Building SOA Solutions
Using the Rational SDP

SOA service identification, specification,
realization, and implementation

SOA foundation from modeling to
implementation to testing

~ Service-oriented architecture
in practice

Ueli Wabhli
Lee Ackerman
Alessandro Di Bari
Gregory Hodgkinson
Anthony Kesterton
Laura Olson
Bertrand Portier

00kS

ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Building SOA Solutions Using the Rational SDP
April 2007

SG24-7356-00

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

First Edition (April 2007)

This edition applies to IBM Rational software products, such as Application Developer,
ClearCase, ClearQuest, ClearQuest Test Manager, BuildForge, Functional Tester, Manual
Tester, Method Composer, Performance Tester, Portfolio Manager, ProjectConsole,
RequisitePro, SoDA, Software Architect, Software Modeler, and Unified Process, as well as IBM
WebSphere software products, such as Application Server, Business Modeler, Integration
Developer, Process Server, and Service Registry and Repository.

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices Xiii
Trademarks e Xiv
Preface XV
The team that wrote this IBM Redbooks publication XVi
Become a publishedauthor xviii
Comments WelCome.o e Xix
Chapter 1. Introduction. 1
SOAfoundation e 2
SOA foundation lifecycle. 2
Model . .. e 3
Assemble 4
DEPIOY . . oo e 4
Manage e 5
GOVEINANCE. . .\ttt e 5
SOA foundation reference architecture, 6
Core components of the logical architecture. 7
Supporting components of the logical architecture 8
SOA foundation SCENAroS oot e 10
Out of scope topics with references to otherbooks 12
Composite applications and business process implementation 12
Reporting and documentation. oL 13
Software configuration management 15
GOVEINANCE. . . .ttt 16
SUMMANY . .o e e e e 16
Chapter 2. JK Enterprisescasestudy............................. 17
Introduction. 18
An overview of JK Enterprises i e 18
Business problems. 20
Proposed solution. 21
Account verification improvements 21
An analysis of the business problems and our approach. 22
Approach. 23
ASSUMPLIONS. . . . o 24
Chapter 3. SOA gOVErNance., 25
Importance of governance 26

© Copyright IBM Corp. 2007. All rights reserved. iii

iv

DefinitioNsS.ot 27

GOVEINANCE. . . ottt et e e e e 27
IT QOVEIrNANCEot e e 27
SOA QOVEIMANCE. . . . o ittt e et e e e e e e e 28
Service life cycCle. 29
SOA governancelifecycle. 29
IBM products for SOA governance.t 31
Rational Method Composer i, 32
Rational Portfolio Manager i i 33
Rational RequisitePro 34
Rational ClearQuest and Rational ClearCase. 35
WebSphere Service Registry and Repository. 36
Compliance 38
References. 38
Chapter 4. Architectureanddesign............................... 41
What is an application in an SOA environment? 42
Traditional software applications. 42
Architecture of software systems L, 43
Service-oriented IT systems i 44
Business-aligned systems. 45
Sothe anNSWeriS.... . oo 48
Modeling service architectures. i 48
Differentforms ofaservice. 49
Architecturally significant services 57
Decomposition and re-assembly of applications. 59
ServiCes and reUSE.ttt 62
Some differenttypes ofreuse. 62
Whatcanbereused? 66
What has to be in place to enablereuse?. 68
SO systems andintegration. 69
Standard integrationlevels 69
SOA andintegration 71
Reusing architecture and design experience 73
Architectural styles 73
Architectural patterns 74
JK Enterprises case study architecturalstyle 75
Chapter 5. Processand methods. 105
Introduction. 106
IBM Rational Unified Process (RUP) 106
Coreprinciplesof RUP 108
Key CONCEPES. . . oo 109

Building SOA Solutions Using the Rational SDP

How we use RUP inthisbook. 113

What is a developmentcase? i 114
JK Enterprises developmentcase i 114
Rational Method Composer i 114
Codify the developmentcase. 116
Create methodcontent 117
Createthe process e 124
Publishthe processas HTML 130
Export the process as a projectplan. 134
Export the developmentcaseasaplug-in 136
References. 136
Chapter 6. Modelingandtools.................................. 137
Importance of modeling 138
Unified ModelingLanguage, 141
Abriefoverview of UML 142
Model-driven development 145
UML 2 . e 149
SOAmModeling.o 153
Importance of architecture 155
Overview of IBM architecttools 159
EClipsSe. . oo e 160
Rational Software Architect and Rational Software Modeler 161
References. 168
Chapter 7. Businessmodeling. 169
Introduction. 170
Business modeling. 170
Key roles in business modeling. 171
Typical steps in business modeling. 172
Inputs to the business modeling discipline. 173
Aword abouttooling. e 173
Business architecture. 174
Component businessmodeling i 175
Functional area analysis 177
BUSINESS VISION. oo 177
Business glossary e 181
BUSINESS USE CaSES . . . oo 184
Refining the businessusecase 187
Business use case realization. 188
Business rules e 188
Business process model 189
Working with IBM WebSphere Business Modeler 190

Contents v

Vi

Process simulation 196

Account Openingexamplet 197
Importingthe model 197
Visualizing a business modelas UML. 198
Business goal. e 198
Key performance indicators and metrics 199
JKEnterprisesgoals. 200
Connecting goals, KPIs,andmetrics 201
Defining KPIs and metrics in WebSphere Business Modeler. 203
Measuring a business process in Business Monitor. 204
Domainmodeling 204
What do we have NOW? e 204
References. e 205
Chapter 8. Requirements it 207
Requirements managementin SOA. i 208
Requirements managementplan............. 210
Requirement types and attributes L. 210
Keeping requirements visible 213
Requirement perspective in developmenttools 214
Enterprise-level requirements 217
GloSSaNy . . .ot 219
BUSINESS USE CaSES . . . oot 219
Service poliCies e 220
Project-level requirements 221
Project vision 221
Supplementary requirements e 222
SYSIEM USE CASES i ittt e 224
Creating a system use case in RequisitePro 225
Create a use case model element in Software Architect 226
Tooling implications e 228
Where are We NOW?o e 228
References. 229
Chapter 9. Service and design model work products 231
Introduction. e 232
Service model work product. 234
Purpose of the servicemodel 235
Contents of the service model. 236
Service model elements in our developmentcase 236
Service model diagrams in our developmentcase 253
Service model related patterns o 259
Tasks affecting the servicemodel. 262

Building SOA Solutions Using the Rational SDP

Design model work product e 263

Purpose of the designmodel 263
Model structure (samples from JK enterprises case study) 266
Contents of thedesignmodel L. 270
Traceability e 274
Chapter 10. Service identification 277
Introduction. e 278
Inputs to service identification i 278
Tools and models used for service identification 281
Identify servicesfromgoals 281
Rational Software Architect and RequisitePro integration 282
Identify services fromgoals. 283
Create traceability from servicestogoals......................... 284
Perform business process analysis, 286
Identify service elements from business process model.............. 287
Perform existing assetanalysis 292
Output of service identification for JK Enterprises 297
References.o e 298
Chapter 11. Service specification 299
Introduction. e 300
Tools and capabilities used for service specification 300
Rational Software Architect. 301
UML and the UML 2 profile for software services................... 303
Processguidance 303
Overview of the service specification activity 307
Task 1: Structure service architecture 307
Step 1: Validate and classify services. 308
Step 2: Identify service partitions L o oL 314
Step 3: Model atomic service providers 319
Step 4: Model composite service providers 334
Step 5: Model service CoONSUMErS.ottt 344
Step 6: Assign parts to service partition oL 346
Step 7: Consider service policiest ... 355
Task 2: Refine service architecture 356
Step 1: Design service collaborations. 357
Step 2: Design service interactions. L L. 359
Step 3: Fully specify service consumers., 366
Step 4: Design parameter types, messages, and infotypes........... 368
Step 6: Validate the final servicemodel 384
Task 3: Model service assemblies 384
Task 4: Model service deployment. 385

Contents vii

Output of service specification for JK Enterprises 385

NeXt StePS . .. e 385
References. 385
Chapter 12. Servicerealization 387
Introduction. e 388
Tools and capabilities used for service realization 388
Inputs to service realization. 388
Creatingthe designmodel i 389
Createthe model structure 390
Prepare the model for transformations 391
Create service components i 392
Refine service components. 395
Using the Reusable Asset Specification (RAS). 403
Design class structure. e 404
Design class behavior (interaction diagrams) 406
Comparison with traditional RUP object-oriented approach........... 409
Output of service realization for the JK Enterprises example. 411
Validate model 411
Reverse transformation fromJavacode.......................... 413
Architectural analysis 416
Chapter 13. Service implementation 419
Introduction. e 420
Inputs to service implementation. 421
Implementationoptions 422
Tooling OptioNSo e 423
OVBIVIBW . . o s ot e e e e e 423
Rational Application Developer roles and capabilities 424
Setup the development environment 426
Install the model transformation feature 426
Download the samplecode. 426
Create a test server in Rational Software Architect 426
Enable the Web services development capability. 428
Top-down developmentofaservice i, 430
Prepare for top-down development. 432
Model transformations. i e 434
Visualize and modifythe WSDL 449
Create a skeleton EJB Web service fromaWSDL.................. 451
Implement the businesslogic 456
Testthe service. 458
Summary of top-down development of aservice 464
Third-party service e 464

viii Building SOA Solutions Using the Rational SDP

Prepare for sample third-party sample 465

Validatingthe WSDLfile i e 466
Testing the third-party Web service 467
Summary of third-party service 471
Indirectly exposing an enterprise service oL 472
Preparing forsample. 473
Implementation 473
Summary of indirectly exposing an enterprise service 481
Updatingthe design e 481
Output of service implementation. 482
Chapter 14. Servicetesting 483
Introduction. e 484
Inputstotesting. ... 484
SOA testing from a technology and application perspective 485
Loose coupling between services and requesters 486
Heterogeneous technologies intertwined in the same solution. 487
Lack of total control over all elements of a solution 487
New standards and technologies, 488
Asynchronous nature e 488
Application failures 488
SOA: Testing strategy e 490
Atwhatleveldoyoutest? 491
Whoisincharge oftesting? 491
How to define the righttestcases?. oot 498
What is the integration strategy?. 498
What are the test completion criteria?., 499
Effective testautomation. 499
IBM products for SOAtesting. 500
Rational Application Developer. i 502
Rational ClearCase.ottt e e 503
Rational ClearQuest e e 503
Rational Functional Tester 503
Rational Manual Tester. 504
Rational Performance Tester 505
Rational Tester for SOA 505
IBM Web Services Navigator i 507
Testwork products. 507
TeStroles . . oo 509
TeSt PrOCESS. .« ot 511
Testtoolingot 512
Setup the testenvironment 513
Download the samplecode. i 513

Contents ix

X

Import the project interchangefile. 513

Stat the serverand add the projects. 513
Verify the Open Account Application. 514
Managing testing artifacts 515
Creating reusable test scripts with Rational Manual Tester.............. 521
Create test scriptsin Manual Tester. 522
Runthetestscript. 527
Designing and executing functional tests with Rational Functional Tester. . . 530
SUMMANY . . e e e e 530
Where to find more information i 530
Chapter 15. Creatingreusableassets............................ 533
Assets, RAS, and assetlifecycle. 534
ASSBLS . . o e e 534
Reusable Asset Specification 534
Assetlifecycle ... e 535
Package JK Enterprises services as reusableassets 536
ASSEt OF SEIVICE Y. . o o e 536
Package the service model as areusable asset. 536
Publish service to Service Registry and Repository 541
Other assets.ot e e 543
References. 543

Chapter 16. Pattern-based engineering with Rational Software

Architect 545
Pattern-based engineering. 546
Extensibility 550

Eclipse extensibility 550
Rational Software Architect extensibility 554
Creating profiles 555
Authoring transformations. 557
Authoring design patterns (JK Enterprises composite service
specification) 560
Using the Reusable Asset Specification (RAS) to distribute and manage
ASSeIS . L e 573
References. e 574
Appendix A. Additional material 575
Locating the Web material 575
Usingthe Web material i 576
System requirements for downloading the Web material 576
Software requirements 576
How to use the Web material 576
Loading the RequisiteProprojects 577

Building SOA Solutions Using the Rational SDP

Loading the RequisitePro projecttemplates 578

Loading the WebSphere Business Modeler project. 579
Loading the models into Rational Software Architect. 583
Loading the implementation into Software Architect 585

Running the application. 586

Loading otherprojects. 587
Installing the sample pattern RAS asset 588
Rational Method Composerplug-in 591
Abbreviations and acronyms e 593
Related publications 595
IBM RedbOOKS e 595
Other publications 595
ONliNE reSOUICESttt e e e 596
Howtoget IBM Redbooks i 596
Helpfrom IBM 597
INdeX . .. e 599

Contents xi

Xii Building SOA Solutions Using the Rational SDP

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. Xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

developerWorks® IBM® Redbooks™

2/0S® IMS™ Redbooks (logo) (@@ ™
Build Forge™ MQSeries® Requisite®
ClearCase® Objectory™ RequisitePro®
ClearQuest® ProjectConsole™ RUP®

Component Business Model™ PureCoverage® SoDA®

CICS® PurifyPlus™ Tivoli®

DataPower® Rational Unified Process® WebSphere®

DB2® Rational®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaScript,
JavaServer, JavaServer Pages, JSP, J2EE, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Visio, Visual Basic, Visual Studio, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Xiv Building SOA Solutions Using the Rational SDP

Preface

This IBM® Redbooks® publication explains the concepts and practice of
developing service-oriented architecture (SOA) based solutions that use the IBM
Rational® Software Delivery Platform (SDP). It uses the latest version of IBM
Rational Unified Process® (RUP®) that includes service-oriented modeling and
architecture (SOMA) content from IBM Global Business Services.

This book aims to help practitioners that are working on SOA-based projects.
Practitioners can learn the core concepts behind SOA as well as how to use the
tools to automate the tasks involved in developing SOA-based solutions.

The main thread of this book takes business requirements, business
architecture, and existing assets as input, and derives the elements of a
service-oriented architecture that are needed to realize the business
requirements. The book covers architecture in detail, and shows how the
architecture is realized through service identification, specification, realization,
implementation, and testing. The book is organized around a practical example
case study and provides tool and process guidance as well as additional
references of key topics.

© Copyright IBM Corp. 2007. All rights reserved. XV

The team that wrote this IBM Redbooks publication

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

IR ¢ 00

Alessandro Bertrand Laura Ueli Anthony Gregory

Ueli Wahli is a Consultant IT Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 20 years
ago, Ueli worked in technical support at IBM Switzerland. He writes extensively
and teaches IBM classes worldwide about WebSphere® Application Server, and
WebSphere and Rational application development products. In his ITSO career,
Ueli has produced more than 40 IBM Redbooks. Ueli holds a degree in
Mathematics from the Swiss Federal Institute of Technology.

Lee Ackerman is a Senior Product Manager with the Rational Learning Services
and Solutions team in Canada. He has 12 years of experience in the software
development field. He has worked at IBM for seven years. He holds a bachelor's
degree in Business Administration from the University of Regina. His areas of
expertise include model-driven development, patterns-based engineering, and
service-oriented architecture. He has written extensively on these topics and
often presents at conferences, workshops, and training events.

XVi Building SOA Solutions Using the Rational SDP

Alessandro Di Bari is a Senior IT Architect for IBM Rational Services in Italy. He
has 16 years of experience in software development field and nine years using
IBM Rational tools. He holds bachelor’'s degree in Computer Science from the
University of Turin. His areas of expertise include the software development
process, requirements management, UML modeling, object-oriented
programming and software architectures. As part of Rational Services, he
provides consultancy to customers on Rational Unified Process adoption and
SOA transition.

Gregory Hodgkinson is founder, director, and the SOA lead at 7irene, an IBM
Tier 1 Business Partner in the United Kingdom. He has 10 years experience
initially in the field of component-based development (CBD) moving seamlessly
into the field of service-oriented architecture (SOA). He holds a bachelor’s
degree, (Hons) cum laude, in Mathematics and Computer Science from the
University of the Orange Free State, South Africa. His area of expertise is the
software development process and method, and he assists 7irene and IBM
customers in adopting RUP framework-based agile development process and
SOA methods. He is still very much a practitioner and has been responsible for
service architectures for a number of FTSE 100 companies. He presents on agile
SOA process and methods at both IBM and other events.

Anthony Kesterton is a Technical Consultant for IBM Rational Financial
Services Sector in the United Kingdom. He has 17 years of experience in IT and
14 years using various IBM Rational tools. He holds a master’s degree in Applied
Computer Science from Rhodes University in Grahamstown, South Africa. His
areas of expertise include the development process, requirements management,
business modeling, and analysis and design in UML using the IBM Rational
tooling, and helping customers implement process and tools. He frequently
presents these topics at external conferences and internal IBM conferences
worldwide.

Laura Olson is a Senior IT Specialist for the Global e-Business Transformation
group in the Rochester, Minnesota. She has nine years of experience in the
technology field. She holds bachelor’s degree in Computer Science from the
University of Wisconsin, La Crosse. Her areas of expertise in IBM products
includes WebSphere Portal, WebSphere Application Server, and Rational SDP.

Bertrand Portier is an IT Architect for IBM Software Group SOA Advanced
Technologies in Canada. He holds a diplome d'ingenieur (French Master of
Science degree) in Computer Engineering from Polytech' Lille, France. He has
worked at IBM for seven years. His areas of expertise include service-oriented
architecture, Web services, model-driven and asset-based development. He has
written extensively on Java™, Web services, and SOA.

Preface xvii

Thanks to the following people for their contributions to this project:

»

Alan Brown, IBM RTP, Ali Arsanjani, IBM Cedar Rapids, Ava Chun, IBM
Atlanta, for providing help and reviews.

Laura Rose, IBM Raleigh, Lawrence Smith, IBM Cupertino, Christophe
Telep, IBM France, Charles Shriver, IBM Austin, and Karen Smolar, IBM
Poughkeepsie, for their technical expertise, contributions and content reviews
of the service testing chapter.

Paul Murray, IBM Glasgow, for his assistance in setting up the ClearQuest®
Test Management environment.

Peter Eeles, IBM UK, for reviewing and providing guidance for the chapter
about architecture and design.

John Smith, IBM Australia, and Simon Johnston, IBM Durham, (along with
Ali Arsanjani) for their work on the RUP SOMA plug-in, and their assistance in
helping us understand the changes to RUP introduced by the addition of the

SOMA content.

Robin Bater, IBM Seattle, for his assistance in the business modeling and
requirements chapters. Jim Heumann, IBM Seattle, for his suggestions and
feedback on the general topic of requirements management and SOA.

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbooks
publication dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You'll have the opportunity to team
with IBM technical professionals, Business Partners, and Clients.

xviii

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Building SOA Solutions Using the Rational SDP

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments

about this or other Redbooks in one of the following ways:

» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks

» Send your comments in an email to:
redbooks@us.ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Preface Xix

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

XX Building SOA Solutions Using the Rational SDP

Introduction

This chapter introduces software-oriented architecture (SOA), the IBM SOA
foundation and life cycle, and the reference architecture.

We also describe what aspects of SOA application development are not covered
in this book.

© Copyright IBM Corp. 2007. All rights reserved. 1

SOA foundation

The IBM SOA foundation is an integrated, open standards based set of IBM
software, best practices, and patterns designed to provide what you need to get
started with SOA from an architecture perspective. The key elements of the IBM
SOA foundation are the SOA life cycle (model, assemble, deploy, manage),
reference architecture, and SOA scenarios.

To gain a better understanding of the SOA foundation we explore the following
defining elements:

» SOA foundation life cycle
» SOA foundation reference architecture
» SOA foundation scenarios

Note: For a more detailed explanation of the SOA foundation, refer to IBM
SOA Foundation, An Architectural Introduction and Overview V1.0 found at:

http://download.boulder.ibm.com/ibmd1/pub/software/dw/webservices/ws-soa-
whitepaper.pdf

SOA foundation life cycle

2

IBM customers have indicated that they think of SOA in terms of a life cycle. As
seen in Figure 1-1, the IBM SOA foundation includes the following life cycle
phases:

Model
Assemble
Deploy
Manage

v

vyy

There are a couple of key points to consider about the SOA life cycle. First, the
SOA life cycle phases apply to all SOA projects. Second, the activities in any part
of the SOA life cycle can vary in scale and the level of tooling used depending on
the stage of adoption.

Building SOA Solutions Using the Rational SDP

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitepaper.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitepaper.pdf

Model

= Discover = Integrate people

» Construct & Test =Integrate processes
= Compose =Manage and integrate
information

= Gather requirements
= Model & Simulate
= Design

= Financial transparency = Manage applications & services
= Business/IT alignment = Manage identity & compliance
= Process control = Monitor business metrics

Figure 1-1 IBM SOA foundation life cycle

Modeling is the process of capturing the business design from an understanding
of business requirements and objectives. The business requirements are
translated into a specification of business processes, goals and assumptions for
creating a model of the business. Many businesses do not go through a formal
modeling exercise. In some case, businesses that do perform modeling use
primitive techniques such as drawing the design in Visio® or using text
documents.

Capturing the business design using a sophisticated approach that includes the
use of specialized tooling lets you perform what-if scenarios with various
parameters the business may experience. The process can then be simulated
using those parameters to predict the effect that process has on the business
and IT systems. If the achieved results do not match the business objectives,
then the process definition can be refined.

The model also captures key performance indicators (KPIs), such as business
metrics that are important measurements of your business. For example, this
could include a measure of the new accounts that you have opened in a given
month. These key performance indicators are input to the assembly of the
application. In addition, the indicators can be monitored in production to capture
the critical data to measure if the objectives are being met.

Chapter 1. Introduction 3

Assemble

Deploy

The business design is used to communicate the business objectives to the IT
organization that will assemble the information system artifacts that implement
the design. The enterprise architect works closely with the business analyst to
convert the business design into a set of business process definitions, as well
activities used to derive the required services from the activity definitions. The
enterprise architect and business analyst work with the software architect to flesh
out the design of the services.

During the process of resolving the design and implementation of the modeled
business processes and services, a search should be performed of existing
artifacts and applications in an effort to find components that meet the needs of
the design. Some applications fit perfectly; some have to be re-factored; and
some have to be augmented to meet the requirements of the design.

These existing assets should be rendered as services for assembly into
composite applications. Any new services required by the business design have
to be created. Software developers should use the SOA programming model to
create these new services.

Lastly, the assemble phase includes applying a set of policies and conditions to
control how your applications operate in the production runtime environment. For
example, these policies and conditions include business and government
regulations. In addition, the assemble phase includes critical operational
characteristics such as packaging deployment artifacts, localization constraints,
resource dependency, integrity control, and access protection.

The deploy phase of the life cycle includes a combination of creating the hosting
environment for the applications and the deployment tasks of those
applications.This includes resolving the application’s resource dependencies,
operational conditions, capacity requirements, and integrity and access
constraints.

A number of concerns are relevant to construction of the hosting environment
including the presence of the already existing hosting infrastructure supporting
applications and pre-existing services. Beyond that, you need to consider
appropriate platform offerings for hosting the user interaction logic, business
process flows, business services, access services, and information logic.

4 Building SOA Solutions Using the Rational SDP

Manage

The manage phase includes the tasks, technology and software used to manage
and monitor the application assets such as services and business processes that
are deployed to the production runtime environment.

Monitoring is a critical element of ensuring the underlying IT systems and
application are up and running to maintain the service availability requirements of
the business. Monitoring also includes monitoring performance of service
requests and timeliness of service responses. In addition, monitoring includes
maintaining problem logs to detect failures in various services and system
components, as well as localizing failures and restoring the operational state of
the system.

Managing the system also involves performing routine maintenance,
administering and securing applications, resources and users, and predicting
future capacity growth to ensure that resources are available when the demands
of the business call for it. The security domain includes such topics as
authentication, single sign-on, authorization, federated identity management,
and user provisioning.

The manage phase also includes managing the business model, and tuning the
operational environment to meet the business objectives expressed in the
business design, and measuring success or failure to meet those objectives.
SOA is distinguished from other styles of enterprise architecture by its correlation
between the business design and the software that implements that design, and
its use of policies to express the operational requirements of the business
services and processes that codify the business design. The manage phase of
the life cycle is directly responsible for ensuring those policies are being
enforced, and for relating issues with that enforcement back to the business
design.

Governance

SOA governance is critical to the success of any SOA project. Governance helps
clients extend the planned SOA across the enterprise in a controlled manner.
SOA governance has four core objectives or challenges:

v

Establish decision rights

Define high value business services
Manage the life cycle of assets
Measure effectiveness

vYyy

Note: For more detailed information about SOA governance, refer to
Chapter 3, “SOA governance” on page 25.

Chapter 1. Introduction 5

SOA foundation reference architecture

This section describes the SOA foundation reference architecture (Figure 1-2),
which includes the components and middleware services used by applications in
the runtime environment.

Channel
Consumers

Business Process
Composition; ch

business state machines "

adueulanon

o
D
g
o2
S
28
n Q
L=
53
53
H
88
H
R

) Atomic Service - Composite Service Registry

Figure 1-2 SOA foundation reference architecture: Solution view

6

Figure 1-2 shows the SOA foundation reference architecture solution view used
to decompose an SOA design. SOA puts a premium on the role of the enterprise
architect, who is responsible for spanning between the business design and the
information system that codifies that design.

When taking a top-down approach, the enterprise architect starts by identifying
the business processes and business services used by the business users. The
business users are consumers of the processes and services. Business
processes should be treated as compositions of other business processes and
services, and therefore should be decomposed into their subordinate
sub-processes and services.

Services and business processes are then detailed into service components.
Service components include a detailed set of definition metadata used to
describe the service to the information system. Services can be aggregated into

Building SOA Solutions Using the Rational SDP

module assemblies. The module assemblies are used to establish related design
concerns, and begin the planning to determine what teams will collaborate to
implement the related services to be deployed as a single unit.

The resulting set of business process definitions, services, and schemas make
up the logical architecture of the application. The enterprise architect then needs
to map that logical architecture to a physical architecture.

We have included a summary description for each of the services found in the
logical architecture shown in Figure 1-3. The services found in the center
(Interaction, Process, Information, Partner, Business Application, Access) are the
core set of services used by application within the runtime environment when
deployed. The other services (outer services) are used in support of the core

services.
" Business Innovation & Optimization Services
S Facilitates better decision-making
s with real-time business information -
) 05
»n S g
5 Interaction Services Process Services Information Services 5 %
f_E,_ Enables collaboration Orchestrate and Manages diverse 2 =
o between people, automate business data and contentin a - s
% processes & information processes unified manner
(=]

Integrated Facilitates communication ESB_between services Manage
environment and secure
for design services,
and creation Partner Services Business App Services Access Services applications

of solution Connect with trading Build on a robust, Facilitates interactions &
assets partners scaleable, and secure with existing information resources

services environment and application assets
N _

Infrastructure Services

Optimizes throughput,
availability and performance
J

Figure 1-3 SOA Foundation Reference Architecture: Middleware services view

Core components of the logical architecture

This section includes a brief description on the following core components of the
logical architecture.

Interaction services
Interaction services provide the capabilities required to deliver IT functions and
data to users, meeting their specific preferences.

Chapter 1. Introduction 7

Process services

Process services provide the control capabilities required to manage the flow
and interaction of multiple services in ways that implement business processes.

Business application services

Business application services are called by service consumers. Service
consumers include other components in the logical architecture such as portal or
a business processes.

Information services

Information services provide the capabilities necessary to federate, replicate and
transform disparate data sources.

Access services

Access services provide bridging capabilities between core applications,
prepackaged applications, enterprise data stores and the ESB to incorporate
services that are delivered through existing application into an SOA.

Partner services

Partner services provide the document, protocol, and partner management
capabilities for business processes that involve interaction with the outside
partners and suppliers.

Supporting components of the logical architecture

8

This section includes a brief description of the supporting components of the
SOA foundation logical architecture used in support of the core components.

» Enterprise Service Bus
» Business innovation and optimization services
» Development services

» IT service management

» Infrastructure services

Enterprise Service Bus

The Enterprise Service Bus (ESB) or simply bus, provides an infrastructure that
removes the direct connection dependency between service consumers and
providers. Consumers connect to the bus and not the provider that actually
implements the service. This type of connection further insulates the consumer
from the provider.

Building SOA Solutions Using the Rational SDP

A bus also implements further value add capabilities, such as security and
delivery assurance. It is preferred to implement these capabilities centrally within
the bus at an infrastructure level rather than within the application. The primary
driver for an ESB, however, is that it increases decoupling between service
consumers and providers.

Although it is relatively straight forward to build a direct link between a consumer
and provider, these links can lead to an interaction pattern that consists of
building multiple point-to-point links that perform specific interactions. With a
large number of interfaces this quickly leads to the build up of a complex
spaghetti of links with multiple security and transaction models. When routing
control is distributed throughout the infrastructure, there is typically no consistent
approach to logging, monitoring, or systems management. This type of
environment is difficult to manage or maintain and inhibits change.

Note: An ESB can be thought of as an architectural pattern, with an
implementation to match the deployment needs. There are two IBM ESB
products:

» |IBM WebSphere Enterprise Service Bus
» IBM WebSphere Message Broker

In addition, there are a number of products that extend the capabilities of
these ESBs, including DataPower® XML Security Gateway XS40.

Business innovation and optimization services

Business innovation and optimization services are primarily used to represent
the tools and the metadata structures for encoding the business design,
including the business policies and objectives.

Business innovation and optimization services exist in the architecture to help
capture, encode, analyze and iteratively refine the business design. The services
also include tools to help simulate the business design. The results are used to
predict the effect of the design, including the changes the design has on the
business.

Development services

Development services encompass the entire suite of architecture tools,
development tools, visual composition tools, assembly tools, methodologies,
debugging aids, instrumentation tools, asset repositories, discovery agents, and
publishing mechanisms needed to construct an SOA-based application.

Chapter 1. Introduction 9

IT service management

Once the application has been deployed to the runtime environment it needs to
be managed along with the IT infrastructure on which it is hosted. IT service
management represents the set of management tools used to monitor your
service flows, the health of the underlying system, the utilization of resources, the
identification of outages and bottlenecks, the attainment of service goals, the
enforcement of administrative policies, and recovery from failures.

Infrastructure service

Infrastructure services form the core of the information technology runtime
environment used for hosting SOA applications. These services provide the
ability to optimize throughput, availability, performance and management.

SOA foundation scenarios

10

The SOA foundation scenarios (or simply SOA scenarios) are representative of
common scenarios of use of IBM products and solutions for SOA engagements.
The SOA scenarios quickly communicate the business value, architecture, and
IBM open standards-based software used within the SOA scenario. The SOA
scenarios can be implemented as part of an incremental adoption of SOA
growing from one scenario to using elements of multiple scenarios together. The
concept of realizations are used to provide more specific solution patterns and
IBM product mappings within the SOA scenarios.

The SOA scenarios can be used as a reference architecture implementation
(starting point) to accelerate the SOA architecture and implementation of your
customer scenario. Figure 1-4 displays the SOA scenarios and the relationship
between them.

Building SOA Solutions Using the Rational SDP

People:
Interaction &
Collaboration

Services

SOA Scenarios

Process:
Business
Process
Management

Reuse: Connectivity:
Service Service
Creation Connectivity Information:
Information

as a Service

Figure 1-4 SOA scenarios and entry points

>

Service creation—More details about this scenario can be found in Patterns:
SOA Foundation Service Creation Scenario, SG24-7240.

Service connectivity—More details about this scenario can be found in
Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228.

Interaction and collaboration services

Business process management—More details about this scenario can be
seen in Patterns: Business Process Management with the SOA Foundation,
SG24-7234.

Information as a service

The scenarios can be used together and adopted incrementally. For example, the
other scenarios commonly include service creation and often want connectivity.
In addition, the scenarios can be used together, such as a portal accessing a
business process or a portal accessing an information service through an ESB
from a service consumer.

Chapter 1. Introduction 11

SOA design, governance, security, and management should be used in each of
the SOA scenarios based on customer requirements.

SOA governance should (or almost must) be used to adopt SOA across the
enterprise in a controlled manner with the objective of aligning the SOA initiative
with the business objectives. Governance includes setting a baseline for
measuring improvements, tracking SOA projects, building a pool of skilled
resources, and establishing the structure for making decisions about SOA
initiatives.

Companies that adopt an SOA need a solution for managing and monitoring
services. In addition, they need of a security model that enables secure business
transactions across enterprises and the Internet. The security domain includes
topics such as authentication, single sign-on, authorization, federated identity
management, and user provisioning.

Out of scope topics with references to other books

In the limited time available to write this IBM Redbooks publication we were not
able to cover all the aspects of developing a real business process application
using all the facilities of SOA and all the IBM Rational and WebSphere products.
In this section we briefly refer to the areas that we do not cover in this book.

Composite applications and business process implementation

12

When it comes to implementation, this book focuses on individual services, and
not composite applications or business processes.

The tasks that are described in detail in this book are the tasks performed by the
developer of individual services, and not the integration developer, who would be
responsible for the composition or choreography of services to implement a
composite application or a business process.

The service implementation tool that is shown in detail in this book is Rational
Software Architect, used by developers. The tool that is not showcased is
WebSphere Integration Developer, used by integration developers. The main
difference is that Software Architect is used to implement services and typically
requires developers to be skilled in Java 2 Enterprise Edition (J2EE™), whereas
Integration Developer is used to build composite applications (to compose
services), and does not require detailed J2EE skills.

The tasks performed in Integration Developer would involve taking the Business
Process Execution Language (BPEL) generated by WebSphere Business
Modeler, and implement it. To implement the business process, the integration

Building SOA Solutions Using the Rational SDP

developer would use the services that we have identified, specified, realized,
implemented, and tested (as described in detail). The integration developer
would use the Web Services Definition Language (WSDL), or even the service
implementations, that is, the enterprise archives (EARs). Also, Integration
Developer would be used to implement the business rules, state machines, or
specify human tasks for the human activities involved in the business process.

The result of this work would be the implementation of the solution required for
the JK Enterprises Account Opening business process (see Chapter 2, “JK
Enterprises case study” on page 17). This is a fundamental topic, and one can
argue that we are not completely explaining how to build SOA solutions if we do
not cover this topic. However, we do not talk about because it is already covered
in other IBM Redbooks, such as:

» Business Process Management: Modeling through Monitoring Using
WebSphere V6 Products, SG24-7148

» Patterns: SOA Foundation - Business Process Management Scenario,
SG24-7234

Reporting and documentation

An important part of any project is the reporting and documentation mechanisms
and the tools to automate these tasks. This book does not cover this aspect in
any detail, but this section summarizes the key concepts and tools involved.

It has long been our assertion that reporting and documentation should be a
side-effect of any useful work on the project. The use of automated tools is
absolutely required to facilitate this approach. Reporting and documentation are
a vital part of the governance of projects, but we have to be able to prevent this
governance obstructing the project’s progress.

Each of the tools used in this book provide a reporting mechanism specific to
those tools. This is typically the production of one or more of HTML, Microsoft®
Word, or comma separated values (CSV) files.

Rational SoDA

In addition to the tool-based reporting, we recommend the use of tools such as
IBM Rational SODA® to produce customized, integrated reports that cross
product and role boundaries. The challenge is to work out what reports are really
necessary. Here, our process was a key guide on what was really required, and
we have tried to reflect this in the development case (see “JK Enterprises
development case” on page 114).

Chapter 1. Introduction 13

14

Project involving SOA-based solutions can take advantage of the RUP SoDA
templates provided as part of the tools and processes to minimize the
customization work required in SoDA.

It has been our experience, however, both in the field and while working on the
book, that static paper or file-based documentation, while a useful snapshot of
the project, quickly becomes only useful for the recycling bin (real or virtual) and
this leads to a discussion on real-time and historical data gathering and
reporting.

In customer engagements and for internal use at IBM, we have found tools such
as Rational ProjectConsole™ and Rational Portfolio Manager provide excellent
access to real-time and historical data.

Rational ProjectConsole

ProjectConsole is particularly useful in presenting a real-time view of the project
artifacts. For example, anyone with the correct access rights can view
requirements, defects, and other project data through a Web interface.
ProjectConsole also gathers and stores historic data from the tools to allow
metrics, such as defect rates. The useful measures are not the absolute
numbers, but rather the first- and second-order derivative measures’.

The beauty of ProjectConsole is that it automatically gathers the data as people
use their desktop and server tools. This means no filling in reports every day,
week, or month. Useful metrics are gather just by people working on the project
(hence the idea of reporting as a side-effect of doing useful work). We found this
approach to gather information quickly becomes invisible to the users. The
metrics become particularly interesting when correlations are examined. For
example, drilling down into a high defect rate might reveal that the code has been
churned just prior to testing. A closer examination reveals that the design was
unstable because of some late requirements changes. It is vital that these
metrics are not used to conduct a witch-hunt but rather to assist the project team
on deciding where to allocate resources more effectively, who needs help, or
what aspect of the project requires more focus.

Rational Portfolio Manager
While ProjectConsole tends to look at the technical metrics, Portfolio Manager
provides a dashboard for the financial, resource and project planning aspects of

T A defect count of 100 is not a useful metric for the project manager, a 50% decrease in defects (or
increase) since last week, or even the deceleration of defect rates tells us more about the project
health. These numbers should be read in the context of our process (these numbers may be great
in the middle of a project but a little worrying if we plan to ship the same week). In the past, IBM
Rational has used the concept of a “defect glide path” in our internal development teams - where
the project and product managers watch the defect rates trajectory towards zero known critical
defects as a predictor of when the product is ready to ship

Building SOA Solutions Using the Rational SDP

a project, program, or the enterprise. By having the participants use the Portfolio
Manager tool in their day-to-day work (for example, creating project proposals,
entering time sheets either directly or fed in from a time recording system) the
ability to gather and report on this data automatically removes some of the
obstacles to getting consistent, updated metrics. However, it is vital that this tool
is the authoritative source of data. Project planning by spreadsheet must be
abandoned if we want to get a consistent picture of the enterprise.

Another important aspect of Portfolio Manager that is particularly relevant to this
book is how we can use our process to generate project plans. Our process and
development case (created in Rational Method Composer) can be used to
generate a work breakdown structure that is used as a template for project plans.
There is scope for contiguous process improvement by adjusting our process
and development case based on examination of the project actuals or details.

Any project produces work products as the project takes its course. An important
decision is which work products are useful only for that project, and which work
products should be contributed to the living documentation for the services under
development. Models assume a much greater significance when the many
aspects of the final service implementation can be generated from the models
using the tooling.

We have touched on some aspects of IBM Rational SoDA, IBM Rational
ProjectConsole, and IBM Rational Portfolio Manager. The use of these tools is a
good topic for a future IBM Redbooks publication.

Software configuration management

Software configuration management is the control and synchronization of work
products of a software system [RUP V7]. Good software configuration
management avoids the problems of overlapping and conflicting changes on
work products, and the potential confusion caused by multiple versions of a work
product.

All the work products in this Redbooks publication were placed under software
configuration management. Good management of the work products is even
more important for SOA-based solutions. In the JK Enterprises example, we
demonstrate how to build a set of services. Typically, this would only be the start
of the life of these services. We would keep the work products produced in this
document as part of the ongoing documentation for the services. We have to
make sure that the service implementations are matched to the rest of their work
products.

IBM Rational’s key solution for software configuration management are IBM
Rational ClearCase® and IBM Rational ClearQuest. These products provide a

Chapter 1. Introduction 15

secure repository for storing changes and tieing these changes into the reason
for the change. ClearCase is the place we store different versions of a work
product. ClearQuest stores the defects and enhancement requests, and
manages tests for these work products. While both products can be used on their
own, the main advantage is to combine these products so that each of the
versions stored in ClearCase are tightly coupled to the defect or change request
associated with this change.

More information about ClearCase and ClearQuest can be found in the IBM
Redbooks:

» Software Configuration Management: A Clear Case for IBM Rational
ClearCase and ClearQuest UCM, SG24-6399

» Rational Business Driven Development for Compliance, SG24-7244
» Rational Application Developer V6 Programming Guide, SG24-6449

Governance

We cover SOA governance in Chapter 3, “SOA governance” on page 25, but a
comprehensive treatment of governance is not intended by this document.

Summary

16

This introductory chapter introduces the key concepts behind SOA, the SOA life
cycle, and IBM SOA reference architecture.

We also describe some of the aspects of developing solutions and the relevant
IBM tooling that is not covered in detail in this document.

Building SOA Solutions Using the Rational SDP

JK Enterprises case study

This chapter introduces the case study used throughout this book. This chapter

contains these topics:
» An overview of JK Enterprises, the company

v

JK Enterprises business problems

v

The proposed solution

v

Assumptions

© Copyright IBM Corp. 2007. All rights reserved.

17

Introduction

This book uses the a single example throughout to illustrate the use of IBM
tooling and processes to build SOA-based solutions. JK Enterprises is a purely
fictitious supply company that has specific goals and constraints that provide a
typical set of challenges for the team implementing an SOA-based solution. JK
Enterprises is an example that appears in other IBM material. We have adapted
the example in some places to illustrate particular points relevant to building SOA
solutions using the IBM Software Delivery Platform (SDP).

An overview of JK Enterprises

18

JK Enterprises has approached us to assist in building a solution to meet some
specific business goals. As part of our initial discussions with the company, we
meet the CEO and CIO of the company.

CEO interview

The CEO of JK Enterprises turns out to have a very positive outlook on the
company’s future and has told us this about the company:

» “JK Enterprises is a premier supplier to retail, small business and corporate
customers. The company started in 1935, and currently has 11000
employees in 900 offices in 6 countries. This includes 6 call centres and 8
data centres. Our success is based on a high-touch interaction with
customers. Part of this high-touch approach is that customers can use
multiple channels to interact with the company. The company wants to offer
the best customer service at the lowest cost.”

» “JK enterprises already has an e-business site (JKe) with the lowest cost per
order in the industry. We recently acquired Jensen Inc. and this has allowed
us to strengthen our corporate customer base. We treat our corporate
customers as true business partners.”

» “We want to be the most profitable, high-touch company in the industry. We
are pursuing aggressive growth while minimizing risk. We will optimize our
corporate organization to maximize company responsiveness. We will
maxims our strategic investments in the best Web site in the industry, the best
sales force in the industry, a global CRM and sales-focused call centers.”

Building SOA Solutions Using the Rational SDP

CIO interview

The CIO of JK Enterprises is slightly less cheerful and clearly has been having a
difficult time in the last few years. He now has a plan to address many of the
issues he faces and we are part of that plan. His view on the company is as
follows:

>

“We cover multiple market segments, and through multiple channels. The
integration with Jensen, which we started in 2000, is still in progress.”

“We have eight data centres and about 200 IT staff. We have a mixture of
build and buy applications including SAP®, Siebel®, CICS®, and batch
applications. We have applications that we acquired as part of the Jensen
purchase that have yet to be integrated. We have a new CRM system that is
still being implemented and we add analytics. We have multiple platforms and
a heterogeneous topology. To be frank, we have very little reuse of
components and skills across the company and this is something | want to
address.”

“As we transition to SOA, we have a series of challenges ahead. We have set
up an organization to support shared services. HR was first, and SAP ERP
was next, but it took a long time to complete (it came from Jensen). CRM is
the current project. We have a single database, but still keep information in
different schemas according to the area of business they relate to. There is a
resistance to sharing customer information across the lines of business (LoB).
We have no common terminology and cannot get the LoBs to agree. Before
we can implement SOA on a large scale, we have to get the LoBs aligned,
normalizing their requirements and designing services with the right level of
granularity.

“We have 2000 IT staff using more than 50 different development tools and
environments. We have no end-to-end methodology. Governance is a big
issue that we have to address. You have heard about our business technology
optimization program. This will support a major development based on SOA”

“Thankfully, we have identified the key business processes that need
optimization. We do have a good idea of the current processes in this area
and how they have to look. Fixing these key business processes will help us
achieve our business goals. Implementing the automation aspects of a
solution will test our new methodology based on the IBM Rational Unified
Process for SOMA”

After a double espresso or two, we dive a little deeper into the particular
challenges the company is facing.

Chapter 2. JK Enterprises case study 19

Business problems

20

Opening an account is one of the key business processes that is in need of
improvement and automation. This process covers four different functions in the
business: Account sales, application, verification, and activation.

We capture the key issues for each business function:

» Account sales issues are:

— Account application processing delays: Customers want to use their
accounts as soon as possible.

— Account status is unavailable while the account is being set up: The
business cannot answer customer queries about how the account
application is progressing.

» Account application issues are:
— Complex application forms

— Different format and information required for applications for different
products, when they could use the same format.

— Errors due to re-keying of information. Information is re-keyed from paper
applications as well as between different, disconnected systems.

— Lack of single customer view. There are multiple systems that include
customer and account information at the company. The primary system is
an operational CRM, which is considered to be the master source of data
for customer name, address and relationship information.

