider on any of the following operating systems:

� Windows NT®
� Windows 2000
� Linux
� AIX
� Solaris Operating Environment
� OS/390 Version 2.8 or later
� z/OS Version 1.1 or later
Chapter 11. The Linux, UNIX, and Windows products for SOA 363

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.rn.doc/doc/c0023012.htm

You can use the following database environments:

� IBM DB2 Version 91 or later
� DB2 Universal Database for OS/390 Version 8
� DB2 Universal Database for z/OS
� Informix Dynamic Server (IDS) Version 9.3

See Chapter 10, “The z/OS products for SOA” on page 349 for detail specific to the z/OS
platform. Also see Chapter 9, “Informix IDS and SOA” on page 297 for detail specific to
Informix Dynamic Server (IDS).

And supported Web servers are:

� WebSphere Application Server Advanced Edition Version 6
� Apache Jakarta Tomcat Version 3.3.1 through 4.0.3 or later
� Application server for DB2

For detail instructions on how to setup Web service provider on the Web servers, refer to the
following URLs for specific Web server information:

Application Server for DB2:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websph
ere.ii.db2udb.foundation.appdev.fed.ws.doc/developing/applicationserverfordb2.html

Installing WORF to work with WebSphere Application Server Version 5 or later for Windows
and UNIX:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websph
ere.ii.db2udb.foundation.appdev.fed.ws.doc/installing/tiiwrfin.html

Installing the Web services provider software requirements for Apache Jakarta Tomcat on
UNIX and Windows:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websph
ere.ii.db2udb.foundation.appdev.fed.ws.doc/installing/tiiapins.html

11.4 Installation of the Web services consumer UDFs

The db2enable_soap_udf command enables your database to use the SOAP requester
functions and installs the Web services consumer user-defined functions (UDFs) to the
particular database. You should install the following software before running the SOAP UDFs:

� DB2 Version 8
� DB2 V9.1 for Linux, UNIX and Windows

On DB2 V9 you may optionally enable DB2 XML Extender in order to continue accessing
XML Extender features, or for backward compatibility with applications that used to run on
DB2 V8. Refer to further information at 11.5, “Migrating from XML Extender” on page 366.

You must additionally enable DB2 XML Extender with the dxxadm enable_db command on
DB2 V8.

To enable, or install, and disable the Web service consumer issue the following:

db2enable_soap_udf -n dbName [-u uID] [-p password] [-force]

To disable, or uninstall the Web service consumer issue the following:
364 Powering SOA with IBM Data Servers

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.db2udb.foundation.appdev.fed.ws.doc/developing/applicationserverfordb2.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.db2udb.foundation.appdev.fed.ws.doc/installing/tiiwrfin.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.websphere.ii.db2udb.foundation.appdev.fed.ws.doc/installing/tiiapins.html

db2disable_soap_udf -n dbName [-u uID] [-p password]

Where:

dbName

A database name

uID

Optional: User ID

password

Optional: The password associated with the user ID

–force

Attempts to drop any existing functions.

You can also enable the Web services consumer UDFs from DB2 Control Center as shown in
Figure 11-2 on page 365.

Figure 11-2 Enabling Web service in DB2 Control Center
Chapter 11. The Linux, UNIX, and Windows products for SOA 365

11.5 Migrating from XML Extender

DB2 Version 9.1 supports native XML storage in an annotated tree form similar to that of the
XML Document Object Model (DOM). This support includes a new XML type, XML indexes,
SQL/XML functions and XQueries. You can migrate your database application from XML
Extender to use the native XML storage in DB2 Version 9.1 to take full advantage of the native
XML store.

The steps to migrate from XML Extender are:

1. Migrate to DB2 Version 9.1 for Windows or migrate to DB2 Version 9.1 for Linux and UNIX.

On Linux and UNIX, you can migrate to DB2 Version 9.1 from a DB2 server that has
multiple copies of DB2 Enterprise Server Edition (ESE) Version 8. If you have installed
several alternate fixpaks as a completely new copy of DB2 ESE, you could have multiples
copies of DB2 ESE on the same DB2 server. You need to manually migrate any DB2 UDB
Version 8 instances to a DB2 Version 9.1 copy of your choice.

You can manually migrate a DB2 UDB Version 8 instance at any fixpak level by executing
the db2imigr command from the target DB2 Version 9.1 copy of your choice. Once an
instance is migrated to a DB2 Version 9.1 copy, you cannot migrate to another DB2
Version 9 copy. Also you cannot migrate to DB2 UDB Version 8. However, you can
upgrade an instance between different DB2 copies of DB2 Version 9.1 using the db2iupdt
command.

On Windows, migration is required if you have instances and databases running on DB2
UDB Version 8 that you want to run on DB2 Version 9.1. If you choose to automatically
migrate your existing DB2 UDB Version 8 copy during the DB2 Version 9.1 installation,
your instances and DB2 administration server (DAS) are migrated but you still need to
migrate your databases after installation. If you choose to install a new DB2 Version 9.1
copy, you must manually migrate your instances, your DAS and databases.

2. Convert your databases to Unicode databases. If you created your databases in DB2 UDB
Version 8 as a Unicode database, you can start using the XML functionality with your
migrated database. Otherwise, you must export your database, create your database
again by running the CREATE DATABASE with the clause USING CODESET utf-8
TERRRITORY territory, and then load your data. This is due to the restriction of the native
XML functionality is only supported on Unicode databases. For example:

CREATE DATABASE xmldb USING CODESET UTF-8 TERRITORY US

3. Add XML type columns to your tables. Use the ALTER TABLE command:

ALTER TABLE table_name ADD column_name XML [NOT NULL]

Where:

Important: Although XML native support is introduced in DB2 Version 9.1 for Linux, UNIX
and Windows, you can still use XML Extender. To enable DB2 V8 XML Extender functions
for a particular database, issue:

dxxadm enable_db <database>

Where <database> is the database name.

Restriction: Migration is supported only from DB2 UDB Version 8. Direct migration is
not supported from DB2 UDB Version 7 or earlier. You must migrate first to DB2 UDB
Version 8.
366 Powering SOA with IBM Data Servers

table_name

Is the name of the existing table with data.

column_name

Is the name of the new XML column you want to add.

You only need to perform this step if you store intact your XML documents in a column of
data type CLOB, VARCHAR, XMLCLOB, XMLVARCHAR, or XMLFILE.

4. Register your XML schemas in the XML Schema repository (XSR). This is analogous to
the step of dxxadm enable_collection in XML Extender. If you have document type
definitions (DTDs), you must convert them to XML schemas and then register them in the
XSR. You only need to perform this step only if you want to validate your XML documents.

5. Import XML documents into the table with the new XML data type column.

6. Convert your application to use annotated XML schema decomposition to store content
from XML documents in table columns, and the new SQL/XML functions to construct or
publish XML using the new XML data type.

Details on all these migration steps and examples of application migration are available in a
white paper series published at developerWorks Information Management. You can check
this URL for more information. At the time of writing this redbook, DB2 V9.1 for Linux, UNIX
and Windows is still a beta version, thus the migration paper is not yet available. Please
check this URL frequently for updates.

http://www-1.ibm.com/support/docview.wss?rs=73&uid=swg21200005

The DeveloperWorks article From DAD to annotated XML schema decomposition at the
following URL which also includes a DAD to annotated XML schema converter tool which will
help you convert your XML schemas to annotated XML schemas based on the mapping rules
described in the DAD.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan/
Chapter 11. The Linux, UNIX, and Windows products for SOA 367

http://www-1.ibm.com/support/docview.wss?rs=73&uid=swg21200005
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan/

368 Powering SOA with IBM Data Servers

Chapter 12. WebSphere Application Server

This chapter introduces the IBM WebSphere Application Server (WAS) Version 6. We
provide a general overview of the products and talk in detail about the WebSphere
Application Server for z/OS-specific product functions.

This chapter contains these topics:

� Introduction to WebSphere Application Server Version 6
� Highlights and benefits
� Supported platforms and software
� WebSphere Application Server V6 architecture
� Web services

12
© Copyright IBM Corp. 2006. All rights reserved. 369

12.1 Introduction to WebSphere Application Server Version 6

As the foundation of the WebSphere software platform, WebSphere Application Server
Version 6.0 is one of the industry's premier Java-based application platforms, integrating
enterprise data and transactions for the dynamic e-business world. Each configuration
available delivers a rich application deployment environment with application services that
provide enhanced capabilities for transaction management, as well as the security,
performance, availability, connectivity, and scalability expected from the WebSphere family of
products.

Figure 12-1 shows a high-level overview of the WebSphere platform.

Figure 12-1 WebSphere product family

WebSphere Application Server is J2EE 1.4 compatible and provides Web services support
above and beyond the specification. Further, there are new features for rapid development
and deployment, which help reduce development cycle time and maximize the ability to use
existing skills and resources.

WebSphere product family
370 Powering SOA with IBM Data Servers

WebSphere Application Server is available in multiple packages to meet specific business
needs. They also serve as the base for other WebSphere products, such as WebSphere
Commerce, by providing the application server required for running these specialized
applications. WebSphere Application Server is available on a wide range of platforms,
including UNIX-based platforms, Microsoft operating systems, IBM z/OS, and IBM eServer™
iSeries.

Figure 12-2 shows WebSphere Application Server product overview by functions.

Figure 12-2 WebSphere Application Server product overview by functions

WebSphere Application Server Version 6 has three product offerings. At the heart of each
package is a WebSphere Application Server that provides the runtime environment for
enterprise applications:

WebSphere Application Server V6 Express - Offers the entry point to e-business, an
out-of-the-box solution for managing simple, dynamic Web sites with an easy-to-use Web
application server and a development environment. The Express product is fully J2EE 1.4
compliant.

WebSphere Application Server V6 - The core of the WebSphere portfolio, this product is an
industry-leading J2EE and Web services application server, delivering a high-performance
and extremely scalable transaction engine for dynamic e-business applications.

WAS product overview by functions
Chapter 12. WebSphere Application Server 371

WebSphere Application Server V6 Network Deployment - Provides an operating
environment with advanced performance and availability capabilities in support of dynamic
application environments. In addition to all of the features and functions within the base
WebSphere Application Server, this configuration delivers advanced deployment services
that include clustering, edge-of-network services, Web services enhancements, and high
availability for distributed configurations.

In addition, the Network Deployment package contains the Web services gateway. In
WebSphere Application Server Version 6, the gateway is now fully integrated in the service
integration technology.

12.1.1 What is new in WebSphere Application Server Version 6?

Version 6 includes support for J2EE 1.4, Web services enhancements
(WS-AtomicTransaction, WS-Addressing, WS-I Basic Profile 1.1), WebSphere platform
messaging with fully integrated Java messaging engine, JavaServer Faces (JSR 127), and
standardized logging (JSR 47).

Other enhancements provide the solid base for a robust infrastructure, including a unified
clustering framework and fail-over for stateful session EJBs. Additional programming model
extensions include Service Data Objects (SDO), activity session, asynchronous beans,
dynamic query, application profiling, JTA support, WorkArea service, and scheduler, among
others. These features have been part of the WebSphere Server Foundation V5.1 product.

WebSphere Application Server Version 6 supports and complies with the Web service
specifications and standards listed in Table 12-1.

Table 12-1 Web services standards in WebSphere Application Server Version 6

Specification or standard Description

JAX-RPC (JSR-101) 1.1 Additional type support
xsd:list
Fault support
Name collision rules
New APIs for creating services
isUserInRole()

Web Services for J2EE 1.1 (JSR109, JSR921) Moved to J2EE 1.4 schema types
Migration of Web services client DD moving to
appropriate container DDs
Handlers support for EJBs
Service endpoint interface (SEI) is a peer to LI/RI

SAAJ 1.2 APIs for manipulating SOAP XML messages
SAAJ infrastructure now extends DOM (easy to
cast to DOM and use)

WS-Security WSS 1.0
WS-I Security Profile

WS-I Basic Profile 1.1 Attachments support

WS-Transaction WS-AtomicTransaction

JAXR 1.0 Java client API for accessing UDDI (Version 2
only) and ebXML registries

UDDI V3 Includes both the registry implementation and the
client API library
372 Powering SOA with IBM Data Servers

12.2 Highlights and benefits

WebSphere Application Server provides the environment to run your Web-enabled
e-business applications. An application server functions as Web middleware or a middle tier
in a three-tier e-business environment. The first tier is the HTTP server that handles requests
from the browser client. The third tier is the business database (for example, DB2 UDB for
iSeries) and the business logic (for example, traditional business applications such as order
processing). The middle tier is WebSphere Application Server, which provides a framework
for a consistent and structured link between the HTTP requests and the business data and
logic.

For WebSphere Application Server for z/OS, possibly in the same logical partition as
ultra-high-performance CICS or IMS applications and IMS/DB2 data sources, it is possible to
achieve the tightest levels of integration between new and existing corporate systems, with
communication at channel speeds, unhampered by network bottlenecks. This has a number
of advantages. First and foremost, the performance is unparalleled by running WebSphere
Application Server and DB2 together on the mainframe rather than on distributed systems.
Secondly, since the application no longer needs to cross a TCP/IP network to retrieve data,
there are security and reliability benefits. The data does not need to be encrypted, users
require less regular authentication, and the whole end-to-end communication between
applications remains unaffected by the prevalence of network failure. Sysplex-enabled
mainframe systems consistently offer 99.999% availability and beyond; but if an application
needs to interoperate with a network-attached distributed server, this level of availability can
decline dramatically.

WebSphere Application Server is intended for organizations that want to take advantage of
the productivity, performance advantages, and portability that Java provides for dynamic Web
sites. It includes:

� J2EE 1.4 support.

� High-performance connectors to many common back-end systems to reduce the coding
effort required to link dynamic Web pages to real line-of-business data.

� Application services for session and state management.

� Web services that enable businesses to connect applications to other business
applications, to deliver business functions to a broader set of customers and partners, to
interact with marketplaces more efficiently, and to create new business models
dynamically.

� The WebSphere Platform Messaging infrastructure to complement and extend
WebSphere MQ and application server. It is suitable for those that are currently using the
WebSphere Application Server V5 embedded messaging and for those that need to
provide messaging capability between WebSphere Application Server and an existing
WebSphere MQ backbone.

12.3 Supported platforms and software

The following tables illustrate the platforms, software, and versions that WebSphere
Application Server V6 supports at the time of the writing of this document. For the most
up-to-date operating system levels and requirements, refer to the following:

http://www.ibm.com/software/webservers/appserv/
Chapter 12. WebSphere Application Server 373

http://www.ibm.com/software/webservers/appserv/

12.3.1 Operating systems

Table 12-2 shows the supported operating systems and versions for WebSphere Application
Server V6.

Table 12-2 Supported operating systems and versions

12.3.2 Database servers

Table 12-3 shows the operating systems and versions that WebSphere Application Server V6
supports.

Table 12-3 WebSphere Application Server and operating systems

Operating Systems Versions

Windows Windows 2000 Advanced Server with SP4,
Windows 2003 Server

AIX AIX 5.1 Maintenance Level 5100-05
AIX 5.2 Maintenance Level 5200-02,
5200-03

Sun Solaris Solaris 8 with the latest patch Cluster
Solaris 9 with the latest patch Cluster

HP-UX HP-UX 11i v1 with the latest Quality Pack

Linux (Intel) Linux (Intel) Red Hat Linux Enterprise 3.0 Update
1
UnitedLinux 1.0 SP3, SuSE Linux Enterprise
Server 9.0

Linux (Power PC®) Red Hat Linux Enterprise 3.0 Update 1
UnitedLinux 1.0 SP3
SuSE Linux Enterprise Server 9.0

zLinux
(Supported for WebSphere Application
Server Network Deployment V6 only)

Red Hat Linux Enterprise 3.0 Update 1
UnitedLinux 1.0 SP3
SuSE Linux Enterprise Server 9.0

i5/OS® and OS/400® OS/400 5.3, 5.2

z/OS
(Supported for WebSphere Application
Server Network Deployment V6 only)

z/OS 1.6, 1.5, 1.4
z/OS.e 1.6, 1.5, 1.4

Databases Versions

IBM DB2 IBM DB2 Enterprise Server Edition 8.2, 8.1 with FP5
IBM DB2 Workgroup Server Edition 8.2, 8.1 with FP4a, FP5
IBM DB2 Information Integrator 8.2, 8.1 with FP5
IBM DB2 Connect 8.2, 8.1 with FP5
IBM DB2 Express 8.2, 8.1 with FP5
IBM DB2 for zSeries 8, 7
IBM DB2 for iSeries 5.3, 5.3

Cloudscape Cloudscape 5.1.6x

Oracle Oracle Standard/Enterprise Edition 10g Release 1 - 10.1.0.2
Oracle 9i Standard/Enterprise Edition Release 2 - 9.2.0.4
Oracle 8i Standard/Enterprise Edition Release 3 - 8.1.7.4
374 Powering SOA with IBM Data Servers

12.4 WebSphere Application Server V6 architecture

WebSphere Application Server is the implementation by IBM of the Java 2 Enterprise Edition
(J2EE) platform. It conforms to the J2EE 1.4 specification. WebSphere Application Server is
available in three unique packages that are designed to meet a wide range of client
requirements. This discussion centers on following topics:

� Architecture configurations
� z/OS base infrastructure

12.4.1 Architecture configurations

At the heart of each member of the WebSphere Application Server family is an application
server with essentially the same architectural structure. While the application server structure
is identical for WebSphere Application Server and Express, there are differences in licensing
terms, the development tool provided, and platform support. With WebSphere Application
Server and Express, you are limited to stand-alone application servers. Each stand-alone
application server provides a fully functional J2EE 1.4 environment. Network Deployment
adds additional elements that allow for more advanced topologies and that provide workload
management, scalability, high availability, and central management of multiple application
servers.

Stand-alone server configuration
Express, WebSphere Application Server, and Network Deployment all support a single
stand-alone server environment. However, with Express and WebSphere Application Server,
this is your only option. In a single stand-alone server environment, each application server
acts as a unique entity. An application server runs one or more J2EE applications and
provides the services that are required to run those applications.

Multiple stand-alone application servers can exist on a machine, either through independent
installations of the WebSphere Application Server code or through the creation of multiple
configuration profiles within one installation. However, there is no common management or
administration provided for multiple application servers. Stand-alone application servers do
not provide workload management or fail-over capabilities.

Figure 12-3 on page 376 shows an architectural overview of a stand-alone application server.

Sybase Sybase Adaptive Server Enterprise 12.5.1, 12.0.0.8

Microsoft SQL Server SQL Server Enterprise 2000 SP 3a

Informix Informix Dynamic Server 9.4, 9.3

Databases Versions
Chapter 12. WebSphere Application Server 375

Figure 12-3 Stand-alone server WebSphere Application Server architecture

Distributed server configuration
With Network Deployment, you can build a distributed server configuration, which enables
central administration, workload management, and fail-over. One or more application servers
are federated (integrated) into a cell and managed by a deployment manager. The application
servers can reside on the same machine as the deployment manager or on multiple separate
machines. Administration and management is done centrally from the administration
interfaces via the deployment manager.

With this configuration, you can create multiple application servers to run unique sets of
applications, and you can manage these servers from a central location. However, more
importantly, you can cluster application servers for workload management and fail-over
capabilities. Applications installed to the cluster are replicated across the application servers.
When one server fails, another server in the cluster can continue processing. Workload is
distributed among Web containers and Enterprise JavaBean (EJB) containers in a cluster
using a weighted round-robin scheme.

Figure 12-4 on page 377 illustrates the basic components of an application server in a
distributed server environment.

Stand-alone server WAS architecture
376 Powering SOA with IBM Data Servers

Figure 12-4 Distributed server environment architecture

Cells, nodes, and servers
Regardless of the configuration, the WebSphere Application Server is organized based on
the concept of cells, nodes, and servers. While all these elements are present in each
configuration, cells and nodes do not play an important role until you take advantage of the
features that are provided with Network Deployment.

Application servers
The application server is the primary runtime component in all configurations and is where
the application actually executes. All WebSphere Application Server configurations can have
one or more application servers. In the Express and WebSphere Application Server
configurations, each application server functions as a separate entity. There is no workload
distribution or common administration among application servers. With Network Deployment,
you can build a distributed server environment that consists of multiple application servers
that are maintained from a central administration point. In a distributed server environment,
application servers can be clustered for workload distribution. In WebSphere Application
Server for z/OS, a server may span multiple systems in a Parallel Sysplex®. Also A
representation of a server that is localized to a single z/OS operating system in a Parallel
Sysplex. There may be more than one instance of a given server in a single z/OS operating
system.

Distributed server environment architecture
Chapter 12. WebSphere Application Server 377

Nodes, node groups and node agents
A node is a logical grouping of server processes, managed by WebSphere, that share
common configuration and operational control. A node is associated with one physical
installation of WebSphere Application Server. In a stand-alone application server
configuration, there is only one node. With Network Deployment, you can configure multiple
nodes to be managed from one common administration server. In these centralized
management configurations, each node has a node agent that works with a deployment
manager to manage administration processes.

Node group is a new concept with V6. A node group is a grouping of nodes within a cell that
have similar capabilities. It validates that the node is capable of performing certain functions
before allowing them. For example, a cluster cannot contain both z/OS and non-z/OS nodes.
In this case, multiple node groups would be defined, one for the z/OS nodes and one for the
non-z/OS nodes. A DefaultNodeGroup is created automatically and is based on the
deployment manager platform. For WebSphere Application Server for z/OS, a set of servers
within a Parallel Sysplex sharing a common WebSphere Application Server for z/OS and
OS/390 configuration database. Each server hosts a suite of applications and supports its
own operational characteristics. There may be more than one WebSphere Application Server
for z/OS and OS/390 node in a Parallel Sysplex, but a single z/OS system within the Parallel
Sysplex can support only server instances from a single node. This node group contains the
deployment manager and any new nodes with the same platform type.

Cells
A cell is a grouping of nodes into a single administrative domain. In the WebSphere
Application Server and Express configurations, a cell contains one node. That node can have
multiple servers, but the configuration files for each server are stored and maintained
individually.

In a distributed server configuration, a cell can consist of multiple nodes, all administered from
a single point. The configuration and application files for all nodes in the cell are centralized
into a cell master configuration repository. This centralized repository is managed by the
deployment manager process and synchronized out to local copies held on each of the
nodes.

12.4.2 z/OS base infrastructure

WebSphere Application Server, when configured in Network Deployment mode, can take full
advantage of the underlying z/OS Parallel Sysplex and Workload Manager capabilities to
provide for fully available and scalable infrastructures. If you are to build a WebSphere
Application Server infrastructure that is scalable and highly available, then the underlying
z/OS infrastructure and Enterprise Integration Subsystems (EIS) also need to be scalable
and highly available. On z/OS this means making full and redundant use of Parallel Sysplex
technology. The Parallel Sysplex should be set up with at least two LPARs to provide
redundancy for fail-over situations. Each aspect of the Parallel Sysplex architecture should
contain redundancy. This includes the Couple DataSets, Coupling Facilities, Coupling Facility
structures and Coupling Facility Links.

All subsystems connected to the WebSphere Application Server infrastructure should also be
configured with redundancy. This can be achieved by creating redundant subsystem servers
on different LPARs or by configuring the subsystems as sysplex-aware. Sysplex-aware
subsystems, such as DB2 in Data Sharing Mode, CICS in a CICSplex configuration, and
WebSphere MQ using Shared Queues, can take advantage of z/OS advanced workload
management concepts, as well as providing availability during fail-over situations.
378 Powering SOA with IBM Data Servers

Figure 12-5 on page 379 shows a simple application server cluster configured over two
LPARs in a sysplex. If one of these LPARs were to go down, the cluster could still process
requests through the remaining server clone.

Figure 12-5 WebSphere Application Server cluster utilizing the zSeries infrastructure

12.5 Web services

Web services are self-contained, modular applications that can be described, published,
located, and invoked over a network. WebSphere Application Server can act as both a Web
service provider and as a requester. As a provider, it hosts Web services that are published
for use by clients. As a requester, it hosts applications that invoke Web services from other
locations.

WebSphere Application Server supports SOAP-based Web service hosting and invocation.
Table 12-4 shows details about WebSphere Application Server Web service support.

Table 12-4 WebSphere Application Server Web service support

WAS cluster utilizing the zSeries infrastructure

Web service components WebSphere Application Server
Express and WebSphere
Application Server

WebSphere Application
Server Network
Deployment

Web services support Yes Yes
Chapter 12. WebSphere Application Server 379

The Web services support includes the following:

� Web Services Description Language (WSDL), an XML-based description language that
provides a way to catalog and describe services. It describes the interface of Web
services (parameters and result), the binding (SOAP, EJB), and the implementation
location.

� Universal Discovery Description and Integration (UDDI), a global, platform-independent,
open framework to enable businesses to discover each other, define their interaction, and
share information in a global registry. UDDI support in WebSphere Application Server V6
includes UDDI V3 APIs, some UDDI V1 and V2 APIs, UDDI V3 client for Java, and
UDDI4J for compatibility with UDDI V2 registries. It also provides a UDDI V3 Registry, that
is integrated in WebSphere Application Server.

� Simple Object Access Protocol (SOAP), a lightweight protocol for exchange of information
in a decentralized, distributed environment.

� Extensible Markup Language (XML), which provides a common language for exchanging
information.

� JAX-RPC (JSR-101), which provides the core programming model and bindings for
developing and deploying Web services on the Java platform. It is a Java API for
XML-based RPC and supports JavaBeans and enterprise beans as Web service
providers.

� Enterprise Web services (JSR-109), which adds EJBs and XML deployment descriptors to
JSR-101.

� WS-Security, the specification that covers a standard set of SOAP extensions that can be
used when building secure Web services to provide integrity and confidentiality. It is
designed to be open to other security models, including PKI, Kerberos, and SSL.
WS-Security provides support for multiple security tokens, multiple signature formats,
multiple trust domains, and multiple encryption technologies. It includes security token
propagation, message integrity, and message confidentiality. The specification is
proposed by IBM, Microsoft, and VeriSign for review and evaluation. In the future, it will
replace existing Web services security specifications from IBM and Microsoft including
SOAP Security Extensions (SOAP-SEC), Microsoft's WS-Security and WS-License, as
well as security token and encryption documents from IBM.

� JAXR, an API that standardizes access to Web services registries from within Java. The
current JAXR version, 1.0, defines access to ebXML and UDDI V2 registries. WebSphere
Application Server provides JAXR level 0 support, meaning it supports UDDI registries.

� JAXR does not map precisely to UDDI. For a precise API mapping to UDDI V2, IBM
provides UDDI4J and IBM Java Client for UDDI v3.

� SAAJ, the SOAP with Attachments API for Java (SAAJ) defines a standard for sending
XML documents over the Internet from the Java platform.

Private UDDI v3 Registry Yes Yes

Web Services Gateway No Yes

Enterprise Web services Yes Yes

Web service components WebSphere Application Server
Express and WebSphere
Application Server

WebSphere Application
Server Network
Deployment
380 Powering SOA with IBM Data Servers

12.5.1 Web Services Gateway

The Web Services Gateway bridges the gap between Internet and intranet environments
during Web service invocations. The gateway builds upon the Web services Definition
Language (WSDL) and the Web Services Invocation Framework (WSIF) for deployment and
invocation.

With V6, the Web Services Gateway is fully integrated into the integration service
technologies which provides the runtime. The administration is done directly from the
WebSphere administrative console.

The primary function of the Web Services Gateway is to map an existing WSDL-defined Web
service (target service) to a new service (gateway service) that is offered by the gateway to
others. The gateway thus acts as a proxy. Each target service, whether internal or external is
available at a service integration bus destination.

Exposing internal Web services to the outside world
Web services hosted internally and made available through the service integration bus are
called inbound services. Inbound services are associated with a service destination. Service
requests and responses are passed to the service through an endpoint listener and
associated inbound port.

From the gateway’s point of view, the inbound service is the target service. To expose the
target service for outside consumption, the gateway takes the WSDL file for the inbound
service and generates a new WSDL file that can be shared with outside requestors. The
interface described in the WSDL is exactly the same, but the service endpoint is changed to
the gateway, which is now the official endpoint for the service client.

Figure 12-6 diagrams how a Web service is exposed to the outside world.
Chapter 12. WebSphere Application Server 381

Figure 12-6 Exposing Web services through the gateway

Externally hosted Web services
A Web service that is hosted externally and made available through the service integration
bus is called an outbound service. To configure an externally-hosted service for a bus, you
first associate it with a service destination, then you configure one or more port destinations
(one for each type of binding, for example SOAP over HTTP or SOAP over JMS) through
which service requests and responses are passed to the external service.

From the gateway’s point of view, the outbound service is the target service. Mapping a
gateway service to the target service will allow internal service requestors invoke the service
as though it were running on the gateway. Again, a new WSDL is generated by the gateway
showing the same interface but naming the gateway as service provider rather than the real
internal server. All requests to the gateway service are rerouted to the actual implementation
specified in the original WSDL.

Of course, every client could access external Web services by traditional means, but if you
add the gateway as an additional layer in between, clients do not have to change anything if
the service implementor changes. This scenario is very similar to the illustration in
Figure 12-6 on page 382, with the difference that the Web service implementation is located
at a site on the Internet.

Exposing Web services through the gateway
382 Powering SOA with IBM Data Servers

UDDI publication and lookup
The gateway facilitates working with UDDI registries. As you map a service for external
consumption using the gateway, you can publish the exported WSDL in the UDDI registry.
When the services in the gateway are modified, the UDDI registry is updated with the latest
changes.

12.5.2 Service integration bus

The service integration bus provides the communication infrastructure for messaging and
service-oriented applications, thus unifying this support into a common component. The
service integration bus provides a JMS 1.1 compliant JMS provider for reliable message
transport and has the capability of intermediary logic to intelligently adapt message flow in the
network. It also supports the attachment of Web services requestors and providers.

The service integration bus capabilities have been fully integrated within WebSphere
Application Server, enabling it to take advantage of WebSphere security, administration,
performance monitoring, trace capabilities, and problem determination tools.

The service integration bus is often referred to as just a bus. When used to host JMS
applications, it is also often referred to as a messaging bus.

Figure 12-7 on page 384 illustrates the service integration bus and how it fits into the larger
picture of an Enterprise Service Bus (ESB).
Chapter 12. WebSphere Application Server 383

Figure 12-7 Enterprise Service Bus

A service integration bus consists of the following:

� Bus members

Application servers or clusters that have been added to the bus.

� Messaging engine

The application server or cluster component that manages bus resources. When a bus
member is defined, a messaging engine is automatically created on the application server
or cluster. The messaging engine provides a connection point for clients to produce or
consume messages from.

An application server will have one messaging engine per bus it is a member of. A cluster
will have at least one messaging engine per bus and can have more. In this case the
cluster owns the messaging engine(s) and determines on which application server(s) they
will run.

� Destinations

The place within the bus that applications attach to exchange messages. Destinations can
represent Web service endpoints, messaging point-to-point queues, or messaging
publish/subscribe topics. Destinations are created on a bus and hosted on a messaging
engine.

The Enterprise Service Bus
384 Powering SOA with IBM Data Servers

� Message store

Each messaging engine uses a set of tables in a data store (JDBC database) to hold
information such as messages, subscription information, and transaction states.
Messaging engines can share a database, each using its own set of tables. The message
store can be backed by any JDBC database supported by WebSphere Application Server.

12.5.3 Summary

In this chapter, we introduced the IBM WebSphere Application Server products. We talked
about the products in general, basic configurations and provided an overview of the Web
services-specific product features.

We use most of the Web services-specific product functions in the sample applications that
we develop in this book.

More information
The WebSphere family of products are regularly updated to cope with a business
environment that changes at a high pace. Therefore, the Internet represents one of the best
sources of up-to-date information.

For information about the IBM WebSphere family of products, refer to:

http://www.ibm.com/software/websphere/

Sources of additional information about particular products can be found at the end of the
corresponding chapters.
Chapter 12. WebSphere Application Server 385

http://www.ibm.com/software/websphere/

386 Powering SOA with IBM Data Servers

Chapter 13. WebSphere Information Server

Information Services are a critical part of an enterprise’s overall service-oriented architecture.
In this chapter we introduce IBM WebSphere Information Server which is the product for the
functions required to integrate, enrich and deliver information you can trust for key business
initiatives. With rich functionality, broad connectivity to heterogeneous sources, and unified
metadata, it provides a strong foundation for an enterprise information architecture.

This chapter provides these topics:

� Information as a service
� A closer look at information services
� Introducing the IBM WebSphere Information Server
� WebSphere Information Services Director architecture

13
© Copyright IBM Corp. 2006. All rights reserved. 387

13.1 Information as a service

In large organizations it is inevitable that different parts of the enterprise use different
information management systems to store and search their critical data. Competition,
evolving technology, mergers, acquisitions, departmental initiatives, product capabilities and
application requirements all contribute to an unwieldy set of systems, each carrying
overlapping information managed using various technologies and data formats. As these
information systems become more complex, they become more difficult to change and
increasingly expensive to maintain or develop.

SOA principles are being applied to many types of system infrastructure to manage
interactions among people, processes and information. In the realm of enterprise information
management, SOA principles are being applied to the way information is created and
distributed throughout the organization. An Information Service is a type of service that allows
the managers of shared information assets, such as customer addresses or product
descriptions, a consistent, auditable and secure way to share this asset while maintaining
control over how it is used. For the service consumer, the Information Service is a trusted
information source provisioned by people who understand the meaning of the data and have
responsibility for maintaining it. By separating the interface from the implementation, service
providers are free to change how and where the data is produced and managed internally.

13.2 A closer look at information services

Since information is at the core of just about everything in business processing, how do you
tell an information service from a process service that uses data or a partner service that
exchanges data within an external application? While many of these services involve
providing data to the applications, many of the services discussed in the previous section are
themselves consumers of information services. Information services focus on the unified
management of data from diverse data sources.

Invoking an information service is one of many ways of programmatically accessing data. It is
not appropriate for all types of data access. A typical Information Service will have one or
more the following characteristics:

� Require pre-processing to prepare the data – The difference between data and
information is that information is data that has been prepared for a specific purpose.
Information in an On Demand world must be assembled from preprocessed ingredients.
Customers need to assemble key Information Services from data that has been prepared
for that purpose. Data preparation might include aggregation, synchronization,
standardization, de duplication, reformatting, conversion, and so on. These combinations
of data preparation tasks form data integration patterns. Choosing the right pattern
depends on the amounts of data, where the data came from, when it needs to be
delivered and in what form.

� Integrate multiple data sources – Many business processes require information that
results from processing large sets of data, often from multiple sources. For example, if you
purchase an item online from an e-business, you notice that every interaction you have
with the site carries the information about what you have bought, where you live, what you
have looked at in the past, things you are likely to want in the future. While a business
transaction such as a single purchase might seem a simple database transaction, the
context for that transaction is much broader. Bringing together data to provide this context
can be a data intensive process that calls for specialized data management tools.

� Provide virtualized views –Virtualization provides transparency that masks the differences,
idiosyncrasies and implementations of underlying data sources from users. Ideally, it
388 Powering SOA with IBM Data Servers

allows data from multiple heterogeneous sources to appear to the user as a single system.
The service consumer does not have to be aware of where the data is stored (location
transparency), what language or programming interface is supported by the data source
(invocation transparency), if SQL is used, what dialect of SQL the source supports (dialect
transparency), how the data is physically stored, whether it is partitioned and/or replicated
(physical data independence, fragmentation and replication transparency) or what
networking protocols are used (network transparency). The user should see a single
uniform interface, complete with a single set of error codes (error code transparency).

� Address a repeatable need – One of the chief tenets of service orientation is reusability. To
be successful, Information Services must be at the right level of granularity to encapsulate
an information need that is repeatable. An information service should be designed such
that it is not so specific that it is only used in a certain circumstance or so general that the
result set requires significant additional programming by the service consumer to be
useful.

Most of the capabilities of an information service can be developed by integrating multiple
point products and developing custom code. The key advantage of the IBM Information
Server is that it provides these capabilities through point and click assembly rather than
coding. It allows users to write applications as though all of the data were in a single
database, when, in fact, the data may be stored in a heterogeneous collection of data
sources. It also eliminates the need to bind application logic to data implementation that is
likely to change with organizational growth/acquisition and/or new business challenges.

13.3 Introducing the IBM WebSphere Information Server

IBM WebSphere Information Server is software offering designed to integrate, enrich and
deliver information for key business initiatives. With rich functionality, broad connectivity to
heterogeneous sources, and unified metadata, it provides a strong foundation for an
enterprise information architecture. By providing a SOA interface to these capabilities the
Information Server gives users real-time, access to integrated business information across
and beyond the enterprise by publishing reusable services that represent valuable business
information. As shown in Figure 1, the Information Server leverages many data-centric
operations to prepare the data and deliver it as an Information Service. These operations
include the ability to:

1. CONNECT to any data or content, wherever it resides.It provides direct, native access to
relevant information sources

2. UNDERSTAND and analyze information, including its meanings, relationships and
lineage.

3. CLEANSE information to ensure its quality and consistency.

4. TRANSFORM information to provide enrichment and tailoring for its specific purposes.

5. FEDERATE information to provide a unified view to people, processes, and applications.

Figure 13-1 on page 390 illustrates the steps for turning the data into information:
Chapter 13. WebSphere Information Server 389

Figure 13-1 IBM WebSphere Information Server turns data into information

13.3.1 Unified SOA deployment

The IBM Information Server delivers information services using an SOA framework called the
IBM WebSphere Information Services Director (WISD). This product module provides a
seamless SOA integration platform allowing organizations to unlock information directly from
multiple disparate data and content sources. The WISD provides the following capabilities:

� Facilitates re-use - By ensuring consistent definitions, packaging, and rules applied to the
data, the WebSphere Information Services Director, provides information services that
can be reused easily across processes, and maintained independently to make the
business more flexible.

� Productivity aligned with how businesses are structured – The information services
are maintained by the people who know and understand the information best, allowing the
process developers to focus their efforts, knowing they have the best available information.

� Facilitates governance and control – By centralizing control and management of
information services within the WebSphere Information Services Director, the WebSphere
Information Server’s integrated service monitoring and linked metadata provide strong
control, visibility, and traceability of how information is being utilized across the
organization.

� Open and Standards-based – The WebSphere Information Services Director is deployed
on a J2EE-based foundation framework that provides flexible, distributable and
configurable interconnections among the many parts of the architecture through accepted
SOA standards. It provides the unique ability to publish services using the following
bindings:

– Web services – Any XML Web Service-compliant application can invoke an Information
Service as a Web service.

– SOAP over JMS – In a messaging environment, the Information Services Director can
automatically generate an asynchronous JMS queue listener (message-driven bean)
and route incoming messages into Information Services.

– EJB – For Java-centric development, the Information Services Director can generate a
J2EE-compliant EJB (stateless session bean) where each Information Service is
instantiated as a separate synchronous EJB method call.
390 Powering SOA with IBM Data Servers

� Infrastructure services delivered with the IBM WebSphere Information Services Director
include:

– Integrated Metadata Services
– Service catalog
– Logging services
– Security services
– Load balancing and availability services
– Reporting services
– Installation and configuration

13.4 WebSphere Information Services Director architecture

The WebSphere Information Services Director (WISD) is the critical product module that
allows a user to service-enable information management tasks created within the WebSphere
Information Server. Its extensible architecture allows the WISD to service-enable DB2 and
other products not strictly part of the Information Server product offering. In this section we
shall review this architecture.

13.4.1 Design concepts

Rather than hand-coding each service, WISD’s powerful point and click graphical interface
enables rapid deployment of information services. To better understand how the Information
Services are created you must first understand how Information Services are organized.
Figure 13-2 shows the object hierarchy that consists of Projects, Applications, Services and
Operations which define how services are designed and deployed.

Figure 13-2 Information Services are organized into hierarchies

The following core objects describe how Information Services are organized:

� Operations – An operation is a unit of work that is done on behalf of the Information
Service. For example, invoking a federated query using the Federation Server or an ETL
job using DataStage is an operation. The designer needs to link an operation, to a
particular behavior (an implementation). This implementation is delegated to one of the
operation providers available (DataStage, SQL Federation, and so on).
Chapter 13. WebSphere Information Server 391

� Services – A service is what an external user will see after deployment. A Web Service
Description Language (WSDL) document is generated for each service (when using the
Web Service binding) that is part of a deployed application and the WSDL documents are
available through the service catalog.

� Applications (Service Groups) – An application object provides a way of grouping
information services for deployment. It allows all the services to be deployed together and
can be managed as a unit. For example, an application object might have 100 services
that are commonly used together. An administrator can start or stop all of the services
contained within the application definition. The design environment provides some
information about applications to the user (is it deployed, has it been changed since
deployment) and also allows users to perform some level of validation.

� Projects - A Project is an organization and collaboration artifact. It exists only in the
design environment (not at runtime). This is the place where users and permissions are
defined for all the applications created in the project. A project has a dashboard that
contains important information about it. A project can be exported (to an XML document)
and imported to another design environment. When importing/exporting, a subset of the
entire project can be specified.

13.4.2 Product architecture

Figure 13-3 shows the components that make up the WISD.

Figure 13-3 WebSphere Information Services Director Architecture
392 Powering SOA with IBM Data Servers

These components include:

� Infrastructure Services – The WISD is deployed on a J2EE-based Service Backbone that
provides flexible, distributable and configurable interconnections among the many parts of
the architecture. These infrastructure services include:

– Logging Services – Provide a central place for a user to record service events. Logs
go into the common repository with each service provider defining relevant logging
categories for that service. Configurations determine what categories of logging
messages are actually saved in the repository.

– Security Services – Support role-based authentication of users, access-control
services and encryption appropriate for compliance with many privacy and security
regulations.

– Service Catalog – Provides users with the means search and browse services by
category and to view descriptions available to be defined by the WISD.

– Load balancing and availability services – Support routing requests to multiple
servers to provide optimal loading and a high availability environment that can recover
from any individual server failure.

� Operation Provider Handlers – As described in the object model, each service is
performed by defining operations performed by an Operations Provider. As shown in
Figure 13-3 on page 392, ISD agents contain handlers to process service requests from
the following operations providers:

– WebSphere DataStage – Transforms data of any complexity and delivers it to target
applications. WebSphere DataStage provides built-in connectivity for easy access to
any source or target system, advanced development tools to define and deploy
transformation integration processes and a scalable platform to process massive
volumes of data.

– WebSphere DataStage TX – Extends the data transformation capabilities of
WebSphere DataStage by providing data synchronization of complex, hierarchical data
formats across transactional and operational environments. This functionality is
essential in many industries that rely on specific document formats such as EDI, HL7
for health care and the financial services SWIFT formats for conducting business with
customers, suppliers and partners across the global business environment.

– WebSphere QualityStage – Prepares your data for integration by providing a powerful
framework for developing and deploying data matching, standardization, enrichment
and survival operations, simplifying the process of integrating similar data from multiple
sources.

– IBM DB2 UDB – Provides a native interface to IBM’s flagship relational database
system for development and deployment of critical enterprise data.

– WebSphere Federation Server – The Federation server presents a single virtual view
of the data that may exist in many forms: structured and unstructured; mainframe and
distributed; public and private. This data may reside in diverse source systems (such
as Oracle databases, enterprise applications, Microsoft spreadsheets, flat files, the
Web, news groups, and more) and be distributed across a variety of operating
environments (such as Windows, Linux, UNIX and z/OS)

� Service Bindings – Service consumers are able to access Information Services using
multiple technologies for program interoperability (bindings). The WISD allows the same
service to support multiple protocol bindings, all defined within the WSDL file. This
improves the utility of services and therefore increases the likelihood of reuse and
adoption across the enterprise. The WISD provides the unique ability to publish the same
service using the following bindings including:
Chapter 13. WebSphere Information Server 393

– SOAP over HTTP (Web services) – Any XML Web service–compliant application can
invoke a Information Service as a Web service. These Web services support the
generation of “literal document-style” and “SOAP-encoded RPC-style” Web services.

– SOAP over JMS – In a message queue environment, the Information Server can
automatically generate an asynchronous JMS queue listener (message-driven bean)
and route incoming SOAP messages into Information Services. As an option, it can
adapt the output of an Information Service into a SOAP message that can be posted to
one or more JMS queues or topics.

– EJB – For Java-centric development, the Information Server can generate a
J2EE-compliant EJB (stateless session bean) where each Information Service is
instantiated as a separate synchronous EJB method call.

– Service Component Architecture (SCA) – This future binding provides a client
programming model and consistent way of describing components as services
available over different protocols. SCA is supported by IBM Enterprise Service Bus
product.

13.4.3 Conclusion

IBM WebSphere Information Server delivers all of the functions required to integrate, enrich
and deliver information you can trust for key business initiatives. With rich functionality, broad
connectivity to heterogeneous sources, and unified metadata, it provides a strong foundation
for an enterprise information architecture.

Information Services are a critical part of an enterprise’s overall service-oriented architecture.
The WebSphere Information Services Director is the component of the WebSphere
Information Server that enables Web services. Users derive three main business benefits
from the WebSphere Information Server:

� Reducing cost – By reproposing existing data, every request to see data in a different
format or combined in a different way does not require a new database. Furthermore,
applications are more resilient to change because structure, location or size of the
databases and data files can change without impacting production applications.

� Saving time – Reusable services can be created that transparently process data from
multiple sources in the background. By using preexisting components, time is saved due
to assembly rather than programming.

� Controlling access – An SOA based framework for Information Services allows users to
factor complex processing into single shared information services that improve
accessibility while ensuring consistency in the way the information is managed.

With the capabilities of the WebSphere Information Server, On Demand businesses can
leverage the power of SOA to deliver Information as a Service.

For more information about Information Services and the IBM WebSphere Information Server

refer to:

http://www-306.ibm.com/software/data/integration/info_server/
394 Powering SOA with IBM Data Servers

http://www-306.ibm.com/software/data/integration/info_server/

Part 5 Assembling and
developing a
scenario

In Part 5 we show how to implement an SOA scenario involving the data servers. We start
from the business case and show how to quickly develop SOA access services.

This part includes the following chapters:

� Chapter 14, “SOA scenario” on page 397
� Chapter 15, “Developing SOA access services” on page 401
� Chapter 16, “PHP client design” on page 507

We used these IBM tools to develop the RAD/WID/Developers Workbench:

� Provider

– Develop Web services using Data Access Objects
– Develop DADx/WORF using RAD

� Consumer

– Develop Portlets as the SOA user interface
– SOAP UDF/SOAP SP as consumer

� Developing information services

– Information Server

Part 5
© Copyright IBM Corp. 2006. All rights reserved. 395

396 Powering SOA with IBM Data Servers

Chapter 14. SOA scenario

This chapter describes a typical problem and strategy space for a data server enterprise
customer and illustrates the value of an incremental SOA solution using a real scenario.

This chapter provides these topics:

� Problem space
� Strategy space
� Solution space usage scenario

The implementation of most of the scenario is described in Chapter 15, “Developing SOA
access services” on page 401.

14
© Copyright IBM Corp. 2006. All rights reserved. 397

14.1 Problem space

ITSO bank (however, a fictional name) was established in the 1970's as a savings bank. It
provided checking accounts, saving accounts and mortgage accounts. Over time, the
account data was moved to DB2 for z/OS to make it more accessible for reporting purposes.
However, the customer record that contains address information still resides in an IMS
database. There exists a COBOL/DLI program that, given a customer number, can return all
billing and mailing addresses.

For the core banking application there existed COBOL/SQL programs to list all the account
IDs for a customer number, get the account details for an account ID and create an account
for a customer number. This account can either be a checking, savings or mortgage account.
In order to make these accessible to remote programs, these COBOL programs have been
converted into three stored procedures.

During the 1990's the bank was trying to diversify its portfolio and bought a smaller bank that
was focussing on personal lines of credits, issuing credit cards. This company uses Informix
as a database and 4GL applications to manage credit card accounts. There exist 4GL
applications to list accounts (credit card numbers) for a customer number, get detailed
account info for a credit card number. The customer record that existed in Informix was
merged into the IMS-based customer record.

Figure 14-1 Project ISOA

The bank interacts with two external services. It can check FICO scores (a number from 450
to 850) for a social security number associated with a customer number through calling a
398 Powering SOA with IBM Data Servers

CICS transaction. It get's billed for that use, so the bank wants to minimize using that service.
It also receives currency exchange rates into a table through a proprietary interface and has
written a simple SQL stored procedure that accepts the amount, currency, date and target
currency as a parameter and has an output parameter for the amount in the target currency.

Very recently, it has implemented DB2 Content Manager from an IBM partner, where all
incoming mail, returned checks, and so on is scanned and associated with a customer
number. In the branch offices, the Content Manager portlets are used to view documents for a
customer. Security information for bank employees (user ID and credentials) is stored in a
central LDAP directory which is used with Content Manager.

14.2 Strategy space

The ITSO Bank has heard about SOA and wants to understand how it can use SOA to tie
everything together and get new value out of it's existing services without having to re-write,
re-invent everything that is already working well. They embark on a project internally called
ITSOA that will provide mortgage banking services to their customers on the internet. Their
strategy is to make their existing functions available as services, so that individual customers
on the Web can use it, but also so that mortgage brokers can programmatically access it.

Their CTO recommends to implement HTTP-based Web services that use SSL as the
transport layer and basic authentication. The credentials to use services are stored in the
LDAP directory (service userids). To achieve highest interoperability, the CTO recommend a
document messaging style using literal serialization mechanism. Once a dominant standard
for message-level Web service security has emerged, the CTO will look into adopting that to
have security flow with the Web service through the Enterprise service bus eventually.

14.3 Solution space usage scenario

1. Customer logs on to the customer portal application of his bank using his customer
number and a password.

The self-banking application has two portlets. One portlet that shows all accounts
(checking, saving, mortgage, credit cards and their details) as well as the current FICO
score. The second portlet makes personalized offers to the customer.

2. The FICO is stored in the Viper database along with a time stamp when it was last
updated. If the update was greater than 1 month, the credit bureau Web service (see
additional material) is called for that customers SSID which is retrieved from the customer
record Web service method that retrieves the customer details.

3. While the customer is looking at his accounts, a Web service call with the customer
number is issued asynchronously to the information server to gather mortgage offerings
for the customer and show them in the offering portlet. IBM Information server is used to
gather, clean, consolidate offering data from multiple sources within the bank
infrastructure (including the credit account, core banking system as well as the FICO
score in the Viper database). The information server then returns a number of mortgage
account offerings. It also accesses the IMS address data to determine where the person
lives and offers a number of mortgages in and around the median house price for the area
code.

 $400 000 5%
 $600 000 6%
Chapter 14. SOA scenario 399

4. The customer is interested and clicks on one link. A form is displayed and a Web service
call from the CRM systems provider goes to the IMS customer record of the bank to
retrieve address information and prefills that form. If the CRM system is unavailable, the
address data is used from the local database table, if it is available, the local table is
refreshed.

5. The customer reviews and then clicks on the Apply button. The finance service provider
Web service is called to create a new account.

Also an approved mortgage approval form is added to content manager and the customer
gets a message on the portlet saying Your mortgage application has been approved,
we will mail you further information shortly.

6. On the regular Bank Web-site, the ITSO bank also wants to provide a currency conversion
calculator because the travel season is starting. Since currency conversion is available
through a stored procedure on z/OS, they ask one of the PHP savvy interns to prototype a
solution for them.

What have we demonstrated:

� IMS, CICS, DB2 for z/OS, IDS access services
� Content Manager client
� Portlets that call Web services and access DB2 Viper data, Viper SOAP WS consumer.
400 Powering SOA with IBM Data Servers

Chapter 15. Developing SOA access services

This chapter contains a number of sample scenarios which demonstrate the SOA capabilities
of the IBM data servers (DB2 for z/OS, DB2 for Linux, UNIX and Windows, Informix Dynamic
Server). We cover different aspects of SOA, like exposing data and database functions as
Web Services, or consuming Web Services within data servers. But we also include sample
scenarios which put the different pieces together, and provide a single Web portal interface
aggregating the different SOA components and services. We use the IBM Rational
Application Developer 6.0 to implement the sample scenarios because of its features it
relieves the you from performing many tedious configuration and setup tasks, and allows you
concentrate on the implementation of the actual solution.

In this chapter, you will develop the following sample scenarios:

� Scenario exposing DB2 business logic as Web Services
� Scenario using DB2 as Web Service consumer
� Scenario exposing I4GL business logic as Web services
� “Scenario aggregating services as portlets”

15
© Copyright IBM Corp. 2006. All rights reserved. 401

15.1 Scenario exposing DB2 business logic as Web Services

This scenario illustrates the usage of DB2 technologies to easily expose business logic, which
is contained in stored procedures executed in a DB2 database as Web Services.

15.1.1 Overview

The ITSO Bank company stores all of its accounts data in a DB2 for z/OS database. Most
programs and jobs operating on this database are written in COBOL. To allow remote
programs to access the database, shared COBOL business logic has been encapsulated into
stored procedures.

To integrate this DB2 system into our new SOA environment, the business logic needs to be
exposed as Web Services. The usage of stored procedures as interface to the business logic
is already a first step towards a service-oriented architecture. The most cost-effective way to
enable the system for SOA is to create a one-to-one mapping of existing stored procedures to
Web Services as shown in Figure 15-1 (allow access to each stored procedure using a single
Web Service operation).

Figure 15-1 ITSO Bank account management with DB2 for z/OS

We can follow a number of different approaches to expose the existing stored procedures. In
this scenario we focus on two representative approaches, and compare the advantages and
disadvantages of each of them:

� Show how to create a WORF DADX group which allows configurable access to stored
procedures.

� Create a Java bean-based Web Service that calls the DB2 stored procedures through
JDBC.

Both approaches have in common that they need to run within a J2EE environment (the first
one because WORF is based on a Java implementation of SOAP, and the second one
because it is a native J2EE application). We use the IBM Rational Application Developer to

Stored Procedures
(COBOL/SQL)

DB2 for z/OS

Database objects

W
eb

 S
er

vi
ce

In
te

rfa
ce
402 Powering SOA with IBM Data Servers

create the Web Services. This tool provides wizard-based support which speeds up
application development.

Use Cases
The DB2 for z/OS database containing the accounting data of the ITSO Bank company is
named DB2ACCTD. It offers a complete catalog of stored procedures. Showing how to
expose the complete catalog as services is beyond the scope of our book, so we’re going to
perform this action only for a few selected procedures which are part of our overall scenario.
These procedures are as follows:

LSTACNBR Returns a list of all accounts of a customer (providing an existing
customer number).

GETMRACD Returns the attributes (mortgage amount, interest rate, payments
balance, and so on) of a given mortgage account.

CRTMRACT Creates a new mortgage account for an existing customer.

The signatures of these stored procedures are shown in Example 15-1.

Example 15-1 Mortgage account stored procedure signatures

-- SP: LSTACNBR
-- Purpose: Returns a list of account numbers for a given customer number.
-- Parameters: IN CUSTNUM Customer number
-- OUT PSQLCODE Returned SQL code
-- OUT PSQLSTATE Returned SQL state
-- OUT PSQLERRMC Returned error message
-- Result set: ACCTNUM CHAR(10) Account number
-- ACCTTYPE CHAR(1) Account type: S=Savings, C=Credit, M=Mortgage
CREATE PROCEDURE ACCTDB.LSTACNBR
(
 IN CUSTNUM CHAR(10)
,OUT PSQLCODE INTEGER
,OUT PSQLSTATE CHAR(5)
,OUT PSQLERRMC VARCHAR(250)
)
DYNAMIC RESULT SETS 1
EXTERNAL NAME LSTACNBR
LANGUAGE COBOL
PARAMETER STYLE GENERAL
MODIFIES SQL DATA
NO DBINFO
WLM ENVIRONMENT DB2ACCTD
;

-- SP: GETMRACT
-- Purpose: Returns the attribute of a mortgage account.
-- Parameters: IN ACCTNUM Account number
-- OUT PSQLCODE Returned SQL code
-- OUT PSQLSTATE Returned SQL state
-- OUT PSQLERRMC Returned error message
-- Result set: CUSTNUM CHAR(10) Customer number
-- AMOUNT DEC(10,2)Mortgage amount
-- INTRATE DEC(4,2) Interest rate
-- LIFETIME DEC(3,0) Mortgage lifetime
-- OPENDATE DATE Open date of mortgage
Chapter 15. Developing SOA access services 403

-- PAYMENT DEC(10,2)Monthly mortgage payment
-- BALANCE DEC(10,2)Accumulated payments balance
CREATE PROCEDURE ACCTDB.GETMRACT
(
 IN ACCTNUM CHAR(10)
,OUT PSQLCODE INTEGER
,OUT PSQLSTATE CHAR(5)
,OUT PSQLERRMC VARCHAR(250)
)
DYNAMIC RESULT SETS 1
EXTERNAL NAME GETMRACT
LANGUAGE COBOL
PARAMETER STYLE GENERAL
MODIFIES SQL DATA
NO DBINFO
WLM ENVIRONMENT DB2ACCTD
;

-- SP: CRTMRACT
-- Purpose: Creates a new mortgage account with the given attributes, and
-- returns an account number.
-- Parameters: IN CUSTNUM CHAR(10) Customer number
-- IN AMOUNT DECIMAL Mortgage amount
-- IN INTRATE DECIMAL Interest rate
-- IN LIFETIME DECIMAL Mortgage lifetime
-- IN PAYMENT DECIMAL Monthly mortgage payment
-- OUT PSQLCODE Returned SQL code
-- OUT PSQLSTATE Returned SQL state
-- OUT PSQLERRMC Returned error message
-- Result set: ACCTNUM CHAR(10) (New) account number
CREATE PROCEDURE ACCTDB.CRTMRACT
(
 IN CUSTNUM CHAR(10)
,IN AMOUNT DECIMAL(10,2)
,IN INTRATE DECIMAL(4,2)
,IN LIFETIME DECIMAL(3,0)
,IN PAYMENT DECIMAL(10,2)
,OUT PSQLCODE INTEGER
,OUT PSQLSTATE CHAR(5)
,OUT PSQLERRMC VARCHAR(250)
)
DYNAMIC RESULT SETS 1
EXTERNAL NAME GETMRACT
LANGUAGE COBOL
PARAMETER STYLE GENERAL
MODIFIES SQL DATA
NO DBINFO
WLM ENVIRONMENT DB2ACCTD
;

15.1.2 Implementation of the Web Services using WORF

The DB2 Web Services Object Runtime Framework (WORF) has already been introduced in
6.3, “Web services object runtime framework (WORF)” on page 142 for DB2 for z/OS and in
404 Powering SOA with IBM Data Servers

7.2, “Web services provider” on page 170 for DB2 for Linux, UNIX and Windows. The
implementation of services and applications based on this framework is identical for both
database products. WORF incorporates many capabilities, like creating a WSDL based on
SQL statements, or storing and retrieving XML documents. It is especially applicable to our
scenario, having business logic defined in existing stored procedures which need to be
service-enabled without much development overhead.

WORF architecture
Before we can start going through the steps, we spend a few words about WORF concepts.
WORF is a Java Web application which runs in a J2EE container, and allows to expose SQL
statements and stored procedures as Web Services without requiring development effort.
The Web Services interfaces are defined by XML configuration files. The building blocks of
WORF are:

� A DADX file
� A DADX group configuration
� A J2EE Web application

Figure 15-2 shows the logical structure of a WORF-based application, positioning the building
blocks (it lists three DADX groups exemplarily, but actually any number of DADX groups can
be included within one application).

Figure 15-2 Example of the logical structure of a WORF-based J2EE Web application

DADX file
The concept and structure of a DADX file is explained in 6.3, “Web services object runtime
framework (WORF)” on page 142 and in 7.2, “Web services provider” on page 170. A DADX
file maps one or multiple SQL statements or stored procedures to Web Services operations,

J2EE Web Application
Web Deployment

Descriptor

DB2 database 1

WORF Java
libraries

DADX Group
definition file

DADX
file

DADX Group 1

DADX
fileDADX

file

DADX Group
definition file

DADX
file

DADX Group 2

DADX
fileDADX

file

DADX Group
definition file

DADX
file

DADX Group 3

DADX
fileDADX

file

DB2 database 2
Chapter 15. Developing SOA access services 405

that is, each SQL statement and each stored procedure map to exactly one Web Services
operation. WORF generates a single WSDL document from each DADX file contained in an
application.

DADX group
DADX files are combined into DADX groups, each group containing one or more DADX files.
Each DADX group has a file named group.properties which defines the properties of the
group. The most important property of a DADX group is the database connection information
(which means that all DADX files belonging to one group access the same DB2 database, as
demonstrated in Figure 15-2 on page 405). Another property specifies if the DADX Web
Services of this group use the RPC/encoded or document/literal SOAP encoding style (see
“SOAP messaging mechanisms” on page 56).

J2EE Web application
A WORF application is deployed as a J2EE Web application. Such an application contains
the WORF runtime environment, one or multiple DADX groups and their corresponding DADX
files. WORF supports different SOAP engines (supported engines in the WORF package
bundled with DB2 version 8.2 are IBM SOAP and Apache Axis 1.0), and the actual engine
used is selected on application level (by setting a parameter in the application’s Web
deployment descriptor). If you want to enable multiple databases for SOA and you have to
use different SOAP runtimes, create one WORF J2EE application for each SOAP runtime.

DB2 for Linux, UNIX and Windows comes with the Embedded Application Server, which can
also host WORF, but deployment and maintenance features are limited.So in order to use
WORF it is often required to use a separate server product. Any Application Server
supporting J2EE applications can be used, but it is recommended to use either Apache
Tomcat (http://tomcat.apache.org/) which is a cost-free open source product, or the IBM
WebSphere Application Server (WAS). We use WebSphere Application Server version 6 for
our examples.

For the development of the WORF example we use the IBM Rational Application Developer
(RAD), since this tool includes wizards for WORF-based applications. In our example we’re
going to create a J2EE application which is deployed to a WebSphere Application Server in
our production environment.

The following steps are shown in this scenario:

1. Create a database project for DB2ACCTD in RAD and import the database meta
information (RAD wizards use this meta information to automate many steps).

2. Create a J2EE Web application which contains the WORF runtime environment and the
DADX definitions.

3. Add a DADX group to the J2EE application and configure the access to the DB2ACCTD
database.

4. Create a DADX file which contains the mappings of our DB2 stored procedures to Web
Services operations.

5. Deploy the J2EE application into a WebSphere Application Server.

Import the DB2ACCTD database into a RAD database project
In our scenario the DB2ACCTD DB2 for z/OS database contains the ITSOBank accounting
system. If you want to go through the scenario yourself, you can find instructions to create the
DB2ACCTD database in Appendix E, “Additional material” on page 685.

We have to import the definition (we’re interested mainly in the stored procedures) of the
DB2ACCTD database into our RAD workspace. For this purpose, we create a database
406 Powering SOA with IBM Data Servers

http://tomcat.apache.org/

connection pointing to DB2ACCTD. Open the RAD tool and switch to the Data perspective
(Window → Open Perspective → Other → Data). Then open the context menu of the
Database Explorer view and select New connection to open the New Database Connection
wizard. At the first page, enter an arbitrary name identifying the database connection and
select Choose a database manager and JDBC driver. Change to the next page and enter
the connection attributes of the DB2ACCTD database (Figure 15-3).

Figure 15-3 Database connection details of DB2ACCTD in RAD

To check if the connection attributes are entered correctly, click Test Connection. Click
Finish to have the new connection created.

The next step is important: RAD asks you if the database metadata shall be copied to a
project folder. Confirm this question and enter a project name. Once the wizard finishes, the
Database Explorer view contains the new database connection and the Data Definition view
contains details (database objects like schemas, tables, views, stored procedures and
user-defined functions) about the DB2ACCTD database.

Create a dynamic Web project
The next step is to create a dynamic Web project which will contain the WORF libraries as
well as the XML configuration files specifying the Web Services interfaces to the stored
procedures of the DB2ACCTD.

Open the Rational Application Developer and switch to the Web perspective (Window →
Open Perspective → Other → Web). Select File → New → Dynamic Web Project and set
the project properties as shown in Figure 15-4 on page 408. Click Finish to create the
project.
Chapter 15. Developing SOA access services 407

Figure 15-4 Create Web project for WORF application

The new Web project is added to the Dynamic Web Projects folder in the Project Explorer
view. Also, a new EAR project named WORFAccountDBApp is added to the Enterprise
Applications folder.

Setup DADX group configuration
Select File → New → Other → Web Services → Web Services DADX Group
Configuration. A dialog comes up listing all Web projects. Select the WORFAccountDB
project and click Add group. Enter the name of the new group (see Figure 15-5) and click
OK. Select Finish on the next dialog. Since this is the first group added to this Web project,
the DADX group creation wizard performs the following actions:

� Adds the WORF JAR files to the project’s WEB-INF/lib folder.

� Creates a Web content folder named WORF, adding some WORF management pages.

� Adds the DADX group servlet and WORF management servlets to the Web deployment
descriptor (file WEB-INF/Web.xml).

� Creates a folder with the DADX group name and adds a group.properties file to this folder.

Figure 15-5 Add a new DADX group to project
408 Powering SOA with IBM Data Servers

If groups were added to the same project subsequently, only a new DADX group folder would
be added and a new servlet for this group would be included in the project’s Web.xml file.

As shown in Figure 15-5 on page 408, the wizard has an additional option to select the
version of the DADX Web Services provider (you can choose between 8.1 and 8.2). Since
version 8.1 only supports the Apache SOAP engine, whereas version 8.2 adds support for
the Apache Axis engine as well as for Dynamic Query Services, it is recommended to use the
second option. We do not go into the details of the Dynamic Query Services in this book.

Figure 15-6 shows the new DADX group in the Project Explorer view. The group creation
wizard created new folder groups.AccountGroup, and added the files group.properties and
namespacetable.nst to this folder. The second file is not important for our example (it is used
together with the XML Extender capabilities of WORF), but the property file has to be updated
with our database connection settings.

Figure 15-6 New DADX group in Project Explorer view

Open the group.properties file and set the properties dbDriver, dbURL, userID and
password (read “Setup DADX data source” on page 414 to learn more about WORF
database connectivity). The defaults of the other properties do not need to be changed. The
WORF documentation contains complete information about the properties.

Create DADX file with stored procedures operations
Once the DADX group configuration is finished, we continue with defining the DADX
operations for our stored procedures. The creation of the DADX file is to a large extent
automated.

Select File → New → Other → Web Services → DADX File to open the DADX file creation
wizard. On the first page of the wizard, select the correct project and DADX group and enter a
name for the new DADX file (Figure 15-7 on page 410).

Important: The version of the Rational Application Developer does not include support for
the DADX Web Services provider version 9 (which is part of DB2 Version 9.1). Future
versions of the RAD tool will include support for this version, so the dialogs and options
shown in this chapter are subject to change.
Chapter 15. Developing SOA access services 409

Figure 15-7 Enter name of new DADX file

The next wizard page shows all database objects contained in any of the database definitions
of the RAD workspace. Browse to the stored procedures of the DB2ACCTD database and
select all the procedures which are added to the DADX file (multiple selections are
supported). You can skip the following wizard page. The final wizard page lists all selected
stored procedures and corresponding operation names. Update the operation names to more
meaningful names as shown in Figure 15-8 and click Finish to complete this step.

Figure 15-8 Review and update DADX operation names

The wizard analyzes the stored procedure signatures to create the correct syntax in the
DADX file. It sets the <SQL_call> command and adds input/output parameter definitions. The
structure of the result sets of a stored procedure are not declared in the procedures interface,
so the wizard is not able to generate the <result_set_metadata> definitions, so they must be
added manually.

Example 15-2 on page 411 shows the DADX file after the result set information has been
added. The bold text marks the actual stored procedure calls; the remaining definitions define
the types and structure of the parameters and result sets.
410 Powering SOA with IBM Data Servers

Example 15-2 Generated DADX file

<?xml version="1.0" encoding="UTF-8"?>
<dadx:DADX xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xsi:schemaLocation="http://schemas.ibm.com/db2/dxx/dadx dadx.xsd">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 Maps the account management stored procedured to Web Services operations.
 </dadx:documentation>
 <dadx:result_set_metadata name="accountNumbersResult" rowName="accountNumber">
 <dadx:column name="ACCTNUM" type="CHAR" nullable="false" />
 <dadx:column name="ACCTTYPE" type="CHAR" nullable="false" />
 </dadx:result_set_metadata>
 <dadx:result_set_metadata name="createAccountResult"
 rowName="newAccountNumber">
 <dadx:column name="ACCTNUM" type="CHAR" nullable="false" />
 </dadx:result_set_metadata>
 <dadx:result_set_metadata name="mortgageAccountResult"
 rowName="mortgageAccountDetailsRow">
 <dadx:column name="CUSTNUM" type="CHAR" nullable="false" />
 <dadx:column name="AMOUNT" type="DECIMAL" nullable="false" />
 <dadx:column name="INTRATE" type="DECIMAL" nullable="false" />
 <dadx:column name="LIFETIME" type="DECIMAL" nullable="false" />
 <dadx:column name="OPENDATE" type="DATE" nullable="false" />
 <dadx:column name="PAYMENT" type="DECIMAL" nullable="false" />
 <dadx:column name="BALANCE" type="DECIMAL" nullable="false" />
 </dadx:result_set_metadata>
 <dadx:operation name="CreateMortgageAccount">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 Creates a mortgage account in the accounting system.
 </dadx:documentation>
 <dadx:call>
 <dadx:SQL_call>
 CALL ACCTDB.CRTMRACT(:CUSTNUM, :AMOUNT, :INTRATE, :LIFETIME,
 :PAYMENT, :PSQLCODE, :PSQLSTATE, :PSQLERRMC)
 </dadx:SQL_call>
 <dadx:parameter name="CUSTNUM" type="xsd:string" kind="in"/>
 <dadx:parameter name="AMOUNT" type="xsd:decimal" kind="in"/>
 <dadx:parameter name="INTRATE" type="xsd:decimal" kind="in"/>
 <dadx:parameter name="LIFETIME" type="xsd:decimal" kind="in"/>
 <dadx:parameter name="PAYMENT" type="xsd:decimal" kind="in"/>
 <dadx:parameter name="PSQLCODE" type="xsd:int" kind="out"/>
 <dadx:parameter name="PSQLSTATE" type="xsd:string" kind="out"/>
 <dadx:parameter name="PSQLERRMC" type="xsd:string" kind="out"/>
 <dadx:result_set name="createAccountReturn" metadata="createAccountResult"/>
 </dadx:call>
 </dadx:operation>
 <dadx:operation name="GetMortgageAccount">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 Returns the details of a mortgage account.
 </dadx:documentation>
 <dadx:call>
 <dadx:SQL_call>
 CALL ACCTDB.GETMRACT(:ACCTNUM, :PSQLCODE, :PSQLSTATE, :PSQLERRMC)
 </dadx:SQL_call>
Chapter 15. Developing SOA access services 411

 <dadx:parameter name="ACCTNUM" type="xsd:string" kind="in"/>
 <dadx:parameter name="PSQLCODE" type="xsd:int" kind="out"/>
 <dadx:parameter name="PSQLSTATE" type="xsd:string" kind="out"/>
 <dadx:parameter name="PSQLERRMC" type="xsd:string" kind="out"/>
 <dadx:result_set name="mortgageAccountDetails"
 metadata="mortgageAccountResult"/>
 </dadx:call>
 </dadx:operation>
 <dadx:operation name="ListAccountNumbers">
 <dadx:documentation xmlns="http://www.w3.org/1999/xhtml">
 Lists all account numbers of a customer.
 </dadx:documentation>
 <dadx:call>
 <dadx:SQL_call>
 CALL ACCTDB.LSTACNBR(:CUSTNUM, :PSQLCODE, :PSQLSTATE, :PSQLERRMC)
 </dadx:SQL_call>
 <dadx:parameter name="CUSTNUM" type="xsd:string" kind="in"/>
 <dadx:parameter name="PSQLCODE" type="xsd:int" kind="out"/>
 <dadx:parameter name="PSQLSTATE" type="xsd:string" kind="out"/>
 <dadx:parameter name="PSQLERRMC" type="xsd:string" kind="out"/>
 <dadx:result_set name="accountNumbers" metadata="accountNumbersResult"/>
 </dadx:operation>
</dadx:DADX>

Now the development of the WORF-based application is finished. Additional DADX groups to
connect to other databases, or new DADX files to include other stored procedures or SQL
statements, can be added using the steps described in the last two chapters.

Deploy the J2EE application into a WebSphere Application Server
The last step is to deploy the application to an Application Server. In our scenario this server
is a WebSphere Application Server 6.0 running in the intranet of the ITBO Bank company.
The J2EE application is exported into an EAR file, which is installed on the WebSphere
Application Server. To create the EAR file, go to the Project Explorer view in RAD (select
Window → Show View → Project Explorer) and select the application from the Enterprise
Applications folder. Right-click to open the context menu and select Export → EAR file.
Enter a local filename (ending with a .ear suffix) into the Destination field and click Finish.
Make sure the specified file has been created.

Go to the Web administration console of the WebSphere Application Server and select
Applications → Install New Application. Enter the path to the exported .ear file under Local
path. In the installation options, make sure the Use Binary Configuration option is
selected1, for the other settings the default values can be kept.

Due to a class loader problem with WebSphere Application Server 6.0, the WORF libraries
need to be moved from the application installation folder to the global WebSphere Application

1 If this option is selected, you are able to modify the application even after it is deployed, by updating the files in the
installedApps folder. The application will pick up the changes after the time specified in the group.properties file.
Supported changes are e.g. the modification of a DADX file, or the addition of a DADX file to the current DADX
group.

Important: The WORF support in RAD as explained here causes a problem with
applications deployed to WebSphere Application Server 6.0 servers. The WORF libraries
cannot load the SOAP engine classes because of a class loader problem. Follow the steps
below after the application is installed.
412 Powering SOA with IBM Data Servers

Server libraries folder. Locate the files worf.jar and worf-servlets.jar files in the
application install folder (WAS_install_folder/profiles/default/installedApps) and move
them to WAS_install_folder/lib. You need to restart the WebSphere Application Server so
that the change takes effect.

Once the WebSphere Application Server is restarted, check the server log to make sure the
application started without errors. If the log contains error messages, check the
“Troubleshooting” section for further information. Otherwise, open the following page with your
Web browser.

http://Your_WAS_server/accountdb/worf/AccountGroup/LIST

The output of this page needs to look similar to Figure 15-9. The page contains a list of all
DADX files of the AccountGroup group and also provides links to the files’ WSDL and XSD
definitions.

Figure 15-9 WORF application account Web Services listing

The WORF library includes a test facility which allows you to call the DADX Web Service
operations without the need to create a Web Service client proxy. Follow the TEST link in the
Web Services Listing page to test the service we just created.

We completed creating a WORF-based Web Service which calls stored procedures
contained in our accounting database. Web Service clients can use the WSDL of this Web
Service to manage mortgage accounts.

Troubleshooting
This section lists a number of common problems encountered when trying to access a DADX
Web Service, or when using one of the WORF services (like the test facility). In general, when
you face a problem, look into the server log which contains additional information written by
the WORF framework. It may help locating the cause of the problem.

DADX file is not listed in Web Services Listing page
If a DADX file which is included in a DADX group does not show up in the Web Services
listing page of this group, it is most likely caused by syntax problems in the DADX file.
Validate the file against the DADX XML Schema document.

Database connectivity problems
In case your WORF application has problems connecting to the DB2 database (for example,
the result of a DADX Web Service call is a database failure, or the server log reports a
database related problem), first check if the database connection properties in your
group.properties file are correct.
Chapter 15. Developing SOA access services 413

If you use a JDBC Type 2 driver, it is possible that the DB2 JDBC drivers cannot be loaded or
the DB2 environment is not initialized. In this case, setup the DB2 environment by calling the
<db2_instance_home>/sqllib/db2profile before starting the WebSphere Application Server
process.

WORF library problems
Sometimes the following error is reported when you try to access a DADX file:

Error 400: Can't load provider
'com.ibm.etools.webservice.rt.framework.apache.ApacheServiceProvider'

In this case you need to copy the WORF libraries to the WebSphere Application Server global
libraries folder as described in “Deploy the J2EE application into a WebSphere Application
Server” on page 412.

15.1.3 Additional WORF capabilities

In this section we explain additional features of the WORF framework and details which did
not fit into the previous section.

Setup DADX data source
On DADX group level you can configure WORF to use either a JNDI data source defined in
the application server to connect to the DB2 database, or use the JDBC connection attributes
defined in the DADX group.properties file instead. The JNDI data source option is only
supported for WebSphere Application Server. This configuration happens by setting the
correct properties in the group.properties file. Table 15-1 shows which properties are relevant
for either of these options.

Table 15-1 DADX group properties used for the data source JNDI lookup versus the JDBC connection

The purpose and usage of these properties is as follows:

initialContextFactory Is the fully qualified Java class name of the JNDI context factory of the
application server. For WebSphere Application Server version 6 it is
com.ibm.websphere.naming.WsnInitialContextFactory.

datasourceJNDI Specifies the JNDI data source used for DADX database connections,
e.g. jdbc/accountDBSource.

dbDriver The fully qualified Java class name of the JDBC driver (used for direct
JDBC connections). If you use the DB2 Universal Driver, set this
property to com.ibm.db2.jcc.DB2Driver.

dbURL The JDBC URL of the data source, e.g.
jdbc:db2://wtsc63.itso.ibm.com:50000/DB2ACCTD.

DADX group property Used for JNDI data source
lookup

Used for direct JDBC
connection

initialContextFactory Yes No

datasourceJNDI Yes No

dbDriver No Yes

dbURL No Yes

userID Yes Yes

password Yes Yes
414 Powering SOA with IBM Data Servers

userID, password Username and password used to authenticate when connecting to the
DB2 database. You need to set these properties also when using a
JNDI data source (the authentication data specified in the data source
configuration is not used). Although this information can be left empty
(in which case the Web server’s runtime user is taken) we recommend
to create and use a dedicated DB2 user which is granted permissions
to access the database resources that are exposed through this
interface.

Depending on the information provided in the properties file, WORF either uses the JNDI data
source or the JDBC information to connect to the DB2 database. If both, JNDI and JDBC
information is given, the JNDI data source has precedence.

