

ibm.com/redbooks

Understanding
SOA Security
Design and Implementation

Axel Buecker
Paul Ashley

Julien Bouyssou
Gianluca Gargaro

Sridhar Muppidi
Ray Neucom

Neil Readshaw
Gregor Schinke

Introducing an SOA security reference
architecture

Implementing scenarios based
on the IBM SOA Foundation

Deploying SOA using IBM
Tivoli security solutions

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Understanding SOA Security
Design and Implementation

February 2007

International Technical Support Organization

SG24-7310-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (February 2007)

This edition applies to Version 6.0 of IBM Tivoli Access Manager for e-business, Version 6.1 of
IBM Tivoli Federated Identity Manager, and Version 6.0 of IBM Tivoli Directory Server. We are
also discussing several other IBM software products in the context of hands-on scenarios.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this IBM Redbook . xi
Become a published author . xiv
Comments welcome. xiv

Part 1. Business context and foundation . 1

Chapter 1. Business context . 3
1.1 Service orientation. 4

1.1.1 More than componentization. 5
1.1.2 Evolution not revolution. 7
1.1.3 A focus on reuse . 8

1.2 Security considerations for SOA . 8
1.2.1 User and service identities and propagation . 9
1.2.2 Connect to other organizations on a real-time, transactional basis . . 9
1.2.3 Composite applications . 10
1.2.4 Managing identity and security across diverse environments. 10
1.2.5 Protecting data . 11
1.2.6 Demonstrable compliance with a growing set of standards 11

1.3 Security in the service-oriented life cycle . 12
1.3.1 Security encompasses all aspects of the life cycle 14

1.4 Summary . 15

Chapter 2. Architecture and technology foundation 17
2.1 Service-oriented architecture overview . 18

2.1.1 Definition of a service-oriented architecture 18
2.1.2 Basic components of an SOA . 19

2.2 IBM SOA Reference Model . 21
2.3 The need for security in the SOA . 24
2.4 IBM SOA Security Reference Model . 28

2.4.1 IT Security Services . 30
2.4.2 Security Policy Infrastructure . 38
2.4.3 Business Security Services. 43

2.5 IBM SOA Security Logical Architecture. 49
2.5.1 Foundation scenarios . 49
2.5.2 Typical deployment architecture . 53
© Copyright IBM Corp. 2007. All rights reserved. iii

2.5.3 IBM SOA Security Logical Architecture summary. 55
2.6 Conclusion. 57

Part 2. IBM SOA Foundation scenarios . 59

Chapter 3. IBM SOA Foundation Service Creation scenario 61
3.1 Scenario overview . 62

3.1.1 Direct exposure architectural pattern . 62
3.1.2 Indirect exposure architectural pattern . 65

3.2 Applying the IBM SOA Security Reference Model 66
3.2.1 IT Security Services . 67
3.2.2 Security Policy Infrastructure . 78
3.2.3 Business Security Services. 82

3.3 Summary . 88

Chapter 4. IBM SOA Foundation Service Connectivity scenario 89
4.1 Scenario overview . 90
4.2 Applying the IBM SOA Security Reference Model 94

4.2.1 IT Security Services . 95
4.2.2 Security Policy Infrastructure . 108
4.2.3 Business Security Services. 111

4.3 Summary . 116

Chapter 5. IBM SOA Foundation Service Aggregation scenario 117
5.1 Scenario overview . 118

5.1.1 Overview of the Service Aggregation scenario 118
5.1.2 Web single sign-on perspective . 119
5.1.3 Web services perspective . 121

5.2 Applying the IBM SOA Security Reference Model 122
5.2.1 IT Security Services . 124
5.2.2 Security Policy Infrastructure . 139
5.2.3 Business Security Services. 143

5.3 Summary . 147

Part 3. Securing the Service Creation scenario . 149

Chapter 6. Business scenario . 151
6.1 Business model . 152

6.1.1 Overview . 152
6.1.2 Initial context - ITSOTelco. 153
6.1.3 Initial context - ITSOBank . 154
6.1.4 Preliminary SOA engagement. 155
6.1.5 Business logic . 157
6.1.6 Authentication and authorization. 158
iv Understanding SOA Security Design and Implementation

6.2 Business requirements . 158
6.3 Technical requirements . 159

6.3.1 Security requirements . 160
6.3.2 Other functional requirements. 161
6.3.3 Other non-functional requirements . 162

Chapter 7. Solution design . 163
7.1 Solution architecture introduction . 164
7.2 IT Security Services . 166

7.2.1 Identity Services . 167
7.2.2 Authentication and authorization services. 170
7.2.3 Confidentiality and integrity services. 180
7.2.4 Audit Services . 183

7.3 Security Policy Infrastructure. 186
7.3.1 Policy Administration. 186
7.3.2 Policy Decision and Enforcement . 187
7.3.3 Monitoring and reporting . 188

7.4 Business Security Services . 189
7.4.1 Governance, risk, and compliance . 189
7.4.2 Trust Management . 189
7.4.3 Identity and access . 190
7.4.4 Data protection and disclosure control . 190
7.4.5 Secure systems and networks . 190

7.5 Conclusion. 192

Chapter 8. Technical implementation . 193
8.1 Implementation scope . 194
8.2 Configure security for the ITSO Banking Application 196

8.2.1 Import the application into Rational Software Architect. 196
8.2.2 Key stores . 201
8.2.3 Configure the application client . 202
8.2.4 Configure the application . 224
8.2.5 Export the application with security configuration 244

8.3 Deploying the ITSO Banking Application . 244
8.3.1 Installing the CICS ECI resource adapter . 245
8.3.2 Configuring the CICS Connection Factory 248
8.3.3 Configure a JAAS login module . 253
8.3.4 Deploy the ITSO Banking Web service. 255

8.4 Configure Web Service Security Management . 259
8.4.1 Configure the WSSM trust chains . 259

8.5 Running the scenario . 288
8.6 Common Auditing and Reporting Service configuration 307

8.6.1 Configure Federated Identity Manager central auditing 309
 Contents v

8.6.2 Configuring central auditing for trust service events 314
8.7 Conclusion. 322

Appendix A. Introduction to service-oriented architecture 323
Service-oriented architecture overview . 324

Definition of a service-oriented architecture . 324
Challenges and drivers for SOA . 326
Why SOA now. 330
SOA approach for building a solution . 333

Getting started with SOA . 335
SOA adoption . 335
IBM SOA entry points . 336
IBM SOA Foundation . 338

Web services and SOA . 338
Web services technologies . 338
Web services and SOA . 343

Appendix B. IBM SOA Foundation. 345
SOA Foundation overview . 346
SOA Foundation life cycle . 346

Model . 347
Assemble . 348
Deploy . 348
Manage . 349
Governance. 349

SOA Foundation Reference Architecture . 350
SOA Foundation scenarios . 354

Service Creation scenario . 357
Service Connectivity scenario . 360
Interaction and Collaboration Services scenario. 367
Business Process Management scenario . 367
Information as a Service scenario. 368

Appendix C. Security standards and technology. 371
Web services security specifications . 372

WS-Security . 373
WS-Policy . 375
WS-Trust . 376
WS-Federation . 376
WS-SecureConversation. 377
WS-SecurityPolicy. 378
WS-Provisioning . 378
More information . 379

Security Assertion Markup Language . 379
vi Understanding SOA Security Design and Implementation

Liberty. 380
eXtensible Access Control Markup Language . 380
Java Authorization Contract for Containers . 381
Service Provisioning Markup Language. 382
Identity Attribute Service (IdAS) . 384
z/OS Security . 384

System Authorization Facility . 384
RACF . 385

Appendix D. Additional material . 389
Locating the Web material . 389
Using the Web material . 389

Installing the CICS portion of the ITSOBank scenario 390

Related publications . 397
IBM Redbooks . 397
Other publications . 398
Online resources . 398
How to get IBM Redbooks . 398
Help from IBM . 398

Index . 399
 Contents vii

viii Understanding SOA Security Design and Implementation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Component Business Model™
CICS Connection®
CICS®
DataPower®
DB2®
developerWorks®
Everyplace®
IBM®

IMS™
OMEGAMON®
OS/390®
Rational Unified Process®
Rational®
Redbooks™
Redbooks (logo) ™
RACF®

RUP®
SecureWay®
System z™
Tivoli®
WebSphere®
Workplace™
z/OS®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

DataStage, are trademarks or registered trademarks of Ascential Software Corporation in the United States,
other countries, or both.

SAP R/3, SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries.

EJB, Java, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Active Directory, Microsoft, Visio, Windows, and the Windows logo are trademarks of Microsoft Corporation
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Understanding SOA Security Design and Implementation

Preface

Securing access to information is important to any business. Security becomes
even more critical for implementations structured according to service-oriented
architecture (SOA) principles, due to loose coupling of services and applications,
and their possible operations across trust boundaries. To enable a business so
that its processes and applications are flexible, you must start by expecting
changes in both to process and application logic, as well as to the policies
associated with them. Merely securing the perimeter is not sufficient for a flexible
on demand business.

In this IBM® Redbook security is factored into the SOA life cycle reflecting the
fact that security is a business requirement, and not just a technology attribute.
We discuss a SOA security model that captures the essence of security services
and securing services. These approaches to SOA security are discussed in the
context of some scenarios, and observed patterns. We also discuss a reference
model to address the requirements, patterns of deployment, and usage, and an
approach to an integrated security management for SOA.

This IBM Redbook is a valuable resource to senior security officers, architects,
and security administrators.

The team that wrote this IBM Redbook
This IBM Redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Axel Buecker is a Certified Consulting Software IT Specialist at the International
Technical Support Organization, Austin Center. He writes extensively and
teaches IBM classes worldwide on areas of Software Security Architecture and
Network Computing Technologies. He holds a degree in computer science from
the University of Bremen, Germany. He has 20 years of experience in a variety of
areas related to Workstation and Systems Management, Network Computing,
and e-business Solutions. Before joining the ITSO in March 2000, Axel worked
for IBM in Germany as a Senior IT Specialist in Software Security Architecture.

Paul Ashley is a Consulting IT Specialist working in the SOA Advanced
Technology Asia Pacific team, part of the IBM Software Group. The team
specializes in new SOA engagements and technology. Paul has worked in IT for
16 years, and holds degrees in Electronics Engineering, Computer Science, and
a PhD in Information Security. Before joining the SOA Advanced Technology
© Copyright IBM Corp. 2006. All rights reserved. xi

team in January 2006, Paul worked as a Consulting IT Specialist for IBM Tivoli®
Security for six years in both the USA and Australia.

Julien Bouyssou is an IT Architect in the Tivoli Security Techworks team, in
SouthWest EMEA and is based in Paris, France. Before joining Tivoli last year
Julien worked as an IT Architect for IBM Global Services for five years. He holds
a degree in Information Technology and his areas of expertise include IT
Architecture, application and enterprise security.

Gianluca Gargaro is an IT Specialist working in the Security Products Support
Team in Rome, Italy. He has eight years of experience in Web application,
network, and enterprise security. He holds a degree in telecommunication
engineering from the University of Rome. His areas of expertise include IBM
Tivoli Access Manager, IBM Tivoli Identity Manager, and IBM Tivoli Federated
Identity Manager for which he is also an IBM Certified Advanced Deployment
Professional. He has been a speaker at several technical security conference in
Europe, the USA, and at the Tivoli briefing center in Rome.

Sridhar Muppidi is a Senior Security Architect at IBM Software Group. He is
responsible for SOA Security Architecture and SOA security solutions. He is a
product architect for the SOA Security Policy Management solution. As a part of
world-wide security architecture and solutions design group, his responsibilities
also include providing secure and manageable e-business solutions to
enterprises, which includes architecting solutions for customers, working on new
product development, and standards work. He holds a Ph.D in computer science
and has published extensively.

Ray Neucom is the Lead Product Manager for Federation and Access Solutions
in IBM Tivoli. He has 25 years of IT experience in applications development,
systems integration, and Web application security. He has been involved with
IBM Tivoli Federated Identity Federation since the beginning of the Early Support
Program and has represented IBM with Tivoli Federated Identity Manager at
several conformance testing events. He holds a Bachelor of Science, a Master of
Scientific Studies (both in Computer Science), and a graduate Diploma in
Business Administration.

Neil Readshaw is a Senior Security Architect in Tivoli’s Worldwide Customer
Solutions (SWAT) team. He is based in the Gold Coast, Australia. He has 14
years of experience in software development, network management, information
security, and systems integration. He holds degrees in Computer Systems
Engineering and Computer Science from the University of Queensland, as well
as the Certified Information Systems Security Professional (CISSP) certification.
He has written extensively for the Tivoli Developer Domain on the IBM
developerWorks® site.
xii Understanding SOA Security Design and Implementation

Gregor Schinke is an Advisory IT Specialist in Software Group Services for
Tivoli. He is based in Zurich, Switzerland. He has five years of experience in
software development, Web application security, and systems integration. He
holds a degree in Computer Science.

Figure 1 From left: Sridhar, Gregor, Axel, Gianluca, Paul, Ray, Neil, and Julien

Thanks to the following people for their contributions to this project:

Robert Haimowitz, Chris Rayns, Richard Conway, David Bennin, Emma Jacobs
International Technical Support Organization

Nicholas G. Harlow, Eric Wood, Timothy Hahn, Leigh Compton, Richard Salz,
David Shute, Barry Mosakowski, Heather Hinton, Venkat Raghavan, Alexander
Amies, John Ganci, Jeffrey Miller, Avery Salmon

Members of the Software Group Architecture Board Working Group for SOA
Security, specifically, Anthony Nadalin, Nev Zunic, Rob High, Nataraj
Nagaratnam, Maryann Hondo, Tony Cowan, Ryan Fanzone, Phil Fritz, Charles
Carrington, Alex Montare and many others.
 Preface xiii

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our IBM Redbooks™ to be as helpful as possible. Send us your
comments about this or other IBM Redbooks in one of the following ways:

� Use the online Contact us review IBM Redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv Understanding SOA Security Design and Implementation

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Business
context and
foundation

In this part, we discuss the business context behind SOA Security and why
executives should be concerned about every aspect of it.

In order to consistently produce security solutions for SOA environments, we
introduce and discuss the IBM SOA Security Reference Architecture.

Part 1
© Copyright IBM Corp. 2007. All rights reserved. 1

2 Understanding SOA Security Design and Implementation

Chapter 1. Business context

Today's business environment is undergoing dramatic change. Competitive
pressure from traditional and non-traditional sources, the rapid emergence and
growth of new channels, increasing pressure to outsource selected business
processes, and demands for compliance with a plethora of new regulatory and
legal requirements are all contributing to an ever growing demand for change.

Traditionally, many organizations have struggled to manage change. In order to
survive and prosper in the coming years, these organizations will need to
develop a capability to sustain a constant state of change and evolution. The
ability of an organization's IT systems to cope with this level of change will be a
significant factor in the organization's success in adapting to increasingly
dynamic business environments.

1

© Copyright IBM Corp. 2007. All rights reserved. 3

1.1 Service orientation

Service orientation is increasingly being viewed as a means to better align
business and IT objectives, and to better support the levels of flexibility and
change required by the business. Following a service orientation, existing
business processes are decomposed into discrete units of business function
termed services. These services are then recombined into business processes in
a more flexible manner. Such decomposition has led to the emergence of
collaborative eco-systems1, where the reconstructed processes often integrate
services from partners, outsourced providers, and even customers.

Figure 1-1 illustrates the traditional approach for implementing business
processes, and associated IT applications, with each organizational unit acting in
isolation. Each business process has its own proprietary implementation of the
business activities, which are often re-implemented in slightly different ways in
other business processes and organizational units.

Figure 1-1 Traditional approach to business process design

Figure 1-2 on page 5 shows the goal of service orientation: common business
logic is available in reusable services that can be performed where it is most
appropriate, regardless of organizational boundaries.

1 M. Lansiti and R. Levien, “The Keystone Strategy”, HBS Press, Boston, MA (2004), “Daimler’s New
Way to Make Cars: Let Someone Else Do It”, Forbes (August 16, 2004)

Division “A” Division “B” Division “C” Division “D” Division “E”
4 Understanding SOA Security Design and Implementation

Figure 1-2 Service-oriented approach to business process design

1.1.1 More than componentization

Service orientation is more than merely decomposing business processes into
components of business function. It also identifies that the focus in application
development should be on implementing business logic, not on how components
will interconnect. This allows services to be arbitrarily connected together to
implement the desired business processes. Moreover, services can be replaced
with equivalent services as required; for example, a particular business function
may be outsourced, or there is a change in the partners used.

Outsourced

SupplierSupplier

Shared
Services
Shared
Services

Division (s)

CustomerCustomer
 Chapter 1. Business context 5

Consider the example shown in Figure 1-3, where each service needs to know
how to connect to each other service that it may need to connect to. Given our
goal of flexible connectivity, determining the scope of potential connectivity may
be quite difficult to predict. This tight coupling between services makes the
resulting business process fragile and difficult to change to meet the evolving
needs of the business.

Figure 1-3 Directly connected services

By moving functionality such as flow control, translation of data formats and
protocols, and identity propagation between services out of the application logic
and into the services infrastructure, we gain greatly improved flexibility as to how
services can be interconnected, as each service only needs to know how to
connect to the service infrastructure, as shown in Figure 1-4.

Figure 1-4 Connectivity using a service infrastructure

Shipments

Pricing

Sales
Orders

InventoryWeb Orders

Customers

Shipments

Pricing

Web Orders

Sales
Orders

Inventory

Customers
6 Understanding SOA Security Design and Implementation

1.1.2 Evolution not revolution

Service orientation does not represent a radical change from previous
approaches for designing distributed IT systems and attempting to align business
and IT goals. Rather, it represents the next step in an evolution of message
based approaches to connecting application components. Each progressive step
has delivered greater degrees of flexibility and reuse by moving more of the
non-business focused logic out of the application components.

As illustrated in Figure 1-5, the first step in this evolution was the introduction of a
message queuing infrastructure, which abstracted connections between
application components through the use of queues. Under this message queuing
approach, instead of an application component talking directly with another
component, it would connect via a message queue that can be directed to the
target application component. Use of these queues removed the burden from the
application developer to deal with the intricacies of different platforms and
ensuring messages are reliably delivered when the target component may be
temporarily unavailable or under heavy load. Message queuing approaches do
not, however, address making sure that the information is passed in the correct
format, nor do they facilitate routing of the messages based on the content of the
information in the message.

Figure 1-5 Service Orientation: the next step of connectivity evolution

Message
Queuing

Abstracts the
connectivity

logic from the
application

Message
Brokering

Abstracts the
connectivity and
mediation logic

from the
application

Service
Orientation

Reduces application
to its core business

functions
(for example, a

service)

Direct
Connectivity

All connectivity,
mediation and
additional logic
buried in the
application

Connectivity,
Mediation &

Additional Logic

Mediation and
Additional Logic

Additional Logic

Li
ne

s
of

 C
od

e

Degree of Flexibility & Reuse

Connectivity
Logic

Connectivity &
Mediation Logic

Connectivity,
Mediation &

Additional Logic

Application Application Application Application
Services
 Chapter 1. Business context 7

The concept of a broker was introduced to add message transformation and
routing functionality to the services provided by the message based
infrastructure. These message brokers could also augment content and route
messages based on the content of the messages. This resulted in more loosely
connected application components, and less non-business logic needing to be
developed for each component.

The development and broad acceptance of new open standards has allowed the
next step in the evolution to become viable. With service orientation, the
infrastructure services offered to application components are expanded to
include locating and binding to services, more complete transparency of
protocols and programming models, and more dynamic connectivity of services.

1.1.3 A focus on reuse

An important differentiation between service orientation and earlier distributed
application development approaches is a much stronger focus on reusing
existing IT assets. This emphasis on the value of reuse has made a transition to
a service orientation more attractive and affordable for enterprises with large
investments in existing IT systems, some dating back over 30 years.

Reusing existing systems does come at a price, however, the resulting systems
comprise a heterogeneous mix of new and old technologies, which presents
systems management, compliance, and security management challenges.

1.2 Security considerations for SOA

Examining the security management challenges, there are a number of
considerations in a service-oriented environment:

� The need for user and service identities and propagation of these identities
across the organization

� The need to seamlessly connect to other organizations on a real-time,
transactional basis

� The need to ensure that, for composite applications, proper security controls
are enacted for each service and when used in combination;

� The need to manage identity and security across a range of systems and
services that are implemented in a diverse mix of new and old technologies

� Protection of business data in transit and at rest

� The need for demonstrable compliance with a growing set of corporate,
industry, and regulatory standards
8 Understanding SOA Security Design and Implementation

1.2.1 User and service identities and propagation

Service orientation aims to provide services that can be interconnected and
reused as appropriate to fulfill a particular business process. Moreover, these
services must be connected and implemented in a secure and auditable manner,
according to a defined security policy. Identity and security therefore play key
roles in delivering on the promise of service orientation.

Identities exist for both users and services, and both should be subject to the
same security controls. Security policy defines the requirements for access to the
provided services.

The identities may need to be propagated throughout the SOA environment. In
many cases, service implementations may restrict the options and formats
available for propagating a user's identity to/from the service. Identity services
are therefore required in the infrastructure to deal with these identity mediation
issues, so that services can be easily interconnected without worrying about how
to map and propagate user identity from one service to the next.

Role based access control may also be utilized in some cases to dramatically
reduce the user administration overheads and costs. In these cases,
membership of users and services in a particular role will enable access, rather
than being explicitly linked to the identity itself.

1.2.2 Connect to other organizations on a real-time, transactional
basis

There are several forms of inter-organization interaction that may occur in a
service-oriented deployment. A first step towards service orientation may involve
integrating service user interfaces from different domains or organizations into a
single portal interface. Another example may involve a service provided by a
partner organization being directly invoked from a business process.

Regardless of the form of the interaction, it is imperative that security, identity,
and access policies are defined and enforced for all transactions. These policies
need to be enforced for both incoming and outgoing requests.

Secure boundary services are an obvious starting point. These boundary
security services should be able to provide coarse grained verification that
requests are coming from or going to trusted parties.

Establishing the trust relationship between the organizations is a key step in
allowing inter-organization cooperation. This involves establishing rules around
interaction, such as defining identity information that should be propagated
 Chapter 1. Business context 9

between organizations, as well as establishing the cryptographic keys used for
the messages.

It is very unlikely that user identities will be the same in all of the service
components in a business process flow that spans different organizations.
Identity services will therefore be required to validate the identity of the
requesting user, confirm that they are authorized to perform the requested
operation, and map their identity to one that the target service can understand
and use to identify the user or service making the request.

1.2.3 Composite applications

The security policy for the services include the rules established for allowing
services to be accessed. A user or service may require specific privileges to
allow them to access a service.

When services are combined, such as when they are choreographed into a
higher level business process, the combination of these services may require a
another examination of the security policy. For example, a user may be allowed to
access Service A and Service B independently. However, when these two
services are choreographed together, perhaps with other service invocations,
then the user may no longer be allowed to access these services.

The complexity in an SOA environment is that the security policy for the
choreographed services needs to take into account the mixing and matching of
services in different combinations as required to reflect changes in business
processes. Each new choreography may require examination of the security
policy to ensure it remains valid for this new combination.

1.2.4 Managing identity and security across diverse environments

A typical service-oriented environment will have many points at which identity
and security policy is enforced and implemented. These policy enforcement
points will be located both at the service connectivity level as well as within the
implementations of the services themselves. Management of a policy across
these various heterogeneous enforcement points may be viewed as swivel chair
management due to the need for an administrator to deal with a diverse set of
management interfaces, and their associated security policy terminology and
semantics.

For service orientation to achieve its goal of business flexibility within an
environment of governance and regulatory compliance, definition and
management of identity and security policy management should be simplified,
with consistent management terminology and semantics across the various
enforcement points being managed. This defined policy can then either be
10 Understanding SOA Security Design and Implementation

directly enforced by the enforcement points or automatically translated into
something that the endpoints can understand and enforce.

1.2.5 Protecting data

Protection of data from unauthorized modification and disclosure is a key
requirement within an SOA. Data needs to be protected because it is business
sensitive or privacy sensitive or both. A policy should therefore be in place to
ensure that data is protected in both transit and at rest, with consistent security
measures applied.

Data protection is especially important when data moves outside the
organizational boundary, which may happen without the knowledge of the
consumer. For example, an internal service may be replaced with an outsourced
service, with data now flowing to the external organization. If the data is business
or privacy sensitive then the service provider may need to ensure appropriate
protection is in place to satisfy the policy requirements of the calling organization.

1.2.6 Demonstrable compliance with a growing set of standards

Auditing of transactions is required to provide the data needed for assessing
compliance, which measures the performance of the IT environment relative to
measures established by the business policies. This might include verifying the
working system against a set of internally created policies, and also against
external regulatory acts.

Complexity is increased in an SOA where different applications from different
sources or vendors are targeted for different levels of compliance. This is
especially true when accessing services provided by an external organization,
where the regulatory and compliance regime is different from the requesting
organization.

If possible, the audit data produced by the various policy enforcement points
should be integrated into a single repository, or federated into a single logical
view of the data. This will facilitate the production of the required audit reports,
verification of compliance against policy, and investigation of security-related
events.
 Chapter 1. Business context 11

1.3 Security in the service-oriented life cycle

An important facet of service orientation is an emphasis on the entire life cycle of
IT systems—from conception to ongoing operation and management.

Service orientation aims to better align business and IT goals, and to provide
greatly improved capability to deal with change. The service-oriented life cycle is
therefore built around a business-driven development methodology that includes
the following phases:

� Model: Use modeling tools to define the business process at a business
function level, and model the actual services that will be part of an
assembled, composite application.

� Assemble: Assemble the individual services and write the code that is needed
to implement the business rules for the application. Pre-existing services can
be re-used, new services can be developed, or both.

� Deploy: Deploy the services to runtime environments, such as transaction
management engines like WebSphere® Application Server, CICS®, IMS™,
and so forth. Use integration components, primarily an enterprise service bus
(ESB), to link together the various services needed for the composite
application. For more information about an ESB, refer to “Enterprise Service
Bus” on page 353.

� Manage: Implement the management infrastructure for monitoring and
managing the services and the service infrastructure. This includes not only
IT management tools, but also business management and monitoring tools to
measure actual business activities.

� Governance underpins all the life cycle stages, providing guidance and
oversight for the entire service-oriented environment.
12 Understanding SOA Security Design and Implementation

Figure 1-6 shows an overview of the service-oriented life cycle.

Figure 1-6 Service-oriented life cycle
 Chapter 1. Business context 13

1.3.1 Security encompasses all aspects of the life cycle

As shown in Figure 1-7, certain roles in an organization contribute towards the
creation, definition, refinement, monitoring, verification, and management of
security policies during the execution of the service-oriented life cycle.

Figure 1-7 Service-oriented life cycle from a security perspective

Model
� Corporate security officers and equivalent executives defining corporate

security policies and outlining regulations with which the business must
comply.

� Business analysts working with security policy officers translating corporate
security policies in terms of a business vocabulary and business process
during the business process modeling phase, and providing a set of choices
to be customized.

Assemble
� Application architects and security architects modeling the security, identity

and access policies, based on choices provided by the business analyst.

� Application programmers and application administrators factoring in these
security, identity, and access policies by declaring these requirements for the
infrastructure to enforce, or when the infrastructure support is not sufficient,
implementing them in their applications.
14 Understanding SOA Security Design and Implementation

Deploy
� Application administrators installing the applications and working with security

developers and security administrators to configure the applications and
associated security policies.

Manage
� IT and security administrators managing the security policies across a set of

applications and infrastructure to meet the requirements that may continue to
change over time.

� Operators monitoring the system behavior for compliance, and detecting
situations that are potential security threats and feeding that back to
administrators to make changes as required.

� Business analysts viewing business dashboards to assess the impact to the
business due to certain system security events.

� Security auditors assessing the system’s compliance with regulatory and
corporate policies.

It is significant to observe that security policies are specified and refined
throughout the life cycle, undergoing transformations from one phase to the next.

1.4 Summary

Identity and security management permeate all aspects of the service-oriented
life cycle and are key enablers for achieving the connectivity and flexibility goals
of service orientation.

Examination of high-level requirements for identity and security management in a
service-oriented environment identified the following aspects:

� The need for user and service identities and propagation of these identities
across the organization

� The need to seamlessly connect to other organizations on a real-time,
transactional basis

� The need to ensure for composite applications that proper security controls
are enacted for each service and when used in combination

� The need to manage identity and security across a range of systems and
services that are implemented in a diverse mix of new and old technologies

� Protection of data in transit and at rest

� The need for demonstrable compliance with a growing set of corporate,
industry, and regulatory standards
 Chapter 1. Business context 15

16 Understanding SOA Security Design and Implementation

Chapter 2. Architecture and technology
foundation

In this chapter, we describe how security can be applied to a service-oriented
architecture (SOA). SOA applications are built from composable services across
a distributed environment. Securing this environment is both critical and
challenging.

We begin by introducing SOA and describe the IBM SOA Reference Model. The
requirements for security in an SOA environment are outlined, showing security
that spans the SOA. We then discuss the IBM SOA Security Reference Model
and then apply this model to a typical deployment architecture to derive the IBM
SOA Security Logical Architecture.

As a part of deriving the SOA Security Logical Architecture, we also introduce
three of the SOA Foundation scenarios. These scenarios are used throughout
the rest of the IBM Redbook to demonstrate how the IBM SOA Security
Reference Model can be applied.

2

© Copyright IBM Corp. 2007. All rights reserved. 17

2.1 Service-oriented architecture overview

In this section we provide an overview for a service-oriented architecture (SOA)
and introduce the important SOA terminology that is used throughout the rest of
this IBM Redbook.

2.1.1 Definition of a service-oriented architecture

Figure 2-1 highlights the key terms used to describe a service-oriented
architecture.

Figure 2-1 Definition of key terms for a service-oriented architecture

A service is representative of a repeatable business task. Services are used to
encapsulate the functional units of an application by providing an interface that is
well defined and implementation independent. Services can be invoked
(consumed) by other services or applications.

Service Orientation defines a method of integrating business applications and
processes as linked services.

Service-oriented architecture (SOA) can be different things to different people
depending on the persons role and context (business, architecture,
implementation, or operational). From a business perspective, SOA defines a set
of business services composed to capture the business design that the
enterprise wants to expose internally, as well as to its customers and partners.
From an architectural perspective, SOA is an architectural style that supports

... a service?

A repeatable business
task. For example,

check customer credit;
open a new account.

... service oriented
architecture (SOA)?

An IT architectural
style that supports
service orientation.

... service orientation?

A way of integrating your
business as linked

services and the
outcomes that they bring.

... a composition
application?

A set of related and
integrated services that

support a business
process built on an SOA.
18 Understanding SOA Security Design and Implementation

service orientation. At an implementation level, SOA is fulfilled using a standards
based infrastructure, programming model, and technologies, such as Web
services. From an operational perspective, SOA includes a set of agreements
between service consumers and providers that specify the quality of service, as
well as reporting on the key business and IT metrics.

A composite application is a set of related and integrated services that support a
business process built on an SOA.

2.1.2 Basic components of an SOA

At the most basic level, an SOA consists of the following three components:

� Service provider
� Service consumer
� Service registry

Note: In Figure 2-2 and throughout the rest of this IBM Redbook, the
terminology service consumer is used to denote the client that is calling the
service. However, other deliverables and IBM Redbooks also use the term
service requestor. Consider service consumer and service requestor to be the
same.
 Chapter 2. Architecture and technology foundation 19

Figure 2-2 SOA components and operations

Each component can also act as one of the two other components. For example,
if a service provider needs additional information that it can only acquire from
another service, it acts as a service consumer. Figure 2-2 shows the operations
each component can perform.

The service provider creates a service and in some cases publishes its interface
and access information to a service registry.

Each provider must decide which services to expose, evaluate trade-offs
between security and easy availability, determine how to price the services or
figure out how to exploit the value of the services if they are free. The provider
also has to decide under what category the service should be listed, and what
sort of trading partner agreements are required to use the service.

The service registry is responsible for making the service interface and
implementation access information available to service consumers.

The implementers of a service registry need to consider the implementation
scope for the registry. For example, there are public service registries available
over the Internet to an unrestricted audience, as well as private service registries
that are only accessible to users within a company-wide intranet.

Service
Consumer

Service
Provider

Service
Registry

Publish1Discover2

Invoke3

- Flight Reservation
- Car Hire
- Hotel Booking
- Mortgage Lending
- Office Supplies

Application-A
- Travel Agent
- Retail Bank
- Publishing House

Application-B
- Airline/Car Rental/Hotel Chain
- Mortgage Specialist/Investment Banks
- Office Supplies Company

Request/Response
20 Understanding SOA Security Design and Implementation

The service consumer locates (discovery) entries in the service registry and then
binds to the service provider in order to invoke the defined service.

2.2 IBM SOA Reference Model

The IBM SOA Reference Model is shown in Figure 2-3. The core services of the
architecture are:

� Interaction Services
� Process Services
� Information Services
� Business Application Services
� Access Services
� Partner Services

There are also support components of the core services. These are shown on
the outside of the core services in the figure.

Figure 2-3 IBM SOA Reference Model

Interaction Services
Interaction Services provide the capabilities required to deliver IT functions and
data to users, meeting their specific preferences.

Business Innovation & Optimization Services

D
ev

el
op

m
en

t
Se

rv
ic

es

Integrated
environment
for design

and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

Facilitates better decision-making
with real-time business information

IT
 S

er
vi

ce
M

an
ag

em
en

t

Infrastructure Services
Optimizes throughput,

availability, and performance

ESBFacilitates communication between services

A
pp

s
&

In

fo
 A

ss
et

sPartner Services Business App Services Access Services

Connect with trading
partners

Built on a robust,
scaleable, and secure
services environment

Facilitates interactions
with existing information
and application assets

Interaction Services Process Services Information

Enables collaboration
between people,

processes & information

Orchestrate and
automate business

processes

Manages diverse
data and content in a

unified manner
 Chapter 2. Architecture and technology foundation 21

Process Services
Process Services provide the control capabilities required to manage the flow
and interactions of multiple services in ways that implement business processes.

Information Services
Information Services provide the capabilities necessary to federate, replicate,
and transform disparate data sources.

Business Application Services
Business Application Services are called by service consumers. Service
consumers include other components in the logical architecture, such as portal
or business processes.

Access Services
Access Services provide bridging capabilities between core applications,
prepackaged applications, enterprise data stores, and the Enterprise Service
Bus (ESB) to incorporate services that are delivered through existing
applications into an SOA.

Partner Services
Partner Services provide the document, protocol, and partner management
capabilities for business processes that involve interactions with outside partners
and suppliers.

Supporting components
This section includes a brief description of the support components:

� Enterprise Service Bus (ESB)
� Business Innovation and Optimization Services
� Development Services
� Infrastructure Services
� IT Service Management

Enterprise Service Bus
The Enterprise Service Bus (ESB) provides an infrastructure that removes the
direct connection dependency between service consumers and providers.
Consumers connect to the bus and not the provider that actually implements the
service. This type of connection decouples the consumer from the provider. A
bus also implements further value add capabilities, such as security and delivery
assurance. It is preferable to implement these capabilities centrally within the bus
at an infrastructure level rather than within the application.
22 Understanding SOA Security Design and Implementation

At minimum, the ESB should have the following capabilities:

� Routing: Ensure that any request a consumer initiates is sent to the correct
provider.

� Addressing: Addressing complements routing to provide location
transparency and support service substitution. Service addresses are
transparent to the service consumer.

� Messaging Styles: Should support a variety of messaging styles. The most
common are request/response, fire and forget, events, publish/subscribe, and
synchronous and asynchronous messaging.

� Transport Protocols: Support protocol transformation between consumer and
provider.

Business Innovation and Optimization Services
Business Innovation and Optimization Services are primarily used to represent
the tools and the metadata structures for encoding the business design,
including the business policies and objectives.

Business Innovation and Optimization Services exist in the architecture to help
capture, encode, analyze and iteratively refine the business design. The services
also include tools to help simulate the business design. The results are used to
predict the effect of the design, including the changes the design will have on the
business.

Development Services
Development Services encompass the entire suite of architecture tools,
development tools, visual composition tools, assembly tools, methodologies,
debugging aids, instrumentation tools, asset repositories, discovery agents, and
publishing mechanisms needed to construct an SOA based application.

Infrastructure Services
Infrastructure Services form the core of the information technology runtime
environment used for hosting SOA applications. These services provide the
ability to optimize throughput, availability, performance, and management.

IT Service Management
Once the application has been deployed to the runtime environment, it needs to
be managed along with the IT infrastructure on which it is hosted. IT service
management represents the set of management tools used to monitor service
flows, the health of the underlying system, the utilization of resources, the
identification of outages and bottlenecks, the attainment of service goals, the
enforcement of administrative policies, recovery from failures, and the security of
the system.
 Chapter 2. Architecture and technology foundation 23

2.3 The need for security in the SOA

Security areas that have to be addressed in an SOA environment do not change
from the ones already addressed when architecting other IT systems. One key
difference though, is that because the IT systems are more tightly aligned with
business processes in the SOA environment, security practices have to be
adapted to be aligned to the business processes as well. Security policies have
to face new challenges due to this alignment.

As discussed earlier in 1.3, “Security in the service-oriented life cycle” on
page 12 and shown again in Figure 2-4, security must be factored from the
beginning of an SOA, from model, assemble, deploy, and manage. This is a very
important point and one aspect that is easily overlooked in a SOA.

Figure 2-4 Applying security to the SOA development life cycle

Another view of applying security is shown in Figure 2-5 on page 25.

Beginning on the left side of the diagram, service consumers at the top of the
diagram make requests to services. They may call these services directly, or
alternatively they start a business process that calls services. A service's
definition describes the service. A service may be an atomic service or made up
of a composite set of services, where these composed services may in turn be
atomic or composite services. Service components are used as intermediaries to
expose existing application functions for those applications that cannot be

Security policy officer
Security auditor
Business analyst

Define business
and corporate security
policies. Model security

requirements and application
security

Declare application security policies;
Build and test secure applications

Security architects
Application architects
Application programmer

Configure infrastructure
for application security;

Integrate people, process
and information

Application administrator
Security administrator
Security developer

Manage application security
Manage identities

Monitor for compliance

IT administrator
Security administrator
Operator
24 Understanding SOA Security Design and Implementation

directly exposed. Whether directly or indirectly exposed, the application function
itself is the target of the service consumer's request.

Now examining the right side of Figure 2-5, SOA security requirements should be
included through all of the SOA implementation layers. Beginning at the service
consumers, through the business processes, service definitions, service
components, and finally service implementation, security needs to be
considered.

Figure 2-5 SOA security encompasses many aspects of security and should be applied from service
consumer to service provider

Defining the terms in Figure 2-5:

� Identity

Generally, an identity is a property of an object that allows it to be
distinguished from other objects. In our context, the object in question is a
user or a consumer. The identity of these consumers is typically represented
with a unique value, or identifier, such as a user name or a UUID. Within our
SOA environment, there are many types of consumers, including suppliers,
partners, internal staff, and applications. Each of these consumers needs to
be correctly identified at all stages of an SOA environment.

The most obvious way for users (including suppliers, partners and internal
staff) to identify themselves is by an explicit interaction, presenting an

Custom
Application

Packaged
Application

Packaged
Application

Custom
Application

consumers

business processes
process choreography

services
atomic and composite

Service C
onsum

er
S

ervice P
rovider

11

22

33

44

55

OO
ApplicationCustom

ApplicationOutlook
SAP Custom

Application

business processes
process choreography

Services (Definitions)
atomic and composite

Service
components

Service C
onsum

er
S

ervice P
rovider

11

22

33

44

55

OO
ApplicationISV

Custom Apps

Platform
Operational

systems Supporting Middleware

MQ DB2Unix OS/390

SOA Security

Identity

Authentication

Authorization
and Privacy

Confidentiality
and Integrity

Availability

Auditing and
Compliance

Administration
and Policy
Management

SCA Portlet WSRP B2B Other
 Chapter 2. Architecture and technology foundation 25

identifier to a user interface, such as a Web portal. This information is then
used to create an identity token, a unique representation of the identity and
attributes of the consumer in a standardized format. When requests are
issued by an application on behalf of a user, identity information is typically
carried with the request in an identity token. The binding of an identity token
to a request allows an identity to be carried with a request so that the service
provider and intermediaries can identify the originator of the request.

As a consumer may not have the same identity at different points in a request
flow, we need to be able to map identities contained within identity tokens.
For example, a consumer may assert a user name (and password) to a portal.
The consumer’s identity token will represent this claimed identity. As part of
fulfilling this request, invocation of a CICS-based resource may be required;
this implies that the identity token needs to provide enough information to
support the identification of this consumer in a RACF® ACEE format. Identity
mapping techniques are employed to handle this type of identity mapping.

While many types of identity token are possible, common token types include
Username Tokens, X.509 certificate based tokens, and tokens based on the
Security Assertion Markup Language (SAML) assertion from the OASIS
Security Service Technical Committee (http://www.oasis-open.org).

� Authentication: Assertion of an identity is often not sufficient to allow us to
trust that the consumer really has the identity that they are claiming. The
process of authentication is used to prove this claim. Authentication is the
process of proving that the consumer legitimately has their claimed identity by
evaluating additional information (authentication credentials) that is bound to
this identity and can only be provided by a consumer with that identity. A
typical example of this type of additional information is a password. This
additional information can take the form of something that the consumer
knows (for example, a password associated with a user name), something the
user possesses (for example, a physical token capable of generating a
one-time-use password or a certificate), or something that the user has (for
example, biometric information, such as a fingerprint). The authentication
process involves collecting the consumer's identity and authentication
credentials and evaluating that the credentials presented by the consumer
correspond to credentials that are expected to be presented by the user.

Not all forms of authentication require an interaction with a consumer.
Authentication information may be bound to a request and carried with the
request in the form of a security token. A security token differs from an identity
token in that it includes additional information that allows it to be used as part
of the authentication process. For example, a security token may contain a
user name and password that can be evaluated using the same process that
a user-presented user name and password are evaluated. These
authentication credentials an be used to perform authentication of the
consumer at components along a transaction path.
26 Understanding SOA Security Design and Implementation

http://www.oasis-open.org

As a refinement of the security token, an identity token claims an identity
without the additional authentication credentials. For example, consider a
consumer who has already authenticated by direct interaction, by presenting
a user name and password to a portal. Instead of including a security token
(containing a user name and password), requests from the portal on behalf of
the consumer may include an identity token only. Downstream components
are expected to trust that the appropriate authentication has already taken
place and do not require an additional authentication of the consumer.

� Authorization and Privacy: Authorization is the process of evaluating if an
authenticated identity is allowed to have its request fulfilled. Authorization
decisions may differ depending on the kind of user performing the access
request. For example, the same service may be accessed by internal staff of
the organization, but not by partners from different organizations. The internal
staff member is allowed to access the service (they are authorized), while the
partner is not allowed (they are not authorized). Authorization may need to be
implemented at multiple points in the transaction path, as well as at different
access layers such as gateways, application servers, applications, and
databases.

Privacy is a special case of the authorization, where access to Personally
Identifiable Information (PII) is controlled. This type of authorization is
usually based on the data being retrieved. For example, it may be okay to
access a customer’s home address, but not their home phone number.

� Confidentiality and Integrity: Protection of data at rest, in transit, and in
process are important considerations.

Confidentiality protection usually means encrypting the data so that it cannot
be read by unauthorized persons. Only someone in possession of the
decryption key can read the data. Integrity means protecting against data
modifications that are undetected. This is usually achieved using digital
signatures or message authentication codes. Note that signing of data in the
form of a request or message provides a form of authentication, namely
message authentication. The originator of the request will sign the message,
both proving that they understand the contents of the request (based on their
encrypting the message with their unique private signing key) and providing
protection against modifications to the request (based on the inability to
validate a signature against a modified message).

For example, the standard WS-Security, as discussed in Appendix C,
“Security standards and technology” on page 371, can be used to protect
Web services messages. It provides message confidentiality, integrity, and
authentication.

Security data, such as passwords, encryption keys, configuration files, and
application data stored in databases or similar places, may also be protected
with confidentiality and integrity mechanisms.
 Chapter 2. Architecture and technology foundation 27

� Availability: Availability of a service or resource implies that it is able to
provide a response to a request in a timely manner. Ensuring that services
are available when required is key in many SOA environments. Architecting
for high availability includes application clustering, database clusters, and
similar techniques.

� Auditing and Compliance: Ensuring that security related events are recorded,
then analyzed and reported on is the domain of auditing. Often auditing is
implemented in individual existing systems, so bringing that data together can
be a key requirement. Checking that the security related events comply with
the internal business policy is the domain of compliance. Compliance might
also mean ensuring that the system follows legislative requirements.

� Administration and Policy Management: Rules about authentication,
authorization, data protection, auditing, and so on are described in the
security policies. As security policies may evolve to keep up with changing
business policies, administration and policy management have to be flexible
and easily configurable. Adding partners or a new set of services, applying
dedicated and configurable security policies and deploying it easily, securely,
and efficiently, must be made easier without having to reconsider the entire
architecture.

2.4 IBM SOA Security Reference Model

The IBM SOA Reference Model is shown in Figure 2-3 on page 21. The IT
Service Management supporting component applies to the entire reference
model and its component includes security. The main components of security are
the Business Security Services, Security Policy Infrastructure, and IT Security
Services. These components together form the basis of the Reference Model, as
shown in Figure 2-6 on page 29.
28 Understanding SOA Security Design and Implementation

Figure 2-6 IBM SOA Reference Model - Security capability within IT Service
Management.

At a very high level, we can define the following:

� Business Security Services leverage IT security services and Policy
Infrastructure to provide business specific security capabilities.

� Security Policy Infrastructure deals with policy life cycle management
specific to security; policies are enforced by security services, intermediaries,
and policy distribution and transformation.

� IT Security Services are the building blocks to provide security functions as
services.

IT
 S

er
vi

ce

M
an

ag
em

en
t

Monitor,
manage

and secure
services,

applications
&

resources

Security Policy Infrastructure

IT Security Services

Business Security Services
 Chapter 2. Architecture and technology foundation 29

Figure 2-7 shows the details of the IBM SOA Security Reference Model.1

Figure 2-7 IBM SOA Security Reference Model

2.4.1 IT Security Services

IT Security Services can be used by different components in the SOA
environment, including:

� Service consumers

� Service providers

� Gateways, proxy servers, and other intermediaries

� Application servers

� Data servers

� Operating systems

The use of common IT Security Services enables a consistent security
implementation. It also minimizes development and deployment costs for these

1 This is the first release of reference model derived by the Software Group Architecture Workgroup
on SOA Security.

Security Policy Infrastructure
Policy

Administration
Policy Decision and

Enforcement
Policy Distribution and

Transformation

Business Security Services
Identity and

Access
Data Protection and
Disclosure Control

Business Process and Policy Management

Governance, Risk
and Compliance

Secure Systems
and Networks

IT Security Services

Identity Services

Authentication
Services

Authorization and Privacy
Services

Confidentiality and
Integrity Services

Audit Services

Trust
Management

Monitoring and Reporting

Non-repudiation
Services
30 Understanding SOA Security Design and Implementation

security services and for the SOA environment on which these security services
are re-used.

The IT Security Services can be used like a blackbox; they should allow for
integration with different authentication mechanisms, user registries,
authorization engines, and so on.

Figure 2-8 shows the IT Security Services from the IBM SOA Security Reference
Model. We will discuss each of these services in detail.

Figure 2-8 Security Services from the SOA Security Reference Model

Identity Services
The Identity Services are an abstraction layer and framework that provide for
managing, sharing, federating, and accessing identity information from a variety
of authoritative identity sources. These services also manage relationships
between identities and provision identity information to multiple identity systems.
The components within the Identity Service include:

� Identity Foundation: This component provides the uniform abstraction layer
and administration facility needed to manage, store, and use the information
about organizational entities (users, groups, roles, and so on), and to provide
secure access to such information. It manages relationships between
identities.

Identities are stored in user repositories. There may be a number of these in
an organization, including a central user repository and separate user
repositories associated with individual systems. Synchronization of identity
information across these user repositories may also be required.

� Identity Provisioning: This component provisions and deprovisions identity
information across multiple user repositories. Identity provisioning systems
can implement provisioning policies, to ensure that identity information across
a wide range of user registries is consistent with that policy. Alternatively,
request based provisioning can be used to suit different business models. A
combination of policy and request based provisioning may also be used.

When these systems cross trust domains, such as organizational boundaries,
federated provisioning provides the capabilities to provision attributes and

IT Security Services

Identity Services

Authentication
Services

Authorization and Privacy
Services

Confidentiality and
Integrity Services

Audit Services

Non-repudiation
Services
 Chapter 2. Architecture and technology foundation 31

other identity information across these boundaries. Standards based
federated provisioning protocols are then the desired choice.

� Identity Federation: This component can provide identity relationships and
mapping to help transform identities across trust domains. This is necessary
for service requests to traverse security domains and be able to flow identity
context as part of an end to end transactional flow.

Authentication Services
The Authentication Services provide capabilities to authenticate users to the
system. These services may support multiple authentication mechanisms, such
as user name/password, hardware token based, or biometric based. They may
also support protocols such as Kerberos.

The Authentication Services also provide support for identity tokens and security
tokens carried in messages, for example, Web services messages. Examples of
these tokens can be SAML assertions and user name tokens. For example, the
Authentication Services may call on a Trust Service for validation of
authentication credentials within security tokens, or issue new security tokens
with authentication credentials.

Authentication may be required at both the service consumer and service
provider. Users may be requested to present authentication credentials at the
service consumer to verify their identity to the environment. In this case, a
security token may then be sent as part of the transaction flow from the service
consumer to the service provider. The service provider authenticates the user
based on this security token.

Alternatively, if the user has been authenticated at the service consumer, then an
authenticated identity may be presumed, where the service provider trusts that
authentication has already taken place. The service provider then accepts the
authenticated identity carried in the identity token, without requiring another
authentication. The binding of a SAML-based identity token to a request is one
means of asserting an already authenticated identity.

Federated single sign-on can leverage both Identity and Authentication
Service and allows a user to authenticate once to the federation, and by
passing around security tokens, can be provided access to other trusted
domains.
32 Understanding SOA Security Design and Implementation

Authorization and Privacy Services
Authorization follows authentication. That is, once a user or system has been
authenticated, it is then possible to perform authorization. Authorization means
making a decision about whether an authenticated identity is allowed to access a
resource. An authorization decision is dependent on two key inputs:

� An authorization policy that describes the required security attributes of a
user or system that will allow them to access a resource.

� An authenticated user or system and their list of security attributes.

To make an authorization decision, policies need to be in place. These policies
are enforced by a Policy Enforcement Point (PEP) that relies on the decision
made by a Policy Decision Point (PDP). An example of a PEP is the Enterprise
Service Bus, which would allow access to services based on the authorization
decisions received from the relevant Policy Decision Point.

Privacy authorization is used to indicate the runtime function of authorizing
access to Personally Identifiable Information (PII) based on a privacy policy.
Hence for privacy, the granularity of authorization (for example, to personally
identifiable information in medical records) can vary, and management of these
policies would likely involve users as well as administrators.

Note: The definition of decision and enforcement points is described in the
International Organization for Standardization’s standard 10181-3 Access
Control Framework at http://www.iso.ch.
 Chapter 2. Architecture and technology foundation 33

http://www.iso.ch

Programming Model:
From a security perspective, the programming model includes decisions to be made
about which components are responsible for enforcing security policies (for example,
infrastructure or application) and what of information needs to be made available to
requesters. In addition to the operational aspects, some of the design-time policy (for
example, captured in J2EE™ deployment descriptors) can help manage the
application. One of the key implementation decisions is whether the business needs
will best be met by enabling the infrastructure to implement the security model or by
codifying security enforcement into each application.

There are two common approaches to how security decisions are made:

� Programmatic: Decisions are made by application developers invoking APIs to
make policy decisions. Application developers typically require deeper knowledge
of the security system (or have to implement their own) when using this approach.

� Declarative: Decisions are made by the application server or a subordinate without
the application developer needing to write any code. Security policy is written in a
meta-language and accompanies the application, such as in a J2EE deployment
descriptor.

In modern application development, the trend is towards increasing the use of
declarative security to provide separation of duties between application developers and
security administration, allowing each to focus on their areas of expertise. There are
also three broad approaches on where security decisions could be made:

� The application: Application developers implement security logic alongside
business logic.

� The application server: The application server uses its native policy configuration
and evaluation constructs to evaluate policy decisions.

� An external security provider: In this case, the application server itself (for
declarative security) or the application (programmatic security) invokes a third party
to evaluate policy decisions.

We normally recommend that applications focus on business logic, and defer securing
the service access and the messages to the infrastructure (the runtime container
hosting the application or external security providers invoked from the runtime
container). In this infrastructure-managed approach, security policies attached to
design artifacts are transformed into platform-specific policies (for example,
requirements expressed via a UML model are transformed into J2EE deployment
descriptors).

Use of external security providers rather than application or application server
capabilities delivers the advantage of greater reuse of policies and provides the
mechanisms for consistent security policy management and evaluation.
34 Understanding SOA Security Design and Implementation

Confidentiality and Integrity Services
Confidentiality is the key security service for ensuring non-disclosure of sensitive
information travelling on untrusted communication networks.

Confidentiality services protect information from unauthorized disclosure. This
service provides protection of information in both storage and transmission.
Requirements for Confidentiality Services, which exist at every level in the
processing structure, depend on the granularity of protection necessary.

Integrity is the key security service for detecting unauthorized modification of
data due to errors or malicious attack.

Integrity Services provides detection of the unauthorized modification of data.
Organizations must allow for the use of data by authorized users and
applications, as well as the transmission of data for remote processing. Data
integrity facilities can indicate whether information has been altered.

Both Confidentiality and Integrity Services rely on cryptographic techniques.
Encryption, message integrity codes, message authentication codes, digital
signatures, and nonces all play a part in these services.

There are two additional sub-services integrated within the Confidentiality and
Integrity Services protecting data at rest and data in transit.

Data Protection Services are concerned with data at rest. This includes security
information and application information. For example, protection of cryptographic
keys, passwords, and PII are all important. Encrypting the data in databases and
signing audit information are additional examples.

Beyond cryptography, additional services for data protection include data and
application isolation support provided in hardware, operating systems, and
middleware.

The Message Protection Services are used to protect the message in transit from
being:

� Disclosed (message confidentiality)

� Modified without detection (message integrity)

� Sent from a masquerading party (message origin authentication)

� Replayed (uniqueness)

This is usually achieved by encrypting or digitally signing a combination of the
message body (or its parts), and header (or its parts).
 Chapter 2. Architecture and technology foundation 35

Protection can take two forms:

� Transport level protection: Normally the whole data stream is protected at a
protocol level below the application level. Secure Sockets Layer (SSL) is the
most common example of a transport level scheme.

The disadvantages of this approach are that data is unprotected in
intermediate nodes and this type of protection does not allow selective
protection of message content.

� Message level protection: The actual message, or some parts of it, are
protected at the application level. Therefore, even if the message passes
through intermediate nodes, it is still protected.

Audit Services
Audit logging is the process of maintaining detailed, secure logs of critical
activities in a business environment. Such critical activities could be related to
security, content management, business transactions, and so on. Examples of
security-related critical activities that could be audited are: login failures or
successes, unauthorized or authorized access to protected resources,
modification of security policy, noncompliance with a specified security policy,
health of security servers, and so on.

An audit logging service provides mechanisms to submit, collect, persistently
store, and report on audit data submitted as events. The events may be in a
common format, such as Common Base Event (CBE2).

Which events are audited and stored is defined in an auditing policy. This policy
should define which events are important, how long to keep the data, and if to
keep the audit data in a tamper resistant form.