» Account verification issues are:
— No single, consistent view of the customer

— Too many customer applications are declined because of different
regional credit scoring policies.

— Credit checks are faxed or called in to the credit checking agency. This
takes too long and is too expensive.

— Too many applications are referred for credit checks.
» Account activation issues are:

— Manual updates to multiple systems is required to activate the account.
The data is re-keyed into the ERP system, a data warehouse and billing
system.

Building SOA Solutions Using the Rational SDP

Proposed solution

It is clear from the list of business problems that we have a few areas of
improvement. This book shows how we:

»

>

>

>

Create business use cases.
Document an improved business process.

Identify, specify, design, and implement services to support the business
process improvements.

Test the implemented services.

We focus on two areas of the business. The primary area for improvement is
sales management, and the secondary area is customer service:

»

In the sales management area, we look at improving the Account Opening
process. We optimize the business process, and then look for areas where
automation can reduce the costs and speed up the process. Inside this
process, we have an Account Verification sub-process that we will improve
by speeding up the account eligibility task. This task determines whether we
bypass a credit check or send for a full credit report.

In the customer service area, we will make it possible for prospective
customer to check on the progress of their account application.

Account verification improvements

Our solution for account verification involves an integrated way of performing
these tasks:

>

>

>

»

>

Verification of customer information

Retrieval of credit report, if necessary

Request of additional documentation for a low credit score
Determination of pricing plan based on customer credit score

Acceptance of account application and account activation, if the account
application is approved, or rejection notification, if not approved

The JK Enterprises case study is used to illustrate improved efficiency, reduced
costs and latency, and increased customer satisfaction of account management.
The specific business goals and objectives are to optimize account setup to:

>

>

Improve sales and customer service through increased speed and
responsiveness.

Enhance productivity through reductions in total cost of ownership (TCO).

Chapter 2. JK Enterprises case study 21

» Reduce regulatory non-compliance risk and increase consistency via rules-
based business process management.

To achieve these goals, we need to improve the business process.

An analysis of the business problems and our approach

22

Even in this simple example, we have problem areas, how the problems affect
the business and dependencies between problems can be hard to relate to each
other. Reading this information in a series of documents or presentations can be
a challenge. Using visualization to analyze the situation makes it possible to rise
above the details, abstracting away information that is not relevant at the moment
and enables the reader to focus on the issues at hand. Figure 2-1 illustrates
these issues and their dependencies using a repurposed class diagram.1

Each problem area is represented using a class element with a description of the
problem as its name. and the implications of that problem listed as attributes
within the class element. Each problem in turn has an impact and dependency
on other problems and these are connected using the dashed arrows. In this way,
we can look at the problems and easily discern which problems have an impact
on other problems.

Take the Account Application problem area. This problem area affects the
business because we are not able to provide accurate information about status
and related account information (among other things). Solving the Account
Application problem requires that we also activate the account (Account
Activation), because the Account Application depends on this activation. Account
Activation itself has dependencies on Account Verification and feeds to other
systems, and so forth.

We analyze the problems by breaking them down into smaller problems, with
their implications and dependencies.

! This diagram is drawn by creating a model in IBM Rational Software Modeler, and then showing the
elements in a Unified Modeling Language (UML) class diagram. We represent each problem area
using a class, list the implications as attributes of that class, and then use UML dependencies to
connect the problem areas. The model could be further manipulated using other class diagram to
view subsets of the model as required. This is a powerful way of working with this information.
While this is not a standard way of using UML, the technique of using stereotypes on UML
elements to represent aspects not considered when UML was first developed is a common practice
and is part of the power of both the UML and the IBM tooling that supports UML.

Building SOA Solutions Using the Rational SDP

«External»
& Credit Check

A
. depends on external

«Problem Area»
(® Customer Verification
o redundant or overlpping customer record maintained by multiple applications :
;
depends on 3bjlity to verify custormer :
- ' «Problem Areas»
§ i (® Feed to Other System
¥ i o manual feed to multiple applications maintaining customer i
; A

«Problem Area»
(3 Account Verification

o not able to determine single version of truth on customer

depends on successful feed

«Problem Area»
o dedlining too many account applications

o not able to provide accurate
o data entry error transferring paper application data into system

=T
w7

(® Account Usage Pricing
o lack of pricing rules |
o fack of dynamic pricing
o inconsistent credit check
o time consuming credit check
| dit check
depends on customer credit score SR SRS :
=
depends on suctessful verify]
«Problem Area» «Problem Area»
(3 Product Verification (3 Account Activation
o redundant or overlapping product record maintained by multiple product applictions
=
i
depends on ability to identify the product selected in thag\ccount application completion depends on
«Problem Area»
(3 Account Application
information on status and relted account appliction information
o difficulty matching customer selected product due to multiple applications maintaining products and there is redundant or overlapping product systen

. depends on account readiness

«Problem Areax»

(3 Account Sales

o customer waiting to use account
o cannot answer customer question on account status

Figure 2-1 Problem areas, their implications for the business, and dependencies

Approach
As mentioned previously, we focus on two areas of the business: Sales
Management and Customer Service. Within Sales Management we look at the

Chapter 2. JK Enterprises case study 23

Account Opening process to leverage automation to speed up the process and
lower costs. Within Customer Service we make it possible for prospective
customers to check the status of their application. Based on an analysis of
Figure 2-1 and the supporting artifacts, we see that there are a number of
problem areas that are interrelated. As such, our approach to address the
business problems areas is to focus on the following:

» Improve the Account Opening business process of the sales management
functional area under the servicing and sales area business component.

» Improve the Account Application process.
» Improve the Account Activation process.
» Improve the Account Verification process:

— Improve the Determine Applicant Eligibility process.
— Improve the Credit Check process.
— Use an external address verification service.

» Improve Account Inquiry using consistent and accurate account application
status and account inquiry.

Assumptions

24

In an effort to limit the scope of this book, we have made the following
assumptions about our work at JK Enterprises:

» JK Enterprises is not undergoing a complete organizational business
transformation. We undertake what RUP calls business improvement.

» We do not assess the organizational structure and we do not make changes
to that structure.

» We limit ourselves to analyzing a subset of the JK Enterprises business
problems in the area of Account Management and Customer Service.

» We assume the stakeholders are as followed:

— Prospective customers

— Account coordinators

— Account manager

— Risk assessors

— Customer service department head

— Credit department head

— Information technology department head
— Chief Information Officer

— Chief Executive Officer

» We continue to use our current external credit scoring agencies.

Building SOA Solutions Using the Rational SDP

SOA governance

SOA governance is necessary for the successful adoption of SOA, partly
because of the cross-organizational nature of SOA where service funders,
designers, implementers, maintainers, or consumers are not located in the same
organization (business, IT, department, LOB, division, enterprise). SOA
governance ensures that the value proposition of SOA is achieved.

SOA governance could be the topic of another Redbooks publication. In this
chapter, we do not attempt to cover all of SOA governance, but simply to raise
your awareness about why it is important, to define what it means, and to show
how SOA governance is supported in the IBM products that used for SOA
solutions.

This chapter discusses these topics:

» The importance of SOA governance

» SOA governance definition

» Service life cycle

» SOA governance life cycle

» IBM products for SOA governance

© Copyright IBM Corp. 2007. All rights reserved. 25

Importance of governance

26

This section talks about the challenges governance addresses, as well its
benefits.

Challenges
Challenges addressed by SOA governance include:

» Establishing decision rights: Who decides who can use a service and how
it can be used? Who owns the service? Who funds shared services? Are the
service QoS standards clearly defined?

» Defining high value services that are business-aligned: Does IT have a
clear understanding of the business value? What are the success factors?

» Managing the life cycle of assets (including services): What is the impact
of a specific service going down? How are service users notified of change?
Who needs to approve changes?

» Measuring effectiveness: How can you make sure different departments or
divisions with disparate goals all provide business value? What are services
performance goals? What service level agreements are needed? How to
gather performance metrics?

Benefits

This section lists benefits of adopting governance, quoted from the MIT Sloan
school of management:

“Effective IT Governance is the single most important predictor of value an
organization generates from IT”

» Increasing share price: Professional investors are willing to pay premiums of
18-26% for stock in firms with high governance.

» Increasing profits: Top performing enterprises succeed where others fail by
implementing effective IT governance to support their strategies. For
example, firms with above-average IT governance following a specific
strategy (for example, customer intimacy) had more than 20 percent higher
profits than firms with poor governance following the same strategy.

» Increasing market value: On average, when moving from poorest to best on
corporate governance, firms could expect an increase of 10 to 12 percent in
market value.

Building SOA Solutions Using the Rational SDP

Definitions

This section contains definitions from the IBM Rational Method Composer plug-in
for SOA Governance (refer to “Rational Method Composer” on page 32 and
“References” on page 38 for more information).

Governance

Governance is about:

» Establishing chains of responsibility, authority, and communication to
empower people (decision rights).

» Establishing measurement, policy, and control mechanisms to enable people
to carry out their roles and responsibilities.

Governance looks at assigning the rights to make decisions, and deciding what
measures to use and what policies to follow to make those decisions. The
decision rights are assigned to roles, not to individuals. Management, on the
other hand, includes assigning staff to the roles and monitoring the execution of
policies.

Compliance

Part of any governance solution is meeting the organization's compliance
requirements. Compliance is documenting and proving that governance is in
place and is being executed: decisions are documented and decision policies are
followed.

Compliance can also be seen as an opportunity for setting up governance, and
make you think about what the decisions and roles are. Then, once in place,
governance helps with compliance.

You can think of governance as a way of empowering and enabling people, so
that decisions can be made that ensure the delivery of successful projects.

Management
Governance determines who has the authority to make decisions, whereas

management is the process of making and implementing the decisions.
IT governance

IT governance is the application of governance to an IT organization, its people,
processes, and information to guide the way those assets support the needs of
the business.

Chapter 3. SOA governance 27

IT governance refers to the aspects of governance that pertain to an
organization's information technology processes and the way those processes
support business goals.

IT governance may be characterized by assigning decision rights and measures
to IT processes.

SOA governance

28

SOA governance is an extension of IT governance specifically focused on
services and the life cycle of other SOA artifacts.

Specifically, SOA governance focuses on the methods and processes around
service identification, funding, ownership, design, implementation, deployment,
reuse, discovery, access, monitoring, management, and retirement.

SOA governance is a specialization of IT governance that puts the key IT
governance decisions within the context of the life cycle of service components,
services, and business processes. It is the effective management of this life cycle
that is the key goal of SOA governance.

SOA governance ensures that:

» The value proposition of SOA (business process flexibility and improved time
to market) is achieved.

» Business risks are mitigated, and control is regained (by maintaining quality
and consistency of service).

» Team effectiveness is improved (by measuring the right things and having
clear communication between business and IT).
SOA governance addresses challenges such as:

» What new organizational roles and structures facilitate service identification,
design, and sharing?

» What metrics support investment, maintenance, vitality, and sharing of
services?

» How do businesses decide to invest in service creation and maintenance?
» What is an enterprise’s service-orientation maturity?
» What education, training, or mentoring is required?

Building SOA Solutions Using the Rational SDP

Service life cycle

The service life cycle comprises the states services may be in and the events
that trigger transitions between these states.

Think of a service’s life cycle as a business state machine with states (positions)
in which services can exist, and transitions that make them evolve from one state
to another.

SOA governance is about planning, defining, enabling, and measuring around
the service life cycle. SOA governance defines what the service states are, what
actions need to happen to move from state to state (transitions), how (processes
and methods), and by whom (roles, guards).

For example, SOA governance can define what services states are, such as
identified, funded, specified, implemented, approved, operational, published,
deprecated, and retired.

The development platform then has to support services through their life cycles
and make sure the processes in place are followed. For example, service
registries and repositories have to allow users to take action so that services
evolve through their life cycle. Collaboration and portfolio management tools
need to allow users (and just those who have the rights) to make decisions that
move services from one state to another, and notify users that need to take
action.

SOA governance life cycle

In “SOA foundation” on page 2 you were introduced to the SOA foundation life
cycle, including the underpinning SOA governance life cycle. These two life
cycles have to coexist within the organization to ensure that we are successful in
our SOA implementation.

The governance life cycle helps us in meeting the challenges mentioned earlier
in this chapter, such as decision rights, business alignment, asset life cycle, and
effectiveness. By working through the governance life cycle, we position
ourselves to succeed as we work through the SOA foundation life cycle, including
model, assemble, deploy, and manage. In this section, you learn about the SOA
governance life cycle (as shown in Figure 3-1) in more detail.

Chapter 3. SOA governance 29

30

Scope the Governance Need
= Document and validate business

= Assess current IT and SOA capabilities |)
= Define/Refine SOA vision and strategy
= Review current Governance capabilities |§

= | ayout governance plan

Design the Governance Approach
= Define/modify governance processes

= Design policies and enforcement
mechanisms

= [dentify success factors, metrics

= Identify owners and funding model

= Charter/refine SOA Center of Excellence
= Design governance IT infrastructure

strategy for SOA and IT

and arrangements

Put the Governance Model

Manage & Monitor

the Governance Processes
= Monitor compliance with policies
= Monitor compliance

= Monitor IT effectiveness metrics

into Action

= Deploy governance mechanisms

= Deploy governance IT infrastructure

= Educate and deploy on expected
behaviors and practices

= Deploy policies

with governance arrangements

Figure 3-1 SOA governance life cycle

The SOA governance life cycle comprises four phases:
» Plan: Good IT and SOA governance results in better alignment of the IT

organization and business needs. It is in the plan phase that needs and
priorities of the business are documented along with the role of the IT
organization in meeting these needs. Also, the state and maturity of the
current IT organization governance is assessed, and gaps are identified.
From this analysis, the governance vision and strategy (as well as the
roadmap and plan) are documented. In the plan phase, the governance
measures are put in place. These measures are used to assess how well the
IT organization is aligned with the business and the business needs are met.

Define: In the define phase, the detailed governance plan is put in place for
the current cycle. In particular, the processes to be governed are specified
and prioritized, and the decision rights, policies, and measures for these
processes are defined. In preparation for the next phase, detailed deployment
plans are set. In some cases, these plans may include specifying or updating
the structure and staffing of the SOA governance center of excellence (CoE).

Enable: The enable phase is when the defined solution is rolled out to the
organization. In this phase, roles are assigned, staff are trained, decision
rights may be automated in workflow tools, and metrics collection and report
mechanisms are put in place.

Measure: In this phase, the governance approach is executed and tuned.
The governance metrics, those that show alignment with the business, are

Building SOA Solutions Using the Rational SDP

gathered. These metrics are used in the next cycle to revise the governance
approach.”

Refer to “Rational Method Composer plug-in for SOA Governance” on page 33
for more details.

IBM products for SOA governance

The IBM Rational SDP enables SOA governance with a portfolio of modular,
open standard-based products, as illustrated in Figure 3-2. Note that you do not
require all of these products to get started with SOA governance; there are
adoption roadmaps for different entry points, and your organization’s SOA
governance dashboard will be a different, one that is customized for your needs.

Solutions for geographically distributed development, compliance, SOA

Process & portfolio management

= IBM Rational® Portfolio Manager - Best practices content (IBM Rational Unified Process®
= IBM Rational Method Composer IBM Tivoli Unified Process®, Portfolio Management)

= IBM Rational Team Unifying Platform™

Requirements & analysis Design & construction Software quality

= IBM WebSphere® = IBM Rational Application Developer = IBM Rational
Business Modeler = IBM Rational Systems Developer Performance Tester
= IBM Rational RequisitePro® = IBM WebSphere = |BM Rational Functional Tester
= |BM Rational Software Architect Integration Developer = |BM Rational Manual Tester
= |BM Rational Software Modeler = IBM Rational Data Architect = |BM Rational PurifyPlus
= IBM Rational Rose® = IBM WebSphere Developer
Data Modeler for zSeries
Change & configuration management
= IBM Rational ClearCase® = |BM Tivoli Provisioning Manager
= IBM Rational Build Forge® = |BM Tivoli Intelligent Orchestrator

= |IBM Rational ClearQuest®

Partner ecosystem & open computing
Eclipse™, Linux®, Microsoft® Windows®, UNIXZ, IBM z/OS®

Figure 3-2 IBM Rational SDP governance dashboard

Key governance aspects supported by the SDP are:

» Traceability: Linkages between artifacts spanning the full SOA life cycle. For
example, how can you make sure that a requirement is addressed in your
design? What is the impact of a change in a requirement on your design?
What test case verifies that a specific requirement is addressed?

Chapter 3. SOA governance 31

» Geographically distributed teams: Today, strategy, analysis, design,
development, deployment, and management teams are not physically located
in the same building and sometimes span across the globe. How can the
development platform support geographically distributed teams?

» Compliance: How can the development platform help your organization meet
its compliance objectives?

In this section, we describe how specific IBM products (mainly from the
governance dashboard) support the four phases of the SOA governance life
cycle. Depending on your background, you may relate SOA governance to only
one or two specific products. At the end of this section, you should see that more
is needed to support effective SOA governance, from planning to defining,
enabling, and measuring.

Rational Method Composer

32

Rational Method Composer is an Eclipse-based framework for process and
method authoring, targeting primarily process engineers who want to tailor or
create method contents and processes. For example, RUP for SOA has been
codified using Method Composer.

Method Composer is the product that replaces Rational Unified Process (RUP)
and RUP authoring products such as RUP Process Builder. Method Composer
ships with processes, including:

» Classic RUP
» RUP for Business Modeling
» RUP for Service-Oriented Modeling and Architecture (SOMA)

Method Composer is based on the open source Eclipse Process Framework
(EPF). The main difference between Method Composer and Process Framework
is around process contents, such as the ones listed above. Process Framework
only contains limited contents whereas Method Composer has a lot. Also,
Method Composer provides additional integration capabilities with other Rational
products, such as Rational Portfolio Manager.

Method Composer implements the Unified Method Architecture (UMA) standard,
submitted to the Object Management Group (OMG) as Software Process
Engineering (SPEM) V2.0. With this standard, everyone uses the same
terminology around methods and processes. For example, SPEM defines what
tasks, activities, roles, or guidance are.

Method Composer contents are packaged as plug-ins. A new plug-in can be
based on an existing one. For example, RUP for SOMA is based on RUP, and

Building SOA Solutions Using the Rational SDP

provides variations (contributions, extensions, or replacements) for
service-orientation.

The main output of Method Composer is an HTML site (formerly RUP site), with
method and process contents, that is accessible from a Web browser and from
within tools of the SDP, such as Rational Software Architect.

Also, Method Composer bridges the gap between process engineering and
project management by providing the capability to export processes as Rational
Portfolio Manager or Microsoft Project templates.

It is a key product for SOA governance because it supports the formalization of
method and processes defined by SOA governance, which are then made
available to entire teams.

Refer to “References” on page 38 for links to more Rational Method Composer or
Eclipse Process Framework information.

Rational Method Composer plug-in for SOA Governance

The Rational Method Composer plug-in for SOA Governance V1.0 is available for
download on developerWorks®:

http://www-128.1ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa
_gov/soa_plugin.html

The plug-in helps identify appropriate best practices, merged with your existing
IT processes, to provide proper governance of the capabilities introduced with
SOA. The end result is a project plan to create your organization's unique
governance framework.

Refer to “References” on page 38 for a link to the developerWorks Web site.

Rational Portfolio Manager

Rational Portfolio Manager is a project portfolio management (hence its namel)
tool targeted at business executives to support them in making decisions.
Portfolio Manager helps make business decisions in the area of (sorted in
chronological order):

» Business priorities, alignment and trade-off: These two activities involve
evaluating initiatives based on internal performance and external demand.
Then, trade-off decisions are made regarding what to pursue and when.
Business alignment is key for SOA, and Portfolio Manager helps select the
right initiatives. For example, Portfolio Manager provides a consistent way to
look at demands with work and proposal templates. It also provides analytical
tools (for example, investment maps and scorecards) to help deciding what

Chapter 3. SOA governance 33

http://www-128.ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa_gov/soa_plugin.html

the best mix of initiatives makes the best aligned portfolio. Also, initiative
approvals are auditable, which supports compliance.

» Source or resource: Following the prioritization of initiatives, the next
decision is about identifying the solution needed to meet the initiative’s goal.
Typically, a particular initiative may involve multiple projects. Decisions are
made on using internal resources or outside vendors. Portfolio Manager helps
improve resource utilization in geographically distributed teams. Also, it helps
understand forecasted resource capacity (for example, supply and demand
analysis, what-if analysis, demand scheduling, and real-time resource
assignment).

» Build or buy, and deployment-ready: Knowing what resources are
available, a decision maker can then decide whether to build from scratch,
evolve an existing application, or buy a packaged application. Also, because
there is not only a single project running, there is always the need to integrate
(projects, people, ...) so that at the end, a solution can be delivered to support
the identified initiative(s). Portfolio Manager supports this execution through
its integration with Method Composer, which allows project teams to follow
consistent methods and processes. Portfolio Manager also provides access
to all project information (including historical data from past projects) through
its centralized repository. Finally, Portfolio Manager provides an integrated
way of assessing risks, issues, and changes.

» Value analysis: It is then critical to know whether the selected initiative brings
the intended value to the business. Portfolio Manager provides constant
access to measurements and control throughout development. Using
Portfolio Manager, IT can prove to the business how much value it delivers
(for example, calculating earned value to predict project performance,
providing warnings through trends).

» Regulatory compliance: Last but not least, businesses have to ensure
regulatory compliance, and Portfolio Manager helps by providing graphical
workflows that enforce and automate decision rights and responsibilities, as
well as scorecards that show project compliance. Refer to “Compliance” on
page 38 for more information.

Portfolio Manager is important for governance because it helps executives make
business decisions so that an organization’s portfolio is best aligned to business
priorities, as is key to the success of SOA. Also, it helps define and enforce
decisions right, a central part of governance.

Rational RequisitePro

RequisitePro® is a requirements management tool. It stores requirements (and
related information) in an underlying database and provides an easy-to-use
(client or Web) interface to sort, search, filter and track dependencies between

34 Building SOA Solutions Using the Rational SDP

those requirements. RequisitePro allows for the description of requirements in
Microsoft Word, which can then be stored in the RequisitePro database (using
RequisitePro menus from under Microsoft Word). The database stores
requirement details (attributes, links to other requirements, discussions, and
revision history), while documents display the requirement text and context.

Rational Software Architect allows for RequisitePro requirements to be browsed,
modified, or created (from within Software Architect, under the Requirement
perspective). More importantly, design elements can be created from
requirements, or existing design elements can be linked (traced) to requirements.
The idea is to record how design decisions address requirements, and then be
able to analyze requirements trace, including assessing the impact on the design
of a change in requirements.

In addition, RequisitePro can be used in combination with WebSphere Business
Modeler to ensure that the needs of the business are being captured and
understood. When starting a project, the business, including executives, analysts
and architects, can use RequisitePro to record the high-level business needs.
The high-level business needs can take the form of goals, including objectives
and strategy, as well as business rules. As the project moves forward,
WebSphere Business Modeler can be used to add details to the business goals,
modeling them as processes, and then using simulation and cost comparison
reporting to help the business understand the return on investment. RequisitePro
can be used to add business operational details, capturing both functional and
non-functional requirements. A key aspect of capturing these additional details
within RequisitePro is to find a balance between the needs of the business and
the architecture.

RequisitePro supports SOA governance by allowing traceability. from business,
design, implementation, or test elements to requirements, and also between
requirements. It helps ensure that requirements are addressed throughout the
overall development process.

Rational ClearQuest and Rational ClearCase

Rational ClearQuest is a change, test and application life cycle management
application that can be used to manage change activities (such as defects and
enhancement requests), test cases, and test assets.

ClearQuest enables users to manage any type of change request or test artifact
throughout the entire development life cycle. User-defined queries, charts, and
reports provide metrics useful to all roles within a project team. Customization
capabilities enable ClearQuest to adapt to and help enforce any kind of
development process and life cycle.

Chapter 3. SOA governance 35

Rational ClearCase is a change and configuration management (CCM) solution.

ClearCase provides users with transparent access to versioned artifacts. It
integrates with Microsoft Windows® Explorer as well as with many popular
integrated development environments (IDEs), including Eclipse, the Rational
SDP, and Microsoft Visual Studio® .NET. It enables development teams to
incorporate configuration management seamlessly into their normal, daily
workflow they can work as usual with minimal or no disruption.

ClearCase and ClearQuest support IT governance because they help enforce
the process and life cycle that has been defined through Unified Change
Management (UCM). They allow developers to know what they own, such as
defects or software components. Moreover, it allows developers to make
decisions on the artifacts they own. Senior developers own bigger software
components or more critical defects, which empowers them to make more
important decisions than junior developers can. Also, developers do not have to
be aware of the IT governance process. For example, the ClearQuest queue tells
them what they need to work on. When work is complete, they just deliver their
work on the ClearCase system, and that is it, the ClearQuest state automatically
changes (process enforcement). They just have to worry about what they own,
and ClearCase and ClearQuest support the IT governance process. This is key
to IT governance, and developers usually like to know the boundaries of their
work.

As discussed previously, ClearQuest allows you to track any type of change
request or test artifact. However, we also have to know how those these artifacts
map back to our project requirements. Using the integration between CQ and
RequisitePro, we can create links from requirements in RequisitePro to records
in ClearQuest.

WebSphere Service Registry and Repository

36

The WebSphere Service Registry and Repository plays a central role in SOA
governance.

The Service Registry and Repository supports the management and governance
of services through their life cycles, and helps ensure services provide value to
the business. It supports storing, accessing, and managing service metadata,
which allows for the selection, management, and invocation of services.

The registry tells what the services are and where they are located. The
repository tells about the nature of service usage, and their interactions.

Building SOA Solutions Using the Rational SDP

The Service Registry and Repository capabilities are classified around:

» Publish & Find services to encourage reuse, including a subscription
mechanism that provides dynamic access to service information by runtimes
and users.

» Enrich services to enable dynamic and efficient service interactions at
runtime.

» Manage services to optimize service performance, enable the enforcement of
policies, do impact analysis, versioning, classification, and usage.

» Govern services through their life cycles.

The Service Registry and Repository supports SOA governance as services
progress through their life cycle. For example, it supports services access
control, monitors service vitality, and manages policies for publishing, using, and
retiring services.

Let us explain how the Service Registry and Repository supports service
management and governance.

The Service Registry and Repository provides a simple configurable life cycle
model that can be used to manage governed entities (services) through their life
cycles:

» As explained in “Service life cycle” on page 29, the life cycle is represented as
a state machine, with the states indicating the position of the governed entity
in its life cycle. Transitions are used to validate changes to the governed
entities and apply control (guards) before performing the action represented
by the transition.

» Governance is ensured because actions are constrained by the life cycle
model. Following a successful transition the governed entity then adopts a
new state. Also, changes in states are socialized to users through the
notification mechanism, as well as audited when needed.

When a service is developed, its information (in the form of definition and
metadata) is stored in the Service Registry and Repository:

» As the service moves towards deployment (through testing and approval),
and SOA governance processes start to apply, the Service Registry and
Repository ensures that the service complies with company policies and
follows best practices.

» Once deployed into production, the service is used and reused. At some
point, the governance process in place may determine that the service is no
longer operationally needed, which trigger a retirement state transition in the
repository.

Chapter 3. SOA governance 37

» This process also enables an assessment of how subscribers are impacted if

the service is retired.

» Finally, a service may be de-provisioned, but only when alternatives are in

place for subscribers.

Note that the list of IBM products that support governance is not exhaustive.
Many products support governance one way or the other, and some of the
products listed in this section (for example, Rational Portfolio Manager and
WebSphere Service Registry and Repository) play a more important role in SOA
governance than others. Also, this section emphasizes the products from the
Rational SDP.

Compliance

IT governance and SOA governance are closely related to compliance. Today,
companies are required to follow key regulations, standards, and policies to
comply with the law in regard to how they conduct their business.

This book does not cover any compliance issues. For information about
compliance, refer to the IBM Redbooks publication Rational Business Driven
Development for Compliance, SG24-7244.

The RUP plug-in for Compliance Management is a RUP-based method for
strengthening the auditability of an organization's software development process
and the work products it produces. The goal of this plug-in is to enhance an
organization's ability to comply with internal and external policies and standards.

References

38

Visit the Web sites listed here for more information.
» IBM SOA governance page at:
http://www-306.1bm.com/software/solutions/soa/gov/

» Download the IBM Rational Method Composer plug-in for SOA Governance
V1.0 at:

http://www-128.1ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa
_gov/soa_plugin.html

» Download the IBM Rational Method Composer plug-in for SOMA at:

http://www-128.1bm.com/developerworks/rational/downloads/06/rmc_soma/

Building SOA Solutions Using the Rational SDP

http://www-306.ibm.com/software/solutions/soa/gov/
http://www-128.ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa_gov/soa_plugin.html
http://www-128.ibm.com/developerworks/rational/downloads/06/rmc_soma/

Download the IBM Rational Method Composer plug-in for Compliance
Management V1.0 Beta at:

http://www-128.1ibm.com/developerworks/rational/downloads/v7_0/compl_mgmt/
Consider the IBM SOA Governance Business Briefing:

http://www-128.1ibm.com/developerworks/offers/techbriefings/details/governan
ce.html

Read the Rational Method Composer developerWorks article series at:
http://www-128.1ibm.com/developerworks/rational/Tibrary/dec05/haumer/
Refer to the Eclipse Process Framework site at:
http://www.eclipse.org/epf/

The CBDI Forum contains resources on SOA governance:
http://www.cbdiforum.com/

Chapter 3. SOA governance 39

http://www-128.ibm.com/developerworks/offers/techbriefings/details/governance.html
http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/
http://www.eclipse.org/epf/
http://www.cbdiforum.com/
http://www-128.ibm.com/developerworks/rational/downloads/v7_0/compl_mgmt/

40 Building SOA Solutions Using the Rational SDP

Architecture and design

This chapter explores a central theme of SOA, that of architecture, along with its
companion design.

This chapter addresses these topics:

>

>

>

»

»

>

Is there still an application in an SOA environment?

What does a service architecture look like?

When does architecture end and design start?

How are the goals of reuse achieved?

How is software integration addressed in an SOA environment?

Architectural styles and design patterns

As with the rest of the chapters in the book, we relate this chapter to the JK
Enterprises case study.

© Copyright IBM Corp. 2007. All rights reserved.

41

What is an application in an SOA environment?

We take a tour through some important service architecture concepts by
addressing the question “what is an application in an SOA environment?”

Traditional software applications

The term application (as an abbreviated form of application software) has been
used for many years to describe the class of software systems that employ the
capabilities of a computer to directly support a task that the user wishes to
perform. The scale of application we consider in this book are those that exist in
large enterprises (business or organization).

Traditionally applications have been built in a silo fashion. In other words,
standalone applications that meet very specific business requirements with no
inherent integration at either a process or data level (Figure 4-1). This has two
effects:

» These applications do not support business processes well because they
were not designed with business processes in mind.

» Integration between these applications is costly and piece-meal.

Application

Figure 4-1 Traditional silo applications

42 Building SOA Solutions Using the Rational SDP

Architecture of software systems

To look at how SOA improves the way applications are built, let us look at the
definitions of two central concepts: Architecture and system.

» Architecture—From Latin architectura and ultimately from the Greek word
for master builder: “The art and science of designing structures where the
structure of something is how the parts of it relate and how it is put together.”

» System—From Latin systema and from the Greek systema: “An assembly of
entities/objects, real or abstract, comprising a whole with each and every
component/element interacting or related to another one.”

So architecture is specifically related to structure—which as we note is itself a
fundamental property of every system—therefore these two terms are related.
Indeed, we cannot talk about architecture without talking about the structure of
the thing being architected. In our case we refer to this thing as the software
system (and also we note that we are talking about software architecture here;
business architecture is discussed in “Business architecture” on page 174).

There are two aspects to the off-the-shelf meaning of system that we have to be
wary of:

» The division/aggregation of objects/entities into systems is a subjective
abstract concept.

» The term system is usually relative, that is, a system may be part of a
super-system and its parts may be sub-systems.

We want the service architecture we create to be clearly and finitely defined.
Therefore, we really want our systems to be less subjective and less relative. To
accomplish this, we make use of proven architecture styles, reference
architectures and patterns, as discussed in “Reusing architecture and design
experience” on page 73.

Note that we consider the terms software system and software application to be
interchangeable. The term software system places more emphasis on the
structure of the software, where as software application emphasizes the usage of
the software—which is to directly support some user task or tasks.

Note: In CMMI the term system is specifically used to include hardware
(computational and non-computational), software and human workers. RUP
for Systems Engineering provides system engineering guidance for this style
of project.

In this book we use the word system in the standard RUP sense to refer to
software systems.

Chapter 4. Architecture and design 43

Service-oriented IT systems

In SOA, when we discuss architecture, our software is structured in terms of
services, service consumers, and service providers. We define these here:

» Service—A service is a discoverable software resource that executes a
repeatable task, and is described by an externalized service specification.

» Service consumer—A client of a service (or set of services).

» Service provider—A provider or implementer of a service (or, again, set of

services).

So in an enterprise that is practicing SOA, if you peeked under the covers of its
software applications and took a look at its internal structure you would find the
things we have mentioned above: Services, service consumers, and service

providers.

At the enterprise scale if you considered the insides of all of the software
applications, the picture would rapidly become quite complex. To make this more
manageable, we define three levels of software system (Figure 4-2):

Enterprise
Software Architecture

|_||:|'—'l—l~|_l_||_|l—l|:|

N

o
=
Service
-Oriented servidl
System > SO System -Ori;"
Part
-
. -
/ N
Service Consumers
and Service Providers
.

Figure 4-2 Three levels of software system

Super-system
Level

System
Level

Sub-system

- Level

» Enterprise software architecture (super-system)—The sum total of all

service-oriented software in the organization.

44 Building SOA Solutions Using the Rational SDP

» Service-oriented (SO) system (system)—A set of service-oriented software
assembled to form a composite application. Its parts are called SO system
parts, themselves being created from service-oriented parts (which are
individual pieces of service-oriented software specification that can be used
in multiple SO systems). SO parts come in two flavours: Service consumers
and service providers.

» Service component (sub-system)—An individual atomic piece of service
oriented software design (at least, atomic from an architecturally significant
point of view—see “Architecturally significant services” on page 57).

The service-oriented system (SO system) is about the closest thing in this picture
to what we would traditionally call an application. So we discover that the first
way in which our applications are different in an SOA environment has to do with
what they look like on the inside.

Of interest: There is an entire interdisciplinary field called Systems Theory that
studies the theoretical properties of systems relationships as a whole. This
science seeks to bring together theoretical concepts and principles from
ontology, philosophy of science, physics, biology and engineering and has
found applications in further fields such as organizational theory,
management, economics and sociology. Cybernetics is a closely related.

It is comforting to note that IT systems are relatively simple compared to some
other types of systems out there!

Business-aligned systems

In order to improve the life span of our SOA software, we place more emphasis
on understanding the business context for our applications.

Of primary importance here is an understanding of the functional areas in the
business. The definition of these is the concern of business architecture which is
described in further detail in “Business architecture” on page 174. However, for
the purposes of the discussion here, we note that the business can be viewed as
a set of functional areas. Each of these functional areas comprises (Figure 4-3):

» People: the people (roles) involved in the functional area.
» Process: The business processes that touch the functional area.

» Technology: The technology that supports the functional area. This includes
the software systems (and in our case SO systems) that support this
functional area.

Chapter 4. Architecture and design 45

46

Functional Area

People
Process

Technology

Figure 4-3 People, process and technology in functional areas

Besides simply ensuring that our SO systems support the business processes
owned by the functional area, it is common for them to actually be driven by
executable versions of these business processes. These executable business
processes take the form of Business Process Execution Language (BPEL)
artifacts.

These BPEL-implemented executable business processes tie together tasks
performed by people in functional areas across the business, and therefore cross
traditional application boundaries (Figure 4-4). Note two key differences with
Figure 4-1 on page 42:

» There are no integration couplings required as the applications are integrated
due to sharing the same underlying services.

» The workflow of the users is integrated by executable business processes.

Functional Area Functional Area

Executable
Business
Processes

Services

Figure 4-4 SOA-style applications

Note it might seem that the applications in Figure 4-4 have more to do with a
perspective on the software from the point of view of a specific set of users rather
than being some tangible software as with our traditional silo applications in
Figure 4-1 on page 42.

Building SOA Solutions Using the Rational SDP

To a degree this is true. But as reasoned in the previous section, it is useful to
partition our SOA software into logical systems (which we have termed SO
systems) to make the overall software picture more manageable (both at
development-time and at runtime). Figure 4-5 shows an SO system in the context
of the enterprise software SOA, and shows where the executable business

process would fit in.

Process

Functional Area

Enterprise
Business Architecture

Al e

= T .
S |;| 0 Business

Enterprise
Software Architecture

IT (Software)

Rl Rl

Service
-Oriented
System

[Executable Process

} Services

Figure 4-5 Business process-driven SO systems

Figure 4-5 shows us:

» Our business architecture is described in terms of functional areas; for more
information refer to “Component business modeling” on page 175 which
introduces component business modeling (CBM).

» We organize our service-oriented software into SO systems which can be
placed in the context of the functional areas that they support (technology).
Note that this is not necessarily a 1-to-1 mapping (although for simplicity the
examples in this book use a 1-to-1 mapping).

» The business processes that we model and that we identify as touching the
functional areas can be used to create executable business processes that

drive our SO systems.

Chapter 4. Architecture and design 47

» Although it is not specifically shown in the diagram, in the same way that
business processes can span across functional areas, executable business
processes can span across SO systems—or to put it another way, the same
executable business process can be a consumer in more than one SO
system.

So the answer is...

So let us get back to our original question: “What is an application in an SOA
environment?“

We answer by summarizing the concepts introduced thus far as statements
about such an application:

» Itis architected as a system of services, service consumers, and service
providers.

» It does not exist as a single piece of software, but rather it is composed from a
number of software parts.

» It is aligned with things in the business—specifically a functional area. It
provides automation of parts of the business processes that are supported by
the functional area.

» Itis inherently integrated as its parts are shared across applications.
Why did we pose the question in the first place? Well it is a useful way to

introduce a number of the key concepts that we expand on further in the rest of
this chapter.

Modeling service architectures

48

The primary focus of this chapter (and indeed of the entire book) is on services.
From the point of view of architecture, we care about the service consumers and
service providers, and the applications or systems into which they are assembled
to provide business benefit.

Before we start looking at the detail of how we model these applications or
systems, we have to get a good feel for what the concepts are that these models
are based on. It is of no use describing a model without first providing a
description of the things that it is meant to represent.

Building SOA Solutions Using the Rational SDP

Different forms of a service

The first aspect that we look at is the different forms of a service.

It may seem obvious as to what the thing is that we are referring to when we
speak about a service. In reality, what we are referring to as a service can exist in
a number of different forms.

We list the following perspectives to provide context for our forms:

>

Architecture specification—In a software context, we use the term
architecture specification to describe the black-box view of the parts of a
software system. It also describes how these parts are joined together to form
a software system.

Detailed design—In this context we use the word design to describe the
white-box view of a part of a software system. This describes the design
realization of the specification.

Implementation—Here we use the term implementation to refer to the
source code (and corresponding binary) that implement the software designs.

Assembly—This is about assembling service implementations in-line with
the original architecture specification and deploying them to the target
environment.

Runtime—This perspective looks at the running software. In contrast the
previous four perspectives are on development-time—in other words, their
view is on the artifacts of the software development project as opposed to the
running artifacts produced by a development project.

Now that we have listed this set of perspectives, let us examine the forms a
service can take.

As we can see in Figure 4-6, the notion of a service extends across each of the
perspectives (enclosed by the dotted-line box).

Chapter 4. Architecture and design 49

Architecture Detailed Implementation Assembly Run-time
Specification Design

Service
-Oriented SeGEEEL TP LR E EE e e e r Assembly
System

00000000d0000000000P0000000000000000000090000000000009000000009000000000190000000000000000000000000000009

Service Service Service

Provider/ 4‘{ Seryice < Component é{] Assen bl <t Component
omponent : Part
onsumer mplementation f Instance

esecees0s00esscsesece’ seseesssee secesseNsscccscscogfscccsccoe R sececscsescsssscscsesscssscsenee

esccscsscecsscos

esescssscssconses

Service
Figure 4-6 Different forms of a service

Architecture specification

In our architecture specification, services are either consumed or provided by a
service consumer Or service provider, respectively. The service itself is specified
using a service specification.

An example service provider with associated service specification is shown in
Figure 4-7 (service provider CustomerAccountMgr at the top providing
CustomerAccount and AccountApplication services; service specification
AccountApplication below, along with associated parameter types and
messages).

The service architecture is specified as a number of service-oriented (SO)
systems, whose parts are based on service consumers and providers.

50 Building SOA Solutions Using the Rational SDP

o— CustomerAccount ©— AccountApplication

b <<s;s.-r\.riceF'h!t!H—E

18 CustomerAccountM

(«serviceSpecification: \

(5% AccountApplication

3 determineApplicationEligibility (application : Accountdpplication) : EligibilityMessage

«parameterTypes
E] AccountApplication
[Eg customer: Customer

«message
[EligibilityMessage
[accountapplication : AccountApplication

Eg product : Product

g applicationDate : Date

[E requestAmount : Float

g creditReportNeeded : Boolean
Eg creditScore : Integer

[Eg pricingCode : PricingCode

Eg applicationDecision : Boolean

«parameterTypes
E] customer

[creditwaming : CreditWaming

Eg firstName : String
B secondName : String

[address : Address

«message
[CreditWaming

Eg phoneNumber : String

I creditScoreComment : String

[Eg comments : String
[Eg state : AccountApplicationState

«parameterTypes
= product

[Eg name : String

«enumerations
[=] AccountApplicationState

«enumerations
[=] PridngCode

«parameterTypes
] address

[address1 : String

[C address2 : String

[Eg city : String

[Eg state : String

[Eg country : String

k [postalCode : String j

Figure 4-7 Example service provider and service specification

An example SO system is shown in Figure 4-8. In this diagram we can see a
service consumer part, accountOpeningProcess, which is based on the service
consumer, AccountOpeningsProcess. Similarly an example service provider part
is salesManagementComposite, which is based on the service provider,
SalesManagementComposite.

Note that the service consumers and service providers exist independently of the
SO system—uwhich is why we differentiate between the parts of the SO system
(SO system parts that are an owned part of an SO system) and the service
consumers or service providers they are based on (SO parts that live
independently of the SO systems).

Chapter 4. Architecture and design 51

52

SalesManagement

accountOpeningProcess : AccountOpeningProcess

«senviceChannek «senviceChannek

2 T —— 5 P yT——
Aecounterificationt: Aecounbietivationd
0{ \Qr:‘L

. =]
salgsManagementComposite : SalesManagem 0,
. @ i s
«semo@nnel» / \ serviceChannet
AN

Afldressi 7 Fellelﬂ:Ledgel;\LLWllﬂ

) / 1
r = = =]
addressmgr:Addrew generallédgeraccountMar: GeneralLedgerAccourtMar
i «serviceChgnneks «servicgChanneks
e serviceChannel» AccountApplicafion2 accountpplicationl
BillingAccountl &

Al

= a
customeraccountmagr: CustomerAccountMgr

=]
billingaccountmar: BillingAccourtMg

5] E|]

Figure 4-8 An example SO system specification

Detailed design

The service component is the modeling artifact that realizes the architectural
specification of a service. Note we are still modeling our software at this stage
(as opposed to writing code). However, we are modeling at a lower level of
abstraction than that of our service architecture, and we include further design
constraints that we want to place on the implementers of the specification.

Note: There are other elements to design other than service components.
These are outside the scope of this book. An example would be user interface
component design.

An example of a service component detailed design is shown in Figure 4-9:

» Here we have a service component, AccountApplicationSC, which realizes
the AccountApplication service specification provided by the
CustomerAccountMgr service provider.

» The AccountApplication service specification provides our architecture
specification, where as AccountApplicationSC is our detailed design.

Building SOA Solutions Using the Rational SDP

» The design elements that form the detailed design (white-box internals) of
AccountApplicationSC are AccountApplicationFacade,
AccountApplicationImpl, and AccountAppTlication.

» We can see that some sort of facade design pattern has been used in the
design of AccountAppTlicationSC.

2] «serviceProviders
=¥ CustomerAccountMagr

(5 CustomerAccount

3 arsetup ()
{38 AccountApplication

4§23 determinedpplicationEligibility ()
= Accountapplication

4§ determineApplicationEligibility ()

«den.\ir.e»
«serviceComD_Dne_nt» = «senviceSpecification:
“JAccountApplicationsC | B (58 AccountApplication
(3% AccountApplication &2, determinedpplicationEligibiity ()
&3 determineApplicationEligibilty () A
- £ T .
srefings . «denyer
K «refines !
Q AccountApplicationFacade arefifes «interfaces

=] Accountapplication

42 determinefpplicationEligibiity ()
4, determineApplicationEligibility [)

By

L=

= AccountapplicationImpl
g attribute1 : Tnteger
|__F‘E|attrihut92:5tring
§3 determinedpplicationEligibilty ()
4§ getfpplication ()

Figure 4-9 Example service component detailed design

Implementation

The service component implementation represents the actual software that
realizes our architecture specification and detailed design models (and respects
the constraints detailed in these models). Normally—but dependent on the
implementation technology used—the service component implementation has
two different forms itself: A source code form and a binary form. These can be
classified as service component source and service component binary.