Select the SOAP engine of a WORF application
The WORF library which is bundled with DB2 version 8.2 supports two SOAP engines, the
one included in the Apache SOAP library (http://ws.apache.org/soap/) and the SOAP
engine of Apache Axis (http://ws.apache.org/axis/). Per default, the Apache Axis engine is
used. In case you need to use a different SOAP engine (for example, because the server
does only support one of the engines, or because of SOAP compatibility issues) you can
specify the SOAP engine in the Web deployment descriptor.

Open the Web deployment descriptor of your application in RAD, change to the Source tab
and add a servlet parameter to the servlet of your DADX group (note that each DADX group
has a servlet, and the name of the servlet is the group name). The name of the servlet
parameter is soap-engine, and the parameter value is either apache-soap or apache-axis,
depending on which engine you want to use. Example 15-3 shows how to set the Apache
SOAP engine for our AccountGroup DADX group. The section in bold has been added to the
web.xml file.

Example 15-3 SOAP engine selection in web.xml

...
<servlet>
 <servlet-name>AccountGroup</servlet-name>
 <servlet-class>
 com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker</servlet-class>
 <init-param>
 <param-name>soap-engine</param-name>
 <param-value>apache-soap</param-value>
 </init-param>
</servlet>
...

This change needs to happen before the application is deployed to the Application Server.

Tip: We recommend to use a JNDI data source. JNDI data sources support features like
connection pooling or distributed transactions. Also, you can manage the data source
settings using the WebSphere Application Server administration console (as compared to
updating the group.properties file).
Chapter 15. Developing SOA access services 415

http://ws.apache.org/soap/
http://ws.apache.org/axis/
http://ws.apache.org/axis/
http://ws.apache.org/soap/
http://ws.apache.org/axis/

Use of document/literal SOAP encoding
You can use a DADX group property to define whether the Web Services SOAP encoding
style has to be RPC-based or document-based (the SOAP encoding styles are compared in
section “SOAP messaging mechanisms” on page 56). If you want to use the document/literal
style (which is compliant with the WS-I profile), set the useDocumentStyle in the property file
to yes, if you want to use RPC/encoded style, set it to no.

Note that the Apache SOAP engine does only support RPC/encoded (so this setting does not
have an effect when using this engine); Apache Axis supports both encoding styles.

Security considerations
The fine-grained DB2 authentication and authorization mechanisms (restricting access to
database objects and stored procedures on a user level or group level) can be leveraged in
WORF applications only in a limited manner. All database accesses of Web Services
belonging to a DADX group are performed with the user credentials contained in the property
file. Hence the security context of the Web Service caller cannot be mapped to DB2
authorization levels.

If you need to implement an authorization concept, you can utilize the J2EE security model
instead. At example, assume a simplified model which restricts the access to stored
procedures of our accounting database based on different roles:

� Front-desk clerks can only query account details and create loan requests.

� Accountant managers are allowed to additionally approve loan requests and generate
quarterly reports.

The roles of each of our employees are stored in an LDAP directory together with the other
employee data.

The J2EE security model has the capability to define a role-based access to Web Services.
So we put the operations which can be accessed by both roles into a different DADX file than
the operations only available for accountant managers. In the Web deployment descriptor of
our J2EE application we create two security roles, one for clerks and one for accountant
managers. Also, we define a security constraint which allows to access the first Web Service
by both roles, and access to the second one only for accountant managers.

Finally, when we deploy our application to the Application Server, we configure the server to
use our company’s LDAP server for authentication, and map the application roles to the
corresponding LDAP groups. So whenever a client calls one of our Web Services, it has to
provide the credentials of the user who initiates the action via HTTP Basic Authentication.
The J2EE container then retrieves the user’s group from LDAP and matches it against the
security constraints defined in the Web deployment descriptor of our application. If the
constraints are fulfilled, the Web Service is processed, otherwise an authentication error is
returned to the client.

If you are not familiar with the J2EE security model, you can find an introduction in Sun’s
J2EE 1.4 Tutorial at:

Information: The WebSphere Application Server product includes both, the Apache
SOAP and Apache Axis engines, so you do not need to install these engines when running
your WORF application in WebSphere Application Server. If you use a different Application
Server, the engine libraries have to be installed. The IBM Information Integrator Application
Developer’s Guide contains instructions to install the SOAP engine on a Apache Jakarta
Tomcat server.
416 Powering SOA with IBM Data Servers

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security4.html

15.1.4 Web Service implementation using Java wrappers

A different approach to expose the stored procedures of our accounting database as Web
Services is to wrap the stored procedure calls into a Java object (a simple Java class, or a
more complex Enterprise JavaBean) which is converted into a Web Service. The Web
Service is deployed to an Application Server as part of a J2EE application.

We demonstrate the creation of a Java class which calls the stored procedure using JDBC,
and the conversion of this Java class into a Web Service using the Rational Application
Developer.

Create a dynamic Web project
We start with the creation of a Web project (and a corresponding Enterprise Application
project) in RAD. Switch to the Web perspective (Window → Open Perspective → Other →
Web). Select File → New → Dynamic Web Project and set the properties of the new
project. In our example we use JavaAccountDB as the Web project name,
JavaAccountDBApp as the EAR project name, and accountdb/java as the project’s context
root. Click Finish to complete this step. The RAD wizard adds the Web project to the
Dynamic Web Projects folder in the Project Explorer view, and the new EAR project to the
Enterprise Applications folder.

Define the skeleton of the Java class
Our task is to enable three stored procedures (LSACNBR, GETMRACT and CRTMRACT) for
Web Services. So we create a stateless2 Java class which contains one method for each of
these stored procedures. All required parameters are defined as arguments of the methods.
The skeleton of this Java class is shown in Example 15-4.

Example 15-4 Skeleton of AccountService Java class

package com.ibm.itso.sg247259.acctdb;

import java.sql.*;
import java.util.*;

/**
 * Java wrapper for accounting DB stored procedure calls.
 *
 * Calls stored procedures of ITSO Bank's accounting database.
 * This implementation is stateless, so each call of one of its
 * methods opens a separate connection to the accounting
 * database.
 */
public class AccountService {

 /**

Important: The Application Server has to support the J2EE security model. WebSphere
Application Server version 5 and 6 provide the required support.

2 Web Services are stateless by nature, which means that a Web Service can't remember information from one
invocation to another. The Web Services standards do not specify state management and implementations in
general do not provide means to support state management (cmp. other standards like CORBA or Java Remote
Method Invocation which include state management). You can implement stateful Web Services by using additional
concepts like Java Servlet-based Web Service endpoints.
Chapter 15. Developing SOA access services 417

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Security4.html

 * Call the ACCTDB.LSACNBR stored procedure with the given customer
 * number and return the results. Throws a DBException if the stored
 * procedure returns an error.
 *
 * @param userID Database connection user.
 * @param password Database connection password.
 * @param custNum Customer number to search for.
 * @return AccountRow[] All accounts owned by the given customer number.
 */
 public AccountRow[] getAccountNumbers(
 String userID, String password, String custNum)
 throws DBException {
 }

 /**
 * Call the ACCTDB.GETMRACT stored procedure with the given account
 * number and return the details of that account. Throws a DBException
 * if the account can't be found or if the stored procedure returns an
 * error.
 *
 * @param userID Database connection user.
 * @param password Database connection password.
 * @param acctNum Account number to search for.
 * @return MortgageAccountRow Details of the mortgage account.
 */
 public MortgageAccountRow getMortgageAccount(
 String userID, String password, String acctNum)
 throws DBException {
 }

 /**
 * Call the ACCTDB.CRTMRACT stored procedure to create a new mortgage
 * account and return the account number of the new account. Throws a
 * DBException if the creation of the account fails or if the stored
 * procedure returns an error.
 *
 * @param userID Database connection user.
 * @param password Database connection password.
 * @param custNum Customer number of requestor.
 * @param amount Mortgage amount.
 * @param interestRate Account's interest rate.
 * @param lifetime Lifetime of mortgage (in months).
 * @param monthlyPayment Monthly payment for mortgage.
 * @return String New account number.
 */
 public String createMortgageAccount(
 String userID, String password, String custNum, double amount,
 double interestRate, int lifetime, double monthlyPayment)
 throws DBException {
 }
}

418 Powering SOA with IBM Data Servers

Here are notes on the method definitions in Example 15-4 on page 417:

� Additionally to the stored procedure parameters, each of the wrapper methods has the
arguments userID and password, which are the user credentials for the connection to the
accounting database. The approach of specifying this data at the method is only one of
the options to implement database connectivity (alternatively, you can use the Factory
design pattern to retrieve a connection object, and store the authentication credentials in
property files or in runtime configuration settings). We use this approach here to
demonstrate the flexibility of the Java-based application as opposed to WORF-based
application (which allows authentication only on J2EE level).

� The error handling of our stored procedures is performed by returning an SQL code, SQL
state and additional message. The caller of the stored procedure has to check the SQL
code to detect if the call was successful. Java and SOAP support exception management
which fits this task better. So we mask all error conditions with exceptions instead, using
the class DBException. If a client catches an exception after a Web Service call, the details
of the error (SQL code, SQL state) can be accessed via attributes of the DBException
object.

� The result sets of the stored procedures cannot be simply returned by the Java methods,
since a SOAP data type equivalent does not exist. So we create JavaBeans (the beans
AccountRow and MortgageAccountRow in our example) whose attributes hold the
information returned in the result sets.

Create a database connection class
it is good practise to encapsulate the JDBC connectivity code into a separate class. So we
create a singleton class DBConnectionProvider that establishes and returns a connection to
the accounting database at request. Example 15-5 contains the code of this class.

Example 15-5 DBConnectionProvider class handling JDBC connectivity

package com.ibm.itso.sg247259.acctdb;

import java.sql.*;

/**
 * Encapsulates the functionality to load the JDBC driver and
 * establish a connection to the accounting database.
 */
public class DBConnectionProvider {

 /** Contains the JDBC initialization status */
 private static boolean initialized = false;

 /** JDBC URL pointing to accounting database */
 private static final String JDBC_URL =
 "jdbc:db2://wtsc63.itso.ibm.com:12348/DB2ACCTD";

Important: All parameters and return values of wrapper methods have to be either basic
data types, or JavaBeans. If you use a JavaBean, make sure it obeys the conventions of
the JavaBeans specification:

� The class is serializable.
� It has a default constructor (a constructor with no arguments).
� All of its properties can be accessed using getter/setter methods that follow the

standard naming convention.
Chapter 15. Developing SOA access services 419

 static {
 try {
 // load the DB2 JDBC driver
 Class.forName("com.ibm.db2.jcc.DB2Driver");

 // set the JDBC status to initialized
 initialized = true;
 }
 catch (ClassNotFoundException cnfe) {
 System.out.println("Unable to load DB2 JDBC driver: " + cnfe.getMessage());
 }
 }

 /**
 * Establishes a JDBC connection to the accounting database.
 *
 * @param userID Database connection user.
 * @param password Database connection password.
 * @return Connection New accounting database connection.
 */
 public static Connection getConnection(String userID, String password)
 throws DBException {

 // check if JDBC is initialized
 if (!initialized)
 throw new DBException(-1, "", "JDBC driver is not loaded!");

 try {
 // create and return database connection
 return DriverManager.getConnection(JDBC_URL, userID, password);
 }
 catch (SQLException se) {
 throw new DBException(se.getErrorCode(), se.getSQLState(), se.getMessage());
 }
 }
}

Notes to the implementation of the DBConnectionProvider class in Example 15-5 on
page 419:

� Our approach is to create a different user context for each Web Service call, so we have to
specify the database user and password at each getConnection(...) call. As mentioned
in the last section, this puts us in a position to extend the DB2 authorization context to the
Web Service caller. On the other hand, it is not very efficient since connection pooling
cannot be used.

� The JDBC URL is defined as a class constant. It points to the ITSO Bank accounting
database which is running on a z/OS DB2 instance.

To increase the maintainability of this application you can put it into a property file instead
(which can be updated even if the application is already deployed).

� Instead of tying the implementation to a specific JDBC driver class (the DB2 Universal
JDBC Driver in our case) you should consider to use the JNDI DataSource interface. Here
a short example demonstrating how to acquire a JDBC data source connection:

javax.naming.Context context = new javax.naming.InitialContext();
javax.sql.DataSource ds =
420 Powering SOA with IBM Data Servers

 (javax.sql.DataSource) ctx.lookup("jdbc/DataSource");
java.sql.Connection con = ds.getConnection("userID", "password");

You define the attributes of the data source (JDBC driver classes, JDBC URL, optionally
connection pooling parameters) in the J2EE Application Server, having the benefit that the
actual configuration settings do not need to be known until the application is deployed.

You can find additional information about data sources and JDBC in the Sun Advanced
JDBC Tutorial at:

http://java.sun.com/developer/Books/JDBCTutorial/index.html

Call the stored procedures from the Java class
The last development-related step is to implement the Java wrapper code which calls the
stored procedures via JDBC and converts the result sets to Java objects. We need to
implement the three methods which headers are listed in Example 15-4 on page 417. Since
the implementation is similar for these three methods, we show the actual code only for the
getAccountNumbers() method (Example 15-6).

Example 15-6 Implementation of AccountService.getAccountNumbers() method

public AccountRow[] getAccountNumbers(
 String userID, String password, String custNum)
 throws DBException {

 // request database connection
 Connection conn = DBConnectionProvider.getConnection(userID, password);
 CallableStatement stmt = null;
 ResultSet rs = null;

 try {
 // prepare the LSTACNBR stored procedure
 stmt = conn.prepareCall("{ CALL ACCTDB.LSTACNBR (?, ?, ?, ?) }");

 // set parameters of stored procedure
 stmt.setString(1, custNum);
 stmt.registerOutParameter(2, Types.INTEGER);
 stmt.registerOutParameter(3, Types.CHAR);
 stmt.registerOutParameter(4, Types.VARCHAR);

 // execute the stored procedure
 rs = stmt.executeQuery();

 // check return code of stored procedure
 int sqlCode = stmt.getInt(2);
 if (sqlCode != 0)
 throw new DBException(sqlCode, stmt.getString(3), stmt.getString(4));

 // fetch the returned result set
 List list = new ArrayList();
 while (rs.next())

Note: In our example we use the JDBC DB2 Universal Database Driver
(com.ibm.db2.jcc.DB2Driver). This JDBC driver is included in the DB2 installation and has
to be included in the class path of our application. Put the driver package (files db2jcc.jar
and db2jcc_license_cisuz.jar) either into the WEB-INF/lib folder of your application or
add it to the class path of your Application Server.
Chapter 15. Developing SOA access services 421

http://java.sun.com/developer/Books/JDBCTutorial/index.html

 list.add(new AccountRow(rs.getString(1), rs.getString(2)));

 // pass the result to the caller
 return (AccountRow[]) list.toArray(new AccountRow[list.size()]);
 }
 catch (SQLException se) {
 throw new DBException(se.getErrorCode(), se.getSQLState(), se.getMessage());
 }
 finally {
 try {
 // resource cleanup
 if (rs != null) rs.close();
 if (stmt != null) stmt.close();
 if (conn != null) conn.close();
 }
 catch (SQLException se) {
 // don't do anything
 }
 }
}

The following actions happen in this wrapper method:

1. The method acquires a new database connection, passing the current user credentials.

2. It prepares the stored procedure call and binds the input and output parameters of the
procedure.

3. It executes the stored procedure call.

4. It checks the PSQLCODE output parameter to detect if the call was successful. If it
encounters an error, it throws an exception.

5. It traverses the result set and creates JavaBean objects which are initialized with the
values of the result set.

6. It returns the JavaBean objects.

This sequence is the same for all stored procedure wrapper methods. Although the amount of
produced code is not very large, this step takes the most development effort, which is
significant if a large number of stored procedures need to be wrapped.

Create WSDL from Java class
RAD supports the generation of the WSDL from the Java class with a wizard. To start this
wizard select File → New → Other → Web Services → Web Service.

On the next page, select Java bean Web Service as the Web Service type. You can optionally
create a client proxy, and a a JSP-based test framework, but we do not select these options
for our example.

The next page allows you to enter the Java class. Browse for the AccountService class and
select it. On the next page you can select the Web Service runtime. RAD currently supports
IBM SOAP, Apache Axis 1.0 and the WebSphere runtime (use IBM WebSphere). Also, the

Note: If you have not previously enabled the Web Services development capability within
Rational Application Developer, you will see a dialog with the message This action requires
the Web Services Development. Enable the required capability? Click OK.
422 Powering SOA with IBM Data Servers

J2EE Application Server can be selected, but we keep the WebSphere Application Server
v6.0 server setting. To complete this page, the Web Service project (it is JavaAccountDB in
our example) and the EAR project (JavaAccountDBApp) need to be entered.

Do not select Use an existing service endpoint interface on the next page. We have the
wizard create an interface (the service endpoint interface is a Java Interface which contains
all methods that are contained in our Java wrapper class).

Figure 15-10 on page 423 shows the next page. On this page you can customize the
generated WSDL. It lists all methods of the Java wrapper class, and all methods which need
to be defined in the WSDL as operations have to be checked. The SOAP encoding style can
be selected, and the wizard supports the use of Web Services security (XML Encryption
and/or XML Signature of the Web Service SOAP body).

Figure 15-10 RAD Web Service wizard: select operations

Keep the defaults on this page. All methods of our wrapper class are exposed as Web
Service operations, the SOAP encoding style is document/literal and we do not use Web
Service security at this time. Once you select Finish, the wizard not only generates the
WSDL, but it also creates a couple of Java helper classes (performing the SOAP serialization
of the data) and extends the Web deployment descriptor of the J2EE application with the
mappings required to call the Web Service endpoint. Since the wizard performs all of these
configuration tasks, our J2EE application is now ready for deployment.
Chapter 15. Developing SOA access services 423

If you need to change your Java code after you created the WSDL bindings, you do not need
to repeat this step, unless you change the Java interface (for example, modifying the
parameter list of a method you expose as Web Service operation, or adding another method
to the AccountService class.

Deploy the J2EE application into a WebSphere Application Server
We selected the IBM WebSphere SOAP runtime during the creation of the Web Service
which means that our application can only be installed on an WebSphere Application Server
(if you choose for example, Apache Axis in the Web Service wizard, you can install the
application on any server which supports Axis). Our Application Server is a WebSphere
Application Server v6.0 which runs in the intranet of the ITSO Bank company.

Similar to the installation of the WORF-based J2EE application we first export an EAR file.
Select the JavaAccountDBApp project in the RAD Project Explorer and right-click to open the
context menu. Select Export → EAR file, enter a local filename into the Destination field and
select Finish. Make sure the specified file was created by the export wizard.

Go to the Web administration console of the WebSphere Application Server and select
Applications → Install New Application. Enter the path to the exported .ear file under Local
path; the other installation options do not need to be changed. Once the application is
installed, save the configuration and start the application from the Applications →
Enterprise Applications page.

The WSDL of your new service is available at:

http://Your_WAS_server/accountdb/java/AccountService?WSDL

Open the WSDL to make sure the Web Service was installed correctly. It contains the location
of the service endpoint, which should be

http://Your_WAS_server/accountdb/java/services/AccountService

The expected result when opening the service endpoint URL is shown in Figure 15-11.

Figure 15-11 Java Web Service endpoint

Tip: The redbook Rational Application Developer V6 Programming Guide, SG24-6449,
contains comprehensive information about the functionality and usage of the RAD Web
Services wizard.
424 Powering SOA with IBM Data Servers

15.1.5 Comparison of WORF-based and Java-based implementations

The previous chapters gave an insight into the activities required to perform a SOA
enablement of the stored procedures of the ITSO Bank accounting database. This chapter
once again points out the main differences between these approaches:

� Development effort

When Java wrappers are used for stored procedures, a substantial amount of manual
effort is required to implement the wrappers, since it is not supported by tools. Using
WORF, no development tasks are required at all, and the generation of the DADX files is
automated to a large extent (only the result sets of the stored procedures need to be
defined manually).

� Security considerations

The WORF-based approach has only limited support for security. Existing Web Services
security standards like WS-Security or WS-Authentication cannot be used, so application
developers need to resort to transport level security, which is SSL in most cases. A
Java-based approach on the other hand can implement any security concept which is
supported by the Web Services engine which is used.

� Authentication and object authorization

As demonstrated in our example, a solution using Java wrappers is able to extend the
authentication context of the DB2 database up to the Web Service caller by passing user
credentials in the Web Service request. In addition, the J2EE security mechanisms or any
custom, Java-based security frameworks can be used as well. A WORF application is
restricted to the use of J2EE security mechanisms.

� Exception handling

The WORF application simply uses the error handling mechanism of the stored
procedures. If a stored procedure returns an SQL code, the code is included in the SOAP
response; if an SQL exception is thrown, the exception is propagated to the Web Service
caller. Whereas a Java wrapper class allows to implement any exception handling
strategy, for example, masking SQL errors by exceptions as in our example, or do not
propagate SQL error conditions at all.

� Database connectivity

Both approaches are on equal terms in regard to available connectivity options. it is
possible to define a JNDI data source or configure a JDBC driver class with connection
properties in the WORF application as well as the Java-based application.

In summary, a Java-based approach is costly, but provides utmost flexibility for the design of
the wrapper application and can meet a range of different requirements. WORF on the other
hand is very simple to handle and has the capability for a fast go-to-market solution.

Note: In order to test the Web Service, you can create a Web Service client proxy (in
15.4.4, “Creating Java client proxies for Web Service interfaces” on page 469 we
demonstrate how to create client proxies). If you do not get the expected results, debug the
Web Service in RAD and check the return value of the Web Service as well as the system
console of the WebSphere Application Server.
Chapter 15. Developing SOA access services 425

15.2 Scenario using DB2 as Web Service consumer

Two of the main building blocks of integrated SOA systems are Web Services providers and
Web Services consumers. We’ve already shown the capabilities of DB2 acting as a Web
Service provider. The focus of this chapter is to point out a scenario in which DB2 consumes
a Web Service from a different service provider.

15.2.1 Overview

Our banking application provides a special feature for premium users: Their FICO score is
shown on the online e-banking portal.

Figure 15-12 GetCreditScore() stored procedure

This credit score is not available within our system, so we retrieve the information from the
credit institution company Credit CDE. The FICO score for a specific person is queried by
calling a Web Service provided by this Credit CDE.

Note: The FICO score is a credit score, which is used by lenders to determine your credit
risk. This score is one of the most important factors in obtaining credit in the United States.
The FICO score is a number between 300 and 850, determined using a mathematical
equation that evaluates the information in your credit file. For institutions that use scores as
a factor in their lending decisions, scores below certain numbers (typically set by each
lender's risk management department) may result in denial of credit, or credit being offered
at a higher interest rate.

More information about this credit score can be found at:

http://en.wikipedia.org/wiki/Credit_score

Credit Score
Web Service

Web Service
wrapper UDF

GetCreditScore()
Stored Procedure

Cache table

DB2/AIX

Credit CDEITSO Bank
426 Powering SOA with IBM Data Servers

http://en.wikipedia.org/wiki/Credit_score

Since the usage of this service is not free (a service fee is charged by the credit institution for
each call), and the credit score is not very volatile, we cache the score for our customers in
the local DB2 database with an expiration period of one month (that is, if the local cached
score of a customer is older than one month, the updated score is retrieved from the credit
institution).

Figure 15-12 displays the components we use and develop in this scenario: The Web Service
of the Credit CDE company is called by a wrapper UDF which is created using the Rational
Application Developer. A stored procedure named GetCreditScore() performs the cache
management: It checks if a credit score for a given customer is stored in the local table; if not,
or if the local cache value got invalidated, the wrapper UDF is called. An application which
wants to retrieve a customer’s credit score calls the GetCreditScore() procedure.

The WSDL of the Credit CDE Web Service is publicly available. It is contained in
Example 15-7.

Example 15-7 WSDL for credit score Web service

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 targetNamespace="http://services.creditcde.com"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl="http://services.creditcde.com"
 xmlns:intf="http://services.creditcde.com"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types/>
 <wsdl:message name="getCreditScoreRequest">
 <wsdl:part name="reqName" type="xsd:string"/>
 <wsdl:part name="reqPassword" type="xsd:string"/>
 <wsdl:part name="ssn" type="xsd:string"/>
 <wsdl:part name="lastName" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getCreditScoreResponse">
 <wsdl:part name="getCreditScoreReturn" type="xsd:int"/>
 </wsdl:message>
 <wsdl:portType name="CreditQuery">
 <wsdl:operation
 name="getCreditScore" parameterOrder="reqName reqPassword ssn lastName">
 <wsdl:input
 message="impl:getCreditScoreRequest" name="getCreditScoreRequest"/>
 <wsdl:output
 message="impl:getCreditScoreResponse" name="getCreditScoreResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="CreditQuerySoapBinding" type="impl:CreditQuery">
 <wsdlsoap:binding
 style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getCreditScore">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getCreditScoreRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://services.creditcde.com" use="encoded"/>
 </wsdl:input>
Chapter 15. Developing SOA access services 427

 <wsdl:output name="getCreditScoreResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://services.creditcde.com" use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="CreditQueryService">
 <wsdl:port binding="impl:CreditQuerySoapBinding" name="CreditQuery">
 <wsdlsoap:address
 location="http://services.creditcde.com/services/CreditQuery"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

15.2.2 Implementation of the Credit Score function using RAD

This chapter describes a way to create the required objects and functions using the Rational
Application Developer. They can also be created without tool support, but the RAD tool
provides a number of wizards to accelerate the development process.

The Credit Score function is created in our PORTALDB database. This database is used
subsequently in other scenarios as well. You can find instructions to create this database on
your workstation in Appendix E, “Additional material” on page 685.

Create a database project for PORTALDB
When the PORTALDB database is created, open the Rational Application Developer and
switch to the Data perspective (Window → Open Perspective → Other → Data). Open the
context menu of the Database Explorer view and select New connection to open the New
Database Connection wizard. At the first page, enter a name which identifies the connection
later on and select Choose a database manager and JDBC driver. On the next page, you
have to enter the connection attributes (Figure 15-13). Enter the connection details of your
PORTALDB Database and click Finish.
428 Powering SOA with IBM Data Servers

Figure 15-13 New database connection wizard in RAD

Next, RAD asks you to copy the database metadata to a project folder. Confirm this question
and enter a project name. Once the wizard finishes, the Database Explorer view contains the
new database connection and the Data Definition view contains details (database objects like
schemas, tables, views, stored procedures and user-defined functions) about the database.

Preparations
The user-defined functions and the cache table for the credit score component are created in
our PORTALDB database. To separate the component from other components in the
database, we put it into a separate schema, named FICO.

This schema can be created within the RAD application using the Schema Definition wizard.
Select File → New → Other → Data → Schema Definition and click Next. On the next
page, select the PORTALDB database and enter FICO as Schema name. Click Finish to
create the schema.

Generate the Web Service wrapper UDF
Calling the DB2 SOAP-based Web Service consumer functions is not straightforward, since it
requires to manually compose the SOAP body of the Web Service request. This composition
step can be automated by deriving the SOAP body from the given Web Service definition
(WSDL) file. RAD provides a wizard which performs exactly this task and creates a
user-defined function acting as a wrapper for the Web Service call, requiring only minor input
from the developer.

To open this wizard in RAD, select File → New → Other → Data → Web Service
User-Defined Function and click Next. Enter the WSDL location (if the WSDL is stored in a
Chapter 15. Developing SOA access services 429

local file, enter the full path of this file; otherwise, enter an URL pointing to the WSDL) as
shown in Figure 15-14.

Figure 15-14 Web Service UDF wizard: Select WSDL file

The next page allows you to select the database and schema in which the UDF will be
created. Select the FICO schema of the PORTALDB database (Figure 15-15).

Figure 15-15 Web Service UDF wizard: Select database schema

On the next page all available operations of the Web Service (as defined in the WSDL) are
listed. The wizard creates a separate wrapper UDF for each operation. Move the operations
you want to use to the list box on the right side (as shown in Figure 15-16).

Figure 15-16 Web Service UDF wizard: Select operations

The next page allows to set a number of options for the user-defined functions which will be
created. This page is displayed in Figure 15-17 on page 431 (it shows the wizard page, in
case only one Web Service operation was selected; if UDFs are created for multiple
operations, a list box contains all operations and allows you to switch between them).
430 Powering SOA with IBM Data Servers

Figure 15-17 Web Service UDF wizard: General options page

The following options can be set:

� A name (and an optional comment) of the new wrapper UDF can be specified. Our
example uses GetCurrCreditScore as the UDF name.

� The result of the wrapper UDF can either be a scalar value or a table. Depending on the
result type of the Web Service operation one of these values has to be selected; you find
more information about choosing the correct option in “Processing of Web Service results
with different complexities” on page 434. Since our Web Service returns a numeric value,
we select a scalar return value.

� If the result value is a table, the input parameters of the UDF can be added as columns to
this table optionally.

� Optionally, the UDF can be created in a way to allow dynamic access to the service, by
adding an input parameter for the service endpoint URL (for details read “Late binding of
Web Service end points” on page 434).

� If the size of the SOAP response message (including the SOAP envelope) is less than
3,000 characters, the overloaded DB2XML.SOAPHTTP() methods which return a VARCHAR
value can be used to call the Web Service. Otherwise, the methods returning a CLOB value
are used. If you’re not sure about the maximum size of the SOAP response, choose the
second option.

� The last check box allows you to select if the SOAP response message shall be parsed by
the UDF, or if the complete SOAP envelope has to be returned. Usually you will want to
have the SOAP response parsed.

Moving to the next page you see the body of the wrapper UDF to review your selections.
Select Finish to complete the action.

The new UDF can be found in the Data Definition view. To see this view, switch to the Data
perspective (Window → Open Perspective → Other → Data). Do create the UDF in the
PORTALDB database, you have to use the context menu and select Build. You can test the
Web Service call using the Run command found in the context menu.
Chapter 15. Developing SOA access services 431

Create the local cache table
We use a table in the PORTALDB database to cache credit score ratings of customers. This
table needs to contain the customer’s social security number, the credit score which was
retrieved last time as well as the time of the last update. Table 15-2 contains the layout of this
new table.

Table 15-2 FICO.CREDIT_SCORE_CACHE database table layout

You can either use the DB2 Control Center or the RAD Table Definition wizard to create the
table in the PORTALDB database wizard-based, or execute the SQL statements shown in
Example 15-8 against the PORTALDB database in the DB2 Command Center.

Example 15-8 FICO.CREDIT_SCORE_CACHE database creation statements

CREATE TABLE FICO.CREDIT_SCORE_CACHE(
 SSN CHARACTER (11) NOT NULL PRIMARY KEY,
 SCORE INTEGER NOT NULL,
 UPDATE_TMSP TIMESTAMP NOT NULL WITH DEFAULT CURRENT TIMESTAMP);

COMMENT ON TABLE FICO.CREDIT_SCORE_CACHE IS
 'Caches the credit scores of customers.';

COMMENT ON FICO.CREDIT_SCORE_CACHE(
 SSN IS 'Customer''s Social Security Number',
 SCORE IS 'Last retrieved credit score.',
 UPDATE_TMSP IS 'Timestamp of last score update.');

GRANT SELECT, UPDATE, INSERT, DELETE
 ON TABLE FICO.CREDIT_SCORE_CACHE TO USER PORTALUSER;

Create the GetCreditScore() stored procedure
The GetCreditScore() procedure has to perform the following actions:

� Check if the credit score of a given customer does exist in the local cache.

� If not, call the Web Service wrapper UDF to retrieve the most recent credit score for the
customer.

� Update the local cache with the new credit score value.

To create the stored procedure using RAD, select File → New → Other, click Show all
Wizards. and select the SQL Stored Procedure wizard from the Data category. The wizard

Note: The Web Service wizard tries to parse the SOAP result of the Web Service and
convert the return values to appropriate SQL types. This action fails sometimes (either the
structure of the response is not recognized, or the wrong SQL types are mapped), so a
manual modification of the UDF may be required. You can find additional information about
this matter in 15.2.3, “Best practices” on page 434.

Column Type Notes Description

SSN CHAR(11) NOT NULL,
PRIMARY KEY

Customer’s Social Security Number.

SCORE INTEGER NOT NULL Last retrieved credit score.

UPDATE_TMSP TIMESTAMP NOT NULL Timestamp of last score update.
432 Powering SOA with IBM Data Servers

lets you specify the database schema and procedure name, the procedure parameters and
result type, and you can also compose SQL statements which are executed when the
procedure is called. Your procedure contains SQL statements as well as a control flow, so the
code is added manually later on.

The wizard finishes with creating the procedure skeleton which can be modified.
Example 15-9 contains the complete stored procedure, so overwrite the code skeleton with
this code. To actually create the stored procedure in the PORTALDB database, select the
stored procedure in the Data Definition view and select Build from the context menu.

Example 15-9 Code of GetCreditScore() stored procedure

CREATE PROCEDURE FICO.GetCreditScore(
 IN custSSN CHARACTER(11),
 IN custLastName VARCHAR(50),
 OUT newScore INTEGER)
P1: BEGIN ATOMIC

 -- Requestor credentials for Credit CDE Web Service are defined as
 -- constants; optionally store them in a database table
 DECLARE reqUser VARCHAR(100) DEFAULT 'itsousr';
 DECLARE reqPassword VARCHAR(100) DEFAULT 'password';

 DECLARE tmp INTEGER;
 DECLARE noRecord INTEGER DEFAULT 0;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET noRecord = 1;

 -- check if a valid value of the customer’s credit score does exist in the
 -- local cache (credit scores expire after one month)
 SELECT SCORE INTO newScore
 FROM FICO.CREDIT_SCORE_CACHE
 WHERE SSN = custSSN
 AND UPDATE_TMSP > CURRENT TIMESTAMP - 1 MONTH;

 IF noRecord = 1 THEN
 -- retrieve credit score from Web Service if no cached value does exist
 SELECT FICO.GetCurrCreditScore(reqUser, reqPassword, custSSN, custLastName)
 INTO newScore
 FROM SYSIBM.SYSDUMMY1;

 SET noRecord = 0;

 SELECT 1 INTO tmp
 FROM FICO.CREDIT_SCORE_CACHE
 WHERE SSN = custSSN;

 -- update the local cache with the new score value
 IF noRecord = 1 THEN
 INSERT INTO FICO.CREDIT_SCORE_CACHE(SSN, SCORE) VALUES (custSSN, newScore);
 ELSE
 UPDATE FICO.CREDIT_SCORE_CACHE
 SET SCORE = newScore, UPDATE_TMSP = CURRENT TIMESTAMP
 WHERE SSN = custSSN;
 END IF;
 END IF;
Chapter 15. Developing SOA access services 433

END P1

15.2.3 Best practices

Late binding of Web Service end points
The DB2XML.SOAPHTTPx() functions require the following arguments:

� The service endpoint URL
� The body of the SOAP request
� A SOAP action URI reference (may be empty in most cases)

Whereas the action URI and the structure of the SOAP body will not change unless the called
Web Service is replaced by a new version, the service endpoint URL may change (at
example, if the server providing the Web Service moves, or, more likely, if the Web Service
has to be called in different development, test, and production environments). In such cases it
is preferable if changing the DB2 wrapper UDF can be avoided. An approach to keep the
service endpoint URL more flexible is to provide it as a parameter of the wrapper UDF. This
approach is called late binding, because the service endpoint URL is not defined until the
wrapper UDF is actually called. Service endpoint URLs can be part of the application
configuration, and stored either in configuration files, application deployment descriptors, or in
the database.

The Web Service User-Defined Function wizard in RAD supports late binding when creating a
DB2 wrapper UDF. The wizard option Create a UDF with dynamic accesses to the service
(late binding) must be checked.

Treatment of complex input parameters (arrays, structured objects)
The input parameters of Web Services can have any complexity, from no parameters at all to
a single parameter with a simple data type, to complex object trees or even large XML
documents.

The RAD Web Service User-Defined Function wizard supports simple attributes (including
bean-based parameter types; for example, if a Java-based Web Service interface specifies a
Java Bean with a number of attributes as input parameter, the RAD wizard regards each
bean attribute as separate bean parameter). Web Services with more complex input
parameters can also be called, but in such cases the body of the SOAP request needs to be
created manually within the wrapper UDF body. In order to do so, you need to be familiar with
the structure of WSDL files.

Processing of Web Service results with different complexities
The result of a Web service is either a scalar value (for example, a numeric result like our
credit score, or a character string), a simple object (cmp. a Java bean with a number of
attributes), or a hierarchical structure (an object tree, or an complex XML document). The
DB2 SOAP UDFs do not perform any special processing or conversion of the SOAP body
returned by the Web Service, so it is your responsibility to treat the result.

You learned above that the most convenient way of calling Web Services within DB2 is to
enclose the calls into wrapper user-defined functions. It makes sense to convert the result of
the Web service call to a data structure which can be handled by DB2 applications.

When dealing with different types of results, the following conversion strategies should be
followed:

� In case the Web Service result is a scalar value, convert it to the appropriate scalar SQL
type and return it in the wrapper UDF.
434 Powering SOA with IBM Data Servers

� If a simple object (or an array of simple objects), or an array of objects is returned by the
Web Service, convert it to a table.

� For a more complex result, a conversion may not be appropriate. Return the XML
fragment instead.

Returning a scalar value
Our credit score Web Service is an example for a service with a scalar value. The SOAP
result returned by the DB2XML.SOAPHTTPV(...) function looks similar to the text shown in
Example 15-10 (the text in bold shows the actual result value).

Example 15-10 SOAP result with scalar value

<ns1:getCreditScoreResponse
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="http://services.creditcde.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <getCreditScoreReturn xsi:type="xsd:int">743</getCreditScoreReturn>
</ns1:getCreditScoreResponse>

In this case, the most appropriate return value of the wrapper UDF has an INTEGER type, and
the conversion happens by calling DB2 XML Extender functions:

RETURN DB2XML.EXTRACTINTEGER(DB2XML.XMLCLOB(DB2XML.SOAPHTTPV(...)), ’//*’)

Returning a table
If a Web Service returns a number of attributes (pertaining to a specific object instance), or an
array of attributes, the return value of the wrapper UDF is most likely a table. Each returned
attributes is put into a separate column of the table, and if an array is returned, each element
of the array is put into a separate table row. The caller of the wrapper UDF can access the
result, for example, using an SQL SELECT statement and a cursor.

This approach works fine if number and types of the returned attributes are static. (In case the
number of returned attributes is dynamic, and no array is returned, then each attribute can be
put into a separate table row.)

Example 15-11 shows the result of a Web Service which returns the employee record for a
given employee. The lines in bold contain the attribute values (only a few attributes are
actually shown).

Example 15-11 SOAP result with some attributes

<ns1:getEmployeeRecordResponse
 xmlns:ns1="http://www.itso.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <getEmployeeRecordReturn>
 <employeeId>156</employeeId>
 <firstname>Michael</firstname>
 <lastname>Liberman</lastname>
 [...]
 </getEmployeeRecordReturn>
</ns1:getEmployeeRecordResponse>
Chapter 15. Developing SOA access services 435

In this case the skeleton of the wrapper UDF (the parameters of the SOAP call and the
additionally returned attributes are not listed to make the point clear) looks like
Example 15-12.

Example 15-12 Wrapper UDF

CREATE FUNCTION GET_EMPLOYEE_RECORD([...])
 RETURNS TABLE (
 EMPLOYEE_ID INTEGER,
 FIRSTNAME VARCHAR(50),
 LASTNAME VARCHAR(50))
 LANGUAGE SQL CONTAINS SQL
 EXTERNAL ACTION NOT DETERMINISTIC
 RETURN
 WITH SOAP_OUTPUT(OUT) AS
 (VALUES DB2XML.XMLCLOB(DB2XML.SOAPHTTPV([...])))
 SELECT
 DB2XML.EXTRACTINTEGER(OUTPUT.OUT, '//employeeId'),
 DB2XML.EXTRACTVARCHAR(OUTPUT.OUT, '//firstname'),
 DB2XML.EXTRACTVARCHAR(OUTPUT.OUT, '//lastname')
 FROM
 SOAP_OUTPUT OUTPUT;

Returning an XML document
There are several cases when it is adequate to return the generated XML result instead of
converting it to a table or to a scalar SQL type. The result may contain an object tree which is
hard to impossible to fit into a relational structure, or the number of returned objects and
attributes is so high that it is too tedious to define a conversion function for each of them, or
the further processing of the result is done using XML technologies like XSLT.

Returning an XML document means to strip the SOAP body text from the result and return
the remaining XML document as a scalar text type (a VARCHAR, LONG VARCHAR, or CLOB,
depending on the expected size of the result).

Example 15-13 shows the result of a Web Service call which receives the aggregated
marketing reports of departments of a company. The results are returned as an XML
document and will be further transformed into a printable HTML format.

Example 15-13 SOAP result with complex hierarchy

<ns1:getMarketingReportResponse
 xmlns:ns1="http://www.itso.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <getMarketingReportReturn>
 <department name="deptA">
 <account id="">
 <results quarter="01-2006">

Note: When performing a conversion of the result values, take care about the limitations of
the converted attributes. At example, the WSDL does not specify the maximum length of
strings (like the employee’s first name and last name), so this additional information needs
to be requested from the Web Service provider. Otherwise actual results may exceed limits
of the SQL types defined in the wrapper UDF, leading to runtime errors.
436 Powering SOA with IBM Data Servers

 [...]
 </results>
 <results quarter="02-2006">
 [...]
 </results>
 [...]
 </account>
 <account id="acct2">
 [...]
 </account>
 </department>
 <department name="deptB">
 [...]
 </department>
 [...]
 </getMarketingReportReturn>
</ns1:getMarketingReportResponse>

The wrapper UDF extracts the XML document from the SOAP as a scalar CLOB value which
is returned:

RETURN DB2XML.EXTRACTCLOB(
 DB2XML.XMLCLOB(DB2XML.SOAPHTTPC(...)), ’/getMarketingReportResponse’)

Implications of RPC/encoded results
Most existing SOAP-based Web Services use either the RPC/encoded or document/literal
style to exchange SOAP messages. Those styles differ only in some details, and application
developers usually do not need to care about the style used by a Web Service since the
SOAP layer provides means to encode and decode the SOAP messages.

For Web Services which are consumed using the DB2 SOAP functions, this aspect is
important though. Whereas the conversion of SOAP responses which use the
document/literal style is straightforward, since their XML structure is hierarchical and follows a
given XML Schema document, RPC/encoded SOAP responses may use a special feature
called multiRef elements. In this case, the message is split into several sections, with href
attributes linking the different sections.

Example 15-14 displays the RPC/encoded result of a Web Service returning an employee
record (the same example was already presented in Example 15-11 on page 435, that time
using document/literal style). Since the result is split into several sections, it is not feasible to
extract the attributes using the functions provided by the DB2 XML Extender, especially since
the actual usage of multiRef elements is arbitrary and does not follow specific rules.

Example 15-14 SOAP result in RPC/encoded style, using <multiRef> elements

<ns1:getEmployeeRecordResponse
 xmlns:ns1="http://www.itso.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <getEmployeeRecordReturn href="#id0"></getEmployeeRecordReturn>
</ns1:getEmployeeRecordResponse>
<multiRef id="id0" soapenc:root="0"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
Chapter 15. Developing SOA access services 437

 xsi:type="ns2:ResultBean"
 xmlns:ns2="http://www.itso.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <employeeId xsi:type="xsd:int">156</employeeId>
 <firstname href="#id1"></firstname>
 <lastname xsi:type="xsd:string">Liberman</lastname>
</multiRef>
<multiRef id="id1" soapenc:root="0"
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="xsd:string"
 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 Michael
</multiRef>

As a rule of thumb, with Web Services returning a single scalar value, do not use multiRef
elements; but since this is dependent on the SOAP engine used by the provider of the Web
Service, no guarantee can be given.

Handling of exceptional conditions
Calls of the DB2 Web Services consumers UDFs can terminate unexpectedly because of one
of the following reasons:

� The called Web Service throws an exception while processing the incoming request. This
behavior can be caused, for example, by input parameters which are outside of the
allowed range, or by an internal error state in the Web Service application.

� A problem in the SOAP layer of the DB2 user-defined functions is identified. Examples are
invalid SOAP responses, wrong service endpoints URLs, connection problems, and so on.

In case the functions of the DB2XML.SOAPHTTPx() UDF family encounter such a problem, they
return an SQL exception, setting the SQL code to SQL0443 and an SQL state which helps to
further identify the actual failure. A list of possible SQL state values is given at 6.8.2,
“SOAPHTTPC and SOAPHTTPV” on page 164. Here are some common examples:

Web Service application unavailable
SQL0443N Routine "DB2XML.SOAPHTTPCL" (specific name "SOAPHTTPVICLO") has
returned an error SQLSTATE with diagnostic text "Error during socket connect".
SQLSTATE=38309

The SOAP layer cannot open an HTTP connection to the Web Service provider. Make sure
the Web Service application is running.

Problem establishing SSL connections
SQL0443N Routine "DB2XML.SOAPHTTPCL" (specific name "SOAPHTTPVICLO") has

Tip: If a consumed Web Service uses RPC/encode style, test the SOAP response for the
occurrence of <multiRef> elements. Avoid processing the Web Service with the DB2
SOAP functions in that case.
438 Powering SOA with IBM Data Servers

returned an error SQLSTATE with diagnostic text "SSL API error".
SQLSTATE=38328

Web Services which transmit confidential data are usually secured using the SSL transport
protocol. SSL requires that the server running the service provides an electronic certificate
which was requested by an official certificate authority. In some cases servers only have test
certificates (or so called self-certified certificates) installed, especially if these servers are
only used for development or testing purposes. If that’s the case, the SOAP UDFs raise the
error shown above. Corrective actions for such cases are to install a valid certificate on the
server, or avoid to use SSL (not recommended for privacy and security reasons).

Application throws exception
SQL0443N Routine "DB2XML.SOAPHTTPCL" (specific name "SOAPHTTPVICLO") has
returned an error SQLSTATE with diagnostic text
"org.itso.LanguageNotSupportedException: Please specify a different language
than ’en_XX’". SQLSTATE=38327

Application-specific exceptions are generally mapped to the SQL state 38327. More detailed
information about the cause of the exception can be found in the diagnostic text.

In general it is recommended that applications and systems using the DB2 Web Service
consumer UDFs implement a strategy to handle exceptions thrown by these UDFs. The Web
Service concept is based on the principle of loose coupling, with the effect that service
endpoints may not be available all the time. Appropriate handlers can be put into the wrapper
UDFs, or in application code calling these UDFs.

15.2.4 Considerations using DB2 Version 9.1

The differences between DB2 Version 8 and Version 9.1 regarding the provided Web Service
consumer UDFs are minor. The main difference is that Version 9.1 of the DB2 database
replaces the DB2 XML Extender component with a native XML engine. The XML Extender
functions are still supported, but its functionality should not be used anymore for new
development.

The DB2XML.SOAPHTTP() UDFs which are logically bundled with the XML Extender (indicated
by the schema name DB2XML they share with other XML Extender functions) are not replaced
by another component. When these UDFs are installed in a DB2 version 8 database, XML
Extender is a prerequisite; in a DB2 Version 9.1 database they can be created without having
the XML Extender component created.

Our scenario shows only one dependency on the XML Extender: The SOAP body of the Web
Service response is parsed using XML Extender functions within the Web Service wrapper
UDFs. These functions need to be replaced by the XML functions which are available in DB2
Version 9.1. Find a list of these new XML functions in Appendix A.7, “SQL/XML” on page 571.

At example, here’s a fragment of a wrapper UDF which was used before to show the parsing
of SOAP responses with a number of attribute results, using XML Extender functions (marked
in bold) to parse the result:

 WITH SOAP_OUTPUT(OUT) AS
 (VALUES DB2XML.XMLCLOB(DB2XML.SOAPHTTPV([...])))
 SELECT
 DB2XML.EXTRACTINTEGER(OUTPUT.OUT, '//employeeId'),
 DB2XML.EXTRACTVARCHAR(OUTPUT.OUT, '//firstname'),
 DB2XML.EXTRACTVARCHAR(OUTPUT.OUT, '//lastname')
 FROM
Chapter 15. Developing SOA access services 439

 SOAP_OUTPUT OUTPUT;

The equivalent expression, using native DB2 XML functions, is:

 WITH SOAP_OUTPUT(OUT) AS
 (VALUES XMLPARSE(DOCUMENT B2XML.SOAPHTTPV([...])))
 SELECT
 INTEGER(CAST(XML2CLOB(XMLQUERY(
 '$x//employeeId/text()' PASSING OUTPUT.OUT AS "x")) AS CHAR(20))),
 CAST(XML2CLOB(XMLQUERY(
 '$x//firstname/text()' PASSING OUTPUT.OUT AS "x")) AS VARCHAR(50)),
 CAST(XML2CLOB(XMLQUERY(
 '$x//lastname/text()' PASSING OUTPUT.OUT AS "x")) AS VARCHAR(50))
 FROM
 SOAP_OUTPUT OUTPUT;

15.2.5 DB2 SOAP functions and Web Service interoperability

Apart from simple SOAP messaging, Web Service implementation may use additional
standards and techniques which enhance the functionality of those services, but on the other
hand restrict interoperability between different systems.

The DB2 SOAP consumer UDFs have a number of characteristics which potentially cause
problems, restricting their usage when consuming Web Services of different service
providers:

� The SOAP engine used by the UDFs supports only basic SOAP messaging (for example,
the features of the WS-I Attachments profile cannot be leveraged).

� The SOAP UDF interface leaves much of the implementation effort to the caller. When
you use these functions, you need to compose the SOAP request body and parse the
SOAP response. One of the disadvantages caused by this fact is, that an already
mentioned RPC/encoded response cannot be parsed in a straightforward way (although
the SOAP engine might provide means to parse the response).

� On the other hand, the SOAP functions do not allow to customize the SOAP interaction to
include additional information which is required by other Web Services standards or by the
used HTTP protocol. At example, if a Web Service is secured by HTTP Basic
Authentication, the user credentials cannot be included in the HTTP header of the SOAP
request.

These restrictions have a considerate impact on the usage of the SOAP UDFs in an
enterprise environment, especially when the following standards have to be met:

� WS-Security
� WS-AtomicTransaction
� WS-ReliableMessaging
� HTTP Basic Authentication
� SSL/HTTPS (certificate issues, client certificates not supported)
� Web Service DIME Attachments
� RPC/encoded SOAP messages (parsing issues)

Note: Some of the XML functions of DB2 Version 9.1 do already exist in DB2 version 8.2 or
earlier (for example, the XMLQUERY function). The syntax of the functions differs slightly
which needs to be considered when writing code which has to run under different DB2
versions.
440 Powering SOA with IBM Data Servers

This list of Web Service standards is not complete, and some of these standards are not of
widespread use yet (especially standards covering reliable or transactional messaging). The
technologies SSL, HTTP Basic Authentication, or RPC/encoded style though are often used
in an enterprise Web Services environment.

The missing support of these standards needs to be considered when assessing the use of
the DB2 SOAP UDFs in a specific application scenario. If that’s not possible, alternatives like
the aggregation of Web Services outside the DB2 environment have to be used.

15.2.6 Consuming Web Services using Information Integrator

The WebSphere Information Integrator product (which was recently renamed from DB2
Information Integrator) also supports the consumption of Web Services within DB2 via Web
Service wrappers.

Example 15-15 shows the statement to create a Web Service based data source using the
Information Integrator. The Web Service returns the current temperature for a given ZIP code
which is described by the ZIPCODE column (it's a required input column because of the
nickname TEMPLATE syntax). The output value is described by the RETURN column. You
create an input column for each value in the input message of a Web service operation and
an output column for each return value of a Web service operation. You control the input and
output column definitions with the nickname column option definitions.

Example 15-15 Information Integrator Web Service data source

CREATE NICKNAME GETTEMP(
 ZIPCODE VARCHAR (10) OPTIONS(TEMPLATE '&column'),
 RETURN VARCHAR (10) OPTIONS(XPATH './return/text()'))
 FOR SERVER "XMETHWEB"
 OPTIONS(
 URL 'http://services.xmethods.net/soap/servlet/rpcrouter',
 SOAPACTION ' ' ,
 TEMPLATE '<soapenv:Envelope>
 <soapenv:Body>
 <ns2:getTemp>
 <zipcode> &zipcode[1,1] </zipcode>
 </ns2:getTemp>
 </soapenv:Body>
 </soapenv:Envelope>',
 XPATH '/soapenv:Envelope/soapenv:Body/*' ,
 NAMESPACES ' ns1="http://www.xmethods.net/sd/TemperatureService.wsdl",
 ns2="urn:xmethods-Temperature" ,
 soapenv="http://schemas.xmlsoap.org/soap/envelope/"');

The Web services wrapper nickname options URL and SOAPACTION provide the ability to
override the endpoint, or the address that you specified when you created the nickname
(which is a more flexible approach for late binding than the one shown for the DB2 Web
Service wrapper UDFs). The value for the SOAPACTION nickname option becomes an
attribute in the HTTP header. The value for the URL nickname option is the HTTP URL to
which the request is sent.

You can retrieve the current temperature for ZIP code 95119 with the following SQL SELECT
statement:

SELECT * FROM GETTEMP
 WHERE ZIPCODE = '95119';
Chapter 15. Developing SOA access services 441

The product page of the WebSphere Information Integrator can be found at:

http://www.ibm.com/software/data/integration/db2ii/

Additional information concerning the usage of the Information Integrator Web Service
wrapper and examples of data sources are shown at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp

15.3 Scenario exposing I4GL business logic as Web services

This scenario shows how an existing Informix 4GL application can be easily integrated into a
Web services framework through conversion into EGL.

15.3.1 Overview

During 2005 the ITSO bank was trying to diversify its portfolio and bought a smaller bank that
was focussed on personal lines of credits, issuing credit cards. This company (the Informix
Bank, another fictional name) uses Informix as a database and Informix 4GL applications to
manage credit card accounts.

There are existing 4GL applications to list accounts (credit card numbers) for a customer
number and get detailed account info for a credit card number. The customer record that
existed in Informix was merged into the IMS-based customer record.

Before we go ahead with the actual conversion and integration steps, let us look at the
existing Informix 4GL application at the time the Informix bank got acquired.

15.3.2 The Informix Bank 4GL credit card application

The original 4GL credit card application allows a simple management of customer account
details and related credit card entries per customer account.

The application itself consists out of the following I4GL modules:

� ifxbank_main.4gl
� ifxbank_accounts.4gl
� ifxbank_cards.4gl
� ifxbank_lib.4gl
� ifxbank_globals.4gl
� accountform.per
� cardform.per
� state_list.per

So it basically has one 4GL library (ifxbank_lib.4gl) which contains some shared functions,
the actual application modules plus two I4GL forms description files.

Let us briefly look at the application’s functionality through images from some of the
applications menus and form screens.
442 Powering SOA with IBM Data Servers

http://www.ibm.com/software/data/integration/db2ii/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp

Figure 15-18 Informix Bank: The Account maintenance form and menu

The application has two major functions: account maintenance and credit card handling. In
the account section, one can create new accounts, update accounts, lookup accounts and
delete accounts.

The credit card section allows the addition of new credit cards to an existing account, to list all
existing credit cards for a given account and to do credit card maintenance (in our example
code, not all features are completely implemented.

After the acquisition of Informix Bank through the ITSO Bank, the Informix Bank had to keep
the existing system up and running in order to be able to still maintain its existing customer
base. At the same the ITSO Bank already had the requirement to be able to access the credit
card information in the Informix Bank system for it own account validations and credit ratings.

For this purpose the Informix Bank had to provide a Web service which lists all the existing
credit cards for an account number.

Fortunately Informix Bank already implemented a dedicated I4GL function in one of their I4GL
libraries which allows the retrieval of existing credit card information for an existing account.

To easily make this I4GL function accessible as a Web service to ITSO Bank, Informix Bank
decided to convert its existing I4GL application to EGL and then utilize the EGL Web services
support to expose the required function to ITSO Bank.

See the credit card form in Figure 15-19 on page 444.
Chapter 15. Developing SOA access services 443

Figure 15-19 Informix Bank: The credit card form while browsing an accounts credit cards

Before we continue with the next steps towards the Web services integration, let us look a the
I4GL function(s) which should be eventually exposed as a Web service in Example 15-16.

Example 15-16 ifxbank_lib.4gl with the get_all_cards() and the get_one_card() functions

GLOBALS
"ifxbank_globals.4gl"

DEFINE
 a_cards ARRAY[20] OF RECORD

card_num LIKE cards.card_num,
create_date LIKE cards.create_date,
name_on_card LIKE cards.name_on_card,
is_active LIKE cards.is_active,
exp_date LIKE cards.exp_date,
balance LIKE cards.balance,
limit LIKE cards.limit,
notes LIKE cards.notes

END RECORD

FUNCTION get_all_cards(a_num)
 DEFINE a_num LIKE accounts.account_num,
 idx INTEGER

 DECLARE all_cards_list CURSOR FOR
 SELECT
 card_num, create_date, name_on_card, is_active,
 exp_date, balance, limit, notes
444 Powering SOA with IBM Data Servers

 FROM cards
 WHERE account_num = a_num
 LET idx = 1
 FOREACH all_cards_list INTO
 a_cards[idx].card_num, a_cards[idx].create_date,
 a_cards[idx].name_on_card, a_cards[idx].is_active,
 a_cards[idx].exp_date, a_cards[idx].balance,
 a_cards[idx].limit, a_cards[idx].notes
 LET idx = idx + 1
 IF idx > 20 THEN
 EXIT FOREACH
 END IF
 END FOREACH
 LET idx = idx - 1
 RETURN idx
END FUNCTION

FUNCTION get_one_card(idx)
 DEFINE idx INTEGER,
 t_card RECORD

card_num LIKE cards.card_num,
create_date LIKE cards.create_date,
name_on_card LIKE cards.name_on_card,
is_active LIKE cards.is_active,
exp_date LIKE cards.exp_date,
balance LIKE cards.balance,
limit LIKE cards.limit,
notes LIKE cards.notes

END RECORD

LET t_card.card_num = a_cards[idx].card_num
LET t_card.name_on_card = a_cards[idx].name_on_card
LET t_card.notes = a_cards[idx].notes
LET t_card.limit = a_cards[idx].limit
LET t_card.balance = a_cards[idx].balance
LET t_card.is_active = a_cards[idx].is_active
LET t_card.create_date = a_cards[idx].create_date
LET t_card.exp_date = a_cards[idx].exp_date

RETURN t_card.*

END FUNCTION

15.3.3 4GL to EGL conversion of the Informix Bank application

To successfully convert the I4GL banking application to EGL we just need to follow part a) of
the steps outlined in 9.6.2, “What the required steps are” on page 346.

After starting the Rational Development environment (in our example Rational Application
Developer or RAD), we are creating a new workspace and enable that workspace for EGL.

In the next step we need to create an EGL schema project which contains the correct
mappings between the EGL record structures and the underlying database tables.
Chapter 15. Developing SOA access services 445

As soon we have the schema project created, we can convert the ifxbank_lib.4gl file and then
finally the actual application modules. If the conversion process is successful, you should see
a conversion log file like the one in Figure 15-20.

Figure 15-20 The 4GL to EGL conversion log file after converting the Informix Bank application

Let us look at the EGL equivalent to the ifxbank_lib.4gl file, now named the ifxbank_lib.egl file
as part of the IfxBankLib project, shown in Example 15-17.

Example 15-17 The generated ifxbank_lib.egl file

/*
 --
 - Informix 4GL to EGL Conversion Tool converted I4GL file
 - Generated on : Wed Apr 19 16:15:38 PDT 2006
 --
*/

package IfxBankLib;

import ifxbanklib.*;
import ifxbankschema.ol_itso2006.ifxbank.*;
446 Powering SOA with IBM Data Servers

LIBRARY ifxbank_lib{localSQLScope=YES}

use IfxBankLib.ifxbank_globals;
use IfxBankLib.IfxBankLibConversionGlobals;

// globals "ifxbank_globals.4gl"

use IfxBankLib.ifxbank_libLibraryVariables;

FUNCTION get_all_cards(a_num dataitem_like_accounts_account_num IN)
returns (INT)
 idx INT;

 PREPARE /*DECLARE all_cards_list*/ $_STMT_all_cards_list FROM
 "SELECT" +

" card_num, create_date, name_on_card, is_active," +
" exp_date, balance, limit, notes" +
" FROM cards" +
" WHERE account_num = ?";

 idx = 1;

 open all_cards_list with $_STMT_all_cards_list using a_num;
 Foreach (From all_cards_list INTO
 a_cards[idx].card_num, a_cards[idx].create_date,
 a_cards[idx].name_on_card, a_cards[idx].is_active,
 a_cards[idx].exp_date, a_cards[idx].balance,
 a_cards[idx].limit, a_cards[idx].notes)
 idx = (idx + 1);
 IF (idx > 20)
 EXIT FOREACH;
 END
 END
 idx = (idx - 1);
 return(idx);
END

FUNCTION get_one_card(idx INT IN,
/*returning*/ $_retvar_1 int OUT, $_retvar_2 date OUT, $_retvar_3 unicode(60)

OUT, $_retvar_4 unicode(1) OUT, $_retvar_5 date OUT, $_retvar_6 money(8,2) OUT,
$_retvar_7 money(8,2) OUT, $_retvar_8 unicode(60) OUT)

 t_card recordtype_ifxbank_lib_a_cards;

t_card.card_num = a_cards[idx].card_num;
t_card.name_on_card = a_cards[idx].name_on_card;
t_card.notes = a_cards[idx].notes;
t_card.limit = a_cards[idx].limit;
t_card.balance = a_cards[idx].balance;
t_card.is_active = a_cards[idx].is_active;
t_card.create_date = a_cards[idx].create_date;
t_card.exp_date = a_cards[idx].exp_date;

$_retvar_1 = t_card.card_num;
$_retvar_2 = t_card.create_date;
Chapter 15. Developing SOA access services 447

$_retvar_3 = t_card.name_on_card;
$_retvar_4 = t_card.is_active;
$_retvar_5 = t_card.exp_date;
$_retvar_6 = t_card.balance;
$_retvar_7 = t_card.limit;
$_retvar_8 = t_card.notes;
return ;

END
END // LIBRARY

record recordtype_ifxbank_lib_a_cards type SqlRecord
card_num

IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_card_num{isNullable=yes};
create_date

IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_create_date{isNullable=yes};
name_on_card

IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_name_on_card{isNullable=yes}
;

is_active
IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_is_active{isNullable=yes};

exp_date
IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_exp_date{isNullable=yes};

balance
IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_balance{isNullable=yes};

limit
IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_limit{isNullable=yes};

notes
IfxBankSchema.ol_itso2006.ifxbank.dataitem_like_cards_notes{isNullable=yes};

END

To verify that the conversion has been successful, we do a test run of the converted
application. You will notice that the application looks and behaves like the original I4GL
application, but is now completely EGL based. In Figure 15-21 on page 449, the screen
capture has been inverted for printing purposes.

After also validating the correctness of the converted library functions, we can now go ahead
and expose the library functions as Web services.
448 Powering SOA with IBM Data Servers

Figure 15-21 The Informix Bank Account screen, after the conversion to EGL

15.3.4 Expose the converted I4GL library functions as an EGL Web service

In this final step we only need to create a new EGL Web project, include the converted
IfxBankLib into the Web projects build path, write an EGL Web service wrapper and publish it
to a Web application server.

Since we primarily re-use the converted I4GL code, we only need to create one new EGL part
to define the EGL Web service. Let us call this file IfxBankService.egl. See Example 15-18.

Example 15-18 IfxBankService.egl

import IfxBankLib.ifxbank_lib;
import IfxBankLib.recordtype_ifxbank_lib_a_cards;

Service IfxBankService

function get_all_creditcards(account_num int, all_cards
recordtype_ifxbank_lib_a_cards[]) returns(int)

max, i int;
one_card recordtype_ifxbank_lib_a_cards;

max = ifxbank_lib.get_all_cards(account_num);

if (max > 0)
i = 1;
while (i <= max)

ifxbank_lib.get_one_card(i, one_card.card_num, one_card.create_date,
one_card.name_on_card, one_card.is_active,
Chapter 15. Developing SOA access services 449

one_card.exp_date, one_card.balance,
one_card.limit, one_card.notes);

all_cards.appendElement(one_card);
i = i + 1;

end
end
return (max);

end
end

In the IfxBankService.egl we are calling the two functions get_all_cards() and get_one_card()
to obtain the requested credit card entries for a given account number.

As soon as we have saved the EGL services part above, RAD recognizes that we defined a
new Web service and automatically generates the associated WSDL file for that Web service.
This WSDL file (see also Example 15-19) can be now used to either develop client
applications to access that new Web service or to simply test the Web service with the built-in
Web Services Explorer.

Example 15-19 The IfxBankService.wsdl file

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://services" xmlns:tns="http://services"
xmlns:tns1="http://ifxbanklib" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://services" xmlns:tns1="http://ifxbanklib"
xmlns:tns="http://services" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<import namespace="http://ifxbanklib"/>
<complexType name="ArrayOfRecordtype_ifxbank_lib_a_cards">
 <sequence>
 <element name="ArrayOfRecordtype_ifxbank_lib_a_cards" minOccurs="0"

maxOccurs="unbounded" type="tns1:Recordtype_ifxbank_lib_a_cards"/>
 </sequence>
</complexType>
<element name="get_all_creditcards">
 <complexType>
 <sequence>

<element name="account_num" nillable="false" type="xsd:int"/>
<element name="all_cards" nillable="false"

type="tns:ArrayOfRecordtype_ifxbank_lib_a_cards"/>
 </sequence>
 </complexType>
</element>
<element name="get_all_creditcardsResponse">
 <complexType>
 <sequence>

<element name="account_num" nillable="false" type="xsd:int"/>
<element name="all_cards" nillable="false"

type="tns:ArrayOfRecordtype_ifxbank_lib_a_cards"/>
<element name="return" nillable="false" type="xsd:int"/>
450 Powering SOA with IBM Data Servers

 </sequence>
 </complexType>
</element>

</schema>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ifxbanklib" xmlns:tns="http://services"
xmlns:tns1="http://ifxbanklib" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<import namespace="http://services"/>
<simpleType name="ezeunicodeL60">
 <xsd:restriction base="xsd:string">

<xsd:maxLength value="60"/>
 </xsd:restriction>
</simpleType>
<complexType name="Recordtype_ifxbank_lib_a_cards">
 <sequence>

<element name="card_num" nillable="true" type="xsd:int"/>
<element name="create_date" nillable="true" type="xsd:date"/>
<element name="name_on_card" nillable="true"

type="tns1:ezeunicodeL60"/>
<element name="is_active" nillable="true" type="tns1:ezeunicodeL1"/>
<element name="exp_date" nillable="true" type="xsd:date"/>
<element name="balance" nillable="true" type="tns1:ezemoneyL9D2"/>
<element name="limit" nillable="true" type="tns1:ezemoneyL9D2"/>
<element name="notes" nillable="true" type="tns1:ezeunicodeL60"/>

 </sequence>
</complexType>
<simpleType name="ezemoneyL9D2">
 <xsd:restriction base="xsd:decimal">

<xsd:totalDigits value="9"/>
<xsd:fractionDigits value="2"/>

 </xsd:restriction>
</simpleType>
<simpleType name="ezeunicodeL1">
 <xsd:restriction base="xsd:string">

<xsd:maxLength value="1"/>
 </xsd:restriction>
</simpleType>

</schema>
</wsdl:types>
<wsdl:message name="get_all_creditcardsRequest">

<wsdl:part name="parameters" element="tns:get_all_creditcards"/>
</wsdl:message>
<wsdl:message name="get_all_creditcardsResponse">

<wsdl:part name="parameters" element="tns:get_all_creditcardsResponse"/>
</wsdl:message>
<wsdl:portType name="IfxBankService">

<wsdl:operation name="get_all_creditcards">
 <wsdl:input name="get_all_creditcardsRequest"

message="tns:get_all_creditcardsRequest"/>
 <wsdl:output name="get_all_creditcardsResponse"

message="tns:get_all_creditcardsResponse"/>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name="IfxBankServiceBinding" type="tns:IfxBankService">
Chapter 15. Developing SOA access services 451

 <wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="get_all_creditcards">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="get_all_creditcardsRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="get_all_creditcardsResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="IfxBankServiceService">
 <wsdl:port name="IfxBankService" binding="tns:IfxBankServiceBinding">
 <wsdlsoap:address

location="http://localhost:9080/IfxBankWebService/services/IfxBankService"/>
 </wsdl:port>
</wsdl:service>

</wsdl:definitions>

Before the new EGL based Web service can be utilized, it needs to be published to a
WebSphere Application Server (WAS), since the current EGL Web service implementation
requires some certain WebSphere Application Server specific runtime libraries. This
restriction will be relaxed with future versions of EGL.

15.3.5 Test the new EGL based Web service

Finally we want to test the newly created and deployed EGL Web service, based on a former
Informix 4GL library, containing I4GL business logic.
452 Powering SOA with IBM Data Servers

Figure 15-22 Usage of the Web Services Explorer to test the IfxBankService

The easiest way of testing the new Web service is to use the built-in Web Services Explorer
of RAD. To do that just locate the generated WSDL file either in the Web Services →
Services folder or in the Dynamic Web Projects → <EGL Web project name> →
WebContent → WEB-INF → wsdl folder. Right-click that file and then choose Web
Services → Test with Web Services Explorer.

As soon as the browser window of the Web Services Explorer appears, select the
get_all_creditcards operation in the Navigator window and provide a correct value (for
example, 104) for the account_num value in the Actions window.
Chapter 15. Developing SOA access services 453

Then click Go and after short while you should see the results of the Web service request in
the Status window (see also Figure 15-22 on page 453).

Example 15-20 shows the actual SOAP message which is being sent to the EGL based Web
service provider.

Example 15-20 SOAP message being sent to the EGL Web service

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://services" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <q0:get_all_creditcards>
 <account_num>104</account_num>
 <all_cards/>
 </q0:get_all_creditcards>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Example 15-21 shows the results being returned (also SOAP formatted).

Example 15-21 Results of the Web service call in SOAP format

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header/>
 <soapenv:Body>
 <p632:get_all_creditcardsResponse xmlns:p632="http://services">
 <return>4</return>
 <account_num>104</account_num>
 <all_cards>
 <ArrayOfRecordtype_ifxbank_lib_a_cards>
 <card_num>1001</card_num>
 <create_date>1998-05-20</create_date>
 <name_on_card>Anthony Higgings</name_on_card>
 <is_active>y</is_active>
 <exp_date>2002-05-30</exp_date>
 <balance>1000.40</balance>
 <limit>5000.00</limit>
 <notes> </notes>
 </ArrayOfRecordtype_ifxbank_lib_a_cards>
 <ArrayOfRecordtype_ifxbank_lib_a_cards>
 <card_num>1003</card_num>
 <create_date>1998-05-22</create_date>
 <name_on_card>Andrea Higgings</name_on_card>
 <is_active>y</is_active>
 <exp_date>2001-05-30</exp_date>
 <balance>235.60</balance>
 <limit>2000.00</limit>
 <notes>His wife's card</notes>
 </ArrayOfRecordtype_ifxbank_lib_a_cards>
 <ArrayOfRecordtype_ifxbank_lib_a_cards>
 <card_num>1011</card_num>
454 Powering SOA with IBM Data Servers

 <create_date>1998-06-18</create_date>
 <name_on_card>Anthony Higgins</name_on_card>
 <is_active>y</is_active>
 <exp_date>2003-09-30</exp_date>
 <balance>650.40</balance>
 <limit>4000.00</limit>
 <notes>Business Card</notes>
 </ArrayOfRecordtype_ifxbank_lib_a_cards>
 <ArrayOfRecordtype_ifxbank_lib_a_cards>
 <card_num>1013</card_num>
 <create_date>1998-06-22</create_date>
 <name_on_card>Anthony Higgings</name_on_card>
 <is_active>n</is_active>
 <exp_date>2000-07-31</exp_date>
 <balance>0.00</balance>
 <limit>2000.00</limit>
 <notes>Stolen Card</notes>
 </ArrayOfRecordtype_ifxbank_lib_a_cards>
 </all_cards>
 </p632:get_all_creditcardsResponse>
 </soapenv:Body>
</soapenv:Envelope>

15.3.6 Summary

This section has clearly shown that Informix 4GL customers and/or developers can easily
integrate their existing valuable I4GL business logic with an SOA infrastructure by converting
the existing I4GL code first into EGL and then leverage the built-in EGL Web services
functionality to achieve the desired Web services support.

Looking back at our usage case scenario, ITSO Bank and Informix Bank could very efficiently
integrate their heterogeneous systems due to the availability of the 4GL to EGL conversion
path.

15.4 Scenario aggregating services as portlets

This chapter leads you through a scenario which demonstrates how to aggregate the services
which are created in the previous chapters into a portal application, implementing a number
of different portlets. The chapter contains the following topics:

� Overview
� Setting up the portlet project
� Creating Data Access Objects to retrieve database information
� Creating Java client proxies for Web Service interfaces
� Creating the credit score portlet
� Creating the foreign exchange calculator portlet
� Creating the mortgage accounts portlet
� The whole picture

If you just want to learn more about Data Access Objects (DAO) and a framework to use this
technology in your Java applications, read 15.4.3, “Creating Data Access Objects to retrieve
database information” on page 462.
Chapter 15. Developing SOA access services 455

In 15.4.4, “Creating Java client proxies for Web Service interfaces” on page 469 we explain
how arbitrary SOAP-based Web Services can be easily accessed from J2EE applications
using features of the IBM Rational Application Developer.

If you want to understand which steps are required to develop and test a simple Java portlet
in RAD, read 15.4.5, “Creating the credit score portlet” on page 475. The chapters following
this one demonstrate additional features of portlet applications.

15.4.1 Overview

The purpose of this scenario is to demonstrate how existing Web services and data stores
can be easily aggregated into a single user experience using the Web portal technology. Our
showcase is an Internet portal for ITSOBank customers. Customers shall get the ability to
perform their business transactions, and get access to additional services provided by
ITSOBank using a single Web portal site.

Figure 15-23 shows the services which are made available to the customer via portlets. We
focus on a few representative services whose creation is demonstrated in other chapters of
this book, instead of including all services which may be offered by a banking Web portal.
When the customer logs in to the ITSOBank customer Web portal, she or he can manage
mortgage accounts (see details of existing mortgage accounts, and request new mortgages),
perform currency conversions using current exchange rates, and see the personal FICO
credit score.

Figure 15-23 Overview of ITSOBank customer Web portal

The portal application is comprised of a number of self-contained portlets, which run in a
portal server environment (a portal server is an application server which provides additional

Note: Find more information about portal technology and the benefits of using this
technology in a SOA environment in Chapter 4, “SOA and user interfaces with portals” on
page 69.

manage bank accounts,
perform currency
conversions,
view credit score

Portal Server

Data
server

ITSOBank customer
web portal

Mortgage accounts
manager portlet

Credit score portlet

Foreign exchange
calculator portlet

Data
server

Service
providerService

providerService
provider

aggregate services
and access to data
servers in portal
456 Powering SOA with IBM Data Servers

APIs and services). The local data server/data store is accessed by the portlets using the
Data Access Object design principle, which abstracts the data access by adding a component
layer between the business logic and the data repository. Web Services are integrated via
Java Web Service client proxies. The portlets use these components and add a small layer of
workflow or business logic, and user presentation (HTML, Web portlet pages).

We use the IBM Rational Application Developer 6.0 to implement the different components of
the ITSOBank customer Web portal. The portlets are tested in the WebSphere Portal V5.1
test environment which is included in RAD. The complete portal application can be installed in
a production environment using the WebSphere Portal Server 5.1, which provides, together
with the other servers and tools of the WebSphere application suite, a robust and scalable
runtime environment.

The portlets of our ITSOBank customer Web portal application, whose creation is
demonstrated in the following chapters, have different degrees of complexity:

� Credit score portlet: This portlet reads the FICO score from the stored procedure
developed in 15.2.2, “Implementation of the Credit Score function using RAD” on
page 428 and displays the score to the user. This portlet is the most simple one, since no
data processing is required.

Figure 15-24 System context diagram of credit score portlet

� Foreign exchange calculator: The foreign exchange calculator portlet allows the user to
convert amounts of money between different currencies. The user enters an amount,
select source currency and target currencies. The portlet takes this input, calls the PHP
currency conversion Web Service which is developed in 16.5, “Access an enterprise
application using PHP” on page 528 to retrieve the currency exchange rate, and displays
the result.

Figure 15-25 System context diagram of foreign exchange calculator portlet

� Mortgage accounts manager: This portlet is the most complex one in this scenario
because it includes forms processing and a stripped-down workflow. The portlet reads the

Credit score
portlet

Portal Server

Credit CDE

Credit score
Web Service

Portal Database
(user, FICO

tables)

get
user
data

read
credit
score

 read
 credit score

 display
 credit score

IMS

Customer record
Web Serviceget CMR

 data

Foreign exchange
calculator portlet

Portal Server PHP Server

Currency converter
Web Service get

exchange
 rate

 select
currencies

 show
 result
Chapter 15. Developing SOA access services 457

customer details from the CMR system to display them, and allows the user to manage
mortgage accounts. A list with all existing accounts is shown, and the user can request a
new mortgage account. This portlet interfaces with the ITSOBank accounting database
using the DADX Web Services developed in 15.1.2, “Implementation of the Web Services
using WORF” on page 404.

Figure 15-26 System context diagram of mortgage accounts manager portlet

In the following chapters, we first show the steps required to setup the RAD environment to
create the different components of this portal application.

Then, we introduce the techniques we use to access data and Web Services from within a
Java portal application (though the same techniques apply to any J2EE application). We use
Data Access Objects (DAO) to access data which resides in a DB2 database local to the
portal application. Also, we demonstrate how to use RAD to generate Java-based Web
Services proxies.

Finally, we show how to create the portlets that comprise our sample ITSOBank customer
portal and use the portlet technology to aggregate the different data sources into
user-viewable content.