Audit data should be collected for all the security services and service providers.

Non-repudiation Services
Non-repudiation Services provide proof of data origin and delivery. They aim at
preventing parties in a communication from falsely denying having taken part in
that communication; for example, a non-repudiation service for digital certified
mail should ensure that the sender cannot deny sending the message, and the
receiver cannot deny receiving it.

2 More information about CBEs can be found here:
http://www.ibm.com/developerworks/library/specification/ws-cbe/
36 Understanding SOA Security Design and Implementation

http://www.ibm.com/developerworks/library/specification/ws-cbe/

The Non-repudiation Service should be able to:

� Protect a recipient against the false denial by an originator that the data has
been sent

� Protect an originator against the false denial of a recipient that the data has
been received

The Non-repudiation Services are implemented by cryptographic mechanisms
that provide the following functions:

� Proof of origin of data

� Proof of delivery of data

� Proof of submission of data

� Proof of transport of data

The Non-repudiation Service is different from the Confidentiality and Integrity
Services (per the ISO 7498-2 guideline). Non-repudiation is critical for Electronic
Data Interchange (EDI) security and thus is a strategic element of the model.
The digital signature mechanism is the principal implementation of a
Non-repudiation Service.

Standards
Table 2-1 lists the security services and shows some standards and technology
applicable to them. These will be mentioned throughout the IBM Redbook.

Table 2-1 Security Services standards

Security Service Standards

Identity Services SPML, SAML, WS-Federation, Liberty,
and Identity Attribute Service (IdAS)

Authentication Services WS-Trust, Kerberos, SAML, and PKI

Authorization and Privacy Services XACML, JACC, WS-Authorization, and
IDMix

Audit Services CBE and WS-Base-Notification

Confidentiality and Integrity Services WS-Security, WS-SecureConversation,
PKI, XKMS, WS-SecurityPolicy, SSL/TLS,
JSSE/JCE. XML DSig, and XML
Encryption

Non-repudiation Services PKI and ISO/IEC 13888:2004
 Chapter 2. Architecture and technology foundation 37

For more information about security standards, see Appendix C, “Security
standards and technology” on page 371.

2.4.2 Security Policy Infrastructure

Effective management of security policies requires a holistic approach that
manages security policies throughout the life cycle of applications. Policies in the
context of SOA are the means by which processes and services express the
conditions and manage the behavior of the underlying infrastructure, in order to
secure access to information, information availability and retention, audit, and so
on.

Policy management includes authoring business policies that gets refined to
service specific policies like security, performance indicators and metrics, trust
policies, and so on. As shown in Figure 2-9 on page 39, these policies in turn get
enforced by the infrastructure when they get configured as requirements that the
infrastructure should meet.

Policies are defined and managed centrally. When there is a Service Registry and
Repository (SRR) in the environment, then the Security Policy Management
obtains service definitions and meta data from an SRR and defines polices
based on that information. Once the effective policy is obtained, the polices are
distributed to the enforcement points. Policies are distributed in a common format
(Web services policy standards) from the Security Policy Management to the
enforcement points. When there is a Service Registry and Repository in the
environment, the Security Policy Management will publish polices to the SRR so
that the enforcement points derive service definition and policies, and enforce
them locally.
38 Understanding SOA Security Design and Implementation

Figure 2-9 Security Policy Management: Definition and Enforcement

Figure 2-10 highlights the Security Policy Infrastructure within the IBM SOA
Security Reference Model.

Figure 2-10 Components of Security Policy Infrastructure

Security Policy Management

Service Registry & Repository
(as intermediary for policy exchange, distribution)

Portal

Transform to URL level
policies and portlets

Canonical form
(e.g WS-Security Policy, XACML)

Application
Server

Canonical form
(e.g WS-Security Policy, XACML)

Transform to application
policies and configuration

Transform to appliance
configuration on service

interfaces

Canonical form
(e.g WS-Security Policy)

Metadata &

Services

Publish policies

Security Policy Infrastructure
Policy

Administration
Policy Decision and

Enforcement
Policy Distribution and

Transformation Monitoring and Reporting
 Chapter 2. Architecture and technology foundation 39

Policy administration
Administration of the policies deals with the life cycle of a policy. This includes the
activities of creating, managing, and importing/exporting the security policies
using the security management tools available. There can be different kinds of
policies. The following are two major categories:

Message protection policies
These policies focus on the capabilities and the constraints a service consumer
needs to implement in order to invoke a service. The following items make up the
message protection policies for the service consumer:

� Service information: The protocol to use to reach the service and the address
of the service. For example, the service can be invoked using a Web service
request over HTTP. If there are some intermediaries, the interaction policies
between the service consumer and the intermediary also have to be known.

� Message protection information: Additional information about signing and
encrypting of the message can be included in the policy; also, whether point
to point or message level protection is required. This includes the encryption
algorithms supported and the privacy rules that apply.

� Identity information: The type of security token required by the service
provider (user name, SAML, Kerberos, or X.509 certificate).

Provider policies
The provider policies focus on the policies a specific provider applies based on
its internal requirements. This can include authentication, authorization, privacy
and audit policies. These policies are provided to the provider PDPs and
enforced by the provider PEPs.

Taking an example, a service provider validates an incoming security token and
performs authorization, ensuring, for example, that only account owners have
access to their account information. This policy is checked based on the provided
user information (user identifier and any other attributes from the user) and the
information a user tries to access (the account number).

Policy distribution and transformation
The security policies created need to be distributed to the enforcement and
decision points within the infrastructure with the appropriate information (see
Figure 2-11 on page 41). The policies may be defined centrally and then are
distributed to the enforcement points in a canonical format, for example, XACML,
WS-Policy, or WS-Security Policy. The binding information to enforce the polices
is also distributed appropriately. These policies are then transformed at the
enforcement point to a local representation so that they can be enforced.
40 Understanding SOA Security Design and Implementation

Figure 2-11 Policy Transformation and Distribution

Standards like WS-Policy and WS-SecurityPolicy provide descriptions on how
service consumers and providers can specify their requirements and capabilities
in a Web services world. Policy assertions can be defined for use within SOAP
messages. Assertions can cover the authentication schemes (the required
security tokens and the encryption algorithms), the transport protocol selection,
the privacy policy, as well as information related to the quality of service.

The OASIS eXtensible Access Control Markup Language (XACML) provides a
markup language to specify access control policies. It can be used as a generic
format to store policies although it also provides a request/response model
(based on XML format) for enforcement and decision points. It can be used to
provide policies to a service provider as defined in “Provider policies” on
page 40.

Service
Provider

Service
Consumer

c

Distribute policies

Policy Distribution and
Transformation

Transform policies into generic format

Map generic policies to
local policies

Map generic policies to
local policies

Map generic policies to
local policies

Service
Provider

Policies
c

 Chapter 2. Architecture and technology foundation 41

Note that there may also be a policy that controls the transformation and
distribution of the policies.

Policy decision and enforcement
At runtime, there are two distinctive components of policy:

� Policy Decision Point (PDP): A PDP makes a decision based on the policy
and request. So, for example, it may consult an authorization policy to see if
the user is permitted to access a service. The decision is provided to the
policy enforcement point.

� Policy Enforcement Point (PEP): Access to a resource is controlled by an
appropriate resource manager or PEP. The PEP implements access control
after making decision requests to PDPs using, for example, XACML
(Appendix C, “Security standards and technology” on page 371).

In a typical deployment, you can find several enforcement points. Each of these
enforcement points can have its own mechanisms to enforce security for the
incoming requests.

The enforcements points rely on decision points to make decisions. These
decision points contain the security policies defined in the infrastructure. The
requirements and thus the policies are different, depending on the security
domains and the application platforms.

� The service consumer can enforce a first level of security on the client side.
Security controls based on the policies provided for this service can be made
so that the request matches the requirements.

� The service provider can enforce security policies for incoming requests and
provide a first level of defense for the infrastructure. These include enforcing
message protection, provide token validation and exchange, as well as
authorization and audit services as defined in the security policy.

One of the challenges of enforcement and decision points is to have multiple
enforcement points within the infrastructure talking to several decision points.
Providing integrated and centralized decision capabilities reduces the
administrative tasks related to policy management.

Note: More detailed information about the standards are available in
Appendix C, “Security standards and technology” on page 371.
42 Understanding SOA Security Design and Implementation

Monitoring and reporting
It is necessary to keep track of applicable policies, any modification to them, as
well as the assessment of compliance of lower-level policies against corporate
policies. Traceability of policies from high level business policies to enforced
configurations and runtime requirements is necessary to track what the goal is
and what the runtime behavior is based on. This helps identify policy changes
that occurred and can help manage accountability of policy changes. Closely
linked to this practice is the enforcement of these policies in the infrastructure
and the monitoring of the behavior of system elements throughout the life cycle
of the business. Security policies need to be developed and deployed throughout
the stages of the life cycle of an application.

Once an application is made available to be accessed, application related
policies get administered to reflect any changes that may happen during the
lifetime of the application. Changes to security policies include authorization
policy changes (for example, adding new roles that may access the resources or
assigning roles to new user groups or users), user management changes (for
example, users assigned to additional user groups), or other changes, including
audit requirements, and constraints like integrity or confidentiality.

When administering security policies, it is necessary to adhere to changing
corporate business security policies and industry and government regulations,
and compliance requirements. In addition to these sources of change, another
key input factor for change in policies is the discovery of vulnerabilities and new
risks that may be identified through solution monitoring activities. These changes
to security policies must be tightly controlled and access to them should be
traced and audit trails supplied so that the processes may be adequately
monitored.

2.4.3 Business Security Services

In addition to securing business services, it is necessary to provide a secure
deployment environment where business solutions can be deployed and hosted.
Business Security Services are depicted in Figure 2-12.

Figure 2-12 Business Security Services

Business Security Services
Identity and

Access
Data Protection and
Disclosure Control

Business Process and Policy Management

Governance, Risk
and Compliance

Secure Systems
and Networks

Trust
Management
 Chapter 2. Architecture and technology foundation 43

Governance, risk, and compliance
Governance of SOA Security is a subset of the overall SOA Governance function.
Governance is very important for the security services, as managing the security
policy and implementation is vital to the integrity of the environment.

A framework towards effective governance structure and decision making
authority is needed in order to run the business. Tools and technologies can help
facilitate governance initiatives and compliance evaluations. An effective security
governance framework involves establishing chains of responsibility, authority
and communication to empower people to effectively control the system.

Because SOA extends interactions beyond the enterprise boundary, the
governance of SOA Security must interact with similar groups in other
organizations to achieve a common set of standards for communication across
the enterprise boundary.

Risk management deals with the process of evaluating and assessing risk in the
SOA environment, and developing strategies to manage those risks. Risk
management is a cost-benefit exercise; it is not feasible to eliminate all risks in an
SOA environment. The risk management process determines how to manage
risk based on factors, such as probability and impact. While software tools can
help implement a risk management process, people and processes are the main
components.

Compliance management measures the performance of the IT system relative to
the measures established by the business policies. This might include verifying
the working system against a set of internally created policies, and also against
external Federal or State regulatory acts.

Audit records form the basis of the raw data required for compliance
assessments. The compliance function described in this section may be a
manual process, or an automated tool could be used to reconcile the business
compliance requirements with the raw data extracted from the audit service.

Managing the audit data involves assessing the implementation of the security
elements of the SOA solution against the solution design. You might also attempt
to identify inconsistencies between the configuration of multiple instances of a
solution component that should share an identical security configuration. A third
aspect is the verification of the configuration of the security services themselves.
Periodic auditing of the components and overall SOA solution are recommended.

Trust Management
Trust Management addresses trusted relationships between entities like
organizations, enterprises, identities, security domains, and systems. These
relationships can be system-to-system, business-to-business, and so on.
44 Understanding SOA Security Design and Implementation

Trust Management deals with two aspects, namely business and technology.
The business aspect deals with two entities agreeing upon a set of rules to
conduct business. These rules include relationship management, liability
management, and other legal aspects.

The technology aspect deals with managing the infrastructure that supports the
capability for establishing trust by cryptographic methods. These include key
management (strength, key validation, and so on) protocols, attributes, and other
technical considerations for establishing trust.

There are multiple ways of establishing trust relationships. In Figure 2-13, the
trust may be explicit and simple, where consumer and provider are within a single
trust domain, and thus have the same trust source.

Figure 2-13 Tightly coupled trust relationship

T rust
S erv ice

S erv ice
C onsum er

S erv ice
P rov iderR equest F low

C onsum er
P o licy

P rovider
P o licy

C onsum er
T oken

P rovider
T oken

S am e trust source
T igh tly coup led trus t re la tionsh ip
W ork fo r in tra -o rgan iza tions
 Chapter 2. Architecture and technology foundation 45

In Figure 2-14, we illustrate another approach where a consumer and target
service may have separate trust zones and trusted relationship, or a trusted
third-party trust service.

Figure 2-14 Loosely coupled trust relationship

Identity and access
This deals with the technologies that are needed to manage identities both within
an enterprise as well as across enterprises. It also includes management of
access policies to resources based on identity information and resource
information.

Identity life cycle management is the main task. Identities need to be created,
modified over time, and eventually deleted. Some important aspects are:

� HR identity feed: Often the authoritative source of identity information for
internal users is the HR (human resources) system. An identity feed from the
HR system can indicate, to the identity management system, that changes to
the user population have occurred, and provisioning workflows need to be
initiated.

� Approvals: Before accounts on end systems are created or modified,
approvals from the appropriate management may be required. This can be
automated.

T rus t
S e rv ice

S e rv ice
C on sum er

S e rv ice
P rov ide rR eque s t F low

C onsum er
P o licy

P rov ide r
P o licy

C onsum er
T oken

P rov ide r
T oken

S epa ra te trus t so u rce
Loose ly co up le d trus t re la tion sh ip
 O fflin e , in d irec tly con figu re d o r
 O p tion a l 3 rd pa rty trus t p rov ide r
W ork fo r in te r-o rgan iza tions

T rus t
S e rv ice

3 rd pa rty
46 Understanding SOA Security Design and Implementation

� Re-validation: Access to systems may need to be approved at regular
intervals. The system should collect the appropriate re-validation approvals.

� User self-care: Users of the system should be able to perform certain tasks
without input from an administrator. For example, they may want to self-enrol
to the system, reset or change their password(s), and so on.

� Delegated administration: For approving requests for accounts, and other
administrative functions, delegating the action to another user or users is an
important function.

Data protection and disclosure control
Data protection management deals with protecting business information and
provides the capabilities for content and data protection in transit and at rest. It
includes policies for which data is to be protected and to what extent it can be
specified and implemented. Externalizing data handling rules from applications
and IT systems can help to simplify the management of data protection.

In the context of information and business information privacy, the disclosure
control capability helps reduce privacy compliance costs by automating manual
procedures. The system builds trust by:

� Publishing a privacy policy for users to view

� Managing user consent to privacy policies

� Capturing user preferences (such as opt-in to release of PII for certain
purposes).

� Getting detailed reports on access to sensitive information

Secure systems and networks
This is a category of technologies and embedded systems that help protect
infrastructure servers, systems, and networking resources from security threats.
The desire is to protect the systems from external and internal threats, such as
hackers and viruses.

Firewalls are used whenever there is a need to control the traffic between two
networks. For example, a firewall is used at the connection of an organization
and the Internet, and may provide simple protocol and port filtering, or more
complex protocol inspection. Newer types of firewalls inspect XML and SOAP
traffic and provide protection against higher-level protocol specific attacks.
 Chapter 2. Architecture and technology foundation 47

Operating system security involves hardening of commercial operating systems
so that they provide greater security controls. For example, one issue with UNIX
operating systems is that the administrative user (root) has full control, including
deleting all security audit logs. In this case, operating system security software
can control and securely log the access of root to applications and data,
providing separation of duties.

Intrusion detection (host and network) is concerned with detecting anomalies in
the use of the operating systems or the network. This might be used, for
example, to detect external or internal intrusions to these systems.

Virus detection is used to detect and delete any viruses. This might be
implemented at the border of the organization and the Internet, and also on
individual host operating systems.

Patch management involves applying service patches to operating systems,
application middleware, and databases and applications within the environment.
These patches might contain security fixes that remove vulnerabilities in
software.

Business Process and Policy Management
Business Process and Policy Management applies to all the Business Security
Services and deals with coordination and integration of business processes to
optimize and adapt their processes for maximum efficiency.

Some examples of these processes and policies are:

� Governance, risk, and compliance

Business processes and policies are needed for defining organizational roles
and responsibilities for process and authority. Risk management processes
and policies are needed to evaluate strategies for managing risk versus cost.
Compliance may include assessment processes and reporting policies, for
example, what type of assessment is used, how often it is executed, and who
should be informed.

� Trust management

Business process and policies are required for establishing trusted
relationships. These processes may include who to include in a circle of trust,
what legal process to follow, and what process is used for evaluating liability.
This may also include the policies for what type of access to resources.

� Identity and access

Processes for identity can include on-boarding and off-boarding identities,
and self-care / self-registration for optimal user interaction. It can also include
processes and policies for approval of access to IT resources and business
48 Understanding SOA Security Design and Implementation

resources. In addition, policies for password management and identity
management are also applicable.

� Data protection and disclosure control

Business policies are needed to define content and data for use in transit and
at rest. Processes are needed in the event of misuse and handling
inappropriate use of data. Business policies are also needed to define
sensitivity of data and apply the appropriate message protection and privacy
policies.

� Secure systems and networks

Policies are required for intrusion detection and event management for
ensuring secure systems and networks. Processes must be in place for
handling alerts, for engaging the Computer Emergency Response Team, and
for normal housekeeping of scheduled maintenance, patch management, and
servicing.

2.5 IBM SOA Security Logical Architecture

This section introduces some typical SOA scenarios as use cases where various
aspects of security are needed and enforced. We use these scenarios to derive a
logical deployment architecture and then apply the IBM SOS Security Reference
Model to derive the IBM SOA Security Logical Architecture.

2.5.1 Foundation scenarios

IBM SOA Foundation scenarios are a group of reusable assets that can help
speed up the process of adopting SOA. This section briefly describes three of the
IBM SOA Foundation scenarios and some of the security issues involved. More
details are included in the following chapters.

Service Creation scenario
This scenario depicts a typical situation where existing business logic (likely in
the form of an application) is to be enabled as a service, or a new service is to be
deployed. For example, access to business logic from an enterprise information
system like CICS would fall in this category. In such cases, a service veneer may
be built so as to allow access to an existing business application. For example,
one may build a Web service implementation using a J2EE application and
provide this veneer implementation. In such cases, an application server that
provides a SOA runtime environment could host this new service that publishes
the capabilities using a service interface. Security is an important consideration
in this case. It is not only important to protect the message but to identify who is
invoking the service and be able to record that for accountability. It is also
 Chapter 2. Architecture and technology foundation 49

important to provide a seamless user experience such that the intermediate
veneer is transparent to the user.

Figure 2-15 IBM SOA Foundation Scenarios: Service Creation

Securing access to such a service could be handled through declarative security
means so that the application does not handle security, but lets the service
hosting runtime (application container) provide the necessary security
enforcements. Security services like authentication, token mediation, identity
mapping, confidentiality and integrity, and auditing may need to be leveraged to
provide secure access to the service. In addition, we may also need SSO for a
seamless user experience.

For more information, see Chapter 3, “IBM SOA Foundation Service Creation
scenario” on page 61, which focuses on applying the IBM SOA Security
Reference Model and Architecture to the Service Creation scenario.

Service Connectivity scenario
There are situations where an enterprise has a set of core services or systems
that are to be made available as services to a variety of internal and external
systems and users. The flexibility to make changes to their service and service
implementations with minimal to no impact to service consumers is desired. In
such cases, an Enterprise Service Bus (ESB) can provide the necessary
decoupling of service consumers and service providers. As shown in Figure 2-16
on page 51, consumer's systems may also use different protocol bindings
compared to what the services provide.

In such cases, it is important to protect business information and establish
business trust relationships for identity, data, and so on. Since the requests may
come from the external entities, security domains are likely crossed, hence
propagation of identity across domains is also a key consideration. In addition,
the enterprise must be able to subscribe to governance, risk, and compliance for
a variety of legal and regulatory aspects.

Service
Interface

Service
Requestor

Existing business
application

Service
Requestor
50 Understanding SOA Security Design and Implementation

Figure 2-16 IBM SOA Foundation Scenarios: Service Connectivity

The ESB gateway would leverage the security services responsible for message
level security, confidentiality and integrity, identity and authentication,
authorization and privacy, federation of identities between external consumer
and provider environments, and manage the trust relationship between the
external consumer and service provider. The ESB may also call on the same
services for requests from internal consumers as well. There may also be the
same set of requirements for the establishment of trust relationships between
internal consumer and providers that might be in different business units of the
organization.

Chapter 4, “IBM SOA Foundation Service Connectivity scenario” on page 89
focuses on applying the IBM SOA Security Reference Model to the Service
Connectivity scenario.

Service Aggregation for User Access scenario
This scenario discusses the aggregation of disparate services on an integrated
consumer portal or employee workspace, in other words, on the glass integration
for enhanced user experience and increased productivity through role based
employee portals. These services can be either Web-based or Web services
based applications that need to be accessed from an integrated workspace like a
portal. Users may access this through a variety of client tools, including
browsers, PDAs, kiosks, and so on. Furthermore, these services can be available
from within the enterprise or external to the enterprise at a service provider
company.

Application
Service

Enterprise Service Bus

Service
Requestor

Service
Requestor

Service
Requestor

Business
Service

Infrastructure
Service

Partner
Service
 Chapter 2. Architecture and technology foundation 51

Figure 2-17 shows the scenario.

Figure 2-17 IBM SOA Foundation Scenarios: Service Aggregation

User experience via single sign-on to all the applications, self-care, and profile
management are very important in this scenario. A user only needs to be
identified/authenticated once, and then should be able to access all of the
applications. The portal provides access to internal service provider applications.
A service already exposed can be reused in this scenario. Securing the
connection from portal to the internal service providers, providing the security
tokens, and identity mapping may all be required.

In the case where the portal accesses external service providers, the use of
identity federation techniques for security token and identity mapping are also
relevant. The company portal can make requests to the external portals as well.
For example, the Web Services for Remote Portlets (WSRP) standard may be
used. The same security requirements exist as for the external service provider
case. There is also the case where the user needs federated single sign-on to
enable them to access the external portal from their browser without needing to
sign in there again. Protocols such as SAML or WS-Federation may be used in
this case, and again require the identity federation services. Since a number of
application domains are being traversed, it is imperative to provide accountability
for user’s identity propagated to all applications and service providers.

Note: The complete specification for the Web Services for Remote Portlets is
available at http://www.oasis-open.org/.

Application
Service

Service
Requestor Enterprise Service Bus

Portal & Collaboration

Pervasive
Access

Remote
Portlets
(WSRP)

Partner
Service

Partner
Service
52 Understanding SOA Security Design and Implementation

http://www.oasis-open.org/

A number of security services can be leveraged to provide the capabilities
discussed above: message level security, confidentiality and integrity, identity
and authentication, authorization and privacy, federation of identities between
external consumer and provider environments, and managing the trust
relationship between the external consumer and service provider. There may
also be the same set of requirements for the establishment of trust relationships
between internal consumer and providers that might be in different business
units of the organization.

Chapter 5, “IBM SOA Foundation Service Aggregation scenario” on page 117
focuses on applying the IBM SOA Security Reference Model to the Service
Aggregation scenario.

2.5.2 Typical deployment architecture

Based on the scenarios in the previous section, Figure 2-18 on page 54 shows a
typical deployment architecture. Explained in a simplified manner, there is usually
a proxy (HTTP or Web services gateway) in the DMZ followed by either an
application server or a presentation server. The application/presentation server
leverages existing applications/services either directly or through an ESB. Clients
can be users or service consumers, both internal to an enterprise or external.
Similarly, existing applications/services can be either internal or external to an
enterprise.

In such a deployment, security is enforced at various points within the
architecture. The proxy may enforce confidentiality and integrity, identity
validation, authentication, and auditing. The identity derived at the proxy may
need to be propagated to the application server, where the propagated identity
needs to be accepted and additional security checks like authorization and
auditing may be enforced. Further security enforcements may be performed by
the other components of the architecture as well.
 Chapter 2. Architecture and technology foundation 53

Figure 2-18 Typical deployment architecture for an SOA application

Two main observations can be derived from the above discussion:

� Security infrastructure integration challenge: Since each component is
enforcing some aspect of security, there may be multiple identity and
authentication systems, multiple authorization engines, and multiple audit
logs. In a typical environment, these security systems are not well integrated
and hence can be considered a challenge in a SOA environment.

� Security management challenge: From a management perspective, there are
multiple islands of administration specific to products and usually prone to
errors, inconsistency, and lack of coordination. Management is resource
centric and policy management is isolated to a business unit or application or
product. This makes it a challenge in a SOA environment where consistent
policies have to be enforced across multiple components of the architecture.

The IBM SOA Security Reference Model addresses the above challenges by
applying a consistent model for both policy management as well as policy
enforcement by leveraging IT Security Services.

In Figure 2-19 on page 55, we address the problem of identity propagation by
applying the IBM SOA Security Reference Model to the logical deployment
architecture. In this example, we show that we can leverage the Identity and
Access business security service to define the appropriate policies. These polices
are defined and managed by the Security Policy Infrastructure, which will
distribute them in a consistent manner to all the relevant components within a
logical deployment architecture. These policies are enforced by security

Client System
(browser,
rich client)

Proxy

Fi
re

w
al

l Web Application
Server/Portal

Server

E
SB

Existing
Application

Enterprise
Information

System

Data Server/
Services

Existing
Applications/

Services

Fi
re

w
al

l

Propagate identity
Fine level authorization
Audit

Propagate identity
Application level authorization

Federate Identities with partners
Auditing
Confidentiality & Integrity

Transport SecurityTransport Security

Transport SecurityMessage Security
54 Understanding SOA Security Design and Implementation

enforcement points within these components by IT Security Services. These IT
Security Services can be either available locally (like within a browser) or can be
leveraged by centralized services (like the proxy taking advantage of external
enterprise Identity and Authentication services).

Figure 2-19 Identity propagation using IBM SOA Security Reference Model

Although the above example only demonstrates one particular security function,
the same can be applied for other functions of security as well. The next section
shows how we can make this generic and derive an IBM SOA Security Logical
Architecture based on the IBM SOA Security Reference Model.

2.5.3 IBM SOA Security Logical Architecture summary

We can extend the above example to other SOA security requirements and apply
the IBM SOA Security Model to a typical SOA deployment logical architecture to
derive the IBM SOA Security Logical Architecture, as shown in Figure 2-20 on
page 56.

In this architecture:

� IT Security Services are the building blocks to provide security functions as
services.

Client System
(browser,
rich client) Fi

re
w

al
l

Proxy/
Intermediary Fi

re
w

al
l

Web Application
Server/Portal

Server
Existing

Application

Authentication
Services

IT Security ServicesIdentity Services

Security Policy

Infrastructure

Identity and Access Business Security Services

Policy Distribution &
Transformation

Monitoring &
ReportingPolicy Administration Policy Decision

Policy Enforcement and Identity Propagation
 Chapter 2. Architecture and technology foundation 55

� Security Policy Infrastructure not only provides security policy life cycle
management but also policy distribution and transformation. Policies can be
associated with service definitions and metadata and published back to
service registries.

� Business Security Services leverage IT Security Services and Security Policy
Infrastructure to build business specific security services.

Figure 2-20 IBM SOA Security logical architecture

As we have seen before, there are multiple security enforcement points within a
SOA environment. These enforcement points derive consistent, coordinated,
business driven policies from the Security Policy Management. These polices are
based on metadata that can be derived for Service Registries when available.
Since the applications are shared/reused, the applicable policies to address
changing needs, heterogeneous application platforms, and protocols (across
organizations and vendors) are easily accommodated.

Let us repeat once more: Policies are distributed not only to different
enforcement points but also to IT Security Services. These policies are enforced
by security enforcement points within these components by IT Security Services.
These IT Security Services can be either available locally (like within a browser)
or can be leveraged by centralized services (like the proxy taking advantage of
external enterprise Identity and Authentication services).

Client System
(browser,
rich client) Fi

re
w

al
l

Proxy

Fi
re

w
al

l Web Application
Server/Portal

Server

ES
B

Existing
Application

Enterprise
Information

System

Data Server/
Services

Existing
Applications/

Services

IT Security Services

Security Policy Infrastructure

Business Security Services

Policy Enforcement

Published Policies

Service Registry
Service Discovery,

Metadata
56 Understanding SOA Security Design and Implementation

2.6 Conclusion

To enable an enterprise so that its processes and applications are flexible, one
must start by expecting changes, both to process and application logic, as well
as to the policies associated with them. Security must be factored into the SOA
since security is a business requirement and not just a technology attribute. At
the core of all SOA security lies a policy-based infrastructure and management of
the policies. In the ideal case, the SOA application is centered on business logic,
delegating the enforcement of security policies and the handling of trust
relationships to the infrastructure. Security services are essential building blocks
that can provide virtualization of security capabilities, as services themselves, so
that different infrastructure components can consistently access security
functionality. Thus, security services form the fabric for any SOA environment.
 Chapter 2. Architecture and technology foundation 57

58 Understanding SOA Security Design and Implementation

Part 2 IBM SOA
Foundation
scenarios

IBM SOA Foundation scenarios are a group of reusable assets that can help
speed the process of developing SOA based applications. This part describes
three of the IBM SOA Foundation scenarios and the security issues involved.

Part 2
© Copyright IBM Corp. 2007. All rights reserved. 59

60 Understanding SOA Security Design and Implementation

Chapter 3. IBM SOA Foundation
Service Creation scenario

This chapter describes the application of the SOA Security Reference Model, as
defined in Chapter 2, “Architecture and technology foundation” on page 17, to the
SOA Foundation Service Creation scenario. This scenario is the first of the IBM
SOA Foundation scenarios. The chapter highlights how each component of the
SOA Security Reference Model can be applied to the scenario.

3

© Copyright IBM Corp. 2007. All rights reserved. 61

3.1 Scenario overview

This section contains a brief description of the SOA Foundation Service Creation
scenario.

The Service Creation scenario describes how to expose existing application
functionality and new business logic as services. These services may then be
consumed by other services or client applications within an enterprise and
between enterprises.

For example, a customer has a core set of IT or business functions that offer
value to a variety of internal and external clients. The customer wants to enable a
wider use of these functions without incurring the complexity of point-to-point
integration with each of its clients.

By exposing the application functionality as services, client applications internal
and external to the enterprise can consume these services. This SOA approach
simplifies the integration challenges and leverages the business value of existing
systems.

3.1.1 Direct exposure architectural pattern

There are two main architectural patterns to illustrate the Service Creation
scenario. Figure 3-1 on page 63 shows one pattern, where the existing
Enterprise Information System (EIS) applications are directly exposed as
services. In this architectural pattern, the service interface is defined largely by
the existing application.
62 Understanding SOA Security Design and Implementation

Figure 3-1 Directly exposing existing applications as services

As shown in Figure 3-1, many service consumers can invoke the services
exposed from the existing applications. The benefits of this approach include a
shorter deployment cycle through the re-use of the existing assets.

Examining the figure, we have three types of service consumers:

� User accessing via a portal: The user interacts with the portal via a browser.
The portal generates services requests to the EIS on behalf of the user.

� Internal service consumer: An application generates service requests to the
EIS. This might be from a user with a thick client application, or from another
application within the environment that is not directly user driven.

� External service consumer: The difference from the internal case is that these
service requests are from outside of the domain of the EIS. For example, the
requests are from another organization, or another business unit of the same
organization. The dashed line indicates the requests are coming from a
foreign domain.

Enterprise
Information

SystemInternal
Service

Consumer

External
Service

Consumer

Portal Service
Consumer
 Chapter 3. IBM SOA Foundation Service Creation scenario 63

Figure 3-2 gives an example of the direct service to illustrate a real product
implementation. In this case, the EIS is CICS Transaction Services (TS) 3.1,
which has the capabilities of exposing its applications directly as Web services.
The portal is WebSphere Portal, with its portlets generating Web service
requests. The internal and external service consumer applications are
WebSphere J2EE and Microsoft® .NET applications respectively.

Figure 3-2 Directly exposing existing applications as services - product example

CICS
TS 3.1WebSphere J2EE

Application

Microsoft .NET
application

WebSphere Portal
64 Understanding SOA Security Design and Implementation

3.1.2 Indirect exposure architectural pattern

The indirect exposure pattern is shown in Figure 3-3. This illustrates how to
indirectly expose the existing EIS applications using service components. In this
architectural pattern, a middle tier is used to create services from the EIS
application. This may be used, for example, when using several services from
different sources. A middle tier may also be required when additional business
logic is needed to bridge the interface between consumers and the set of directly
exposed services.

Figure 3-3 Indirectly exposing existing applications via service components

 Service
Components

Internal Service
Consumer

Enterprise
Information

System

External
Service

Consumer

Portal Service
Consumer
 Chapter 3. IBM SOA Foundation Service Creation scenario 65

Figure 3-4 gives an example of the indirect exposure pattern to illustrate a real
product implementation. In this case, the EIS is CICS Transaction Services (TS)
2.2. Services are exposed using WebSphere Application Server and the CICS
Transaction Gateway (CTG). The portal is WebSphere Portal, with its portlets
generating Web service requests. The internal and external service consumer
applications are WebSphere J2EE and Microsoft .NET applications respectively.

Figure 3-4 Indirectly exposing existing applications via service components - product
example

3.2 Applying the IBM SOA Security Reference Model

Figure 3-5 on page 67 shows the SOA Security Reference Model. There are
three main components to the reference model: IT Security Services, Security
Policy Infrastructure, and Business Security Services. A more detailed
description of each of the components is included in Chapter 2, “Architecture and
technology foundation” on page 17.

A key point to understand when reading this chapter is that it describes how each
of the SOA Security Reference Model components could be applied to the
Service Creation scenario. The decision about which components should be
applied for a particular implementation of the Service Creation scenario depends
on the relevant business requirements. For example, in some cases the services
have high security requirements, such as banking or insurance. In other cases,
the services have lower security requirements, such as public information
sources. An IT architect must therefore decide which of the SOA Security

WebSphere
Application

Server

WebSphere J2EE
Application

Microsoft .NET
Application

CICS
Transaction

Gateway

WebSphere Portal

CICS
TS 2.2
66 Understanding SOA Security Design and Implementation

Reference Model components should be applied for their particular
implementation.

Figure 3-5 Applying the SOA Security Reference Model

3.2.1 IT Security Services

IT Security Services can be used by different components in the SOA
environment, such as gateways, proxy servers, application servers, data servers
and operating systems. The use of common IT Security Services enables a
consistent security implementation. It also minimizes development and
deployment costs for implementing these services.

Figure 3-6 shows the IT Security Services from the SOA Security Reference
Model. We will discuss each of these security services in turn, and show how
they can be used within the SOA Foundation Service Creation scenario.

Figure 3-6 IT Security Services from the SOA Security Reference Model

Security Policy Infrastructure

Business Security Services

IT Security Services

 Service
ComponentsInternal Service Consumer

Enterprise
Information

System

External
Service

Consumer

Portal Service Consumer

IT Security Services

Identity Services

Authentication
Services

Authorization and Privacy
Services

Confidentiality and
Integrity Services

Audit Services

Non-repudiation
Services
 Chapter 3. IBM SOA Foundation Service Creation scenario 67

Identity Services
In an SOA environment the most fundamental security issue to deal with is often
related to the Identity Services. Figure 3-7 shows the direct architectural pattern
of the Service Creation scenario showing a typical identity environment.

Identity foundation
There are multiple user repositories required in Figure 3-7. This is for a small
environment and indicates the problems faced. In a typical client environment,
there may be many more user repositories and identities. In the figure, there are
different user repositories for the EIS, portal, internal consumer, and external
consumer. Additionally, an enterprise user repository stores common identity
information for the enterprise.

Figure 3-7 Identity environment for the SOA Foundation Service Creation Scenario

Each of these repositories have different identity and attributes for the user.
Some of these attributes will be common between the repositories and a change
in one must be updated in others. For example, the user may update their
address in the portal user registry and this needs to be propagated to the
enterprise user registry.

User repository synchronization technology is often used to do this, where a
change in one repository is detected, and other repositories that need to be
synchronized are updated. This is shown in the figure with a synchronization

CICS
TS 3.1

WebSphere J2EE
Application

Microsoft .NET
applicationhomejoe

joesmith

joey1234jsmith

joe

WebSphere Portal
68 Understanding SOA Security Design and Implementation

connection between the enterprise and EIS, enterprise and portal, and portal and
internal consumer repositories.

Identity provisioning
To manage the identities and attributes in each user repository effectively, an
identity provisioning solution may be required, as shown in Figure 3-8. This
provisioning solution can create, delete, and modify individual account
information about all of the user repositories. The advantage of this approach is
that a policy based provisioning solution allows only the right identity and
attribute information in each of the repositories. This policy can be configured
centrally, and changes are driven from this central location.

Figure 3-8 Identity Provisioning for the SOA Foundation Service Creation Scenario

One special case of provisioning is that to the external consumer user repository
with user identity homejoe. This approach is often termed federated provisioning,
as provisioning is occurring to another identity domain. In this case, federated
provisioning standards such as Service Provisioning Markup Language (SPML),
should be used to enable interoperability between different technologies.

An identity provisioning solution may also provide user self-service and
password synchronization capabilities. For example, the provisioning solution
might allow a user to self-enroll to a service, update their own information, and

CICS
TS 3.1WebSphere J2EE

Application

Microsoft .NET
applicationhomejoe

joesmith

joey1234
jsmith

joe

Identity
Provisioning

WebSphere Portal
 Chapter 3. IBM SOA Foundation Service Creation scenario 69

update their own password, all without requiring intervention from an IT
administrator.

Identity federation
As part of the transaction flow, secured identity information is required to flow
through the environment, as shown in Figure 3-9. An important component within
the Identity Service is the trust service.

Figure 3-9 Identity Federation for the SOA Foundation Service Creation scenario in the
direct architecture pattern

In Figure 3-9, the request from the internal consumer carries a security token.
The EIS calls on the trust service to translate the incoming token from the
inbound request format to one suitable for the EIS. It also may perform additional
authentication, authorization, and identity mapping to translate identity and
attribute information. For example, the incoming user name of jsmith is translated
to the EIS user name of joey1234.

Examining Figure 3-10 on page 71, with the indirect architectural pattern, the
position of the identity federation trust service is different. In this case, it is more
likely to be accessed from the service components.

WebSphere
Application

Server

WebSphere J2EE
Application

CICS
Transaction

Gateway

Trust Service

Inbound
security
token

User=jsmith

Outbound
security
token

User=joe1234

CICS
TS 2.2
70 Understanding SOA Security Design and Implementation

Figure 3-10 Identity Federation for the SOA Foundation Service Creation scenario in the
indirect architecture pattern

Authentication Services
The Authentication Services provide capabilities to help issue and validate
authentication credentials and security tokens. The Authentication Services
should accommodate multiple security mechanisms, such as user
name/password, Kerberos, SAML, and PKI.

Figure 3-11 on page 72 shows the application of the Authentication Services for
portal users in the direct architectural pattern of the Service Creation scenario.
The portal users may be requested to present authentication credentials to verify
their identity to the environment. This is necessary as a pre-condition for any
authorization to services. Authentication may involve a user name/password,
token, or biometrics. These authentication credentials are passed to the
authentication service that then verifies the identity of the user. In the figure, the
user name and password are checked against the portal user registry.

Following authentication, a security token may be sent as part of the transaction
flow from the portal. The trust service is called to issue the security token. The
trust service is passed the authenticated user identity and returns a security
token that will be passed to the EIS. The security token might again carry
authentication credentials. For example, a user name token, which contains a
user’s name and password or user name and RACF Passticket. A binary token
may carry a Kerberos ticket
(http://www.ietf.org/html.charters/krb-wg-charter.html). Alternatively, the
security token might carry an identifier assertion only, with the receiver assuming
authentication has already taken place and accepting the user identity.

WebSphere
Application

Server

WebSphere J2EE
Application

CICS
Transaction

Gateway

Trust Service

Inbound
security
token

User=jsmith

Outbound
security
token

User=joe1234

CICS
TS 2.2
 Chapter 3. IBM SOA Foundation Service Creation scenario 71

http://www.ietf.org/html.charters/krb-wg-charter.html

Figure 3-11 Authentication Services (user) for SOA Foundation Service Creation
Scenario

The security token from the portal is sent to the EIS, as shown in Figure 3-12 on
page 73. The EIS may call on the trust service to convert the incoming security
token to one suitable for the EIS. This step is unnecessary if the portal has
already created a security token suitable for the EIS.

If the security token carries authentication credentials, then the trust service may
call on the Authentication Service to validate the request. In the figure, the
Authentication Service is called from the trust service to validate the
authentication credentials against the EIS user repository. If the EIS is
configured to accept an identity assertion from the portal, then authentication is
not required.

joe

security
token

(e.g. SAML
assertion)

User=joe

Authentication
Service Trust Service

User=joe
Password1

User=joe
(Authenticated)

WebSphere Portal

user

User=joe
Password1
72 Understanding SOA Security Design and Implementation

Figure 3-12 Authentication Services (token) for SOA Foundation Service Creation
Scenario

Authorization and Privacy Services
Figure 3-13 on page 74 shows the application of the Authorization and Privacy
Services for the Service Creation scenario. Authorization is shown at four points
in the figure:

� Service consumer: For the portal and J2EE (internal) consumers,
authorization can be implemented to control what the user can see and do.
The authorization might be externalized to the Authorization Service for these
consumers, or might be implemented internally within the consumers.

For the portal and J2EE application, authorization can be role based. In the
J2EE security model, the authorization decision is based on which roles can
access the resource and can the user invoke any of these roles. Additionally, it
is common to externalize the authorization decision to an Authorization
Service.

� Service provider: The authorization at the service provider is fairly coarse
grained and is concerned with service level authorization. That is, can the
user access the operation on the service they are trying to access? Again, the
service level authorization can be externalized to the Authorization Service or
can be internal to the service provider interface.

� Application: In most cases, there will be finer grained authorization at the
application level controlling what the user might be able to do. Again, the
authorization can be externalized or internal to the application. For example,

CICS
TS 3.1 joey1234

Trust Service

Inbound
security
token

User=joe

Outbound
security
token

User=joe1234

Authentication
Service
 Chapter 3. IBM SOA Foundation Service Creation scenario 73

in a CICS based application, authorization rules are set up against internal
security mechanisms, such as RACF.

� Data: There may be further authorization required at the data level, in most
cases configured at the database level. This is generally not externalized to
an Authorization Service.

Figure 3-13 Authorization and Privacy Services for SOA Foundation Service Creation
scenario

An important discussion is around the privacy aspects of authorization. Privacy
authorization is controlling access to Personally Identifiable Information (PII).
This type of authorization is data driven and dependent not only on the type of
data, but also on user individual preferences.

CICS
TS 3.1WebSphere J2EE

Application

Microsoft .NET
application

Data

WebSphere Portal

Authorization &
Privacy Service
74 Understanding SOA Security Design and Implementation

Confidentiality and Integrity Services
Data protection applies to stored data. It means the different data stores need to
be secured to prevent unauthorized access. Machines, folders, and files have
also to be protected from external or internal threats. In this scenario, the
different user registries and service provider databases in the infrastructure have
to be protected, as well as the machines on which they reside.

Protecting message content from being disclosed, modified without detection,
being sure of its origin, and protected against message replays are the primary
concerns of a message protection service. This is usually achieved by encrypting
and digitally signing a message body, a header, or any combination or parts of
them.

Figure 3-14 shows the application of the data and message protection services
for the direct architectural pattern of the Service Creation scenario. In the figure,
data protection is shown for the CICS application data only. However, data
protection in reality will be required any place there is sensitive data, including
passwords, cryptographic keys, configuration files, and so on.

Figure 3-14 Message Protection Services for SOA Foundation Service Creation

CICS
TS 3.1WebSphere J2EE

Application

Microsoft .NET
application

WS-Security

SSL

WS-Security

WebSphere Portal

Data

Data
Protection
 Chapter 3. IBM SOA Foundation Service Creation scenario 75

The messages from the service consumers to the EIS are protected. Protection
can take two forms:

� Point to point protection: Normally the whole data stream is protected at a
protocol level below the message level. Secure Sockets Layer (SSL) is the
most common example of a point to point protection scheme. SSL is used to
secure the transport level that is at a protocol layer below the message layer,
so all data that flows over the SSL connection is protected. The
disadvantages of this approach is that data is unprotected in intermediate
nodes and this type of protection does not allow selective protection of
message content. In Figure 3-14 on page 75, the service requests from the
portal are protected using SSL.

� Message level protection: The actual message, or some parts of it, are
protected at the message level. Therefore, even if the message passes
through intermediate nodes, it is still protected. In Figure 3-14 on page 75,
WS-Security is used to secure these messages.

It is possible to combine the two message protection models. For example, the
message may be signed using message level protection. It may then be sent
across an SSL connection for confidentiality protection.

Note that in the indirect architectural pattern, messages will need to be protected
both from service consumer to service components, and service components to
EIS.

Audit Services
The audit logging services are in place to understand the operation of the
security environment and to be sure that it is compliant with policy. To do this, an
audit service provides the following:

� Mechanisms to submit, collect, persistently store, and report on audit data
submitted as events.

� Methods to check compliance of the events to the individual security service
policies.

Audit records can be collected centrally, or be presented centrally via one virtual
view.

Table 3-1 on page 77 shows the application of the Audit Services for the Service
Creation scenario. The table demonstrates that an audit event may be created
and stored potentially for every identity, authentication, authorization and privacy
service, and message protection call.
76 Understanding SOA Security Design and Implementation

Table 3-1 Summary of Auditing Required for Service Creation Scenario

Non-repudiation Services
The Non-repudiation Services are in place so that there is evidence that a
transaction has taken place. Let us recall the two aspects as previously
described:

� Protect the recipient from a false denial by an originator that the data has
been sent.

� Protect an originator against a false denial of a recipient that the data has
been received.

From the point of view of the service provider in the Service Creation scenario,
the important evidence to record is that the consumer has made a request to the
service. This implies receiving digitally signed data from the consumer. This may
have been created by the Confidentiality and Integrity Services. Additionally the
consumer may have authenticated the user with the Authentication Service. A
non-repudiation record can then be created at the service provider by calling on
the Audit Service to record the signed data request with a time stamp to indicate
when the request occurred.

From the point of view of the service consumer in the Service Creation scenario,
the important evidence to record is that the service provider has responded to
the request. This implies receiving digital signed response data from the provider

Security Service Auditing Event

Audit Service � Identity (foundation)

� Identity (provisioning

� Identity (federation)

� Authentication (consumer)

� Authentication (EIS)

� Authorization and Privacy (service
consumer)

� Authorization and Privacy (service
components)

� Authorization and Privacy (EIS)

� Authorization and Privacy (EIS data)

� Data protection (EIS)

� Message protection (service
consumer to service component)

� (indirect case) Message protection
(service component to EIS)
 Chapter 3. IBM SOA Foundation Service Creation scenario 77

that may have been created by the Confidentiality and Integrity Services. A
non-repudiation record can then be created at the service consumer by calling on
the Audit Service to record the signed data response with a time stamp to
indicate when the response was received.

Summary of IT security services
Table 3-2 shows a summary of the candidate points for applying the SOA
Security Reference Model’s IT security services to the Service Creation scenario.
Audit is not included in this table, but is treated separately in Table 3-1 on
page 77. This table is a starting point when analyzing a Service Creation
scenario and could be used as a checklist when implementing a solution.

Table 3-2 Checklist of IT security services

3.2.2 Security Policy Infrastructure

Security policies are derived from the business requirements and govern the
behavior of the security services. In the Service Creation scenario, the security
policies therefore control the identity, authentication, authorization and privacy,
confidentiality and integrity, audit, and non-repudiation services.

The Security Policy Infrastructure shown in Figure 3-15 on page 79 is the
building block on which to manage and deliver these policies. It should be
effective and flexible, and built on open standards.

Security Services Application to the Service Creation Scenario

Identity Services � Identity foundation
� Identity provisioning
� Identity federation

Authentication Services � Service consumer (user or system)
� (Indirect case) Service components
� EIS

Authorization and Privacy Services � Service consumer
� (Indirect case) Service components
� EIS
� EIS data

Confidentiality and Integrity
Services

� EIS data
� Service consumer to service components
� (Indirect case) Service component to EIS

Non-repudiation Services � Service consumer (user or system)
� (Indirect case) Service components
� EIS
78 Understanding SOA Security Design and Implementation

In the Service Creation scenario, several enforcement points are defined to apply
security. Each of these Policy Enforcement Points (PEP) uses a Policy Decision
Point (PDP) that relies on the different policies defined in the infrastructure to
make the appropriate security decision.

It is important to manage these security policies so that they are correctly
transformed and distributed to all the components that need to be security aware.

The Security Policy Infrastructure does not depend directly on the Architectural
Pattern chosen for this scenario (direct or indirect exposure). However, the
pattern chosen does affect the position of some enforcement and decision
points.

Figure 3-15 Security Policy Infrastructure from the SOA Security Reference Model

Policy administration
The policies have to be managed for all the decision points defined in the
scenario. The indirect architectural pattern is used for much of the discussion in
this section that describes the different policies that apply to these scenarios. As
defined in the SOA Security Reference Model, message protection policies and
provider policies make up these policies.

Message protection policies
In this scenario, the service provider is responsible for providing the different
configuration elements to the different service consumers.

For example, an external service consumer may add digital signature and
encryption to the content of the message, as the transport layer security is not
considered enough security. An internal application accessing the service
through the service components may rely on a security token without signature.

In terms of the security token used in the scenario, an external application may
use a SAML token while an internal application uses a user name token.

In the indirect architectural pattern, the EIS component provides some policy
information to the service components. This includes the appropriate information
required to generate a valid Passticket (the shared key and the application
identifier) as well as the endpoint information.

Security Policy Infrastructure
Policy

Administration
Policy Decision and

Enforcement
Policy Distribution and

Transformation Monitoring and Reporting
 Chapter 3. IBM SOA Foundation Service Creation scenario 79

Provider policies
The service consumers may use their own policies. For example, an internal
application may rely on a proprietary database to store its access control
policies. A portal may use a database or an external access control system. The
security policies defined in the infrastructure have to be mapped to these
different repositories (as specified in Policy Distribution and Transformation
below).

The service components need to authenticate the users based on the
information they provide, as described in “Authentication Services” on page 71. It
can perform some coarse-grained authorization to restrict the access to a
service.

The policies can be externalized through declarative security to rely on external
components or can rely on proprietary stores.

A key driver for this scenario is reusability. The EIS reuses most of its existing
policies.

Policy distribution and transformation
The mapping of generic security policies to the local ones depend on the
technical requirements of the components involved.

The service consumers need to know, for example, what kind of security tokens
they have to use and the algorithms supported for ensuring message protection.

For example, the external service consumers may have to use a SAML assertion
as security token as well as message level security. Algorithms supported by the
service components for ensuring message level security thus need to be
provided. On the other hand, the internal applications who have to use user
name tokens may not have the same constraints on the message security layer.

The service components have to be configured so the authorization rules that
apply to the service are correctly enforced (see “Provider policies” on page 80 for
more information). If a specific access control module is used, then the policies
have to be mapped to this component. The service components also need to
expose all the information required for a service consumer to invoke the service.

Figure 3-16 on page 81 shows how this process can be achieved within this
scenario.
80 Understanding SOA Security Design and Implementation

Figure 3-16 Policy Transformation and Distribution for the Service Creation scenario

For example, the authorization policies need to be pushed to the appropriate
security repository used by the application server (it can be a proprietary
repository or a database).

Finally, the EIS may require a mapping to the EIS specific application
configuration and policies.

More information about the content of these policies are defined in the sections
on “Message protection policies” on page 79 and “Provider policies” on page 80.

Policy decision and enforcement
The enforcement and decision points used in this scenario are the following:

� The service consumer: In the case of a user accessing the service through a
portal, the portal (or a security enforcement point in front of the portal) can
provide enforcement to the service access. An internal authorization
database or an external authorization manager is thus used as the Policy
Decision Point to provide some granularity on the access to the service. For
example, a group of users may be authorized to invoke the service.

For an external service consumer, the internal authorization checks may allow
only users who have federated their accounts with the service provider to
access the service.

WebSphere
Application

Server

WebSphere J2EE
Application

CICS

Transaction
Gateway

WebSphere Portal

Central
Security Policy
Management

Security
Policy

Po
lic

y
Tr

an
sl

at
or

RACF

P
ol

ic
y

Tr
an

sl
at

or

WebSphere
Security
Policy

Po
lic

y
Tr

an
sl

at
or

Portal
Security
Policy

Po
lic

y
Tr

an
sl

at
or

XACML

XACML

XACML

XACML

CICS
TS 2.2
 Chapter 3. IBM SOA Foundation Service Creation scenario 81

� The service components: In this scenario, the service components can rely on
the trust service infrastructure as a Policy Decision Point. This can include the
following activities:

– Control message protection for external service providers.

– Validate incoming a security token and a user name / password against a
registry for internal consumers and a SAML assertion for external
consumers.

– Authorize users to access the service based on authorization policies.

– Audit the incoming requests and the users accessing the service.

The security policy needs to be externalized outside the service components
themselves (in artifacts such as deployment descriptors for example) so they
can be changed and updated iteratively.

Even when using programmatic security, the same policy decision points can
be reused.

� The EIS: The EIS relies on its own Policy Decision Point. The EIS validates
the RACF Passticket token provided and maps it to a local identity.
Finer-grained authorization based on the system policies can also be applied.

Monitoring and reporting
Based on the information provided within the audit infrastructure and the policy
distributed to the decision points, reports can be generated to contribute to the
compliance process. Activity reports are also made available for auditing.

3.2.3 Business Security Services

Figure 3-17 on page 83 shows the security management components of the IBM
SOA Security Reference Model. The following sections discuss each of the
components of security management and how they apply to the scenario.

Note: More information about the approaches of infrastructure-managed
and application-managed security is described in the “SOA Programming
model for implementing Web services, Part 7: Securing service-oriented
applications” available at
http://www.ibm.com/developerworks/webservices/library/ws-soa-prog
model7/index.html
82 Understanding SOA Security Design and Implementation

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-progmodel7/index.html

Figure 3-17 Business Security Services from the SOA Security Reference Model

Governance, risk, and compliance
An effective security governance framework involves establishing chains of
responsibility, authority, and communication to empower people to effectively
control the system. Governance is very important for the security services, as
managing the security policy and implementation is vital to the integrity of the
environment.

Governance in the Service Creation scenario involves monitoring compliance of
the security services with the security policies, monitoring compliance with
governance structures in place, and monitoring the overall security effectiveness
of the environment.

Security compliance management measures the performance of the security
implementation relative to the measures defined by the security policy. These
can be realized based on reporting on system behavior using audit information
and comparing that behavior to configured policies in systems. When these are
viewed in the context of business defined policies, it can provide an over-arching
view of where a business stands in implementation and enforcement of intended
policies.

The risk management process can result in some compliance objectives that
may include, for example:

� A systems administrator may need to know when accounts are created on
systems that are against policy, for example, if RACF user group
memberships are changed against policy.

� Passwords for users to systems may need to be updated periodically.

Business Security Services
Identity and

Access
Data Protection and
Disclosure Control

Business Process and Policy Management

Governance, Risk
and Compliance

Secure Systems
and Networks

Trust
Management
 Chapter 3. IBM SOA Foundation Service Creation scenario 83

Figure 3-18 shows how security compliance can be managed in the Service
Creation scenario. Using the Policy Management and Auditing tools available, an
auditor could check that the system is behaving as expected based on policy.