Chapter 4. Architecture and design 53

54

Assembly

Once we have service component implementations for each of the service
consumers and service providers that have been identified in the SO system, it is
time to start putting these pieces together into deployable units.

For each part in our SOA assembly, we take the relevant service component
binary and configure it to form an assembly part. In Java Enterprise Edition the
equivalent is a JAR file containing configuration (including runtime identity) and
executable.

Figure 4-10 shows an example of a model element representing an assembly
part. In this case AccountApplicationAP is the assembly part formed by
configuring and building (in other words, creating a binary) a service component
implementation that corresponds with the AccountAppTicationSC service
component.

{Q} CustomerfccountService.. {Q} AccountApplicationService : ..

«ServiceProviders "{
¥ CustomerAccountMgr

«ddrives

«senviceComponent:
= | AccountApplicationSC

(5% AccountApplication
4§ determineApplicationEligibity ()
4§ searchAccountApplications ()
4§ createAccountFromAccountApplication ()

«manifests

«assemblyParts
AccountApplicationAP

Figure 4-10 An example of an assembly part

Assembly parts are assembled to form assemblies. These assemblies combine a
number of assembly parts into a larger grained unit for deployment. In Java
Enterprise Edition the service assembly is an EAR file.

An example of this can be seen in Figure 4-11. The service assembly
LocalSharedServicesAssembly assembles the parts BillingAccountAP,
AccountApplicationAP, CustomerAccountAP, and GeneralledgerAccountAP for
deployment.

Building SOA Solutions Using the Rational SDP

«assembhys
LocalSharedServicesAssembly

«assemblyParts iy
BillingAccountAP Vs

1 «assemblyParb»
GeneralLedgerAccountAP

«assemblyParts
AccountApplicationAP

«assemblyParts
CustomerAccountAP

Figure 4-11 An example of a service assembly specification

One or more assemblies congregates a number of assembly parts to realize the
original architectural specification as described by the SO system. An example of
this is shown in Figure 4-12, which corresponds to the SO system specification
shown in Figure 4-8 on page 52. The corresponding assembly parts have been
separated into two assemblies, one containing the business process service
consumer and the composite business application service provider, and the other
containing the atomic business application service providers.

«ServicePartition»
SalesManagement

[Egy accountOpeningProcess : AccountOpeningProcess

=] salesManagementComposite : SalesManagementComposite
g generalledgeraccountMar : GeneralLedgerAccourtiar

[Eg addressmgr: AddressMar

g billingaccountmgr : BillingAccountMar

[Eg customeraccountmar: CustomerAccountMgr

A

«traces

.

hn

atrater

.

«assembhy

AccountOpeningBPAssembly

LocalSharedServicesAssembly

«assembhy

«deploy»

-nodel

-node2

«deploys

1

1

Figure 4-12 Example of assemblies realizing a SO system

Runtime

Finally, once the service assembly has been deployed and “started”, the final
form of the service appears—The service component instance. This is literally the
service component as it is manifested at runtime—the process threads and state.

Chapter 4. Architecture and design 55

Note that the even though from a technology point of view there may be many
threads running deployed on multiple nodes, there is still only one service
component instance for each assembly part (this is described in further detail in
“Decomposition and re-assembly of applications” on page 59).

With reference to Figure 4-13 we note that there are three different scales of
software concepts:

» SO system scale (right column): SO system, deployed as an assembly, and
existing at runtime as an assembly instance (which is a running instance of an
assembly).

» SO part scale (left column): SO part, realized by the detailed design of a
service component, and implemented in the form of a service component
implementation.

» SO system part scale (middle column): SO system part (where we use a SO
part in the context of an SO system), deployed as assembly parts, and
existing at runtime as service component instances (running instances of the
assembly parts).

Development-time

SEEsEsEEsEEsEEEEEEEEy SEEEEEEESEEEEEEEEENY NSNS EEEEEEEEEEEEEEEY

o o

: : L] 1] L] -

]y - {1 . 1 = {1 (- -

— L] 1 - 1) % B L 1 - 1 -

e : Service- Oriented < H S0 Systemina ita Service- Oriented :

o i Part H a 8 9 System =

(28 = H . == n

H H

H A H = i H

T v — =

H ' H . H H

- J n L] = n -

] L] = = = []

= | Service Component |2 H HEH H

] L] = = = []

] L] L n = []

H A H . H- .

X L L] A= []

; w — =
¢E O : : 0 " : E
k| . . = B
€ = | service Component 51 * = Assembly 0 &0 = I
H g < s s Assembly <
Il = Implementation = H Part - N S
2 i H . I ' S
= I : : A : s A :

: .= - ! :
_______________ - -

L] 1 n -] L]

: 0 s :

. . .

Run-time . s s H

s [Service Component |y = Assembl -

H Instance HH Instance H

L] 1] L] -

L] n - L]

L] L] L] -

L] 1] L] -

Sssssmsssssesannnnns hssmsssmsmmsmmsamandt

Figure 4-13 Service forms ordered by UML model and grouped by scale

All of the elements in Figure 4-13 are architecturally significant. We describe in
the next section what we mean by this.

56 Building SOA Solutions Using the Rational SDP

Architecturally significant services

As the name would suggest, in SOA we especially care about services at an
architecturally significant level, hence the fact that we orientate our architectural
view in terms of services.

At this point it would be useful to refer to the concepts of black-box versus
white-box views. We make the following two simple definitions:

Black-box view A view of something where the internal parts are not visible
White-box view A view of something where the internal parts are visible

The black-box/white-box paradigm could be recursively applied to elements in a
system as you “open up” its parts. However, the problem with a recursive view is
that it provides no guideline as to when you are moving beyond the boundaries of
architecture as you continue to open up the parts.

We feel strongly that it is necessary to know when the elements you are
modeling are architecturally significant and when they are not. Otherwise:

» How do you show someone a clear and easy to understand picture that
completely describes the system from an architectural level?

» How do you focus on modeling those things that have the most significance
and impact on your software?

» How do you organize your service repository? It is very useful to be able to
separate architecturally significant assets from those assets that are reused
only in implementing architecturally significant assets (otherwise you just end
up with a really big list of software assets and confusion about which assets to
use in combination with each other).

» How do you know when you are finished with your architecture for a given
perspective?

» How do you split up responsibilities/tasks between roles on the team, for
example, between a software architect and a designer?

Preferably, we rather create quite a clear boundary between those elements that
are architecturally significant from those that are not. This view is presented in
Figure 4-14.

Chapter 4. Architecture and design 57

58

Black box (Whole)

White box (Parts)

@ Parts of SO
0\9 \0(\ Service system are . The Whole-part]
W@ D i usages of servied - glements inside this
oy »{{\c‘ -Oriented |1 consumers and
?" QQ:O System service provider§ border are
% s)sa?t:)ys‘e"‘ architecturally
: - significant
> I Parts of service
S I Zomponent are | These elements are
R i ! esign .
oe\"’ee@ Cosrzrg;:lint clomnts. not architecturally
o } ‘7 significant
| E Arts of service
O ¥ component
& service | | ilementain
((\e Componen.t <":" elements. These
Q\e Implementation i occur in both
\‘(\ i source and binary
E form.
& A Parts of
deployable
assembly are
6\‘0* assembly parts
&£ Assembly [€1-1 (configured service
?fo component
binaries)
A N
Parts of assembly
6\@ instance are
R service
(\»\ % -1 component
Q.\) iz instances.

Figure 4-14 The delineation of what is architecturally significant in our models

» The dotted-line boundary defines which of the model elements are
considered to be architecturally significant. Note that we specifically show
that there are two sets of parts (white box views) that exist but do not fall
within our architectural view—design elements and implementation elements.
However, it is important to note that even though these elements themselves
do not exist in the architecture, they are represented in the architecture by
service component and service component implementation respectively.

» A whole-part relationship exists across each of the perspectives that we
defined in “Different forms of a service” on page 49. Instead of recursively
repeating this relationship to infinity, Figure 4-14 describes a fixed set of
defined whole-part relationships (however in the design perspective, the

Building SOA Solutions Using the Rational SDP

design model elements that are parts of the service component can be
nested as whole-part relationships as many times as you may care to).

» Figure 4-14 hints at the architect — assemble workflow (if you follow the
curved arrows). This is further described in “Decomposition and re-assembly
of applications” below.

With these observations as a backdrop, we provide a definition of what we mean
by architecturally significant:

An architecturally significant element has a wide impact on the structure of
the system and on its performance, robustness, evolvability, and scalability. It
is an element that is important for understanding the system [Kruchten].

Architectural significance is also hinted at in the following quotation:

Architecture is what remains when you cannot take away any more things and
still understand the system and explain how it works [Kruchten].

Decomposition and re-assembly of applications

In our brave new SOA world, one of our aspirations is to increasingly satisfy
business requirements by assembling existing software assets instead of having
to build new software.

The key reasons for this are:

» As your organization and software development processes become better
geared towards this style of development, you are able to meet business
requirements faster (as there is less new software that needs to be written).

» There is less software produced (in terms of lines of code or similar) to satisfy
the same set of business requirements. And less overall software means that
less software to maintain, which reduces the total cost of ownership (TCO) for
your applications.

» Systems are integrated out-of-the-box as they share functionality and state.
This is further described in “SO systems and integration” on page 69.

At this point, let us note two points:

1. To assemble a set of parts to create a new application, you have to start with
a view of the parts that you require for the application.

2. Toincrease the chances of having a suitable component on the shelf to reuse,
you must have a common architectural style that these components adhere
to, and a corresponding set of architectural techniques for identifying
components. By common we mean that they have to be rolled out across the
organization.

Chapter 4. Architecture and design 59

The first point justifies our focus on architecture specification. The second point
is described more fully in “Reusing architecture and design experience” on
page 73.

Let us now look at the workflow for decomposing and re-assembling applications
(Figure 4-15).

(1) Specify software architecture O Assemble software
Black box White box Black box White box
Service-Oriented l€-- _ Assembly
System
x g ©
2 Service Sendcs g
£ component Component | ¢
@ Implementation | %
x H
@ Detailed ' .
© Buildisource
software | 3 S
. s & software

design £ T
H ¢

Figure 4-15 Overview of the workflow of part of the model — assemble SOA life cycle

Note: Figure 4-15 only provides a simplified workflow for the purpose of
discussion. Specifically note that:

» The diagram makes the workflow look like a waterfall. In reality, the work
done is sequenced using phases and iterations.

» The diagram only suggest the structural diagrams of the various models.
The models additionally describe software behavior using behavioral
diagrams.

» The diagram only covers part of the Model — Assemble — Deploy —
Manage SOA life cycle.

60 Building SOA Solutions Using the Rational SDP

1. Specify software architecture

Based on the requirements as they have been described for the project, an SO
system is specified that supports these requirements (in some cases more than
one SO system depending on the size of the project). The SO system(s) are
either brand new, or they may be existing SO systems that require modification,
or a combination of both.

For each of these SOA systems we describe their internals with a set of SO
system parts that are based on SO parts (service consumers/providers).

These SO parts are either created or sourced.

Note: We use the term source here and further in this section to mean
“retrieve from an asset repository.” This is where reuse comes into play and is
a key advantage to the SOA approach, reusing specifications, designs,
implementations and runtime instances in the creation of new systems.

Therefore, to summarize, the specification of our service architecture consists of:

» The specification of the structure of our SO system in terms of SO system
parts

» The specification of each of the individual SO parts (service consumers and
providers) that these SO system parts are based on

2. Detail software design
Once the service architecture has been specified, each part specified can now
be designed separately.

We note again that we may be reusing an existing service component’s detailed
design rather than designing one from scratch.

3. Build or source software

Based on the detailed design of our service components, the next step would be
to either create or source a service component implementation.

Each of these service component implementations can be unit tested on its own.
Testing is described further in Chapter 14, “Service testing” on page 483.

4. Assemble software

Now that we have implementations for each of the parts in the SO system, we
can put the pieces back together again as service assembly parts that combine
in the form of a service assembly. These deployable assemblies are the
deployable realization of our SO system specification.

Chapter 4. Architecture and design 61

Once a service assembly has been created, integration and system testing can
be carried out. Again, testing is described further in Chapter 14, “Service testing”
on page 483.

Referring back to Figure 4-14 on page 58, at runtime we see a service assembly
instance. It is very powerful that we can trace these back to our software models
in such a clear way:

» Running software can be traced back to our business requirements (in their
various forms—business goals, KPIs, process policies, rules).

» Runtime metrics can be traced back to the corresponding business KPls.

» Runtime problems can be traced back to the corresponding design and
implementation artifacts.

» Communications within the project team between different roles across the
different disciplines is much easier.

Services and reuse

The notion of reuse in the context of services is especially important and
deserves some detailed treatment.

Specifically we describe:

» Some different types of reuse
» What can be reused?
» What needs to be in place to enable reuse?

Some different types of reuse

62

The following set of figures introduce a few different types of reuse scenarios.

As-is reuse of a service by multiple systems
Figure 4-16 shows probably the most obvious reuse scenario which is where the
same service gets reused as-is by a second SO system.

Note that just because the second system is using the same service provider, it
does not necessarily imply that the same service component design, service
component implementation, service assembly, or service assembly instance is
also reused.

For further information refer to “What can be reused?” on page 66.

Building SOA Solutions Using the Rational SDP

SO System 1 (v1)

v

SO System 2 (v1)

Service
Provider A
(v1)

Figure 4-16 Reuse of a service provider version in multiple SO systems
Reuse of a service by successive versions of the same system
Figure 4-17 shows the most common reuse scenario, although it is not one which

we would obviously recognize as reuse.

SO System 1 (v1) SO System 1 (v2)

¥

Service
@1 Provider A »
(v1)

Figure 4-17 Reuse of a service provider version by two versions of the same SO system

This is the scenario when a new version of an existing SO system is created.
Depending on the changes between the two versions of the system, most if not
all of the services used in the original version are used in the new system. This
means that the specifications of the SO system and the service consumers and
providers that it uses can be used, the design of the service components, the
service component implementations, the assemblies, and the assembly
instances.

Chapter 4. Architecture and design 63

64

Reuse of a service with modification

Figure 4-18 can be a variation of both of the previous reuse scenarios. In this
case, the service is modified before it is reused. Either the original system is
migrated onto the new version of the service (which should be backward
compatible) or the original version runs alongside the new version to satisfy its
consumers.

SO System 1 (v1)

SO System 2 (v1)

\

! 1

Service Service
@] Provider A ProviderA |—p
(v1) (v2)
__ »
Time

Figure 4-18 Modification of a service provider version for reuse in a second SO system

Usage of the same service twice in one system

Figure 4-19 shows one of the less common but still important types of
reuse—that of the same service being used more than once in the same system.

SO System 1 (v1)

<

[
Service
@] Provider A >
(v1)

Figure 4-19 Reuse of a service provider by two different parts of the same SO system

Building SOA Solutions Using the Rational SDP

This is easiest to explain with an example (Figure 4-20):

» Let us say that you have a contact management service which allows contact
details to be stored and then searched against and retrieved.

» Further assume that contact details have to be held in a system for both
customers as well as suppliers. In this case, the same service could be used
for both—although you do not want your customer data and your supplier data
getting mixed up.

» You could specify two SO parts for the SO system, both based on the same
service provider.

» At deployment time you would have two different assembly parts, based on
the same service component implementation, and being in the same
assembly. Each assembly part would have a different configuration,
specifically their runtime identity and data/state persistence area would be
different in this case.

«servicePartition»
{ : ABCSystem

: 1 ¢

-customerContactMgr |1 1 -supplierContactMar
{Q} contactSeru]ce ; Contag

«servicePTviders
¥ ContactMgr

«de;ri'\.re»

«Component:
= | ContactSC

= ¥
i .
<<n1a|}|fe ’ «manifests

«assemblyParts «assemblyParts
CustomerContactAP SupplierContactAP

1 1

1 1
«assembhy

ABCSystemAssembly

Figure 4-20 Example of same service used twice in same system

Chapter 4. Architecture and design 65

Figure 4-20 shows the ContactMgr (providing the Contact service) service
provider being used as both the customerContactMgr and supplierContactMgr
SO system parts in the ABCSystem SO system. The corresponding assembly
parts are CustomerContactAP and SupplierContactAP, which are assembled into
the ABCSystemAssembly. At runtime there would be two service component
instances, one for each of the parts above. Each would have its own runtime
identity and state (with these details being defined as part of their service
assembly part specifications).

What can be reused?

66

The simple answer to this question is “As much as is sensible!”

A more thorough treatment of the various types of reuse in the context of
asset-based development is provided in Chapter 15, “Creating reusable assets”
on page 533 (especially an explanation of when it is sensible to make something
reusable). In this section we discuss some specific points around the reuse of
different forms of our service software (Figure 4-21).

Development-time

() .
J
x SO System X Service- Oriented

Part System

Service- Oriented
Part

] 9
g SeRis Assembl 3
2 Component 2 Assembly S
5 3 Part E
s Implementation 2
E - A -
—T T
| |
] 1
___________________ —— e o e e e o o e -
& :
. wJ
Run'tlme Service % Asse
Componenr “nstanee
Instance —

Figure 4-21 Different service forms that can be reused

Building SOA Solutions Using the Rational SDP

The following descriptions relate to the numbers in Figure 4-21, which attempts
to highlight the various forms of services that can be reused:

1. Specification reuse: The first artifact that can be considered for reuse is the
UML package containing the specifications of the SO parts (service
consumers and service providers). These can be reused as SO system parts
in the specifications of new SO systems.

2. Design reuse: Second to reusing specifications, your can also reuse the
UML package containing the service component and its detailed design. This
can be reused instead of creating a new design.

3. Implementation reuse: If you reuse the service component and its detailed
design, then it is likely that you also reuse the corresponding service
component implementation. However in some cases you may have to create
a new implementation for an existing design—possibly because the
non-functional requirements are different (for example the implementation
needs to be faster, or needs to scale more, or has different distribution
characteristics).

4. Runtime instance reuse: If you reuse the implementation then it is likely that
you also reuse the runtime instance. However, this is not always the case as
we described in “Usage of the same service twice in one system” on page 64.

In general, if each of the numbered items in the list is thought of as a level, then
reusing something at lower level implies also reusing each of the higher levels.
However, reuse at a higher level does not automatically imply reusing the
corresponding lower level artifacts.

Outside of the artifacts mentioned above, the following would also be candidates
for reuse:

» Business processes
» Use case specifications
» Test cases (and matching test data)

Our discussions so far have focused on reusing artifacts that have been created
during software development projects. There is also reuse of artifacts which
assist in the creation of new artifacts. For example:

» Patterns (both automated and documented—Support for automated patterns
in the Rational tooling is discussed in “Architectural patterns” on page 74)

» Transformations (transformations in the Rational tooling is discussed in
“Model-driven development” on page 145)

» Templates

Chapter 4. Architecture and design 67

What has to be in place to enable reuse?

68

Keep in mind that reuse does not happen by accident. It requires effort and
up-front planning. However once the pattern has been set, reuse should become
part of business-as-usual.

The most common problems preventing reuse are listed here:

Poor factoring of artifacts

Ambiguous and bloated specifications

Lack of interoperability of artifacts

No summary level for managing artifacts

No mechanism for publishing/consuming

Activities are only project focused

Lack of trust in artifacts: How do we know it works?

vyVVyVYyVYVYVYYyY

From this list of problems we can form a check list that has to be in place to
encourage reuse:

1. Ensure that projects are producing outputs that are appropriate for reuse
(increase reuse positives):

— Shared standards
— Consistent architectural style/design patterns
— Usage of asset-oriented templates to create artifacts

2. Ensure that there are no factors that prevent reuse (decrease reuse
negatives):
— Use technologies that support component integration.

— Ensure that mechanisms are in place to ensure asset stability before they
are reused.

— Ensure that mechanisms are in place that allow assets to change once
they have been published without affecting current consumers.

3. Ensure that there is a desire to produce reusable assets:
— Introduce incentives for producing reusable assets.
— Monitor and then publish productivity increases caused by reuse.

— Encourage projects to take a pragmatic approach to asset creation.
Encourage projects to structure what they would normally create as assets
rather than modeling/implementing a lot of functionality that they do not
require because they think someone might need it in the future. Special
strategic asset-creation projects can be spawned off to pro-actively create
assets before they are required, but this takes special planning and
funding.

Building SOA Solutions Using the Rational SDP

4. Ensure that there is a desire to reuse assets:
— Introduce incentives for reusing assets.

— Project development case tasks should include searching for existing
assets.

5. Ensure that there is a mechanism for publishing/consuming:
— Enterprise and project level asset-based method support
— Repositories for storing assets (with publish/consume capabilities)

— Create ownership structures within the organization to manage and
control asset publishing and consumption.

SO systems and integration

Figure 4-4 on page 46 introduced the notion that integration in SO systems
occurs in a special way. We expand a little on that idea here.

First of all, let us look at what we mean by systems integration. In RUP the term
used is enterprise application integration (EAI). The summary definition given
there is as follows:

EAIl is the process of integrating multiple software applications that were
independently developed, use incompatible technology, and remain
independently managed. Fundamentally, EAIl is about sharing and
exchanging data and business processes among the different applications
and data sources in the enterprise.

From reading the first part of this definition you may think that only externally
bought in applications were the subject of EAI. After all, within an enterprise why
would applications be “independently developed, use incompatible technology,
and remain independently managed?” For anyone that has worked in IT, you
know that this is traditionally more the rule than the exception.

Standard integration levels

RUP defines four main integration levels, which we describe in this section.

Data level

Data level EAIl is a database-centric approach that consists of extracting data
from one database and updating it in another. Sometimes the extracted data can
be transformed before entering it into the target database, for example to apply
specific business rules.

Chapter 4. Architecture and design 69

70

Data-level integration is commonly done through extract, transform, load (ETL)
tools that can extract, transform, cleanse, and load data from various data
sources to a common enterprise data repository.

Application interface level

This EAI level of integration consists of leveraging the interfaces provided by
custom or packaged applications to access business processes and simple
information. Usually this kind of integration is done in a three-step process:

1. Extract the information from one application through a provided application
interface.

2. Convert the data in a format understandable by the target application.
3. Transmit the information to the target application.

The most common approach to implement this kind of integration is called
message broker, an approach which standardizes and controls the flow of
information through a bus or a hub framework.

Method level

This is similar to application interface level, but at a lower level of granularity. The
idea here is not to share business functions (as in application interface level), but
to share directly the different methods used to compose a given business
function. All other enterprise applications that have to implement the same
methods can use them directly without having to rewrite them.

The ability to share methods and to reuse business logic make this approach
very suited for EAI. But the downside is that it is also the more invasive approach
because it supports the modification of existing applications to allow the sharing
at such a low level.

User interface level

User interface EAl is also commonly called refacing and consists of replacing
existing text-based user interfaces of existing systems with a standardized
interface, typically browser-based.

This kind of integration is less expensive than the other options, as the code of
the existing applications is not modified. However, this approach is also less
flexible for the same reason.

Building SOA Solutions Using the Rational SDP

SOA and integration

One of the good features of SOA is that it does not try and reinvent the wheel in
response to every problem. The SOA approach to integration makes use of a lot
of the approaches to integration mentioned in the previous section. However it
brings them to bear in an integrated fashion (integration of our integration
approaches!) and adds further benefit as we describe in this section.

Two types of application/method level integration

There are two different types of application/method level integration evident in the
scenario shown in Figure 4-22.

" " - -0
Functional Area Functional Area Functional Area) g
o =
T 3>
® 3
]
» 3
o
o
®
]
L
J
Executable
Business
Processes
Composite
Services
__ -
S
=+
H
N
Atomic]
Services =
3
Integration
Components
= =
Iﬁl — I|ﬁ| — “External”
(& N 4 Software
Y '

34 Party Service Endpoints Non Service-Oriented Systems

Figure 4-22 Example SOA integration scenario for discussion

Before we mention these, we provide an explanation of the usage of the terms
internal and external here. These are terms used relative to our service
architecture. Executable business processes, composite services and atomic
services—as shown in Figure 4-22—are all internal to our service architecture.
As can be seen, non-SO systems and third party service endpoints are all
considered external to our service architecture.

Now that we have this definition, let us look at how it applies to
application/method integration:

Chapter 4. Architecture and design 71

72

>

External software integration: We service enable the non-service-oriented
software using integration services. These are special services that are
defined as an exact mapping of the interfaces exposed by the software they
are service enabling. Both the third-party services and the
integration-service-wrapped non-SO software are called from atomic services
in our service architecture. One of the service providers of our atomic
services are chosen to manage the state of each external system, and on this
basis the external software is called from the implementation of the atomic
service. This is further described in the architectural pattern “Pattern 7:
Service enable non-SO systems” on page 92.

Internal software integration: Inside our service architecture, software is
integrated by the sharing of services between SO systems (SO applications).
As can be seen in Figure 4-22, our atomic services are called from our
composite services and indeed get shared between composite services.
These composite services essentially form our new applications. It is
important to note that as they share atomic services, they are therefore
indirectly sharing state (as our state is either managed directly by the atomic
services or by the external software that they are the proxy for).

Having described these two different types of application/method level
integration, let us note the following:

>

>

Atomic services become the data (state) integration points

Atomic services are also where “external” software is integrated into our
service architecture.

We connect non-service oriented software into our service architecture using
integration services

State is managed by atomic services. This is either because the state is
directly owned by the implementation of the service, or because the state is
managed by some external software that is used from the implementation of
the service.

No business-relevant state is kept in our composite services.

Portals front-ending business processes give Ul integration
Although it is not explicitly shown in Figure 4-22, our scenario uses a business
portal to front-end the executable business processes. Human tasks in the
business process are performed by roles in the various business functional areas
using portlets hosted by the business portal.

Portal/portlet technology is widely recognized as being appropriate for achieving
user interface integration and is increasingly being used to do so in enterprise
implementations.

Building SOA Solutions Using the Rational SDP

Note that the type of user interface integration is not as simplistic as just adding a
new user interface directly on top of existing applications. Our portal allows us to
integrate user interfaces supporting both new functionality and also existing
functionality that exists in non-SO applications and systems (that have been
integrated into our service architecture as described in “Two types of
application/method level integration” on page 71).

Executable business processes result in people integration
Besides software and data integration, the scenario described in Figure 4-22
also achieves a more important kind of integration: people integration. The
business roles that exist in the business functional areas shown in the diagram
are all integrated by the executable business processes that they included in. In
other words, the work done by people performing these roles is now integrated
by the business processes that define the workflow.

Reusing architecture and design experience

Besides reusing actual artifacts (specifications, source code, and so forth) on a
project, we also want to reuse experience in building our solutions. For a
software architect or designer, reuse of architecture and design experience is
good for a number of reasons:

» Reuse makes the job easier to benefit from existing solutions.

» Across the enterprise, if architects and designers are producing work
products following a common set of experience, this improves the
interoperability of the work products.

» The overall quality of the work products produced is higher if tried and tested
solutions are used.

The form that architecture and design experience can take is best described by
introducing the two related concepts of architectural styles and patterns.

Architectural styles

RUP introduces the subject as follows:

A software architecture may have an attribute called architectural style, which
reduces the set of possible forms to choose from, and imposes a certain
degree of uniformity to the architecture. The style may be defined by a set of
patterns, or by the choice of specific components or connectors as the basic
building blocks.

Chapter 4. Architecture and design 73

So the style we choose for our architecture can be dictated by defining a set of
patterns for our software architects to follow. These patterns influence the shape
of our service architectures and ensure that a consist approach is followed by all
projects. Figure 4-23 illustrates how architectural style is applied to service
architectures.

architectural style is

Architectural defined using a set of

Style architectural patterns

>, Architectural
Patterns

service architectures
adhere to an architectural .-~
style

Service
Architectures

L | | | |}
L | [
N (]

7 T 1]
%=L _1
S/ i | |
S0 N

[0 A ldl-hll--'luﬂdhl ldlrhl’llll'lllﬂdhl
[| [SRR [[| [WRSASES] [[[SERSWSTE T [
N O O O M MWW

Figure 4-23 Applying architectural style to service architectures

We expand on the notion of what these architectural patterns are in the next
section.

Architectural patterns

A pattern can be defined as “a generally repeatable solution to a commonly
occurring problem in software design’.

Patterns are a useful mechanism for capturing reusable experience. Typically a
pattern has the following parts:
» Pattern name: A unique name for the pattern
» Context: The context in which the pattern exists
» Problem: The problem that the pattern is trying to solve
— Forces: A list of aspects to the problem
» Solution: The solution provided by the pattern
— Rationale: The reasoning of what the pattern achieves

74 Building SOA Solutions Using the Rational SDP

— Resulting context: The changes in the original context caused by applying
the pattern

— Examples: Examples showing the pattern in use

We differentiate between two different levels of patterns:

» Architectural patterns—These are patterns that affect architecturally
significant software elements. In the context of this book, these patterns affect
your service architecture (and therefore primarily your service model) and are
used as part of specifying the service architecture (see “1. Specify software
architecture” on page 61).

» Design patterns—These are patterns that affect the design elements that
form the detailed design (insides) of architecturally significant software
elements (and therefore primarily your design model). They are used as part
of detailing the software designs (“2. Detail software design” on page 61).

So therefore architectural patterns shape architectural specifications and design
patterns shape detailed design.
JK Enterprises case study architectural style

We present the architectural style adopted for our JK Enterprises case study in
this section by describing a set of twelve architectural patterns.

But first a word of caution. Patterns have a described context and problem for a
reason—And that is so that you know when to apply them.

A golden rule for using patterns is to never use a pattern unless you:

1. Understand the benefit that it is providing

2. Are sure that it is relevant to your context

Note that part of the value of a pattern is in getting you to think through your
problem from other points of view. This helps you to evaluate a solution that is
right for you.

With these words of warning in mind, we present the patterns illustrated in
Figure 4-24 for your evaluation.

Chapter 4. Architecture and design 75

i 1. Factor
o

&'. . g n =
¢y 12, Drive eﬁ #, _composition logic
A #1, applications using o5 away from process ‘
business processes logic

¢y 2. Factor atomic)
e #a,reusable logic into <i--...

lower reuse layers .*

¢ 11, Use shared
B
L~ % #0,messages and

/ parameter types
A

~ o

| ¢y 3. Factor application
‘-.___.i.o 'i?aspecific logic out of
reuse layers

. 10. Keep
£“2 architectural
i elements totally
decoupled

Twelve
Architectural
Patterns

¢y 4. Base architecture
% 21 on business relevant _ -
] < i

oy 9. Keep service
- _.3‘ 5 things

% 7, 0peration signatures

meaningful .
" ¢y 5. Manage o
e:*i. 8. Model data S¢ #7,complexity using SO
m;{",?-’ownership systems
[J IE
79N " ¢ 6. Derive atomic

s 7. i
6. 7. Service enable

: % N : :
M ZFnon-50 systems #0,services from domain

model @t

TR

Related to; Pattern 1@-............aPattern 2
Mutually exclusive: Pattern 1q====== PPattern 2

Figure 4-24 Twelve architectural patterns used by JK Enterprises

Pattern 1: Factor composition logic away from process logic

Pattern name | Factor composition logic away from process logic

Context The emerging de facto standard for building business process-driven
SOA solutions is to use the Business Process Execution Language
(BPEL) to implement the executable process. Let us look at two
specific tasks that BPEL can be used for:

» Create an executable version of a Business Process Modeling
Notation (BPMN) modeled business process (process flow
logic).

» Implement a composite service by orchestrating a set of calls on
atomic services (composition logic).

For any given executable process, both of these tasks can be
achieved using a single BPEL artifact describing a sequenced step of
Web service invocations.

76 Building SOA Solutions Using the Rational SDP

Problem

Mixing process flow logic and composition logic together in the same
implementation artifact has problematic side effects.

» Forces

» It makes it more difficult to reuse the composition logic.

» It makes it more difficult to understand the process flow by
looking at the BPEL.

» The resulting implementation artifact is more complex and
therefore more difficult to maintain.

» It makes it more difficult to split the roles of process developer
and service developer.

Solution

Have distinct architectural layers for service consumers and
composite business application services.

Represent executable business processes in your architecture using
a service consumer. Place it in the service consumer layer. All
business process flow logic exists in the implementation (BPEL) of
this service consumer. From an architectural point of view, any user
interface required to interact with this process is considered to be a
part of this same service consumer SO part.

This service consumer will consumer the services provided by a
service provider which exists in the next architectural layer down -
composite business application services. All composition logic exists
in the implementation of this service provider. This service provider
should provide a separate service specification for each of the
processes (or more likely sub-processes) that it supports. It will also
have required service specifications for each of the services that this
composite service requires (this is what makes it a composite
service).

We note the following:

» If you use “Pattern 5: Manage complexity using SO systems”,
then the same service consumer can appear in multiple SO
systems. This is because a business process can span across
functional areas (and our SO systems are derived from the
defined IT systems in these functional areas that support the
business processes).

» The composition logic need not be implemented using BPEL.
Oftentimes it is simpler to just use plain old Java. This may
depend on the tools and skills of the developer assigned to
implementing these components.

“Pattern 12: Drive applications using business processes” is closely
related to this pattern.

Chapter 4. Architecture and design 77

78

» Rationale

Keeping the process logic separate from the composition logic
means:

>

It is easier to reuse the composition logic across multiple
processes.

It is easier to understand the process flow BPEL as it only
contains flow logic.

The resulting BPEL is simpler and therefore easier to maintain.

It is easier to split the roles of process developer and service
developer. Process developers implement the business process
service consumers. Service developers implement the
composite business application services (and any atomic
business application services they require).

Examples

In the example shown in Figure 4-25 we see a service consumer called
AccountOpeningProcess. This can be implemented as a BPEL process
(long-running or short-running depending on whether it needed to retain state)
using WebSphere Integration Developer, based on a BPMN-based process
specification from WebSphere Business Modeler.

We also see a composite business application service provider called
SalesManagementComposite which provides two services: AccountVerification
and AccountActivation. The service provider using BPEL (as a short-running
process) or Java. WebSphere Integration Developer provides tool support for
implementing these types of services in the form of SCA bindings, maps, and

BPEL editor.

Building SOA Solutions Using the Rational SDP

SalesManagement

Process logic lives in

4] Service consumers

L ==
accountOpeningProcess : AccountOpeningProcess

«senviceChannek «senviceChannek

rY T pr—"] rY P Rr—"
ACcotRtyerticatond- \%;uuumu.wauuu;

=]
/sia#ﬁﬁManagementComposite :SalesManagemjﬁ‘

«sewio@nnel» / / \ «serviceChanneks
PV

[Y Fellelﬂ:Ledgel;\LLWllﬂ
Service composition / cl
logic |IV?S in . ! =
addre compOSIte business generallédgeraccountMar: GeneralLedgerAccourtMgr
application services

Jannel «serviceChannel»
o Tocoanpplicaion2 Accountfpplicationl
BillingAccountl &

Al

=] =
billingaccountmar: BillingAccourtMg customeraccountmar: CustomerAccountMar

—

]

Bhi

Figure 4-25 Separating composition logic from process logic

Pattern 2: Factor atomic reusable logic into lower reuse layers

Pattern name

Factor atomic reusable logic into lower reuse layers

Context Today it is common for IT departments to have software reuse as a
goal.

Problem Without a clear policy for factoring reusable logic, the chances for
reuse are lower.

» Forces » Reuse requires identifiable reusable elements.

» Appropriate reuse factoring does not happen by accident.

Chapter 4. Architecture and design

79

80

Solution

Have a clear policy for factoring reusable logic across your
architectural layers.

Reusable logic can be divided into the following two categories:

» Logic which is strongly relatable to a business object (and
therefore a domain type). An example would be customer
account setup logic which is related to the domain type
CustomerAccount.

» Infrastructure logic. For example, logic that allowed e-mails to be
sent or documents printed.

Both of these types of logic are highly reusable and are respectively
factored into the following two service architecture layers:

» Atomic business application services
» Infrastructure services

The layers that these services live in are lower in the architecture than
service consumers and composite business application services.
These services are generally used from composite business
application services (which explains the name).

Note that although the factoring rules in this pattern are for ensuring
that we end up with reusable services that are appropriate for
plugging into composite services, it should be noted that service
consumers are themselves reusable (specifically across multiple SO
systems).

» Rationale

Having clearly identified where the reuse points are in our
architecture, we can now:

» Publish these services to a repository for reusable services.
» Allow the reusable services in this repository to be categorized.

» Ensure that we factor reusable logic into these services when
modeling service interactions (which is when logic gets factored
across your architecture—More on this in “Step 2: Design
service interactions” on page 359.

Examples

In the example shown in Figure 4-26, there are yellow rectangles for each of our

layers.

From top to bottom we have:

» Service consumers
» Composite business application services (and service providers)
» Atomic business application services (and service providers)

Building SOA Solutions Using the Rational SDP

Below the last layer, we would also have a further layer (which is omitted in the
diagram as there are no infrastructure services in this example):

» Infrastructure services (and service providers)

In our example the following reusable atomic business application services exist:

Address, BillingAccount, AccountApplication, GenerallLedgerAccount

SalesManagement

Reusable atomic services

accountOpeningProcess : Acco - - ﬁ— ‘
«serviceChannels v «! g Channel»

— BBt ation:

mw.m....mf /
=]

sa sManagem omposite j#alesManagem 0,
@ i s
«semo@nnel» X / // \ se?cheChz:nnel 5
T T U T AL LU

v 7/

= = =]
addressmgr:Addre@/ gegkrallédgeraccountMar: GenerallLedgerAccountiMar
i «serviceChgnneks «seffvicgChannek
< Genvice nnek» AccountApplication2 Accfuntslpplicationl
Billj countl &
=] [e
billingaccountmar: BillingAccourtMg customeraccountmar: CustomerAccountMar

Bhi

£
Figure 4-26 Reusable services in the SalesManagement SO system

Pattern 3: Factor application-specific logic out of reuse layers

Pattern name | Factor application-specific logic out of reuse layers

Software reuse can be a goal for IT departments that are building SO

Context
systems that are driven by executable business processes.

Chapter 4. Architecture and design 81

82

Problem

Mixing application-specific logic and atomic reusable logic makes it
more difficult to reuse the atomic reusable logic from composite
services.

Note: In the context of our business process-driven systems, by
application-specific we mean that logic which is unique to the
implementation of a specific process (and is not reusable across
business processes).

» Forces

» Where a service operation contains both the logic that you want
to reuse as well as other logic (which therefore causes unwanted
behavior), this reduces the likelihood of that operation being
reused.

» Appropriate reuse factoring does not happen by accident.

Solution

Factor application-specific logic into the composite business
application service layer.

This is the layer whose services:

» Are used by service consumers in the higher layer (often, but not
always, these are executable business processes).

» Compose (and therefore use) reusable services in the lower
layers (atomic business application services and infrastructure
services).

Note that the behavior provided by a composite business application
service is now the sum of:

» The application-specific logic that it implements itself,
plus

» The atomic reusable logic that is implemented by each of the
atomic business application services and infrastructure services
that it calls (composes).

As the composite business application services are themselves
reusable, this arguably means that they provide a higher-value level
of reuse.

» Rationale

Keeping application-specific logic separate from atomic reusable
logic will:

» Increase the reusability of your atomic reusable services and,

» Provide a further higher-value set of reusable services (the
composite business application services themselves).

Examples

As background to the example shown in Figure 4-27, we have a business
process called Account Opening, which has sub-processes called Account
Verification and Account Activation.

Building SOA Solutions Using the Rational SDP

In the diagram we see that the business process appears in the form of a service

consumer called AccountOpeningProcess which will most likely be implemented

as a BPEL process in WebSphere Integration Developer.

For each of our sub-processes we find a service in the composite business
application service layer: AccountVerification and AccountActivation. These

are provided by a service provider called SalesManagementComposite. The
implementation of this service provider consists of:

» Some logic which is unique to the sub-process (application-specific logic)

» Orchestration logic that calls reusable services

SalesManagement

Place application-specific logic
into composite business
service providers at this level

accountOpenin

«senviceChannek

}

\ TSENVICELNaNNer

Accountyerification '/

) rY P Rr—"
\ ACCoLREACtvatond-

=]
sa sManagementComp05|te SalestaW‘

«sewio@nnel»

/

«serviceChanneks

/

T N "
{FeneralbedgenAcoountt

dressl

. / cl
r - r =]
addressmgr:Addrew generallédgeraccountMar: GeneralLedgerAccourtMar

i «serviceChgnneks «servicgChanneks
e serviceChannel» AccountApplicafion2 accountpplicationl
BillingAccountl &

Al

= a
customeraccountmagr: CustomerAccountMgr

=]
billingaccountmar: BillingAccourtMg

5] E|]

Figure 4-27 Application-specific logic in composite business application services

Chapter 4. Architecture and design

83

84

Pattern 4: Base architecture on business relevant elements

Pattern name

Base architecture on business relevant elements

Context

A software architecture defines the software in terms of a set of parts
that together make up distinguishable software systems (See
“Architecture of software systems” on page 43).

It is common to have in place a standard for identifying, naming and
scoping these parts to ensure a common approach is followed across
the organization.

Problem

Identifying, naming, and scoping the parts in your service
architecture on things that are not part of the business view causes
problems.

Relevant examples of things outside of the business view are:

» Existing software applications

» Component implementation technologies (for example, EJB™)
» Communications “plumbing” between components

» Forces

» The service architecture is affected unnecessarily if parts are
based on things outside of the business view and these things
disappear or are changed substantially.

» In general, impacts that cause changes to architectural
specifications are more serious than those that only require
changes to implementations (changes to one architectural
element will typically affect multiple design elements and an
even greater number of implementation elements).

Building SOA Solutions Using the Rational SDP

Solution

Derive parts of your service architecture on the following business
relevant things:

>

>
>
| 4

Functional areas (IT system)
Business processes
Business sub-processes
Domain types

Here is a simple set of factoring rules for achieving this:

1.

For each service-oriented IT system identified for a functional
area, define a SO system (talked about further in “Pattern 5:
Manage complexity using SO systems”).

For each business process, define a service consumer. This
service consumer will consumer any services that support that
business process. If executable business processes are being
built, then the executable business process will form part of the
implementation of the service consumer.

For each business sub-process, identify a composite business
application service to provide the services that it requires.

For each domain type, identify an atomic business application
service (this is described further in “Pattern 6: Derive atomic
services from domain model”).

» Rationale

Deriving parts for your service architecture from business things
provides a solid architecture. This means:

» Your service architecture should no longer be affected by

changes to non-business things (for example retiring and
replacing existing applications or choosing a new component
implementation technology).

The architecture should “flex” with changes to the business
rather than changes to non-business things.

This reduces the number of unnecessary specification changes.
Changes to the non-business things listed above still requires
software change, but such change will be to detailed design and
implementation rather than to the architecture. These types of
changes have less overall impact.

Examples

Examples of the application of this pattern can be found in part in the following
diagrams, ordered by the factoring rules listed above:

vyvyyy

Figure 4-28 on page 89
Figure 4-25 on page 79
Figure 4-27 on page 83
Figure 4-29 on page 91

Chapter 4. Architecture and design

85

86

Tip: Some words of warning in applying this pattern:

» Depending on how the business entities themselves have been factored,
you may end up with parts that are “too big” if you just apply a simple 1-to-1
derivation. In these cases you may need a further subdivision to create
“smaller” parts.

» A bit of creativity and experimentation may be required to create factoring
rules that work for you. The important point is that these rules have to be
based on things in the business view.

Pattern 5: Manage complexity using SO systems

Pattern name

Manage complexity using SO systems

Context

As SOA practices are adopted and rolled-out across an enterprise,
the amount of service-oriented software created becomes
appreciable.

The number of individual elements in the service architecture
(services, service consumers and service providers) will increase
dramatically over time.

Problem

Only having the relatively low-level constructs of service, service
consumer and service provider to represent and understand your
service architectures causes problems as the number of these things
in the enterprise typically becomes large. Some grouping mechanism
is required.

» Forces

» Describing and understanding reuse can be difficult without a
context for the usage of services, service consumers and service
providers. In other words, what is the answer to the question
“Where have my service consumers and providers been used?”

» Managing specifications of service behavior (using for example
service collaborations—See “Model element: Service
collaboration” on page 250 for a description) without a sensible
grouping for these specifications would be difficult. Can you
imagine all of the service specification behavior that will exist
across the entire enterprise?

» Understanding (and therefore maintaining) software built by SOA
projects without some higher-level architectural specification
artifact than service, service consumer, or service provider would
be difficult.