15.4.2 Setting up the portlet project

This chapter shows how to setup a portlet project in RAD which is used in the subsequent
chapters to contain the portlets developed in our scenario. The chapter is organized into the
following tasks:

� Configure the WebSphere portal test environment
� Create a new portlet project
� Set up the portal database

Configure the WebSphere portal test environment
To run this project in the WebSphere Portal V5.1 Test Environment, you will need to create a
new portal test server in RAD. To do this, follow the following instructions:

1. Switch to the Web perspective in RAD (select Window → Open Perspective → Web).

Mortgage accounts
manager portlet

Portal Server

WAS Server

Accounting DADX
Web ServicePortal Database

(user tables)

get
user
data

 retrieve
 and
 update
 mortgage
 account
 data

 show
accounts

 manage
mortgages

IMS

Customer record
Web Service

get CMR
 data

Tip: This chapter gives a brief description of the steps required to setup a project to and
prepare the development environment to create portlet applications. You can find a
comprehensive introduction into portlet development in the redbook IBM Rational
Application Developer V6 Portlet Application Development and Portal Tools, SG24-6681.
458 Powering SOA with IBM Data Servers

2. Open the Servers view at the bottom of the workbench, right-click and select New →
Server.

3. In the Define a New Server dialog select the server type IBM → WebSphere Portal V5.1
Test Environment.

4. On the next page, WebSphere Server Configuration Settings, keep the default port
number 9081.

5. The Portal Server Settings page allows you to define an administrative portal user (this
user is not related to an operating system user). Keep the defaults which are wpsadmin for
both, username and password.

6. Click Finish to complete the creation of the test environment. You will see a new entry for
the test environment as shown in Figure 15-27.

Figure 15-27 WebSphere Portal Server showing up in RAD Servers view

Create a new portlet project
When you develop portlets with RAD, you create a portlet project which contains the portlet
code, descriptors and resources. A portlet project has the following attributes:

� From a deployment perspective, it is an equivalent to a portlet application. A portlet
application is actually a dynamic Web application with additional portlet descriptors.

� A portlet project can contain one or multiple portlets. All portlets within a portlet project
share the same context which contains all resources such as images, property files and
class files.

� You cannot deploy portlets to a WebSphere Portal Server. Instead, you deploy the
complete portlet application (the deployment format of a portlet application is a WAR file).

Depending on the structure and needs of your portlets, you will group them into one or
multiple portlet projects.

Our ITSOBank portal application consists of multiple portlets. Since we want to install all of
the portlets into one portal, we choose to add them to a single portlet project. To create this
portlet project in RAD, perform the following steps:

1. In RAD, select File → New → Project → Portlet Project (JSR 168). The application asks
you if the Portlet Development capability shall be enabled. Confirm that the capability can
be enabled.

2. In the Portlet Project wizard, enter project name, target server and the EAR project name
as shown in Figure 15-28 on page 460. Uncheck the Create a portlet option; we are
adding our portlets later on.
Chapter 15. Developing SOA access services 459

Figure 15-28 RAD Portlet Project (JSR 168) wizard

3. On the next page, uncheck all Web Project features and click Finish to create the portlet
project in the workspace.

The wizard creates the Web deployment descriptor and portlet deployment descriptor for you.
You did not select to create a portlet yet, so these descriptors are empty right now.

Set up the portal database
Some of the portlets access data from a local DB2 database (compare diagrams in
Figure 15-24 on page 457 and Figure 15-26 on page 458). In order to go through the portlet
scenarios, create this test database, named PORTALDB, on a DB2 instance on your
workstation. You can find instructions to create and populate that database in Appendix E,
“Additional material” on page 685.

The portlet code accesses the PORTALDB database using a JNDI data source. So we add a
data source pointing to the PORTALDB in the WebSphere Portal V5.1 test environment. First,
we open the portal server configuration in RAD by clicking on the server entry in the Servers
view (see Figure 15-27 on page 459). Then we select the Security tab and add a JAAS
authentication entry, entering the database user and password, as shown in Figure 15-29 on
page 461.
460 Powering SOA with IBM Data Servers

Figure 15-29 Add JAAS entry for PORTALDB access in portal server configuration

Then, we create a new DB2 data source in the Data source tab, as shown in Figure 15-30.
Select the DB2 Universal JDBC Driver Provider from the JDBC provider list, add a data
source with the JNDI name jdbc/PORTALDB (this name is used in the portlet code to refer to
the data source) and select the JAAS alias which was created in the previous step in the
Component-managed authentication alias field. Finally, add the database-specific information
(database name, server name, port number) to the resource properties.

Figure 15-30 Add data source for PORTALDB in portal server configuration
Chapter 15. Developing SOA access services 461

15.4.3 Creating Data Access Objects to retrieve database information

This chapter introduces the Data Access Objects (DAO) design pattern and demonstrates the
usage of DAOs in our portlet applications to access data from the local DB2 database.

Data Access Objects design pattern
The Data Access Objects design pattern is an essential part of good application architecture.
A business layer which contains application or operation specific details and needs to access
persistent data should not include functionality pertaining to the actual technology used for
accessing the persistent data (the most common persistence technology being JDBC, but the
pattern is extensible to any types of data sources, like object-relational access, XML-based
access or content access). Using DAO means the underlying technology can be swapped
without requiring to change the business objects of the application.

The business layer usually is application-specific, including Web Services, Java applications,
or servlet-based Web applications. In our scenario we use portlets as business objects, and
we create specific DAO classes to encapsulate the code accessing the DB2 database via
JDBC. Figure 15-31 shows a class diagram with the basic roles of the DAO pattern:

� The DataSource represents the data source implementation. Data sources include
relational database, object-oriented databases, XML repositories, flat filesystems, or any
other existing or earlier systems or services.

� The DataAccessObject provides an abstraction of the underlying data source to enable
transparent access to the data source. In our case the DAO classes contain JDBC calls to
access our DB2 database.

� The TransferObject contains the data which is exchanged between the business objects
and the data source. The data access object passes data retrieved from the data source
via a transfer object, and receives updated data from the business layer also in a transfer
object.

� The BusinessObject contains the application logic. In our scenario it is the respective Java
portlet class containing the code to display data in the Web portal and request data
updates from the client.

Figure 15-31 DAO class relationships

Tip: A complete DAO design pattern definition, including additional code samples, is
available at:

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

BusinessObject
(Portlet class) DataAccessObject

DataSource
(DB2 JDBC calls)TransferObject

uses

encapsulatescreates/
uses

obtains/
 modifies
462 Powering SOA with IBM Data Servers

http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html

Data Access Objects for portal-specific data
We need to store some user-specific data of our ITSOBank portal in a local DB2 database. In
order to keep flexible (maybe we can replace this database with a Cloudscape database, or
an Informix data server) we use the DAO pattern to implement the data access.

Our ITSOBank customers are identified in our accounting and billing systems with their
unique customer number. When a user logs on to the ITSOBank portal, he or she uses a
portal-specific user name, which does not match with the customer number. So we keep a
lookup table in the portal DB2 database that allows us to get the customer number of an
authenticated portal user.

Figure 15-32 shows the main classes of our DAO implementation (this scenario is simplified
to a high degree, so the number of classes required to implement the DAO layer seems an
overkill, but if a large number of data objects is used, the DAO abstraction pays off):

� The abstract class DAOFactory is the entry point to our DAO layer. It provides an abstract
getter method for each data access object, and contains a static method getDAOFactory()
to retrieve the actual factory implementation based on a parameter value.

This approach is very flexible. Imagine you have two implementations of the DAO layer,
one for DB2 and another one for Informix. Then you can decide which implementation to
use at runtime by providing the respective parameter value when retrieving the factory
object. Our scenario only contains a DB2-specific implementation whose DAOs can be
accessed through the class DB2DAOFactory.

� The interface PortalUserDAO, along with the PortalUser transfer object class, defines the
abstract interface of the portal user mapping. The interface defines a method to create a
portal user/customer number mapping, and another method to retrieve the customer
number for a given portal user. The PortalUser transfer object contains the attributes of a
virtual portal user, being the username and the customer number.

� The DAO class DB2PortalUserDAO finally contains the implementation of the JDBC access
methods to retrieve or update portal user data in the local DB2 database.

Figure 15-32 Class diagram showing portal-related DAO implementation
Chapter 15. Developing SOA access services 463

The implementation of the DAOFactory class is shown in Example 15-22.

Example 15-22 DAOFactory class interface

package com.itso.sg247259.dao;

[...]

// Factory pattern used to allow the retrieval of Data Access Objects.
// This class needs to be inherited by an implementation-specific
// subclass which returns actual DAO implementations.
public abstract class DAOFactory {

 // Identifiers for DAO implementations (currently only DB2).
 public final static String DBTYPE_DB2 = "DB2";

 // Returns an actual implementation of the DAO factory, based on the given
 // database type.
 public static DAOFactory getDAOFactory(String dbType, String jndiURL)
 throws DAOException {
 // return the actual DAO factory implementation
 if (DBTYPE_DB2.equals(dbType))
 return new DB2DAOFactory(jndiURL);
 else
 throw new DAOException("Database type " + dbType + " not supported!");
 }

 // JDBC-based interface to data source.
 private DataSource dataSource = null;

 // Initializes the factory, creating a new data source object.
 // @param jndiURL JNDI URL of data source.
 public DAOFactory(String jndiURL)
 throws DAOException {
 try {
 dataSource = (DataSource) (new InitialContext()).lookup(jndiURL);
 } catch (NamingException ne) {
 throw new DAOException("Unable to retrieve data source!", ne);
 }
 }

 // Returns a JDBC connection to the data source.
 public Connection createConnection() throws DAOException {
 try {
 return dataSource.getConnection();
 } catch (Exception e) {
 throw new DAOException(e.getMessage(), e);
 }
 }

Note: This chapter does not contain step-by-step instructions to show how to create and
extend the Java classes which comprise the DAO layer. Instead, the most important
features of these classes are demonstrated. You can find instructions to download the
complete code in Appendix E, “Additional material” on page 685.
464 Powering SOA with IBM Data Servers

 /**
 * Returns the DAO for the portal user information.
 */
 public abstract PortalUserDAO getPortalUserDAO();
}

Notes to the implementation in Example 15-22 on page 464:

� We assume that all implementations of this DAO interface are running in a Java J2EE
container and using the JDBC DataSource class to establish a connection to the data
source. This assumption allows us to implement the connection-related parts of the code
in this abstract base class. The method DAOFactory.getDAOFactory() which returns a
DAOFactory object requires to specify a JNDI URL which defines the data source
endpoint.

� DAO implementations use the method createConnection() to request a JDBC connection
to the data source.

� The method getPortalUserDAO() is overloaded by an implementation of this factory class
to return an implementation-specific data access object.

� Since the DAO pattern is an abstraction of the data source access layer, any exceptions
originating in this layer need to be masked by generic exceptions. Examples for this type
of exceptions are the (temporary) loss of the data source connection, or an object
authorization issue. For this purpose we introduce a DAOException class which is thrown
whenever the DAO layer encounters an exceptional state, that is, both for data
source-specific problems and for application specific exceptions.

The implementation of the class DB2DAOFactory is very simple. it is shown in Example 15-23
for demonstration purposes. It returns the DB2 implementation of the portal user DAO. If
additional DAOs are used, this class extended by getter method returning the implementation
of those DAOs.

Example 15-23 DB2DAOFactory class implementation

package com.itso.sg247259.dao.db2;

import com.itso.sg247259.dao.*;

// DB2-specific DAO factory for the portal application.
public class DB2DAOFactory extends DAOFactory {

 // Constructor of DB2 DAO factory.
 public DB2DAOFactory(String jndiURL)
 throws DAOException {
 super(jndiURL);
 }

 // Returns a DAO for the access to the DB2 portal database.
 public PortalUserDAO getPortalUserDAO() {
 return new DB2PortalUserDAO(this);
 }
}

The PortalUserDAO interface and the implementation of the PortalUser transfer object class
are not included here; the code does not contain special program logic and you can easily
deduct it from the class diagram.
Chapter 15. Developing SOA access services 465

The implementation of the DB2PortalUserDAO class is contained in Example 15-24. The most
notable detail is the code to access the portal DB2 database in the methods getUser() and
insertUser() (the code of the second method is not shown due to its similarity to the code for
the getUser() method). First, the methods request a JDBC connection object from the factory
object, then they prepare and execute the SQL statement; finally, the JDBC resources are
released and the data (that is, the transfer object) is returned.

Example 15-24 DB2PortalUserDAO class implementation

package com.itso.sg247259.dao.db2;

import java.sql.*;
import com.itso.sg247259.dao.*;
import com.itso.sg247259.dao.transfer.PortalUser;

// DB2 implementation of the portal user data access object. Accesses the
// PORTAL.USER table of a DB2 database to retrieve and update the portal user/
// customer number mapping.
public class DB2PortalUserDAO implements PortalUserDAO {

 // Reference to the DAO factory (to retrieve a JDBC connection).
 private DAOFactory factory;

 // Object constructor.
 public DB2PortalUserDAO(DAOFactory factory) {
 this.factory = factory;
 }

 // Reads the data of a user in the PORTAL.USER table and returns the data
 // in a PortalUser transfer object. Throws an exception if the user can't
 // be found.
 public PortalUser getUser(String username) throws DAOException {

 Connection con = null;
 PreparedStatement ps = null;
 ResultSet rs = null;

 try {
 // get connection and prepare statement
 con = factory.createConnection();
 ps = con.prepareStatement(
 "SELECT USERNAME, CUSTNUM FROM PORTAL.USER WHERE USERNAME = ?");
 ps.setString(1, username);

 // Process results
 rs = ps.executeQuery();
 if (rs.next()) {
 PortalUser user = new PortalUser();
 user.setUsername(rs.getString(1));
 user.setCustNum(rs.getString(2));
 return user;
 }
 else
 throw new DAOException("Customer not available!");
 } catch (SQLException sqle) {
 throw new DAOException(sqle.getMessage(), sqle);
466 Powering SOA with IBM Data Servers

 } finally {
 DAOUtil.closeResources(rs, ps, con);
 }
 }

 // Inserts the given user record into the PORTAL.USER table.
 public void insertUser(PortalUser user) throws DAOException {
 [...] // use SQL INSERT statement to insert record into PORTAL.USER table
 }
}

An application which wants to access this DAO interface just needs to perform the following
actions (for example, the code below demonstrates how to use the portal user DAO to insert
a new user record).

// retrieve DB2-based DAO and specify datasource URL
PortalUserDAO userDAO =
 DAOFactory.getDAOFactory("DB2", "jdbc/PORTALDB").getPortalUserDAO();

// create new portal user transfer object
PortalUser user = new PortalUser();
user.setUsername("annprise");
user.setCustNum("19034954");

// insert user into portal database
userDAO.insertUser(user);

Use a DAO to call the FICO score stored procedure
The example above demonstrates the usage of Data Access Objects for the access of
database tables and views. The representation of the relational data is reflected in the
attribute structure of the corresponding transfer objects (for example, the PortalUser transfer
object contains the attributes found in the PORTAL.USER database table), and the DAOs
contain methods to manipulate the data.

DAOs can also be used to call stored procedures. In this case each stored procedure call
maps to a method of a corresponding Data Access Object, and the parameters and results of
the stored procedures are exchanged via transfer objects. To avoid writing a separate DAO for
each stored procedure call, multiple stored procedures calls can be grouped within one DAO.
it is good practice to group related procedures.

We demonstrate the DAO stored procedure concept with the credit score retrieval procedure
we created in 15.2.2, “Implementation of the Credit Score function using RAD” on page 428.
The interface of this stored procedure is repeated here:

CREATE PROCEDURE FICO.GetCreditScore(
 IN custSSN CHARACTER(11),
 IN custLastName VARCHAR(50),
 OUT newScore INTEGER)

It takes a user’s social security number and lastname, and returns the user’s credit score as a
numeric value. Since the interface is very simple, we do not use separate transfer objects and
pass the parameters directly instead.

The first step is to create the interface for a Data Access Object which is shown in
Example 15-25 on page 468. It defines a method which takes the input parameters of the
stored procedure and returns the credit score.
Chapter 15. Developing SOA access services 467

Example 15-25 FICOScoreDAO interface

package com.itso.sg247259.dao;

// DAO interface for credit score stored procedure.
public interface FICOScoreDAO {

 // Returns the credit score of a person, given the social security number
 // and the person's lastname.
 public int getFICOScore(String ssn, String lastname)
 throws DAOException;
}

The DB2-specific implementation of this interface calls the DB2 stored procedure and returns
the credit score value. If a problem occurs, a DAOException is thrown. Example 15-26 shows
the code of the getFICOScore() method. Apart from this method the class is identical to the
DB2PortalUserDAO class (it also contains a DAO factory reference).

Example 15-26 DB2FICOScoreDAO class implementation

package com.itso.sg247259.dao.db2;

public class DB2FICOScoreDAO implements FICOScoreDAO {
 ...
 public int getFICOScore(String ssn, String lastname) throws DAOException {
 Connection con = null;
 CallableStatement cs = null;

 try {
 // get connection and prepare stored procedure call
 con = factory.createConnection();

 cs = con.prepareCall("CALL FICO.GETCREDITSCORE(?, ?, ?)");
 cs.setString(1, ssn);
 cs.setString(2, lastname);
 cs.registerOutParameter(3, Types.INTEGER);

 // call stored procedure and return result
 cs.executeUpdate();
 return cs.getInt(3);

 } catch (SQLException sqle) {
 throw new DAOException(sqle.getMessage(), sqle);
 } finally {
 DAOUtil.closeResources(null, cs, con);
 }
 }
 ...
}

The last step is to extend both factory classes DAOFactory and DB2DAOFactory with a method
to return the data access object, as shown here for DB2DAOFactory (the DAOFactory method is
only abstract, that is, without implementation):

...
// Returns a DAO for the access to the credit score SP.
468 Powering SOA with IBM Data Servers

public FICOScoreDAO getFICOScoreDAO() {
 return new DB2FICOScoreDAO(this);
}
...

Conclusion
In this chapter we demonstrated the usage of the Data Access Object design pattern to
create a layer between the data source implementation and the business layer containing the
application logic. The DAO layer is generic, so it can be used in a variety of environments (for
example, in a service-oriented system, a Web application, or a portal application); the only
restriction we introduced with our implementation is to use a JNDI data source, so the DAO
component can only be part of a J2EE-based application (on the other hand only little effort is
required to annul this restriction).

We showed that it makes sense to put implementation-specific code into a separate layer;
here once more some of the advantages:

� Increases data transparency: The introduction of a DAO layer enables an
implementation-independent point of view of the application data.

� Data migration is easier: Since the business layer does not contain details of the
underlying data implementation, a migration of the data to a new data source does only
involve changes in the DAO layer. The factory approach shown here has the additional
advantage that no existing code needs to be changed. it is only required to implement
DAO objects for the new data source and add a new factory method.

� Reduces complexity of the application logic: By separating the data access code from
the application logic, the code in the business objects shrinks, increasing the
maintainability of the code.

15.4.4 Creating Java client proxies for Web Service interfaces

Our portal application consumes a number of different Web Services:

� The PHP-based currency exchange rate Web Service (see 16.5, “Access an enterprise
application using PHP” on page 528) is used to provide a foreign exchange calculator for
portal users.

� The portal calls the DB2 DADX Web Services of the ITSOBank accounting database (see
“Implementation of the Web Services using WORF” on page 404) to handle mortgage
accounts.

� The customer records stored in the ITSOBank IMS system are made available via Web
Services by the IMS SOAP Gateway (see 8.3, “Web Services with SOAP Gateway” on
page 205).

Since we access the Web Services through Java code, we use the Web Services Client
wizard of RAD to create proxy Java classes from the Web Services’s WSDL definitions. We
can use these Java classes to call the Web Services in the same way we’d call simple Java
objects. Thus we do not need to care about the SOAP layer and can concentrate on
developing the application code.

Create Web Service client proxy classes for the exchange rate service
The creation of the PHP exchange rate service is demonstrated in 16.5, “Access an
enterprise application using PHP” on page 528. We assume the PHP service has been
installed on an Apache HTTP Server, and the WSDL is available via the URL:

http://Your_Apache_server/ConvertorService.php?wsdl
Chapter 15. Developing SOA access services 469

To create the proxy Java classes, do the following:

1. Start the WebSphere Portal V5.1 Test Environment server. The RAD wizard requires the
server to create the Web Service client bindings.

2. Select the ITSOPortlets project in the RAD project explorer.

3. Select File → New → Other → Web Services → Web Service Client and click Next.

4. When the Web Services Client dialog appears, select Java proxy for Client proxy type.
Do not check the Test the Web Service and Monitor the Web Service, because these
options will trigger the creation of additional classes and JSP files, which we do not need
currently. You can use these options if you want to test and debug the Web Service.

5. On the next page, you are asked to enter the location of a WSDL, WSIL or HTML
document (you can create Java proxy classes for all of these Web service definition
types). Enter the PHP service WSDL as shown in Figure 15-33 and select Next.

Figure 15-33 Enter WSDL location for Web Service client proxies

6. The next page allows you to select the client environment. Make sure your settings match
those in Figure 15-34. The Web service runtime has to be set to IBM WebSphere, the
Server to WebSphere Portal V5.1 Test Environment, and the proxy classes have to be
added to your portlet project.

Figure 15-34 Environment configuration for Web Service clients

7. On the next page you define the Web Service security level (you can select XML
Encryption or XML Signature which are both options of the WS-Security standard). Our
Web Services do not support this type of security, so select No Security. Also, check
Define custom mapping for namespace to package.
470 Powering SOA with IBM Data Servers

8. The next page allows you to add a namespace/package mapping. We put all proxy
classes into the com.itso.sg247259.wsclients package, so the mapping we use is shown
in Figure 15-35.

Figure 15-35 Custom packages for WSDL namespaces

9. Click Finish to complete the creation of the Web Service client proxies.

Table 15-3 Java classes generated by RAD Web Service Client wizard

The Java classes created by the wizard are listed in Table 15-3. Additionally, the wizard
creates Web Service client bindings in the WEB-INF/Webservicesclient.xml file and adds
WSDL mapping XML files to the project.

We actually use only a few of the Java classes listed in Table 15-3 when calling a Web
Service, namely the Locator class to retrieve a Web Service proxy object, the PortType
interface to call the Web Service, and optionally the JavaBeans classes to handle the Web
Service parameters and results.

Tip: The generated Java proxy classes are put into a Java package whose name
derives from the target namespace specified in the WSDL. If you want to put the Java
classes into a different package which follows the standards of your application, define
a mapping between the WSDL’s target namespace and the Java package. Note that
some WSDL files contain multiple target namespaces; the RAD wizard allows you to
define a separate mapping for each namespace.

Java class name Purpose

your.package.ServiceName Factory interface for the target service endpoint proxy.

your.package.ServiceNameBindingStub WebSphere-specific Web Service client stub.

your.package.ServiceNameInformation Defines Java bindings for Web Service operations.

your.package.ServiceNameLocator Allows to retrieve a Web Service client instance.

your.package.ServiceNamePortType Java interface defining the Java method signatures of
the Web Service operations.

your.package.ServiceNamePortTypeProxy Proxy class implementing the PortType interface.

your.package.Beans* Zero, one, or more JavaBean classes (and serializers)
containing complex parameter values and results.
Chapter 15. Developing SOA access services 471

The PHP exchange rate WSDL defines a single operation which takes source currency code
and target currency code as input parameters, and returns the exchange rate. The PortType
interface contains

Example 15-27 Java interface of the PHP exchange rate Web Service client

public interface ConvertorServerPortType extends java.rmi.Remote {
 // retrieve the exchange rate between two currencies
 public String getExchangeRate(String country1, String country2)
 throws java.rmi.RemoteException;
}

Example 15-28 demonstrates the usage of the proxy classes for our PHP Web Service,
assuming we want to retrieve the current exchange rate between US dollars and the euro.

Example 15-28 Calling the PHP Currency Converter Web service

// retrieve a Currency Converter locator object
ConvertorServerLocator wsLocator = new ConvertorServerLocator();

// request a Currency Converter proxy object
ConvertorServerPortType wsClient = wsLocator.getConvertorServerPort();

// call the Currency Convertor Web Service
String rate = wsClient.getExchangeRate("USD", "EUR");

When you develop applications using Web Service clients, you may encounter the situation
that the Web Services you use are installed in different locations (for example, on different
servers for test environments versus production environments). In this case it is not required
to regenerate the proxies whenever the service endpoint URL changes. Instead, you use a
different method of the Locator class to request a proxy object, specifying the actual service
endpoint URL. You can store the URL as a configuration setting of your application, which
can be modified when you deploy your application. For example, you would request a proxy
object for our PHP Web Service using the following statement:

// request a Currency Converter proxy object (specify endpoint URL)
ConvertorServerPortType wsClient = wsLocator.getConvertorServerPort(
 new URL("http://Your_server/ConvertorServer.php"));

Create Web Service client proxy classes for the DADX Web Service
To create the client proxy classes for the DADX Web Service, you follow the same instructions
as above when creating the proxy classes for the PHP Web Service. Only the location of the
WSDL and the values for the custom namespace mapping differ.

If you setup the DADX Web Service as demonstrated in 15.1.2, “Implementation of the Web
Services using WORF” on page 404, the WSDL of the Web Service is available using the
following URL:

http://Your_DADX_WAS_server/accountdb/worf/AccountGroup/AccountOps.dadx/WSDL

When you open this URL in a Web browser, you see the targetNamespace definitions of the
WSDL, which you can use to define a custom namespace mapping for your proxy classes.

Important: Web Service client proxies cannot easily moved between RAD projects
because of the additional binding information. If you already generated the Web Service
client proxies in a project and need the proxies in a different project, repeat the proxy
generation step for the new project instead.
472 Powering SOA with IBM Data Servers

Calling DADX Web Services by using the generated Java proxy classes requires more effort
then calling the PHP Web Service as demonstrated above. The generated PortType class
defines output parameters as well as result sets of the encapsulated stored procedures as
parameters of the corresponding Java methods as shown in Example 15-29. The data type of
each output parameter is a so-called holder type which allows to retrieve the value of the
output parameter after the Web Service is called (holder types are, for example, the
StringHolder type or the CreateAccountReturnHolder type).

Example 15-29 Java interface of the DADX accounting Web Service client

public interface TheSoapPortType extends java.rmi.Remote {

 // create a mortgage account
 public void createMortgageAccount(
 String CUSTNUM, BigDecimal AMOUNT, BigDecimal INTRATE, BigDecimal LIFETIME,
 BigDecimal PAYMENT, javax.xml.rpc.holders.IntHolder PSQLCODE,
 javax.xml.rpc.holders.StringHolder PSQLSTATE,
 javax.xml.rpc.holders.StringHolder PSQLERRMC,
 com.itso.sg247259.wsclients.holders.CreateAccountReturnHolder
 createAccountReturn) throws java.rmi.RemoteException;

 // return attributes of an existing mortgage account
 public void getMortgageAccount(
 String ACCTNUM, javax.xml.rpc.holders.IntHolder PSQLCODE,
 javax.xml.rpc.holders.StringHolder PSQLSTATE,
 javax.xml.rpc.holders.StringHolder PSQLERRMC,
 com.itso.sg247259.wsclients.holders.MortgageAccountDetailsHolder
 mortgageAccountDetails) throws java.rmi.RemoteException;

 // list all accounts of a customer
 public void listAccountNumbers(
 String CUSTNUM, javax.xml.rpc.holders.IntHolder PSQLCODE,
 javax.xml.rpc.holders.StringHolder PSQLSTATE,
 javax.xml.rpc.holders.StringHolder PSQLERRMC,
 com.itso.sg247259.wsclients.holders.AccountNumbersHolder accountNumbers)
 throws java.rmi.RemoteException;
}

Example 15-30 demonstrates how to call a DADX Web Service operation using the Java
proxy classes. You request a locator object and a service object in the same way as you do for
the PHP Web Service. But before actually calling the Web Service operation, you need to
create objects for each holder parameter and pass these objects when you call the proxy
method. Afterwards you can retrieve the returned values by accessing the holder.value
attribute.

Example 15-30 Calling the DADX Web Service

// retrieve a DADX service locator object
TheServiceLocator wsLocator = new TheServiceLocator();

// request a DADX service proxy object
TheSoapPortType wsClient = (new TheServiceLocator()).getTheSoapPort();

// define holder objects for output parameters
IntHolder sqlCodeHolder = new IntHolder();
StringHolder sqlStateHolder = new StringHolder();
Chapter 15. Developing SOA access services 473

StringHolder sqlMessageHolder = new StringHolder();
AccountNumbersHolder accountNumbersHolder = new AccountNumbersHolder();

// call DADX service
wsClient.listAccountNumbers("134095", sqlCodeHolder, sqlStateHolder,
 sqlMessageHolder, accountNumbersHolder);

// check SQL code and print the number of returned accounts
if (sqlCodeHolder.value == 0) {
 System.out.println("# of returned accounts = " + accountNumbersHolder
 .value.getAccountNumbersResult().getAccountNumber().length);
}

Create client proxy classes for the IMS SOAP Gateway Web Service
The creation of the client proxy classes for the IMS SOAP Gateway service is performed in
the same way as already described in the two chapters above. You create the classes using
the RAD Web Service Client wizard.

The WSDL of the IMS service is either deployed on the IMS SOAP Gateway and can be
retrieved through an URL, or the service developer provides the WSDL file. You can provide
either the WSDL URL, or an WSDL file in the RAD Web Service Client wizard. If you want to
place the created Java classes into specific packages, you need to use the custom
namespace mapping as demonstrated in Figure 15-35 on page 471.

In our example we use the WSDL file CQUERY.wsdl which was created from the COBOL
copybook in 8.3.3, “Generating a WDSL file using WebSphere Developer for zSeries” on
page 208. The input and output records of the IMS service are visible in the Web Service
signature and they are not easy to handle, so we create a special wrapper for the Web
Service call which is shown in Example 15-31 - this wrapper can be used whenever the IMS
service needs to be called. The wrapper method CMRServiceWrapper.getCustomer(...)
expects the URL of the service endpoint as well as a valid customer number. It calls the
service method and returns a Customer object containing the attributes of the customer
record.

Example 15-31 Custom wrapper for IMS Web service call

// A wrapper for the IMS SOAP Gateway service providing customer details.
public class CMRServiceWrapper {

 // Returns the customer record for a given customer number, calling the
 // IMS SOAP Gateway CMR web service. Throws a DAOException if the service
 // is not available or reports a problem.
 public static Customer getCustomer(URL serviceEndPoint, String custNum)
 throws DAOException {

 // call IMS SOAP Gateway web service to retrieve the customer record
 CQUERYServiceLocator wsLocator = new CQUERYServiceLocator();

 // set call parameters
 INDATA in = new INDATA();

 in.setCustomernr(new Customernr(custNum));

 // these parameters are required for the COBOL copybook
 in.setIn_ll(new In_ll((short)32));
474 Powering SOA with IBM Data Servers

 in.setIn_zz(new In_zz((short)0));
 in.setIn_trcd(new In_trcd("CQUERY"));
 in.setTracex(new Tracex("N"));

 try {
 // call IMS SOAP service
 OUTDATA out = wsLocator.getCQUERYPort(serviceEndPoint).CQUERYOperation(in);

 // check result and throw exception in case of error
 if (out.getMessagex().getValue().indexOf("ERROR") > -1)
 throw new DAOException(
 "IMS SOAP service returned: " + out.getMessagex().getValue());

 // return customer record
 Customer cmr = new Customer();

 cmr.setAddress1(out.getAddress1().getValue());
 cmr.setAddress2(out.getAddress2().getValue());
 cmr.setSSN(out.getSsn().getValue());
 cmr.setCustNum(out.getCustomernr().getValue());
 cmr.setFirstname(out.getFirstnme().getValue());
 cmr.setMiddleInitial(out.getMi().getValue());
 cmr.setLastName(out.getLastname().getValue());
 cmr.setCity(out.getCity().getValue());
 cmr.setState(out.getState().getValue());
 cmr.setZipCode(out.getZipcd().getValue());
 cmr.setPhoneNumber(out.getPhone().getValue());
 cmr.setFaxNumber(out.getFax().getValue());
 cmr.setEmailAddress(out.getEmladdr().getValue());
 cmr.setSalutation(out.getSalutat().getValue());

 return cmr;
 }
 catch (Exception e) {
 throw new DAOException("Unable to call IMS SOAP service", e);
 }
 }
}

15.4.5 Creating the credit score portlet

This chapter demonstrates creating a credit score portlet which displays the user’s credit
score. Figure 15-36 shows the user interface of this portlet. The portlet displays only a single
sentence containing the user’s FICO score.

Figure 15-36 View of the credit score portlet

Still, a few steps are required to return this information to the user when a request to display
the portlet is received. These steps include:

1. The portlet retrieves the username of the logged in portal user.
Chapter 15. Developing SOA access services 475

2. The portlet reads the user’s customer number from the DB2 PORTALDB database.

3. The portlet retrieves the CMR customer record from the IMS CMR system. This record
contains the customer name and social security number.

4. The portlet calls the Credit Score stored procedure in the DB2 PORTALDB database to
retrieve the credit score.

5. The credit score is written to the portlet response.

This chapter continues with a description of the following tasks which need to be performed to
create the portlet:

� Create a new portlet
� Create a method to retrieve the name of the portal user
� Create a DB connector factory
� Register endpoint of IMS CMR Web Service
� Extend the portlet class with the application logic
� Modify the portlet JSP to show the credit score
� Run the portlet in the portal test environment

Create new portlet
To add the new credit score portlet to the ITSOBankPortlets project perform the following
steps:

1. Open the New Portlet wizard in RAD by selecting File → New → Other → Portal →
Portlet. On the first page of the wizard, select your portlet project and specific Basic
portlet as portlet type as shown in Figure 15-37. The Basic portlet type option creates
skeletons for the portlet Java class and the JSP pages.

Figure 15-37 Select portlet type in New portlet wizard

Prerequisites: The credit score portlet uses services of other system components. Before
running this portlet in the test environment, make sure that the systems which are
accessed by the portlet are available:

� DB2 PORTALDB database
� IMS SOAP Gateway of the CMR system
� Application Server providing the Credit CDE credit score Web Service

The IMS SOAP Gateway example is demonstrated in 8.3, “Web Services with SOAP
Gateway” on page 205. The Credit CDE credit score Web Service is fictitious, so you have
to install it. You can find an example Credit CDE application which can be deployed in a
WebSphere Application Server and used for this scenario in Appendix E, “Additional
material” on page 685.
476 Powering SOA with IBM Data Servers

2. On the next page, enter the portlet settings as demonstrated in Figure 15-38. The Display
name attribute appears in the portlet header when it is displayed in a portal page in the
user’s Web browser. You can enter the display name in different languages; the user’s
locale defines in which language it is displayed in the Web browser. We also change the
Package prefix attribute to make sure the generated Java classes fit into our package
structure.

Figure 15-38 Enter portlet settings in New portlet wizard

3. The next page allows you to add an optional action handler and handling of portlet
preferences (which can be changed by the user when the portlet is in edit mode). Our
credit score portlet does not process user input, so we do not need any of these features.
Uncheck the Add action request handler option as shown in Figure 15-39. Click Finish
to close the wizard.

Figure 15-39 Define action and preferences options in New portlet wizard

Let us look at the generated resources which show up in the RAD Project explorer (see the
marked resources in Figure 15-40 on page 478). The wizard creates an entry for the new
portlet in the portlet deployment descriptor, a Java class FICOScore which handles the portlet
processing, localized resource property files FICOScoreResource*, and a JSP file
FICOScoreView.jsp which defines the user interface of the portlet. We only need to extend the
Java class and the JSP file to have the portlet meet our requirements.
Chapter 15. Developing SOA access services 477

Figure 15-40 Resources created by the New portlet wizard

Request username of currently logged in portal user
The credit score portlet shows the personalized FICO score of a user who accesses the Web
portal. To read the FICO score from our database we first need to identify this user. The
WebSphere Portal Server provides a system programming interface for its user management
implementation called Portal User Management Architecture (PUMA) which is used by our
portlet to request this information.

The user information is also required by other portlets, so we create a separate class
PortalUserInfo which contains a static method to request the user information from the
PUMA service, as shown in Example 15-32.

Example 15-32 Implementation of PortalUserInfo.getCurrentUsername() method

package com.itso.sg247259.portlets.helpers;

import javax.naming.InitialContext;
import javax.portlet.PortletRequest;

import com.ibm.portal.portlet.service.PortletServiceHome;
import com.ibm.portal.um.PumaProfile;
import com.ibm.portal.um.portletservice.PumaHome;

Note: The credit score portlet is very simple, so splitting its functionality between a Java
class and a JSP page seems to be an overkill. But in the design of this portlet we follow the
Model-View-Controller (MVC) principle which separates application logic from the user
interface and the data model. In our scenario, the Java portlet class acts as controller, the
JSP page is the view, and the credit score information exchanged between these
components is the model. In the following scenarios we continue to use this principle for
portlets with higher complexity.

Note: The JSR standard 168 does not define an interface to retrieve the portal user
information, so the PUMA service provided by WebSphere Portal Server is a proprietary
technology. Additional information about this service is available at

http://publib.boulder.ibm.com/infocenter/wpdoc/v510/index.jsp?topic=/com.ibm.wp
.ent.doc/wps/wpspuma.html
478 Powering SOA with IBM Data Servers

http://publib.boulder.ibm.com/infocenter/wpdoc/v510/index.jsp?topic=/com.ibm.wp.ent.doc/wps/wpspuma.html

public class PortalUserInfo {

 // Returns the portal username of the user which is currently logged in. If this
 // information can't be retrieved, an empty string is returned.
 public static String getCurrentUsername(PortletRequest request) {
 try {
 PortletServiceHome psh = (PortletServiceHome) (new InitialContext())
 .lookup("portletservice/com.ibm.portal.um.portletservice.PumaHome");

 if (psh != null) {
 PumaHome service = (PumaHome) psh.getPortletService(PumaHome.class);

 PumaProfile pp = service.getProfile(request);

 String id = pp.getIdentifier(pp.getCurrentUser());

 // the user identifier is returned in the format "uid=AAAA,o=BBB"; we
 // only need the uid, so we parse this information from the string
 return id.substring(
 id.indexOf("uid=") + 4, id.indexOf(',', id.indexOf("uid=")));
 }
 } catch (Exception e) {}

 return "";
 }
}

Create a DB connector factory
The credit score portlet system context diagram (see Figure 15-15 on page 430) shows that
the portlet access the DB2 PORTALDB database to retrieve user data and the user’s credit
score rating. To access this data, we use the DAO component of 15.4.3, “Creating Data
Access Objects to retrieve database information” on page 462.

The DAO requires the following parameters to establish the connection to the database:

� A JNDI URL pointing to the DB2 PORTALDB database
� The DAO-specific database type (in our case it is DB2)

We want to avoid to hard-code this information, so that the actual values can be changed
without requiring to updating the portlet code. So we add these attributes as portlet
initialization parameters which can be accessed in the portlet code using the PortletContext
interface. To add portlet initialization parameters, open the portlet deployment descriptor of
the ITSOBankPorlets project (you find the deployment descriptor in the Project explorer view)
and select the FICOScore portlet. Then add the parameters db.jndiurl and db.type as
demonstrated in Figure 15-41 on page 480.
Chapter 15. Developing SOA access services 479

Figure 15-41 Add initialization parameters for credit score portlet

The code to access the DB2 PORTALDB database needs to be shared between our portlets,
so we put it into a separate Java class called PortalDBConnector. The source code of this
class is shown in Example 15-33. The implementation of this class is quite simple. it is only
required to read the portlet parameters and return a DAOFactory object with these
parameters.

Example 15-33 Implementation of PortalDBConnector class

package com.itso.sg247259.portlets.helpers;

import javax.portlet.PortletContext;

import com.itso.sg247259.dao.*;

// Provides access to the portal's Data Access Object factory.
public class PortalDBConnector {

 // Returns a DAO factory object. The portlet context has to contain the
 // JNDI URL of the data source and the database type which is used.
 public static DAOFactory getDAOFactory(PortletContext context)
 throws DAOException {
 return
 DAOFactory.getDAOFactory(getDatabaseType(context), getJNDIURL(context));
 }

 // Returns the data source JNDI URL defined in the portlet context.
 private static String getJNDIURL(PortletContext context) {
 return context.getInitParameter("db.jndiurl");
 }

 // Returns the database type defined in the portlet context.
 private static String getDatabaseType(PortletContext context) {
 return context.getInitParameter("db.type");
 }
}

480 Powering SOA with IBM Data Servers

Register endpoint of IMS CMR Web Service
The FICO portlet uses the CMR Web Service provided by the ITSOBank IMS SOAP Gateway
to retrieve customer information. For the same reasons as for the DB connector facility we
make the endpoint of this service configurable via the portlet’s initialization parameter facility.
So we add another portlet parameter which contains the URL address of the IMS service as
demonstrated in Figure 15-42.

Figure 15-42 Add service endpoint initialization parameter for credit score portlet

Extend the portlet class the application logic
By now we have all prerequisites met to complete the application logic; we can retrieve the
portal user information and get Data Access Objects for the PORTALDB database. So the
next step in our scenario is to complete the FICOScore class with the application logic of this
portlet.

The application logic is pretty simple: When the portlet retrieves the first render request from
the portal container for a specific portlet session, the user’s credit score value is retrieved and
stored in the portlet session. If a problem occurs (for example, the interface to the portlet
database is unavailable, or if a connection to the Credit CDE credit score Web Service cannot
be established), an error message is stored in the portlet session.

The generated FICOScore portlet class does only need to be modified slightly for this purpose.
It contains a method doView() inherited from the GenericPortlet class which is called when a
render request for the portlet view mode is received. We extend this method as shown in
Example 15-34 (the additional code is marked bold) to update the portlet session with the
credit score. Additional changes in Example 15-34 are the definition of constants for the
session attribute names.

Example 15-34 Extend FICOScore portlet class with application logic

...
// portlet session attribute name for credit score
public static final String FICO_SCORE = "FICOScore";

// portlet session attribute name for error message
public static final String FICO_MESSAGE = "FICOMessage";
Chapter 15. Developing SOA access services 481

// process render request for the portlet 'view' mode
public void doView(RenderRequest request, RenderResponse response)
 throws PortletException, IOException {

 // Set the MIME type for the render response
 response.setContentType(request.getResponseContentType());

 // retrieve the credit score
 updateFICOScore(request);

 // Invoke the JSP to render
 PortletRequestDispatcher rd = getPortletContext().getRequestDispatcher(
 getJspFilePath(request, VIEW_JSP));
 rd.include(request, response);
}
...

Finally, we create a new method FICOScore.updateFICOScore() which sets the information in
the portlet session, as demonstrated in Example 15-35. The method first resets the session’s
error message attribute (so that in case of a temporary error accessing the external systems
the portlet retries to retrieve credit score data). Then it checks if the credit score data is
already stored in the portlet session, and if not, creates DAO objects for the information we
need to retrieve, and uses the DAOs and Web service wrappers to access portal user,
customer, and credit score data.

Example 15-35 Method updateFICOScore() sets the credit score portlet session attribute

// Sets the portlet sessions FICO_SCORE attribute with the user's credit
// score; in case of a problem it sets the FICO_MESSAGE session attribute.
private void updateFICOScore(PortletRequest request) {

 // retrieve the current portlet session
 PortletSession session = request.getPortletSession();

 // reset the error message attribute
 session.setAttribute(FICO_MESSAGE, null);

 try {
 // we cache the FICO score in the portlet session; its value is
 // not volatile, so we need to read it only once per session
 if (session.getAttribute(FICO_SCORE) == null) {

 // retrieve DAOs for portal user and customer data
 DAOFactory daoFactory =
 PortalDBConnector.getDAOFactory(getPortletContext());
 PortalUserDAO userDAO = daoFactory.getPortalUserDAO();
 FICOScoreDAO ficoScoreDAO = daoFactory.getFICOScoreDAO();

 // call IMS SOAP Gateway web service to retrieve the customer record
 String wsURL = request.getPortletSession().getPortletContext()
 .getInitParameter("ws.url.imscmrservice");
 Customer customerRecord = CMRServiceWrapper.getCustomer(new URL(wsURL),
 userDAO.getUser(PortalUserInfo.getCurrentUsername(request)).getCustNum());

 // read customer record
 Customer customerRecord = customerDAO.getCustomer(
482 Powering SOA with IBM Data Servers

 userDAO.getUser(PortalUserInfo.getCurrentUsername(request)).getCustNum());

 // retrieve FICO credit score and store it in portlet session
 session.setAttribute(
 FICO_SCORE, String.valueOf(
 ficoScoreDAO.getFICOScore(
 customerRecord.getSSN(), customerRecord.getLastName())));
 }
 }
 catch (DAOException daoe) {
 System.err.println("FICOScore: Caught DAOException " + daoe);

 // in case of a problem set the error message
 session.setAttribute(
 FICO_MESSAGE, "The FICO score service is temporarily unavailable!");
 }
}

Modify the portlet JSP to show the credit score
When the FICOScore portlet class receives a render request, it executes the doView() method
whose last action is to pass control to the FICOScoreView.jsp JSP. This JSP is responsible to
display the information in the portlet output.

The JSP reads the data which is passed in the portlet session object. If an error message is
set, this message is displayed. Otherwise the credit score of the user is shown. The
implementation of the JSP is demonstrated in Example 15-36.

Example 15-36 Credit score portlet view defined in FICOScore.jsp

<%@ page session="false" contentType="text/html"
 import="com.itso.sg247259.portlets.*" %>
<%@taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<portlet:defineObjects/>

<DIV style="margin: 20px;">
<P>
<%
 // retrieve portlet session attributes
 javax.portlet.PortletSession portletSession =
 renderRequest.getPortletSession();

 String ficoScore = (String) portletSession.getAttribute(FICOScore.FICO_SCORE);
 String message = (String) portletSession.getAttribute(FICOScore.FICO_MESSAGE);

 if (message == null) {
%>
 Your personal FICO score is <%= ficoScore %>.
<% } else { %>
 <%= message %>
<% } %>
<P>
</DIV>
Chapter 15. Developing SOA access services 483

Run the portlet in the portal test environment
The development of the portlet is complete, so you can test it now using the WebSphere
portal test environment which you created in “Configure the WebSphere portal test
environment” on page 458.

Go to the Servers view in the RAD workbench, right-click the WebSphere Portal Server V5.1
Test Environment and select Add and remove projects. Select the ITSOBankPortletsApp
project and add it to the server as shown in Figure 15-43.

Figure 15-43 Add portlet project to portal test environment

Now start the WebSphere Portal V5.1 Test Environment via the Servers view. Right-click the
test environment and select Start. The Console view shows the progress of the start
procedure.

When the server is started, open a Web browser and enter the following URL to go to the
portal page:

http://localhost:9081/wps/portal

You are asked for a username to login to the portal. Enter wpsadmin for username and
password. A portal page containing the credit score portlet appears. In case all systems
which are accessed by this portlet are running, you should see the credit score displayed in
this portlet as shown in Figure 15-36 on page 475.

15.4.6 Creating the foreign exchange calculator portlet

The foreign exchange calculator is a form-based portlet which allows the user to convert
amounts of money between different currencies. The portlet uses a Web Service to retrieve

Note: The portlet application needs to be added to the portal test environment only once.
When you change the portlet project by adding new portlets, you only need to republish the
project to the test environment.
484 Powering SOA with IBM Data Servers

up-to-date currency exchange rates from a separate system, as shown in the system context
diagram in Figure 15-25 on page 457.

The portlet provides minimum user interaction (the user can enter the amount and select
currencies), so the implementation needs to go beyond the view-only credit score portlet
presented in the previous chapter. Figure 15-44 shows the user interface of the portlet. It
contains a Web form to allow the user to select currencies and enter an amount, and shows
the result below of the form.

Figure 15-44 View of the foreign exchange calculator portlet

The implementation of the portlet follows the Model-View-Controller (MVC) principle, as
shown in Figure 15-45:

� A CurrencyConverterSessionBean object representing the Model encapsulates the
attributes of the portlet session (the selected currencies, exchange rate, amounts).

� The CurrencyConverter portlet class which is the portlet Controller processes an
incoming conversion request from the client (it reads the HTML form values and calculates
the final amount based on the exchange rate received from the PHP Web Service) and
sets the attributes of the session bean with the results.

� The application View CurrencyConverterView.jsp reads the values from the session bean
and displays the HTML form as well as the conversion result.

Figure 15-45 Foreign exchange calculator portlet application

The chapter demonstrates how to create this portlet in RAD. Some of the steps are already
explained in 15.4.5, “Creating the credit score portlet” on page 475, so we do not get into the
same level of detail. This chapter continues describing the following tasks:

Foreign exchange calculator portlet

CurrencyConverter.java

CurrencyConverter-
 SessionBean.java

CurrencyConverter-
 View.jsp

sets

gets

includes

Model

Controller

View

Client
Chapter 15. Developing SOA access services 485

� Create a new portlet.
� Add session attributes to the session bean class.
� Extend the portlet class with the application logic.
� Modify the portlet JSP to show the HTML form and result.
� Run the portlet in the test environment.

Create a new portlet
To add the foreign exchange calculator portlet to the existing ITSOBankPortlets portlet project
in RAD, open the New portlet wizard by selecting File → New → Other → Portal → Portlet
and follow the steps as shown in 15.4.5, “Creating the credit score portlet” on page 475.
When you enter the Portlet settings on the third page, use the following values:

� The portlet name should be CurrencyConverterPortlet.
� Enter Foreign exchange calculator as display name (this text will appear in the portlet title).
� The package prefix is com.itso.sg247259.portlets.
� The class prefix is CurrencyConverter.

On the Actions and preferences page check the options Add action request handler and
Add form sample.

The wizard creates the files shown in Figure 15-45 on page 485. Our task is to modify and
extend these files to implement the foreign exchange calculator functionality, as demonstrated
below.

Add session attributes to the session bean class
An object of the session bean class of our Foreign exchange calculator portlet holds all
attributes of the portlet session, in our case all attributes which are displayed in the portlet
window. The following session attributes are defined:

� Amount of money to be converted
� Source currency
� Target currency
� Converted amount of money
� Currency exchange rate used for the conversion
� An (optional) error message

We modify the session bean class CurrencyConverterSessionBean and add these attributes.
Example 15-37 lists the getter/setter methods which are implemented by this class.3

Example 15-37 Interface of the CurrencyConverterSessionBean class

package com.itso.sg247259.portlets;

// Session bean of foreign exchange calculator portlet
public class CurrencyConverterSessionBean {

 // Returns the amount of money to be converted
 public double getAmount();

Tip: When you select the option Add action request handler, the New portlet wizard
extends the portlet class with an action handler stub. When you additionally select option
Add form sample, the wizard adds an HTML form sample to the generated JSP file, adds a
session bean class, and includes sample code to the action handler to process the form.

3 The implementation of these method is trivial: You need to store the attributes in instance variables and access
these variables through the getters and setters. The additional materials include the complete implementation of
this class.
486 Powering SOA with IBM Data Servers

 // Sets the amount of money to be converted
 public void setAmount(double amount);

 // Returns the source currency
 public String getSourceCurrency();

 // Sets the source currency
 public void setSourceCurrency(String sourceCurrency);

 // Returns the target currency
 public String getTargetCurrency();

 // Sets the target currency
 public void setTargetCurrency(String targetCurrency);

 // Returns the converted amount of money
 public double getConvertedAmount();

 // Sets the converted amount of money
 public void setConvertedAmount(double convertedAmount);

 // Returns the currency exchange rate
 public double getRate();

 // Sets the currency exchange rate
 public void setRate(double rate);

 // Returns the error message
 public String getMessage();

 // Sets the error message
 public void setMessage(String message);

 // Returns an array with supported currencies
 public String[] getSupportedCurrencies();
}

Extend the portlet class with the application logic
The CurrencyConverter portlet class includes two methods which are of interest for us:

� The doView() method is called when the portlet receives a render request. It only forwards
to the JSP page which renders the portlet content. The wizard already created the code
for us, so we do not need to change it.

� The processAction() method is called by the portlet container when an action is received.
Our portlet receives the submit actions of the HTML form, so this method has to process
them. The HTML form includes two submit actions: The Calculate action indicates that a
currency conversion has to happen, and the Reset action resets all HTML form fields.

The implementation of the portlet’s processAction() method is listed in Example 15-38.

Example 15-38 Implementation of the CurrencyConverter.processAction() method

// process a portlet action request
public void processAction(ActionRequest request, ActionResponse response)
Chapter 15. Developing SOA access services 487

 throws PortletException, java.io.IOException {

 if (request.getParameter(FORM_CALCULATE) != null) {

 // retrieve the portlet's session bean
 CurrencyConverterSessionBean sessionBean = getSessionBean(request);

 if (sessionBean != null) {

 // reset the (error) message attribute
 sessionBean.setMessage(null);

 // read currency selections and amount from HTML form and add them
 // to session bean
 sessionBean.setAmount(
 Double.parseDouble(request.getParameter(FORM_AMOUNT)));
 sessionBean.setSourceCurrency(request.getParameter(FORM_SRC_CURR));
 sessionBean.setTargetCurrency(request.getParameter(FORM_TGT_CURR));

 try {
 // call currency conversion web service to retrieve the current
 // exchange rate
 ConvertorServerLocator wsLocator = new ConvertorServerLocator();
 String wsURL = request.getPortletSession().getPortletContext()
 .getInitParameter("ws.url.currencyconverter");

 wsLocator.getConvertorServerPort(new URL(wsURL))
 .getExchangeRate(
 sessionBean.getSourceCurrency(),
 sessionBean.getTargetCurrency());
 double exchangeRate = Double.parseDouble(
 wsLocator.getConvertorServerPort(new URL(wsURL))
 .getExchangeRate(
 sessionBean.getSourceCurrency(),
 sessionBean.getTargetCurrency()));

 // set calculated session bean attributes
 sessionBean.setRate(exchangeRate);
 sessionBean.setConvertedAmount(
 sessionBean.getAmount() * exchangeRate);
 } catch (Exception e) {
 System.err.println("CurrencyConverter exception: " + e);

 // set the error message if the converter web service is unavailable
 sessionBean.setMessage(
 "The conversion service is temporarily unavailable! Please try again later.");
 }
 }
 }
 else if (request.getParameter(FORM_RESET) != null) {
 CurrencyConverterSessionBean sessionBean = getSessionBean(request);

 // reset all attributes in the portlet session
 sessionBean.setSourceCurrency("");
 sessionBean.setTargetCurrency("");
488 Powering SOA with IBM Data Servers

 sessionBean.setAmount(0);
 sessionBean.setRate(0);
 sessionBean.setConvertedAmount(0);

 sessionBean.setMessage(null);
 }
}

Notes to the implementation of the processAction() method:

� The input from the HTML form is accessed through parameters of the passed
PortletRequest object. The request parameters include the form action which was
selected by the user, and the field values entered by the user. The method identifies the
form action (either FORM_CALCULATE or FORM_SUBMIT) and takes the appropriate
steps.

� The method sets all attributes of the session bean, the submitted form fields as well as the
calculated results. This allows the JSP to view all attributes the way the user entered them.

� We use the Web Service Java proxy (created in 15.4.4, “Creating Java client proxies for
Web Service interfaces” on page 469) to call the currency conversion Web Service. To
keep flexible with respect to the actual service endpoint used we do not take the service
endpoint defined in the WSDL of this Web Service. Instead, we use a special method of
the locator class which passes the service endpoint URL. The actual value of the URL is
defined as portlet initialization parameter and retrieved as shown in the bold statement in
the example.

You need to add the initialization parameter in the Portlet Deployment Descriptor as shown
in Figure 15-41 on page 480. You add a parameter ws.url.currencyconverter and set it
to the Web Service URL, for example:

http://Your_Apache_server/ConvertorServer.php

� In case the call to the currency conversion Web Service is not successful (for example,
because the Web Service is not available, or because the interface changed), the session
bean’s error message attribute is set.

� If the user selects the FORM_RESET action, the attributes in the session bean are reset.

Modify the portlet JSP to show the HTML form and result
The JSP of our portlet has to fulfill the following responsibilities:

� Display the HTML form.
� Show the conversion result after the user submits the form.
� Display an error message if the conversion is not successful.

Example 15-39 shows the main parts of the JSP. You can find the full source code in the
additional materials.

Example 15-39 Content of CurrencyConverterView.jsp portlet view

[...]
<% CurrencyConverterSessionBean sessionBean = (CurrencyConverterSessionBean)
 renderRequest.getPortletSession().getAttribute(
 CurrencyConverter.SESSION_BEAN);
%>

<FORM method="POST" action="<portlet:actionURL/>">

[...include form input fields (currency selection lists, text field for amount...]
Chapter 15. Developing SOA access services 489

<P>
 <INPUT name="<%= CurrencyConverter.FORM_CALCULATE %>" type="submit"
 value="Calculate" />
 <INPUT name="<%= CurrencyConverter.FORM_RESET %>" type="submit" value="Reset" />
</P>

</FORM>

<% if (sessionBean.getMessage() != null) { %>

 <%= sessionBean.getMessage() %>

<% }
 else if (sessionBean.getConvertedAmount() > 0.1) {
%>

 Conversion:
 <%= sessionBean.getConvertedAmount() %>
 <%= sessionBean.getTargetCurrency() %>
 [exchange rate: <%=sessionBean.getRate()%>]

<% } %>

Notes to the implementation of the JSP file:

� First, the portlet retrieves the portlet session bean. The attributes of the session bean have
been set by the portlet class when it processed the portlet’s action request and before it
called the JSP (in the render method).

� An HTML form is defined. The portlet does not have an URL assigned, so the action
attribute is instead set to the portlet:actionURL tag.

The porlet:actionURL tag is replaced at runtime by the portlet container with a link that
calls the action handler of the corresponding portlet class. For our portlet, the
processAction() method of the CurrencyConverter portlet class is called. So the HTML
form and the form-processing code are linked together.

� The form input fields are defined as HTML <INPUT> and <SELECT> elements (the
implementation is not shown in this example). The name values of the Calculate and Reset
buttons are used by the portlet action handler to identify which one of these actions was
selected by the user.

� If the error message attribute of the session bean has been set, it is displayed below the
form. Otherwise the conversion result and the exchange rate are shown.

Run the portlet in the test environment
You can find instructions to add the portlet project to the WebSphere Portal V5.1 Test
Environment in “Run the portlet in the portal test environment” on page 484. If you already
performed the steps which are listed there, you do not need to repeat them. Instead, it is
sufficient to republish the test environment (go to the Servers view in RAD, right-click the test
environment and select Publish) and restart the test environment server.

You will see the foreign exchange calculator portlet, when you access the portal page in your
Web browser using the URL:

http://localhost:9081/wps/portal
490 Powering SOA with IBM Data Servers

Enter the required field values and select Calculate to display the converted amount.

15.4.7 Creating the mortgage accounts portlet

The mortgage accounts portlet integrates characteristics of the other portlets demonstrated in
this book, and goes beyond the other portlets in the following respect:

� Access of local data and services

Figure 15-26 on page 458 shows the data flow of this portlet. The DB2 PORTALDB
database is accessed to retrieve portal user data. The interfaces to the IMS CMR
database and the company’s accounting system is realized with DADX Web Services.

� Interaction with user

The portlet requests information about new mortgage accounts from the user via HTML
forms.

� Personalization

The portlet is personalized like the credit score portlet (and as opposed to the foreign
exchange calculator portlet). Each user which is logged in to the portal views personalized
content (customer data and accounting information of the user).

� Workflow

The portlet implements a simplified workflow model. User actions trigger the output of
different content to the user.

The portlet implements the following scenario:

1. When a customer logs in to the portal, the mortgage accounts portlet shows customer
contact information (user name, home address, phone numbers, and so on), and lists all
mortgage accounts of this customer.

2. The customer can view the details (mortgage amount, monthly payment, current balance,
and so on) of each mortgage account.

3. The customer can request a new mortgage. For this purpose, the customer submits the
details of the requested mortgage, and the portlet forwards the request to the accounting
system. If the reply from the accounting system is positive, the portlet shows the new
account number.

Figure 15-46 on page 492 shows the main page of the portlet with the customer data and the
account list, as well as the URL links to either view the details of an existing account, or to
request a new account.
Chapter 15. Developing SOA access services 491

Figure 15-46 Picture of the mortgage accounts manager portlet

The portlet uses a separate JSP to display the information provided in the different states of
the portlet. Figure 15-47 shows the abstract workflow:

Figure 15-47 Flowchart of mortgage accounts manager portlet

� The MortgageAccountsView.jsp page displays the main page of the portlet, containing
overall customer and accounting information. Figure 15-46 shows the rendered output of
this JSP.

� If the user chooses to see the details of a mortgage account, the MortgageDetailsView.jsp
page displays the mortgage account attributes as well as a link to go back to the main
page.

� When the user selects the Request new mortgage link from the main page, he is
forwarded to the CreateMortgageView.jsp page where he can enter the mortgage
attributes.
492 Powering SOA with IBM Data Servers

� Once the mortgage request is processed successfully, the portlet uses the
CreateMortgageResultView.jsp page to show the new account number. The user can go
back to the main page using a link.

� In case a problem occurs, the user is forwarded to the MortgageErrorsView.jsp page
which displays information about the problem.

As it is the case for all portlets in our example, this one follows the MVC principle. The
separation of the portlet’s components into the different roles is displayed in Figure 15-48:

� The MortgageRequest portlet class is the single Controller of this portlet. Each request
coming from the user (portlet links selected by the user, submitted forms) is processed by
this class. It forwards to the user to the appropriate JSP based on the action selected by
the user.

� The JSP pages described previous in this chapter comprise the portlet’s View. They
render the HTML content of the portlet which is forwarded to the user.

� The MortgageRequestSessionBean as Model is used to pass session attributes from the
portlet controller to the JSP pages.

Figure 15-48 Mortgage accounts manager portlet application

This chapter demonstrates how to create this portlet in RAD. Some of the required tasks are
already explained in 15.4.5, “Creating the credit score portlet” on page 475 and in 15.4.6,
“Creating the foreign exchange calculator portlet” on page 484, and a complete step-by-step
introduction goes beyond the context of this book, so this chapter concentrates on the setup
of the portlet’s workflow. The complete source code of this portlet is included in the additional
materials. You can import the portlet project into your RAD workspace and introspect the
portlet code from there.

In this chapter, the following topics are described:

� Create a new portlet
� Modify the session bean class
� Implement workflow in portlet class
� Implement user interface in JSPs
� Run the portlet in the test environment

Create a new portlet
The creation of the mortgage accounts manager portlet follows the instructions explained in
15.4.5, “Creating the credit score portlet” on page 475. Open the New portlet wizard by
selecting File → New → Other → Portal → Portlet and perform the steps which are

Mortgage accounts manager portlet

MortgageRequest.java

MortgageRequest-
 SessionBean.java

 MortgageAccountsView.jsp
 MortgateDetailsView.jsp
 CreateMortgageView.jsp
CreateMortgageResultsView.jsp
 MortgageErrorsView.jsp

sets

get

includes

Model

Controller

View

Client
Chapter 15. Developing SOA access services 493

demonstrated in that chapter. When you enter the Portlet settings on the third page, use the
following values:

� The portlet name is MortgageRequestPortlet.
� Enter Your mortgage accounts as display name (this text will appear in the portlet title).
� The package prefix is com.itso.sg247259.portlets.
� The class prefix is MortgageRequest.

On the Actions and preferences page check the options Add action request handler and
Add form sample. The wizard performs the following actions:

� The portlet deployment descriptor of our ITSOBankPortlets portlet application is extended
with an entry for the new MortgageRequest portlet. Similar to the FICO score portlet, the
mortgage accounts manager portlet accesses the local PORTALDB database using Data
Access Objects. For this reason, the data source information is passed in the same way
through portlet initialization parameters. As demonstrated in “Create a DB connector
factory” on page 479, the parameters db.type and db.jndiurl need to be added to the
portlet deployment descriptor (see also Figure 15-49).

Figure 15-49 DAO initialization parameters for mortgage accounts manager portlet

� A new class, com.itso.sg247259.portlets.MortgageRequest is created. This class
extends the GenericPortlet class and acts as the portlet Controller. We’re going to
extend this class with the portlet functionality in “Implement workflow in portlet class” on
page 496.

� Another new class, com.itso.sg247259.portlets.MortgageRequestSessionBean, is the
portlet Model. We add all attributes which are exchanged between the portlet controller
and the portlet JSPs in “Modify the session bean class” on page 494.

� A single JSP page which represents the portlet view is created. We replace this page
named MortgageRequestView.jsp with the JSP pages shown in Figure 15-48 on
page 493.

Modify the session bean class
The portlet’s session bean is, as its name indicates, persistent within the context of a portlet
user session (that is, a series of interactions between the portal user and the portlet). Any
user-related data can be stored in the session bean.
494 Powering SOA with IBM Data Servers

We use the session bean to store the portlet Model, that is, store the data which is retrieved
from the local database, returned by service calls, entered by the user, and displayed in the
rendered portlet pages, which includes the following information:

� Attributes of the portal user, represented by the PortalUser class. Portal user attributes
are the user name of the authenticated user, and the corresponding ITSOBank customer
number.

� Additional customer information which is read from the local PORTALDB database and
displayed on the main page of the mortgage accounts portlet (customer name, address,
and contact information).

� A list of mortgage account numbers owned by the portal user. This list is retrieved from the
accounting system and also displayed on the portlet’s main page.

� A mortgage account number, which identifies an existing mortgage account for which
details are requested by the user, or a new mortgage account number returned by the
accounting system as result of the creation of a new mortgage account.

� The attributes of an existing mortgage account which are displayed on the mortgage
account details page of the portlet.

� A (potential) error message which is displayed on the portlet’s error page.

The interface of the modified session bean class MortgageRequestSessionBean is shown in
Example 15-40. You can find the complete implementation of this class in the additional
resources.

Example 15-40 Interface of the MortgageRequestSessionBean class

package com.itso.sg247259.portlets;

// The session bean of the mortgage accounts manager portlet.
public class MortgageRequestSessionBean;

 // @return Returns the existing mortgage account numbers.
 public String[] getAccountNumbers();

 // @param accountNumbers The existing mortgage account numbers.
 public void setAccountNumbers(String[] accountNumbers);

 // @return Returns the attributes of the customer record.
 public Customer getCustomerDetails();

 // @param customerDetails The attributes of the customer records.
 public void setCustomerDetails(Customer customerDetails);

 // @return Returns the error message.
 public String getMessage();

 // @param message The error message to set.
 public void setMessage(String message);

 // @return Returns details of a mortgage account.
 public MortgageAccountDetailsRow getMortgageAccount();

 // @param mortgageAccount Details of a mortgage account to set.
 public void setMortgageAccount(MortgageAccountDetailsRow mortgageAccount);

 // @return Returns the portal user object.
Chapter 15. Developing SOA access services 495

 public PortalUser getUser();

 // @param user The portal user object to set.
 public void setUser(PortalUser user);

 // @return Returns the mortgage account number.
 public String getDetailAccountNumber();

 // @param detailAccountNumber The mortgage account number to set.
 public void setDetailAccountNumber(String detailAccountNumber);
}

Implement workflow in portlet class
When we demonstrated the creation of the other portlets earlier in this chapter, we already
introduced a few methods of the portlet class. For the mortgage account manager portlet we
use this portlet class more heavily, so a short explanation of the purpose of this portlet class
follows.

The portlet class is inherited from the GenericPortlet class which is specified in the JSP 168
standard (find more information in 4.2, “The standardization of portlets (Java standardization
request - JSR-168)” on page 77). It fulfills (at least) the following purposes:

� It processes action requests initiated by the portlet container. An action request is received
if either the client submitted a form of the portlet, or if the client selected a link from within
the portlet. Both, the form and the link need to be designated in the JSP code by using the
portal:actionURL tag. When processing this type of request, no portlet content is created.

� It processes render requests which are also received from the portlet container. A render
request indicates that no (data) processing needs to happen by the portlet, but the portlet
content has to be rendered. A portlet receives more render requests than action requests,
since a render request always follows an action request (the content of the portlet has to
be regenerated after an action is processed), but also if the portal page is reloaded
because of other reasons (for example, the portlet view mode changes from default to
maximized, or the action of a different portlet on this page has been processed and
requires the portal page to be reloaded).

The GenericPortlet class provides two methods which are called when requests are
received. The processAction() is called when the portlet receives an action request, and the
doView() method is called in case of a render request. The context of the portlet (session,
request, and response data) is passed as method arguments.

For our mortgage account manager portlet the processAction() method has to fulfill the
following purposes:

1. It defines which portlet JSP page needs to be displayed next, based on the action which is
stored in the portlet request (and ultimately coming from the user by selecting a link of the
portlet, or submitting a form). The JSP page shown is saved as a portlet session attribute
and defines the session status. This attribute is read by the doView() method when a
render request is received by the portlet.

Note: JSR 168 portlets have different modes, namely a view mode, an edit mode (normally
allow a user to change portlet settings), and a help mode to show portlet-related help
information. In our scenario we use only the view mode, so all render requests are passed
to the doView() method. The GenericPortlet class provides the doEdit() and doHelp()
methods to render the portlet content in the other modes.
496 Powering SOA with IBM Data Servers

2. In case the user submitted a mortgage request form, the method calls the appropriate
service of the accounting system which processes the mortgage request. The result of the
service call is stored in the session bean.

3. If a user selects to show the details of a mortgage account, the method stores the account
number in the session bean (the account number is included as a request parameter).

We demonstrate the implementation of the processAction() method in Example 15-41. The
method first reads the session bean from the portlet session, and tests the request
parameters for the user action. Depending on the action, it sets the session state, and
executes the actions requested by the user.

Example 15-41 Implementation of the MortgageRequest.processAction() method

/**
 * Process an action request.
 */
public void processAction(ActionRequest request, ActionResponse response)
 throws PortletException, java.io.IOException {

 MortgageRequestSessionBean sessionBean = getSessionBean(request);

 if (sessionBean == null) {
 System.out.println("MortgageRequest: No session available!");
 return; // don't do anything
 }

 // reset error message
 sessionBean.setMessage(null);

 if (request.getParameter(ACCOUNTS_VIEW_JSP) != null) {
 // requested action is to show the accounts overview page
 request.getPortletSession().setAttribute(JSP_PAGE, ACCOUNTS_VIEW_JSP);
 }
 else if (request.getParameter(DETAILS_VIEW_JSP) != null) {
 // the details of a specific mortgage account need to be displayed;
 // change to the page showing the details
 request.getPortletSession().setAttribute(JSP_PAGE, DETAILS_VIEW_JSP);

 sessionBean.setDetailAccountNumber(request.getParameter(ACCOUNT_NUM));
 }
 else if (request.getParameter(CREATE_VIEW_JSP) != null) {
 // the user wants to submit a request for a new mortgage, so show
 // the mortgage request form
 request.getPortletSession().setAttribute(JSP_PAGE, CREATE_VIEW_JSP);
 }
 else if (request.getParameter(CREATE_FORM_SUBMIT) != null) {
 // the user submitted data for a mortgage request, so create the request
 // and show the results page
 callCreateMortgageAccount(request, sessionBean);

Note: The complete workflow of the portlet (deciding in which status the portlet is at a
specific time, that is, which of the portlet’s JSP pages needs to be rendered) is controlled
by the processAction() method. The current status of a session is stored in a session
attribute. The session status is persistent across multiple render requests, so the doView()
method does always know which page to render at a time.
Chapter 15. Developing SOA access services 497

 request.getPortletSession().setAttribute(JSP_PAGE, RESULT_VIEW_JSP);
 }
 else if (request.getParameter(CREATE_FORM_CANCEL) != null) {
 // the user cancelled the creation of a mortgage request, so
 // we go back to the accounts overview page
 request.getPortletSession().setAttribute(JSP_PAGE, ACCOUNTS_VIEW_JSP);
 }
}

The doView() method has the purpose of rendering the actual content, dependent on the
current status stored in the portlet session. It performs the following steps:

1. First, it identifies the current session status, by reading which JSP page needs to be
shown. This information has been set by the processAction() method and is stored in the
portlet session.

2. Based on the session status, it collects all data which needs to be displayed (for example,
attributes of a specific mortgage account if the mortgage account details page has to be
shown) by calling services and reading data from the local database. The method stores
the data in the session bean.

3. Finally, the doView() method forwards to the appropriate JSP page. The JSP page is using
the data stored in the session bean to render the portlet content.

Example 15-42 shows the implementation of the doView() method. Most notably, the
JSP_PAGE session attribute contains the session status (that is, the name of the JSP page
being shown). Also, the data which is displayed in the portlet is stored in the session bean,
hence it is persistent across a user session. Data which does not change within a user
session (for example, the name of the portal user, or the customer information) has to be read
only once within a session.

Example 15-42 Implementation of the MortgageRequest.doView() method

/**
 * Serve up the <code>view</code> mode.
 */
public void doView(RenderRequest request, RenderResponse response)
 throws PortletException, IOException {

 // Set the MIME type for the render response
 response.setContentType(request.getResponseContentType());

 // check if portlet session exists
 MortgageRequestSessionBean sessionBean = getSessionBean(request);
 if (sessionBean == null) {
 response.getWriter().println("NO PORTLET SESSION YET");
 return;
 }

 // initially, no session status is set; we start with the accounts
 // overview page
 if (request.getPortletSession().getAttribute(JSP_PAGE) == null)
 request.getPortletSession().setAttribute(JSP_PAGE, ACCOUNTS_VIEW_JSP);

 String currentJspPage =
 (String) request.getPortletSession().getAttribute(JSP_PAGE);
498 Powering SOA with IBM Data Servers

 // identify the portlet user of this session (if that's not happened already)
 // and store information in sessionbean
 if (sessionBean.getUser() == null)
 getPortalUser(PortalUserInfo.getCurrentUsername(request), sessionBean);

 // set customer details of current user in portlet session bean
 if (sessionBean.getMessage() == null &&
 sessionBean.getCustomerDetails() == null)
 getCustomerRecord(sessionBean);

 if (ACCOUNTS_VIEW_JSP.equals(currentJspPage)) {
 // get list of mortgage accounts in case the accounts overview page is shown
 if (sessionBean.getMessage() == null)
 callListAccountNumbers(sessionBean);
 }
 else if (DETAILS_VIEW_JSP.equals(currentJspPage)) {
 // read details of a specific mortgage account and store it in the session
 // bean if the details page is shown
 if (sessionBean.getMessage() == null)
 callGetAccountDetails(sessionBean);
 }

 // switch to the error page if a message has been set
 if (sessionBean.getMessage() != null)
 request.getPortletSession().setAttribute(JSP_PAGE, ERROR_VIEW_JSP);

 // invoke the JSP to render
 PortletRequestDispatcher rd =
 getPortletContext().getRequestDispatcher(getJspFilePath(
 request, (String) request.getPortletSession().getAttribute(JSP_PAGE)));
 rd.include(request,response);
}

Implement user interface in JSPs
The JSP pages comprising the mortgage accounts manager portlet user interface are shown
in Figure 15-47 on page 492. The implementation of these files is straightforward since the
only purpose of them is to:

� Display the data requested by the portlet user.
� Show HTML forms (and links) to allow the portlet user to submit information to the portlet.

The implementation of fragments of the main JSP page, MortgageAccountsView.jsp, is
shown in Example 15-43.

Example 15-43 Implementation of the MortgageAccountsView.jsp page

<%@ page session="false" contentType="text/html" 1
 import="java.util.*,javax.portlet.*,com.itso.sg247259.portlets.*" %>
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %> 2
<portlet:defineObjects/> 3

<%
 MortgageRequestSessionBean sessionBean = 4
 (MortgageRequestSessionBean)renderRequest.getPortletSession()
 .getAttribute(MortgageRequest.SESSION_BEAN);
Chapter 15. Developing SOA access services 499

 com.itso.sg247259.dao.transfer.Customer customerDetails =
 sessionBean.getCustomerDetails();
 String[] accountNumbers = sessionBean.getAccountNumbers();
%>

<H3 style="margin-bottom: 10px"> 5
 Customer details for
 <%= customerDetails.getSalutation() + " " + customerDetails.getFirstname() + " "
 + customerDetails.getMiddleInitial() + " " + customerDetails.getLastName() %>
</H3>

<!-- table containing customer details -->
<TABLE width="100%" border="0" cellpadding="5" cellspacing="0">
 <TBODY>
 <TR>
 <TD align="right">Customer number:</TD>
 <TD align="left"><%= customerDetails.getCustNum() %></TD>
 </TR>
 <TR>
 <TD align="right">Home address:</TD>
 <TD align="left">
 <%= customerDetails.getAddress1() %>

 <%= customerDetails.getAddress2() %>

 <%= customerDetails.getCity() + ", " + customerDetails.getState() + " "
 + customerDetails.getZipCode() %>
 </TD>
 </TR>
 ...
 </TBODY>
</TABLE>

<H3 style="margin-bottom: 10px">Your mortgage accounts</H3>

<!-- link to 'Request new mortgage account' page -->
<P><A href="<portlet:actionURL> 6
 <portlet:param name="<%= MortgageRequest.CREATE_VIEW_JSP %>" value="true" />
</portlet:actionURL>">[Request new mortgage...]</P>

<!-- table containing customer's mortgage accounts -->
<TABLE width="100%" border="0" cellpadding="5" cellspacing="0">
 <THEAD>
 <TR>
 <TH>Account number</TH>
 <TH>Details</TH>
 </TR>
 </THEAD>
 <TBODY>
<% for (int i = 0; i < accountNumbers.length; i ++) { %> 7
 <TR>
 <TD><%= accountNumbers[i] %></TD>
 <TD>
 <A href="<portlet:actionURL> 8
 <portlet:param name="<%= MortgageRequest.DETAILS_VIEW_JSP %>"
 value="true" />
 <portlet:param name="<%= MortgageRequest.ACCOUNT_NUM %>"
500 Powering SOA with IBM Data Servers

 value="<%= accountNumbers[i] %>" />
 </portlet:actionURL>">View details...
 </TD>
 </TR>
<% } %>
 </TBODY>
</TABLE>

Notes to Example 15-43 on page 499:

1. The first JSP directive sets the page’s content type to HTML, and imports a number of
Java packages whose classes are used further on in the code.

2. The second JSP directive imports the portlet tag library defined in the JSR 168 standard.
The portlet tag library provides convenient access to portlet-specific functions (for
example, the creation of portlet links, or access to the portlet session objects). All tags in
the JSP file starting with the portlet prefix are defined in this tag library.

3. The <portlet:defineObjects /> tag creates some Java objects from the portlet API, for
example, the renderRequest object which is used later on.

4. The portlet’s session bean is accessed through the portlet’s render request object. The
JSP page displays the user’s customer details and mortgage account numbers, and this
data is taken from the session object.

