
ibm.com/redbooks

Building SOA Solutions
Using the Rational SDP

Ueli Wahli
Lee Ackerman

Alessandro Di Bari
Gregory Hodgkinson

Anthony Kesterton
Laura Olson

Bertrand Portier

SOA service identification, specification,
realization, and implementation

SOA foundation from modeling to
implementation to testing

Service-oriented architecture
in practice

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Building SOA Solutions Using the Rational SDP

April 2007

International Technical Support Organization

SG24-7356-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (April 2007)

This edition applies to IBM Rational software products, such as Application Developer,
ClearCase, ClearQuest, ClearQuest Test Manager, BuildForge, Functional Tester, Manual
Tester, Method Composer, Performance Tester, Portfolio Manager, ProjectConsole,
RequisitePro, SoDA, Software Architect, Software Modeler, and Unified Process, as well as IBM
WebSphere software products, such as Application Server, Business Modeler, Integration
Developer, Process Server, and Service Registry and Repository.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this IBM Redbooks publication . xvi
Become a published author . xviii
Comments welcome. xix

Chapter 1. Introduction . 1
SOA foundation . 2
SOA foundation life cycle . 2

Model . 3
Assemble . 4
Deploy . 4
Manage . 5
Governance. 5

SOA foundation reference architecture . 6
Core components of the logical architecture. 7
Supporting components of the logical architecture . 8

SOA foundation scenarios . 10
Out of scope topics with references to other books . 12

Composite applications and business process implementation 12
Reporting and documentation . 13
Software configuration management . 15
Governance. 16

Summary . 16

Chapter 2. JK Enterprises case study . 17
Introduction. 18
An overview of JK Enterprises . 18
Business problems . 20
Proposed solution. 21

Account verification improvements . 21
An analysis of the business problems and our approach. 22

Approach. 23
Assumptions. 24

Chapter 3. SOA governance . 25
Importance of governance . 26
© Copyright IBM Corp. 2007. All rights reserved. iii

Definitions. 27
Governance. 27
IT governance . 27
SOA governance. 28

Service life cycle. 29
SOA governance life cycle . 29
IBM products for SOA governance. 31

Rational Method Composer . 32
Rational Portfolio Manager . 33
Rational RequisitePro . 34
Rational ClearQuest and Rational ClearCase. 35
WebSphere Service Registry and Repository. 36

Compliance . 38
References . 38

Chapter 4. Architecture and design. 41
What is an application in an SOA environment? . 42

Traditional software applications. 42
Architecture of software systems . 43
Service-oriented IT systems . 44
Business-aligned systems. 45
So the answer is.... 48

Modeling service architectures. 48
Different forms of a service . 49
Architecturally significant services . 57
Decomposition and re-assembly of applications. 59

Services and reuse. 62
Some different types of reuse . 62
What can be reused? . 66
What has to be in place to enable reuse?. 68

SO systems and integration . 69
Standard integration levels . 69
SOA and integration . 71

Reusing architecture and design experience . 73
Architectural styles . 73
Architectural patterns . 74
JK Enterprises case study architectural style . 75

Chapter 5. Process and methods. 105
Introduction. 106
IBM Rational Unified Process (RUP) . 106

Core principles of RUP . 108
Key concepts. 109
iv Building SOA Solutions Using the Rational SDP

How we use RUP in this book. 113
What is a development case? . 114
JK Enterprises development case . 114
Rational Method Composer . 114
Codify the development case . 116

Create method content . 117
Create the process . 124
Publish the process as HTML . 130
Export the process as a project plan. 134
Export the development case as a plug-in . 136

References . 136

Chapter 6. Modeling and tools . 137
Importance of modeling . 138

Unified Modeling Language . 141
A brief overview of UML . 142
Model-driven development . 145
UML 2 . 149
SOA modeling . 153

Importance of architecture . 155
Overview of IBM architect tools . 159

Eclipse. 160
Rational Software Architect and Rational Software Modeler 161

References . 168

Chapter 7. Business modeling . 169
Introduction. 170
Business modeling . 170

Key roles in business modeling. 171
Typical steps in business modeling. 172

Inputs to the business modeling discipline . 173
A word about tooling. 173
Business architecture . 174
Component business modeling . 175

Functional area analysis . 177
Business vision. 177

Business glossary . 181
Business use cases . 184

Refining the business use case . 187
Business use case realization. 188

Business rules . 188
Business process model . 189
Working with IBM WebSphere Business Modeler . 190
 Contents v

Process simulation . 196
Account Opening example . 197
Importing the model . 197
Visualizing a business model as UML. 198

Business goal . 198
Key performance indicators and metrics . 199

JK Enterprises goals . 200
Connecting goals, KPIs, and metrics . 201

Defining KPIs and metrics in WebSphere Business Modeler 203
Measuring a business process in Business Monitor 204

Domain modeling . 204
What do we have now? . 204
References . 205

Chapter 8. Requirements . 207
Requirements management in SOA. 208
Requirements management plan . 210
Requirement types and attributes . 210
Keeping requirements visible . 213

Requirement perspective in development tools . 214
Enterprise-level requirements . 217
Glossary . 219
Business use cases . 219
Service policies . 220
Project-level requirements . 221
Project vision . 221
Supplementary requirements . 222
System use cases . 224

Creating a system use case in RequisitePro . 225
Create a use case model element in Software Architect 226

Tooling implications . 228
Where are we now? . 228
References . 229

Chapter 9. Service and design model work products 231
Introduction. 232
Service model work product . 234

Purpose of the service model . 235
Contents of the service model. 236
Service model elements in our development case 236
Service model diagrams in our development case 253
Service model related patterns . 259
Tasks affecting the service model. 262
vi Building SOA Solutions Using the Rational SDP

Design model work product . 263
Purpose of the design model . 263
Model structure (samples from JK enterprises case study) 266
Contents of the design model . 270
Traceability . 274

Chapter 10. Service identification . 277
Introduction. 278
Inputs to service identification . 278
Tools and models used for service identification . 281
Identify services from goals . 281

Rational Software Architect and RequisitePro integration 282
Identify services from goals. 283
Create traceability from services to goals . 284

Perform business process analysis . 286
Identify service elements from business process model 287

Perform existing asset analysis . 292
Output of service identification for JK Enterprises . 297
References . 298

Chapter 11. Service specification . 299
Introduction. 300
Tools and capabilities used for service specification 300

Rational Software Architect. 301
UML and the UML 2 profile for software services 303
Process guidance . 303

Overview of the service specification activity . 307
Task 1: Structure service architecture . 307

Step 1: Validate and classify services. 308
Step 2: Identify service partitions . 314
Step 3: Model atomic service providers . 319
Step 4: Model composite service providers . 334
Step 5: Model service consumers . 344
Step 6: Assign parts to service partition . 346
Step 7: Consider service policies . 355

Task 2: Refine service architecture . 356
Step 1: Design service collaborations . 357
Step 2: Design service interactions. 359
Step 3: Fully specify service consumers . 366
Step 4: Design parameter types, messages, and info types. 368
Step 6: Validate the final service model . 384

Task 3: Model service assemblies . 384
Task 4: Model service deployment. 385
 Contents vii

Output of service specification for JK Enterprises . 385
Next steps . 385
References . 385

Chapter 12. Service realization . 387
Introduction. 388

Tools and capabilities used for service realization 388
Inputs to service realization. 388