» Not having a higher-level system-size artifact to trace back to the
business view means that this traceability is more difficult to
understand.

Building SOA Solutions Using the Rational SDP

Solution

Use SO systems as a higher level grouping of your service-oriented
software (see “Service-oriented IT systems” on page 44 for an
introduction).

As described in “Pattern 4: Base architecture on business relevant
elements”, factoring rule 1: One way of deriving SO systems is to
create one for each of your identified service-oriented IT systems for
your functional area (this assumes that you have well defined
functional areas).

In the service model we have a single package that contains
everything owned by our SO system. Each of our SO systems owns
a structural architectural specification and a set of behavioral
architectural specifications. These exist in our SO system package
as:

» A service partition named after our SO system that contains the
structure of our SO system. The parts in this structure are based
on service consumers and service providers that can be used as
parts in multiple SO systems.

» A set of service collaborations. If use cases are used then these
correspond to the set of system use cases that have been
defined for the functional area. Each service collaboration has
one or more service interactions which each form a behavioral
specification. Normally these correspond to flows from the
related system use case.

We have now grouped our architectural specifications into:

» SO parts that are usable as parts in a SO system service
architecture. These are our service consumers and service
providers.

» SO systems that own SO system parts based on these SO parts
and own the structural and behavioral specifications of our
service architectures.

Note: Definitions for the service model specific terms used here can
be found in “Service model work product” on page 234.

Chapter 4. Architecture and design 87

» Rationale | Grouping service architectures by SO systems (derived from
functional areas) provides a scalable way for creating end-to-end
architectural models that span the entire enterprise. We note the
following:

» We now have a manageable context for the usage of our
services, service consumers and service providers. This is
provided by the service partition that represents our SO system.

» We have a way of grouping the service collaborations that makes
it easier to manage them.

» Understanding the enterprise SOA view is easier now that there
is a higher-level architectural specification artifact.

» Traceability to the business view is simple. There is a SO system
providing software to support the automation requirements of
each functional area.

Examples

As background to Figure 4-28, let us note that our example has two business
functional areas: Customer Service and Sales Management.

Based on inspection of the Account Opening and Account Application Inquiry
business processes, we note automation requirements for certain tasks captured
in the following system use cases (organized by IT system):

» Sales Management:

— Determine applicant eligibility
— Verify address
— Activate account

» Customer Service:
— Inquire on application status
In the example we can see that two SO systems exist, one for each of our

functional areas: CustomerService and SalesManagement. Each of these SO
systems owns:

» A service partition describing its parts

» A set of service collaborations corresponding to the system use cases owned
by the corresponding functional area

88 Building SOA Solutions Using the Rational SDP

I
£ Service Partitions

\\

£ CustomerService

'si') 'd')
/ A
\

«servicePartitions *

i CustomerServide %

«serviceContrack»
1quire on appli status

Z

i S‘alesl"'lanagement Vo
hY [
‘.\ 1 \

—]
E3 SalesManagement

[N,
{ /\'f/ \:‘II'B

ervicePartition» [

serviceContract»
mi

% Determine applicant elegibility

CustomerService and
SalesManagement are two SO
systems that provide software
that supports the Customer
Service and Sales Management
functional areas respectively.

«serviceContiac
% Verify address

«serviceContrack»
% Activate account

widers

Figure 4-28 Organizing the usage of your service-oriented software using SO systems

Tip: It is important to heed the warning provided after “Pattern 4: Base
architecture on business relevant elements” which is relevant to this pattern.

Pattern 6: Derive atomic services from domain model

Pattern name

Derive atomic services from domain model

Context

A domain model represents things that exist in the business world
(specific to an identified domain), associations between these things,
and any special rules that constrain instances of these things.

Atomic services (and service providers) do not require any services
(at least architecturally significant ones—See “Architecturally
significant services” on page 57) in their implementation.

It is common for business state (data) to be owned by the
implementations of atomic services.

Problem

Not having a standard for identifying, naming and scoping atomic
services causes data ownership issues.

Chapter 4. Architecture and design 89

90

» Forces » ltis difficult to understand which atomic service owns any given
piece of business data
» Changes to the domain model are not straightforward to
accommodate in the service architecture
Solution Derive atomic business application services from domain types in the

domain model.

For each domain type, there should be a corresponding service that
whose implementation:

» Contains logic acting on instances of the domain type

» Contains logic that persists instances of the domain type

» Rationale

Atomic business application services are where data is owned in your
architecture, because it is this business data and the reusable logic
that acts upon the data that should be reusable.

As your domain model provides a view of the business things that
exist and therefore of the data that exists in the enterprise for these
things, the domain model is a first choice subject to use to derive your
atomic business application services from.

Note that:

» Itis now easy to see which atomic services own any given piece
of business data.

» The impact of changes/additions to your domain model are more
straightforward to accommodate in your service architecture.

Examples

In the example shown in Figure 4-29 we see the following domain types:

Customer
Address

Product

vyVVvyVYyVvYVvYYVvYYyY

AccountApplication

CustomerAccount
BiTlingAccount
GenerallLedgerAccount

Note that this list does not include PricingCode and AccountApplicationState,
which are enumerations. These do not have state but instead describe a fixed set
of possible values.

We derive a service specification for each of the domain types.

Building SOA Solutions Using the Rational SDP

«domainTypes
El Customer

[Eg secondName : String
£ phoneNumber : String

[og firstName : String 1

«domainTypes
Cl Address

1

«domainTypes
:l CustomerAccount

1

[Ef state:

[Eg postal

£ address1: String
|5 address2 : String
Iog city : String

ICg country : String

String

Code : Shing

«domainTypes
£ AccountApplication

«domainTypes
C BillingAccount

=7

1

«domainTypes
£ GeneralLedgera:

«derives]

«serviceSpecifications
5 GeneralLedgerAccount

&, createAccount () |

«defives

g applicationDate : Date

[Eg requestAmount : Float

£ creditReportNeeded : Boolean
[creditScore : Integer 1
[5g applicationDecision : Boolean
[comments : String

«domainTypes
] Product

"

Egn

ame : String

1

i

«domainTypes
[=] PricingCode

«domainTypes

[®] AccountApplicationState

aderives

Domain
types

«servicespecifications
54 Accou ntApplication’

Service

& determineAppIicationEIigibiI'rty'.(]
& searchAccountApplications ()

specifications

]

«derives

&, createAccountFromAccounthppliction

«serviceSpecifications

'? CustomerAccount

«dérives

& createAccount ()

«serviceSpecifications
5 Address

«serviceSspecifications
"‘i BillingAccount

&, createAccount ()

«defives

&, validateAddressExistence)

5% Product

«serviceSpecifications

Figure 4-29 Deriving service specifications from domain types

Chapter 4. Architecture and design

91

92

Tip: It is important to heed the warning provided after “Pattern 4: Base
architecture on business relevant elements” which is relevant to this pattern.

In this case an alternative factoring rule would be to first consider domain
types that are closely related (example whole/part relationships like
order/order-line) and only to create a single service that manages both of the
domain types (named after the dominant domain type). It is unusual though
that the domain types are so large that it causes issues.

Pattern 7: Service enable non-SO systems

Pattern name

Service enable non-SO systems

Context

SOA is a relatively new way of building software systems. All
enterprises have a large amount of software systems that are not
service-oriented (see “SOA and integration” on page 71).

Problem

There is no clear way to achieve effective application or method level
integration (see “Standard integration levels” on page 69) with
non-SO systems.

» Forces

» The communication technology options for integrating with these
systems may differ wildly and using these technologies requires
specialist development skills.

» Building point-to-point integrations with these systems from each
of the service components that have to integrate with them is
inefficient because integration code is duplicated.

Building SOA Solutions Using the Rational SDP

Solution Service-enable non-SO systems using a special kind of
service—Integration services (these are introduced in “Two types of
application/method level integration” on page 71).

Integration services are specified using the same kind of artifacts as
normal services. However they are different from the types of
services we have discussed in our service model. Let us note the
following:

» The service specification for an integration service should be a
service-based interpretation of a distinguishable interface (or
similar) that exists on the non-SO system.

» This interpretation should be as literal as possible. In other
words, it should look as close as possible to the existing interface
as possible.

» The implementation of the integration service uses an
appropriate communication technology to talk to the non-SO
system (for example, CICS). This is hidden from consumers of
the service who only have to deal with the service using the
standard service communications technology in use.

» These services are not architecturally significant and therefore
do not appear in the service model. They are design elements
and should therefore live in the design model (although it might
at first seem as though all services should live in the service
model this is not true).

» The data owned by the non-SO system should be owned by an
atomic business application service provider. This means that
the integration service itself becomes part of the implementation
of the atomic business application service provider that owns its
data (see “Pattern 8: Model data ownership” for more on this).

» Rationale | Wrapping non-SO systems using integration services allows us to:

» Isolate the areas in our software that are implemented using the
kind of specialist communication technologies required to
integrate with non-SO systems. Even if these technologies are
not specialist as such, they most are different to the ones used to
communicate inside your service architecture between your
service consumers and providers.

» Define clear reuse points for integration logic.

Note also that the reason that integration services are treated as
different to the other kinds of services that we have looked at (in other
words those in our service architectures) in line with the reasoning
provided in “Pattern 4: Base architecture on business relevant
elements”.

Chapter 4. Architecture and design 93

94

Pattern 8: Model data ownership

Pattern name

Model data ownership

Context

Most software systems that exist in an enterprise store data using
some sort of persistence technology. Normally, but not always, this is
a relational database.

No matter what the persistence technology, there are some
element-level artifacts where the data is stored (for example, a table
in a relational database or an object in an object database). We
consider that element-level artifact to be owned by a software
component if the only thing that is allowed to access the state it
contains is that software component.

Problem

Not having clear data ownership makes it impossible to ensure data
encapsulation.

» Forces

» ltis difficult to know which component has encapsulated a
specific data item.

» ltis difficult to know what data items a component is responsible
for.

» For a given component and data item, it is difficult to know
whether the component implementation can access the data
item directly or whether the component has to access it through
the interface of another component.

Building SOA Solutions Using the Rational SDP

Solution Assign data ownership to service providers that provide atomic
business application services. Model this data ownership using
information types.

For each atomic business application service provider we create an
information type to represent each of the data items that it manages.

Note the following:

» These information types are black box representations of the
state that the service provider owns.

» By own we mean that the service provider has exclusive access
to the data instances in the data structure (internal, white box)
that matches the information type (external, black box).

» Information types are very useful when using pre-conditions and
post-conditions to describe the behavior of service operations. In
other words, the pre-conditions and post-conditions describe
changes to the state owned by the service provider in terms of
the info types.

» Information types can be (and should be) derived from domain
types.

» Itis not uncommon for more than one information type, each
belonging to a different service provider, to be derived from the
same domain type. This is especially common when one service
provider only has to store a reference to the identity of a certain
business thing, while another service provider persists actual
instances of the thing.

The approach for determining info types is described in “Model info
types for the service providers” on page 331.

» Rationale Understanding data ownership is very important in our service
architecture. Modeling info types to represent the data owned by
each service provider means that:

» We can now tell which component has encapsulated a specific
data item by checking to see which info types are derived from
the domain type, and then checking which service provider owns
the info type.

» To understand what data items a component is responsible for,
we look at which info types its service provider owns.

» To determine whether a component implementation can access
a data item directly, verify whether the corresponding info type is
owned by its service provider.

Chapter 4. Architecture and design 95

Examples

Figure 4-30 shows the data ownership of the CustomerAccountMgr using
information types.

«infoTypes
«infaType» E] address
H customer Eg customer
[Eg firstName : String

E secondName : String

.| Eg address1 : String

| g address2 : String
i ! 5 City @ Strin
g phoneNumber : String l-'—“gCItt‘r‘t- St'g
[Cg state : String
b “ [Eg country : String
| ! W [postalCode : String
1
I', «infoTypes
; | E] AccountApplication
- £ i Eg applicationDate | «infoType»
«infoType» I 1 | g requestamournt £ product
& Customeraccount 01 T g creditReportNeeded : Boolean (G name - String
- ! g creditScore : Integer * f =
| Eg applicationDecision : Boolean
\ \ [Eg comments : String !
| [Eg state : AccountApplicationState
", 1

«dependencys

o~ AccountApplication o~ CustomerAccount

R N

«serviceProviders —
¥ CustomerAccountMgr

Figure 4-30 Modeling the data ownership of the CustomerAccountMgr service provider

96 Building SOA Solutions Using the Rational SDP

Pattern 9: Keep service operation signatures meaningful

Pattern name | Keep service operation signatures meaningful

Context RUP defines the operation artifact as follows:

This artifact represents a service that can be requested from an
object to effect behavior. An operation specifies the name, type,
parameters, and constraints for invoking an associated behavior.

Note that the way in which the term service is used in this definition
in a different way to the way in which it is used in this book.

Problem It is difficult to understand what an operation does if its signature is
not meaningful.

» Forces » Modeling an operation signature using a single input and output
message reduces the amount of meaning of that signature.

» Often on diagrams, only the signature of an operation might be
shown without the structure of the types used in the signature.

Solution Keep operations as meaningful as possible:

» Avoid modeling your operation using a simple request/response
message pair.

» Use meaningful parameter types derived from your domain types
to type your parameters.

» Name parameters helpfully (for example, newCustomer:Customer
for the createCustomer operation.

» Rationale Meaningful operation signatures enable you to convey more meaning
in diagrams that only show service specifications without showing the
structure of the parameters.

Chapter 4. Architecture and design 97

98

Pattern 10: Keep architectural elements totally decoupled

Pattern name

Keep architectural elements totally de-coupled

Context

RUP provides the following definition for coupling:

The degree to which components depend on one another. There
are two types of coupling, tight and loose. Loose coupling is
desirable to support an extensible software architecture but tight
coupling may be necessary for maximum performance. Coupling
is increased when the data exchanged between components
becomes larger or more complex.

Component as it is used in this definition is a piece of software that is
encapsulated and forms a unit of independent deployment and
versioning.

When components share artifacts it increases the coupling between
them.

The specification of a component is made up of those artifacts that
describe it from a black-box point of view (see “Architecturally
significant services” on page 57 for a definition of black-box view).
Included in this are the following:

» Service specification

» Parameter types

Even if the implementations of a set of components are totally
decoupled, if any of the components share parts of their specification
then this increases coupling.

Problem

Sharing specification artifacts between service providers has some
problematic side effects.

» Forces

» Changes to these shared specification artifacts affect multiple
service providers.

» Where specialized versions of parameter types are required,
there is a mixture of shared parameter types and specialized
“local” parameter types, which is slightly more complex than just
having local parameter types.

» The size of the shared service specification artifacts library
quickly grows in size. Factoring these out into separate libraries
based on some factoring rule itself becomes quite complex.

Building SOA Solutions Using the Rational SDP

Solution

Each service provider should own its:
» Parameter types

Enumerations

Messages

Provided service specifications

vvyy

Each service provider should also own its info types as well, but this
is by definition as info types are used to model data ownership.

In this way the specification of the service provider is totally
decoupled from other specifications. The only resources shared
between service providers are primitive types.

Note that for composite business application services, where a
service provides service specifications and required service
specifications, there is some coupling between the composite
business application service and the service provider providing the
services that it requires. You could break this coupling by introducing
a local copy of the required service specification.

Note that although it may seem like a lot of additional work to maintain
separate copies of certain specification artifacts (where they look the
same across multiple service providers), this can be reduced (or even
negated in some cases) by using Rational Software Architect

transformations—for example from domain types to parameter types.

» Rationale

Not sharing specification artifacts prevents dependency issues as
follows:

» Changes to the specification artifacts mentioned above only has
localized impact.

» ltis alot more clear as to where specification artifacts come from
when they are used as they are all local—in other words there is
no combination of local and shared specification artifacts in use
in a service provider specification.

» No rules are required for when to factor a specification artifact
out as a shared artifact.

Examples

The example shown in Figure 4-31 shows the parameter types of two service
providers: AddressMgr and CustomerAccountMgr:

» The AddressMgr service provider requires a view of addresses as it stores the
full set of known addresses for verification against.

» The CustomerAccountMgr requires a view of addresses because it stores
customer addresses, and therefore an address is passed as parameter with a
customer account application.

Chapter 4. Architecture and design 99

100

As can be seen from Figure 4-31, each of these service providers owns their own

Address parameter type, which is used in the specification of their service
operations.

—-B3 AddressMgr
+-3® wserviceProviders AddressMgr
: AddressMgr ServiceProviderSpec
+-B3 Info Types
+-F0 Messages

= @% AddressMgr’s
+ «parameterTypes Address 4——'
|| AddressMar ParameterTypes Address parameter type

+-E3 Port Types

+-B3 Provided Service Specs
+-23 BilingAccountMar
—-B3 CustomerAccountMar

+ bg «serviceProvider» CustomerAccountMar

: Customer AccountMgr ServiceProviderSpec

+-E3J Enumerations
+-B3 Info Types
+-F0 Messages
=-B3

Parameter Types

= «parameterType: AccountApplication
+ Q sparameterTypes Address
[+ Q «parameterType: Customer
H «parameterType: Product
| CustomerAccountMgr ParameterTypes

< CustomerAccountMgr’s
Address parameter type

Figure 4-31 Two service providers, each with their own parameter types

Pattern 11: Use shared messages and parameter types

Pattern name | Use shared messages and parameter types

Context See the context for “Pattern 10: Keep architectural elements totally
decoupled”.
Problem Keeping separate copies of specification artifacts for each service

provider as suggested in “Pattern 10: Keep architectural elements
totally decoupled” involves additional work.

» Forces » When a change is made to a domain type, that same change
may need to be made to multiple parameter types that are based
on that domain type (we say may because in some cases the
change to the domain type may be outside of the scope of the
parameter type required for a specific service provider).

» Instead of just using a parameter type in a shared library of
parameter types, a new parameter type has to be created for
each service provider that requires it.

Building SOA Solutions Using the Rational SDP

Solution

Create a resource containing specification artifacts that can be
shared between service providers. This can contain shared:

» Parameter types

» Enumerations

» Messages

» Rationale

Having shared specification artifacts means:

» You only have to apply changes to shared specification artifacts
in one place rather than having to make certain changes to
multiple identical specification artifacts.

» You do not have to create multiple copies of the same parameter
types.

Pattern 12: Drive applications using business processes

Pattern name

Drive applications using business processes

Context

Enterprises adopting SOA commonly also adopt business modeling
practices. A key aspect captured in these business models is
business process.

A de facto standard emerging for implementing business processes
in software is the Business Process Execution Language (BPEL).

Problem

It is not immediately apparent where BPEL components should live
in a service architecture. Because of this, they may be introduced in
inappropriate places.

» Forces

» Using BPEL components in inappropriate places may cause
future architectural problems.

Solution

Represent executable business processes in your service
architecture using service consumers, and place these in the top
layer in your architecture.

Limit the usage of BPEL implementations of process flow logic to
implementations of these service consumers.

These service consumers—acting on triggers from either human
actors (through some user interface) or the workflow infrastructure
(because a previous task has completed and a new one is
starting)—in turn make calls on composite business application
services to provide the required automation behavior.

Chapter 4. Architecture and design 101

» Rationale Having a clear guideline for where in your architecture BPEL

implemented process logic should live prevents the usage of BPEL in

inappropriate places:

» Prevent BPEL from being used to implement logic that is best
implemented in Java language.

» Prevent process logic being introduced somewhere
inappropriate in the architecture. It should be driving the
software and therefore should appear in your topmost layer.

Examples

In the example shown in Figure 4-32 we see our SalesManagement SO system
has a service consumer called AccountOpeningProcess. From the example of
“Pattern 3: Factor application-specific logic out of reuse layers” on page 81 we
know that the Account Opening business process contains two sub-processes:
Account Verification and Account Activation.

The AccountOpeningProcess service consumer drives system behavior at
runtime optionally receiving inputs from the SalesRepresentative actor, and in
turn calling the AccountVerification and AccountActivation composite
business application services.

102 Building SOA Solutions Using the Rational SDP

Sales Representative
. SalesManagement E
i 5]
‘ v i
FcountGpeningProcess AccoumtOpaningProcess
A\
sSenviceChannels & sSenviceChannels
AccountVerificationl AccountActivationl
[
N /‘% [\
i nnets . .
2 AccountOpeningBusinessProcess |a
0—— service consumer drives flow of |
service invocations of consumed |*
services in response to inputs
«ServiceChanneb» 5 | .
BillingAccount from the SalesRepresentative
{] actor.
l billingaccourtrmgr ; Ellinygcc o, S—— —
) J A
ot} Bl

Figure 4-32 Business process driving flow of service invocations

Chapter 4. Architecture and design

103

104 Building SOA Solutions Using the Rational SDP

Process and methods

This chapter discusses the IBM Rational software development process by
describing the basic of Rational Unified Process (RUP) and UML modeling in an
SOA context.

Moreover, this chapter describes the development case, or software
development process that we follow for this book and JK Enterprises. The
chapter also describes, in detail, how to codify the development case in Rational
Method Composer.

This chapter is structured around:

» Rational Unified Process

» JK Enterprises development case

© Copyright IBM Corp. 2007. All rights reserved. 105

Introduction

A fool with a tool is still a fool (anon.)

Every company, project, or team has a method. It may get invented every
morning when the team walks through the door, but they have a method—a way
of working together. The question is, “Is this the appropriate method for the
team?” This chapter introduces the IBM Rational Unified Process and discusses
the importance of modeling and architecture. It explains some of the basic
concepts of UML. It closes with an overview of the tools the architects use in this
book.

IBM Rational Unified Process (RUP)

106

The IBM Rational Unified Process is an approach that is used to develop
software. It contains information about the type of work we need to perform to
develop software (tasks), the sets of responsibilities we assign to people (roles),
what we have to produce (work products), and assistance in performing this work
(guidance).

The process has been developed over the last 26 years as a collection of IBM
Rational field experience helping customers develop software and IBM Rational’s
experience building their own products. This work has led to the OMG standard
Software Process Engineering Metamodel (SPEM), and the Eclipse Process
Framework project.

» SPEM is a standard way of describing a process1 and was originally
developed by Rational Software, IBM, and other companies.

» The Eclipse Process Framework project is an open-source project that
provides tooling to build development and other processes, and provide basic
content. IBM and others initiated this project. IBM provided both the initial
tooling and content and now uses this open source project as the basis for its
commercial IBM Rational Method Composer product. The Web site for the
Eclipse Process Framework is at:

http://www.eclipse.org/epf

There are a few key definitions we have to understand before we can effectively
understand RUP. Figure 5-1 shows these concepts.

! The more recent versions of RUP and the Eclipse Process Framework project use an updated
version of the original SPEM specification. This new version is currently being proposed by IBM and
others as SPEM V2.

Building SOA Solutions Using the Rational SDP

http://www.eclipse.org/epf

~——__ Method

e — .,

-~ ——

‘_} =iy ey - = o .
-~~~ Method .~ Process “\
V. Content ; N
I l_." I.f — N -\“
i / I A\
."II Work Product ."I Ca aatlﬁzlelr]hty |
[| B = [& |
: 8 Guidance {E5 | |
| | Rol LA Deliver f |
\ | o€ 83 Proce ssy [
\ \ {
= - B2
Task \'\ .J , /
", ", Actiwvity £
\ p d
o " AN 4

Figure 5-1 Key concepts in RUP [from RUP V7.1]

» Method is the combination of method content along with process (the way we
combine the method content to create an approach we can follow in a
project).

» Method content is the information in the process, the words and pictures.
» Work product “...is something meaningful resulting from a process...” [RUP]
» Role “...a set of related skills, competencies, and responsibilities” [RUP]

» Task “...describes a unit of work assigned to a Role that provides a
meaningful result” [RUP]

» Guidance “...is an abstract concept that generalizes all forms of content
whose primary purpose is to provide additional explanations and illustrations
to elements such as Roles, Tasks, Work Products, Activities, or Processes.”
[RUP]

» Process “...defines the structured work definitions that need to be performed
to develop a system.” [RUP]

» Capability pattern “...describes a reusable cluster of Activities in common
process areas that produces a result of observable value” [RUP]

» Delivery process “...describing a complete and integrated approach for
performing a specific type of project” [RUP]

» Activity “...define the breakdown as well as flow of work” [RUP]

Chapter 5. Process and methods 107

We tend to pick a specific delivery process when we start looking for a process
for our team or project (for example, RUP for small projects) and then adapt it for
our local needs. This local version is called a development case. If we like our
adapted process and want to use it elsewhere, we can use the Rational Method
Composer to create our own delivery process (for example, JK Enterprises
development case).

RUP is delivered as a large set of HTML pages that we use as a library of
information. We pick out the parts of the library we need for our project as a
development case.

RUP follows a set of core principles that are worth understanding as we use RUP.
This forms the motivation for using a process, and specifically for using RUP.

Core principles of RUP

108

RUP has six core principles that provide the rationale for the process:

Adapt the process

Balance competing stake holder priorities
Collaborate across teams

Demonstrate value iteratively

Elevate the level of abstraction

Focus continuously on quality

vyvyvyvYyyvyy

Adapt the process

Adapt the process means use the right amount of process for a particular project.
Too much process Kills projects, too little can lead to unconstrained chaos. an
interesting side-effect of having a process that is role-base is the process can be
scaled from very small teams to very large teams without changing the core
principles. The work products, tasks and other aspects of the process may vary -
but we should still be able to recognize a RUP-based process.

Balancing competing stakeholder priorities

Balancing competing stakeholder priorities recognizes the need to constantly
balance priorities on a project. Creating a clear set of requirements based on the
real needs of the business, and then regularly checking that these needs and
requirements have not changed, is one example of this balancing act. Build, buy
or reuse of services is another example. There are cost versus time versus
functionality balancing acts in this case.

Building SOA Solutions Using the Rational SDP

Collaborate across teams

Collaborate across teams refers to the need to motivate the individuals on the
team, break down the barriers between different teams or parts of the team, and
ultimately extend this collaboration to the business, development and operations.
SOA-enabled solutions extend this collaboration to outside the enterprise.

Demonstrate the value iteratively

Demonstrate the value iteratively has several aspects. The first is that we need
deliver real code regularly, starting right at the beginning of the project. It gives
the stakeholder chance to see what we are doing and provide feedback. The
second aspect is that iterations allow the plan to be adapted as the project
proceeds. The third is the chance to accept and manage change with changing
business priorities and stakeholder expectations. The last aspect is that we drive
out risk continuously from the project by demonstrating working software. We
also constantly reassess the keys risks and adapt the plans accordinglyz.

Elevate the level of abstraction

Elevate the level of abstraction is a principle aimed at simplifying how we work
and communicate. We achieve this by the reuse of existing assets, the use of
modeling tools and making use of architecture. A significant benefit of
SOA-based solutions relies on this elevation of the level abstraction—services
being reused, modeling and transformations to translate business requirements
to code as quickly as possible, and the use of SOA as an architectural style.

Focus continuously on quality

Focus continuously on quality emphasizes the need to have quality as a priority
throughout the life cycle. Testing is not the discipline that introduces quality into
our solution - it can only catch the lack of quality in what has gone before. As
each iteration involves some form of testing, we have a regular monitor on quality
throughout the project.

Key concepts

The key concepts of RUP include:

» RUP summary chart

Iterative development

Phases (inception, elaboration, construction, transition)
Architecture-driven

>
>
>
» Use case driven

2 Moving a development team and its stakeholders to an iterative process is hard. Iterative introduces
perceived uncertainties such as lack of a stable set of requirements, difficulty in planning and
costing work, regular rework and challenges scheduling staff requirements. RUP and the
supporting material and training addresses all these issues directly.

Chapter 5. Process and methods 109

110

RUP summary chart
The RUP summary chart is shown in Figure 5-2.

Disciplines Inception | Elabaration | Construction | Transition
| I | I L
" Eushess Mooy | ||
O Reguirerments ' -h--_ﬂ | s e | '
| —— P e | |
: ; — | | | |
o Analysis & Design - —] S L
X . - e
f i f N f I

= . S

Implermentation | | \\ | -
| | | .

o Deployment

m Test | ! | . |
| | |
|
g Configuration & | !

Change Mgmt M

B Project Management |

| |
8 Enviranment __| | _| | | |

Initil [B E2 | 1 2 oo [T [T2

Figure 5-2 RUP summary chart

The RUP summary chart captures many of the concepts in RUP in one diagram.
The chart shows a project with time on the x axis, and the disciplines on the y
axis. Each RUP project is divided into four phases (Inception, Elaboration,
Construction, and Transition). Each phase is broken down into zero or more
iterations. An iteration is a vertical slice through the disciplines as shown in
Figure 5-2. This iteration is the first iteration in the Construction phase.

The bumps on the chart indicate the level of effort required for each discipline.
Notice, for example, how the business modeling and requirements disciplines are
biased towards the beginning of the project but still continue into the Transition
phase. One of our favorite questions about this chart is based around testing:
“Why tg the bumps on the testing discipline line get bigger and bigger over
time?”

We now look at some of these terms and ideas in more detail.

3 This is because as we build more and more code, we write more and more tests. Each iteration
runs the tests of the new code and the tests from the previous iteration. If we managed to identify
the really high-risk areas of the project correctly, we will have regression tested these areas to the
full extent by the end of the project.

Building SOA Solutions Using the Rational SDP

Iterative development
Iterative development is the concept of breaking a project into a set of iterations.

An iteration encompasses the development activities that lead to a product
release-a stable, executable version of the product, together with any other
peripheral elements necessary to use this release. [RUP]

The project effectively becomes a set of smaller projects. The traditional software
development project life cycle of gathering requirements, designing,
implementing and testing the solution is discarded. However, an iteration
contains these traditional disciplines, hence the idea of an iteration as a mini
project. A project consists of a number of iterations.

This approach has many advantages including:

» Faster feedback on all aspects of the project
» Faster exposure (and consequently faster mitigation) of risk
» Ability to validate any estimation techniques within the project

The focus of each iteration is to produce some form of working, tested code. In
earlier iterations, this code might be a prototype of a certain aspect of the service
or composite services. In later iterations, the working code will be complete
builds of the services or composite services but with reduced functionality. This
reduced functionality could be stubbed out code, no or reduced handling or
simulation of an intended function (for example, a database access and retrieval
may be simulated).

Project managers are concentrating on using the iterations to mitigate or expose
risk. Contrary to natural inclinations, we encourage projects to attempt the
highest risk aspects up front. This in turn allows us to spend the most time on
addressing the risks. Each iteration should start with an assessment of what has
changed since the start of the last iteration. Risks and priorities changes may
steer us to change the plan for this iteration, bring some work forward and
pushing some work back.

Phases
Each RUP project is broken into four phases. The phases in order of execution
are:

Inception
Elaboration
Construction
Transition

vVvyyy

Chapter 5. Process and methods 111

112

Inception is the phase where we scope out the project. During the iterations in
this phase we define business use cases (or revise them if some already exist).
We define our business goals, key performance indicators and metrics. We
create initial as-is and to-be business process models. We take initial ideas about
the services required and implement a few (with skeleton code if required). We
test the services

Elaboration is the phase where we make sure we can have a working
end-to-end automated business process or processes. Updates are made to all
the work products created in the Inception phase. Some of the code previously
stubbed out is filled in. Tests from the previous phase are rerun and expanded to
cover the new functionality. Services are automating portions of or whole
business processes so we have some useful business functionality.

Construction is where we complete the coding and testing. Many of the work
products such as the business process models, requirements, service model,
and others are further refined as appropriate and locked down as complete. At
the end of the phase, the software is ready to be released to alpha and beta
testing. Further changes to requirements based on feedback would be scheduled
for future releases, or we could remain in Construction. Given that the
stakeholders have already seen running code during the preceding two phases,
we have bee tracking changes in business processes and business goals, it is
less likely than major changes will surprise us at this point.

Transition is the phase that can vary the most. It entirely depends on what kind
of software you are building. For a product release (like a release of IBM Rational
tools), transition is focused on alpha and beta testing. We are finishing training
materials, marketing materials, deciding on the color of the box or CD, and
checking that the copyright notices appear on the accompanying literature*. We
are fixing any critical defects found in the alpha and beta releases. An internal
project for the business will be working with operations to get system and user
acceptance testing completed, and planning for deployment. Once transition is
complete, further changes to the software require a new project (run iteratively of
course). Maintenance has a slightly different shape of project.

Each phase has strict entry and exit criteria or gates. By the end of each phase
we require that:
» Inception—Scope of the project has been agreed

» Elaboration—Architecturally significant aspects of the project are up and
running as tested code

» Construction—The coding is complete
» Transition—The project is live

4 These tasks can be surprisingly continuous—especially the box color.

Building SOA Solutions Using the Rational SDP

It is very important that a project does not proceed to the next phase if these
high-level goals have not been achieved. We can add iterations to the phase to
enable us to achieve the goals of the phase. This has an obvious impact on
schedule, but we may catch up later by accomplishing more in future iterations or
we de-scope the functionality we plan to deliver. Iterative development makes
this easier as at the end of each successful iteration, we have a stable build of
the code and the associated work products that siould be suitable for release.

Architecture-driven

RUP is an architecture-driven process. Defining and building an executable
architecture is the focus of the Elaboration phase of any RUP project. An
executable architecture means code that demonstrates and proves the
effectiveness of our architectural decisions.

Use case driven

Prior to the introduction of SOA concepts, RUP focused on aligning iterations to
system use cases. This is still true in that we would expect to take systems use

cases through to implementation during a iteration; there are higher-level drivers
of the goal of an iteration.

Automating a business process or task becomes the new goal of the iteration.
We have to implement system use cases as part of this goal, but now we focus
on implementing a thread of the business process from beginning to end. We
may not handle all cases in the process and we may not cover all exceptions or
branches in the process flow, but we have to implement something useful
end-to-end.

If we use business use case realizations as an alternative to business process
flows, then we are implementing these business use case realizations. Either
way, the focus of the iteration is to deliver some business useful functionality.

How we use RUP in this book

The linear nature of a book means that it looks like we describe a complete
project with no iterations. In practice, we have updated and revised business
process models, requirements analysis, design, code, test and the other
elements as the project has proceeded.

In this book, we are using a new version of RUP V7.1 that incorporates additional
information about building SOA-based solutions. This information is a
combination of SOA material that was part of earlier versions of RUP, and a lot of
content from IBM service-oriented modeling and architecture technique is used
by its consultants. Now let us look at our development case.

Chapter 5. Process and methods 113

What is a development case?

A development case, as defined by the RUP Environment discipline, consists of a
description of a software development process, tailored for an organization or a
project.

In our case, we are talking about the development case used to develop the
contents of this book, that is the JK Enterprises development case.

The role responsible for creating the development case is the process engineer,
responsible for providing teams with the organization’s development process.

In this chapter, we use the Rational Method Composer tool, as described in
“Rational Method Composer” on page 114, to codify the development case.

JK Enterprises development case

We create a simple development case centered around services and how to
make them evolve through their life cycle. It is based on the following processes:

» Rational Unified Process
» Rational Unified Process for Service-Oriented Architecture (RUP for SOA)

» Rational Unified Process for Service-Oriented Modeling and Architecture
(RUP for SOMA), which replaces RUP for SOA

» Rational Unified Process for Business Modeling

More importantly, most of the content of the development case comes from
proven best practices that we, as the IBM Redbooks authoring team, have
applied successfully in the field. These best practices are not yet documented in
a formal process such as RUP for SOA. (They are documented in our
development case.)

Rational Method Composer

114

Rational Method Composer is an Eclipse-based framework for process and
method authoring, targeting primarily process engineers who want to tailor or
create method contents and processes. For example, RUP for SOA has been
codified using Method Composer.

Method Composer is the product that replaces Rational Unified Process (RUP)
and RUP authoring products, such as RUP Process Builder.

Building SOA Solutions Using the Rational SDP

Method Composer ships with processes, including:

» Classic RUP
» RUP for Business Modeling
» RUP for SOMA

Method Composer is based on the Eclipse Process Framework (EPF). The main
difference between Method Composer and Process Framework is around
process contents, such as the processes listed above. Process Framework only
contains limited content, whereas Method Composer has a lot. Also, Method
Composer provides additional integration capabilities with other Rational
products, such as Rational Portfolio Manager.

Method Composer implements the Unified Method Architecture (UMA) standard,
submitted to the Object Management Group (OMG) as Software Process
Engineering (SPEM) V2.0. With this standard, everyone uses the same
terminology around methods and processes. For example, SPEM defines what
tasks, activities, roles, or guidance are.

Method Composer contents are packaged as plug-ins. A new plug-in can be
based on an existing plug-in. For example, RUP for SOMA is based on RUP, and
provides variations (contributions, extensions, or replacements) for
service-orientation.

The main output of Method Composer is an HTML site (formerly RUP site), with
method and process contents, that is accessible from a Web browser and from
within tools of the SDP, such as Rational Software Architect.

Also, Method Composer bridges the gap between process engineering and
project management by providing the capability to export processes as Rational
Portfolio Manager or Microsoft Project templates.

Refer to the resources section at the end of this chapter for links to more Rational
Method Composer or Eclipse Process Framework information.

The Method Composer Authoring perspective (Figure 5-3) is composed of the
following views: Library [1], Editor [2], Properties [3], and Configuration [4].

Chapter 5. Process and methods 115

(& IBM Rational Method Composer - C:\IBM\Rational\SDP\Rational Method Composer 7.0.1\library.701

File Edit Search Configuration Window Help

[Design Database
[Detail a Use Case

[4]

[Implement Business Process
[Implement Composite Services
[Implement Developer Test

[Model Service Assemblies

[Model Service Deployment
3 Mndel Garvire Tnterartinne

(]

General Lg Task Descriptor : perform_functional_area_analysis

[Develop Vision Documentation
[Identify and Assodiate Services to Goals Roles
[Identify Business Goals and KPIs Work Products
[Implement Atomic Services Steps

~ General Information

Provide general information about this task descriptor.

[3]

O rlanned
D Repeata

Mame: perform_functional_area_analysis

Presentation name: |Perform Functional Area Analysis
O optional
D Event Driven

O mMultiple Occurrences
D Ongeing

I Index Presentation Name

[i] Im |

M=%

= BO| Y s

J f‘j - “new_conﬁguraﬁon LI J @ @@" J i) J Qn J '@ <§> ﬁ =, Authoring
=4 Library 52 & o 7 7 0|t suiding SOA Solutions £2 =08
=== Building SOA Solutions Plugin b] Presentation Name | Index I Prefix | Model Info ~
=z, Method Content = R\E Building SOA Solutions 1]
I [s, Content Packages = £& Inception 1
+-2), General Guidance = % Inception Timebox 2
=z, Method Content [1] = B_'? Inception Business Modeling 3
+-C& Roles L4 Perform Functional Area Analysis 4
+ 1 Tasks L4 Identify Business Goals and KPIs 5
+- {8 Work Products [g Model To-Be Business Process 6 =
(@ Guidance [g Define Automation Requirements 7
= I:é Standard Categories + B_'? Inception Requirements 3
Disciplines + B_'? Inception Analysis & Design 12 [2]
[_L;E Domains B_'? Inception Implementation 16
(28 Work Product Kinds = £ Elaboration 17
&5 Role sets | £& Elaboration Timebox 13
%, Tools = + 5 Elaboration Requirements 19 b |
(= Custom Categories + (53 Elaboration Architecture 21
|-l Processes + (55 Elaboration Design 26
EQ, Capability Patterns B_'? Elaboration Implementation 30
—|-f), Delivery Processes = £ Construction 31
Fé‘. Building SOA Solutions =| Egh Construction Timebox, Iteration [i] 32
+ Configurations ™ + B_'? Construction Requirements 33
— + 5 Construction Architecture 35 M
Configuration @ T = [il UL | [l]
new_configuration Description | Work Breakdown Structure | Team Allocation | Work Product Usage lConsoIidated View]_
[Build Service Assembly Part b] E Properties &3 =
[Define Automation Requirements —

Figure 5-3 Method Composer Authoring perspective

Codify the development case

There are three main activities involved in codifying the development case in

Method Composer:

» Create method content
» Create the process

» Publish and export the process

116

Building SOA Solutions Using the Rational SDP

Method Composer differentiates method content from process, as described in
the following excerpt from its help system:

Method Composer separates reusable method content from its application in
processes. The primary method content elements are tasks, roles, work
products, and guidance. A process engineer uses Method Composer to
author these elements, define the relationships between them, and to
categorize them. Method content provides step-by-step explanations,
describing how specific development goals are achieved independent of the
placement of these steps within a development life cycle. Processes take
these method elements and relate them into semi-ordered sequences that
are customized to specific types of projects.

We create a new plug-in named Building SOA Solutions to hold the contents of
our development case.

Note that in the case of this Redbooks publication we focus on how you can use
Rational Method Composer to build a process that is unique to JK Enterprises.
The content for this process is created by the authors of the Redbooks
publication to simplify licensing issues and to serve as an example of how you
can create these elements yourself. For a real project we would focus on reusing
content provided by Rational Method Composer and other plug-ins and try to
minimize the amount of content that is custom developed.

Method Composer ships with detailed contents about how to create new
plug-ins, method content packages, and others. In this chapter, we do not cover
all of the Method Composer details, but emphasize about how to create key
elements of our development case.

Create method content

We create the following method content (in order):

» Work products
» Roles
» Tasks
» Steps

Create work products
In this section, we explain how to create the Service Model work product.

» In the Library view, select the Work Products folder and New — Artifact. The
artifact editor opens.

» Type service_model in the Name field, and Service Model in the presentation
name.

Chapter 5. Process and methods 117

118

You would enter information about the service model in the Description tab
(Figure 5-4), including the relationship between the artifact and another
artifact (contributes, extends, or replaces) if required.

\=| service_model &2

Work Product (Artifact): service_model

~ General Information
Provide general information about this artifact.

Mame: service_model
Presentation name: Service Model
Unigue ID:

Brief description:

 Detail Information
Provide detailed information about this artifact.

e Purpose:

T Main description:

"l’;_‘g Key considerations:

Description | Guidance | Categories | Preview

Figure 5-4 Description tab of the work product editor

The Guidance tab is where refer to guidance elements that pertain to creating or
working on the work product. For example, we could have a Create a service
model using Rational Software Architect guidance. In simplified case, we have
not created guidance elements.

The Categories tab is where you enter information that would classify the work
product, for example under domains or work product kinds.

Finally, the Preview tab is used to view the resulting HTML page.

The service model work product is actually made up of several work products
(which it contains). Next, you create the Service Specification work product under
the Service Model work product.

» Select the Service Model work product in the Library view and New —
Artifact.

» Name the artifact service_specification and Service Specification.

Building SOA Solutions Using the Rational SDP

We also create the other work products contained under the Service Model as
well as other work products. The list of work products in shown in Figure 5-5.

= buid
—I-|Z| business_analysis_model
|Z| business_architecture_model
|=| business_process_model
|=| business_goal
|=| business_kpi
|=| business_metric
|=| business_use_case_model
|£| change_request
|£| data_model
|=| deployment_model
—I-|=| design_model
|Z| service_component
|Z| developer_test
|Z| development_process
|=| domain_model
|Z| implementation_model
|Z| product
= |5 service_model
|=| message
|Z| service_channel
—I-- || service_contract
|Z| service_interaction
|E| service_gateway
|E| service_partition
—I- |5 service_provider
|5 service
|£| service_spedfication
|Z| composite_service_type
|=| parameter_type
|5 info_type
|=| enumeration
|=| soa_system
|Z| service_consumer
|Z| policy_statement
|Z| supplementary_specifications
|Z| test_case
|Z| test_data
|=| test_result
|Z| use_case_model

|5 wision
Figure 5-5 Work products in the JK Enterprises development case

We have completed the creation of work products for the development case.

Create roles

We now create the roles that work on work products, for example, the software
architect role.

» Select the Roles folder in the Library view and New — Role.
» Name the role software_architect and Software Architect

You would typically describe the role (main description, skills, ...) in the
Description tab.

» Select the Work Products tab and add the service _model work product under
Responsible for (Figure 5-6).

Chapter 5. Process and methods 119

|=| service_model &} =software_architect &2 =0
Role: software_architect

~ Work Products:
Specify work products that this role is responsible for,

Responsible for:
[Zliservice_model, Building SOA Solutions Plugin/Method Content ;

EEn

Description | Work Products | Guidance | Categories | Preview

Figure 5-6 The software architect is responsible for the service model work product

» Select the Preview tab to see the result (Figure 5-7).

|Z| service_model &} =software_architect &2 =0
[=a=+a | Qéh =
+| Expand All Sections —| Collapse All Sections
] tespansible for =
gy — |
Software Architect Service Model
+ Back to top
Description | Work Products | Guidance | Categories | Preview

Figure 5-7 Preview of the software architect role

For the JK Enterprises development case we also create other roles (Figure 5-8).