Figure 3-18 Security compliance requires examination of policy and audit information

Trust management
From a business viewpoint, trust management includes the liability and legal
aspects around the services. It also includes protection messages that the
service provider can implement for sensitive data.

At a technology level, trust management may include:

� The protocols for the service consumer to contact the service provider. For
example, this may require a SOAP message carried on HTTPS.

� The security token and its contents that need to be included in a WS-Security
message. For example, a SAML 1.0 security assertion carrying role based
information is required.

Identity and access
Managing the security regarding identity and access involves defining the
appropriate security policies regarding the identity and access management
infrastructure.

Identity management
As identified in “Identity Services” on page 68, several user repositories are used
and the user identities have to be defined in these repositories with the
appropriate access rights in these systems. Synchronization between the
different repositories ensures the information is updated when it changes.

 Service
Components

Service
Requestor

Enterprise
Information

System

Service Requestor
Auditing

Policy Management

Compliance
84 Understanding SOA Security Design and Implementation

A provisioning policy is, for example, defined to automatically create the user
accounts in the portal repository (an LDAP directory or a database, with an
account identifier joe for Joe Smith), in the enterprise repository (account
identifier joesmith for Joe Smith) and in the EIS system (a RACF account with
joey1234 as the identifier for the same person Joe Smith). This provisioning
policy can be extended to cross the company boundaries so the user is also
created in the registry used for the external service consumer (account identifier
homejoe for Joe Smith).

This provisioning policy may include several workflow activities, for example,
getting user management approvals or system administrator approval for RACF
account creation.

As part of these provisioning policies, identifier and password policies have to be
taken into account. Identifier policies define how the different attributes for the
different accounts are created based on the user identity information and the
company security rules.

In this example, an identifier policy may be defined to create the accounts on a
system using the first letter of the first name and the letters of the family name for
a user (for example, jsmith for Joey Smith). This can also apply to other
attributes, such as an e-mail address.

Password policies can be used to enforce the way passwords for the different
user accounts are created and managed. For example, it can be decided to
define a policy requiring a minimum length, the inclusion of numeric and special
characters, and an expiration date so that the user needs to change his
password every three months. This enforces security, as password weakness is
known as a common risk for the systems.

Federation policies are another foundation layer of the scenario. They allow the
validation, mapping, and exchange of the different security tokens that are used
between the domains or systems.

On the service consumer the users may use a user name and password to
authenticate to their portal or a strong authentication (for example, homejoe,
jsmith, or joe).

A SAML assertion may be required at the service components level to
authenticate a user accessing the service through an external consumer while a
user name token can be enough for an internal application. The user name token
provided may be different from the one used to authenticate to the local portal
(for example, joesmith).
 Chapter 3. IBM SOA Foundation Service Creation scenario 85

This identity then needs to be mapped to the appropriate user identifier in RACF
(joey1234) so the RACF Passticket can be generated. Finally, on the EIS, the
Passticket is validated and mapped to the local account identity.

In the case of the direct exposure scenario, the internal service consumers have
to use the trust service to exchange the identity information they have regarding
the user to a valid RACF Passticket. For example, the local identity jsmith or joe
is exchanged to a Passticket token generated for user joey1234. The EIS then
validates the Passticket.

The trust service needs to be configured so the security tokens are correctly
mapped to ones suitable for the receiving entities in this scenario.

Access management
The definition of the access management policies covers the Authentication
Services as well as the Authorization and Privacy Services. This requires the
definition within the policy infrastructure of the appropriate access control policies
entitling access to authorized users. These definitions can change depending on
the component performing the security enforcement, as they may not use the
same access control policy format.

The service components may define a first set of authentication and
authorization requirements to prevent unauthenticated users to access the
service. Then finer grained authorization can be done through J2EE role-based
security.

Finally, on the EIS system, the CICS security policies can be defined to authorize
only account owners to view their account information.

Data protection and disclosure control
Data protection management uses the services described in “Confidentiality and
Integrity Services” on page 75. Data protection management identifies the
resources that need protection and the controls required on those resources. For
example:

� Where possible, cryptographic key stores should be located on dedicated
hardware for secure storage.

� Where cryptographic key stores on the file system have to be used, they
should be protected with operating file system permissions, and stored on an
encrypted file system.

� An operating system hardening solution should be used to protect service
provider machines, and best practices be employed for identifying the files to
be protected, based on the type of application server used.
86 Understanding SOA Security Design and Implementation

Disclosure control uses the Authorization and Privacy services introduced in
3.2.1, “IT Security Services” on page 67. An organization may publish its privacy
policy for users to review prior to subscribing to services that it provides, allowing
them to make an informed decision before opting-in to using these services. A
reporting mechanism should also be available to provide data on disclosure
control to the compliance function.

User consent is almost always a component of a disclosure control
implementation. For example, a user’s consent may be required before a user’s
accounts are federated. Another aspect of disclosure control might be that a user
has access to a portlet that shows what personal information the organization is
retaining about them.

Secure systems and networks
Managing the security of the deployment environment where business solutions
can be deployed and hosted is important. There are a set of tools that help
protect infrastructure servers, systems, and networking resources from security
threats. Solutions in this category provide protection against viruses, hackers,
and misuse by internal users.

As availability relates to security, the performance and availability indicators that
need to be monitored have to be defined. For example, the unsuccessful login
attempts and some response times of the system can be monitored.

Business Process and Policy Management
In the Service Creation scenario, some aspects of Business Process and Policy
Management include:

� Processes around periodic assessment of services to ensure they comply
with appropriate policies.

� Ensuring that no services are unknown to the governance board.

� Processes around managing trust relationships with external service
consumers.

� Processes around managing the life cycle of identities in the service provider.
For example, this includes how new users get the RACF accounts used by
the CICS application.

� Processes around ensuring that the service provider manages business
sensitive data appropriately.

Note: More information about monitoring activities within SOA are available in
the IBM Redbook IBM Tivoli Composite Application Manager V6.0 Family:
Installation, Configuration and Basic Usage, SG24-7151.
 Chapter 3. IBM SOA Foundation Service Creation scenario 87

3.3 Summary

The application of the IBM SOA Security Reference Model to the SOA
Foundation Service Creation scenario has been described in this chapter. There
are many different security issues to contend with, and these must be applied
across the different components of the scenario. This chapter is therefore usable
as a checklist in determining where security can be applied to a real customer
environment.
88 Understanding SOA Security Design and Implementation

Chapter 4. IBM SOA Foundation
Service Connectivity
scenario

This chapter describes the application of the SOA Security Reference Model, as
defined in Chapter 2, “Architecture and technology foundation” on page 17, to the
SOA Foundation Service Connectivity scenario. This scenario is the second of
the IBM SOA Foundation scenarios. The chapter highlights how each component
of the IBM SOA Security Reference Model can be applied to the scenario.

4

© Copyright IBM Corp. 2007. All rights reserved. 89

4.1 Scenario overview

In the SOA Foundation Service Creation scenario given in Chapter 3, “IBM SOA
Foundation Service Creation scenario” on page 61, there is a direct connection
between the service consumer and service provider. In that scenario, service
consumer and service provider can be considered tightly coupled. The service
consumer needs to know the location of the service provider, and needs to
conform to the exact service specification of the service provider. That is, the
communication protocols used to invoke services and the data formats used to
exchange input and output data, have to be agreed upon and followed. Any
change in the service provider service specification will result in a change
required in the service consumer.

The decoupling of service consumer and service provider provides a number of
benefits. It allows for the substitution of one service provider for another. For
example, another provider may offer the same service for lower cost or with
higher quality of service. The service provider can be changed without the
consumer being aware of the change or without the need to alter the architecture
to support the substitution.

Figure 4-1 on page 91 shows the SOA Foundation Service Connectivity
scenario. The elements are similar to those of the Service Creation scenario;
however, there is a new component: the Enterprise Service Bus (ESB).

The ESB is a key enabler for SOA and represents a broad range of capabilities.
At a minimum, the ESB should have the following capabilities:

� Routing: Ensure that any request a consumer initiates is sent to the correct
provider.

� Addressing: Addressing complements routing to provide location
transparency and support service substitution. Service addresses are
transparent to the service consumer.

� Messaging styles: Should support a variety of messaging styles. The most
common are request/response, fire and forget, events, publish/subscribe, and
synchronous and asynchronous messaging.

� Transport protocols: Support protocol transformation between consumer and
provider. The most common of these is HTTP, but other protocols are used
depending on the method used to expose the service.

� Service interface definition: Should have a formal service definition, such as
WSDL.

� Service messaging model: Should support a model such as SOAP or XML.
90 Understanding SOA Security Design and Implementation

Figure 4-1 Service Connectivity Scenario

While there are multiple products (like DataPower®, WebSphere ESB,
WebSphere Message Broker, and so on) that provide the functionality of an ESB,
this IBM Redbook uses WebSphere ESB as the representative ESB. The
decision to use which ESB depends upon the environment and business
requirements.

Application
Service

Enterprise Service Bus

Service
Requestor

Service
Requestor

Service
Requestor

Business
Service

Infrastructure
Service

Partner
Service
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 91

Figure 4-2 gives an example to illustrate a real product implementation. In this
case, the ESB is WebSphere Enterprise Service Bus (WebSphere ESB) and
DataPower XS40 security appliance. The portal is WebSphere Portal, with its
portlets generating Web service requests. The internal and external service
consumer applications are WebSphere J2EE and Microsoft .NET applications,
respectively. The internal service provider is CICS Transaction Services (TS) 3.1,
exposing services directly.

Figure 4-2 Service Connectivity Scenario - example product mappings

WebSphere
Enterprise Service Bus

WebSphere J2EEMicrosoft
.NET

WebSphere
Portal

DataPower XS40

CICS
TS 3.1
92 Understanding SOA Security Design and Implementation

As shown in Figure 4-3, all of the functions of the ESB are hosted within
components called mediations. Mediation modules contain imports, exports, and
mediation logic. Mediation modules perform the message protocol
transformation, content-based message routing, message format transformation,
and message augmentation.

Mediation modules may use other mediation modules to perform a complete
message mediation. This allows for a more flexible service assembly and
developers may re-use mediation modules across several mediations. Figure 4-3
shows the use of two mediation modules between service consumer and service
provider.

Figure 4-3 Enterprise Service Bus mediation modules

Enterprise Service Bus

Internal
Service

Consumer

Internal
Service

Provider
Mediation
Module

Mediation
Module
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 93

4.2 Applying the IBM SOA Security Reference Model

Figure 4-4 shows the IBM SOA Security Reference Model. There are three main
components to the reference model: IT Security Services, Security Policy
Infrastructure, and Business Security Services. A more detailed description of
each of the components in included in Chapter 2, “Architecture and technology
foundation” on page 17.

Similar to Chapter 3, “IBM SOA Foundation Service Creation scenario” on
page 61, a key point to understand when reading this chapter is that it describes
how each of the SOA Security Reference Model components could be applied to
the Service Connectivity scenario. The decision about which components should
be applied for a particular implementation of the Service Connectivity scenario
depends on the relevant business requirements.

Figure 4-4 Applying the SOA Security Reference Model
94 Understanding SOA Security Design and Implementation

4.2.1 IT Security Services

The use of common IT Security Services enables a consistent security
implementation. It also minimizes development and deployment costs for
implementing these services. IT security services can be used by different
components in the SOA environment, such as gateways, proxy servers,
application servers, data servers, and operating systems.

Figure 4-5 shows the list of IT security services from the IBM SOA Security
Reference Model. We will discuss each of these security services in turn, and
show how they can be used within the SOA Foundation Service Connectivity
scenario.

Figure 4-5 IT Security Services from the SOA Security Reference Model

Identity Services
In the Service Creation scenario section about “Identity Services” on page 68,
the fundamental need for identity services was discussed. That section reviewed
three particular identity services: identity foundation, identity provisioning, and
identity federation. All of these identity services are required for the Services
Connectivity scenario as well.

IT Security Services

Identity Services

Authentication
Services

Authorization and Privacy
Services

Confidentiality and
Integrity Services

Audit Services

Non-repudiation
Services
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 95

Identity foundation
Examining Figure 4-6, which shows the Services Connectivity scenario, there are
a number of user repositories. This is typical in most environments with an
enterprise user repository containing identity information that is common to many
applications, and then individual user repositories for each of the applications. In
Figure 4-6, the identity of Joe Smith is spread across these repositories, with the
identity being homejoe at the external service consumer, jsmith at the internal
service consumer, joe at the portal repository, joesmith in the enterprise
repository, and joey1234 at the EIS.

Also shown in this figure is some user repository synchronization. This is used
when identity information needs to be kept up to date between user repositories.
For example, an update of a user home address at the portal might need to be
updated in other repositories as well.

Figure 4-6 Identity Foundation for the SOA Foundation Service Connectivity Scenario

WebSphere
Enterprise Service Bus

WebSphere J2EEMicrosoft
.NET

WebSphere
Portal

DataPower XS40

CICS
TS 3.1 joey1234

joejsmithhomejoe

joesmith
96 Understanding SOA Security Design and Implementation

Identity provisioning
To enable a policy based approach to managing the identities across the user
repositories, an identity provisioning solution can be implemented. As shown in
Figure 4-7, a central provisioning service creates, modifies, and deletes identity
information across the user repositories. The advantage of this approach is that it
allows the central definition of provisioning policies and consistent
implementation. A special case of provisioning is the federated provisioning to
the external service consumer repository. In this case, open standards based
provisioning technology, such as WS-Provisioning or SPML, may be required.

Figure 4-7 Identity Provisioning for the SOA Foundation Service Connectivity Scenario

WebSphere
Enterprise Service Bus

WebSphere J2EEMicrosoft
.NET

WebSphere
Portal

DataPower XS40

CICS
TS 3.1 joey1234

joejsmithhomejoe

joesmith

Identity
Provisioning
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 97

Identity federation
As part of the transaction flow, secure identity information is required to flow
through the system. Take the case of a request coming in from the external
service provider. As shown in Figure 4-8, the DataPower XS40 provides a Web
services gateway to the incoming requests. In the figure, the request arrives
carrying a SAML security token, which carries identity information for the user
homejoe. The point of contact calls into the trust service to exchange the security
token format to one supported by the enterprise. In this case, the SAML security
token is exchanged for a user name token. Additionally, the trust service can map
the incoming identity information to one suitable for the enterprise. In the figure,
the homejoe identity is mapped to the enterprise identity of joesmith.

Figure 4-8 Identity federation at the Web Services Gateway

In a similar way, identity federation may be required at the ESB layer. In
Figure 4-9 on page 99, the request from the gateway carries a user name
security token. One of the ESB mediation modules calls on the trust service to
translate the incoming token to one suitable for the EIS. In this case, it is creating
a security token that carries the RACF Passticket information. It also may
perform identity mapping to translate identity and attribute information. For
example, the incoming user name of joesmith is translated to the EIS user name
of joey1234.

Microsoft
.NET

DataPower XS40

User=homejoe
Inbound
(SAML

security token)

User=joesmith
Outbound
(username

security token)

Trust Service

homejoe

joesmith
98 Understanding SOA Security Design and Implementation

Figure 4-9 Identity Federation at the ESB

Authentication Services
The Service Creation scenario discussion in “Authentication Services” on
page 71 shows the application of the Authentication Services for portal users.
The application of authentication for portal users in this scenario is the same.

Mediation
Module:
Identity

Federation

User=joesmith
Inbound

(username
security token)

User=joe1234
Outbound

(RACF
PassTicket

security token)

Trust Service

CICS
TS 3.1 joey1234

WebSphere
ESB
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 99

The portal users may be requested to present authentication credentials to verify
their identity to the environment. This is necessary as a pre-condition for any
authorization to services. Authentication may involve a user name/password,
hardware token, or biometrics. These authentication credentials are passed to
the Authentication Service that then verifies the identity of the user. In
Figure 4-10, the user name and password are checked against the portal user
registry.

Figure 4-10 Authentication Service for the SOA Foundation Service Connectivity
Scenario - Portal

WebSphere
Enterprise Service Bus

joe

(security
token)

User=joe

Authentication
Service Trust Service

User=joe
Password1

User=joe
(Authenticated)

WebSphere Portal

user

User=joe
Password1
100 Understanding SOA Security Design and Implementation

The other authentication takes place at the EIS, as shown in Figure 4-11. In this
case, the request from the ESB contains the security token appropriate to the
EIS and the EIS could authenticate the request directly. In the figure, the EIS
calls out to the Authentication Service. In many cases, the EIS may authenticate
to its own user repository directly.

Figure 4-11 Authentication Service for the SOA Foundation Service Connectivity
Scenario - EIS

Note: This is a different approach as compared to the Service Creation
scenario, where EIS authentication relied on a separate call to the trust
service to create the token suitable for it. That example showed calling the
trust service to get the RACF Passticket. The advantage of using the ESB is
that it can perform identity federation for a service provider, before making any
request to the service provider.

CICS
TS 3.1 joey1234

Authentication
Service

WebSphere
Enterprise Service Bus

User=joey1234
Outbound

(RACF
Passticket

security token)
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 101

Authorization and Privacy Services
The first application of the Authorization and Privacy Services is shown in
Figure 4-12. Requests that come in from the external service consumer must be
authorized before being granted access into the enterprise. This is an application
of the normal edge of network control applied with firewalls, Web reverse proxies,
and similar devices. In this case, the gateway should call out to the Authorization
and Privacy Services to ensure incoming requests are authorized. Any requests
that are not authorized should be rejected.

Figure 4-12 Authorization and Privacy Service for the SOA Foundation Service
Connectivity Scenario - Web Services Gateway

There are four more Authorization and Privacy Services aspects within the
scenario. These are depicted in Figure 4-13 on page 103:

� Service consumer: For the portal and WebSphere J2EE internal service
consumer, the authorization can be implemented to control what the user can
see and do. The authorization can be externalized to the security service, or
alternatively implemented internally.

� Enterprise Service Bus: As shown on Figure 4-13 on page 103, the mediation
module on the ESB can call out to the Authorization And Privacy Service to
implement service level authorization. This level of authorization controls who
can call into a service operation.

Microsoft
.NET

DataPower XS40

Authorization and
Privacy
Service
102 Understanding SOA Security Design and Implementation

� Service application: In most cases, there will be finer grained authorization at
the application level, controlling what the user might be able to do. Similar to
the Service Creation scenario, the authorization can be externalized to the
service, or implemented with the application, for example, the CICS based
application provides authorization using RACF.

� Service data: There may be further authorization at the data level, most
commonly implemented at the database.

Figure 4-13 Authorization and Privacy Service for the SOA Foundation Service
Connectivity Scenario

Note: This is a different approach compared to the Service Creation
scenario, where service level authorization had to be implemented at the
service provider. The advantage of using the ESB is that it can perform
authorization for a service provider before making any request to the
service provider.

Mediation
Module:

Authorization

Authorization and
Privacy ServiceWebSphere J2EE

CICS
TS 3.1 data

WebSphere
ESB
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 103

Confidentiality and Integrity Services
Data protection applies to stored data. It means the different data stores need to
be secured to prevent unauthorized access. Machines, folders, and files have to
be protected from external or internal threats as well. In this scenario, the
different user registries and service provider databases in the infrastructure have
to be protected, as well as the machines on which they reside.

In “Confidentiality and Integrity Services” on page 75 of the Service Creation
scenario, we described the different types of message protection:

� Point to point protection: Normally, the whole data stream is protected at a
protocol level below the message level. Secure Sockets Layer (SSL) is the
most common example of a point to point protection scheme.

� Message level protection: The actual message, or some parts of it, are
protected at the message level. This may involve use of digital signatures to
verify the message integrity or encryption to guarantee message
confidentiality.

Figure 4-14 on page 105 shows the application of the message protection
services for the Service Connectivity scenario. In the figure, WS-Security is used
to provide protection of messages from the external service consumer to the
Web services gateway, internal service consumer to ESB, and the gateway to
ESB.

There is a requirement for the ESB and Web services gateway to provide
support for common message protection standards, such as SSL and
WS-Security.
104 Understanding SOA Security Design and Implementation

Figure 4-14 Message Protection Service for the SOA Foundation Service Connectivity
Scenario

Audit Services
The audit and logging services are in place to understand the operation of the
security environment and to be sure that it is compliant with policy. To do this, an
audit service has to provide the following:

� Mechanisms to submit, collect, persistently store, and report on audit data
submitted as events.

� Methods to check compliance of the events to the individual security service
policies.

WebSphere
Enterprise Service Bus

WebSphere J2EEMicrosoft
.NET

WebSphere
Portal

DataPower XS40

CICS
TS 3.1

WS-Security

SSL

WS-Security SSL

WS-Security
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 105

Table 4-1 shows the application of the audit services for the Service Connectivity
scenario. The table is demonstrating that potentially for every Identity,
Authentication, Authorization and Privacy Service, and data and message
protection call, which an audit event may be created and stored.

Table 4-1 Audit Services for the Service Connectivity scenario

Non-repudiation Services
The Non-repudiation Services are in place so that there is evidence that a
transaction has taken place. There are two aspects, as previously described:

� Protect the recipient from the false denial by an originator that the data has
been sent.

� Protect an originator against the false denial of a recipient that the data has
been received.

From the point of view of the service provider in the Service Connectivity
scenario, the ESB first receives the initial service request, and accesses service
providers to fulfill those requests. In this case, the ESB may invoke the
Non-repudiation Services, based on the incoming request. The service providers
accessed by the ESB may access the Non-repudiation Services to record the
transaction coming from the ESB. A combination of multiple non-repudiation
records may be required to associate an incoming request with the events that
occurred on a set of service providers.

Security Service Auditing Event

Audit Service � Identity (foundation)

� Identity (provisioning)

� Identity (federation)

� Authentication (service consumer)

� Authentication (EIS)

� Authorization and Privacy (service consumer)

� Authorization and Privacy (Gateway & ESB)

� Authorization and Privacy (EIS)

� Authorization and Privacy (EIS data)

� Message protection (Gateway)

� Message protection (Gateway to ESB)

� Message protection (ESB to service component)

� Data protection (EIS)

� (indirect case) Message protection (service component
to EIS)
106 Understanding SOA Security Design and Implementation

From the point of view of the service consumer in the Service Connectivity
scenario, the important evidence to record is that the ESB has responded to the
request. Unlike the Service Creation scenario, access to the service providers is
not direct, so evidence for the non-repudiation record is likely to be based upon
the secure channel between consumer and ESB. A non-repudiation record can
then be created at the service consumer by calling on the audit service, to record
the signed data response with a time stamp to indicate when the response was
received.

Summary of security services
Table 4-2 shows a summary of the candidate points for applying the IBM SOA
Security Reference Model’s IT Security Services to the Service Connectivity
scenario. An audit is not included in the table, but treated separately in Table 4-1
on page 106. This table is a starting point when analyzing a Service Connectivity
scenario and could be used as a checklist when implementing a solution.

Table 4-2 A checklist of IT security services from the IBM SOA Security Reference Model
that can be applied to the Service Connectivity Scenario

Security services Application of the Service Connectivity
Scenario

Identity Services � Identity foundation
� Identity provisioning
� Identity federation

Authentication Services � Service consumer (user or system)
� EIS

Authorization and Privacy Services � Service consumer
� Gateway
� ESB
� EIS
� EIS data

Confidentiality and Integrity
Services

� Service consumer to Gateway
� Gateway to ESB
� ESB to service components
� (Indirect case) Service component to EIS
� EIS data

Non-repudiation Services � Service consumer
� ESB
� Service provider
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 107

4.2.2 Security Policy Infrastructure

Security Policy Infrastructure in the context of SOA is the means by which
processes and services express the conditions and manage the behavior of the
underlying infrastructure, in order to secure access to information, information
availability and retention, and audit. Policy management includes authoring
business policies that get refined to service specific policies, such as security,
performance indicators and metrics, and trust policies.

Figure 4-15 shows the components of Security Policy Infrastructure from the IBM
SOA Security Reference Model. We will discuss each of these in turn, and show
how they can be used within the SOA Foundation Service Connectivity scenario.

Figure 4-15 Security Policy Infrastructure from the SOA Security Reference Model

Policy administration
Policy management deals with the life cycle of security policies. It can be
decomposed into message protection policies and provider policies. The policies
expressed here may be expressed in an abstract, standard format, rather than
specific to any components of the architecture. Policies expressed in this
higher-level form are usually easier to tie back to the business perspective of the
policy.

Message protection policies
Message protection policies specify the mechanisms, rules, and constraints on
how a service consumer will use a service provider. In this scenario, where the
ESB is an intermediary, service consumers and service providers interact with
the ESB and not each other, so the message protection policies describe the
interactions between:

� Service consumer and ESB

� ESB and service provider

The difference from the Service Creation scenario in Chapter 3, “IBM SOA
Foundation Service Creation scenario” on page 61 is that the message
protection policies are no longer point-to-point policies between service
consumers and providers, but rather, they are policies that specify the interaction
between these components and the ESB.

Security Policy Infrastructure
Policy

Administration
Policy Decision and

Enforcement
Policy Distribution and

Transformation Monitoring and Reporting
108 Understanding SOA Security Design and Implementation

For example, if the ESB is expecting signed and encrypted messages from a
service provider, then the service provider must be aware of this so that
outbound messages are correctly prepared before sending. If the ESB then
requires communication with one or more service providers to provide a
response to the service consumer, it will need to be aware of message protection
policies for interacting with those service providers.

Provider policies
Provider policies are policies internal to a particular service provider.
Authorization and audit policies are commonly employed to describe the entities
able to access the service, and what audit trail is to be generated for future
compliance activities. Another example of a provider policy may be business
rules within the service, such as The maximum daily trading limit is $100,000.

Service providers may also rely on policies configured in the security services
that they consume. For example, an Authentication Service has a local policy for
describing account and password validity. Service providers that use that
authentication service do not implement these policies (it is likely that they would
even be unaware of these policies), but the overall operation of the system relies
on these policies being in place to restrict access to the system for entities with
expired accounts.

Policy distribution and transformation
High-level, abstract policies described in “Policy administration” on page 108
need to be made available to components requiring the information specified in
those policies. The policies need to be translated into a form that those
components can understand, since each component will have its own internal
representation of the aspects of policy that are important to it. Figure 4-16 on
page 110 shows how policy distribution and transformation apply to this scenario.

For example, a centrally-defined security policy for access to application
functions may get transformed and distributed as follows:

� Access control lists, protected object policies, and authorization rules
distributed to Tivoli Access Manager.

� JACC policy distributed to WebSphere Application Server.

� Web services security management policy distributed to a DataPower
security appliance.

� Permission set to RACF on z/OS®.
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 109

Figure 4-16 Policy distribution and transformation

Policy decision and enforcement
In the Service Connectivity scenario, policy decision points may include:

� Common authorization service: Common authorization services remove the
policy decision-making from applications, allowing application developers to
focus on business logic. For example, Tivoli Access Manager might be
invoked from the ESB and J2EE or Microsoft .NET applications servers to be
the Policy Decision Point for all authorization decisions in the service provider
implementation.

� Common audit service: Common audit services evaluate their policy for the
generation and distribution of audit data. For example, a central data
warehouse may be used in the enterprise to store audit records collected
across solution components.

� Service provider: While it is preferable to externalize policy decisions from
applications, there may be cases where at least some of the policy
decision-making logic must reside in the service provider itself. Use of this
approach should be minimized wherever possible.

� Trust service: The trust service may perform validation of some security
tokens as one of its functions. For example, the trust service may validate the
format and integrity of SAML tokens.

WebSphere
Enterprise Service Bus

WebSphere J2EEMicrosoft
.NET

WebSphere
Portal

DataPower XS40

CICS
TS 3.1

RACF

WebSphere
Portal

Security Policy
J2EE

Security
Policy

ESB
Security
Policy

XACML, WS-Policy

XACML

XACML

Central
Security Policy
Management

XACML

XACML, WS-Policy

ESB
Gateway

Policy

Po
lic

y
Tr

an
sl

at
or

P
ol

ic
y

Tr
an

sl
at

or

Po
lic

y
Tr

an
sl

at
or

Po
lic

y
Tr

an
sl

at
or

P
ol

ic
y

Tr
an

sl
at

or
110 Understanding SOA Security Design and Implementation

Policy Enforcement Points are usually distributed across multiple components in
the flow of a transaction through the SOA environment:

� Service consumer: In the case of a user accessing the service through a
portal, the portal (or a Security Enforcement Point in front of the portal) can
act as an enforcement point to determine access to the service before it is
even invoked.

� ESB: An ESB may enforce policies related to the protection of messages,
based on the results of cryptographic operations for signature validation or
decryption.

� Trust service: The trust service may also externalize some of its policy
decision making and only act as the enforcement point. For example,
authorization decisions may be externalized to a common authorization
service, such as Tivoli Access Manager.

� Service provider: Application servers, EIS systems, and so on, enforcement
may be provided at the container level or in the application code itself,
depending on how policy decisions are invoked (programmatic versus
declarative).

Service consumers can also perform some policy enforcement functions, but it is
not recommended that this be a substitute for policy enforcement in the ESB or
the service provider.

Monitoring and reporting
Based on the information provided within the audit infrastructure and the policy
distributed to the decision points, reports can be generated to contribute to the
compliance process. Activity reports are also made available for auditing.

4.2.3 Business Security Services

The Business Security Services portion of the IBM SOA Security Reference
Model represents a diverse collection of services and capabilities required to
provide a verifiably-secure deployment environment for a SOA solution. Most of
what is discussed in this section complements a SOA deployment in the same
way that it complements other application deployment approaches.

Note: For aspects of security policy where a common service is used, the
Policy Decision Point is logically consolidated, even if it is physically
distributed for reasons of performance and availability.
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 111

Figure 4-17 shows the list of Business Security Services from the SOA Security
Reference Model. We will discuss each of these security services in turn, and
show how they can be used within the SOA Foundation Service Connectivity
scenario.

Figure 4-17 Business Security Services from the SOA Security Reference Model

Governance, risk, and compliance
A SOA Governance Board would likely:

� Interact with the SOA Governance Board of external partners connecting to
the services being provided to establish an effective working relationship
between the two organizations.

� Specify policies for message protection of messages that cross the enterprise
boundary.

As a result of the risk management processes, compliance activities might
include:

� Having personnel managers validate the continuing business need for their
employees to have access to the set of services that have been provided to
them.

� Generating reports to demonstrate compliance with a regulation such as the
Health Insurance Portability and Accountability Act (HIPPAA), the
Sarbanes-Oxley Act (SOX), or the International Convergence of Capital
Measurement and Capital Standards (Basel II).

Trust Management
From a business viewpoint, Trust Management includes the liability and legal
aspects around the services.

At the technology level, Trust Management may define:

� Standards for the strength of cryptographic ciphers to be used when
accessing the ESB

� Standards for security tokens associated metadata

� Key management for X.509 certificates for the ESB and service components

Business Security Services
Identity and

Access
Data Protection and
Disclosure Control

Business Process and Policy Management

Governance, Risk
and Compliance

Secure Systems
and Networks

Trust
Management
112 Understanding SOA Security Design and Implementation

Identity and Access
This section describes how to apply the Identity and Access services defined in
4.2.1, “IT Security Services” on page 95 to manage the identities in the
environment, their attributes, and access privileges.

Identity feeds from HR systems are used to populate the user repositories in the
solution, such as the common authentication service, application, and EIS user
repositories. Attributes of the users, including their roles or group memberships,
are based on identity provisioning rules.

Business requirements may also dictate manager intervention to approve user
accounts or to periodically re-validate a user’s accounts to meet regulatory
compliance objectives.

To distribute the management and administration cost of some functions, user
self-care via the WebSphere Portal could be implemented. Functions such as
password synchronization and update of personal information are typical user
self-care functions. Enrollment and initiation of request for business services is
an increasingly popular approach, supported by the manager workflow described
in the previous paragraph.

Data protection and disclosure control
Data protection management uses the services described in “Confidentiality and
Integrity Services” on page 104. Data protection management identifies the
resources that need protection and the controls required on those resources. For
example:

� Where possible, cryptographic key stores should be located on dedicated
hardware for secure storage.

� Where cryptographic key stores on the file system have to be used, they
should be protected with operating file system permissions, and stored on an
encrypted file system.

� An operating system hardening solution should be used to protect service
provider machines, and best practices be employed for identifying the files to
be protected, based on the type of application server used.

Disclosure control uses the Authorization and Privacy services introduced in
4.2.1, “IT Security Services” on page 95. An organization may publish its privacy
policy for users to review prior to subscribing to services that it provides, allowing
them to make an informed decision before opting-in to using these services. A
reporting mechanism should also be available to provide data on disclosure
control to the compliance function described in “Governance, risk, and
compliance” on page 112.
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 113

User consent is almost always a component of a disclosure control
implementation. For example, a user’s consent may be required before a user’s
accounts are federated. Another aspect of disclosure control might be that a user
has access to a protection that shows what personal information the organization
is retaining about them.

Secure systems and networks
Firewalls are one of the most fundamental mechanisms for isolating networks in
the deployment environment. As shown in Figure 4-18, firewalls could be used to
separate:

� The outside zone from the demilitarized zone (DMZ) where the point of
contact resides

� The DMZ from the production zone where the ESB and the service provider
reside

� The production zone from the internal network where the enterprise
information system

� The DMZ, production and internal zones from the management zone where
the security services reside

Figure 4-18 Typical logical network diagram for the SOA Foundation Service
Connectivity scenario

Directory
Service

Outside Zone
Demilitarized

Zone Production Zone Internal Network

Management Zone

Authorization
Service

Identity
Provisioning

Service

Enterprise
Information

System

Service
Provider

Service
Consumer

Enterprise
Service Bus

Web
services
gateway

Trust Service
114 Understanding SOA Security Design and Implementation

Host and network-based intrusion detection systems (IDS) can be used to
aggregate logs from a variety of devices to correlate and identify potential
security issues. The IDS should be integrated with a monitoring and alerting
system so that an escalated response to an incident can be initiated when
appropriate.

Security devices can also provide protection against XML viruses by providing
strong schema validation and examination of Web service messages for
well-known exploits.

Managing the security of the deployment environment where business solutions
can be deployed and hosted is important. There are a set of tools that help
protect infrastructure servers, systems, and networking resources from security
threats. Solutions in this category provide protection against viruses, hackers,
and misuse by internal users.

As availability relates to security, the performance and availability indicators that
need to be monitored have to be defined. For example, the unsuccessful login
attempts and some response times of the system can be monitored.

Business Process and Policy Management
In the Service Connectivity scenario, some aspects of Business Process And
Policy Management include:

� Managing compliance activities related to authorizing access to services
based on periodic revalidation of the business need.

� Establishing policies for access to services based on the incoming user’s
organization and role.

� Process around managing trust relationships with external service
consumers.

� Classifying choreographed applications and data so that appropriate data
protection and disclosure control can be implemented.

Note: For additional detail on secure network topologies, consult Chapter 2,
“Common security architecture and network models” and Appendix A,
“Method for Architecting Secure Solutions”, in the IBM Redbook Enterprise
Security Architecture Using IBM Tivoli Security Solutions, SG24-6014.

Note: More information about monitoring activities within SOA are available in
IBM Tivoli Composite Application Manager V6.0 Family: Installation,
Configuration and Basic Usage, SG24-7151.
 Chapter 4. IBM SOA Foundation Service Connectivity scenario 115

4.3 Summary

The application of the IBM SOA Security Reference Model to the SOA
Foundation Service Connectivity scenario has been described in this chapter.
There are many different security issues to contend with, and these must be
applied across the different components of the scenario. This chapter is therefore
usable as a checklist in determining where security can be applied to a real
customer environment.
116 Understanding SOA Security Design and Implementation

Chapter 5. IBM SOA Foundation
Service Aggregation
scenario

This chapter discusses the application of the IBM SOA Security Reference
Model, defined in Chapter 2, “Architecture and technology foundation” on
page 17 to the IBM SOA Foundation Service Aggregation scenario.

The chapter provides an overview of the Service Aggregation scenario and
highlights the components involved. Then it provides guidance to apply the SOA
Security Reference Model to the scenario, covering the following areas:

� IT Security Services

� Security Policy Infrastructure

� Business Security Services

5

© Copyright IBM Corp. 2007. All rights reserved. 117

5.1 Scenario overview

In this section, an introduction to the scenario, the actors, and the components
involved is provided. The scenario is then detailed from different perspectives to
make the understanding of the security requirements identified easier.

5.1.1 Overview of the Service Aggregation scenario

The goal of this scenario is to provide access to a set of services for a user
through a common interface.

The business value for this scenario is to reuse existing information and data
through a common entry point to improve user productivity.

Services can be internal (existing applications or exposed functions) as well as
external, meaning they are provided by a partner. These services can be
provided on both sides through a portal, for example.

The services are aggregated through a corporate portal in this scenario, using a
role based model to provide personalized content to the users.

The user may also access an external portal that aggregates some services
provided by a partner. Figure 5-1 provides an overview for this scenario.

Figure 5-1 Service Aggregation scenario overview

Application
Service

Service
Requestor Enterprise Service Bus

Portal & Collaboration

Pervasive
Access

Remote
Portlets
(WSRP)

Partner
Service

Partner
Service
118 Understanding SOA Security Design and Implementation

The following actors and components are identified for this scenario:

� User: The user can be an internal employee as well as an external user
accessing a set of services through the company portal. This user can access
the company portal as well as external portals using different channels: a
Web browser, a rich client interface, or a mobile device.

� Company portal: The company portal provides aggregation and collaboration
services to users through a common interface. This includes access to
internal services as well as external services provided by other companies.
The company portal may also aggregate some content of external partners
also provided through a corporate portal.

� Internal service provider: A service provided by internal components.

� External portal: A portal provided by a third party. This portal can be
accessed by the user through a Web browser or any other device. Different
services are aggregated in this portal.

� External service provider: A service provided by the third party. The service
can be accessed through the external company portal and directly from the
company portal itself, as shown in the Figure 5-1 on page 118.

This scenario can be considered from several perspectives to detail the security
requirements that apply:

� The Web single sign-on perspective focuses on the user based interactions
with the different portals involved in this scenario.

� The Web services perspective concentrates on the integration of the different
services provided and the interactions between these services.

� The provisioning perspective brings out the flows and the required
synchronization events for the different accounts used by the user in the
scenario.

The Web single sign-on and the Web services perspectives are detailed below.
The provisioning perspective is highlighted in “Identity Services” on page 124.

5.1.2 Web single sign-on perspective

This section focuses on the single sign-on capabilities provided to the user in the
scenario.

Using a Web browser, the user accesses internal applications. Some of these
applications are accessed through the company portal while others are not.
Single sign-on has to be provided to the user for all these applications.
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 119

The user also accesses some applications provided by a third party and needs to
have single sign-on to these applications as well. In this case, federated single
sign-on is used.

Figure 5-2 details the interactions for the Web single sign-on perspective of the
scenario.

Figure 5-2 Web single sign-on perspective for the Service Aggregation scenario

For this perspective, the following components are introduced:

� Point Of Contact: This service provides an entry point to the system for user
Web-based interactions and provides single sign-on capabilities to the
internal applications. This includes the company portal as well as any other
internal Web applications that are not aggregated through the portal.

From a technical point of view, a reverse proxy or a plug-in for Web servers is
used as the point of contact.

� Federated SSO Service: This service provides the core capabilities to support
federated single sign-on for users between a company and its partners.

This includes the support for the different federation protocols and the ability
to generate, validate, or exchange the appropriate security tokens used
between the federation partners.

External Portal

Company Portal

User

Web Application

Outsourced Provider

Point Of
Contact

Web Application

Federated SSO
Service

Point Of
Contact

Federated SSO
Service

Web Application

Web Application
120 Understanding SOA Security Design and Implementation

These services are also required for the partner infrastructure. The remainder
of this section focuses on the company infrastructure as the federation
protocols ensure interoperability.

� Web application: The Web applications accessed by the user. This includes
applications aggregated through the company portal as well as existing ones
that are not accessed through the common entry point.

5.1.3 Web services perspective

Considering the Web services perspective, the user accesses the company
portal that aggregates content from various sources. This includes internal
services as well as external services. Figure 5-3 depicts this perspective.

Figure 5-3 Web Services perspective for the Service Aggregation scenario

Note: More information about these services and the architecture of
Federated Identity Management solutions can be found in the IBM
Redbooks Enterprise Security Architecture Using IBM Tivoli Security
Solutions, SG24-6014 and Federated Identity Management and Web
Services Security with IBM Tivoli Security Solutions, SG24-6394.

Note: In order to simplify the understanding and to stay focused on the
core requirements of the scenario, the point of contact will be assumed to
be embedded in the company portal, unless indicated.

Company Portal

External Web
Service Provider

User

WebSphere Web
Service Provider

.Net Service
Provider

External Web
Service Provider

Outsourced Provider

Other Web
Service Provider

External Portal
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 121

The services accessed can run on different platforms. For example, a
WebSphere Web service is provided and accessed through the portal as well as
a Microsoft .NET one. A service already exposed can be reused in this scenario,
such as the one exposed in Chapter 3, “IBM SOA Foundation Service Creation
scenario” on page 61.

External Web services may also run on different platforms. They are accessed
through the company portal.

Finally, the company portal may access services or functions already aggregated
into the external provider portal. This can be achieved for example using the
standard Web Services for Remote Portlets (WSRP). This standard defines a
way to provide services for companies running portals.

Another approach for this perspective can be to consider the external users (for
example, employees from the outsourced provider) accessing the company
services exposed through their corporate portal. Such a case can be considered
as an application of the Service Creation scenario defined in Chapter 3, “IBM
SOA Foundation Service Creation scenario” on page 61.

5.2 Applying the IBM SOA Security Reference Model

Figure 5-4 on page 123 restates the IBM SOA Security Reference Model with the
three main components: IT Security Services, Security Policy Infrastructure, and
Business Security Services.

Note: The complete specification for the Web Services for Remote Portlets is
available at http://www.oasis-open.org.
122 Understanding SOA Security Design and Implementation

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

Figure 5-4 Applying the SOA Security Reference Model

This section provides guidance on how this reference model can be applied to
the scenario. It provides some examples of common use cases for the scenario,
but is not exhaustive. Different business requirements than the ones detailed
below can lead to different architectures.

Security Policy Infrastructure

Business Security Services

IT Security Services
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 123

5.2.1 IT Security Services

In this scenario, the IT Security Services provide a set of common services for
the different components involved in the architecture.

Figure 5-5 provides a list of the IT Security Services. Each of these security
services is then discussed in the scope of this scenario.

Figure 5-5 IT Security Services from the SOA Security Reference Model

Identity Services
These services provide the core infrastructure for managing user accounts
between the different systems aggregated in the scenario. Identity Services
include identity foundation, identity provisioning, and identity federation.

Identity foundation
Different user repositories are identified in this scenario. Figure 5-6 on page 125
provides an overview of these different repositories and the account identifiers
used for the same company employee, Joey Smith, both for internal accounts as
well as external accounts.

For each account, an identity is defined and identity information is attached to the
person. Synchronization between these accounts is a key requirement, as the
person needs to have the appropriate permissions defined in the identity
repositories to access the different services.

IT Security Services

Identity Services

Authentication
Services

Authorization and Privacy
Services

Confidentiality and
Integrity Services

Audit Services

Non-repudiation
Services
124 Understanding SOA Security Design and Implementation

Figure 5-6 Identity Foundation for the Aggregating User Interface scenario

Internal repositories are identified for the company portal (an LDAP directory or a
database can be used) and then for any service provided (directories, databases,
or any custom repository may be used). Finally, an enterprise repository can be
used as the company repository.

When considering the external provider, the company employee has an account
for accessing the portal and may have additional accounts defined in the
appropriate service repositories.

Synchronization has to be considered between all these repositories. For
example, if a user changes his phone number or updates any information he is
allowed to change, this change has to be propagated to the other repositories
using this information.

Identity provisioning
Using a provisioning solution in this scenario can help in managing the identities
both inside and beyond the company boundaries. This solution is responsible for
creating, managing, and deleting the accounts in the appropriate repositories.

Such a solution reduces administration complexity related to the identity
management and enforces security as it leverages the company security policies
(as defined in “Policy administration” on page 139). It can rely on a role-based
model, meaning the identities are provisioned based on roles defined for the
enterprise.

Company Portal

User

Internal Service
Provider

Internal Web
Application

joey1234

joesmith

jsmith

smith

External Portal

External Service
Provider

External Service
Provider

Outsourced Provider

joecompany jsmithcompany
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 125

For example, a banker has an account created for a mainframe application and
is added to a specific group of users within the mainframe identity repository (for
example RACF) so that he has access to the mainframe application with the
appropriate permissions.

Moreover, if the employee changes from one role to another or leaves the
company, the provisioning solution ensures that his accounts are updated or
removed from the systems automatically.

Figure 5-7 introduces the identity provisioning solution to the scenario.

Figure 5-7 Identity Provisioning for the Service Aggregation scenario

As shown in Figure 5-7, the identity provisioning solution can be extended to
cross the company boundaries. Federated identity provisioning allows the
provisioning of user accounts outside the company.

The accounts can be provisioned for federated single sign-on between the
company and the outsourced provider for the users. In this example of federation
relationship, the company acts as an identity provider and the outsourced

Identity
Provisioning

Company Portal

User

Internal Service
Provider

Internal Web
Application

joey1234

joesmith

jsmith

smith

External Portal

External Service
Provider

External Service
Provider

Outsourced Provider

joecompany jsmithcompany

Federated
Identity

Provisioning
126 Understanding SOA Security Design and Implementation

provider as a service provider. The use case is detailed in “Identity federation” on
page 127.

Identity federation
Several use cases can be defined to illustrate the need for identity federation
services in this scenario.

The first use case is the single sign-on between the point of contact and the
internal Web applications, such as the company portal. This use case applies if
these components are separated, as detailed in 5.1.2, “Web single sign-on
perspective” on page 119.

In this case, the point of contact and the company portal (or any other internal
Web application) have their own identity token format and there is a need to
securely transfer the identity from the SSO point of contact to the company
portal.

Another common use case is the access to an internal service provided within
the company. This case has been detailed in Chapter 3, “IBM SOA Foundation
Service Creation scenario” on page 61 where existing functions are exposed,
either directly or through service components.

Note: Such a use case has already been designed and detailed in some IBM
Redbooks, such as Develop and Deploy a Secure Portal Solution, SG24-6325
or Enterprise Business Portals II with IBM Tivoli Access Manager, SG24-6885.
The integration for this scenario can rely on the architecture and techniques
described in these references and is not further described in this section.
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 127

The trust service component has been introduced to validate, exchange, or
generate security tokens. The architecture for this case in this scenario is shown
in Figure 5-8.

Figure 5-8 Identity federation for the Service Aggregation scenario: Access to an internal
Web service

In this scenario, the user authenticates to the company portal using a user
identifier and password for example (jsmith). In order to access the exposed Web
service (a CICS application, for example), the portal needs to map the security
token into a valid representation for the receiving system (a RACF Passticket
with the user identifier joey1234, for example). This exchange is done using the
trust service.

Another use case is the access to an external service provided by a partner
through the company portal. Figure 5-9 on page 129 shows the use case.

Company Portal

User

Web Service
Provider

Trust Service

Authenticated
identity

User=jsmith

Outbound
(RACF

Passticket
security
token)

User=joey1234
128 Understanding SOA Security Design and Implementation

Figure 5-9 Identity Federation for the Service Aggregation scenario: Access to an
external Web Service

In this case, the trust service is invoked to map a security token for a valid
representation for the external service provider. In this scenario, this token can
then be a user name token or a SAML assertion generated for the user. The
external service provider is then able to validate the SAML assertion to map it to
the jsmithcompany user account.

Company Portal

External Service
Provider

User

Outsourced Provider

Trust Service
User=jsmith

Outbound
(SAML
security
token)

User=jsmithcompany

Authenticated
identity
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 129

Finally, another use case introduces the ability to provide federated single
sign-on to the third party portal. Figure 5-10 details this scenario.

Figure 5-10 Identity federation for Service Aggregation scenario: Access to an external
service with federated single sign-on

In this scenario, the user accesses his company portal. The trust service
generates a security token for the partner based on the user identity and the
information required for the partner. This token generation is generally provided
by a federated single sign-on service (as identified in 5.1.2, “Web single sign-on
perspective” on page 119).

External Portal

Company Portal

User

Outsourced Provider

Trust
ServiceUser=jsmith

Outbound
(SAML
Artifact)

User=abccompany

Trust Service

User=abccompany

Outbound
(security token

or local
identity)

User=joecompany

Authenticated
identity

SAML Artifact
130 Understanding SOA Security Design and Implementation

The partner receives this token and can invoke its trust service to validate the
token and map it to a local identity.

Authentication Services
In this scenario, Authentication Services have to deal with different domains,
different platforms, and different services. As a consequence, there are several
enforcement points where authentication services are provided.

The first authentication challenge takes place when the user accesses his
company portal. This authentication is generally achieved with a user identifier
and password, but strong authentication methods can be combined to provide
additional security. This user identifier and password is checked against the
repository used by the point of contact. Figure 5-11 depicts this use case.

Figure 5-11 Authentication Services for Service Aggregation scenario: company portal
authentication

This Authentication Service can be provided with a point of contact in front of the
company portal as defined in 5.1.2, “Web single sign-on perspective” on
page 119 and shown in the Figure 5-11.

The use of a dedicated component in front of the company portal is useful to
externalize the Authentication Service from the portal itself and to provide a
dedicated Policy Enforcement Point for the authentication policies.

The point of contact can provide these services to other Web applications as
well. It enforces security providing a first level of defense within the infrastructure.

jsmith

(security
token)

User=smith

Authentication
Service Trust Service

User=joe
Password1

User=jsmith
(Authenticated)

user

User=jsmith
Password1

Company PortalPoint Of
Contact

User=jsmith
(Authenticated)
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 131

It can enforce the password policies for the platform. For example, a user account
may be locked after three unsuccessful login attempts within a short period of
time.

Session management services are also provided. Finally, it can provide flexible
authentication as well as support for strong authentication methods and
re-authentication based on the company policies.

In case the point of contact is used in the infrastructure, a trust relationship is
established with the company portal. The SSO point of contact authenticates the
user and provides identity information to the portal. It is common that both
components use the same user repository.

Once the user is authenticated, the point of contact grants access to the portal.
The portal now needs to pass appropriate identity information to back-end
applications. In this example, the portal aggregates content from various
sources, internal Web applications, and internal Web services, as well as
external content.

The trust service is used to retrieve the relevant information for the targeted
service. This includes the security token information (the correct user identifier or
certificate) and the security token format, which may change depending on the
service accessed. In this example, a security token for the user identifier smith is
retrieved.

The portal then passes this information to the targeted service. Depending on the
channel used, this information can be provided in different manners, as a Web
services security token or using HTTP headers for a Web application.

When receiving the request, the service provider (either internal or external)
needs to validate the token. It can invoke the trust service that uses an
Authentication Service to check the credentials provided. This can be a user
name / password check against a registry, a SAML assertion, or a digital
certificate validation.

Figure 5-12 on page 133 provides an example of the authentication performed at
the service side.
132 Understanding SOA Security Design and Implementation

Figure 5-12 Service provider authentication

It also applies to the federated single sign-on use case. The local company token
is exchanged for a federated SSO token that is validated by the service provider
trust service. In some cases, the token provided by the company can be an
artifact. A back channel secured communication between the service provider
trust service and the company trust service is then used to retrieve the complete
security token from this artifact.

Note: More information about the federated single sign-on protocols and
specifications are provided in Appendix C, “Security standards and
technology” on page 371.

smith

Trust Service

Inbound
(SAML

assertion)

User=smith

Outbound
(username

security
token)

User=smith

Authentication
Service

Service Provider
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 133

Authorization and Privacy Services
Authorization is enforced at different levels in the scenario as shown in
Figure 5-13.

Figure 5-13 Authorization Services for Service Aggregation scenario

The following components provide the authorization enforcement in this
scenario:

� Point of contact: The point of contact provides a first level of defense for the
company portal and the other internal Web applications.

Coarse-grained authorization can be provided here to prevent access from an
untrusted network or to restrict access to the business hours, for example.
Finer-grained authorization rules can also be defined to allow groups of users
to access the portal or some of its features.

� Company portal: The company portal can provide finer-grained authorization
services for the users. This can include role-based permission to allow the
users to access personalized content.

For example, a user may be allowed general access to internal services
based on his profile although he is not authorized to perform certain
operations on these services. Declarative security should be used as much
as possible to separate the authorization policies from the application itself.

� Applications: The various service providers involved in the scenario, either
internal or external, may have their own mechanisms and authorization
repositories to render authorization decisions.

An existing system, such as CICS, may use RACF to store authorization
rules, while another service may use a proprietary repository or a database to
store these rules. In any case, the services can provide finer-grained
authorization controls based on the application policies.

Authorization
Service

Company
Portal

User

Internal Service
Provider

Internal Web
Application

joey1234

smith

Point Of
Contact
134 Understanding SOA Security Design and Implementation

� Data: Rules to authorize the access to the information can be considered
there. This can include access control lists on an LDAP server or the
permissions within a database.

Such authorization rules are generally provided by the component itself, and
they are difficult to externalize.

As part of the authorization decision, privacy may be considered in this scenario
to provide access to the resources in a way that is consistent with company
policies.

Confidentiality and Integrity Services
Data located in the different repositories needs to be protected. Access to the
machines hosting these repositories needs to be secured and the passwords
have to be encrypted.

Information in transit also requires additional security. Different messages are
involved in this scenario and they can be secured in different ways, depending
on their nature and the endpoints involved.

Figure 5-14 provides an overview of the messages requiring transport level
security (done with SSL) and the ones requiring additional message level
security (achieved using WS-Security) in this scenario.

Figure 5-14 Message protection services for Service Aggregation scenario

The use of message protection services is specific to each organization. It
depends on the network trust and the data classification inside an organization’s
network and so may be different from one organization to another.

Company
Portal

User

Internal Service
Provider

Internal Web
Application

Point Of
Contact

External Portal

External Service
Provider

External Service
Provider

Outsourced Provider

WS-Security

WS-Security

SSLSSL

SSL

SSL
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 135

In this scenario, the message protection services may apply as follows:

� Transport level security is generally achieved using SSL and can be used for
the following flows:

– Any HTTP based interactions, from the user to the point of contact or from
the user to the external portal.

– Internal communications, for example, the request coming from the point
of contact to the company portal or internal access to Web applications.

� Message level security can be used in addition to transport level security to
provide additional security for the following messages:

– Access to an internal service from the company portal. Depending on the
EIS requirements, the appropriate security token can be provided (a user
name token using a RACF Passticket for a CICS transaction for example)
and the message may contain additional encryption and signatures.

– Access to an external service from the company portal. A common use
case for this scenario is to use a SAML assertion to access the external
service provider. This assertion can be signed and encrypted.

Audit Services
Audit events are generated in this scenario to keep track of any relevant security
activity. This tracking allows the generation of reports to check the compliance of
the system regarding the security policies defined for the company.

When having a look at the services provided in this scenario, it is important to
provide Audit Services for the following activities:

� Identity Services: Identity provisioning events, such as provisioning of new
accounts, including the related workflow activities, are audited in this
scenario.

For example, the company needs to be able to know which accounts have
been created on a dedicated system and if the process of getting the
manager approval to create these accounts has been followed. Auditing the
appropriate provisioning events thus allows the generation of a report (in a
chosen format) containing all the accounts created with their approvers for a
period of time.

The same kind of reports can be useful for federated provisioning. Generating
reports dedicated on a per partner level can then be used for compliance
reporting on the business relationship between the company and its partners.

Identity federation events are also audited. The token exchanges are audited
and the original or local identity is tracked.
136 Understanding SOA Security Design and Implementation

� Authentication Services: Authentication generates audit events. These
events can be stored locally to the component performing the authentication
or aggregated to a common audit infrastructure.