5. The customer attributes (user’s full name, customer number, address, and so on) are read
from the customerDetails bean and displayed in an HTML table.

6. The portlet:actionURL tag is used to create a link that triggers a call of the
processAction() method of our portlet class. We add a parameter with the portlet:param
tag to let the portlet class know that we want to show the Request a new mortgage
account page if the user selects this link.

7. We traverse the accountNumbers array to display each of the user’s mortgage account
numbers in a separate HTML table row.

8. We create a link to the account details page for each listed mortgage account. For this
purpose, we use the portlet:actionURL tag and pass the indicator for the details page,
and the mortgage account number as parameters, using the portlet:param tag.

Run the portlet in the test environment
You can find instructions to add the portlet project to the WebSphere Portal V5.1 Test
Environment in section “Run the portlet in the portal test environment” on page 484. If you
already performed the steps which are listed there, you do not need to repeat them. Instead,
it is sufficient to republish the test environment (go to the Servers view in RAD, right-click the
test environment and select Publish) and restart the test environment server.

Enter the following URL in your Web browser:

http://localhost:9081/wps/portal

This URL displays the portal test page, including the mortgage account manager portlet. You
first see the main page showing the customer information. From this page, you can start
creating (requesting) a new mortgage account.

Note: This chapter does not contain listings of the other JSP pages of the mortgage
account manager portlet because no new techniques or methods are introduced in those
JSP pages. Check the additional materials for the source code of the complete portlet.
Chapter 15. Developing SOA access services 501

http://localhost:9081/wps/portal

15.4.8 The whole picture

In this chapter we introduced a number of tools and techniques which allow you to aggregate
a variety of services and data repositories into a SOA-enabled, state-of-the-art Web portal
application. We demonstrated the integration of Web Services by generating Java Web
Services client proxies from the WSDL of the services, the access of DB2 data servers using
the DAO design pattern (this pattern is not restricted to DB2 though; it can be used for
arbitrary relational databases, or even non-relational data repositories). And we showed the
design and development of Web portlets with different complexities, using the MVC pattern to
create the user interface and to implement a simple workflow.

When you went through the whole chapter and created the components and portlets which
comprise the ITSOBank customer Web portal, you can run the portal application in the RAD
WebSphere Portal V5.1 test environment and access the Web portal in your Web browser.

The first page you get after opening the Web portal URL contains the login portlet (see
Figure 15-50). Enter the credentials of the Web portal administrative user (the default is
wpsadmin for both, username and password) and select Log in.

Figure 15-50 ITSOBank portal login portlet

After a successful login the main page of the Web portal is displayed, as demonstrated in
Figure 15-51 on page 503. It contains the user interface of the three portlets, and you can
interact which each of them: performing currency conversions, reviewing the details of your
existing mortgage accounts or requesting a new mortgage.
502 Powering SOA with IBM Data Servers

Figure 15-51 ITSOBank portal test page

This chapter provides only a short introduction into the portal technology. To gather additional
information about portal development (for example, how to create a portal application which
allows to get fine-grained control about the portal user experience by modifying portal themes
and skins; or how to use an LDAP user directory for portal access and configure a role-based
authorization concept) we recommend the redbook IBM Rational Application Developer V6
Portlet Application Development and Portal Tools, SG24-6681.
Chapter 15. Developing SOA access services 503

504 Powering SOA with IBM Data Servers

Part 6 SOA operations

In Part 6 we bridge the administration gap by providing information useful in administering
and operating in SOA environments.

This part contains these chapters:

� Chapter 17, “WebSphere Application Server administration” on page 537
� Chapter 18, “Managing and monitoring SOA applications” on page 553

Part 6
© Copyright IBM Corp. 2006. All rights reserved. 505

506 Powering SOA with IBM Data Servers

Chapter 16. PHP client design

PHP is a recursive acronym for “Hypertext Preprocessor”. PHP is a powerful server-side
scripting language designed for creating dynamic Web applications with non-static content.
The PHP code can be either a stand alone program or it can be inserted inside HTML
(Hypertext Markup Language) or XHTML (Extensible Hypertext Markup Language). The PHP
syntax is similar to C, Java, and Perl.

This chapter discusses these topics:

� A brief introduction to PHP
� Implementing Web services with PHP
� Using native XML with PHP 5
� Connecting PHP to data servers
� Access an enterprise application using PHP
� Zend Core for IBM
� Conclusion

16
© Copyright IBM Corp. 2006. All rights reserved. 507

16.1 A brief introduction to PHP

Hypertext Preprocessor (PHP) is a powerful server-side scripting language for Web servers.
PHP is popular for its ability to process database information and create dynamic Web pages.
server-side refers to the fact that PHP language statements, which are included directly in
your Hypertext Markup Language (HTML), are processed by the Web server. Scripting
language means that PHP is not compiled. Since the results of processing PHP language
statements is standard HTML, PHP-generated Web pages are quick to display and are
compatible with most all Web browsers and platforms.

To “run” PHP scripts with your HTTP server, a PHP engine is required. The PHP engine is an
open source product.

16.1.1 What PHP is

PHP code can easily access database files and output HTML, resulting in non-static,
up-to-date Web pages. It is a technique similar to JavaServer pages (JSPs) or CGI binary
programming. Also, PHP is an open-source project, there are many open-source PHP
applications and code sample available on the Internet. Hundreds of ready-made applications
written in PHP are available as shareware, and many commercial products employ it. PHP is
considered reliable in terms of security.

Figure 16-1 shows the difference between standard static Web pages and dynamic Web
pages using server-side PHP processing. In the first scenario (on the left), a standard URL
request arrives at the Web server asking for the Web page:

http://www.example.com/index.html

The Web server sees this request and returns the HTML.

Figure 16-1 Left: Standard request for a Web page; Right: Request with PHP

Still looking at Figure 16-1 with the second scenario (on the right), the index.php file contains
the special <?php tag that tells the Web server to process embedded PHP statements. After
PHP processes those statements, it returns HTML statements to the Web server. Those
statements are then sent back to the user included in the original HTML found in the file
index.php. Because PHP statements can run a command or SQL statements, we can say that
the Web page is dynamically generated, as opposed to our previous static HTML page.
508 Powering SOA with IBM Data Servers

http://www.example.com/index.html

PHP is popular for the following reasons:

� Easy to use: PHP is a scripting language included directly in HTML. There’s no need to
compile PHP programs or spend time learning tools that create PHP. You can simply insert
statements and get quick turnaround as you make changes.

� Fully functional: The PHP language has built-in functions to access your favorite
database.With PHP, your HTML pages can reflect current information by querying those
databases, or you can use information about the user viewing your HTML Web page to
customize the page specifically for that user. In addition to relational database support,
PHP is a complete language that includes powerful functions to create classes for
object-oriented programming and user flat file or Lightweight Directory Access Protocol
(LDAP) databases. Plus, it includes a spell checker, Extensible Markup Language (XML)
functions, image generation functions, and more.

� Compatible and quick: Because PHP generates plain HTML, it is compatible with all
Web browsers and refreshes quickly.

� Secure: Although PHP is open source, it is a secure environment. One of its advantages
(over JavaScript, for example) is that all that Web clients see is pure HTML. Because the
logic of the PHP program is never exposed to the client, security exposures are reduced.

For information about the installation and configuration process of PHP (using Apache and
IBM HTTP Server) refer to IBM HTTP Server (powered by Apache) An Integrated Solution for
IBM eServer iSeries Servers, SG24-6716.

For more information about PHP programming refer to:

http://www.php.net

16.2 Implementing Web services with PHP

In this section we present three methods for implementing Web services using PHP:

� XML-RPC
� NuSOAP
� PHP 5’s SOAP extension

16.2.1 XML-RPC

RPC (Remote Procedure Calls) are used to establish and facilitate transactions between two
remote systems. Example of popular RPC implementation include Distributed Component
Object Model (DCOM) and Common Object Request Broker Architecture (CORBA).
XML-RPC is an established implementation of RPC that allows you to transport XML
encoded data between two servers using HTTP.

Note: The code samples in this chapter were executed using PHP Version 5.1.2 and IBM
HTTP Server (powered by Apache) Version 6.0.2.

The PHP 5.1.2 (source code and Windows Binaries) can be download from the following
link:

http://www.php.net/downloads.php

The IBM HTTP Server can be download from the product page:

http://www-306.ibm.com/software/webservers/httpservers
Chapter 16. PHP client design 509

http://www.php.net
http://www.php.net/downloads.php
http://www-306.ibm.com/software/webservers/httpservers

XML-RPC is a specification and a set of implementations that allow software running in
disparate operating systems, running in different environment to make procedure calls over
the internet.

Figure 16-2 shows how the XML-RPC method works:

Figure 16-2 XML-RPC implementation

Creating an XML-RPC Web service
The main include files we will be using are xmlrpc.inc (the base class library) and xmlrpcs.inc
(the server class library). Here is how you implement a simple XML-RPC server using PHP.
Example 16-1 shows how we first bring in both the client and server libraries using include
statements.

Example 16-1 include statements

<?
include (“xmlrpc.inc”);
include (“xmlrpcs.inc”);

Example 16-2 on page 510 shows how we define a new function called ITSOcalcTax. This
function will be the backbone of a Web service that will calculate the 8% sales tax for
California, USA. A parameter which corresponds to the dollar amount, is passed into the
function. The parameter is then converted to a scalar value. Once the calculation is
completed, a response is created (using the xmlrpcresp class) returning the value of the sales
class.

Example 16-2 ITSOcalcTax function

function ITSOcalcTax($param) {
$amont = $param->getParam(0);

Note: To enable XML-RPC functionality, you must download the XML-RPC toolkit available
at the following link:

http://sourceforg.net/project/showfiles.php?group_id=34455
510 Powering SOA with IBM Data Servers

http://sourceforg.net/project/showfiles.php?group_id=34455

$amountval=$amount->scalarval();
$taxcalc=#amountvar * .08;
return new xmlrpcresp(new xmlrpcval($taxcalc, “string”));

Example 16-3 shows that instantiation of the server and serialization of ITSOcalcTax back to
the caller:

Example 16-3 Instantiation and serialization

$server=new
xmlrpc_server(array(“taxcalc.ITSOcalcTax=>array(“function”=>”ITSOcalcTax”)));

Example 16-4 shows how we instantiate our XML-RPC client which connect to our new
server. The value of $amount passed to the server using the xmlrpcmsg object:

Example 16-4 instantiate the XML-RPC client

$format=new xmlrpcmsg(‘taxcalc.ITSOcalcTax’,
array(new cmlrpcval($amount, “double”)));

$client=new xml-rpc_client(“/xmlrpc-server.php” , “localhost”, 80);
?>

Consuming an XML-RPC Web service
Now that we have built a server, the next step is to develop a client to call our Web service.
First, we need to bring the base class library and define a scalar variable called $amount and
assign it the value $20.00 (Example 16-5):

Example 16-5 Assign value

<?
include (“xmlrpc.inc”);
$amount = “20.00”;

Once a connection is made, the request is sent to the server. The response, which
corresponds to the sales tax calculation, is passed along to $value. $value is then converted
to a scalar variable and returned to the user. After receiving the $value, you can continue and
manipulate this value for your needs. Example 16-6 shows the PHP code.

Example 16-6 Sending and receiving response from the server

$request=$client->send($format);
$value=$request->value();
print $value->scalarvar();

?>

XML-RPC is a simple, effective method of transmitting XML data. for more information
consider reading Jean-Luc David article at:

http://www.xml.com/pub/a/ws/2004/03/24/phpws.html

Or visit the XML-RPC official Web site at:

http://www.xmlrpc.com
Chapter 16. PHP client design 511

http://www.xmlrpc.com
http://www.xml.com/pub/a/ws/2004/03/24/phpws.html

16.2.2 NuSOAP

SOAP is designed as an XML wrapper for Web services requests and responses. SOAP’s
strength lies in its use of namespaces, XML schema data types, and its flexibility with regard
to transports. The disadvantage of SOAP is the fact that the specs and implementation is
more complex, especially when you compare it to the simple XML-RPC approach. SOAP is
the basics for Web services developers. It has been deeply integrated into Microsoft .NET
and IBM WebSphere. Based on its popularity, Google and Amazon.com have both created
SOAP-based Web services.

NuSOAP is a powerful API developed for the PHP platform. It allows you to build both Web
service clients and servers. One of the great features of NuSOAP is the built-in WSDL
support. installing the API is a snap: all you need is a PHP enabled server. The required
libraries are contained in a file called nusoap.php.

Creating a NuSOAP client
You can create a SOAP client with the NuSOAP easily. To illustrate how the SOAP client
works, we call a Web service form XMethods.net. This Web site has a wide range of useful
Web services you can access freely. In our particular example, we are querying the currency
convertor Web service to determine the exchange rate between Canadian and American
dollars.

The following examples provide the PHP code needed to access the currency convertor Web
service.

First we need to bring the library file. We use the require_once command to do so. See
Example 16-7.

Example 16-7 require_once

<?
require_once(“nusoap.php”);

The next step is to define where the WSDL is located and create an instance of the soapclient
class to access the Web service (Example 16-8).

Example 16-8 locate WSDL and create client instance

$wsdl=”http://www.xmethods.net/sd/2001/CurrencyExchangeService.wsdl”;
$client=new soapclient($wsdl,’wsdl’);

We then send to parameters through the SOAP client, the two countries we want to compare
to get the currency exchange rate. We then call the getRate function and pass our
parameters to get a response from the remote server. See Example 16-9.

Example 16-9 Send parameters and get response

$param=array(
‘country1’=>’usa’,
‘country2’=>’canada’
);
echo $client->call(‘getRate’,$param);

Tip: you can download both the toolkit and the documentation at this link:

http://sourceforge.net/projects/nusoap
512 Powering SOA with IBM Data Servers

http://sourceforge.net/projects/nusoap

?>

Now, after the execution of the echo command, the exchange rate is displayed on your
browser.

Creating a NuSOAP Web service
The next example will demonstrate how to create a Web service using NuSOAP. One of the
very useful features of NuSOAP is the Web service summery information and the dynamically
generated WSDL files. Figure 16-3 shows an example for a Web service summary:

Figure 16-3 Web service summary

Just like the XML-RPC example, now we will create the same Web service called
ITSOcalcTax using the NuSOAP API. Example 16-10 shows the import of the nusoap.php
API and the definition of the service namespace.

Example 16-10 Definition of the service namespace

<?
require_once(“nusoap.php”);
$ns=”http://localhost/nusoap”;

Next, we instantiate the SOAP server and define the settings for our WSDL file such as the
service name and the namespace (Example 16-11 on page 513).

Example 16-11 instantiate SOAP server and define WSDL settings

$server = new soap_server();
$server->configureWSDL(‘ITSOcalcTax’,$ns);
$server->wsdl->schemaTargetNamespace=$ns;

Then, we register out PHP tax calculation function (Example 16-12).

Example 16-12 Register PHP tax calculation function

$server->register(‘taxcalc’,
array (‘amount’ => ‘xsd:string’),
array (‘return’ => ‘xsd:string’),
$ns);

This step will make the server “aware” of the existence of the taxcalc method and the values
that will pass to and from the method. In case of several methods, you must register each one
separately. See Example 16-13.
Chapter 16. PHP client design 513

Example 16-13 taxcalc function

function taxcalc($amount) {
$calc=$amount * .08;
return new soapval(‘return’,’string’,$calc);

And then we invoke the service, as shown in Example 16-14.

Example 16-14 Invoking the service

$server->service($HTTP_RAW_POST_DATA);
?>

The next step is to save the PHP file on the Web server (“localhost” on our example) and
that’s it, now you are ready to provide a tax calculation Web service.

Creating a NuSOAP Web service consumer
In order to create consume the Web service that we have just created, we will present a small
PHP program the connects to the server and displays the result.

First, we must instantiate the NuSOAP client object and pass the WSDL file with the relevant
Web service definitions into the client. (assume that the service file name is server.php)
Example 16-15 shows the code.

Example 16-15 instantiate the client

<?php
require_once(‘nusoap.php’);
$wsdl=”http://localhost/server.php$wsdl”;
$client=new soapclient($wsdl, ‘wsdl’);

The next step is to create a set of parameters and pass it into the Web service. Then,
remotely call the calctax method. Example 16-16 shows the code.

Example 16-16 Remotely call the calctax method

$param=array(
‘amount=>’20.00’,
);
echo $client->call(‘calctax’ , $param);
?>

16.2.3 PHP 5 SOAP extension

PHP SOAP extension is the most popular PHP implementations of SOAP 1.1 and 1.2,
developed by the PHP group.

PHP 5 SOAP extension is the first attempt to implement the SOAP protocol for PHP in C. It
has some advantages over the implementations written in PHP itself (NuSOAP for example),
the main one being execution time.

The SOAP extension implements a large subset of SOAP 1.1, SOAP 1.2, and WSDL 1.1
specifications. The key goal is to use the RPC features of the SOAP protocol. WSDL is used
where possible in order to make the implementation of Web services more straightforward.
514 Powering SOA with IBM Data Servers

For more information about PHP SOAP extension refer to the specification and
implementation documents at:

http://www.us3.php.net/soap

For PHP 5 SOA extension detailed examples, refer to 16.5, “Access an enterprise application
using PHP” on page 528.

16.3 Using native XML with PHP 5

PHP has had XML support from its early days. While this was “only” a SAX based interface, it
did at least allow parsing any XML document without to much hassle. Later XML support
came with PHP 4 and the domxml extension. Then additional features like HTML, XSLT and
DTD-validation were added to the domxml extension, but there were several issues. PHP
XML developers have followed commonly used standards and rewritten almost everything
regarding XML support with PHP 5. All the XML extensions are now based on the excellent
libxml2 library by the GNOME project. This allows for interoperability between the different
extensions, so that the core developers only need to work with one underlying library. Given
the increasing importance of XML, the PHP developers have enabled more XML support by
default. This means that you now get SAX, DOM and simpleXML enabled out of the box,
which ensures that they will be installed on many more servers in the future.

In this section we discuss the following:

� DOM
� Validation
� XSLT

For presenting the PHP native XML capabilities we use, thorough this section, the XML file
shown in Example 16-17 (the XML file name is “books.xml”).

Example 16-17 Sample XML file - books.xml

<?xml version="1.0" encoding="iso-8859-1" ?>
<books>
 <item>
 <title>Redbooks weekly newsletter: Issue # 2</title>
 <link>http://ibm.redbooks.ibm.com/week/week2.php</link>
 </item>
 <item>
 <title>RedBook: Powering SOA with IBM data servers</title>
 <link>http://www.ibm.redbooks.com/redbooks/abstracts/sg247259.php</link>
 </item>
</books>

16.3.1 DOM

DOM (Document Object Model) is a standard for accessing XML documents trees, defined by
W3C. The DOM specification defines the Document Object Model, a platform and language
neutral interface that will allow programs and scripts to dynamically access and update the
content and style of documents. The DOM provides a set of objects for representing HTML
and XML documents, a standard model of how these objects can be combined, and a
standard interface for accessing and manipulating them. The PHP DOM extension is
completely based on the W3C standard, including method and property names.
Chapter 16. PHP client design 515

http://www.us3.php.net/soap

Reading the DOM
The DOM library reads the entire XML document into the memory ad represents it as a tree of
nodes. Figure 16-4 shows how XML DOM represents the file in Example 16-17 on page 515
using tree of nodes.

Figure 16-4 XML DOM tree node representation

The books node at the to of the tree has two child item tags. within each book, there are title
and link node, each have child text nodes that contains the text. The code to read the books
XML file and display the contents using the DOM shown in Example 16-18:

Example 16-18 Reading the books XML file using the DOM

<?php
 $doc = new DOMDocument();
 $doc->load('books.xml');

 $items = $doc->getElementsByTagName("item");
 foreach($items as $item)
 {
 $titles = $item->getElementsByTagName("title");
 $title = $titles->item(0)->nodeValue;

 $links = $book->getElementsByTagName("link");
 $link = $links->item(0)->nodeValue;

echo "$title - $link \n";
 }
 ?>
516 Powering SOA with IBM Data Servers

The script starts by creating a new DOMdocument object and loading the books XML into that
object using the load method. After that, the script uses the getElementsByName method to
get a list of all of the elements with the given name.

Within the loop of the item nodes, the script uses the getElementsByName method to get the
nodeValue for the title and link tags. The nodeValue is the text within the node. The script then
displays those values.

As you can see in Example 16-19, a line is printed for each item block.

Example 16-19 DOM read results

Redbooks weekly newsletter: Issue # 2 - http://ibm.redbooks.ibm.com/week/week2.php
RedBook: Powering SOA with IBM data servers -
http://www.ibm.redbooks.com/redbooks/abstracts/sg247259.php

Writing XML using the DOM
Reading XML is only one part of the equation. What about writing it? The best way to write
XML is to use the DOM. Example 16-20 shows how the DOM builds a new books.xml file.

Example 16-20 Writing a new “books.xml” with the DOM

?php
 $books = array();
 $books [] = array(
 'title' => 'Redbooks weekly newsletter: Issue # 2',
 'author' => 'IBM ITSO',
 'publisher' => "IBM"
);
 $books [] = array(
 'title' => 'Powering SOA with IBM data servers',
 'author' => 'IBM ITSO',
 'publisher' => "IBM"
);

 $doc = new DOMDocument();
 $doc->formatOutput = true;

 $r = $doc->createElement("books");
 $doc->appendChild($r);

 foreach($books as $book)
 {
 $b = $doc->createElement("book");

 $author = $doc->createElement("author");
 $author->appendChild(
 $doc->createTextNode($book['author'])
);
 $b->appendChild($author);

 $title = $doc->createElement("title");
 $title->appendChild(
 $doc->createTextNode($book['title'])
);
 $b->appendChild($title);
Chapter 16. PHP client design 517

 $publisher = $doc->createElement("publisher");
 $publisher->appendChild(
 $doc->createTextNode($book['publisher'])
);
 $b->appendChild($publisher);

 $r->appendChild($b);
 }

 echo $doc->saveXML();

?>

At the top of the script, the book’s array is loaded with some example books. That data could
come from the user or from a database. After the example books are loaded, the script
creates a new DOMDocument and adds the root books node to it. Then the script creates an
element for the author, title, and publisher for each book and adds a text node to each of
those nodes. The final step for each book node is to re-attach it to the root books node.

The end of the script dumps the XML to the console using the saveXML method. You can also
use the save method to create a file from the XML. The output of the script is shown in
Example 16-21.

Example 16-21 Output from the DOM build script

<?xml version="1.0"?>
 <books>
 <book>
 <author>IBM ITSO</author>
 <title>Redbooks weekly newsletter: Issue # 2</title>
 <publisher>IBM</publisher>
 </book>
 <book>
 <author>IBM ITSO</author>
 <title>Powering SOA with IBM data servers</title>
 <publisher>IBM</publisher>
 </book>
 </books>

16.3.2 Validation

Validation of XML documents is getting more and more important. For example, if you get an
XML document from some foreign source, you need to verify that it follows a certain format
before you can process it. Luckily you can use one of the three widely used standards for
doing this: DTD, XML Schema or RelaxNG.

� DTD is a standard that comes from SGML days, and lacks some of the newer XML
features (like namespaces). Also, because it is not written in XML, it is not easily parsed
and/or transformed.

� XML Schema is a standard defined by the W3C. It is very extensive and has taken care of
almost every imaginable need for validating XML documents.
518 Powering SOA with IBM Data Servers

� RelaxNG was an answer to the complex XML Schema standard, and was created by an
independent group. More and more programs support RelaxNG, since it's much easier to
implement than XML Schema.

If you do not have existing or earlier schema documents, or overly complex XML documents,
use RelaxNG. It is easier to write, easier to read, and many tools support it. There is even a
tool called Trang, which automatically creates a RelaxNG document from sample XML
document(s). Furthermore, only RelaxNG (and the aging DTDs) is fully supported by libxml2,
although full XML Schema support is coming along.

The syntax for validating XML documents is quite simple:

$dom->validate('articles.dtd');

$dom->relaxNGValidate('articles.rng');

$dom->schemaValidate('articles.xsd');

At present, these all simply return true or false. Errors are dumped out as PHP warnings. This
will be enhanced In one of the releases after PHP 5.0.0. The exact implementation is
currently under discussion, but will certainly lead to better error reporting for parse errors and
so on.

16.3.3 XSLT

XSLT is a language for transforming XML documents into other XML documents. XSLT is
itself written in XML, and belongs to the family of functional languages, which have a different
approach to that of procedural and object-orientated languages like PHP.

There were two different XSLT processors implemented in PHP 4: Sablotron (in the more
widely used and known xslt extension), and libxslt (within the domxml extension). The two
APIs were not compatible with each other, and their feature sets were also different.

In PHP 5, only the libxslt processor is supported. Libxslt was chosen because it is also based
on libxml2 and therefore fits perfectly into the XML concept of PHP 5.

For more information about using native XML with PHP (including the usage of SimpleXML),
refer to Christian Stocker’s article XML in PHP 5 - What's New? available at:

http://www.zend.com/php5/articles/php-5-xmlphp.php

16.4 Connecting PHP to data servers

We have discussed the methods for implementing Web services and accessing XML
documents using PHP. To complete the picture and to provide an end to end view of the SOA
development process using PHP, we now discuss the ways to connect PHP to IBM data
servers.

There are three PHP drivers that we can use to connect to IBM data servers:

� Unified ODBC (ext/odbc): Support all IBM data servers
� Extension for DB2 (ibm_db2): support IBM DB2 on all platforms
� PHP Data Objects(PDO): supports all IBM data servers

All three PHP drivers are offered under open-source licenses and available from:

http://www.php.net
Chapter 16. PHP client design 519

http://www.zend.com/php5/articles/php-5-xmlphp.php
http://www.php.net

In this section, we focus on DB2 for all platform. It is important to understand that all IBM data
servers have the capabilities of communicating with PHP using the ODBC extension, or by
implementing PHP Data Object (PDO).

16.4.1 Unified ODBC

To demonstrate some of the basic operations you can perform with PHP and DB2, we create
a set of PHP scripts to help you manage a database table that contains data on a set of
authors. First we create a table to hold our author data, then we write a PHP script that inserts
a row to the AUTHOR table, and finally, we write a script that browses through existing
authors.

Connecting to a database
To use this database, we need to insert some data into the table. We could issue some Data
Manipulation Language (DML) statements, but because we have PHP installed, we create
and use a simple PHP form for inserting new records in the database. All of the following PHP
scripts use the Unified ODBC functions described in the PHP documentation.

Before we can insert data, we must create a database connection within a PHP script. Once
we have confirmed that the connection is successful by returning a list of the tables with our
user name, we can re-use that connection function within the rest of the scripts that we write.

The syntax for connecting to a database using PHP is shown in Example 16-22.

Example 16-22 Connecting to a database using PHP

int odbc_connect() (string dsn, string user, string password [, int cursor_type]);

Where:

dsn: The name of the database as registered in the DB2 catalog.

user: The name of the user that will connect to the database.

password: The password for user.

cursor_type: Optional arguments to specify cursor behavior.

Creating the author table
The AUTHOR table contains four columns: LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
and AUTHOR_ID, a unique identifier generated by the database server that serves as the
primary key of this table. The Data Definition Language (DDL) statement contained in the
PHP script of Example 16-23 creates this table.

Example 16-23 Create the AUTHOR table

<?php
// connect to the database
$conn = odbc_connect('SAMPLE', 'db2inst1', 'ibmdb2');

// define our SQL
$sql = 'CREATE TABLE author (last_name VARCHAR(32) NOT NULL,

first_name VARCHAR(32) NOT NULL,
middle_initial VARCHAR(1),
author_id INTEGER GENERATED ALWAYS AS IDENTITY,
PRIMARY KEY (author_id))';

// issue our SQL statement directly
520 Powering SOA with IBM Data Servers

odbc_exec($conn, $sql);

// close the database connection
odbc_close($conn); ?>

Issuing INSERT statements
Once you have successfully connected to the database, you can start doing some more
interesting work such as inserting, updating, and retrieving data. You can issue a simple SQL
statement, one that contains no parameter markers for variable input--using the odbc_exec()
function. The script of Example 16-24 inserts new rows into the AUTHOR table.

Example 16-24 Static INSERT statement

<?php
// include the dbconnect() and my_header() functions
include_once("db2lib.php");

echo(my_header"INSERT data into AUTHOR table");

$author_insert = "INSERT INTO author" .
"(last_name, first_name, middle_initial)" .
"VALUES('IBM', 'ITSO', ' ')";

$verbose = TRUE;
$dbconn = dbconnect($verbose);

if ($dbconn != 0) {
 // odbc_exec returns 0 if the statement fails; otherwise
 // it returns a result set ID
 $result = odbc_exec($dbconn, $author_insert);

 if ($result == 0) {
 echo("INSERT statement failed.");
 $sqlerror = odbc_errormsg($dbconn);
 echo($sqlerror);
 }
 else {
 echo("Successfully inserted one row.");
 }
}
else {
 echo("<p>Connection failed.</p>");
}
echo("</body></html>");
?>

SELECT statements and result sets
SELECT statements normally return multiple rows of data. When you call the odbc_exec()
function for a SELECT statement, the function returns a result set identifier. A result set is an
array consisting of 0 or more rows that match a database query; a result set identifier is
simply a value that you pass to other functions to work with the rows in the result set.
Chapter 16. PHP client design 521

Once we retrieve our result set identifier, we can retrieve the contents of the result set in a
number of ways. One of the most convenient methods is to iterate over the odbc_fetch_array()
function as demonstrated in Example 16-25.

Example 16-25 Simple SELECT statement

<?php
// include our custom function libraries
include_once("db2lib.php");
include_once("db2form.php");

echo(my_header('Simple SELECT statement'));

function display_authors($dbconn) {
 // select all rows from the AUTHOR table
 $select_stmt = 'SELECT last_name, first_name, middle_initial, author_id
 FROM author';

 if ($dbconn != 0) {
 // odbc_exec returns 0 if the statement fails;
 // otherwise it returns a result set ID
 $result = odbc_exec($dbconn, $select_stmt);

 if ($result == 0) {
 echo("SELECT statement failed.");
 $sqlerror = odbc_errormsg($dbconn);
 echo($sqlerror);
 }
 else {
 print '<table>
 <tr><th>Last</th><th>First</th><th>Initial</th><th>ID</th></tr>';
 while ($row = odbc_fetch_array($result)) {
 print '<tr><td>' . $row['LAST_NAME'] . '</td>';
 print '<td>' . $row['FIRST_NAME'] . '</td>';
 print '<td>' . $row['MIDDLE_INITIAL'] . '</td>';
 print '<td>' . $row['AUTHOR_ID'] . '</td></tr>';
 }
 print '</table>';
 }
 }
}

$verbose = TRUE;
$dbconn = dbconnect($verbose);

display_authors($dbconn);

echo('</body></html>');

// always close your database connection
odbc_close($dbconn);
?>

The script on Example 16-25 on page 522 defines a new function called display_authors().
The function displays a list of all authors in the AUTHOR table by iterating over the
522 Powering SOA with IBM Data Servers

odbc_fetch_array() function in a while() loop. Each time the while() condition is evaluated,
odbc_fetch_array() returns an array variable named $row representing the requested row.
The fields of the array are named fields that map to the upper case column names that were
requested in the SELECT statement. When there are no more rows to fetch from the result
set, odbc_fetch_array() returns FALSE and the while() loop ends.

For more information about the Unified ODBC extension for PHP, refer to Dan Scott’s article
Develop IBM Cloudscape and DB2 Universal Database applications with PHP at:

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0502scott/

16.4.2 ibm_db2 extension

The ibm_db2 extension gives you the most of general database management functions that
allow you to connect to you database, execute SQL, and troubleshoot any problems you run
into along the way. In this section we discuss about these functions.

To illustrate the use of the ibm_db2 extension function, we present a simple PHP script for
connecting the database and retrieving data. The DB2-related functions are in boldface.
Following the script are the descriptions of the functions that are used in the script.

Example 16-26 demonstrates the use of ibm_db2 extension.

Example 16-26 ibm_db2 extension

<?php
$database = 'ITSODB';
$user = 'db2admin';
$password = 'db2admin';

$conn = db2_connect($database, $user, $password);

if ($conn) {
 echo "Connection succeeded.
";

 $sql = "SELECT name FROM authors ORDER BY author_id";
 $stmt = db2_prepare($conn, $sql);
 db2_execute($stmt);
 $authorlist = array();
 $i=0;

 while (db2_fetch_row($stmt)) {
 $authorlist[$i] = db2_result($stmt, 0);
 echo "$authorlist[$i]
";
 $i += 1;
 }

 echo count($authorlist) . " author listed.

";

 db2_close($conn);

Note: You must download the ibm_db2 extension before executing the following script. The
extension can be downloaded from:

http://pecl.php.net/package/ibm_db2
Chapter 16. PHP client design 523

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0502scott/
http://pecl.php.net/package/ibm_db2

}
else {
 echo "Connection failed.
";
 echo db2_conn_errormsg();
}
?>

Here are important function descriptions:

� db2_connect (string database, string user name, string password [, array options]):
Creates a new database connection.

� db2_prepare (resource connection, string statement [, array options]): Prepares a SQL
statement for execution. Parameter markers can be included to represent input, output, or
input/output parameters.

� db2_execute (resource connection, string statement [, array options]): Executes a
statement prepared by db2_prepare. It returns a TRUE or FALSE indicating success of
failure.

� db2_close (resource connection): Closes a non-persistent database connection and frees
the resource back to the database server.

� db2_conn_errormsg ([resource connection]): Returns an error message, including
SQLSTATE and SQLCODE, for a failed connection attempt. if db2_connect returns
FALSE, user this to retrieve a somewhat detailed explanation.

For more information about ibm_db2 extension refer to the extension documentation at:

http://us3.php.net/ibm_db2

16.4.3 PHP data objects (PDO)

PHP 5.1 is set to ship with a brand-new database connectivity layer known as PHP Data
Objects (PDO). While PHP has always had very good database connectivity, PDO takes PHP
to the next level.

Some of the design goals behind PDO are:

� To provide a consistent API for the common features found in most database APIs

� To be extensible, so that database vendor X can still expose feature Y and remain PDO
compatible

� To provide a number of basic compatibility quirks, to make it easier to create
cross-database compatible applications

� To NOT provide full abstraction or emulation of features (such as sequences) that are
otherwise missing from a given database API. The PDO class is intended to give you
consistent access to native features of the database, with minimal interference.

� To simplify the creation of PHP database drivers by centralizing the code that deals with
the PHP internals (which are the hardest part to write)

That last point is quite important. PDO is modular in structure, separated into a common core
that provides the API that you use in your scripts (PDO itself), and one or more driver
extensions that bridge PDO to the native RDBMS client API libraries. DB2 users will want to
use the PDO_ODBC driver, which boasts the following features:
524 Powering SOA with IBM Data Servers

http://us3.php.net/ibm_db2

� It was written from the ground-up to support ODBC V3 compliant drivers and driver
managers. Support for DB2 specific features and optimizations was considered and
incorporated as part of this design process--it was not an afterthought.

� It supports large objects and stored procedures has been tried and tested. Not only does it
work, but it is very pleasant to use.

� Performance of DB2 access through the PDO_ODBC driver for simple fetches of 10,000
rows is approximately 10 times faster than the traditional PHP Unified ODBC extension.
This dramatic difference is due to the light-weight forward-only cursor that is the default in
PDO.

There are four key concepts that you need to be aware of, to get the most out of PDO. They
are:

� Connections and connection management
� Transactions and auto-commit
� Prepared statements and stored procedures
� Errors and error handling

We look at them in more detail.

Connections and connection management
Connections are established by creating instances of the PDO base class. It doesn't matter
which driver you want to use; you always use the PDO class name. The constructor accepts
parameters for specifying the database source (known as the DSN) and optionally for the
username and password (if any). The final parameter is used for passing additional tuning
parameters through to PDO or the underlying driver--more on that shortly. Example 16-27
shows a short sample script that connects to DB2.

Example 16-27 Connect to DB2 using PDO

try {
 $dbh = new PDO('odbc:SAMPLE', 'db2inst1', 'ibmdb2');
 echo "Connected\n";
} catch (Exception $e) {
 echo "Failed: " . $e->getMessage();
}

If the connection succeeds, you will see the message "Connected", otherwise, PDO will throw
a PDOException explaining why the connection failed. Possible reasons include invalid
parameters, incorrect user/password or even just that you forgot to load the driver.

Transactions and auto-commit
Now that you're connected via PDO, you should to understand how PDO manages
transactions before you start issuing queries.

Transactions are typically implemented by "saving-up" your batch of changes to be applied all
at once; this has the nice side effect of drastically improving the efficiency of those updates. In
other words, transactions can make your scripts faster and potentially more robust (you still
need to use them correctly to reap that benefit).

Unfortunately, not every database supports transactions, so PDO needs to run in what is
known as "auto-commit" mode when you first open the connection. Auto-commit mode means
that every query that you run has its own implicit transaction, if the database supports it, or no
transaction if the database doesn't support transactions. If you need a transaction, you must
use the PDO::beginTransaction() method to initiate one. If the underlying driver does not
Chapter 16. PHP client design 525

support transactions, a PDOException will be thrown (regardless of your error handling
settings: this is always a serious error condition). Once you are in a transaction, you may use
PDO::commit() or PDO::rollBack() to finish it, depending on the success of the code you run
during the transaction.

When the script ends or when a connection is about to be closed, if you have an outstanding
transaction, PDO will automatically roll it back. This is a safety measure to help avoid
inconsistency in the cases where the script terminates unexpectedly—if you didn't explicitly
commit the transaction, then it is assumed that something went awry, so the rollback is
performed for the safety of your data.

Prepared statements and stored procedures
Prepared statements are so useful that PDO actually breaks the rule set out in Goal number
4: if the driver doesn't support prepared statements, PDO will emulate them.

Here are two examples of using prepared statements; Example 16-28 performs an insert by
substituting a name and a value for the named placeholders.

Example 16-28 Repeated inserts using prepared statements

$stmt = $dbh->prepare("INSERT INTO AUTHORS (last_name, first_name, middle_initial)
VALUES (:last_name, :first_name, :middle_initial)");
$stmt->bindParam(':last_name', $last_name);
$stmt->bindParam(':first_name', $first_name);
$stmt->bindParam(':middle_initial', $middle_initial);

// insert one row
$last_name = 'ITSO';
$first_name = ‘IBM’;
$middle_initial = ‘I’;
$stmt->execute();

// insert another row with different values
$last_name = 'IBM';
$first_name = ‘ITSO’;
$middle_initial = ‘B’;
$stmt->execute();

Example 16-29 performs a select statement, using the alternative question mark
placeholders.

Example 16-29 Fetching the data using prepared statements

$stmt = $dbh->prepare("SELECT * FROM AUTHORS where last_name = ?");
if ($stmt->execute(array('one'))) {
 while ($row = $stmt->fetch()) {
 print_r($row);
 }
}

You may also bind parameters for output as well as input. Output parameters are typically
used to retrieve values from stored procedures. Output parameters are slightly more complex
to use than input parameters, in that you must know how large a given parameter might be
when you bind it. If the value turns out to be larger than the size you suggested, an error is
raised. Example 16-30 demonstrate calling a stored procedure with an output parameter.
526 Powering SOA with IBM Data Servers

Example 16-30 Calling stored procedure with an output parameter

$stmt = $dbh->prepare("CALL sp_returns_string(?)");
$stmt->bindParam(1, $return_value, PDO_PARAM_STR, 4000);

// call the stored procedure
$stmt->execute();

print "procedure returned $return_value\n";

You may also specify parameters that hold values both input and output; the syntax is similar
to output parameters. In Example 16-31, the string 'hello' is passed into the stored procedure,
and when it returns, hello is replaced with the return value of the procedure.

Example 16-31 Calling a stored procedure with an input/output parameter

$stmt = $dbh->prepare("CALL sp_takes_string_returns_string(?)");
$value = 'hello';
$stmt->bindParam(1, $value, PDO_PARAM_STR|PDO_PARAM_INPUT_OUTPUT, 4000);

// call the stored procedure
$stmt->execute();

print "procedure returned $value\n";

Errors and error handling
PDO offers three different error handling modes to suit different styles of programming:

PDO_ERRMODE_SILENT
This is the default mode. PDO will simply set the error code for you to inspect using the
errorCode() and errorInfo() methods on both the statement and database objects; if the
error resulted from a call on a statement object, you would invoke the errorCode() or
errorInfo() method on that object. If the error resulted from a call on the database object,
you would invoke those methods on the database object instead.

PDO_ERRMODE_WARNING
In addition to setting the error code, PDO will emit a traditional E_WARNING message.
This setting is useful during debugging/testing, if you just want to see what problems
occurred without interrupting the flow of the application.

PDO_ERRMODE_EXCEPTION
In addition to setting the error code, PDO will throw a PDOException and set its properties
to reflect the error code and error information. This setting is also useful during debugging,
as it will effectively "blow up" the script at the point of the error, very quickly pointing a
finger at potential problem areas in your code (remember: transactions are automatically
rolled back if the exception causes the script to terminate).

Exception mode is also useful because you can structure your error handling more clearly
than with traditional PHP-style warnings, and with less code/nesting than by running in silent
mode and explicitly checking the return value of each database call.
Chapter 16. PHP client design 527

For more information about PDO implementation refer to Wez Furlong article Connect PHP to
DB2 and Cloudscape via PDO at:

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0505furlong

16.5 Access an enterprise application using PHP

In this section we present the implementation of one part of our usage scenario, the currency
conversion application.

16.5.1 Lab environment description

For implementing the access to the enterprise application using PHP we used the following:

� DB2 for z/OS Version 8
� DB2 Connect for Windows version 8.2
� Apache HTTP server for Windows version 2.0.55
� PHP for Windows version 5.1.2
� Microsoft Internet Explorer® version 6.0 (service pack 1)

For more information about Apache and PHP installation and configuration, refer to
Developing PHP Applications for IBM Data Servers, SG24-7218.

16.5.2 Usage scenario

Referring to the usage scenario shown on Figure 16-5 on page 529, the PHP implementation
will concentrate on the currency convertor database cube.
528 Powering SOA with IBM Data Servers

http://www.ibm.com/developerworks/db2/library/techarticle/dm-0505furlong

Figure 16-5 Usage scenario

The ITSO bank have a simple currency convertor application which accesses, via stored
procedure, to DB2 table (on z/OS platform) which contains the exchange currency data. To
publish the exchange data as a Web service we created a PHP program that calls the DB2
stored procedure with 2 parameters: country1 and country2 which represent the source and
target countries for the exchange rate. The stored procedure accesses the DB2 table, that
contains all the exchange rates of the countries that ITSO bank support, and returns the rate
parameter which is the exchange rate between the countries requested on the input
parameters. The next step was to create a PHP Web service consumer program within an
HTML page, which will allow the portlet we presented on the previous chapters to access the
currency conversion application in a simple way.

The DB2 table has three columns: the source county, the target country, and the exchange
rate as shown on Example 16-32:

Example 16-32 Rate table structure

CREATE TABLE ITSO.RATE_TABLE (
 COUNTRY1 CHAR(3) NOT NULL ,
 COUNTRY2 CHAR(3) NOT NULL ,
 RATE DECIMAL(5,2) NOT NULL)
 IN DBSOA.TS1

COMMENT ON TABLE ITSO.RATE_TABLE IS 'table for exchange_rate';

The stored procedure that accesses this table is presented in Example 16-33 on page 530.
Chapter 16. PHP client design 529

Example 16-33 itso.exchange_rate stored procedure

CREATE PROCEDURE ITSO.EXCHANGE_RATE (IN PCOUNTRY1 CHAR(3), IN PCOUNTRY2 CHAR(3),
INOUT RATE DECIMAL(5,2))

LANGUAGE SQL
BEGIN
SELECT RATE INTO RATE FROM ITSO.RATE_TABLE
where COUNTRY1 = PCOUNTRY1
and COUNTRY2 = PCOUNTRY2;
END

The next step was to build a PHP Web service provider program that call the stored
procedure. We will present the program step by step:

First we have to connect DB2 and call the stored procedure. For doing that, we used the
ibm_db2 extension (see 16.4.2, “ibm_db2 extension” on page 523) as shown in
Example 16-34.

Example 16-34 Connect DB2 using ibm_db2 extension

<?php

/* The getExchangeRate function connects the database and call stored procedure to
retrieve the currency rate between 2 countries.
 */

function getExchangeRate ($country1,$country2) {

$db_name='ITSOBANK';
$usr_name = 'db2admin';
$password='db2admin';

/*connect to database */

$conn_res = db2_pconnect($db_name,$usr_name,$password);

if ($conn_res) {

$rate = 0.1;

/*prepare the statement that calls the stored procedure */

$sql = 'CALL ITSO.EXCHANGE_RATE (?,?,?)';
$stmt = db2_prepare ($conn_res,$sql);

if (!$stmt) {
echo 'The prepare failed.
';
echo 'SQLSTATE value: ' . db2_stmt_error();
echo 'with Message: ' . db2_stmt_errormsg();

} else {

/*bind stored procedure params */

db2_bind_param($stmt, 1, "country1", DB2_PARAM_IN);
db2_bind_param($stmt, 2, "country2", DB2_PARAM_IN);
530 Powering SOA with IBM Data Servers

db2_bind_param($stmt, 3, "rate", DB2_PARAM_INOUT);
}

/*execute the statement */

$result = db2_execute($stmt);

if (!$result) {
echo 'The execute failed.
';
echo 'SQLSTATE value: ' . db2_stmt_error();
echo 'with Message: ' . db2_stmt_errormsg();
}

} else {
echo 'Connection to database failed
';
echo 'SQLSTATE value:
' . db2_conn_error();
echo 'With Message:
' . db2_conn_errormsg();

}

return $rate

As you can see, we implemented the call to the stored procedure as a PHP function
(getExchangeRate) since we want, later on, to publish this function as a Web service. The
function return a SOAP object that contains the rate parameter which is the exchange rate
value.

The next step will naturally be publishing our PHP function as a Web service, as shown in
Example 16-35.

Example 16-35 Publishing getExchangeRate as a Web service

<?php
require("nusoap.php");

$ns = "http://localhost/nusoap";

$server = new soap_server();
$server->configureWSDL("ConvertorServer",$ns);
$server->wsdl->schemaTargetNamespace="http://localhost/nusoap/xsd";
$err = $server->getError();
echo $err;

$server->register ("getExchangeRate",
array ("country1" => "xsd:string" , "country2"=> "xsd:string"),
array ("result" => "xsd:string"),
$ns);
$HTTP_RAW_POST_DATA = isset($GLOBALS["HTTP_RAW_POST_DATA"])?
$GLOBALS["HTTP_RAW_POST_DATA"]
 : "";
$server->service($HTTP_RAW_POST_DATA);
?>

For implementing Web services, we used the NuSOAP extension. We created a new SOAP
server and registered the getExchangeRate function to this Web service. There are two input
Chapter 16. PHP client design 531

parameters that are passed to the Web service: country1 and country2. The result is an
output parameter that will contain the exchange rate returned from the function.

The output of this program is shown in Figure 16-6.

Figure 16-6 Currency convertor WSDL

And the WSDL file shown in Example 16-36.

Example 16-36 ITSO currency converter- WSDL structure

<?xml version="1.0" encoding="ISO-8859-1" ?>
- <definitions xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tns="http://localhost/nusoap"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="http://localhost/nusoap">
- <types>
- <xsd:schema targetNamespace="http://localhost/nusoap">
<xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
<xsd:import namespace="http://schemas.xmlsoap.org/wsdl/" />
</xsd:schema>
</types>
- <message name="getExchageRateRequest">
<part name="country1" type="xsd:String" />
<part name="country2" type="xsd:String" />
</message>
- <message name="getExchageRateResponse">
<part name="result" type="xsd:String" />
</message>
- <portType name="ITSOcurrencyConvertServicePortType">
- <operation name="getExchageRate">
<input message="tns:getExchageRateRequest" />
<output message="tns:getExchageRateResponse" />
</operation>
</portType>
532 Powering SOA with IBM Data Servers

- <binding name="ITSOcurrencyConvertServiceBinding"
type="tns:ITSOcurrencyConvertServicePortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
- <operation name="getExchageRate">
<soap:operation soapAction="http://localhost/ConvertorServer.php/getExchageRate"
style="rpc" />
- <input>
<soap:body use="encoded" namespace="http://localhost/nusoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</input>
- <output>
<soap:body use="encoded" namespace="http://localhost/nusoap"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
</output>
</operation>
</binding>
- <service name="ITSOcurrencyConvertService">
- <port name="ITSOcurrencyConvertServicePort"
binding="tns:ITSOcurrencyConvertServiceBinding">
<soap:address location="http://localhost/ConvertorServer.php" />
</port>
</service>
</definitions>

The next step consists of creating a Web consumer program that can be accessed from our
portlet. Example 16-37 presents the PHP program.

Example 16-37 ITSO currency converted Web service consumer program

<html>
<head>
<html>
<head>
<title> Currency Convertor for ITSO bank </title>
</head>
<body>
<h1> Excahnge rate is </h1>

<?php

require_once('nusoap.php');

/*$wsdl="http://localhost/ITSOcurrencyConvertService";*/
$wsdl="http://localhost/ConvertorServer.php?wsdl";
$client=new soapclient($wsdl, "wsdl");
$client->useHTTPPersistentConnection();

$param=array(
'country1'=>'USA',
'country2'=>'CAN',
'result'=>'',
);
$value = $client->call('getExchangeRate', $param);
echo "<h1> $value </h1>";
Chapter 16. PHP client design 533

?>

</html>

The Web service consumer program create (using NuSOAP extension) a SOAP client and
access the ITSOcurrencyConverService with two input parameters: USA and CAN
(Canada).The SOAP client call the getExchangeRate function and print the result in an HTML
page.

The program output is shown in Figure 16-7.

Figure 16-7 ITSO Currency converter Web service consumer result

16.6 Zend Core for IBM

On February 25, 2005 IBM and Zend Technologies announced a strategic partnership to
collaborate on the development and support of the PHP environment. Under this
collaboration, Zend made Zend Core for IBM available. Beyond this initial announcement,
IBM and Zend are working together on furthering PHP technology directions. There are two
goals:

� The first one is to bring the simplicity inherent in the 'do-it-yourself' infrastructure and PHP
development to enterprise customers.

� The second goal is to add enterprise-class support to PHP in a non-intrusive way, without
adding complexity for those who don't need the support, and without losing sight of what
has made PHP so successful in the first place.

Zend Core for IBM is the only certified PHP development and production environment that
includes tight integration with the Cloudscape and DB2 family of database servers, and native
support for XML and Web Services. Certified by both Zend and IBM, Zend Core for IBM
delivers a rapid development and production PHP foundation for applications using PHP with
IBM databases and offers an easy upgrade path from DB2 Express or Cloudscape to the
entire DB2 family without requiring any modifications to your PHP applications.

Developers and businesses already using PHP with an IBM database should use Zend Core
for IBM. It is certified by both IBM and Zend and is fully supported by Zend. For those using
PHP and currently evaluating databases, Zend Core for IBM includes all of PHP, plus a free
DB2 Express database, and all the necessary extensions for out of the box development of
PHP applications. Zend Core works with the entire DB2 family using a consistent API
allowing easy migration between all the databases. Developers and businesses alike should
seriously consider using DB2 Express with their PHP applications as it uniquely combines the
534 Powering SOA with IBM Data Servers

power, functionality, and reliability of an open standards-based database server with
simplicity in packaging, installation and deployment.

16.7 Conclusion

PHP is a powerful and most popular server side scripting language for Web servers. You can
learn and implement PHP in a manner of few days, which make it a very cost affective
scripting language.

PHP popularity is increasing every year since it is an open source language, it is easy to use,
it is compatible, and it is has the full functionality for working with market leading database
software.

PHP provide the full functionality for implementing Web services. It provides three major
methods which can be easily used to publish existing business logic as a Web service with
only a few lines of PHP code. Our scenario presented one program that calls a DB2 stored
procedure which contains the business logic and provide this logic as a Web service. The
second program presented was a Web service consumer program which can be
implemented using portlet.

The investment in PHP application is very low and you can actually expose your organization
business logic in short period of time and almost with no investment.

In this chapter we did not discuss about PHP security and PHP transactional support, but
those issues are supported by PHP and for more information about that you should refer to
the reference sources mentioned in the chapter.

In conclusion, we recommend that you consider PHP for implementing Web services as part
of your SOA architecture.
Chapter 16. PHP client design 535

536 Powering SOA with IBM Data Servers

Chapter 17. WebSphere Application Server
administration

This chapter describes the rules of a WebSphere Administrator involving SOA architecture
and discusses what a WebSphere Application Server administrator does involving
databases. This chapter should help the DBA understand the basics of WebSphere
Application Server administration.

This chapter contains these topics:

� WebSphere foundation
� Responsibilities of a WebSphere Application Server administrator
� What does WebSphere Application Server Administrator do involving databases

17
© Copyright IBM Corp. 2006. All rights reserved. 537

17.1 WebSphere foundation

Figure 17-1 shows the job roles that are involved in the WebSphere Application Server
environment.

Figure 17-1 WebSphere job roles

In this big environment, we describe in the next section about the roles to an administrator of
WebSphere Application Server (WAS).

17.2 Responsibilities of a WebSphere Application Server
administrator

These are the basics roles to an Administrator of WebSphere Application Server:

� Describe architectural concepts related to WebSphere Application Server.

� Install and configure WebSphere Application Server (base and Network Deployment).

� Use the concepts of the Java 2 Platform, Enterprise Edition (J2EE).

� Assemble and install server-side Java enterprise applications.

� Use WebSphere Application Server administrative tools to configure and manage
enterprise applications.

� Configure security for server-side application resources.

� Deploy applications in clustered environments.

� View performance information about server and application components.

Create, simulate
& Analyze
Business Model

Create,simulate&
Optmize to be
Business Model

Model Driven
Development

Use WBI plug-in
to read Modeler
project

test

Model and
Implement Web
services

Coreograph
services using
BPEL , WSDL

Configure human
taks manager

Use Web services
adapter , ESB ,
etc

Deploy and test run

Administration Monitor

Websphere businnes Monitor

Websphere Process server

Websphere
Integration
developer

Websphere Business modeler

Rational software Architect

Trace
requirements &
create use cases

Create Observation
Model and export to
Monitor
538 Powering SOA with IBM Data Servers

� Use problem determination tools and log files to troubleshoot problems.

� Understand the role of the Administrative Console and the wsadmin administrative clients.

� Understand the managed processes that participate in the administrative domain.

� Understand the structure of the local node and master configuration repositories.

� Discuss the issues surrounding file synchronization between the local node and master
configuration repositories.

� Describe JCA, JDBC Providers, Data sources and Persistence manager.

� Describe Web Services, Web Services Gateway and the UDDI Registry

� Define an EJB Module

� Define a Web Module

� Define an Application Client Module

� Define an Enterprise Application

� Use the Administrative Console to create a Data Source for installed applications to use.

� Locate and view some important log files

� Use the Log Analyzer to view the activity.log

� Enable tracing on an Application Server

� Define Workload Management.

17.3 What does WebSphere Application Server Administrator
do involving databases

These are the main procedures that a WebSphere Application Server administrator does
involving databases, we describe briefly about each one:

� Creating connection pooling.
� Creating JDBC providers.
� Creating Data source.
� Creating Data source security.
� Problem Determination.
� Handling Data source exceptions.
� Handling JDBC exceptions.
� Handling WebSphere exceptions.

17.3.1 Creating connection pooling

Each time an application attempts to access a back-end store (such as a database), it
requires resources to create, maintain, and release a connection to that datastore. To mitigate
the strain this process can place on overall application resources, WebSphere Application
Server enables administrators to establish a pool of back-end connections that applications
can share on an application server. Connection pooling spreads the connection overhead
across several user requests, thereby conserving application resources for future requests.

WebSphere Application Server supports JDBC 3.0 APIs for connection pooling and
connection reuse. The connection pool is used to direct JDBC calls within the application, as
well as for enterprise beans using the database.

Figure 17-2 on page 540 shows a example of a connection pooling.
Chapter 17. WebSphere Application Server administration 539

Figure 17-2 Connection pooling example

Benefits of connection pooling
Connection pooling can improve the response time of any application that requires
connections, especially Web-based applications. When a user makes a request over the Web
to a resource, the resource accesses a data source. Because users connect and disconnect
frequently with applications on the Internet, the application requests for data access can
surge to considerable volume. Consequently, the total datastore overhead quickly becomes
high for Web-based applications, and performance deteriorates. When connection pooling
capabilities are used, however, Web applications can realize performance improvements of
up to 20 times the normal results.

With connection pooling, most user requests do not incur the overhead of creating a new
connection because the data source can locate and use an existing connection from the pool
of connections. When the request is satisfied and the response is returned to the user, the
resource returns the connection to the connection pool for reuse. The overhead of a
disconnection is avoided. Each user request incurs a fraction of the cost for connecting or
disconnecting. After the initial resources are used to produce the connections in the pool,
additional overhead is insignificant because the existing connections are reused.

When to use connection pooling
Use WebSphere connection pooling in an application that meets any of the following criteria:

Note: For a basic understanding of the JDBC 3.0 Core API and the JDBC 3.0 Optional
Package API, refer to:

http://java.sun.com/products/jdbc/download.html

Connection Pool

Connection 2
USER_A

Connection 5
USER_C

Connection 1
USER_A

Connection 4
USER_C

Connection 3
USER_B

in use pool

free pool

Data Source

Default user USER_A

Minimum pool size 2

Maximum pool size 5

Connection timeout 180

Idle timeout 1800

Orphan timeout 1800

Statment cache size 20
540 Powering SOA with IBM Data Servers

http://java.sun.com/products/jdbc/download.html

� It cannot tolerate the overhead of obtaining and releasing connections whenever a
connection is used.

� It requires Java Transaction API (JTA) transactions within WebSphere Application Server.

� It needs to share connections among multiple users within the same transaction.

� It needs to take advantage of product features for managing local transactions within the
application server.

� It does not manage the pooling of its own connections.

� It does not manage the specifics of creating a connection, such as the database name,
user name or password.

17.3.2 Best practices

How connections are pooled together
Whenever you configure a unique data source or connection factory, you are required to give
it a unique Java Naming and Directory Interface (JNDI) name. This JNDI name, along with its
configuration information, is used to create the connection pool. A separate connection pool
exists for each configured data source or connection factory.

A separate instance of a given configured connection pool is created on each application
server that uses that data source or connection factory. For example, if you run a three server
cluster in which all of the servers use myDataSource, and myDataSource has a maximum
connections setting of 10, then you can generate up to 30 connections (three servers times
10 connections). Be sure to consider this fact when determining how many connections to
your back-end resource you can support.

It is also important to note that when using connection sharing, it is only possible to share
connections obtained from the same connection pool.

Avoiding a deadlock
Deadlock can occur if the application requires more than one concurrent connection per
thread, and the database connection pool is not large enough for the number of threads.
Suppose each of the application threads requires two concurrent database connections and
the number of threads is equal to the maximum connection pool size. Deadlock can occur
when both of the following are true:

� Each thread has its first database connection and all are in use.

� Each thread is waiting for a second database connection and none would become
available since all threads are blocked.

To prevent the deadlock in this case, the maximum connections value for the database
connection pool should be increased by at least one. Doing this allows for at least one of the
waiting threads to obtain its second database connection and to avoid a deadlock.

To avoid deadlock, code the application to use, at most, one connection per thread. If the
application is coded to require C concurrent database connections per thread, the connection
pool must support at least the following number of connections, where T is the maximum
number of threads.

T * (C - 1) + 1

The connection pool settings are directly related to the number of connections that the
database server is configured to support.If the maximum number of connections in the pool is
Chapter 17. WebSphere Application Server administration 541

raised, and the corresponding settings in the database are not raised, the application fails
and SQL exception errors are displayed.

17.3.3 Data Sources

Installed applications use a data source to obtain connections to a relational database. A data
source is analogous to the J2EE Connector Architecture (JCA) connection factory, which
provides connectivity to other types of enterprise information systems (EIS).

A data source is associated with a JDBC provider, which supplies the driver implementation
classes that are required for JDBC connectivity with your specific vendor database.
Application components transact directly with the data source to obtain connection instances
to your database. The connection pool that corresponds to each data source provides
connection management.

You can create multiple data sources with different settings, and associate them with the
same JDBC provider. For example, you might use multiple data sources to access different
databases within the same vendor database application. WebSphere Application Server
requires JDBC providers to implement one or both of the following data source interfaces,
which are defined by Sun Microsystems. These interfaces enable the application to run in a
single-phase or two-phase transaction protocol.

ConnectionPoolDataSource - a data source that supports application participation in local
and global transactions, excepting two-phase commit transactions.

When a connection pool data source is involved in a global transaction, transaction recovery
is not provided by the transaction manager. The application is responsible for providing the
backup recovery process if multiple resource managers are involved.

XADataSource - a data source that supports application participation in any single-phase or
two-phase transaction environment. When this data source is involved in a global transaction,
the WebSphere Application Server transaction manager provides transaction recovery.

In WebSphere Application Server releases prior to version 5.0, the function of data access
was provided by a single connection manager (CM) architecture. This connection manager
architecture remains available to support J2EE 1.2 applications, but another connection
manager architecture is provided, based on the JCA architecture supporting the new J2EE
1.3 application style (also for J2EE 1.4 applications).

These two separate architectures are represented by two types of data sources. To choose
the right data source, administrators must understand the nature of their applications, EJB
modules, and enterprise beans.

Data source - This data source uses the JCA standard architecture to provide support for
J2EE version 1.3 and 1.4 applications. It runs under the JCA connection manager and the
relational resource adapter.

17.3.4 JDBC providers

Installed applications use JDBC providers to interact with relational databases.The JDBC
provider object supplies the specific JDBC driver implementation class for access to a
specific vendor database.

Note: In one case a connection pool data source does support two-phase commit
transactions: when the JDBC provider is DB2 for z/OS Local JDBC provider (RRS).
542 Powering SOA with IBM Data Servers

To create a pool of connections to that database, you associate a data source with the JDBC
provider. Together, the JDBC provider and the data source objects are functionally equivalent
to the J2EE Connector Architecture (JCA) connection factory, which provides connectivity
with a non-relational database.

The WebSphere Application Server prerequisite Web site has a current list of supported
providers.If your database is DB2, you can proceed directly to vendor-specific data sources
minimum required settings to learn which DB2 JDBC provider is appropriate for your
database configuration and application requirements.

This document contains descriptions of the following providers, including the supported data
source classes and their required properties.

17.3.5 Create a data source

Figure 17-3 shows how the WebSphere Application Server admin set up a data source using
the admin console via Web browser.

Figure 17-3 Configuring data sources

A Datasource has many properties. The following properties are vendor-neutral:

Name: Specifies the display name for the data source like TestDataSource.

Note: For more information about JDBC drivers, see 6.7, “Connecting your services to
DB2 for z/OS through JCC (JDBC)” on page 152.
Chapter 17. WebSphere Application Server administration 543

JNDI name: Specifies the Java Naming and Directory Interface (JNDI) name. For example,
you can use the name jdbc/TestDataSource. If you leave this field blank a JNDI name is
generated from the name of the data source like jdbc/TestDataSource.

Description: Assigns a text description for the resource.

Category: Specifies a category string you can use to classify or group the resource.

Statement cache size: Specifies the number of free prepared statements that are cached
per connection.

Datasource helper classname: Specifies the datastore helper that is used to perform
database-specific functions. This helper is used by the Relational Resource Adapter at
runtime. The default DataStoreHelper implementation class is set based on the JDBC driver
implementation class, using the structure:

com.ibm.websphere.rsadapter.<database>DataStoreHelper

See Example 17-1 that shows the class of DataStoreHelper with DB2 JDBC.

Example 17-1 DataStoreHelper class

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Connection timeout: Specifies the interval, in seconds, after which a connection request
times out and a ConnectionWaitTimeoutException is thrown.

Maximum connections: Specifies the maximum number of physical connections that can be
in the pool.

Minimum connections: Specifies the minimum number of physical connections to maintain
in the pool.

Reap time: Specifies the interval, in seconds, between runs of the pool maintenance thread

Unused timeout: Specifies the interval in seconds after which an unused or idle connection
is discarded.

Aged timeout Specifies the interval in seconds before a physical connection is discarded.

Purge policy: Specifies how to purge connections when a "stale connection" or "fatal
connection error" is detected. Valid values are EntirePool and FailingConnectionOnly.

17.3.6 Security

WebSphere provides robust security management including authentication, authorization,
and auditing infrastructure for WebSphere-based applications. These facilities interact with
the database Security to augment the security infrastructure provided directly within
WebSphere.

Setting the JDBC driver securityMechanism
To set the securityMechanism value within WebSphere, a property must be added to the
custom properties of the datasource.

Note: You can change to your subclass of this DataStoreHelper if necessary.
544 Powering SOA with IBM Data Servers

WebSphere datasource settings for authentication
Within the WebSphere datasource definition, there are two potential fields for specifying the
identity to be utilized. Since the datasource can be referenced by an application wanting to
have the container determine the identity, or allow the program to specify the user ID and
password for connectivity, the datasource definition supports the setting of an authorization.

The potential authentication values themselves are defined within the Security -JAAS
Configuration - JCA Authentication option of the administration console application.

The user ID and password must be a valid SAF user ID, if they are to be used for connectivity
to DB2 and referenced in the datasource definition. Once the JCA authorization IDs are
defined, the datasource can specify an ID to be used if the datasource is accessed with
res-auth=container, and a separate ID if res-auth=application is used.

Figure 17-4 shows how to setup authentication security in WebSphere.

Figure 17-4 Configuring JAAS

Adding JAAS authentication to a WebSphere Application Server
You can use the Security tab to define a Java Authentication and Authorization Extension
(JAAS) alias for a username and password to connect to the data source.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2
Security Architecture of the Java 2 Platform with additional support for authentication and for
enforcing access control upon users. The development environment supports the JAAS
architecture and extends the access control architecture to support role-based authorization
for J2EE resources including servlet, JSP, and EJB components. JAAS maps an
authenticated WebSphere user identity to a set of user authentication data (user ID and
password) for a specified back-end Enterprise Information System (EIS).
Chapter 17. WebSphere Application Server administration 545

Prerequisite: Create an enterprise application and target the server to WebSphere
Application Server V6.0.

To add JAAS authentication, follow these steps:

1. Switch to the J2EE perspective.

2. In the Project Explorer view, expand the Enterprise Applications folder.

3. Under the enterprise application project folder for which you want to add JAAS
authentication, double-click the Deployment Descriptor to open the Application
Deployment Descriptor editor.

4. Select the Deployment tab at the bottom of the editor.

5. Expand the Authentication section.

6. Click the Add button beside the JAAS authentication entries list table. The Add JAAS
Authentication Entry dialog box opens.

7. In the dialog box, fill in an alias, user id, password, and description for the authentication
entry. For example, you could enter the alias, DB2 user ID, and DB2 password to access
a DB2 database. Click OK.

8. Save your changes and close the editor. A JAAS authentication alias has been added to
the deployment descriptor files.

17.3.7 Problem determination

Problem determination in DBMS and WebSphere has become a difficult process for some
problems with the use of multi-threading in Java, as well as, but not limited to, the ideas of
connection pooling and PreparedStatement cache.

When contacting either support team, you will be asked to produce some basic information.
Here we will cover what that information is, as well as what it means to a problem. After initial
analysis of the basic information, each support team may ask for some specific traces. The
traces are used to look inside each product as a problem happens. Through the use of the
traces, the support and development teams can determine the cause of most problems.

Basic information for problem determination
With the integration of many different products, the problem determination process is
becoming quite difficult in some cases.The idea of problem determination in a DBMS and
WebSphere environment is to determine where the actual problem lies, and then determine
what it is. The first step of determining where the problem lies can be as difficult if not more so
than determining what the problem actually is.

Determining the location
As with most products, a lot of problems are due to how a product is used. Customer error is
the most common reason for calls to the support teams. Of course this should be expected
with so many different types of each product on the market, what are the chances of them all
working the same? The biggest concern is how long it takes to determine if it is a customer
error, or a problem with the product.

The location of a problem usually means which piece of software or hardware is the real
cause. In most environments the problem that the user sees is not always the actual problem,
some of the time it is only a consequence of the real problem.
546 Powering SOA with IBM Data Servers

Tracing
Tracing can also play a big part in determining where the root of a problem is. In the DBMS
and WebSphere environment there is a lot of traces available for this purpose.Traces like a
JDBC, CLI, or WebSphere tracing may not present much of a performance hit, but may
produce the information needed.

When you get to the JDBC trace section of this chapter you will see that the trace provides a
trace point for each method call. From this information we can determine if the right methods
were called in the right order before a problem occurred. This is a great method for
determining if there was a customer error in JDBC coding. From this trace it is also possible to
determine if the error came from deeper within DB2 or if it was something that the JDBC
driver did not like.

A WebSphere trace can work the same way. When the WebSphere trace is produced it can
list each call made to the database. This information can be important in determining if the
right call was made or not.

17.3.8 Database connection problems

WebSphere Application Server diagnostic tools provide services to help troubleshoot
database connection problems. Additionally, the IBM Web site provides flexible searching
capabilities for finding documented solutions to database-specific connection problems.

The following steps help you quickly isolate connectivity problems.

1. Browse the log files of the application server for clues.

2. Browse the Helper Class property of the data source to verify that it is correct and that it is
on the WebSphere Application Server class path. Mysterious errors or behavior might
result from a missing or misnamed Helper Class name. If WebSphere Application Server
cannot load the specified class, it uses a default helper class that might not function
correctly with your database manager.

3. Verify that the Java Naming and Directory Interface (JNDI) name of the data source
matches the name used by the client attempting to access it. If error messages indicate
that the problem might be naming-related, such as referring to the name server or naming
service, or including error IDs beginning with NMSV

4. Enable tracing for the resource adapter using the trace specification, RRA=all=enabled.
Follow the instructions for dumping and browsing the trace output, to narrow the origin of
the problem.

General data access problems
There are several errors, the list shows a few of these errors, we give a example showing the
details about the first one:

� An exception "IllegalConnectionUseException" occurs.

� WTRN0062E: An illegal attempt to enlist multiple one phase capable resources has
occurred.

� ConnectionWaitTimeoutException.

Note: For a comprehensive list of database-specific troubleshooting tips, see the
WebSphere support page at:

http://www-306.ibm.com/software/webservers/appserv/was/support/
Chapter 17. WebSphere Application Server administration 547

http://www-306.ibm.com/software/webservers/appserv/was/support/

� com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver] SQL1013N. The
database alias name or database name "NULL" could not be found. SQLSTATE=42705.

� java.sql.SQLException: java.lang.UnsatisfiedLinkError.

An exception "IllegalConnectionUseException" occurs
This error can occur because a connection obtained from a WAS40DataSource is being used
on more than one thread. This usage violates the J2EE 1.3 programming model, and an
exception generates when it is detected on the server. This problem occurs for users
accessing a data source through servlets or bean-managed persistence (BMP) enterprise
beans.

DBMS errors
WebSphere receives the errors from the DBMS, like IMS, INFORMIX, Cloudscape, SQL
Servers, DB2 UDB, and so on.

See Example 17-2 for typical DB2 for z/OS errors.

Example 17-2 DB2 for z/OS typical errors

SQL0567N "DB2ADMIN " is not a valid authorization ID. SQLSTATE=42602
SQL0805N Package package-name was not found
SQL0805N Package "NULLID.SQLLC300" was not found. SQLSTATE=51002
SQL30082N Attempt to establish connection failed with security reason "17"
("UNSUPPORTED FUNCTION') SQLSTATE=08001

17.3.9 JDBC trace configuration

If your application displays JDBC-related exception messages, activate the JDBC trace
service. The resulting log text can help you identify the problem.

Turn on tracing for most database JDBC implementations through the administrative console;
see the article Tracing and logging configuration for instructions. This method activates JDBC
trace for all applications that run in the server you specify. Identify your database type by
selecting the trace group WAS.database and typing one of the following trace strings in the
console:

com.ibm.ws.database.logwriter

Trace string for databases that use the GenericDataStoreHelper. Table 17-1 shows the trace
string that you can also use for unsupported databases.

Table 17-1 JDBC traces

Trace string Database

com.ibm.ws.db2.logwriter DB2

com.ibm.ws.oracle.logwriter Oracle

com.ibm.ws.derby.logwriter Derby

com.ibm.ws.informix.logwriter Informix

com.ibm.ws.sqlserver.logwriter Microsoft SQL Server

com.ibm.ws.sybase.logwriter Sybase
548 Powering SOA with IBM Data Servers

A few JDBC drivers require that you set trace differently, at the data source level. These
drivers include:

� DB2 former or earlier CLI-based JDBC driver

� WebSphere embedded ConnectJDBC driver for MS SQL Server

� DataDirect ConnectJDBC driver for MS SQL Server

� DataDirect SequeLink JDBC driver for MS SQL Server, which is deprecated in
WebSphere Application Server V6.0

� Microsoft JDBC driver for MS SQL Server 2000, which is deprecated in WebSphere
Application Server V6.0

Configuring trace for these drivers through the WAS.database group results in corrupt trace
information. WebSphere Application Server sets trace for the group at the server level,
causing the trace service to begin only after your application establishes an initial connection.
Because that first connection does not carry trace information, re-use of it is never tracked.
Consequently the application cannot accurately match trace information to connection use.

Set trace for the previously mentioned JDBC drivers through data source custom properties.
For example, use custom property spyAttributes to enable the JDBC trace for SequeLink or
Connect JDBC drivers. Consult your driver documentation for details on the custom property
that enables trace for your JDBC implementation.

17.3.10 WebSphere exceptions

WebSphere connection pooling monitors specific SQLExceptions thrown by the database. A
set of these exceptions are mapped to WebSphere Application Server specific exceptions.
WebSphere Application Server connection pooling provides these exceptions to ease
development by not requiring the developer to know all of the database-specific
SQLExceptions that could be thrown for very common occurrences.

Two commonly encountered exceptions are:

� ConnectionWaitTimeoutException

� StaleConnectionException

ConnectionWaitTimeoutException
ConnectionWaitTimeoutException accessing a data source or resource adapter.If your
application receives these exception when attempting to access a WebSphere Application
Server data source or JCA-compliant resource adapter, respectively, some possible causes
are:

� The maximum number of connections for a given pool is set too low. The demand for
concurrent use of connections is greater then the configured maximum value for the
connection pool.

Tip: If the JDBC tracing service cannot help you isolate and fix your problem, consult the
IBM Support Web site for WebSphere Application Server at:

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y

Use the site search function to find current information about known problems and their
resolutions. Locating the right troubleshooting tip can save time that, otherwise, you might
spend on opening and tracking a PMR.
Chapter 17. WebSphere Application Server administration 549

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y

� If your connection wait timeout value is too low, you might timeout shortly before a user
returns a connection back to the pool. Adjusting the connection wait time can give you
some relief. One indication of this problem is that you use close to the maximum number
of connections for an extended period and receiving this error regularly.

� You are not closing some connections or you are returning connections back to the pool at
a very slow rate.

To correct these problems, either:

� Modify an application to use fewer connections.

� Properly close the connections.

� Change the pool settings of MaxConnections or ConnnectionWaitTimeout.

� Adjust resources and their configurations.

StaleConnectionException
This exception (com.ibm.websphere.ce.cm.StaleConnectionException) indicates that the
connection currently being held is no longer valid. This can occur for a number of reasons,
including these:

1. The application tries to get a connection and fails, as when the database is not started.

2. A connection is no longer usable due to a database failure. When an application tries to
use a connection it has previously obtained, the connection is no longer valid. In this case, all
connections currently in use by an application could get this error when they try to use the
connection.

3. The application tries to use a JDBC resource, such as a statement, obtained on a
now-stale connection.

4. The application using the connection has already called close() and then tries to use the
connection again.

5. The connection has been orphaned because the application had not used it within a time
interval of twice the orphan timeout value, and then the application attempted to use the
orphaned connection.

Applications are not required to explicitly catch a StaleConnectionException. A
StaleConnectionException is a subclass of java.sql.SQLException, which applications are
already required to catch. However, catching a StaleConnectionException makes it possible
for applications to recover from bad connections in many instances.

The most common time for StaleConnectionException to be thrown is the first time that a
connection is used, just after it is retrieved. Because connections are pooled, a database
failure is not detected until the operation immediately following its retrieval from the pool,
which is the first time communication to the database is attempted. And it is only when a
failure is detected that the connection is marked stale. StaleConnectionException occurs less
often if each method that accesses the database gets a new connection from the pool.

Examining the sequence of events that occur when a database fails to service a JDBC
request shows that this occurs because all connections currently handed out to an application
are marked stale; the more connections the application has, the more connections can be
stale.

Generally when StaleConnectionException is caught, the transaction in which the connection
was involved needs to be rolled back, and a new transaction begun with a new connection.
550 Powering SOA with IBM Data Servers

Note: Details can be found in the “WebSphere Connection Pooling” document by Deb
Ericson, Shawn Lauzon, and MelissaModjeski, which is located at:

http://www.ibm.com/software/webservers/appserv/whitepapers/connection_pool.pdf

See also the Redbooks:

� DB2 for z/OS and WebSphere: The Perfect Couple, SG24-6319
� DB2 UDB/WebSphere Performance Tuning Guide, SG24-6417
� Using Informix Dynamic Server with WebSphere, SG24-6948

And see the Redpaper:

� WebSphere for z/OS to CICS and IMS Connectivity Performance, REDP-3959
Chapter 17. WebSphere Application Server administration 551

http://www.ibm.com/software/webservers/appserv/whitepapers/connection_pool.pdf

552 Powering SOA with IBM Data Servers

Chapter 18. Managing and monitoring SOA
applications

This chapter describes the tools for monitoring SOA applications. We discuss offerings for
composite application management in the context of IBM Tivoli Composite Application
Manager Version 6 Family. We describe IBM Tivoli Composite Application Manager for SOA
(ITCAM for SOA) and provide a case study implementation. For detailed information about
IBM Tivoli products, refer to the standard IBM Tivoli publications.

The discussion includes:

� IBM Tivoli Composite Application Manager V6 Family
� ITCAM for product features
� ITCAM for SOA product components
� Monitoring performance in DB2
� Stand alone monitoring tools for SOA

18
© Copyright IBM Corp. 2006. All rights reserved. 553

18.1 IBM Tivoli Composite Application Manager V6 Family

In this section we discuss the IBM Tivoli products for service management.