Creating the design model . 389
Create the model structure . 390
Prepare the model for transformations . 391
Create service components . 392
Refine service components. 395
Using the Reusable Asset Specification (RAS). 403
Design class structure. 404
Design class behavior (interaction diagrams) . 406
Comparison with traditional RUP object-oriented approach 409

Output of service realization for the JK Enterprises example. 411
Validate model . 411
Reverse transformation from Java code . 413
Architectural analysis . 416

Chapter 13. Service implementation . 419
Introduction. 420

Inputs to service implementation. 421
Implementation options . 422
Tooling options . 423

Overview . 423
Rational Application Developer roles and capabilities 424

Setup the development environment . 426
Install the model transformation feature . 426
Download the sample code. 426
Create a test server in Rational Software Architect 426
Enable the Web services development capability 428

Top-down development of a service . 430
Prepare for top-down development. 432
Model transformations. 434
Visualize and modify the WSDL . 449
Create a skeleton EJB Web service from a WSDL 451
Implement the business logic . 456
Test the service. 458
Summary of top-down development of a service 464

Third-party service . 464
viii Building SOA Solutions Using the Rational SDP

Prepare for sample third-party sample . 465
Validating the WSDL file . 466
Testing the third-party Web service . 467
Summary of third-party service . 471

Indirectly exposing an enterprise service . 472
Preparing for sample. 473
Implementation . 473
Summary of indirectly exposing an enterprise service 481

Updating the design . 481
Output of service implementation. 482

Chapter 14. Service testing . 483
Introduction. 484

Inputs to testing. 484
SOA testing from a technology and application perspective 485

Loose coupling between services and requesters 486
Heterogeneous technologies intertwined in the same solution 487
Lack of total control over all elements of a solution 487
New standards and technologies . 488
Asynchronous nature . 488
Application failures . 488

SOA: Testing strategy . 490
At what level do you test? . 491
Who is in charge of testing? . 491
How to define the right test cases? . 498
What is the integration strategy?. 498
What are the test completion criteria?. 499
Effective test automation. 499

IBM products for SOA testing. 500
Rational Application Developer . 502
Rational ClearCase . 503
Rational ClearQuest . 503
Rational Functional Tester . 503
Rational Manual Tester . 504
Rational Performance Tester . 505
Rational Tester for SOA . 505
IBM Web Services Navigator . 507

Test work products . 507
Test roles . 509
Test process. 511

Test tooling . 512
Setup the test environment . 513

Download the sample code. 513
 Contents ix

Import the project interchange file. 513
Stat the server and add the projects . 513
Verify the Open Account Application. 514

Managing testing artifacts . 515
Creating reusable test scripts with Rational Manual Tester 521

Create test scripts in Manual Tester . 522
Run the test script . 527

Designing and executing functional tests with Rational Functional Tester. . . 530
Summary . 530
Where to find more information . 530

Chapter 15. Creating reusable assets . 533
Assets, RAS, and asset life cycle. 534

Assets . 534
Reusable Asset Specification . 534
Asset life cycle . 535

Package JK Enterprises services as reusable assets 536
Asset or service?. 536
Package the service model as a reusable asset. 536
Publish service to Service Registry and Repository 541

Other assets . 543
References . 543

Chapter 16. Pattern-based engineering with Rational Software
Architect .. 545

Pattern-based engineering . 546
Extensibility . 550

Eclipse extensibility . 550
Rational Software Architect extensibility . 554
Creating profiles . 555
Authoring transformations . 557
Authoring design patterns (JK Enterprises composite service

specification) . . 560
Using the Reusable Asset Specification (RAS) to distribute and manage

assets . 573
References . 574

Appendix A. Additional material . 575
Locating the Web material . 575
Using the Web material . 576

System requirements for downloading the Web material 576
Software requirements . 576
How to use the Web material . 576

Loading the RequisitePro projects . 577
x Building SOA Solutions Using the Rational SDP

Loading the RequisitePro project templates . 578
Loading the WebSphere Business Modeler project . 579
Loading the models into Rational Software Architect 583
Loading the implementation into Software Architect 585

Running the application. 586
Loading other projects. 587

Installing the sample pattern RAS asset . 588
Rational Method Composer plug-in . 591

Abbreviations and acronyms . 593

Related publications . 595
IBM Redbooks . 595
Other publications . 595
Online resources . 596
How to get IBM Redbooks . 596
Help from IBM . 597

Index . 599
 Contents xi

xii Building SOA Solutions Using the Rational SDP

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

developerWorks®
z/OS®
Build Forge™
ClearCase®
ClearQuest®
Component Business Model™
CICS®
DataPower®
DB2®

IBM®
IMS™
MQSeries®
Objectory™
ProjectConsole™
PureCoverage®
PurifyPlus™
Rational Unified Process®
Rational®

Redbooks™
Redbooks (logo) ™
Requisite®
RequisitePro®
RUP®
SoDA®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation
and/or its affiliates.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaScript,
JavaServer, JavaServer Pages, JSP, J2EE, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Visio, Visual Basic, Visual Studio, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Pentium, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xiv Building SOA Solutions Using the Rational SDP

Preface

This IBM® Redbooks® publication explains the concepts and practice of
developing service-oriented architecture (SOA) based solutions that use the IBM
Rational® Software Delivery Platform (SDP). It uses the latest version of IBM
Rational Unified Process® (RUP®) that includes service-oriented modeling and
architecture (SOMA) content from IBM Global Business Services.

This book aims to help practitioners that are working on SOA-based projects.
Practitioners can learn the core concepts behind SOA as well as how to use the
tools to automate the tasks involved in developing SOA-based solutions.

The main thread of this book takes business requirements, business
architecture, and existing assets as input, and derives the elements of a
service-oriented architecture that are needed to realize the business
requirements. The book covers architecture in detail, and shows how the
architecture is realized through service identification, specification, realization,
implementation, and testing. The book is organized around a practical example
case study and provides tool and process guidance as well as additional
references of key topics.
© Copyright IBM Corp. 2007. All rights reserved. xv

The team that wrote this IBM Redbooks publication
This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, San Jose Center.

Ueli Wahli is a Consultant IT Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 20 years
ago, Ueli worked in technical support at IBM Switzerland. He writes extensively
and teaches IBM classes worldwide about WebSphere® Application Server, and
WebSphere and Rational application development products. In his ITSO career,
Ueli has produced more than 40 IBM Redbooks. Ueli holds a degree in
Mathematics from the Swiss Federal Institute of Technology.

Lee Ackerman is a Senior Product Manager with the Rational Learning Services
and Solutions team in Canada. He has 12 years of experience in the software
development field. He has worked at IBM for seven years. He holds a bachelor's
degree in Business Administration from the University of Regina. His areas of
expertise include model-driven development, patterns-based engineering, and
service-oriented architecture. He has written extensively on these topics and
often presents at conferences, workshops, and training events.

Alessandro Bertrand Laura Ueli Anthony Gregory
xvi Building SOA Solutions Using the Rational SDP

Alessandro Di Bari is a Senior IT Architect for IBM Rational Services in Italy. He
has 16 years of experience in software development field and nine years using
IBM Rational tools. He holds bachelor’s degree in Computer Science from the
University of Turin. His areas of expertise include the software development
process, requirements management, UML modeling, object-oriented
programming and software architectures. As part of Rational Services, he
provides consultancy to customers on Rational Unified Process adoption and
SOA transition.