� Authorization and Privacy Services: Authorization decisions can also
generate audit events. These events can be provided for several purposes
depending on the component performing the authorization and the type of
authorization.

Coarse-grained authorization events can be used to monitor the network
security (for example, IP address control at the point of contact level) while
finer-grained authorization performed at the application level is used for
auditing the application itself.

� Confidentiality and Integrity Services: Additional audit events can be
generated for message protection services, including signature validation
events that can be used in order to ensure integrity.

The audit infrastructure also relies on the other core Security Services
defined in the SOA Reference Model. For example, the audit data needs to
be protected as with any other repository within the system.

Non-repudiation Services
The Non-repudiation Services are in place so that there is evidence that a
transaction has taken place. There are two aspects, as previously described:

� Protect the recipient from the false denial by an originator that the data has
been sent.

� Protect the originator against the false denial of a recipient that the data has
been received.

From the point of view of the service provider in the Service Aggregation
scenario, the portal first receives the user request, and accesses other service
providers to fulfill those requests. In this case, the portal may invoke the
Non-repudiation Services, using evidence such as the user’s authentication to
the portal, and that they are accessing the portal over a secure channel, such as
HTTPS. The service providers accessed by the portal may use the
Non-repudiation Services to record the transaction coming from the portal. A
combination of multiple non-repudiation records may be required to associate a
user’s request with the events that occurred on a set of service providers.

From the point of view of the service consumer in the Service Aggregation
scenario, the important evidence to record is that the portal has responded to the
request. Unlike the Service Creation scenario, access to the service providers is
not direct, so evidence for the non-repudiation record is likely to be based upon
the secure channel between user and portal. A non-repudiation record can then
be created at the service consumer by calling on the audit service, to record the
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 137

signed data response with a time stamp to indicate when the response was
received.

Summary
Table 5-1 summarizes the requirements that can be applied to the Security
Services in this scenario.

Table 5-1 A checklist of security services from the IBM SOA Security Reference that can
be applied to the Service Aggregation scenario

Security Services Application for the Service
Aggregation scenario

Identity Services � Identity foundation
� Identity provisioning
� Identity federation

Authentication Services � User
� External user
� Company portal
� Internal service provider
� External service provider

Authorization and Privacy Services � Point of contact
� Company portal
� Service provider
� Service provider data

Confidentiality and Integrity Services � Data in repositories
� User to point of contact
� Point of contact to company portal
� Company portal to internal service
� Company portal to external service
� User to external company portal

Audit Services � Point of contact
� Portal
� Service provider

Non-Repudiation Services � Service consumer
� Portal
� Service provider
138 Understanding SOA Security Design and Implementation

5.2.2 Security Policy Infrastructure

Different components make up the Security Policy Infrastructure, as defined in
Figure 5-15.

Figure 5-15 Security Policy Infrastructure from the SOA Security Reference Model

As part of the management activities, several policies have to be defined. These
policies cover the interactions between a service consumer and a service
provider, as well as the provider internal policies and service metadata.

In this scenario, several enforcement points rely on decision points to render
security decisions. The different security policies need to be provided to these
decision points.

Policy administration
Different types of policies are identified in the SOA Security Reference Model
and in this scenario.

Message protection policies
Several service providers interact in this scenario and provide their policies to the
service consumer (the company portal, in this example). These policies include
the endpoint information to reach the services. For the external service provider,
intermediaries may be used.

Message protection can be used in this scenario to access the external services.
Internal services exposed to partners may also use this type of security. Digital
signature and encryption information (supported algorithms) need to be provided
as well as the security token to be used.

These policies may be provided directly to the service consumers or be made
available within a service registry.

In this scenario, a SAML token can be used to access the external service
provider from the portal.

Security Policy Infrastructure
Policy

Administration
Policy Decision and

Enforcement
Policy Distribution and

Transformation Monitoring and Reporting
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 139

Provider policies
The different services aggregated in this scenario run on different platforms and
use different environments so they have their own internal policies.

For example, an internal service providing access to a CICS transaction relies on
a RACF system to authenticate and to authorize the user requests. The access
management policies related to the service thus need to be defined in this
repository.

A WebSphere internal service relies on declarative and programmatic security to
make the same type of decisions, using a different LDAP directory as the
external user repository.

Finally, a Microsoft .NET service provider may rely on an external authorization
manager queried using XACML to render access control decisions.

No assumption is made on the external service provider internal policies. The
company portal acts as a service consumer and thus may not know them, relying
on the interaction policies for this provider to request it.

Policy distribution and transformation
The different policies defined in this scenario need to be transformed into a
generic format and provided to the different Policy Decision Points defined in the
architecture.

Figure 5-16 on page 141 shows the distribution of these policies from the central
security policy management infrastructure in this scenario, both for the company
and for its partners.
140 Understanding SOA Security Design and Implementation

Figure 5-16 Policy Transformation and Distribution for the Service Aggregation scenario

The policy transformation and distribution can be considered for two types of
components:

� Internal components: This includes the different service providers and the
company portal as a service consumer in this scenario.

� External components: The interaction policies have to be provided to the
different service consumers, including the external ones.

Policy decision and enforcement
The enforcement and decision points used within this scenario can be the
following:

� The point of contact: The first level of defense can be provided by a point of
contact as defined in “Web single sign-on perspective” on page 119. This
Policy Enforcement Point can rely on a separated Policy Decision Point to
provide some security services or use common services (such as an
Authentication Service, a trust infrastructure, or common auditing services).

Central
Security Policy
Management

External Portal

Company Portal

External Service
Provider

WebSphere Web
Service Provider

Internal Service
Provider

External Service
Provider

Outsourced Provider

Portal
Security
Policy

Po
lic

y
Tr

an
sl

at
or

Security
Policy

Po
lic

y
Tr

an
sl

at
or

RACF

Po
lic

y
Tr

an
sl

at
or

XACML

Central
Security Policy
Management

Portal
Security
Policy

Po
lic

y
Tr

an
sl

at
or

Security
Policy

Po
lic

y
Tr

an
sl

at
or

Security
Policy

Po
lic

y
Tr

an
sl

at
or

XACML

XACML

XACML

XACML

XACML

XACML
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 141

The capabilities provided include the following:

– User authentication: In this scenario, internal employees authenticate
using a user name / password. Using the Authentication Services, this
user name / password validity is checked against a registry.

– Password policy enforcement: The company may decide to lock the user
accounts for a certain amount of time if they submit an incorrect password.

– Session management: The enforcement point checks if the user has a valid
existing session and manages its life cycle based on the policies. For
example, one user may not be allowed to have two open sessions at the
same time and inactivity can be set to a fixed period.

– First level of authorization: This can include network address control to
allow only internal users to access a set of services through the company
portal.

– Auditing services: The different events related to the access in general or
the successful or unsuccessful authentication have to be tracked for
further auditing.

� The company portal: The portal can in turn provide an enforcement point for
the requests. The decision point used for the portal also relies on common
services provided within the infrastructure, such as the trust service. The
capabilities include the following:

– Identity mapping: The trust service is used to obtain the appropriate
security token from the local identity, depending on the service accessed.

– Authorization: Finer-grained authorization on the portal resources can be
achieved.

– Auditing services: The access to the different services have to be tracked.

– Add message level security: When using message level security for
access to an external service, the trust infrastructure provides the set of
services related to digital signature and encryption.

� The internal services: The following enforcement activities are performed at
the service layer:

– Incoming token validation using the trust service.

– Message level security validation using the trust infrastructure.

– Authorize the users to access the service. This is generally achieved using
the internal Policy Decision Point.

– Audit the events.

� The external company portal and the external services: These components
may in turn enforce security with their own decision points.
142 Understanding SOA Security Design and Implementation

Monitoring and reporting
In this scenario, the monitoring activities are used to ensure that the portal
response times are acceptable, either for internal and external users. Disk
space, CPU utilization, and network bandwidth utilization may also be controlled
to ensure a high quality of service.

Reports can be generated periodically, on a per service basis or to track some
specific activities. For example, a company may need to know how many pages a
user sees during his visit, or how many times a user comes during a month.

5.2.3 Business Security Services

This section focuses on the deployment environment required for this scenario.
Figure 5-17 shows the classification of the management solutions from the IBM
SOA Security Reference Model.

Figure 5-17 Business Security Services from the IBM SOA Security Reference Model

Each of these items is discussed in this section in the scope of this scenario.

Governance, risk, and compliance
As part of the governance activities in this scenario, the company needs to agree
with its external partners on the services and on the information exchanged. This
may include the type of protocol and assertion used to federate the user
accounts as well as the role played within the federation by each company.

Internal governance activities include the definition of the security policies to
access the services. A company may decide to expose a first set of core services
to a group of partners before expanding the use of these services to others.

As a result of the risk management process, examples of resultant compliance
objectives in this scenario may include:

� Revalidation of the users’ accounts from the managers and the system
administrators after a certain period of time.

Business Security Services
Identity and

Access
Data Protection and
Disclosure Control

Business Process and Policy Management

Governance, Risk
and Compliance

Secure Systems
and Networks

Trust
Management
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 143

For example, managers may be required to revalidate all their employees’
accounts every quarter. This helps in detecting accounts that are not required
anymore.

A system administrator (for example, from RACF) may be notified every week
of all the accounts that have been created on the system. The administrator
can then block the accounts if they do not comply with the company identifier
policies.

� Generating the appropriate reports to comply with the different regulations the
company has to deal with.

Trust management
In this scenario, users of the portal need to be made aware of the terms and
conditions of use, privacy policy, and so on. This may be done at the overall
organizational level for users of the portal, or on an individual user level. This is
one of the business aspects of trust management.

At the technology level, trust management may define:

� Standards for the strength of cryptographic ciphers to be used when
accessing the portal via HTTPS

� Standards for authentication mechanisms and associated metadata, such as
password strength

� Key management for X.509 server certificates for the portal and service
components

Identity and access
Identity and access management policies have to be defined as part of the
solution deployment.

Identity management
Identities have to be managed through their overall life cycle in this scenario.

Initial identity creation can be obtained from an authoritative source such as the
HR System in this scenario. Synchronization policies then allow to propagate any
update to this system to the different repositories identified in “Identity
foundation” on page 124.

The use of an enterprise provisioning solution provides a single entry point to
manage the identities and the life cycle of these identities within the company,
based on the security policies. In this scenario the use of such solution can help
in applying provisioning policies towards the different repositories. It can
significantly improve the user experience as this provisioning ensures a new
144 Understanding SOA Security Design and Implementation

employee has access to the company portal and the different services
aggregated in this scenario within a short period of time.

Validation processes can be defined so that a manager needs to validate an
account creation for any person managed.

Identifier policies are defined so the accounts are created based on the policies
of the company. For example, the Windows® account identifiers are formed with
the first letter of the first name and the complete family name.

Password policies can be defined to enforce security. Setting complexity and
expiration dates to force password changes are common examples of password
policies.

Another important aspect of security is revalidation of the accounts. A system
administrator may be required to validate all the accounts every month to check
their compliance to the security policies of the companies.

Self-service capabilities can be provided to the user, through a Web interface for
example. It allows the user to update personal information and to reset his
passwords (and possibly propagate a password change from a system to
another).

Access management
In this scenario, the appropriate access control policies have to be deployed to
the different decision points. An approach can be to externalize as much as
possible the authorization policies to the point of contact, another one can be to
let the company portal handle some granularity on these decisions.

For existing services, the access management policies are reused in this
scenario.

Data protection and disclosure control
Data protection management identifies the resources needing protection and the
controls required on those resources. For example:

� In this scenario, a PKI may be used to authenticate the users accessing the
portal from the external network. The cryptographic key stores have to be
stored on dedicated hardware for these purposes.

� The trust infrastructure also uses some cryptographic key stores to store its
own certificates as well as partner certificates. The keys from these
certificates are then used to digitally sign and encrypt the security tokens or
some content of the messages.

In that case, the file system hosting these different key stores has to be
protected from external access and needs to be encrypted.
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 145

� Finally, an operating system hardening solution can be used to protect the
different machines used in this scenario. For each machine, the different file
directories must have the appropriate permissions set.

In this scenario, the company can set a privacy policy to require the user consent
before federating his accounts with one partner or with a set of partners
identified.

As part of the disclosure control in this scenario, the user may have access
through its portal to a service aggregating its personal information to make the
appropriate changes. This can include personal changes (such as phone number
or an e-mail address) and also business information changes (for example, the
user may decide that its e-mail address must not be given to any external
partner).

Secure systems and networks
Figure 5-18 shows the logical architecture that can be used for this scenario.
Firewalls can be used to filter the access from one zone to another.

Figure 5-18 Typical logical network diagram for the SOA Foundation Service Aggregation
scenario

The service consumer can be any external application calling services exposed
through the company portal. Several service providers are defined in the

Directory
Service

Outside Zone
Demilitarized

Zone Production Zone Internal Network

Management Zone

Authorization
Service

Identity
Provisioning

Service

Enterprise
Information

System

Service
Providers

Service
Consumer

Company
Portal

Point of
contact

Trust Service

Enterprise
Information

System

Enterprise
Information

System
146 Understanding SOA Security Design and Implementation

production zone and each of them may access a different enterprise information
system.

A dedicated hardware SSL accelerator solution can also be used in front of the
demilitarized zone as part of the solution to encrypt / decrypt any flows going
through the network.

Business Process and Policy Management
In the Service Aggregation scenario, some aspects of Business Process and
Policy Management include:

� Managing compliance activities related to authorizing access to the portal
based on periodic revalidation of the business need.

� Establishing policies for access to portal resources based on the incoming
user’s organization and role.

� Managing the password expiration policies in the point-of-contact or portal to
reduce the risk of exposure due to compromised passwords.

� Classifying aggregated applications and data so that appropriate data
protection and disclosure control can be implemented.

5.3 Summary

This chapter proposed an application of the IBM SOA Security Reference Model
to the Service Aggregation scenario. It deliberately focused on the company
security requirements and gave an example of a partner integration. It can be
extended to the integration of other partners and can be used as a reference to
apply security within a context of a SOA scenario.
 Chapter 5. IBM SOA Foundation Service Aggregation scenario 147

148 Understanding SOA Security Design and Implementation

Part 3 Securing the
Service
Creation
scenario

Part 3 provides an end-to-end working example representing the direct exposure
of existing CICS applications as services and securing the exposed service
realization example for the IBM SOA Foundation Service Creation scenario.

Part 3
© Copyright IBM Corp. 2007. All rights reserved. 149

150 Understanding SOA Security Design and Implementation

Chapter 6. Business scenario

In this chapter, we describe the business context and the requirements for our
sample implementation, a scenario that involves two hypothetical corporations.

6

© Copyright IBM Corp. 2007. All rights reserved. 151

6.1 Business model

Descriptions of the initial context of the ITSOBank and ITSOTelco organizations
are provided here, along with insight on the key business drivers and IT
challenges the organizations are facing.

6.1.1 Overview

The overview explains the background of the example scenario and gives a short
description of the companies involved.

The corporations involved in the scenario are:

� lTSOTelco

A large telecommunications company servicing both individuals (retail
customers) and corporate customers. In an effort to provide a rich user
experience, ITSOTelco has partnered with its corporate customer and service
provider, ITSOBank, to leverage federation technologies. Through effective
application of these technologies, ITSOTelco is intending to deliver seamless
interactions for its customers using browsers and mobile devices.

� ITSOBank

A progressive retail banking corporation looking for new ways to serve its
customers. ITSOBank has partnered with ITSOTelco to provide a new service
to users who are ITSOBank employees. These employees will be able to
access their account information at ITSOBank from ITSOTelco’s customer
portal. They can check their account information at ITSOTelco without having
to separately log in to the ITSOBank application.

Figure 6-1 on page 153 shows the overall configuration. We further describe the
detailed configuration and technical aspects of securing the services between
the two companies in the following sections.
152 Understanding SOA Security Design and Implementation

Figure 6-1 Overall scenario logical architecture

Figure 6-2 outlines the required security mechanisms to allow authenticated
access to the Web service and to achieve single sign-on.

Figure 6-2 Security mechanisms

6.1.2 Initial context - ITSOTelco

ITSOTelco has developed a Portal Solution to offer services to corporate
customers. ITSOBank is one of their corporate customers. ITSOBank employees
are also customers of ITSOTelco.

Portal application

Portal application
Internet

ITSOBank middle-tier
(J2EE application with

Web services)

ITSOBank banking CICS
application

ITSOBank banking client
application

ITSOBanking (Internal)ITSOTelco (External)

Internet
ITSOBank middle-tier
(J2EE application with

Web services)

ITSOBank banking CICS
application

ITSOBank banking client
application

ITSOBanking (Internal)ITSOTelco (External)

Username / Password SAML Security Token Passticket
 Chapter 6. Business scenario 153

The first service that ITSOTelco wants to offer allows access to the current
balance of their bank accounts in the portal. At a later date, other services are
planned to be consumed by the portal to provide more functionality for the
ITSOBank employees.

6.1.3 Initial context - ITSOBank

Figure 6-3 depicts the initial IT context for ITSOBank. The IT infrastructure shown
in the figure outlines the way to access the application via a CICS client, for
example, a 3270 screen. The underlying security for the CICS application is
provided by RACF. Services and components that are not vital to understand the
scenario have been omitted for clarity.

Figure 6-3 ITSOBank initial I/T context

Note: The implementation and deployment of the ITSOTelco Portal solution is
considered in place. For further information how to deploy a secure portal
solution, please refer to the IBM Redbook Develop and Deploy a Secure
Portal Solution Using WebSphere Portal V5 and Tivoli Access Manager V5.1,
SG24-6325.

Our example scenario focuses on the ITSOBank implementation.

CICS

z/OS

RACF

application1

Database

CICS
Client

Outside Zone Demilitarized
Zone

Production
Zone Internal Network

Mngmt.
Zone

SAF
154 Understanding SOA Security Design and Implementation

6.1.4 Preliminary SOA engagement

ITSOBank has performed a series of workshops with the executive management
team and major stakeholders to gain a better understanding of the company’s
business objectives and IT challenges. ITSOBank views SOA as a strategic
initiative they would like to pursue for both integration and application
development at a larger enterprise level. ITSOBank desires a transition to SOA
that can leverage existing applications and infrastructure.

To facilitate the adoption of SOA, the company wishes to establish early proof
points in phases.

� Phase 1: Expose the query balance functionality via a service component.

In Phase 1, a specific function, query balance, of the COMMAREA COBOL
banking application hosted by the CICS Transaction Server will be exposed
indirectly by creating a middle-tier Web service to access CICS. This
middle-tier Web service wraps the EJB™ that uses the CICS ECI resource
adapter1 to connect to the CICS Transaction Gateway to access the CICS
Transaction Server. This is shown in Figure 6-4 on page 156.

1 The CICS ECI resource adapter used in this scenario is a JCA adapter for WebSphere Application
Server shipped with the CICS Transaction Gateway.
 Chapter 6. Business scenario 155

Figure 6-4 Using the CICS Transaction Gateway to access CICS from WebSphere
Application Server

� Phase 2: Secure the Web service by applying the SOA Security Reference
Architecture.

In the next sections, we discuss parts of the business logic of the initial context
and the current security infrastructure.

WAS

CICS
Transaction

Gateway
JCA

Outside Zone Demilitarized Zone Production Zone Internal Network

Management Zone

CICS

z/OS

RACF

application1

Database

SAF
156 Understanding SOA Security Design and Implementation

6.1.5 Business logic

The business logic of retrieving the current balance of an account is implemented
in a CICS application. As the service will be indirectly exposed, the middle-tier
will only be used to expose the services from the CICS application and will
contain no business logic.

In order to accomplish Phase 1 of the project, ITSOBank has developed a simple
online banking application that runs on WebSphere Application Server. The
solution is currently in its first release and is only available internally within the
bank for access by developers. As such, the application presently has limited
functionality and limited security. It provides a single Web service to query the
balance of an account by calling the corresponding function in the CICS
application.

Figure 6-5 shows the architecture after the deployment of the Web application.
As the application is currently only deployed in the intranet, system component
placement is less complex than it will be when the solution becomes available as
a secure application accessible through the Internet.

Figure 6-5 ITSOBank application

WAS

CICS
Transaction

Gateway

WAS Soap
Handler

ITSOBanker
2006 JCA

Outside Zone Demilitarized Zone Production Zone Internal Network

Management Zone

CICS

z/OS

RACF

application1

Database

SAF
 Chapter 6. Business scenario 157

6.1.6 Authentication and authorization

Under z/OS the concept of pleadable security is important; it means that any
security product or component can be plugged into the z/OS operating system.
This is possible through the System Authorization Facility (SAF) available under
z/OS. As shown in Figure 6-6, at ITSOBank, security in the CICS environment is
handled by RACF. As a consequence, every employee of ITSOBank has a RACF
account that allows them to work with the CICS application.

Figure 6-6 Using RACF with CICS

An explanation of the basic concepts of how security is handled in the CICS
environment using SAF and RACF can be found in “Identity Attribute Service
(IdAS)” on page 384.

6.2 Business requirements

This section describes the business requirements for the ITSOBank scenario.
These requirements have been derived from the principal users of the
application.

� BR1: Reuse existing application functionality.

The purpose of this initiative is not to implement new applications, but rather
to reuse existing applications in new ways.

CICS

z/OS

RACF

application1

Database

SAF
158 Understanding SOA Security Design and Implementation

� BR2: Make the services easy to consume.

The goal is to drive rapid adoption of the services being offered to business
partners, so the effort to consume these services should be low.

� BR3: Services should be secure.

Secure access to information, especially beyond the corporate boundary, is
critical.

� BR4: Auditing should meet regulatory requirements.

Linked with BR3, audit trails should be able to identify the individual user that
was performing a transaction at every point in the transaction.

� BR5: The system should be designed for growth.

If successful, use of the solution can grow rapidly. The design of the solution
should support this.

� BR6: The system should be available as close to 24x7 as is practical.

Reasonable availability is required during the proof-of-technology phase, but
availability of a production environment should be designed to be 99.9% or
better.

6.3 Technical requirements

This section describes the technical requirements that support the business
requirements in the previous section. They are broken up into functional and
non-functional requirements.

Note: Security requirements, usually described within the non-functional
requirements of an overall enterprise architecture, are given their own section
to highlight the security focus of this IBM Redbook.
 Chapter 6. Business scenario 159

6.3.1 Security requirements

This set of technical requirements support business requirements BR3 and BR4.
As is usually the case, the technical requirements draw out many more facets
than the often innocuous business requirements.

� SR1: Authentication to the Web service

Whether the route to the Web service originates within the ITSOBank
organization or from a IBM Business Partner location, users accessing the
service should be positively identified. No reliance should be placed on
system or application identities. For example, it should be known that it is user
Joe accessing the Web service, not the portal application at ITSOTelco.

� SR2: Authentication to CICS Transaction Gateway

Users must authenticate to RACF using their own user identity, and not a
shared service/application login. The user’s RACF password should only be
stored in RACF itself, and not in any intermediate identity stores.

� SR3: Identity mapping

The user’s external user ID and their RACF user ID may not always be the
same, but a one-to-one mapping between them has to be possible.

� SR4: Authorization

Access to the services is only granted to resource consumers that have been
granted authority to use them.

� SR5: Centralized policy management

All security policies should be stored in a centralized policy store for ease of
management and demonstration of compliance.

� SR6: Transport level security

The communication channel between service consumers outside the
ITSOBank enterprise over the (untrusted) Internet must be encrypted using
transport level security, such as SSL/TLS.

� SR7: Message integrity

In order to assure the integrity of communications, the content of Web service
messages (requests and responses) must be signed.

� SR8: Message confidentiality

In order to guarantee the confidentiality of communications, the content of
Web service messages (requests and responses) must be encrypted.

� SR9: DMZ termination of inbound requests from partners

For Web service requests originating outside of ITSOBank, a termination
point is required in the DMZ before requests are proxied to the network where
160 Understanding SOA Security Design and Implementation

the Web service is deployed. At a minimum, the DMZ termination point should
perform content validation, authentication, coarse-grained authorization, and
audit.

� SR10: Auditing

Each component of the solution has to be enabled for auditing. A mechanism
has to be available to submit, persistently store, and report on audit data
submitted as events.

� SR11: Use of standards

The solution should employ applicable open standards for security
management in SOA environments. This assures maximum interoperability
with minimal customization.

� SR12: Account recertification

The accounts of every employee have to be recertified every three months.

� SR13: Security token standards

The SOA Governance board has provided a guideline for use of signed SAML
1.1 assertions for identity assertions from external service consumers. They
have also provided a guideline to use SAML 2.0 security tokens for identity
assertions within the enterprise.

6.3.2 Other functional requirements

This section describes the other functional requirements that have been
identified.

� FR1: Expose CICS transactions as a Web service.

Service-oriented architecture supports the business and technical objectives
of this project.

� FR2: Create sample Web service client for internal use.

Enable internal applications to use the services. This provides an initial
delivery and test scenario before exposing the applications to business
partners.

� FR3: Expose selected Web services to an external partner.

Expose selected Web services to external partners to enable them to use the
services of the banking application. ITSOTelco is the first potential consumer
of this service.

� FR4: Create a template Web services client application to demonstrate to
external partners how to consume these services.

Create a template Web services client to be used by external partners to
consume the externally exposed services of the ITSOBank application.
 Chapter 6. Business scenario 161

6.3.3 Other non-functional requirements

This section describes the non-functional requirements that have been identified.
They cover a broad range of themes, such as:

� Performance

� Scalability

� Availability

� Maintainability

� Monitoring

These non-functional requirements define the design and development of the
operational environment of the system. They also define the way the system is
configured and managed.

� NFR1: The response time of this service should be no more than three
seconds.

Feedback from business partners indicate this is an acceptable latency for
integration with their customer portals.

� NFR2: 50% of the ITSOBank employees will use the ITSOTelco portal per
day.

This leads to a usage of the Web service of 10,000 times a day.

� NFR3: No server in the solution should be more than 60% utilized.

This allows for future growth.

� NFR4: The overall architecture should be able to achieve availability close to
99.9%.

It is recognized that the first phase is a proof-of-technology, and that
availability requirements are less critical at this time. Availability requirements
will likely change as services become more critical to the business.

� NFR5: The maintenance of the security component of the system must have
a reasonable and predictable cost.

This concludes the description of the business context for our customer scenario.

Important: This example primarily focuses on the security requirements so
the non-functional requirements are just briefly mentioned.
162 Understanding SOA Security Design and Implementation

Chapter 7. Solution design

In this chapter, we introduce the solution design for our scenario covering the
following aspects:

� Solution architecture introduction

� IT Security Services

� Security Policy Infrastructure

� Business Security Services

7

© Copyright IBM Corp. 2007. All rights reserved. 163

7.1 Solution architecture introduction

After analyzing the business and security requirements outlined in Chapter 6,
“Business scenario” on page 151, we now design the secure solution. We will
apply the IBM SOA Security Reference Model to the existing architecture that
indirectly exposes the existing CICS application. According to the IBM SOA
Security Reference Model, the solution architecture contains three main
components:

� IT Security Services

� Security Policy Infrastructure

� Business Security Services

Figure 7-1 shows the Indirect Exposure Architectural Pattern of the SOA Service
Creation scenario.

Figure 7-1 The Indirect Exposure Architectural Pattern

In the next section we discuss how the security services shown in Figure 7-2 on
page 165 can be applied to the ITSOBank scenario by discussing all

Note: Please refer to 3.1.2, “Indirect exposure architectural pattern” on
page 65 for a more detailed description on the Indirect Exposure Architectural
Pattern.

 Service
Components

Internal Service
Consumer

Enterprise
Information

System

External
Service

Consumer

Portal Service
Consumer
164 Understanding SOA Security Design and Implementation

components of the security services and how they match the requirements from
ITSOBank. By adding the different components step-by-step to the architecture
shown in the initial context description, the diagram will evolve to the secured
solution architecture.

Figure 7-2 shows a sample architecture to meet the requirements laid out in
Chapter 6, “Business scenario” on page 151 and how the SOA Security
Reference Model is applied to the architecture. In this example, a DataPower
appliance is serving the purpose of both an XML firewall and Web services
gateway. It acts as a proxy and provides the first layer of defense in depth
strategy for the whole solution. The WebSphere Application Server hosts the
service that leverages the information accessible from CICS.

Figure 7-2 Applying the SOA Security Reference Model

Note: A detailed discussion about applying the IBM SOA Security Reference
Model can be found in Chapter 3, “IBM SOA Foundation Service Creation
scenario” on page 61.

Security Policy Infrastructure

Business Security Services

IT Security Services

External
SOAP
Client

DataPower
Applicance

WebSphere
Application

Server
CICS

Fi
re

w
al

l

Fi
re

w
al

l

 Chapter 7. Solution design 165

7.2 IT Security Services

In reference to the checklist introduced in 3.2.1, “IT Security Services” on
page 67, the marked services will be considered in the ITSOBank scenario.
Table 7-1 is also used as a starting point for the analyses and design phase.

Table 7-1 A checklist of the IT Security Services from the IBM SOA Security Reference
Model that can be applied to the ITSOBank scenario

Security Services Application to the Service
Creation Scenario

Evaluated

Identity Services Identity foundation X

Identity provisioning X

Identity federation X

Authentication Services Service consumer (user or system) X

Service components X

Enterprise Information System X

Authorization and Privacy
Services

Service components (authorization) X

Enterprise Information System
(authorization)

X

Service components (privacy)

Enterprise Information System
(privacy)

Confidentiality and Integrity
Services

Service consumer to service
components

X

Service components to EIS X

EIS (data protection)

Audit Services Identity (foundation) X

Identity (provisioning) X

Identity (federation) X

Authentication (consumer) X

Authentication (service
components)

X

166 Understanding SOA Security Design and Implementation

7.2.1 Identity Services

The identity services described in “Identity Services” on page 68 are composed
of the following components:

� Identity foundation

� Identity provisioning

� Identity federation

Identity foundation
There are two user repositories that are used in the solution: a directory server
used by the middle-tier (in our example, WebSphere Application Server) and the
RACF database, which contains the identities of registered users of the CICS
banking application. The directory server needs to be deployed; the RACF
database is already implemented.

Authentication (EIS) X

Authorization (service components) X

Authorization (EIS)

Privacy (service components)

Privacy (EIS)

Message protection (service
consumer to service component)

X

Message protection (service
component to EIS)

X

Data protection (EIS)

Security Services Application to the Service
Creation Scenario

Evaluated
 Chapter 7. Solution design 167

Figure 7-3 shows that an LDAP user registry is added to the solution
architecture. It stores common identity information for the enterprise. In our
scenario, we deploy IBM Tivoli Directory Server (TDS in the picture). The RACF
identity database is also shown, as it is part of the z/OS System.

Figure 7-3 Solution architecture / User registries

Identity provisioning
In order to add, delete, or modify individual account information, an identity
provisioning solution needs to be implemented. IBM Tivoli Identity Manager
provides a secure, automated, and policy-based user life cycle management
solution. It guarantees that only the entitled identities with the correct attributes
are provisioned to the LDAP directory and the RACF database.

Identity Manager ensures that the RACF user ID of each employee in ITSOBank
is synchronized as an attribute of the user object in the LDAP registry. This
attribute is used later when mapping between the user ID used on the Web
service call and the RACF user ID has to be done.

Figure 7-4 on page 169 shows the architecture including Identity Manager (TIM
in the picture) with three adapters. One adapter for the IBM Tivoli Directory
Server, one adapter to RACF, and one adapter to IBM Tivoli Access Manager for
e-business (which is introduced in 7.2.2, “Authentication and authorization
services” on page 170) (TAM in the picture).

WAS

WAS Soap
Handler

ITSOBanker
2006 JCA

Outside Zone Demilitarized Zone Production Zone Internal Network

Management Zone

TDS

z/OS

CICS
Transaction

Gateway

CICS

RACF

application1

Database

SAF
168 Understanding SOA Security Design and Implementation

In order to perform authentication and authorization in WebSphere Application
Server, global security is activated and the Tivoli Directory Server is configured
as the user repository.

Figure 7-4 Solution architecture / Identity provisioning

Identity federation
For this solution design, identity federation deals with token mediation and
identity mapping, which is provided by a standard component called Secure
Token Service (STS). STS is an implementation of the WS-Trust specification
and has the capabilities to validate an inbound token and issue a new token
based on policies. This is discussed more in the following section, as it is
integrated in the authentication and authorization workflow.

Tip: For more information about how to configure security in WebSphere
Application Server, we recommend the IBM Redbook IBM WebSphere V6.0
Security Handbook, SG24-6316.

WAS

CICS
Transaction

Gateway

WAS Soap
Handler

ITSOBanker
2006 JCA

Outside Zone Demilitarized Zone Production Zone Internal Network

Management Zone

CICS

TDS

z/OS

RACF

application1

Database
TIM

Database

TAM

SAF
 Chapter 7. Solution design 169

7.2.2 Authentication and authorization services

Authentication and authorization for Web service requests in our scenario is
handled by calling the Security Token Service (STS) of IBM Tivoli Federated
Identity Manager. The STS manages the handling of security tokens that are
used to authenticate and authorize the Web service requests. Federated Identity
Manager itself is configured to use Access Manager for e-business to perform
authentication and authorization. To transmit the relevant information from the
point of contact to the STS, the request is structured according to the WS-Trust
specification that defines a standardized format for security token requests. To
determine how to process the request, the STS uses defined fields such as
Issuer and AppliesTo. To process the tokens, the STS uses modules, module
instances, and trust service chains.

For each type of token, the STS has a security token module that handles the
trust relationship. These modules are responsible for creating tokens, validating
tokens, and exchanging token types.

Trust modules perform specific functions based on the mode in which they
operate. In order to execute the complete and correct sequence of necessary
functions, the STS configures trust module instances into trust service chains.
Trust service chains are groups of module instances that are configured to be
used together.

The trust service chain is configured to use Access Manager for e-business as
an authentication and authorization service. Access Manager for e-business
authenticates the presented user ID and authorizes the request to invoke the
Web service.

As the security context for a user has to traverse different parts of our solution,
we use the STS to transform security tokens and to map the identities so they
match the identities in the respective registry.

Figure 7-5 on page 171 shows two different ways to invoke the ITSOBank Web
service:

� An external client invoking the ITSOBank Web service from outside the
ITSOBank intranet. The DataPower appliance, used as a first line of defense,
has to authenticate and authorize these requests.

� An internal client invoking the ITSOBank Web service from the intranet.
170 Understanding SOA Security Design and Implementation

Figure 7-5 Internal and external SOAP clients

This leads to the following system boundaries where security tokens are
exchanged and trust service chains have to be configured.

� External SOAP client to DataPower appliance

When calling the ITSOBank service, a SAML 1.1 security token is included in
the Web service request by the ITSOTelco portal solution. The ITSOTelco
portal generates this security token based on the authenticated identity for the
user session in the portal. The DataPower validates WS-Security based
message protection and then extracts this token and sends a the SAML1.1
token to the STS. If the token is valid and the user can be authenticated and
authorized, the STS issues a new SAML 2.0 security token and returns the
RequestSecurityTokenResponse to the DataPower appliance.

External
SOAP Client

Datapower
Appliance

WAS

CICS
Transaction

Gateway

WAS Soap
Handler

ITSOBanker
2006 JCA

Outside Zone Demilitarized Zone Production Zone Internal Network

Management Zone

CICS

z/OS

RACF

application1

Database

SAF

internal Soap
Client
 Chapter 7. Solution design 171

Figure 7-6 shows the system boundaries where security tokens are
exchanged and trust service chains have to be configured when an external
client invokes the ITSOBank Web service.

Figure 7-6 Token exchange / external client

� DataPower appliance to WebSphere Application Server

The SAML 2.0 token issued by the STS is sent to the WebSphere Application
Server, which authenticates and authorizes the request by using the WSSM
extension and the STS.

� Internal application client to WebSphere Application Server

The process of authenticating and authorizing an internal application client is
handled the same way as authenticating and authorizing incoming Web
service requests from the DataPower appliance. It only differs in the security
token profile. The security token profile used to authenticate an internal
application client is a user name token. Figure 7-7 on page 173 shows the
system boundaries where security tokens are exchanged and trust service
chains have to be configured when an internal client invokes the ITSOBank
Web service.

 Service
ComponentsSOAP client CICS

Tivoli Federated Identity
Manager

Security Token Service

UsernameToken Passticket

WebSphere Application
Server

DataPower
appliance

SAML token
172 Understanding SOA Security Design and Implementation

Figure 7-7 Token exchange / internal client

� WebSphere Application Server to CICS Transaction Gateway

To connect to the CICS Transaction Gateway, we need to first map the
authenticated user ID within WebSphere to the RACF user ID. As we
configure Identity Manager to store the RACF ID of each employee as an
attribute in the LDAP, the mapping mechanism uses this attribute to obtain the
RACF ID and generate a Passticket. An appropriate trust chain to implement
this functionality has to be in place.

Authenticating and authorizing external requests
The SOAP client supplies a SAML 1.1 security token to identify the requester.
The DataPower appliance is configured to call the Federated Identity Manager
STS to:

� Validate the token.

� Map the identity of the consumer to the matching user ID in the enterprise
registry. As ITSOTelco submits the employee’s internal user ID, a one-to-one
mapping is configured.

� Authorize the request.

� Generate a SAML 2.0 security token for further processing.

 Service
ComponentsSOAP client CICS

Tivoli Federated Identity
Manager

Security Token Service

UsernameToken Passticket

WebSphere Application
Server
 Chapter 7. Solution design 173

Figure 7-8 shows the sequence of the trust chain and which modules are
configured into the trust chain.

Figure 7-8 Trust chain - Authenticating and authorizing external requests

The components used to authenticate and authorize the incoming requests are
shown in Figure 7-9. The Federated Identity Manager (FIM in the picture) STS
uses Access Manager for e-business to authenticate the user and authorize the
request for the requested resources.

Figure 7-9 Components - Authenticating and authorizing external requests

Validate incoming
SAML 1.1 token

Map
incoming
user id

Authorize
request

Issue
SAML 2.0

token

SOAP
Client

Datapower
Appliance

WAS

WAS Soap
Handler

ITSOBanker
2006 JCA

Outside Zone Demilitarized Zone Production Zone

Management Zone

Validate

Map

Authz

New
Token

TDS TAM

FIM STS
174 Understanding SOA Security Design and Implementation

Authentication and authorization to WebSphere
Incoming requests from either the DataPower appliance or from internal
applications are authenticated and authorized by calling the STS. Incoming
requests from the DataPower appliance are carrying a SAML 2.0 token in the
message while requests from internal clients authenticate with a user name
token. So we have to consider both cases in the design of the trust service
chains.

To handle WS-Security token processing within WebSphere Application Server,
the Web Services Security Management (WSSM) extension shipped with
Federated Identity Manager is used. The WSSM components are:

� Token consumer

� Login modules

� WSSM token generator

� Callback handlers

The token consumer receives the tokens so they can be validated, exchanged, or
evaluated as a part of an authorization check. The WSSM token generator is
called as a part of the WS-Security authentication process of WebSphere
Application Server when a Web service request message is received.

The token consumer in our scenario is configured to call the STS. It creates a
SecurityTokenRequest message and sends it to the STS. The STS processes the
request and returns a SecurityTokenRequest response. The token consumer
then sends the token from the response message to the call back handler, which
makes the token available for the appropriate login module. The token then is
used to log in and the Web service is invoked.

The login modules are Java™ Authentication and Authorization (JAAS) login
modules. These login modules use the credentials within the security tokens to
perform a login. In our scenario, the SAML 2.0 login module is used.

The trust chain depicted in Figure 7-10 shows the appropriate sequence. This
trust chain requires a SAML token or a user name token as inbound security
token. After authenticating and authorizing the request, a SAML token is issued.

Figure 7-10 Trust chain - Authentication & Authorization to WebSphere

Validate incoming
token

Map
incoming
user id

Authorize
request

Issue
SAML
token
 Chapter 7. Solution design 175

This SAML 2.0 token is used to create an JAAS Principal by invoking the SAML
assertion login module after the trust chain is passed through.

Figure 7-11 shows all the components needed to authenticate and authorize the
incoming request. The different communication channels are also shown to
clarify which components are called by the individual components.

In the case that an internal application client invokes the Web service, the
Federated Identity Manager STS also uses Access Manager for e-business to
authenticate the incoming user and authorize the request for the requested
resource.

Figure 7-11 Components - Authentication and authorization to WebSphere

WAS

WSSM

JAAS
Login Module

WAS Soap
Handler

ITSOBanker
2006 JCA

Validate

Map

Authz

New
Token

TDS TAM

TFIM STS
176 Understanding SOA Security Design and Implementation

Authentication to CICS Transaction Gateway
To sign on to the CICS Transaction Gateway, the RACF user ID and password
are needed. To obtain the RACF ID, a special attribute in the LDAP belonging to
the signed in user is retrieved. The RACF password is not stored outside RACF
(see security requirement SR2 in 6.3.1, “Security requirements” on page 160). A
mechanism to deal with that requirement is to generate a Passticket, which acts
like a one-time password. By performing a JAAS login, which uses a WS-Trust
client to call the Federated Identity Manager trust server, we are able to map the
user ID to the RACF user ID and generate a Passticket.

The following trust chain in Figure 7-12 shows the configured modules and the
sequence.

Figure 7-12 Trust chain - Authenticating to CICS Transaction Gateway

Validate incoming
Username Token

Map incoming user id
to RACF user id

Issue
Passticket
 Chapter 7. Solution design 177

The diagram in Figure 7-13 shows the interaction between the components as far
as they are identified in this chapter.

Figure 7-13 Components - Authenticating to CICS Transaction Gateway

Authorizing access to J2EE resources
The ITSOBank banking application implements the J2EE role-based
authorization model to perform authorization checks within the application. To
request authorization decisions when a J2EE resource is accessed, WebSphere
Application Server can use any third-party authorization provider implementing
the JACC provider. The Java Authorization Contract for Containers (JACC)
defines a contract between Java 2 Platform, Enterprise Edition (J2EE) containers
and authorization providers. Using the JACC provider of Access Manager for
e-business, the authorization decisions within the application are delegated to
Access Manager for e-business. The communication between WebSphere
Application Server and Access Manager for e-business is shown in Figure 7-14.

WAS

CICS
Transaction

Gateway

WSSM

JAAS
Login Module

JAAS
Login Module

WAS Soap
Handler

ITSOBanker
2006 JCA

Production Zone Internal Network

Management Zone

WS-Trust
client

CICS

Validate

Map

Authz

New
Token

Validate

Map

New
Token

TDS TAM

FIM STS

z/OS

RACF

application1

DatabaseTIM

Database

SAF
178 Understanding SOA Security Design and Implementation

Using the JACC provider of Access Manager for e-business also offers the
functionality to centrally store and manage the policies because the JACC
provider communicates with the Access Manager Policy Server to persist the
J2EE security configuration data. It also allows you to integrate with the audit
subsystem used by Access Manager to audit the authorization decisions made
by Access Manager for e-business.

The identity services along with the authentication and authorization services,
are addressing the security requirements SR1, SR2, SR3, SR4, SR9, SR11, and
SR13.

Figure 7-14 Components - JACC Provider

SOAP
Client

Datapower
Appliance

WAS

CICS
Transaction

Gateway

WSSM

JAAS
Login Module

JAAS
Login Module

WAS Soap
Handler

ITSOBanker
2006 JCA

Outside Zone Demilitarized Zone Production Zone Internal Network

Management Zone

WS-Trust
client

CICS

Validate

Map

Authz

New
Token

Validate

Map

New
Token

TDS TAM

FIM STS

z/OS

RACF

application1

Database
TIM

SAF

Database

JACC
interface

TAM
JACC

provider
 Chapter 7. Solution design 179

7.2.3 Confidentiality and integrity services

In this section, we examine the requirements for data and message protection.

Data Protection Services
Data Protection Services are concerned with data at rest. In the ITSOBank
scenario, the Data Protection Services protect the cryptographic keys stored in
the keystores, security configuration files, and the data stored in the database
used by the CICS application and the audit data submitted by individual
components amongst others.

IBM Tivoli Access Manager for Operating Systems is used to protect the file
systems that contain cryptographic keys and configuration files.

Message Protection Services
Message Protection Services are used to protect the data in transit from being:

� Disclosed (message confidentiality)

� Modified without detection (message integrity)

� Sent from a masquerading party (message origin authentication)

� Replayed (uniqueness)

This is usually achieved by encrypting or digitally signing a combination of the
message body (or its parts) and header (or its parts).

We need to take a closer look at the two possible forms for protection.

Transport level security
The transport level security has to be applied to the following communication
channels:

� Communication between external service consumers and the secure entry
point in the DMZ of ITSOBank, the DataPower appliance.

To secure the communication channel for the service request, HTTPS (using
SSL) between the components is implemented. The DataPower appliance
terminates the HTTPS session of the service request, as the request will be
proxied to WebSphere Application Server residing in the production zone.

� Communication between the DataPower appliance and WebSphere
Application Server.

As the DataPower appliance terminates the HTTPS session of the incoming
request, another HTTPS session is used for the communication between the
DataPower appliance and WebSphere Application Server. This channel is
configured as a mutually authenticated SSL connection. This implies that the
180 Understanding SOA Security Design and Implementation

DataPower appliance authenticates the back-end server by validating the
server certificate from the WebSphere Application Server and verifying the
distinguished name (DN) contained in the certificate. To authenticate the
DataPower appliance, the WebSphere Application Server validates the
appliance’s certificate and verifies its distinguished name.

� Communication between WebSphere Application Server and the Federated
Identity Manager STS.

The WSSM extension and the WS-Trust client used to perform a mapping to
the RACF ID are using SOAP for message exchange with the Federated
Identity Manager STS. As there are no intermediates between these
components, SOAP over HTTPS is considered as the appropriate
mechanism to secure these channels. Again, a mutually authenticated
connection is implemented.

� Communication to the IBM Tivoli Directory Server.

The Tivoli Directory Server is the enterprise user registry containing user
identities, confidential information like passwords and the RACF ID. To secure
the communication between any component and the directory, the services
have to be configured to use secure LDAP (LDAPS) to encrypt information
from and to the LDAP server.

� Communication between the Access Manager components.

Access Manager uses SSL for the communication to the Access Manager
components by default. There is no additional configuration needed. Only
setting up the secure communication to the LDAP server needs additional
configuration.

� Communication between Identity Manager and the adapters for Access
Manager for e-business, RACF, and Tivoli Directory Server.

Identity Manager uses specific adapters for the target system to provision
user identities. The communication between the adapters and the Identity
Manager runtime is secured by using SSL.

� Communication between WebSphere Application Server and the CICS
Transaction Gateway.

The communication between WebSphere Application Server and the CICS
Transaction Gateway is secured by using SSL.

Message level protection
A SOAP message travels from the service consumer to the service provider,
potentially passing some intermediates along the message path. The
intermediate is capable of both receiving and forwarding SOAP messages. When
an intermediate receives a SOAP message, it processes the header entries of
 Chapter 7. Solution design 181

the message intended for it and must remove them afterwards before forwarding
the message. It may also insert a new header entry for the next intermediate.

Secure protocols, such as SSL/TLS, ensure the security of the message during
transmission, but as the messages can be received and forwarded by
intermediates, secure end-to-end communication cannot be guaranteed since
transport level security has no effect on stored data. Once the message is
received and decrypted, message level security is needed to protect the
message.

As mentioned above, the message path is not controlled by ITSOBank, and the
SOAP message has to be encrypted to guarantee that its content is only visible
to the service provider and service consumer. To determine from whom the
message was sent, to verify the service consumer was who the service
consumer claimed to be and to ensure that the data being transmitted was not
tampered with, the use of digital certificates and signatures is a requirement from
ITSOBank. Message confidentiality and message integrity are implement by
using WS-Security.

To verify the signatures and to encrypt / decrypt the messages, a security
management process needs to be in place to manage and exchange the
certificates. Figure 7-15 on page 183 illustrates which certificates are needed at
the service consumer and the service provider for signing and encrypting
messages to and from the service provider.

Note: For further details on message confidentiality and integrity, please refer
to the Web Services Security, SOAP Message Security (WS-Security 2004)
at:

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spe
c-os-SOAPMessageSecurity.pdf
182 Understanding SOA Security Design and Implementation

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

Figure 7-15 Message signature and encryption

As the content of the Web service request message needs to be validated by the
DataPower appliance (see security requirement SR9 in 6.3.1, “Security
requirements” on page 160), the DataPower appliance decrypts the message
and validates the signature. The message will then be signed and encrypted for
further processing.

The WebSphere Application Server is required to validate the content of
incoming request from the DataPower appliance and internal service consumers.
As messages from both the DataPower appliance and internal service
consumers are signed and encrypted with certificates from ITSOBank, the
configuration for both is the same.

The Data and Message Protection services address the following security
requirements:

� SR6: Transport level security

� SR7: Message integrity

� SR8: Message confidentiality

7.2.4 Audit Services

To meet the regulatory requirements, auditing should be able to identify the
individual user who was performing a transaction at every point in the transaction
(see “BR4: Auditing should meet regulatory requirements.” on page 159). The
security requirement SR10 requires that every component has to be enabled for
auditing and that an infrastructure has to be in place to submit, persistently store,
and report on audit data submitted as events.

Service consumer Service provider

Keystore Keystore

Service request
Body signed with private key of service
consumer cert
Body encrypted with public key of
service provider cert

Service response
Body signed with private key of service
provider cert
Body encrypted with public key of
service consumer cert

Consuming application certificate
Service provider’s CA root certificate

Service provider’s certificate
Service consumer’s CA root certificate
 Chapter 7. Solution design 183

The Tivoli Common Auditing and Reporting Service is the Tivoli approach to
unify IBM product auditing and reporting. Today, it is provided with Access
Manager for e-business V6.0, Access Manager for Operating Systems V6.0, and
Federated Identity Manager V6.1. The goal is to provide aggregation of events of
interest, normalization, and correlation of those events and reporting.

In the Common Auditing and Reporting Service, context auditing is defined as
the process of maintaining detailed, secure logs of critical activities in a
business environment. This includes such items as:

� Security-related critical activities (login failures, unauthorized access to
protected resources, modification of security policy, non-compliance with a
specified security policy, and health of security servers)

� Business-related critical activities (bank transactions)

� Critical activities related to content management (updates and deletions of
critical documents)

� Change management (changes made by administrators)

Common Auditing and Reporting Service collects the audit data from the
enforcement point as well as from other platforms and security applications. To
identify which components generate audit events, let us review the current
architecture, depicted in Figure 7-16 on page 185, with the relevant security
applications and enforcement points.
184 Understanding SOA Security Design and Implementation

Figure 7-16 Architecture overview

As every authentication and authorization decision has to generate an audit
event, the following components are identified to be enabled for auditing:

� DataPower appliance

� Federated Identity Manager STS

� Access Manager for e-business

� Identity Manager

� WebSphere Application Server

� ITSOBank banking application

� CICS application

The main components for authentication and authorization are Access Manager
for e-business and Federated Identity Manager. Both support the common audit
report structure for audit logging. As the DataPower appliance is configured to
call the Federated Identity Manager STS, the audit events are generated during

SOAP
Client

Datapower
Appliance

WAS

CICS
Transaction

Gateway

WSSM

JAAS
Login Module

JAAS
Login Module

WAS Soap
Handler

ITSOBanker
2006 JCA

Outside Zone Demilitarized Zone Production Zone Internal Network

Management Zone

WS-Trust
client

CICS

Validate

Map

Authz

New
Token

Validate

Map

New
Token

TDS TAM

FIM STS

z/OS

RACF

application1

Database
TIM

SAF

Database

Auditing
 Chapter 7. Solution design 185

the processing of the trust service chain. Authorization for J2EE resources is
done by using the JACC provider of Access Manager for e-business, so these
events are generated by Access Manager for e-business.

Identity Manager and the CICS application have their own audit services. Identity
Manager stores audit events in its relational database and the CICS application
keeps its existing audit infrastructure.

7.3 Security Policy Infrastructure

In this section, we cover the different components of the Security Policy
Infrastructure and how the ITSOBank scenario reflects them. The Security Policy
Infrastructure in the IBM SOA Security Reference Model defines these
components:

� Policy Administration

� Policy Decision and Enforcement

� Monitoring and Reporting

7.3.1 Policy Administration

The Policy Administration covers functionality like creating, modifying, import or
export of security policies using the available security management tools. The
IBM SOA Security Reference Model defines the following categories of security
policies. For each category, we map the related security policies derived from the
ITSOBank scenario business and security requirements listed in 6.2, “Business
requirements” on page 158 and 6.3, “Technical requirements” on page 159.

� Message protection policies

– The protocol used to reach the ITSOBank Web service to query the
account balance must be HTTPS.

– A SAML 1.1 security token is required to invoke the Web service from an
external service consumer.

– A user name token is required to invoke the Web service from an internal
service consumer.

– The Web service messages have to be signed and encrypted.

– The signature method algorithm is RSA-SHA1.

– The data encryption algorithm is triple DES. To produce the encrypted key,
the encryption method RSA is used.
186 Understanding SOA Security Design and Implementation

� Provider policies

– The user accessing the service has to be authenticated positively.

– The users accessing the service have to be authorized.

– Authenticating to RACF must only be possible with the owning user
identity.

– Each component of the solution has to be enabled for auditing and the
audit trails have to be able to identify the individual user who was
performing a transaction at every point in that transaction.

7.3.2 Policy Decision and Enforcement

The Policy Enforcement Points rely on decisions made by the Policy Decision
Points containing the security policies defined in the infrastructure. This section
outlines the Policy Decisions Points and Policy Enforcement Points described in
the ITSOBank architecture. We step through the individual components listing
the roles they play in the context of the individual policies.

� DataPower appliance

The DataPower appliances enforces message level protection like message
integrity and message confidentiality. As it analyzes incoming requests, it is
also the Policy Decision Point. For external service requests, it is the PDP and
PEP for WS-Security.

� Federated Identity Manager

Token validation, token exchange, as well as authorizing incoming requests,
is done by Federated Identity Manager. Depending on the incoming token
type, Federated Identity Manager plays different roles.

– User name token

Validating the user name token includes an authentication of the user
identity by Access Manager for e-business. Federated Identity Manager
enforces authentication of an incoming Web service request by relying on
the decision made by Access Manager for e-business.

– SAML assertions

During the validation process of SAML assertions, Access Manager for
e-business is not called. Therefore, it follows that Federated Identity
Manager is the decision and enforcement point for authenticating the Web
service request.

Federated Identity Manager enforces authorization before the service
consumer is granted to invoke the Web service. It relies on the authorization
decision made by Access Manager for e-business.
 Chapter 7. Solution design 187

� WebSphere Application Server

Like the DataPower appliance, the WebSphere Application Server is the
policy enforcement and policy decision point to enforce message level
security.

� Access Manager for e-business

Access Manager for e-business is the decision point for authorizing access to
requested resources like J2EE resources or Web services. It is also the policy
decision point for authenticating incoming Web service requests carrying a
user name token.

� Identity Manager

Identity Manager is the PDP and PEP for provisioning policies.

� RACF

RACF is the policy decision and policy enforcement point for the CICS
application and the CICS Transaction Gateway.

7.3.3 Monitoring and reporting

To check compliance with requirements like availability, performance, and
security, the audit events collected by the audit services have to be analyzed.
This includes creating reports of significant security events and of the status of
the systems and applications.

The security events that have to be included in the reports, among others, are:

� Failed authentication

� Failed authorization

� Which service was invoked by whom

� Account status, if there is any locked account or password expired

The IBM Tivoli Common Auditing and Reporting Service (CARS) ships with a set
of compiled reports, such as:

� Audit events

� Authorization events

� Certificate expiration

� Administration events

� Server availability

� Password changes

� Resource access
188 Understanding SOA Security Design and Implementation

� Security token service

It is also possible to develop custom reports for specialized requirements.