18.1.1 Why manage?

SOA applications, as mentioned in Chapter 4, “SOA and user interfaces with portals” on
page 69, tend to have multiple layers, often distributed across different servers, different
platforms, and different components. SOA application monitoring, management, operational
settings, problem determination, and performance management post a challenge for
management tools.

SOA applications as business-critical entity must be available with adequate response time
for users to perform their tasks. With application components spread throughout the
enterprise, problem determination and performance management are typically a nightmare.
There is no clear path for finding which component has the problem; sometimes these
components even belong to different organizations. Is it the database? Or maybe a network
problem? Or the application server experiencing a bottleneck? Maybe an end-user machine
is stall?

18.1.2 IBM Tivoli system management portfolio

Tivoli product solutions are aligned toward an overall IBM IT Service Management approach.
Figure 18-1 shows the IBM IT Service Management portfolio structure.

Figure 18-1 IBM IT service management

This approach provides IT infrastructure library (ITIL®) aligned automation workflows. Future
offerings will provide an open- standard based, configuration management database (CMDB)
based solution as well as a workflow engine.

The operational management pillar, as shown in Figure 18-1, is divided into software families.
The availability solution addressed in business applications management and server,
network, and device management can be viewed as an integrated offering as show in
Figure 18-2 on page 555.
554 Powering SOA with IBM Data Servers

Figure 18-2 Tivoli software portfolio

Tivoli availability portfolio is divided into:

� Resource monitoring

Measuring and managing IT resource performance, including servers, databases, and
middleware.

� Composite application management

Monitoring and managing an application and its components, understanding applications
from the availability standpoint.

� Event Correlation and automation

Correlates and automates events or faults that are generated by resource monitoring,
application monitoring, or both to provide a concise root-cause analysis of failure in the
environment.

� Orchestration and provisioning

Provides the ability to deploy or re-deploy servers or components as requested, on
demand, to fulfill processing needs, if the need arises as indicated by the correlation
engine.

� Business Services Management

Provides a high-level view of business status as reflected by its underlying monitoring
components; the view can be either be in real time or based on a Service level Agreement.

18.1.3 Tivoli composite application solution

The IBM Tivoli Composite Application Manager family resides in the application manager
pillar from the Tivoli software portfolio. The current application management portfolio consists
of the following products:

� ITCAM for Response Time Tracking V6.0
� ITCAM for SOA V6.0
� ITCAM for WebSphere V6.0
� ITCAM for CICS Transactions V6.0
� ITCAM for IMS Transaction V6.0
� OMEGAMON® XE for WebSphere Business Integration V1.1

Figure 18-3 on page 556 shows the application management scope.
Chapter 18. Managing and monitoring SOA applications 555

Figure 18-3 Application management

In this redbook we focus on ITCAM for SOA (IBM Tivoli Composite Application Manager V6.0
for SOA). For more information about the ITCAM solutions mentioned on the software
portfolio, refer to IBM Tivoli Composite Application Manager V6.0 Family: Installation,
Configuration, and Basic Usage, SG24-7151, or the ITCAM product documentation.

18.2 ITCAM for product features

ITCAMS for SOA manages service-oriented architecture (SOA). It can monitor, manage, and
control Web service layer of IT architecture while drilling down to the application or resource
layer to identify the source of bottlenecks or failures and to pinpoint services that are most
time consuming or use the most resources. ITCAM for SOA:

� Provides service monitoring views in Tivoli Enterprise Portal.

ITCAM for SOA workspace consists of:

– Performance summary

Shows the response time information for Web services calls as viewed from the client
or the server.

– Message summary

Shows the message statistics, including the volume and size of the message
information.

– Fault summary

Shows failure analysis for Web services calls.

– Service Management Configuration summary

Provides a summary of the Web services configuration.

� Leverages Tivoli Enterprise Portal situation to check threshold. ITCAM for SOA provides
some predefined situations that you need to tailor. The Predefined situations concern:

– Number of messages received by the service within a time window.

– Size of the message.
556 Powering SOA with IBM Data Servers

� Offers heterogeneous platform coverage:

– Support for IBM WebSphere Application Server, Microsoft .NET, and BEA WebLogic.

– Target IBM Enterprise Service Bus platforms: WebSphere Application Server 5.x, and
6.x, WebSphere Integration Server Foundation 5.1.1.

� Displays a list of services and operations monitored in environment.

� Leverages Tivoli Enterprise Portal workflow and policy editor for threshold-triggered action
sequences.

� Offers the ability to include Service-Layer views in Tivoli Enterprise Portal.

Figure 18-4 shows a sample of ITCAM for SOA workspace.

Figure 18-4 ITCAM for SOA workspace
Chapter 18. Managing and monitoring SOA applications 557

The context-rich views and inter-workspace linkage in the Tivoli Enterprise Portal enables
users to drill down to IT resources to identify of Web service bottlenecks and failures. By
providing built-in and extensive alerts, situations, and workflows, users can create powerful
automated mediation scenarios via the Tivoli Enterprise Portal.

18.3 ITCAM for SOA product components

ITCAM for SOA manages Web services. Web services can be viewed as a remote processing
facility that is defined through the use of Web Services Definition Language (WSDL). Usual
access uses simple Object Access Protocol (SOAP) over HTTP. Internally, Web services are
implemented using Java API for XML-based Remote Procedure Call (JAX-RPC). ITCAM for
SOA installs itself as the JAX-RPC handler to capture and manage Web services Calls.

ITCAM for SOA consists of these logical components:

� Web services data collector, which acts as the JAX-RPC handler and intercepts Web
services calls to collect statistical information and write to a log file.

� Tivoli Enterprise Monitoring Agent collects information from all of the data collectors on a
machine and forwards them to Tivoli Enterprise Monitoring Server. The data collectors
and Tivoli Enterprise Monitoring Agent are discussed in 18.3.1, “Monitoring agent data
collector” on page 558.

� An Eclipsed-based viewer that processes log files that are generated by the Web services
data collector. it generates visual representations of various characteristics of monitored
Web services. see 18.4, “Monitoring performance in DB2” on page 561.

18.3.1 Monitoring agent data collector

ITCAM for SOA works with several applications server environments:

� IBM WebSphere Application Server
� Microsoft .NET
� BEA WebLogic server

Figure 18-5 on page 559 shows the ITCAM for SOA data collection conceptual architecture.

The monitoring agent data collector is implemented as a JAX-RPC handler or service
extension that is installed into the application servers that are hosting the monitored Web
services. The handler is given control when either of the following events occurs:

� A client application invokes a Web service, which is referred to as a client size
interception.

� The Web service requester is received by the hosting application server, which referred to
as a server-side interception.

The monitoring agent records and collects monitored information into one or more local log
files. The information is then transferred to Tivoli Enterprise Monitoring Server and can be
archived into a historical database for later retrieval with IBM Service Navigator.

Note: the data collectors and the IBM Web Service Navigator are available as well as
stand alone tools. Refer to 18.5, “Stand alone monitoring tools for SOA” on page 561 for
more information.
558 Powering SOA with IBM Data Servers

Figure 18-5 ITCAM for SOA structure

ITCM for SOA 6.0 focuses on the Simple Object Protocol (SOAP) engine of IBM WebSphere
Application Server, WebSphere Service Integration Bus, the Microsoft .NET Framework and
BEA WebLogic.

The Web services data collector supports both J2EE application client and server container
environments because JAX-RPC handlers are supported only by these environments. The
Web services must be compliant with JSR-109 specifications. For more information about the
JSR-109 specification and enterprise Web services implementation refer to:

http://www.jcp.org/aboutJava/communityprocess/final/jsr109

18.3.2 IBM Web Service Navigator

IBM Web Service Navigator is an Eclipse-based tool used to visualize Web services in an
SOA environment. it provides a graphical display of:

� Web services transaction flows
� Service topology
� Flow patterns

Figure 18-6 on page 560 illustrates the Web Services Navigator concepts.
Chapter 18. Managing and monitoring SOA applications 559

http://www.jcp.org/aboutJava/communityprocess/final/jsr109

Figure 18-6 Web Service Navigator

The Web Services Navigator is a log-browsing tool intended for offline analysis of SOA Web
services. The primary views that are provided:

� Statistic tables:

– Message statistics

Pre-message statistics including requestor, provider, send/receive time, and message
size.

– Invocation statistics

Response time, network delay, message size, and more for each Web service
invocation.

– Transaction statistics

Provides statistics for aggregated transactions, including elapsed time, number of
faults, number of machines this transaction involves, and number of invocations
comprising this transaction.

– Pattern invocation statistics

Provides statistics for discovered patterns, including operation names, number of
occurrences, response times, and message sizes.

� Service topology view

A graphical representation of the monitored Web services that displays aggregated
information and information about the relationships between Web services.

� Transaction flows view

Transaction flow view displays Universal Markup Language (UML) style sequence
diagrams. Transaction flow shows a chronological view of each transaction, the flow
between the various Web services over time, and the topology and statistics for each
transaction. The view can be zoomed to see the details of individual transactions.
560 Powering SOA with IBM Data Servers

� Flow pattern view

Flow pattern view is a visual representation of the aggregated pattern of transactions
represented in the log file. The view also represents each pattern as a distinct sequence of
Web services calls and displays the frequency of each pattern.

18.4 Monitoring performance in DB2

You can monitor, analyze and tune the performance of the Web services inside IBM DB2
Universal Database for z/OS using IBM Tivoli OMEGAMON XE for DB2 Performance Expert
on z/OS that gives you a single, comprehensive tool to help assess the efficiency and
optimize performance from your DB2 Universal Database on z/OS environment.

18.5 Stand alone monitoring tools for SOA

This topic describes the IBM Web Services Navigator and the Data Collector for the IBM
Service Navigator which are stand alone tools for monitoring SOA and Web services
applications.

18.5.1 IBM Web Services Navigator

The IBM Web Services Navigator, a plug-in to IBM Rational and other Eclipse-based tools.
The Web Services Navigator is used for visualization of Web service transactions.

IBM Web Services Navigator addresses the complexity of understanding and debugging
collections of Web services, such as those found in the SOA applications, by visualizing the
actual execution of the Web service transactions. The plug-in visualizes logs of Web service
activity from IBM WebSphere Application Servers collected by a Web service Data Collector,
a companion technology that is released separately. The Web Service Data Collector is
discussed in more details in 18.5.2, “Data Collector for IBM Service Navigator” on page 562.

IBM Web Service Navigator allows users to observe and explore the dynamic behavior of
their Web Service applications through a new perspective with four new interactive views of
messages and transactions:

� The Services Topology view, highlights the services that participated in the transaction
and summarizes the messages they exchanged.

� The Transaction Flows view, diagrams the flow of messages from service to service for
each transaction.

� The Flow Patterns view, exposes repeated patterns of service interactions between
transactions, as well as repeated patterns of invocations within transactions.

� The Message Contents, view reveals the actual contents of individual messages and
tracks selected data values through transactions.

Notes: For complete information about this tool, see the redbook A Deep Blue View of
DB2 Performance: IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS,
SG24-7224.

For DB2 on distributed platforms, seeDB2 Performance Expert for Multiplatforms V2.2,
SG24-6470.
Chapter 18. Managing and monitoring SOA applications 561

18.5.2 Data Collector for IBM Service Navigator

The Data Collector for IBM Service Navigator is a tool that intercepts and instruments Web
service requests and response and writes information about the Web services to a log file
used by IBM Web Services Navigator.

The IBM Service Navigator processes the log files that are generated by the Data Collector
and generated visual representation of various characteristics of the monitored Web
Services.

The Data Collector is implemented as a JAX-RPC handler that is installed into the application
servers that are hosting the monitored Web services and their clients. This handler is given
control when either of the following actions occur:

� A client application invokes a Web service. This is referred as a client-side interception.

� The Web service request is received by the hosting application server. This is referred as
a server-side interception.

The Web Service Data Collector supplements the Web service request with correlation
information do that the flow of the logical transaction can be followed through a series of Web
services invocations. The Web services data collector also records monitoring information in
a local log file that is imported into the IBM Web Services Navigator. Two or more log files
from various monitored applications servers can be manually combined into a single log file.
When this combined log file is imported into the IBM Service Navigator, information can be
displayed about all of the monitored Web services and the interaction between them at the
same time.

The Data Collector focuses on the simple object access protocol (SOAP) engine of
WebSphere Application Server.

Note: for more information and downloading the Web Service Navigator plug-in, refer the
the following link:

http://www.alphaworks.ibm.com/tech/wsnavigator/download

Notes: The Web services data collector supports only Java 2 Enterprise Edition (J2EE)
client and server container environment because JAX-RPC handlers supported only in
these environments.

For more information and downloading the Web Service Navigator plug-in, refer the
following link:

http://www.alphworks.ibm.com/tech/wsdatacollector/download
562 Powering SOA with IBM Data Servers

http://www.alphaworks.ibm.com/tech/wsnavigator/download
http://www.alphworks.ibm.com/tech/wsdatacollector/download

Part 7 Appendixes

In Part 7 we provide appendixes for additional information about XML and IMS services:

� Appendix A, “XML and DB2” on page 565
� Appendix B, “XML and DB2 for z/OS” on page 575
� Appendix C, “XML and DB2 for Linux, UNIX and Windows” on page 593
� Appendix D, “Setting up IMS services” on page 665

Part 7
© Copyright IBM Corp. 2006. All rights reserved. 563

564 Powering SOA with IBM Data Servers

Appendix A. XML and DB2

In this appendix we describe the new native XML features common to both DB2 Version 9.1
for z/OS, and DB2 Version 9.1 for Linux, UNIX and Windows. We also describe the new
SQL/XML functions available on DB2 9 products on z/OS and Linux, UNIX and Windows.
Wherever appropriate we indicate differences among DB2 for z/OS and DB2 for Linux, UNIX
and Windows. The details of the two implementations are in Appendix B, “XML and DB2 for
z/OS” on page 575 and Appendix C, “XML and DB2 for Linux, UNIX and Windows” on
page 593.

A

© Copyright IBM Corp. 2006. All rights reserved. 565

A.1 Why use XML in DB2?
Today, XML is predominant in most organizations and hosts an abundance of business
information on public and private Web sites. This is because XML is vendor and platform
independent, and is a very flexible data model for structured data, semi-structured data, and
schema-less data. It is also easy to extend and self-describing. Further, XML can be easily
transformed into other XML documents or even different formats such as HTML. Therefore,
XML is the de facto standard for exchanging data between different systems, platforms,
applications, and organizations.

Beyond XML for data exchange, enterprises are keeping large amounts of business critical
data permanently in XML format. This has various reasons, such as a need to keep it for
auditing and regulatory compliance. Also, for example in life science applications the data is
highly complex and hierarchical in nature and yet may contain significant amounts of
unstructured information. Most of today’s genomic data is still kept in proprietary flat file
formats but major efforts are under way to move to XML. These proprietary flat files can be
accessed using WebSphere Federated Server technology.

As a consequence, XML is a core technology for Web applications and Web services. Almost
every implementation of service-oriented architecture (SOA) has XML at some point.

We can say that XML is s key technology for:

� Data exchange
� Data integration
� Data evolution and flexibility
� Service-oriented architectures
� Information on demand

DB2 provides significant new capabilities for supporting XML, including a new XML data type
and underlying engine-level components that automatically store and process XML data. Let
us look at what is new in DB2 V9.1, and how DB2 V9 is significantly different from previous
versions of DB2 in terms of XML support it has to offer.

A.2 Native XML support versus XML Extender
Relational is a data model with:

� Relations (tables)
� Attributes (columns)
� Set based with some sequences
� Strict schema

XML is a data model with:

� Nodes (elements, attributes, comments, and so on)
� Relationships between nodes
� Sequence based
� Flexible schema

When we need to store XML data in a Database Management System, traditionally we either
store the entire XML document as a CLOB or VARCHAR in a column, or decompose the XML
document into rows and columns, or shred the XML into edge table. DB2 XML Extender is a
fully-integrated component of DB2 that provides data types to store XML documents in DB2
databases and functions to work with these structured documents. DB2 manages these
documents and stores them as character data or external files. You can retrieve complete
566 Powering SOA with IBM Data Servers

documents or individual elements via the functions provided by XML Extender. DB2 XML
Extender provided rich functionality to store and retrieve XML documents. However, storing
XML documents intact in a column, or shredding them to rows in tables still creates a number
of problems:

1. The decomposition or shredding methods attempted to fit XML into DB2 which stored the
data using the relational model. Usability and performance became an issue as the
shredded data is no longer in XML and become unmanageable. Storing the document as
CLOB or VARCHAR in an XML column prevents XML parsing at insert

2. Re-construction of the XML document is difficult and expensive. Further it does not make
sense to decompose or shred the document when the document always need to
re-composed before it can be use efficiently

3. DAD file uses RDB node mapping and XML Extender uses this mapping to determine
where to store and retrieve XML data. Mapping becomes very challenging when dealing
with large and complex XML documents. Further, mapping is often invalidated when the
XML changes.

4. There is no support for XQuery to query the XML documents natively. SQL has to be used
instead and application code has to be written to parse the document

Therefore, XML Extender works well, but it does not provide good performance and flexibility.
Further it introduces administrative challenges and does not scale well for large, complex
applications. You will now learn how the new native XML support in DB2 V9.1 will solve these
problems.

A.3 DB2 native XML store
DB2 V9.1 for Linux, UNIX and Windows and DB2 V9.1 for z/OS offer leading-edge technology
for storing, managing, and searching XML data in a secure, highly scalable environment. You
can now seamless integrate XML with their existing relational data, exploit both tabular and
hierarchical data models, and enjoy the flexibility of using both SQL and XQuery in your
applications. To provide this first-class support for managing XML data, DB2 features new
storage management, indexing, and optimization techniques. It also interfaces to a wide
range of popular programming languages, allows users to optionally validate their XML data
prior to storage, and extends popular database utilities important for importing data and
administering the environment. The new XML support in DB2 manages XML in a hierarchical
format, representing the XML data model in a natural way. This provides key advantages over
existing offerings that require XML data to be stored as large objects which can be expensive
to search and update, or decomposed across multiple relational tables which requires
complex schema mappings and query statements.

The ability to integrate business data from multiple sources and services is key to making
insightful decisions in today's competitive marketplace. In Version 9.1, DB2 introduces a
multi-structure data server with the ability to store both relational and native XML. This feature
provides a powerful mechanism for integrating and storing data from various data services
such as eForms, documents, XML messages, or other business critical data traditionally not
found in a relational data server.

DB2 native XML data store offers several key advantages over other methods of XML data
storage:

� Native XML data store is a new storage model which stores the data in a hierarchical
format representing the XML data model, rather than confining the XML data to a
relational model.
Appendix A. XML and DB2 567

� Native XML data store protects the integrity of your XML data. Shredding XML data into
relational tables compromises the digital signatures and other critical metadata that
accompany your data. Because DB2 native XML data store does not shred or decompose
your XML data, your original XML document, including digital signatures is protected.
Native XML data store also allows you to avoid the resource and performance costs
associated with rebuilding the XML document every time it is retrieved.

� Native XML data store indexing provides even higher speed search retrieval.

� One of the key benefits of XML is the ability to standardize information which allows for
seamless communication with vendors, partners, and customers. DB2 native XML data
store provides a robust and flexible foundation upon which service-oriented applications
can be built. In addition to fast data retrieval and XML data integrity, DB2 native XML data
store provides flexible schema capabilities that allow you to seamlessly and
cost-effectively modify application structures without disrupting your data server.

� With DB2 native XML data store, you get the security and stability of DB2 Version 9.1
along with flexible access to XML data using XQuery (only available on DB2 for Linux,
UNIX and Windows), XPath, SQL, and standard reporting tools.

Developers in your organization can take advantage DB2 GUI tools (on DB2 UDB for Linux,
UNIX and Windows only) to easily create and manage XML structures and build XQuery and
SQL statements. You never have to compromise. The DB2 server incorporates the best XML
and relational technologies into one server without forcing your XML developers to think like
relational developers.

The native XML data store enables well-formed XML documents to be stored in their
hierarchical form within columns of a table. XML columns are defined with the XML data type.
By storing XML data in XML columns, the data is kept in its native hierarchical form, rather
than stored as text or mapped to a different data model. Because the native XML data store is
fully integrated into the DB2 database system, the stored XML data can be accessed and
managed by leveraging DB2 functionality.

You can use SQL/XML to access XML data on DB2 for z/OS, and you can use both SQL/XML
as well as XQuery to access XML data on DB2 for Linux, UNIX and Windows. Figure A-1 on
page 568 shows the DB2 V9 architecture, where both relational data storage and native XML
storage are accessed by the DB2 engine.

Figure A-1 DB2 Architecture

Note: XML Extender is still supported in DB2 Version 9.1 but no enhancements are
planned. We recommend you to consider the XML native support for all new applications.
568 Powering SOA with IBM Data Servers

The XQuery arrow is greyed out, to indicate that XQuery is available on DB2 for Linux, UNIX
and Windows only.

The storage of XML data in its native hierarchical form enables efficient search and retrieval
of XML. XQuery, SQL, and SQL/XML or a combination of them can be used to query XML
data. SQL/XML can enable XML data to be constructed or published from values retrieved
from the database. In addition, SQL allows full document retrieval from the native XML store.
An XML application can access the native XML store through the XML interface using
XQuery, and can also contain optional SQL statements to combine XML data with relational
data.

Now that you've learned how to store XML data using DB2's new "native" XML capabilities,
you're ready to query that data. You'll see how to do that in subsequent articles, which will
introduce you to DB2's new XQuery support as well as its XML extensions to SQL
(sometimes called "SQL/XML").

A.4 The XML Data Type
DB2 V9.1 for z/OS, and DB2 for Linux, UNIX and Windows, now features the new support for
XML as a first class data type just like any other SQL type. The XML data type can be used in
a CREATE TABLE statement to define a new column of type XML. For example:

CREATE TABLE PAOLO.TABLE1 (ID INTEGER, INFO XML)

Any column of XML data type can hold one well-formed XML document for every row of the
table. The XML data type can also be used as a data type for host variable, and can be
accessed via languages like C, Java, COBOL and so on. You can also pass XML type
parameters and variables to stored procedures and UDFs.

The introduction of this native XML data type provides the ability to store well-formed XML
documents in the database along side other relational data. All XML data is stored in the
database in the UTF-8 code set. XML values are processed in an internal representation that
is not a string and not directly comparable to string values. An XML value can be transformed
into a serialized string value representing the XML document using the XMLSERIALIZE
function or by binding the value to an application variable of an XML, string, or binary type.
Similarly, a string value that represents an XML document can be transformed to an XML
value using the XMLPARSE function or by binding an application string, binary, or XML
application type to an XML value. In SQL data change statements (such as INSERT)
involving XML columns, a string or binary value that represents an XML document is
transformed into an XML value using an injected XMLPARSE function. An XML value can be
implicitly parsed or serialized when exchanged with application string and binary data types.

XML columns can be added to existing relational tables using the ALTER TABLE statement. For
example, we have an existing table PAOLO.TABLE2 and now we want to add a new XML
column CUSTOMER to this table. Then we can issue the following command:

ALTER TABLE PAOLO.TABLE2 ADD CUSTOMER XML

Restriction: XQuery is not supported in DB2 for z/OS. Only XPath is supported on DB2 for
z/OS. XQuery is available on DB2 for Linux, UNIX and Windows.
Appendix A. XML and DB2 569

A.5 Comparing various XML stores
DB2 provides four ways to store XML. DB2 V8 supports all methods except the native XML
store. Only DB2 V9.1 provides native XML storage:

� CLOB/VARCHAR: Stored as linear text in database as a CLOB column
� Shred: Decomposed into rows and columns
� Edge: Decomposed into a relational model based on graph theory
� Native: Parsed, stored as interconnected nodes on fixed size database pages

Table A-1 shows the performance attributes, among these store types.

Table A-1 Performance involving XML stores

As you can see from the table above, native XML store provides the most flexibility to
database or XML operations, and best performance across a number of performance
considerations.

A.6 XML Index for DB2
Native XML data store provides support for indexing the XML data stored in XML columns.
You can create an index on an XML column for efficient evaluation of XPath expressions to
improve performance during queries on XML documents. Unlike relational indexes where
index keys are composed of one or more table columns that you specified, XML indexes
provide access to nodes within the document by creating index keys based on XML patterns.
XML index uses a particular XPath expression to index paths and values in XML documents
stored in a single XML column. In an XML index, only the attribute nodes, text nodes, or
element nodes that match the XML path expression are actually indexed. However, you
should note the following differences:

1. DB2 for z/OS: When you add an XML column to a table, an XML table and XML table
space are implicitly created to store the XML data. If the new XML column is the first XML
column that you created for the table, DB2 for z/OS also implicitly creates a BIGINT

Measure CLOB Shred Edge Native

Schema
Flexibility

Best Bad Best Best

Search
Performance

Bad Good Bad Best

Full document
return
performance

Good Bad Bad Best

Partial
document
return
performance

Bad Good Good Best

Insert
performance

Best Bad Bad Good

Update
performance

Bad Good Bad Best

Delete
performance

Best Bad Bad Good
570 Powering SOA with IBM Data Servers

DOCID column to store a unique document identifier for the XML columns of a row. To
improve performance, DB2 for z/OS also implicitly creates indexes. If this is the first XML
column that you created for the table, DB2 implicitly creates an index on the DOCID
column of the base table. For each XML column that you add to the base table DB2
implicitly creates a NODEID index on the XML table. The NODEID index maps a given
DOCID and NODEID value to a RID value for the XML table. By using the DOCID column,
the NODEID index also provides the association from the base table row to the XML data
for an XML column of that row.

2. DB2 for Linux, UNIX and Windows: You can add XML columns only to tables that do not
have type-1 indexes defined on them. (Type-1 indexes are deprecated indexes; new
indexes since DB2 UDB Version 8.1 are created as type-2 indexes.) Tables to which you
add XML columns must be in Unicode databases that exist in instances with only a single
database partition defined.

We do not go into detail about XML indexes and performance considerations related to query
XML data since it is outside the scope of our book.

A.7 SQL/XML
DB2 now manages both conventional relational data and the new native XML data. The DB2
engine processes SQL, SQL/XML and XPath in an integrated manner since DB2 treats both
SQL and XPath as independent primary query languages. Applications can continue to use
SQL, and additionally SQL/XML extensions which allows publishing of relational data in XML
format. XQuery (available on DB2 for Linux, UNIX and Windows only) is typically used to
access the native XML store, and optionally use SQL statements to combine XML data with
SQL data. You will learn more detail about XQuery on DB2 for Linux, UNIX and Windows in
C.5.3, “XQuery examples for DB2 for Linux, UNIX and Windows” on page 616.

SQL/XML functions are SQL functions that return XML data or take XML arguments. XML
data can be queried using an SQL fullselect or with the SQL/XML query functions of
XMLQUERY and XMLTABLE. The XMLEXISTS predicate can also be used in SQL queries
on XML data. When querying XML data using only SQL, without any XQuery, you can only
query at the column level by issuing a fullselect. For this reason, only entire XML documents
can be returned from the query; it is not possible to return fragments of a document using
only SQL. SQL/XML is designed to bridge the gap between SQL and XML worlds. SQL/XML
can be combined with XQuery or XPath expressions within the same statements to query
both relational and XML data. Further, you can also use SQL/XML to publish and generate
relational data in XML.

Table A-2 shows the SQL/XML functions included in DB2 for z/OS and DB2 for Linux, UNIX
and Windows. Some of the existing SQL/XML functions from DB2 V8 is changed, and new
functions are provided in DB2 V9 that allow you to construct or publish XML using the new
XML data type. Note that some of the SQL/XML functions does not exists on DB2 for z/OS, as
indicated in Table A-2.

Restriction: Partitioned XML indexes are not currently supported in DB2 for z/OS or DB2
for Linux, UNIX and Windows.
Appendix A. XML and DB2 571

Table A-2 SQL/XML functions

Function Name Type Description z/OS
Version

Linux, UNIX
& Windows
Version

XML2CLOB Casting
function

Returns a CLOB representation of
an XML value.

8 and 9 8 and 9

XMLAGG Aggregate
function

The function produces a forest of
XML elements from a collection of
XML elements.

8 and 9 8 and 9

XMLATTRIBUTES Scalar
function

The function constructs XML
attributes from the arguments.

8 and 9 8 and 9

XMLELEMENT Scalar
function

The function generates an XML
element from a variable number
of arguments.

8 and 9 8 and 9

XMLNAMESPACES Scalar
function

The function generates XML
namespace declarations.

8 and 9 8 and 9

XMLFOREST Scalar
function

The function produces a forest of
XML elements that all share a
specific pattern from a list of
columns and expressions.

8 and 9 8 and 9

XMLCONCAT Scalar
function

The function concatenates a
variable number of arguments to
generate a forest of XML
elements.

8 and 9 8 and 9

XMLCOMMENT Scalar
function

Returns an XML value with a
single comment node from a
string expression.

only 9 only 9

XMLDOCUMENT Scalar
function

Returns an XML value with a
single document node and zero or
more nodes as its children.

only 9 only 9

XMLPI Scalar
function

Returns an XML value with a
single processing instruction
node.

only 9 only 9

XMLQUERY Scalar
function

Returns an XML value from the
evaluation of an XPath
expression against a set of
arguments.

only 9 only 9

XMLSERIALIZE Scalar
function

Returns a SQL character string or
a BLOB value from an XML value.

only 9 only 9

XMLTEXT Scalar
function

Returns an XML value with a
single text node that contains the
value of the argument.

only 9 only 9

XMLPARSE Scalar
function

Parses the argument as an XML
document and returns an XML
value.

only 9 only 9
572 Powering SOA with IBM Data Servers

There is also the XMLEXISTS predicate. XMLEXISTS is a predicate that evaluates an XPath
expression and returns a Boolean value. If the result of the XPath expression is an empty
sequence, XMLEXISTS returns false. If the result of the XPath expression is not empty, it
returns true. If the evaluation of the XPath expression returns an error, XMLEXISTS will
return an error.

You can now combine strengths of both SQL and XML by using XML extensions in SQL to
query both XML and relational data. Further, you can use SQL/XML in additional to
conventional SQL to publish relational data in XML format. The advantages of SQL/XML
functions can be summarized as follows:

� Easy to extend existing applications with XML using SQL
� Lightweight Web server application
� Submit SQL queries and return results to Web or XML clients
� SQL data to be available in XML form
� Easy integration of XML data with SQL data

Please refer to specific SQL/XML examples for DB2 on z/OS in B.1.2, “The XML publishing
functions reference” on page 578, and SQL/XML examples for DB2 on Linux, UNIX and
Windows in C.4, “SQL/XML examples” on page 601.

XMLVALIDATE

DSN_XMLVALIDAT
E for DB2 z/OS (see
1)

Scalar
function

Returns a copy of the input XML
value augmented with information
obtained from XML schema
validation, including default
values and type annotations.

does not
exist

only Linux,
UNIX and
Windows V9

XMLOBJECTID Scalar
function

Returns the XSR object identifier
of the XML schema used to
validate the XML document
specified in the argument. The
XSR object identifier is returned
as a BIGINT value and provides
the key to a single row in
SYSCAT.XSROBJECTS.

does not
exist

only Linux,
UNIX and
Windows V9

XMLTABLE Table
function

Returns a table from the
evaluation of XQuery
expressions, possibly using
specified input arguments as
XQuery variables. Each
sequence item in the result
sequence of the row XQuery
expression represents a row of
the result table.

does not
exist

only Linux,
UNIX and
Windows V9

1. The result of DSN_XMLVALIDATE is a varying length binary value of up to 50 MB. The result
has no meaning outside of providing input to the XMLPARSE function.

Function Name Type Description z/OS
Version

Linux, UNIX
& Windows
Version
Appendix A. XML and DB2 573

574 Powering SOA with IBM Data Servers

Appendix B. XML and DB2 for z/OS

In this appendix we provide additional information related to the contents of the current and
the new XML support in DB2 for z/OS.

� The XML support in DB2 for z/OS
� What DB2 Version 9.1 for z/OS brings to XML support

B

© Copyright IBM Corp. 2006. All rights reserved. 575

B.1 The XML support in DB2 for z/OS
For the past few years, XML has been increasingly become the de fact data format on the
Internet, on corporate intranets, and for data exchange. In DB2 for z/OS V7, if you need to
create XML data from traditional relational databases (this is called XML publishing or XML
composition), you must create your own application that converts the DB2 data to the XML
format, or use DB2 XML Extender. Version 8 of DB2 for z/OS provides a set of SQL built-in
functions that allow applications to generate XML data from relational data. These functions
reduce application development efforts for generating XML data for data integration,
information exchange, and Web services.

B.1.1 What has DB2 already provided?

XML values
An XML data type is an internal representation of XML, and can be used only as input to
built-in functions that accept this data type as input. XML is a transient data type that cannot
be stored in the database or returned to an application. Valid values for the XML data type
include the following:

� An element
� A forest of elements
� The textual content of an element
� An empty XML value

Mappings from SQL to XML
To construct XML data from SQL data, the following mappings are performed:

� SQL character sets to XML character sets.
� SQL identifiers to XML names.
� SQL data values to XML data values.

DB2 maps SQL to XML data according to industry standards.

See Mapping XML to Relational (Shredding) on Figure B-1 on page 577.

Note: DB2 Version 9.1 for z/OS provides several enhancements to XML like XPath access,
Native Storage, XML column and indexes, we describe it in the next sections.
576 Powering SOA with IBM Data Servers

Figure B-1 Shredding

Mapping SQL character sets to XML character sets
The character set used for XML data is Unicode UTF-8. SQL character data is converted into
Unicode when it is used in XML built-in functions.

Mapping SQL identifiers to XML names
Strings that start with “XML”, in any case combination, are reserved for standardization, and
characters such as “#”,” {“, and “}” are not allowed in XML names. Many SQL identifiers
containing these characters have to be escaped when converting into XML names.

Full escaping is applied to SQL identifiers that are column names to derive an XML name.
The mapping converts a colon (:) to _x003A_, _x to _X005F_x, and other restricted
characters to a string of the form _xUUUU_ where xUUUU_ is the Unicode value for the
character. An identifier with an initial “xml” (in any case combination) is escaped by mapping
the initial “x” or “X” to _x0058_ or _0078_, respectively, while the partially escaped variant
does not.

Mapping SQL data values to XML data values
SQL data values are mapped to XML values based on SQL data types. The following data
types are not supported and cannot be used as arguments to XML value constructors:

ROWID
Character sting defined with the FOR BIT DATA attribute.
BLOB
Distinct types based on ROWID, FOR BIT DATA character string or BLOB.

Note: For more information, see Information technology - Database languages - SQL- Part
14: XML-Related Specifications (SQL/XML) ISO/IEC 9075-14:2003.

Note: For supported data types, the encoding scheme for XML values is Unicode.

XML
DOC

Fixed
Mapping

Shredder

(regular relational tables)

“Decomposition”

Insert XML
XML
DOC

Publish

(regular relational tables)

“Composition”Fixed
Mapping

Read XML
Appendix B. XML and DB2 for z/OS 577

B.1.2 The XML publishing functions reference

Figure B-2 shows the Syntax command to use, XML2CLOB.

Figure B-2 Syntax command to use XML2CLOB

The XML data type is a new data type introduced by DB2 V8. However, it is not like any other
existing data type. It is a so-called transient data type. Transient means that this data type
only exists during query processing. There is no persistent data of this type and it is not an
external data type that can be declared in application programs. In other words, the XML data
type cannot be stored in a database or returned to an application.

To allow an application to deal with the result of a SQL/XML function (that results in a value
with an XML data type), DB2 supplies a new conversion function XML2CLOB, which converts
an XML value into a CLOB.

There are some restrictions that apply to the transient XML data type:

� A query result cannot contain this type.

� The columns of a view cannot be of this type. XML data cannot be used in SORT (GROUP
BY and ORDER BY). XML data cannot be used in predicates.

� The XML data type is not compatible with any other data types. The only cast function that
may be used is XML2CLOB.

The resulting CLOB is MIXED character data and the CCSID is the mixed CCSID for
UNICODE encoding scheme UTF-8 (CCSID 1208).

The maximum length of the resulting CLOB is 2 GB -1.

To Construct a CLOB from the XML value returned by the XMLELEMENT function, which is a
simple XML element with “Emp” as the element name and employee name as the element
content. See Example B-1.

Example: B-1 Using XML2CLOB

SELECT E.EMPNO, XML2CLOB(XMLELEMENT (NAME "EMP", E.FIRSTNME || ' ' ||
E.LASTNAME)) AS "RESULT" FROM DSN8910.EMP E
---------+---------+---------+---------+---------+---------+---------+---------+
EMPNO RESULT
---------+---------+---------+---------+---------+---------+---------+---------+
000010 <EMP>CHRISTINE HAAS</EMP>
000020 <EMP>MICHAEL THOMPSON</EMP>
000030 <EMP>SALLY KWAN</EMP>
000050 <EMP>JOHN GEYER</EMP>
000060 <EMP>IRVING STERN</EMP>
000070 <EMP>EVA PULASKI</EMP>
000090 <EMP>EILEEN HENDERSON</EMP>

Note: This a quick reference to the SQL commands, but for more information use DB2
UDB for z/OS V8 SQL Reference, SC18-7426.

XML2CLOB (XML – value – expression)
578 Powering SOA with IBM Data Servers

000100 <EMP>THEODORE SPENSER</EMP>
000110 <EMP>VINCENZO LUCCHESI</EMP>

XMLELEMENT
Figure B-3 shows the Syntax command to use XML2CLOB.

Figure B-3 Syntax command to use XMLELEMENT

The XMLELEMENT function returns an XML element from one or more arguments. The
arguments can be:

� An element name
� An optional collection of attributes
� Zero or more arguments that make up the element’s content.

The result type is the transient XML data type.

Let us look at the components of the XMLELEMENT function:

NAME
keyword marks the identifier that is supplied to XMLELEMENT for the element name.

XML-element-name
Specifies an identifier that is used as the XML element name. (No mapping is applied to this
identifier.)

XML-namespaces
Specifies the XML namespace for the XML element.

XML-attributes
Specifies the attributes for the XML element

expression
Specifies an expression making up the XML element content.

Note: All functions described in this book have schema SYSIBM.

XMLELEMENT (NAME

XML-attributes

XMLATTRIBUTES(XML-ATTRIBUTE-VALUE

`XML namespace XML Atttributes OPTIONS XML options

)

)
AS XML-attibute-name

XML-options

EMPTY ON NULL

NULL ON NULL

XMLBINARY USING BASE64

XMLBINARY USING HEX
Appendix B. XML and DB2 for z/OS 579

The expression cannot be:

� A ROWID
� A character string defined with the FOR BIT DATA attribute
� A BLOB
� A distinct type sourced on these types

The result of the XMLELEMENT function cannot be null.

Refer to the SELECT statement shown on the visual for a short and simple example of the
use of the XML2CLOB and XMLELEMENT function. As you can see in the SQL statement
above, the XMLELEMENT function is used to create an element called EMP, which contains
the concatenation of the contents of columns FIRSTNME and LASTNAME, see Example B-2.

Example: B-2 Using XMLELEMENT

SELECT e.empno, XML2CLOB(
XMLELEMENT (NAME "Emp",
XMLELEMENT (NAME "name", e.firstnme ||' ' ||e.lastname),
XMLELEMENT (NAME "hiredate", e.hiredate))
AS "Result"
FROM dsn8810.emp e;

Example B-3 shows the result of the SELECT statement used in the previous example:

Example: B-3 Result of XMLELEMENT SELECT

---------+---------+---------+---------+---------+---------+---------+---------+
EMPNO RESULT
---------+---------+---------+---------+---------+---------+---------+---------+
000010 <EMP><NAME>CHRISTINE HAAS</NAME><HIREDATE>1965-01-01</HIREDATE></EMP>
000020 <EMP><NAME>MICHAEL THOMPSON</NAME><HIREDATE>1973-10-10</HIREDATE></EMP>
000030 <EMP><NAME>SALLY KWAN</NAME><HIREDATE>1975-04-05</HIREDATE></EMP>

For each employee ID, create an empty XML element named Emp with an ID attribute equal
to the ID, see Example B-4.

Example: B-4 Selecting XML

SELECT EMPNO, XML2CLOB (XMLELEMENT (NAME "EMP", XMLATTRIBUTES (EMPNO)))
AS "RESULT" FROM DSN8910.EMP ;
EMPNO RESULT
---------+---------+---------+---------+---------+---------+---------+---------+
000010 <EMP EMPNO="000010"></EMP>
000020 <EMP EMPNO="000020"></EMP>
000030 <EMP EMPNO="000030"></EMP>
000050 <EMP EMPNO="000050"></EMP>
000060 <EMP EMPNO="000060"></EMP>
000070 <EMP EMPNO="000070"></EMP>
000090 <EMP EMPNO="000090"></EMP>
000100 <EMP EMPNO="000100"></EMP>
000110 <EMP EMPNO="000110"></EMP>
000120 <EMP EMPNO="000120"></EMP>

Note: As you can see, element <Emp> itself contains two nested elements <name> and
<hiredate>.
580 Powering SOA with IBM Data Servers

XMLNAMESPACES
Figure B-4 shows the Syntax command to use XMLNAMESPACES.

Figure B-4 Syntax command to use XMLNAMESPACES

The XMLNAMESPACES function declares one or more XML namespaces.

XML-namespace-uri
A character string literal that is the namespace name. It cannot be a UX, GX, or graphic string
literal. XML-namespace-uri can be an empty string constant only if it is being specified for
DEFAULT.

To Generate an “employee” element for each employee. The employee element is associated
with XML namespace “urn:bo”, which is bound to prefix “bo”. The element contains attributes
for names and a hiredate subelement. See Example B-5.

Example: B-5 Using XMLNAMESPACES

SELECT E.EMPNO, XML2CLOB(XMLELEMENT(NAME "BO:EMPLOYEE",
XMLNAMESPACES('URN:BO' AS "BO"), XMLATTRIBUTES(E.LASTNAME, E.FIRSTNME),
XMLELEMENT(NAME "BO:HIREDATE", E.HIREDATE))) FROM DSN8910.EMP E WHERE
E.EDLEVEL = 12;
EMPNO
---------+---------+---------+---------+---------+---------+---------+---------+
000290 <BO:EMPLOYEE xmlns:BO="URN:BO" LASTNAME="PARKER"
FIRSTNME="JOHN"><BO:HIREDATE>19

To generate two elements for each employee using XMLFOREST. The first “lastname”
element is associated with the default namespace “http://hr.org”, and the second “job”
element is associated with XML namespace “http://fed.gov”, which is bound to prefix “d”?.
See Example B-6.

Example: B-6 Selecting namespaces

SELECT EMPNO, XML2CLOB(XMLFOREST(XMLNAMESPACES(DEFAULT 'HTTP://HR.ORG',
'HTTP://FED.GOV' AS "D"), LASTNAME, JOB AS "D:JOB")) FROM DSN8910.EMP
WHERE EDLEVEL = 12;

EMPNO
---------+---------+---------+---------+---------+---------+---------+---------+
000290 <LASTNAME xmlns="HTTP://HR.ORG"
xmlns:D="HTTP://FED.GOV">PARKER</LASTNAME><D:JOB

XMLNAMESPACES (XML-namespace-decl-item)

XML-namespace-decl-item

XML-namespace-uri AS XML-namespace-prefix

DEFAULT XML-namespace-uri

NO DEFAULT
Appendix B. XML and DB2 for z/OS 581

000310 <LASTNAME xmlns="HTTP://HR.ORG"
xmlns:D="HTTP://FED.GOV">SETRIGHT</LASTNAME><D:JOB

XMLFOREST
Figure B-5 shows the Syntax command to use XMLFOREST.

Figure B-5 Syntax command to use XMLFOREST

The XMLFOREST function returns a bunch of XML elements that all share a specific pattern
from a list of expressions, one element for each argument.

content-expression:
Specifies an expression that is used as an XML element content. The result of the expression
is mapped to an XML value according to the mapping rules from an SQL value to an XML
value.

See on Example B-7, nested elements instead of XMLFOREST.

Example: B-7 Nested elements

SELECT E.EMPNO,XML2CLOB(
XMLELEMENT (NAME "EMP",
XMLATTRIBUTES(E.FIRSTNME||' '||E.LASTNAME AS "NAME"),
XMLELEMENT(NAME "HIREDATE", E.HIREDATE),
XMLELEMENT(NAME "PROFESSION", E.JOB)))
AS "RESULT"
FROM DSN8810.EMP E;

Note: The generated element names are folded to uppercase. If you want them to be
lowercase or mixed, you must use quotes (“department”). In the examples used in this
section, there would be a difference between XMLFOREST and XMLELEMENT if there
were NULL values in HIREDATE and JOB.

XMLFOREST ignores the .NULL value (not included in the result) and XMLELEMENT
results in an empty element.

XMLFOREST (

XML namespace

)

XML-options

EMPTY ON NULL

NULL ON NULL

XMLBINARY USING BASE64

XMLBINARY USING HEX

AS XML-element-name OPTIONS XML-options
582 Powering SOA with IBM Data Servers

Generate an “Emp” element for each employee. Use employee name as its attribute and two
subelements generated from columns HIRE and DEPT by using XMLFOREST as its content.
The element names for the two subelements are “HIRE” and “department”. See Example B-8.

Example: B-8 Using XMLFOREST

SELECT e.id, XML2CLOB (XMLELEMENT (NAME "Emp", XMLATTRIBUTES (e.fname || ’ ’ ||
e.lname AS "name"), XMLFOREST (e.hire, e.dept AS "department"))) AS "result"
FROM employees e;
ID result

1001 <Emp name="John Smith"> <HIRE>2000-05-24</HIRE>
<department>Accounting</department> </Emp>
1001 <Emp name="Mary Martin"> <HIRE>1996-02-01</HIRE>
<department>Shipping</department> </Emp>

XMLCONCAT
Figure B-6 shows the Syntax command to use XMLCONCAT.

Figure B-6 Syntax command to use XMLCONCAT

The XMLCONCAT function returns a forest of XML elements that are generated from a
concatenation of two or more arguments.

XML-value-expression:
Specifies an expression whose value is the XML data type. If the value of
XML-value-expression is null, it is not included in the concatenation.

The result type of XMLCONCAT is the transient XML data type. If all of the arguments are
null, then the null value is returned.

See Example B-9 XMLFOREST instead of XMLCONCAT.

Example: B-9 Using XMLFOREST

SELECT E.EMPNO,XML2CLOB(
XMLFOREST(E.FIRSTNME AS "FIRST", E.LASTNAME AS "LAST"))
AS "RESULT"
FROM DSN8810.EMP E WHERE LASTNAME = 'HAAS';

See Example B-10 using XMLCONCAT.

Example: B-10 XMLCONCAT

SELECT E.EMPNO,XML2CLOB(XMLCONCAT (XMLELEMENT(NAME "FIRST",E.FIRSTNME),
XMLELEMENT(NAME "LAST",E.LASTNAME)))
AS "RESULT" FROM DSN8910.EMP E;
EMPNO RESULT
---------+---------+---------+---------+---------+---------+---------+---------+
000010 <FIRST>CHRISTINE</FIRST><LAST>HAAS</LAST>

XMLCONCAT (XML – value – expression)
Appendix B. XML and DB2 for z/OS 583

000020 <FIRST>MICHAEL</FIRST><LAST>THOMPSON</LAST>
000030 <FIRST>SALLY</FIRST><LAST>KWAN</LAST>
000050 <FIRST>JOHN</FIRST><LAST>GEYER</LAST>
000060 <FIRST>IRVING</FIRST><LAST>STERN</LAST>

To Concatenate first name and last name elements by using “first” and “last” element names
for each employee. See Example B-11.

Example: B-11 Concatenating names

SELECT XML2CLOB(XMLCONCAT (XMLELEMENT (NAME "first", e.fname), XMLELEMENT (
NAME "last", e.lname))) AS "result" FROM employees e;
The result of the query would look similar to the following result, where the
.result.column is a CLOB:
result

<first>John</first><last>Smith</last>
<first>Mary</first><last>Smith</last>

XMLAGG
Figure B-7 shows the Syntax command to use XMLAGG.

Figure B-7 Syntax command to use XMLAGG

The XMLAGG function has one argument with an optional ORDER BY clause. The ORDER
BY clause specifies the ordering of the rows from the same grouping set to be processed in
the aggregation. If the ORDER BY clause is not specified, or the ORDER BY clause cannot
differentiate the order of the sort key value, the order of rows from the same group to be
processed in the aggregation is arbitrary.

XML-value-expression
Specifies an expression whose value is the transient XML data type. sort-key:

Note: One reason for using XMLCONCAT instead of XMLFOREST is that XMLFOREST
cannot generate XML elements with attributes. For this purpose, use XMLELEMENT.

XMLAGG (XML – value – expression)

ORDER BY Sort-key
ASC
DESC

Sort-key

column name

expression
584 Powering SOA with IBM Data Servers

To Group employees by their department, generate a “Department” element for each
department with its name as the attribute, nest all the “emp” elements for employees in each
department, and order the “emp” elements by “lname.”. See Example B-12.

Example: B-12 Using XMLAGG

SELECT XML2CLOB (XMLELEMENT (NAME "Department", XMLATTRIBUTES (e.dept AS "name"
), XMLAGG (XMLELEMENT (NAME "emp", e.lname) ORDER BY e.lname))) AS "dept_list"
FROM employees e GROUP BY dept ;

dept_list

<Department name="Accounting">
<emp>SMITH</emp>
<emp>Yates</emp>
</Department>
<Department name="Shipping">
<emp>Martin</emp>
<emp>Oppenheimer</emp>
</Department>
--

B.2 What DB2 Version 9.1 for z/OS brings to XML support
Version 9.1 brings to DB2 several features about XML:

� Native (hierarchical) Storage
� XML column
� Sophisticated XML Indexes
� XPATH functions
� XMLEXISTS predicate

B.2.1 Native XML storage

� DB2 stores XML in parsed hierarchical format.
� Relational columns are stored in relational format (tables).
� XML columns are stored natively in the trees models.

Figure B-8 on page 586 shows the tree structure that stores the XML.

Important: DB2 V9.1 for z/OS does not support XQUERY (SQL/XML) like DB2 for V9.1 for
Linux, UNIX and Windows.
Appendix B. XML and DB2 for z/OS 585

Figure B-8 Trees model to store XML

B.2.2 Using XMLEXISTS to select XML data

XMLEXISTS is a predicate that evaluates an XPath expression and checks whether the result
is an empty sequence. If the result of the XPath expression is an empty sequence,
XMLEXISTS returns false. If the result is not empty, it returns true. If the evaluation of the
XPath expression returns an error, XMLEXISTS returns an error.

Restriction: XMLEXISTS cannot be used in the ON clause of outer joins.

Suppose that you want to find a purchase order that has a billing address (billTo). You can use
the SELECT statement with XMLEXISTS in the predicate showed in Example B-13.

Example: B-13 Using XMLEXISTS

SELECT DESC_SOA FROM PAOLOR1.TBSOA WHERE XMLEXISTS ('declare namespace
ipo="http://www.example.com/IPO"; /ipo:purchaseOrder[billto]' PASSING
XML_COLUMN);
DESC_SOA
---------+---------+---------+---------+---------+---------+---------+---------+
DSNE610I NUMBER OF ROWS DISPLAYED IS 0
DSNE616I STATEMENT EXECUTION WAS SUCCESSFUL, SQLCODE IS 100

dept

name

employee

phoneid=901

John Doe

office

408-555-1212 344

name

employee

phoneid=902

Peter Pan

office

408-555-9918 216

0

1

4

67=901

John Doe

3

408-555-1212 344

1

4

67=902

Peter Pan

3

408-555-9918 216

<dept>
<employee id=901>

<name>John Doe</name>
<phone>408 555 1212</phone>
<office>344</office>

</employee>
<employee id=902>

<name>Peter Pan</name>
<phone>408 555 9918</phone>
<office>216</office>

</employee>
</dept>

Tag names encoded
as unique integers

XML text represented
as document tree

Note: To use this predicate you need create a XML column. To improve performance is
possible as well you create a XML index, these feature ate common with DB2 for LUW, see
about it in Appendix A, “XML and DB2” on page 565.
586 Powering SOA with IBM Data Servers

B.2.3 Query performance using XML
XML data, by its nature, degrades the performance of most SQL statements. This
degradation occurs because each row of an XML column contains an XML document,
requires more processing and more space in DB2. When you use the XPath expression to
search or extract the XML data, you can lessen the performance impact by avoiding the
descendant or descendant-or-self axis in the expression. The XMLEXISTS predicate is
always stage 2. However, you can use the XML value index to reduce the number of rows,
that is, the number of XML documents, to be searched at the second stage. for how to design
your XML value index so that the XPath predicates in the XMLEXISTS predicate can be used
as the matching predicate in the matching index scan. Note that creating and maintaining the
XML value index is more costly than the non-XML value index. You should, if possible, design
your query to utilize the non-XML value indexes to filter as many rows as possible before the
second stage.

Suppose that you issue the following SELECT statement that uses the value indexes to
evaluate the XMLEXISTS predicates. See Example B-14.

Example: B-14 Select statement

SELECT * FROM T WHERE (C1 = 1 OR C2 = 1) AND XMLEXISTS(’/a/b[c = 1]’ PASSING
XML_COL1) AND XMLEXISTS(’/a/b[(e = 2 or /f[g] = 3) and /h/i[j] = 4]’ PASSING
XML_COL2);

B.2.4 The XPath functions reference
You can select specific values from XML data that is stored in DB2 by using an XPath
expression in an SQL SELECT statement. XPath expressions address specific nodes in an
XML document, much as SQL predicates can address specific values in a relational
database.

You can use these XMLQUERY and other new functions to handle XML, we describe a brief
informations about each one.

XMLQUERY
Figure B-9 on page 588 shows the Syntax command to use XMLQUERY.

Note: For general information about XPath, refer to:

http://www.w3.org/TR/xpath

Note: This a quick reference to the SQL commands, for more informations use SQL
reference.
Appendix B. XML and DB2 for z/OS 587

http://www.w3.org/TR/xpath

Figure B-9 Syntax command to use XMLQUERY

The XMLQUERY function returns an XML value from evaluation of an XPath expression
against a set of arguments.

XPath-expression
Specifies an XPath expression to evaluate. See the XML GETTING STARTED GUIDE for
more information about XPath and DB2.

XML-query-parameters
Specifies parameters on which the XPath expression is evaluated.

expression
Specifies an expression whose result is used as an argument to the XPath expression.

AS identifier
Specifies an identifier that is used as an XPath variable name. The name must be an XML
NCName. If the AS clause is not specified, the expression has no name.

An XPath variable is created for each argument in the PASSING clause that is assigned an
identifier as a name. The value of the variable is the result of the expression when cast to an
XML type. If the result of the expression is a null, the empty sequence is assigned to the
XPath variable.

An expression that is not named using the AS clause becomes the XPath expression’s initial
context item. Only one unnamed expression can exist. This expression is called context
argument. If the data type of the context argument is not the XML type, its result is cast to the
XML type. If the result of the context argument is the NULL value or the empty sequence, the
XMLQUERY returns the NULL value of the XML type.

Example B-15 returns an XML value from evaluation of the specified XPath expression.

Example: B-15 Using XMLQUERY

SELECT XMLQUERY(’//item[productName=$n]’ PASSING PO.POrder, :hv AS "n") AS
"Result" FROM PurchaseOrders PO;
Assume that the value of the host variable (:hv) is ’Baby Monitor’, the result is
similar to the following results:
Result

<item partNum="926-AA"><productName>Baby Monitor</productName><quantity>1
</quantity><USPrice>39.98</USPrice><shipDate>1999-05-21</shipDate></item>

XMLQUERY (‘Xpath – expression’

XML –query -parameters

PASSING

)

XML –query -parameters

expression

AS identifier
588 Powering SOA with IBM Data Servers

XMLPI
Figure B-10 shows Syntax command to use XMLPI.

Figure B-10 Syntax command to use XMLPI

The XMLPI function returns an XML value with a single processing instruction node. The
target of the processing instruction node is the input identifier NAME, which is an NCName,
Its content is the character string value that is trimmed of leading blanks and mapped to
Unicode (UTF-8). The result type is XML.

To Generate an XML processing instruction node, seeExample B-16.

Example: B-16 Using XMLPI

SELECT XMLPI(NAME "SUBMIT", 'XPUSH THE BUTTON') FROM
SYSIBM.SYSDUMMY1;
---------+---------+---------+---------+---------+---------+------
<?xml version="1.0" encoding="IBM037"?><?SUBMIT XPUSH THE BUTTON?>
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

MLSERIALIZE
Figure B-11 shows the Syntax command to use XMLSERIALIZE.

Figure B-11 Syntax command to use XMLSERIALIZE

The XMLSERIALIZE function returns a SQL character string or a BLOB value from an XML
value. The character string or BLOB contains the serialized form of the XML value. The result
type is the specified data type (CLOB, DBCLOB or BLOB). The maximum length of the result
is also specified with the data type.

The result can be null; if the argument is null, the null value is returned.

To Serialize into CLOB of UTF-8, the XML value that is returned by the XMLELEMENT
function, which is a simple XML element with “Emp” as the element name, and employee
name as the element content. See Example B-17.

Example: B-17 Using XMLSERIALIZE

SELECT XMLSERIALIZE(XMLDOCUMENT(XMLELEMENT(NAME "EMP", E.FIRSTNME || ''
|| E.LASTNAME)) AS CLOB(100)) AS RESULT
FROM DSN8910.EMP E WHERE E.EMPNO < '000050';
---------+---------+---------+---------+---------+---------+---------+----
RESULT
---------+---------+---------+---------+---------+---------+---------+----

XMLPI (NAME – PI – target identifier)
string-expression

XMLSERIALIZE (

XML value-expression AS data type

)

VERSION
Appendix B. XML and DB2 for z/OS 589

<EMP>CHRISTINEHAAS</EMP>
<EMP>MICHAELTHOMPSON</EMP>
<EMP>SALLYKWAN</EMP>
DSNE610I NUMBER OF ROWS DISPLAYED IS 3

To Serialize into a string of BLOB type using character set US-ASCII, the XML value that is
returned by the XMLELEMENT function. See Example B-18.

Example: B-18 Using BLOB

SELECT XMLSERIALIZE(XMLDOCUMENT(XMLELEMENT(NAME "emp", e.fname || ’ ’ ||
e.lname)) AS BLOB(1K) ENCODING "US-ASCII" VERSION ’1.0’) as result FROM employee e
WHERE e.id = ’1001’;
result :

<?xml version="1.0" encoding="US-ASCII"?><emp>John Smith</emp>

XMLDOCUMENT
Figure B-12 shows the Syntax command to use XMLDOCUMENT

Figure B-12 Syntax command to use XMLDOCUMENT

The XMLDOCUMENT function returns an XML value with a single document node and zero
or more nodes as its children. The result type is XML.

The result can be null; if the argument is null, the null value is returned.

XML-value-expression
An expression whose value is of the XML type.

Example B-19 shows an Insert a constructed document into an XML column.

Example: B-19 Using XMLDOCUMENT

INSERT INTO T1 VALUES(123, (SELECT XMLDOCUMENT(XMLELEMENT(NAME "Emp", e.fname || ’
’ || e.lname), XMLCOMMENT(’This is just a simple example’)) FROM EMPLOYEE e WHERE
e.empid = 123));

XMLCOMMENT
Figure B-13 on page 590 shows the Syntax command to use XMLCOMMENT.

Figure B-13 Syntax command to use XMLCOMMENT

XMLDOCUMENT (XML – value – expression)

XMLCOMMENT (string – expression)
590 Powering SOA with IBM Data Servers

The XMLCOMMENT function returns an XML value with a single comment node from a string
expression. The contents of the comment node are the value of the input string expression
mapped to Unicode (UTF-8). The result type is XML. The result can be null; if the argument is
null, the null value is returned.

string-expression:
An expression whose value has one of the character string types: CHAR, VARCHAR,
GRAPHIC, or VARGRAPHIC. FOR BIT DATA is not supported.

Example B-20 shows how to Generate an XML comment:

Example: B-20 Using XMLCOMMENT

SELECT XMLCOMMENT('THIS IS AN XML COMMENT') FROM SYSIBM.SYSDUMMY1;
---------+---------+---------+---------+---------+---------+---------
<?xml version="1.0" encoding="IBM037"?><!--THIS IS AN XML COMMENT-->
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

XMLTEXT
Figure B-14 shows the Syntax command to use XMLTEXT.

Figure B-14 Syntax command to use XMLTEXT

The XMLTEXT function returns an XML value with a single text node that contains the value
of the string-expression. The result type is XML. The result can be null; if the argument is null,
the null value is returned.

string-expression
An expression whose value has one of the character string types: CHAR, VARCHAR,
GRAPHIC, and VARGRAPHIC, CLOB, and DBCLOB. FOR BIT DATA is not supported.

Example B-21 returns an XML value with a single text node that contains the specified value:

Example: B-21 Using XMLTEXT

---------+---------+---------+---------+---------+---------+---------+---------+
SELECT XMLTEXT('THE STOCK SYMBOL FOR JOHNSON&JOHNSON.') AS
"RESULT" FROM SYSIBM.SYSDUMMY1;
---------+---------+---------+---------+---------+---------+---------+---------+
RESULT
---------+---------+---------+---------+---------+---------+---------+---------+
<?xml version="1.0" encoding="IBM037"?>THE STOCK SYMBOL FOR JOHNSON&JOHNSON.
DSNE610I NUMBER OF ROWS DISPLAYED IS 1

The XMLTEXT function enables the XMLAGG function to construct mixed content, as in
Example B-22.

XMLTEXT (string – expression)
Appendix B. XML and DB2 for z/OS 591

Example: B-22 XMLAGG with XMLTEXT

SELECT XMLELEMENT(NAME "para", XMLAGG(XMLCONCAT(XMLTEXT(plaintext), XMLELEMENT(
NAME "emphasis", emphtext)) ORDER BY seqno), ’.’) as "result" FROM T;
Suppose that the content of the table T is as the following:
seqno plaintext emphtext
----- --- ----------------
1 This query shows how to construct mixed content
2 using XMLAGG and XMLTEXT. Without XMLTEXT
3 XMLAGG cannot group text nodes with other nodes, mixed content therefore, cannot
generate
The result looks like the following result: result
--
<para>This query shows how to construct <emphasis>mixed content</emphasis> using
XMLAGG and XMLTEXT. Without <emphasis>XMLTEXT</emphasis>, XMLAGG cannot group text
nodes with other nodes, therefore, cannot generate <emphasis>mixed
content</emphasis>.</para>
592 Powering SOA with IBM Data Servers

Appendix C. XML and DB2 for Linux, UNIX
and Windows

In this appendix we further discuss how DB2 for Linux, UNIX and Windows is being extended
to provide support for XML. SQL/XML and XQuery examples specific to DB2 for Linux, UNIX
and Windows are provided, and DB2 tools only available to these platforms will be introduced.

This appendix contains these topics:

� New features of native XML data store in DB2 V9.1 for Linux, UNIX and Windows
� Using the native XML data store in DB2 V9.1 for Linux, UNIX and Windows
� XML schema support
� SQL/XML examples
� Comparison of XML data access methods
� Annotated XML schema decomposition
� XML APIs and application support
� Create and register an XML schema using Developer Workbench
� Restrictions on native XML store
� XML schema for the DADX file
� Syntax of the DADX file
� Dynamic query service operations in the Web services provider

C

© Copyright IBM Corp. 2006. All rights reserved. 593

C.1 New features of native XML data store in DB2 V9.1 for
Linux, UNIX and Windows

You have already learned about the new native XML store in DB2 and SQL/XML functions
common to both DB2 on z/OS and DB2 for Linux, UNIX and Windows in Appendix A, “XML
and DB2” on page 565. Now we introduce other new features for native XML data store
specific to DB2 V9.1 for Linux, UNIX and Windows:

� XML support in SQL statements and SQL/XML functions

Many SQL statements support the new XML data type. This enables you to perform many
common database operations with XML data, such as creating tables with XML columns,
adding XML columns to existing tables, creating indexes over XML columns, creating
triggers on tables with XML columns, and inserting, updating, or deleting XML documents.

� XQuery Support

DB2 allows XQuery to be invoked directly, obtaining data by calling functions that extract
XML data from DB2 tables and views. XQuery can also be combined with SQL.

� XML schema repository (XSR)

The XML schema repository (XSR) is a repository for all XML artifacts required to validate
and process XML instance documents stored in XML columns. It stores copies of XML
schemas, DTDs, and external entities referenced in your XML documents.

The XSR allows you to manage the dependencies XML documents have transparently,
without requiring changes to the XML document content.

� Enhancements to the DB2 Command line processor (CLP) and command line tool

Several DB2 commands have been updated or added to support the native storage of
XML data. These updates allow you to work with XML data alongside relational data from
the DB2 command line processor (CLP). Examples of tasks that you can perform on XML
data from the CLP include:

– Issuing XQuery statements by prefixing them with the XQUERY keyword

– Importing and export XML data

– Collecting statistics on XML columns

– Calling stored procedures with IN, OUT, or INOUT parameters of XML data type

– Working with the XML schemas, DTDs, and external entities required to validate and
process XML documents

– Reorganizing indexes over XML data and tables containing XML columns

– Decomposing XML documents

� Import and export utility support for the native XML data store

The import and export utilities have been updated to support the native XML data type.
When exported, XML data is stored in a new auxiliary storage object, similar to the LOB
storage object. Application development support for importing and exporting XML data is
also provided by updated db2Import and db2Export APIs. These updated utilities permit
data movement of XML documents stored in XML columns that is similar to the data
movement support for relational data.

� db2batch command changes for native XML data store

The db2batch command has been updated to process both SQL and XQuery statements.
Users may issue XQuery statements by prefixing them with the XQUERY keyword.

� db2look command changes for native XML data store
594 Powering SOA with IBM Data Servers

The db2look command has been updated to allow you to reproduce the database objects
required to validate and process XML documents. These include the XML schemas,
DTDs, and external entities registered with the XML schema repository (XSR). The
db2look command can export all the XSR objects required to validate and process XML
documents, along with the DDL statements needed to register them at the target
database.

� Explain and Visual Explain support for SQL/XML and XQuery statements

The Explain facility and the Visual Explain GUI tool have been updated to support SQL
enhancements for querying XML data and to support XQuery statements. These updates
to the Explain facility and to the Visual Explain GUI tool allow you to see quickly how DB2
evaluates query statements against XML data. Several operators are provided to explain
statements issued against XML data stored in XML columns. Query cost estimates are
provided, along with optimizer output that shows how statements issued against XML data
are evaluated, including optimizer use of indexes over XML data.

� Control Center support for native XML data store

The Control Center has been updated to support the native XML data type for many of its
administrative functions. This allows database administrators to work with XML data
alongside relational data from within a single GUI tool. Examples of supported
administrative tasks are:

– Creating tables with XML columns

– Creating indexes over XML columns using the new Create Index wizard

– Viewing the contents of XML documents stored in XML columns

– Working with the XML schemas, DTDs, and external entities required to validate and
process XML documents

– Collecting statistics on tables containing XML columns

� XML support in Developer Workbench

In DB2 V9.1 for Linux, UNIX and Windows, Developer Workbench replaces Development
Center in DB2 V8. The XQuery builder is also available to help create queries against XML
data. The XQuery builder is part of the DB2 Developer Workbench. We will go into further
detail in Appendix C.9, “Create and register an XML schema using Developer Workbench”
on page 629.

� RUNSTATS command support for the native XML data store

The RUNSTATS command has been updated to support the collection of statistics on
tables containing XML columns and on indexes over XML data.These statistics are used
by the optimizer to determine the optimal access path to XML data stored in XML
columns. Up-to-date statistics are required for the most efficient access.

� Indexes over XML data

Native XML data store provides support for indexing the XML data stored in XML columns.
The use of indexes over XML data can improve the efficiency of queries issued against
XML documents. Index entries in an index over XML data provide access to the XML
documents stored in the rows of a table that satisfy specific XML patterns.

� Optimizer support for the native XML data store

The optimizer has been updated to support the evaluation of SQL and XQuery statements
against XML documents stored in XML columns. This includes the evaluation of indexes
over XML data when modeling the execution cost of alternative access plans. By providing
support for XML columns and for associated indexes over XML data, the optimizer can
minimize the execution cost of working with XML documents.
Appendix C. XML and DB2 for Linux, UNIX and Windows 595

C.2 Using the native XML data store in DB2 V9.1 for Linux,
UNIX and Windows

You already learned about the new XML data type for DB2 in Appendix A.4, “The XML Data
Type” on page 569. There is no architectural limit on the size of an XML value in a database.
However, note that serialized XML data that is exchanged with a DB2 database is limited to 2
GB. XML documents can be inserted, updated and deleted using SQL data manipulation
statements. Validation of an XML document against an XML schema, typically performed
during insert or update, is supported by the XML schema repository (XSR). The DB2
database system also provides mechanisms for constructing and querying XML values, as
well as exporting and importing XML data. An index over XML data can be defined on an XML
column, providing improved search performance of XML data. The XML data in table or view
columns can be retrieved as serialized string data through various application interfaces.

Now we will show an example that walk you through how to create a DB2 database to store
XML data and to perform basic operations with the native XML data store.

We Have issued all commands from the DB2 Command Line Processor (CLP) shown in the
DB2 prompt of Figure C-1.

Figure C-1 DB2 CLP

1. Create a database xmldb that stores XML data.

CREATE DATABASE xmldb USING CODESET UTF-8 TERRITORY US

2. You can at the DB CFG to verify that the codeset and territory.

Example: C-1 Database Configuration (DB CFG) for the xmldb database

get db cfg for xmldb

 Database Configuration for Database xmldb

 Database configuration release level = 0x0b00
 Database release level = 0x0b00

 Database territory = US
 Database code page = 1208
 Database code set = UTF-8
 Database country/region code = 1

Restrictions:

1. XML data can only be stored in single-partition databases defined with the UTF-8 code
set. Note that using XML features prevents future use of the Database Partitioning
Feature available with DB2 Enterprise Server Edition for Linux, UNIX, and Windows.

2. You do not specify a length when you define an XML column. There is no architectural
limit on the size of an XML value in a database. However, serialized XML data that is
exchanged with a DB2 database is limited to 2 GB, so the effective limit of an XML
column is 2 GB.

For further details, refer to Appendix C.10, “Restrictions on native XML store” on page 644.

db2 =>
596 Powering SOA with IBM Data Servers

...

3. Connect to the database.

CONNECT TO xmldb

4. Now you can create a table named Customer that contains an XML column.

CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY, Info XML)

The XML Schema Definition (XSD) for the Info XML column is shown in Example C-2.

Example: C-2 customer.xsd

<?xml version="1.0"?>
<xs:schema targetNamespace="http://podemo.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="customerinfo">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" minOccurs="1" />
 <xs:element name="addr" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="street" type="xs:string" minOccurs="1" />
 <xs:element name="city" type="xs:string" minOccurs="1" />
 <xs:element name="prov-state" type="xs:string" minOccurs="1" />
 <xs:element name="pcode-zip" type="xs:string" minOccurs="1" />
 </xs:sequence>
 <xs:attribute name="country" type="xs:string" />
 </xs:complexType>
 </xs:element>
 <xs:element name="phone" nillable="true" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" form="unqualified" type="xs:string" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="assistant" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string" minOccurs="0" />
 <xs:element name="phone" nillable="true" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent >
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="xs:string" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
Appendix C. XML and DB2 for Linux, UNIX and Windows 597

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Cid" type="xs:string" />
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure C-2 shows the hierarchical representation for the Info XML document. For simplicity,
we did not show all element attributes.

Figure C-2 Hierarchical structure of the customer info XML document

5. Creating an XML index that indexes the values of the Cid attribute of <customerinfo>
elements from the Info column of the Customer table.

CREATE UNIQUE INDEX cust_cid_xmlidx ON Customer(Info) \

GENERATE KEY USING XMLPATTERN '/customerinfo/@Cid' AS SQL DOUBLE

6. Insert rows into the Customer table. Cut and paste all the lines in Example C-3 into the
DB2 CLP.

Example: C-3 Insert statements to insert rows into Customer table

INSERT INTO Customer (Cid, Info) VALUES (1000, \
'<customerinfo Cid="1000"> \
 <name>Kathy Smith</name> \
 <addr country="Canada"> \
 <street>5 Rosewood</street> \
 <city>Toronto</city> \
 <prov-state>Ontario</prov-state> \
 <pcode-zip>M6W-1E6</pcode-zip> \
 </addr> \
 <phone type="work">416-555-1358</phone> \
</customerinfo>')

INSERT INTO Customer (Cid, Info) VALUES (1002, \
'<customerinfo Cid="1002"> \
 <name>Jim Noodle</name> \
 <addr country="Canada"> \
 <street>25 EastCreek</street> \

C ustomerin fo

(C id)

nam e
addr

Phone (type)

street c ity prov-s tate pcode-zip
598 Powering SOA with IBM Data Servers

 <city>Markham</city> \
 <prov-state>Ontario</prov-state> \
 <pcode-zip>N9C-3T6</pcode-zip> \
 </addr> \
 <phone type="work">905-555-7258</phone> \
</customerinfo>')

INSERT INTO Customer (Cid, Info) VALUES (1003, \
'<customerinfo Cid="1003"> \
 <name>Robert Shoemaker</name> \
 <addr country="Canada"> \
 <street>1596 Baseline</street> \
 <city>Aurora</city> \
 <prov-state>Ontario</prov-state> \
 <pcode-zip>N8X-7F8</pcode-zip> \
 </addr> \
 <phone type="work">905-555-7258</phone> \
 <phone type="home">416-555-2937</phone> \
 <phone type="cell">905-555-8743</phone> \
 <phone type="cottage">613-555-3278</phone> \
</customerinfo>')

Typically, XML documents are inserted using application programs. While XML data can be
inserted through applications using XML, binary, or character types, it is recommended that
you use XML or binary types to avoid code page conversion issues. Above we show how to
insert XML documents into XML typed columns manually in the DB2 CLP, where the XML
document is always a character literal. In most cases, string data cannot be directly assigned
to a target with an XML data type; the data must first be parsed explicitly using the
XMLPARSE function. In INSERT, UPDATE, or DELETE operations, however, string data can
be directly assigned to XML columns, without an explicit call to the XMLPARSE function. In
these three cases, the string data is implicitly parsed.

7. Issue a SELECT statement to confirm data has been inserted successfully.

SELECT * from Customer

You will see three rows returned from the above query.

We continue using the example later in C.4, “SQL/XML examples” on page 601 to
demonstrate how to use SQL/XML.

C.3 XML schema support
DB2 supports XML Schema validation of XML documents during insert, update, and query
operations. XML schemas are valid XML documents that can be processed by tools such as
the XSD Editor in DB2 Developer Workbench. You need to register your XML Schemas or
DTD (limited support) before you can validate the XML document.

You use the REGISTER XMLSCHEMA command to registers an XML schema with the XML
schema repository (XSR).

Example: C-4 Registering a XML schema. The schema document is PO.xsd

REGISTER XMLSCHEMA 'http://myPOschema/PO.xsd'
FROM 'file:///c:/TEMP/PO.xsd'
WITH 'file:///c:/TEMP/schemaProp.xml'
Appendix C. XML and DB2 for Linux, UNIX and Windows 599

AS user1.POschema

The XMLVALIDATE function is used to validate XML documents. This function returns a copy
of the input XML value augmented with information obtained from XML schema validation,
including default values and type annotations.

Example C-5 shows how to do XML Schema validation during insert using the XML schema
identified by the SQL name PODOCS.WORLDPO.

Example: C-5 XML Schema validation during insert

INSERT INTO T1(XMLCOL)
 VALUES (
 XMLVALIDATE(
 ? ACCORDING TO XMLSCHEMA ID PODOCS.WORLDPO
)
)

Assuming that the XML schema that is associated with SQL name FOO.WORLDPO is found
in the XML repository, the input XML value will be validated and the type annotated according
to that XML schema.

You can register your XML Schema and validate your XML document from the command line
using the REGISTER XMLSCHEMA command, and the XMLVALIDATE function. You can
also use Developer Workbench or Control Center to do the same. We will show an example of
how to register an XML schema and perform validation using Developer Workbench in
“Create and register an XML schema using Developer Workbench” on page 629.

C.3.1 XMl schema repository
The XML Schema Repository (XSR) is a repository for all XML artifacts required to validate
and process XML instance documents stored in XML columns. It stores copies of XML
schemas, DTDs, and external entities referenced in your XML documents.

The XSR allows you to manage the dependencies XML documents have transparently,
without requiring changes to the XML document content. You can browse your XML Schema
Document in Developer Workbench or in Control Center. Figure C-3 on page 601 shows the
Control Center interface which allows you to register and view the XML schema document.
600 Powering SOA with IBM Data Servers

Figure C-3 Control Center allows you to register and view XML Schema Document

C.4 SQL/XML examples
We have already introduced the SQL/XML functions in Appendix A.7, “SQL/XML” on
page 571 when we introduced the common new XML functions available to both DB2 z/OS
and DB2 for Linux, UNIX and Windows. Now we will show you some SQL/XML examples on
DB2 for Linux, UNIX and Windows.

C.4.1 Update, Delete and Query using SQL/XML
For those who are familiar with SQL queries, we often restrict the rows returned from a query
based on certain condition. If you want to restrict your search based on some condition that
applies to data in an XML column, you can use the XMLEXISTS predicate to do this.

Continuing with the previous example we have used in Appendix C.2, “Using the native XML
data store in DB2 V9.1 for Linux, UNIX and Windows” on page 596, we now show how to use
some of the SQL/XML functions to update and query XML data. Our Info XML column
currently contains the following information. (Cid column is omitted for simplicity and clarity.)

Example: C-6 Current XML contents in the Info column of the Customer table

<customerinfo Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
Appendix C. XML and DB2 for Linux, UNIX and Windows 601

 <pcode-zip>M6W-1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
</customerinfo>

<customerinfo Cid="1002">
 <name>Jim Noodle</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C-3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
</customerinfo>

<customerinfo Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X-7F8</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
 <phone type="cottage">613-555-3278</phone>
</customerinfo>

1. We want to update the address for customer Jim Noodle since his address has changed.
We show how we can use XMLEXISTS to specify that we only want to update customer
Jim Noodle’s information who has a customer ID of 1002. Cut and paste all the lines in
Example C-7 into the DB2 CLP.