Gregory Hodgkinson is founder, director, and the SOA lead at 7irene, an IBM
Tier 1 Business Partner in the United Kingdom. He has 10 years experience
initially in the field of component-based development (CBD) moving seamlessly
into the field of service-oriented architecture (SOA). He holds a bachelor’s
degree, (Hons) cum laude, in Mathematics and Computer Science from the
University of the Orange Free State, South Africa. His area of expertise is the
software development process and method, and he assists 7irene and IBM
customers in adopting RUP framework-based agile development process and
SOA methods. He is still very much a practitioner and has been responsible for
service architectures for a number of FTSE 100 companies. He presents on agile
SOA process and methods at both IBM and other events.

Anthony Kesterton is a Technical Consultant for IBM Rational Financial
Services Sector in the United Kingdom. He has 17 years of experience in IT and
14 years using various IBM Rational tools. He holds a master’s degree in Applied
Computer Science from Rhodes University in Grahamstown, South Africa. His
areas of expertise include the development process, requirements management,
business modeling, and analysis and design in UML using the IBM Rational
tooling, and helping customers implement process and tools. He frequently
presents these topics at external conferences and internal IBM conferences
worldwide.

Laura Olson is a Senior IT Specialist for the Global e-Business Transformation
group in the Rochester, Minnesota. She has nine years of experience in the
technology field. She holds bachelor’s degree in Computer Science from the
University of Wisconsin, La Crosse. Her areas of expertise in IBM products
includes WebSphere Portal, WebSphere Application Server, and Rational SDP.

Bertrand Portier is an IT Architect for IBM Software Group SOA Advanced
Technologies in Canada. He holds a diplome d'ingenieur (French Master of
Science degree) in Computer Engineering from Polytech' Lille, France. He has
worked at IBM for seven years. His areas of expertise include service-oriented
architecture, Web services, model-driven and asset-based development. He has
written extensively on Java™, Web services, and SOA.
 Preface xvii

Thanks to the following people for their contributions to this project:

� Alan Brown, IBM RTP, Ali Arsanjani, IBM Cedar Rapids, Ava Chun, IBM
Atlanta, for providing help and reviews.

� Laura Rose, IBM Raleigh, Lawrence Smith, IBM Cupertino, Christophe
Telep, IBM France, Charles Shriver, IBM Austin, and Karen Smolar, IBM
Poughkeepsie, for their technical expertise, contributions and content reviews
of the service testing chapter.

� Paul Murray, IBM Glasgow, for his assistance in setting up the ClearQuest®
Test Management environment.

� Peter Eeles, IBM UK, for reviewing and providing guidance for the chapter
about architecture and design.

� John Smith, IBM Australia, and Simon Johnston, IBM Durham, (along with
Ali Arsanjani) for their work on the RUP SOMA plug-in, and their assistance in
helping us understand the changes to RUP introduced by the addition of the
SOMA content.

� Robin Bater, IBM Seattle, for his assistance in the business modeling and
requirements chapters. Jim Heumann, IBM Seattle, for his suggestions and
feedback on the general topic of requirements management and SOA.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbooks
publication dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You'll have the opportunity to team
with IBM technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xviii Building SOA Solutions Using the Rational SDP

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xix

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx Building SOA Solutions Using the Rational SDP

Chapter 1. Introduction

This chapter introduces software-oriented architecture (SOA), the IBM SOA
foundation and life cycle, and the reference architecture.

We also describe what aspects of SOA application development are not covered
in this book.

1

© Copyright IBM Corp. 2007. All rights reserved. 1

SOA foundation

The IBM SOA foundation is an integrated, open standards based set of IBM
software, best practices, and patterns designed to provide what you need to get
started with SOA from an architecture perspective. The key elements of the IBM
SOA foundation are the SOA life cycle (model, assemble, deploy, manage),
reference architecture, and SOA scenarios.

To gain a better understanding of the SOA foundation we explore the following
defining elements:

� SOA foundation life cycle
� SOA foundation reference architecture
� SOA foundation scenarios

SOA foundation life cycle

IBM customers have indicated that they think of SOA in terms of a life cycle. As
seen in Figure 1-1, the IBM SOA foundation includes the following life cycle
phases:

� Model
� Assemble
� Deploy
� Manage

There are a couple of key points to consider about the SOA life cycle. First, the
SOA life cycle phases apply to all SOA projects. Second, the activities in any part
of the SOA life cycle can vary in scale and the level of tooling used depending on
the stage of adoption.

Note: For a more detailed explanation of the SOA foundation, refer to IBM
SOA Foundation, An Architectural Introduction and Overview V1.0 found at:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-
whitepaper.pdf
2 Building SOA Solutions Using the Rational SDP

http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitepaper.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitepaper.pdf

Figure 1-1 IBM SOA foundation life cycle

Model

Modeling is the process of capturing the business design from an understanding
of business requirements and objectives. The business requirements are
translated into a specification of business processes, goals and assumptions for
creating a model of the business. Many businesses do not go through a formal
modeling exercise. In some case, businesses that do perform modeling use
primitive techniques such as drawing the design in Visio® or using text
documents.

Capturing the business design using a sophisticated approach that includes the
use of specialized tooling lets you perform what-if scenarios with various
parameters the business may experience. The process can then be simulated
using those parameters to predict the effect that process has on the business
and IT systems. If the achieved results do not match the business objectives,
then the process definition can be refined.

The model also captures key performance indicators (KPIs), such as business
metrics that are important measurements of your business. For example, this
could include a measure of the new accounts that you have opened in a given
month. These key performance indicators are input to the assembly of the
application. In addition, the indicators can be monitored in production to capture
the critical data to measure if the objectives are being met.

Discover
Construct & Test
Com pose

G ather requirem ents
Mode l & S im ulate
D es ign

Integrate peop le
Integrate p rocesses
M anage and in tegrate
info rm atio n

M anage app lications & services
M anage identity & com pliance
Monito r business m etrics

F inanc ial transparency
Bus iness/IT alignm ent
P rocess contro l
 Chapter 1. Introduction 3

Assemble

The business design is used to communicate the business objectives to the IT
organization that will assemble the information system artifacts that implement
the design. The enterprise architect works closely with the business analyst to
convert the business design into a set of business process definitions, as well
activities used to derive the required services from the activity definitions. The
enterprise architect and business analyst work with the software architect to flesh
out the design of the services.

During the process of resolving the design and implementation of the modeled
business processes and services, a search should be performed of existing
artifacts and applications in an effort to find components that meet the needs of
the design. Some applications fit perfectly; some have to be re-factored; and
some have to be augmented to meet the requirements of the design.

These existing assets should be rendered as services for assembly into
composite applications. Any new services required by the business design have
to be created. Software developers should use the SOA programming model to
create these new services.

Lastly, the assemble phase includes applying a set of policies and conditions to
control how your applications operate in the production runtime environment. For
example, these policies and conditions include business and government
regulations. In addition, the assemble phase includes critical operational
characteristics such as packaging deployment artifacts, localization constraints,
resource dependency, integrity control, and access protection.

Deploy

The deploy phase of the life cycle includes a combination of creating the hosting
environment for the applications and the deployment tasks of those
applications.This includes resolving the application’s resource dependencies,
operational conditions, capacity requirements, and integrity and access
constraints.

A number of concerns are relevant to construction of the hosting environment
including the presence of the already existing hosting infrastructure supporting
applications and pre-existing services. Beyond that, you need to consider
appropriate platform offerings for hosting the user interaction logic, business
process flows, business services, access services, and information logic.
4 Building SOA Solutions Using the Rational SDP

Manage

The manage phase includes the tasks, technology and software used to manage
and monitor the application assets such as services and business processes that
are deployed to the production runtime environment.