Using the monitoring reports, compliance with non-functional requirements like
performance, availability, and scalability can be verified. Monitoring also includes
periodic checks of the log files for particular error conditions.

7.4 Business Security Services

This section describes the solutions needed if ITSOBank is to provide a secure
deployment and hosting environment for the ITSOBank business solutions.

7.4.1 Governance, risk, and compliance

Early in the SOA initiative at ITSOBank, a SOA Governance Board was formed.
From the security perspective, the SOA Governance Board is responsible for
defining security standards for interaction with services, establishing roles and
responsibilities for policy administration, and how the services of ITSOBank are
made available to partners such as ITSOTelco.

The risk management exercise performed by delegates of the SOA Governance
Board resulted in the security requirements specified in Chapter 6, “Business
scenario” on page 151.

Audit and reporting produces data required for verifying and demonstrating
compliance. For example, reports from Tivoli Identity Manager can verify that
SR12 (Account recertification) is being met.

7.4.2 Trust Management

The business aspects of Trust Management, such as relationship and liability
management, are assumed to be established prior to the development of this
technical solution design. Without them, there is no basis to build the
cross-enterprise solution from ITSOTelco to ITSOBank.

With the technical aspects of Trust Management, Federated Identity Manager’s
key management service is used to manage cryptographic keys used in this
solution to provide confidentiality and integrity.
 Chapter 7. Solution design 189

7.4.3 Identity and access

ITSOBank is managing user life cycles by connecting the HR system to the
identity management system. The HR system is considered the authoritative
resource to feed identities to the repositories and to provide necessary identity
information like job roles in specific systems.

The policies listed in 7.3.1, “Policy Administration” on page 186 ensure that an
employee owns the right accounts, is a member of the necessary groups, and
has access to systems required for his job role. Providing self-care capabilities is
also a function of the identity as well as account recertification, which is a
requirement from ITSOBank.

7.4.4 Data protection and disclosure control

When using Access Manager for Operating Systems, policies can be created
that control who can access specific files on the operating systems, using a
defined set of processes. So directories with cryptographic key files, or
configuration files, can be accessed only by selected individuals or processes.
Also, the audit data of the operating system can be protected with a policy to
control who may access it.

7.4.5 Secure systems and networks

This section describes how ITSOBank secures the systems and networks. Is is
important to know that the concepts mentioned here are best practices and
standards and not specific to SOA security.

� Secure networks

The network is designed to address several levels of protection and control
and consists of several zones. Between each zone, a firewall is installed.

– Internet (uncontrolled zone)

The Internet is a global network—a network of networks—connecting
millions of computers. It cannot be controlled and should not have any
components in it.

Note: For further information, we recommend you read Appendix A, “Method
for Architecting Secure Solutions”, in Enterprise Security Architecture Using
IBM Tivoli Security Solutions, SG24-6014.
190 Understanding SOA Security Design and Implementation

– Internet DMZ (controlled zone)

The Internet DMZ is generally a controlled zone that contains components
with which clients may directly communicate. It provides a buffer between
the uncontrolled Internet and internal networks. Because this DMZ is
typically bounded by two firewalls, there is an opportunity to control traffic
at multiple levels:

• Incoming traffic from the Internet to hosts in the DMZ

• Outgoing traffic from hosts in the DMZ to the Internet

• Incoming traffic from internal networks to hosts in the DMZ

• Outgoing traffic from hosts in the DMZ to internal networks

The transport between a controlled and an uncontrolled zone is classified
as public. The transport between a controlled and another controlled or a
restricted zone is classified as managed.

– Production zone (restricted zone)

One or more network zones may be designated as restricted, that is, they
support functions to which access must be strictly controlled, and of
course, direct access from an uncontrolled network should not be
permitted. As with an Internet DMZ, a restricted network is typically
bounded by one or more firewalls and incoming/outgoing traffic may be
filtered as appropriate.

The transport between a restricted and a controlled zone is classified as
managed. The transport between a restricted and a secured zone is
classified as trusted.

– Intranet (controlled zone)

Like the Internet DMZ, the corporate intranet is generally a controlled zone
that contains components with which clients may directly communicate. It
provides a buffer to the internal networks.

– Management zone (secured zone)

One or more network zones may be designated as a secured zone.
Access is only available to a small group of authorized staff. Access into
one area does not necessarily give you access to another secured area.

The transport into a secured zone is classified as trusted.

� Secured systems

– ITSOBank uses IBM Tivoli Access Manager for Operating Systems for
system hardening like implementing account policies, removing any
network service from the system, and controlling access to production
servers. Access Manager for Operating Systems also uses the Common
Auditing and Reporting Service for auditing and reporting.
 Chapter 7. Solution design 191

� XML Security Gateway

The XML security gateway (DataPower appliance) secures incoming XML
and SOAP traffic. It is a first level of defense with these main functions:

– XML/SOAP firewall

– Data validation

– Field level XML security - encrypt and sign individual message fields

– SSL acceleration

7.5 Conclusion

This concludes the basic solution design for the planned SOA project at
ITSOBank. All requirements have been documented; the business requirements
are based on a risk management and mitigation approach, and the functional
and non-functional requirements are based on applying the IBM SOA Security
Reference Model.

In Chapter 8, “Technical implementation” on page 193, we walk through a
step-by-step process of implementing some of the technical details.
192 Understanding SOA Security Design and Implementation

Chapter 8. Technical implementation

This chapter contains configuration instructions for implementing the solution
architecture described in the preceding chapter. It is assumed that the reader is
familiar with the products being used. Installation steps and basic product
configuration are not described.

This chapter covers the following aspects of the technical implementation:

� Implementation scope

� Configure security for the ITSO Banking Application

� Deploying the ITSO Banking Application

� Configure Web Service Security Management

� Running the scenario

� Common Auditing and Reporting Service configuration

8

© Copyright IBM Corp. 2007. All rights reserved. 193

8.1 Implementation scope

This section describes the scope of the implementation of the ITSOBank
example scenario. The implementation reflects parts of Chapter 7, “Solution
design” on page 163. It shows how an internal client invokes the Web service.

Figure 8-1 shows the sequence of steps that occur when invoking the Web
service.

Figure 8-1 Scope of the implementation

The flow when a user accesses the Web service is summarized here.

1. The SOAP client invokes the Web service by sending a request to the
WebSphere Application Server. The message carries a user name token and
the message is signed and encrypted.

SOAP
Client

WebSphere Application Server (WAS)

CICS
Transaction

Gateway

WAS Soap
Handler

ITSOBanker
2006 JCA

CICS

Validate

Map

Authz

New
Token

Validate

Map

New
Token

TDSTAM

FIM STS

z/OS

RACF

application1

Database

SAF

1

Auditing

Auditing

3

4 5

6

9

10

11

7

12

8

1314

2

15
194 Understanding SOA Security Design and Implementation

2. The WebSphere Application Server SOAP handler processes the message
and invokes Federated Identity Manager WSSM for authentication and
authorization. This sends a SecurityTokenRequest to the Federated Identity
Manager trust service.

The Federated Identity Manager trust service now performs the following
tasks:

a. It validates the incoming user name token and authenticates the incoming
user ID by delegating the authentication to Access Manager.

b. It maps the incoming user ID to the internal user ID.

c. It authorizes the Web service call. This step is also delegated to Access
Manager.

d. It issues a SAML assertion based on the mapped identity.

3. The SAML token issued by Federated Identity Manager is returned as a
SecurityTokenResponse.

4. After the user is successfully authenticated, the application is called.

5. The application uses the CICS JCA to communication with the CICS
Transaction Gateway. The JCA adapter invokes a JAAS login module to
obtain user credentials to send to the CICS Transaction Gateway.

6. The JAAS login module calls the Federated Identity Manager trust service by
sending a SecurityTokenRequest.
The Federated Identity Manager trust service now performs the following
tasks:

a. It validates the incoming user name token.

b. It queries the LDAP to retrieve the RACF ID of the current user.

c. It issues a Passticket and generates a user name token to return.

7. The Federated Identity Manager trust service returns the user name token in
a SecurityTokenResponse.

8. The CICS Transaction Gateway is called.

9. The CICS Transaction Gateway forwards the request to the CICS application.

10.Authentication, authorization, and auditing with the real user ID is performed
by RACF.

11.The current balance is returned to CICS Transaction Gateway.

12.The current balance is returned to the JCA connector.

13.The current balance is returned to the EJB.
 Chapter 8. Technical implementation 195

14.The current balance is returned to the WebSphere Application Server SOAP
Handler, which creates the Web service response, including applying the
appropriate message protection.

15.The response is sent to the SOAP client.

8.2 Configure security for the ITSO Banking Application

The steps in this section might typically be executed by a security administrator,
who is responsible for adding declarative security constraints to applications
prior to their deployment. In this case, the Rational® Software Architect (RSA) is
used, though it is also possible to use Rational Application Developer (RAD).

The assumption is that the application development team has constructed the
application, and made available to the security administrator other EAR files that
represent the J2EE application and its application client. The security
administrator will complete the application construction by adding declarative
security constraints that meet the business and technical requirements. The
resulting versions of the applications are exported from the Rational Software
Architect environment and provided to operational personnel who will deploy the
applications in an application server environment.

8.2.1 Import the application into Rational Software Architect

Start the IBM Rational Software Architect environment, and view the current
workspace using the J2EE perspective, as shown in Figure 8-2 on page 197.

Note: More information about securing Web services can be found in the
redbook Web Services Handbook for WebSphere Application Server 6.1,
SG24-7257.
196 Understanding SOA Security Design and Implementation

Figure 8-2 IBM Rational Software Architect using the J2EE perspective

Right-click the Enterprise Applications container, and select Import... → EAR
file.

Note: Instructions on how to obtain the unsecured versions of the sample
application are available in Appendix D, “Additional material” on page 389.
 Chapter 8. Technical implementation 197

For the application client (ITSOBankerClient2006.ear), locate the EAR file on the
file system and accept the defaults in the import dialogs to complete the import
process. The client application contains an application module, named
ITSOBankerAppClient. The resulting project view in Rational Software Architect
is depicted in Figure 8-3.

Figure 8-3 J2EE perspective after successfully importing ITSO Banker Application client

Repeat the import steps for the application containing the Web service
(ITSOBanker2006.ear).

It is possible that a build error is seen with the AccountEJB project, where the
CICS resource adapter classes cannot be resolved. To correct this, right-click the
AccountEJB project and choose Properties. Select the Java Build Path
property set, and check the cicseciConnector in the Projects tab, as shown in
Figure 8-4 on page 199.
198 Understanding SOA Security Design and Implementation

Figure 8-4 Correcting the Java build path for the AccountEJB project

If automatic building of projects is enabled in the Rational Software Architect
environment, recompilation will begin immediately; otherwise, the Project →
Build All option can be used to start the recompilation.
 Chapter 8. Technical implementation 199

The build problems should disappear and the Project Explorer should show the
ITSOBanker2006 application with no errors, as shown in Figure 8-5.

Figure 8-5 ITSOBanker2006 application successfully imported

As a final verification step, expand the Web Services container in the Project
Explorer.

Web services implemented in active J2EE projects are displayed in the Services
folder, depicted in Figure 8-6 on page 201. The AccountJCA service should be
present, implemented by the AccountJCA service class. This is the Web service
implemented and exposed in the ITSOBanker2006 application.

Application modules that invoke Web services are contained in the Clients folder.
The ITSOBankerAppClient should be visible, indicating that this J2EE module
invokes the Web service named service/AccountJCAService.

Note that the same application may appear in both the Services and Clients
folders if it implements Web services and also invokes other Web services.
200 Understanding SOA Security Design and Implementation

Figure 8-6 Web services implemented and referenced in the Rational Software Architect
environment

8.2.2 Key stores

X.509 certificates are required for the cryptographic operations used to protect
the Web services messages. The application client and the application have their
own key stores. All key stores used in this example are in JKS format. The key
store password used in all cases is itso.

Client key store
The client key store is named client.jks and contains the following keys:

� Client’s key pair

� Application’s public key

Application key store
The application key store is named was.jks and contains the following keys:

� Application’s key pair

� Client’s public key
 Chapter 8. Technical implementation 201

8.2.3 Configure the application client

Open the deployment descriptor for the ITSOBankAppClient project by
double-clicking it in the Project Explorer view, as shown in Figure 8-7.

Figure 8-7 Application client deployment descriptor

Request generation
In this section, the following security constraints are added to the application
client:

� Sign Web service request with the client’s private key.

� Encrypt Web service request with the application’s public key.

� Solicit user name and password from the user.

� Include a user name token in the Web service request.

Navigate to the WS Extension tab of the deployment descriptor, shown in
Figure 8-8 on page 203. This is where the security requirements are described in
more abstract terms.

Note: Instructions on how to obtain sample key stores are available in
Appendix D, “Additional material” on page 389.
202 Understanding SOA Security Design and Implementation

Figure 8-8 WS Extension tab of an application client deployment descriptor

The first stage of the procedure is to configure signing of the outgoing message
and security token.

Select the AccountJCA entry in the Port Qname Bindings section. Then, expand
the Request Generator Configuration section, and expand the Security Token
section within, as depicted in Figure 8-9.

Figure 8-9 Request Generator → Security Token configuration section
 Chapter 8. Technical implementation 203

Click Add to add a new security token definition. In this case, shown in
Figure 8-10, we add a user name token by filling in the Name field and selecting
a Username token type. Note that the Local name field is filled in based on the
selected token type.

Figure 8-10 Creating a user name token security token requirement

Navigate to the WS Binding tab. This is where the configurations on the WS
Extension tab are bound to concrete objects, like key store, certificates, and
classes that implement token generation and consumption. The configuration in
this major section spans both extensions and bindings.

Expand the Security Request Generator Binding Configuration section, and
the Token Generator section within, as shown in Figure 8-11 on page 205. Click
Add.
204 Understanding SOA Security Design and Implementation

Figure 8-11 Security Request Generator Binding → Token Generator configuration
section

Fill in the values according to Table 8-1 into the dialog shown in Figure 8-12 on
page 206.

Table 8-1 Token Generator values

Note that the call back handler chosen will display a dialog box to the user to
solicit their user name and password. This call back handler is appropriate
because the client application is an AWT application.

Parameter Value

Token generator name Username

Token generator class com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

Security token Username

Use value type Checked

Value type Username Token

Call back handler com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallback
Handler
 Chapter 8. Technical implementation 205

Figure 8-12 User name token generator

Return to the WS Extension tab and expand the Integrity configuration section.

Add a new Integrity configuration to specify signing of the message and the
security token, as shown in Figure 8-13. For both entries, the message parts
dialect value is:

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was

Figure 8-13 Specifying an integrity configuration

Return to the WS-Binding tab to configure a token generator for the token that
will sign the message. Select Token Generator → Username → Add. This is an
X.509 token generator, and the private key to use to sign the message is
specified in this dialog box. Notice use of the key store introduced in 8.2.2, “Key
stores” on page 201.

Note that you can populate the Local name parameter automatically by first
choosing X.509 certificate token from the Value type drop-down menu, before
206 Understanding SOA Security Design and Implementation

overwriting its value with SigningToken_vtype. This dialog is depicted in
Figure 8-14.

Figure 8-14 Token generator for X.509 token to sign the message

Attention: Note that the key stores do not need to be available at this time. No
validation is performed by Rational Software Architect that the key store exists
or the key store password is valid.
 Chapter 8. Technical implementation 207

Next, create a Key Locator for the signing token according to the dialog in
Figure 8-15.

Figure 8-15 Key locator for the signing key
208 Understanding SOA Security Design and Implementation

The final step in identifying a key is the Key Information. This provides a level of
indirection between the keys/certificates and the consumers of those artifacts. It
also links the key locator with the token generator. Provide the information as
shown in Figure 8-16.

Figure 8-16 Key information for the signing key
 Chapter 8. Technical implementation 209

Expand the Signing Information configuration section, and add a new Signing
Information configuration. Notice that this entry references the key locator and
key information just created. This dialog is depicted in Figure 8-17.

Figure 8-17 Signing information for client’s Web service request

With the newly created signing information selected, add a new Part Reference
entry, as shown in Figure 8-18. Notice that it binds the BODY_AND_TOKEN
integrity configuration described on the WS Extensions tab to the signing
information being created on the WS Bindings tab.

Figure 8-18 Specifying which parts of the message will be signed
210 Understanding SOA Security Design and Implementation

The last step in the message signing configuration is to add a Transform entry.
With the newly created part reference selected, add a new Transform, as shown
in Figure 8-19.

Figure 8-19 Transform configuration for the part reference

With the configuration for signing of the requests completed, the next steps in the
procedure configure encryption of the requests.
 Chapter 8. Technical implementation 211

Return to the WS Extension tab, and expand the Confidentiality section. Select
Port Qname Bindings → Account JCA. Add a new confidentiality entry,
indicating that the content of the message body and the user name token should
both be encrypted, as shown in Figure 8-20. For both entries, the message parts
dialect value is:

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was

Figure 8-20 Adding confidentiality configuration for the requests

On the WS Bindings tab, add a key locator for the key used to encrypt the
message, depicted in Figure 8-21. This is the public key of the Web service in
this case.

Figure 8-21 Key locator for request encryption key
212 Understanding SOA Security Design and Implementation

Add key information for the encryption key (Figure 8-22). The key information
type is KEYID instead of STRREF (which was used for the signing key).

Figure 8-22 Key information for encryption key

Lastly, add Encryption Information to link the desire for request confidentiality
with the encryption key to be used, as shown in Figure 8-23.

Figure 8-23 Encryption information for requests

The configuration to inject the required security information into outgoing Web
services requests is now complete.

Save the deployment descriptor now.
 Chapter 8. Technical implementation 213

Response consumption
The application client also requires configuration to be able to process responses
expected from the Web service. This configuration includes:

� Decrypt Web service response using client’s private key.

� Validate signature of Web service response using application’s public key.

Begin by navigating to the WS Extension tab. Expand the Security Response
Consumer Binding Configuration section.

Expand the Required Integrity section. Add a constraint to require an integrity
checksum for the message body, as shown in Figure 8-24. For the message part
entry, the message parts dialect value should be:

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was

Figure 8-24 Require integrity for the body of responses

Expand the Required Confidentiality section. Add a confidentiality requirement
as well for the content of the body of the response, depicted in Figure 8-25 on
page 215. For the message part entry, the message parts dialect value should
be:

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was
214 Understanding SOA Security Design and Implementation

Figure 8-25 Add requirement for confidentiality of the bodycontent

Next, navigate to the WS Binding tab of the deployment descriptor. This is where
the requirements for integrity and confidentiality are bound to keys that can be
used for signature validation and decryption.

Expand the Security Response Consumer Binding Configuration section,
and the Trust Anchor section within.

Add a new trust anchor definition to specify the file name and password for the
key store used by the client, as shown in Figure 8-26.

Figure 8-26 Client trust anchor
 Chapter 8. Technical implementation 215

Expand the Token Consumer configuration section, and add a new token
consumer for the X.509 certificate used for validation of the signature on the
responses, as depicted in Figure 8-27. The JAAS login value chosen, namely
system.wssecurity.X509BST, is a standard token consumer in WebSphere
Application Server for processing X.509 binary security tokens.

Figure 8-27 Token consumer for server signature validation

Also, create a token consumer configuration for the key used to decrypt the
response (Figure 8-28 on page 217).

Note: The value for the Local name attribute can be automatically populated
by choosing the X509 certificate token value type. The full value for the Local
name is:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-p
rofile-1.0#X509
216 Understanding SOA Security Design and Implementation

Figure 8-28 Token consumer for message decryption
 Chapter 8. Technical implementation 217

Key locators are required to specify the location of keys used in the signature
validation and decryption processes. Create these key locators according to the
screen shots in Figure 8-29 and Figure 8-30.

Figure 8-29 Key locator for signature validation

Figure 8-30 Key locator for decryption
218 Understanding SOA Security Design and Implementation

Expand the Key Information configuration section. Add key information
configuration for signature validation, as in Figure 8-31, and decryption, as in
Figure 8-32 on page 220.

Figure 8-31 Key information for signature validation
 Chapter 8. Technical implementation 219

Figure 8-32 Key information for decryption

Expand the Signing Information section, and add an entry to specify the key
information and location that will be used to validate the signature on the Web
service responses (Figure 8-33 on page 221).
220 Understanding SOA Security Design and Implementation

Figure 8-33 Binding configuration for signing information

Expand the Part References section. Select the newly created signing
information, and click to add a new part reference, shown in Figure 8-34. This
links the signing information with the integrity constraint defined earlier on the WS
Extensions tab.

Figure 8-34 Part reference for signature validation
 Chapter 8. Technical implementation 221

Expand the Transforms configuration section. Select the newly created Part
reference and then add a new transform, as described in Figure 8-35. If a
transform is not specified, errors will occur when the Web service response is
received.

Figure 8-35 Transform for the body of the response after signature validation

Lastly, expand the Encryption Information configuration section. Add an entry,
as shown in Figure 8-36 on page 223. The purpose of this entry is to link the
confidentiality requirement defined on the WS Extension tab of the deployment
descriptor and the information about the cryptographic keys that will be used to
implement this requirement.
222 Understanding SOA Security Design and Implementation

Figure 8-36 Configuration for how the response will be decrypted

The steps to enable the application client to process the secure Web service
responses have been completed.

Save the deployment descriptor now. You may optionally close it.
 Chapter 8. Technical implementation 223

8.2.4 Configure the application

With Rational Software Architect in the J2EE perspective, expand the Web
Services folder in the Project Explorer view. Expand the Services folder and
double-click the AccountJCAService Web service to open its deployment
descriptor, as shown in Figure 8-37.

Figure 8-37 Web services editor

Request consumption
The application requires configuration to process the requests received from the
application client:

� Decrypt the Web service request using application’s private key.

� Validate the signature of the Web service request using the client’s public key.

� Invoke the Federated Identity Manager trust service to:

– Authenticate the user.

– Authorize the user’s access to the Web service.

– Map the identity in the user name token to a SAML 2.0 assertion.

� Establish a login context for the user in the WebSphere Application Server,
using JAAS.

Navigate to the Extensions tab in the Web services editor (Figure 8-38).

Figure 8-38 Extensions tab
224 Understanding SOA Security Design and Implementation

The first thing to specify is the integrity requirements on the incoming messages.
In this example, the client has signed the message body as well as the user
name token provided in the WS-Security header. A shortcut is provided for
specifying the body of the message, and is available from a drop-down menu in
the Web services editor. The user name token cannot be simply referenced like
that, so an XPath expression is needed to identify it. The XPath expression to be
used is as follows:

/*[namespace-uri()='http://schemas.xmlsoap.org/soap/envelope/' and
local-name()='Envelope']/*[namespace-uri()='http://schemas.xmlsoap.org/
soap/envelope/' and
local-name()='Header']/*[namespace-uri()='http://docs.oasis-open.org/ws
s/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='Security']/*[namespace-uri()='http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd' and
local-name()='UsernameToken']

Expand the Port Component Binding section, and select the AccountJCA
entry.

Expand the Request Consumer Service Configuration Details configuration
section. Expand the Required Integrity section and click Add to add an integrity
requirement similar to what is shown in Figure 8-39.

For the body message part entry, the Message parts dialect value is available
from a drop-down menu and should be:

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was

For the message part entry described with the XPath expression, the Message
parts dialect value is available from a pull-down menu and should be:

http://www.w3.org/TR/1999/REC-xpath-19991116

Figure 8-39 Specifying the integrity requirement
 Chapter 8. Technical implementation 225

Expand the Required Confidentiality configuration section, and add a
confidentiality entry to specify that the message body and the user name token
should be encrypted.

Figure 8-40 Specifying the confidentiality requirement

Navigate now to the Binding Configurations tab (Figure 8-41), which is where
the abstract security requirements from the Extensions tab are associated with
objects that can implement those requirements.

Figure 8-41 Binding Configurations tab

Expand the Request Consumer Binding Configuration Details section.

Expand the Trust Anchor configuration section and click Add to add a new trust
anchor. As shown in Figure 8-42, the trust anchor identifies the key store to be
used by the application.

Figure 8-42 Trust anchor for request consumption
226 Understanding SOA Security Design and Implementation

Expand the Token Consumer configuration section.

Two token consumers will be added to specify:

� The X.509 certificate that will be used to validate the signature on the
incoming message (Figure 8-43 and Figure 8-44).

� The private key that will be used to decrypt the contents of the request body
and the authentication token (Figure 8-45 on page 228 and Figure 8-46 on
page 228).

For each of these two token consumers, two screen captures are provided here
to capture the top and bottom of the same dialog box. It is important to apply the
configuration in each screen capture; otherwise, errors will occur when the
application tries to process Web service requests.

Once again, to pick the correct value for the Local name parameter, select a
Value type of X509 Certificate Token before overwriting with the value shown in
Figure 8-43.

Figure 8-43 Token consumer for signature validation (top section of dialog)

Figure 8-44 Token consumer for signature validation (bottom section of dialog
 Chapter 8. Technical implementation 227

Figure 8-45 Token consumer for decryption (top section of dialog)

Figure 8-46 Token consumer for decryption (bottom section of dialog)

A Key locator configuration corresponding to the token consumers above is
required. Expand the Key Locators configuration section and add entries for the
client_sig_locator (Figure 8-47) and the server_enc_keylocator (Figure 8-48 on
page 229).

Figure 8-47 Locator for signature validation key
228 Understanding SOA Security Design and Implementation

Figure 8-48 Locator for decryption key

A key information configuration links a token consumer with the key locator.
 Chapter 8. Technical implementation 229

Expand the Key Information configuration section. Add a new entry for the
client’s signature validation, as shown in Figure 8-49. Because a client’s public
key is used for validation, the key information type is a security token reference.

Notes:

� The Key information class parameter will be automatically populated once the
Key information type is selected.

� The Key locator and Token values should be available in the respective
drop-down menus. If they are not, a prior configuration step is likely to have
been missed.

Figure 8-49 Key information for the validation of client signatures

Add a new key information entry for the server’s decryption of the Web service
request, as shown in Figure 8-50 on page 231. Because the server’s private key
is used for decryption, the key information type is a key identifier.

Notes:

� The Key information class parameter will be automatically populated once the
Key information type is selected.

� The Key locator and Token values should be available in the respective
drop-down menus. If they are not, a prior configuration step is likely to have
been missed.
230 Understanding SOA Security Design and Implementation

Figure 8-50 Key information for decryption of Web service requests

Expand the Signing Information configuration section, and add a new entry
similar to the one in Figure 8-51. This configuration item and the next two bind
the cryptographic key to the integrity requirement defined earlier on the
Extensions tab.

Figure 8-51 Signing information for Web service requests
 Chapter 8. Technical implementation 231

With the newly created signing information selected, expand the Part
References configuration section, and add a new entry, specifying the Required
Integrity part (Figure 8-52). The required_integrity entry should be available in
the drop-down menu. If it is not, it is likely that the integrity requirement was not
correctly created on the Extensions tab.

Figure 8-52 Part reference for integrity checks

With the newly created part reference selected, expand the Transforms
configuration section and add a new entry (Figure 8-53). Only the name of the
transform needs to be specified.

Figure 8-53 Transform configuration for signature validation of Web service requests
232 Understanding SOA Security Design and Implementation

Expand the Encryption Information configuration section. Add a new entry, as
shown in Figure 8-54, to bind the server’s private key for decryption to the
requirement for message confidentiality. The entry for the Required
Confidentiality part field should be available in the drop-down menu. If it is not, it
was not correctly created on the Extensions tab described by Figure 8-40 on
page 226.

Figure 8-54 information about message decryption

The configuration performed for consuming requests thus far has been to
configure aspects related to message protection, to be able to detect
unauthorized modifications, and provide message privacy. The final configuration
steps for request processing are related to authentication and authorization of
users making the requests.

From the security requirements being implemented, Web service requests are
expected to contain a user name token to identify the user. Federated Identity
Manager will be used to:

� Authenticate the user based on the user name and password in the user
name token.

� Map the identity in the incoming token to an internal identity.
 Chapter 8. Technical implementation 233

� Authorize the user’s ability to use the Web service based on their internal
identity.

� Return the resulting identity (in the form of a SAML 2.0 assertion) to the
WebSphere Application Server.

Return to the Extensions tab, and expand the Required Security Token
configuration section. Add a new entry to specify that a user name token is
expected (Figure 8-55). After selecting the Token type, the value of the Local
name entry should be automatically populated. Also ensure that the Usage type
is set to Required.

Figure 8-55 Specifying the security token expected in Web service requests

Now expand the Caller Part configuration section. Add an entry named SAMLA
for the SAML 2.0 assertion that will be returned by Federated Identity Manager
(see Figure 8-56 on page 235).

Use the following value for the URI parameter:

urn:oasis:names:tc:SAML:2.0:assertion

Do not click OK until the properties at the bottom of this dialog are also
completed (see Figure 8-57 on page 235).
234 Understanding SOA Security Design and Implementation

Figure 8-56 Configuration of SAML assertion as returned token type (top of dialog)

Scroll down to the bottom of this same dialog, and add two properties (Table 8-2),
as shown in Figure 8-57.

Table 8-2 Caller part dialog property values

Figure 8-57 Configuration of SAML assertion as returned token type (bottom of dialog)

Property Value

com.ibm.wsspi.wssecurity.caller.tokenConsumerNS <leave blank>

com.ibm.wsspi.wssecurity.tokenConsumerLN http://docs.oasis-open.org/
wss/2004/01/oasis-200401-ws
s-username-token-profile-1.
0#UsernameToken
 Chapter 8. Technical implementation 235

Return to the Binding Configurations tab, and locate the Token Consumer
configuration section. Entries named client_sig_consumer and
server_enc_consumer should already be present. Add a third entry, as shown in
the next two screen shots (Figure 8-58 and Figure 8-59 on page 237).

The required token consumer class is from Federated Identity Manager, and is
not present in the standard list, and must be typed in manually. The correct value
is:

com.tivoli.am.fim.wssm.tokenconsumers.WSSMTokenConsumer

Figure 8-58 Token consumer configuration for the user name token (top of dialog)

Scroll down to the bottom of the dialog and add the following properties listed in
Table 8-3.

Table 8-3 Token consumer property values

The value for the trust.service.url parameter will vary according to the physical
deployment of the solution components. In production deployments, channel
level security, for example, the HTTPS protocol, may also be used.

The value of the default.issuer.uri property will need to match the value in the
trust chain configuration described in 8.4, “Configure Web Service Security
Management” on page 259.

Property Value

trust.service.call true

trust.service.url http://localhost:9081/TrustServer/SecurityTokenService

default.issuer.uri bankpartner
236 Understanding SOA Security Design and Implementation

Figure 8-59 Token consumer configuration for the user name token (bottom of dialog)

This completes the configuration of the Web service request consumption.

Save the deployment descriptor now.

Response generation
In this section, the following security constraints are added to the application
client:

� Sign Web service response with the application’s private key.

� Encrypt Web service response with the client’s public key.

Navigate to the Extensions tab of the deployment descriptor in the Web services
editor. Expand the Response Generator Service Configuration Details
configuration section.

Expand the Integrity configuration section. Add an entry to specify that the body
of the Web service response should be protected from unauthorized modification
(see Figure 8-60). Ensure that the value of the Order parameter is 1. The values
for the properties in the Message Parts section of the dialog are available from
the drop-down menus and do not have to be entered manually.

Figure 8-60 Adding message integrity
 Chapter 8. Technical implementation 237

Expand the Confidentiality configuration section. Add an entry to specify that
the content of the body of the Web service response should be encrypted (see
Figure 8-61). Ensure that the value of the Order parameter is 2, so that this
occurs after the message signing. The values for the properties in the Message
Parts section of the dialog are available from the drop-down menus and do not
have to be entered manually.

Figure 8-61 Adding message confidentiality

Navigate to the Binding Configurations tab. Expand the Response Generator
Binding Configuration Details section.
238 Understanding SOA Security Design and Implementation

Expand the Token Generator section, and add a new entry for the token used to
sign the response (see Figure 8-62). The value for the Local name parameter
can be automatically populated by choosing a Value type of X509 certificate
token.

Figure 8-62 Token generator for the signing token
 Chapter 8. Technical implementation 239

Expand the Key Locators configuration section. Add a new entry for the key
locator for the signing key, as shown in Figure 8-63.

Figure 8-63 Location of the signing key

Add a key locator for the certificate used to encrypt responses to the client, as
shown in Figure 8-64.

Figure 8-64 Location of the encryption key

Expand the Key Information configuration section.

Add a new entry for the signing key, as shown in Figure 8-65 on page 241. The
value for the Key information type parameter should be STRREF.
240 Understanding SOA Security Design and Implementation

Figure 8-65 Key information for the signing key

Add a key information entry for the encryption key (see Figure 8-66). The value
for the Key information type parameter should be KEYID.

Figure 8-66 Key information for the encryption key
 Chapter 8. Technical implementation 241

Expand the Signing Information configuration section. Add a new entry, as
shown in Figure 8-67.

Figure 8-67 Signing information for Web service responses

Expand the Part References configuration section. Add a part reference, which
binds to the BODY integrity requirement created earlier on the Extensions tab
(see Figure 8-68). If the BODY integrity part is not available in the drop-down list,
it should be added on the Extensions tab, as shown in Figure 8-54 on page 233
before continuing.

Figure 8-68 Part reference to specify which part of the response will be signed

Expand the Transforms configuration section. Add a transform, as shown in
Figure 8-69 on page 243, to complete the configuration for message integrity.
242 Understanding SOA Security Design and Implementation

Figure 8-69 Transform for the response body when signed

Expand the Encryption Information configuration section. Add a new entry to
complete the configuration for message confidentiality (see Figure 8-70).

Figure 8-70 Encryption information for Web service responses

Specifying security configuration for Web service responses is now complete.

Save the deployment descriptor for the Web service.
 Chapter 8. Technical implementation 243

8.2.5 Export the application with security configuration

The application and application client now have security configuration added.
The updated versions of these applications need to be exported from Rational
Software Architect so that they can be deployed in a WebSphere Application
Server environment.

To export an enterprise application from Rational Software Architect, the steps
are:

1. Locate the application in the J2EE perspective.

2. Right-click the application name and select Export... → EAR file.

3. Select a destination location for the exported file.

4. Optionally, export the source files of the application.

These steps need to be executed for the ITSOBanker2006 and
ITSOBankerClient2006 applications.

8.3 Deploying the ITSO Banking Application

The steps in this section might typically be executed by an application
administrator, who is responsible for deploying applications into WebSphere
Application Server.

This deployment section assumes the following:

� IBM Tivoli Directory Server V6.0 is installed and one instance is configured.

� WebSphere Application Server V6.0.2.7 is already installed and at least one
profile is created to host all the applications required.

� WebSphere Application Server Global Security is enabled and Tivoli Directory
Server V6.0 is used as user registry.

� IBM Tivoli Access Manager V6.0 FP 3 is installed and the following
components are configured:

– Policy Server

– Authorization Server

– Runtime for Java

– Web Portal Manager
244 Understanding SOA Security Design and Implementation

� IBM Tivoli Federated Identity Manager V6.1 is installed and the following
components are already configured:

– Integrated Solution Console

– Runtime and Management Services

– Web Service Security Management

� Common Auditing and Reporting Service V6.0.1 is installed and configured.

8.3.1 Installing the CICS ECI resource adapter

The ITSO Banking Application requires a connection to a CICS Transaction
Gateway using a Java Connector Architecture (JCA) resource adapter. Resource
adapters are installed into application servers by adding the contents of a
Resource Adapter Module (represented by a file with an extension of .rar) to the
application server. A RAR file contains a collection of JAR files and a deployment
descriptor (ra.xml) that describes the deployment properties of the resource
adapter.

This section assumes that the CICS Transaction Gateway is already installed on
a z/OS machine and that the CICS resource adapter (cicseci.rar) shipped with
the CICS Transaction Gateway for z/OS is available.
 Chapter 8. Technical implementation 245

Ensure that WebSphere Application Server is started, log in to the WebSphere
Application Server Administrative Console, and navigate to Resource →
Resource Adapter. Keeping the scope at the node level, click Install RAR, as
depicted in Figure 8-71.

Figure 8-71 Installing a Resource Adapter rar file
246 Understanding SOA Security Design and Implementation

Click Browse to navigate to the location of the cicseci.rar file and select it. Click
Next to continue, as shown in Figure 8-72.

Figure 8-72 Specifying the rar file location
 Chapter 8. Technical implementation 247

Leave all of the General Properties fields blank and click OK, as shown in
Figure 8-73.

Figure 8-73 Resource Adapter General Properties

When prompted, save the configuration to finalize the installation of the resource
adapter.

8.3.2 Configuring the CICS Connection Factory

After installing a resource adapter, it is necessary to define a Connection Factory
so that an enterprise application can use the resource adapter. In this section, a
CICS Connection® Factory is defined. It will be used by the EJB within the ITSO
Banking Application to connect to CICS.
248 Understanding SOA Security Design and Implementation

The following CICS Transaction Gateway configuration information is required:

� ConnectionURL

� ServerName

� PortNumber

� TPNName

If you have not closed the browser window, you should still be in the Resource →
Resource Adapter view. If not, navigate through the WebSphere Application
Server Administration Console to reach this point.

Click the newly created ECIResourceAdapter link in order to display the
configuration properties page (see Figure 8-74).

Figure 8-74 List of Resource Adapters available

On the configuration properties page, under the Additional Properties section,
click J2C connection factories, as shown in Figure 8-75.

Figure 8-75 Resource Adapter additional properties
 Chapter 8. Technical implementation 249

Click New and then fill in only the Name and JNDI name fields, as shown in
Figure 8-76 on page 251. Use the values provided in Table 8-4.

Table 8-4 CICS Connection Factory properties

Parameter Value

Name CICS Connection Factory

JNDI name eis/cicsConnectionFactory
250 Understanding SOA Security Design and Implementation

Figure 8-76 Connection Factory configuration properties
 Chapter 8. Technical implementation 251

Click Apply. Under Additional Properties, click the Custom Properties link.

At this point, specify the values for the CICS environment being used. In the
ITSOBank environment, those custom properties are shown in Figure 8-77.

Figure 8-77 Connection Factories custom properties

In this scenario, UserName and Password do not need to be specified, since that
information will be obtained from the Federated Identity Manager Trust Service
by a JAAS Login module.

Click the Save link when done to save these configuration changes to the master
configuration.
252 Understanding SOA Security Design and Implementation

8.3.3 Configure a JAAS login module

This section describe how to configure a JAAS login module to get a RACF
Passticket from the Federated Identity Manager trust service. This login module
will be used in conjunction with the resource adapter described in the previous
section.

The ITSO Banking Application contains a JAAS login module in a jar file named
soa-jaas-login.jar.

This jar file needs to be copied into the <WAS_HOME>/lib directory so that it can
be used by WebSphere Application Server.

The commands used in the ITSOBank environment are shown in Example 8-1.

Example 8-1 Installing the JAAS login module

cp /labstuff/soa-jaas-login.jar /opt/IBM/WebSphere/AppServer/lib/
chmod 644 /opt/IBM/WebSphere/AppServer/lib/soa-jaas-login.jar

Log in to the WebSphere Application Server Administrative Console, and
navigate to Security → Global Security. In the Authentication section, expand
JAAS Configuration. Click Application Login to display the current
configuration. Click New to add a new configuration.

Provide a meaningful name for the alias, such as FIMforJCA, and click Apply in
the dialog displayed in Figure 8-78.

Figure 8-78 JAAS Application Login configuration

Important: Restart WebSphere Application Server so that the new jar file is
available.
 Chapter 8. Technical implementation 253

Under Additional Properties, click JAAS login modules. Click New to create a
new JAAS login module (Figure 8-78 on page 253). Use the values in Table 8-5.

Table 8-5 JAAS login module configuration

The JAAS Login properties page should look like Figure 8-79. Click Apply to
save this new configuration, but remain on this page.

Figure 8-79 JAAS login module properties

Under Additional Properties, click the Custom properties link and create the
following properties, listed in Table 8-6, by clicking New for each one and
entering the name and value. Modify the value of the stsendpoint parameter
consistent with the Federated Identity Manager environment being used.

Table 8-6 Custom properties for the JAAS login module

Parameter Value

module class name com.tivoli.am.fim.jaas.login.loginmodules.FIMPrincipalM
apper

use login module proxy selected

authentication strategy REQUIRED

Name Value

appliesto ITSOBanker2006

cache cleanup interval 30

cache expiration interval 60

issuer fimprincipal
254 Understanding SOA Security Design and Implementation

After doing this, the custom properties page should resemble Figure 8-80.

Figure 8-80 JAAS Login module custom properties

Click Save to complete the configuration of the JAAS Login Module.

8.3.4 Deploy the ITSO Banking Web service

In this section, the ITSO Banking Web service application will be installed into
WebSphere Application Server.

The ITSO Banking Web service application uses WS-Security capabilities to
secure the service. This requires cryptographic keys stored in a keyfile as
specified in its key locator configuration entries (defined in the binding files that
were created by development during the application assembly process in
“Response consumption” on page 214).

A sample keystore, named was.jks, is supplied with this IBM Redbook. The
keystore must be copied into the WebSphere Application Server server profile.

stsendpoint http://local.demo.com:9080/TrustServer/SecurityTok
enService

Name Value
 Chapter 8. Technical implementation 255

Assuming we have unzipped the additional material into the /labstuff subdirectory
you have to use the following command to copy the file into the correct location:

cp /labstuff/was.jks /opt/IBM/WebSphere/AppServer/profiles/AppSrv01/

Log on to the WebSphere Application Server Administrative Console. Navigate to
Enterprise Applications → Install New Application to display the first screen
of the application install process.

Click Browse and locate the ITSOBanker2006.ear file. Click Next. For the next
four configuration pages, accept the default settings by clicking Next on each of
those pages.

On step 5, Map Resource References to Resources, you need to specify an
existing resource JNDI name, and a custom authentication method for the
AccountEJB module.

Mark the check box for the AccountEJB module (on the bottom left of the page),
as shown in Figure 8-81.

Figure 8-81 Selecting the EJB module resource mapping

On the existing resource JNDI name scroll bar, select
eis/cicsConnectionfactory and click Apply, as shown in Figure 8-82 on
page 257.

Note: Instructions on how to obtain the unsecured versions of the sample
application are available in Appendix D, “Additional material” on page 389.
256 Understanding SOA Security Design and Implementation

Figure 8-82 JNDI resource definition for the EJB module resource mapping

Select the Use custom login configuration radio button and select the
FIMforJCA entry from the drop-down menu, as shown in Figure 8-83. Click
Apply.

Figure 8-83 Custom application login definition for the EJB module resource mapping

With the authentication method now defined, a new button, Mapping Properties,
is available on the bottom right of the page, as shown in Figure 8-84.

Figure 8-84 Login configuration mapping properties
 Chapter 8. Technical implementation 257

Click the Mapping Properties button and define a custom property (Figure 8-85)
using the values in Table 8-7.

Table 8-7 Custom property definition for ITSOBank2006 login configuration

Figure 8-85 Custom properties for the application login configuration

Click OK twice. The bottom of the Map Resource Reference page should
resemble Figure 8-86.

Figure 8-86 Login and JNDI definition configuration results

Click Next to continue deploying the application. Accept the defaults for the
remaining configuration steps and then click Finish.

Save the changes to the master configuration to end the deployment of the
application.

Name Value

appliesto ITSOBanker2006
258 Understanding SOA Security Design and Implementation

8.4 Configure Web Service Security Management

Federated Identity Manager Web Service Security Management (WSSM)
provides components that reside on WebSphere Application Server and
integrate with WebSphere Application Server’s WS-Security token processing. In
particular, the Federated Identity Manager WSSM provides WebSphere
Application Server components for:

� Web service providers: For inbound security tokens via a WebSphere
Application Server Token Consumer

� Web service clients: For outbound security tokens via a WebSphere
Application Server Token Generator

Both the WSSM token consumer and token generator contain a trust client and
contact the Federated Identity Manager trust service to provide token
management facilities for WebSphere Application Server Web service
applications.

In this section, only the service provider token consumer feature is used. The
assumption is that a Federated Identity Manager domain is already configured
and available.

8.4.1 Configure the WSSM trust chains

The trust service processing for WSSM requires two trust chains that execute
together:

� A WSSM partner chain

� A WSSM application chain

The partner chain is created by using the Federated Identity Manager ISC
console while the application chain is created automatically after running the
wsdl2tfim utility using the WSDL file of the service.

Configuring the WSSM partner chain
Before configuring the partner trust chain, we need to define a user name
module instance, since this is the token type that the application expects to
receive from the clients.

Open a browser to the Federated Identity Manager ISC console and log in as the
iscadmin user. Navigate to Configure Trust Service → Module Instances.
 Chapter 8. Technical implementation 259

Click the Create button to display a list of the installed and available trust service
modules, as shown in Figure 8-87.

Figure 8-87 Token Type Modules in Federated Identity Manager trust service

Select UsernameTokenSTSModule, and click Next to proceed to the module
instance detail page.
260 Understanding SOA Security Design and Implementation

Provide a name for the instance, such as Username Module Instance, and,
optionally, a description, and click Finish (see Figure 8-88).

Figure 8-88 Module Instance definition

Ignore the message prompting for the restart of WebSphere Application Server
at this time.

After a user name token instance is configured, it is possible to configure a
WSSM partner chain.

Still using the Federated Identity Manager Console, navigate to Configure Web
Services Security → Partners.

Tip: The restart of WebSphere Application Server is not required until all new
configuration steps are complete and ready to be used by the Federated
Identity Manager runtime.
 Chapter 8. Technical implementation 261

Click Create to display this first window of the WSSM Partner Wizard, as
depicted in Figure 8-89.

Figure 8-89 Web Service Security Partner definition

WSSM partners create a module chain that is matched using a regular
expression string compared against the URL of the target Web service. The
RequestSecurityToken message from the WSSM token consumer module on
WebSphere Application Server will contain the full URL in the AppliesTo element;
however, it is possible to use the regular expression pattern matching capabilities
of the trust service to match on just the path portion of the endpoint URL, making
it independent of the host name or IP address used to access the service.

Enter a regular expression string that will match the path portion of the Web
service address (including the leading “.”), and the Company Name, as described
in Table 8-8.

Table 8-8 Partner contact information

Click Next. Select the token type received from your partner. Select the
Username Module Instance created in the previous section. Click Next.

Field name Value

Web Service URL .*/routerProject/services/AccountJCA

Company Name ITSO Bank
262 Understanding SOA Security Design and Implementation

The next step is to configure options specific to the user name token type.

The mechanism used for validation of the user name and password can be one
of these options:

� No password validation

� Use a JAAS login module

� Use Access Manager (using the Access Manager user registry)

It may be that the identity contained in the user name token submitted by the
partner does not exist in the Access Manager registry, but validation logic is still
required. In that case, a JAAS login module can be used.

In this scenario, Access Manager will be used to validate the user name token,
so leave the Skip password validation and Use JAAS for authentication
check boxes deselected.

Set the Amount of time the token is valid after being issued parameter to -1
indicating that the token is valid indefinitely, as shown in Figure 8-90. This will
remove time synchronization as an issue in this prototype environment, but
consideration should be given in a production environment to setting this to a low,
non-negative value, such as 5 minutes to reduce the risk of replay attacks.

Figure 8-90 Security Token Identity Mapping

Click Next to proceed to the page where an identity mapping rule can be defined.
Both the partner chain and Web service application chain can contain identity
mapping logic to process the identity of the token submitted by the Web service
client. Mapping rules are expressed using XML stylesheets (XSLT).
 Chapter 8. Technical implementation 263

Figure 8-91 on page 265 shows the mapping rule that will be used. Two fixed
value attributes named company_name and is_racf_user are added to the user
identity. Remember, these attributes are added for demonstration purposes only,
and are not used in authorization decisions in this implementation.

Note: In this case, an identity mapping rule is not required, since the user will
enter their ITSO bank user ID and password.

To provide a better understanding of how identity mapping works in WSSM, a
one-to-one mapping rule is demonstrated. Some additional identity attributes
are also added.
264 Understanding SOA Security Design and Implementation

Figure 8-91 XSLT mapping rule

Click Next and review the summary of the partner chain configuration. Click
Finish to save this configuration.

A Restart WebSphere message will again be displayed by the Federated Identity
Manager Console. Use the Dismiss button again and continue with the next
section.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">

<xsl:strip-space elements="*" />
<xsl:output method="xml" version="1.0" encoding="utf-8"

indent="yes" />
<xsl:template match="@* | node()">

<xsl:copy>
<xsl:apply-templates select="@* | node()" />

</xsl:copy>
</xsl:template>

<xsl:template match="//stsuuser:AttributeList">
</xsl:template>
<xsl:template match="//stsuuser:Principal">

<stsuuser:Principal>
<stsuuser:Attribute name="name">

<stsuuser:Value><xsl:value-of

select="//stsuuser:Principal/stsuuser:Attribute[@name='name']/stsuus
er:Value" /></stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="issuer"

type="urn:oasis:names:tc:SAML:2.0:assertion">
<stsuuser:Value>http://local.demo.com</stsuuser:Value>

</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>

<stsuuser:Attribute name="company_name" type="wssm_example">
<stsuuser:Value>ITSOBank</stsuuser:Value>

</stsuuser:Attribute>
<stsuuser:Attribute name="is_racf_user" type="wssm_example">

<stsuuser:Value>TRUE</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</xsl:template>

</xsl:stylesheet>
 Chapter 8. Technical implementation 265

Create a WSSM Web service application trust chain
The configuration of the WSSM Web service application trust chain is created
using the wsdl2tfim.sh utility. The utility uses this general syntax:

$(WSSM_INSTALL)/wsdl2tfim.sh –t <token-type-module-name> <path-to-wsdl>

The <token-type-module-name> parameter specifies the token type desired to
be returned by the trust service.

The <path-to-wsdl> parameter specifies a file system path to the WSDL file for
the Web service.

The wsdl2tfim.sh utility uses a properties file, wsdl2tfim.properties, for
configuration parameters. The values in wsdl2tfim.properties must be updated
with values corresponding to the location and configuration of the Federated
Identity Manager management application.

In the ITSOBank environment, there is no WebSphere Application Server cluster,
WebSphere Application Server global security is enabled, and no WebSphere
Application Server SSL client authentication is used.

The wsdl2tfim.properties is located in the wssm directory of your Federated
Identity Manager installation. In the ITSOBank environment, its content is shown
in Example 8-2.

Example 8-2 wsdl2tfim.properties files in ITSO environment

The name of the FIM domain whose STS configuration is to be updated

fimDomainName=ITSO-Domain

The name of the server where the FIM management service is running

serverName=local.demo.com

Note: wsdl2tfim.sh must be executed on a machine that has the WebSphere
Application Server and Federated Identity Manager WSSM libraries installed,
but it does not have to be the machine that is hosting the Web service
application.

Note: If Federated Identity Manager WSSM and WebSphere Application
Server are not installed in their default locations, edit wsdl2tfim.sh and update
the values of the JAVA_HOME, WAS_HOME, and FIM_HOME environment
variables accordingly.
266 Understanding SOA Security Design and Implementation

The SOAP connector port of the server where the FIM management
service is running (usually 8880)

serverPort=8880

The name of the WAS application server (eg. server1) - only required
in a non-clustered configuration

appServerName=server1

.....

A WAS user ID that's in the WAS administrator group

adminName=wasadmin

The password for the WAS user ID

adminPassword=passw0rd

The WAS trust keystore file name - refer to the SSL repertoire
configuration in WAS

trustedKeystorePath=/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/etc/
DummyServerTrustFile.jks

The WAS trust keystore password - refer to the SSL repertoire
configuration in WAS.
A password is only required if the trust keystore also contains
private keys.

trustedKeystorePassword=WebAS

Before running the wsdl2tfim.sh script, it is necessary to have a copy of the
application WSDL file. It is shipped as part of the Web service application. From
the Federated Identity Manager WSSM directory, run the wsdl2tfim.sh script, as
shown in Example 8-3 on page 268.

Note: If secure communication (over HTTPS) to the Federated Identity
Manager trust service is used, you need to update the wssm.properties file for
information related to secure communication.
 Chapter 8. Technical implementation 267

Example 8-3 Invoking wsdl2tfim.sh

cd /opt/IBM/FIM/wssm
./wsdl2tfim.sh -t SAML20Module
/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/installedApps/localNode0
1Cell/ITSOBanker2006.ear/routerProject.war/wsdl/ejbs/AccountJCA.wsdl

This command specifies that a SAML token containing a SAML 2.0 assertion
should be used to return the mapped identity to the ITSO Banking application.

The wsdl2tfim.sh utility contacts the Federated Identity Manager Management
application to create an application trust chain for the one <port> contained in the
input WSDL.

Figure 8-92 WSSM application trust chain

Note: In order to verify that a new application trust chain has been created,
log in to the Federated Identity Manager console and browse to Configure
Trust Service → Trust Service Chains and it should show the new chain, as
shown in Figure 8-92 on page 268.
268 Understanding SOA Security Design and Implementation

Configure WSSM Web service application trust chain
The application trust chain is created by the wsdl2tfim.sh utility, but further
configuration using the trust chain editor in the Federated Identity Manager
console is required.

The logic that performs the transformation, along with any identity and attribute
manipulation, is contained within a mapping module. Federated Identity Manager
6.1 allows either a standard mapping module that processes XSLT
transformation rules, or a custom mapping module (that must be written using
the trust service APIs).

In the ITSOBank environment, an XSLT transformation mapping module in the
partner chain is used. No further mapping rule is needed in the application trust
chain for the ITSOBank environment.

After selecting the application trust chain, as shown in Figure 8-92 on page 268,
click the Properties button.
 Chapter 8. Technical implementation 269

Set the Issuer Address to urn:itfim:wssm:tokenconsumer (Figure 8-93).

Figure 8-93 Trust service chain properties

Specifying urn:itfim:wssm:tokenconsumer for the Issuer ensures that this trust
chain can be used for token exchange messages from the WSSM token
consumer.

Click OK to save the changes. Dismiss the message prompting for WebSphere
Application Server to be restarted.

Again, select the application chain, but this time click Modify Chain. A warning
message is displayed, similar to the one in Figure 8-94.

Figure 8-94 Application generated chain modification warning
270 Understanding SOA Security Design and Implementation

Click Continue With Modification.

In the ITSOBank environment, Access Manager is to be used for Web service
authorization. To enable this feature, it is necessary to modify the authorization
module that is the second module instance in the application chain.

Select it as shown in Figure 8-95. Click the Properties button.

Figure 8-95 Application trust chain
 Chapter 8. Technical implementation 271

Set the value of the Web service protected object name parameter to
/itfim-wssm/wssm-default/ItsoBankWSDL/AccountJCAService, as shown in
Figure 8-96.

Figure 8-96 Access Manager object space definition into the Web Service Authorization
module

This path represents the absolute path of the base portion of the Access
Manager object space used for the Access Manager authorization check. This
must match what the wsdl2tam utility (to be used later) will produce.

Click OK to return to the module instance list. Select the SAML20STSModule
instance. Click Properties.

This module is present in the chain because we used option -t SAML20Module
with the wsdl2tfim.sh utility. It is used to return the identity to the WSSM token
consumer. The parameters on the screen in Figure 8-97 on page 273 control
how the SAML 2.0 token will be created.
272 Understanding SOA Security Design and Implementation

Figure 8-97 SAML module instance configuration for the application chain

Provide an organization name (for example, ITSOBank) and include an “*” for the
attributes mapping in the SAML assertion, indicating that all attributes should be
included in the outgoing SAML token.

The WSSM JAAS login module that will process the returned SAML assertion
assumes that the SAML token is from a trusted source (the Federated Identity
Manager trust service, to be precise) and does not validate the signature or
 Chapter 8. Technical implementation 273

validity period of the SAML assertion. So, signing the SAML assertion in this
scenario is not needed. Deselect the Enable the Signing of Assertions check
box.