Example: C-7 Update customer Jim Noodle’s address

UPDATE customer SET info = \
'<customerinfo Cid="1002"> \
 <name>Jim Noodle</name> \
 <addr country="Canada"> \
 <street>1150 Maple Drive</street> \
 <city>Newtown</city> \
 <prov-state>Ontario</prov-state> \
 <pcode-zip>Z9Z 2P2</pcode-zip> \
 </addr> \
 <phone type="work">905-555-7258</phone> \
</customerinfo>' \
WHERE XMLEXISTS ('$doc/customerinfo[@Cid = "1002"]' passing INFO as "doc")

2. Issue a SELECT query again to confirm Jim Noodle’s address is updated.

SELECT * from Customer WHERE Cid=1002

3. Next we show in Example C-8 on page 603 how to retrieve the name of the customer who
has a customer ID of 1000 using XMLQUERY.
602 Powering SOA with IBM Data Servers

Example: C-8 Using XMLQUERY

SELECT XMLQUERY('$c/customerinfo/name' passing Info as "c") FROM Customer \
WHERE Cid = 1000

You get the result shown in Example C-9.

Example: C-9 Result for query in Example C-8

<name>Kathy Smith</name>

4. Query in Example C-10 retrieves the ID for the customer who lives in the city of Toronto.

Example: C-10 Using XMLEXISTS

SELECT Cid FROM Customer WHERE XMLEXISTS \
('$c/customerinfo/addr[city = "Toronto"]' passing Customer.Info as "c")

You get the result of Example C-11.

Example: C-11 Results for query in Example C-10

CID

 1000

 1 record(s) selected.

Example: C-12 Incorrect statement that uses XMLEXISTS

SELECT Cid FROM Customer WHERE XMLEXISTS \
('$c/customerinfo/addr/city = "Toronto"' passing Customer.Info as "c")

CID

 1000
 1002
 1003

 3 record(s) selected.

Notice that you get all the Cid(s) in the Customer table instead of only the Cid of the customer
who lives in the city of Toronto. This query runs successfully, but it does not give you the
results you want. This is because the semantics of the query in Example C-12 is incorrect.
Remember our Customer entry for Cid = 1000 (see Example C-13).

Example: C-13 The value of the Info XML column in the Customer table for CId = 1000

<customerinfo Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>

Important: One very common mistake is to issue the statement shown in Example C-12
instead of the one in Example C-10.
Appendix C. XML and DB2 for Linux, UNIX and Windows 603

 <pcode-zip>M6W-1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
</customerinfo>

If XMLEXISTS includes an XPath expression with a value predicate (expression), you want
to enclose the predicate in square brackets, that is [expression]. When the entire expression
is placed in square brackets, the meaning is ‘fetch the document if [expression]’, and you
should always get an empty sequence if a document does not satisfy expression. Since the
value comparison is always within square brackets, Example C-10 on page 603 works
properly, but Example C-12 on page 603 fails to give us the result we expect. The rule also
applies for queries where there is no value comparison. For example, when you want to return
the documents for all EMPLOYEE which happen to have a COMMENT child element, then
you will use:

SELECT EMPID FROM EMPLOYEE WHERE XMLEXISTS(‘$e[EMPLOYEE/COMMENT]’ PASSING
EMPLOYEE.xmlcol AS "e")

5. If we want to delete customer with customer ID 1003 we can issue the following command
shown in Example C-14. (We will NOT delete customer with ID 1003 at this time,
therefore we will not issue the command below. This is so that we can continue to
show the next few examples)

Example: C-14 Delete customer with Cid=1003

DELETE FROM Customer \
WHERE XMLEXISTS ('$doc/customerinfo[@Cid = "1003"]' passing INFO as "doc")

6. Now we show how to make use of the XMLTABLE function to get a table of results from the
XML information in the Customer table Info column. We want the phone information to
appear in a row for each individual customer. So we can issue the command shown in
Example C-15.

Example: C-15 Using XMLTABLE to return a table listing of customers phone numbers

SELECT X.*
FROM CUSTOMER C, XMLTABLE ('$cust/customerinfo/phone' PASSING C.INFO as "cust"
 COLUMNS "CUSTNAME" CHAR(30) PATH '../name',
 "PHONETYPE" CHAR(30) PATH '@type',
 "PHONENUM" CHAR(15) PATH '.'
) as X;

And the result is shown in Figure C-4.
604 Powering SOA with IBM Data Servers

Figure C-4 Results for query in Example C-15

7. Another example, say we want to display each of the address field in its own column and
generate a tabular output, then we can issue:

Example: C-16 Using XMLTABLE to display address

SELECT X.*
FROM CUSTOMER C, XMLTABLE ('$cust/customerinfo/addr' PASSING C.INFO as "cust"
 COLUMNS "CUSTNAME" CHAR(18) PATH '../name',
 "COUNTRY" CHAR(8) PATH '@country',
 "STREET" CHAR(16) PATH './street',
 "CITY" CHAR(10) PATH './city',
 "PROVINCE" CHAR(10) PATH './prov-state',
 "POSTAL CODE" CHAR(7) PATH './pcode-zip'
) as X

And you will get the following tabular output as shown in Figure C-5.

Figure C-5 Results for query in Example C-16

C.4.2 Publishing XML as relational data
We have already learned now to query, extract, and transform data in an XML column just
now. In this section we will show how to use SQL/XML functions to construct and publish XML
data from relational data. At this time, we will start referencing the EMPLOYEE table in the DB2
SAMPLE database.

CUSTNAME PHONETYPE PHONENUM
------------------------------ ------------------------------ ---------------
Kathy Smith work 416-555-1358
Jim Noodle work 905-555-7258
Robert Shoemaker work 905-555-7258
Robert Shoemaker home 416-555-2937
Robert Shoemaker cell 905-555-8743
Robert Shoemaker cottage 613-555-3278

 6 record(s) selected.

CUSTNAME COUNTRY STREET CITY PROVINCE POSTAL CODE
------------------ -------- ---------------- ---------- ---------- -----------
Kathy Smith Canada 5 Rosewood Toronto Ontario M6W-1E6
Jim Noodle Canada 1150 Maple Drive Newtown Ontario Z9Z 2P2
Robert Shoemaker Canada 1596 Baseline Aurora Ontario N8X-7F8

 3 record(s) selected.

Tip: The XMLTABLE function is very useful when you want to present your native XML
data in a relational table output.
Appendix C. XML and DB2 for Linux, UNIX and Windows 605

1. Create a temporary export directory where you will store the export files. For example, we
call our directory /exportdata. Go to the /exportdata directory and export all the data from
the existing SAMPLE database.

cd exportdata

db2move sample export

2. Generate a DDL script for your existing database using the db2look command: db2look
-d sample -e -o unisampl.ddl -l -x -f

where

– sample is the existing database name
– unisampl.ddl is the file name for the generated DDL script
– The -l option generates DDL for user defined table spaces, database partition groups

and buffer pools
– The -x option generates authorization DDL
– The -f option generates update command for database configuration parameters

3. Drop the existing SAMPLE database

DROP DATABASE SAMPLE

4. Create new the SAMPLE database in Unicode:

CREATE DATABASE SAMPLE USING CODESET UTF-8 TERRITORY US

5. Recreate your database structure by running the DDL script

db2 -tvf unisampl.ddl

6. Import your data into the new Unicode database using the db2move command:

cd exportdata

db2move sample import

7. The STAFF table contains the following relational data as shown in Figure C-6. (Not all the
rows are shown for simplicity.)

Note: SAMPLE database needs to be created in unicode or converted to unicode. You can
follow the steps below to drop the existing non-unicode SAMPLE database and recreate a
new SAMPLE unicode database
606 Powering SOA with IBM Data Servers

Figure C-6 Staff table in DB2 SAMPLE database

We can easily construct XML data from the SQL columns by using the XMLELEMENT function.
The XMLELEMENT scalar function returns an XML value that is an XML element node.

Example: C-17 Constructing XML data from SQL column

SELECT XMLELEMENT (name "employee",
 XMLELEMENT (name "ID", id),
 XMLELEMENT (name "NAME", name),
 XMLELEMENT (name "JOB", job),
 XMLELEMENT (name "SALARY", salary))
FROM STAFF

Example C-17 on page 607 generates the following XML data (extra formatting and white
spaces added to enhance readability).

SELECT * FROM STAFF

ID NAME DEPT JOB YEARS SALARY COMM
------ --------- ------ ----- ------ --------- ---------
 10 Sanders 20 Mgr 7 18357.50 -
 20 Pernal 20 Sales 8 18171.25 612.45
 30 Marenghi 38 Mgr 5 17506.75 -
 40 O'Brien 38 Sales 6 18006.00 846.55
 50 Hanes 15 Mgr 10 20659.80 -
 60 Quigley 38 Sales - 16808.30 650.25
 70 Rothman 15 Sales 7 16502.83 1152.00

...

 310 Graham 66 Sales 13 21000.00 200.30
 320 Gonzales 66 Sales 4 16858.20 844.00
 330 Burke 66 Clerk 1 10988.00 55.50
 340 Edwards 84 Sales 7 17844.00 1285.00
 350 Gafney 84 Clerk 5 13030.50 188.00

 35 record(s) selected.
Appendix C. XML and DB2 for Linux, UNIX and Windows 607

Figure C-7 XML data generated from the SQL columns in Staff table

8. You can also use XMLFOREST to generate the same XML data as shown in Figure C-7
above. The XMLFOREST function produces a forest of XML elements that all share a
specific pattern from a list of columns and expressions.

Example: C-18 Using XMLFOREST and XMLELEMENT together

SELECT XMLELEMENT (name "employee",
 XMLFOREST (id as "id",
 name as "name",
 job as "job",
 salary as "salary"))
FROM STAFF

This will also generate the same XML output as shown in Figure C-7.

9. The XMLAGG aggregate function returns an XML sequence containing an item for each
non-null value in a set of XML values. In this example we show how to generate a list of
employee information in XML format sorted by their salary in ascending order. The query
is shown in Example C-19.

1

<employee>
 <id>10</id>
 <name>Sanders</name>
 <job>Mgr </job>
 <salary>18357.50</salary>
</employee>
<employee>
 <id>20</id>
 <name>Pernal</name>
 <job>Sales</job>
 <salary>18171.25</salary>
</employee>

...

<employee>
 <id>340</id>
 <name>Edwards</name>
 <job>Sales</job>
 <salary>17844.00</salary>
</employee>
<employee>
 <id>350</id>
 <name>Gafney</name>
 <job>Clerk</job>
 <salary>13030.50</salary>
</employee>

 35 record(s) selected.
608 Powering SOA with IBM Data Servers

Example: C-19 Using XMLAGG and ORDER BY

SELECT XMLAGG (XMLELEMENT (name "employee",
 XMLELEMENT (name "id", id),
 XMLELEMENT (name "name", name),
 XMLELEMENT (name "job", job),
 XMLELEMENT (name "salary", salary))
 ORDER BY SALARY)
FROM STAFF

The result is shown in Figure C-8 on page 610.
Appendix C. XML and DB2 for Linux, UNIX and Windows 609

Figure C-8 Output for the XMLAGG query

C.5 XQuery in DB2 V9.1 for Linux, UNIX and Windows
XQuery is a generalized language for querying XML data. DB2 treats XQuery as a first-class
language, which allows XQuery to be invoked directly. This means that DB2 engine
processes XQueries natively, and parses XQueries without translating them into SQL.
XQuery can also be invoked from an SQL query. In this case, the SQL query can pass XML
data to XQuery in the form of bound variables. XQuery supports various expressions for

1

<employee>
 <id>130</id>
 <name>Yamaguchi</name>
 <job>Clerk</job>
 <salary>10505.90</salary>
</employee>
<employee>
 <id>330</id>
 <name>Burke</name>
 <job>Clerk</job>
 <salary>10988.00</salary>
</employee>
<employee>
 <id>200</id>
 <name>Scoutten</name>
 <job>Clerk</job>
 <salary>11508.60</salary>
</employee>

...

<employee>
 <id>140</id>
 <name>Fraye</name>
 <job>Mgr </job>
 <salary>21150.00</salary>
</employee>
<employee>
 <id>260</id>
 <name>Jones</name>
 <job>Mgr </job>
 <salary>21234.00</salary>
</employee>
<employee>
 <id>160</id>
 <name>Molinare</name>
 <job>Mgr </job>
 <salary>22959.20</salary>
</employee>

 1 record(s) selected.
610 Powering SOA with IBM Data Servers

processing XML data and for constructing new XML objects such as elements and attributes.
The programming interface to XQuery provides facilities similar to those of SQL to execute
queries and retrieve query results.

XQuery is a functional programming language that was designed by the World Wide Web
Consortium (W3C) to meet specific requirements for querying XML data. Unlike relational
data, which is predictable and has a regular structure, XML data is highly variable. Because
the structure of XML data is unpredictable, the queries that you need to perform on XML data
often differ from typical relational queries. The XQuery language provides the flexibility
required to perform these kinds of operations. For example, you might need to create XML
queries that search XML data for objects that are at unknown levels of the hierarchy or that
perform structural transformations on the data and return results that have mixed types.
XQuery is a strongly-typed language in which the operands of various expressions,
operators, and functions must conform to expected types. The type system for XQuery is
based on XML Schema.

In XQuery, expressions are the basic building blocks of a query. Expressions can be nested
and form the body of a query. A query consists of an optional prolog that is followed by a
query body. The prolog contains a series of declarations that define the processing
environment for the query. The query body consists of an expression that defines the result of
the query. Expressions can be used alone or in combination with other expressions to form
complex queries. DB2 supports several kinds of expressions for working with XML data,
including path expressions for locating nodes within a document tree, constructors for
creating XML structures within a query, and FLWOR expressions for iteration and for binding
of variables to intermediate query results.

Figure C-9 illustrates the structure of a typical query. In this example, the prolog contains two
declarations: a version declaration, which specifies the version of the XQuery syntax to use to
process the query, and a default namespace declaration that specifies the namespace URI to
use for unprefixed element and type names. The version declaration, if present, must be first
in the prolog. The query body contains an expression that constructs a price_list element.
The content of the price_list element is a list of product elements that are sorted in
descending order by price.

Figure C-9 XQuery structure showing the optional prolog followed by a query body

Note: FLWOR expression stands for - For, Let, Where, Order, Return expressions. FLWOR
expressions will be explained further in Appendix C.5.1, “FLWOR expressions” on
page 612. Path expression is discussed further in Appendix C.5.2, “Path expressions” on
page 614.
Appendix C. XML and DB2 for Linux, UNIX and Windows 611

XQuery uses the XQuery and XPath data model (XDM), which represents an XML document
as a hierarchy (tree) of nodes that represent XML elements and attributes. The XDM allows
XQuery to operate on the abstract, logical structure of an XML document or fragment, rather
than its surface syntax. The inputs (if any) of an XQuery expression are instances of the
XDM, and the result of an expression is also an instance of the XDM. XML documents are
converted into the XDM when they are stored in an XML column.

DB2 supports XQuery built-in functions for working with XML data. The library includes the
following types of functions: string functions, numeric functions, functions that operate on
boolean values, functions that operate on QNames, functions that operate on nodes,
functions on sequences, and functions that operate on durations, dates, and times.

A query that invokes XQuery directly begins with the keyword XQUERY. This keyword indicates
that XQuery is being used and that the DB2 server must therefore use case sensitivity rules
that apply to the XQuery language. After establishing the processing environment for the
query, the query must retrieve input data. DB2 provides the following functions to retrieve
input data from an XML column: db2-fn:xmlcolumn and db2-fn:sqlquery.

SQL and XQuery have different conventions for case-sensitivity of names. You should be
aware of these differences when using the db2-fn:sqlquery and db2-fn:xmlcolumn functions.
SQL is not a case-sensitive language. By default, all ordinary identifiers, which are used in
SQL statements, are automatically converted to uppercase. Therefore, the names of SQL
tables and columns are customarily uppercase names. In an SQL statement, these columns
can be referenced by using lowercase names, which are automatically converted to
uppercase during processing of the SQL statement. (You can also create a case-sensitive
name that is called a delimited identifier in SQL by enclosing the name in double quotation
marks.)

XQuery is a case-sensitive language. XQuery does not convert lowercase names to
uppercase. This difference can lead to some confusion when XQuery and SQL are used
together. The string that is passed to db2-fn:sqlquery is interpreted as an SQL query and is
parsed by the SQL parser, which converts all names to uppercase. The operand of
db2-fn:xmlcolumn, however, is not an SQL query. The operand is a case-sensitive XQuery
string literal that represents the name of a column.

C.5.1 FLWOR expressions
FLWOR expressions iterate over sequences and bind variables to intermediate results.
These expressions are useful for computing joins between two or more documents,
restructuring data, and sorting the result. A FLWOR expression is composed of the following
clauses which it gets its name from: For, Let, Where, Order by, and Return. Figure C-10 on
page 613 shows the FLWOR expressions syntax diagram.

Important: SQL is not a case-sensitive language, but XQuery is a case-sensitive
language.
612 Powering SOA with IBM Data Servers

Figure C-10 FLWOR expressions syntax diagram

Table C-1 explains each of the clause in the FLWOR expression.

Table C-1 FLWOR expression clauses

 .--------------------.
 V |
>>---+-| for clause |-+-+--+-------------------+---------------->
 '-| let clause |-' '-where--Expression-'

>--+--+----------------->
 | .-,--------------------------. |
 | V .-ascending--. | |
 '-order by----Expression--+------------+-+-'
 '-descending-'

>--return--Expression--><

for clause

 .-,--.
 V |
|--for----$VariableName--+-----------------------------+--in--Expression-+--|
 '-at--$PositionalVariableName-'

let clause

 .-,-----------------------------.
 V |
|--let----$VariableName--:=--Expression-+-----------------------|

Clause Explanation

for The keyword that begins a for clause. A for clause iterates over the result of
Expression and binds VariableName to each item that is returned by Expression.

let The keyword that begins a let clause. A let clause binds VariableName to the entire
result of Expression.

VariableName
The name of the variable to bind to the result of Expression.

PositionalVariableName
The name of an optional variable that is bound to the position within the input stream
of the item that is bound by each iteration of the for clause.

Expression
Any XQuery expression. If the expression includes a top-level comma operator,
then the expression must be enclosed in parentheses.

where The keyword that begins a where clause. A where clause filters the tuples of
variable bindings that are generated by the for and let clauses.
Appendix C. XML and DB2 for Linux, UNIX and Windows 613

XML data can be queried using SQL (with the SELECT statement), XQuery (with XQuery
expressions), or a combination of both. When querying with SQL alone (without the use of
any XQuery), you can only query at the column level. That is, you can return the entire XML
document stored in the column, but you cannot query within the document or return
fragments of a document. To query values within an XML document or return fragments of a
document, you must use XQuery.

C.5.2 Path expressions
Path expressions identify nodes within an XML tree. Path expressions in DB2 XQuery are
based on the syntax of XPath 2.0.

A path expression consists of one or more steps that are separated by slash (/) or
double-slash (//) characters. A path expression can begin with a step or with a slash or
double-slash character. Each step before the final step generates a sequence of nodes that
are used as context nodes for the step that follows.

The first step specifies the starting point of the path, often by using a function call or variable
reference that returns a node or sequence of nodes. An initial "/" indicates that the path
begins at the root node of the tree that contains the context node. An initial "//" indicates that
the path begins with an initial node sequence that consists of the root node of the tree that
contains the context node, plus all of the descendants of the root node.

Each step is executed repeatedly, once for each context node that is generated by the
previous step. The results of these repeated executions are then combined to form the
sequence of context nodes for the step that follows. The value of the path expression is the
combined sequence of items that results from the final step in the path. This value can be
either a sequence of nodes or a sequence of atomic values. Because each step in a path
provides context nodes for the step that follows, the final step in a path is the only step that
can return a sequence of atomic values which satisfied the specified condition.

Figure C-11 on page 615 shows the syntax of path expressions.

order by The keywords that begin an order by clause. An order by clause specifies the order
in which values are processed by the return clause.

ascending
Specifies that ordering keys are processed in ascending order.

descending
Specifies that ordering keys are processed in descending order.

return The keyword that begins a return clause. The expression in the return clause is
evaluated once for each tuple of bound variables that is generated by the for, let,
where, and order by clauses. The results of all of the evaluations of the return clause
are concatenated into a single sequence, which is the result of the FLWOR
expression.

Clause Explanation
614 Powering SOA with IBM Data Servers

Figure C-11 Syntax of path expressions

Each step of a path expression is either an axis step or a filter expression. An axis step
returns a sequence of nodes that are reachable from the context node via a specified axis. A
filter expression consists of a primary expression that is followed by zero or more predicates.

An axis step consists of three parts: an optional axis, which specifies a direction of
movement; a node test, which specifies the criteria that is used to select nodes; and zero or
more predicates, which filter the sequence that is returned by the step. The result of an axis
step is always a sequence of zero or more nodes.

XQuery provides an abbreviated syntax for expressing axes in path expressions. For
Abbreviated syntax for path expressions, you can refer to DB2 V9.1 for Linux, UNIX and
Windows Information Center at this URL:

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.xq
uery.doc/xqrabbrsyn.html

In most cases, you can write a query using either a FLWOR expression or a path expression
to get the results you want. Table C-2 provides a full listing of various DB2 XQuery
expressions.

Table C-2 DB2 XQuery expressions

 .-/ or //-------------------.
 V |
>>-+----+----+-| axis step |---------+-+-----------------------><
 +-/--+ '-| filter expression |-'
 '-//-'

axis step

 .---------------------------.
 V |
|----+--------+--node-test----+-----------------------+-+-------|
 '-axis::-' '-[PredicateExpression]-'

filter expression

 .---------------------------.
 V |
|--PrimaryExpression----+-----------------------+-+-------------|
 '-[PredicateExpression]-'

Type Explanation

Primary
expressions

Primary expressions are the basic primitives of the language. They include literals,
variable references, parenthesized expressions, context item expressions,
constructors, and function calls.

Path
expressions

Path expressions identify nodes within an XML tree. Path expressions in DB2
XQuery are based on the syntax of XPath 2.0.
Appendix C. XML and DB2 for Linux, UNIX and Windows 615

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.xquery.doc/xqrabbrsyn.html

C.5.3 XQuery examples for DB2 for Linux, UNIX and Windows
We now look at some XQuery examples to show you what can be done with XQuery. These
are very simple examples to get you familiar with XQuery. Again we are using the same
example we used earlier in Appendix C.2, “Using the native XML data store in DB2 V9.1 for
Linux, UNIX and Windows” on page 596 and Appendix C.4, “SQL/XML examples” on
page 601. Remember our Customer table is defined as follow:

CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY, Info XML)

Our Customer table currently looks like Example C-20. For simplicity we have omitted the Cid
column and only show the Info column that contains XML data.

Example: C-20 Current content of the Info XML column in the Customer table

<customerinfo Cid="1000">
 <name>Kathy Smith</name>
 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>

Predicates A predicate filters a sequence by retaining the qualifying items. A predicate consists
of an expression, called a predicate expression, that is enclosed in square brackets
([]). The predicate expression is evaluated once for each item in the sequence, with
the selected item as the context item. Each evaluation of the predicate expression
returns an xs:boolean value called the predicate truth value. Those items for which
the predicate truth value is true are retained, and those for which the predicate truth
value is false are discarded.

Sequence
expressions

Sequence expressions construct, filter, and combine sequences of items.
Sequences are never nested. For example, combining the values 1, (2, 3), and ()
into a single sequence results in the sequence (1, 2, 3).

Arithmetic
expressions

Arithmetic expressions perform operations that involve addition, subtraction,
multiplication, division, and modulus.

Comparison
expressions

Comparison expressions compare two values. XQuery provides three kinds of
comparison expressions: value comparisons, general comparisons, and node
comparisons.

Logical
expressions

Logical expressions use the operators and or to compute a Boolean value (true or
false).

Constructors Constructors create XML structures within a query. XQuery provides constructors
for creating element nodes, attribute nodes, document nodes, text nodes,
processing instruction nodes, and comment nodes. XQuery provides two kinds of
constructors: direct constructors and computed constructors.

FLWOR
expressions

FLWOR expressions iterate over sequences and bind variables to intermediate
results. FLWOR expressions are useful for computing joins between two or more
documents, restructuring data, and sorting the result.

Conditional
expressions

Conditional expressions use the keywords if, then, and else to evaluate one of two
expressions based on whether the value of a test expression is true or false.

Quantified
expressions

Quantified expressions return true if some or every item in one or more sequences
satisfies a specific condition. The value of a quantified expression is always true or
false.

Cast
expressions

A cast expression creates a new value of a specific type based on an existing value.
616 Powering SOA with IBM Data Servers

 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W-1E6</pcode-zip>
 </addr>
 <phone type="work">416-555-1358</phone>
</customerinfo>

<customerinfo Cid="1002">
 <name>Jim Noodle</name>
 <addr country="Canada">
 <street>25 EastCreek</street>
 <city>Markham</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N9C-3T6</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
</customerinfo>

<customerinfo Cid="1003">
 <name>Robert Shoemaker</name>
 <addr country="Canada">
 <street>1596 Baseline</street>
 <city>Aurora</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>N8X-7F8</pcode-zip>
 </addr>
 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
 <phone type="cottage">613-555-3278</phone>
</customerinfo>

We have already shown how to retrieve data using only SQL:

SELECT * from Customer

Invoking the above SQL will retrieve the entire XML document stored in the column named
Info and values from the Cid primary key column.

From within the contexts of both SQL and XQuery, you can invoke the other. In SQL, you can
invoke XQuery using the XMLQUERY function. The XMLQUERY function enables you to invoke
XQuery from the SQL context. In XQuery, you can issue a fullselect using the
db2-fn:sqlquery function. To get the sequence of XML documents that is stored in the given
column, use the db2-fn:xmlcolumn function.

1. For example, the following query shown in Example C-21 on page 618 returns the XML
stored in the Info column of our Customer table as shown in Example C-20 on page 616.

Important: XQuery is case-sensitive, while SQL is case-insensitive. Names in XQuery,
such as table and SQL schema names (which are both uppercase by default), must be
carefully specified because of the language's case-sensitivity. This is particularly important
when using XQuery with SQL. When invoking XQuery within SQL, be mindful that the
XQuery expression remains case-sensitive, even though it is placed within the SQL
context.
Appendix C. XML and DB2 for Linux, UNIX and Windows 617

Example: C-21 Retrieve XML from the Info column

xquery db2-fn:xmlcolumn ('CUSTOMER.INFO')

2. This query only retrieves the names for all customers using path expressions (see
Example C-22).

Example: C-22 Path expression to retrieve names for all customers

xquery \
db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo/name

Figure C-12 shows the result:

Figure C-12 All names of our customers

3. This query returns the same result as in Example C-22, but this time we use the FLWOR
expression and utilizes the for and return clause. We iterate the <name> elements of
<customerinfo> in the CUSTOMER.INFO XML column. Each name is bound to the
variable $n and the value is returned in $n for each iteration. See Example C-23.

Example: C-23 FLWOR expression to retrieve names for all customer

xquery \
for $n in db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo/name \
return $n

4. But if you only want the text string for the customer’s name stored in the Info XML column
and do not care about the XML tag, use the text() function. See Example C-24.

Example: C-24 Using the text() function to retrieve customer’s name

xquery \
db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo/name/text()

Then you will get the text:

Kathy Smith
Jim Noodle
Robert Shoemaker

5. The following illustrates the additional use of a where clause in the FLWOR expression to
get the address for customers who are in the city of Toronto only. The FOR clause specifies
iteration through the <customerinfo> elements of documents in the Info column. The
WHERE clause filters to yield only items that have a <city> element (along the path
specified) with a value of "Toronto". Finally the RETURN clause constructs the returned
XML value, which is an element that contains the <addr> element for all documents that
satisfy the condition specified in the WHERE clause. See Example C-25.

Important: Specify the column and table names in upper case, otherwise you may see a
SQL0204N error indicating that database object is undefined. This is because table and
column names are stored in DB2’s catalog in upper case. XQuery is case-sensitive so if
you use lower case table and column names it will not find the table and column names in
the DB2 catalog.

<name>Kathy Smith</name>
<name>Jim Noodle</name>
<name>Robert Shoemaker</name>
618 Powering SOA with IBM Data Servers

Example: C-25 Adding the where clause to filter the results in a FLWOR expression

xquery \
for $n in db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo/addr \
where $n/city ="Toronto" \
return $n

And we get the fragment of the XML document shown in Figure C-13.

Figure C-13 Resulting XML fragment for the query in Example C-25

6. You can also get the same result using the path expressions of Example C-26.

Example: C-26 Path expressions equivalent to the FLWOR expression in Example C-25

xquery \
db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo/addr[city ="Toronto"]

7. Now we illustrate how to build and transform existing phone information into a phone list
sort by customer’s name.

Example: C-27 Transforming the XML output

xquery \
for $n in db2-fn:xmlcolumn('CUSTOMER.INFO')/customerinfo \
order by $n/name \
return <phonelist> {$n/phone} </phonelist>

See Figure C-14.

Figure C-14 Transforming into a phone list sorted by customer’s first name

 <addr country="Canada">
 <street>5 Rosewood</street>
 <city>Toronto</city>
 <prov-state>Ontario</prov-state>
 <pcode-zip>M6W-1E6</pcode-zip>
 </addr>

<phonelist>
 <phone type="work">905-555-7258</phone>
</phonelist>

<phonelist>
 <phone type="work">416-555-1358</phone>
</phonelist>

<phonelist>
 <phone type="work">905-555-7258</phone>
 <phone type="home">416-555-2937</phone>
 <phone type="cell">905-555-8743</phone>
 <phone type="cottage">613-555-3278</phone>
</phonelist>
Appendix C. XML and DB2 for Linux, UNIX and Windows 619

For more information about XML, SQL/XML, and XQuery, refer to the XML Guide, available
at:

ftp://ftp.software.ibm.com/software/data/pubs/papers/db2xmlguide.pdf

C.6 Comparison of XML data access methods
As you have learned in the previous sections, XML data can be queried in a number of ways:
using plain SQL only, using SQL/XML functions, using XQuery or a combination of all of
these methods. So which method should you use so that it will be most advantageous for
your particular situation. Let us explore our options:

� SQL only

When retrieving XML data using SQL alone, you can only query at the XML column level.
Therefore, you can only retrieve the entire XML documents from the query. This usage is
suitable if you want to retrieve entire XML documents. It is also suitable in the case where
you do not need to query based on values within the stored XML documents, and the
predicates of your query are on other non-XML columns of the table. SQL also works well
for SQL programmers or DBAs who are already very familiar with the language.

� XQuery only

If you only have to access XML data, and do not need to access any relational data, then
XQuery alone will do the work. XQuery is also suitable when you need to use the query
result to construct other XML documents. XQuery might also be the preference for those
who are familiar with XML and XQuery, but do not use SQL very often.

� XQuery that invokes SQL

Combining XQuery and SQL will be a suitable choice when you need to access both XML
and relational data. This way you cannot only access your XML data, but also leverage
SQL predicates and indexes on relational columns.

� SQL/XML functions that execute XQuery expressions

The SQL/XML functions like XMLQUERY, XMLTABLE, and the XMLEXISTS predicate,
enable XQuery expressions to be executed from within the SQL context. This will allow
you to access both relational and XML data in a single query. This also means that you
join XML with relational data, and further, you can aggregate the data by using the
GROUP BY and ORDER BY SQL clauses. Combining these methods will be a suitable
choice when you want to enable existing SQL applications to query within XML documents

Table C-3 on page 621 summarizes when it is most advantageous to use a particular query
method:
620 Powering SOA with IBM Data Servers

ftp://ftp.software.ibm.com/software/data/pubs/papers/db2xmlguide.pdf

Table C-3 Comparison of XML data access methods

C.7 Annotated XML schema decomposition
DB2 native XML store allows you to store and access XML data natively, but there may be
cases where accessing XML data as relational data is required. An example of such a
requirement is an existing application that expects and treats XML in a relational form. For
such cases, annotated XML schema decomposition can be used to store content from XML
documents in columns of relational tables.

Annotated XML schema decomposition is a new feature that decomposes documents based
on annotations specified in an XML schema. The annotations added to XML schema
documents specify details such as the name of the target table and column the XML data is to
be stored in, the default SQL schema for when a target table's SQL schema is not identified,
as well as any transformation of the content before it is stored.

C.7.1 XML Extender shredding versus annotated XML schema decomposition
You might ask why we want to use annotated XML Schema Decomposition when current
functionalities are also offered by DB2 XML Extender. While DB2 XML Extender also
supports the ability to shred documents into relational schema, it only has very limited
functionality. The XML Extender decomposition stored procedures dxxInsertXML() and
dxxShredXML() are used to break down or shred incoming XML documents and to store data
in new or existing database tables. The dxxInsertXML() stored procedure takes an enabled
XML collection name as input; while the dxxShredXML() stored procedure takes a DAD file as
input. Therefore, XML Extender is constrained by the proprietary DAD mapping format.

The annotated XML schema decomposition in DB2 V9.1 for Linux, UNIX and Windows is
faster and more efficient than the DB2 XML Extender. Further, Annotated XML schema
decomposition provides an XML schema-based flexible mapping language that provides
granular control to the users over the entire process of decomposition.

C.7.2 DB2 V9.1 for Linux, UNIX, and Windows and its annotated XML schema
decomposition

Annotated XML schema decomposition is a type of decomposition that operates based on
annotations specified in an XML schema. Decomposition, sometimes referred to as
"shredding", is the process of storing content from an XML document in columns of relational

SQL only - Good choice when you are very familiar with SQL
- Can only retrieve entire XML document but not parts of it
- Predicates of your query are on relational columns of the table

XQuery only - Good choice when you are very familiar with XML and XQuery
- Can only access XML data
- You can use query result to construct new XML documents

XQuery and
SQL

- Can access both XML and relational data
- Allows you to leverage SQL predicates and indexes on relational column

SQL/XML and
XQuery

- Allows you to access both relational and XML data in a single query-
- Allows you to join XML with relational data, and aggregate the data using the
GROUP BY and ORDER BY SQL clauses
- Good choice when you want to enable existing SQL applications to query within
XML documents
Appendix C. XML and DB2 for Linux, UNIX and Windows 621

tables. After it is decomposed, the data then has the SQL type of the column it was inserted
into.

An XML schema consists of one or more XML schema documents. In annotated XML
schema decomposition, or schema-based decomposition, you control decomposition by
annotating a document's XML schema with decomposition annotations. These annotations
specify details such as the name of the target table and column the XML data is to be stored
in, the default SQL schema for when a target table's SQL schema is not identified, as well as
any transformation of the content before it is stored.

The XML decomposition annotations belong to the http://www.ibm.com/xmlns/prod/db2/xdb1
namespace and are identified by the "db2-xdb" prefix throughout the documentation. You can
select your own prefix; however, if you do, you must bind your prefix to the following
namespace: http://www.ibm.com/xmlns/prod/db2/xdb1. The decomposition process
recognizes only annotations that are under this namespace at the time the XML schema is
enabled for decomposition.

The decomposition annotations are only recognized by the decomposition process if they are
added to element and attribute declarations, or as global annotations, in the schema
document. They are either specified as attributes or as part of an <xs:annotation> child
element of the element or attribute declaration. Annotations added to complex types,
references, or other XML schema constructs are ignored. Although these annotations exist in
the XML schema documents, they do not affect the original structure of the schema
document, nor do they participate in the validation of XML documents. They are only referred
to by the XML decomposition process.

The annotated schema documents must be stored in and registered with the XML schema
repository (XSR). The schema must then be enabled for decomposition. If a schema
document is not successfully registered, or if the XML schema is not enabled for
decomposition with the XSR, then the decomposition process cannot infer the mapping and
therefore cannot determine how elements and attributes should be decomposed;
schema-based decomposition cannot occur in this case.

After the successful registration of the annotated schema, decomposition can be performed
either by calling one of the decomposition stored procedures or by executing the
DECOMPOSE XML DOCUMENT command.

DB2 supports a set of annotations used by the annotated XML schema decomposition
process to map elements and attributes from an XML document to target database tables.
Table C-4 on page 623 summarized some of the XML decomposition annotations grouped by
the tasks and actions you use the annotations to perform. Refer to the DB2 V9.1 for Linux,
UNIX and Windows Information Center and search for the specific annotation to obtain further
details about a particular annotation.
622 Powering SOA with IBM Data Servers

Table C-4 XML decomposition annotations grouped by tasks

Please see the following article From DAD to annotated XML schema decomposition for
further detail on how to convert from DAD to annotated XML schema decomposition.

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan/

C.8 XML APIs and application support
Application development support of the new native XML data store enables applications to
combine XML and relational data access and storage. Both internally encoded and externally
encoded XML data are supported.

Task XML decomposition
annotation

Action

Map multiple elements or attributes
to column and table pair

db2-xdb:defaultSQLSchema Specifies the default SQL schema for all table
names referenced in the XML schema that are
not explicitly qualified using the db2-xdb:table
annotation.

db2-xdb:rowSet Specifies an XML element or attribute mapping
to a target base table

db2-xdb:column Specifies a column name of the table to which
an XML element or attribute has been mapped

db2-xdb:rowSetMapping Maps a single XML element or attribute to one
or more column and table pairs

db2-xdb:table Maps multiple XML elements or attributes to the
same target column; or enables you to specify
a target table that has an SQL schema different
from the default SQL schema specified by
<db2-xdb:defaultSQLSchema>

Control data to be decomposed by
specifying the type of content to be
inserted for an element of complex
type (text, string, or markup)

db2-xdb:contentHandling Specifies the type of content that will be
decomposed into a table for an element of
complex type or simple type.

Specify any content transformation
to be applied before insertion

db2-xdb:normalization Specifies the normalization of whitespace in the
XML data to be inserted or to be substituted

db2-xdb:expression Specifies a customized expression, the result
of which is inserted into the table this element is
mapped to

db2-xdb:truncate Specifies whether truncation is permitted when
an XML value is inserted into a character target
column

Conditional decomposition on
filtered data based on the item's
content or the context in which it
appears

db2-xdb:condition Specifies a condition that determines if a row
will be inserted into a table. A row that satisfies
the condition might be inserted (depending on
other conditions for the rowSet, if any); a row
that does not satisfy the condition will not be
inserted

db2-xdb:locationPath Filters the data to be decomposed based on the
item's content or the context in which it appears
Appendix C. XML and DB2 for Linux, UNIX and Windows 623

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0604pradhan/

The following programming languages support the new XML data type:

� C or C++ (embedded SQL or DB2 CLI)
� COBOL
� Java (JDBC or SQLJ)
� C# and Visual Basic (DB2 .NET Data Provider)
� PHP

Java, DB2 CLI, or DB2 .NET Data Provider applications can use XML, binary, or character
application data types to store XML data in or fetch XML data from XML columns. Embedded
SQL applications can use XML, LOB or LOB_FILE application data types.

XML data can be passed to SQL and external procedures by including parameters of data
type XML in CREATE PROCEDURE parameter signatures. Existing procedure features
support the implementation of procedural logic flow around SQL statements that produce or
make use of XML values as well as the temporary storage of XML data values in variables.

The encoding of XML data can be derived from the data itself, which is known as internally
encoded data, or from external sources, which is known as externally encoded data. The
application data type that you use to exchange the XML data between the application and the
XML column determines how the encoding is derived.

XML data that is in character or graphic application data types is considered to be externally
encoded. Like character and graphic data, XML data that is in these data types is considered
to be encoded in the application code page. XML data that is in a binary application data type
or binary data that is in a character data type is considered to be internally encoded.

When you send externally encoded data to a DB2 database, the database manager checks
for internal encoding. The effective CCSID that is associated with the internal encoding must
match the external encoding. Otherwise, an error occurs. Therefore, it is important to avoid
unnecessary code page conversion in order to use XML efficiently and effectively.

C.8.1 Embedded SQL
To transmit XML data between the database server and an embedded SQL application, you
need to declare host variables in your application source code. In the declaration section of
the application, you can declare host variables as LOB data types. Table C-5 lists the
declarations you can use and the encoding implications.

Table C-5 XML host variables in embedded SQL applications

Declaration Base SQL Types
SQLTYPE

Encoding

SQL TYPE IS XML AS CLOB(n)
<hostvar_name>

SQL_TYP_CLOB Where <hostvar_name> is
a CLOB host variable that
contains XML data encoded
in the mixed codepage of
the application

SQL TYPE IS XML AS DBCLOB(n)
<hostvar_name>

SQL_TYP_DBCLOB Where <hostvar_name> is
a DBCLOB host variable
that contains XML data
encoded in the application
graphic codepage
624 Powering SOA with IBM Data Servers

Example C-28 shows a sample application that demonstrates how to reference XML host
variables in C.

Example: C-28 Sample embedded C application

EXEC SQL BEGIN DECLARE;
 SQL TYPE IS XML AS CLOB(10K) xmlBuf;
 SQL TYPE IS XML AS BLOB(10K) xmlblob;
 SQL TYPE IS CLOB(10K) clobBuf;
EXEC SQL END DECLARE SECTION;

// as XML AS CLOB
// The XML value written to xmlBuf will be prefixed by an XML declaration similar
// to: <?xml version = "1.0" encoding = "ISO-8859-1"?>
// Note: The encoding name will depend upon the application codepage
EXEC SQL SELECT xmlCol INTO :xmlBuf
 FROM myTable
 WHERE id = '001';
EXEC SQL UPDATE myTable
 SET xmlCol = :xmlBuf
 WHERE id = '001';

// as XML AS BLOB
// The XML value written to xmlblob will be prefixed by an XML declaration similar
// to: <?xml version = "1.0" encoding = "UTF-8"?>
EXEC SQL SELECT xmlCol INTO :xmlblob
 FROM myTable
 WHERE id = '001';
EXEC SQL UPDATE myTable
 SET xmlCol = :xmlblob
 WHERE id = '001';

// as CLOB
// The output will be encoded in the application character codepage,
// but will not contain an XML declaration
EXEC SQL SELECT XMLSERIALIZE (xmlCol AS CLOB(10K)) INTO :clobBuf
 FROM myTable

SQL TYPE IS XML AS BLOB(n)
<hostvar_name>

SQL_TYP_BLOB Where <hostvar_name> is
a BLOB host variable that
contains XML data
internally encoded

SQL TYPE IS XML AS CLOB_FILE
<hostvar_name>

SQL_TYP_CLOB_FILE Where <hostvar_name> is
a CLOB file that contains
XML data encoded in the
application mixed codepage

SQL TYPE IS XML AS DBCLOB_FILE
<hostvar_name>

SQL_TYP_DBCLOB_FILE Where <hostvar_name> is
a DBCLOB file that contains
XML data encoded in the
application graphic
codepage

SQL TYPE IS XML AS BLOB_FILE
<hostvar_name>

SQL_TYP_BLOB_FILE Where <hostvar_name> is
a BLOB file that contains
XML data internally
encoded
Appendix C. XML and DB2 for Linux, UNIX and Windows 625

 WHERE id = '001';
EXEC SQL UPDATE myTable
 SET xmlCol = XMLPARSE (:clobBuf PRESERVE WHITESPACE)
 WHERE id = '001';

Example C-29 shows a COBOL sample application which uses the XML data type.

Example: C-29 Sample embedded Cobol application

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 xmlBuf USAGE IS SQL TYPE IS XML as CLOB(5K).
 01 clobBuf USAGE IS SQL TYPE IS CLOB(5K).
 01 xmlblob USAGE IS SQL TYPE IS BLOB(5K).
EXEC SQL END DECLARE SECTION END-EXEC.

* as XML
EXEC SQL SELECT xmlCol INTO :xmlBuf
 FROM myTable
 WHERE id = '001'.
EXEC SQL UPDATE myTable
 SET xmlCol = :xmlBuf
 WHERE id = '001'.

* as BLOB
EXEC SQL SELECT xmlCol INTO :xmlblob
 FROM myTable
 WHERE id = '001'.
EXEC SQL UPDATE myTable
 SET xmlCol = :xmlblob
 WHERE id = '001'.

* as CLOB
EXEC SQL SELECT XMLSERIALIZE(xmlCol AS CLOB(10K)) INTO :clobBuf
 FROM myTable
 WHERE id= '001'.
EXEC SQL UPDATE myTable
 SET xmlCol = XMLPARSE(:clobBuf) PRESERVE WHITESPACE
 WHERE id = '001'.

C.8.2 JDBC or SQLJ
Currently there is no standardized XML data type in JDBC. For Java applications, you can
use the com.ibm.db2.jcc.DB2Xml DB2 proprietary data type for XML columns and
parameters, and invoke one of the getDB2Xmlxxx methods from the com.ibm.db2.jcc.DB2Xml
interface to retrieve the XML data. Table C-6 shows the list of getDB2Xmlxxx methods.

Table C-6 DB2Xml methods, data types, and added encoding specifications

Method Output
data type

Type of XML internal encoding
declaration added

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None
626 Powering SOA with IBM Data Servers

Example C-30 shows a JDBC application that reads XML data from file c6.xml as binary
data, and insert the data into an XML column.

Example: C-30 Sample JDBC code that reads and insert XML data

PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;
sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File("c6.xml");
insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
insertStmt.executeUpdate();

C.8.3 ODBC/CLI
A new XML type SQL_XML is now available. This data type corresponds to the native XML
data type of the DB2 database, which is used to define columns that store well-formed XML
documents. DB2 will avoid unnecessary code page conversion for data that is defined as
XML data type. The SQL_XML type can be bound to the following C types: SQL_C_BINARY,
SQL_C_CHAR, SQL_C_WCHAR, and SQL_C_DBCHAR. Using the default
SQL_C_BINARY type, however, instead of character types, is recommended to avoid
possible data loss or corruption resulting from code page conversion when character types
are used. Example C-31 shows how to update XML data in an XML column using the
recommended SQL_C_BINARY type.

Example: C-31 Updating XML data in an XML column

char xmlBuffer[10240];
integer length;

// Assume a table named dept has been created with the following statement:
// CREATE TABLE dept (id CHAR(8), deptdoc XML)

// xmlBuffer contains an internally encoded XML document that is to replace
// the existing XML document
length = strlen (xmlBuffer);
SQLPrepare (hStmt, "UPDATE dept SET deptdoc = ? WHERE id = '001'", SQL_NTS);
SQLBindParameter (hStmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_XML, 0, 0,
 xmlBuffer, 10240, &length);

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream
targetEncoding parameter

DB2Xml.getDB2XmlBytes byte[] Specified by getDB2XmlBytes
targetEncoding parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2
Appendix C. XML and DB2 for Linux, UNIX and Windows 627

SQLExecute (hStmt);

C.8.4 .NET
New DB2Xml class is added to DB2 .NET provider to encapsulate the XML column type.
DB2DataReader.Getxxx methods can be used to retrieve the Xml data from the column. See
the list of Getxxx methods in Table C-7.

Table C-7 DB2 .NET provider Getxxx methods to retrieve XML data

Example C-32 shows an example of an application using the .NET interface to retrieve XML
data.

Example: C-32 Retrieving XML data with .NET

DB2Command cmd = DB2Connection.CreateCommand();
cmd.CommandText = "select deptdoc from dept";
cmd.CommandType = CommandType.Text;
DB2DataReader dr = cmd.Execute();
dr.Read();
// retrieve XML column as an XML reader
XmlReader xml0 = dr.GetXmlReader(0);

C.8.5 PHP
PHP stands for Hypertext Preprocessor (PHP). See also Chapter 16, “PHP client design” on
page 507. The ibm_db2 is an extension written, maintained, and supported by IBM for
accesses to DB2 databases. You can also connect to IBM data servers via the following PHP
drivers (including the ibm_db2 extension):

� Unified ODBC (ext/odbc): Support all IBM data servers

� Extension for DB2 (ibm_db2): support IBM DB2 on all platforms

Method Description

GetXml Return an internal representation of an XML column (DB2Xml). The
resulting type cannot be processed directly by an application, it can
only be passed back to DB2 in places where an input variable of
type XML is required (for example, an insert statement, procedure
CALL).

GetString Return a string representing the contents of an XML column. There
will be no encoding attribute in the document, it will be in Unicode
(UTF-16).

GetBytes Return a byte array representing the contents of an XML column.
There will be no encoding attribute in the document, it will be in
Unicode.

GetStream Return a Stream object representing the contents of an XML
column. There will be no encoding attribute in the document, it will
be in Unicode

GetXmlReader Return an XmlReader for the specified column (column must be of
character, binary or XML type).
Note: For a character column, there must be no encoding attribute,
or it must match the server codepage, and it will be removed during
codepage conversion on the client.
628 Powering SOA with IBM Data Servers

� PHP Data Objects(PDO): supports all IBM data servers

In this redbook we discussed PHP in detail in Chapter 16, “PHP client design” on page 507.
Please read Chapter 16 for detailed information about how to implement Web services with
PHP.

C.9 Create and register an XML schema using Developer
Workbench

You have already learned that in DB2 V9 for Linux, UNIX and Windows, Developer
Workbench replaces DB2 V8’s Development Center in 5.1, “DB2 Developer Workbench” on
page 104. You have also seen how to create a stored procedure in Developer Workbench just
like in Development Center in DB2 V8.

Now, we will show you how to create and register an XML schema on DB2 with Developer
Workbench. This is part of the new XML support provided by DB2 V9.1 for Linux, UNIX and
Windows. We will also show how to perform XML document validation in Developer
Workbench. You should have the following ready before you proceed:

You must install and configure the a UTF-8 database. If you have already created the XMLDB
database in Appendix C.2, “Using the native XML data store in DB2 V9.1 for Linux, UNIX and
Windows” on page 596, then you may skip this step. Otherwise, from the DB2 Command Line
Processor, run the following command:

CREATE DATABASE xmldb USING CODESET UTF-8 TERRITORY US

The name of the database is XMLDB. The territory identifier shows the code that is used by the
database manager internally to provide region-specific support. All territory codes are
supported. In the command above, the territory identifier is the United States. In order to
create the database, you must have SYSADM or SYSCTRL authorization.

1. Creating a connection to the XMLDB database

The workbench provides wizards that make it easy for you to connect to both DB2 and
non-DB2 databases and to display the status of your connections. The New Connection
wizard creates a connection to a database that is displayed in the Database Explorer
view. Using the view, you have the option to create a DB2 database connection. For the
purposes of this tutorial you will connect to the XMLDB database.

 To create a connection to the XMLDB database:

a. In the Database Explorer view, right-click the Connections → New Connection. The
New Connection wizard opens.
Appendix C. XML and DB2 for Linux, UNIX and Windows 629

Figure C-15 Creating a new database connection in Developer Workbench

b. In the Database field, type XMLDB.

c. Select the DB2 UDB database manager that matches the DB2 server that manages
the XMLDB database.

d. You must connect via a JCC driver 3.0 or greater.

e. Specify the user ID and password that you want to connect with, and then click Finish.
630 Powering SOA with IBM Data Servers

Figure C-16 New Connection wizard

2. Creating a project for XML schema development

Before you create database objects, you must create a Data Development project.

a. From the menu bar, select File → New → Data Development Project. The New Data
Development Project wizard opens.

b. In the Project name field, type XMLSchema.
Appendix C. XML and DB2 for Linux, UNIX and Windows 631

Figure C-17 New Data Development Project

c. Click Next.

d. Under Use an existing connection, select XMLDB and browse its properties to
confirm that this is the correct database.
632 Powering SOA with IBM Data Servers

Figure C-18 New XMLDB connection properties

e. Click Finish. The new project is displayed in the Data Project Explorer view.
Appendix C. XML and DB2 for Linux, UNIX and Windows 633

Figure C-19 XMLSchema project in the Data Project Explorer

3. Creating an XML schema document

Now you will use the XSD editor to create an XML document for your XML schema. The
XML document is used to define the XML schema. XML schemas must contain one or
more XML schema documents. To create an XML schema document:

a. In the File menu, select New → Other. The New wizard opens.

b. Expand the XML folder. and select XML Schema.

c. Click Next. The Create XML Schema wizard opens.

d. Select the XMLSchema project.

e. In the File name field, type employee.xsd.
634 Powering SOA with IBM Data Servers

Figure C-20 XML Schema wizard

f. Click Finish to create the XML schema. The XSD editor opens.

g. In the XSD editor, replace any existing XML with the following XML as shown in
Example C-33.

Example: C-33 Creating an XML document for XML schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.ibm.com/tutorialemployee"
 elementFormDefault="qualified">
 <xs:element name="employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="lastName" type="xs:string"/>
 <xs:element name="firstName" type="xs:string"/>
 <xs:element name="hireDate" type="xs:date"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

h. In the File menu, select Save.
Appendix C. XML and DB2 for Linux, UNIX and Windows 635

Figure C-21 XSD Editor

4. Registering the XML schema

By using the Register an XML Schema wizard, you can register an XML schema to the
DB2 database server. The XML schema will be used to validate XML column data by
using the Table editor. To register the XML schema:

a. In the Data Project Explorer view, right-click the employee XML schema document, and
select Register an XML Schema. The Register an XML Schema wizard opens.

b. In the Relational schema name field, type MyRelationalSchema.

c. In the XML schema name field, type MyXMLSchema.
636 Powering SOA with IBM Data Servers

Figure C-22 Register an XML Schema wizard

d. Click Next. You should see the employee XML schema document in the XML schema
documents and dependencies list.

Figure C-23 Continuing with Registering the employee XML schema

e. Click Finish to register the XML schema.

5. Using the XML schema to validate XML column data

You can use the XML schema to validate XML column data. To use the XML schema for
validation:
Appendix C. XML and DB2 for Linux, UNIX and Windows 637

a. In the Data Project Explorer, right-click the SQL Scripts folder, and select New → SQL
Statement. The New SQL Statement wizard opens.

Figure C-24 Accessing the New SQL Statement wizard

b. Click Next.

c. In the Statement name field, type createEmployeeTable.

d. Select SQL editor.

e. In the Statement template field, select None.

Figure C-25 New SQL Statement wizard

f. Click Finish. The SQL editor opens.
638 Powering SOA with IBM Data Servers

g. In the SQL editor, create a table that contains employee information as an XML value.
Copy and paste the following SQL statement into the editor:

CREATE TABLE XMLSCHEMANAME.EMPLOYEETABLE (employee XML NOT NULL)

h. From the menu bar, select File → Save.

i. In the SQL editor, right-click createEmployeeTable.sql and select Run SQL. You can
view the results in the Data Output view.

Figure C-26 Running a SQL in Developer Workbench

j. In the Database Explorer view, expand the XMLDB connection and navigate to the
XMLSCHEMANAME.EMPLOYEETABLE table.

k. Right-click the XMLSCHEMANAME.EMPLOYEETABLE table, and select Data → Edit. The
Table editor opens.

Tip: If you do not see the XMLSCHEMANAME.EMPLOYEETABLE table, right-click the
XMLSCHEMANAME → Refresh.
Appendix C. XML and DB2 for Linux, UNIX and Windows 639

Figure C-27 Accessing Table Editor

l. Click the ellipsis [...] button. The XML Cell editor opens.

m. Copy and paste the following XML:

<employee xmlns="http://www.ibm.com/tutorialemployee" id="100">
<lastName>Smith</lastName>
<firstName>Jane</firstName>
<hireDate>2005-12-01</hireDate>
</employee>

n. Select Validate XML document.

o. Click Next.
640 Powering SOA with IBM Data Servers

Figure C-28 XML Cell Editor

p. Select Specify a registered XML schema, and select
MyRelationalSchema.MyXMLSchema.
Appendix C. XML and DB2 for Linux, UNIX and Windows 641

Figure C-29 Setting up validation for XML document

q. Click Finish.

r. From the menu bar, select File → Save.

s. You can view the messages and results in the Data Output view to confirm that data
has been inserted successfully.
642 Powering SOA with IBM Data Servers

Figure C-30 Developer Workbench showing one row of XML data

t. Repeat step m to r, this time insert a second row of XML data into the
XMLSCHEMANAME.EMPLOYEETABLE:

<employee xmlns="http://www.ibm.com/tutorialemployee" id="101">
<firstName>John</firstName>
<lastName>Doe</lastName>
<hireDate>2006-01-01</hireDate>
</employee>

Notice how we reversed the order of firstName and lastName element in this case
(compare with step m). This resulted in an error as shown at the bottom right hand
corner of the Developer Workbench. This is because we have previously defined
lastName, firstName and hireDate elements in a sequence, thus the sequential order
of the elements cannot be changed. Since the XML document is not valid, an error
occurred and is displayed in the Data Output view.
Appendix C. XML and DB2 for Linux, UNIX and Windows 643

Figure C-31 Error due to an invalid XML document

To summarize what we have done in this section C.9, “Create and register an XML schema
using Developer Workbench”:

� You have just connected to the XMLDB database and created a Data Development
project to work with the database.

� You use the XSD editor to create an XML document for your XML schema

� You registered the XML schema, and you have also used the XML schema to validate
XML column data in Developer Workbench.

C.10 Restrictions on native XML store
The native XML data store adheres to some key restrictions. For detailed restrictions, refer to
the documentation for a specific feature.

Restrictions on XML column definitions
XML columns can only be defined in a table of a database defined with the UTF-8 code set.
The XML document stored in an XML column must be well-formed. While there is no
architectural limit on the size of an XML value stored in the database, serialized XML data
that is exchanged with the database is limited to 2 GB.

XML columns:

� Cannot be included as columns of keys, including primary, foreign, and unique keys,
dimension keys of multi-dimensional clustering (MDC) tables, sequence keys of
range-clustered tables, distribution keys, and data partitioning keys.

� Cannot be part of any index except an index over XML data

� Cannot have a default value specified by the WITH DEFAULT clause; if the column is
nullable, the default for the column is NULL

� Cannot be used in a range-clustered table

� Cannot be used in a multi-dimensional clustering (MDC) table

� Cannot be used in a table with a distribution key

� Cannot be used in a table partitioned by range

� Cannot be included in typed tables and typed views
644 Powering SOA with IBM Data Servers

� Cannot be added to tables that have type-1 indexes defined on them (note that type-1
indexes are deprecated indexes; new indexes since DB2 UDB Version 8.1 are created as
type-2 indexes)

� Cannot be referenced in CHECK constraints (except for a VALIDATED predicate)

� Cannot be referenced in generated columns

� Cannot be referenced in the triggered-action of a CREATE TRIGGER statement

� Cannot be specified in the select-list of scrollable cursors

� Cause data blocking to be disabled when retrieving XML data

Restrictions on database partitions
� The use of any features of the native XML data store will prevent future use of the

Database Partitioning Feature available with DB2 Enterprise Server Edition.

� An XML column or XML schema repository (XSR) object cannot be defined in a table of a
database with more than one database partition defined.

� If a database is defined with a single database partition and includes XML columns or
XSR objects, then a new database partition cannot be added.

Restrictions on utilities
Loading data into tables containing XML columns using the load utility is not supported. Data
movement of XML data should be performed using the import and export utilities.

C.11 XML schema for the DADX file
Here is the complete dadx.xsd file that describes the DADX schema.

Example: C-34 dadx.xsd describes the DADX schema

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://schemas.ibm.com/db2/dxx/dadx"
xmlns:dadx="http://schemas.ibm.com/db2/dxx/dadx"
xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" xml:lang="en">
<annotation>
<documentation>
A Document Accession Definition Extension (DADX)
document defines a Web Service
that is implemented by operations that
access a relational database and that optionally use
stored procedures, types and functions provided
by the DB2 XML Extender.
</documentation>
</annotation>
<element name="DADX">
<annotation>
<documentation>
Defines a Web Service.
The Web Service is described by an optional
WSDL documentation element.
The Web Service may implement a set of WSDL
bindings defined elsewhere.
The Web Service consists of one or more
Appendix C. XML and DB2 for Linux, UNIX and Windows 645

uniquely named operations.
</documentation>
</annotation>
--
<complexType>
<sequence>
<element ref="dadx:documentation"
minOccurs="0" maxOccurs="unbounded"/>
<choice>
<element ref="dadx:DQS"
minOccurs="0"/>
<sequence>
<element ref="dadx:implements" minOccurs="0"/>
<element ref="dadx:result_set_metadata"
minOccurs="0" maxOccurs="unbounded"/>
<element ref="dadx:operation"
maxOccurs="unbounded"/>
</sequence>
</choice>
</sequence>
</complexType>
<key name="result_set_metadataNames">
<selector xpath="dadx:result_set_metadata"/>
<field xpath="@name"/>
</key>
<keyref name="resultSetMetatdata"
refer="dadx:result_set_metadataNames">
<selector xpath="dadx:operation/dadx:call/dadx:result_set"/>
<field xpath="@metadata"/>
</keyref>
<unique name="operationNames">
<selector xpath="dadx:operation"/>
<field xpath="@name"/>
</unique>
</element>
--
<element name="DQS">
<annotation>
<documentation>
Defines the DQS tag.
</documentation>
</annotation>
<complexType/>
</element>
--
<element name="documentation">
<annotation>
<documentation>
Defines WSDL documentation for the Web service or an operation.
</documentation>
</annotation>
<complexType mixed="true">
<choice minOccurs="0" maxOccurs="unbounded">
<any minOccurs="0" maxOccurs="unbounded"/>
</choice>
646 Powering SOA with IBM Data Servers

<anyAttribute/>
</complexType>
</element>
--
<element name="implements">
<annotation>
<documentation>
Defines the namespace and location of a set of WSDL bindings
defined elsewhere. This information is imported into the
WSDL document generated for this Web Service.
</documentation>
</annotation>
<complexType>
<attribute name="namespace"
type="anyURI" use="required"/>
<attribute name="location"
type="anyURI" use="required"/>
</complexType>
</element>
--
<element name="result_set_metadata">
<annotation>
<documentation>
Defines the metadata for a result set returned
by a stored procedure.
Each metadata element defines a global element
in the WSDL for the Web Service.
The metatdata name defines the name of its global element.
The metadata rowName defines the element name of each row.
The metadata contains one or more column definitions.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="dadx:column"
maxOccurs="unbounded"/>
</sequence>
<attribute name="name"
type="NCName"
use="required"/>
<attribute name="rowName"
type="NCName"
use="required"/>
</complexType>
</element>
--
<element name="column">
<annotation>
<documentation>
Defines the metadata for a column of a result set
returned by a stored procedure.
The column name, type, and nullability must match the values
returned by the JDBC result set metadata at runtime.
A column is considered to be nullable unless it is explicitly
defined to not accept nulls.
Appendix C. XML and DB2 for Linux, UNIX and Windows 647

If the "nullable" attribute is absent then
the column is considered to not be nullable.
The element name associated with the column isdefined
by the value of the "as" attribute if present,
or the column name otherwise.
The element may contain an XML document, in which case
it must have an "element" attribute that
defines the XML Schema name
of its root element.
</documentation>
</annotation>
<complexType>
<attribute name="name"
type="string"
use="required"/>
<attribute name="type"
type="dadx:columnType"
use="required"/>
<attribute name="nullable"
type="boolean"/>
<attribute name="as"
type="string"/>
<attribute name="element"
type="QName"/>
</complexType>
</element>
--
<simpleType name="columnType">
<restriction base="string">
<enumeration value="BIGINT"/>
<enumeration value="CHAR"/>
<enumeration value="CLOB"/>
<enumeration value="DATE"/>
<enumeration value="DECIMAL"/>
<enumeration value="DOUBLE"/>
<enumeration value="FLOAT"/>
<enumeration value="INTEGER"/>
<enumeration value="NUMERIC"/>
<enumeration value="REAL"/>
<enumeration value="SMALLINT"/>
<enumeration value="TIME"/>
<enumeration value="TIMESTAMP"/>
<enumeration value="TINYINT"/>
<enumeration value="VARCHAR"/>
</restriction>
</simpleType>
--
<element name="operation">
<annotation>
<documentation>
Defines an operation of the Web Service.
Each operation has a unique name and is
optionally described
by WSDL documentation.
An operation is defined using one of the
648 Powering SOA with IBM Data Servers

supported operators.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="dadx:documentation"
minOccurs="0"/>
<choice>
<element ref="dadx:retrieveXML"/>
<element ref="dadx:storeXML"/>
<element ref="dadx:query"/>
<element ref="dadx:update"/>
<element ref="dadx:call"/>
</choice>
</sequence>
<attribute name="name"
type="NCName"
use="required"/>
</complexType>
</element>
--
<element name="retrieveXML">
<annotation>
<documentation>
Retrieves a set of XML documents by composing
them from relational data.
This operator requires the DB2 XML Extender.
The mapping from relational data to XML is defined by a
Document Access Definition (DAD) which can be specified
by refering to either a resource file or the name
of an XML Collection
that has been previously enabled in the database.
The DAD must define an XML Collection and can use
either SQL
or RDB mapping. The DAD behavior may be modified by
an override.
If no override is desired, the no_override element
must be used.
Otherwise, the SQL_override element must be used
for SQL mapping and the
XML_override element must be used for RDB mapping.
In either case, the
override string may contain input parameters using
the host variable syntax.
The name and type of all parameters must be defined in a list of
parameter elements that are uniquely named within this operation.
</documentation>
</annotation>
<complexType>
<sequence>
<choice>
<element ref="dadx:DAD_ref"/>
<element ref="dadx:collection_name"/>
</choice>
<choice>
Appendix C. XML and DB2 for Linux, UNIX and Windows 649

<element name="no_override">
<complexType/>
</element>
<element name="SQL_override"
type="string"/>
<element name="XML_override"
type="string"/>
</choice>
<element ref="dadx:parameter"
minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
</complexType>
<unique name="retrieveXmlParameterNames">
<selector xpath="dadx:parameter"/>
<field xpath="@name"/>
</unique>
</element>
--
<element name="storeXML">
<annotation>
<documentation>
Stores an XML document by decomposing it into relational data.
This operator requires the DB2 XML Extender.
The mapping from relational data to XML is defined by a
Document Access Definition (DAD) which can be specified
by refering to either a resource file or the name of
an XML Collection
that has been previously enabled in the database.
The DAD must define an XML Collection and
must use RDB mapping.
</documentation>
</annotation>
<complexType>
<choice>
<element ref="dadx:DAD_ref"/>
<element ref="dadx:collection_name"/>
</choice>
</complexType>
</element>
--
<element name="query">
<annotation>
<documentation>
Retrieves a set of relational data using an
SQL SELECT statement.
The result set must consist of uniquely named columns.
If any result set column contains XML documents,
the XML document type must be
defined using an XML_result element.
The statement may contain input parameters using
the host variable syntax.
The input parameters must be defined by a list of
parameter elements that are
uniquely named within this operation.
650 Powering SOA with IBM Data Servers

</documentation>
</annotation>
<complexType>
<sequence>
<element name="SQL_query"
type="string"/>
<element ref="dadx:XML_result"
minOccurs="0"
maxOccurs="unbounded"/>
<element ref="dadx:parameter"
minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
</complexType>
<unique name="XML_resultNames">
<selector xpath="dadx:XML_result"/>
<field xpath="@name"/>
</unique>
<unique name="queryParameterNames">
<selector xpath="dadx:parameter"/>
<field xpath="@name"/>
</unique>
</element>
--
<element name="update">
<annotation>
<documentation>
Updates a relational table using an SQL INSERT,
UPDATE, or DELETE statement and
reports the number of rows affected.
The statement may contain input parameters
using the host variable syntax.
The input parameters must be defined by a list of
parameter elements that are
uniquely named within this operation.
</documentation>
</annotation>
<complexType>
<sequence>
<element name="SQL_update"
type="string"/>
<element ref="dadx:parameter"
minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
</complexType>
<unique name="updateParameterNames">
<selector xpath="dadx:parameter"/>
<field xpath="@name"/>
</unique>
</element>
--
<element name="call">
<annotation>
<documentation>
Appendix C. XML and DB2 for Linux, UNIX and Windows 651

Calls a stored procedure.
The call statement contains in, out, and
in/out parameters using host variable syntax.
The parameters are defined by a list of parameter
elements that are uniquely named
within the operation.
</documentation>
</annotation>
<complexType>
<sequence>
<element name="SQL_call"
type="string"/>
<element ref="dadx:parameter"
minOccurs="0"
maxOccurs="unbounded"/>
<element ref="dadx:result_set"
minOccurs="0"
maxOccurs="unbounded"/>
</sequence>
</complexType>
<unique name="callParameterNames">
<selector xpath="dadx:parameter"/>
<field xpath="@name"/>
</unique>
<unique name="callResultSetNames">
<selector xpath="dadx:result_set"/>
<field xpath="@name"/>
</unique>
</element>
--
<element name="result_set">
<annotation>
<documentation>
Defines a result set.
The name defines the element name of the result
set and becomes part of the output message.
The metatdata name refers to a result set metadata
element defined in the same document.
</documentation>
</annotation>
<complexType>
<attribute name="name"
type="NCName" use="required"/>
<attribute name="metadata"
type="NCName" use="required"/>
</complexType>
</element>
<element name="DAD_ref"
type="string"/>
<element name="collection_name"
type="string"/>
--
<element name="parameter">
<annotation>
<documentation>
652 Powering SOA with IBM Data Servers

Defines a named parameter. A parameter
must have it contents defined either by
an XML Schema element or type, but not both.
The parameter kind in one of in,
out, or in/out, with in being the default.
</documentation>
</annotation>
<complexType>
<attribute name="name"
type="NCName"
use="required"/>
<attribute name="element"
type="QName"/>
<attribute name="type"
type="QName"/>
<attribute name="kind"
type="dadx:parameterKindType"
default="in"/>
</complexType>
</element>
<simpleType name="parameterKindType">
<restriction base="string">
<enumeration value="in"/>
<enumeration value="out"/>
<enumeration value="in/out"/>
</restriction>
</simpleType>
--
<element name="XML_result">
<annotation>
<documentation>
Defines a named column that contains XML documents.
The document type
must be defined by the XML Schema element
of its root.
</documentation>
</annotation>
<complexType>
<attribute name="name"
type="NCName"
use="required"/>
<attribute name="element"
type="QName"
use="required"/>
</complexType>
</element>
</schema>

C.12 Syntax of the DADX file
In Figure C-32, the numbers next to the nodes and elements in DADX syntax definitions
identify the child groupings. The numbering scheme expresses the XML document hierarchy.
For example, when the identifiers change from 1.3 (result_set_metadata) to 1.3.1 (column),
Appendix C. XML and DB2 for Linux, UNIX and Windows 653

this means that the column is a child of result_set_metadata. A change from 1.1
(documentation) to 1.2 (implements) means that these elements are siblings.

Figure C-32 Syntax of the DADX file

0. Root element: <DADX>

Attributes:

xmlns:dadx

The namespace of the DADX.

xmlns:xsd

The namespace of the Extensible Markup Language (XML) Schema specification

Children:

0.1 <documentation>

Specifies a comment or statement about the purpose and content of the Web
service. You can use XHTML tags.

1. DADX functions that specify non-dynamic operations

1.2 <implements>

Specifies the namespace and location of the Web service description files. It allows the
service implementer to declare that the DADX Web service implements a standard Web
service described by a reusable WSDL document defined elsewhere; for example, in an
UDDI registry.

1.3 <result_set_metadata>
654 Powering SOA with IBM Data Servers

Stored procedures can return one or more result sets. You can include them in the output
message. Metadata for a stored procedure result set must be defined explicitly in the
non-dynamic DADX using the <result_set_metadata> element. At run-time, you obtain the
metadata of the result set. The metadata must match the definition contained in the DADX
file.

This restriction is necessary in order to have a well-defined WSDL file for the Web
Service. A single result set metadata definition can be referenced by several <call>
operations, using the <result_set> element. The result set metadata definitions are global
to the DADX and must precede all of the operation definition elements.

Attributes:

name

Identifies the root element for the result set.

rowname

Used as the element name for each row of the result set.

Children:

1.3.1 <column>

Defines the column. The order of the columns must match that of the result set
returned by the stored procedure. Each column has a name, type, and nullability,
which must match the result set.

Attributes:

name

Required. This specifies the name of the column.

type

Required if you do not specify element. It specifies the type of column.

element

Required if you do not specify type. It specifies the element of column.

as

Optional. This provides a name for a column.

nullable

Optional. Nullable is either true or false. It indicates whether column values can be null.

1.4 <operation>

Specifies a Web service operation. The operation element and its children specify the
name of an operation, and the type of operation the Web service performs. Web services
can compose an XML document, query the database, or call a stored procedure. A single
DADX file can contain multiple operations on a single database or location. The following
list describes these elements.

– Attribute:

name

A unique string that identifies the operation. The string must be unique within the
DADX file. For example: "findByColorAndMinPrice"

– Children:

Note: You can only invoke stored procedures that have result sets with fixed metadata.
Appendix C. XML and DB2 for Linux, UNIX and Windows 655

Document the operation with the following element:

1.4.1 <dadx:documentation>

Specifies a comment or statement about the purpose and content of the operation. You
can use XHTML tags.

1.4.2 <retrieveXML>

This element specifies to generate zero or one XML documents from a set of relational
tables when using the XML collection access method. Depending on whether you
specify a DAD file or an XML collection name, the operation calls the appropriate XML
Extender composition stored procedure.

Children:

• Specify which of these stored procedures you want to use. You do this by passing
either the name of a DAD file, or the name of the collection by using one of the
following elements:

1.4.2.1 <DAD_ref>

The content of this element is the name and path of a DAD file. If you specify a
relative path for the DAD file, then the application assumes that the current working
directory is the group directory.

1.4.2.2 <collection_name>

The content of this element is the name of the XML collection. You define
collections by using the XML Extender administration interfaces, as described in
DB2 XML Extender Administration and Programming.

• Specify override values with one of the following elements:

1.4.2.3 <no_override/>

Specifies that the values in the DAD file are not overridden. Required if you do not
specify either <SQL_override> or <XML_override>.

1.4.2.4 <SQL_override>

Specifies to override the SQL statement in a DAD file that uses SQL mapping.

1.4.2.5 <XML_override>

Specifies to override the XML conditions in a DAD file that uses RDB mapping.

• Define parameters by using the following element:

1.4.2.6 <parameter>

Required when referencing a parameter in an <SQL_override> or an
<XML_override> element. This element specifies a parameter for an operation. Use
a separate parameter element for each parameter referenced in the operation.
Each parameter name must be unique within the operation. A parameter must have
its contents defined by either an XML Schema element (a complex type) or a simple
type.

Attributes:

name

 The unique name of the parameter.

element

Use the "element" attribute to specify an XML Schema element.

type

Use the "type" attribute to specify a simple type.
656 Powering SOA with IBM Data Servers

kind

Specifies whether a parameter passes input data, returns output data, or does both.
The valid values for this attribute are:

 in

1.4.3 <storeXML>

This element specifies to store (decompose) an XML document in a set of relational
tables using the XML collection access method. Depending on whether you specify
a DAD file or an XML collection name, the operation calls the appropriate XML
Extender decomposition stored procedure.

Children:

Specify which of these stored procedures you want to use. You do this by passing
either the name of a DAD file, or the name of the collection by using one of the
following elements:

1.4.3.1 <DAD_ref>

The content of this element is the name and path of a DAD file. If you specify a
relative path for the DAD file, the application assumes that the current working
directory is the group directory.

1.4.3.2 <collection_name>

The content of this element is the name of an XML collection. You define collections
by using the XML Extender administration interfaces, as described in DB2 XML
Extender Administration and Programming.

1.4.4 <query>

Specifies a query operation. You define the operation by using an SQL SELECT
statement in the <SQL_select> element. The statement can have zero or more named
input parameters. If the statement has input parameters then each parameter is
described by a <parameter> element.

This operation maps each database column from the result set to a corresponding
XML element. You can specify XML Extender user-defined types (UDTs) in the
<query> operation. However, this requires an <XML_result> element and a supporting
document type definition (DTD) that defines the type of the XML column queried.

Children:

1.4.4.1 <SQL_query>

Specifies an SQL SELECT statement.

1.4.4.2 <XML_result>

Optional. This defines a named column that contains XML documents. The XML
Schema element of its root must define the document type.

Attributes:

name

Specifies the root element of the XML document stored in the column.

element

Specifies the particular element within the column

1.4.4.3 <parameter>

Required when referencing a parameter in the <SQL_query> element. It specifies a
parameter for an operation. Use a separate parameter element for each parameter
referenced in the operation. Each parameter name must be unique within the
Appendix C. XML and DB2 for Linux, UNIX and Windows 657

operation. A parameter must have its contents defined by one of the following: an
XML Schema element (a complex type) or a simple type.

Attributes:

name

The unique name of the parameter.

element

Use the "element" attribute to specify an XML Schema element.

type

Use the "type" attribute to specify a simple type.

kind

Specifies whether a parameter passes input data, returns output data, or does both.
The valid values for this attribute are:

 in

1.4.5 <update>

The operation is defined by an SQL INSERT, DELETE, or UPDATE statement in the
<SQL_update> element. The statement can have zero or more named input
parameters. If the statement has input parameters then each parameter is described
by a <parameter> element.

Children:

1.4.5.1 <SQL_update>

This specifies an SQL INSERT, UPDATE, or DELETE statement.

1.4.5.2 <parameter>

Required when referencing a parameter in the <SQL_update> element. It specifies
a parameter for an operation. Use a separate parameter element for each
parameter referenced in the operation. Each parameter name must be unique with
the operation. A parameter must have its contents defined by one of the following:
an XML Schema element (a complex type) or a simple type.

Attributes:

name

The unique name of the parameter.

element

Use the "element" attribute to specify an XML Schema element.

type

Use the "type" attribute to specify a simple type.

kind

Specifies whether a parameter passes input data, returns output data, or does both.
The valid values for this attribute are:

 in

1.4.6 <call>

Specifies a call to a stored procedure. The processing is similar to the update
operation, but the parameters for the call operation can be defined as 'in', 'out', or
'in/out'. The default parameter kind is 'in'. The 'out' and 'in/out' parameters appear in
the output message.
658 Powering SOA with IBM Data Servers

1.4.6.1 <SQL_call>

Specifies a stored procedure call.

1.4.6.2 <parameter>

Required when referencing a parameter in an <SQL_call> element. This specifies a
parameter for an operation. Use a separate parameter element for each parameter
referenced in the operation. Each parameter name must be unique within the
operation. A parameter must have its contents defined by one of the following: an
XML Schema element (a complex type) or a simple type.