Monitoring is a critical element of ensuring the underlying IT systems and
application are up and running to maintain the service availability requirements of
the business. Monitoring also includes monitoring performance of service
requests and timeliness of service responses. In addition, monitoring includes
maintaining problem logs to detect failures in various services and system
components, as well as localizing failures and restoring the operational state of
the system.

Managing the system also involves performing routine maintenance,
administering and securing applications, resources and users, and predicting
future capacity growth to ensure that resources are available when the demands
of the business call for it. The security domain includes such topics as
authentication, single sign-on, authorization, federated identity management,
and user provisioning.

The manage phase also includes managing the business model, and tuning the
operational environment to meet the business objectives expressed in the
business design, and measuring success or failure to meet those objectives.
SOA is distinguished from other styles of enterprise architecture by its correlation
between the business design and the software that implements that design, and
its use of policies to express the operational requirements of the business
services and processes that codify the business design. The manage phase of
the life cycle is directly responsible for ensuring those policies are being
enforced, and for relating issues with that enforcement back to the business
design.

Governance

SOA governance is critical to the success of any SOA project. Governance helps
clients extend the planned SOA across the enterprise in a controlled manner.
SOA governance has four core objectives or challenges:

� Establish decision rights
� Define high value business services
� Manage the life cycle of assets
� Measure effectiveness

Note: For more detailed information about SOA governance, refer to
Chapter 3, “SOA governance” on page 25.
 Chapter 1. Introduction 5

SOA foundation reference architecture

This section describes the SOA foundation reference architecture (Figure 1-2),
which includes the components and middleware services used by applications in
the runtime environment.

Figure 1-2 SOA foundation reference architecture: Solution view

Figure 1-2 shows the SOA foundation reference architecture solution view used
to decompose an SOA design. SOA puts a premium on the role of the enterprise
architect, who is responsible for spanning between the business design and the
information system that codifies that design.

When taking a top-down approach, the enterprise architect starts by identifying
the business processes and business services used by the business users. The
business users are consumers of the processes and services. Business
processes should be treated as compositions of other business processes and
services, and therefore should be decomposed into their subordinate
sub-processes and services.

Services and business processes are then detailed into service components.
Service components include a detailed set of definition metadata used to
describe the service to the information system. Services can be aggregated into

Atomic Service Composite Service Registry

Services
atomic and composite

Operational Systems

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata A

rchitecture (m
eta-data) &

B
usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
6 Building SOA Solutions Using the Rational SDP

module assemblies. The module assemblies are used to establish related design
concerns, and begin the planning to determine what teams will collaborate to
implement the related services to be deployed as a single unit.

The resulting set of business process definitions, services, and schemas make
up the logical architecture of the application. The enterprise architect then needs
to map that logical architecture to a physical architecture.

We have included a summary description for each of the services found in the
logical architecture shown in Figure 1-3. The services found in the center
(Interaction, Process, Information, Partner, Business Application, Access) are the
core set of services used by application within the runtime environment when
deployed. The other services (outer services) are used in support of the core
services.

Figure 1-3 SOA Foundation Reference Architecture: Middleware services view

Core components of the logical architecture

This section includes a brief description on the following core components of the
logical architecture.

Interaction services
Interaction services provide the capabilities required to deliver IT functions and
data to users, meeting their specific preferences.

Business Innovation & Optimization Services
Facilitates better decision-making

with real-time business information

Interaction Services
Enables collaboration

between people,
processes & information

Process Services
Orchestrate and

automate business
processes

Information Services
Manages diverse

data and content in a
unified manner

Facilitates communication ESB between services

Partner Services
Connect with trading

partners

Business App Services
Build on a robust,

scaleable, and secure
services environment

Access Services
Facilitates interactions

with existing information
and application assets

Infrastructure Services
Optimizes throughput,

availability and performance

Integrated
environment

for design
and creation
of solution

assets

Manage
and secure
services,

applications
&

resources

D
ev

el
op

m
en

t S
er

vi
ce

s

IT
 S

er
vi

ce
M

an
ag

em
en

t

 Chapter 1. Introduction 7

Process services
Process services provide the control capabilities required to manage the flow
and interaction of multiple services in ways that implement business processes.

Business application services
Business application services are called by service consumers. Service
consumers include other components in the logical architecture such as portal or
a business processes.

Information services
Information services provide the capabilities necessary to federate, replicate and
transform disparate data sources.

Access services
Access services provide bridging capabilities between core applications,
prepackaged applications, enterprise data stores and the ESB to incorporate
services that are delivered through existing application into an SOA.

Partner services
Partner services provide the document, protocol, and partner management
capabilities for business processes that involve interaction with the outside
partners and suppliers.

Supporting components of the logical architecture

This section includes a brief description of the supporting components of the
SOA foundation logical architecture used in support of the core components.

� Enterprise Service Bus
� Business innovation and optimization services
� Development services
� IT service management
� Infrastructure services

Enterprise Service Bus
The Enterprise Service Bus (ESB) or simply bus, provides an infrastructure that
removes the direct connection dependency between service consumers and
providers. Consumers connect to the bus and not the provider that actually
implements the service. This type of connection further insulates the consumer
from the provider.
8 Building SOA Solutions Using the Rational SDP

A bus also implements further value add capabilities, such as security and
delivery assurance. It is preferred to implement these capabilities centrally within
the bus at an infrastructure level rather than within the application. The primary
driver for an ESB, however, is that it increases decoupling between service
consumers and providers.

Although it is relatively straight forward to build a direct link between a consumer
and provider, these links can lead to an interaction pattern that consists of
building multiple point-to-point links that perform specific interactions. With a
large number of interfaces this quickly leads to the build up of a complex
spaghetti of links with multiple security and transaction models. When routing
control is distributed throughout the infrastructure, there is typically no consistent
approach to logging, monitoring, or systems management. This type of
environment is difficult to manage or maintain and inhibits change.

Business innovation and optimization services
Business innovation and optimization services are primarily used to represent
the tools and the metadata structures for encoding the business design,
including the business policies and objectives.

Business innovation and optimization services exist in the architecture to help
capture, encode, analyze and iteratively refine the business design. The services
also include tools to help simulate the business design. The results are used to
predict the effect of the design, including the changes the design has on the
business.

Development services
Development services encompass the entire suite of architecture tools,
development tools, visual composition tools, assembly tools, methodologies,
debugging aids, instrumentation tools, asset repositories, discovery agents, and
publishing mechanisms needed to construct an SOA-based application.

Note: An ESB can be thought of as an architectural pattern, with an
implementation to match the deployment needs. There are two IBM ESB
products:

� IBM WebSphere Enterprise Service Bus
� IBM WebSphere Message Broker

In addition, there are a number of products that extend the capabilities of
these ESBs, including DataPower® XML Security Gateway XS40.
 Chapter 1. Introduction 9

IT service management
Once the application has been deployed to the runtime environment it needs to
be managed along with the IT infrastructure on which it is hosted. IT service
management represents the set of management tools used to monitor your
service flows, the health of the underlying system, the utilization of resources, the
identification of outages and bottlenecks, the attainment of service goals, the
enforcement of administrative policies, and recovery from failures.

Infrastructure service
Infrastructure services form the core of the information technology runtime
environment used for hosting SOA applications. These services provide the
ability to optimize throughput, availability, performance and management.