Llsiness_archihect
[u} N N
£ business_executive
{_r} business_process_analyst
{_r} database_designer
{_r} deployer

[u} N

£y designer

=

£ developer

{_r} integrator

£ process_engineer
& software_architect
=

Ly system_analyst
{_r} tester

Figure 5-8 JK Enterprises roles

We have completed the creation of roles for the JK Enterprises case study.

120 Building SOA Solutions Using the Rational SDP

Create tasks

In this section we create the tasks for the JK Enterprises case study. Tasks have
performing roles and input and output work products. For example, a task for

model service interaction:

» Select the Tasks folder in the Library view and New — Task.

» Name the task model_service_interaction and Model Service Interaction.

» Inthe Roles tab, select software_architect as the primary performer.

» In the Work Products tab, add service_model as mandatory input and
service_contract as outputs.

» The Preview tab displays the result (Figure 5-9).

|=| service_model r_n,? *software_architect [*model_service_interactions &3 =0

<:3C:>E|q><k‘\;;

Roles

Inputs

Qutputs

Primary Performer:
« Software Architect

« Senice Contract

Description | Steps | Roles | Work Products | Guidance | Categories | Preview

+| Expand All Sections —| Collapse All Sections

Additional Performers:

Optional:
« Mone

Figure 5-9 Model Service Interaction task

For the development case we have the tasks shown in Figure 5-10.

Chapter 5. Process and methods 121

[assemble_service_assembly

[build_service_assembly_part

[define_automation_requirements
[design_database

[detail_a_use_case

[develop_vision

[identify_and_assodiate_services_to_goals
[identify_business_goals_and_kpis
[implement_atomic_services

[implement_business_process

[implement_composite_services
[implement_developer _test

[model_service_assemblies

[model_service_deployment

[model_service_interactions

[model_service_realisation

[model_to-be_business_process
[perform_business_process_analysis
[perform_existing_asset_analysis
[perform_functional_area_analysis
[refine_service_component_design
[structure_service_architecture
[structure_use_case_model

[task_template

Figure 5-10 JK Enterprises tasks

Create steps
Steps are detailed instructions contained by tasks:

» Open the structure_service_architecture task, and select the Steps tab.
» Add a step named Validate and Classify Services.

» Make sure the Validate and Classify Service step is selected, and then
enter a description for it (copy and paste from the service specification).

» The result is shown in Figure 5-11.

122 Building SOA Solutions Using the Rational SDP

[structure_service_architecture &3 =0

ﬂ':beéh@

Task: Structure Service Architecture

Expand All Sections Collapse All Sections

é; |

Expand All Steps Collapse All Steps
=l Validate and Classify Services

Validate candidate services

It is always a good idea to validate the input you get from other activities. Although it can be argued that
this should be covered by semnvice identification, we start our service specification activity by validating that
the identified candidate senices are actually services that should be part of our senvice-oriented
architecture.

Also referred to as senvice litmus test by the IBM Senice-Oriented Modeling and Architecture (SOMA)
technique, validation includes making sure that all services are:

Business-aligned: All services should be traceable back to a to a business requirement (for
example, goal, sub-goal. or KPI), or business activity from a business process. A very good way to
verify business alignment is to ask the business if they would be ready to fund the service through its
life cycle!

Reusable: Services and their operations should be generic enough so that they can be used by
consumers that were not part of the original requirements. For example: Can a particular service be

Description | Steps | Roles | Work Products | Guidance | Categories [Preview]

Figure 5-11 Validate and Classify Services step

We create other steps for the structure_service_architecture task
(Figure 5-12).

[structure_service_architecture &3 =0

G E S D

Task: Structure Service Architecture

Expand All Sections Collapse All Sections

Expand All Steps Collapse All Steps
alidate and Classify Services
Identify Service Partitions
Model Atomic Service Providers
Model Composite Service Providers
Model Service Consumers
Assign Parts to Service Partition
Consider Service Policies

+ Back to top

Description | Steps | Roles | Work Products | Guidance | Categories [Preview]

Figure 5-12 Steps for the structure service architecture task

Chapter 5. Process and methods 123

At this stage, we would have to specify the steps for all of the JK Enterprises
activities.

After completing the creation of method content we can start to arrange this
content in a process.

Create the process

124

As defined in the Method Composer help: A process describes how a particular
piece of work should be done. In our case, the piece of work to be done is the JK
Enterprises Account Opening project.

We create a delivery process for Building SOA solutions, to arrange method
contents into phases and iterations. We perform the following tasks:

» Create phases

Create iterations

Create activities

Create milestones
Organize tasks in activities

vyvyyy

Note that the process elements that we create are heavily influenced by RUP
(described in details in “IBM Rational Unified Process (RUP)” on page 106).

» In the Library view, select Processes — Delivery Processes of the Building
SOA Solutions plug-in project, then select New — Delivery Process.

» In the New Process Component pop-up dialog, name the project Building
SOA Solutions and select new_configuration for the default configuration
(Figure 5-13).

@ New Process Component

MName: | Building S04 Solutions

Defauit Configuration: [iew_configuration """} =
oK | Cancel |

Figure 5-13 New Process Component pop-up window

Note that new_configuration is the configuration we create for the JK
Enterprises method content and process. By selecting it, the method content is
available in the Configuration view.

The delivery process editor should open the new delivery process.

» Type Development case for JK Enterprises in the Brief description field.
» Select the Work Breakdown Structure tab.

Building SOA Solutions Using the Rational SDP

Create phases

As defined in the Method Composer help: A phase is a special type of activity
that represents a significant period in a project, ending with a major management
checkpoint, milestone or set of deliverables.

We first create four phases (from RUP): Inception, Elaboration, Construction, and
Transition.

» Select the Building SOA Solutions delivery process and New Child — Phase
(Figure 5-14).

4 *Building SOA Solutions &3
Presentation Name | Index | Prefix Model Info | Type
T, Buid : : P
< Bl Mew Child ¥ = Phase uery ™o
Add from Method Content... % Tteration %
Apply Pattern 4 mm
5 Activi
Default Synchronization from Method Content 25 Activity
Custom Synchronization. .. "_Q* Task Descriptor
&)y Milestone
Suppress
Update Suppression from Base

Figure 5-14 Creating a new phase

» Name the phase Inception.

» Repeat the previous two steps to create Elaboration, Construction, and
Transition phases.

» The result is shown in Figure 5-15.

4 Building SOA Solutions &2

Presentation Name | Index | Prefix Model Info Type

= 5B Building SOA Solutions 1] Delivery Pro...
£S5 Inception 1 Phase
£S5 Elaboration 2 Phase
£S5 Construction 3 Phase
£ Transition 4 Phase

Figure 5-15 Four phases of the Building SOA Solutions delivery process

Create iterations

As defined in the Method Composer help: lteration is a group of nested activities
that are repeated more than once. lteration represents an important structuring
element to organize work in repetitive cycles.

We create iterations under the phases. Note that our process is very simple and
only has one iteration per phase:

» In the Work Breakdown structure tab, select the Inception phase and New
Child — lIteration.

Chapter 5. Process and methods 125

» Name the iteration Inception Timebox.

» Repeat the previous two steps to create one iteration under each phase.

» The result is shown in Figure 5-16.

5 *Building 504 Solutions 52
Presentation Name | Index | Prefix | Model Info | Type
~/ Tiy Building S0A Solutions 0 Delivery Process
= E5 Inception 1 Phase
% Inception Timebox 2 Iteration
= E5 Elaboration 3 Phase
€& Elaboration Timebox 4 Iteration
= E5 Construction 5 Phase
% Construction Timebox 6 Iteration
= E5 Transition 7 Phase
% Transition Timebox 8 Iteration

Figure 5-16 Four iterations for the Building SOA Solutions delivery process

Create activities

As defined in the Method Composer help: Activities represent the key building
blocks for processes. Activities represent a grouping of breakdown elements
such as other activities, task descriptors, role descriptors, work product

descriptors, and milestones.

We create activities under the iterations of our process. The result is shown in

Figure 5-17.
45 Building S0A Solutions 52
Presentation Name | Index | Prefix | Model Info | Type
= 5B Building SOA Solutions 1] Delivery Pro...
= E5 Inception 1 Phase
= % Inception Timebox 2 Iteration
+ 5’_}'? Inception Business Modeling 3 Activity
+ 5’_}'? Inception Reguirements 8 Activity
+ 5’_}'? Inception Analysis & Design 12 Activity
5’_}'? Inception Implementation 15 Activity
= E5 Elaboration 17 Phase
| £& Elaboration Timebox 13 Iteration
+ 5’_}'? Elaboration Requirements 19 Activity
+ (55 Elaboration Architecture 21 Activity
+ 5’_}'? Elaboration Design 26 Activity
5’_}'? Elaboration Implementation 30 Activity
= E5 Construction 31 Phase
= % Construction Timebox, Iteration [i] 32 Iteration
+ 5’_}'? Construction Reguirements 33 Activity
+ 5’_}'? Construction Architecture 35 Activity
+ 5’_}'? Construction Design 40 Activity
+ 5’_}'? Construction Development 44 Activity
+ 5’_}'? Construction Developer Testing 48 Activity
] 5’_}'? Construction Assembly 50 Activity
5’_}'? Construction Testing 53 Activity
= E5 Transition 54 Phase
= % Transition Timebox 55 Iteration
5’_}'? Transition Testing 56 Activity
5’_}'? Transition Deployment 57 Activity

Figure 5-17 Activities for the Building SOA Solutions process

126 Building SOA Solutions Using the Rational SDP

Create milestones

As defined in the Method Composer help: A milestone describes a significant
event in a project, such as a major decision, completion of a deliverable, or
meeting of a major dependency such as the completion of a project phase.

We now create one milestone at the end of each phase (like in RUP).

>

Select the Inception phase and create a new milestone named Lifecycle
Objectives Milestone.

Make sure the milestone is selected, and then select the Documentation tab
in the Properties view. Type this text in the Brief Description field (from RUP):

At the end of the inception phase is the first major project milestone
or Lifecycle Objectives Milestone. At this point, you examine the
lifecycle objectives of the project, and decide either to proceed with
the project or to cancel it.

Similarly, create milestones (in order) at the end of the other phases:

Save the process. The result is shown in Figure 5-18.

43 Building SOA Solutions &2
Presentation Name | Index | Prefix | Model Info | Type
- B Building SOA Solutions 1] Delivery Process
= E5 Inception 1 Phase
= % Inception Timebox 2 Iteration
+ E}'? Inception Business Modeling 3 Activity
+ E}'? Inception Reguirements 8 Activity
+ E}'? Inception Analysis & Design 12 Activity
&l j oo 15 Activity
:l; Lifecyde Objectives Milestone 17 Miestone)
= E5 Elaboration 13 Phase
| £& Elaboration Timebox 19 Iteration
+ 5 Elaboration Requirements 20 Activity
+ (55 Elaboration Architecture 22 Activity
+ (55 Elaboration Design 27 Activity
3 i ion 3l Activity
£y Lifecyde Architecture Milestone 32 Milestone)
= B3 Construction 33 Phase
= % Construction Timebox, Iteration [i] 34 Iteration
+ E}'? Construction Requirements 35 Activity
+ E}'? Construction Architecture 37 Activity
+ E}'? Construction Design 42 Activity
+ E}'? Construction Development 46 Activity
+ E}'? Construction Developer Testing 50 Activity
+ 53 Construction Assembly 52 Activity
3 i ing 55 Activity
|y Initial Operational Capabilities Milestone 56 Milestone)
= E5 Transition 57 Phase
= % Transition Timebox 58 Iteration
E}'? Transition Testing 59 Activity
153 Transition Deplovment] Activity
s Product Release Milestone 61 Milestone)

Figure 5-18 Four milestones for the Building SOA Solutions process

Chapter 5. Process and methods 127

128

Organize tasks in activities
We now bring the tasks that we created under the appropriate activity of the
process.

The tasks are available from under the Configuration view, under Disciplines —
Uncategorized Tasks (Figure 5-19).

5=| Configuration 15

new_configuration

—|-||2| Disciplines

= Uncategorized Tasks
[Assemble Service Assembly
[Build Service Assembly Part
[Define Automation Requirements
[Design Database
[Detail a Use Case
[Develop Vision
[Identify and Associate Services to Goals
[Identify Business Goals and KPIs
[Implement Atomic Services
[Implement Business Process
[Implement Composite Services
[Implement Developer Test
[Model Service Assemblies
[Model Service Deployment
[Model Service Interactions
[Model Service Realisation
[Model To-Be Business Process
[Perform Business Process Analysis
[Perform Existing Asset Analysis
[Perform Functional Area Analysis
[Refine Service Component Design
[Structure Service Architecture
[Structure Use Case Model

Figure 5-19 Tasks are available in the Configuration view

» Dragthe Structure Service Architecture task from the Configuration view
onto the Elaboration Architecture activity (under Elaboration Timebox).

A new task descriptor is created for Structure Service Architecture. A task
descriptor allows you to modify it without modifying the original task under
method content. For example, you can modify the roles or work products for
this particular process only. Note that to modify a task descriptor, you have to
select it from the Delivery Process Editor, and work in the Properties view.

» We compose the other activities into our process. The result is shown in
Figure 5-20.

Building SOA Solutions Using the Rational SDP

43 Building SOA Solutions &2

Presentation Name

| Index | Prefix | Model Info | Type

—| fi Buiding S04 Solutions
= E5 Inception
=| Egh Inception Timebox

= E}'? Inception Business Modeling
Lgh Perform Functional Area Analysis
L4 Identify Business Goals and KPIs
L4 Model To-Be Business Process
"_Q* Define Automation Requirements

= E}'? Inception Reguirements
[+ Develop Vision
[gh Structure Use Case Model
"_Q* Detail a Use Case for Iteration [1]

= E}'? Inception Analysis & Design
L4 Identify and Associate Services to Goals
L4 Perform Business Process Analysis
"_Q* Perform Existing Asset Analysis

E}'? Inception Implementation
&) Lifecyde Objectives Milestone
= E5 Elaboration
=| Egh Elaboration Timebox

= 5% Elaboration Requirements
"_Q* Detail a Use Case for Iteration [2]

= 55 Elaboration Architecture
"_Q* Structure Service Architecture
"_Q* Model Service Interactions for Iteration [1]
Lgh Model Service Assemblies
"_Q* Model Service Deployment

= 5 Elaboration Design
"_Q* Model Service Realisation for Iteration [1]

"_Q* Design Database for Iteration [1]
(5% Elaboration Implementation
&) Lifecyde Architecture Milestone
= E5 Construction
=| Egh Construction Timebox, Iteration [i]
= E}'? Construction Requirements
"_Q* Detail a Use Case for Iteration [i+2]
= 55 Construction Architecture
[gh Refine Service Architecture

[gh Refine Service Assemblies
"_Q* Refine Service Deployment
= E}'? Construction Design

"_Q* Design Database for Iteration [i+1]
= E}'? Construction Development

"_Q* Implement Atomic Services for Iteration [i]
= E}'? Construction Developer Testing

"_Q* Implement Developer Test for Iteration [i]
= 5 Construction Assembly

"_Q* Build Service Assembly Part for Iteration [i]

"_Q* Assemble Service Assembly for Iteration [i]

Description | Work Breakdown Structure | Team Allocation | Work Product Usage | Consolidated View

"_Q* Refine Service Component Design for Iteratior 29

"_Q* Model Service Interactions for Iteration [i+1] 39

"_Q* Model Service Realisation for Iteration [i+1]
"_Q* Refine Service Component Design for Iteratior 44

"_Q* Implement Business Process for Iteration [i]
"_Q* Implement Composite Services for Iteration [i] 48

1] Delivery Process

1 Phase

2 Iteration

3 Activity

4 Task Descriptor

5 Task Descriptor

& Task Descriptor

7 Task Descriptor

8 Activity

g Task Descriptor

10 Task Descriptor

11 Task Descriptor

12 Activity

13 Task Descriptor

14 Task Descriptor

15 Task Descriptor

15 Activity

17 Milestone

13 Phase

19 Iteration

20 Activity

21 Task Descriptor

22 Activity

23 Task Descriptor

24 Task Descriptor

25 Task Descriptor

26 Task Descriptor

27 Activity

28 Task Descriptor
Task Descriptor

30 Task Descriptor

31 Activity

32 Milestone

33 Phase

34 Iteration

35 Activity

36 Task Descriptor

37 Activity

38 Task Descriptor
Task Descriptor

40 Task Descriptor

41 Task Descriptor

42 Activity

43 Task Descriptor
Task Descriptor

45 Task Descriptor

45 Activity

47 Task Descriptor
Task Descriptor

49 Task Descriptor

50 Activity

51 Task Descriptor

52 Activity

53 Task Descriptor

54 Task Descriptor

Figure 5-20 Building SOA Solutions tasks organized under activities

Chapter 5. Process and methods

129

Note that because tasks specify performing roles and input and output work
product, Method Composer automatically provides views that show what role is
needed in each phase or iteration (for example, Software Architect), and what
work products are needed. This information is shown under the Team Allocation
or Work Product Usage tabs of the Delivery Process editor. The Consolidated
View tab shows both roles and work products (Figure 5-21).

= 5 Elaboration 13 Phase
| £& Elaboration Timebox 19 Iteration
+ 5’_}'? Elaboration Requirements 20 Activity
= 5 Elaboration Architecture 22 Activity
= L Structure Service Architecture 23 Task Descriptor
4 Software Architect Primary Performer Role Descriptor
|5 Service Model Mandatory Input Artifact Descriptor
|5 Service Model Qutput Artifact Descriptor

Figure 5-21 Consolidated tab of the delivery process editor

We have completed the development of the Building SOA Solutions process
(including method content) in Method Composer. The next steps are about
publishing the process to make it is accessible to JK Enterprises staff.

Publish the process as HTML

130

Method Composer is a content management application. In this section, we
export (publish) the contents that we have produced as a Web (old RUP) site, so
that it is available JK Enterprises staff (who do not have Method Composer).

For the purpose of this exercise, we have created three custom categories under
our plug-in, one for each of tasks, work products, and roles.

We now edit our configuration so that it includes contents from the three
categories:

» Make sure you are in Method Composer in the Authoring perspective. In the
Library view, open new_configuration (in the Configurations folder).

» In the Configuration editor, select the Plug-in and Package Selection tab, and
make sure that Building SOA Solution Plugin is the only selected content
(Figure 5-22).

Building SOA Solutions Using the Rational SDP

2-| new_configuration 3

Configuration: new_configuration

Select the method plug-ins, content packages and processes

(%]
=)
35
o
5
A

DOoooooooooo| @

rup_legacy _evol_plugin
rup_cots_package_delivery
rup_j2ee_plug_in

rup_se

informal_resources
rup_for_asset_based_development
rup_rad_plugin
rup_rsa_plugin
rup_soa_plugin
base_concepts

rup_bm
rup_ux_modeling_plugin
={Jr= Building SOA Solutions Plugin

4
4
4
4
4
4
4
4
4
4
4
4
4

Description:

Description | Plug-in and Package Selection | Views

Figure 5-22 Plug-in and Package Selection tab of the configuration editor

We select what contents to include in the published process. For us, it is the

C
>

| 2

ontent from the three categories (roles, work products, and tasks).
Select the Views tab.
Click Add View and select the Roles category.
Repeat the previous step to add a view for tasks and work products.
Select the roles_category view and click Make Default.
The result is shown in Figure 5-23.

Chapter 5. Process and methods

131

new_conﬁguraﬁon X
Configuration: new_configuration

+ Published Navigation Views

Specify the views that will be induded when this configuration is published |
the configuration. The selected category will represent the view and the
elements.

|§Add View. .. i| | Remove View | | Make Default

roles_category (default) | tasks_category | work_products_category

Software Architect
System Analyst
Tester

Business Architect
Business Executive
Business Process Analyst
Database Designer
Deployer

Designer
Developer
Integrator

Process Engineer

1 e e

Description | Plug-in and Package Selection | Views

Figure 5-23 Views of a configuration

» Save the configuration.
» Select Configuration — Publish.

» Select new_configuration in the Select Method Configuration page of the
Publish Method Configuration wizard and click Next (Figure 5-24).

Publish Method Configuration

Select Method Configuration W
Select the method configuration you would like to /
publish.

Method configuration:

Classic RUP (for large projects)
COTS Package Delivery

Systems Engineering (SE)
User-Experience Modeling (LXM)
Asset Based Development (ABD)
RUP for Small Projects

Description:

| Mext = | | Cancel |

Figure 5-24 Select Method Configuration

132 Building SOA Solutions Using the Rational SDP

» In the Specify Publishing Options page, select a path on the file system to
publish the Web site, type JK Enterprises Development Case for the title, and

select all options. Click Finish (Figure 5-

25).

2=/ Publish Method Configuration

Destination directory

Path: | C:Temp'DevCase Browse. ..

™ Use default path

Published website

Title: | JK Enterprises Development Case

Banner image: | Select...
About content: | Select...

Feedback URL: | http: ffwww.published_website.com/feedback

¥ Include glossary page

¥ Indude index page

I¥ Indude search capability (requires Java applet support in browser)

I¥ Support view customization (requires Java applet support in browser)
Validation

Iv Check external hyperlinks

Diagram

Iv¥ Publish activity detail diagrams that have not been created in process edit

< Back | | Einish | Cancel

€

Specify Publishing Options W
Specify the destination directory and publishing options, %g

Figure 5-25 Specifying publishing options

After a couple of minutes, the favorite Web browser should open with the

publishing log and the result process Web site.

» Close the log page.

You can now browse the process (Figure 5-26).

Chapter 5. Process and methods

133

& K Enterprises Development Case - Mozilla Firefox Q@
File Edit View Go Bookmarks Tools Help

Qil - L:) - @ O @ L1 file:ffjC:fTemp/DevCase findex.htm M @ Go @,

El Latest Headlines | | dogear this

Rational
Unified Process®

1l Glossary | £ Index | ¢* Feedback | T A

| Q4 Search | &y

Where Am | -
- wammrgnll Task: structure Service Architecture

Wiork Products |

Roles Tasks Expand All Sections [Collapse All Sections

? 5 Software Architect =
¢ CJ Primarily Performs
> Model Service Intera Roles Primary Performer: Additional Performers:

1l + Software Architect

o= [Respansible Far
o [0 modifies
& System Analyst Inputs Mandataory: Optional:
& Tester + Senice Model + MNaone
5 Business Architect
5 Business Executive
5 Business Process Analyst
5 Datahasze Designer
5 Deplayer
5 Designer

Develaper =

5 Integratar
F| Expand All Steps Collapse All Steps
& Process Engineer ||| =
{5 Validate and Classify Services

Outputs + Senice Model

+ Back to top

Validate candidate services

It is always a good idea to validate the input you get from other

activities. Although it can be argued that this should be covered by

senvice identification, we start our senvice specification activity by

validating that the identified candidate services are actually senices

that should be part of our senice-oriented architecture. M

4] i | [»
|| file: /f{C: fTemp/DevCase Building SOA Solutions Plugin/tasks/structure_service_architecture, _wM9noGOQEdulUEM2599tquA. html#

Figure 5-26 Browse the result process

The resulting process site can now be made available to JK Enterprises staff.

Export the process as a project plan

We export the process to Rational Portfolio Manager. Refer to the “Rational
Portfolio Manager” on page 33 for more details on this product.

» Select File —» Export.

» Select IBM Rational Portfolio Manager Project Template and click Next
(Figure 5-27).

134 Building SOA Solutions Using the Rational SDP

=] Export

Select

Export a capability pattern or delivery process as E / 5
a project template file,

Select an export destination:

Rational Portfolio Manager Project Template :
a—|Library Configuration
“J=Method Plug-ins

Microsoft Project Template

| Mext = | | Cancel |

Figure 5-27 IBM Rational Portfolio Manager Project Template

» Select Delivery Process, Build SOA Solutions, and new_configuration. Name

the project template Bui1dSOASolutions, and specify a directory on the file
system. Click Finish (Figure 5-28).

|| Export Project Template

Select process and export directory

Select & capability pattern or delivery process to export as a project template file, i %g /

Process
" Capability Pattern % Delivery Process

MName:

|Building SOA Solutions

Configuration: |new_c0nﬁguraﬁon

Lol Lo

I~ Publish the configuration files
™ Only export breakdown elements with the Planned attribute set to true

Project Template

MName: | BuildSOASolutions

[~
j Browse...

Directory: | C:iTemp'RPM-template

< Back | | Einish | Cancel

Figure 5-28 Select the process and export directory

A BuildSOASoTutions.xm]l file is created by Method Composer. This is a Portfolio
Manager project template.

Chapter 5. Process and methods 135

Export the development case as a plug-in

To export the method plug-in, select File — Export. In the Export wizard:
» Select Method Plug-ins and click Next (see Figure 5-27 on page 135).

» In the next page, select the plug-in(s) you want to export, in our case, Building
SOA Solutions, and click Next.

» In the next page, review the dependencies and click Next.

» In the next page, review the export information and click Next.

» Finally, specify a directory to export the plug-in to and click Finish.

The directory you selected contains the exported plug-in. If you want, create a

ZIP file of the exported information for distribution.

We provide the Method Composer plug-in of our development case in:
C:\SG247356\sampcode\DevelopmentCase\DevCase-RMC-plugin-export.zip

Refer to “Rational Method Composer plug-in” on page 591 for instructions about
how to import the plug-in.

References

136

» Read the Rational Method Composer developerWorks article series at:
http://www-128.1ibm.com/developerworks/rational/Tibrary/dec05/haumer/

» Refer to the Eclipse Process Framework site at:
http://www.eclipse.org/epf/

» IBM developerWorks Rational Unified Process (RUP) and Rational Method
Composer site at:

http://www-128.1bm.com/developerworks/rational/products/rup

Building SOA Solutions Using the Rational SDP

http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/
http://www.eclipse.org/epf/
http://www-128.ibm.com/developerworks/rational/products/rup

Modeling and tools

This chapter describes the importance of modeling, the Unified Modeling
Language (UML), and model-driven development.

After modeling, we describe the importance of architecture and the IBM Rational
products that support modeling and architecture.

© Copyright IBM Corp. 2007. All rights reserved. 137

Importance of modeling

138

Now it is time to answer to the following question:
“Why do we model?”

In any human technical field, we feel the need to represent concepts in a way
easily understandable for our mind; if we are building something small, then the
idea itself is a good and reasonable representation; but, if we have to build
something more complex, then we begin by creating an abstract representation
of its structure and parts by creating pictures, sketches, and blueprints.

Let us consider an example: If we have to build a small paper boat to play with
our child, we would likely take some paper, fold it to get the boat shape, and in a
few minutes we can try to make it float in the bathtub. If the boat does not work
well or it sinks, we could figure out what caused the problem and build another
boat to make our child happy.

Now, suppose we have to build a fishing boat for our family. We could start by
assembling the tools and raw materials: wood, hammers, nails, and so on. We
could then immediately start to build the boat. But maybe this time we want to
first figure out some things; so we make some sketches of how the boat will
appear; perhaps we still have to agree with our family on some characteristic of
the boat: its shape, its dimensions and colors; we may say these are
specifications of the boat. This will affect the list of raw materials, the list of tools
that we need, and also the steps that we need to follow to build the boat. Indeed
creating this specification is a way to reduce the risk of our work ending in failure.

Now imagine that we need a super-customized motorboat. Again we could
attempt to start to build it ourselves immediately but there would be many
risks—not least of which being that we do not know exactly what we want or even
what parts would be required; most probably we will ask a marine engineer to
build it for us. The engineer might use some off-the-shelf blueprint or picture to
achieve agreement with us on what we want. He might then prepare some
scale-model of the motorboat to allow to understand how it will appear, what will
be its shape, colors, seat-configuration, and so on. Notice he uses these models
for different reasons: first is to gain general agreement with us on what we want;
but after this, he will start refining these same models, giving them greater detail
and representing with increasing detail what the motorboat will look like. He
could place these models into a simulation environment that allows him to test
how the motorboat will behave under various conditions, how it will react to
certain wind and sea conditions, and so on. This is very useful for him to
significantly reduce the risk of the building job and achieve his (and our) goal.

Building SOA Solutions Using the Rational SDP

You can easily imagine what kind of models, blueprints, and simulations would be
required if we were to build a large supertanker. It would be plain to anyone that
starting from a set of tools and materials would be ridiculous.

So the moral of this story is: the more complex you project, the more you need
models.

In the world of software we still encounter software development organizations
that aim to create complex systems, and are approaching the problem as though
they were building something very simple. It is no coincidence therefore that a
high percentage of software projects fail.! These failures are often directly related
to the absence of a development process which mandates the creation of
models.

Having models is a recognized practice in many fields: Building architecture,
aeronautics, hardware, biology, economics, and sociology.

So basically, a model is a simplified representation of reality. It is possible to have
different models on different levels of abstraction, views with different levels of
details, and to zoom out or zoom in to a model; it is possible to visualize static or
dynamic aspects of a system. Usually we say a good model is a faithful
representation of the important parts of a system, hiding the insignificant parts;
indeed our mind naturally focuses on the core part of a system when attempting
to understand it. When we have to explain to someone, some complex system
with pen and paper (the original analysis tools!), we make some sketch of the
system representing only core concepts, structure, or main components.

We can see an example of a model and its modeled system in Figure 6-1.

! Refer to the Standish CHAOS Report, 1994:
http://www.standishgroup.com/sample_research/chaos_1994 1.php

Chapter 6. Modeling and tools 139

http://www.standishgroup.com/sample_research/chaos_1994_1.php

= Engineering model: A reduced representation of some system that
highlights the properties of interest from a given viewpoint

Functional Model

= Modeling: A fundamental technique for coping with complexity
= We don’t see everything at once — only the important stuff = abstraction
= We use a representation (notation) that is easily understood

Figure 6-1 An example model

According to the UML user guide (see “References” on page 168) there are four
reasons for modeling:

1. Visualize—Models allows us to visualize and understand better an existing
system or one to be built.

2. Specify—Models are useful to specify systems characteristic, in terms of
their structure and behavior.

3. Build—Because a model is usually built using software tools, we can often
exploit them to (at least initially) build our solution, by generating other
models, code and configurations from them.

4. Document—Models are definitely used to document our system or solution.

Another important aspect of modeling, particularly using modeling tools, is that
the model itself contains many different types and levels of business context
relevant information. Please refer to other chapters of this book for examples of
that. With the advent of business driven approach and having value added
services in a SOA. There is a need to provide services with business context
relevancy. Automated services may have to process the business contextual
information in the models.

140 Building SOA Solutions Using the Rational SDP

Unified Modeling Language

The Unified Modeling Language (UML) is the standard for describing models. We
start with a brief history and a short overview of UML.

A brief history of UML

In the first part of 1990s several object-oriented languages, such as SmallTalk,
C++, Eiffel, and Java were becoming increasingly mainstream. As the software
community began to use a variety of software design tools and languages, there
were a number of notations all representing similar concepts but with several
differences between them. The lack of a standard notation was proving rather
confusing for the software community at large.

Majors notations at that times were:

» Object Modeling Technique (OMT) by Jim Rumbaugh
» Booch Method by Grady Booch
» Object-Oriented Software Engineering (OOSE) by lvar Jacobson

The three methodologists were collectively referred to as the Three Amigos,
since they were well known to argue frequently with each other regarding
methodological preferences.

In 1996 the Three Amigos decided that a Unified Modeling Language was more
viable than a Unified Method, and redirected their efforts to respond to the Object
Management Group (OMG) Request for Proposal (RFP) for an object modeling
language (Object Analysis & Design RFP-1, OMG document ad/96-05-01),
which was issued in June 1996. Under the technical leadership of the Three
Amigos, an international consortium called the UML Partners was organized in
1996 to complete the Unified Modeling Language (UML) specification, and
propose it as a response to the OMG RFP. The UML Partners' UML 1.0
specification draft was proposed to the OMG in January 1997.

The software community eagerly adopted UML, providing feedback which lead to
a number of revisions. UML became a de facto standard and UML 1.1 was
adopted by OMG in November 1997.

As a modeling notation, the influence of the OMT notation dominates (for
example, using rectangles for classes and objects). Though the Booch cloud
notation was dropped, the Booch capability to specify lower-level design detail
was embraced. The use case notation from Objectory™ and the component
notation from Booch were integrated with the rest of the notation, but the
semantic integration was relatively weak in UML 1.1, and was not really fixed
until the UML 2.0 major revision.

We can see the major UML version history summarized in Figure 6-2.

Chapter 6. Modeling and tools 141

D
L me

UML 1.4 (action semantics)
UML 1.3 (extensibility)

UML 1.1 (OMG Standard)

Foundations of O0(Nygaard, Goldberg, Meyer;
Stroustrup; Harel, Wirfs-Brock, Reenskaug)..)

Figure 6-2 UML evolution

Note: Further information about UML can be found at:

http://www.omg.org
http://www.uml.org

A brief overview of UML

UML is a (visual) language for capturing models about software. As with any
language, it has its own syntax and semantics.

There are two main aspects to software in UML: Static and dynamic. This
categorization can be applied to the various UML diagram types.

Static diagrams
These types are used to represent the things that must be in the system being
modeled. Static diagram types are:

» Class diagram—Represents structures: Cases, properties (attributes and
associations), and all relationships (see Figure 6-3).

» Object diagram—Represents class instances structure.
» Package diagram—Represents package structure.

» Deployment diagram—Represents deployed elements and topology: Nodes
and relations with deployed components, communication association,
network connections and so forth.

142 Building SOA Solutions Using the Rational SDP

http://www.omg.org
http://www.uml.org

>

Component diagram—Represents components, their structure,
relationships, and interfaces.

Composite structure diagram—Represents internal part of a classifier, such
as class or component. There is a deeper discussion of this later in this
section.

Empl
_-employesg = Emp cwee
H AdministrativeReporting | g7 ¥U58% - | G name :String
—fitle - StAn 1 7| Eg adress : Adress
= | 2 g &2, Operation1 ()
&lsEw 1
E] peduction 1

== quantity : Integer

"' w -timecard

= EmployeeDeduction * = Timecard

Eg date : String
-employeededudiar o

Figure 6-3 A sample class diagram

Dynamic diagrams
These types represent what happens in the system being modeled. Dynamic
diagram types are:

>

Use case diagram—Represents a system from a requirements point of view;
we may say from a black-box point of view in terms of system use cases and
actors.

Activities diagram—Represents flows of activities, their sequence,
conditions, concurrent flows and synchronization points.

Sequence diagram—Represents the sequence of messages that are sent
and received between a set of objects (classifier instances), emphasizing
their chronological order (the sequence). (See Figure 6-4.)

Communication diagram—Represents communication in a system; they are
semantically equivalent to sequence diagrams but they emphasize
collaborations between objects.

Timing diagram—Represents timing of events of object(s).

Chapter 6. Modeling and tools 143

144

» State diagram—Represents objects state machines: We have states,
transitions from one state to another, events that fires a transition, guard
conditions and so forth.

» Protocol state machine diagram—Represent legal transitions (protocols)
trough states for an abstract classifier, such as interfaces or ports.

» Interaction overview diagram—Represents possible interaction from an high
level point of view. They show groups of interactions and the overall flow.

|El *Design Model::AC... | D Use Case Model::1... i'] *Design Model::AC... X
| :Payroll Administrator | r«servicerEmployees Controller

payrollDB:PayrolDB

' Subflow:AddEmployes

|[i]% :Payroll Administrator | |] :«service»EmployeesController | & payrollDB:PayrollDB
|
1: addEmployee | |

1.1: addEmployee |

1.2: addEmployee

2: addEmployes |

| ot
-

"~ | |
| | |

Figure 6-4 Sample sequence diagram

A combination of these diagrams allow to model software from different
perspectives. For example, a use case diagram allows us to see our system from
a requirement, or black-box point of view and help us understand what value the
system provides to external actors.

A sequence diagram would provide a white-box point of view to help us
understand the sequence of messages between objects required to achieve a
particular goal.

Another important aspect of UML is that it is a very generic and extensible
language. This is one of the primary reasons for the wide-spread adoption and
success of UML.

UML defines a few types (we could call them meta classes or classifiers) such as
class, operation, property, association, message and so forth.

Additionally, UML defines its own extensibility mechanism based on profiles. A
profile is a set of information that constrains, customizes and narrows a particular
classifier. A profile is made up of stereotypes. A stereotype is a way of assigning a
type to a particular classifier. Stereotypes give a greater semantic precision to
our models.

Building SOA Solutions Using the Rational SDP

For example, in Figure 6-4 we can notice an object stereotyped as <<service>>,
representing this object will have a service behavior and semantics for whatever it
means in that context.

Note: For additional material, white papers, and courses on UML, refer to the
IBM Rational UML resource center at:

http://www.ibm.com/software/rational/uml/

Until now, we have shown various UML characteristics and advantages. However
today, in some software development organizations there are still practitioners
who doubt the value of modeling. This is often due to considerations related to
the accuracy of models. Obviously the less a model is accurate, the less is
useful.

We have observed several organizations that developed models with the only
goal to document their solutions; this way, models were likely becoming early
inaccurate, going far from the actual meaning of underlying code and
implementation.

Moreover, an inaccurate model is not just useless but it can also be dangerous,

allowing to do assumptions not corresponding to reality. Besides this in software,
problems often comes from a very specific detail of the implementation and this

may be not caught by a model.

Thus, an important and usual need about models is to keep their semantic near
to actual objects (semantic) they represents. However, we have just explained a
model is a simplification of reality so how can a model contain the required
details?

To solve this apparent paradox, UML has evolved and other initiatives have
started such as model-driven architecture (MDA).

Model-driven development

A basic answer on that paradox is to try to have automated tasks that starting
from your models, produce underlying implementation; we call these tasks
transformations.

Considering the historic software engineering evolution, we can notice major
improvements in this field have been about raising the level of abstraction: from
binary languages to high-level procedural languages to object-oriented
languages and so on. Each of these major step have narrowed the gap between
human and machines language allowing us to express more powerful concepts

Chapter 6. Modeling and tools 145

http://www.ibm.com/software/rational/uml/

146

and paradigms with a lower coding effort; indeed we say some languages are
more expressive than others.

Representing our software solutions with UML models is, in many cases,
definitively more expressive and meaningful than using programming languages.

Having models and transformations is a solution to tie two different level of
abstraction in a either formal and physical way. This is the point where new
modeling technologies, such as model-driven development (MDD), start from.
OMG has launched the MDA initiative to define a set of standards to support
MDD; these standard include UML, standards to define modeling languages,
such as meta-object facility (MOF), to defines automatic transformations and so
forth.

Essentially MDD shifts the focus from code to models. Models are becoming
primary artifacts representing our solution; they can be transformed to code (or
to other models) in an automatic (or manual) way trough transformations. The
level of automation may vary from generating only skeleton code to having also
some “body” code, structure and so on. This depends on target languages,
models, architecture and development processes. As we show in the section
“UML 2” on page 149, UML 2 has a much more powerful semantic
representation and precision than its previous versions.

Abstraction level: A way to hide implementation details and to emphasize
only relevant elements. Clearly, this is a recursive concept: for example a
model is a level of abstraction higher than the source code and this is higher
than binary code.

We introduced the concept of level of abstraction; however we have not to think
just to model and code levels. We have different models on different level of
abstraction. We may say code is a model on a lower abstraction level. We show
in Figure 6-5 a typical stack of abstraction levels.

Building SOA Solutions Using the Rational SDP

%go Business model

Transformation

%go Use-case model

Traceability in
custom patterns Transformation
and transformations

2,] Design model
e

Transformation

Code (UML visualized)

Figure 6-5 Transformations across levels of abstraction

Even if it is not necessary to understand each of these level at this time we can

just point out the highest abstraction level is relative to the business. We can say
it is a business model that does not consider any software but just the business

process, its execution, roles, and so forth.

However, this is just an example. What we want to point out here is that when we
are focusing on a certain abstraction level, we are hiding details about lower
levels. Kinds of models that we represent may vary depending on our context,
architecture, organization, and so forth.

Going back to the example, we can expect a use case model is independent from
the underlying solution that we called here design model. In the same way we
can expect a design model is independent from a technological underlying
platform. This way, our organization intelligence is kept and not wasted by
changing the underlying software platform, development languages, and so
forth.

Through automated and customized transformations, platform specific models
are produced. These models usually correspond to code. In that sense we can
say that at this level of abstraction, code is the model. In this way a model like the
design model can be used to generate different code models, trough different
transformations, targeting different platforms.

Chapter 6. Modeling and tools 147

148

Traceability

As we stated before, the greatest improvements in software history are related to
raising the level of abstraction. Today, as we explain in other parts of this book,
one very important goal for software development organization is
business-driven development (BDD).

This implies having methods and tools that supports changing business needs
(or requirements) to be immediately supported by IT, in a fluent and agile way.
Thus, having models representing business models at an high levels of
abstraction implies to have methods to link these models to the others, at a lower
levels of abstraction.

Traceability is exactly this tool; it is the ability to know and recognize that a
particular model or code at any abstraction level, derives from something else, at
a higher level of abstraction. This is very important to allow realizations to be
consistent with specifications and to allow to analyze the impact of a change in a
business need or requirement.

For example, we can recognize that a change in a requirement specification
potentially impacts a particular set of classes in a more abstract model that are in
turn linked to correspondent classes in a less abstract model.

Beyond modeling, traceability is related to the whole development process, as we
explain in other sections of the book; we can trace from requirements to models,
from models to code, from requirements to test and to change management
activities, reaching a high level of control across all development life cycle. All this
kind of traceabilities are supported by IBM Rational tools.

Transformations
We can have different type of transformations:

» Model to model—These transformations are used (typically) to create (or
update) a model starting from an higher level of abstraction model. Typical
examples are: business to use case model, use case to analysis model.

» Model to code—These transformations are used to generate code starting
from (typically UML) models

» Refactoring—These transformations are used for a particular task on a
single model; examples include changing a class name, moving a package,
changing stereotypes and so forth.

Transformations generally use UML extensions, such as profiles and
stereotypes. These informations can be relevant also to the model they belong or
not. For example, in Figure 6-3 we use the stereotype <<service>> for the
EmployeeController class. In this case this stereotype is significative for the
model itself (because it represent a class “is a service”).

Building SOA Solutions Using the Rational SDP

UML 2

Furthermore, this stereotype is used by a transformation from model to code that
transforms that class in some underlying component implementing a service (for
example, an EJB session bean or a Web service).

In other cases, profile informations are used only by the transformation itself:
These informations are not adding any semantic meaning to the model for which
they apply. For example, suppose we have an <<entity>> stereotype applied to a
persistent class; this stereotype has some additional properties such as
PersistenceMechanism that can be assigned to Hibernate, IBatis, or something
else. This information is not meaningful from the point of view of the design
model from it comes from but it is relevant for a transformation that generates
Java code from that model; a particular generation pattern is used to target
desired persistence mechanism.

UML was born to address primary modeling goals: To have a blueprint of the
system to develop and to abstract the system itself keeping in light only important
parts. We explained that this was becoming an issue, considering the growing
need to have precise models, that are formally linked to implementations. This
starts initiatives, such as MDA, and creates the need for a new major release of
UML specifications that includes the new initiative. Thus, new UML 2
specifications have been created to address two main points:

» Service-oriented architectures
» Model-driven development

Generally speaking, UML 2 specifications has been designed to have much more
precise semantic in the language, to have more expressive power, less
ambiguities, to be much more scalable to support large systems and to improve
the extensibility of language itself.

UML is based on a meta model; UML 2 specifications have strongly changed and
improved this meta model, giving it a more precise definition. This meta model is
defined by using:

» Meta-object facility (MOF), an OMG standard to define meta models that
basically is a subset of UML itself

» Object constraint language (OCL), a standard language to define
constraints

Therefore, we can (informally) say UML is defined by using UML!

For a complete definition of the UML2 specification from a user point of view,
refer to the UML 2.0 Superstructure specification at:

http://www.uml.org/#UML2.0

Chapter 6. Modeling and tools 149

http://www.uml.org/#UML2.0

UML 2 has many improvements and they are about these topics:

v

Complex structures
» Activities

» Interactions

» State machines

For the scope of this book, we want just to emphasize two of these topics:
complex structures and interactions.

Complex structures
Compilex structures are designed in UML by using composite structure diagrams.
As the name suggests these diagrams belong to the structural part of modeling.

This major UML improvement was necessary because of some limitations in
designing structures with previous UML versions: we were able to represent
static structures, using class diagrams, but this was all at a static (or class) level.

The language was not able to represent structures as they appear at an instance
level, we may say at runtime. In other words, we can have different instances of
the same class (or component) playing different roles and we have to be able to
represent them. Furthermore, we have to represent their relations with the
external world.

Structured classes (classes or components) have now an internal structure to
allow them to represent their internal instances and the relation between them; in
other words we represent internal collaborations.

A few very important concepts have been introduced in this area; these are:

» Part—Represents instances belonging to a structured class. They are basic
structural nodes that have one or more interaction points called ports.

» Port—Represents a structural feature of a classifier that defines interaction
between this classifier and the external world.

» Connector—Specifies a link beween or more instances. This link can be an
instance of an association or can derive from any kind of usage of an
instance.