Attributes:

name

The unique name of the parameter.

element

Use the "element" attribute to specify an XML Schema element.

type

Use the "type" attribute to specify a simple type.

kind

Specifies whether a parameter passes input data, returns output data, or does both.
The valid values for this attribute are:

 in

 out

 in/out

1.4.6.3 <result_set>

This defines a result set and must follow any <parameter> elements. The result set
element has a name which must be unique among all the parameters and result
sets of the operation. It must refer to a <result_set_metadata> element. One
<result_set> element must be defined for each result set returned from the stored
procedure.

Attributes:

name

A unique identifier for the result sets in the SOAP response.

metadata

A result set metadata definition in the DADX file. The identifier must refer to the
name of an element.

2. <DQS>

Dynamic query services.

C.13 Dynamic query service operations in the Web services
provider

Table C-8 describes supported dynamic query operations in the DB2 Web services provider.
Appendix C. XML and DB2 for Linux, UNIX and Windows 659

Table C-8 Operations for metadata retrieval

Table C-9 shows the operations to run queries.

Table C-9 Operations to run queries and stored procedures

Web service operation Description

getTables

tablesInputParameter
input; type = tablesInputData (See Table C-12)
tablesOutputParameter
output; type = db2WebRowSet

Retrieves a description of the tables in the
specified catalog and schema, such as the
name of the catalog, the name of the schema,
and the name of the table. If you use schema
as an input parameter, the Java database
connectivity might require case sensitivity for
schema.

getColumns

columnsInputParameter
input; type = columnsInputData (see Table C-13)
columnsOutputParameter
output; type = db2WebRowSet

Retrieves a description of the columns in the
specified catalog, schema, and table. If you
use schema as an input parameter, the Java
database connectivity might require case
sensitivity for schema.

Operations Description

executeQuery

queryInputParameter
required input; type = string
extendedInputParameter
required input; type = properties (See Table C-10)
queryOutputParameter
output; type = db2WebRowSet

Issues a single SQL SELECT statement on
the database server and returns a single result
set.

executeUpdate

queryInputParameter
required input; type = string
extendedInputParameter
required input; type = properties (See Table C-10)
updateOutputParameter
output; type = int

Issues a single INSERT, UPDATE, DELETE
statement on the database server and returns
a completion code.

executeCall

callInputParameter
input; type = callInputData
extendedInputParameter
input; type = properties (See Table C-10)
callOutputParameter
output; type = callOutputData

Calls a single stored procedure on the
database server and returns a set of output
parameters and a sequence of result sets.

execute

queryInputParameter
required input; type = string
extendedInputParameter
required input; type = properties (See Table C-10)
executeOutputParameter
output; type = executeOutputData

Issues a single SQL statement on the
database server and returns a completion
code and a sequence of result sets.
660 Powering SOA with IBM Data Servers

Table C-10 shows the input data types for the extended parameters.

Table C-10 Input data types for the extended parameters

Table C-11 on page 661 shows the input data types for callInputParameter.

Table C-11 Input data types for callInputParameter

Properties type Description

loginInfo
(userid and
password)

The loginInfo includes the user ID that is passed to the database for
access control. It also includes the password that is associated with the
user ID that is passed to the database for access control. These properties
have a type of string. If you specify a user ID, then you must specify a
password.

readOnly Allows the Web application to specify that it will use the database for
read-only purposes. This is a binary type and can be either true or false.

escapeProcessing Allows the Web application to control escape processing on the query
string. If escape scanning is enabled (true), the driver performs escape
substitution before it sends the SQL to the database. This is a binary type
and can be either true or false. The default value is true.

fetchSize Specifies the number of rows to be fetched back to the Web application on
any given fetch operation. This is type integer. The default value is 0.

maxFieldSize Sets the limit for the maximum number of bytes in a column to the specified
number of bytes. The value is the maximum number of bytes that can be
returned for any column value. The is type integer.

maxRows Specifies the maximum number of rows to fetch back to the Web
application. This is type integer. If the maxRows parameter is not
specified, then a maximum of 1000 rows can be returned.

startAtRow Allows the Web application to skip a specified number of rows in the result
set. This is type integer.

queryTimeout Allows the Web application to specify a timeout value for the query. Sets
the number of seconds that the driver waits for a statement object to run
to the given number of seconds. If the limit is exceeded, an exception
occurs. A value of 0 seconds indicates that the driver can wait an unlimited
number of seconds.

isolationLevel Allows the Web application to control the isolation level of the query.
� READ_UNCOMMITTED
� READ_COMMITTED
� REPEATABLE_READ
� SERIALIZABLE
� NONE

callInputData type Description

spName
type: string

The name of the stored procedure to invoke. This
parameter is mandatory.

schema
type: string

The schema of the stored procedure. This parameter is
optional. If the parameter is not supplied, the value is
the current schema.
Appendix C. XML and DB2 for Linux, UNIX and Windows 661

Table C-12 shows the input data types for the tablesInputData type.

Table C-12 Input data types for the tablesInputData type

Table C-13 shows the input data types for columnsInputData types.

parameters
type: sequence of parameters, each one
consisting of either an inParam or an
outParam

inParam
type defined as:
� kind: either 'IN' or 'INOUT'
� type: the type of the parameter

(such as int, or string)
� value: the value of the parameter

outParam
type defined as:
� kind: either 'IN' or 'INOUT'
� type: the type of the parameter

Stored procedures can have three kinds of parameters:
IN, OUT, and INOUT. This parameter type is an
extensible type. It allows any number of any
combination of the inParam and outParam types. The
Web application must know if the stored procedure that
it plans to invoke needs any parameters. If it needs
parameters, it needs to know how many parameters,
and their type.

If the stored procedure takes one of the unsupported
data types as a stored procedure parameter, then this
stored procedure cannot be executed through WORF.

WORF accepts several XML types for the stored
procedure parameters. The parameters correspond to
the built-in SQL data types. Table C-8 describes the
supported types.

An input parameter can be set to NULL by using one of
the following values:
absent

The <value/> tag for the input parameter is not
provided.

nil = true
The tag is marked with the attribute nil, which is set
to true, such as <value xsi:nil="true"/>

The order of the input parameter must be the same as
the order expected by the stored procedure.

tablesInputData type Description

catalogPattern
type = "string"
schemaPattern
type = "string"
tableNamePattern
type = "string"

Each of the pattern values is optional. If the value
is not specified, the value defaults to the blank
value. The description and behavior of each is
specified in JDBC. Use the getTables Web service
operation to return the list of tables that are satisfy
the catalogPattern, schemaPattern, and
tableNamePattern that are specified.

Example (note that such things as the namespace definitions are not shown here
for simplicity):

<tablesInputData>
<catalogPattern></catalogPattern>
<schemaPattern>userSchema
</schemaPattern>
<tableNamePattern>EMPLOYEE
</tableNamePattern>
</tablesInputData>
662 Powering SOA with IBM Data Servers

Table C-13 Input data types for columnsInputData types

Table C-14 shows the output data types for the callOutputData types.

Table C-14 Output data types for the callOutputData types

columnsInputData type Description

catalogPattern
type = "string"
schemaPattern
type = "string"
tableNamePattern
type = "string"
columnNamePattern
type = "string"

Each of the pattern values is optional. If the value
is not specified, the value defaults to the blank
value. The description and behavior of each is
specified in JDBC. Use the getColumns Web
service operation to receive a list of columns that
satisfy the catalog string pattern, schemaPattern,
table name, and columnNamePattern that is
specified.

Example (note that such things as the namespace definitions are not shown here for simplicity):

<columnsInputData>
<catalogPattern></catalogPattern>
<schemaPattern>userSchema
</schemaPattern>
<tableNamePattern>EMPLOYEE
</tableNamePattern >
<columnNamePattern>LASTNAME
</columnNamePattern>
</columnsInputData>

callOutputData type

outputResultSequences
contains a sequence of all result sets returned by the stored procedure as type db2WebRowSet
outputParameterSequences:
contains a sequence of callOutputParam (parameters that were returned from the stored procedure
that can be either kind=INOUT or kind=OUT)

callOutputParam
returned Parameter: contains

<position>
type: int - the position of the parameter in the stored procedure parameter list

<type>
type: string - the XML data type (see callInputData for type information)

<value>
type: any - the value of the parameter

If an output parameter is NULL the absent method is used.

The result contains
<value xsi:nil="true"/>
Appendix C. XML and DB2 for Linux, UNIX and Windows 663

Table C-15 shows the output data types for the executeOutputData types.

Table C-15 Output data types for the executeOutputData types

Example (note that such things as the namespace definitions are not shown here for simplicity):

<callOutputParameter>
<dqs:callOutputData
xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">
<dqs:outputResultSequences>
<db2WebRowSet
xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<metadata>
....
</db2WebRowSet>
</dqs:outputResultSequences>
<dqs:outputParameterSequences>
<dqs:callOutputParam>
<position>1</position>
<type>short</type>
<value>123</value>
</dqs:callOutputParam>
<dqs:callOutputParam>
<position>2</position>
<type>int</type>
<value xsi:nil="true" />
</dqs:callOutputParam>
</dqs:outputParameterSequences>
</dqs:callOutputData>
</callOutputParameter>

executeOutputData type Description

resultsPresent
type = "boolean"

outputResultSequences
0 or more occurrences of db2WebRowSet

If the execute Web service operation is invoked
with a query string that returns result sets, the
boolean indicates that this, and
outputResultSequences will each contain one of
those result sets.

Example (note that such things as the namespace definitions are not shown here for simplicity):

<executeOutputParameter>
<dqs:executeOutputData
xmlns:dqs="http://schemas.ibm.com/db2/dqs/types/soap">
<resultsPresent>true</resultsPresent>
<dqs:outputResultSequences>
<db2WebRowSet
xmlns="http://schemas.ibm.com/db2/dqs/db2WebRowSet"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<metadata>
....
</db2WebRowSet>
</dqs:outputResultSequences>
</dqs:executeOutputData>
</executeOutputParameter>
664 Powering SOA with IBM Data Servers

Appendix D. Setting up IMS services

In Chapter 8, “IMS and SOA” on page 201 we use a simple application “customer query”.
This application uses one DLI database (HDAM), composed of one root segment. The
wizards exploited during the generation of the SOA elements, use “c includes” and “cobol
copybooks” representing the layouts of the input/output messages.

The message program (MPP) is written in Java and has to run in a Java Message Processing
(JMP).

In this appendix we describe the different steps and objects involved in setting up this
application on the z/OS system.

D

© Copyright IBM Corp. 2006. All rights reserved. 665

D.1 Database
We list the definitions of the database objects.

D.1.1 Database descriptor
Example D-1 contains the DBD source, the database description of DLI HDAM database
SJCUSTDB with only a root segment.

Example: D-1 DBD for HDAM database SJCUSTDB

DBD NAME=SJCUSTDB,ACCESS=HDAM,RMNAME=(DFSHDC40,40,100)
DATASET DD1=SJCUSDB,DEVICE=3380,SIZE=4096
SEGM NAME=CUSTINFO,PARENT=0,BYTES=300,RULES=(LLL,LAST)
FIELD NAME=(CUSTNUM,SEQ,U),BYTES=010,START=00001,TYPE=C
FIELD NAME=SSN,BYTES=011,START=00011,TYPE=C
FIELD NAME=FIRSTNME,BYTES=020,START=022,TYPE=C
FIELD NAME=MI,BYTES=002,START=042,TYPE=C
FIELD NAME=LASTNAME,BYTES=040,START=044,TYPE=C
FIELD NAME=SALUTAT,BYTES=010,START=84,TYPE=C
FIELD NAME=ADDRESS1,BYTES=040,START=94,TYPE=C
FIELD NAME=ADDRESS2,BYTES=040,START=134,TYPE=C
FIELD NAME=CITY,BYTES=030,START=174,TYPE=C
FIELD NAME=STATE,BYTES=004,START=204,TYPE=C
FIELD NAME=ZIPCD,BYTES=010,START=208,TYPE=C
FIELD NAME=PHONE,BYTES=020,START=218,TYPE=C
FIELD NAME=FAX,BYTES=020,START=238,TYPE=C
FIELD NAME=EMLADDR,BYTES=040,START=258,TYPE=C
DBDGEN
FINISH
END

Example D-2 contains the DBD Generation JCL.

Example: D-2 Asm/Lked for DBD generation

//VANAERS1 JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=64M
//*
// JCLLIB ORDER=(IMS910H.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*
//*
//***
//* FUNCTION: DBDGEN FOR THE HDAM/VSAM DATA BASE
//***
//CUSDB2 EXEC PROC=DBDGEN,MBR=SJCUSTDB,SOUT='*'
//C.SYSIN DD DISP=SHR,
// DSN=VANAERS.IMS.DATA(SJCUSTDB)
//*

D.1.2 Database load
Example D-3 shows the allocation of VSAM file for the database.
666 Powering SOA with IBM Data Servers

Example: D-3 Allocation of VSAM cluster for Database

//VANAERS2 JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=64M
//*
// JCLLIB ORDER=(IMS910H.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*
//*
//***
//* FUNCTION: ALLOCATE DATA SETS NEEDED FOR THE DB SJSAMPLE
//**àSCPYRT**
//* SCRATCH DATA SETS
//*
//SCRATCH EXEC PGM=IDCAMS,DYNAMNBR=200
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE IMS910H.SJCUSDB CLUSTER
//*--
//* ALLOCATE DATA SETS
//*
//ALLOCATE EXEC PGM=IDCAMS,DYNAMNBR=200
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER(-
 NAME(IMS910H.SJCUSDB) -
 NONINDEXED -
 FREESPACE(10 10) -
 RECORDSIZE(4089 4089) -
 SHAREOPTIONS(3 3) -
 UNIQUE -
 VOLUMES(SBOXI4) -
 CYLINDERS(20) -
 CONTROLINTERVALSIZE(4096) -
) -

DATA(-
 NAME(IMS910H.SJCUSDB.DATA) -
)
//*

Example D-4 shows the generation of Dynamic Allocation member.

Example: D-4 IMSDALLOC for database

//VANAERS3 JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=64M
//*
// JCLLIB ORDER=(IMS910H.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*
//*
//***
//* FUNCTION: CREATE DYNAMIC ALLOCATION MEMBERS
//**àECPYRT**
//*
//STEP01 EXEC PROC=IMSDALOC,SOUT='*'
//ASSEM.SYSIN DD *
Appendix D. Setting up IMS services 667

*
* START
*
 DFSMDA TYPE=INITIAL
*
* SJSAMPLE DATABASE
*
* HDAM/VSAM
*
 DFSMDA TYPE=DATABASE,DBNAME=SJCUSTDB
 DFSMDA TYPE=DATASET,DDNAME=SJCUSDB, X
 DSNAME=IMS910H.SJCUSTDB, X
 DISP=SHR
*
* END
*
 DFSMDA TYPE=FINAL
 END
/*
//*

Example D-5 lists the input data to DFSDDLT0.

Example: D-5 Short sample(3 records) input data used by DFSDDLT0 utility

L ISRT CUSTINFO 00000000
L DATA 0000000000*123456789**123456789012345678****123456789012X00000001
 34567890123456789012345678**12345678**123456789012345678X00000002
 90123456789012345678**1234567890123456789012345678901234X00000003
 5678**1234567890123456789012345678**12**12345678**123456X00000004
 789012345678**1234567890123456789**123456789012345678901X00000005
 23456789012345678*
L ISRT CUSTINFO 00000010
L DATA F006668 PSSC EGIDE LPVAN AERSCHOT X00000011
 MR IBM FRANCE X00000012
 RUE DE LA VIELLE POSTE X00000013
 MONTPELIER ----34006 33/[0]4X00000014
 67344978 33/[0]467341221 van_aerschot_egide@be.X00000015
 ibm.com 00000016
L ISRT CUSTINFO 00000020
L DATA F010000 PSSC PIERRE XXGAL X00000021
 MR IBM FRANCE X00000022
 RUE DE LA VIELLE POSTE X00000023
 MONTPELIER ----34006 33/[0]4X00000024
 67344960 33/[0]467341221 pierre_gal@fr.ibm.com X00000025
 00000026

Example D-6 on page 668 shows the Load/List Execution of DFSDDLT0.

Example: D-6 Load with DFSDDLT0

//VANAERSL JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
668 Powering SOA with IBM Data Servers

// NOTIFY=VANAERS,REGION=64M
//*
// JCLLIB ORDER=(IMS910H.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*
//*
//* THE FOLLOWING STEP LOADS THE HDAM/VSAM DATA BASE
//LOAD EXEC PROC=DLIBATCH,SOUT='*',
// MBR=DFSDDLT0,PSB=SJCUSPSL,
// DBRC=N,IRLM=N
//G.IEFRDER DD DUMMY,UNIT=3390,DCB=BLKSIZE=6144
//G.IEFRDER2 DD DUMMY,UNIT=3390,DCB=BLKSIZE=6144
//G.SYSIN DD DSN=VANAERS.IMS.DATA(SJLODATA),DISP=SHR
//G.SJCUSDB DD DISP=OLD,DSN=IMS910H.SJCUSDB
//G.PRINTDD DD SYSOUT=*
//G.DFSVSAMP DD *
VSRBF=4096,5
//READ EXEC PROC=DLIBATCH,SOUT='*',
// MBR=DFSDDLT0,PSB=SJCUSPSG,
// DBRC=N,IRLM=N
//G.IEFRDER DD DUMMY,UNIT=3390,DCB=BLKSIZE=6144
//G.IEFRDER2 DD DUMMY,UNIT=3390,DCB=BLKSIZE=6144
//G.SYSIN DD DSN=VANAERS.IMS.DATA(SJRDDATA),DISP=SHR
//G.SJCUSDB DD DISP=OLD,DSN=IMS910H.SJCUSDB
//G.PRINTDD DD SYSOUT=*
//G.DFSVSAMP DD *
VSRBF=4096,5
//*

D.2 Programs and PSBs
We list the definitions of the application objects.

D.2.1 PSBs
Example D-7 shows the Load PSB.

Example: D-7 Load PSB for Java

* NAME: SJCUSPSL *
* *
* DESCRIPTION: PSB FOR HDAM/VSAM DATA BASE LOAD *
àSCPYRT
SJCUSTL PCB TYPE=DB,DBDNAME=SJCUSTDB,PROCOPT=L,KEYLEN=10
 SENSEG NAME=CUSTINFO,PARENT=0
 PSBGEN LANG=ASSEM,PSBNAME=SJCUSPSL
 END

Example D-8 shows the PSB for JAVA Message Processing Program.
Appendix D. Setting up IMS services 669

Example: D-8 PSB for Java MPP(JMP)

* NAME: SJCUSPSJ *
* *
* DESCRIPTION: PSB FOR JMP PROGRAM (JAVA PROGRAM) *
àSCPYRT
SJCUSTJ PCB TYPE=DB,DBDNAME=SJCUSTDB,PROCOPT=A,KEYLEN=10
 SENSEG NAME=CUSTINFO,PARENT=0
 PSBGEN LANG=JAVA,PSBNAME=SJCUSPSJ,COMPAT=YES
 END

The following two examples show the HDAM PSBs.

Example D-9 shows the HDAM retrieve PSB.

Example: D-9 PSB for HDAM retrieve

* NAME: SJCUSPSG *
* *
* DESCRIPTION: PSB FOR HDAM/VSAM DATA BASE RETRIEVE *
àSCPYRT
SJCUSTG PCB TYPE=DB,DBDNAME=SJCUSTDB,PROCOPT=G,KEYLEN=10
 SENSEG NAME=CUSTINFO,PARENT=0
 PSBGEN LANG=ASSEM,PSBNAME=SJCUSPSG
 END

Example D-10 shows the HDAM update PSB.

Example: D-10 PSB for HDAM update

* NAME: SJCUSPSA *
* *
* DESCRIPTION: PSB FOR HDAM/VSAM DATA BASE UPDATE *
àSCPYRT
SJCUSTA PCB TYPE=DB,DBDNAME=SJCUSTDB,PROCOPT=A,KEYLEN=10
 SENSEG NAME=CUSTINFO,PARENT=0
 PSBGEN LANG=ASSEM,PSBNAME=SJCUSPSA
 END

Example D-11 shows the PSB Generation JCL.

Example: D-11 PSBgen

//VANAERS4 JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=64M
//*
// JCLLIB ORDER=(IMS910H.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*
//*
//***
//* FUNCTION: PERFORM PSBGEN'S
//***
670 Powering SOA with IBM Data Servers

//* LICENSED MATERIALS - PROPERTY OF IBM *
//* 5655-J38 *
//* (C) COPYRIGHT IBM CORP. 1989,1998 ALL RIGHTS RESERVED *
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR *
//* DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH *
//* IBM CORP. *
//**àECPYRT**
//* PSBGEN FOR LOADING SJSAMPLE DATABASE
//*
//SJPSBGNL EXEC PROC=PSBGEN,MBR=SJCUSPSL,SOUT='*'
//C.SYSIN DD DISP=SHR,
// DSN=VANAERS.IMS.DATA(SJCUSPSL)
//*--
//* PSBGEN FOR LISTING SJSAMPLE DATABASE
//*
//SJPSBGNG EXEC PROC=PSBGEN,MBR=SJCUSPSG,SOUT='*'
//C.SYSIN DD DISP=SHR,
// DSN=VANAERS.IMS.DATA(SJCUSPSG)
//*--
//* PSBGEN FOR UPDATING SJSAMPLE DATABASE
//*
//SJPSBGNA EXEC PROC=PSBGEN,MBR=SJCUSPSA,SOUT='*'
//C.SYSIN DD DISP=SHR,
// DSN=VANAERS.IMS.DATA(SJCUSPSA)
//*--
//* PSBGEN FOR JAVA JMP PROGRAM
//*
//SJPSBGNA EXEC PROC=PSBGEN,MBR=SJCUSPSJ,SOUT='*'
//C.SYSIN DD DISP=SHR,
// DSN=VANAERS.IMS.DATA(SJCUSPSJ)
//*

Example D-12 shows the ACBgen for IMS online.

Example: D-12 ACBgen

//VANAERSA JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=64M
//*
/*JOBPARM L=9999,SYSAFF=*
//*
// JCLLIB ORDER=(IMS910H.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*
//*
//**àECPYRT**
//*
//ACBGEN EXEC PROC=ACBGEN,SOUT='*',COMP='POSTCOMP'
//G.SYSIN DD *
 BUILD PSB=SJCUSPSL
 BUILD PSB=SJCUSPSA
 BUILD PSB=SJCUSPSJ
 BUILD PSB=SJCUSPSG
//*
Appendix D. Setting up IMS services 671

D.2.2 JDBC access to DLI data
Here we list the definitions of objects related to the JDBC access to DLI data.

Example D-13 shows the dDliModel Utility JCL.

Example: D-13 SJDLIMOD

//VANAERSD JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=0M
//*
/*JOBPARM L=9999,SYSAFF=*
//*
//**
//DLIMODEL PROC ABSPATH=,DSNAME=,SOUT=*
//**
//* THIS PROC RUNS THE IMS JAVA UTILITY IN BATCH MODE
//**
//STEP1 EXEC PGM=BPXBATCH,PARM='SH cd &ABSPATH;go "&DSNAME" PDS'
//STDENV DD DUMMY
//STDOUT DD PATH='/tmp/&SYSUID..out',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH='/tmp/&SYSUID..err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//*--
//* Redirect stdout and stderr output to SYSOUT:
//STEP2 EXEC PGM=IKJEFT01,DYNAMNBR=300,COND=EVEN
//SYSTSPRT DD SYSOUT=&SOUT
//HFSOUT DD PATH='/tmp/&SYSUID..out'
//HFSERR DD PATH='/tmp/&SYSUID..err'
//STDOUTL DD SYSOUT=&SOUT,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)
//STDERRL DD SYSOUT=&SOUT,DCB=(RECFM=VB,LRECL=133,BLKSIZE=137)
//SYSPRINT DD SYSOUT=&SOUT
// PEND
//SJDLI EXEC DLIMODEL,DSNAME='VANAERS.IMS.DATA(SJDLMOCN)',
// ABSPATH='/usr/lpp/imsv9/imsjava91/dlimodel'
//STEP2.SYSTSIN DD *
 OCOPY INDD(HFSOUT) OUTDD(STDOUTL)
 OCOPY INDD(HFSERR) OUTDD(STDERRL)

Example D-14 shows the DliModel Utility input.

Example: D-14 SJDLMOCN, input for DLIModel Utility

OPTIONS PSBds=VANAERS.IMS.DATA
 DBDds=VANAERS.IMS.DATA
 GenJavaSource
 GenTrace
 OutPath=/u/vanaers/sjcusJMP
 Package=dlicust
PSB PSBName=SJCUSPSJ JavaName=SJCUSTDatabaseView
PCB PCBName=SJCUSTJ JavaName=CustInfo
SEGM DBDName=SJCUSTDB SegmentName=CUSTINFO JavaName=Customer
672 Powering SOA with IBM Data Servers

FIELD Name=CUSTNR Start=1 Bytes=10 JavaName=custnr JavaType=CHAR
FIELD Name=SSN Start=11 Bytes=11 JavaName=ssn JavaType=CHAR
FIELD Name=FIRSTNME Start=22 Bytes=20 JavaName=firstnme JavaType=CHAR
FIELD Name=MI Start=42 Bytes=02 JavaName=mi JavaType=CHAR
FIELD Name=LASTNAME Start=44 Bytes=40 JavaName=lastname JavaType=CHAR
FIELD Name=SALUTAT Start=84 Bytes=10 JavaName=salutat JavaType=CHAR
FIELD Name=ADDRESS1 Start=94 Bytes=40 JavaName=address1 JavaType=CHAR
FIELD Name=ADDRESS2 Start=134 Bytes=40 JavaName=address2 JavaType=CHAR
FIELD Name=CITY Start=174 Bytes=30 JavaName=city JavaType=CHAR
FIELD Name=STATE Start=204 Bytes=04 JavaName=state JavaType=CHAR
FIELD Name=ZIPCD Start=208 Bytes=10 JavaName=zipcd JavaType=CHAR
FIELD Name=PHONE Start=218 Bytes=20 JavaName=phone JavaType=CHAR
FIELD Name=FAX Start=238 Bytes=20 JavaName=fax JavaType=CHAR
FIELD Name=EMLADDR Start=258 Bytes=40 JavaName=emladdr JavaType=CHAR

Example D-15 shows the DatabaseView class generated by the DliModel utility for the PSB
SJCUSPSJ used with the JMP Java program.

Example: D-15 java class dlicust.SJCUSTDLIDatabaseView

package dlicust;

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;

public class SJCUSTDatabaseView extends DLIDatabaseView {

 // This class describes the data view of PSB: SJCUSPSJ
 // PSB SJCUSPSJ has database PCBs with 8-char PCBNAME or label:
 // SJCUSTJ

 // The following describes Segment: CUSTINFO ("Customer") in PCB: SJCUSTJ
("CustInfo")
 static DLITypeInfo[] SJCUSTJCUSTINFOArray= {
 new DLITypeInfo("custnr", DLITypeInfo.CHAR, 1, 10, "CUSTNR",
DLITypeInfo.UNIQUE_KEY),
 new DLITypeInfo("ssn", DLITypeInfo.CHAR, 11, 11, "SSN"),
 new DLITypeInfo("firstnme", DLITypeInfo.CHAR, 22, 20, "FIRSTNME"),
 new DLITypeInfo("mi", DLITypeInfo.CHAR, 42, 2, "MI"),
 new DLITypeInfo("lastname", DLITypeInfo.CHAR, 44, 40, "LASTNAME"),
 new DLITypeInfo("salutat", DLITypeInfo.CHAR, 84, 10, "SALUTAT"),
 new DLITypeInfo("address1", DLITypeInfo.CHAR, 94, 40, "ADDRESS1"),
 new DLITypeInfo("address2", DLITypeInfo.CHAR, 134, 40, "ADDRESS2"),
 new DLITypeInfo("city", DLITypeInfo.CHAR, 174, 30, "CITY"),
 new DLITypeInfo("state", DLITypeInfo.CHAR, 204, 4, "STATE"),
 new DLITypeInfo("zipcd", DLITypeInfo.CHAR, 208, 10, "ZIPCD"),
 new DLITypeInfo("phone", DLITypeInfo.CHAR, 218, 20, "PHONE"),
 new DLITypeInfo("fax", DLITypeInfo.CHAR, 238, 20, "FAX"),
 new DLITypeInfo("emladdr", DLITypeInfo.CHAR, 258, 40, "EMLADDR")
 };
 static DLISegment SJCUSTJCUSTINFOSegment= new DLISegment
 ("Customer","CUSTINFO",SJCUSTJCUSTINFOArray,300);

 // An array of DLISegmentInfo objects follows to describe the view for PCB:
SJCUSTJ ("CustInfo")
Appendix D. Setting up IMS services 673

 static DLISegmentInfo[] SJCUSTJarray = {
 new DLISegmentInfo(SJCUSTJCUSTINFOSegment,DLIDatabaseView.ROOT)
 };

 // Constructor
 public SJCUSTDatabaseView() {
 super("2.0","SJCUSPSJ", "CustInfo", "SJCUSTJ", SJCUSTJarray);
 } // end SJCUSTDatabaseView constructor

} // end SJCUSTDatabaseView class definition

Example D-16 shows the Report generated by the DliModel utility.

Example: D-16 SJCUSTDatabaseViewJavaReport

DLIModel IMS Java Report
========================
Class: SJCUSTDatabaseView in package: dlicust generated for PSB: SJCUSPSJ

==
PCB: CustInfo
==
Segment: Customer
Field: custnr Type=CHARLength=10++ Primary Key Field ++
Field: ssn Type=CHARLength=11 (Search Field)
Field: firstnme Type=CHARLength=20 (Search Field)
Field: mi Type=CHARLength=2 (Search Field)
Field: lastname Type=CHARLength=40 (Search Field)
Field: salutat Type=CHARLength=10 (Search Field)
Field: address1 Type=CHARLength=40 (Search Field)
Field: address2 Type=CHARLength=40 (Search Field)
Field: city Type=CHARLength=30 (Search Field)
Field: state Type=CHARLength=4 (Search Field)
Field: zipcd Type=CHARLength=10 (Search Field)
Field: phone Type=CHARLength=20 (Search Field)
Field: fax Type=CHARLength=20 (Search Field)
Field: emladdr Type=CHARLength=40 (Search Field)

D.2.3 Java Message Processing Program preparation
Here we list the definitions for JMPP preparation.

Example D-17 shows the layout of input/output message for C language, it includes file
“inoutcust4rad.h” for C language.

Example: D-17 inoutcust4rad.h

struct INDATA {
 short llin;
 char z1;
 char z2;
674 Powering SOA with IBM Data Servers

 char tran[8]; // transaction code
 char custnr[10]; // customernr
 };
struct OUTDATA {
 short llout;
 char z1;
 char z2;
 char custnr[10]; // customernr
 char ssn[11]; //
 char firstnme[20]; // first name
 char mi; // middle name
 char lastname[40]; // last name
 char salutat[10]; // salutation
 char address1[40]; // address 1
 char address2[40]; // address 2
 char city[30]; // city
 char state[4]; // state/department/kreiz
 char zipcd[10]; // zip code/ postcode
 char phone[20]; // phone
 char fax[20]; // fax
 char emladdr[40]; // email adddress
 char message[200]; // message
 };

Example D-18 shows the Layout input/output message for Cobol language. It includes the
Cobol copybook file “inoutcust4rad.cbl” for Cobol language.

Example: D-18 inoutcust4rad.cb

IDENTIFICATION DIVISION.
 program-id. pgm1.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 DATA DIVISION.
 *
 * IMS Connector for Java, COBOL Transaction Message Source
 *
LINKAGE SECTION.

 01 INDATA.
 02 IN-LL PICTURE S9(3) COMP.
 02 IN-ZZ PICTURE S9(3) COMP.
 02 IN-TRCD PICTURE X(8).
 02 CUSTOMERNR PICTURE X(10).
 02 TRACEX PICTURE X(1).

 01 OUTDATA.
 02 OUT-LL PICTURE S9(3) COMP VALUE +0.
 02 OUT-ZZ PICTURE S9(3) COMP VALUE +0.
 02 CUSTOMERNR PICTURE X(10).
 02 SSN PICTURE X(11) VALUE SPACES.
 02 FIRSTNME PICTURE X(20) VALUE SPACES.
 02 MI PICTURE X(2) VALUE SPACES.
 02 LASTNAME PICTURE X(40) VALUE SPACES.
Appendix D. Setting up IMS services 675

 02 SALUTAT PICTURE X(10) VALUE SPACES.
 02 ADDRESS1 PICTURE X(40) VALUE SPACES.
 02 ADDRESS2 PICTURE X(40) VALUE SPACES.
 02 CITY PICTURE X(30) VALUE SPACES.
 02 STATE PICTURE X(4) VALUE SPACES.
 02 ZIPCD PICTURE X(10) VALUE SPACES.
 02 PHONE PICTURE X(20) VALUE SPACES.
 02 FAX PICTURE X(20) VALUE SPACES.
 02 EMLADDR PICTURE X(40) VALUE SPACES.
 02 MESSAGEX PICTURE X(200) VALUE SPACES.

 PROCEDURE DIVISION.

Example D-19 shows the Input Message.

Example: D-19 java class imstmcust.INDATA

package imstmcust;

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;
import com.ibm.ims.application.*;

/**
 * @author vanaersc
 *
 * TODO To change the template for this generated type comment go to Window -
 * Preferences - Java - Code Style - Code Templates
 */
public class INDATA extends IMSFieldMessage {

/* Creates array of DLITypeInfo objects for the fields in message */
final static DLITypeInfo[] fieldInfo = {

new DLITypeInfo("custnr", DLITypeInfo.CHAR, 1, 10),
new DLITypeInfo("trace", DLITypeInfo.CHAR,11, 1)

};
public INDATA() {

super(fieldInfo, 10, false);
}

}

Example D-20 shows the Output Message.

Example: D-20 java class imstmcust.OUTDATA

package imstmcust;

import com.ibm.ims.db.*;
import com.ibm.ims.base.*;
import com.ibm.ims.application.*;

/**
 * @author vanaersc
676 Powering SOA with IBM Data Servers

 *
 * TODO To change the template for this generated type comment go to Window -
 * Preferences - Java - Code Style - Code Templates
 */
public class OUTDATA extends IMSFieldMessage {

/* Creates array of DLITypeInfo objects for the fields in message */
final static DLITypeInfo[] fieldInfo = {

new DLITypeInfo("custnr", DLITypeInfo.CHAR, 1, 10) ,
new DLITypeInfo("ssn", DLITypeInfo.CHAR, 11, 11) ,
new DLITypeInfo("firstnme", DLITypeInfo.CHAR,22,20),
new DLITypeInfo("mi", DLITypeInfo.CHAR,42,2),
new DLITypeInfo("lastname", DLITypeInfo.CHAR,44,40),
new DLITypeInfo("salutat", DLITypeInfo.CHAR,84,10),
new DLITypeInfo("address1", DLITypeInfo.CHAR,94,40),
new DLITypeInfo("address2", DLITypeInfo.CHAR,134,40),
new DLITypeInfo("city", DLITypeInfo.CHAR,174,30),
new DLITypeInfo("state", DLITypeInfo.CHAR,204,4),
new DLITypeInfo("zipcd", DLITypeInfo.CHAR,208, 10),
new DLITypeInfo("phone", DLITypeInfo.CHAR,218, 20),
new DLITypeInfo("fax", DLITypeInfo.CHAR,238, 20),
new DLITypeInfo("emladdr", DLITypeInfo.CHAR,258,40),
new DLITypeInfo("message", DLITypeInfo.CHAR,298,200)

};
public OUTDATA() {

super(fieldInfo, 646, false);
}

}

Example D-21 shows the Java program for JMP.

Example: D-21 JMP program imstmcust.CQuery

package imstmcust;

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.sql.Connection;

import com.ibm.ims.application.*;
import com.ibm.ims.base.DLITypeInfo;
import com.ibm.ims.base.IMSException;

import com.ibm.ims.db.*;

/**
 * @author vanaersc
 *
 * TODO To change the template for this generated type comment go to Window -
 * Preferences - Java - Code Style - Code Templates
 */
public class CQuery {

public static void main(String args[]) {
IMSMessageQueue messageQueue = new IMSMessageQueue();
INDATA inputMessage = new INDATA();
OUTDATA outputMessage = new OUTDATA();
Appendix D. Setting up IMS services 677

Connection connection;
boolean debugOn = false;
try {

Class.forName("com.ibm.ims.db.DLIDriver");
System.out.print("CQuery_main making connection with DLI");
connection = DriverManager.getConnection("jdbc:dli:"

+ "dlicust.SJCUSTDatabaseView");
System.out.print("CQuery_main connection OK");
while (messageQueue.getUniqueMessage(inputMessage)) {

if (inputMessage.getString("trace").equals("Y"))
debugOn = true;

else
debugOn = false;

/* for testing */
debugOn = true;
if (debugOn) {

System.out.print("CQuery_main custnr(" + inputMessage.getString("custnr") +
")");

System.out.print(" trace(" + inputMessage.getString("trace") +
")");

}
String custnr = inputMessage.getString("custnr").trim();
if (!custnr.equals("")) {

if (getCustomerInfo(inputMessage, outputMessage,
connection, debugOn)) {

//
} else {

//
}

} else {
outputMessage.setString("message",

" --wrong input for custnr --");
}
outputMessage.setString("custnr", custnr);
if (debugOn) {

System.out.print("CQuery_main insert in queue");
}
messageQueue.insertMessage(outputMessage);
if (debugOn) {

System.out.print("CQuery_main commit");
}
IMSTransaction.getTransaction().commit();

}
} catch (IMSException imsex) {

System.err.print("CQuery_main imsex " + imsex.toString());
try {

outputMessage.setString("message", "CQuery_main imsex "
+ imsex.toString());

messageQueue.insertMessage(outputMessage);
IMSTransaction.getTransaction().commit();

} catch (Exception imsex2) {
System.err.print("CQuery_main2 imsex " + imsex2.toString());

}
} catch (Exception ex) {

System.err.print("CQuery_main ex " + ex.toString());
try {

outputMessage.setString("message", "CQuery_main ex "
+ ex.toString());

messageQueue.insertMessage(outputMessage);
IMSTransaction.getTransaction().commit();
678 Powering SOA with IBM Data Servers

} catch (Exception ex2) {
System.err.print("CQuery_main2 ex " + ex2.toString());

}
}
if (debugOn) {

System.out.print("CQuery_main insert in queue");
}

}

static boolean getCustomerInfo(INDATA inputMessage, OUTDATA outputMessage,
Connection connection, boolean debugOn) {

boolean oknok = true;
try {

String custnr = inputMessage.getString("custnr").trim();
// Parse the input message for ModelTypeCode
String queryString = "SELECT * FROM SJCUSTJ.Customer WHERE Customer.custnr = '"

+ custnr + "’";
// Create a statement and execute it to get a ResultSet
Statement statement = connection.createStatement();
if (debugOn) {

System.out.print("CQuery_getCustomerInfo execute ("
+ queryString + ")");

}

ResultSet results = statement.executeQuery(queryString);
// Send back the result of the query
// Note: because "custnr" is unique - only 1 row is returned
if (results.next()) {

if (debugOn) {
System.out

.print("CQuery_getCustomerInfo reading resultset");
}
outputMessage.setString("ssn", results.getString("ssn"));
outputMessage.setString("firstnme", results

.getString("firstnme"));
outputMessage.setString("mi", results.getString("mi"));
outputMessage.setString("lastname", results

.getString("lastname"));
outputMessage

.setString("salutat", results.getString("salutat"));
outputMessage.setString("address1", results

.getString("address1"));
outputMessage.setString("address2", results

.getString("address2"));
outputMessage.setString("city", results.getString("city"));
outputMessage.setString("state", results.getString("state"));
outputMessage.setString("zipcd", results.getString("zipcd"));
outputMessage.setString("phone", results.getString("phone"));
outputMessage.setString("fax", results.getString("fax"));
outputMessage

.setString("emladdr", results.getString("emladdr"));
outputMessage.setString("message", " -- customer query OK --");
return oknok;

} else {
outputMessage.setString("message", "Customer does NOT exist");

}
outputMessage.setString("message", " -- custnr OK --");

} catch (IMSException imsex) {
System.err

.print("CQuery_getCustomerInfo imsex " + imsex.toString());
Appendix D. Setting up IMS services 679

try {
outputMessage.setString("message",

"CQuery_getCustomerInfo imsex " + imsex.toString());
} catch (Exception e) {

//
}
oknok = false;

} catch (Exception ex) {
System.err.print("CQuery_getCustomerInfo ex " + ex.toString());
try {

outputMessage.setString("message", "CQuery_getCustomerInfo ex "
+ ex.toString());

} catch (Exception e) {
//

}
oknok = false;

}
return true;

}
}

D.3 Definitions for the application
Here we show the application definitions in IMS generation.

D.3.1 Database and application definitions in Stage 1
Add the DATABASE macro statements of Example D-22 to the IMS stage 1 input statements:

Example: D-22 DBDgen

DATABASE DBD=SJCUSTDB,ACCESS=UP

Add the APPLCTN macro statement of Example D-23 to the IMS stage 1 input statements for
the sample application’s program resource requirements.

Example: D-23 APPLCTN

APPLCTN PSB=SJCUSPSJ,PGMTYPE=TP,SCHEDTYP=PARALLEL
TRANSACT CODE=CQUERY,PRTY=(7,10,2),INQUIRY=NO,MODE=SNGL, X

MSGTYPE=(SNGLSEG,NONRESPONSE,1)

D.3.2 The JMP preparation
Example D-24 shows the allocation of HFS files err/out for JMP procedure.

Example: D-24 SJHFSJMP

//VANAERSH JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=0M
//*
/*JOBPARM L=9999,SYSAFF=*
//*
//***
//* ALLOCATE HFS OUT/ERR files for JMP
//***
680 Powering SOA with IBM Data Servers

//TCHMOD PROC TPARM=
//BPX EXEC PGM=BPXBATCH,PARM='&TPARM'
//SYSPRINT DD SYSOUT=*
//STDOUT DD PATH='/tmp/SJTCHMOD.OUT',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDERR DD PATH='/tmp/SJTCHMOD.ERR',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
// PEND
//STEP1 EXEC TCHMOD,TPARM='sh touch /tmp/SJJVM.OUT'
//*
//STEP2 EXEC TCHMOD,TPARM='sh chmod 777 /tmp/SJJVM.OUT'
//*
//STEP3 EXEC TCHMOD,TPARM='sh touch /tmp/SJJVM.ERR'
//*

Example D-25 shows the master JVM options.

Example: D-25 DFSJVEMS member

àECPYRT**
**
* JVMOPMAS= member àPQ69696
**
**
* Replace SamplesPath with the absolute path of the directory àPQ69696
* containing samples.jar file àPQ69696
* If you are using SDK 1.4.1, add the following JVM property:
* -Djava.endorsed.dirs=pathprefix/usr/lpp/ims/imsjava91/lib
**
-Djava.endorsed.dirs=/imsv9/imsjava91/lib
***àPQ69696
-Dibm.jvm.shareable.application.class.path=> àPQ69696
/imsv9/imsjava91/samples.jar àPQ69696
*
***àPQ69696
* Replace ImsjavaPath with the absolute path of the directory *àPQ69696
* containing imsjava.jar file *àPQ69696
***àPQ69696
-Dibm.jvm.trusted.middleware.class.path=> àPQ69696
/imsv9/imsjava91/imsjava.jar àPQ69696
* àPQ69696
***àPQ69696
-Dibm.jvm.trusted.middleware.class.path=> àPQ69696
/u/vanaers/sjcusJMP/jars/sjsample.jar
**
* The following JVM options are a subset of the options allowed *
* under JDK 1.3.1S *
**
-Xinitacsh128k
-Xinitsh128k
-Xmaxf0.6
-Xminf0.3
-Xmx64M
-Xoss400k
Appendix D. Setting up IMS services 681

Example D-26 shows the environment member.

Example: D-26 DFSJVEEV member

**
* ENVIRON= member àPQ69696
**
* Change JavaHome to the SDK directory. For example:
* /usr/lpp/java/j1.4
* Change imsjavaPath to
* /usr/lpp/imsv9/imsjava91
**
* LIBPATH environment variable *
* ---àPQ69696
* Replace ImsjavaPath with the absolute path to libJavTDLI.so àPQ69696
* Replace JavaHome with the absoulte path of Java installation àPQ69696
**
LIBPATH=/usr/lpp/java/J1.4/bin/classic:>
/usr/lpp/java/J1.4/bin:>
/usr/lpp/imsv9/imsjava91

Example D-27 shows the Worker JVM options.

Example: D-27 DFSJVEWK member

**
* Sample JVMOPWKR= member *
**
**
* The following JVM options are a subset of the options allowed *
* under JDK 1.3.1S *
**
-Xmaxf0.6
-Xminf0.3
-Xmx64M
-Xoss400k

Example D-28 shows the PSB to Class Mapping.

Example: D-28 DFSJVMAP member

**
* This is a mapping example for the IMS Java IVP samples which use *
* the PSBs genned as: *
* *
* PSBGEN PSBNAME=DFSIVP37,LANG=JAVA *
* PSBGEN PSBNAME=DFSIVP67,LANG=JAVA *
* The IMS Java IVP samples are bundled inside the samples.jar file. *
* *
* This is the mapping for the IMS Java customer sample which uses *
* the PSB genned as: *
* PSBGEN PSBNAME=SJCUSPSJ,LANG=JAVA *
* The IMS Java Customer is bundled inside the sjsample.jar file. *
* *
682 Powering SOA with IBM Data Servers

* The location of this samples.jar, sjsamples.jar *
* must be specified separately *
* by the DFSJVEMS member in the shareable application classpath. *
* *
**
*
DFSIVP37=samples/ivp/ims/IMSIVP
SJCUSPSJ=imstmcust/CQuery
*
**

Example D-29 shows the JMP Proc.

Example: D-29 JVMJMP Proc

// PROC SOUT=A,RGN=0M,SYS2=,
// CL1=001,CL2=000,CL3=000,CL4=000,
// OPT=N,OVLA=0,SPIE=0,VALCK=0,TLIM=00,
// PCB=000,STIMER=,SOD=,
// NBA=,OBA=,IMSID=,AGN=,
// PREINIT=,ALTID=,PWFI=N,APARM=,
// LOCKMAX=,ENVIRON=,JVMOPWKR=,
// JVMOPMAS=,XPLINK=N
//*
//JMPRGN EXEC PGM=DFSRRC00,REGION=&RGN,
// TIME=1440,DPRTY=(12,0),
// PARM=(JMP,&CL1&CL2&CL3&CL4,
// &OPT&OVLA&SPIE&VALCK&TLIM&PCB,
// &STIMER,&SOD,&NBA,
// &OBA,&IMSID,&AGN,&PREINIT,
// &ALTID,&PWFI,'&APARM',&LOCKMAX,
// &ENVIRON,&JVMOPWKR,&JVMOPMAS,
// &XPLINK)
//STEPLIB DD DSN=IMS910H.&SYS2.PGMLIB,DISP=SHR
// DD DSN=IMS910H.&SYS2.SDFSJLIB,DISP=SHR
// DD DSN=IMS910H.&SYS2.SDFSRESL,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=SYS1.CSSLIB,DISP=SHR
//PROCLIB DD DSN=IMS910H.&SYS2.PROCLIB,DISP=SHR
//SYSUDUMP DD SYSOUT=&SOUT,
// DCB=(LRECL=121,BLKSIZE=3129,RECFM=VBA),
// SPACE=(125,(2500,100),RLSE,,ROUND)

Example D-30 shows the Java Message Region JCL.

Example: D-30 Java message region

//VANAERSM JOB (999,POK),'VANAERS',CLASS=A,MSGCLASS=H,MSGLEVEL=(1,1),
// NOTIFY=VANAERS,REGION=0M
//*
// JCLLIB ORDER=(IMS910H.PROCLIB)
/*JOBPARM L=9999,SYSAFF=*
//* XPLINK=Y IF YOU USE SDK 1.4.1
//* ENVIRON=
Appendix D. Setting up IMS services 683

//* JVMOPWKR=
//* JVMOPMAS=
//***
//* MESSAGE JMP REGION (JAVA) FOR SJSAMPLE APPLICATION
//***
// EXEC DFSJMPE,IMSID=IMSH,
// ENVIRON=DFSJVEEV,JVMOPWKR=DFSJVEWK,
// JVMOPMAS=DFSJVEMS,XPLINK=Y
//JMPRGN.JAVAOUT DD PATH='/tmp/SJJVM.OUT'
//JMPRGN.JAVAERR DD PATH='/tmp/SJJVM.ERR'
684 Powering SOA with IBM Data Servers

Appendix E. Additional material

This redbook refers to additional material that can be downloaded from the Internet as
described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the Internet from
the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247259

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with the redbook
form number, SG24-7259.

Using the Web material
The additional Web material that accompanies this redbook includes the following files:

File name Description
sg247259.zip Zipped Code Samples

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 GB minimum
Operating System: Windows
Processor: 1 Ghz or higher
Memory: 1.5 GB or higher1

E

1 This configuration is suggested for running the examples with the IBM Rational Application Developer 6.0, DB2
Universal Database and WebSphere Application Server/WebSphere Portal Server.
© Copyright IBM Corp. 2006. All rights reserved. 685

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the Web
material zip file into this folder. The following directories are contained in the ZIP archive:

PHP The PHP Web Service example demonstrated at 16.5, “Access an
enterprise application using PHP” on page 528.

RAD\ITSOBank databases
DDL to create the database objects accessed in the scenarios in
Chapter 15, “Developing SOA access services” on page 401.

RAD\CreditCDE RAD project containing CreditCDE dynamic Web application which is
accessed in the scenario at 15.2, “Scenario using DB2 as Web
Service consumer” on page 426.

RAD\CreditCDEApp RAD project containing the enterprise application of the CreditCDE
project.

RAD\WORFAccountDB
RAD project containing WORF/DADX dynamic Web application
demonstrated at 15.1.2, “Implementation of the Web Services using
WORF” on page 404.

RAD\WORFAccountDBApp
RAD project containing the enterprise application of the
WORFAccountDB project.

RAD\JavaAccountDB RAD project containing the dynamic Web application used in the
scenario at 15.1.4, “Web Service implementation using Java
wrappers” on page 417.

RAD\JavaAccountDBApp
RAD project containing the enterprise application of the
JavaAccountDB project.

RAD\ITSOBankPortlets
RAD project containing the portlet application demonstrated at 15.4,
“Scenario aggregating services as portlets” on page 455.

RAD\ITSOBankPortletsApp
RAD project containing the enterprise application of the
ITSOBankPortlets project.

Usage of RAD projects
You can import the RAD projects into the IBM Rational Application Developer workspace by
selecting File → Import → Existing project into workspace and entering the location of the
project.

Setup of the example DB2 databases
This section leads through the steps required to setup the example DB2 databases
DB2ACCTD and PORTALDB, both of which are used in the scenarios in Chapter 15,
“Developing SOA access services” on page 401.

Create the DB2ACCTD database
The DB2ACCTD database is used to demonstrate the access to a DB2 for z/OS database. If
you do not have a z/OS system available, you can create a DB2 for Windows database
instead. The scenarios in which the DB2ACCTD database is used are platform-independent.
686 Powering SOA with IBM Data Servers

To create the database on DB2 for Windows, open the DB2 Control Center and select
Tools → Wizards → Create Database Wizard. When you’re asked for the database name,
enter DB2ACCTD.

The database contains a few stored procedures which access some local tables. You can
create these database objects by running the scripts contained in the Additional Materials.
Open a DB2 Command window, change to the directory containing the scripts (ITSOBank
databases\DB2ACCTD), and run the following commands:

db2 CONNECT TO DB2ACCTD
db2 -tf create_DB2ACCTD_tables.ddl

Create the stored procedures in the DB2 Development Center: Add a database connection to
the local DB2ACCTD database in that tool, and import the sources of the stored procedures
from the files create_DB2ACCTD_CRTMRACT.ddl, create_DB2ACCTD_GETMRACT.ddl,
and create_DB2ACCTD_LSTACNBR.ddl.

Create the PORTALDB database
The PORTALDB database is a DB2 for Linux, Unix and Windows database which is used in
the portlet application example at 15.4, “Scenario aggregating services as portlets” on
page 455. It contains the database objects of the FICO score portlet, and a few additional
tables containing portal user and customer data.

Create the database on DB2 for Windows using the DB2 Control Center. Select Tools →
Wizards → Create Database Wizard and enter PORTALDB as database name. At the
region settings page, select the UTF-8 code set. When the database is created, right-click on
it, and select Web Services → Enable Web Services. This action enables the DB2 XML
Extender in this database, and creates the DB2 Web Services SOAP UDFs. The Web
Services functionality is required by the credit score UDF which is created by the statements
below.

Add the database objects by running the scripts contained in the Additional Materials. Open a
DB2 Command window, change to the directory containing the scripts (ITSOBank
databases\PORTALDB), and run the following commands:

db2 CONNECT TO PORTALDB
db2 -tf create_PORTAL_DAO_objects.ddl
db2 -tf populate_FICO_objects.ddl
Appendix E. Additional material 687

688 Powering SOA with IBM Data Servers

Glossary

A

address space. A range of virtual storage pages
identified by a number (ASID) and a collection of segment
and page tables which map the virtual pages to real pages
of the computer's memory.

address space connection. The result of connecting an
allied address space to DB2. Each address space
containing a task connected to DB2 has exactly one
address space connection, even though more than one
task control block (TCB) can be present. See allied
address space and task control block.

allied address space. An area of storage external to
DB2 that is connected to DB2 and is therefore capable of
requesting DB2 services.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups, that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States.

ANSI. American National Standards Institute.

API See Application Program Interface.

applet See Java Applet.

application (1) A program or set of programs that
perform a task; for example, a payroll application. (2) In
Java programming, a self-contained, stand-alone Java
program that includes a static main method. It does not
require an applet viewer. Contrast with applet.

application plan The control structure produced during
the bind process and used by DB2 to process SQL
statements encountered during statement execution.

application program interface (API) A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to use
specific data or functions of the operating system or
licensed program.

application requester (AR) See requester.

AR application requester. See requester.

artifact A piece of digital information. An artifact may be
any size, and may be composed of other artifacts.
Examples of artifacts: a message; a URI; an XML
document; a PNG image; a bit stream.
© Copyright IBM Corp. 2006. All rights reserved.
ASCII (1) American Standard Code for Information
Interchange.A standard assignment of 7-bit numeric
codes to characters. See also Unicode. (2) An encoding
scheme used to represent strings in many environments,
typically on PCs and workstations. Contrast with EBCDIC.

attachment facility An interface between DB2 and
TSO, IMS, CICS, or batch address spaces. An attachment
facility allows application programs to access DB2.

authorization ID A string that can be verified for
connection to DB2 and to which a set of privileges are
allowed. It can represent an individual, an organizational
group, or a function, but DB2 does not determine this
representation.

B

base table (1) A table created by the SQL CREATE
TABLE statement that is used to hold persistent data.
Contrast with result table and temporary table. (2) A table
containing a LOB column definition. The actual LOB
column data is not stored along with the base table. The
base table contains a row identifier for each row and an
indicator column for each of its LOB columns. Contrast
with auxiliary table.

bean A definition or instance of a JavaBeans
component. See JavaBeans.

binary large object (BLOB) See BLOB.

bind The process by which the output from the DB2
precompiler is converted to a usable control structure
called a package or an application plan. During the
process, access paths to the data are selected and some
authorization checking is performed.

automatic bind. (More correctly automatic rebind). A
process by which SQL statements are bound
automatically (without a user issuing a BIND command)
when an application process begins execution and the
bound application plan or package it requires is not valid.

dynamic bind. A process by which SQL statements are
bound as they are entered.

incremental bind. A process by which SQL statements
are bound during the execution of an application process,
because they could not be bound during the bind process,
and VALIDATE(RUN) was specified.
 689

static bind. A process by which SQL statements are
bound after they have been precompiled. All static SQL
statements are prepared for execution at the same time.
Contrast with dynamic bind.

binding The relationship between a service provider
and consumer is dynamic; it is established at runtime by a
binding mechanism.

BLOB A sequence of bytes, where the size of the
sequence ranges from 0 bytes to 2 GB - 1. Such a string
does not have an associated CCSID. The size of binary
large object values can be anywhere up to 2 GB-1.

browser (1) In VisualAge for Java, a window that
provides information on program elements. There are
browsers for projects, packages, classes, methods, and
interfaces. (2) An Internet-based too that lets users
browse Web sites.

built-in function A function that is supplied by DB2.
Contrast with user-defined function.

bytecode Machine-independent code generated by the
Java compiler and executed by the Java interpreter.

C

CAF Call attachment facility.

call attachment facility (CAF) A DB2 attachment
facility for application programs running in TSO or MVS™
batch. The CAF is an alternative to the DSN command
processor and allows greater control over the execution
environment.

call level interface (CLI) A callable application program
interface (API) for database access, which is an
alternative to using embedded SQL. In contrast to
embedded SQL, DB2 CLI does not require the user to
precompile or bind applications, but instead provides a
standard set of functions to process SQL statements and
related services at run time.

casting Explicitly converting an object or primitive’s
data type.

catalog In DB2, a collection of tables that contains
descriptions of objects such as tables, views, and indexes.

catalog table Any table in the DB2 catalog.

CGI The Common Gateway Interface (CGI) is a means
of allowing a Web server to execute a program that you
provide rather than to retrieve a file. A number of popular
Web servers support the CGI. For some applications, for
example, displaying information from a database, you
must do more than simply retrieve an HTML document
from a disk and send it to the Web browser. For such
applications, the Web server has to call a program to
generate the HTML to be displayed. The Common
Gateway Interface (CGI) is a standard for interfacing
external applications with information servers, such as
HTTP or Web servers. A plain HTML document that the
Web daemon retrieves is static, which means it exists in a
constant state: a text file that doesn't change. A CGI
program, on the other hand, is executed in real-time, so
that it can output dynamic information.

character large object (CLOB) See CLOB.

class An encapsulated collection of data and methods
to operate on the data. A class may be instantiated to
produce an object that is an instance of the class.

class hierarchy The relationships between classes that
share a single inheritance. All Java classes inherit from
the Object class.

class method Methods that apply to the class as a
whole rather than its instances (also called a static
method).

class path When running a program in VisualAge for
Java, a list of directories and JAR files that contain
resource files or Java classes that a program can load
dynamically at run time. A program's class path is set in its
Properties notebook.

CLASSPATH In your deployment environment, the
environment variable keyword that specifies the
directories in which to look for class and resource files.

class variable Variables that apply to the class as a
whole rather than its instances (also called a static field).

CLI See call level interface.

client (1)A networked computer in which the IDE is
connected to a repository on a team server. (2) See
requester.

CLOB A sequence of bytes representing single-byte
characters or a mixture of single and double-byte
characters where the size can be up to 2 GB - 1. Although
the size of character large object values can be anywhere
up to 2 GB - 1, in general, they are used whenever a
character string might exceed the limits of the VARCHAR
type.
690 Powering SOA with IBM Data Servers

codebase An attribute of the <APPLET> tag that
provides the relative path name for the classes. Use this
attribute when your class files reside in a different
directory than your HTML files.

column function An SQL operation that derives its
result from a collection of values across one or more rows.
Contrast with scalar function.

commit The operation that ends a unit of work by
releasing locks so that the database changes made by
that unit of work can be perceived by other processes.

Common Connector Framework In the Enterprise
Access Builder, interface and class definitions that provide
a consistent means of interacting with enterprise
resources (for example, CICS and Encina® transactions)
from any Java execution environment.

connection In the VisualAge for Java Visual
Composition Editor, a visual link between two components
that represents the relationship between the components.
Each connection has a source, a target, and other
properties.

connection handle The data object that contains
information associated with a connection managed by
DB2 CLI. This includes general status information,
transaction status, and diagnostic information.

consumer Entity utilizing a Web service.

cookie (1) A small file stored on an individual's
computer; this file allows a site to tag the browser with a
unique identification. When a person visits a site, the site's
server requests a unique ID from the person's browser. If
this browser does not have an ID, the server delivers one.
On the Wintel platform, the cookie is delivered to a file
called'cookies.txt,' and on a Macintosh platform, it is
delivered to 'MagicCookie.' Just as someone can track the
origin of a phone call with Caller ID, companies can use
cookies to track information about behavior. (2) Persistent
data stored by the client in the Servlet Builder.

choreography A choreography defines the sequence
and conditions under which multiple cooperating
independent agents exchange messages in order to
perform a task to achieve a goal state.

consumer The function that consumes the result of a
service supplied by a provider.

cursor A named control structure used by an application
program to point to a row of interest within some set of
rows, and to retrieve rows from the set, possibly making
updates or deletions.

D

Data Access Bean In the VisualAge for Java Visual
Composition Editor, a bean that accesses and
manipulates the content of JDBC/ODBC-compliant
relational databases.

Data Access Builder A VisualAge for Java Enterprise
tool that generates beans to access and manipulate the
content of JDBC/ODBC-compliant relational databases.

database management system (DBMS) A software
system that controls the creation, organization, and
modification of a database and access to the data stored
within it.

data source A local or remote relational or
non-relational data manager that is capable of supporting
data access via an ODBC driver which supports the
ODBC APIs. In the case of DB2 for OS/390, the data
sources are always relational database managers.

DBCLOB A sequence of bytes representing double-byte
characters where the size can be up to 2 gigabytes.
Although the size of double-byte character large object
values can be anywhere up to 2 gigabytes, in general,
they are used whenever a double-byte character string
might exceed the limits of the VARGRAPHIC type.

DBMS Database management system.

DB2 thread The DB2 structure that describes an
application's connection, traces its progress, processes
resource functions, and delimits its accessibility to DB2
resources. and services.

discovery The act of locating a machine-processable
description of a Web service-related resource that may
have been previously unknown and that meets certain
functional criteria. It involves matching a set of functional
and other criteria with a set of resource descriptions. The
goal is to find an appropriate Web service-related
resource.

distributed relational database architecture
(DRDA) A connection protocol for distributed relational
database processing that is used by IBM's relational
database products. DRDA includes protocols for
communication between an application and a remote
relational database management system, and for
communication between relational database
management systems.

DLL See dynamic link library.

double-byte character large object (DBCLOB) See
DBCLOB.

double precision A floating-point number that contains
64 bits. See also single precision.
 Glossary 691

DRDA Distributed relational database architecture.

dynamic link library A file containing executable code
and data bound to a program at load time or run time,
rather than during linking. The code and data in a dynamic
link library can be shared by several applications
simultaneously. The DLLs. Enterprise Access Builders
also generate platform-specific DLLs for the workstation
and OS/390 platforms.

dynamic SQL SQL statements that are prepared and
executed within an application program while the program
is executing. In dynamic SQL, the SQL source is
contained in host language variables rather than being
coded into the application program. The SQL statement
can change several times during the application
program's execution.

E

EBCDIC Extended binary coded decimal interchange
code. An encoding scheme used to represent character
data in the MVS, VM, VSE, and OS/400Ñ environments.
Contrast with ASCII.

embeddedJava An API and application environment for
high-volume embedded devices, such as mobile phones,
pagers, process control, instrumentation, office
peripherals, network routers and network switches.
EmbeddedJava™ applications run on real-time operating
systems and are optimized for the constraints of
small-memory footprints and diverse visual displays.

embedded SQL SQL statements coded within an
application program. See static SQL.

enclave In Language Environment for MVS & VM, an
independent collection of routines, one of which is
designated as the main routine. An enclave is similar to a
program or run unit.

Enterprise Java Includes Enterprise JavaBeans as well
as open API specifications for: database connectivity,
naming and directory services, CORBA/IIOP
interoperability, pure Java distributed computing,
messaging services, managing system and network
resources, and transaction services.

Enterprise JavaBeans A cross-platform component
architecture for the development and deployment of
multi-tier, distributed, scalable, object-oriented Java
applications.

environment handle In DB2 ODBC, the data object that
contains global information regarding the state of the
application. An environment handle must be allocated
before a connection handle can be allocated. Only one
environment handle can be allocated per application.

exception An exception is an object that has caused
some sort of new condition, such as an error. In Java,
throwing an exception means passing that object to an
interested party; a signal indicates what kind of condition
has taken place. Catching an exception means receiving
the sent object. Handling this exception usually means
taking care of the problem after receiving the object,
although it might mean doing nothing (which would be bad
programming practice).

executable content Code that runs from within an
HTML file (such as an applet).

extends A subclass or interface extends a class or
interface if it add fields or methods, or overrides its
methods. See also derived type.

external function A function for which the body is
written in a programming language that takes scalar
argument values and produces a scalar result for each
invocation. Contrast with sourced function and built-in
function.

Extranet In some cases intranets have connections to
other independent intranets. An example would be one
company connecting its intranet to the intranet of one of its
suppliers. Such a connection of intranets is called an
extranet. Depending on the implementation, they may or
may not be fully or partially visible to the outside.

F

factory A bean that dynamically creates instances of
beans.

FastCGI FastCGI is a way of combining the advantages
of CGI programming with some of the performance
benefits you get by using the GWAPI. FastCGI, written by
Open Market, Inc., is an extension to normal Web server
processing. It requires server-specific API support, which
is available for AIX, Sun Solaris, HP-UX, and OS/390.
With FastCGI you can start applications in independent
address spaces and pass requests for these applications
from the Web server. The communication is through either
the TCP/IP sockets interface or UNIX Domain socket bind
path in the Hierarchical File System (HFS).

field A data object in a class; for example, a variable.

first tier The client; the hardware and software with
which the end user interacts.

File Transfer Protocol (FTP) In the Internet suite of
protocols, an application layer protocol that uses TCP and
Telnet services to transfer bulk-data files between
machines or hosts.
692 Powering SOA with IBM Data Servers

foreign key A key that is specified in the definition of a
referential constraint. Because of the foreign key, the table
is a dependent table. The key must have the same number
of columns, with the same descriptions, as the primary
key of the parent table.

form data A generated class representing the
HTML form elements in a visual servlet.

FTP See File Transfer Protocol.

function A specific purpose of an entity or its
characteristic action such as a column function or scalar
function. (See column function and scalar function.).
Furthermore, functions can be user-defined, built-in, or
generated by DB2. (See built-in function, cast function,
user-defined function, external function, sourced
function.)

G

garbage collection Java's ability to clean up
inaccessible unused memory areas ("garbage") on the fly.
Garbage collection slows performance, but keeps the
machine from running out of memory.

GWAPI Because CGI has some architectural
limitations, most Web servers provide an equivalent
mechanism that is optimized for their native environment.
Domino Go Web Server, IBM′s strategic Web server,
offers the Domino Go Web Server Application
Programming Interface (GWAPI), optimized for a given
environment, such as OS/390. The GWAPI enables you to
create dynamic content similar to the CGI, but in a more
specialized way than the generalized CGI. The GWAPI
process is similar to OS/390 exit processing. There is an
exit point for various server functions that can be
exploited.

H

handle In DB2 CLI, a variable that refers to a data
structure and associated resources. See statement
handle, connection handle, and environment handle.

hierarchy The order of inheritance in object-oriented
languages. Each class in the hierarchy inherits attributes
and behavior from its superclass, except for the top-level
Object class.

HPJ High Performance Java (HPJ) is a Java bytecode
binder that generates extended text decks. These
extended text decks can then be bound by an OS/390
binder into a dynamic link library (DLL) or program. The
resulting OS/390 programs can reside in either an
hierarchical file system (HFS) file or a partitioned data set
extended (PDSE) (load library). The programs can be
executed by OS/390 without the need for a JVM, thereby
eliminating a large fraction of the performance overhead
associated with JVM today.

HTML See Hypertext Markup Language

Hypertext Markup Language (HTML) A file format,
based on SGML, for hypertext documents on the Internet.
Allows for the embedding of images, sounds, video
streams, form fields and simple text formatting.
References to other objects are embedded using URLs,
enabling readers to jump directly to the referenced
document.

Hypertext Transfer Protocol (HTTP) The Internet
protocol, based on TCP/IP, used to fetch hypertext objects
from remote hosts.

HTTPS HTTPS is a de facto standard developed by
Netscape for making HTTP flows secure. Technically, it is
the use of HTTP over SSL.

I

IDE See Integrated Development Environment.

Integrated Development Environment (IDE) In
VisualAge for Java, the set of windows that provide the
user with access to development tools. The primary
windows are the Workbench, Log, Console, Debugger,
and Repository Explorer.

Internet The vast collection of interconnected networks
that use TCP/IP and evolved from the ARPANET of the
late 1960s and early 1970s. The number of independent
networks connected into this vast global net is growing
daily.

Intranet A private network inside a company or
organization that uses the same kinds of software that you
would find on the Internet, but that are only for internal
use. As the Internet has become more popular, many of
the tools used on the Internet are being used in private
networks, for example, many companies have Web
servers that are available only to employees.

Internet Protocol (IP) In the Internet suite of protocols,
a connectionless protocol that routes data through a
network or interconnected networks. IP acts as an
intermediary between the higher protocol layers and the
physical network. However, this protocol does not provide
error recovery and flow control and does not guarantee
the reliability of the physical network.
 Glossary 693

interpreter A tool that translates and executes code
line-by-line.

IP See Internet Protocol.

J

JAR file format JAR (Java Archive) is a
platform-independent file format that aggregates many
files into one. Multiple Java applets and their requisite
components (.class files, images, sounds and other
resource files) can be bundled in a JAR file and
subsequently downloaded to a browser in a single HTTP
transaction.

Java An object-oriented programming language for
portable, interpretive code that supports interaction
among remote objects. Java was developed and specified
by Sun Microsystems, Incorporated. The Java
environment consists of the JavaOS™, the Virtual
Machines for various platforms, the object-oriented Java
programming language, and several class libraries.

Java applet A small Java program designed to run
within a Web browser. It is dowloadable and executable by
a browser or network computer.

Java beans Java's component architecture, developed
by Sun, IBM, and others. The components, called Java
beans, can be parts of Java programs, or they can exist as
self-contained applications. Java beans can be
assembled to create complex applications, and they can
run within other component architectures (such as
ActiveX® and OpenDoc).

Java Development Kit (JDK) The Java Development
Kit is the set of Java technologies made available to
licensed developers by Sun Microsystems. Each release
of the JDK contains the following: the Java Compiler, Java
Virtual Machine, Java Class Libraries, Java Applet Viewer,
Java Debugger, and other tools.

Java Naming and Directory Interface (JNDI) A set of
APIs that assist with the interfacing to multiple naming and
directory services. (Definition copyright 1996-1999 Sun
Microsystems, Inc. All Rights Reserved. Used by
permission.)

Java Native Interface (JNI) A native programming
interface that allows Java code running inside a Java
Virtual Machine (VM) to interoperate with applications and
libraries written in other programming languages, such as
C and C++.

Java Platform The Java Virtual Machine and the Java
Core classes make up the Java Platform. The Java
Platform provides a uniform programming interface to a
100%. Pure Java program regardless of the underlying
operating system. (Definition copyright 1996-1999 Sun
Microsystems, Inc. All Rights Reserved. Used by
permission.)

Java Remote Method Invocation (RMI) Java Remote
Method Invocation is method invocation between peers,
or between client and server, when applications at both
ends of the invocation are written in Java. Included in JDK
1.1.

Java Runtime Environment (JRE) A subset of the
Java Development Kit for end-users and developers who
want to redistribute the JRE. The JRE consists of the Java
Virtual Machine, the Java Core Classes, and supporting
files. (Definition copyright 1996-1999 Sun Microsystems,
Inc. All Rights Reserved. Used by permission.)

Java Virtual Machine (JVM) A software
implementation of a central processing unit (CPU) that
runs compiled Java code (applets and applications).

JavaDoc Sun's tool for generating HTML
documentation on classes by extracting comments from
the Java source code files.

JavaScript A scripting language used within an HTML
page. Superficially similar to Java but JavaScript scripts
appear as text within the HTML page. Java applets, on the
other hand, are programs written in the Java language
and are called from within HTML pages or run as
stand-alone applications.

Java servlet Servlets are similar to CGI programs,
except that they are written in Java and run in a Java
Virtual Machine managed by the Web server. Servlets are
an effective substitute for CGI scripts because they
provide an easier and faster way to generate dynamic
documents. They also address the problem of doing
server-side programming with platform-specific APIs
because they are developed with the Java Servlet API, a
standard Java extension. Servlets are modules that run
inside Java-enabled Web servers and extend them in
some manner. For example, a servlet might be
responsible for validating the data in an HTML order-entry
form. Servlets thus are a natural choice for choice for
extending and enhancing Web servers.

JDBC (Java Database Connectivity) In the JDK, the
specification that defines an API that enables programs to
access databases that comply with this standard.

JIT See Just-In-Time Compiler.

JNDI See Java Naming and Directory Interface.

JNI See Java Native Interface.
694 Powering SOA with IBM Data Servers

JRE See Java Runtime Environment.

Just-In-Time compiler (JIT) A platform-specific
software compiler often contained within JVMs. JITs
compile Java bytecodes on-the-fly into native machine
instructions, thereby reducing the need for interpretation.

JVM See Java Virtual Machine.

L

large object (LOB) See LOB.

link-edit To create a loadable computer program using a
linkage editor.

linker A computer program for creating load modules
from one or more object modules or load modules by
resolving cross references among the modules and, if
necessary, adjusting addresses. In Java, the linker
creates an executable from compiled classes.

load module A program unit that is suitable for loading
into main storage for execution. The output of a linkage
editor.

LOB A sequence of bytes representing bit data,
single-byte characters, double-byte characters, or a
mixture of single and double-byte characters. A LOB can
be up to 2 GB -1 byte in length. See also BLOB, CLOB,
and DBCLOB.

M

method A fragment of Java code within a class that can
be invoked and passed a set of parameters to perform a
specific task.

middleware A layer of software that sits between a
database client and a database server, making it easier
for clients to connect to heterogeneous databases.

middle tier The hardware and software that resides
between the client and the enterprise server resources
and data. The software includes a Web server that
receives requests from the client and invokes Java
servlets to process these requests. The client
communicates with the Web server via industry standard
protocols such as HTTP and IIOP.

multithreading Multiple TCBs executing one copy of
DB2 ODBC code concurrently (sharing a processor) or in
parallel (on separate central processors).

MVS/ESA™ Multiple Virtual Storage/Enterprise
Systems Architecture.

N

native class Machine-dependent C code that can be
invoked from Java. For multi-platform work, the native
routines for each platform need to be implemented.

null A special value that indicates the absence of
information.

NUL-terminated host variable A varying-length host
variable in which the end of the data is indicated by the
presence of a NUL terminator.

NUL terminator In C, the value that indicates the end of
a string. For character strings, the NUL terminator is X'00'.

O

object The principal building block of object-oriented
programs. Objects are software programming modules.
Each object is a programming unit consisting of related
data and methods.

ODBC See Open Database Connectivity.

ODBC driver A dynamically-linked library (DLL) that
implements ODBC function calls and interacts with a data
source.

Open Database Connectivity (ODBC) A Microsoft
database application programming interface (API) for C
that allows access to database management systems by
using callable SQL. ODBC does not require the use of an
SQL preprocessor. In addition, ODBC provides an
architecture that lets users add modules called database
drivers that link the application to their choice of database
management systems at run time. This means that
applications no longer need to be directly linked to the
modules of all the database management systems that
are supported.

P

package A program element that contains classes and
interfaces.

persistence In object models, a condition that allows
instances of classes to be stored externally, for example in
a relational database.

Persistence Builder In VisualAge for Java, a
persistence framework for object models, which enables
the mapping of objects to information stored in relational
databases and also provides linkages to earlier or existing
data on other systems.

plan See application plan.

plan name The name of an application plan.
 Glossary 695

portal A single, secure point of access to diverse
information, applications, and people that can be
customized and personalized.

precompilation A processing of application programs
containing SQL statements that takes place before
compilation. SQL statements are replaced with
statements that are recognized by the host language
compiler. Output from this precompilation includes source
code that can be submitted to the compiler and the
database request module (DBRM) that is input to the bind
process.

prepare The first phase of a two-phase commit process
in which all participants are requested to prepare for
commit.

prepared SQL statement A named object that is the
executable form of an SQL statement that has been
processed by the PREPARE statement.

primary key A unique, non-null key that is part of the
definition of a table. A table cannot be defined as a parent
unless it has a unique key or primary key.

process A program executing in its own address space,
containing one or more threads.

property An initial setting or characteristic of a bean, for
example, a name, font, text, or positional characteristic.

provider The function that performs a service in
response to a request from a consumer

R

RDBMS Relational database management system.

relational database management system (RDBMS). A
relational database manager that operates consistently
across supported IBM systems.

reentrant Executable code that can reside in storage as
one shared copy for all threads. Reentrant code is not
self-modifying and provides separate storage areas for
each thread. Re-entrancy is a compiler and operating
system concept, and re-entrancy alone is not enough to
guarantee logically consistent results when
multithreading. See threadsafe.

reference An object's address. In Java, objects are
passed by reference rather than by value or by pointers.

remote Refers to any object maintained by a remote
DB2 subsystem; that is, by a DB2 subsystem other than
the local one. A remote view, for instance, is a view
maintained by a remote DB2 subsystem. Contrast with
local.

Remote Method Invocation (RMI) RMI is a specific
instance of the more general term RPC. RMI allows
objects to be distributed over the network; that is, a Java
program running on one computer can call the methods of
an object running on another computer. RMI and java.net
are the only 100% pure Java APIs for controlling Java
objects in remote systems.

Remote Object Instance Manager In Remote Method
Invocation, a program that creates and manages
instances of server beans through their associated
server-side server proxies.

Remote Procedure Calls (RPC) RPC is a generic term
referring to any of a series of protocols used to execute
procedure calls or method calls across a network. RPC
allows a program running on one computer to call the
services of a program running on another computer.

requester Also application requester (AR). The source
of a request to a remote RDBMS, the system that
requests the data.

RMI See Remote Method Invocation.

rollback The process of restoring data changed by SQL
statements to the state at its last commit point. All locks
are freed. Contrast with commit.

RPC See Remote Procedure Calls.

runtime system The software environment where
compiled programs run. Each Java runtime system
includes an implementation of the Java Virtual Machine.