SOA foundation scenarios

The SOA foundation scenarios (or simply SOA scenarios) are representative of
common scenarios of use of IBM products and solutions for SOA engagements.
The SOA scenarios quickly communicate the business value, architecture, and
IBM open standards-based software used within the SOA scenario. The SOA
scenarios can be implemented as part of an incremental adoption of SOA
growing from one scenario to using elements of multiple scenarios together. The
concept of realizations are used to provide more specific solution patterns and
IBM product mappings within the SOA scenarios.

The SOA scenarios can be used as a reference architecture implementation
(starting point) to accelerate the SOA architecture and implementation of your
customer scenario. Figure 1-4 displays the SOA scenarios and the relationship
between them.
10 Building SOA Solutions Using the Rational SDP

Figure 1-4 SOA scenarios and entry points

� Service creation—More details about this scenario can be found in Patterns:
SOA Foundation Service Creation Scenario, SG24-7240.

� Service connectivity—More details about this scenario can be found in
Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228.

� Interaction and collaboration services

� Business process management—More details about this scenario can be
seen in Patterns: Business Process Management with the SOA Foundation,
SG24-7234.

� Information as a service

The scenarios can be used together and adopted incrementally. For example, the
other scenarios commonly include service creation and often want connectivity.
In addition, the scenarios can be used together, such as a portal accessing a
business process or a portal accessing an information service through an ESB
from a service consumer.

SOA
Design

SOA
Governance

SOA Security
& Management

Reuse:
Service
Creation

Connectivity:
Service

Connectivity

People:
Interaction &
Collaboration

Services

Process:
Business
Process

Management

Information:
Information
as a Service

SOA Scenarios
 Chapter 1. Introduction 11

SOA design, governance, security, and management should be used in each of
the SOA scenarios based on customer requirements.

SOA governance should (or almost must) be used to adopt SOA across the
enterprise in a controlled manner with the objective of aligning the SOA initiative
with the business objectives. Governance includes setting a baseline for
measuring improvements, tracking SOA projects, building a pool of skilled
resources, and establishing the structure for making decisions about SOA
initiatives.

Companies that adopt an SOA need a solution for managing and monitoring
services. In addition, they need of a security model that enables secure business
transactions across enterprises and the Internet. The security domain includes
topics such as authentication, single sign-on, authorization, federated identity
management, and user provisioning.

Out of scope topics with references to other books

In the limited time available to write this IBM Redbooks publication we were not
able to cover all the aspects of developing a real business process application
using all the facilities of SOA and all the IBM Rational and WebSphere products.
In this section we briefly refer to the areas that we do not cover in this book.

Composite applications and business process implementation

When it comes to implementation, this book focuses on individual services, and
not composite applications or business processes.

The tasks that are described in detail in this book are the tasks performed by the
developer of individual services, and not the integration developer, who would be
responsible for the composition or choreography of services to implement a
composite application or a business process.

The service implementation tool that is shown in detail in this book is Rational
Software Architect, used by developers. The tool that is not showcased is
WebSphere Integration Developer, used by integration developers. The main
difference is that Software Architect is used to implement services and typically
requires developers to be skilled in Java 2 Enterprise Edition (J2EE™), whereas
Integration Developer is used to build composite applications (to compose
services), and does not require detailed J2EE skills.

The tasks performed in Integration Developer would involve taking the Business
Process Execution Language (BPEL) generated by WebSphere Business
Modeler, and implement it. To implement the business process, the integration
12 Building SOA Solutions Using the Rational SDP

developer would use the services that we have identified, specified, realized,
implemented, and tested (as described in detail). The integration developer
would use the Web Services Definition Language (WSDL), or even the service
implementations, that is, the enterprise archives (EARs). Also, Integration
Developer would be used to implement the business rules, state machines, or
specify human tasks for the human activities involved in the business process.

The result of this work would be the implementation of the solution required for
the JK Enterprises Account Opening business process (see Chapter 2, “JK
Enterprises case study” on page 17). This is a fundamental topic, and one can
argue that we are not completely explaining how to build SOA solutions if we do
not cover this topic. However, we do not talk about because it is already covered
in other IBM Redbooks, such as:

� Business Process Management: Modeling through Monitoring Using
WebSphere V6 Products, SG24-7148

� Patterns: SOA Foundation - Business Process Management Scenario,
SG24-7234

Reporting and documentation

An important part of any project is the reporting and documentation mechanisms
and the tools to automate these tasks. This book does not cover this aspect in
any detail, but this section summarizes the key concepts and tools involved.

It has long been our assertion that reporting and documentation should be a
side-effect of any useful work on the project. The use of automated tools is
absolutely required to facilitate this approach. Reporting and documentation are
a vital part of the governance of projects, but we have to be able to prevent this
governance obstructing the project’s progress.

Each of the tools used in this book provide a reporting mechanism specific to
those tools. This is typically the production of one or more of HTML, Microsoft®
Word, or comma separated values (CSV) files.

Rational SoDA
In addition to the tool-based reporting, we recommend the use of tools such as
IBM Rational SoDA® to produce customized, integrated reports that cross
product and role boundaries. The challenge is to work out what reports are really
necessary. Here, our process was a key guide on what was really required, and
we have tried to reflect this in the development case (see “JK Enterprises
development case” on page 114).
 Chapter 1. Introduction 13

Project involving SOA-based solutions can take advantage of the RUP SoDA
templates provided as part of the tools and processes to minimize the
customization work required in SoDA.

It has been our experience, however, both in the field and while working on the
book, that static paper or file-based documentation, while a useful snapshot of
the project, quickly becomes only useful for the recycling bin (real or virtual) and
this leads to a discussion on real-time and historical data gathering and
reporting.

In customer engagements and for internal use at IBM, we have found tools such
as Rational ProjectConsole™ and Rational Portfolio Manager provide excellent
access to real-time and historical data.

Rational ProjectConsole
ProjectConsole is particularly useful in presenting a real-time view of the project
artifacts. For example, anyone with the correct access rights can view
requirements, defects, and other project data through a Web interface.
ProjectConsole also gathers and stores historic data from the tools to allow
metrics, such as defect rates. The useful measures are not the absolute
numbers, but rather the first- and second-order derivative measures1.

The beauty of ProjectConsole is that it automatically gathers the data as people
use their desktop and server tools. This means no filling in reports every day,
week, or month. Useful metrics are gather just by people working on the project
(hence the idea of reporting as a side-effect of doing useful work). We found this
approach to gather information quickly becomes invisible to the users. The
metrics become particularly interesting when correlations are examined. For
example, drilling down into a high defect rate might reveal that the code has been
churned just prior to testing. A closer examination reveals that the design was
unstable because of some late requirements changes. It is vital that these
metrics are not used to conduct a witch-hunt but rather to assist the project team
on deciding where to allocate resources more effectively, who needs help, or
what aspect of the project requires more focus.

Rational Portfolio Manager
While ProjectConsole tends to look at the technical metrics, Portfolio Manager
provides a dashboard for the financial, resource and project planning aspects of

1 A defect count of 100 is not a useful metric for the project manager, a 50% decrease in defects (or
increase) since last week, or even the deceleration of defect rates tells us more about the project
health. These numbers should be read in the context of our process (these numbers may be great
in the middle of a project but a little worrying if we plan to ship the same week). In the past, IBM
Rational has used the concept of a “defect glide path” in our internal development teams - where
the project and product managers watch the defect rates trajectory towards zero known critical
defects as a predictor of when the product is ready to ship
14 Building SOA Solutions Using the Rational SDP

a project, program, or the enterprise. By having the participants use the Portfolio
Manager tool in their day-to-day work (for example, creating project proposals,
entering time sheets either directly or fed in from a time recording system) the
ability to gather and report on this data automatically removes some of the
obstacles to getting consistent, updated metrics. However, it is vital that this tool
is the authoritative source of data. Project planning by spreadsheet must be
abandoned if we want to get a consistent picture of the enterprise.