Click the OK button.

This time, select to restart WebSphere Application Server.

Web service authorization using Access Manager
Federated Identity Manager V6.1 WSSM provides an additional, but optional,
capability to the Web services security support in WebSphere Application Server
that is the authorization of Web service access using a Tivoli Access Manager
policy.

The default structure of the Access Manager protected object space provides a
logical representation of the Web service without reference to how the Web
service is invoked or where the Web service is physically installed, as shown in
Figure 8-98.

Figure 8-98 WSSM default Access Manager object model
274 Understanding SOA Security Design and Implementation

The object space structure includes:

� The root object (itfim-wssm). This name is used to create a separate Access
Manager object space that separates Web services from other object spaces.

� A domain object may be used to partition the object space. For example,
there may be separate domains for different lines of business. The default
domain name used by wsdsl2tam is wssm-default.

� A container object (labeled as WSDLName in Figure 8-98 on page 274)
allows for grouping of related Web services that share a common access
policy. The name of this object is arbitrary and is specified by the –n <name>
operand of the wsdl2tam.sh utility. In our case, it is ItsoBankWSDL.

� The name of the service as specified in the service’s WSDL document. In this
case, the WSDL contains:

<wsdl:service name="AccountJCAService">

� The name of the service’s portType, as specified in the service’s WSDL
document. In this scenario:

<wsdl:portType name="AccountJCA">

� An object for each of the service operations, as specified in service’s WSDL
document. In this scenario, it is:

<wsdl:operation name="getBalance">

In order to perform an authorization decision, Access Manager needs the
following information:

� Credential (who is requesting access)

A credential is an Access Manager credential created by the authorization
trust module using the identity in the current STSUniversalUser.

In this scenario, since an exact one-to-one mapping rule is used, this identity
is exactly the same identity as contained in the security token in the ITSO
Banking Client request. This identity must be a valid user in the Access
Manager registry.

� Resource (what is being accessed)

The resource will be the Access Manager protected object provided by the
Federated Identity Manager authorization trust module instance as a
consequence of the processing of the RequestSecurityToken message from
the WSSM token consumer.

Note: This default object space model does not contain any objects that
represent the host, TCP/IP port, or URL path used to access the service over
HTTP. The intent is for the protected object design to be transport neutral.
 Chapter 8. Technical implementation 275

� Action (how the resource is being accessed)

The action will be [WebService]i - ‘i’ for invoke, as per the default
configuration using the wsdl2tam utility.

Configure Web service authorization using wsdl2tam utility
The creation of the Access Manager commands for the modification of the
Access Manager object space is done using the wsdl2tam.sh utility.

The wsdl2tam.sh utility uses the following operands:

� The -n option allows an arbitrary container level entry in the Access Manager
object space to allow grouping of Web services that will share a common
access policy. In our scenario, we used ItsoBankWSDL.

� The -tam option provides the output file name for the generated Access
Manager commands.

� The path to the WSDL file.

Go to the WSSM home directory in a command shell and invoke the wsdl2tam
utility, as shown in Example 8-4.

Example 8-4 Invoking wsdl2tam.sh

cd /opt/IBM/FIM/wssm
./wsdl2tam.sh -n ItsoBankWSDL -tam tam.script
/opt/IBM/WebSphere/AppServer/profiles/AppSrv01/installedApps/localNode0
1Cell/ITSOBanker2006.ear/routerProject.war/wsdl/ejbs/AccountJCA.wsdl

Upon successful completion, review the contents of the tam.script file. It should
contain a sequence of pdadmin commands to create objects in the Access
Manager object space for this Web service. Example 8-5 on page 277 shows
how to apply these commands to the Access Manager environment.

Note: The wsdl2tam.sh utility requires access to various Java libraries shipped
with Federated Identity Manager WSSM. In case you have installed the
Federated Identity Manager WSSM in a path different from the default, you
need to edit wsdl2tam.sh and change the value for the FIM_HOME variable.
276 Understanding SOA Security Design and Implementation

Example 8-5 Updating the Access Manager object space using the output from wsdl2tam

pdadmin -a sec_master -p passw0rd tam.script
cmd> action group create WebService
cmd> action create i wssm 0 WebService
cmd> objectspace create /itfim-wssm wssm 0
cmd> object create /itfim-wssm/wssm-default wssm 0 ispolicyattachable
yes
cmd> object create /itfim-wssm/wssm-default/ItsoBankWSDL wssm 0
ispolicyattachab
le yes
cmd> object create
/itfim-wssm/wssm-default/ItsoBankWSDL/AccountJCAService wssm
0 ispolicyattachable yes
cmd> object create
/itfim-wssm/wssm-default/ItsoBankWSDL/AccountJCAService/Accou
ntJCA wssm 0 ispolicyattachable yes
cmd> object create
/itfim-wssm/wssm-default/ItsoBankWSDL/AccountJCAService/Accou
ntJCA/getBalance wssm 0 ispolicyattachable yes

The object space created can be examined using the Access Manager Web
Portal Manager application, in our case, it is shown in Figure 8-99.

Figure 8-99 Access Manager object space

For this example implementation, an Access Manager policy needs to be created
that allows authorized users to invoke the AccountJCAService. A group named
created ITSOUsers is created. This group is added to a policy that is attached to
 Chapter 8. Technical implementation 277

the protected object representing this service. Later, users can be added to the
group to have access enabled for them.

From within the pdadmin utility, run commands shown in Example 8-6.

Example 8-6 Access Manager policy configuration for the ITSO Bank Web service

pdadmin sec_master> group create ITSOUsers cn=ITSOUsers,c=us ITSOUsers
pdadmin sec_master> acl create ITSOPolicy
pdadmin sec_master> acl modify ITSOPolicy set group ITSOUsers
T[WebService]i
pdadmin sec_master> acl attach
/itfim-wssm/wssm-default/ItsoBankWSDL/AccountJCAService/AccountJCA
ITSOPolicy

Configuring a Federated Identity Manager trust chain
The ITSOBank application uses a customized JAAS configuration from the CICS
adapter (see 8.3.2, “Configuring the CICS Connection Factory” on page 248 and
8.3.3, “Configure a JAAS login module” on page 253). The JAAS login module
connects to the Federated Identity Manager trust service to retrieve a valid RACF
user ID and Passticket on behalf of the user.

An additional trust chain will be defined for this purpose and an LDAP mapping
module will be used to look up the RACF user ID for the incoming user ID. The
RACF user ID is defined in an attribute of the LDAP user object.

In this section, we are going to deploy the LDAP mapping module and then
define a new trust service chain that uses it.

A Federated Identity Manager trust service module is provided in form of a jar
file, its related descriptor, and a resource bundle used for the creation of the new
configuration panel into the Federated Identity Manager console.

The plug-in used for the ITSO environment is composed of:

� A ldap-sts-plugin-module.jar file that is the custom module.

� A plugin.xml file that describes the plug-in.

� An itfim-ldap-map-i18n.jar file that is the resource bundle needed by the
Federated Identity Manager console.

In the <FIM_HOME>/plugins directory, create a new subdirectory named
com.tivoli.am.fim.ldap.plugin_1.0. Copy the three files above into that new
subdirectory.
278 Understanding SOA Security Design and Implementation

Copy the resource bundle itfim-ldap-map-i18n.jar to the lib directory of the
Federated Identity Manager console WAR directory at:

<ISC_INSTALL_ROOT>/PortalServer/installedApps/FIMConsole_PA_1_0_9D.ear/
PA_1_0_9D.war/WEB-INF/lib

The addition of a new plug-in equates to a new version of the Federated Identity
Manager runtime application. In order to re-deploy the runtime through the
Federated Identity Manager console, it is necessary to manually increment the
serialId property in <FIM_HOME>/pkg/software.properties.

Increment the existing value for com.tivoli.am.fim.rte.software.serialId, and
optionally update the com.tivoli.am.fim.rte.software.displayName.

In the ITSO environment, the values were changed, as in Example 8-7.

Example 8-7 Increment the software serialId

from :
com.tivoli.am.fim.rte.software.serialId=1153289542454
com.tivoli.am.fim.rte.software.displayName=6.1.0 [060524a]

to:
com.tivoli.am.fim.rte.software.serialId= 1153289542455
com.tivoli.am.fim.rte.software.displayName=6.1.0 [060525-CST-LDAP-STS]

Close any browser windows using the Federated Identity Manager console and
restart the ISC server so that the new change can take effect.

Important: On a non-Windows machine, ensure that the new subdirectory
has file permissions 770 and the files have permissions 660. The subdirectory
and the files should be owned by root.

Important: On a non-Windows machine, ensure that the file has permissions
of 644.
 Chapter 8. Technical implementation 279

Log in to the Federated Identity Manager console and browse to Domain
Management → Runtime Node Management and click Deploy Runtime, as
shown in Figure 8-100.

Figure 8-100 Runtime deployment

Restart WebSphere Application Server when prompted by the Federated Identity
Manager console.

After the WebSphere Application Server has restarted, it is necessary to define
an instance of the new LDAP module and an instance of the Passticket module.
280 Understanding SOA Security Design and Implementation

In the Federated Identity Manager console, browse to Configure Trust
Service → Module Instances and click Create to show the list of the token
modules available, as shown in Figure 8-101.

Figure 8-101 Token type module list
 Chapter 8. Technical implementation 281

Select LDAPSTSModule and click Next to specify a name and a description for
this new instance, as shown in Figure 8-102.

Figure 8-102 Custom LDAP module instance definition

Click Finish. Ignore the Restart WebSphere message at this time.

Replicate the two steps above to define an instance of the
PassTicketSTSModule.

Upon completion, the module instance list should contain the two new instances,
as shown in Figure 8-103.

Figure 8-103 Passticket and LDAP module instance created

It is now possible to create a new Federated Identity Manager Security trust
service trust chain. Navigate to Configure Trust Service → Trust Service
Chain and click Create. Click Next to skip the introduction.
282 Understanding SOA Security Design and Implementation

As shown in Figure 8-104, provide a chain name and a description that describe
the purpose of this new chain.

Figure 8-104 New trust chain definition
 Chapter 8. Technical implementation 283

On the Chain Lookup Properties panel, fill in the AppliesTo address with
ITSOBanker2006 and Issuer address with fimprincipal, as shown in
Figure 8-105.

Figure 8-105 AppliesTo and Issuer definition for the new chain
284 Understanding SOA Security Design and Implementation

Click Next to proceed to the Chain Assembly window. This is where the
sequence of modules is described. For this trust chain, three module instances
need to be added in the following order:

1. User name module instance in validate mode.

2. LDAP module instance in map mode.

3. Passticket module instance in issue mode.

For each module instance, select it in the Module Instance drop-down menu,
select the appropriate mode from the Mode drop-down menu and click Add
Selected Module Instance to Chain.

Figure 8-106 and Figure 8-107 on page 286 show how the chain should look
when completed.

Figure 8-106 Token Module instance order in the new chain
 Chapter 8. Technical implementation 285

Figure 8-107 Token Module instance mode

Click Next to configure each module instance following the order in the chain.

In the UserName Token Module Configuration panel, select the check box for
Skip password validation (Figure 8-108). The user name in the incoming user
name token is trusted.

Figure 8-108 User name token module configuration

Click Next to configure the LDAP Attribute Mapping Module. In the ITSOBank
environment the RACF user ID will be stored in the uniqueidentifier attribute of
the inetorgperson, as shown in Figure 8-109 on page 287.
286 Understanding SOA Security Design and Implementation

Figure 8-109 LDAP attribute mapping module configuration

In the RACF Passticket Module configuration window, select the Include once in
token and Include token creation time in token check boxes.

The Application name used for Passticket generation and validation field must
contain the z/OS application ID while the Passticket key must contain the 16
hexadecimal digits representing the shared secret that the z/OS security
administrator should provide.
 Chapter 8. Technical implementation 287

The assertion does not need to be signed, so uncheck the Enable the signing
of the RACF Passticket token check box (see Figure 8-110).

Figure 8-110 RACF passticket module configuration

Click Next to review the trust chain summary before completion. Click Finish and
then restart WebSphere Application Server when prompted.

The All Federated Identity Manager configuration required for the example is
complete, and it is time to run the example.

8.5 Running the scenario

In this section, we describe how to run the ITSO Banking Web service client
application to retrieve an account balance using the ITSO Banking application
Web service.

Two user cases are described, one where the user has permission to invoke the
service, and one where the user does not have permission.

For this purpose, we create two users in Access Manager:

� itsoman, who is granted permission to invoke the Web service due to
membership in the ITSOUsers group.

� fabric, who is not a member of the ITSOUsers group and is therefore unable
to access the service.
288 Understanding SOA Security Design and Implementation

The commands in Example 8-8 are used to create these two users in Access
Manager.

Example 8-8 Creating users in Access Manager

pdadmin sec_master> user create itsoman cn=itsoman,c=us itso man
passw0rd ITSOUsers
pdadmin sec_master> user modify itsoman account-valid yes
pdadmin sec_master> user create fabric cn=fabric,c=us fabric fabric
passw0rd
pdadmin sec_master> user modify fabric account-valid yes

User itsoman also needs to have an attribute uniqueidentifier that contains his
RACF ID. This attribute can be added to his LDAP inetorgperson object by
creating a file named itsoman.add, as shown in Example 8-9.

Example 8-9 itsoman.add - LDAP modification script for itsoman

dn: cn=itsoman,c=us
changetype: modify
add: uniqueidentifier
uniqueidentifier: ITSOMAN1

The LDAP update can be applied with the idsldapmodify utility, as shown in
Example 8-10.

Example 8-10 Updating itsoman’s LDAP entry

idsldapmodify -h local.demo.com -D cn=root -w passw0rd -i itsoman.add

modifying entry cn=itsoman,c=us

In any subdirectory on the machine, copy the client application
(ITSOBankerClient2006.ear) and the client key store (client.jks).

In the same shell, source the WebSphere Application Server setupCmdLine
script and then launch the client application, as shown in Example 8-11.

Example 8-11 Launching the application client

. /opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin/setupCmdLine.sh
/opt/IBM/WebSphere/AppServer/bin/launchClient.sh
ITSOBankerClient2006.ear
 Chapter 8. Technical implementation 289

At this point, the client application should appear, as shown in Figure 8-111.

Figure 8-111 Application startup

Click Configure... and set the endpoint for the Web service, as shown in
Figure 8-112. In the ITSOBank environment, the endpoint is at:

http://local.demo.com:9080/routerProject/services/AccountJCA

Figure 8-112 Endpoint configuration

Click OK to save this configuration. Next, click the Get Balance button. When
prompted, supply the user name fabric and password passw0rd, as shown in
Figure 8-113 on page 291, and click OK.
290 Understanding SOA Security Design and Implementation

Figure 8-113 user name and password on Banker Client application

Since fabric is not entitled to invoke the ITSO Banking Web service, a Web
service invocation error occurs. Figure 8-114 shows the important details in the
resulting error message.

Figure 8-114 Web service invocation failure
 Chapter 8. Technical implementation 291

Click Get Balance. When prompted, supply the user name itsoman and
password passw0rd, as shown in Figure 8-115, and click OK.

Figure 8-115 Banker Client login for an entitled user

Since itsoman has permission to invoke the service, the ITSO Banking Service
accepts the request and in turns invokes the execution of a CICS transaction (for
more detail on the sequence of steps occurring, refer back to 8.1,
“Implementation scope” on page 194).

The CICS transaction runs under the credential of the RACF ID ITSOMAN1, and
authentication is achieved with the passticket provided by the Federated Identity
Manager trust chain for the JCA connector.

The transaction results are reported on the client, as shown in Figure 8-116 on
page 293.
292 Understanding SOA Security Design and Implementation

Figure 8-116 Balance results obtained from the CICS transaction server

Content of SOAP messages
In this section, we are providing the SOAP messages that were captured using
the TCPMon utility provided with WebSphere Application Server.
 Chapter 8. Technical implementation 293

Consider the flow of a successful client request (for example, the one submitted
by the itsoman user). Six different traces are captured, as indicated in
Figure 8-117, using the numbers 1 to 6.

Figure 8-117 Location and direction of the SOAP messages captured with TCPMon

Trace 1 is the Web service request sent by the ITSO Banking Client application
to the ITSO Banking Web service. The sample content of that message is shown
in Example 8-12 on page 295.
294 Understanding SOA Security Design and Implementation

Example 8-12 Trace 1

<soapenv:Envelope
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wss
ecurity-secext-1.0.xsd">
 <wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-s
oap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509" wsu:Id="x509bst_26"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">MIIB2DCCAUGgAwIBAgIERLfvgDANBgkqhkiG9w0BAQQFADA
xMQswCQYDVQQGEwJVUzENMAsGA1UEChMEaXRzbzETMBEGA1UEAxMKYmFua2NsaWVudDAeFw
0wNjA3MTQxOTI0NDhaFw0wOTA0MDkxOTI0NDhaMDExCzAJBgNVBAYTAlVTMQ0wCwYDVQQKE
wRpdHNvMRMwEQYDVQQDEwpiYW5rY2xpZW50MIGeMA0GCSqGSIb3DQEBAQUAA4GMADCBiAKB
gGn//+sSH2+xRYeHLfQhKsweJ0LuXyFoQ20MWDPZObWsyKABGuIsiaCZFPSVCEzRq1nl7K9
tY0MK/EPNJx+PoRDdAizQl4O4EVU7wt6G9c2140ASuAyRpZi4oa3WpRIeOz8EzdFxaScLbR
9hVmrdzVGPptG1Jd5Hkr5XXwUyF8SxAgMBAAEwDQYJKoZIhvcNAQEEBQADgYEAH2ZzK3Slk
QsjU/TGBoOC1q5VNFDpgL2Tz9V4BpaHMs2W2MHJW321PurQ/zNa9Gw6Xrg5RnYfmx2ublFJ
wC3enf73bcQCbCDqAALw7mbQssU1jPnA8GveK/QDXXC5J8cM6qMOQoPo9u5jW1LqybLZr8g
nbu45cf/SrTVBV/KoOYk=</wsse:BinarySecurityToken>
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509SubjectKeyIdentifier">YxCw5uQd9UQsEEhysWMEiit8Y4
I=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <CipherData>

<CipherValue>giFPhtK0pePP88lmqJnHU8tRMTApFooAwG9Vg3zt0Q32HIwGnAczrSSzle
wbpiQOxZOnhY+uu91dm1hCqXMKEtuLQtENENAtV4PEFnhAUkcE/N8GA0hNKdlW6BcFhJBwU
jxzElrRSCI3N00B0IZ/cC8lxwyW5laMBczBW6lObQk=</CipherValue>
 </CipherData>
 <ReferenceList>
 Chapter 8. Technical implementation 295

 <DataReference URI="#wssecurity_encryption_id_28"/>
 <DataReference URI="#wssecurity_encryption_id_29"/>
 </ReferenceList>
 </EncryptedKey>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="wsse ds xsi
soapenc xsd soapenv "
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#wssecurity_signature_id_25">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="p728 xsi
soapenc xsd wsu soapenv "
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>pGcTdPhxyDjoulAumrRcwgVUHTc=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#wssecurity_signature_id_27">
 <ds:Transforms>
 <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="wsse xsi
soapenc xsd wsu soapenv "
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>ggcaXC3P6q7adL26KyeHk0Oxeto=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>R1rS1X9360eFzEpEHFSgX/wUFEY1jCx2n7clyiw0qnytIvjDXhLD
296 Understanding SOA Security Design and Implementation

L2dq0ZNInDG7256EJ/zALuxTEuUq7yKxMG+3irrcpRdnutq2zr/h/fm5re7EBEH51t2uNf3
qFYa88fEY7xV0QhVmjyOGtKg0IWwWHtbpONcVcNLE1H4Nf9A=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#x509bst_26"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 <EncryptedData Id="wssecurity_encryption_id_28"
Type="http://www.w3.org/2001/04/xmlenc#Element"
xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <CipherData>

<CipherValue>e45lCSwt5Pa0X2RUysvoGLvdIIehhJUu9Lq1yLtV1lR1npRdJB4YNlIWeT
zRoQDlWn7miYMBa317bMOBwdwlOe2LVS9dWoGpJqjlRjg8BMquhKoplge3YJkzuIifKpXH8
W6sSUiPGML8C4j/Xu5dtP96ns9pb60JI746r8s2TILC1agrqAg24h/MVf8xT+aDBlTfwLsk
X5k1qwG81wRKJEvR91U7dDqBYXO1V3IywtxUe9Sb3kmcwfCKanRHEeQLm2ryCMtR1GesM3/
UXE2OtOb51eW6Vfwgf7Tgg3Juiphb5YzxeehFk/PArdPUbMWZAIV+RTihLuFcWY0ef6y5bP
xzuaWjtII4KvX6qUednhAOm/DHaEFKGjH7RC22MPNLdg92EPrxs7HSVdSX4b/YbJSRG5uBc
2QhihdQHEaZGuUj+9vYRJNzGGF66EoCYhh6IoD7NGUkQS7maVJyzRG7z8LVd4FvWMeZtasL
RtyM+2o=</CipherValue>
 </CipherData>
 </EncryptedData>
 </wsse:Security>
 <InternationalizationContext soapenv:mustUnderstand="0"
xmlns="http://www.ibm.com/webservices/InternationalizationContext">
 <Locales xmlns="">
 <Locale>
 <LanguageCode>en</LanguageCode>
 <CountryCode>AU</CountryCode>
 </Locale>
 </Locales>
 <TimeZoneId xmlns="">America/Chicago</TimeZoneId>
 </InternationalizationContext>
 </soapenv:Header>
 <soapenv:Body wsu:Id="wssecurity_signature_id_25"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">
 <EncryptedData Id="wssecurity_encryption_id_29"
Type="http://www.w3.org/2001/04/xmlenc#Content"
xmlns="http://www.w3.org/2001/04/xmlenc#">
 Chapter 8. Technical implementation 297

 <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <CipherData>

<CipherValue>ZyD8KEQnncJAG6tRtPfTx9q2qWFEMlQq00Bsjr9DnqZhTevfjjL9VxUF+Y
qhyHzA8con+UBDHOG4JdprcU8hPRY8Z1/lgrEgajIrC1yc1jI8W/tT/EygdkBBHYYAS5mcB
SWsZnbSW3XUjJfu3apKmal6Ip0ZDgq4a/6R5vAwgqc=</CipherValue>
 </CipherData>
 </EncryptedData>
 </soapenv:Body>
</soapenv:Envelope>

Note that the SOAP security token and the SOAP message body are encrypted
and signed.

Once the message arrives at the WebSphere Application Server SOAP Handler,
the WSSM component contacts the Federated Identity Manager trust service for
token exchange using its WS-Trust client. The WS-Trust request is shown in
Example 8-13.

Example 8-13 Trace 2

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header/>
 <soapenv:Body>
 <wst:RequestSecurityToken
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wst:RequestType
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">http://schemas.
xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wsa:Address
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">urn:itfim:
wssm:tokenconsumer</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
298 Understanding SOA Security Design and Implementation

<wsa:Address>http://local.demo.com:9080/routerProject/services/AccountJ
CA</wsa:Address>
 <wsa:PortType>AccountJCA</wsa:PortType>
 <itfim:OperationName
xmlns:itfim="urn:ibm:names:ITFIM">getBalance</itfim:OperationName>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wsse:UsernameToken wsu:Id="wssecurity_signature_id_27"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wss
ecurity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">
 <wsse:Username>itsoman</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-
token-profile-1.0#PasswordText">passw0rd</wsse:Password>
 </wsse:UsernameToken>
 </wst:Base>
 </wst:RequestSecurityToken>
 </soapenv:Body>
</soapenv:Envelope>

Verify that the message contains the user name token for the user itsoman with
the password. Also note the values of the AppliesTo and Issuer elements. They
should match what was specified in the configuration of the partner and
application trust chain created in the Federated Identity Manager console.

The next trace is the response from the Federated Identity Manager trust service
to the WSSM trust client and its content is shown in Example 8-14.

Example 8-14 Trace 3

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsa:Action
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">http://sch
emas.xmlsoap.org/ws/2005/02/trust/RSTR/Validate</wsa:Action>
 </soapenv:Header>
 Chapter 8. Technical implementation 299

 <soapenv:Body>
 <wst:RequestSecurityTokenResponse
wsu:Id="uuidb07cf0f8-010c-eeff-0a03-aeba7319f07e"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">
 <wst:Status>

<wst:Code>http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid</wst
:Code>
 </wst:Status>
 <wst:RequestedSecurityToken>
 <saml:Assertion
ID="Assertion-uuidb07cf0fc-010c-f34b-081d-aeba7319f07e"
IssueInstant="2006-07-27T14:56:53Z" Version="2.0"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">
 <saml:Issuer
Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">http://mycomp
any.com</saml:Issuer>
 <saml:Subject>
 <saml:NameID>itsoman</saml:NameID>
 </saml:Subject>
 <saml:Conditions NotBefore="2006-07-27T14:55:53Z"
NotOnOrAfter="2006-07-27T14:57:53Z">
 <saml:AudienceRestriction>

<saml:Audience>http://local.demo.com:9080/routerProject/services/Accoun
tJCA</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement
AuthnInstant="2006-07-27T14:56:53Z">
 <saml:AuthnContext>

<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Passw
ord</saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="is_racf_user"
NameFormat="wssm_example">
 <saml:AttributeValue xsi:type="xs:string"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">TRUE</saml:Attrib
uteValue>
 </saml:Attribute>
300 Understanding SOA Security Design and Implementation

 <saml:Attribute Name="company_name"
NameFormat="wssm_example">
 <saml:AttributeValue xsi:type="xs:string"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">ITSO</saml:Attrib
uteValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
 </wst:RequestedSecurityToken>
 <wst:RequestedAttachedReference
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wss:SecurityTokenReference>
 <wss:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.0#SAMLAssertionID" xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">Assertion-uuidb07cf0fc-010c-f34b-081d-aeba7319f0
7e</wss:KeyIdentifier>
 </wss:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 </wst:RequestSecurityTokenResponse>
 </soapenv:Body>
</soapenv:Envelope>

Note that the response contains a SAML 2.0 assertion. This is a result of the
configuration in “Create a WSSM Web service application trust chain” on
page 266.

This trace also shows the two attributes company_name and is_racf_user within
the SAML attribute statement. This was defined in the mapping rule in
“Configuring the WSSM partner chain” on page 259.
 Chapter 8. Technical implementation 301

Once the WebSphere Application Server SOAP handler has processed the
message, then the ITSO Bank Application EJB is invoked and prepares a
request for the CICS Transaction Gateway using the JCA connector. The JCA
connector makes use of the JAAS login module containing a WS-Trust client to
invoke a second Federated Identity Manager trust chain. That request is shown
in Example 8-15.

Example 8-15 Trace 4

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header/>
 <soapenv:Body>
 <wst:RequestSecurityToken
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wst:RequestType
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">http://schemas.
xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wsa:Address
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">fimprincip
al</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
 <wsa:Address>ITSOBanker2006</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wss:UsernameToken
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wss:Username>itsoman</wss:Username>
 <wsu:Created
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">2006-07-27T14:56:54Z</wsu:Created>
 </wss:UsernameToken>
 </wst:Base>
302 Understanding SOA Security Design and Implementation

 </wst:RequestSecurityToken>
 </soapenv:Body>
</soapenv:Envelope>

In this SOAP message, you can see the WS-Trust elements appliesto and issuer.
Their values should match those configured in 8.3.3, “Configure a JAAS login
module” on page 253.

The trust chain exchanges the user name token containing the Access Manager
user ID for a user name token containing the RACF user ID and a generated
passticket. The response from the trust service is shown in Example 8-16.

Example 8-16 Trace 5

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsa:Action
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">http://sch
emas.xmlsoap.org/ws/2005/02/trust/RSTR/Validate</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <wst:RequestSecurityTokenResponse
wsu:Id="uuidb07cf439-010c-e13f-6012-aeba7319f07e"
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">
 <wst:RequestedSecurityToken>
 <wss:UsernameToken
wsu:Id="usernameb07cf438-010c-e02c-b60f-aeba7319f07e"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">
 <wss:Username>ITSOMAN1</wss:Username>
 <wss:Nonce
EncodingType="Base64Binary">t7xO5qchEuRrcfvwEQmrPw==</wss:Nonce>
 <wsu:Created>2006-07-27T14:56:54Z</wsu:Created>
 <wss:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurit
y-secext-1.0.xsd#PasswordText">DZ4J2F3U</wss:Password>
 </wss:UsernameToken>
 Chapter 8. Technical implementation 303

 </wst:RequestedSecurityToken>
 <wst:RequestedAttachedReference
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd">
 <wss:SecurityTokenReference>
 <wss:Reference
URI="#usernameb07cf438-010c-e02c-b60f-aeba7319f07e"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-user
name-token-profile-1.0#UsernameToken"
xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-secext-1.0.xsd"/>
 </wss:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 <wst:Status>

<wst:Code>http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid</wst
:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </soapenv:Body>
</soapenv:Envelope>

The resulting user name token contains the user ID ITSOMAN1 that matches the
LDAP attribute uiniqueidentifier of itsoman. The password is DZ4J2F3U, which is
a passticket generated by the Federated Identity Manager Passticket module.

Trace 6 in Example 8-17 is the SOAP response message of the ITSO Banking
application, after the CICS transaction has completed successfully.

Example 8-17 Trace 6

<soapenv:Envelope
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wss
ecurity-secext-1.0.xsd">
 <wsse:BinarySecurityToken
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-s
oap-message-security-1.0#Base64Binary"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509" wsu:Id="x509bst_6"
304 Understanding SOA Security Design and Implementation

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">MIIByzCCATSgAwIBAgIERLfwHDANBgkqhkiG9w0BAQQFADA
qMQswCQYDVQQGEwJVUzENMAsGA1UEChMEaXRzbzEMMAoGA1UEAxMDd2FzMB4XDTA2MDcxND
E5MjcyNFoXDTA5MDQwOTE5MjcyNFowKjELMAkGA1UEBhMCVVMxDTALBgNVBAoTBGl0c28xD
DAKBgNVBAMTA3dhczCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA3sEN8lutdfFnU/t0
iVM4llwWIejUPohy1YUYX+ES9MKs9MAJJYrvzREOHln0fVDLXDSzfl0GxFqdHcByHLb4ro1
JM9ekMfw+2oqwIoFYg0jNRkeRSdD3yv4GbPzHd0x8k/52492QcrRs0x+8U7YorqKlapW/Lg
huKMl9S9lBLYECAwEAATANBgkqhkiG9w0BAQQFAAOBgQC5YF/0vtUvZg3CMS0TcwEliqAfh
3OdReJQxqush6Q3+j6iLYqzl8mjNOedHumB7TP9jwBj4dwJoXPhM8ZI1sFquwkms2ZUW6m7
n2RwruzU3727lKfNNU9dbv0mSFA0Yw1SikdG8hT3sAn408p0JcXipIxzVSSlSN0BwCCF89D
Oog==</wsse:BinarySecurityToken>
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509SubjectKeyIdentifier">QiYzsqGll8rbR+cc5Adsj/tJbX
k=</wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <CipherData>

<CipherValue>VfWp676IhhKoOda9zsbIom8F8HVOKC7feTGwzmanAbrrJU1G115T2fEwU2
zxKZhf6u+i42rNMskhAT70/TvuTYSqMP0MGhm+0JKFCPUv+OMJnUSfa1YZ0E7bZh6st88mo
dSW/fyd+KIQ0YqZT110LV3vURLI/oPvM+EGNOFX5PM=</CipherValue>
 </CipherData>
 <ReferenceList>
 <DataReference URI="#wssecurity_encryption_id_7"/>
 </ReferenceList>
 </EncryptedKey>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="wsse ds xsi
soapenc xsd soapenv "
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:CanonicalizationMethod>
 <ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#wssecurity_signature_id_5">
 <ds:Transforms>
 Chapter 8. Technical implementation 305

 <ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 <ec:InclusiveNamespaces PrefixList="p728 xsi
soapenc xsd wsu soapenv "
xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transform>
 </ds:Transforms>
 <ds:DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>abEzTDRHTSwa5flfSQOBSrbjpZA=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

<ds:SignatureValue>MVfT/lkemJHh/YkBLbD0Wg0dfAdMRxFc7zzaG+dlTHDPVSqGTAr5
wgn76uaN4gexIBR4vegwEfD0up2CXhNHZ8s5rZ+vg9467JEhRvLIphnwX2gZHyTrWdPGMyB
GTAVaPftpZkSbyP+ZyIFK0AhgSq4349Rc8BHR4odXlrojD6k=</ds:SignatureValue>
 <ds:KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:Reference URI="#x509bst_6"
ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509
-token-profile-1.0#X509"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body wsu:Id="wssecurity_signature_id_5"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wsse
curity-utility-1.0.xsd">
 <EncryptedData Id="wssecurity_encryption_id_7"
Type="http://www.w3.org/2001/04/xmlenc#Content"
xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <CipherData>

<CipherValue>2WfCM0BB1uAqZnCeURMzK/HuR2SwxaykBsYOw0Li+L1qFB7XNhpgEOJnzV
2bKf87OOTgn+iD7bkcoQSTopyKGBBI8f99BiVpigY8AxlKgO/SBj5Zsj9BdW39B3IKz8f8/
Wj7BG8bnL6IxOMisH6BrpxY/4yOcbEIJuDMDnrWOiu41ANBTUv4m9JMhj9NwUJUT+rQgPj3
/lisNTAcVAS0hBIDf35BHBd28Axe8CT6ZhVuqMgkBo1fpItkRQfO+iEJ5kBUG3Lo7m0o53k
wlBT4dwmLMcZAS1nA</CipherValue>
 </CipherData>
 </EncryptedData>
 </soapenv:Body>
306 Understanding SOA Security Design and Implementation

</soapenv:Envelope>

This response is also signed and encrypted.

This concludes our successful configuration and test of the use case described in
Figure 8-1 on page 194.

8.6 Common Auditing and Reporting Service
configuration

IBM Tivoli Federated Identity Manager V6.1 and IBM Tivoli Access Manager V6.0
support a common audit infrastructure called Common Auditing and Reporting
Service (CARS).

This service leverages the standard XML-based format structure of an event
called Common Base Event (CBE) and the IBM Common Event Infrastructure
(CEI) technology to provide a centralized collection point and a consistent life
cycle management of auditable events (archive, restore, and purge).

The Common Auditing and Reporting Service consists of the following
components:

� Server: (common to all exploiting products)

� Client - There are three types of clients:

– Java client

The Java client is used by some components of Tivoli Access Manager (for
example, SMS server).

– C client

The C client is used by some components of IBM Tivoli Access Manager
(for example, WebSEAL).

– Embedded client

This component is used by IBM Tivoli Federated Identity Manager, it is
packaged as a set of JAR files, and it includes the security event factory
and emitter.

The Common Auditing and Reporting Service uses CEI for the submission of
events. When such events can be denoted as auditable, the CEI server stores
these events in an XML data store. When an event is not auditable, the CEI
server stores these events in the default event store.
 Chapter 8. Technical implementation 307

Figure 8-118 show the Common Auditing and Reporting Service architecture.

Figure 8-118 The Common Audit and Reporting Service architecture

The Common Auditing and Reporting Service allows staging of data from the
XML data store into report tables.

Staging the audit data means parsing the raw data, extracting the interesting
pieces, and putting these pieces into staging tables in the database. The data is
copied to the staging tables in a format that can be used directly in reports. This
process is also called shredding. Records in the report tables can be used by any
authoring tool or application to render the audit data in the most appropriate
form.

While IBM Tivoli Access Manager for e-business provides some report tables
out-of-the-box, custom tables need to be created for IBM Tivoli Federated Identity
Manager. Custom tables can be created also for IBM Tivoli Access Manager.

Common Audit Web
Service

Common Event Infrastructure
Emitter

Common Base Events

Tivoli Access
Manager for
e-business

Common Event Infrastructure
Server

Defaul Event Db XML Data Store
Restored audit

data

Staging Utility

Custom report
tables and

audit reports

Tivoli Access
Manager report

tables and
audit reports

Tivoli Access
Manager for

Operating System

Tivoli Federated
Identity Manager

Audit archive
308 Understanding SOA Security Design and Implementation

In the next section, we describe how to configure Federated Identity Manager to
send audit events to Common Auditing and Reporting Service, how to create
custom tables, and how to extract data from those tables to satisfy an audit
requirement. The assumption is that the Common Auditing and Reporting
Service server is already installed and running as a Web service in WebSphere
Application Server.

8.6.1 Configure Federated Identity Manager central auditing

In the ITSOBank environment, the Common Auditing and Reporting Service
server is installed on WebSphere Application Server with global security
enabled. In this case, a client needs to authenticate using basic authentication to
WebSphere Application Server in order to access the Common Auditing and
Reporting Service Web service.

The Common Auditing and Reporting Service Web service application has a
J2EE role defined, hence it is necessary know how users or groups are mapped
to this role.

Open the WebSphere Application Server administrative console and navigate to
Applications → Enterprise Applications and select CommonAuditService.

Click Map security roles to users/groups and verify that at least one user is
mapped to the EventSource role. In this scenario, a user named carsman has
been created for this purpose (see Figure 8-119).

Figure 8-119 Common Auditing and Reporting Service security role mapping
 Chapter 8. Technical implementation 309

A good verification is to open a browser and point it to the Web service URL, and
attempt to authenticate using the identity that is expected to have access. In the
ITSOBank environment, the URL is:

http://local.demo.com:9080/CommonAuditService/services/Emitter

When prompted, authenticate with user name carsman and the appropriate
password. The page should resemble Figure 8-120.

Figure 8-120 Common Auditing and Reporting Service Web service

Once access is verified, open the Federated Identity Manager console and
navigate to Domain Management → Auditing.
310 Understanding SOA Security Design and Implementation

In order to enable Federated Identity Manager to send events to the Common
Auditing and Reporting Service, select the Enable audit check box and select
the Tivoli Common Auditing and Reporting Service radio button. Provide the
complete URL for the Common Auditing and Reporting Service Web service and
accept the default for the Disk cache location, as depicted in Figure 8-121.

Figure 8-121 Federated Identity Manager auditing configuration
 Chapter 8. Technical implementation 311

Click Web Service Security Settings and select the Use Basic Authentication
radio button. Provide the valid user ID and password used in the preceding
browser test (see Figure 8-122).

Since HTTP transport is used to access the Common Auditing and Reporting
Service Web service, no further information for key store and certificates is
required.

Figure 8-122 Federated Identity Manager auditing security configuration

Click the Audit Event link to show the list of event types that it is possible to
audit. Since the usage of the Federated Identity Manager trust service is the
primary focus of this scenario, leave this component as the only selected type of
event to audit. See Figure 8-123 on page 313 for reference.
312 Understanding SOA Security Design and Implementation

Figure 8-123 Federated Identity Manager audit events

At this point, the audit configuration in Federated Identity Manager has been
completed. Click OK and restart WebSphere Application Server when advised by
the message in the Federated Identity Manager console.
 Chapter 8. Technical implementation 313

8.6.2 Configuring central auditing for trust service events

It is necessary to create some custom secondary report tables in the XML event
store database as a staging area for Federated Identity Manager events. In this
scenario, it is enough to create one table for staging trust service events.

Note: In the ITSOBank environment, the Common Auditing and Reporting
Service server and the Federated Identity Manager runtime services are
installed on the same WebSphere Application Server instance.

A restart of WebSphere Application Server may cause the Federated Identity
Manager runtime service to start before that the Common Auditing and
Reporting Service service is available to receive requests. This may result in
the following entry in WebSphere Application Server SystemOut.log during the
startup:

WebServicesFault
 faultCode:
{http://schemas.xmlsoap.org/soap/envelope/}Server.generalException
 faultString: WSWS3713E: Connection to the remote host
local.demo.com failed.Received the following error: Connection
refused
 faultActor: null
 faultDetail:

WSWS3713E: Connection to the remote host local.demo.com
failed.Received the following error: Connection refused
 at
com.ibm.ws.webservices.engine.xmlsoap.builders.WebServicesFaultProce
ssor.createFault(WebServicesFaultProcessor.java:415)

 at
com.ibm.cars.events.emitter.soapclient.gen.EmitterStub.sendEvent(Emi
tterStub.java:92)

If this happens it may be possible that Federated Identity Manager will not
send events to the Common Auditing and Reporting Service service. In order
to work around this problem, stop and start the Federated Identity Manager
runtime services application from the WebSphere Application Server
administrative console. This might have to be done each time WebSphere
Application Server is restarted.
314 Understanding SOA Security Design and Implementation

Create a Data Definition Language (DDL) file named customtable.ddl that
defines a new table named custom_t_trust. A subset of attributes from the IBM
Tivoli Federated Identity Manager IBM_SECURITY_TRUST events is staged into
the columns of this new custom_t_trust table. The contents of the
customtable.ddl file should match what is shown in Example 8-18.

Example 8-18 customtable.ddl

create table custom_t_trust
(
 event_id VARCHAR(64) not NULL,
 cars_seq_number BIGINT,
 appliesTo VARCHAR(1024),
 issuer VARCHAR(1024),
 token VARCHAR(1024),
 moduleName VARCHAR(1024),
 action VARCHAR(1024),
 ruleName VARCHAR(1024),
 tokenInfo VARCHAR(1024),
 accessDecision VARCHAR(1024),
 foreign key (cars_seq_number) references cars_t_event on delete
cascade
) in cars_ts_16K;

Source the db2profile for the database instance used for the Common Auditing
and Reporting Service database. In this scenario, the same DB2® instance,
namely LDAPDB2, is used as for the LDAP server instance. Run the DB2
commands to create the new table, as shown in the Example 8-19.

Example 8-19 Creating the new database table.

#. /home/ldapdb2/sqllib/db2profile
db2 connect to eventxml user ldapdb2 using passw0rd

 Database Connection Information

 Database server = DB2/LINUX 8.2.4
 SQL authorization ID = LDAPDB2
 Local database alias = EVENTXML

db2 -tsf customtable.ddl
DB20000I The SQL command completed successfully
 Chapter 8. Technical implementation 315

After the table is created, it is necessary to modify the shredder file so that the
staging utility will be able to extract data from the event XML database and stage
them into the custom table.

Save a copy of the $(CARS_HOME)/server/etc/CARSShredder.conf file that is
provided with the installation of the Common Auditing and Reporting Service.

Copy CARSShredder.conf.custom.template located in
$(CARS_HOME)/server/template as CARSShredder.conf and place it in
$(CARS_HOME)/server/etc/ directory.

Modify the $(CARS_HOME)/server/etc/CARSShredder.conf file to stage
additional event attributes necessary for our custom reports. Add the following
entries to the [security_trust] section, as shown in Example 8-20.

Example 8-20 Additions to CARSShredder.conf.

custom_t_trust, event_id, #GLOBAL_ID
custom_t_trust, cars_seq_number, #RECORD_ID
custom_t_trust, appliesTo, CommonBaseEvent/extendedDataElements
[@name='appliesTo']/values
custom_t_trust, issuer, CommonBaseEvent/extendedDataElements
[@name='issuer']/values
custom_t_trust, token, CommonBaseEvent/extendedDataElements
[@name='token']/values
custom_t_trust, moduleName, CommonBaseEvent/extendedDataElements
[@name='moduleName']/values
custom_t_trust, action, CommonBaseEvent/extendedDataElements
[@name='action']/values
custom_t_trust, ruleName, CommonBaseEvent/extendedDataElements
[@name='rule']/values
custom_t_trust, tokenInfo, CommonBaseEvent/extendedDataElements
[@name='tokenInfo']/values
custom_t_trust, accessDecision, CommonBaseEvent/extendedDataElements
[@name='accessDecision']/values

The full [security_trust] sections should now resemble what is shown in
Example 8-21 on page 317.
316 Understanding SOA Security Design and Implementation

Example 8-21 [security_trust] section of CARSShredder.conf.

...
; EVENT 25. IBM_SECURITY_TRUST
;
[security_trust]
cars_t_event, event_id, #GLOBAL_ID
cars_t_event, cars_seq_number, #RECORD_ID
cars_t_event, eventType, "'AUDIT_TRUST'"
cars_t_event, src_location,
CommonBaseEvent/sourceComponentId/@location
cars_t_event, src_loc_type,
CommonBaseEvent/sourceComponentId/@locationType
cars_t_event, src_comp,
CommonBaseEvent/sourceComponentId/@component
cars_t_event, src_sub_comp,
CommonBaseEvent/sourceComponentId/@subComponent
cars_t_event, src_instance_id,
CommonBaseEvent/sourceComponentId/@instanceId
cars_t_event, app_usr_name,
CommonBaseEvent/extendedDataElements[@name='userInfoList']/children[@na
me='userInfo']/children[@name='appUserName']/values
cars_t_event, usr_domain,
CommonBaseEvent/extendedDataElements[@name='userInfoList']/children[@na
me='userInfo']/children[@name='domain']/values
cars_t_event, usr_loc,
CommonBaseEvent/extendedDataElements[@name='userInfoList']/children[@na
me='userInfo']/children[@name='location']/values
cars_t_event, usr_loc_type,
CommonBaseEvent/extendedDataElements[@name='userInfoList']/children[@na
me='userInfo']/children[@name='locationType']/values
cars_t_event, usr_session_id,
CommonBaseEvent/extendedDataElements[@name='userInfoList']/children[@na
me='userInfo']/children[@name='sessionId']/values
cars_t_event, outcome_result,
CommonBaseEvent/extendedDataElements[@name='outcome']/children[@name='r
esult']/values
cars_t_event, outcome_fail_rsn,
CommonBaseEvent/extendedDataElements[@name='outcome']/children[@name='f
ailureReason']/values
cars_t_event, time_stamp, CommonBaseEvent/@creationTime
cars_t_event, start_time,
CommonBaseEvent/extendedDataElements[@name='startTime'][@type='dateTime
']/values
 Chapter 8. Technical implementation 317

cars_t_event, end_time,
CommonBaseEvent/extendedDataElements[@name='endTime'][@type='dateTime']
/values
custom_t_trust, event_id, #GLOBAL_ID
custom_t_trust, cars_seq_number, #RECORD_ID
custom_t_trust, appliesTo, CommonBaseEvent/extendedDataElements
[@name='appliesTo']/values
custom_t_trust, issuer, CommonBaseEvent/extendedDataElements
[@name='issuer']/values
custom_t_trust, token, CommonBaseEvent/extendedDataElements
[@name='token']/values
custom_t_trust, moduleName, CommonBaseEvent/extendedDataElements
[@name='moduleName']/values
custom_t_trust, action, CommonBaseEvent/extendedDataElements
[@name='action']/values
custom_t_trust, ruleName, CommonBaseEvent/extendedDataElements
[@name='rule']/values
custom_t_trust, tokenInfo, CommonBaseEvent/extendedDataElements
[@name='tokenInfo']/values
custom_t_trust, accessDecision, CommonBaseEvent/extendedDataElements
[@name='accessDecision']/values
;
.....

At this point, the Common Auditing and Reporting Service server and Federated
Identity Manager are ready for auditing trust service events.

Repeat the execution scenario described in 8.5, “Running the scenario” on
page 288 to generate some audit events from the Federated Identity Manager
trust service. The audit events are stored by the CEI server in the event XML
database in a compressed form.

A DB2 stored procedure (IBMCARS_DD_REPORT(id)) that comes with the
Common Auditing and Reporting Service can be used to retrieve raw data from
the event XML database, but its usefulness is limited without further filtering on
the events themselves. Using the staging utility, it is possible to populate the
custom database with only the data needed to create a detailed report.

In this scenario, a third-party reporting tool is not used. The use of the audit data
is via an SQL statement to retrieve the information needed.
318 Understanding SOA Security Design and Implementation

The staging utility is a Java class com.ibm.cars.staging.Staging, which can be
run in:

� Historical mode

All events in a specified time range are staged. For this mode, the start and
end time must be specified.

� Incremental mode

All new events since the last incremental staging are staged. If incremental
staging has never run, all events in the event XML database are staged to the
proper staging tables.

� Prune mode

All events older than a specified time are deleted, or pruned. For this mode
you must specify a time and date and all events created before that date are
pruned.

In order to run the staging utility, it is necessary to define a proper class path.
Example 8-22 shows a sample script, stage.sh, that sets the correct environment
and runs the utility.

Example 8-22 stage.sh - Script to run the Common Auditing and Reporting Service
staging utility

#!/bin/ksh

echo "sourcing WAS setupCmdline.sh "

. /opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin/setupCmdLine.sh

echo "sourcing the db2 profile"
. /home/ldapdb2/sqllib/db2profile

echo "Setting classpath"

CLASSPATH=/opt/IBM/Tivoli/CommonAudit/server/etc:/opt/IBM/Tivoli/Common
Audit/server/lib/ibmcars.jar:/opt/IBM/db2/V8.1/java/db2jcc.jar:/opt/IBM
/db2/V8.1/java/db2jcc_license_cu.jar:/home/ldapdb2/sqllib/java/db2java.
zip:/home/ldapdb2/sqllib/java/db2jcc.jar:/home/ldapdb2/sqllib/function:
/home/ldapdb2/sqllib/java/db2jcc_license_cu.jar:.
export CLASSPATH

echo "staging now..."
 Chapter 8. Technical implementation 319

java com.ibm.cars.staging.Staging -dbpassword $1 -mode incremental

echo "Done."

If you have created this script, it is necessary to invoke it providing the password
of the database instance owner (ldapdb2 in the ITSOBank scenario).

Running this utility can take some time if there are many events to be processed.
A valid output would resemble what is shown in Example 8-23.

Example 8-23 Sample output from the staging script

./stage.sh passw0rd
sourcing WAS setupCmdline.sh
sourcing the db2 profile
Setting classpath
staging now...
CBASU0137I Starting XML shredder initialization.
CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_PASSWORD_CHANGE]
CBASU0140I Processing configuration section [IBM_SECURITY_SIGNING]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_AUTHZ]
CBASU0140I Processing configuration section
[IBM_SECURITY_AUTHN_CREDS_MODIFY]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_COMPLIANCE]
CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_AUTHN_TERMINATE]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_RUNTIME_KEY]
CBASU0140I Processing configuration section [IBM_SECURITY_AUTHN]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_AUTHN]
CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_RESOURCE_ACCESS]
CBASU0140I Processing configuration section [IBM_SECURITY_ENCRYPTION]
CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_AUTHN_CREDS_MODIFY]
CBASU0140I Processing configuration section [IBM_SECURITY_TRUST]
CBASU0140I Processing configuration section [IBM_SECURITY_AUTHZ]
CBASU0140I Processing configuration section [IBM_SECURITY_MGMT_POLICY]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_DATA_SYNC]
CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_MGMT_PROVISIONING]
CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_MGMT_REGISTRY]
320 Understanding SOA Security Design and Implementation

CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_AUTHN_MAPPING]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_MGMT_POLICY]
CBASU0140I Processing configuration section [IBM_SECURITY_FEDERATION]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_RUNTIME]
CBASU0140I Processing configuration section
[IBM_CBA_AUDIT_MGMT_RESOURCE]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_MGMT_CONFIG]
CBASU0140I Processing configuration section
[IBM_SECURITY_AUTHN_TERMINATE]
CBASU0140I Processing configuration section [IBM_SECURITY_RUNTIME]
CBASU0140I Processing configuration section [IBM_CBA_AUDIT_WORKFLOW]
CBASU0138I Starting shredder complete.
CBASU0136I Processing tables cei_t_xml01 / cei_t_xmlx01.
CBASU0111I No events need to be staged or pruned. Exiting.
CBASU0136I Processing tables cei_t_xml00 / cei_t_xmlx00.
CBASU0141I 7 events were staged.

Once the utility has staged some events, it is possible to run an SQL command to
retrieve the information.

Suppose that the users who have successfully or unsuccessfully invoked the
ITSO Web Banking Service need to be identified. The SQL statement in
Example 8-24 has been used in the ITSOBank environment to extract this
information.

Example 8-24 Sample SQL statement

SELECT t1.cars_seq_number, time_stamp, appliesTo, issuer,
accessdecision, moduleName, action, ruleName, tokenInfo FROM
ldapdb2.cars_t_event t1, ldapdb2.custom_t_trust t2 WHERE
t1.cars_seq_number=t2.cars_seq_number AND t2.action='Authorize' BETWEEN
'2006-08-01-11.10.00.000000' AND '2006-08-01-11.30.00.000000'
 Chapter 8. Technical implementation 321

If this command is run from the DB2 Control Center, Figure 8-124 shows the
output.

Figure 8-124 Sample output from audit event query

Using a slightly modified SQL query, trust events for Map or Validate operations
could also be displayed.

8.7 Conclusion

This concludes our end-to-end working example representing the direct
exposure of existing CICS applications as services and securing the exposed
service realization example for the IBM SOA Foundation Service Creation
scenario.
322 Understanding SOA Security Design and Implementation

Appendix A. Introduction to
service-oriented architecture

This appendix introduces service-oriented architecture (SOA) from a business
and architecture perspective.

The appendix is organized into the following sections:

� Service-oriented architecture overview

� Getting started with SOA

� Web services and SOA

A

© Copyright IBM Corp. 2007. All rights reserved. 323

Service-oriented architecture overview
This section includes an overview for a service-oriented architecture (SOA). First,
we define the key terms and components used to describe an SOA. Second, we
review the key challenges and drivers for SOA. Third, we highlight the reasons
why SOA is the right choice now. Lastly, we describe an example scenario for
building a solution using an SOA approach.

Definition of a service-oriented architecture
Figure A-1 highlights the key terms used to describe a service-oriented
architecture.

Figure A-1 Definition of key terms for a service -oriented architecture

A service is representative of a repeatable business task. Services are used to
encapsulate the functional units of an application by providing an interface that is
well defined and implementation independent. Services can be invoked
(consumed) by other services or client applications.

Service orientation defines a method of integrating business applications and
processes as linked services.

Service-oriented architecture (SOA) can be different things to different people
depending on the persons role and context (business, architecture,
implementation, and operational). From a business perspective, SOA defines a
set of business services composed to capture the business design that the
enterprise wants to expose internally, as well as its customers and partners.

... a service?

A repeatable business
task. For example,

check customer credit or
open a new account.

... service oriented
architecture (SOA)?

An IT architectural
style that supports
service orientation.

... service orientation?

A way of integrating your
business as linked

services and the
outcomes that they bring.

... a composition
application?

A set of related and
integrated services that

support a business
process built on an SOA.
324 Understanding SOA Security Design and Implementation

From an architecture perspective, SOA is an architectural style that supports
service orientation. At an implementation level, SOA is fulfilled using a standards
based infrastructure, programming model, and technologies, such as Web
services. From an operational perspective, SOA includes a set of agreements
between service consumers and providers that specify the quality of service, as
well as reporting on the key business and IT metrics.

A composite application is a set of related and integrated services that support a
business process built on an SOA.

Basic components of an SOA
At the most basic level, an SOA consists of the following three components:

� Service provider
� Service consumer
� Service registry

Each component can also act as one of the two other components. For example,
if a service provider needs additional information that it can only acquire from
another service, it acts as a service consumer. Figure A-2 shows the operations
each component can perform.

Figure A-2 SOA components and operations

Service
Consumer

Service
Provider

Service
Registry

Publish1Discover2

Invoke3

- Flight Reservation
- Car Hire
- Hotel Booking
- Mortgage Lending
- Office Supplies

Application-A
- Travel Agent
- Retail Bank
- Publishing House

Application-B
- Airline/Car Rental/Hotel Chain
- Mortgage Specialist/Investment Banks
- Office Supplies Company

Request/Response
 Appendix A. Introduction to service-oriented architecture 325

The service provider creates a service and in some cases publishes its interface
and access information to a service registry.

Each provider must decide which services to expose, evaluate trade-offs
between security and easy availability, and determine how to price the services
or determine how to exploit the value of the services if they are free. The provider
also has to decide in which category the service should be listed, and what sort
of trading partner agreements are required to use the service.