Knowing previous versions of UML, it is easy to understand how these new
concepts are empowering our modeling notation. With a traditional class
diagram, in many cases, it was possible to see just a dependency between two
classes and not how, from a structural point of view, the corresponding objects
were collaborating. Figure 6-6 shows an example.

150 Building SOA Solutions Using the Rational SDP

Structured Classes: Internal Structure

Structured classes may have an internal structure of (structured class)
parts and connectors

Delegation connector j

sendCtrl receiveCtrl

[[

c c
Part
L remote L
LA
remote

sender:Fax receiver:Fax -

FaxCall

Figure 6-6 A composite structure sample

We can easily see how different instances of the Fax class are representing
different roles.

One very important concept is related to ports; a port is a decomposition
element; it is important because it is related to concepts such as decoupling
consumers from providers, it creates a clear separation between an internal
component realization and the external world.

One may think there is a similarity between port and interface. Indeed these two
concept are related; however they are two different concepts: While an interface
is a declarative, abstract representation of a behavior, a port is a real object; it is
bidirectional and it relates to some interface as we can see in Figure 6-7.

Chapter 6. Modeling and tools 151

152

In general, a port can interact in both directions

Provided interface

«interface»
DBserver

readDB (recNo)
writeDB (recNo,d)
notifyOfChange (recNo)

«interface»
DBclient

change (d)

«uses»

Figure 6-7 Relationships between ports and interfaces

In particular, a port receives messages corresponding to the realized interface(s)

<] ~ 77 clientPort

adminPort

Required interface

DataBase

and sends messages corresponding the provided interface(s).

To summarize, ports provide a complete encapsulation of a component from the

external world in both directions.

Interactions

Interactions in UML 1 were represented by sequence or collaboration diagrams

and they were semantically equivalent.

Although they were a useful tool to achieve several task such as to represent use
case scenarios, they were missing some important capabilities such as reuse of

sequences and control flows representation.

UML 2 addresses these issues by defining new interaction elements:

» Interaction occurrence—When the same sequence is re-used across
different contexts, it is possible to define an interaction occurrence to be
reused in each context it is needed.

» Option combined fragment—It is now possible to represent control flows
such as loops, conditions, concurrent flows, and so forth.

Building SOA Solutions Using the Rational SDP

Moreover, these two capabilities can work together and are recursive; thus it is
possible to define a combined fragment that owns some interaction occurrence
and both can be composed by others interaction occurrences and combined
fragments.

We can see an example of this in Figure 6-8.

it | [lrrtom ot

sd ATM-transactiorQ Interaction Occurrence
| dient: | | am | | dbase: |
| insertCard__| | | sd creckin |
f) checkPin [client: | [am | | dbase: |
= ! R | aSKFOPIN_: i
a eepal | e
ref) TSl v H _ result(chk) |
\ 54&"("'_*)_5 :
R ey = U ’ ’
' : ' Earbined(in—line)ﬁagm

Figure 6-8 UML 2 sample sequence diagram

As we can notice, the CheckPin occurrence is reused in this, more general, ATM
transaction interaction. Furthermore we have an alternative fragment that
controls the result of CheckPin and, in the positive case, executes the
DoTransaction interaction occurrence.

We have shown how these new UML 2 capabilities give much more scalability to
the language as it can face very complex project modeling needs.

SOA modeling

Now, we can put things together and define what it means to model SOA
solutions.

Following our thread about software historic evolution, we can say that we are

facing another important step in raising the level of abstraction. Up to yesterday
there were two separated entities in organizations: Business and IT.

Chapter 6. Modeling and tools 153

154

Business was defining business processes, business rules, optimizations,
organizations, and so forth. IT was trying to create software solutions realizing
business needs. However these two entities and points of view were often
diverging, were doing different things, using different languages, understanding
different goals. So we may say there is a gap between them.

SOA creates a direct connection between business and software solutions. It
raises the level of abstraction by identifying business services that are directly
related to business tasks from one side and to software services from the other
side.

Thus we have to model these services. The SOA modeling life cycle is defined by
IBM Service Oriented Modeling and Architecture (SOMA) and is about three
main phases:

» Service identification—This phase has different approaches, such as
top-down, meet-in-the-middle, and bottom-up. The top-down-approach, as
you can easily imagine, starts directly from the business. We have models
representing business processes that are made of business tasks; we begin
here to identify services (business services, definitely). This phase is mainly
related with business models and you can find further information and
samples in Chapter 7, “Business modeling” on page 169.

» Service specification—This phase is about describing a service: what it
offers, what it request, how it is exposed. It also describes dependencies with
other services, service composition, and service messages. The main model
related to this phase is the service model.

A very important aspect related to SOA is, generally speaking, that we are
talking about /oosely coupled business services. This coupling decrease it is
very important to allow reuse of services to adhere to the general SOA
reference architecture. To do this we need models that support this approach;
to reduce coupling it is often related to clearly separate external behavior from
internal realization (or implementation). We usually achieve this result by
seeing services, from the external world, only trough their business interfaces
and this is, generally speaking, what we call a service specification.

Figure 6-9 shows an example of a single service in a service model.

Building SOA Solutions Using the Rational SDP

«servicespecification: «serviceProviders
(5% ICustomerLookup ¥ CustomerLookupProvider
43 getCustomerByPhone () 43 getCustomerByPhone ()
42, getCustomerByName () 42, getCustomerByName ()

«Uses

1 LocalCustomerLookUpProvider

43 getCustomerByPhone ()
3 getCustomerByName ()

Figure 6-9 Service model sample

» Service realization—This phase is about providing a solution for a particular
service. We represent here, how a service is realized. The model related with
this phase is the design model. This model has to be traced back to the
service model, because it represents its realization.

Figure 6-10 shows an example of a service realization in a design model.

Ceraccpedicators | :
S Icustomerookup ajsEn
® gatQustomerByPhons () |

o whacadsn _
i Customer_ookupFacade Bt >: (& CustamerByPhone
A ICushomerLoakug | @ getCusteenarByrhane (]

@ oettustomeByFhone [)

Figure 6-10 A design model sample

Whereas the first example in Figure 6-9 represents the service from a
specification point of view, the example in Figure 6-10 is more related to its
realization.

Importance of architecture

Architecture considers the design of the target from many dimensions,
perspectives, levels, aspects and focus areas. It is driven by the requirements of
the owner of the target architecture. The planners are interested in a broad
overview of the architecture's purpose. This indicates why it is to be constructed,
who is to going to use it, and when it is to be built. The owners supply the
purpose and these other details for planning approval. The owners also have
other requirements to ensure the architecture meets their specific needs.

Chapter 6. Modeling and tools 155

156

Enterprise architecture considers the design and operation of an enterprise also
from many perspectives, aspects and focus areas. The catalysts for enterprise
architecture are strategic business plans defined by senior management. These
address the requirements of the planners and owners of the enterprise.

An enterprise defines its strategic business plans in terms of its mission, vision
and values at the highest level. From these, it can establish policies based on
specific constraints. These policies are qualitative guidelines defining boundaries
of responsibility. They are also used to define the organization structure of the
enterprise, made up of business units and functional areas.

Architectural thinking is multi-dimensional, has many levels, perspectives and
focused aspects; such as information, network, infrastructure, integration,
service and user interface. All these dimensions, levels, perspectives, and
aspects are looked at in an interlocking fashion (Figure 6-11).

A successful architecture forms the platform for strategic advantage. Architecture
serves both technical and organizational purposes.

Building SOA Solutions Using the Rational SDP

«Method»

| Methodology
«Perspective» «Perspective»
=] Technical Asset =] Technical Architecture
«Perspectives «Perspectives
=_ Business Asset =] Business Architecture
«Levels «Levels
= | Industry Asset = | Industry Architecture
Fi «instantiates
Harvest teghnical asse
«Levels B
= | Enterprise Asset I~ «Level»
= | Enterprise Architecture
«Levels T
=] Common Asset
«Levels
T =] Common Architecture
=] "Le_;g: t wlsew «Ljrel»
= 1Spec Technical asset = | Specific Architecture
€ _________
wusen ?
. Business asset L
""""""" =] Project Architecture
«Levels
= | Project Asset
e~ «Aspect» «Aspect»
K | =, User <] Information |—
. Interface
«instantiates
Harvest business asser
«Aspacts «Aspacts
= | Service = | Integration
L | «Aspect» «Aspects
] Infrastructure | — 1 =]Hetwork |

Figure 6-11 Dimensions, levels, perspectives and aspects of architecture

Chapter 6. Modeling and tools 157

158

On the organizational side, the architecture helps in:
» Communicating the high-level design: A number of stakeholders need to

understand the system at a fairly gross level. These include higher-level
managers, many of the cross-functional team (for example, marketing, quality
assurance, and learning products or user documentation), and may include
customers too.

Modeling the system at a high level facilitates communication of the high-level
system design or architecture. The reduction in detail makes it easier to grasp
the assignment of significant system responsibilities to high-level structures.
Moreover, it satisfies the constraint that, though seemingly trivial, has
important implications for communication.

Providing the system context: The developers (and future maintainers)
also have to understand the overall system. In large systems, developers
cannot efficiently understand the details of the entire system. They need a
detailed understanding of the more narrowly-scoped portions of the system
that they work on. But without an understanding of the responsibilities and
interdependencies of the higher-level structures, individual development and
optimization of the substructures tend to result in a sub-optimal system. This
is both from the point of view of system characteristics such as performance,
as well as effort in integration and maintenance.

Work allocation: Where architectures decompose the system into
substructures that are relatively independent, have clear responsibilities, and
communicate with each other through a limited number of well-defined
interfaces, the development work can be partitioned effectively. This allows
parallel development work to proceed in relative independence between
integration points. This is especially important in large projects, or projects
where the teams are geographically dispersed or subcontractors are used.

Moreover, because these units tend to be centers of specialization of function
or service, they also afford opportunities for skill specialization among
developers. This independence and focus makes development more efficient.
The design of the system architecture can be viewed as the dual of designing
the organization architecture. If this duality is ignored and the organization
architecture is not compatible with the system architecture, then it can
influence and degrade the system architecture.

On the technical side, architecture allows us to design better systems and
services:

» Meet system and service requirements and objectives: Both functional

and non-functional requirements can be prioritized as must have versus high
want versus want, where must have identifies properties that the system and
service must have to be acceptable. An architecture allows us to evaluate and
make trade-offs among requirements of differing priority. Though system and

Building SOA Solutions Using the Rational SDP

service qualities (also known as non-functional requirements) can be
compromised later in the development process, many will not be met if not
explicitly taken into account at the architectural level.

» Enable flexible distribution/partitioning of the system and service: A
good architecture enables flexible distribution of the system and service by
allowing the system and its constituent applications and services to be
partitioned among processors in many different ways without having to
redesign the distributable component parts. This requires careful attention to
the distribution potential of components early in the architectural design
process.

» Reduce cost of maintenance and evolution: Architecture can help
minimize the costs of maintaining and evolving a given system and service
over its entire lifetime by anticipating the main kinds of changes that will occur
in the system and service, ensuring that the system's and service’s overall
design facilitates such changes, and localizing as far as possible the effects of
such changes on design documents, code, and other system work products.
This can be achieved by the minimization and control of subsystem and
services interdependencies.

» Increase reuse and integrate with existing or earlier and third-party
software: An architecture may be designed to enable and facilitate the
(re)use of certain existing components, frameworks, class libraries, existing
or earlier, or third-party applications.

Overview of IBM architect tools

Until now we have explained from a conceptual point of view several aspects
related to software development process; a strong emphasis has been put on
modeling and architecture aspects. We introduced modeling discipline and
assets; we explained UML extensibility concepts. Furthermore we have
described how an SOA solution should fit into modeling discipline and how it
relates to architecture.

Now we move on to more practical aspects.

When talking about modeling tools, we have to exploit all the powerful
capabilities of Rational Software Architect and Rational Software Modeler. These
tools are all based on Eclipse.

Chapter 6. Modeling and tools 159

Eclipse

Eclipse has became a very successful open source platform to host software
development tools and (with the advent of rich client platform), generic
applications.

Eclipse was born in 2001: The proliferation of poorly integrated development
tools, methods, formats, repositories and Rational Software Architect, and so on,
created the need of a common infrastructure, even across vendors. The initial
Board of Stewards of was formed in November 2001 and included: IBM, Borland,
MERANT, QNX Software Systems, Rational Software, Red Hat, SuSE,
TogetherSoft, and Webgain. Today, more than 100 companies are members of
this not-for-profit corporation and all majors and most used development
environment are based on this platform.

In particular, for software development tools, Eclipse provides:

» An open, common environment
» A plug-in based architecture designed for scalability and extensibility
» A common meta model

Beside these fundamentals, today Eclipse is a fervent community that hosts 10
major projects and more than 50 subprojects.

Plug-ins

From an architectural point of view, Eclipse is based on the plug-in paradigm. We
may say in Eclipse Everything is a plug-in. Indeed the Eclipse platform core is
just a plug-in manager. Up from this point, any Eclipse capability, component or
tool is realized by a plug-in (or a set of plug-ins). Any plug-in extends the existing
platform and can, in its turn, be extended by other plug-ins.

Trough its descriptor, a plug-in declares its contribution to the platform and
therefore, the way the platform will use it. Indeed most important part of a plug-in
descriptor are: extensions and extension points; the first are the existing points
the plug-in contributes, where as the seconds (optional) represent the points in
which the plug-in can potentially be extended (by other plug-ins). We can
visualize this concept in Figure 6-12.

160 Building SOA Solutions Using the Rational SDP

What is a plug-in?

= plug-in—set of contributions
= Smallest unit of Edlipse functionality
» Big example: HTML editor
» Dedares its pre-requisites
= extension point
Named entity for collecting contributions
= extension —a contribution

= Extenders make contributions - platform O extension
controls and manages the contributions O extension point

plug-in

Figure 6-12 Eclipse plug-in mechanism

The Eclipse architecture has been refined from first releases and today we are at
Version 3.2 of the platform. Many scalability and performance issues have been
faced and solved to allow very powerful tools to be installed and used without
impacting the agility and responsiveness of the platform itself.

For any additional information about Eclipse, refer to the Eclipse official site at:

http://www.eclipse.org/

Rational Software Architect and Rational Software Modeler

Rational Software Architect and Rational Software Modeler include all
capabilities needed by the software architect, the designer, and the developer.
They are part of a larger picture representing the IBM Rational offering for
software development, as we can see in Figure 6-13.

Chapter 6. Modeling and tools 161

http://www.eclipse.org/

162

'1 Analyst H Architect H Developer

Rational

Software Architect Rational
Performance Tester

Rational Rational
Software Application
Modeler Developer Rational

Functional Tester

Eclipse
Web Tools
Platform

Rational

Manual Tester

Figure 6-13 IBM Rational development platform

Rational Software Architect includes:

» Rational Software Modeler—The tool for designers; it offers all UML 2
modeling capabilities, diagrams and MDD features (transformations and
patterns authoring). It is based on some basic Eclipse project such as UML 2
and Eclipse Modeling Framework (EMF).

» Rational Application Developer—The tool for developers; it includes all
development features such as Web development, J2EE development with
EJBs, Web services development, JavaServer™ Faces (JSF) development,
UML visualization, component automated test, and run time test
environments such as WebSphere Application Server.

» Eclipse Web Tools Platform (WTP)—Basic tooling for Web developers; it
includes source editors for HTML, JavaScript™, CSS, JSP™, SQL, XML,
DTD, XSD, and WSDL,; graphical editors for XSD and WSDL; J2EE project
natures, builders, and models and a J2EE navigator; a Web service wizard
and explorer, and WS-I Test Tools; and database access and query tools and
models.

Building SOA Solutions Using the Rational SDP

On top of all this, Rational Software Architect offers other features, such as

transformations and patterns ready to use. In Version 7, we have a set of useful
sample design patterns (including the initial set of patterns document in Design

Patterns: Elements of Reusable Object-Oriented Software?) as shown in the

Pattern Explorer of Software Architect V7 (Figure 6-14).

&

5
5
5
ERE)
5
5
5
5

G

o O R Y

T R

e

=I5 Sample Patterns ~

esign Patterns .
+ Behavioral

25 Chain of Responsibility
:2.7 Command

=2 Interpreter

o Iterator

o5 Mediator

= Memento

i Observer

i State

= Strategy

25 Template Method

=i Visitor

Creational

. Abstract Factory

' Builder

.7 Factory Method

=2 Prototype

=2 Singleton

Structural

v Bridge -
= Composite -
24 Decorator -

5 — < ~

=20 Flyweight ~
7 Proxy ~

/

Abstract Factory

=+ Delegation
«v Directed Assodiation

Implementation

o Interface
=20 Keyword List

Singleton

=i Strategy .

o Adapter “

(&) Facade

- subsystemn

(& Subsystem

1

Figure 6-14 Design patterns available in Software Architect V7

Furthermore these transformations are available:

vVVyVYyVYVYVYYVYY

UML to Java 1.4 and Java 1.5
UML to EJB

Java to UML

UML to C++

C++ to UML

UML to WSDL

UML to XSD

UML to CORBA

2 Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, et al,
Addison-Wesley, 1995, ISBN 0201633612

Chapter 6. Modeling and tools

163

164

Rational Software Architect offers also C++ development, by exploiting a C++
development tool (CDT) from Eclipse; moreover there are proper “architect”
functionality such as architectural analysis features: architect can now analyze
an existing application by using this capability: Rational Software Architect
checks all code for us and discover interesting things such as used patterns,
anti-patterns, architectural rules violated and, by automatically creating
corresponding UML diagrams.

Note: For information about custom patterns and transformation in Rational
Software Architect, refer to “Pattern-based engineering with Rational Software
Architect . on page 545.

UML profile for software services

UML is very generic language, designed for all possible software systems,
applications and solutions. Although it would be possible to represent services
using only UML itself, it is a better idea to use a specific profile designed for
services; this is because you already have SOA elements available to use.
Therefore when we have to represent, analyze, and design an SOA solution (with
IBM Rational tools) we have to use the UML profile for Sofiware Services.

Referring to “SOA modeling” on page 153, we want to point out now that this
profile, has to be used mainly in conjunction with the service identification and
service specification phases of SOMA, but not with the service realization phase.
Therefore, services are identified and specified here, even if this specification is
well detailed, it does not represent a white-box view or realization of services. For
this goal we use a less abstract model called design model.

As any profile does, it extends some existing UML element (we can call them
meta classes) by defining new stereotypes that provide additional semantic and
visual representation on UML meta classes.

In Figure 6-15, we can observe these stereotypes and which meta classes they
extend.

Building SOA Solutions Using the Rational SDP

«matadasss ametadasss
(@ Class —] @ Port
asterentypes “syareolypes asterantypes astorpolypes “sterentype:s
(% Message (% Service Partition {5 Service Provider (3 Service &) Service Gateway
= encoding ; String o glowedsindngs : Sting
o location ; Sting
{5ervice may anly be
{Partitiors may onky wsed on Provider)
rchude Providers
MTEECUMLF L
may orly be uss
{Gateway may oriy be
i feeege) wed on 3 Partition]}
{Specifications may onby ba
used on Service, Gatews)
{Colabaorations may ordy i
rchude Providers}
wstercabypes wstersatypes Starantypos ustarentypan asterootypos
(& Message Agﬂ;hmmt (3 Service Consumer (3 Service Collaboration (3 Service Channel (5 Service Specification
= enceding : Sting 2 bindna - Sting
arnetaciasey ametacisce ametatlasse wmatadasss armatadasse
© Property (3 Classifier (3 Collabaration (& Connector @ Interface

Figure 6-15 UML Profile for Software Services (for Rational Software Architect Version 6)

Note: In Version 6 of the Rational Software Architect, this profile was provided
as a tool add-in (through IBM developerWorks), in Rational Software Architect
Version 7 this profile is provided in-the-box, with the product.

For a complete description of the profile refer to:

http://www-128.1ibm.com/developerworks/rational/library/05/419 soa/

Note that there are few differences between Rational Software Architect
Version 6 and 7 for this profile; some stereotype (such as <<serviceModel>>)
has been added in Rational Software Architect V7.

Although you can refer to the official documentation to verify formal specifications
of the profile, we provide here an introduction to it, by highlighting most
significative stereotypes and their meanings.

Chapter 6. Modeling and tools

165

http://www-128.ibm.com/developerworks/rational/library/05/419_soa/

166

Service

This stereotype represents the endpoint of a service interaction (and this is
defined by a corresponding stereotype). This stereotype extends the UML Port
meta class and as a port, it decouples the external world from an internal service
realization and vice versa. A <<service>> element is typed by some interfaces:
usually there are provided and required interfaces. Provided interfaces are those
offered by the service itself, where as required interfaces are used by the service
(see Figure 6-7 for a port sample). For example, a BankingAccount service can
provide some BankingAccount interface and require some SecureBankingUser
interface.

Service specification

This stereotypes represents a specification of a service. We can view it as what
consumers (clients of that service) expect from that service and what it expects

from them to be able to execute. However notice that a service can have multiple
provided interfaces.

We can notice this stereotype extends the UML Interface meta class and indeed,
it acts as an interface. An interface can be informally defined as a set of operation
declarations, without any implementation on it; it represents only an agreement
between elements that want to realize it and external elements that want use it.
See Figure 6-9 on page 155 for an example.

Service provider

A class or a component stereotyped as <<serviceProvider>> represent an
element that realize one or more service specifications. A service provider
should not expose its internal structure but it has to expose its public ports,
stereotyped as <<service>>, trough which, it realizes a (set of) service
specification.

Message

A <<message>> represents the element that is used to communicate with a
service operation; its definition comes directly from WSDL (Web service
definition language) specifications; thus a message is a container of informations
having a common meaning between consumers and providers of a service. A
message can be composed by other classes (typically from a domain model) and
can be used either as an operation input or output parameter.

We can see an example of a <<message>> in Figure 6-16.

Building SOA Solutions Using the Rational SDP

=] customer F—
«Mmessage» + details — +warranties
£ CustomerList |*— | g custid : String ’,—_;,@
1 * | g phonenum : String | 1 *
[Eg name : String 1

14

0.1 |+ covered_item
g..1.|+home 4

Q Address IE@

1

[Eg street_1 : String + item

[Eg, city : String .
[Eg, state : String
[Eg zip : String |] stockHoldingPosition |

Figure 6-16 Message example

As we can notice from the above figure, the message CustomerList is a (UML)
composition of customers that, on its own, has its structure, associations and so
on.

A message can also have a property stereotyped as <<Message Attachment>>
and this is meaning there is a physical attachment on that message such as a
file, an image so on.

Service partition

The stereotype that extends meta class, class is used as a container of services.
Services can be grouped along several dimensions: for example functional area
they belong, different architectural layers and so on. Notice a partition can only
contain services or other partitions as internal parts.

Service gateway

A service gateway act as a proxy for a target service. a gateway has to be used
in conjunction with a partition. It allows internal partition services to be exposed
to external consumers and at the same time, to avoid all internal services are
exposed to external world. Furthermore a gateway allows to mediate between
services interfaces and protocols by introducing a point of decoupling between a
consumer and a provider. Notice a gateway stereotype can only be added to a
partition and not to a service provider.

Chapter 6. Modeling and tools 167

References

Read The Unified Modeling Language User Guide, by Grady Booch, James
Rumbaugh, Ivar Jacobson, Addison Wesley

Read A Rational approach to model-driven development, by A. W. Brown, S.
lyengar, and S. Johnston, at:

http://www.research.ibm.com/journal/sj/453/brown.html

Visit the IBM Rational UML resource center at:
http://www-306.17bm.com/software/rational/uml/

Visit the Object Management Group UML Web site at:
http://www.uml.org

168 Building SOA Solutions Using the Rational SDP

http://www-306.ibm.com/software/rational/uml/
http://www.uml.org
http://www.research.ibm.com/journal/sj/453/brown.html

Business modeling

This chapter describes the use of business models to provide the basis for
business-relevant SOA solutions to real business problems.

These topics are described and examples are provided, for:

» Inputs to the business modeling discipline

» Business modeling domain work products

» The tasks required to capture the business use cases, business processes
and various other business-related work products and artifacts

» How to use the tools to create these work products and the integrations
between these tools.

© Copyright IBM Corp. 2007. All rights reserved. 169

Introduction

It is an obvious, but often ignored statement that IT systems should support
solutions to business problems. The SOA-led approach aligns IT solutions to
business needs and constraints more directly than traditional techniques. The
service-led approach implicit in any SOA changes the way IT thinks when it looks
to provide automated solutions.

Prior to implementing a solution, the business has to decide what the problem is,
and the business value in solving that problem. This relates back to the wider
problem of business strategy and business alignment. By aligning IT to the
strategic business goals and values, SOA-based solutions can lead to very
focused deliveries from IT.

Many of the tasks described in this chapter run in parallel with the tasks
described in Chapter 8, “Requirements” on page 207. There is a logical
sequence of tasks involving business modeling (for example, understand the
current business) that will precede tasks of the requirements phase (for example,
capture business goals).

Business modeling

170

The purpose of the RUP business modeling discipline is to:

Understand the current business.

Understand areas for improvement and identify what should be improved
Assess the impact of organizational change

Ensure a common understanding of the business and establish a glossary
Maintain business rules

vyvyyvyyvyy

We would also emphasize that we are looking for a solution that meets the
business goals and provides real value to the business. We should understand
and capture the key performance indicators and metrics required to prove that
the goal has been achieved. We emphasize this last point because many
initiatives start without any consideration as to what would be a successful
outcome, and how it could be recognized as a success.

In our development case (see “JK Enterprises development case” on page 114),
we use the following RUP work products to capture these ideas and goals:

Business vision

Business use case model
Business analysis model
Business goals

vVvyyy

Building SOA Solutions Using the Rational SDP

» Business glossary
» Business process model

We show these work products and the relationships between these and other
work products in Figure 7-1.

Business Modeling
w «derive»
«derne» «derive»
______________] oossossoscess
Y‘ Busin Busmegs Business
Bus Business Use . Goal ™ Metric
Vision ,+'Case Model eleriver
derive» e <derives B
Business)
. Analysis Model . . «derive» .
S :
Busine-_v;‘: \\\«der'we» ! R Domgin Business
- usiness
Architecture *-_ Process Model*. \ Model Glossary
Model N “derven ideriver N «derier
A - % 2
Requirements . Analysis & Design
Vision Use Ca Supplementary D -
Mod;e Specifications Service Model

Figure 7-1 The business modeling work products and their relationships

In our JK Enterprises example, we are not starting from scratch. We have
existing systems, existing business process models, there has been work done
on business process optimization. In many cases, we are expanding on work
products that already exist for the system and the enterprise.

Key roles in business modeling

The work products (Figure 7-1) and tasks (Figure 7-3) are performed by different
roles in the project (Figure 7-2).

Chapter 7. Business modeling 171

3

fof
A

Buslneﬁs SN
T Business
Prooess Analyst .. Aurchlteqt

Responsible For Re5p0n5|b,le -EoF Re5p0n5|ble For Resp0n5|b.ie Faor Rﬁzonmblé ForResp‘enmbIe For Responsible For Responmble For Resaﬂnmble For

Busi Busi i
Architecture Mode]

V’Elon Prooe.'.vs Model CaseNDdeI Glossarv
,' Model

II.IlJ

g LI

E
Hi
W

. Bases Parts of
Derwes Gets Spec for Reﬁneswrth - Architecture, - -
Vision From Process From Use Case ‘Bases Parts of L--0m
! ' Model Architecture On
Q (lh'l L/_h'l - - (_“] ,.--""-’- _______ R T
I £~ £~ e SLEEUEELE L Bases Parts of
| . - f Architecture On
System Developer Requirements Software
Analyst - i
Specifier Architect

Figure 7-2 Key roles in the business modeling discipline and the related work products

Typical steps in business modeling

The workflow we use for business modeling tasks is shown in Figure 7-3.

Pusinass Modelhg
—— % N
O N
Identify Business Goals
. tg . and KPIs 3©.
ol Ca q\’)—>
petom o Lg
Functional Area
Analysis WModel To-Be Business Define Automation
Process Requirements
il
£}

Figure 7-3 The business modeling discipline workflow with the key tasks

The typical sequence of steps to create the business model are:

» Understand the current business.

» Start the business vision and the business glossary

Create the as-is business use case model (using Rational Software Architect
and RequisitePro).

» Create the business analysis model in Software Architect.

172 Building SOA Solutions Using the Rational SDP

» Create business process models that correspond to the business use case
realizations created in the as-is model (using WebSphere Business Modeler).

» Extract the business architecture.

» Capture the business vision and goals for the to-be business. Start defining
key performance indicators (KPIs) and metrics against the goals.

» Create the to-be business use case model (it may not have changed).

» Create the business analysis model based on the to-be business use case
model.

» Create the business process models of the to-be business use case
realizations.

» Update the business architecture if required.

Inputs to the business modeling discipline

The business modeling discipline is where our SOA work starts. In our example,
we made use of some work that is outside the scope of this IBM Redbooks
publication. JK Enterprises has already assessed the business, we show how to
document existing (as-is) processes and future business processes (to-be) but
we assume we have performed business process optimization. We have a good
idea of our goals, and the way we might measure our goals have been achieved.

This chapter demonstrates how to capture this existing information in the IBM
tools but we do not describe in detail how to perform these tasks. We have a
defined development case for our development process.

In addition, if we have a business that has a mature SOA approach in place, we
would have additional inputs to our project. These include domain models,
process models, and service models.

A word about tooling

We refer to two IBM RequisitePro projects in this chapter and in Chapter 8,
“Requirements” on page 207.

» The first project is for enterprise-level information. This should be relatively
stable information and contains the business glossary, business use cases
and service policies. All your SOA (and other) projects refer to and contribute
to this RequisitePro project.

This RequisitePro project is named SOA SDP Redbook Enterprise Content.

Chapter 7. Business modeling 173

» The second RequisitePro project contains information about our particular
piece of work described in our case study. This includes business goals, KPls,
metrics, and other information, which are the basis for some of the design and
implementation decisions later on in this book.

This RequisitePro project is named SOA SDP Redbook Project Content.

The rationale for having two separate projects, and using the cross-project
traceability in RequisitePro is simple: governance. Access rights to information
including read-only and even visibility of information is better controlled by
splitting this information into different RequisitePro projects.

If governance is less of a concern in your organization in this context, consider
combining the content of these RequisitePro projects. Be aware that good
governance is critical to the success of any long-term move to effective
SOA-based solutions.

Governance is just one advantage of RequisitePro. There are also the benefits of
standardization of templates, the ability to capture and manage information in
one central repository, and complete and auditable version histories.

We have created some new RequisitePro document templates for this book, and
modified others. Instructions for how to install these templates are outlined in
“Loading the RequisitePro projects” on page 577.

We also have various UML and business process models that we refer to and
update during this chapter. This includes a business use case model and a
domain model held in Rational Software Architect (or Software Modeler) and a
business process model held in WebSphere Business Modeler.

Now we discuss the different work products and artifacts from RUP in more
detail.

Business architecture

174

The business architecture provides an overview of the significant parts of the
business in terms of its products and services, processes, organizational
structure, and locations. It is used to capture key features of a business, and in
term influences application architecture, services, and other more technical
elements of the business.

The business architecture is presented in a business architecture document. This
document is typically assembled from sources of information such as business
process models, organization charts, market reports, and others.

Building SOA Solutions Using the Rational SDP

The following view of the business can be found in a business architecture
document:

» Market view

Business process view
Organization view
Human resources view
Domain view
Geographic view
Communication view

vVvyvyvyYYyvyy

Not all views may be relevant to your business. For example, no geographic view
is required if we conduct our business from a single location. At JK Enterprises,
we have already been told that we have many different locations in six countries
(see “An overview of JK Enterprises” on page 18).

We have omitted the business architecture document in our JK Enterprises
example.

Component business modeling

IBM, specifically IBM Global Business Services, has developed a technique
called component business modeling (CBM) to help its customers understand
their business, the capabilities of the business and identify capability gaps. They
break the business down into relatively independent areas to look for potential
opportunities for improvements and innovation. The output of this work would be
an understanding of how improvement in the certain areas of the business would
have maximum positive effect on the business.

A selection of information about CBM can be found at:
http://www.haifa.ibm.com/projects/software/chm/index.html

http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/al017906?cn
txt=a1005262

http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/al10189207cn
txt=a1005266

Looking at the business from a business strategy perspective gives us a map of
the business in terms of domains (for example, Servicing and Sales), levels of
responsibility (for example, Directing), and functional areas of the business (for
example: Sales Management or Customer Service). In CBM these items are
called Business Competencies, Accountability Level, and Business Components
respectively. CBM has three accountability levels: Directing, Controlling, and
Executing (Figure 7-4).

Chapter 7. Business modeling 175

http://www.haifa.ibm.com/projects/software/cbm/index.html
http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/a1017906?cntxt=a1005262
http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/a1018920?cntxt=a1005266

Development Management Accounting
wresponsidityLevel e —r— S e functionliress fuctionallress i e
Diracting Business Planning Sector Planning Acttunt Planning Fubfilment Purtfolic Planning
Planning
wresponsibilityLevek
«funclionalliness functionalines= «funclionalfiress Tunclionalir=ss wfunctionalliress
9 Busine=s Unit Tracking Sector Management Relationship Fulfillment (Compliance
Management Monitoring
«funclionalfiress
Staff Appraisals stutionaliness - prr—T—
Froduct e Rectneillation
wresponsibilityLevel =
- «funclionaliness wfunctionalirass unctionaliress e funch
Aitturt Administrat Pr Credit Produtt Customer Aecounts
Fulfillment
afunctionalirass
o ini . Tunct
Marketing Campaigres
] .dhml- afunclionaliress
Purchasing Dhvcuarm it «functionalirass
Managemeni General Ledger
«functionaliress
Branch/ Shire
Operations

Figure 7-4 Component Business Model™ map for JK Enterprises

176

We undertake an assessment of these business components, looking at which
components are potential targets for improvement. We apply criteria such as
costs, revenue potential, strategic fit, alignment between business processes and
applications, depending on the current state of the business and its goals. These
criteria are not predefined, but tend to be defined by what is being assessed.

The result of the assessment is a set of business components that are targets for
improvement. In the JK Enterprises example, the Sales Management business
component is being scoped for improvement.

In the next section in this chapter we drill down into this Sales Management
business component while performing the Functional Area Analysis task. This is
to provide inputs into the business process model.

In the JK Enterprises example, we assume that this process of understanding
which areas of the business need improving and what value it would add to the
business have already been established.

Building SOA Solutions Using the Rational SDP

Functional area analysis

This task is aimed at producing a refined partitioning of the business to create
business systems. It is a key step in working out what IT sub-systems might be
required in our SOA-based solution.

The initial partitioning would have been derived from previous work (for example,
using Component Business Modeling as described earlier in this chapter). Then
we break down each functional area into smaller components. Each functional
area has specific responsibilities, and collaborates with other functional areas.
Ultimately, each area of functionality is mapped to a business system. A business
system then supplies services to other business systems. Each business system
is then mapped to an IT subsystem. These IT subsystems can be the systems
described by system use cases later on in the chapter on requirements.

In our JK Enterprises example, we were told that the Servicing and Sales domain
requires our attention.

We also investigate the following initial business components in the Relationship
Management domain:

» Relationship management
» Account planning

Customer Services is part of the Servicing and Sales domain. This is a business
component. One of the responsibilities of this business component is to handle
queries from customers about the status of their account applications. We have
been told that this is an area where improvements can be made, as currently
customers cannot get the status of their account application.

Business vision

The business vision captures the high-level objectives of the business modeling
work. In our case, we have created a business vision aimed at the managers of
the business, the funding authority, the workers in the organization and the
developers of the services so they understand the context and the rationale of
the project.

In our JK Enterprises example, the completed business vision work product
contains positioning, an overview of the stakeholders, the key needs of the
stakeholders and the objectives of the business modeling activities. This content
is built up over time during the project.

Chapter 7. Business modeling 177

The positioning includes the business opportunity: Improvements in sales and
customer service through increased speed and responsiveness, enhanced
productivity through reduction in total cost of ownership (TCO), and reduction of
regulatory non-compliance.

The business vision material is specific to this project. We may also have a
business vision for the organization.

To create a business vision document, we use Rational RequisitePro. We have a
template for the project information called JK Enterprises Project project. To use
this template, open RequisitePro and select the template from the list of available
templates (Figure 7-5). This creates a blank project with predefined packages,
requirement types and document types.

Create Project .
Rational® =

Blank Business Composite Create from JK Erterprises
Modeling V5 Template Baseline Erterprise p...
LN
10 10
A0 A
Traditional UseCase

Template Template

No documentation available.

|v Details>>

ok | Cance | Help |

Figure 7-5 Creating a RequisitePro project from the template

Now, select the Business Vision folder and create a new business vision
document by selecting New — Document (Figure 7-6).

=|-¢=. SOA SDP Redbook Project Content
{"7] 00 Business Vision

+.{77 01 Business Goals| NeW ¥ Padage...

i Document...
+].-{77] 02 Metrics and Key Properties... :
+-[17] 03 Business Rules Refresh View. ..
+--{77 04 Business Tasks Requirement...
+.-{77] Traceability Delete

Figure 7-6 Create a Business Vision document

178 Building SOA Solutions Using the Rational SDP

We select the predefined business vision template provided (Figure 7-7).

Document Properties
General Revision
Name: |Business ision
Description: Business Vision documert to scope the business
modeling effort
Package: |DD Business Vision Browse...
Filename: |Business Vision v Show Tags
Directory: |C:"-AJK‘-.Rational"-.SOA"-.SOA SDP Resider Browse...
Document
Type: | j

Business Strategy
— Business Use Case -
Business Vision (Business Modeling)
Glossary

Requirements Management Plan —

Figure 7-7 Select the Business Vision (Business Modeling) document type

This allows us to encourage the use of standard templates and formats for
documentation across multiple projects. As we have potentially many different
parts of the organization working on SOA-based solutions, this consistency is
important.

Now we can create the business vision document based on the information
provided in the case study chapter. We create or mark up the requirements by
entering the text in the document, then highlighting the text and selecting
RequisitePro — Requirement — New Requirement or use the shortcut button on
the Microsoft Word toolbar (Figure 7-8).

Chapter 7. Business modeling 179

180

@ Business Vision.BMVIS - Microsoft Word

File Edit View Insert Format Tools Table | RequisitePro | Window Help
DeEd®m &Y & BE@E q Deament '

Reguirement 3

pE@@Oua fne am |

- @ RequisitePro Help
Busirq Tips for Using Word

[List here the objectives of the business modeling 2f)
business objectives:

Create new requirement

s Timeliness of operations

How long does it take for the business to p
» Cost of doing business

How much does it cost to provide each ser|

s Quality of business operations

[

&
B

il
2
iz

|

4 Show RequisitePro Explorer ’New Wizard...
B -

Select in Explorer
Properties...
Annotate Change. ..
Eind...

Go To...
Discussions...

Trace To...

Trace From...

Cut

Copy

Paste

Delete - Unmark
Block Delete - Unmark
Delete - Remoye
Rose

XDE

e categd

Commit requirement to database

Figure 7-8 create a requirement in RequisitePro

After entering values for any attributes (Figure 7-9)', we can save the document
by clicking the RequisitePro Save icon, which commits the text and its associated

attributes to the RequisitePro database.

Requirement Properties: GOALpending2 m
General Revision Atiputes | Trmcesbiity | Higrerchy | Discussions
— Attributes
T [Obiective ~] j
Priority: fLow =l
Status: |Proposed =]
Stability: |Low _:J
Owner: | =l
[ok | Cancel | Hep |

Figure 7-9 Editing attributes for a requirement

1 We discuss the use of attributes on requirements in more detail in the chapter on Requirements
Management. Attributes on requirements are additional items of information that relate to that

requirement, for example, the priority of the requirement.

Building SOA Solutions Using the Rational SDP

We capture the following information in the business vision document:

» Business goals

» Business opportunities

» Metrics

» Key performance indicators

These items are captured because they provide both input to other stages in
development, and they provide the proof we need to show that we really have
solved the business problem. We discuss this traceability throughout this book.

Business glossary

The business glossary is the set of common business terms and their definitions.
We create a business glossary for our example, you may find your business has
a glossary already. Common sources of the business glossary include:

» Industry-standards such as Enhanced Telecoms Operations Map (eTOM) by
Telemanagement Forum (www.tmforum.org)

» Business models such as the model included in IBM Information Framework
(IFW) for banking organizations?

» Work from previous projects
» Enterprise or other logical data models

Regardless of the source, we capture the term, and definitions in the following
format:

» Name of term
» Definition of term including any equivalent terms used in the business/

We capture the information in RequisitePro, because this not only enables us to
enter the information quickly and easily, but it also provides a full version history
and easy access by all interested parties. In this case we enter the terms directly
into the RequisitePro database. To enter a requirement into the database directly,
open or create an attribute view (Figure 7-10):

2 IFW includes more than just a business model. It provides comprehensive service models and data
models for any banking organization. For more details on the IBM Integration Framework models
for the financial services industry refer to:

http://www-03.ibm.com/industries/financialservices/doc/content/solution/391981303.html

Chapter 7. Business modeling 181

http://www-03.ibm.com/industries/financialservices/doc/content/solution/391981303.html

182

&= Rational RequisitePro - SOA SDP Redbook Enterprise Content - [TERM: All Glossary Terms]

[File Edit View Requirement Traceability Tools Window Help

n|z|d &g Qluale w=ly =2 EB0|Ee

== SOA SDP Redbook Enterprise Content J Requirements:
=I5 00 Glossary
] Al Glossary Tems TERM3: Normal Load
Eil TERM3: Normal Load Mormal load on the system is 20 concument users running a nomal mix of transactions|
[£1] TERM4: Heavy Load the test plan
+--{77 01 Business Use Cases TERM4: Heavy Load
(7] 02 Service Policies Heavy load is defined as 500 concurment users running a nomal mix of transactions 3|
#)- {1 Traceabilty <Click here to create a requirement >)
This view displays all glossary terms.

TERM3: Nomal Load
Mormal load on the system is 20 concument users running a nomal mix of transactions as d

Feady

2 requirements

Figure 7-10 Open a View in RequisitePro and click to enter the new glossary term

Click <Click here to create a requirement> and enter the term directly

(Figure 7-11).

&= Rational RequisitePro - SOA SDP Redbook Enterprise Content - [TERM: All Glossary Terms]

[File Edit View Requirement Traceability Tools Window Help

n|z|d &g Qluale w=ly =2 EB0|Ee

== SOA SDP Redbook Enterprise Content J Requirements:
=5 00 Glossary
7] Al Glossary Tems TERM3: Normal Load
[£1] TERM3: Normal Load MNomal load on the system is 20 concument users running a nomal mix of transactions|
[£1] TERM4: Heavy Load the test plan
+--{77 01 Business Use Cases TERM4: Heavy Load
4. {7 02 Service Policies Heavy load is defined as 500 concunment users running a nomal mix of transactions
+.-{77] Traceability E=iian
TERMpending
Name: ||
Texd:
This view displays all glossary terms.
TERMpending:

Feady

2 requirements

Figure 7-11 Entering glossary terms into RequisitePro

We can link these terms to other elements held in RequisitePro (for example,
other text), Rational Software Modeler, and Rational Software Architect.

Building SOA Solutions Using the Rational SDP

The main purpose of having these business glossary terms in RequisitePro is to
have a central repository of information that is versioned appropriately; we are
not using all the capabilities of RequisitePro for this part of the business
modeling effort. We can link the glossary to elements to domain models in
Rational Software Architect/Modeler®.

We have a template for the business glossary in our RequisitePro project. If you
want to create a glossary from scratch, you select File - New — Document. In
our case, we can open the prepopulated (already populated) glossary. The
glossary is stored in the Glossary folder and is named JK Enterprises Glossary
of Terms (Figure 7-12). Double-click the document to open it*,

i~ Rational RequisitePro - SOA SDP Redbo(
Eﬂ Edit View Requirement Traceability Tol

D= & QK[s] 7]

=|--¢=. SOA SDP Redbook Enterprise Content
=25 00 Glossary
@ JK Enterprises Glossary of Terms
B All Glossary Tems
[£1 TERM3: Normal Load
[£1] TERM4: Heavy Load
acy

Figure 7-12 Location of the business glossary in the RequisitePro enterprise-level project

To see how a term has changed over time, right-click any of the terms in the
Requirements Explorer and select Properties in the pop-up menu.

In the Requirements Properties dialog (Figure 7-13):

» Select the Revisiontab and you can see the current version of the term, when
it was lasted edited by whom, and what the change was.

» Click History to see the full history of all the changes made since the entry
was created. Note that even if we change the term and change it back again,
all the changes are recorded®.

Every element stored in the RequisitePro database has a complete revision
history.

3 We may also link to enterprise data models in Rational Data Architect or business items in
WebSphere Business Modeler.

4 Itis not necessary to use a document with the glossary terms, They can be stored directly in the
RequisitePro database if required.