Another important aspect of Portfolio Manager that is particularly relevant to this
book is how we can use our process to generate project plans. Our process and
development case (created in Rational Method Composer) can be used to
generate a work breakdown structure that is used as a template for project plans.
There is scope for contiguous process improvement by adjusting our process
and development case based on examination of the project actuals or details.

Any project produces work products as the project takes its course. An important
decision is which work products are useful only for that project, and which work
products should be contributed to the living documentation for the services under
development. Models assume a much greater significance when the many
aspects of the final service implementation can be generated from the models
using the tooling.

We have touched on some aspects of IBM Rational SoDA, IBM Rational
ProjectConsole, and IBM Rational Portfolio Manager. The use of these tools is a
good topic for a future IBM Redbooks publication.

Software configuration management

Software configuration management is the control and synchronization of work
products of a software system [RUP V7]. Good software configuration
management avoids the problems of overlapping and conflicting changes on
work products, and the potential confusion caused by multiple versions of a work
product.

All the work products in this Redbooks publication were placed under software
configuration management. Good management of the work products is even
more important for SOA-based solutions. In the JK Enterprises example, we
demonstrate how to build a set of services. Typically, this would only be the start
of the life of these services. We would keep the work products produced in this
document as part of the ongoing documentation for the services. We have to
make sure that the service implementations are matched to the rest of their work
products.

IBM Rational’s key solution for software configuration management are IBM
Rational ClearCase® and IBM Rational ClearQuest. These products provide a
 Chapter 1. Introduction 15

secure repository for storing changes and tieing these changes into the reason
for the change. ClearCase is the place we store different versions of a work
product. ClearQuest stores the defects and enhancement requests, and
manages tests for these work products. While both products can be used on their
own, the main advantage is to combine these products so that each of the
versions stored in ClearCase are tightly coupled to the defect or change request
associated with this change.

More information about ClearCase and ClearQuest can be found in the IBM
Redbooks:

� Software Configuration Management: A Clear Case for IBM Rational
ClearCase and ClearQuest UCM, SG24-6399

� Rational Business Driven Development for Compliance, SG24-7244

� Rational Application Developer V6 Programming Guide, SG24-6449

Governance

We cover SOA governance in Chapter 3, “SOA governance” on page 25, but a
comprehensive treatment of governance is not intended by this document.

Summary

This introductory chapter introduces the key concepts behind SOA, the SOA life
cycle, and IBM SOA reference architecture.

We also describe some of the aspects of developing solutions and the relevant
IBM tooling that is not covered in detail in this document.
16 Building SOA Solutions Using the Rational SDP

Chapter 2. JK Enterprises case study

This chapter introduces the case study used throughout this book. This chapter
contains these topics:

� An overview of JK Enterprises, the company

� JK Enterprises business problems

� The proposed solution

� Assumptions

2

© Copyright IBM Corp. 2007. All rights reserved. 17

Introduction

This book uses the a single example throughout to illustrate the use of IBM
tooling and processes to build SOA-based solutions. JK Enterprises is a purely
fictitious supply company that has specific goals and constraints that provide a
typical set of challenges for the team implementing an SOA-based solution. JK
Enterprises is an example that appears in other IBM material. We have adapted
the example in some places to illustrate particular points relevant to building SOA
solutions using the IBM Software Delivery Platform (SDP).

An overview of JK Enterprises

JK Enterprises has approached us to assist in building a solution to meet some
specific business goals. As part of our initial discussions with the company, we
meet the CEO and CIO of the company.

CEO interview
The CEO of JK Enterprises turns out to have a very positive outlook on the
company’s future and has told us this about the company:

� “JK Enterprises is a premier supplier to retail, small business and corporate
customers. The company started in 1935, and currently has 11000
employees in 900 offices in 6 countries. This includes 6 call centres and 8
data centres. Our success is based on a high-touch interaction with
customers. Part of this high-touch approach is that customers can use
multiple channels to interact with the company. The company wants to offer
the best customer service at the lowest cost.”

� “JK enterprises already has an e-business site (JKe) with the lowest cost per
order in the industry. We recently acquired Jensen Inc. and this has allowed
us to strengthen our corporate customer base. We treat our corporate
customers as true business partners.”

� “We want to be the most profitable, high-touch company in the industry. We
are pursuing aggressive growth while minimizing risk. We will optimize our
corporate organization to maximize company responsiveness. We will
maxims our strategic investments in the best Web site in the industry, the best
sales force in the industry, a global CRM and sales-focused call centers.”
18 Building SOA Solutions Using the Rational SDP

CIO interview
The CIO of JK Enterprises is slightly less cheerful and clearly has been having a
difficult time in the last few years. He now has a plan to address many of the
issues he faces and we are part of that plan. His view on the company is as
follows:

� “We cover multiple market segments, and through multiple channels. The
integration with Jensen, which we started in 2000, is still in progress.”

� “We have eight data centres and about 200 IT staff. We have a mixture of
build and buy applications including SAP®, Siebel®, CICS®, and batch
applications. We have applications that we acquired as part of the Jensen
purchase that have yet to be integrated. We have a new CRM system that is
still being implemented and we add analytics. We have multiple platforms and
a heterogeneous topology. To be frank, we have very little reuse of
components and skills across the company and this is something I want to
address.”

� “As we transition to SOA, we have a series of challenges ahead. We have set
up an organization to support shared services. HR was first, and SAP ERP
was next, but it took a long time to complete (it came from Jensen). CRM is
the current project. We have a single database, but still keep information in
different schemas according to the area of business they relate to. There is a
resistance to sharing customer information across the lines of business (LoB).
We have no common terminology and cannot get the LoBs to agree. Before
we can implement SOA on a large scale, we have to get the LoBs aligned,
normalizing their requirements and designing services with the right level of
granularity.

� “We have 2000 IT staff using more than 50 different development tools and
environments. We have no end-to-end methodology. Governance is a big
issue that we have to address. You have heard about our business technology
optimization program. This will support a major development based on SOA.”

� “Thankfully, we have identified the key business processes that need
optimization. We do have a good idea of the current processes in this area
and how they have to look. Fixing these key business processes will help us
achieve our business goals. Implementing the automation aspects of a
solution will test our new methodology based on the IBM Rational Unified
Process for SOMA.”

After a double espresso or two, we dive a little deeper into the particular
challenges the company is facing.
 Chapter 2. JK Enterprises case study 19

Business problems

Opening an account is one of the key business processes that is in need of
improvement and automation. This process covers four different functions in the
business: Account sales, application, verification, and activation.

We capture the key issues for each business function:

� Account sales issues are:

– Account application processing delays: Customers want to use their
accounts as soon as possible.

– Account status is unavailable while the account is being set up: The
business cannot answer customer queries about how the account
application is progressing.

� Account application issues are:

– Complex application forms

– Different format and information required for applications for different
products, when they could use the same format.

– Errors due to re-keying of information. Information is re-keyed from paper
applications as well as between different, disconnected systems.

– Lack of single customer view. There are multiple systems that include
customer and account information at the company. The primary system is
an operational CRM, which is considered to be the master source of data
for customer name, address and relationship information.