The service registry is responsible for making the service interface and
implementation access information available to service consumers.

The implementers of a service registry must consider the scope with which the
registry will be implemented. For example, there are public service registries
available over the Internet to an unrestricted audience, as well as private service
registries that are only accessible to users within a company-wide intranet.

The service consumer locates (discovers) entries in the service registry and then
binds to the service provider in order to invoke the defined service.

Challenges and drivers for SOA
In March 2006, IBM commissioned a Global CEO survey and found that 78% of
CEOs surveyed believe that integrating business and technology is fundamental
for innovation. Another key finding from this survey was that only one in ten
CEOs believes his or her organization has the ability to be very responsive to
changing market conditions.

As noted from the survey, businesses need the ability to integrate business and
technology rapidly to achieve their business objectives. Businesses also have a
strong desire to leverage the investment of existing business applications and
systems without a complete and costly rewrite. There are many schemes that
exist today to integrate systems within and between enterprises. In most cases
these solutions are proprietary, not easily adaptable, and not responsive to rapid
changes needed by the business.

There is a growing demand for an architecture and technologies that support the
connection or sharing of resources and data in a very flexible and industry-
standard manner. There is a need to further structure large applications into
building blocks that can be reused and composed into business processes.

A shift towards a service-oriented approach standardizes the interaction with
applications and business processes, and allows for more flexibility in the
process. By adopting an SOA approach, existing application functionality can be
turned into reusable services that can be consumed by a new set of client
326 Understanding SOA Security Design and Implementation

applications and users. SOA brings the flexibility vital to realizing innovation and
desired outcomes of business.

Business requirements and drivers for SOA
Figure A-3 highlights the common elements of a business that require flexible
integration.

Figure A-3 Business requirements

Here, we summarize the common business drivers that require rapid and flexible
integration of IT systems:

� Support an agile business model.

The marketplace can be very dynamic and competitive. There is a great need
to have a business model and IT architecture that can rapidly change to
support the business model and its objectives.

Tip: The alignment of IT with business goals can be summarized as
collaborative business and IT decision-making that ensures the following:

� IT investments are made based on business objectives.

� IT service delivery provides a business result.

� Business priorities are assessed with IT capabilities and limitations in
mind.
 Appendix A. Introduction to service-oriented architecture 327

� Reduce cycle time and costs.

Eliminate duplicate systems by reusing existing applications. This has the
effect of reducing the time required to integrate systems, reduces cost, and
simplifies the skill set required to implement the solution.

When applying these concepts to external business processes, enterprises
can move from costly manual transactions to automated transactions with
suppliers.

� Simplify integration across the enterprise.

Many existing IT systems can be inhibitors to change. They are too complex
and, as a result, inflexible. Also, existing integration includes multiple
technologies and point-to-point integration, which is often inflexible. The need
to simplify integration is essential, especially considering the challenges
raised from events such as business mergers and acquisitions.

� Achieve better IT use and return on investment.

Return on investment (ROI) is a comparison of profit earned or lost for the
investment with the amount invested. The investment in IT should facilitate
the business objective and help the business achieve the targeted ROI.

Greater need for a flexible architecture
There are many possible reasons that a flexible business model is needed, such
as business transformation, business process outsourcing, mergers, and
acquisitions. SOA provides a flexible IT infrastructure and on demand operating
environment to support the initiatives of a flexible business model.

For the purposes of comparison with SOA, we highlight the integration
deficiencies of monolithic (silos) and component-based architectures. Next, we
describe the flexibility gained by using an SOA approach.

Historically, business applications were built with a monolithic purpose (silos).
While this kind of architecture can be effective, it is often very difficult to change
and integrate with other applications within the enterprise and between
enterprises (custom coded connections required).

For example, a monolithic business application must periodically synchronize
inventory information, as you can see in Figure A-4 on page 329. In this
approach, pricing information for each Web order is inserted differently based on
the application structure. Lastly, there is no common customer or inventory
database to be shared across the enterprise, or flexibility in the business
processes.
328 Understanding SOA Security Design and Implementation

Figure A-4 Monolithic business application (silos)

Although component-based application architecture does define services as
units of business logic, there are some inherent problems with this approach. The
flow of control is bound into the service logic. The transformation of data formats
is also bound to the service logic. There is tight coupling between the services,
as seen in Figure A-5, thus making this application integration architecture
fragile, giving it a spaghetti-like appearance.

Figure A-5 Component based application

Sales Orders
& Supply

Chain

Pricing

Web
Orders

Inventory

Sales
Orders

Shipments

Customers
Pricing

Web Orders
 Appendix A. Introduction to service-oriented architecture 329

When using an SOA approach (see Figure A-6), the services are defined as units
of business logic separated from the flow of control and routing, and the data
transformation and protocol transformation. This approach provides loose
coupling, thus making this approach much more flexible for integration.

Figure A-6 SOA-based application

Why SOA now
In the previous section, we explained how a service-oriented architecture
provides the flexibility to align you IT with your business goals. In this section, we
explain why SOA is the right choice now. When there is a shift in architecture, it is
important to understand why a shift is needed, and evaluate the maturity level of
the architecture that supports adoption.

We highlight the following key reasons why SOA is the right choice now:

� Business driving a shift in IT
� Enables flexibility of both IT and business
� Open standards and platforms
� Best practices
� Software for SOA

Business driving a shift in IT
Table A-1 on page 331 provides a summary of business needs that are driving a
shift in IT from function-oriented to process- and service-oriented to achieve
flexibility.

Inventory

Sales
Orders

Shipments

Customers
Pricing

Web Orders
330 Understanding SOA Security Design and Implementation

Table A-1 Shift in IT driven by business

Enables flexibility of both IT and business
SOA enables flexibility of both IT and business through flexible connectivity of
business services:

� Represent applications or data as a service with a standardized interface.

� Enable applications as services to exchange structured information
(messages, documents, and other business objects).

� Mediate the message exchange through an Enterprise Service Bus (ESB).

� Provide on-ramps to the bus for existing applications and systems.

From function-oriented To process and service-oriented

Build for permanence Build to change

One long development cycle Incremental development cycle

Application silos Orchestrated solutions that work together

Tightly coupled Loosely coupled

Structure applications using components
and objects

Structure applications using services

Known implementation Implementation abstraction
 Appendix A. Introduction to service-oriented architecture 331

Open standards and platforms
Another key reason that SOA is the right choice for your enterprise, is that it is
based on open standards and platforms, as summarized in Figure A-7. These
open standards are widely adopted across the industry.

Figure A-7 Summary of SOA open standards and platforms

IBM continues to be a leader in SOA based technologies, products, and
solutions. IBM is a key partner in helping define the specifications and
technologies used to implement an SOA, such as Web Services, Service
Component Architecture (SCA) and Service Data Objects (SDO).

Best practices
Best practices are used to deliver a particular outcome by leveraging the
knowledge learned from experience. Best practices include methodologies,
techniques, guidelines, and patterns. By leveraging the knowledge captured in
best practices listed here, your project can be run with less problems and be
deployed more rapidly.

Here is a list of best practices in use today:

� SOA Adoption

The SOA adoption process provides guidelines that assist in developing a
roadmap towards a successful migration to an SOA.

� SOA Governance

SOA Governance helps clients extend the planned SOA across the enterprise
in a controlled manner.

IBM is the #1
commercial supporter

Open Operating
System Choice Includes Linux

IBM contributed technology to
J2EE & helped form the
Apache Software Foundation

Open Application
Server J2EE and Apache

IBM led or co-led the creation
of SOAP, WSDL, UDDI,
WS-Security, BPEL4WS …

Open Application
Integration Web Services

IBM donated $40M of
initial technology

Open Development
Integration Platform Eclipse
332 Understanding SOA Security Design and Implementation

� Methodology

A well-established set of methodologies can help to break down complex
problems into smaller and more manageable pieces that are easier to analyze
and, therefore, develop solutions. Example methodologies include the
Component Business Model™ (CBM), IBM Service Integration Maturity
Model (SIMM), Rational Unified Process® (RUP®), and Service-Oriented
Modeling and Architecture (SOMA).

� Process modeling

Process modeling is used to define business processes. A processes flow is a
sequence of tasks and decision elements with multiple branches, linked by
connectors.

� Model-driven development

Model-driven development is a style of software development where the
primary software artifacts are models from which code and other artifacts are
generated. A model is a description of a system from a particular perspective,
omitting irrelevant detail so that the characteristics of interest are more clear.

� Reference architecture

A reference architecture provides the underlying architecture components
used to overcome the initial problems of finding an architecture with which to
begin. The most notable reference architecture for SOA is the IBM SOA
Foundation.

� Patterns

As a general principle, starting from the beginning each time should be
avoided. The use of patterns is one specific form of capturing and reusing
reoccurring design elements. For example, the Patterns for e-business
include reusable architecture and implementation assets used to accelerate
the creation of a solution design and implementation.

Software for SOA
The marketplace offers many software choices for SOA. IBM is the market leader
in providing mature software and solutions for SOA.

SOA approach for building a solution
This section includes an example SOA approach for building a solution. In this
example, the company wants to implement a new business process to support
customers who are placing orders from an Internet Web site.
 Appendix A. Introduction to service-oriented architecture 333

The company has existing retail, warehouse, and billing systems, as seen in
Figure A-8. The company would like to build new business processes by reusing
the functionality provided by the existing systems rather than having to write new
applications or new proprietary interfaces to the existing systems.

Figure A-8 Service-oriented approach to building systems

If the company has already adopted an SOA approach, it will have defined the
interfaces to its existing systems in terms of the functions or services that they
offer in support of building business processes. The defined interfaces make
building the new system Web front end very simple. The company simply needs
to develop an application that invokes (consumes) services to complete the new
business process.

By using an SOA approach, companies are able to build horizontal business
processes that integrate systems, people, and processes from across the
enterprise quickly and easily in response to changing business needs.

Business
Process

Bill
Customer

Defined
Services

Receive
Order

Service

Customer
Billing

Service

Fulfill
Order

Service

Restock
Service

IT
Systems

Web
Application

Retail
System

CRM
Warehouse

System

Receive
Order

Fulfill
Order Restock
334 Understanding SOA Security Design and Implementation

Getting started with SOA
In this section, we explore the question of how to get started with SOA from both
a business and an architectural perspective.

SOA adoption
SOA adoption provides an iterative and incremental process, and guidelines that
assist in developing a road map towards a successful migration to SOA. As seen
in Figure A-9, the SOA adoption process begins by defining the scope of possible
projects that fit the criteria for being a good fit for a service-oriented architecture.

Figure A-9 SOA adoption process

There are two primary perspectives, including strategic vision and project plan.
The strategic vision perspective describes the business and IT statement of
direction, which can be used as a guideline for decision making, organizational
buy-in, and standards adoption. The project plan perspective (or tactical
perspective) refers to implementation projects to meet immediate needs of the
current business drivers.

Defining the strategic vision starts with assessing the business current maturity
across multiple dimensions including business, methodology, and technical. The
IBM Service Integration Maturity Model (SIMM) can be used to help in this
assessment. If you are more comfortable with starting with a self assessment,
you can use the IBM online SOA Assessment Tool:

http://www.ibm.com/software/solutions/soa/soaassessment/index.html
 Appendix A. Introduction to service-oriented architecture 335

http://www.ibm.com/software/solutions/soa/soaassessment/index.html

After the assessment has been performed, the business must establish targets
for where they want to be. This includes documenting important goals and
metrics for transition across the maturity dimensions. In addition, it is important to
have regular checkpoints to reassess the vision.

IBM SOA entry points
As seen in Figure A-10, SOA connects people, processes, and information. To
help customers get started with SOA, IBM has defined three core business-
centric starting points (people, processes, and information), and two IT-centric
starting points (connectivity and reuse). These are known as the SOA entry
points.

Figure A-10 SOA connects people, processes, and information

Through business-centric SOA, companies can tie IT projects to their business
needs directly by addressing the companies immediate pain points.

� People: Productivity through collaboration

Improve people productivity by aggregating views that deliver information and
interaction in the context of a business process. This enables human and
process interaction with consistent levels of service.

Wired and wireless devices
Global 24x7 access
and real-time collaboration needs
Unconsolidated and untailored
information

Distributed
data environments
Heterogeneous data
types and sources
Untransformed
and inconsistent data

Development and
integration of application
assets
Application silos
(existing and packaged
applications)
Heterogeneous
internal and external
systems
336 Understanding SOA Security Design and Implementation

Start by building a view of a key business process by aggregating information
to help people make better decisions. The next steps are tighter management
of performance with alert-driven dashboards that link to more processes.

� Process: Business process management for continuos innovation

Deploy innovative business models quickly with reusable and optimized
processes to adapt the enterprise to changing opportunities and threats.

Start by modeling an under-performing process, remove bottlenecks, then
simulate and deploy the optimized process. Next, create flexible linkages
between multiple processes across the enterprise and outside the firewall to
suppliers and partners. Then, monitor the process to measure and track
performance.

� Information: Delivering information as a service

Improve business insight and reduce risk with trusted information services
delivered in-line and in context.

Start by discovering and understanding information sources, relationships,
and the business context. The next steps are to expand the volume and scope
of the information delivered as a service across internal and external
processes.

The IT-centric entry points to help the enterprise integrate the business-centric
SOA entry points are as follows:

� Connectivity: Underlying connectivity to enable business centric SOA

Connectivity has always been a key requirement. SOA brings new levels of
flexibility. As well as acting as a building block for additional SOA initiatives,
connectivity provided through SOA has distinct, stand-alone value.

� Reuse: Create flexible, service base business applications

Cut costs, reduce cycle times and expand access to core applications through
reuse. Analysts estimate it is up to five times less expensive to reuse existing
applications than to write new applications.

Use portfolio management to consider which assets you need to run your
company. Identify high-value existing IT assets and service-enable them for
reuse. Satisfy remaining business needs by creating new services. Finally,
create a service registry and repository to provide centralized access and
control of these reusable services.
 Appendix A. Introduction to service-oriented architecture 337

IBM SOA Foundation
The IBM SOA Foundation is an integrated, open standards based set IBM
software, best practices and patterns to provide you with the architecture
knowledge to get started with SOA. The key elements of the IBM SOA
Foundation are the SOA life cycle (model, assemble, deploy, and manage),
reference architecture, programming model, and SOA scenarios.

The SOA Foundation scenarios (or simply SOA scenarios) are representative of
common scenarios of use of IBM products and solutions for SOA engagements.
The SOA scenarios quickly communicate the business value, architecture, and
IBM open standards-based software used within the SOA scenario. The concept
of realizations are used to provide more specific solution patterns and IBM
product mappings within the SOA scenarios.

The SOA scenarios can be used as a reference architecture implementation
(starting point) to accelerate the SOA architecture and implementation of your
scenario. The SOA scenarios can be implemented using an incremental SOA
adoption approach, whereby a customer can incrementally add elements of other
SOA scenarios to the environment to achieve their business objectives.

Web services and SOA
This section describes the core technologies of Web services, as well as how
Web services are used to implement an SOA.

Web services technologies
Web services technology is a collection of standards (or emerging standards)
that can be used to implement an SOA. Web services technology is vendor- and
platform-neutral, interoperable, and supported by many vendors today.

Web services are self-contained, modular applications, that can be described,
published, located, and invoked over networks. Web services encapsulate
business functions, ranging from a simple request-reply to full business process
interactions. The services can be new or wrap around existing applications.

Note: For more detailed information about Web services, we recommend you
read WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461.
338 Understanding SOA Security Design and Implementation

Core elements
The following are the core technologies used for Web services.

� Extensible Markup Language (XML)

XML is the markup language that underlies most of the specifications used for
Web services. XML is a generic language that can be used to describe the
content in a structured way, separated from its presentation to a specific
device.

� Simple Object Access Protocol (SOAP)

SOAP is a specification for the exchange of structured XML-based messages
between the service provider, service consumer, and service registry,
consisting of three parts:

– The format of a SOAP message is an envelope containing zero or more
headers and exactly one body. The envelope is the top element of the XML
document, providing a container for control information, the addressee of a
message, and the message itself. Headers contain control information,
such as quality-of-service attributes. The body contains the message
identification and its parameters.

– Encoding rules are used for expressing instances of application-defined
data types. SOAP defines a programming language independent data
type schema based on an XML Schema Descriptor (XSD), plus encoding
rules for all data types defined to this model.

– RPC representation is the convention for representing remote procedure
calls (RPC) and responses.

SOAP, in principle, is a protocol-independent transport. Consequently, it can
potentially be used in combination with a variety of protocols such as HTTP,
JMS, SMTP, or FTP. Currently, the most common way of exchanging SOAP
messages is through HTTP, which is also the only protocol supported by WS-I
Basic Profile 1.0.

� Web Services Description Language (WSDL)

WSDL is an XML-based interface and implementation description language.
A WSDL document contains the following main elements:

– Types is the container for data type definitions using a type system, such
as an XML Schema.

– An abstract, typed definition of the data being communicated, a message
can have one or more typed parts.

– A port type is an abstract set of one or more operations supported by one
or more ports.
 Appendix A. Introduction to service-oriented architecture 339

– An operation is an abstract description of an action supported by the
service that define the input and output message and optional fault
message.

– The binding is a concrete protocol and data format specification for a
particular port type. The binding information contains the protocol name,
the invocation style, a service ID, and the encoding for each operation.

– The service as a collection of related ports.

– The port is a single endpoint, an aggregation of a binding and a network
address.

� Universal Description, Discovery, and Integration (UDDI)

UDDI is both a client-side API and a SOAP-based server implementation that
can be used to store and retrieve information about service providers and
Web services.

Standards
Figure A-11 on page 341 displays a stacked view of Web services technologies.
Most of the technologies displayed have been standardized. Since
interoperability is a key goal of Web services, an open industry organization
known as the Web services Interoperability Organization (WS-I)) has been
created to allow interested parties such as IBM and Microsoft to work together to
maximize interoperability between Web services implementations. For more
information about WS-I, visit their Web site:

http://ws-i.org

Note: Web services standards are evolving at a rapid pace. For the most
current information, we recommend that you reference the Web services
standards information online at sites such as IBM developerWorks:

http://www.ibm.com/developerworks/webservices/standards/
340 Understanding SOA Security Design and Implementation

http://www.ibm.com/developerworks/webservices/standards/
http://ws-i.org

Figure A-11 Stack view of Web services technology

Web services for J2EE
Web services for J2EE V1.1 (WSEE) support is included in the J2EE V1.4
specification, which is used by WebSphere Application Server V6. The Java API
for XML-based RPC (JAX-RPC) provides the programming model for
SOAP-based applications by abstracting the runtime details and providing
mapping services between Java and WSDL.

Exposing Web services
The port component is fundamental part of a Web service used to define the
programming model artifacts that make the Web service portable. The
programming model includes:

� A WSDL definition provides the description of a Web service.

� The service endpoint interface (SEI) defines the operations of the Web
service.

� A service implementation bean implements the SEI methods to provide the
business logic of the Web service.

� The security role references provide instance-level security checks across
different modules.

WS-Policy

WS-Security
family of

specifications

UDDI

Other protocols
Other services

Business Process Execution Language (BPEL)

WSDL

SOAP, SOAP Attachments

XML, XML Infoset

Transports

WS-Coordination

WS-Transactions

WS-Reliable
Messaging

WS-Distributed
Management

Description
and Discovery

Messaging
and Encoding

Transport

Quality
of Service

Business
Processes
 Appendix A. Introduction to service-oriented architecture 341

From a server programming model perspective, there are primarily two types of
J2EE application artifacts exposed as Web services (service provider):

� Stateless session EJB (EJB container)

� JAX-RPC servlet-based service that invokes a JavaBean, known as a service
endpoint (Web container)

There are three principal approaches to generating a Web service, depending on
the elements that are used to start the creation of the service:

� An existing application is used to generate the Web service, which includes a
service wrapper used to expose application functionality. This is known as the
bottom-up approach.

� An existing service definition WSDL is used to generate a new application for
a specific programming language and model. This is known as the top-down
approach.

� An existing group of already generated Web services provides a new
combination of functionality (multiple services). Composing a new Web
service in this way might include the use of workflow technologies.

Invoking Web services
The J2EE client container provides the WSEE runtime used by a Web services
client application, to access and invoke Web service methods. The J2EE client
container is responsible for the JNDI name to service implementation mapping.

From a client application programming perspective, there are three mechanisms
used to invoke a Web service (service consumer) from the Web service client
application:

� A static stub is created before being deployed to the runtime environment.
This requires complete knowledge of the WSDL.

� A dynamic proxy class is created during runtime. Only a partial WSDL
definition is required (port type and bindings).

� A dynamic invocation interface does not require WSDL knowledge. The
signature or service name are unknown until runtime.

The task to build or generate a Web service client (service consumer) depends
on the methods of how the client is binding to a Web service server. The client
uses a local service stub or proxy to access the remote server and service. The
WSDL document is used to generate or set up the particular stub or proxy. The
stub or proxy knows at request time how to invoke the Web service based on the
binding information.
342 Understanding SOA Security Design and Implementation

Web services and SOA
Web services technology is a collection of standards (or emerging standards)
that can be used to implement a service-oriented architecture (SOA). That is not
to say that Web services and SOA are intrinsically linked, because they can be
implemented separately.

In fact, many significant SOAs are proprietary or customized implementations
that are based on reliable messaging and Enterprise Application Integration
middle ware (for example, IBM WebSphere MQ and IBM WebSphere Business
Integration Message Broker) do not use Web services technologies. Also, most
existing Web services implementations consist of point-to-point integrations that
address a limited set of business functions between a defined set of cooperating
partners.

The logical links between Web services and SOA are:

� Web services provide an open-standard model for creating explicit,
implementation-independent descriptions of service interfaces.

� Web services provide communication mechanisms that are
location-transparent and interoperable.

� Web services are evolving, through Business Process Execution Language
for Web Services (WS-BPEL), document-style SOAP, Web services Definition
Language (WSDL), to support the implementation of well-designed services
that encapsulate and model reusable function in a flexible manner.
 Appendix A. Introduction to service-oriented architecture 343

344 Understanding SOA Security Design and Implementation

Appendix B. IBM SOA Foundation

If you are not familiar with the concepts of SOA, read Appendix A, “Introduction to
service-oriented architecture” on page 323 before reading this appendix.

This chapter discusses the IBM SOA Foundation, an integrated, open standards
based set of IBM software, best practices, and patterns designed to provide what
you need to get started with SOA from an architecture perspective.

The key elements that we discuss in this chapter are:

� SOA life cycle (model, assemble, deploy, and manage)
� Reference architecture
� SOA scenarios overviews for the rest of this IBM Redbook

B

© Copyright IBM Corp. 2007. All rights reserved. 345

SOA Foundation overview
The SOA Foundation scenarios (or simply SOA scenarios) are representative of
common scenarios of use of IBM products and solutions for SOA engagements.
The SOA scenarios communicate the business value, architecture, and IBM
open standards-based software used within the SOA scenario.

The SOA scenarios can be used as a reference architecture (starting point) to
accelerate the SOA architecture and implementation of your customer scenario.
The SOA scenarios can be implemented using an incremental SOA adoption
approach, whereby a customer can incrementally add elements of other SOA
scenarios to the environment to achieve their business objectives.

To gain a a better understanding of the IBM SOA Foundation, we explore the
following defining elements:

� SOA Foundation life cycle
� SOA Foundation Reference Architecture
� SOA Foundation scenarios

SOA Foundation life cycle
IBM customers have indicated that they think of SOA in terms of a life cycle. As
seen in Figure B-1 on page 347, the IBM SOA Foundation includes the following
life cycle phases:

� Model
� Assemble
� Deploy
� Manage

There are a couple of key points to consider about the SOA life cycle:

First, the SOA life cycle phases apply to all SOA projects. Second, the activities
in any part of the SOA life cycle can vary in scale and the level of tooling used
depending on the stage of adoption.

Note: For a more detailed explanation of the SOA Foundation, refer to IBM
SOA Foundation, An Architectural Introduction and Overview V1.0, found at:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws
-soa-whitepaper.pdf
346 Understanding SOA Security Design and Implementation

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitepaper.pdf

Figure B-1 IBM SOA Foundation life cycle

Model
Modeling is the process of capturing the business design from an understanding
of business requirements and objectives. The business requirements are
translated into a specification of business processes, goals, and assumptions for
creating a model of the business. Many businesses do not go through a formal
modeling exercise. In some case, businesses that do perform modeling use
primitive techniques such as drawing the design in Visio® or using text
documents.

Capturing the business design using a sophisticated approach that includes the
use of specialized tooling lets you perform what-if scenarios with various
parameters the business might experience. The process can then be simulated
using those parameters to predict the effect that process will have on the
business and IT systems. If the achieved results do not match the business
objectives, then the process definition can be refined.

The model also captures key performance indicators that are important
measurements of your business, such as business metrics. For example, these
measurements could include a measure of the new accounts that you have
opened in a given month. These key performance indicators are built into the
assembly of the application. In addition, you can monitor the indicators in
production, capturing critical data to measure if the objectives are being met.

Discover
Construct & Test
Compose

Gather requirements
Model & Simulate
Design

Integrate people
Integrate processes
Manage and integrate
information

Manage applications & services
Manage identity & compliance
Monitor business metrics

Financial transparency
Business/IT alignment
Process control
 Appendix B. IBM SOA Foundation 347

Assemble
The business design is used to communicate the business objectives to the IT
organization that will assemble the information system to implement the design.
The enterprise architect works closely with the business analyst to convert the
business design into a set of business process definitions, as well as activities
used to derive the required services from the activity definitions. The enterprise
architect and business analyst work with the software architect to fully develop
the design of the services.

While you are resolving the design and implementation of the modeled business
processes and services, you should perform a search of existing artifacts and
applications to find components that meet the design requirements. Some
applications will fit perfectly. Some applications will have to be refactored, and
some will have to be augmented to meet the design requirements.

These existing assets should be rendered as services for assembly into
composite applications. Any new services required by the business design must
be created. Software developers should use the SOA programming model to
create these new services.

Lastly, the assemble phase includes applying a set of policies and conditions to
control how your applications operate in the production runtime environment. For
example, these policies and conditions include business and government
regulations. In addition, the assemble phase includes critical operational
characteristics such as packaging deployment artifacts, localization constraints,
resource dependency, integrity control, and access protection.

Deploy
The deploy phase of the life cycle includes a combination of creating the hosting
environment for the applications and the deployment tasks of those applications.
This includes resolving the application’s resource dependencies, operational
conditions, capacity requirements, and integrity and access constraints.

A number of concerns are relevant to construction of the hosting environment,
including the presence of the already existing hosting infrastructure supporting
applications and pre-existing services. Beyond that, you must consider
appropriate platform offerings for hosting the user interaction logic, business
process flows, business-services, access services, and information logic.
348 Understanding SOA Security Design and Implementation

Manage
The manage phase includes the tasks, technology and software used to manage
and monitor the services and business processes that are deployed to the
production runtime environment.

Monitoring is a critical part of ensuring the underlying IT systems and application
are up and running to maintain service availability requirements. Monitoring
includes these activities:

� Monitoring performance of service requests and timeliness of service
responses

� Maintaining problem logs to detect failures in various services and system
components, as well as localizing failures and restoring the operational state
of the system

Managing the system also involves performing routine maintenance,
administering and securing applications, resources and users, and predicting
future capacity growth to ensure that resources are available when the demands
of the business warrant using them. The security domain includes such topics as
authentication, single sign-on, authorization, federated identity management, and
user provisioning.

The manage phase also includes managing the business model, and tuning the
operational environment to meet the business objectives expressed in the
business design, and measuring success or failure to meet those objectives.
SOA is distinguished from other styles of enterprise architecture by its correlation
between the business design and the software that implements that design, and
its use of policy to express the operational requirements of the business services
and processes that codify the business design. The manage phase of the life
cycle is directly responsible for ensuring those policies are being enforced, and
for relating issues with that enforcement back to the business design.

Governance
SOA Governance is critical to the success of any SOA project. Governance helps
clients extend the planned SOA across the enterprise in a controlled manner.
SOA Governance has four core objectives or challenges:

� Establish decision rights.
� Define high value business services.
� Manage the life cycle of your assets.
� Measure effectiveness.
 Appendix B. IBM SOA Foundation 349

SOA Foundation Reference Architecture
This section describes the SOA Foundation Reference Architecture, which
includes the components and middle ware services used by applications in the
runtime environment.

Figure B-2 depicts the SOA Foundation Reference Architecture solution view
used to decompose an SOA design. SOA puts a premium on the role of the
Enterprise Architect, who is responsible for spanning between the business
design and the information system that codifies that design.

Figure B-2 SOA Foundation Reference Architecture: Solution view

While this flow describes a top-down approach, flow variations include a
bottom-up approach, and the more common meet-in-the-middle approach. When
taking a top-down approach, the enterprise architect starts by identifying the
business processes and business services used by the business users. The
business users are consumers of the processes and services. Business
processes should be treated as compositions of other business processes and
services, and therefore should be separated into their subordinate subprocesses
and services.

Atomic Service Composite Service Registry

Services
atomic and composite

Operational Systems

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata Architecture (m

eta-data) &
B

usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
350 Understanding SOA Security Design and Implementation

Services and business processes are then detailed into service components.
Service components include a detailed set of definition metadata used to
describe the service to the information system. Services can be aggregated into
module assemblies. The module assemblies are used to establish related design
concerns, and begin the planning to determine what teams will collaborate to
implement the related services to be deployed as a single unit.

The resulting set of business process definitions, services, and schemas make
up the logical architecture of the application. The enterprise architect then needs
to map that logical architecture to a physical architecture.

We have included a summary description for each of the services found in the
logical architecture displayed in Figure B-3. The services found in the center
(Interaction, Process, Information, Partner, Business Application, and Access)
are the core set of services used by application within the runtime environment
when deployed. The other outer services displayed are used in support of the
core services.

Figure B-3 SOA Foundation Reference Architecture: Middleware Services view

Business Innovation & Optimization Services
Facilitates better decision-making

with real-time business information

Interaction Services
Enables collaboration

between people,
processes & information

Process Services
Orchestrate and

automate business
processes

Information Services
Manages diverse

data and content in a
unified manner

Facilitates communication ESB between services

Partner Services
Connect with trading

partners

Business App Services
Build on a robust,

scaleable, and secure
services environment

Access Services
Facilitates interactions

with existing information
and application assets

Infrastructure Services
Optimizes throughput,

availability and performance

Integrated
environment

for design
and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

D
ev

el
op

m
en

t S
er

vi
ce

s

IT
 S

er
vi

ce
M

an
ag

em
en

t

 Appendix B. IBM SOA Foundation 351

Core components of the logical architecture
This section includes a brief description on the following core components of the
logical architecture:

� Interaction services
� Process services
� Business application services
� Information services
� Access services
� Partner services

Interaction services
Interaction services provide the capabilities required to deliver IT functions and
data to users, meeting their specific preferences.

Process services
Process services provide the control capabilities required to manage the flow
and interactions of multiple services in ways that implement business processes.

Business application services
Business application services are called by service consumers. Service
consumers include other components in the logical architecture such as portal or
a business processes.

Information services
Information services provide the capabilities necessary to federate, replicate, and
transform disparate data sources.

Access services
Access services provide bridging capabilities between core applications,
prepackaged applications, enterprise data stores, and the ESB to incorporate
services that are delivered through existing applications into an SOA.

Partner services
Partner services provide the document, protocol, and partner management
capabilities for business processes that involve interactions with outside partners
and suppliers.
352 Understanding SOA Security Design and Implementation

Supporting components of the logical architecture
This section includes a brief description of the supporting components of the
SOA Foundation logical architecture used in support of the core components:

� Enterprise Service Bus
� Business innovation and optimization services
� Development services
� IT service management
� Infrastructure services

Enterprise Service Bus
The Enterprise Service Bus (ESB) or simply bus, provides an infrastructure that
removes the direct connection dependency between service consumers and
providers. Consumers connect to the bus and not the provider that actually
implements the service. This type of connection further decouples the consumer
from the provider. A bus also implements further value add capabilities, such as
security and delivery assurance. It is preferred to implement these capabilities
centrally within the bus at an infrastructure level rather than within the
application. The primary driver for an ESB, however, is that it increases
decoupling between service consumers and providers.

Although it is relatively straight forward to build a direct link between a consumer
and provider, these links can lead to an interaction pattern that consists of
building multiple point-to-point links that perform specific interactions. With a
large number of interfaces, this quickly leads to the build up of a complex
spaghetti of links with multiple security and transaction models. When routing
control is distributed throughout the infrastructure, there is typically no consistent
approach to logging, monitoring, or systems management. This type of
environment is difficult to manage or maintain and inhibits change.

Business innovation and optimization services
Business innovation and optimization services are primarily used to represent
the tools and the metadata structures for encoding the business design, including
the business policies and objectives.

Note: An ESB can be thought of as an architectural pattern, with an
implementation to match the deployment needs. There are two IBM ESB
products:

� IBM WebSphere Enterprise Service Bus
� IBM WebSphere Message Broker

In addition, there are a number of products that extend the capabilities of
these ESBs, including DataPower XML Security Gateway XS40.
 Appendix B. IBM SOA Foundation 353

Business innovation and optimization services exist in the architecture to help
capture, encode, analyze, and iteratively refine the business design. The
services also include tools to help simulate the business design. The results are
used to predict the effect of the design, including the changes the design will
have on the business.

Development services
Development services encompass the entire suite of architecture tools,
development tools, visual composition tools, assembly tools, methodologies,
debugging aids, instrumentation tools, asset repositories, discovery agents, and
publishing mechanisms needed to construct an SOA based application.

IT service management
After the application has been deployed to the runtime environment, it must be
managed along with the IT infrastructure on which it is hosted. IT service
management represents the set of management tools used to monitor your
service flows, the health of the underlying system, the utilization of resources, the
identification of outages and bottlenecks, the attainment of service goals, the
enforcement of administrative policies, and recovery from failures.

Infrastructure services
Infrastructure services form the core of the information technology runtime
environment used for hosting SOA applications. These services provide the
ability to optimize throughput, availability, performance, and management.

SOA Foundation scenarios
The SOA Foundation scenarios (simply SOA scenarios) are representative of
common scenarios of IBM products and solutions for SOA engagements. The
SOA scenarios quickly communicate the business value, architecture, and IBM
open standards-based software used within the SOA scenario. The SOA
scenarios can be implemented as part of an incremental adoption of SOA
growing from one scenario to using elements of multiple scenarios together. The
concept of realizations are used to provide more specific solution patterns and
IBM product mappings within the SOA scenarios.

The SOA scenarios can be used as a reference architecture implementation
(starting point) to accelerate the SOA architecture and implementation of your
customer scenario.

Figure B-4 on page 355 displays the SOA scenarios (Service Creation, Service
Connectivity, Interaction and Collaboration Services, Business Process
354 Understanding SOA Security Design and Implementation

Management, and Information as a Service), and the relationship between the
scenarios.

Figure B-4 SOA scenarios and entry points

We have included examples of how the scenarios can be used together and
adopted incrementally. For example, it is common that the other scenarios will
include service creation and often want connectivity. In addition, the scenarios
can be used together, such as a portal accessing a business process or a portal
accessing an information service through an ESB from a service consumer.

SOA Design, SOA Governance, SOA Security, and SOA Management are used
in each of the SOA scenarios based on customer requirements.

SOA Design is focused on service modeling and service design. The service
model is an abstraction of the IT services implemented within an enterprise and
supporting the development of one or more service-oriented solutions. It is used
to conceive and document the design of the software services. It is a
comprehensive, composite work product encompassing all services, providers,
specifications, messages, collaborations, and relationships between them.

The service design model extends the standard Rational Unified Process (RUP)
design model by adding the service components. The RUP for SOA service
design includes service identification and modeling techniques derived from IBM
 Appendix B. IBM SOA Foundation 355

Service-Oriented Modeling and Architecture (SOMA). The service components
artifact is intended for use in describing the realization of a service specification.
A service component can provide the realization for one or more services by the
realization of multiple service specifications. The set of model elements on the
inside of the component represent the concrete realization of the structural,
behavioral, and policy contract described by these service specifications.

SOA Governance is critical to the success of any SOA project. Governance helps
clients extend the planned SOA across the enterprise in a controlled manner.
SOA Governance has four core objectives or challenges:

� Establish decision rights
� Define high value business services
� Manage the life cycle of assets
� Measure effectiveness

Every SOA implementation encompasses the need of a security architecture that
enables secure business transactions across and within enterprises. The SOA
Security reference architecture includes security services such as identity
services, authentication services, authorization and privacy services, message
protection services, and audit services. Other important factors of this reference
architecture include security policy and security management infrastructures. For
more detailed information about the SOA security reference architecture, refer to
the IBM Redbook Understanding SOA Security Design and Implementation,
SG24-7310.

SOA-based composite applications span the architectural layers of the SOA
Foundation Reference Architecture Solution View (see Figure B-2 on page 350).
SOA composite applications require a mind shift from a silos-based,
application-management approach for two key reasons:

� There is a need for a management approach and tooling that covers the
end-to-end view of transactional performance and availability of the
composite application.

� Second, it is important to understand the relationship of service consumers
and providers for composite applications. The importance of monitoring the
availability and performance of common services increases when reused by
service consumers that depend on this functionality.

SOA Management provides best practices and software for managing and
monitoring composite applications and supporting infrastructure across the
architectural layers. This includes managing and monitoring the services layer
(providers and consumers), transactional performance, middle ware, and
operational systems with specific metrics to ensure Service Level Agreements
(SLAs) meet the defined business objectives.
356 Understanding SOA Security Design and Implementation

We have provided a summary for each of the following SOA scenarios:

� Service Creation scenario
� Service Connectivity scenario
� Interaction and Collaboration Services scenario
� Business Process Management scenario
� Information as a Service scenario

Service Creation scenario
The Service Creation scenario (service provider and service consumer) is used
to demonstrate exposing application functionality of an existing application or
new business logic as a service. The services can then be consumed by other
services or client applications within and between enterprises. The key driver for
this scenario is the reuse of existing or new application functions as services.

There are many possible examples to illustrate the Service Creation scenario.
We have included a summary of the following four common realizations of the
Service Creation scenario:

� Directly expose existing applications as services
� Indirectly expose existing applications with service
� Create an EJB Web service from WSDL
� Consume services from third-party service providers

One of the goals of enterprise transformation is to enable access to Enterprise
Information System (EIS) applications as services, with the objective of
leveraging the investment of existing business applications and systems. By
adopting an SOA approach, the EIS application functionality can be turned into
reusable services that can be consumed by a new set of client applications and
users.

The Service Creation scenario includes two methods of exposing EIS
applications as services, known as direct and indirect exposure. We use CICS as
an example of an existing EIS application for both the direct and indirect
exposure realization examples.

Directly expose existing applications as services
In this realization, we expose existing applications directly as services. The
existing application can be a wide range of application types, such as an EIS (for
example, CICS or IMS), J2EE application, SAP®, and so forth. A key distinction
for this realization is that the service interface to be exposed is defined by the
existing application. This approach to creating a service is known as bottom-up.
 Appendix B. IBM SOA Foundation 357

We use CICS as an example of an existing EIS application. In this realization
example, we access applications hosted by CICS Transaction Server directly as
Web services.

The core IBM products used for this example realization are:

� Assemble: WebSphere Developer for IBM System z™ V6.0.1
� Deploy:

– CICS Transaction Server V3.1
– WebSphere MQ V6

Additionally, the following IBM products can be considered, depending on
specific customer requirements:

� Manage: Tivoli OMEGAMON® XE for CICS V3.10
� Governance: WebSphere Service Registry and Repository

Indirectly expose existing applications with service
components
For this realization, we expose existing application functionality indirectly with
service components. In this realization, business alignment is achieved by
defining the service interface (WSDL) independently of existing assets. This
approach to creating a service is known as top-down. In practice, the
implementation of the service might be more completely described as a
combination of top-down and meet-in-the-middle.

We use CICS as an example of an existing EIS. In this realization example, we
expose existing COMMAREA applications hosted by CICS Transaction Server
indirectly by creating middle-tier Web services to access CICS. The middle-tier
Web service wraps a session EJB that uses the CICS ECI resource adapter to
communicate with the CICS Transaction Gateway (CTG) to access CICS
Transaction Server. The CICS ECI resource adapter is a JCA adapter for
WebSphere Application Server packaged with the CTG.

WebSphere Service Registry and Repository: IBM currently intends to
make available in the second half of 2006 a WebSphere service registry and
repository capability that will allow customers to securely register business
services for finding, publishing, and notifying changes to SOA infrastructure
components, such as enterprise service bus and process servers. Customers
will also be able to house the metadata about business services in managing
the life cycle of a service in SOA. The new capabilities will also include a
model for governance to provide guidance and oversight for a SOA project.

While this is our intention, all statements regarding IBM plans, directions, and
intent are subject to change or withdrawal without notice.
358 Understanding SOA Security Design and Implementation

The core IBM products used for this example realization are as follows:

� Assemble: Rational Application Developer V6.0.1

� Deploy:

– WebSphere Application Server V6 (IBM System z V6 or distributed
platform depending on the selected runtime topology).

– CICS Transaction Gateway (TG) V6.1
(CICS ECI resource adapter for WebSphere is included with the CICS
TG.)

– CICS V2.x

Additionally, the following IBM products might be considered, depending on
specific customer requirements:

� Model: Rational Software Architect V6
� Manage:

– Tivoli OMEGAMON-XE for CICS V3.1
� Governance: WebSphere Service Registry and Repository

Create an EJB Web service from WSDL
In this realization, we create a new session EJB Web service from an existing
service WSDL. This realization is also known as create from scratch. This
realization uses a top-down approach to creating a Web Service.

The core IBM products used for this realization are:

� Assemble: Rational Application Developer V6
� Deploy: WebSphere Application Server Network Deployment V6
� Manage: Tivoli Composite Application Manager for SOA V6

Additionally, the following IBM products might be considered, depending on
specific customer requirements:

� Model: Rational Software Architect V6
� Deploy: WebSphere Service Registry and Repository
� Manage: Tivoli Composite Application Manager for WebSphere V6
� Governance: WebSphere Service Registry and Repository

Consume services from third-party service providers
In this realization, client applications consume services from third-party service
providers. This realization represents the view of a consumer that is using one or
more third-party services. The service consumer only sees the service
interfaces. The endpoints and any security or transport constraints are imposed
by the service provider.
 Appendix B. IBM SOA Foundation 359

For example, a Web services client application can invoke an address verification
Web service from a third-party service provider.

This realization assumes that the WSDL is WS-I compliant and JAX-RPC
compatible. The service provider is outside the enterprise firewall and security is
implemented between the consumer and provider using mutual SSL
authentication.

The core IBM products used for this realization as follows:

� Assemble: Rational Application Developer V6
� Deploy: WebSphere Application Server V6

Additionally, the following IBM products might be considered, depending on
specific customer requirements:

� Manage:
– Tivoli Composite Application Manager for SOA V6
– Tivoli Composite Application Manager for WebSphere V6

� Governance: WebSphere Service Registry and Repository

Service Connectivity scenario
The Service Connectivity scenario is used to demonstrate the integration of
service providers and consumers, allowing for the reuse of existing and new
services across multiple channels. This scenario is appropriate for an enterprise
that has a set of core services or systems that are to be made available as
services to internal and external clients. Flexibility to make changes to service
providers and service clients independent from each other is a requirement.

The focus of this scenario is on the underlying connectivity used to support
business-centric SOA. An enterprise service bus provides decoupling between
clients and providers, providing the flexibility to implement applications more
quickly. In circumstances where services are provided to or consumed from a
third party, an ESB gateway can be used in conjunction with the ESB to add
security measures. An ESB gateway alone can be sufficient if all of your service
interactions are with third parties and you have the basic requirements to
mediate between service consumers and providers.

Implementations of this scenario have the following features:

� Enables changes to the implementation of a service without affecting clients.

Note: A more detailed description of the Service Connectivity scenario can be
found in Patterns: SOA Foundation Service Connectivity Scenario,
SG24-7228.
360 Understanding SOA Security Design and Implementation

� Registers services to a service registry.

� Uses an enterprise service bus as the integration point between service
providers and service consumers.

� Enables clients to access a service with a different interface and protocol than
what the service consumer supports.

� Uses an ESB gateway to isolates and protect services.

� Enables management and monitoring of services to insure Service Level
Agreements.

� Provides security and credential mapping (where needed) to ensure proper
use of the services.

Specific connectivity and integration requirements for an enterprise will ultimately
drive product selection of the ESB and supporting products. The choice of
runtime products can include one or more of the following:

� WebSphere Message Broker

� WebSphere Enterprise Service Bus

� IBM DataPower SOA Appliances

� Web Services Gateway (WebSphere Application Server Network Deployment
V6)

� WebSphere Adapters

� WebSphere Service Registry and Repository

The choice of SOA life cycle products will depend largely on the runtime products
selected. The following products can be used to support the runtime
environment:

� WebSphere Message Broker Toolkit

� Rational Application Developer

� WebSphere Integration Developer

� IBM Tivoli Composite Application Manager for SOA (ITCAM for SOA)

� IBM Tivoli Composite Application Manager for WebSphere (ITCAM for
WebSphere)

� IBM Tivoli Composite Application Manager for RTT V6.0 (TCAM for RTT)

� OMEGAMON for Messaging

� Tivoli Access Manager

� Tivoli Federated Identity Manager
 Appendix B. IBM SOA Foundation 361

Realizations have been developed that will help you understand how the
scenario can be used and how products are selected. A realization is an
example business case that describes a customer situation and the solution. We
have included a summary of the following common realizations of the Service
Connectivity scenario:

� Gateway: For use when interactions with third parties are present and
mediation requirements are basic.

� Local integration: For use with standards-based interactions that require
routing capabilities.

� Web services access to Enterprise Information Systems: For use when
requiring access to EIS systems.

� Expose existing systems to heterogeneous clients: For use in a diverse,
nonstandards-based environment.

Gateway
An ESB gateway can be used alone or in conjunction with an ESB to provide
controlled and secure service interaction between internal or external domain
boundaries. In this realization, its primary function is to provide secure access to
resources when interacting with third parties. An ESB gateway can also provide
basic functionality, such as protocol switching and message switching, to enable
interaction between service consumers and service providers.

This realization assumes the customer has adopted standards-based
technology, has an existing infrastructure, and has the following business
requirements:

� Standards-based consumers/providers will use SOAP/HTTP for transport.

� Dynamically add new providers and consumers at runtime.

� Support a defined, high response time with a moderate load.

� SOA security for interaction with consumers and providers. Security may
need to be adapted between the consumers and providers.

� Requests and responses must be logged to a file

The following technical requirements have been identified:

� Many services deployed will require the same mediation flow. An ESB
gateway will minimize administration and streamline the process for making
new services available.

� Services must be monitored for performance and usage.

� Monitoring for all components must be integrated into existing management
infrastructure.
362 Understanding SOA Security Design and Implementation

The IBM products used for this realization are as follows:

� Deploy: IBM DataPower XML Security Gateway XS40

The customer chooses the DataPower XS40 model for the runtime. The XS40
is designed specifically to provide XML acceleration and SOA security and
can provide the basic mediation functions required. Because the
requirements for mediating the interaction between consumers and providers
is met, the XS40 as an ESB gateway is sufficient and no ESB product is
required.

� Assemble: DataPower Toolkit

� Manage: IBM Tivoli Composite Application Manager for SOA

ITCAM for SOA will be used to monitor Web services flowing through the
DataPower appliance.

� Manage: Tivoli Access Manager

The XS40 can be integrated with Tivoli Access Manager to secure
applications.

Local integration
A local integration solution provides multi-channel access for clients to an
existing service with a range of connectivity options for standards-based clients
and services, message routing with or without the use of external data, message
transformation and augmentation, protocol switching, and security.

With this type of connectivity, a client can request a secure service without
knowledge of its location. Transparent to the client, requests can be routed to the
service that can best handle the request. Also transparent to the client is the
message format and transport protocol required to access the provider. The
response could be immediate or delayed.

This realization assumes the customer has adopted standards-based
technology, has an existing WebSphere Application Server infrastructure, and
has the following business requirements:

� Provide integration of multiple client channels to service providers.

� Provide routing of client requests to the appropriate service provider.

� Intranet environment that does not require WS-Security or other complex
security considerations.

� Support moderate volume of requests.
 Appendix B. IBM SOA Foundation 363

The following technical requirements have been identified:

� Message data from clients must be examined in order to determine the
service provider to route the request to.

� Clients and service providers will use JMS, SOAP/JMS, or SOAP/HTTP.

� Data transformation will be required. This should be done with XSLT.

The core IBM products used for this realization are as follows:

� Deploy: WebSphere Enterprise Service Bus

WebSphere ESB provides the transport flexibility to support the transports
required by the customer. WebSphere ESB also has the mediation
capabilities required to perform the message routing and transformation
required.

� Assemble: WebSphere Integration Developer

WebSphere Integration Developer is the development and assembly tool for
building WebSphere ESB mediations.

� Manage: IBM Tivoli Composite Application Manager for SOA

ITCAM for SOA will be used to monitor Web services requests as they arrive
at WebSphere ESB.

Web services access to Enterprise Information Systems
An ESB can be used to provide access to EIS systems through the use of
adapters. Mediations in the ESB are used to adapt the client request to a form
understood by the adapter, and then to adapt the response to the client’s format.

This realization assumes the customer has adopted standards-based
technology, has an existing WebSphere Application Server infrastructure, and
has the following business requirements:

� Provides Web service access to functionality in an Enterprise Information
System, such as SAP R/3®, PeopleSoft®, or Oracle® Financials.

� An intranet environment that does not require WS-Security or other complex
security considerations.

� The integration is based on message exchange/data replication scenarios;
there is no business process or data synchronization between clients and EIS
systems.

� Supports moderate volume of requests.
364 Understanding SOA Security Design and Implementation

The following technical requirements have been identified:

� The targeted integration is point-to-point, although multiple EISs can be
exposed as Web services at the same time.

� Data transformation will be required. This should be done with XSLT.

� Log the messages as they flow through the hub (want to log asynchronously
to a file).

The IBM products used for this realization are:

� Deploy: WebSphere Enterprise Service Bus and WebSphere Adapters

WebSphere ESB supports the SOAP/HTTP transport required by the
customer. WebSphere Adapters provide the EIS adapters required.
WebSphere ESB also provides the mediation capability required to do XSLT
transformation on the data and includes a logging function to log messages
as they flow through the mediation.

� Assemble: WebSphere Integration Developer

WebSphere Integration Developer is the development and assembly tool for
building WebSphere ESB mediations. It includes the enterprise discovery
capabilities needed to incorporate the WebSphere Adapters into the
mediation applications.

� Manage: IBM Tivoli Composite Application Manager for SOA

ITCAM for SOA will be used to monitor Web services requests as they arrive
at WebSphere ESB.

Expose existing systems to heterogeneous clients
An integration solution that includes a range of diverse business applications
must provide connectivity for a wide range of service consumers and service
providers as well as advanced options for message mediation, including
message augmentation, message routing, and the ability to decompose
messages into multiple requests and to recompose the responses.

This type of connectivity would provide the most advanced options for integrating
dissimilar and wide-spread service consumers and service providers. Clients can
request a secure service that may be provided by one or more service providers
with the service composition occurring within the ESB. Services and clients also
have a wide range of connectivity options. Connectivity to existing applications as
well as standards-based applications are managed by the ESB.
 Appendix B. IBM SOA Foundation 365

This realization assumes the customer has extensive existing systems as well as
some newer Web services based systems and has the following business
requirements:

� Providers use a variety of heterogeneous protocols.

� Any provider must be accessible through basic Web services that will be used
by a variety of clients.

� Support moderate volume of requests.

� An intranet environment does not require SOA security or other complex
security considerations.

� Global transactions across multiple heterogeneous transaction managers for
some providers.

The following technical requirements have been identified:

� The ESB must support communication protocol conversion.

� The ESB must support flexible data model conversion, with acceptable
performance and adequate tooling.

� Enterprise class persistent messaging backbone.

� Global transactions management.

� The ESB must adapt the service definitions between the consumers and
providers.

The IBM products used for this realization are as follows:

� Deploy: WebSphere Message Broker, WebSphere MQ, and WebSphere
Adapters

WebSphere Message Broker is selected to provide the ESB capabilities,
including mediation support. WebSphere MQ will be used to provide an
enterprise class persistent messaging backbone. This combination will
support the wide variety of transport protocols and conversions required for
the integration solution. WebSphere Adapters provide connectivity to existing
systems.

� Assemble: Message Brokers Toolkit

The Message Brokers Toolkit is the development tool for building mediation
message flows in WebSphere Message Broker and provides the runtime
configuration and management tools.
366 Understanding SOA Security Design and Implementation

Interaction and Collaboration Services scenario
The Interaction and Collaboration Services scenario features single sign-on and
a role-based portal used to consolidate access to information and application
within the enterprise and between enterprises.

The key drivers for this scenario are to improve people productivity and
consumability of applications and content. The content can be personalized in
the aggregated portal page based on the user role.

The core IBM products used for the Interaction and Collaboration Services
scenario are as follows:

� Assemble:
– Rational Application Developer V6
– Bowstreet Portlet Factory

� Deploy: WebSphere Portal V5.1
� Manage: Tivoli Composite Application Manager for SOA V6

Additionally, the following IBM products may be considered by a customer
depending on specific requirements:

� Assemble: WebSphere Integration Developer
� Deploy:

– WebSphere Process Server
– WebSphere Everyplace® Deployment Server

� Manage:
– Tivoli Access Manager
– Tivoli Federated Identity Manager

Business Process Management scenario
Business Process Management leads to business innovation and optimization by
implementing business strategy through modeling, developing, deploying, and
managing business processes throughout the entire life cycle. Business Process
Management acts as an enabler for businesses in defining and implementing
strategic business goals and then measuring and managing a company’s
financial and operational performance against these goals.

Note: A more detailed description of the Business Process Management
scenario can be found in Patterns: SOA Foundation - Business Process
Management Scenario, SG24-7234.
 Appendix B. IBM SOA Foundation 367

Business Process Management combines business processes, information, and
IT resources, aligning the organization's core assets, people, information,
technology, and processes to create a single integrated view, with real-time
intelligence, of both its business measurements and IT system performance.

The IBM process integration portfolio provides capabilities required for the
delivery of the comprehensive enterprise wide Business Process Management
strategies and solution. It offers a holistic approach to transform and manage a
business by aligning strategic and operational objectives with business activities
and supporting IT services. The IBM Business Process Management solution
includes development tools used to implement custom artifacts that leverage the
infrastructure capabilities, and business performance management tools, used to
monitor and manage the runtime implementations at both the IT and business
process levels.

The core IBM products used for the Business Process Management scenario
are:

� Model: WebSphere Business Modeler V6
� Assemble: WebSphere Integration Developer V6
� Deploy: WebSphere Process Server V6
� Manage:

– WebSphere Business Monitor V6
– Tivoli Composite Application Manager for SOA V6

The additional IBM products used for this scenario, depending on customer
requirements, are as follows:

� Model: Rational Software Architect V6
� Deploy:

– WebSphere Portal
– WebSphere Adapters

� Manage:
– Tivoli Access Manager
– Tivoli Federated Identity Manager

� Governance: WebSphere Service Registry and Repository

Information as a Service scenario
The Information as a Service scenario is used to demonstrate unified and trusted
information available as services from multiple data sources. This scenario
includes content management, e-forms, security, business intelligence,
information integration through just-in-time integration, and ETL (extract,
transform, and load).
368 Understanding SOA Security Design and Implementation

The key drivers for this scenario are to facilitate better decision making and better
information sharing between business operations.