S

sandbox A restricted environment, provided by the Web
browser, in which Java applets run. The sandbox offers
them services and prevents them from doing anything
naughty, such as doing file I/O or talking to strangers
(servers other than the one from which the applet was
loaded). The analogy of applets to children led to calling
the environment in which they run the "sandbox."

scalar function An SQL operation that produces a
single value from another value and is expressed as a
function name followed by a list of arguments enclosed in
parentheses. See also column function.

Secure Socket Layer (SSL) SSL is a security protocol
which allows communications between a browser and a
server to be encrypted and secure. SSL prevents
eavesdropping, tampering or message forgery on your
Internet or intranet network.
696 Powering SOA with IBM Data Servers

security Features in Java that prevent applets
downloaded off the Web from deliberately or inadvertently
doing damage. One such feature is the digital signature,
which ensures that an applet came unmodified from a
reputable source.

serialization Turning an object into a stream, and back
again.

server The computer that hosts the Web page that
contains an applet. The .class files that make up the
applet, and the HTML files that reference the applet reside
on the server. When someone on the Internet connects to
a Web page that contains an applet, the server delivers
the .class files over the Internet to the client that made the
request. The server is also known as the originating host.

server bean The bean that is distributed using RMI
services and is deployed on a server.

servlet See Java servlet.

service-oriented architecture A conceptual
description of the structure of a software system in terms
of its components and the services they provide, without
regard for the underlying implementation of these
components, services and connections between
components.

SGML See Standardized Generalized Markup
Language.

single precision A floating-point number that contains
32 bits. See also double precision.

SmartGuide In IBM software products, an active form of
help that guides you through common tasks.

SOA See service-oriented architecture.

sourced function A function that is implemented by
another built-in or user-defined function already known to
the database manager. This function can be a scalar
function or a column (aggregating) function; it returns a
single value from a set of values (for example, MAX or
AVG). Contrast with external function and built-in function.

source type An existing type that is used to internally
represent a distinct type.

SQL Structured Query Language. A language used by
database engines and servers for data acquisition and
definition.

SQL authorization ID (SQL ID) The authorization ID
that is used for checking dynamic SQL statements in
some situations.

SQL Communication Area (SQLCA) A structure used
to provide an application program with information about
the execution of its SQL statements.

SQL Descriptor Area (SQLDA) A structure that
describes input variables, output variables, or the columns
of a result table.

SQLCA SQL Communication Area.

SQLDA SQL Descriptor Area.

SSL See secure socket layer.

Standardized Generalized Markup Language An
ISO/ANSI/ECMA standard that specifies a way to
annotate text documents with information about types of
sections of a document.

stateless Not depending on any pre-existing condition.
In an SOA, services should not depend on the condition
of any other service. They receive all information needed
to provide a response from the request. Given the
statelessness of services, service consumers can
sequence (orchestrate) them into numerous flows
(sometimes referred to as pipelines) to perform
application logic.

statement handle In DB2 ODBC, the data object that
contains information about an SQL statement that is
managed by DB2 CLI. This includes information such as
dynamic arguments, bindings for dynamic arguments and
columns, cursor information, result values and status
information. Each statement handle is associated with the
connection handle.

static SQL SQL statements, embedded within a
program, that are prepared during the program
preparation process (before the program is executed).
After being prepared, the SQL statement does not change
(although values of host variables specified by the
statement might change).

stored procedure A user-written application program,
that can be invoked through the use of the SQL CALL
statement.

Structured Query Language (SQL) A standardized
language for defining and manipulating data in a relational
database.

T

table A named data object consisting of a specific
number of columns and some number of unordered rows.
Synonymous with base table or temporary table.
 Glossary 697

task control block (TCB) An MVS control block used to
communicate information about tasks within an address
space that are connected to DB2. An address space can
support many task connections (as many as one per
task), but only one address space connection. See
address space connection.

TCB See task control block.

TCP/IP See Transmission Control Protocol based on IP.

Telnet Telnet provides a virtual terminal facility that
allows users of one computer to act as though they were
using a terminal connected to another computer. The
Telnet client program communicates with the Telnet
daemon on the target system to provide the connection
and session.

temporary table A table created by the SQL CREATE
GLOBAL TEMPORARY TABLE statement that is used to
hold temporary data. Contrast with result table.

thin client Thin client usually refers to a system that
runs on a resource-constrained machine or that runs a
small operating system. Thin clients don't require local
system administration, and they execute Java applications
delivered over the network.

third tier The third tier, or back end, is the hardware and
software that provides database and transactional
services. These back-end services are accessed through
connectors between the middle-tier Web server and the
third-tier server. Though this conceptual model depicts the
second and third tier as two separate machines, the NCF
model supports a logical three-tier implementation in
which the software on the middle and third tier are on the
same box.

thread A separate flow of control within a program.

timestamp A seven-part value that consists of a date
and time expressed in years, months, days, hours,
minutes, seconds, and microseconds.

trace A DB2 facility that provides the ability to monitor
and collect DB2 monitoring, auditing, performance,
accounting, statistics, and serviceability (global) data.

transaction (1) In a CICS program, an event that
queries or modifies a database that resides on a CICS
server. (2) In the Persistence Builder, a representation of
a path of code execution. (3) The code activity necessary
to manipulate a persistent object. For example, a bank
application might have a transaction that updates a
company account.

Transmission Control Protocol based on IP (1) A
network communication protocol used by computer
systems to exchange information across
telecommunication links. (2) An Internet protocol that
provides for the reliable delivery of streams of data from
one host to another.

type In VisualAge for Java, a generic term for a class or
interface.

U

UDF User-defined function

UDT User-defined data type

Uniform Resource Locator (URL) The unique address
that tells a browser how to find a specific Web page or file.

Unicode A 16-bit international character set defined by
ISO 10646. See also ASCII.

user-defined data type (UDT) See distinct type.

user-defined function (UDF) A function defined to DB2
using the CREATE FUNCTION statement that can be
referenced thereafter in SQL statements. A user-defined
function can be either an external function or a sourced
function. Contrast with built-in function.

URL See Uniform Resource Locator.

V

variable (1) An identifier that represents a data item
whose value can be changed while the program is
running. The values of a variable are restricted to a certain
data type. (2)A data element that specifies a value that
can be changed. A COBOL elementary data item is an
example of a variable. Contrast with constant.

virtual machine A software or hardware
implementation of a central processing unit (CPU) that
manages the resources of a machine and can run
compiled code. See Java Virtual Machine.

visual bean In the Visual Composition Editor, a bean
that is visible to the end user in the graphical user
interface.

visual servlet A servlet that is designed to be built using
the VisualAge for Java Visual Composition Editor.

VisualAge for Java, Enterprise Edition An edition of
VisualAge for Java that is designed for building enterprise
Java applications, and has all of the Professional Edition
features plus support for developers working in large
teams, developing high-performance or heterogeneous
applications, or needing to connect Java programs to
existing enterprise systems.
698 Powering SOA with IBM Data Servers

W

Web See World Wide Web

Web browser The Web uses a client/server processing
model. The Web browser is the client component.
Examples of Web browsers include Mosaic, Netscape
Navigator, and Microsoft Internet Explorer. The Web
browser is responsible for formatting and displaying
information, interacting with the user, and invoking
external functions, such as Telnet, or external viewers for
data types that it does not directly support. Web browsers
are fast becoming the universal client for the GUI
workstation environment, in much the same way that the
ability to emulate popular terminals such as the DEC
VT100 or IBM 3270 allows connectivity and access to
character-based applications on a wide variety of
computers. Web browsers are available for all popular
GUI workstation platforms and are inexpensive (often
included with operating systems or related products for no
additional charge.)

Web server Web servers are responsible for servicing
requests for information from Web browsers. The
information can be a file retrieved from the server¢ s local
disk or generated by a program called by the server to
perform a specific application function. Web servers are
sometimes referred to as httpd servers or deamons. A
number of Web servers are available for most platforms
including most UNIX variants, OS/2® Warp, OS/390, and
Windows NT. In addition, commercial Web servers that
offer higher levels of vendor support and additional
function are available. IBM has released the IBM Internet
Connection Secure Server (ICSS) and its follow-on, the
Domino Go Web server (DGW), for the AIX, OS/2 Warp,
Windows NT, and OS/390 platforms.

Web services Web services is a set of standards meant
to enable interoperable integration between
heterogeneous information technology processes and
systems.

Web Services Description Language The Web
Services Description Language (WSDL) is an XML format
published for describing Web services. It is commonly
abbreviated as WSDL in technical literature and is usually
pronounced wiz-dell. WSDL describes the public interface
to the Web service. WSDL is often used in combination
with SOAP and XML Schema to provide Web services
over the internet. A client program connecting to a Web
service can read the WSDL to determine what functions
are available on the server. Any special datatypes used
are embedded in the WSDL file in the form of XML
Schema. The client can then use SOAP to actually call
one of the functions listed in the WSDL.

WebSphere WebSphere is the cornerstone of IBM's
overall Web strategy, offering customers a comprehensive
solution to build, deploy and manage e-business Web
sites. The product line provides companies with an open,
standards-based, Web server deployment platform and
Web site development and management tools to help
accelerate the process of moving to e-business.

wizards Web-based assistants.

World Wide Web A network of servers that contain
programs and files. Many of the files contain hypertext
links to other documents available through the network.

WSDL See Web Services Description Language

WWW See World Wide Web.

X

XML The Extensible Markup Language (XML) is an
important new standard emerging for structured
documents on the Web. XML extends HTML beyond a
limited tag set and adapts SGML, making it easy for
developers to write programs that process this markup
and providing for a rich, more complex encoding of
information. The importance of XML is indicated by
support from many companies including IBM, Microsoft
and Netscape.
 Glossary 699

700 Powering SOA with IBM Data Servers

ronyms
AC autonomic computing

AIX advanced interactive eXecutive
from IBM

APAR authorized program analysis report

API application programming interface

AR application requester

AS application server

ASCII American National Standard Code
for Information Interchange

B2B business-to-business

BI business intelligence

BPEL Business Process Execution
Language

CCI common client interface

CCSID coded character set identifier

CD compact disk

CEC central electronics complex

CGI Common Gateway Interface

CICS customer information control
system

CLI call level interface

CLP command line processor

CMOS complementary metal oxide
semiconductor

CORBA common object request broker
architecture

CP central processor

CPU central processing unit

CSF integrated cryptographic service
facility

CUoD Capacity Upgrade on Demand

DAD document access definition

DASD direct access storage device

DB database

DB2 IBM Database 2™

DBA database administrator

DBAT database access thread

DBD database descriptor

DBID database identifier

DBM1 database master address space

DBRM database request module

DCL data control language

Abbreviations and ac
© Copyright IBM Corp. 2006. All rights reserved.
DDCS distributed database connection
services

DDF distributed data facility

DDL data definition language

DES Data Encryption Standard

DML data manipulation language

DNS domain name server

DOM document object module

DRDA Distributed Relational Data
Architecture

DSNZPARMs DB2’s system configuration
parameters

EAR enterprise application archive

DTD document type definition

EAS enterprise application solution

EBCDIC extended binary coded decimal
interchange code

EDM environmental descriptor manager

EJB Enterprise JavaBeans

ERP enterprise resource planning

ESB enterprise service bus

ESS IBM TotalStorage Enterprise
Storage Server®

EWLC entry workload license charges

EWLM Enterprise Workload Manager

FTP File Transfer Program

GB gigabyte (1,073,741,824 bytes)

HPJ high performance Java

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HW hardware

I/O input/output

IBM International Business Machines
Corporation

ICSF integrated cryptographic service
facility

IFCID instrumentation facility component
identifier

IFI instrumentation facility interface

IFL integrated facility for Linux

IMS Information Management System
 701

IPLA International Program Licence
Agreement

ISPF interactive system productivity
facility

ISV independent software vendor

IT information technology

ITSO International Technical Support
Organization

IVP installation verification process

J2C J2EE Connector architecture

J2EE Java 2 Platform Enterprise Edition

JAAS Java Authentication and
Authorization Service

JAR Java archive

JDBC Java Database Connectivity

JFS journaled file systems

JNDI Java Naming and Directory
Interface

JRE™ Java runtime environment

JSP JavaServer Pages

JTA Java Transaction API

JTS Java Transaction Service

JVM Java Virtual Machine

KB kilobyte (1,024 bytes)

LDAP Lightweight Directory Access
Protocol

LPAR logical partition

LRECL logical record length

MB megabyte (1,048,576 bytes)

MBps megabytes per second

NALC new application license charge

NFS Network File System

OASIS Organization for the Advancement
of Structured Information
Standards

ODBC Open Database Connectivity

OLE Object Linking and Embedding

OLTP online transaction processing

PDS partitioned data set

PHP Hypertext Preprocessor

PTF program temporary fix

RACF® Resource Access Control Facility

RAS reliability, availability and
serviceability

RBA relative byte address

RDBMS relational database management
system

RDS relational data system

RECFM record format

ROI return on investment

RPO recovery point objective

RRSAF resource recovery services attach
facility

SAN storage area networks

SAX simple API for XML

SCUBA self contained underwater
breathing apparatus

SDP Software Development Platform

SLA service-level agreement

SOA service-oriented architecture

SOAP Simple Object Access Protocol

SQL Structured Query Language

SQLJ Structured Query Language for
Java

SRM Service Request Manager

SSL Secure Sockets Layer

TCO total cost of ownership

TPF Transaction Processing Facility

UCB unit control block

UDB Universal Database

UDDI Universal Description, Discovery
and Integration

UDF user-defined functions

UDT user-defined (data) type

UOW unit of work

UR unit of recovery

URL universal resource locator

USS UNIX System Services

VIPA Virtual IP Addressing

VM virtual machine

VSIP Visual Studio® Integrator Program

VWLC variable workload license charges

WLC Workload License Charge

WLM Workload Manager

WSDL Web Services Description
Language

XML Extensible Markup Language

WS-I Web Services Interoperability
Organization

WSIF Web Services Invocation
Framework

WSIL Web Services Invocation
Language
702 Powering SOA with IBM Data Servers

XSD XML Schema Definition

XSL Extensible Stylesheet
Language

XSLT Extensible Stylesheet Language
Transformations

z800 zSeries 800

z890 zSeries 890

z990 zSeries 990

zAAP zSeries Application Assist
Processor

zELC zSeries Entry License Charge
 Abbreviations and acronyms 703

704 Powering SOA with IBM Data Servers

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 707.
Note that some of the documents referenced here may be available in softcopy only.

� Enabling SOA Using WebSphere Messaging, SG24-7163

� IBM Rational Application Developer V6 Portlet Application Development and Portal Tools,
SG24-6681

� IBM Tivoli Composite Application Manager V6.0 Family: Installation, Configuration, and
Basic Usage, SG24-7151

� WebSphere Version 6 Web Services Handbook Development and Deployment,
SG24-6461

� Patterns: Implementing Self-Service in an SOA Environment, SG24-6680

� Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6,
SG24-6494

� High Availability Considerations: SAP R/3 on DB2 for OS, SG24-2003

� XML for DB2 Information Integration, SG24-6994

� IBM HTTP Server (powered by Apache): An Integrated Solution for IBM eServer iSeries
Servers, SG24-6716

� IBM WebSphere Portal V5 A Guide for Portlet Application Development, SG24-6076

� IMS Connectivity in an On Demand Environment: A Practical Guide to IMS Connectivity,
SG24-6794

� DB2 for z/OS and OS/390: Ready for Java, SG24-6435

� DB2 for z/OS and WebSphere: The Perfect Couple, SG24-6319

� DB2 UDB/WebSphere Performance Tuning Guide, SG24-6417

� Using Informix Dynamic Server with WebSphere, SG24-6948

� WebSphere for z/OS to CICS and IMS Connectivity Performance, REDP-3959

Other publications
These publications are also relevant as further information sources:

� DB2 UDB for z/OS Version 8 Installation Guide, GC18-7418

� DB2 Universal Database for z/OS Version 8 Application Programming Guide and
Reference for Java, SC18-7414

� IMS Version 9: Installation Volume 1: Installation Verification, GC26-9429

� IMS Version 9: IMS Java Guide and Reference, SC18-7821
© Copyright IBM Corp. 2006. All rights reserved. 705

� IBM WebSphere Application Server for z/OS Version 6.0.1: Developing and Deploying
Applications, SA22-7959

� Service-Oriented Architecture, Systems Journal, Vol.44, No.4, 2005. Available from:

http://www.research.ibm.com/journal/sj/

Online resources
These Web sites and URLs are also relevant as further information sources:

� SOA information

http://www.ibm.com/software/solutions/soa/

� SOA and Web services information

http://www.ibm.com/developerworks/webservices

� The WebSphere Information Integrator

http://www.ibm.com/software/data/integration/db2ii/

� Information Integrator Web Service wrapper and examples of data sources

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp

� WebSphere Portal Server PUMA

http://publib.boulder.ibm.com/infocenter/wpdoc/v510/index.jsp?topic=/com.ibm.wp
.ent.doc/wps/wpspuma.html

� IBM Web Services Navigator: Overview

http://www.alphaworks.ibm.com/tech/wsnavigator

� Open source XML frameworks

http://xml.apache.org/

� The Web Services Interoperability Organization

http://www.ws-i.org/

� IMS SOAP Gateway with XML Adapter Beta

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=imssoap

� IMS Connector for Java

http://www-306.ibm.com/software/data/db2imstools/imstools/imsjavcon.html

� WebSphere Application Server Version 6.0 Information Center, available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

� The XML Encryption workgroup home page is available at:

http://www.w3.org/Encryption/

� The WS-Security specification 1.0 is available at:

http://www.ibm.com/developerworks/library/ws-secure/

� Security in a Web Services World: A Proposed Architecture and Roadmap, proposed by
IBM and Microsoft

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

� OASIS WS-Security 1.0 and token profiles is available at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
706 Powering SOA with IBM Data Servers

http://www.ibm.com/software/data/integration/db2ii/
http://www.alphaworks.ibm.com/tech/wsnavigator
http://www.ibm.com/developerworks/webservices
http://www.research.ibm.com/journal/sj/
http://xml.apache.org/
http://www.ws-i.org/
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=imssoap
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://www.w3.org/Encryption/
http://www.ibm.com/developerworks/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://publib.boulder.ibm.com/infocenter/wpdoc/v510/index.jsp?topic=/com.ibm.wp.ent.doc/wps/wpspuma.html
http://www.ibm.com/software/solutions/soa/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp
http://www-306.ibm.com/software/data/db2imstools/imstools/imsjavcon.html

� Web Services Security: SOAP Message: Errata 1.0

http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wsssoap-mes
sage-security-1%200-errata-003.pdf

� PHP home page

http://www.php.net

� The PHP 5.1.2 source code and Windows Binaries can be download from:

http://www.php.net/downloads.php

� The IBM HTTP Server can be downloaded from the product page:

http://www-306.ibm.com/software/webservers/httpservers

� Netcraft

http://news.netcraft.com

� CICS family products homepage at:

http://www.ibm.com/software/htp/cics

� CICS Transaction Server v3.1 documentation

http://publib.boulder.com/infocenter/cicsts/v3r1/index.jsp

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 707

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.oasis-open.org/committees/download.php/9292/oasis-200401-wsssoap-message-security-1%200-errata-003.pdf
http://www.php.net
http://news.netcraft.com
http://publib.boulder.com/infocenter/cicsts/v3r1/index.jsp
http://wwww-306.ibm.com/software/htp/cics
http://www.php.net/downloads.php
http://www-306.ibm.com/software/webservers/httpservers

708 Powering SOA with IBM Data Servers

Index

Numerics
4GL xxix, 127, 130, 297, 304, 344

A
access control 545, 661
addr country 598, 601–603, 616
Admin 246, 266, 297, 543
Administrative console 223, 353, 539, 548
Aged Timeout 544
ALIAS PHONBOOX 219
Apache 34, 77, 86, 116, 120, 130, 142, 171, 297,
320–321, 364, 406, 409, 414, 509, 528
Apache Axis 321, 409, 415–416

1.0 422
engine 415

Apache AXIS framework 321
appendChild 517–518
applets 152
Application client container 66
application code 39, 41–43, 50, 128, 185, 303, 439, 567,
624
application server xxx, 43, 54, 63, 67, 86, 97, 116–117,
120, 130–131, 142, 144, 170–171, 179, 202–203,
228–229, 239, 346, 351–352, 358, 363–364, 406, 412,
449, 452, 538–539, 554, 557–558, 562
attribute name 597, 635
Auditing 63–65, 544
Authentication 48, 62, 64–65, 74, 144, 393, 415–416,
419, 425, 440, 544–546
Authorization 48, 62, 64–65, 143–144, 416, 420, 425,
544–545, 548, 629

Control 545
auto-commit 525
Automation 51, 75, 554–555
availability 28, 44, 51, 57, 71–72, 91, 246, 300, 350, 391,
393, 455, 554–555
AXIS 130, 171, 297, 320–321, 406, 409, 415, 587, 615
AXIS WSDL2Java tool 324

B
B2B See Business-to-Business pattern
Best practices 4, 53, 102, 304, 541
Bind 41, 53, 58, 93, 100–101, 166, 355–356, 389, 526,
612–613, 616
BIND PACKAGE 356
Binding 37–38, 40, 43, 59, 89, 94–96, 115, 119,
131–132, 185–186, 202, 207, 234, 258, 270, 326,
355–356, 392, 394, 427–428, 434, 451, 533, 569, 611
BLOB 329, 572, 577, 580, 589, 625–626
BLOB data 341
BMP 548
BPEL 125, 271–272
buffer pool 300
© Copyright IBM Corp. 2006. All rights reserved.
Built-in data types 302–303
Business Function Services 49
Business integration xxx, 49, 114, 123, 258, 268–269,
280, 350, 555
Business logic 54, 128–129, 131, 199, 205, 258,
319–320, 345, 402, 405
business process 26, 30, 44, 48, 50–51, 57, 69, 125
Business Process Execution Language 47
Business Process Services 48–49
Business requirements 4, 75, 127, 298
Business Transaction Services 48–49

C
CallableStatement interface 314
CARMA 122
case-sensitive language 612
CCSID 578, 624
Cell 619
CGI 508
CICS 49, 120–121, 159, 161, 202, 228, 230, 234, 257,
350–351, 358, 555
CICS application 121
CICS environment 161
class libraries 291, 304, 323–324
Class location 306
CLASSPATH 232, 322–324, 355, 362
client application 149, 152, 181, 205–206, 222, 319, 558,
562
CLOB 163–165, 182, 186, 332, 367, 431, 436–437, 567,
570, 572, 578, 584, 624–625
Cloudscape 100, 118, 159, 362, 523, 528, 534, 548
CLUSTER 541
CMP 417, 434
COBOL 43–44, 120–121, 127, 201, 205–206, 208–209,
363, 402–404, 569, 624, 626
COBOL copybook 208–210, 229
Collaboration 27, 70, 72, 84, 91, 96, 124, 351, 392, 534
Collections 38, 561, 656–657
column name 149, 180, 292, 307, 316, 411, 623, 647
com.ibm.db2.jcc.DB2Driver 158, 353, 414, 420
command window 187, 220
Commit 45, 154, 161, 204, 229, 239, 329, 525, 542
Common Access Repository Manager 122
Common Object Request Broker Architecture 509
composition 86, 113, 271, 429, 576, 656
connection xxx, 25, 33, 37, 65, 94, 118, 143, 155–156,
158, 172, 183–184, 190, 202, 205, 219, 221–222, 303,
306, 308, 311, 355, 362, 406–407, 414, 438, 511,
520–521, 525, 539–541, 629–631
connection bundle 220–221, 223
connection management 525, 542
Connection name 191, 306
Connection pooling 415, 420, 539–540, 546
Connection Timeout 544
 709

ConnectionWaitTimeoutException 544, 547, 549
Connector 61, 117, 201, 203, 228–230, 352, 542–543
Constructor 419, 525
Container 66, 71, 74–75, 228, 248, 255, 259, 289, 346,
405, 416, 545, 559, 562
Content Management 52, 97, 99, 102
Context 24, 40, 47, 65–66, 70, 75, 79, 84, 144, 292, 299,
301, 303, 353, 388, 407, 412, 414, 553, 558, 588,
614–615
Controller 55, 76, 82, 88, 129
Conversion Log 446
cookies 46
CORBA 94, 417, 509
Correlator file 206, 219–221
CREATE INDEX 595
CREATE PROCEDURE 148, 151–152, 180, 315–316,
354, 403–404, 433, 530, 624
Credentials 416, 419, 422
Credit CDE

company 426
Web Service 426, 433

credit score 426, 428
cryptography 35
Custom Properties 544, 549
Customer table

Info column 598
Info XML column 603

customer table 131, 307–308, 598, 601
customerinfo Cid 598, 601–603, 616
CVS 106

D
DAD 171–172, 309, 367, 567, 621, 649–650
dadx

column name 316, 411
documentation xmlns 148, 309, 314, 411–412
operation name 148, 309, 314, 411–412
parameter name 148, 309–310, 314, 411–412

DADX file 142–143, 145, 171–173, 305, 308–309,
405–406, 409, 645, 653, 655

dynamic Web service operations 177
metadata definition 175, 659
operation definition elements 317
single WSDL document 406
syntax problems 413
UDR support 310

DADX group 179–180, 308–309, 311, 402, 405
important property 406
Properties pop-up window 309

DADX syntax 173, 314–316, 653
DADX Web service 305, 307–308, 413, 654

necessary files 310
Web service 305, 310, 313, 413

Data Definition Language 301, 520
data format 38, 44, 170
data integrity 63, 301, 568
Data Manipulation Language 520
Data perspective 116, 307, 407, 428, 431
data sharing 156
data source 126, 153, 155–156, 389, 414–415, 420–421,

539–541
JDBC URL 414
properties 414–415, 543, 549

data source interface 155, 158, 160, 420
data structure 122, 212, 258, 301, 434
data type 34, 94, 180, 303, 307, 320, 367, 419, 434, 566,
568, 576, 578–579, 594–596
database connection 191, 193, 306, 407, 409, 522, 524,
541, 547, 629
database descriptions 293
Database Explorer 106, 112, 116, 118, 191, 306, 407,
428, 629
Database management system 298
database object 527, 618
database server 118, 144, 154–156, 158, 160, 299–301,
303, 319, 520, 524, 535, 541, 624, 636, 660

data processing 319
databases 70, 100, 116–119, 122, 153, 162, 170,
202–203, 292–293, 308, 315, 317, 360–362, 393–394,
406, 412, 509, 534, 537, 539, 542, 555, 566, 576, 596,
628–629
DataBlade xxix, 297, 303, 320, 331

DataBlade API 303
DB CFG 596
DB2 Connect 155, 362, 528
DB2 data 140, 142, 147, 170, 352, 576
DB2 database 120, 143, 170, 360, 402, 406, 413, 546,
568, 596, 624, 627

connection 414
server 106, 170, 414
system 360, 596
XML documents 596

DB2 environment 414, 441
DB2 Express 534
DB2 family 534
DB2 for Linux, UNIX and Windows 192, 361, 565,
568–569, 593, 601, 616
DB2 for OS/390 and z/OS 152–153
DB2 for z/OS xxix–xxx, 102, 106, 139–141, 352,
354–355, 362, 402–403, 528, 542, 548, 565, 568–569,
575–576, 585
DB2 JDBC Legacy Type 2 driver 154
DB2 JDBC Legacy type 2 driver 154
DB2 table 162, 529
DB2 UDB 104, 142, 153–154, 169, 354, 358, 362, 366,
393, 548, 568, 593, 630

Version 8.1 645
DB2 Universal Driver 153, 155, 158, 414
DB2 V8 190, 360, 364, 570–571, 578, 595, 629

Development Center 629
DB2 V9.1 111, 170, 177, 189, 359–361, 569, 585,
594–596
DB2 V9.1 for Linux, UNIX and Windows

Annotated XML Schema Decomposition 621
Developer Workbench 190, 629
Information Center 360, 615, 622

DB2 XML Extender 177, 304, 364, 435, 437, 439, 566,
576, 621, 645, 649
db2jcc.jar 356, 362
DBDK 303
710 Powering SOA with IBM Data Servers

DCOM 509
DDF 154–156, 355
decomposition 367, 567, 621–623
default value 267, 644, 661
Demand Business 51
Deployment descriptor 76, 79, 82, 117, 271, 280, 321,
406, 408, 415, 546
deptdoc xml 627
DESCRIBE 40, 43, 50, 53, 59, 69, 86, 113, 120,
123–124, 128, 139–140, 142, 172, 203, 206–207, 225,
352, 354, 391, 538–539, 565, 576, 587
Developer Workbench 104, 595, 599

bottom right hand corner 643
Development Center projects 105
Welcome page 105
Welcome view 104
XML column data 113, 644
XML document validation 629

development tool 44, 59, 127, 135, 205, 221, 230
Distributed Component Object Model 509
Distributed Relational Database Architecture 152
Distributed transactions 62, 154, 156, 415
DLIModel 293
Document Object Model 33, 366, 515
Document Type Definition 33, 657
DOM 33, 124, 366, 515–517
DRA 202, 292
DRDA 142, 152–153, 355
DriverManager 155, 158, 160, 420
DriverManager interface 158, 160
DriverManager.getConnection 158, 160
DSA 298, 300–301
DTD 33–34, 305, 515, 518–519, 599, 657
dxxShredXML 621
Dynamic Scalable Architecture 298
Dynamic SQL 153, 176
Dynamic Web Project 117, 247, 305–307, 407, 417

E
EAR 117, 257, 271–272, 306, 311, 408, 412, 417
EastCreek 598, 602, 617
e-business

requirements 52
e-business application 52
echo command 513
Eclipse 86, 97, 104, 112, 114, 294, 298, 559, 561
EGL xxix, 116, 120, 122, 126, 297, 304, 344
EGL application 133, 346
EGL code 128, 130–131
EGL Conversion Tool 345, 446
EGL libraries 128
EGL Page Handler 129
EGL Program 122, 129
EGL Web Project 132–133, 346, 449, 453
EGL Web service 130–132, 304, 346, 443, 449, 452, 455
EJB 66, 97, 115–117, 203, 207, 228, 230, 245, 272, 390,
394, 539, 542, 545
EJB module 272
EJB project 271–272, 274, 276, 278
element name 36, 150, 174, 314, 450, 578–579, 589,

597, 635
element ref 314, 646–647, 649
encryption 35, 65, 67, 144, 393, 423
Enterprise Application 40, 45, 51, 117, 257, 273, 417,
528, 539, 546
Enterprise Application Integration 51
Enterprise Information System 545
Enterprise Java Beans 228, 303
Enterprise Service Bus 5, 49, 51, 67, 86, 350–351, 394,
557
enterprise service bus 333
EntirePool 544
Entity Bean 303–304
enumeration value 648, 653
ENVIRONMENT 5, 24, 27, 32, 39, 42, 62, 65–66, 69, 71,
75–76, 113–117, 121, 139, 142, 169–170, 177, 201–203,
205, 226, 301, 303–304, 347, 349–350, 352, 359–361,
390, 392–393, 402, 404, 510, 528, 538, 542, 545, 555,
557, 559, 562, 567, 611–612
error handling 45, 320, 419, 425, 525–527
error SQLSTATE 438–439
Exceptions 82, 258, 419, 425, 539, 549
EXEC SQL

End 625–626
SELECT xmlCol 625–626
SELECT XMLSERIALIZE 625
Update 625–626

existing IMS transaction
HTTP Web Service 257
SCA Service Component 274

EXPLAIN 52, 106, 144, 169, 414, 595
extended data types 302, 331
Extended Enterprise 57, 71–72, 102
EXTERNAL NAME

GETMRACT 404
LSTACNBR 403

F
FailingConnectionOnly 544
field xpath 314, 646, 650
Fine-grained services 47
firewall 184, 331
FLWOR expression 611–612, 615
following XML

existing XML 635
fragment 72, 74, 87, 91, 315–316, 322, 435, 439, 612,
619

G
gateway 201–203, 205–206, 351, 539
GENERATED ALWAYS 520
generated EGL

Web service function 132
genxml 332
getConnection 158, 160, 420–421
getMessage 420, 422, 525
Global transaction 291, 542
GNOME project 515
 Index 711

H
HDR 332
host variable

data type 111, 569
Host variable name 307
HTTP 27, 36–37, 90, 94, 96, 119, 133–134, 143–144,
169, 172, 177, 205, 207, 224, 228, 230, 304–305, 309,
353, 394, 411–412, 508–509, 558, 581–582, 597, 599
HTTP protocol 65, 324, 440
HTTP proxy 184, 331
Hypertext Transfer Protocol

Web services 60, 169

I
I4GL 344, 346
I4GL application 346, 443, 448
I4GL business logic 346, 442, 452
I4GL function 443–444
IBM DB2 xxx, 99, 115, 117, 153–155, 192, 201, 304,
361–363, 519, 628

Content Manager 99
UDB 154

IBM DB2 Legacy Driver 153
IBM EGL 126

compiler 126
IBM HTTP Server 509
IBM IDS 298–300

recent releases 302
IBM Informix xxix, 118, 298, 302–303

database 302, 317
Ids 303
J/Foundation Developer 321
JDBC 2.21.JC4 driver 316
ODBC Driver 317
OLE DB Provider 318

IBM ITSO 517–518
IBM WebSphere Developer for zSeries 205–207, 222
IBM Workplace

browser 98–99
Collaboration Services product 99
Document Services component 98
Managed Client 99
Messaging Services component 98
product 98–99
rich client 86, 98–99
Team Collaboration 97, 99
Web Content Management 99
Web Content Management 2.5 102

ibm_db2 extension 523–524, 530, 628
IDS 298

data types 301–302, 320
extensibility 297, 301
memory 299
processing 299–300
Web service consumer 319–320
Web service consumer example 325
Web service provider 303, 319

IDS 10 304, 306, 316
correct version 322

extensibility features 319, 331
optional extension 332
Web services 320, 324

IDS and WMQ 335
IDS and WORF 304
IDS architecture 298
IDS native PDO Driver 318
IMS 120–121, 147, 159, 161, 201–202, 350, 352, 357,
442, 548, 555, 665

database resource adapter 292
J2C Bean 243
J2C connector bean 229
JDBC 203, 291, 293, 352
marshalling 205
SOAP 201, 203, 205
WDSL file 208
Web service artifacts 206
WSDL file 206, 219

IMS application 205–206, 209
COBOL bytes 206
input message 212
output message 206, 213
output messages 206
Web service interface 206

IMS Connect 201–202
IMS Connectivity 204, 239
IMS environment 161
IMS SOAP Gateway 205–206, 208

deployment utility 205, 219, 223
runtime 205
server 205, 218, 220
SOAP messages 205–206, 222
Web service 205
WSDL directory 218, 220–221
XML directory 218, 220, 222

IMS transaction 222, 228, 257
IMS V9 202–203, 291
Indexes 300, 366, 571, 576, 585, 594–595, 598
Industry standards 205, 576
Info XML

column 597, 616, 618
document 598

Information Service 388–390
route incoming SOAP messages 394

Informix .NET Provider 317
Informix 4GL 127, 344, 346, 442

application 442
language 345

Informix Bank 442–443, 445
Informix DataBlade Developer’s Kit 303
Informix Dynamic Server 118, 298, 306, 364

stores_demo database 306
Informix IDS 129, 297, 304, 309–310, 319
INFORMIXDIR 322–323
INFORMIXSERVER 309
InformixSOADemo web project

folder 311
informix-sqli 309
Infrastructure services 7, 86, 391, 393
input message 83, 96, 133, 166–167, 185, 205, 229, 234,
712 Powering SOA with IBM Data Servers

326, 441, 532
input parameter 94, 146, 180, 187–188, 326, 431, 434,
660, 662

SOAP request 189
Insert statement 305, 307, 521, 628
integrated IMS

IMS Version 9.1 225
ISO 515, 532, 577, 625, 627
ISOLATION 126, 161, 661
ITSO Bank 402–403, 417, 442–443, 455, 529

company 402–403, 424, 442
Informix Bank 443

J
J/Foundation 297, 320, 322
J2C bean 230, 238

implementation 241
outline 244

J2EE xxx, 30, 45, 47, 53, 66, 75–76, 97, 113, 115–117,
144, 152, 161, 202, 228, 231, 390, 393–394, 402, 405,
538, 542–543, 559, 562

Benefits 126–127
Perspective 117, 248, 251, 290, 546

J2EE application 130, 402, 406
J2EE artifact 276
jar 76, 106, 224, 232, 302, 306, 310, 352, 356, 362–363,
408, 413
JAR file 106, 310, 324, 328, 352
Java xxx, 24, 30, 39, 41, 47, 61, 73–75, 77, 82, 86,
115–117, 119, 142, 144–145, 172, 180, 184, 201–202,
298, 302–303, 352, 354, 356, 361–363, 390, 394, 402,
405, 507, 538, 541, 558, 562, 569, 624

connectivity 97, 152, 154, 201, 419, 660
Java classpath 324
Java Virtual Processors 321
Java wrapper UDR 327

Java bean 238, 294, 304, 422, 434
Java class 83, 116–117, 294, 324, 414, 417
Java class files 117
Java classes 76, 160, 202, 321, 325–326
Java client

code 220, 222
proxy code 221–222

Java Common Connectivity 154
Java Community Process 77
Java Message Service 53
Java Naming and Directory Interface 156, 541, 544, 547
Java packages 156, 320, 322, 324
Java servlet 77, 417
Java Transaction API 156
Java Transaction Service 156
Java UDR

wrapper 324, 328
wrapper class 324

java.sql 156, 158, 314, 417, 419, 421, 548, 550
java.util.Properties 158, 160
Java/J2EE 126
JAVAENV 355
JavaMail 322, 324–325, 352
Javascript 86, 509

JavaServer Pages 33, 83, 86, 508
JavaSource 310–311
javax.naming 156, 420
javax.sql 156, 420
JAXP 322
JAX-RPC 43–44, 558–559, 562
JAX-RPC handler 558
JCC 139, 152, 154, 353, 355, 414, 420, 626, 630
JCL 121, 219, 226, 354, 357
JDBC 116, 118, 129, 142–143, 152, 172, 192, 202–203,
291, 304, 306, 309, 352–354, 361–363, 402, 407, 414,
539–540, 542, 624, 626–627

JDBC 3.0 specification 153
JDBC 2.0 155, 158
JDBC driver 142, 153–154, 292, 306, 310, 316,
353–354, 363, 414, 419–420, 542, 544, 547
JDBC driver types 153
JDBC drivers 153–154, 158, 355, 414, 543, 549
JDBC fundamentals 153
JDBC packages 355–356
JDBC provider 542–543
JDK 320, 322, 324
JIT 34
JMS 37, 43, 53, 60, 65, 202, 207, 228, 390, 394
JNDI 156, 172, 239, 265, 414–415, 420, 541, 544, 547
JNDI name 541, 544
JSP 55, 67, 82–83, 86, 117, 120, 125, 129, 131, 134,
184, 245, 422, 545
JSR-168 75, 77
JTA 156, 541
JTS 156
JVM 82, 321, 323

K
Key 4, 6, 24, 27–28, 34–35, 40, 69, 87, 114, 124, 171,
257, 292, 297, 301, 321, 360, 387–389, 432, 514, 520,
525, 573, 584, 597–598
krakatoa directory 323–324

L
LANG 323, 329, 548, 645
LANGUAGE SQL 149, 187–189, 436, 530
LDAP 94, 98, 416, 509
Learning Services 97, 99
LET t_card 445
LIBPATH 355
Library 40, 65, 67, 86, 94, 98, 122, 128, 131, 133, 153,
227–228, 232, 302, 324, 332, 352, 354, 413–415,
510–512, 554, 612
libxslt 519
Lightweight Directory Access Protocol 509
Linux xxx, 111, 116, 125, 142, 159, 169, 184, 189, 299,
321, 361, 393, 565, 567–568, 585, 593–595
Linux, UNIX and Windows products 359
LOB 355, 594, 624
local portlet 89, 92
Local transactions 541
Location transparency 40, 389
Logical Log 300
 Index 713

loose coupling 4, 28, 40, 42, 49–50, 439
Lotus Domino 99
LPAR 154–155

M
manageability 51, 302
Manufacturer 5, 8, 39, 124
Microsoft .NET 39, 205, 298, 317, 512, 557–559
Model 5–7, 24, 27–28, 42–43, 45, 50, 69, 76–77, 82, 84,
86, 112, 115, 122, 128–129, 205, 302, 351, 354, 366,
393–394, 416, 515, 548, 566–568, 585, 612
mortgage account 48, 403–404, 411
MQ

sending messages from IDS to WMQ 338
MQ DataBlade 303
MQ Publish and Subscribe functions 339
MQ Read and Receive functions 339
MQ Table mapping functions 340
MQ Utility functions 340
MVC 55, 86, 126, 129

N
namespace 31, 39, 112, 133–134, 163–164, 166,
183–185, 326, 427, 441, 450–451, 512–513, 518,
532–533, 572, 579, 581, 611, 622
namespace URI 611
native XML data

store 170, 567–569, 571, 594–595
Network bandwidth 52
Network deployment 538
Network infrastructure 62
Node 516–518, 539, 567, 572, 589–591, 614, 616
null value 164–165, 582–583, 588
NULLID 356, 548
NuSOAP 509, 512–513
NuSOAP Web service consumer 514

O
object oriented programming languages 126
ODBC 153, 317–319, 519, 523, 525, 627–628
Omegamon 555
onconfig 322, 331
ONCONFIG file 322
onPageLoad 129, 134
Open standards 4–5, 7, 24, 27–28, 51, 85, 319, 535
Open Transaction Manager Access 201, 204
open-source 29, 508, 519
Open-standard technologies 50–51
operation name 36, 96, 133, 146, 150, 177, 180, 185,
270, 315–316, 326, 411, 427, 532
OTMA 201, 204
output message 133, 149, 173–174, 185, 205, 207, 242,
326, 532, 652, 655, 658
output parameter 94, 164, 410, 422, 526, 532, 663
OWNER 46, 98, 180, 362–363

P
Package 41, 83, 106, 117, 128, 131, 134, 158, 224, 236,

241, 325, 356, 406, 417, 419, 523, 540, 548
Page Handler 129
page template 306
Pages 28, 33, 44, 71, 75, 83–84, 86, 88, 116, 145, 172,
213, 305, 332, 408, 508–509, 570
parallel data query 301
part name 96, 133, 185–186, 326, 427, 451, 532
Password 64, 144, 158, 179, 192, 205, 222, 239, 309,
353, 356, 364, 409, 414, 418, 520, 523–524, 541, 545,
630, 661
PATH 130, 183–184, 201, 218, 221, 310, 318, 322, 353,
355, 360, 362–363, 412, 424, 430, 534, 547, 554, 595,
611, 614
path expression 611, 614
PDQ 301
performance 5, 7, 34, 41, 62, 99, 115, 125, 147, 153,
160, 203, 297–299, 350, 525, 538, 540, 547, 554–556,
567–568, 570–571, 587, 596
Perl 363, 507
Personalization 70–71, 82
Perspective 57, 59, 75, 83, 86, 116–117, 208, 231, 247,
306–308, 407, 417
phone type 598, 602, 604, 617
PHP 67, 102, 317–318, 363, 507–509, 569, 624, 628

DOM extension 515
introduction 317
PDO 527
SOAP extension 509, 514

PHP 5 318, 509, 514
Christian Stocker article XML 519
XML concept 519

PHP code 507–508, 511
PHP Data Object 520
PHP data objects 318, 519, 524, 629
PHP drivers 519, 628
PHP program 509, 514, 529
PHP script 520, 523
php tag 508
Physical Log 300
Place 8, 24, 35, 41, 69, 86, 96, 178, 188, 273, 277,
392–393, 534, 539
Plain Old Java Objects 228
Point-to-point 25, 45, 65
POJO 207
popup 231, 233
Port 38, 65, 87, 133, 156, 160, 184, 186, 207, 214, 219,
326, 328, 353, 356, 428, 533
Portal 5, 69–71, 113, 115–116, 123, 202, 351, 426,
556–558
Portal development 96–97, 102, 115
Portal User Management Architecture 478
PORTALDB Database 428–430

stored procedure 433
portlet 70–73, 117, 529, 533
Portlet API 71, 75–77, 79–80

basic portlet life cycle 77
Portlet Container 71, 75–77, 87
portlet container 76–77, 79
portlet proxy 89–90
PortType 96, 133, 185–186, 326, 427, 451, 532
714 Powering SOA with IBM Data Servers

PQ63045 354
PQ84190 354
PQ91315 142
Primary key 45, 432, 520, 616–617
program specification block 293
Programming languages

IBM EGL 126
Java/J2EE 126
structured 126

PSB 293
PUMA 478
Purge Policy 544

Q
Quality of Service

security 62
Query Builder 307, 310

R
RAD tool 407, 409, 428
RAD wizard 203, 238, 257, 417, 434
Rational 83, 86, 96–97, 102, 113–115, 180, 182, 190,
204, 207, 229, 303, 305, 345, 351, 402, 406–407, 561

Application Developer 97, 102, 113, 191, 199, 231,
305, 409, 417, 422, 445

Rational Application Developer 97, 115–116, 424,
427–428
Rational Application Developer V6 97, 116
Rational SDP 131
Rational Software Development Platform 97, 113–114,
130
Rational Web Developer 97, 115
RDB mapping 649–650, 656
RDBMS 524
Reap Time 544
Recoverability 350
REGION xxix, 201, 219, 227, 358, 596, 629
relational data 112, 116, 152, 162, 567–569, 576,
594–595

data movement support 594
relational database 34, 100, 152, 179, 292, 294, 393,
509, 542–543, 587, 645
RelaxNG 518–519
Remote Portlet 80, 85–86, 88–90, 92–93

standard Web Services 101
Web Services 88

remote WebSphere Application Server 292
Resource Adapter 202, 229, 231, 542, 544, 547
Resource-based deployment 143, 171
result set 149–150, 173–175, 303, 316, 389, 403–404,
410, 521, 523, 647, 650
Retailer 5, 8
RETURNS CLOB 164, 182
Reusable function 50
RMI 60, 63, 94
Rollback 99, 161, 526
ROWID 577, 580
RRS 154, 202, 204, 228, 542
RS 421

Runtime Environment 76, 406
Runtime Framework 130, 139, 142, 170, 304, 352, 404

S
Sablotron 519
Sample level 2 3, 370
SAP stack 333
SAP/R3 xxix
SAX 33, 515
sbspace 322
SCA 202–203, 257, 394
SCA component 203, 264, 270
Scalability 60, 300, 320
Schemas 31, 34, 37, 39, 43, 90, 96, 118, 133, 146, 148,
177–178, 180, 309, 326, 367, 407, 411, 427, 532–533,
594–595, 599
Scratch Pad Area 229
secure environment 509
Secure Sockets Layer 65
Select File

system 209, 218
SELECT statement 305–307, 435, 441, 521, 523, 526,
580, 586–587, 599, 614, 650
selector xpath 314, 646, 650
Server

Configuration 120, 322, 412, 414, 421, 509, 543, 548
connection 159, 239, 265, 306, 413, 539
Instance 47, 82, 130, 154, 541

server-side Java
code 61

Service Component Architecture 202, 394
Service Flow Modeler 122
Service granularity 42–43, 47
service interaction 43
service interface 28, 43, 46, 55, 80, 86, 88, 90, 95, 119,
206, 210, 345, 434
service provider 4, 28, 37, 39–40, 43, 140, 144, 163, 169,
172, 176, 303, 319, 352, 363–364, 393, 426, 436, 438,
530

respective subroles 55
response message 60–61
specific, executable instance 46

service requester 43, 46–47, 54–55, 57, 558
Service substitution 44
service-oriented architecture

Component Based Design 40
first step 402
Implications 42
Object Oriented development 40
Service

Reusable 85
Session Bean 83, 284, 303, 390, 394
session EJB 272, 275–276
setAutoCommit 161
setXXX 316
Shared Memory 298–299
Simple API for XML 33
Simple Object Access Protocol 28, 37, 90, 169, 182, 205,
228, 558, 562
SimpleXML 515, 519
 Index 715

Smart large objects 302, 322
SMTP 60
SOA application 554
SOA solution 350
SOA standard 30
SOA work 50
SOAP action

URI 164, 183, 186, 434
SOAP body 37, 64, 163–164, 182, 184, 186, 423, 429,
434
SOAP engine 412, 415–416
SOAP envelope 163, 166–167, 184, 188–189, 250, 431
SOAP message 37, 56–57, 59, 205, 222, 319, 328, 394,
454
SOAP request 38, 89, 92, 95, 163–164, 183, 186, 188,
434, 440

HTTP header 440
SOAP response 39, 90, 95, 151, 163, 175, 183–184,
425, 431, 438

maximum size 431
SOAP RPC 57

advantage 57
SOAP UDF 165, 187–188, 440
soap_action VARCHAR 182, 186
soap_body VARCHAR 182, 186
soapaction VARCHAR 182
soapclient 512, 514
SP 403–404
spell checker 509
SQL 96, 112, 116–119, 129, 139, 142, 169–171, 292,
301–303, 366–367, 389, 391, 403–404, 508, 520, 523,
542, 548, 565, 567, 576–577, 593–595
SQL builder

support 112
window 307

SQL code 403–404, 419
SQL data 320, 403–404, 569, 571, 573, 576–577, 662
SQL editor 638
SQL level 319, 329
SQL script 324, 328, 330
SQL state 403–404, 419
SQL statement 147, 156, 161, 176, 189, 308, 329, 332,
406, 520, 524, 580, 612, 638
SQL type 111, 434, 436, 569, 622, 624
SQL/XML 568–569, 571, 577–578, 585, 594, 599, 601
SQL0204N error 618
SQLCA

see SQL Communications Area
SQLException 420, 422, 548, 550
SQLJ 106, 152–155, 320, 361–363, 624, 626
SQLSTATE 438–439, 524, 548
SQLtoXML 304
SSL 60, 63, 65, 166–167, 205, 229, 239, 425, 438–439
Stale connection 544, 550
Statement cache size 544
Static SQL 153
STEPLIB 219, 354
stock quote 36, 59, 82
Stored Procedure

result sets 150, 173, 410, 655

Stores database 330
Stores demo database 306
Struts 82, 86
stylesheet 33–34
Sun Microsystems 153, 184, 542
System Component Architecture 257

T
table dept 627
target platform 122, 126, 128
TCP/IP 120, 156, 160, 166, 203–204, 228, 354, 356, 362
Team support 106
Technical Function Services 48–49
Text User Interface 126
timestamp 189, 432–433, 648
Toolkit 59, 84, 275, 294–295, 352, 354, 510, 512
Transforms 33, 393
Transport Layer Security 65
transport protocol 29, 37, 53, 64, 66, 280, 439
Transport protocols 44
Transport-level security 63, 65
TWO_RESULT_SETS 180–181
Type 1 153, 221
Type 2 153–155, 354, 362, 414
Type 2 driver 153–154, 156
Type 3 153
Type 3 driver 153
Type 4 153, 155, 157, 354, 362

U
U.S. government taxonomy of businesses 39
UDDI 28–29, 31, 39, 80, 88, 93–94, 100–101, 119–120,
179, 304, 539, 654
UDDI directory 40, 88, 100
UDDI registry 39, 54, 58

up required services 39
UDDI specification 39–40
UDFs 139, 162, 164, 182, 184, 362, 364–365, 430, 434,
438, 569
UDRs 302–303, 305, 316
UML editing 97
Unicode 354, 366, 447, 577–578, 589, 628
Unified ODBC 520, 525
unique name 151, 175, 314, 646, 648, 650
Universal Driver for SQLJ and JDBC 153–154, 158
UNIX System Services 355
Unused Timeout 544
use case 182, 612
user ID 64, 160, 179, 192, 205, 365, 545–546, 630, 661
user interface

business application programs 126
user-defined routine 302
UTF-8 38, 90–91, 96, 146, 148, 177, 183–184, 213, 309,
366, 411, 427, 450, 454, 569, 577–578, 589, 596, 625
UTF-8 code 596, 644

V
VARCHAR 149, 163–164, 180, 182, 302, 316, 367,
716 Powering SOA with IBM Data Servers

403–404, 421, 520, 567, 591, 648
virtual processor 299–301, 321

appropriate number 299
VisualAge Generator 127, 130
VSAM 147
VTAM 156

W
WDz 205, 220, 222
Web application xxx, 5, 8, 53, 71, 77, 79–80, 117, 120,
129, 134, 140–142, 177, 179, 405–406, 507, 661–662
Web container 66
Web DataBlade 303, 332

initial purpose 332
Web page 71, 77, 84, 129, 144, 276, 508–509

run-time interaction 129
Standard request 508

Web Perspective 117, 310
WEB project 117, 132–133, 247, 306–307, 310,
407–408, 417
Web servers 178, 364, 508
Web Services xxix, 21, 23–30, 70, 75, 80, 84–87, 113,
115, 117, 119–121, 139–140, 142, 169–171, 201–203,
205–206, 219, 297, 303–305, 307, 349–352, 354, 359,
361, 363–365, 390, 392, 394, 402–404, 406, 413, 416,
509–510, 512, 514, 519, 531, 539, 556, 558–559,
561–562, 576, 629, 645–646, 648, 655, 659

available operations 430
building blocks 426
categories 56, 92, 178
credit score 427, 432–433
DADX file 143, 145, 149, 416, 655
database accesses 416
design considerations 52
following characteristics 53
Implementation 24, 95, 185, 417, 440, 452
implementation specification 58
input parameters 90, 305, 434, 438, 529, 531, 534
interaction properties 221
introduction 24, 126, 139, 304
main objective 24
major technical foundation 29
public operations 54
RPC/encoded result 437
SOAP 94, 182–184, 205, 416, 423
SOAP result 432, 435
standards 4, 7, 26–27, 80, 85, 127, 130, 170, 205,
319, 417, 425, 440
TEST link 413
View correlator properties 220
wide range 512
WSDL 28–29, 37, 86, 88, 94, 119, 132, 143, 162,
170, 205, 224, 248, 311, 405, 422, 558
WSDL documentation 646
XML Extender functions 439

Web Services Definition Language 143, 558
Web Services Description Language 28, 37–38, 53, 85,
184, 206
Web Services description language 170, 206
Web Services Interoperability Organization 49–50

Web Services Object Runtime Framework 142
Web Services Security 50, 62–64, 425
Web Site 50, 86, 225, 302, 330, 332, 511, 543, 547
WebContent 131, 134, 248, 251, 311, 453
WEBSERVICE 248, 253, 274, 414–415
WebSphere xxx, 5, 7, 25, 35, 39–41, 45, 73, 75, 82, 84,
114–116, 120, 142, 144, 170–171, 179, 202, 205, 297,
303, 350–352, 363–364, 387, 389–390, 406, 512,
537–539, 555, 557–558, 561–562
WebSphere Application Server 67, 116, 130–131, 142,
228–229, 255, 257, 291, 346, 352, 358, 364, 369, 406,
412–414, 416, 452, 537–539, 557, 559, 586

Architecture 542
WebSphere Application Server V6 546, 549
WebSphere connection pooling 540, 549, 551
WebSphere Developer 120, 122, 206–208, 350–351

for zSeries 120–121, 208, 219, 222
WebSphere Developer for zSeries 120, 208
WebSphere Developer for zSeries Version 6 121
WebSphere Everyplace 351
WebSphere Information Services Director

information services 390
WebSphere Integration Developer 123–125, 257
WebSphere Integration Development 202
WebSphere Message Queue 333
WebSphere MQ 44, 51, 60, 333

application use 334
description 333
IDS support 335
programming 336

WebSphere Portal 82, 84–86, 92
WebSphere Portal Server 85, 96, 100, 102
WebSphere Studio Application Developer 97
WID 190, 202–203, 229, 257
WID wizard 269, 274, 291
Windows xxx, 42, 72, 111, 116, 125, 142, 159, 169, 180,
189, 203, 205, 220, 299, 321, 325, 361, 393, 509, 528,
565, 567–568, 585, 593–595
Wizard 35, 83–84, 105–106, 118–119, 180, 191, 203,
209, 229, 303, 306–307, 403, 407, 595
WLM 149, 354, 403–404
WLM ENVIRONMENT

DB2ACCTD 404
WMQ 333, 335
WMQ Message Broker 334
WMQ transactions 342
WORF 139, 142–143, 170–172, 297, 304–305,
352–353, 363–364, 402, 662
Workflow 5, 29, 57, 70, 84, 99, 101, 114, 554, 557
workload 120–121, 203, 299–300, 539
Workplace Managed Client 97, 99
Workspace 117–118, 130, 194, 209, 306, 406, 410, 445,
556–558
World Wide Web Consortium 34–35, 37, 85, 611
WPS 96, 100–101, 202, 259, 273, 351
wrapper UDF 185, 187–188, 427, 429–430

appropriate return value 435
body 431
return value 431, 435

WSAD 294
 Index 717

WSDL 28, 36–37, 80, 88, 94–96, 131, 133–134, 145,
149, 172–173, 177, 206, 208, 304–305, 311, 392–393,
406, 413, 422, 512–514, 645, 647–648
wsdl

part name 427, 451
WSDL description 88, 187
WSDL document 61, 172, 196, 207, 647, 654
WSDL file 57–58, 96, 132–133, 188, 206, 208, 324–326,
430, 514, 532, 655

name 194, 217, 221, 453
URL 325

WSDL specification 39, 54–55, 61–62
WS-Policy 43–45, 65
WS-ReliableMessaging 44–45, 440
WSRP 80–81
WS-Security 45, 50–51, 63–65, 425, 440

X
XA 154, 156, 160
Xerces 34, 322, 324–325
XHTML 74, 148, 309, 314, 411–412, 507, 654, 656
XML xxix, 21, 26–29, 36, 83, 90, 92, 94, 102, 117–118,
121, 142–143, 145, 170, 172, 201, 205–206, 297,
303–304, 352, 354, 363–364, 390, 392, 394, 405,
407–408, 509, 511, 558, 565–566, 575–576, 593–595

DataBlade 332
dynamic XML 332
input variable 628
new column 111, 569
Schema 33–34, 39, 175, 177, 181, 313, 321, 367,
413, 437, 439, 512, 518–519, 566, 573, 594–596
standards 35, 515, 518, 576
Web Services 29, 37, 163, 170, 304, 405
XSL documents 332

XML Adapter 219, 222, 225
1 225, 228
distribution 225
function 225

XML Collection 176–177, 621, 649–650
XML collection

operation 656–657
XML column 367, 567, 570, 576, 596–597, 601

data 571, 587, 596, 612
definition 657
effective limit 596
input data 612
internal representation 628
type 624

XML data 36, 111, 164, 170, 201, 367, 511, 566–569,
576–577, 594–595

associated indexes 595
column 111, 569–571
Data movement 594, 645
format 567, 571, 576
integrity 568
many common database operations 594
model 567
native storage 594
query statements 567, 595
second row 643

SQL queries 571
storage 567–569, 594
type 367, 568, 571, 576, 594
value 112, 569, 578

XML Data Type 569
XML declaration 625
XML Digital Signatures 35
XML document 34–35, 65, 163, 172–174, 332, 434,
436–437, 515–516, 518, 567–569, 572, 587, 594, 598

abstract, logical structure 612
content 35, 600, 621
hierarchy 612, 653
query values 614
type 436, 569
validation 596
XML documents 519, 569
XML Schema validation 599
XML value validation 112

XML document validation 112
XML element 150, 572, 578–580, 623, 657
XML Encryption 35
XML Extender 146, 177, 188, 304, 364, 366–367, 435,
437, 566, 576, 621, 645, 649
XML file 83, 179, 218, 221, 409, 415, 515–517
XML fragment 332, 619
XML index 598
XML message 206
XML parser 33–34, 166–167
XML Schema 34, 43, 54, 59, 175, 314, 367, 518–519,
573, 594, 596–597

data model validation 59
Document 519, 599, 601, 621
element 622
literal encoding 59
name 600, 621, 636
specification 59
Support 107, 519
validation 34, 112, 600, 622
wizard 634, 636
XML document 112, 519, 600, 622

XML Schema Document 600, 634, 636
XML Services for the Enterprise 121, 205, 210
XML store 567
XML structure 437
XML support 107, 146, 515, 567, 585, 595

following types 112
XML type 94, 366, 569, 588, 590, 627–628
XML value 569, 572, 576–578, 600, 618

validation 573
XML version 36, 96, 133, 146, 148, 177–178, 183, 309,
326, 411, 427, 450, 515, 518, 532, 589–591, 597, 625,
635
XMLCLOB 367, 435–437
xmldb database 596, 629
XMLEXISTS predicate 571, 585, 587, 601, 620
XMLPARSE function 569, 599
XML-RPC 509, 511
XML-RPC Web service 511
XMLtoSQL 304
XMLVALIDATE function 600
718 Powering SOA with IBM Data Servers

XMLVARCHAR 187–188, 367
XPath 314, 441, 568–569, 571, 576, 585–587, 604, 612,
614
XQuery 571
XQuery builder 107, 112, 595
XQuery expression 573, 612–613, 617
xs

element name 597, 635
XSD 44, 90, 96, 133, 145–146, 177–178, 180, 213, 216,
304–305, 309, 411–413, 513, 519, 597, 599, 634
XSD Editor 635–636, 644
XSE 205
XSL transformation 34
XSLT 34, 303, 332, 436, 519
XSLT DataBlade 332
XSLT processor 34

Z
z/OS xxix–xxx, 102, 106, 111, 121–122, 139, 141, 202,
204, 207, 349–351, 362–363, 369, 393, 402–403, 420,
528–529, 542, 548, 565, 567–568, 575, 578, 601
z/OS application 121, 154, 202, 355
z/OS Modernization Developer 207–208
Zend Core for IBM 534
Zend Technologies 534
zSeries 120, 122, 142, 205–207, 350–351, 361
 Index 719

720 Powering SOA with IBM Data Servers

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Pow
ering SOA w

ith IBM
 Data Servers

Pow
ering SOA w

ith IBM
 Data Servers

Pow
ering SOA w

ith IBM
 Data

Servers

Pow
ering SOA w

ith IBM
 Data Servers

Pow
ering SOA w

ith IBM
 Data

Servers

Pow
ering SOA w

ith IBM
 Data

Servers

®

SG24-7259-00 ISBN 0738494542

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are
developed by the IBM
International Technical
Support Organization.
Experts from IBM,
Customers and Partners
from around the world
create timely technical
information based on
realistic scenarios. Specific
recommendations are
provided to help you
implement IT solutions
more effectively in your
environment.

For more information:
ibm.com/redbooks

Powering SOA with
IBM Data Servers

Understand the role of
data servers within
service-oriented
architecture (SOA)

Map the current
portfolio of products to
the architecture

Follow an
implementation
premised on diversity

Flexibility in business has become equal in importance
with operational efficiency. Service-oriented architecture
(SOA) can help businesses respond more quickly and
cost-effectively to the changing market conditions by
promoting reuse and interconnection of existing IT assets
rather than time-consuming and costly reinvention.

SOA has been the top fashionable topic in IT for a few years
now. This is because there is a consensus of opinions
among enterprise architects that SOA is the key to making
the IT department a catalyst for growth and innovation.

This IBM Redbook helps you get started with SOA by
showing the implementation of the minimum
requirements: The creation of Web services that allow
access to data that is stored in data servers or applications
and the realization of interaction services for business to
consumer integration. The data servers included in our
scenario are DB2 for z/OS, DB2 for Linux, UNIX and
Windows, Informix Dynamic Server and IMS.

This redbook is a roadmap showing how SOA can
significantly improve the IT business value.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 General introduction to SOA
	Chapter 1. SOA: Why it is good for you
	1.1 What is service-oriented architecture?
	1.2 Why is SOA important to our clients?
	1.3 How is IBM delivering SOA solutions?
	1.4 The service-oriented enterprise
	1.4.1 SOA at work
	1.4.2 The need for governance

	Chapter 2. SOA: From abstract to concrete
	2.1 The business value of SOA
	2.2 Business-centric starting points for SOA
	2.3 Infrastructure starting points for SOA
	2.3.1 Connectivity: Underlying connectivity to support business-centric SOA
	2.3.2 Reuse: Creating flexible, service-based business applications

	2.4 An implementation roadmap for SOA
	2.5 The scope of this redbook

	Part 2 SOA technologies
	Chapter 3. Web services and service-oriented architecture
	3.1 Drivers for Web services and SOA
	3.2 Standards and technologies for Web services and SOA
	3.2.1 Overview of Web services standards
	3.2.2 eXtensible Markup Language
	3.2.3 SOAP and WSDL
	3.2.4 Universal Description, Discovery and Integration

	3.3 An overview of SOA and Web service
	3.3.1 Coupling and decoupling of aspects of service interactions
	3.3.2 Designing connectionless services
	3.3.3 Service granularity and choreography
	3.3.4 Implications of service-oriented architecture
	3.3.5 Web services interoperability

	3.4 Web services (WS) and SOA work together
	3.5 SOA and Web service architecture design considerations
	3.5.1 e-business application design considerations
	3.5.2 Design considerations for Web services
	3.5.3 The key challenges in Web services
	3.5.4 Security considerations

	3.6 Additional information for SOA

	Chapter 4. SOA and user interfaces with portals
	4.1 An introduction to portals and portlets
	4.1.1 What is a portal?
	4.1.2 Portal applications
	4.1.3 Portal page
	4.1.4 The portal engine
	4.1.5 What is a portlet?
	4.1.6 Portlet container
	4.1.7 Portlet life cycle and request processing

	4.2 The standardization of portlets (Java standardization request - JSR-168)
	4.2.1 JSR 168 portlet modes
	4.2.2 JSR 168 specific concepts
	4.2.3 JSR 168 and Web Service for Remote Portlets (WSRP)
	4.2.4 Portlet development guidelines with JSR 168
	4.2.5 Building JSR 168 portlets with Rational Application Developer (RAD)

	4.3 Portals and SOA
	4.3.1 User access to service
	4.3.2 Web service and portals
	4.3.3 Development tools
	4.3.4 Conclusion

	4.4 Additional information for portals and SOA

	Chapter 5. Development tools
	5.1 DB2 Developer Workbench
	5.1.1 Creating a stored procedure using Developer Workbench
	5.1.2 New XML support in DB2 Developer Workbench

	5.2 Rational Application Developer
	5.2.1 The IBM Rational Software Development Platform
	5.2.2 IBM Rational Application Developer

	5.3 WebSphere Developer for zSeries
	5.3.1 Product overview
	5.3.2 Development tools

	5.4 WebSphere Integration Developer
	5.4.1 What business integration is
	5.4.2 WebSphere Integration Developer

	5.5 Enterprise Generation Language (EGL) and SOA
	5.5.1 Application development with EGL
	5.5.2 EGL and Web services support

	Part 3 IBM data servers and SOA access services
	Chapter 6. DB2 for z/OS and SOA
	6.1 DB2 for z/OS and Web services
	6.2 DB2 for z/OS providing Web services
	6.3 Web services object runtime framework (WORF)
	6.3.1 What does WORF do?
	6.3.2 WORF security

	6.4 How WORF processes a Web service
	6.5 Creating a DADX file
	6.6 Why use stored procedures?
	6.6.1 Stored procedure as a Web service

	6.7 Connecting your services to DB2 for z/OS through JCC (JDBC)
	6.7.1 Accessing DB2 for z/OS from Java Environment
	6.7.2 How JDBC applications connect to a data source
	6.7.3 Specifying a user ID and password for a connection
	6.7.4 Which is the better JDBC driver type to Web Services?
	6.7.5 Other JDBC considerations

	6.8 DB2 for z/OS consuming Web services
	6.8.1 Using DB2 for z/OS UDFs
	6.8.2 SOAPHTTPC and SOAPHTTPV

	Chapter 7. DB2 for Linux, UNIX and Windows and SOA
	7.1 DB2 Web service components: Provider and consumer
	7.2 Web services provider
	7.2.1 Web service provider operations and DADX
	7.2.2 Syntax of a DADX
	7.2.3 DADX operations
	7.2.4 Exposing a stored procedure as a Web service

	7.3 Web services consumer
	7.3.1 Web services consumer user-defined functions
	7.3.2 Generating Web services consumer functions from WSDL

	7.4 Development tools

	Chapter 8. IMS and SOA
	8.1 Introduction
	8.2 IMS Connect
	8.2.1 IMS example

	8.3 Web Services with SOAP Gateway
	8.3.1 Creating the WSDL file
	8.3.2 Enabling the z/OS Developer role
	8.3.3 Generating a WDSL file using WebSphere Developer for zSeries
	8.3.4 Deploying to IMS Connect
	8.3.5 Deploying to IMS SOAP Gateway
	8.3.6 Accessing from a SOAP client
	8.3.7 Preparation at the z/OS host

	8.4 IMS Services through WebSphere
	8.4.1 HTTP Web Service built with RAD
	8.4.2 A Service built with WebSphere Integration Developer (WID)
	8.4.3 Importing with WID, a Service built by RAD

	8.5 Accessing DLI data
	8.5.1 Hierarchical
	8.5.2 Metadata
	8.5.3 Conclusion

	Chapter 9. Informix IDS and SOA
	9.1 IBM Informix Dynamic Server: An overview
	9.1.1 The IDS architecture
	9.1.2 Extensibility in IDS: Key for SOA integration

	9.2 IDS as a Web services provider
	9.2.1 IDS Web services based on Enterprise Java Beans (EJBs)
	9.2.2 IDS and simple Java Beans Web services
	9.2.3 IDS and EGL Web services
	9.2.4 IDS and WORF (DADX Web services)
	9.2.5 IDS and other Web services environments (.NET, PHP)

	9.3 IDS as a Web services consumer
	9.3.1 Utilizing J/Foundation and Apache’s Axis for Web services consumption
	9.3.2 Installation and configuration of IDS 10 and AXIS 1.3 for the examples
	9.3.3 The basic IDS Web service consumer development steps
	9.3.4 The AXIS WSDL2Java tool
	9.3.5 A simple IDS Web service consumer example

	9.4 XML related DataBlades
	9.4.1 XML generating UDRs
	9.4.2 XSLT DataBlade
	9.4.3 Web DataBlade

	9.5 Using WebSphere MQ with Informix applications
	9.5.1 Brief description of WebSphere MQ
	9.5.2 How do Informix and other database applications use WMQ?
	9.5.3 IDS support for WebSphere MQ
	9.5.4 Programming for WMQ
	9.5.5 Transactions
	9.5.6 Summary

	9.6 Integrating I4GL applications with SOA through EGL
	9.6.1 Why convert 4GL to EGL for SOA integration?
	9.6.2 What the required steps are

	Part 4 Setting up the environment
	Chapter 10. The z/OS products for SOA
	10.1 The z/OS products for SOA implementation
	10.1.1 z/OS products used in this redbook

	10.2 Setting up Web services in z/OS
	10.2.1 Enabling Web service provider in DB2 for z/OS
	10.2.2 Enabling Web service consumer in DB2 for z/OS
	10.2.3 Installing the DB2 Universal JDBC driver
	10.2.4 Binding the DB2 Universal JDBC driver packages
	10.2.5 Installing IMS Java

	Chapter 11. The Linux, UNIX, and Windows products for SOA
	11.1 DB2 V9.1 for Linux, UNIX, and Windows installation and its development software support
	11.1.1 Linux and UNIX operating systems
	11.1.2 Windows operating systems

	11.2 Connecting Web services to DB2 via JDBC
	11.2.1 Changes to development software support

	11.3 Preparing the installation of the Web services provider
	11.4 Installation of the Web services consumer UDFs
	11.5 Migrating from XML Extender

	Chapter 12. WebSphere Application Server
	12.1 Introduction to WebSphere Application Server Version 6
	12.1.1 What is new in WebSphere Application Server Version 6?

	12.2 Highlights and benefits
	12.3 Supported platforms and software
	12.3.1 Operating systems
	12.3.2 Database servers

	12.4 WebSphere Application Server V6 architecture
	12.4.1 Architecture configurations
	12.4.2 z/OS base infrastructure

	12.5 Web services
	12.5.1 Web Services Gateway
	12.5.2 Service integration bus
	12.5.3 Summary

	Chapter 13. WebSphere Information Server
	13.1 Information as a service
	13.2 A closer look at information services
	13.3 Introducing the IBM WebSphere Information Server
	13.3.1 Unified SOA deployment

	13.4 WebSphere Information Services Director architecture
	13.4.1 Design concepts
	13.4.2 Product architecture
	13.4.3 Conclusion

	Part 5 Assembling and developing a scenario
	Chapter 14. SOA scenario
	14.1 Problem space
	14.2 Strategy space
	14.3 Solution space usage scenario

	Chapter 15. Developing SOA access services
	15.1 Scenario exposing DB2 business logic as Web Services
	15.1.1 Overview
	15.1.2 Implementation of the Web Services using WORF
	15.1.3 Additional WORF capabilities
	15.1.4 Web Service implementation using Java wrappers
	15.1.5 Comparison of WORF-based and Java-based implementations

	15.2 Scenario using DB2 as Web Service consumer
	15.2.1 Overview
	15.2.2 Implementation of the Credit Score function using RAD
	15.2.3 Best practices
	15.2.4 Considerations using DB2 Version 9.1
	15.2.5 DB2 SOAP functions and Web Service interoperability
	15.2.6 Consuming Web Services using Information Integrator

	15.3 Scenario exposing I4GL business logic as Web services
	15.3.1 Overview
	15.3.2 The Informix Bank 4GL credit card application
	15.3.3 4GL to EGL conversion of the Informix Bank application
	15.3.4 Expose the converted I4GL library functions as an EGL Web service
	15.3.5 Test the new EGL based Web service
	15.3.6 Summary

	15.4 Scenario aggregating services as portlets
	15.4.1 Overview
	15.4.2 Setting up the portlet project
	15.4.3 Creating Data Access Objects to retrieve database information
	15.4.4 Creating Java client proxies for Web Service interfaces
	15.4.5 Creating the credit score portlet
	15.4.6 Creating the foreign exchange calculator portlet
	15.4.7 Creating the mortgage accounts portlet
	15.4.8 The whole picture

	Part 6 SOA operations
	Chapter 16. PHP client design
	16.1 A brief introduction to PHP
	16.1.1 What PHP is

	16.2 Implementing Web services with PHP
	16.2.1 XML-RPC
	16.2.2 NuSOAP
	16.2.3 PHP 5 SOAP extension

	16.3 Using native XML with PHP 5
	16.3.1 DOM
	16.3.2 Validation
	16.3.3 XSLT

	16.4 Connecting PHP to data servers
	16.4.1 Unified ODBC
	16.4.2 ibm_db2 extension
	16.4.3 PHP data objects (PDO)

	16.5 Access an enterprise application using PHP
	16.5.1 Lab environment description
	16.5.2 Usage scenario

	16.6 Zend Core for IBM
	16.7 Conclusion

	Chapter 17. WebSphere Application Server administration
	17.1 WebSphere foundation
	17.2 Responsibilities of a WebSphere Application Server administrator
	17.3 What does WebSphere Application Server Administrator do involving databases
	17.3.1 Creating connection pooling
	17.3.2 Best practices
	17.3.3 Data Sources
	17.3.4 JDBC providers
	17.3.5 Create a data source
	17.3.6 Security
	17.3.7 Problem determination
	17.3.8 Database connection problems
	17.3.9 JDBC trace configuration
	17.3.10 WebSphere exceptions

	Chapter 18. Managing and monitoring SOA applications
	18.1 IBM Tivoli Composite Application Manager V6 Family
	18.1.1 Why manage?
	18.1.2 IBM Tivoli system management portfolio
	18.1.3 Tivoli composite application solution

	18.2 ITCAM for product features
	18.3 ITCAM for SOA product components
	18.3.1 Monitoring agent data collector
	18.3.2 IBM Web Service Navigator

	18.4 Monitoring performance in DB2
	18.5 Stand alone monitoring tools for SOA
	18.5.1 IBM Web Services Navigator
	18.5.2 Data Collector for IBM Service Navigator

	Part 7 Appendixes
	Appendix A. XML and DB2
	A.1 Why use XML in DB2?
	A.2 Native XML support versus XML Extender
	A.3 DB2 native XML store
	A.4 The XML Data Type
	A.5 Comparing various XML stores
	A.6 XML Index for DB2
	A.7 SQL/XML

	Appendix B. XML and DB2 for z/OS
	B.1 The XML support in DB2 for z/OS
	B.1.1 What has DB2 already provided?
	B.1.2 The XML publishing functions reference

	B.2 What DB2 Version 9.1 for z/OS brings to XML support
	B.2.1 Native XML storage
	B.2.2 Using XMLEXISTS to select XML data
	B.2.3 Query performance using XML
	B.2.4 The XPath functions reference

	Appendix C. XML and DB2 for Linux, UNIX and Windows
	C.1 New features of native XML data store in DB2 V9.1 for Linux, UNIX and Windows
	C.2 Using the native XML data store in DB2 V9.1 for Linux, UNIX and Windows
	C.3 XML schema support
	C.3.1 XMl schema repository

	C.4 SQL/XML examples
	C.4.1 Update, Delete and Query using SQL/XML
	C.4.2 Publishing XML as relational data

	C.5 XQuery in DB2 V9.1 for Linux, UNIX and Windows
	C.5.1 FLWOR expressions
	C.5.2 Path expressions
	C.5.3 XQuery examples for DB2 for Linux, UNIX and Windows

	C.6 Comparison of XML data access methods
	C.7 Annotated XML schema decomposition
	C.7.1 XML Extender shredding versus annotated XML schema decomposition
	C.7.2 DB2 V9.1 for Linux, UNIX, and Windows and its annotated XML schema decomposition

	C.8 XML APIs and application support
	C.8.1 Embedded SQL
	C.8.2 JDBC or SQLJ
	C.8.3 ODBC/CLI
	C.8.4 .NET
	C.8.5 PHP

	C.9 Create and register an XML schema using Developer Workbench
	C.10 Restrictions on native XML store
	C.11 XML schema for the DADX file
	C.12 Syntax of the DADX file
	C.13 Dynamic query service operations in the Web services provider

	Appendix D. Setting up IMS services
	D.1 Database
	D.1.1 Database descriptor
	D.1.2 Database load

	D.2 Programs and PSBs
	D.2.1 PSBs
	D.2.2 JDBC access to DLI data
	D.2.3 Java Message Processing Program preparation

	D.3 Definitions for the application
	D.3.1 Database and application definitions in Stage 1
	D.3.2 The JMP preparation

	Appendix E. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material
	Setup of the example DB2 databases

	Glossary
	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