� Account verification issues are:

– No single, consistent view of the customer

– Too many customer applications are declined because of different
regional credit scoring policies.

– Credit checks are faxed or called in to the credit checking agency. This
takes too long and is too expensive.

– Too many applications are referred for credit checks.

� Account activation issues are:

– Manual updates to multiple systems is required to activate the account.
The data is re-keyed into the ERP system, a data warehouse and billing
system.
20 Building SOA Solutions Using the Rational SDP

Proposed solution

It is clear from the list of business problems that we have a few areas of
improvement. This book shows how we:

� Create business use cases.

� Document an improved business process.

� Identify, specify, design, and implement services to support the business
process improvements.

� Test the implemented services.

We focus on two areas of the business. The primary area for improvement is
sales management, and the secondary area is customer service:

� In the sales management area, we look at improving the Account Opening
process. We optimize the business process, and then look for areas where
automation can reduce the costs and speed up the process. Inside this
process, we have an Account Verification sub-process that we will improve
by speeding up the account eligibility task. This task determines whether we
bypass a credit check or send for a full credit report.

� In the customer service area, we will make it possible for prospective
customer to check on the progress of their account application.

Account verification improvements

Our solution for account verification involves an integrated way of performing
these tasks:

� Verification of customer information

� Retrieval of credit report, if necessary

� Request of additional documentation for a low credit score

� Determination of pricing plan based on customer credit score

� Acceptance of account application and account activation, if the account
application is approved, or rejection notification, if not approved

The JK Enterprises case study is used to illustrate improved efficiency, reduced
costs and latency, and increased customer satisfaction of account management.
The specific business goals and objectives are to optimize account setup to:

� Improve sales and customer service through increased speed and
responsiveness.

� Enhance productivity through reductions in total cost of ownership (TCO).
 Chapter 2. JK Enterprises case study 21

� Reduce regulatory non-compliance risk and increase consistency via rules-
based business process management.

To achieve these goals, we need to improve the business process.

An analysis of the business problems and our approach

Even in this simple example, we have problem areas, how the problems affect
the business and dependencies between problems can be hard to relate to each
other. Reading this information in a series of documents or presentations can be
a challenge. Using visualization to analyze the situation makes it possible to rise
above the details, abstracting away information that is not relevant at the moment
and enables the reader to focus on the issues at hand. Figure 2-1 illustrates
these issues and their dependencies using a repurposed class diagram.1

Each problem area is represented using a class element with a description of the
problem as its name. and the implications of that problem listed as attributes
within the class element. Each problem in turn has an impact and dependency
on other problems and these are connected using the dashed arrows. In this way,
we can look at the problems and easily discern which problems have an impact
on other problems.

Take the Account Application problem area. This problem area affects the
business because we are not able to provide accurate information about status
and related account information (among other things). Solving the Account
Application problem requires that we also activate the account (Account
Activation), because the Account Application depends on this activation. Account
Activation itself has dependencies on Account Verification and feeds to other
systems, and so forth.

We analyze the problems by breaking them down into smaller problems, with
their implications and dependencies.

1 This diagram is drawn by creating a model in IBM Rational Software Modeler, and then showing the
elements in a Unified Modeling Language (UML) class diagram. We represent each problem area
using a class, list the implications as attributes of that class, and then use UML dependencies to
connect the problem areas. The model could be further manipulated using other class diagram to
view subsets of the model as required. This is a powerful way of working with this information.
While this is not a standard way of using UML, the technique of using stereotypes on UML
elements to represent aspects not considered when UML was first developed is a common practice
and is part of the power of both the UML and the IBM tooling that supports UML.
22 Building SOA Solutions Using the Rational SDP

Figure 2-1 Problem areas, their implications for the business, and dependencies

Approach

As mentioned previously, we focus on two areas of the business: Sales
Management and Customer Service. Within Sales Management we look at the
 Chapter 2. JK Enterprises case study 23

Account Opening process to leverage automation to speed up the process and
lower costs. Within Customer Service we make it possible for prospective
customers to check the status of their application. Based on an analysis of
Figure 2-1 and the supporting artifacts, we see that there are a number of
problem areas that are interrelated. As such, our approach to address the
business problems areas is to focus on the following:

� Improve the Account Opening business process of the sales management
functional area under the servicing and sales area business component.

� Improve the Account Application process.

� Improve the Account Activation process.

� Improve the Account Verification process:

– Improve the Determine Applicant Eligibility process.
– Improve the Credit Check process.
– Use an external address verification service.

� Improve Account Inquiry using consistent and accurate account application
status and account inquiry.

Assumptions

In an effort to limit the scope of this book, we have made the following
assumptions about our work at JK Enterprises:

� JK Enterprises is not undergoing a complete organizational business
transformation. We undertake what RUP calls business improvement.

� We do not assess the organizational structure and we do not make changes
to that structure.

� We limit ourselves to analyzing a subset of the JK Enterprises business
problems in the area of Account Management and Customer Service.

� We assume the stakeholders are as followed:

– Prospective customers
– Account coordinators
– Account manager
– Risk assessors
– Customer service department head
– Credit department head
– Information technology department head
– Chief Information Officer
– Chief Executive Officer

� We continue to use our current external credit scoring agencies.
24 Building SOA Solutions Using the Rational SDP

Chapter 3. SOA governance

SOA governance is necessary for the successful adoption of SOA, partly
because of the cross-organizational nature of SOA where service funders,
designers, implementers, maintainers, or consumers are not located in the same
organization (business, IT, department, LOB, division, enterprise). SOA
governance ensures that the value proposition of SOA is achieved.

SOA governance could be the topic of another Redbooks publication. In this
chapter, we do not attempt to cover all of SOA governance, but simply to raise
your awareness about why it is important, to define what it means, and to show
how SOA governance is supported in the IBM products that used for SOA
solutions.

This chapter discusses these topics:

� The importance of SOA governance

� SOA governance definition

� Service life cycle

� SOA governance life cycle

� IBM products for SOA governance

3

© Copyright IBM Corp. 2007. All rights reserved. 25

Importance of governance

This section talks about the challenges governance addresses, as well its
benefits.

Challenges
Challenges addressed by SOA governance include:

� Establishing decision rights: Who decides who can use a service and how
it can be used? Who owns the service? Who funds shared services? Are the
service QoS standards clearly defined?

� Defining high value services that are business-aligned: Does IT have a
clear understanding of the business value? What are the success factors?

� Managing the life cycle of assets (including services): What is the impact
of a specific service going down? How are service users notified of change?
Who needs to approve changes?

� Measuring effectiveness: How can you make sure different departments or
divisions with disparate goals all provide business value? What are services
performance goals? What service level agreements are needed? How to
gather performance metrics?

Benefits
This section lists benefits of adopting governance, quoted from the MIT Sloan
school of management:

“Effective IT Governance is the single most important predictor of value an
organization generates from IT.”

� Increasing share price: Professional investors are willing to pay premiums of
18-26% for stock in firms with high governance.

� Increasing profits: Top performing enterprises succeed where others fail by
implementing effective IT governance to support their strategies. For
example, firms with above-average IT governance following a specific
strategy (for example, customer intimacy) had more than 20 percent higher
profits than firms with poor governance following the same strategy.

� Increasing market value: On average, when moving from poorest to best on
corporate governance, firms could expect an increase of 10 to 12 percent in
market value.
26 Building SOA Solutions Using the Rational SDP

Definitions

This section contains definitions from the IBM Rational Method Composer plug-in
for SOA Governance (refer to “Rational Method Composer” on page 32 and
“References” on page 38 for more information).