The core IBM products used in the Information as a Service scenario are as
follows:

� Model:
– WebSphere Business Modeler
– Rational Data Architect

� Assemble:
– WebSphere Integration Developer
– WebSphere DataStage™ Designer

� Deploy:
– WebSphere Information Server
– WebSphere DataStage Integration Suite

� Manage:
– WebSphere Business Monitor
– Tivoli CAM for SOA

Additionally, the following IBM products can be considered by a customer,
depending on specific requirements:

� Deploy:
– WebSphere Portal
– WebSphere Adapters
– Workplace™ Forms View / Server

� Manage:
– Tivoli Access Manager
– Tivoli Federated Identity Manager
 Appendix B. IBM SOA Foundation 369

370 Understanding SOA Security Design and Implementation

Appendix C. Security standards and
technology

This appendix provides background information and references for the important
standards and technology relevant to security in an SOA.

C

© Copyright IBM Corp. 2007. All rights reserved. 371

Web services security specifications
The Web services security model introduces a set of individual interrelated
specifications to form a layered approach to security. A motivation and overview
of these specifications can be found in a joint security whitepaper from IBM
Corporation and Microsoft Corporation on the IBM developerWorks Web site:

ftp://www.software.ibm.com/software/developer/library/ws-secmap.pdf

Figure C-1 illustrates these specifications and the layered approach taken in
developing these standards.

Figure C-1 Web service security specifications

These specifications provide the following capabilities:

� WS-Security

The WS-Security specification provides message-level security which is used
when building secure Web services. Message content protection (integrity,
confidentiality and authentication) and security token propagation are
features of this specification.

� WS-Policy

Describes the capabilities and constraints of the security (and other business)
policies on intermediaries and endpoints (for example, required security
tokens, supported encryption algorithms, and privacy rules).

WS-
SecureConversation WS-AuthorizationWS-Federation

WS-Policy WS-Trust WS-Privacy

WS-Security

SOAP Foundation
372 Understanding SOA Security Design and Implementation

ftp://www6.software.ibm.com/software/developer/library/ws-secmap.pdf

� WS-Trust

Describes a framework for trust models that enables Web services to
interoperate securely. This specification is responsible for managing trusts
and establishing trust relationships.

� WS-Privacy

Describes a model for how Web services and consumers state privacy
preferences and organizational privacy practice statements.

� WS-Federation

Describes how to manage and broker the trust relationships in a
heterogeneous federated environment, including support for federated
identities.

� WS-Authorization

Describes how to manage authorization data and authorization policies.

� WS-SecureConversation

Describes security context exchange and establishing and deriving session
keys.

WS-Security
The WS-Security specification provides message-level security. The advantage
of using WS-Security instead of SSL is that it can provide end-to-end message
level security. This means that the messages are protected even if the message
goes through multiple services, or intermediaries. Additionally, WS-Security is
independent of the transport layer protocol. It can be used for any SOAP binding,
not just for SOAP over HTTP.
 Appendix C. Security standards and technology 373

As an overview, Figure C-2 shows the elements Web service security elements
that may be added to the SOAP header.

Figure C-2 SOAP message security with WS-Security

The WS-Security specification Version 1.1 was ratified by the OASIS WSS
Technical Committee in February 2006. This specification proposes a standard
set of SOAP extensions. This specification is flexible and is designed to be used
as the basis for securing Web services within a wide variety of security models
including PKI, Kerberos, and SSL. It provides support for multiple security token
formats, multiple trust domains, multiple signature formats, and multiple
encryption technologies to provide integrity or confidentiality.

The WS-Security specification defines the usage of XML Signature and XML
Encryption:

� Message integrity is provided by XML Signature in conjunction with security
tokens to ensure that modifications to messages are detected. See:

http://www.w3c.org/Signature

� Message confidentiality leverages XML Encryption in conjunction with
security tokens to keep portions of a SOAP message confidential. See:

http://www.w3c.org/Encryption

Misc. Headers

Security Header

SOAP Body

SOAP Header

SOAP Envelope Security Token

Timestamp

Signature

Encrypted Key

Encrypted Data

Data *

* Depending on the applied security, the data is
clear text or encrypted.
374 Understanding SOA Security Design and Implementation

http://www.w3c.org/Signature
http://www.w3c.org/Encryption

The specification includes security token propagation, message integrity, and
message confidentiality. However, these mechanisms by themselves do not
address all the aspects of complete security solution. Therefore, WS-Security
represents only one of the layers in a complex secure Web services solution
design.

More information about the OASIS Web services Security specifications is
available from:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

WS-Policy
WS-Policy provides a flexible and extensible grammar for expressing the
capabilities, requirements, and general characteristics of entities in an XML Web
services-based system. WS-Policy defines a framework and a model for the
expression of these properties as policies. Policy expressions allow for both
simple declarative assertions as well as more sophisticated conditional
assertions.

WS-Policy defines a policy to be a collection of one or more policy assertions.
Some assertions specify traditional requirements and capabilities that will
ultimately manifest on the wire (for example, authentication scheme and
transport protocol selection). Some assertions specify requirements and
capabilities that have no wire manifestation yet are critical to proper service
selection and usage (for example, privacy policy and QoS characteristics).
WS-Policy provides a single policy grammar to allow both kinds of assertions to
be reasoned about in a consistent manner.

WS-Policy stops short of specifying how policies are discovered or attached to a
Web service. Other specifications are free to define technology-specific
mechanisms for associating policy with various entities and resources.
Subsequent specifications will provide profiles on WS-Policy usage within other
common Web services technologies.

The specification that makes up WS-Policy is available for download from IBM
developerWorks at:

http://www.ibm.com/developerworks/library/specification/ws-polfram/

This is an excerpt from the IBM developerWorks definition of WS-Policy.
 Appendix C. Security standards and technology 375

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ibm.com/developerworks/library/specification/ws-polfram/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

WS-Trust
The Web Services Trust Language (WS-Trust) uses the secure messaging
mechanisms of WS-Security to define additional primitives and extensions for the
issuance, exchange, and validation of security tokens. WS-Trust also enables the
issuance and dissemination of credentials within different trust domains.

In order to secure a communication between two parties, the two parties must
exchange security credentials (either directly or indirectly). However, each party
needs to determine if they can trust the asserted credentials of the other party.
This specification defines extensions to WS-Security for issuing and exchanging
security tokens and ways to establish and access the presence of trust
relationships.

The specification that makes up WS-Trust is available for download from IBM
developerWorks at:

http://www.ibm.com/developerworks/webservices/library/specification/ws-
trust/

This is an excerpt from the IBM developerWorks definition of WS-Trust.

WS-Federation
WS-Federation describes how to use the existing Web services security building
blocks to provide federation functionality, including trust, single sign-on (and
single sign-off), and attribute management across a federation. WS-Federation is
really a family of three specifications: WS-Federation, WS-Federation Passive
Client, and WS-Federation Active Client.

WS-Federation itself describes how to implement a federation in a Web services
world. In particular, WS-Federation focuses on the relationships between parties,
and the high-level architecture that supports these relationships. The two
individual documents, WS-Federation Active and WS-Federation Passive,
describe how to implement individual federation solutions.

WS-Federation Active describes how to implement federation functionality in the
active client environment. Active clients are those that are Web services enabled,
that is, able to issue Web services requests and react to a Web services
response. Leveraging the Web services security stack, WS-Federation Active
describes how to implement the advantages of a federation relationship,
including single sign-on, in an active client environment.

WS-Federation Passive describes how to implement federation functionality in a
passive client environment. A passive client is one that is not Web services
enabled. The most commonly encountered example of a passive client is a
376 Understanding SOA Security Design and Implementation

http://www.ibm.com/developerworks/webservices/library/specification/ws-trust/

vanilla HTTP browser. WS-Federation Passive describes how to leverage the
advantages of a federation relationship such as single sign-on in a passive client
environment. Because this solution leverages the WS-Security foundation of the
infrastructure support, the same components used to provide a passive client
solution may be leveraged for an active client solution.

The three specifications that make up WS-Federation are available for download
from IBM developerWorks at:

� WS-FED:

http://www.ibm.com/developerworks/webservices/library/ws-fed/

� WS-FEDACT:

http://www.ibm.com/developerworks/webservices/library/ws-fedact/

� WS-FEDPASS:

http://www.ibm.com/developerworks/webservices/library/ws-fedpass/

The logical architecture described in WS-Federation, together with the
functionality described in the Web services security stack, supports both the
active and passive client scenarios. The complete family of WS-Security
specifications provides companies with a standards-based interoperable secure
digital identity and trust platform for Web services-based architecture.
Furthermore, these specifications promote reusability of existing IT security
investments, enabling companies to work with multiple security token types and
multiple scenarios, including vanilla browsers, enhanced browsers, active clients,
and application-to-application connectivity.

WS-SecureConversation
The Web Services Secure Conversation Language (WS-SecureConversation) is
built on top of the WS-Security and WS-Policy models to provide secure
communication between services. WS-Security focuses on the message
authentication model, but not a security context, and thus is subject to several
forms of security attacks. This specification defines mechanisms for establishing
and sharing security contexts, and deriving keys from security contexts, to enable
a secure conversation.

By using the SOAP extensibility model, modular SOAP-based specifications are
designed to be composed with each other to provide a rich messaging
environment. As such, WS-SecureConversation by itself does not provide a
complete security solution. WS-SecureConversation is a building block that is
used in conjunction with other Web service and application-specific protocols (for
example, WS-Security) to accommodate a wide variety of security models and
technologies.
 Appendix C. Security standards and technology 377

http://www.ibm.com/developerworks/webservices/library/ws-fed/
http://www.ibm.com/developerworks/webservices/library/ws-fedact/
http://www.ibm.com/developerworks/webservices/library/ws-fedpass/

The specification that makes up WS-SecureConversation is available for
download from IBM developerWorks at:

http://www.ibm.com/developerworks/webservices/library/specification/ws-
secon/

This is an excerpt from the IBM developerWorks definition of
WS-SecureConversation.

WS-SecurityPolicy
The Web Services Security Policy Language (WS-SecurityPolicy) specification
defines a set of security policy assertions that apply to Web Services Security:
SOAP Message Security, WS-Trust, and WS-SecureConversation. This
specification takes the approach of defining a base set of assertions that
describe how messages are to be secured. Flexibility with respect to token types,
cryptographic algorithms, and mechanisms used, including using transport-level
security, is part of the design and allows for evolution over time. The intent is to
provide enough information for compatibility and interoperability to be determined
by Web services participants, along with all information necessary to actually
enable a participant to engage in a secure exchange of messages.

The specification that makes up WS-SecurityPolicy is available for download
from IBM developerWorks at:

http://www.ibm.com/developerworks/webservices/library/specification/ws-
secpol/

This is an excerpt from the IBM developerWorks definition of WS-SecurityPolicy.

WS-Provisioning
WS-Provisioning describes the APIs and schema necessary to facilitate
interoperability between provisioning systems and to allow software vendors to
provide provisioning facilities in a consistent way. The specification addresses
many of the problems faced by provisioning vendors in their use of existing
protocols, commonly based on directory concepts, and confronts the challenges
involved in provisioning Web services described using WSDL and XML Schema.

The WS-Provisioning interface is an open standard that is available to other
companies that want to develop interoperable provisioning scenarios and
systems. The specification is publicly available on the IBM developerWorks Web
site:

http://www.ibm.com/developerworks/webservices/library/ws-provis/
378 Understanding SOA Security Design and Implementation

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.ibm.com/developerworks/webservices/library/ws-provis/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-secon/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-secpol/
http://www.ibm.com/developerworks/webservices/library/ws-provis/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-secpol/

WS-Provisioning has been submitted to the Organization for the Advancement of
Structured Information Standards (OASIS) Provisioning Service Technical
Committee.

More information
Because Web services security is a quickly evolving field, it is essential for
developers and designers to regularly check for recent updates. In this section,
we provide some of the most important entry points for your exploration.

� The XML Signature Workgroup home page can be found at:

http://www.w3.org/Signature/

� The XML Encryption Workgroup home page can be found at:

http://www.w3.org/Encryption/

� The WS-Security specification 1.0 can be found at:

http://www.ibm.com/developerworks/library/ws-secure/

� The whitepaper of Web services security roadmap can be found at:

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

� The OASIS WS-Security 1.0 and token profiles can be found at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Security Assertion Markup Language
Security Assertions Markup Language (SAML) is a specification designed to
provide cross-vendor single sign-on interoperability. SAML was developed by a
consortium of vendors (including IBM) under the auspices of OASIS, through the
OASIS Security Services Technical Council (SSTC). SAML has two major
components: It describes SAML assertions used to transfer information within a
single sign-on protocol and SAML bindings and profiles for a single sign-on
protocol.

A SAML assertion is an XML-formatted token that is used to transfer user identity
(and attribute) information from a user's identity provider to trusted service
providers as part of the completion of a single sign-on request. A SAML
assertion provides a vendor-neutral means of transferring information between
federation business partners. As such, SAML assertions have a lot of traction in
the overall federation space.

As a protocol, SAML has three versions: SAML 1.0, 1.1, and SAML 2.0. SAML
1.0 and SAML 1.1 (collectively, SAML 1.x) focus on single sign-on functionality.
SAML 2.0 represents a major functional improvement over SAML 1.x.
 Appendix C. Security standards and technology 379

http://www.w3.org/Signature/
http://www.w3.org/Encryption/
http://www.ibm.com/developerworks/library/ws-secure/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

As the most recent release, SAML 2.0 takes as input both the Shibboleth work
and Liberty ID-FF 1.2. SAML 2.0 takes into account more of the identity life cycle
functionality than previous versions. Likewise, based on the Shibboleth input,
SAML 2.0 has functionality that addresses some of the privacy concerns
associated with a federated environment.

More information about the SAML specification is available from:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

Liberty
The Liberty Alliance Project was formed to deliver and support a federated
network identity solution for the Internet that enables single sign-on for
consumers and business users in an open, federated way.

The Liberty Identify Framework, ID-FF, describes federation functionality that
goes beyond single sign-on. Initially released as Liberty Alliance ID-FF 1.0 in July
2002, the latest release of the Liberty federation specification is Version 1.2,
which was released November 2003.

The Liberty approach is based on business affiliates forming circles of trust. The
Liberty circles of trust are defined as “a group of service providers that share
linked identities and have pertinent business agreements in place regarding how
to do business and interact with identities.”

For more information about Liberty Alliance, see:

http://www.projectliberty.org

eXtensible Access Control Markup Language
eXtensible Access Control Markup Language (XACML) is an initiative to develop
a standard for access control and authorization systems. It describes both, a
common language for expressing access control policies to describe general
access control requirements and a request/response language that describes
how to form a query to determine if a given action is allowed or not and how to
interpret the result.

XACML addresses several use cases:

� Define a policy.

� Gather required data for policy evaluation.

� Evaluate policy.
380 Understanding SOA Security Design and Implementation

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.projectliberty.org�

� Enforce policy.

More information about XACML can be found at the OASIS web site:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

Java Authorization Contract for Containers
Java Authorization Contract for Containers (JACC) was introduced in the J2EE
1.4 specification to address some problems and limitation of earlier definitions:

� All access decisions were made by the application server, unless proprietary
interfaces were used for third party plug-ins.

� There were no standards for integration of application servers with
authorization service providers. There was no standard representation of
application security policy (roles, resources, and resource-to-role mappings)
and no standard interface for access decision (declarative or programmatic).

JACC allows third party authorization service providers to plug into application
servers like WebSphere using standard interfaces for policy configuration and
access decisions. JACC defines new Permission classes to handle both the EJB
and the Web permissions required by “security constraints” in J2EE deployment
descriptors. A J2EE role is a named collection of these permissions.

Note: JACC does not specify a standard interface for principals (users and
groups) to roles mapping.
 Appendix C. Security standards and technology 381

http://blabla
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

JACC defines a standard contract (interfaces and rules) that allows authorization
framework providers to plug into J2EE application containers to provide
authorization policy management and access decision services. Figure C-3
shows these relationships.

Figure C-3 Java Authorization Contract for Containers (JACC)

More information about JACC can be found at:

http://java.sun.com/j2ee/javaacc/index.html

Service Provisioning Markup Language
Service Provisioning Markup Language (SPML) provides an XML framework for
managing the provisioning and allocation of identity information and system
resources within and between organizations. SPML V2.0 was ratified as an
OASIS standard in April 2006.

SPML defines four main conceptual elements:

� Requesting Authority

A Requesting Authority (RA) constructs and issues well-formed SPML
requests and sends them to a Provisioning Service Provider (PSP). An RA
may be a portal or other user-facing application, or could be an HR system
considered the originating identity repository in an enterprise.

� Provisioning Service Provider

A Provisioning Service Provider (PSP) is a software system that receives
SPML requests and processes them with its internal knowledge of systems

JACC Provider

Policy Configuration

Provider Repository

Access Decision

J2EE Container
Application Management

(deploy, undeploy) Access Enforcement

Manage resources,
roles, mappings Access allowed?

Application
Administrator

User
382 Understanding SOA Security Design and Implementation

http://java.sun.com/j2ee/javaacc/index.html

that it manages. A single SPML request may generate multiple provisioning
operations within the PSP. An example of a PSP might be a commercial
identity provisioning product, such as IBM Tivoli Identity Manager.

� Provisioning Service Target

A Provisioning Service Target (PST) represents an endpoint that the PSP
manages. An example of a PST might be the Tivoli Identity Manager adapter
for Active Directory®.

� Provisioning Service Object

A Provisioning Service Object (PSO) is an object on a PST. An example of a
PSO might be an account in RACF. The SPML specification does not restrict
itself to only managing user accounts.

The high-level interaction between these components is shown in Figure C-4.

Figure C-4 Conceptual elements in the SPML domain model

Despite the second version of SPML already being ratified as a standard,
additional work is required to cater for comprehensive implementations.
Examples include:

� There is no concept of ownership of PSOs.

� Workflow interactions, such as request approval, cannot be represented in
SPML.

� Protocol bindings to transports are not well-defined at this time. Integration
with development tools is limited, and achieving interoperability is then based
on interaction contracts beyond the SPML standard.

� Securing SPML messages is not well-defined.

RA PSP

PST
PSO
 Appendix C. Security standards and technology 383

For more information about SPML and its progress as an evolving standard,
consult the OASIS Provisioning Services Technical Committee site:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=provision

Identity Attribute Service (IdAS)
To support a dynamic environment where sources of identity information may
change, it is necessary to provide a common means to access identity and
attribute information from across multiple identity repositories. The IdAS
virtualizes identity sources and provides a unified view of identity information. For
more information, please refer to the project Higgins wiki at:

http://wiki.eclipse.org/index.php/Higgins_Wiki

z/OS Security
z/OS security can be grouped into two major base components:

� The System Authorization Facility (SAF)

� RACF

System Authorization Facility
The System Authorization Facility is part of the z/OS operating system and
provides the interfaces to the callable services provided to perform
authentication, authorization, and audit logging.

SAF does not require any other product as a prerequisite, but overall system
security functions are greatly enhanced and complemented if it is used
concurrently with RACF. The key element in SAF is the SAF router. This router is
always present, even when RACF is not present.

The SAF router provides a common focal point for all products providing
resource control. This focal point encourages the use of common control
functions shared across products and across systems. The resource managing
components and subsystems call the SAF router as part of decision-making
functions in their processing, such as access-control checking and
authorization-related checking. These functions are called control points.

The system authorization facility (SAF) conditionally directs control to RACF (if
RACF is present), or to a user-supplied processing routine, or both, when
receiving a request from a resource manager.
384 Understanding SOA Security Design and Implementation

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=provision
http://wiki.eclipse.org/index.php/Higgins_Wiki

Figure C-5 shows the basic functionality of SAF.

Figure C-5 System Authorization facility

RACF
Resource Access Control Facility (RACF) is an add-on software product that
provides security for a mainframe system.

RACF protects resources by granting access only to authorized users of the
protected resources. RACF retains information about users, resources, and
access authorities in special structures called profiles in its database, and it
refers to these profiles when deciding which users should be permitted access to
protected system resources.

To accomplish its goals, RACF gives you the ability to:

� Identify and authenticate users

� Authorize users to access protected resources

� Log and report various attempts of unauthorized access to protected
resources

� Control the means of access to resources

� Allow applications to use the RACF macros

RACF uses a user ID and a system-encrypted password to perform its user
identification and verification. The user ID identifies the person to the system as
a RACF user. The password verifies the user's identity. Often exits are used to

RACF
check

Optional exit

RACF call

Exit RC

RACF RC

Exit
check

S

A

F

RACROUTE

SAF callable services

YES / NO

Database
 Appendix C. Security standards and technology 385

enforce a password policy such as a minimum length, lack of repeating
characters, or adjacent keyboard letters, and also the use of numerics as well as
letters.

To get an cursory understanding of how authorization works and to explain the
communications involved, an authorization check is performed the following way
(see Figure C-5 on page 385):

1. A user requests access to a resource using a resource manager.

2. The resource manager issues a RACROUTE request to see if the user can
access the resource.

3. RACF refers to the RACF database or in-storage data.

4. Retrieves data for the profile.

5. Based on the information in the profile, RACF passes the resulting status
code for the request to the resource manager.

6. The resource manager grants or denies the request.

RACF does not decide whether the request is granted or not. It returns a status
code to the resource manager, and the resource manager makes the decision.
RACF will return one of four status codes meaning:

� The user has the access right.

� The user does not have access.

� It is unknown whether the user has the access right or not.

� RACF is not working.

The resource manager uses this return to make a decision.

An alternative to the RACF password provided by the RACF secured sign-on
function is the Passticket. The RACF Passticket is a one-time-only password that
is generated by a requesting product or function. It is an alternative to the RACF
password that removes the need to send RACF passwords across the network in
clear text. It makes it possible to move the authentication of a mainframe
application user ID from RACF to another authorized function executing on the
host system or to the work station local area network (LAN) environment.
386 Understanding SOA Security Design and Implementation

Tip: To learn more about SAF and how it works with RACF, you can look in:

� OS/390® SecureWay® Security Server RACROUTE Macro Reference

http://publibz.boulder.ibm.com/epubs/pdf/ich1c610.pdf

� OS/390 SecureWay Security Server RACF Callable Services

http://publibz.boulder.ibm.com/epubs/pdf/ich1d121.pdf

To learn more about Passticket, please refer to Chapter 11, “The RACF
Secured Signon PassTicket”, in z/OS V1R4.0 Security Server RACF
Macros and Interfaces, SA22-7682, found at:

http://publibz.boulder.ibm.com/epubs/pdf/ichza330.pdf
 Appendix C. Security standards and technology 387

http://publibz.boulder.ibm.com/epubs/pdf/ich1c610.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ich1d121.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ichza330.pdf

388 Understanding SOA Security Design and Implementation

Appendix D. Additional material

This IBM Redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this IBM Redbook is available in softcopy on
the Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247310

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbook form number, SG247310.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247310.zip See details below

D

© Copyright IBM Corp. 2006. All rights reserved. 389

ftp://www.redbooks.ibm.com/redbooks/SG247310
ftp://www.redbooks.ibm.com/redbooks/SG247310
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

The zip file contains the following files:

ITSOBanker2006.ear Bank Web service with no security.

ITSOBankerClient2006.ear
Bank Web service client with no security.

SecureITSOBanker2006.ear
Bank Web service with security added.

SecureITSOBankerClient2006.ear
Bank Web service client with security added.

client.jks Key store for the client application.

was.jks Key store for the Web service application.

soa-jaas-login.jar JAAS login module that calls Federated Identity Manager
Trust service.

wssm_one-to-one.xsl
Identity mapping rule for Federated Identity Manager
WSSM partner chain.

com.tivoli.am.fim.ldap.plugin_1.0.zip
Trust service module for identity mapping using LDAP
lookups.

bank2005.zip This file contains the CICS portion of the scenario. See
more information below.

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this subdirectory (folder). Chapter 8, “Technical
implementation” on page 193 provides detailed instructions on how to use these
files.

Installing the CICS portion of the ITSOBank scenario
Perform the following tasks:

1. Unzip the supplied bank2005.zip to a temporary directory.

2. On the z/OS side, create a partitioned dataset library with the FB80 format for
the source files.

3. Upload all the files from the bank2005.zip as members to this datasets. You
can ignore the extensions. The members would be:

DPLCSHOW Assembler source for 3270 transaction

DPLCMAP CICS map source

DPLC Main C program source

ACCTBNTB SPUFI source for account table
390 Understanding SOA Security Design and Implementation

EMPLOYEE SPUFI source for employee data

CSDUP CICS resource definition source

4. Compile the program and map the source into a load library that is
concatenated to the CICS’s DFHRPL.

– DPLCMAP can be compiled using the procedure DFHMAPS or
DFHMAPT.

– DPLCSHOW can be assembled and link-edited using the procedure
DFHEITAL.

– DPLC must be compiled through the DB2 pre-processor and the CICS
translator. You can use the supplied DB2 sample DSNHC procedure and
invoke the CICS procedure DFHYITDL.

5. Create DB2 tables. You may need to work with a DB2 administrator for
performing this task. The sample SPUFI files will create the tables on the
public database DSNDB04 using the default storage group. Run SPUFI using
the EMPLOYEE source and then the ACCTBNTB. All return codes should be
0000.

6. Create a CICS resource definition using the source CSDUP. This creates a
group called BANK2005. You should include this group into the startup list for
the CICS initialization to be automatically installed when you start CICS. You
can interactively install the group using the CEDA INSTALL
GROUP(BANK2005) command from a CICS session.
 Appendix D. Additional material 391

7. Test the transaction by invoking DPLS. You should receive miscellaneous
data as shown in Figure D-1.

Figure D-1 CICS DPLC output

8. To prepare the connection from the CICS Transaction Gateway, you must
define the necessary resources for the CICS Transaction Gateway to access
this CICS. Additional definitions must include CONNECTION and SESSION
resources.

9. Prepare WebSphere Application Server for CICS connection. Define a
connection resource to access CICS using the appropriate cicseci.rar file
from the CICS Transaction Gateway version that you use. The rar file can be
installed using the WebSphere administrative console:

a. Invoke Resources → Resource adapters → Resource adapters and
click Install RAR.

b. Select the cicseci.rar for the appropriate node and use the default options.

c. Save the configuration to the master configuration.

d. Invoke Resources → Resource adapters → J2C Connection Factories
and click New.

e. Define new J2C connection factories that identifies the CICS that you are
connecting, such as SCSCPA2B (see Figure D-2 on page 393). We
recommend you use the APPLID name of the CICS region, as this would
be the same name to use in CICS transaction gateway connection.
392 Understanding SOA Security Design and Implementation

Figure D-2 WebSphere configuration

f. Click Apply. The additional properties will then be enabled.

g. Go to Custom properties in the Additional properties.
 Appendix D. Additional material 393

h. Set the custom properties similar to Figure D-3; where:

ConnectionURL This reflects the target TCP/IP address or host
name of the z/OS machine on which the CICS
transaction gateway is running.

PortNumber This is the listening port number for CICS
transaction gateway; the default value is 2006.

ServerName This is the APPLID of the CICS region that you
want to connect to.

TPNName This is the CICS transaction name that you would
use. In the BANK2005, it is called DPLC.

Figure D-3 J2C connection factory custom properties

10.Update the resource mapping for the enterprise application to use the newly
created J2C connection factory to connect to CICS. This is usually found
under Applications → Enterprise Applications, and select the application
that you are using. Go to the Resource references link and make sure that the
content of the Target Resource JNDI Name field contains the J2C connection
factory that you define in step 9 on page 392.
394 Understanding SOA Security Design and Implementation

11.Save the WebSphere configuration to master configuration and try the
application.
 Appendix D. Additional material 395

396 Understanding SOA Security Design and Implementation

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 398. Note that some of the documents referenced here may
be available in softcopy only.

� Develop and Deploy a Secure Portal Solution Using WebSphere Portal V5
and Tivoli Access Manager V5.1, SG24-6325

� Develop and Deploy a Secure Portal Solution Using WebSphere Portal V5
and Tivoli Access Manager V5.1, SG24-6325

� Enterprise Business Portals II with IBM Tivoli Access Manager, SG24-6885

� Enterprise Security Architecture Using IBM Tivoli Security Solutions,
SG24-6014

� Federated Identity Management and Web Services Security with IBM Tivoli
Security Solutions, SG24-6394

� IBM Tivoli Composite Application Manager V6.0 Family: Installation,
Configuration, and Basic Usage, SG24-7151

� IBM WebSphere Application Server V6.1 Security Handbook, SG24-6316

� Patterns: SOA Foundation - Business Process Management Scenario,
SG24-7234

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� Understanding SOA Security Design and Implementation, SG24-7310

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461
© Copyright IBM Corp. 2007. All rights reserved. 397

Other publications
These publications are also relevant as further information sources:

� Lansiti, et al., The Keystone Advantage: What the New Dynamics of Business
Ecosystems Mean for Strategy, Innovation, and Sustainability, Harvard
Business School Publishing, Press, 2004, ISBN 1591393078

� “Daimler’s New Way to Make Cars: Let Someone Else Do It”, in Forbes,
August 16, 2004

Online resources
These Web sites are also relevant as further information sources:

� The Web services security model introduces a set of individual interrelated
specifications to form a layered approach to security. An overview of these
specifications can be found on the IBM developerWorks site:

ftp://www6.software.ibm.com/software/developer/library/ws-secmap.pdf

� Many open standards in the areas of security, SOA, Web Services, and
similar topics are documented at the Organization for the Advancement of
Structured Information Standards (OASIS):

http://www.oasis-open.org

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, IBM Redpapers, Hints and
Tips, draft publications and Additional materials, as well as order hardcopy
Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
398 Understanding SOA Security Design and Implementation

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
ftp://www6.software.ibm.com/software/developer/library/ws-secmap.pdf
http://www.oasis-open.org

Index

A
access

control policy 145
management policy 86
policy management 46

Access Manager 110, 363
Common Auditing and Reporting Service 307
protected object space 274
transport level security 181
trust service authentication 195
trust service authorization 195
Web service authorization 274

Access Manager for e-business
audit 185
authorization audit 179
JACC provider 178
policy decision and enforcement 188
Web service authentication 170

Access Manager for Operating Systems
Data Protection and Disclosure Control 190
protection for data at rest 180

Access Services 22, 352
account

re-certification 161
accountability

... for identity propagation 52

... for policy changes 43
addressing 90
application

chain 259
client 198

configuration 202
response consumption 214

trust chain 266
approach to creating service

bottom-up 342
top-down 342

assemble 14, 348
audit 11, 28, 82, 161

authorization decisions 179
data protection 137
policy 109
requirements 43
© Copyright IBM Corp. 2007. All rights reserved.
Audit Services 36, 76, 105, 136, 183
authentication 26, 142, 160

Web service 170
Authentication Services 32, 71, 99, 131

externalization 131
authorization 27, 160

policy 33, 109
role based 73
Web service 170

Authorization and Privacy Services 73, 102, 134
Authorization Services 33
availability 28

compliance 188

B
Basel II 112
basic authentication 309
biometric authentication 32
bottom-up 342
boundary service 9
business

compliance 44
context 3
policy 108
requirement 78, 94
requirements 158, 327
trust management 45

Business Application Services 22, 352
Business Innovation and Optimization Services 23
Business Innovation Services 353
business process

decomposition 4
modeling 14
security 25

Business Process and Policy Management 48, 87,
115, 147
Business Process Execution Language for Web
Services 343
Business Process Management scenario 367
Business Security Services 28, 43, 66, 82, 111,
143, 189
 399

C
call back handler 175, 205
CBE 36
certificate

key store 201
CICS 357–358

audit 185
Connection Factory 248
JCA adapter 195
resource adapter 245
Web service exposure 155
Web service transactions 161

CICS Transaction Gateway 155, 358
authentication 160, 177
JAAS login 195
JCA connector

trace 302
security token exchange 173
transport level security 181

COMMAREA 358
Common Auditing and Reporting Service 307
Common Base Event 307

see CBE
compliance 8, 11, 15, 28, 43–44, 76, 82–83, 105,
160, 188

objective 143
reporting 112
reports 136

component based application 329
componentization 5
composite application 10, 19, 325, 356
confidentiality 27, 43, 160, 215, 226

... of messages 35, 180
Confidentiality and Integrity Services 75, 104, 135,
180
Confidentiality Services 35
consent 87
consume Web service 342
consumer 19, 22, 24

portal 51
corporate policy 43
CTG

See CICS Transaction Gateway

D
data

... at rest 27, 35, 180

... in process 27

... in transit 27, 180
classification 135
delivery 36
encryption 27
format translation 6
origin 36
protection 11, 75, 104

management 47
Data Protection and Disclosure Control 49, 86, 113,
145, 190
Data Protection Services 35, 180
DataPower 353

appliance 165, 170
audit 185
authenticating and authorizing external requests
173
message level security 183
policy decision and enforcement 187
Toolkit 363
transport level security 180
XS40 363

declarative security 50, 80
constraints 196
enforcement 34

decomposition
... of business processes 4

delivery of data 37
deploy 15, 348
deployment

architecture 53
descriptor 34, 82, 202

confidentiality 215
integrity 215
WS Extension 202

Development Services 23, 354
digital certificate

message level security 182
digital signature 27, 35, 37
Direct Exposure Architectural Pattern 62
disclosure control 47, 87, 113, 146
discovery 326
dynamic invocation 342
dynamic proxy 342

E
Eclipse 332
EDI

security 37
400 Understanding SOA Security Design and Implementation

EIS
See Enterprise Information System

EJB container 342
Electronic Data Interchange

see EDI
encryption 27, 35
Enterprise Architect 350
Enterprise Information System 357
Enterprise Service Bus

see ESB
enterprise transformation 357
ESB 22, 50, 90, 353

mediation module 93, 98
message protection policies 108
policy enforcement 111

expose J2EE artifact as service
servlet 342
stateless session EJB 342

expose Web services 341
eXtensible Access Control Markup Language

see XACML
Extensible Markup Language

See XML

F
Federated Identity Manager

audit 185
audit events 313
call back handler 175
Common Auditing and Reporting Service 307
mapping module 269
policy decision and enforcement 187
SAML assertion 234
Security Token Service 170
token

generator 175
token consumer 175, 236
transport level security 181
trust chain 282
trust chain editor 269
trust service 253, 259
trust service APIs 269
Web Service Security Management 259
Web Services Security Management 175

federated provisioning 32, 69, 97, 126, 136
federated single sign-on 120, 126, 130, 133
federation 52, 70

... of identities 169

policy 85
flexible architecture 328
flow control 6
functional requirements 161

G
Gateway 362
getting started 333, 335
global security 169
Governance

See SOA Governance
governance 12

activities 143
framework 83

Governance, Risk and Compliance 44, 48, 83, 112,
143

H
Health Insurance Portability and Accountability Act
112
high availability 28
HIPPAA 112
HR identity feed 46

I
IBM CICS Transaction Gateway

see CICS Transaction Gateway
IBM CICS Transaction Server

see CICS
IBM Rational Software Architect

see Rational Software Architect
IBM Service Integration Maturity Model 335
IBM SOA Foundation 338

scenarios 49
IBM SOA Reference Architecture 21
IBM SOA Security Reference Model 28, 66, 94,
122, 164
IBM Tivoli Access Manager

see Access Manager
IBM Tivoli Access Manager for e-business

see Access Manager for e-business
IBM Tivoli Access Manager for Operating Systems

see Access Manager for Operating Systems
IBM Tivoli Composite Application Manager for SOA
363–365
IBM Tivoli Directory Server

see Tivoli Directory Server
 Index 401

IBM Tivoli Federated Identity Manager
see Federated Identity Manager

IBM Tivoli Identity Manager
see Identity Manager

identity 25
assertion 72
federation 52, 70, 98, 126, 169
feed 46, 113
foundation 68, 96, 124, 167
management 84, 125, 144
mapping 26, 52, 98, 160, 169
mapping rule 263
propagation 6, 9, 54
provider 126
provisioning 31, 69, 97, 125, 136, 144, 168
synchronization 124
token 26, 32

Identity and Access 46, 48, 84, 113, 144
Identity Manager

audit 185
policy decision and enforcement 188
transport level security 181
user provisioning 168

Identity Services 31, 124
IMS 357
Indirect Exposure Architectural Pattern 65
Information as a Service scenario 368
Information Services 22, 352
Infrastructure Services 23, 354
integrity 27, 43, 83, 160, 215, 225

... of messages 35
Integrity Services 35
Interaction and Collaboration Services scenario
367
Interaction Services 21, 352
invoking Web services 342
IT Security Services 28, 30, 66–67, 95, 124, 166
IT service management 354
IT system life cycle 12

J
J2EE 332, 357

audit 186
authorization 73
deployment descriptor 34
role based authorization 178

JAAS
login 177

login module 175, 195, 253, 278
trace 302

login value 216
Principal 176

JACC
overview 381
provider 178

Java Authentication and Authorization
see JAAS

Java Authorization Contract for Containers
see JACC

Java Connector Architecture
<$npage 245

JAX-RPC 342
JCA

adapter 155, 195
resource adapter 245

K
Kerberos 32
key locator 228, 240

Web service key locator 218
key store 201

password 201

L
LDAP

mapping module 278
liability 84, 112
Liberty

overview 380
life cycle 12, 347

management 46
security 14

Local integration 363
location transparency 23
logging 36, 76, 105
logical architecture 49, 153

M
manage 12, 15
mapping

... of identity 26
module 269, 278
rule 263

masquerading 35, 180
mediation module 93, 98
402 Understanding SOA Security Design and Implementation

message
authentication 35

code 27
broker 8
confidentiality 35, 160, 180, 182, 375
integrity 35, 160, 182, 375
protection 75, 82, 139, 171

policy 40, 79, 108, 112, 139, 186
service 35, 104, 135

queuing 7
transport level security 180

Message Brokers Toolkit 366
message level

protection 36, 76, 104
security 80, 182, 373

messaging
style 90
styles 23

Methodology 333
model 14, 347
model-driven development 333
monitoring 12
Monitoring and Reporting 43, 82, 111, 143, 188
monolithic business application 329
mutually authenticated SSL 180

N
nonce 35
non-disclosure 35
non-functional requirements 162
Non-repudiation Services 36, 77, 106, 137

O
Optimization Services 353
origin of data 37

P
part reference 221
partner chain 259
Partner Services 22, 352
passticket 71, 79, 86, 98, 128, 136, 177, 195, 253,
278
password

policy 85, 109, 145
enforcement 142

synchronization 69, 113
weakness 85

Patterns 333
performance

compliance 188
Personally Identifiable Information 27, 33, 74
pleadable security 158
point to point protection 76, 104
policy

based provisioning 69
management 10, 38, 108, 160
message protection 79, 108, 139
privacy 87, 146
provider 79, 109, 140
provisioning 97

Policy Administration 40, 79, 108, 139, 186
Policy Decision and Enforcement 42, 81, 110, 141

scenario
Policy Decision and Enforcement 187

Policy Decision Point 33, 42, 79, 81, 110, 141, 187
Policy Distribution and Transformation 40, 80, 109,
140
Policy Enforcement Point 33, 42, 79, 111, 141, 187

externalization 131
Policy Management 48
portal 51
privacy 27, 47

consent 87, 114
policy 33, 87, 146

Privacy Services 33
Process modeling 333
Process Services 22, 352
programmatic security enforcement 34
programming model 34
propagation of identity 9
protocol

transformation 23
translation 6

provider policy 40, 79, 109, 140, 187
provisioning 31, 69, 125, 136, 144

... of identities 97
federation 69, 136
policy 31, 85, 97
rule 113
workflow 85

R
RACF

authentication 160
authorization 74
 Index 403

identity mapping 160
JAAS login module 253
overview 385
Passticket 71, 79, 86, 98, 128, 136, 177, 195,
253, 278
policy decision and enforcement 188

Rational Software Architect
adding declarative security constraints 196
recompilation 199

re-authentication 132
re-certification 161
Redbooks Web site 398

Contact us xiv
Reference architecture 333
replay attack 263
reporting 43
request based provisioning 31
request consumption 224
Resource Access Control Facility

see RACF
Resource Adapter Module 245
response

consumption 214
generation 237

reuse 8
risk

management 44, 83, 112, 143, 189
password weakness 85

role based access control 9
role based authorization 73, 178
routing 90

S
SAF

see System Authorization Facility
SAML

assertion 32, 85, 136, 161, 195
identity token 26
overview 379
token 79
v 1.1 security token 173
v 2.0 security token 173, 175–176

SAML 2.0
assertion 234, 268

trace 301
token creation 272

Sarbanes-Oxley Act 112
SCA

See Service Component Architecture
scenario

application chain 259
application client

configuration 202
Audit Services 183
business requirements 158
Business Security Services 189
CICS Connection Factory 248
compliance 188
confidentiality 226
Confidentiality and Integrity Services 180
Data Protection and Disclosure Control 190
Data Protection Services 180
deploying the application 244
functional requirements 161
identity

federation 169
foundation 167
provisioning 168

integrity 225
IT infrastructure 154
IT Security Services 166
ITSOBanker2006.ear 198
ITSOBankerClient2006.ear 198
JAAS login module 253, 278
key locator 228
logical architecture 153
message protection 171

policies 186
Monitoring and Reporting 188
non-functional requirements 162
partner chain 259
Policy Decision Points 187
Policy Enforcement Point 187
process flow 194
provider policies 187
request consumption 224
response generation 237
risk management 189
SAML 2.0 assertion 268
Security Policy Infrastructure 186
security token exchange 171
service provider token consumer 259
SOA Governance Board 189
solution architecture 164
technical implementation 193
technical requirements 159
token consumer 227
404 Understanding SOA Security Design and Implementation

transport level security 180
trust anchor 215
trust chain 282

configuration 259
Trust Management 189
trust service chains 171
Web service authorization 274
Web service flow 194

SDO
See Service Data Objects

secure sockets layer
see SSL

Secure Systems and Networks 49, 87, 114, 146
Secure Token Service 169
security

administrator tasks 196
compliance 188

management 83
enforcement 34
infrastructure integration challenge 54
management 8

challenge 8, 54
policy 14, 24, 78, 82, 125
policy management 28
role references 341
services

standards 37
token 26, 32, 52, 70–71, 79, 82, 98, 110, 112,
132, 161, 203

exchange 171
profile 172
propagation 375
SAML v 1.1 173
SAML v 2.0 173, 175–176
trace 298

Security Assertion Markup Language
see SAML

Security Policy Infrastructure 28, 38, 66, 108, 139,
186
SecurityTokenRequest 195
SecurityTokenResponse 195
SEI

See service endpoint interface
self-care 52
self-service 69
separation of duties 34
service 18, 324

component 155
consumer 19, 22, 24, 326

security policy enforcement 42
endpoint interface 341
implementation bean 341
infrastructure 6
interface definition 90
management 23
managing 12
messaging model 90
monitoring 12
orientation 4, 324

life cycle 12
reuse 8

provider 326
security policy enforcement 42
token consumer 259

registry 20, 326
requestor 19
security 25
specification 90
substitution 23

Service Aggregation scenario 51
Service Component Architecture 332
Service Connectivity scenario 50, 360

realizations
Gateway 362
Local integration 363

Service Creation scenario 49, 357
realizations 357

Consume services 359
Create Web service from WSDL 359
Direct exposure 357
Indirect exposure 358

Service Data Objects 332
Service Level Agreements 356
service level authorization 73, 102
Service Provisioning Markup Language

see SPML
Service Registry and Repository

see SRR
Service-oriented Architecture

See SOA
session management 142

services 132
shift in IT driven by business 331
signature 35, 37

validation 218
signing of Web services 203
SIMM 335
Simple Object Access Protocol
 Index 405

See SOAP
single sign-off 376
single sign-on 52, 119, 376
SLA

See Service Level Agreement
SOA 323–324

... based application 330
Adoption 332, 335
applications 17
Assessment Tool 335
business requirements 327
challenges 326
compliance management 44
components

service consumer 326
service provider 326
service registry 326

defined
by role 324
composite application 325
service 324
service orientation 324

Design 355
drivers 327

achieve better IT use and ROI 328
need for flexible architecture 328
reduce cycle time and costs 328
simplify integration across the enterprise
328
support an agile business model 327

example approach 333
getting started 335

IBM SOA Entry Points 336
IBM SOA Foundation 338
SOA Adoption 335

Governance 44, 332, 349, 356
overview 18
Reference Architecture 21
risk management 44
security 24

audit 28
authentication 26
authorization 27
availability 28
compliance 28
confidentiality 27
deployment architecture 53
governance 44
identity 25

integrity 27
logical architecture 49
policy

management 28
privacy 27
reference model 28, 66, 94, 122, 164

Web services 343
why now

best practices 332
open standards and platforms 332
shift in IT driven by business 330
SOA enables flexibility 331

SOA Entry Points 336
Connectivity 337
Information 337
People 336
Process 337
Reuse 337

SOA Foundation
architecture layers 356
life cycle 346

Assemble 348
Deploy 348
Manage 349
Model 347

Reference Architecture 350
Access services 352
Business application services 352
Business innovation services 353
Development services 354
Enterprise Service Bus 353
Information Services 352
Interaction services 352
Middleware Services view 351
Optimization services 353
Partner services 352
Process services 352
Solution view 350

scenarios 49, 354
Business Process Management 367
Information as a Service 368
Interaction and Collaboration Services 367
Service Aggregation 51, 117
Service Connectivity 50, 89, 360
Service Creation 49, 61, 357

SOAP 90, 339
binding 373
body 339
encoding rules 339
406 Understanding SOA Security Design and Implementation

envelope 339
handler 195
headers 339
message

details 181
format 339
security 374

policy assertions 41
RPC representation 339
security token 298
transports 339

solution architecture 164
SPML 69, 97

overview 382
SRR 38
SSL 36, 76, 104, 135, 180

mutually authenticated 180
SSO

see single sign-on
standards

security services 37
static stub 342
strong authentication 132
submission of data 37
synchronization

identity 124
passwords 69
user repository 96

System Authorization Facility 158, 384
systems management 8

T
technical implementation 193
technical requirements 159
technology

trust management 45
Tivoli Common Auditing and Reporting Service 184
Tivoli Directory Server

transport level security 181
token

based authentication 32
consumer 175, 227
generator 175
mediation 169

top-down 342
transaction

auditing 11
transform 222

transport level
protection 36
security 160, 180

transport of data 37
transport protocol 90
trust

anchor 215, 226
chain 266, 282

configuration 259
editor 269

policy 108
relationship 9, 50

Trust Management 44, 48, 84, 112, 144, 189
trust service 70–71, 82, 86, 110, 128, 132, 259

APIs 269
auditing 314
authentication 195
authorization 195
chain 170–171
security token exchange 98
SecurityTokenRequest 195

U
UDDI 340
unauthorized modification 35
Universal Description, Discovery, and Integration

See UDDI
user

consent 87, 114
management change 43
registry

synchronization 68
repository 31, 96

synchronization 96
self-care 113
self-service 69

username token 32

W
Web service 332, 338

... and SOA 343
application

client 198
trust chain 266

authentication 170
authorization 170, 274
confidentiality 226
core elements
 Index 407

SOAP 339
UDDI 340
WSDL 339
XML 339

deployment 255
flow 194
gateway 165
integrity 225
J2EE 341
JAAS login module

trace 302
key locator 228, 240
message parts dialect 206
part reference 221
request consumption 224
request generation 202
response consumption 214
response generation 237
SAML 2.0 assertion 268
security constraints 202
security specifications 372
signing 203
standards 340, 372
technologies 338
token consumer 227
transform 222
trust anchor 226
WS-Federation 376
WS-Policy 375
WS-Provisioning 378
WS-Security 373
WS-SecurityPolicy 378
WS-Trust 376

Web Service Security Management 259
Web Services Description Language

See WSDL
Web Services for Remote Portlets 122
Web services Interoperability Organization 340
Web Services Security Management 175
WebSphere Application Server

audit 185
global security 169
JACC

provider 178
message level security 183
policy decision and enforcement 188
Resource Adapter Module 245
security token exchange 172
transport level security 180

WebSphere Enterprise Service Bus 353, 364
WebSphere Integration Developer 364–365
WebSphere Message Broker 353
workflow

provisioning 85
WS Extension 202
WS-BPEL

See Business Process Execution Language for
Web Services

WSDL 90, 339, 343
definition 341

wsdl2tfim.sh 266
WSEE 341
WS-Federation 376
WS-Policy 40, 375
WS-Provisioning 97, 378
WS-Security 27, 76, 135, 255, 373

authentication 175
message level security 182
message protection 104
Policy 40
Roadmap 373
token processing 259
Web site 379

WS-SecurityPolicy 378
WS-Trust 169, 376

X
XACML 40–41

overview 380
XML 90, 339

encryption 374
Web site 379

firewall 165
signature 374

Web site 379
stylesheets 263

XSLT
mapping rule 263
transformation mapping 269

Z
z/OS

RACF 385
security 384
System Authorization Facility 384
408 Understanding SOA Security Design and Implementation

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Understanding SOA Security Design and Im
plem

entation

®

SG24-7310-00 ISBN 0738489670

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Understanding
SOA Security
Design and Implementation
Introducing an SOA
security reference
architecture

Implementing
scenarios based on
the IBM SOA
Foundation

Deploying SOA using
IBM Tivoli security
solutions

Securing access to information is important to any business.
Security becomes even more critical for implementations
structured according to service-oriented architecture (SOA)
principles, due to loose coupling of services and applications,
and their possible operations across trust boundaries. To
enable a business so that its processes and applications are
flexible, you must start by expecting changes in both to
process and application logic, as well as to the policies
associated with them. Merely securing the perimeter is not
sufficient for a flexible on demand business.

In this IBM Redbook, security is factored into the SOA life
cycle reflecting the fact that security is a business
requirement, and not just a technology attribute. We discuss
a SOA security model that captures the essence of security
services and securing services. These approaches to SOA
security are discussed in the context of some scenarios, and
observed patterns. We also discuss a reference model to
address the requirements, patterns of deployment, and
usage, and an approach to an integrated security
management for SOA.

This IBM Redbook is a valuable resource to senior security
officers, architects, and security administrators.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbook
	Become a published author
	Comments welcome

	Part 1 Business context and foundation
	Chapter 1. Business context
	1.1 Service orientation
	1.1.1 More than componentization
	1.1.2 Evolution not revolution
	1.1.3 A focus on reuse

	1.2 Security considerations for SOA
	1.2.1 User and service identities and propagation
	1.2.2 Connect to other organizations on a real-time, transactional basis
	1.2.3 Composite applications
	1.2.4 Managing identity and security across diverse environments
	1.2.5 Protecting data
	1.2.6 Demonstrable compliance with a growing set of standards

	1.3 Security in the service-oriented life cycle
	1.3.1 Security encompasses all aspects of the life cycle

	1.4 Summary

	Chapter 2. Architecture and technology foundation
	2.1 Service-oriented architecture overview
	2.1.1 Definition of a service-oriented architecture
	2.1.2 Basic components of an SOA

	2.2 IBM SOA Reference Model
	2.3 The need for security in the SOA
	2.4 IBM SOA Security Reference Model
	2.4.1 IT Security Services
	2.4.2 Security Policy Infrastructure
	2.4.3 Business Security Services

	2.5 IBM SOA Security Logical Architecture
	2.5.1 Foundation scenarios
	2.5.2 Typical deployment architecture
	2.5.3 IBM SOA Security Logical Architecture summary

	2.6 Conclusion

	Part 2 IBM SOA Foundation scenarios
	Chapter 3. IBM SOA Foundation Service Creation scenario
	3.1 Scenario overview
	3.1.1 Direct exposure architectural pattern
	3.1.2 Indirect exposure architectural pattern

	3.2 Applying the IBM SOA Security Reference Model
	3.2.1 IT Security Services
	3.2.2 Security Policy Infrastructure
	3.2.3 Business Security Services

	3.3 Summary

	Chapter 4. IBM SOA Foundation Service Connectivity scenario
	4.1 Scenario overview
	4.2 Applying the IBM SOA Security Reference Model
	4.2.1 IT Security Services
	4.2.2 Security Policy Infrastructure
	4.2.3 Business Security Services

	4.3 Summary

	Chapter 5. IBM SOA Foundation Service Aggregation scenario
	5.1 Scenario overview
	5.1.1 Overview of the Service Aggregation scenario
	5.1.2 Web single sign-on perspective
	5.1.3 Web services perspective

	5.2 Applying the IBM SOA Security Reference Model
	5.2.1 IT Security Services
	5.2.2 Security Policy Infrastructure
	5.2.3 Business Security Services

	5.3 Summary

	Part 3 Securing the Service Creation scenario
	Chapter 6. Business scenario
	6.1 Business model
	6.1.1 Overview
	6.1.2 Initial context - ITSOTelco
	6.1.3 Initial context - ITSOBank
	6.1.4 Preliminary SOA engagement
	6.1.5 Business logic
	6.1.6 Authentication and authorization

	6.2 Business requirements
	6.3 Technical requirements
	6.3.1 Security requirements
	6.3.2 Other functional requirements
	6.3.3 Other non-functional requirements

	Chapter 7. Solution design
	7.1 Solution architecture introduction
	7.2 IT Security Services
	7.2.1 Identity Services
	7.2.2 Authentication and authorization services
	7.2.3 Confidentiality and integrity services
	7.2.4 Audit Services

	7.3 Security Policy Infrastructure
	7.3.1 Policy Administration
	7.3.2 Policy Decision and Enforcement
	7.3.3 Monitoring and reporting

	7.4 Business Security Services
	7.4.1 Governance, risk, and compliance
	7.4.2 Trust Management
	7.4.3 Identity and access
	7.4.4 Data protection and disclosure control
	7.4.5 Secure systems and networks

	7.5 Conclusion

	Chapter 8. Technical implementation
	8.1 Implementation scope
	8.2 Configure security for the ITSO Banking Application
	8.2.1 Import the application into Rational Software Architect
	8.2.2 Key stores
	8.2.3 Configure the application client
	8.2.4 Configure the application
	8.2.5 Export the application with security configuration

	8.3 Deploying the ITSO Banking Application
	8.3.1 Installing the CICS ECI resource adapter
	8.3.2 Configuring the CICS Connection Factory
	8.3.3 Configure a JAAS login module
	8.3.4 Deploy the ITSO Banking Web service

	8.4 Configure Web Service Security Management
	8.4.1 Configure the WSSM trust chains

	8.5 Running the scenario
	8.6 Common Auditing and Reporting Service configuration
	8.6.1 Configure Federated Identity Manager central auditing
	8.6.2 Configuring central auditing for trust service events

	8.7 Conclusion

	Appendix A. Introduction to service-oriented architecture
	Service-oriented architecture overview
	Definition of a service-oriented architecture
	Challenges and drivers for SOA
	Why SOA now
	SOA approach for building a solution

	Getting started with SOA
	SOA adoption
	IBM SOA entry points
	IBM SOA Foundation

	Web services and SOA
	Web services technologies
	Web services and SOA

	Appendix B. IBM SOA Foundation
	SOA Foundation overview
	SOA Foundation life cycle
	Model
	Assemble
	Deploy
	Manage
	Governance

	SOA Foundation Reference Architecture
	SOA Foundation scenarios
	Service Creation scenario
	Service Connectivity scenario
	Interaction and Collaboration Services scenario
	Business Process Management scenario
	Information as a Service scenario

	Appendix C. Security standards and technology
	Web services security specifications
	WS-Security
	WS-Policy
	WS-Trust
	WS-Federation
	WS-SecureConversation
	WS-SecurityPolicy
	WS-Provisioning
	More information

	Security Assertion Markup Language
	Liberty
	eXtensible Access Control Markup Language
	Java Authorization Contract for Containers
	Service Provisioning Markup Language
	Identity Attribute Service (IdAS)
	z/OS Security
	System Authorization Facility
	RACF

	Appendix D. Additional material
	Locating the Web material
	Using the Web material
	Installing the CICS portion of the ITSOBank scenario

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