5 Be careful. Any change committed to the RequisitePro database and the change is recorded. A
user cannot remove any entry in the list. We have had customers call the IBM technical support
team and beg for entries to be removed without success!

Chapter 7. Business modeling 183

General Revision Adtributes Traceability] Higrarchy] Discussions
Last saved
Revision: 1.0001 Label:
Date: 12/10/2006 Time: 2251
Author: ajk
Chang_e_ MAME: Heavy Load - Momal Load.
Description: Requirement Text Changed.
REQTEXT: Mommal load on the system is 20 concument users
runining a normal mix of transactions as determined in the test plan
History...
Revision History
Revisions
0K Revision # Version Label Date Time User
1.0001 12/10/2006 22:51 ajlc
1.0000 12/10/2006 22:45 ajlc

Change description:

MAME: Heavy Load - Momal Load.
Requirement Text Changed.

Requirement text:

Mormal load on the system is 20 concument users running a nomal mix of transactions as
determined in the test plan

Print Close Help
| | |

Figure 7-13 Revision history of one the terms in the glossary

At this point we may be asked how people who do not have access to
RequisitePro (using the native RequisitePro client or the Web client) can see this
information. RequisitePro can produce CSV or Word-format documents based
on the views. Alternatively, we use other reporting tools such as IBM Rational
SoDA to produce more complex reports that span tools and work products.

Business use cases

184

Our starting point for thinking about business processes is from the view of the
world in which we operate. Business use cases modeling is a technique that is
used to describe the business from an external viewpoint. More formally, a
business use case is ...a sequence of actions that a business performs that
yields an observable result of value to a particular business actor, or that shows
how the business responds to a business event, to yield a business benefit
[RUP V7.0].

Building SOA Solutions Using the Rational SDP

The definition perhaps requires some explanation:

» “..asequence of actions...” means there is a dialogue between the outside
world and the business; it has an order or sequence and it is not a one-sided
conversation.

» “.yields an observable result of value...” means there must be an outcome,
and it must be visible and of tangible benefit.

» “..to a particular business actor...” means that there is some outside party
(the business actor).

» “..or shows how the business responds to a business event, to yield a result
of business benefit..” means that as an alternative, the business may be the
one deriving the benefit.

The business use case forms the top level view of the business. In practice, this
technique is an easy and quick way to get a high level understanding of the
business: with whom the business interacts and what the business.

Business actor

To expand on the description of a business actor: It is someone or something
outside the business that interacts with the business in some way. Examples
include customer, regulator, supplier, and shareholder. It is a role, in the sense
that the same external party may take on many roles with respect to the
organization or part of the organization under scrutiny. For example, you may
have a customer who also supplies you (the business) with goods, so your
customer is also your supplier: One party, two roles.

When we name the business actor, we try and refer to the role, not the actual
external party. For example, if we have IBM as a supplier of software tools, we
would call the role Sofiware Tools Supplier and not IBM. This means that our
business use case and business actor is still relevant if we change the supplier at
some point in the future.

Business process

Business process analysts typically capture the business process using tasks and
sub-tasks, with flows and decision points. However, these are really what RUP
calls business use case realizations (see “Business use case realization” on
page 188): How the business operates to satisfy its customers and other external
parties.

We think of the business use cases as being the precursor to any business
process modeling with workflows and tasks. This allows us to focus on what the
business does and how it interacts with the outside world rather than how the
process operates inside the business. We show this mapping between a
business process and a business use case realization in Figure 7-14.

Chapter 7. Business modeling 185

186

Business Use Case

=
equivalent
Business process

Business Use Case Realisation

Figure 7-14 Business process to business use case mapping

Practically, we are describing a top-level6 business process where we recognize
that the business has to interact with the outside world (its customers, suppliers,
regulatory bodies, and shareholders) and those interactions should deliver some
value to the outside world. If there is no value delivered, the processes must be in
support of other processes that add value.

The value of using business use cases is that they form a simple expression of
the key abstract business processes.

Our business use case for our JK Enterprises example is represented as a UML
diagram that shows the outside party (Customer) and what the business is doing
for them (setting up an account (Figure 7-15).

....... customer -account setu

1 1

Customer Acoount Setup

Figure 7-15 JK Enterprises key business use case for Account Setup

The diagram in Figure 7-15 is a convenient way of summarizing the situation, but
the real value of a business use case is creating and use the business use case
specification. This specification contains a textual description of how the outside

6 Also known as a level one business process.

Building SOA Solutions Using the Rational SDP

world and the business collaborate to complete the process. Internal workings of
the business are not documented here (they go in the business use case
realization or the business process model), only the external interactions. The
emphasis of the specification is on the order in which the interactions take place,
as well as with whom the business interacts for this particular process.

The specification should contain the following information:

» A brief summary of what the business use case is all about

» Any relevant performance goals and what measures are required

» The ordered steps describing the interaction between the outside world and
the business.

» Any exceptions

» Any non-functional requirements relevant to this business use case

» Any risks

» The process owner

You can create a business use case in RequisitePro using a standard template

(similar to the outline above). Select New — Document and select Business Use
Case template as shown in Figure 7-16.

Document Properties
General Revision
Name: |Ac:c:0unt Setup

Description: ‘

Package: |DE Business Use Cases (project) Browse...

Filename: |Ac:c:0unt Setup v Show Tags

Directory: |C:"-AJK‘-.Rational"-.SOA"-.SOA SDP Resider Browse. .. |

%D.,,C:;mem {Business Use Case i~ I
QK | Cancel | Help |

Figure 7-16 Creating a business use case document in RequisitePro

Refining the business use case

As previously noted, the business use case is typically a top level business
process. This is also known as a level one business process. We may have to
refine this business use case into a set of lower-level business use cases.
However, this refinement should be done with care. It is potentially dangerous to
split the business use cases into smaller parts as the temptation is to split the

Chapter 7. Business modeling 187

business use case into too many pieces. On the other hand, a very high level
business use case is difficult to translate in a set of activities in the business
process model. Refining the business use case into a set of lower level business
use cases should only be done if we have a long running business process, more
than one actor or specialization of the actors, and if and only if there is true value
delivered to a business actor at these lower levels.

In our example. we do have a long running process but any refinement delivers
little or no value to the actor involved (Customer) and there are no other actors
involved. Delivering value only to the business itself is not normally a good
reason to refine the use case. The business is not a business actor in its own
business process.

Business use case realization

A business use case realization describes how the resources, business items and
tasks are combined to deliver the value described in the business use case. The
business use case realization is held in the business analysis model in Rational
Software Modeler or Software Architect.

The operations invoked by the workers on the systems form candidate services
in the service model later on.

There are other routes to deriving services from the business processes, tasks,
and roles, and this is described in the service identification chapter. We do not
use the business use case realization for this purpose in our JK Enterprises
example.

Business rules

188

A business rule is ...a declaration of policy or a condition that must be satisfied
[RUP]. Business rules are either invariant (they always apply) or merely a
constraint (they apply if certain conditions apply).

We can capture business rules in the form of UML elements in a UML model, text
in RequisitePro, or as part of the business process model. In our JK Enterprises
example, we capture some rules in RequisitePro. We also have some conditions
in our business process model in WebSphere Business Modeler.

Sample business rule we use in the JK Enterprises example are:

» We accept an account application for < 5000 from any customer.
» The Application Date must precede the Loan Date.

Building SOA Solutions Using the Rational SDP

Business rules are used to create decision branches in workflows, and as a
source of business logic for service operation implementations. It is considered
best practice to separate the rule, or at least the values of its variables from any
hard-coded routines.”

Business process model

The business process model contains the details of the business process. It
captures the activities tasks and subtasks, the flow of data, the roles or systems
performing the tasks and other information about the business. Tooling such as
WebSphere Business Modeler enables us to capture this information, and run
simulations to explore the effects of changing parameters, such as costs,
durations, number of workers, and other items.

We create two business process models: The as-is model (how the business
works today) and the to-be model (how we want to run the business in the
future).

The to-be business process model is created by examining the current business
processes. We ask questions such as “how is this done today” and document the
answers in our business process model in WebSphere Business Modeler®. We
want to capture the activities, the roles and the information flowing around the
business.

We identify the activities in the organization. In our JK Enterprises example. we
would capture how a customer applies for an account, how customers place
orders, how orders are processed and delivered. There are represented as tasks
in WebSphere Business Modeler.

We then associate the activities with different roles from different parts of the
organization. In JK Enterprises, we have roles such as Account Manager and
Account Coordinator. We have organizational areas such as Sales and Customer
Service.

We want to look at the information that needs to pass around the organization
and add to the business process model. Items such as account details, credit
reports and rejection messages are all kinds of information we should capture.

7 There are many horror stories of companies hard coding data such as tax rates into applications
that would be better separated out as a business rule with configurable data values.

8 In this chapter we show WebSphere Business Modeler as a standalone application. We can also
run Business Modeler in the same Eclipse shell as other IBM products such as Rational Software
Architect among others. This requires we are running the appropriate versions of these products.
As we wrote this book, we used the latest release of Rational Software Architect (V7) and the
current release of WebSphere Business Modeler (V6.0.1 and V6.0.2) that cannot be used in the
same Eclipse shell.

Chapter 7. Business modeling 189

Working with IBM WebSphere Business Modeler

To create a new business process model launch IBM WebSphere Business
Modeler® and create a new workspace. This workspace is a file system directory
that holds our business process models for the JK Enterprises example

(Figure 7-17).

WebSphere Business Modeler

WebSphere Business Modeler stores your work in a directory called a workspace. You can change the workspace
each time you start the application. Specify the directory to use for this session:

lc:\Workspaces\Modeler60sg247356 Browse...
™ Use this as the default workspace, and do not show this dialog box again.
Show Details oK | Cancel |

Figure 7-17 Opening Business Modeler and creating a workspace

By default, a Quickstart wizard allows you to create a business process model
with a process catalog or folder, and a default process (Figure 7-18).

For example, we enter JK Enterprises Account Opening as the project name
and Account Opening as the process name.

9 This chapter provides basic guidance about how to use WebSphere Business Modeler. For more
details, refer to the publication Business Process Management: Modeling through Monitoring Using
WebSphere V6 Products, SG24-7148.

190 Building SOA Solutions Using the Rational SDP

@

O vieame X @ %
. Start your model by specifying a project name, a process catalog name,
BUS!“BSS Modeief and a name for the process to create in the catalog.
Specify the process, process catalog, and project names and then dlick Finish.

Proiect name:

[JK Enterprises Account Opening

Process catalog name:

Processes

Process name:
"

r/ ;: [Account Opening

Always show this wizard on startup

Launch Help

Next > | Finish | Cancel

Figure 7-18 WebSphere Business Modeler Quickstart wizard

Initial project

We complete the information in the wizard and this creates the initial (blank)

process model (Figure 7-19).

Chapter 7. Business modeling

191

&P Business Modeling - Account Opening - IBM WebSphere Business Modeler Advanced Version 6.0.1

File Edit View Mavigate Search Project Modeling Run Window Help
-He @8- gce |BEO|Q- |+ (=6

%7 Account Opening 52

® | @ -|wn ¥ E &

81| E welcome 23

s
+Elements e
53
AES

-

 Connections

B

 Annotation

L]

’

[l ok
o=

=

i [< |
Diagram | Spedification | Visual Attributes | Page Layout
E:E:Ath’ibuhes - Account Opening &2 Simulation Control Panel | Errors (Filter matched 2 of 2 items)

Cost and Revenue Duration Inputs Qutputs QOrganizations

Classifier

¥ General information
This section provides general information about this process.
Name

Description

B®
A 3)
== N
o
» - <]

g Bus

. o

What'g
= Discovg

=1

Overvig
Find ou
Busine
about

featureg

Tutorig
Learn h
busines|

Samply
Review

Migrat
Migate

Hints 4
Learn ti
technig

Troubl

Suppol
Acg)epss

Figure 7-19 New business process model

Four-pane screen layout

There are different ways to arrange the screen layout in Business Modeler. Click
the Apply 4-pane layouticon T to see the Project Tree and an Outline overview
of the model under construction (Figure 7-20).

We also closed the Welcome tab on the right-hand side to get more drawing
space. The Errors (2 of 2 items) view is reporting errors because we have not
connected the default Start and Stop nodes to anything. We ignore these errors

for the moment.

192 Building SOA Solutions Using the Rational SDP

All the elements we can add to the process flow diagram are available on the
Palette in the middle of the four-pane view in Business Modeler.

&> Business Modeling - Account Opening - IBM WebSphere Business Modeler Advanced Version 6.0.1

File Edit View Mavigate Search Project Modeling Run Window Help

@ X | & <[o0% =]Q @ PN === A
L=
2. Project Tree 53 F B % & =0 %7 Account Opening 52

+-lzf: K Enterprises Account Opening

REEEEEEEE
. .
e\ L
Palette : . —
* +Elements 2
. .
. .
L } WS-
. .
+Elements] % "
V. : .
» vConnections o
53] -
- - | B e ||
.
< | [k <_" i
[on | [y ! wAnnotaton °
Sl LR . .
e .
= [[
0||e } 8 ;
) g
" B R EEEERBR ¢ |
+ Connections L (<
Diagram | Spedification | Visual Attributes | Page Layout
L =
@:Ath’ibuhes - Account Opening &2 Simulation Control Panel | Errors (Filter matched 2 of 2 items)
= . General Costand R Durati Inputs O ts O izati Classifi
Bz outine 3 <+ Annotation = =0 ost and Revenue uration npu utpu rganizations assifier
= General information
e This section provides general information about this process.
Name
Description

Figure 7-20 Business Modeler in 4-pane view and Palette

Adding elements to the process

Add elements to the process flow by selecting the item in the Palette and clicking
on the drawing surface. The property of the element appears in the Attributes
view in at the bottom of Modeler. You can edit the name of the task and add other
details here (Figure 7-21).

Chapter 7. Business modeling 193

194

@::Ath’ibuhes -Task &4 Simulation Control Panel | Errors (Filter matched 2 of 2 items)

General Cost and Revenue Duration Inputs Qutputs Resources Organizations Classifier

General information
This section provides general information about this task.
Name
[Task |

Description

Figure 7-21 Attributes view

Adding connections

Use the Connections section of the Palette to grab a connector. Connect the
tasks by clicking on the source node and then click again on the destination node
(Figure 7-22). The notation assumes that the source task is the precursor of the
destination task.

& —

Task

Figure 7-22 Drawing a connector between two tasks

Click the source task and click again on the destination task. Note that
Figure 7-22 does not show the cursor (a US-style electrical plug). The cursor
shows a No entry sign until you move across a suitable target element.

Roles, resources, and business items
Roles, resources, and business items are defined in the Project Tree:

» A role or resource represents who or what performs a task. In our JK
Enterprises example, we have an Account Coordinator as a role in the
business. Roles are performed by humans, where as resources are
machines, tools, computers, and so forth.

Building SOA Solutions Using the Rational SDP

» A business item is information that is passed around the business. In JK
Enterprises, we have the customer’s account application as one of the
business items.

You create an item in the Project Tree select a folder (Business items or
Resources) and New — <item to be created>. This menu is context sensitive, so
when we select Business items we can create types of business items. Select
Resources and we can create a role or a resource (Figure 7-23).

2 —+,
. Project Tree 53 H 3 s 3

=Ilzf: JK Enterprises Account Opening
= Cht

<@+ Business item

f§ Processes
3,‘0 Account Opening

l'é, Fesources
i Account Coordinator L~ Role
(@ oroameanone

L& Classifiers
+-LiZ] Reports
[, Queries

£

Figure 7-23 Business items and resources in the Project Tree

A role or resource is usually dragged on to a task to indicate the task is
performed by that role resource. A business item is usually dragged on to a
connector to indicate information flow.

Figure 7-24 shows the expansion of the Account Verification process, which is

the focus of our JK Enterprises example. It also highlights some of the modeling
elements we have discussed, as well as some new items.

Business item
Role or resource
[== Customer Application

Roles: Eligibility System

Roles: Account
Coordinstor . & Cust
Determine |= Customer Application (= Customer Application
applicant Initial Reguest credit 75.0% Yes
eligibility Application report?
Review
(= Cust]
Decision []
Task 25.0% No

Outcome

Figure 7-24 Some of the Account Verification tasks

Chapter 7. Business modeling 195

The diagram shows some of the account verification tasks:
» Recall that time runs from left to right.

» The large blocks such as Determine applicant eligibility represent the tasks
or sub-tasks.

» Above the task block is the resource or role that is responsible for the tasks
(for example, Account Coordinator performs the task Initial Application
Review).

» The arrows represent the flow of information such as the Customer
Application between tasks.

» The item that flows between tasks is called a business item.

» The diamond Request credit report? represents a decision with a branch.
Note we have assigned percentage probability of the outcomes. These
percentages are used when we run a simulation on this model.

There is one other important modeling element relevant to building SOA-based
solutions. In addition to a task or sub-task, we can model an external service
directly in our model. This is useful when we know that we intend to use an
external service in our process flow. Strictly speaking, this service modeling
element is not intended to model an internal service.

Process simulation

Once we have captured the activities, roles and information, we can add the
costs and durations to the tasks in the model to simulate the business process
and gather meaningful data, such as overall costs and duration. WebSphere
Business Modeler allows us to run simulations showing the costs of running a
process with a certain number of resources and with a certain input load, and
then contrast this to a different usage profile.

The simulations are particularly useful to validate the as-is model against what is
really happening in the business. Wild variations in the model simulations from
real data obtained in the business is an indication that either the model is wrong,
or the data captured by the business today is inaccurate. If a business has no
valid baseline with which it can compare any future changes, it becomes very
difficult to quantify any improvements.

It is also useful to build up a list of key performance indicators (KPIs) and metrics
that can used as to compare the as-is and to-be processes. KPls and metrics are
discussed later in this chapter.

196 Building SOA Solutions Using the Rational SDP

We can repeat these steps of building a business process model but this time
modeling the to-be process. By simulating this new process, we can then get an
indication of the metrics for the new and hopefully improved, process. We can
see if our improvements meet our business goals (described later in this
chapter).

Account Opening example

Here is a high-level to-be process model that we construct for our JK Enterprises
example (Figure 7-25).

®—

@ @ 01-Account
01-Account 01-Account Verification @
Sales #| Application »| (TOEE) 01-Account
#| Activation E— |

Figure 7-25 Account Opening to-be process

This top-level process in our model is Account Opening. This covers the entire
process of account opening from receiving an application from the customer to
the customer having an account they can use:

» The first step is to receive the account application (Account Sales).
» The next step is for the application to be processed (Account Application).

» Then, the account is verified and the customer receives an acceptance or
rejection notice (Account Verification).

» Finally, the customer’s account is activated and it becomes available for use
(Account Activation).

Each of these processes may have more lower level processes. In Business
Modeler, you can right-click each process and open the sub-process diagram by
selecting Launch Global Process Editor.

Importing the model

Refer to the instructions in “Loading the WebSphere Business Modeler project”
on page 579 to import the sample model into WebSphere Business Modeler.

Note that we only implemented one global subprocess of Account Opening:
01-Account Verification (TO-BE).

Chapter 7. Business modeling 197

Visualizing a business model as UML

We can visualize the business process model created in WebSphere Business
Modeler in UML. Rational Software Modeler (or Software Architect) accesses the
Business Modeler project and create the UML business use case and skeleton
business use case realizations.

To visualize the business process model:

Open Rational Software Modeler (or Software Architect).

Select File — Import.

Select General — Existing Projects into Workspace.

Navigate to the WebSphere Business Modeler project that you want to import.
Click Finish.

vyvyyvyyy

This action displays the project in the Project Explorer. To open the model,
expand the project to the models folder and double-click the entry with the same
name as the project. We can drag and drop items such as the business
processes. flow diagrams, resources, and other items in any UML model and
they are displayed as UML (rather than BPMN notation). This is useful to allow
the users of Software Modeler to see the business process models in UML
format.

Business goal

198

“A business goal is a requirement that must be satisfied by the business.
Business goals describe the desired value of a particular measure at some future
point in time and can therefore be used to plan and manage the activities of the
business” [RUP 7.0].

We use the business goals to make sure that we clearly understand what steps
we have to take to achieve the business strategy. Our goals in our JK Enterprises
example are listed in Figure 7-26.

We captured these goals in RequisitePro, along with any subgoals. Associated
with each goal and subgoal are key performance indicators (KPIs) and the
metrics we need to gather to measure if we have achieved these goals
(discussed in the next section).

We can use IBM WebSphere Process Server, in conjunction with IBM
WebSphere Business Monitor, to capture these metrics directly from the
executing business process. We can then calculate the measures to demonstrate
the achievement of these goals.

Building SOA Solutions Using the Rational SDP

[GOAL: All Business Goals =Jo&d

Requirements:

- GOAL1: Cost Reduction
Cost Reduction of 10% by 2007
GOAL1.1: Reduce credit check costs
Reduce the cost of credit checking with extemal agencies by 50%
= GOAL1.2: Reduce application costs
Reduce the costs of processing an application
GOAL1.2 1: Biminate re-keying
Eliminate the re+eying of data into different systems
GOAL1.2 2: Single application form
A standardised application form for all our products
GOAL2: Increase Products Per Customer
Increase Products Per Customer by 10% by 2007
GOAL3: Increase Availability
Increase Availability of On-Line Presence to 59.595%
GOAL4: Reduce Risk of Regulatory Non-Compliance
Reduce Risk of Regulatory Non-Compliance —
GOAL4 . 1: One Customer View
Provide a single, integrated view of the customer for all our interactions.
-| GOALS: Increase Customer Self-Service
Increase Customer Seff-Service via Intemet to 85% by 2006
GOALS5.1: Customer access to status
The customer should be able to access and review the cument status of their...
GOAL5.2: New channels
Make all customer interactions available across a wide a variety as possible
GOALG: Decrease Time to Market
Decrease Time to Market for New Products by 10% by 2007 ﬂ

K i
GOALT: Cost Reduction
Cost Reduction of 10% by 2007

Figure 7-26 Business goals in a RequisitePro View. Note the nested sub-goals.

Key performance indicators and metrics

As we identify business goals, we have to establish the specific measures and
the associated values of these measure we are aiming for. The measure is called
key performance indicator (KPI), and the values we need to record are the
metrics. Let us define these terms:

» “Key performance indicators represent quantifiable measurable objectives,
agreed to beforehand, that reflect the critical success factors of an
organization” [RUP].

» “Metrics identify the type of measurements that need to be collected to
assess the state of the KPIs” [RUP].

So, metrics are what we measure, and the KPIs are the numbers we are
measuring against. This implies we should have mechanism for capturing these
metrics; either as part of the service, or the underlying workflow runtime engine
as appropriate.

Chapter 7. Business modeling 199

JK Enterprises goals

In the JK Enterprises example, we have a goal of cost reduction. The
corresponding KPI is reduce costs by 10% by 1st July 2007. Note the use of a
specific reduction of 10%; otherwise we could reduce by 0.5% and claim

Success.

There is also the specification of a time scale (by 1st July 2007). Interestingly we
originally used the date of 2007, but this was too vague. Did we mean at the
beginning of 2007 or the end of 2007? We have to be as specific as possible.

We had this vague date originally by using the Revision History feature of
RequisitePro. We right-clicked on the Goal and selected Properties, then
selected the Revision tab, then clicked History (Figure 7-27).

Requirements: ‘ ROI Cost Benefit Priority
- GOAL1: Cost Reduction High
Cost Reduction of 10% by 1 July 2007
GOM1 1 Do s it mbmnle ko ngh
Reduc
- GOAL Medium
Reduc . - = :))
GO/ General Revision Atributes Traceability] Hierarchy] Discussions Mediom
Elimit Last saved :
GO | Revision: 10011 Label: B
GOAE] Dote: 18/10/2006 Time: [00:11 Lo
Increase
GOAL3: Author: ajk High
Increase
-| GOAL4: Change Requirement Text Changed. High
Reduce Description: REQTEXT: Cost Reduction of 10% by 1 July 2007
GOAL Hinh
= Ggir_'g‘ History... Revision History
Inc&r\:;;i Revisions
Theal Revision # Version Label Date Time User
GOAL 0K 1.0005 13/10/2006 1300 ak
Make an customer Interactions avalaoie across a wiae || | | 1.0004 13/10/2006 13:.00 ajk
GOALS: Decrease Time to Market 1.0003 13/10/2006 12:55 ajk
Decrease Time to Market for New Products by 10% by 2(] 1.0002 13/10/2006 11E4D al:k
4 <Click here to create a requirement: 1333; ::iﬂg% 11]1133 :}t
Change description:
Requirement created via import.
MAME: <no entry - Cost Reduction.
Requirement text:
Cost Reduction of 10% by 2007
Print | Close | Help

Figure 7-27 Use of the revision history in RequisitePro

200 Building SOA Solutions Using the Rational SDP

Note that the original author (indicated by the initials ajk) created this goal on the
13th October, and the current corrected version was entered by the same person
on the 18th October. This revision history is an important feature of RequisitePro
as it allows us to track changes to goals including who made the change.

To validate whether have met this KPI, we have to record the costs in some
fashion. This leads to metrics of cost of processing an account application and
the cost of account activation cost. At the moment, the total costs are the sum of
these two numbers.

To perform a meaningful comparison, we also have to understand the current
costs before we deploy the new SOA-based solution. We may have this
information from existing accounting records, or we might use our as-is business
process model to calculate this value.

Connecting goals, KPIs, and metrics

It is important to connect goals to the corresponding KPI and the metrics.
Changes in any of these items (goals, KPIs, or metrics) imply we may have to
change the other items.

RequisitePro provides an effective way to provide this traceability. Every element
we capture in RequisitePro has a the ability to trace to or from one or more other
elements. This trace can be set up through the properties of the RequisitePro
element (Figure 7-28).

Requirement Properties: GOAL1: Cost Reduction
General] Revision Atributes Traceability l Hierarchy] Discussions
From

KPI1s): Total account application processing cost Add...

KPI2{s): Customer account activation cost Q

KPI3s): Credit report retrieval cost

KP14{s): Credit report retrieval volume Q
To

SOAENT BUCT(s): Open an account Add...

SOAENT BUCE(s): Account Sales Q

SOAENT BUCTDE): Account Verfication

QK | Cancel | Help |

Figure 7-28 Traceability tab of an element property in RequisitePro

Alternatively, we use a RequisitePro Traceability view to show the two sets of
elements to be linked, and right-click the intersection of the two elements and
select Trace-to or Trace-from (Figure 7-29).

Chapter 7. Business modeling 201

& Rational RequisitePro - SOA SDP Redbook Project Content g@a
Fle Edit View Reguirement Traceabiity Tools Window Help

DR & Dlrals = %Y = \BoEe

= &. SOA SDP Redbook Project Contert mo— -
e T KPI-GOAL: KPI's to Business Goals =]
e Rz‘aﬁmmﬁs GOALT 2: GOAL121 GOAL122.. |GOALZ I smu ncrea.| GOALS: Reduc |
i i -direct onl S B " Increa 3 uc
=@ gi g‘e’"cs a"; :(e'y Pedomancs Indic Reducethe |Eiminatethe |Astandardissd |Increase Reduce Rlsk of
- (£ 03 Business Fuies costs of re-keying of data |application fom | Products Per Avaiabﬁyuf Regulatory
{21 05 Projsct Vision ingan into different for all our Customer by Mon-Complianc
%177 06 Business Use Cases {project) application systems products 10% by 2007 Pmme(o
=0 gg gupplem;macry Requirements T o
- (£ 08 System Use Cases Total acoount: applcaton procesding oot fossthan 10% of curert ot é’} é’} é’}
& (7] Othertypes application processing cost
=1 -3 Traceabilty
usiness Use Case to Business G KPI2: Customer account activation cost
usiness Use Cases to KPls Customer account activation cost less 50% of curert cost é}
KPI'sto Business Goals™
{5 Full Tracsabiliy back to Business KPI3: Credit report retrieval cost
Cost of credit report retrieval less than 80% of curert cost é’}
KP14: Credit report retrieval volume:
Number of credit report retrievals reduced to less than 90% of the curent
volume (Oct 2006)
KPI5: Automated credit report retrieval volume
Increase the number of automated credit report retrievals by 70% or more]
compared to curent volumes (Oct 2006)
KPI6: Volume of paper documentat
Reduce the number of paper documertts by75% or more compared to é’} é’} é’}
curent volume (Oct 2006)
=l KPI7- Online account applications volume
I the volume of ori it applica 25%
e Buinass ol = o s Eomee e e e o e e &r T
Frozet Trace From
‘ [

|KPI7: Online account applications volume
[GOALS: Increase Availability

Create traceability relalionships to other requirsments for the selected requirements

Figure 7-29 Establishing traceability between goals and KPIs through a RequisitePro traceabiity matrix

In a similar fashion, we establish a link between the KPIs and metrics. Then we
show the hierarchy from goals to KPI to metrics using the Traceability Tree view
(Figure 7-30).

Note the red marks on items in the view indicate that the item has changed. We
can use the revision history to establish what has changed.

202 Building SOA Solutions Using the Rational SDP

& Rational RequisitePro - SOA SDP Redbook Project Content - [GOAL: Full Traceability back to Business Goals]

mE

P File Edit View Requirement Traceabiity Tools Window Help

D|2|R| 8 Dulals] %]y = \oEe

= & SOA SDP Redbook Project Cortent
%[00 Business Vision
%[01 Business Goals
=3 02 Metrics and Key Performance Indic

5
5
5
5
5
5

I Al KPls
& All Metrics
5 KPI's NOT linked to Metrics
& KPItsmetie
[E3] KPI1: Total account application pr.
[E3] KPI2: Customer accourt activation
[E3] KPI3: Credi report retrieval cost
[£] KPI4: Credit report retrisval volume
[E3] KPIS: Automated credit report retr
[£] KPIB: Volume of paper documenta
[£3] KPI7: Online accourt applications
[E3] METRICT: Total accourt applicati
[METRIC2: System downtime for a
[C1] METRIC3: Cost of account activat
[£3] METRICS: Court the number of au
[£1] METRICT: Compare paper consu
[£3] METRICE: Count numbsr of elsctr.
% [£1] METRIC10: Average cost of credt

[03 Business Rulss

{27 05 Project Vision

{7 06 Business Uss Cases (project)

[07 Supplementary Requirements

{77 08 System Use Casss

[Othertypes

=1 £ Traceability

|»

]

- >~ GOALT: Cost Reduction
=1 £4 KPI1: Total account application processing cost
4% METRIC1: Total account application processing cost
4% METRIC3: Cost of account activation
4% METRIC10.1: Cost of credit report retrieval
= £4 KPI2: Customer account activation cost
4% METRIC3: Cost of account activation
=4 KPI3: Credit report retrieval cost
4% METRIC10.1: Cost of credit report retrieval
= £4 KPI4: Credit report retrieval volume
4% METRIC10.2: Number of credit reports retreived
=l [# GOAL1.1: Reduce credit check costs
= 4% KPI1- Total account application processing cost
1% METRIC1- Total account application processing cost
1% METRIC3: Cost of account activation
4 METRIC10.1: Cost of credit report retrieval
= % KPI3: Credit report retrieval cost
4 METRIC10.1: Cost of credit report retrieval
= [GOAL1.2: Reduce application costs
= 4% KPI1- Total account application processing cost
1% METRIC1- Total account application processing cost
1% METRIC3: Cost of account activation
4 METRIC10.1: Cost of credit report retrieval
= 4% KPI3: Credit report retrieval cost
4 METRIC10.1: Cost of credit report retrieval
= 4% KPI6: Volume of paper documentation

4% KP17- Online account applications volume
= [z~ GOAL1.2.1: Himinate re-keying
= {& KPI1: Total account application processing cost

k|

1% METRIC7- Compare paper consumption volume for current fiscal year with paper consumption

LFRequlrement GOAL1

Name Cost Reduction
Goal Type Goal

Priority Figh

Status Froposed

Stabiity Medium

Owner

Benefit

ROl

Cost

Unque D 1

Location Databass
Fackage 01 Business Godls

Author aik
Revision 1.0011

Date 18/10/2006 0011
Reason

Tracedfrom
Traced4o
RootTagd# 1

=
| Jed

Requirement Text Changed.

REQTEXT: Cost Reduction of 1
KPI1(s). KPI2(s). KPI3(s). KPl4(s
SOAENT BUC7(s). SOAENT BL

GOAL1: Cost Reduction
Cost Reduction of 10% by 1.July 2007

Wiesw saved a5 KP| to Metric

43 requirements

Figure 7-30 Traceability tree view showing goals linked to KPIs to metrics

Defining KPIs and metrics in WebSphere Business Modeler

You can use WebSphere Business Modeler to define the metrics and KPls that
you want to measure using WebSphere Process Server and WebSphere
Business Monitor:

» Metrics are typically things that you want to measure, such as elapsed time of
the process, number of accounts opened (successful executions), number of
accounts that failed verification, and cost of the process.

» KPIs are the goals, typically calculated from metrics, for example the average
cost of running the process compared to a given limit or range.

In addition, business analysts want to analyze metrics against business items, for
example, failed account opening versus the location of the customers. Such
analysis, called dimensional analysis, can be performed by Business Monitor if
the underlying dimensions (business items) and metrics have been defined in
Business Modeler.

Chapter 7. Business modeling

203

Measuring a business process in Business Monitor

Calculations of KPls, metrics, and dimensional analysis can only be performed if
the business process is exported from Business Modeler into WebSphere
Integration Developer for implementation and WebSphere Process Server for
execution.

In this book we did not follow the path from Business Modeler to Integration
Developer and Process Server. Refer to the IBM Redbooks publication Business
Process Management: Modeling through Monitoring Using WebSphere V6
Products, SG24-7148, for an example of such a business process.

Domain modeling

Domain modeling is the task of capturing a subset of the overall business
analysis model, specifically the key business elements and their relationships.
Usually, if we have a business analysis model, we do not have to perform this
task because we already have a domain model. We also would not have to
perform this task if we have already purchased an industry model. Examples of
industry models include the domain model part of IBM IFW and IAA models, or
any of the other IBM industry models. These models have standard domain
models.

In our example, we have a domain model in Rational Software Modeler or
Software Architect. This is discussed in “Study the domain model” on page 320.

What do we have now?

204

By the end of this chapter, our status is as follows:

» We have a clear idea of what the business goals are and how we can
measure we have met these goals (metric and KPIs).

» We have a business process model indicating the as-is and to-be situations.

» We have a business use case model showing the relevant part of the
business, and with whom that part of the business interacts.

» We have a business process model with process flows, resources and
business.

» We have a domain model that gives us an idea of the key abstractions.

Building SOA Solutions Using the Rational SDP

References

For further information consult these sources:
» Learn business process modeling basics for the analyst, developerWorks
http://www-128.1ibm.com/developerworks/webservices/Tibrary/ws-bpm4analyst/

This paper provides a useful introduction to business modeling using the
notation and techniques used in the chapter.

» IBM Redbooks publication Business Process Management: Modeling through
Monitoring Using WebSphere V6 Products, SG24-7148

This book covers the concepts and many details on the use of the tooling for
IBM WebSphere Business Modeler and related tooling.

» IBM Redbooks publication Continuous Business Process: Management with
HOLOSOFX BPM Suite and IBM MQSeries® Workflow, SG24-6590

Chapter 7. Business modeling 205

http://www-128.ibm.com/developerworks/webservices/library/ws-bpm4analyst/

206 Building SOA Solutions Using the Rational SDP

Requirements

This chapter discusses requirements management as applied to SOA-based
solutions. This chapter should be read in conjunction with Chapter 7, “Business
modeling” on page 169 as the two topics are closely related.

These topics are discussed:

» The role of requirements management in SOA-based solutions

» The work products associated with requirements management

» How to use IBM Rational RequisitePro to capture and manage requirements

» Traceability between various work products and the tools

© Copyright IBM Corp. 2007. All rights reserved. 207

Requirements management in SOA

208

The usual definition of requirements management is as follows:

Requirements management is a systematic approach to finding,
documenting, organizing and tracking the changing requirements of a system.
[RUP]

In SOA-based solutions, we need to extend this definition to include “the solution
rather than the system. Requirements management then encompasses
information captured in the business domain, the services domain and the
system domain. Some of the items that could be termed business requirements
have been discussed in Chapter 7, “Business modeling” on page 169, such as
the glossary, business goals, KPlIs, metrics, and business use cases. In this
chapter, we discuss the role of service policies, system features, functional and
non-functional supplementary requirements, and system use cases.

The key work products for the requirements discipline are illustrated in
Figure 8-1.

Business Modeling

Visjon Case Model Process Model
«deriver «derive» «derives

Reqmrements

«derives
Supplementary

VEIDH

Model Spécifications
«derng» «deﬂ\e» Szt
Analysis & Design Test",
Service Model Test Case

Figure 8-1 Work products for the Requirements discipline, and the traceability

Building SOA Solutions Using the Rational SDP

The traceability of the work products are shown in this figure, as well as their
impact on work products from other disciplines.

The development process is illustrated in Figure 8-2.

Requirements

[

o,

—3

Develop Vision

—O

Structure Use
Case Model

L

Detail 2 Use Case

Figure 8-2 Workflow in the requirements discipline

It is important to remember that we navigate this workflow every iteration,
expanding on and correcting more of the requirements as we go along.

Figure 8-3 shows the roles involved in the requirements discipline and their
relationship to the work products.

I:) I:)
Systein Requiirenients
Analyst, Specifier
Respansible Responsile Detais Responsible
For ¢ Fd¢ JUse Case % For
S ' Specs '
Vision Use Msdel Supplefentary
; . Specifications
Specifies Soffware Bases Bases
Realization's Of TestsO0 Ticec op
LJ)
Software Test
Architect Analyst

Figure 8-3 Requirements roles and their relationship to the work products

The key practices for effective requirements management remain critical,

including a clear statement of intent, the creation of testable requirements, and
appropriate traceability between requirements, and between requirements and
other work products. The structure of our requirements are captured in a
requirements management plan.

Chapter 8. Requirements 209

Requirements management plan

The requirements management plan is a reference document for the project. It
captures the following decisions:

Types of requirements

Requirement attributes

Requirement work products

Traceability between these requirements

Connection to other work products

Control mechanisms to manage change of these elements

vVvyYvyvyYyvyy

Generally, this plan can be used from reused from project to project with only
minor alterations.

We store this document in IBM Rational RequisitePro and take advantage of the
standard outline available in RequisitePro (Figure 8-4). We generally customize
this outline to contain our internal standard requirements management plan
populated with content, rather than the base annotated template supplied with
RUP and RequisitePro.

Document Properties
General Revision
Name: |Requirements Management Plan

Description: Document requirements types, attributes, traceability and
govemance |

Package: |0ther documents Browse. ..

Filename: |Requirements Management Flan v Show Tags

Directory: |C:"-AJK‘-.Rational"-.SOA"-.SOA SDP Resider Browse...

%or;:::merd (|Requirements Management Flan) j
QK | Cancel | Help |

Figure 8-4 Creating a new requirements management plan using the predefined outline

Requirement types and attributes

210

There are a number of different distinct types of requirements necessary to
capture the full spectrum of requirements in any project. For example, a business
goal captures the aim of a business, while a feature captures the externally
visible capability of a system. We use the requirement types to order and
manage the different kinds of requirements.

Building SOA Solutions Using the Rational SDP

We use a UML class diagram in to display these types (Figure 8-5). This diagram
is typically added to the requirements management plan to provide a convenient

view of the types.

e |

EJ Enterprise

] Business Use Case

] system Policy

= Term

«usé»

Enterprise-level RequisitePro project

3 Project

£ Goal

£ Kp1

] Metric

] System Use Case] Need

£ Suppl tary Requi

Project-level RequisitePro project

Figure 8-5 Requirement types used in RequisitePro

We also document the traceability relationships between types (Figure 8-6). Note

the link to the business use cases in the Enterprise project. This shows the

cross-project reference.

Chapter 8. Requirements

211

] Need

" need

= supplementary Requirement
*
* | goal - goal
oal
*
... =
-business use-case
|-] RequisitePro RM plan model::Enterprise::Business Use Case
* |- kpi
= Kp1
* |- kpi -syit"mn use case
* -metric] System Use Case
] Metric

Figure 8-6 Traceability between project-level requirements

Each requirement type has a set of associated attributes. These attributes are
used to capture information about the requirement such as priority or source of
the requirement (Figure 8-7).

=] Requirement Type ‘£] Feature : Requirement Type

N

| ‘& Risk : Requirement Attibute

| & Priority : Requirement Attibute ‘ \ ! I
[] \

*

+|--requirement attibute
= Requirement Attibute

|] Status : Requirement Attibute |
[]

Figure 8-7 An example requirement type (feature) with selected attributes

212 Building SOA Solutions Using the Rational SDP

These attributes are very useful to help manage requirements. For example, for
JK Enterprises, the priority of the different business goal helps us decide which

goals considered more important that the others, and this influences our decision
to look at the account opening process (Figure 8-8).

& Rational RequisitePro - SOA SDP Redbook Project Content - [GOAL: All Business Goals] =Jo&d
[File Edit View Requirement Traceability Tools Window Help -8 x
nlz||] 8] lulale] #=]y = BOEe
—|--¢=. SOA SDP Redbook Proj... J Requirements: Benefit Priority Status 1=
+|--{77] 00 Business Vision 1-Ft:M SrtA
=13 01 Business Goals » GOALI: Cost Reduction High Froposed
7 All Business Go... Cost Reduction of 10% by 1 July 2007
+1 L] GOALT: Cost ... GOAL1.1: Reduce credit check costs High Proposed
[£7] GOALZ: Increa... Reduce the cost of credit checking with extemal agencies by 50%
Eil GOAL3: Increa... GOALS: Increase Customer Self-Service High Proposed
+ Eil GOALZ: Reduc Increase Customer Seff-Service via Intemet to 85% by 2006
GOALS: ! GOAL1.2: Reduce application costs Medium Proposed
* Eil BLLE =t Reduce the costs of processing an application
[CJ] GOALE: Decre... GOAL1.2.1: Himinate re-keying Medium Proposed
+--{77 02 Metrics and Key ... Eliminate the re+eying of data into different systems
+|--{77 03 Business Rules GOAL1.2 2: Single application form Medium Proposed
4. {77 05 Project Vision A standardised application form for all our products
06 Busi Use Ca... GOAL3: Increase Availability Medium Proposed
: g 07 Sﬁsmlzsnjer:: s Increase Availability of On-Line Presence to 59.599%
08 o GOAL4: Reduce Risk of Regulatory Non-Compliance Medium Proposed
-3 ystem Use Cas... Reduce Risk of Regulatory Non-Compliance
+- (17 Cther types GOAL4.1: One Customer View Medium Proposed
+.- {77 Traceability Provide a single, integrated view of the customer for all our interactions. —
GOALS.1: Customer access to status Medium Proposed
The customer should be able to access and review the cument status of .
GOALS.2: New channels Medium Proposed
Make all customer interactions available across a wide a variety as...
GOAL2: Increase Products Per Customer Low Proposed
Increase Products Per Customer by 10% by 2007
GOALG: Decrease Time to Market Low Proposed
Decrease Time to Market for New Products by 10% by 2007
s <Click here to create a requirement > Low Proposed
Kl i
GOALT: Cost Reduction
Cost Reduction of 10% by 1 July 2007
Feady 13 requirements

Figure 8-8 Business goals in RequisitePro ordered by priority

Keeping requirements visible

Requirements work products are a combination of requirements, documents and
models. The requirements and document-based work products are held in
RequisitePro. The UML models held in Rational Software Modeler or Rational
Software Architect. Data models are held in Rational Data Architect.

Chapter 8. Requirements 213

Requirement perspective in development tools

214

A key feature of the Rational SDP is how we can see requirements in the other
tools. Our requirements projects can be seen in the Requirement perspective in
Software Modeler, Software Architect (Figure 8-11 on page 215), and Data
Architect (Figure 8-12 on page 216).

To open the Requirement perspective in these tools, click the Perspectives icon
on the top right-hand side of the window (Figure 8-9). Select the Requirement
perspective. If Requirement does not appear, click Other and select Requirement
from the complete list of perspectives.

-l'__:]’ |E‘, Modeling PE Data

NS— &) 1ava

== Plug-in Development

Requirement I

Other...

Figure 8-9 Open the Requirement perspective

We should have an empty Requirements Explorer towards the left of the window
(Figure 8-10). Click Open a RequisitePro project 1= (similar to the icon in
RequisitePro) to open the selected project (.rgs file).

éRequirement Explorer &3 I@I E‘E =

Use the Reguirement Explorer view to manage the requirements
for a ReguisitePro project.

To open a RequisitePro project, dick the Open a RequisitePro
Project icon.

In the window that opens, navigate to & RequisitePro project
directory, select the RQS project file, and dick Open.

Figure 8-10 Empty Requirement Explorer

We have to make sure we know where the .rgs file is stored on our server or local
machine. Typically, the project administrator has set aside space for the
RequisitePro files and informed the team of the location.

Building SOA Solutions Using the Rational SDP

Rational Software Architect
Figure 8-11 shows the Requirement perspective in Rational Software Architect.

& Requirement - Design Model::Design Model Overview - Rational Software Architect

MEX¥]

File Edit Mavigate Search Project Diagram Data Modelng Run Window Help

1 Domain Model 1.4 (AS
=-Ef =RequisitePro RM plan
£, (UMLPrimitiveTypes

=-E3 Enterprise
Q Business Use C[_{|

Eﬂ GOAL2 Increase Products Per Custor
[£]] GOAL3 Increase Availability
E ﬂ GOAL4 Reduce Risk of Regulatory Mc
Eﬂ GOALS Increase Customer Self-Servi
Eﬂ GOALG Decrease Time to Market

i [mdi = =R A iE @ YR G T [Modeling »
: B =@ : '&é\. - og - ?’;? - = |EﬂRequirement |
r[bProjectExplorer s =0 éRequirementExplorer by =0 : Design Model::Des... &2 ?3 =0
8%~ S g 7 atte
Select
=B Design Model 1.8 (AS[M (&> 01Business Use Cases b] |+h B
?::, (UMLPrimitiveTypes (= 02 Service Polides R
: Design Model Over (= Traceability = Note T
=-E3 service Component = @ S0A SDP Redbook Project Content (= UML Common
B3 AccountActivat [00 Business Vision (= Use Case
3 AccountApplica, [=[= 01 Business Goals] [= Composite Structure
£3 Accountverificz EE All Business Goals E &o 5
P AddresssC =-[1 1] GOAL1 Cost Reduction gEaonen
3 BilingAccounts) Eﬂ GOAL1.1Reduce credit check co L= Class
3 CustomerAccol =-[L 1] GOAL1.2 Reduce application cosf [Instance
£ GeneralLedger/ GOAL1.2.1 Eliminate re-keyir
™)) 9er 2 E% 'I i .Y 9 AccountApplicationSt l=Deployment
__| Service Design Ove GOAL1.2.2 Single application (= Geometric Shapes

= | AccountApplicationSC

«Components

: Main [=1+{= 02 Metrics and Key Performance Indicatc
Q System Policy EE All KPIs
Q Term EE All Metrics
Main 5 kpr's NOT linked to Metrics
#--F Prriact M B9 kDT tn Matric M
[i] I | [l] [i] I | [l] [i] [TH| [l] |
% Require... &4 Link Clip... | =0 Properties (ta Requirement Query Results 23 Requirement Link Problems|
| &[4 5 || Requrement Priority Status Cost Difficulty Stability
E BMEI'RICI Tot... Medium Approved Medium Medium
E BMEI'RICZ Sys... Medium Approved Medium Medium
EBMEI'RIC3 Co... Medium Approved Medium Medium
EBMEI'RICG Co... Medium Approved Medium Medium
E BMEI'RIC? Co... Medium Approved Medium Medium
EBMEI'RICS Co... Medium Approved Medium Medium M
(%] I | (2]
s

Figure 8-11 Requirement perspective in Rational Software Architect

Chapter 8. Requirements 215

Rational Data Architect
Figure 8-12 shows the Requirement perspective in Rational Data Architect.

@ Requirement - SAMP - IBM Rational Software Development Platform
File Edit Mavigate Search Project Diagram Data Run Publish Window Help
C-He W Fla- |+ & - w
| =l — < Bleof . R = - ||100% - [&d
5 Data Project Ex... &3 =8 éRequirement Explorer &2 E'I-l - @ & >~ =0 @Logical Data ... SﬁDiagraml @Dambase Mod...
D % w || 1 SOASDP Redbook Project Content | £ SALES &)
= @ Data Design +-[2= 00 Business Vision
= IZE . == 01 Busines.s Goals § SALES_DAT
- Database Model.cbr 03 Al usiness Goals [EMPLOYEE et
== [j sample + Lﬂil GOAL1 Cost Reduction B REGION
= f@ 5L Stateme |)| GOAL2 Increase Products Per Customer g EMPNOD B SALES
255 samp |)| GOAL3 Increase Availability B FIRSTNME
T [-83 Diagram +-|I, /| GDAL4 Reduce Risk of Regulatory Mon-Compliance g MIDINIT
[CL_scHE + LEU GOALS Increase Customer Self-Service H LASTNAME
- DEPART] |)| GOALG Decrease Time to Market = B WORKDEPT
4 EMP_AC =z 02 Metrics and Key Performance Indicators g PHONENO L
+1- [EMP_PHC E—% ::: il g HIREDATE EH ORG 3
| f etrics
. g E:EESEE {3 kPT's NOT linked to Metrics g iE?JEEVEL g DEPTNUMB
o 5 INTRAY B KPI to Metric g SEX E DEPTNAME
- OR_G |G)| KPI1 Total account application processing cost B BIRTHDATE E MANAGER
4 PROJEC |G | KP12 Customer account activation cost B SALARY g DIVISION
4 SALES |G | KP13 Credit report retrieval cost g BONUS g LOCATION
4 STAFF |G)| KP14 Credit report retrieval volume g COMM
-1-£3) Logical Data Madel |G)| KPI5 Automated credit report retrieval volume
°+ 5 Package1 |G)| KPI6 Volume of paper documentation
4 % sQL Saripts |)| KPI7 Online account applications volume
I L‘T Mappings |G)| METRIC1 Total account application processing cost
5 (8 XML Schemas |G)| METRIC2 System downtime for account application statu: = CL_SCHED
a0 bmer Files |C)| METRIC3 Cost of account activation 7 DEPARTMENT —
|G)| METRICS Count the number of automated credit report r 5 CLASS_CODE
|G)| METRICT Compare paper consumption volume for curren ||| & pEPTNO 2 nay -
3 1l EX)|(E3A 1l | IR I | (2]
Link Clipboard %;Requirement i TR = O ||properties ta Requirement Query Results &3 Requirement Link Problems
|4, |5 ||| Requirement | Priority | status | cost | pifficulty | stability | asq
|0 J/METRIC1 Tot... Medium Approved Medium Medium
|0 JJMETRIC2 Sys... Medium Approved Medium Medium
|0 JJMETRIC3 Cos... Medium Approved Medium Medium
| JJMETRICE Cou... Medium Approved Medium Medium
10 i}iMEI'RIC? Co... Medium Approved Medium Medium
< 1l |

Figure 8-12 Requirement perspective in Rational Data Architect

The Requirement perspective keeps requirements visible and accessible to the
other roles working on the project. The RequisitePro integration also allows us to
link requirements and model elements to each other as we show later in this
chapter.

We also use the Web interface to RequisitePro for remote users who require
read/write access, or just read access to the project.

216 Building SOA Solutions Using the Rational SDP

For our project we have a project vision document that contains the stakeholders
view of the solution to be developed including the needs and features.

The supplementary specification contains requirements that are not readily
captured in terms of features, needs or use cases. The requirements contained
in a supplementary requirements include non-functional or system requirements,
and functional requirements that do not form part of a system use case.

The system use case is captured textually in a system use case specification,
and has a corresponding model item in the UML system use case model. The
bulk of the information appears in the system use case specification.

An interesting question is: What does the system use case represent in an
SOA-based solution? The system or systems are the underlying applications that
provide the services. The system use case forms part of the ongoing system
documentation as well as a useful item for project management purposes. In our
example, we link the system use cases to business goals. We also verify that
system use cases have a corresponding low-level task in the business process
model. This linkage is only relevant if low-level details have been added to the
business process mode, which is not always the case.

Enterprise-level requirements

As discussed in the Chapter 7, “Business modeling” on page 169, there are two
broad categories of requirements. There are a class of requirements that really
apply to all projects in the organization: Requirements we term enterprise-level
requirements. This is not something unique to SOA-based projects or to
organizations that move to SOA. SOA-based solutions touch many different parts
of an organization and its partners, so there is more opportunities for these
requirements to impact a wider audience.

In our JK Enterprises example, we class the following kinds of requirements as
enterprise-level:

» Glossary terms
» Business use cases
» Service policies

All these items are elements in RequisitePro, with links into the relevant UML and
other models held in tools such as Rational Data Architect.

Chapter 8. Requirements 217

218

We connect elements in the enterprise and project-level project. Before we can
do this, we have to give the projects a unique prefix. Select File — Project
Administration — Properties in RequisitePro to set the name as shown in
Figure 8-13. Add an appropriate prefix to your enterprise and any project-level

RequisitePro projects.

Project Properties
Documents] Document Types] Atributes
General l Revision] Reguirement Types
Name: |SOA SDP Redbook Enterprise Content
Prefix: [JsorenT | Cretor: [ak
Directory: |C:\MK\RationaI\SOA\SOA SDP Residency R
Database: |MS Access j Properties...
Degcription: A project with Enterprisedevel content that is maintained and
referenced by many projects. In general - all Requisite Pro types
should be visible outside this project.

QK | Cancel | Help |

Figure 8-13 Set the project prefix to permit cross-project traceability

We also select which requirements can be see from other projects. Select File —
Project Administration — Properties, then select the Requirements Type tab and
select the requirement that should be visible to external projects (Figure 8-14).

Requirement Style:

Double Undedine hd
QK | Cancel | Help |

Requirement Type

Name: |Business Use Case

Description: Business |lse Case is the specification of a set of |4
actions performed by a business, which yields an
observable result that is, typically, of valuefor [«]

Initial Requirement #: 1 II7 Allow Bdemal Traceability I

Requirement Must Cortain: |

Requirement Tag Prefic: BUC

Requirement Color: Blue ~

Figure 8-14 Enable external traceability. for each requirement type

Now we can provide access to this enterprise-level project (SOAENT) from our
project level project by selecting File — Project Administration — External
projects and adding the enterprise-level project to the list (Figure 8-15).

Building SOA Solutions Using the Rational SDP

Glossary

External Projects

Extemal Project References:
Prefic: Name: Status:
SOAENT S0A 5DP Redbook Entemrise Content Connected Add...

Disconnect
Bemove

Location: |C:"-AJK‘-.Rational"-.SOA"-.SOA SDP Residency"\ReqPro"Redbook !

Iv¥ Connect to the extemal project at project open

QK | Cancel | Help |

Figure 8-15 Add a project to enable traceability to that project

We discussed the purpose and content of the glossary in “Business glossary” on
page 181. The defined terms in the glossary are linked to any domain model in
Rational Software Architect/Modeler, or any enterprise logical data model held in
Rational Data Architect.

Business use cases

We discuss business use cases in detail. We emphasize that the business use
cases at the enterprise level are the validated and approved descriptions of what
the business does for the outside world.

Business use cases at the project level are used where a new or modified
business process is under consideration. The changes have not yet been
validated as the new to-be process. In our case, we do not change the business
use cases related to account opening or any of the other business use cases. we
have changed how they work internally. This implies there are no business use
cases in the project-level RequisitePro project.

Once a project has validated the project-level business use cases, they should
be copied into the enterprise level project. This is typically a simple export/import
process in RequisitePro. Note that the import/export does not retain the history of
the changes, but we retain attribute values exported in comma separated values
(CSV) format. We also copy across the business use case specification and
import that as a document.

Chapter 8. Requirements 219

Service policies

220

Effective service development is all about using standards. Any SOA-based
initiative in the organization requires a set of standards to make sure that each
service provided or consumed by the organization is compatible with other
services. Service policies form the reference for service standards. In
requirements management terms these policies could be classed as
non-functional requirements that apply across the organization, and even outside
the organization. There are design time, deployment and runtime aspects to
service policy. We discuss the design time aspects here.

Service policies can be broken into four broad categories, from:

http://soa-zone.com/index.php?/archives/18-Clearing-up-the-confusion-of-the
-term-policy.html#extended

» Schema policies—Schema policies document requirements related to the
schemas of messages that pass between service providers and consumers.
We may want to refer to standard XML schemas for messages, for example,
Financial products Markup Language (FpML), which is used for complex
financial instruments.

» Communication policies—Communication policies capture any policies that
affect the communication between services. This includes message
encoding, transport, and security.

» Behavioral policies—Behavioral policies relate to the behavior of the service
as a whole. This is in contrast to the other policies which look at the
messages.

We capture these policies in a service policies document held in RequisitePro.
RequisitePro allows us to use a standard template for the document, and
security and version control on the individual policies themselves. It is also useful
for individual projects to trace back to these policies, so that the potential impact
of any changes to these polices can be assessed.

To create a new policy document in RequisitePro, select File > New —
Document and select Service Policies Outline.

We use the service policies later in Chapter 11, “Service specification” on
page 299.

Building SOA Solutions Using the Rational SDP

http://soa-zone.com/index.php?/archives/18-Clearing-up-the-confusion-of-the-term-policy.html#extended

Project-level requirements

We create a project in RequisitePro for requirements and other items that are
specific to this project. This project references the enterprise-level project
described in “Enterprise-level requirements” on page 217 where appropriate.
The bulk of the items discussed in this chapter and in Chapter 7, “Business
modeling” on page 169 are held in this project.

Project vision

RUP defines the project vision is the “...the stakeholders view of the product to
be developed..” In this case, we can substitute the term SOA-based solution for
the term product. This document is designed to be an introduction to the solution
and should be written in a way that is accessible to the range of stakeholders
listed in the document.

The project vision uses RequisitePro to provide a standard template for this
document. We create a project vision document by using selecting the relevant
package and New — Document and select the Project Vision outline

(Figure 8-16).

Document Properties
General l Revision
Mame: |Ac:c:0unt Management

Description: JK Enterprises Accourt Management project vision

document

Package: |D5 Project Vision Browse...
Filename: |Ac:c:0unt Management [v Show Tags

Directory: |C:"-.AJK‘-.v?‘-.workspac:e"-ajkDDS"-.Red Bool Browse...

_l[z‘;;:::merd I |Pn:|ject ision I j

QK | Cancel | Help |

Figure 8-16 Creating a Project Vision document in RequisitePro

A key aspect of the project vision is a list of the key features of the solution. Each
requirement should be related back to a goal and need.

Chapter 8. Requirements 221

Supplementary requirements

222

Supplementary requirements is the catch-all term to cover both functional and
non-functional requirements. The functional requirements are ones that are not
readily associated with other types of requirements, such as system use cases.
Non-functional requirements provide constraints to help shape the architecture of
the system, and are of particular interest to the testing community. These
non-functional requirements should be testable and are ideally linked back to test
plans and test cases.

Supplementary requirements can be broadly categorized into six different areas
according to [Grady]. The FURPS+ categories are as follows (along with some
example types of requirements):

» Functional—Any requirements related to functionality of the solution that are
not use cases. Examples include security, printing, and other functions.

» Usability—Focus on user aspects such as user interfaces and training
material.

» Reliability—Acceptable failure rates, recoverability and other factors.
» Performance—\Volumes, response times, resource usage
» Supportability—How the solution is installed, maintained and retired.

» +—Represents any design constraints such as operating system, hardware
required or similar.

SOA-based solutions require particular attention to be paid to the reliability,
performance and supportability non-functional requirements. This applies
particularly to the services themselves. One interesting supportability
requirement revolves around how a service might be retired and replaced, or
even just upgraded to a new release. The life cycle issues are discussed in
“Service life cycle” on page 29.

Supplementary requirements are captured in RequisitePro in a document called
the supplementary requirements specification. Each requirement is tagged and
traced back to the features of the SOA-based solution. Relevant requirements
are also traced to a corresponding defect, enhancement request, test case, or
test plan held in IBM Rational ClearQuest (Figure 8-17 and Figure 8-18).

Building SOA Solutions Using the Rational SDP

(2 1BM Rational ClearQuest =Joled
File Edit View Tools Help
| o % 8-8-5-R-
5. ClearQuest Navigator 53 ot = O || E all Defects - ClearQuest Query Results &2 All enhancement requests - ClearQuest Query Results | =0
J‘-E_ - % | % < ClearQuest Query Results (admin,Access7.0@SAMPL) <'===D | ‘;_E? . @éﬁ | ‘-?E a S§3 =
=4 admin,Access7.0@SAMPL |l id | state | Headline | ~
+- 20 Personal Queries [+ SAMPLO0000001 Opened spelling error in login screen I P
|- 23 Public Queries |+ SAMPLO000000Z Resolved sales tax incorrect if item d from purchase 3
+1-(C] Aging Charts [+ SAMPLO0000003 Resolved cancel sale doesn't correct¥rapaint screen e
+|- (] Distribution Charts [+] SAMPLO0000004 Resolved want more help on inventory repol
+- 3 Email Rules [#]5AMPLOD00000S Resolved columns eutof slignment Defect and associated requiremeni
+-[C] PrintReportFormats [+ SAMPLO000000S Opened delete item not working correctly
+-[C7 Report Formats [+ SAMPLO0000007 Resolved override price does not work
+-"] Reports [+ SAMPLO0000008 Resolved alt-C does not invoke cancel operation
-3 TM Charts = SAMPLODOO0O0Y Resolved inventory re-order not done on large sale
+- [TM Queries SAMPLOOO00010 Resolved logout button should be disabled during s.
¥ B -
%13 TM Reports SAMPLO0000011 Submitted change due amount is supposed to ber, M
+--[C0 Trend Charts |_<| il Page: |1 LI Total Pages: 1 il ill / Total Records: 42 Selected: 1
+- [0 UCMSystemQueries - -
Query: Public Queries/all Defects Type: Defect
+ [:l UCMUserQueries ,/
+ ' 7 Al Defects = ClearQuest Record Details &2 Properﬁes|TestResuh;* - (n)@ = a =0
* ‘—,‘ All enhancement requests ||| |ClearQuest Record Details (admin,Access7, 0@SAMPL) /
+ |_'| Keyword Search
[Recently Submitted M Main|ﬂotes|ﬁesoluﬁon|atlad'1mems|ﬂishory|PQC Eequiremenis Unified Change Man... |Iest Logs| oy |
-~
Bl console 2 =0 RAProject: IDemoRAProject vl Revert |
ClearQuest g
=, - Associated Requirements:
=) Eﬁ | ._.’ E N [“j T
™
Action: Modify b]
Record type: Defect B
Record(s): w
A B/ i
L

Figure 8-17 Associating a requirement to a defect in ClearQuest’

&= Rational RequisitePro - Learning Project - Use Cases - [FEAT: All Features] u@l
[File Edit View Requirement Traceability Tools Window Help -8
Dlz(@] & Quasl w2y B @0Ee
[=]-=5 Web Shop System _I Requirements: Type Priority Status En
@ Web Shop System Feature...
~[CJ] FEAT1: Secure payment m... ™ FEAT 1: Secure payment method N | Functional Must Approved 54
-[CJ] FEAT2: Easy browsing Secure paymert method
-.[C] FEAT3: Search by muttiple ...
Eﬂ FEAT4: Ability to check: stat... FEAT2: Easy browsing Functional Should Proposed
-.[C] FEATS: E-mail notification o... — Easy browsing for a\rallable titles
-.[C1] FEATE: Highly scaleabls . Fr—
AL . FEAT3: Search by multiple criteria Must Approved
Eil FEATY: Abilty to customize ... Ability to search for CDs by multiple criteria
-[C] FEATS: User registration go...
-{5]] FEATS: Shipping Status FEAT4: Ability to check status of an order | Functional | Should Validated
[P FRAT14: llse | eoacy Suste LI Ability to check the status of an order
Ability to check the status of an order
FEATS: E-mail notification of new titles of . | Functional Could Proposed
E-mail notification for Shoppers when new titles
< »
FEAT4: Ability to check status of an order
Ability to check the status of an order
Figure 8-18 The same defect from ClearQuest connected to the requirement in RequisitePro’
' These screen captures are from one of the standard samples and not the JK Enterprises project.
]
Chapter 8. Requirements 223

We create a Supplementary requirements document in Registering by selecting
File - New — Document and selecting Supplementary Requirements
Specification outline (Figure 8-19).

Document Properties
General Revision
Mame: |Ac:c:0unt Management Supplementary Specification

Description: JK Enterprises Account management
project Supplementary Specification

Package: |D? Supplementary Requirements Browse...

Filename: |Ac:c:ount Management Supplementary Sp | Show Tags

Directory: |C:"-.AJK‘-.v?‘-.workspac:e"-ajkDDS"-.Red Bool Browse... |

_l[z‘;;:::merd I|Supplementary Requirements Specification I j
QK | Cancel | Help |

Figure 8-19 Creating a Supplementary Specification in RequisitePro

System use cases

224

A system use case®“...a sequence of actions a system performs that yields an

observable result of value to a particular actor’ [RUP]. Contrast this to the
definition of business use cases in the business modeling chapter, they are very
similar definitions and this is intentional. A system use case documents the
interaction between the world outside the system, and the system itself. It defines
the boundaries of the system because we define the actors of the system as
someone or something outside the system scope. System use cases define the
externally visible functional behavior of the system in a concise and useful way.

In SOA-based solutions, system use cases are used to describe the behavior of
the systems that implement the services and composite services. There are
different ways we might discover these systems:

» Existing asset analysis—We have existing systems (see “Perform existing
asset analysis” on page 292).

» Automating tasks—We decide that certain tasks in the business process or
the business use case realization are candidates for automation. This implies
there is an underlying system or systems involved in providing the services.

2 This definition is actually the definition for a use case instance. In common with many concepts in
UML - a use case is a classifier and we tend to work with an instance.

Building SOA Solutions Using the Rational SDP

No matter which way we discover these underlying systems, system use cases
should be used to document the system behaviors. System use cases allow us to
go forward with the design and implementation of service (which might cross
more than one system). System use cases form useful input into test planning
and test cases. System use cases are also useful for project planning and
progress reporting as implementing a use cases and testing it works is a useful
milestone. Finally, system use cases form the basis for documentation of the
service.

One might be tempted to suggest that a use case is itself just another way of
thinking about a service or service operation. However, there are key differences
between a service and a use case. A service is typically stateless, as are the
operations on a service. A service operation call is a single challenge and
response, even though the response is typically asynchronous. Service
operations can be called in no particular order. In contrast, a system use case
has very specific internal state. A system use case defines a sequence of
interactions, a conversation where the sequence of communication is very
important. Poorly-formed use cases that ignore the definition of a use case can
end up looking like services but we try and avoid this. RUP provides extensive
guidelines on use cases, and for even more detailed guidance, we recommend
[Bittner and Spence].

Creating a system use case in RequisitePro

We create a use case in the UML model, or as an entry in RequisitePro. If we
start with RequisitePro, we select the relevant section of the RequisitePro
project, the System Use Case package (or a sub-package if we have already
defined a package for each system). Then we select New — Document and use
the System Use Case Specification document type (Figure 8-20). Make sure the
name of the document is the same as the name the use case. This makes the
document easier to find later on.

Document Properties
General Revision

Mame: |Inquire on application status
Description: Inquire on application status
Package: |Customer Service Browse...
Filename: |Inquire on application status v Show Tags
Directory: |C:"-AJK‘-.Rational"-.SOA"-.SOA SDP Resider Browse...
_l[z‘;;:::merd IS‘,'stem Use Case Specification I j

Figure 8-20 Creating a System Use Case document in RequisitePro

Chapter 8. Requirements 225

We have to edit the generated Word document and add the name of the system
use case. The template in RequisitePro uses a Word document property for the
name of the use case. This can be edited in Word:

» Select File — Properties and replacing <Use-Case Name> with the actual use
case name (for JK Enterprises, Inquire on application status).

» We then select the entire document and use the Word Update Field
command to replace the title in all sections of the document.

» One final edit is required in the document. We change the name of the first
section of the system use case template to Inquire on application status.
Now we are able to tag this as a requirement in RequisitePro.

To tag the use case name as a requirement, highlight the text in the document,
click Create new requirement and reenter the name of the use case in the pop-up
dialog in the Name field.

Requirement Properties: UCpending1
General l Revision Adtributes Traceability] Hierarchy] Discussions
Type: |UC: System Use Case j
Mame: ||
Text: Inquire on application status
Package: |Customer Service Browse...
Location: Inquire on application status
QK | Cancel | Help |

Figure 8-21 Creating a use case: Properties dialog

Click OK and save the use case to commit the use case to the RequisitePro
repository.

Create a use case model element in Software Architect

The next step is to create a use case model element in Software Modeler or
Software Architect.

We open the relevant UML model. In the JK Enterprises example, this is the
model entitled Use Case Model. We use the Project Explorer to expand the
model and open the Customer Service use case diagram. Once the diagram is
open and visible on drawing surface, we switch to the requirements perspective
and open the relevant RequisitePro project if required.

226 Building SOA Solutions Using the Rational SDP

We drag and drop the use case from the Requirements Explorer into the Project
Explorer as shown in Figure 8-22. This creates a new Use Case model element
in the model. We use the same drag and drop technique if we have already

created a use case UML element in the model and we want to link the

RequisitePro and UML use cases.

& Requirement - Use Case Model::Use Cases Packages::CustomerService::CustomerService UseCases - Rational Software Archi... E]@

M

N

[*Project Explarer 52

=R

{=3 »BOD for SOA [KLCHVSG.ITSC| |

=1z »Red Book JK Enterprises UML |
[@ Diagrams

= % Models

i Blank Model 1.1 (ASCI]

i Business Process Model

i Data Model 1.4 (ASCII

o Deployment Model 1.3

o Design Model 1.8 (ASC

o Domain Model 1.4 (AS(_

(#-E7 RequisitePro RM plan mi

i Service Model 1.7 (AS(

o Test 1.1 (ASCII kkv

«subsystem
)-8 Inquire
#- " (inquire on z

% Customer
3 CustomerSe
=-E3 salesManageme
= «subsystem
D Acﬁvahe{v}

(2]

(I 1l
B pequire... 52

Lﬂﬂ UC6 Inguire on application status

oo

= O || 42 Requirement Explorer 52

File Edit Mavigate Search Project Diagram Data Modelng Run Window Help

P - Q- P F i B

@ :

— -

e
Eg;\jfvogv
=08
S g ¥

= £ 504 SDP Redbook Project Content

<]
Link Clip...| = 8 || = Properties 2
5% |£|§| Property

g

*-(= 00 Business Vision
*-(= 01 Business Goals
[#-(= 02 Metrics and Key Performance Indicators
(= 03 Business Rules

(= 05 Project Vision

(= 06 Business Use Cases (project)

(= 07 Supplementary Requirements

(= 08 System Use Cases
== Customer Service

il
[#-[= Sales Management
All system use cases
== Other documents
f@ Reguirements Management Plan
(= Other types
[#-{= Traceability

I ,l>| (]

Priority
Stability
I

8o -
g

2] | |C | Requirement |

= (25} Modeling

2 N3

Customer

«subsysterme

CustomerService

Inquire on application statu

Requirement Query Results | Requirement Link Problems

[l
=3
Value

Medium
Medium

f[\:, Resource
=0
Palette = *
h Select
+, Zoom
= Note -
= UML Com...
[=-UseC... #
[Package
3 Use Case
% Actor
Subsystem
o Indude «
" Assodation

(= Composit...
(= Component
= Class
= Instance
(= Deployment
(= Geometri, ..
- = E
a
v

£

|
1
]

Figure 8-22 Creating a UML use case from a use case held in RequisitePro

As well as connecting the RequisitePro and UML model elements, we should

complete the specification of the use case in the Word document managed by
RequisitePro. This specification captures the steps of the use case,
pre-conditions and post-conditions, as well as any alternate flows or error
conditions. These are useful later on as input to design, test and user

Chapter 8. Requirements

227

documentation. The JK Enterprises example project includes a system use case
specification for Determine Applicant Eligibility.

Tooling implications

For the JK Enterprises example we are working at a single location or accessing
the tools from a central location. If the project is distributed, the following
considerations come into play:

» RequisitePro assumes we have a single central repository. Distributed
repositories are not supported.

» ClearQuest may be running MultiSite. There are implications for mastership of
any ClearQuest records that need to be considered when linking
requirements to any ClearQuest records. You have to ensure that you return
mastership to the right site (that also hosts the RequisitePro database) before
you connect a RequisitePro element to a multi-sited ClearQuest record.

RequisitePro has two versioning cycles:

» The first is the general revision history where any changes to the
RequisitePro project are captured.

» The second cycle is called baselining. Baselining takes a snapshot of the part
or all of the project and this baseline can be added to your version control
system (for example, Rational ClearCase). We recommend that backups are
made of the information held in other tools at the same time so that any
restored version has the correct references between other tools.

For more information about software configuration management, refer to the IBM
Redbooks publication Software Configuration Management: A Clear Case for
IBM Rational ClearCase and ClearQuest UCM, SG24-6399.

Where are we now?

At this point, we have:

» A requirements management plan that explains the kind of requirements we
use on this project. We have documented the process to permit changes to
these types, associated attributes and traceability.

» A set of business goals with associated KPIs and metrics.

» Business use cases representing the abstract business processes for the
business.

» A business process model detailing the activities of the to-be process flows.

228 Building SOA Solutions Using the Rational SDP

» A project vision of the SOA-solution we are developing including key features
» A supplementary specification containing the non-functional requirements

» System use cases for the automated tasks required by the service

References

For further information about requirements management, refer to these

resources:

» Use Case Modeling, Kurt Bittner and lan Spence, Addison-Wesley, 2002,
ISBN 0201709139.

» Practical Software Metrics for Project Management and Process
Improvement, Robert Grady, Prentice-Hall, 1992, ISBN 0137203845.

Chapter 8. Requirements 229

230 Building SOA Solutions Using the Rational SDP

Service and designh model
work products

This chapter describes two key work products that are used for modeling SOA
software: Service model and the design model.

These topics are covered:

The purpose of the service model

The contents of the service model (model elements and model diagrams)
The relationships from the service model to other models

The structure of the design model

The contents of the design model

Design model traceability

vVvyyvyvyYYyypy

In this chapter we focus on the work products themselves rather than how they
are created and modified. The tasks that touch on the service and design models
are covered in the chapters that follow.

© Copyright IBM Corp. 2007. All rights reserved. 231

Introduction

232

This chapter describes two key work products used for modeling our service
oriented software—the service model and the design model. They are the focus
of the analysis and design discipline.

Figure 9-1 shows these models and their relationships to other artifacts in our
development case.

Business Modeling Requirements
UseCa! Model Sugbl?meqtarv
Business Goal . 8 ,‘Specifications
«derives cdlars
“darives . -
Analysis & Design
=[S--aoL ederiver| [T-. :
Domain Model Tl S
«deriver | |..
Business
_‘ Process Model .-~ T
= _adlerive Implementation
Business {:'l i :
Analysis Model «retine»
Business -
Am'ﬂ;gﬁf re Implementation
Model

Figure 9-1 Other models related to the service and design models

A quick run-through of the relationships shown in Figure 9-1:

» Service Model — Use Case Model: Requirements specified as use cases in
the use case model have their associated software realization (at an
architectural level) described in the service model. Specifically, for each use
case in the use case model there is a service collaboration defined in the
service model. For a description of service collaborations see “Model
element: Service collaboration” on page 250.

» Service Model —» Domain Model: The domain model provides a
consolidated view of the business’ information. It can be used to influence the
scoping of atomic business application service providers. It can also provides
cues for forming information types and parameter types. For a description of
service providers see “Model element: Service provider” on page 239. For

Building SOA Solutions Using the Rational SDP

descriptions of information types and parameter types see “Model element:
Information type” on page 246 and “Model element: Parameter type” on
page 245.

» Service Model —» Business Process Model: For business process-driven
software applications, the modeled business processes can provide an
important input into service architecture. The architectural pattern described
in “Pattern 12: Drive applications using business processes” on page 101
derives service consumers in our service model from business processes in
the business process model. Furthermore, we have services exposed on our
composite business application service providers to support the automation
requirements of these processes. For a description of service consumers see
“Model element: Service consumer” on page 240.

» Service Model — Business Architecture Model: The functional areas
defined in our business architecture model provide information to scope both
our service partitions (in our development case we use these to represent
service-oriented systems) and our composite business application service
providers. For a description of service partitions see “Model element: Service
partition” on page 248. For a description of service providers see “Model
element: Service provider” on page 239.

» Service Model —» Supplementary Specifications: The supplementary
specifications influences the service policies that we apply to our service
specifications in the service model.

» Design Model — Service Model: The design model provides us with
detailed designs for each of the service-oriented parts in the service
model—namely the service consumers and service providers. The
service-oriented parts are realized by design components that each contain a
detailed design refinement. For instance, the provided services in the service
model will be realized by service components in the design model.

In this chapter, we first cover the service model and then the design model.

Note: The case study and development case in this book are both focused on
business-process-driven IT systems. However most of the core concepts
described extend to other kinds of IT systems as well.

Chapter 9. Service and design model work products 233

Service model work product

The service model is defined in RUP SOMA as follows (Figure 9-2):

The service model is a model of the core elements of a service oriented
architecture (SOA). The service model is used as an essential input to tasks
in implementation and testing.

— Rational
Unified Process®

[Glossary | £ Index | * Feedback | (D About

O, search L3 print

Em Where Am | b -

Role Sets | Team | The senice model is a model of the core elements of a Senice Oriente| |
RUP Service-Otiented Madeling & Architecture 1. Architecture (SOA). The senice model is used as an essential input to
Delivery Processes r Getting Started @ implementation and testing.
o E?E'; Eoi;aswl I | Domain: Analysis and Design

o [2] Disciplines Work Product Kinds: Model

o 5 Work Products -

[['L;% RUF Domains Expand All Sections E] Collag

o 8 Analysis and Design =
o a7 Analysis Model
o B Architectural Proof-of-Conce The service model is an abstraction of the IT serices implemented within an enter
o= [§ Data Migration Specification supporting the development of ane or more senvice-oriented solutions. It is used to
o~ Za Data Model =|| document the design of the software senices. It is a comprehensive, compasite w
o~ %fa Deployrment Model encompassing all sevices, providers, specifications, partitions, messages, collab
o % Design Model the relationships between them. It is needed to:
o Goal-Service Model
o= =7 MNavigation Map * |dentify candidate services and capture decisions about which services will a
o Reference Architecture exposed
- @ 2 Model = * Specify the contract between the service provider and the consumer of the se
o Software Architecture Docum + Associate Services with the components needed to realize these senices
o H UserInterface Prototype

o 38 Business Modeling

o= [EE Configuration & Change Manage &

o I8 Deployment —
i = = i "

- -
1] I Y| By v

Figure 9-2 Service model defined in RUP SOMA

We expand on this by noting the following facts about the service model:

» The service model is defined as an artifact (of type Model) which belongs to
the analysis and design domain.

» The service model is used to fully describe both structure and behavior of
service-oriented software systems at an architecturally significant level.

234 Building SOA Solutions Using the Rational SDP

» The UML 2 profile for software services provides UML profile support for
creating service models. It includes a set of stereotypes for core service
model elements.

Purpose of the service model

The service model is used by the software architect to capture the architectural
form of the software for a given SOA solution. RUP SOMA describes its purpose
as follows:
The service model is an abstraction of the IT services implemented within an
enterprise that supports the development of one or more service-oriented
solutions. It is used to conceive and document the design of the software
services.
It is a comprehensive, composite work product encompassing all services,
providers, consumers, specifications, partitions, messages, service
collaborations, and the relationships between them.

It is needed to:

— Identify candidate services and capture decisions about which services
are exposed

— Specify the contract between the service provider and the consumer of the
services

— Associate services with the components needed to realize these services

Figure 9-3 shows the roles in our development case related to the service model.

Q
Busi
Models Anatysis pf"?ugf
Level of Analyst
("‘.
Maodels ,f"%
Realizations Of /o
(_4 - Designer
_f(/ = Builds O
"—J"{ Responsible - Implemientations Of ,.—%
Software Far Service /o

Architect Model
Integrates Developer

Implementations Of O

Tests L
Implementations pntegrator

of .

Q

Tester

Figure 9-3 The roles related to the service model

Chapter 9. Service and design model work products 235

Contents of the service model

The service model is an essential part of our development case. It is based on
the service model described in RUP SOMA with some extensions. These
extensions take the form of additional model elements and a standard set of UML
diagrams.

The full set of model elements and diagrams contained in our service model are
described in this section. We cover first the model element artifacts, and then the

UML diagram artifacts.

Service model elements in our development case

A conceptual model showing the various model elements in our service model
and the relationships between them is provided in Figure 9-4.

Service-oriented
system structure Service-oriented

system behavior
! * Service-Orient

System 1.
1.*

Service Service
Collaboration Interaction

Service Gateway
*

" Service
Partition

Service Channel

contains

Service-oriented
parts

Seryi
Consy
consumes

1.7 ‘arameter
Type

=

Info Type
*

. Enumeration

Composite Service

Specification Service Specification

Figure 9-4 A conceptual model showing the service model elements

Each of these model elements is described further below.

236 Building SOA Solutions Using the Rational SDP

Note that for those model elements, where there is a stereotype described in the
UML 2 profile for software services, this is mentioned along with the matching
icon and the base UML element that the stereotype can be applied to.

For those model elements that are not covered by this profile, the keyword used
in our case study to annotate these model elements is mentioned along with the
base UML element that this keyword is applied to.

Model element: Service specification
Stereotype: <<serviceSpecification>>

Icon: ﬂ'}

Base UML element: Interface

Description

This artifact describes both the structural and behavioral specification for a
service.

It acts as a contract between the service client and service implementer; the
client understands how to interact with the service and the implementer
understands the behavior expected of its implementation.

A service specification also may identify a set of policies governing access to a
service or use of the service.

The use of an interface denotes a set of operations provided by a service. Note
that a service may implement more than one interface.

By convention it is possible to attach a protocol state machine or UML 2
collaboration to such a specification to denote the order of invocation of
operations on a service specification. With such a behavioral specification any
implementing service can be validated against not only a static but dynamic
specification of its structure and behavior.

Note: In our case study there are no constraints to the order in which our
service operations can be called and therefore we have attached state
machines to our service specifications.

We do however have service collaborations with defined service interactions
that specify interaction scenarios that our services need to support.

Although a service specification can be seen as having a life span of its own. In

our case study our service specifications are owned by the service providers that
provide them. Therefore the life span of the service specification is tied to the life
span of its owning service provider.

Chapter 9. Service and design model work products 237

238

Note that the service specification may only provide public features. The ability to
include properties on a service specification allows for the modeling of
resources.

Purpose
The following roles use the service specifications:

>

>

Implementers of the services, for an understanding of the interface the
service provides, but also the behavior its clients expect.

Implementers of service clients, for an understanding of the interface the
service provides, but also how the service expects to be interacted with.

Designers of services, in understanding the relationship between
specifications and the relationship between services and the specifications
they implement.

Those who design the next version of the system, to understand the
functionality in the service model.

Those who test the classes, to plan testing tasks.

The service specification has to provide both the provider (implementer) of a
service and the consumer of a service with a reasonable and complete
specification of the following aspects:

>

Interface specification—This specifies the set of operations provided by a

service realizing this specification. Each operation is named and provides a

signature composed of input, output, and exception messages. Alternatively,
parameter types may be used directly to type the parameters in our service

operations.

Behavioral specification—This specifies the protocol between the service
and the consumer. A service may be stateful (either explicit or implicit) or it
may have certain conversational requirements fulfilled by the client.

Policy specification—This specifies constraints and policies regarding the
operation of the service. Examples of policies include security, availability,
quality of service and so on; these also represent non-functional
requirements of the solution as a whole.

Variability specification—This specifies how the service is configured for
deployment and how it can support generic use cases through variability in its
behavior both dynamically (messages at runtime) and statically (through
configuration parameters).

Building SOA Solutions Using the Rational SDP

Related diagrams

» Service specification diagram—This is the primary diagram for showing the
structure of the service specification. It shows the service specification along
with its referenced messages, parameter types and enumerations. See
Figure 9-6 on page 254 for an example.

» Service provider specification diagram—This diagram shows how service
specifications are used to specify the services that are exposed by a service
provider. See Figure 9-8 and Figure 9-9 on page 256 for an example.

» Service consumer specification diagram—This diagram shows which
service specifications are required by a service consumer. See Figure 9-7 on
page 255 for an example.

» SOA structure diagram—This diagram shows where service specifications
are used in the overall service architecture. They provide specifications for
endpoints of service channels that link service consumers and service
providers. See Figure 9-11 on page 258 for an example.

Model element: Service provider
Stereotype: <<serviceProvider>>

lcon: .
Base UML element: Class, Component

Description

This artifact groups a related set of services that are provided as a unit in a
service architecture.

Service providers can be categorized in any number of ways but the following list
describes the types of service providers used in the JK Enterprises architectural
style:

» Composite business application service provider: Provides composite
business software system-specific services from atomic business application
services and infrastructure services. See “Model element: Composite service
specification” on page 243 for a description of composite service
specifications.

» Atomic business application service provider: Provides reusable atomic
business application services.

» Infrastructure service provider: Provides reusable infrastructure services.
Note that these are normally also atomic services.

The service provider types listed above are introduced by the architectural
patterns described in “Pattern 1: Factor composition logic away from process
logic” on page 76, “Pattern 2: Factor atomic reusable logic into lower reuse

Chapter 9. Service and design model work products 239

240

layers” on page 79, and “Pattern 3: Factor application-specific logic out of reuse
layers” on page 81.

The class acting as the service provider may not expose any attributes or
operations directly, only public ports may be provided (stereotyped as service)
and these are typed by either service specifications or composite service
specifications depending on whether the service is atomic or composite.

Purpose
The following roles use the service providers:

» Implementers, for an understanding of the aggregation of services and the
possible impact on deployment choices.

» Designers of services, in understanding the constraints of the grouping of
services.

» Those who design the next version of the system, to understand the
functionality in the service model, and specifically the constraints in moving
services between providers.

» Those who test the classes, to plan testing tasks.

Related diagrams

» Service provider specification diagram—This diagram is the primary
diagram for showing the external view of the service provider. It shows the
services that are exposed by the service provider, along with the provided and
required service specifications for each of these services. See Figure 9-8 and
Figure 9-9 on page 256 for an example.

» SOA structure diagram—This diagram shows where services providers are
used in the overall service architecture. See Figure 9-11 on page 258 for an
example.

Model element: Service consumer
Stereotype: <<serviceConsumer>>
Icon:]

Base UML element: Classifier

Description

This artifact represents elements of a service architecture that do not provide
services themselves, but rather are clients of services.

They are those parts of the service architecture that exist at the boundary
between the system and its external users (described as actors in the use case
model).

Building SOA Solutions Using the Rational SDP

Service consumers can be seen as the architecturally significant software
elements that actors interact with, and which in turn make calls on the services in
the service architecture (specifically, according to the pattern that we follow in our
case study, they contain executable business processes and make calls on
composite services—see “Pattern 12: Drive applications using business
processes” on page 101).

We model two things on our service consumers:

» The inputs that come from actors interacting with the service consumer.

» The required service specifications that are called in response to these
inputs.

Where service consumers contain executable business processes we note the

following:

» The inputs on these service consumers correspond to tasks that exist in the
business processes.

» Tasks receive their inputs from either human or system actors.

» A business process will have a combination of manual and automated tasks.
By definition, only automated tasks result in calls on services from the service
consumer.

Purpose
The following roles use the service consumers:

» Implementers, for an understanding of what consumers need
implementation in the service architecture.

» Service interaction designers to represent them in service interactions.

» Those who design the next version of the system, to understand the
functionality in the service model.

» Those who test the classes, to plan testing tasks.

Related diagrams

» Service consumer specification diagram—This diagram is the primary
diagram for showing the external view of the service consumer. It shows the
inputs from actors that interact with this service consumer, along with the
required service specifications that are used in response to these inputs. See
Figure 9-7 on page 255 for an example.

» SOA structure diagram—This diagram shows where services providers are
used in the overall service architecture. See Figure 9-11 on page 258 for an
example.

Chapter 9. Service and design model work products 241

242

Model element: Service
Stereotype: <<service>>

lcon: iop

Base UML Element: Port

Description

This artifact represents one of the core elements of a service-oriented
architecture (SOA). A service is provided by a service provider and is either an
instance of a service specification (for an atomic service) or a composite service
specification (for a composite service).

The service provides the end-point for service interaction (in Web service
terminology) whereas the definition of these interactions are provided by the
service specification.

In the case of a composite service, the service not only identifies the provided
service specification but also the required service specifications (see “Model
element: Composite service specification”).

Purpose
The following roles use the services:

» Implementers, for an understanding of the roles the service plays and how
the service specification is used by the service.

» Designers of other services in the understanding of the collaborations in
which services participate.

» Service interaction designers to represent them in service interactions.

» Those who design the next version of the system, to understand the
functionality in the service model.

» Those who test the classes, to plan testing tasks.

Related diagrams

» Service provider specification diagram—This diagram shows the services
exposed by a service provider, along with the provided and required service
specifications involved. See Figure 9-8 and Figure 9-9 on page 256 for an
example.

» Service interaction diagram—This diagram shows the services as they
occur in defined service interactions (which exist as part of the defi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>