Governance

Governance is about:

� Establishing chains of responsibility, authority, and communication to
empower people (decision rights).

� Establishing measurement, policy, and control mechanisms to enable people
to carry out their roles and responsibilities.

Governance looks at assigning the rights to make decisions, and deciding what
measures to use and what policies to follow to make those decisions. The
decision rights are assigned to roles, not to individuals. Management, on the
other hand, includes assigning staff to the roles and monitoring the execution of
policies.

Compliance
Part of any governance solution is meeting the organization's compliance
requirements. Compliance is documenting and proving that governance is in
place and is being executed: decisions are documented and decision policies are
followed.

Compliance can also be seen as an opportunity for setting up governance, and
make you think about what the decisions and roles are. Then, once in place,
governance helps with compliance.

You can think of governance as a way of empowering and enabling people, so
that decisions can be made that ensure the delivery of successful projects.

Management
Governance determines who has the authority to make decisions, whereas
management is the process of making and implementing the decisions.

IT governance

IT governance is the application of governance to an IT organization, its people,
processes, and information to guide the way those assets support the needs of
the business.
 Chapter 3. SOA governance 27

IT governance refers to the aspects of governance that pertain to an
organization's information technology processes and the way those processes
support business goals.

IT governance may be characterized by assigning decision rights and measures
to IT processes.

SOA governance

SOA governance is an extension of IT governance specifically focused on
services and the life cycle of other SOA artifacts.

Specifically, SOA governance focuses on the methods and processes around
service identification, funding, ownership, design, implementation, deployment,
reuse, discovery, access, monitoring, management, and retirement.

SOA governance is a specialization of IT governance that puts the key IT
governance decisions within the context of the life cycle of service components,
services, and business processes. It is the effective management of this life cycle
that is the key goal of SOA governance.

SOA governance ensures that:

� The value proposition of SOA (business process flexibility and improved time
to market) is achieved.

� Business risks are mitigated, and control is regained (by maintaining quality
and consistency of service).

� Team effectiveness is improved (by measuring the right things and having
clear communication between business and IT).

SOA governance addresses challenges such as:

� What new organizational roles and structures facilitate service identification,
design, and sharing?

� What metrics support investment, maintenance, vitality, and sharing of
services?

� How do businesses decide to invest in service creation and maintenance?

� What is an enterprise’s service-orientation maturity?

� What education, training, or mentoring is required?
28 Building SOA Solutions Using the Rational SDP

Service life cycle

The service life cycle comprises the states services may be in and the events
that trigger transitions between these states.

Think of a service’s life cycle as a business state machine with states (positions)
in which services can exist, and transitions that make them evolve from one state
to another.

SOA governance is about planning, defining, enabling, and measuring around
the service life cycle. SOA governance defines what the service states are, what
actions need to happen to move from state to state (transitions), how (processes
and methods), and by whom (roles, guards).

For example, SOA governance can define what services states are, such as
identified, funded, specified, implemented, approved, operational, published,
deprecated, and retired.

The development platform then has to support services through their life cycles
and make sure the processes in place are followed. For example, service
registries and repositories have to allow users to take action so that services
evolve through their life cycle. Collaboration and portfolio management tools
need to allow users (and just those who have the rights) to make decisions that
move services from one state to another, and notify users that need to take
action.

SOA governance life cycle

In “SOA foundation” on page 2 you were introduced to the SOA foundation life
cycle, including the underpinning SOA governance life cycle. These two life
cycles have to coexist within the organization to ensure that we are successful in
our SOA implementation.

The governance life cycle helps us in meeting the challenges mentioned earlier
in this chapter, such as decision rights, business alignment, asset life cycle, and
effectiveness. By working through the governance life cycle, we position
ourselves to succeed as we work through the SOA foundation life cycle, including
model, assemble, deploy, and manage. In this section, you learn about the SOA
governance life cycle (as shown in Figure 3-1) in more detail.
 Chapter 3. SOA governance 29

Figure 3-1 SOA governance life cycle

The SOA governance life cycle comprises four phases:

� Plan: Good IT and SOA governance results in better alignment of the IT
organization and business needs. It is in the plan phase that needs and
priorities of the business are documented along with the role of the IT
organization in meeting these needs. Also, the state and maturity of the
current IT organization governance is assessed, and gaps are identified.
From this analysis, the governance vision and strategy (as well as the
roadmap and plan) are documented. In the plan phase, the governance
measures are put in place. These measures are used to assess how well the
IT organization is aligned with the business and the business needs are met.

� Define: In the define phase, the detailed governance plan is put in place for
the current cycle. In particular, the processes to be governed are specified
and prioritized, and the decision rights, policies, and measures for these
processes are defined. In preparation for the next phase, detailed deployment
plans are set. In some cases, these plans may include specifying or updating
the structure and staffing of the SOA governance center of excellence (CoE).

� Enable: The enable phase is when the defined solution is rolled out to the
organization. In this phase, roles are assigned, staff are trained, decision
rights may be automated in workflow tools, and metrics collection and report
mechanisms are put in place.

� Measure: In this phase, the governance approach is executed and tuned.
The governance metrics, those that show alignment with the business, are
30 Building SOA Solutions Using the Rational SDP

gathered. These metrics are used in the next cycle to revise the governance
approach.”

Refer to “Rational Method Composer plug-in for SOA Governance” on page 33
for more details.

IBM products for SOA governance

The IBM Rational SDP enables SOA governance with a portfolio of modular,
open standard-based products, as illustrated in Figure 3-2. Note that you do not
require all of these products to get started with SOA governance; there are
adoption roadmaps for different entry points, and your organization’s SOA
governance dashboard will be a different, one that is customized for your needs.

Figure 3-2 IBM Rational SDP governance dashboard

Key governance aspects supported by the SDP are:

� Traceability: Linkages between artifacts spanning the full SOA life cycle. For
example, how can you make sure that a requirement is addressed in your
design? What is the impact of a change in a requirement on your design?
What test case verifies that a specific requirement is addressed?
 Chapter 3. SOA governance 31

� Geographically distributed teams: Today, strategy, analysis, design,
development, deployment, and management teams are not physically located
in the same building and sometimes span across the globe. How can the
development platform support geographically distributed teams?

� Compliance: How can the development platform help your organization meet
its compliance objectives?

In this section, we describe how specific IBM products (mainly from the
governance dashboard) support the four phases of the SOA governance life
cycle. Depending on your background, you may relate SOA governance to only
one or two specific products. At the end of this section, you should see that more
is needed to support effective SOA governance, from planning to defining,
enabling, and measuring.

Rational Method Composer

Rational Method Composer is an Eclipse-based framework for process and
method authoring, targeting primarily process engineers who want to tailor or
create method contents and processes. For example, RUP for SOA has been
codified using Method Composer.

Method Composer is the product that replaces Rational Unified Process (RUP)
and RUP authoring products such as RUP Process Builder. Method Composer
ships with processes, including:

� Classic RUP
� RUP for Business Modeling
� RUP for Service-Oriented Modeling and Architecture (SOMA)

Method Composer is based on the open source Eclipse Process Framework
(EPF). The main difference between Method Composer and Process Framework
is around process contents, such as the ones listed above. Process Framework
only contains limited contents whereas Method Composer has a lot. Also,
Method Composer provides additional integration capabilities with other Rational
products, such as Rational Portfolio Manager.

Method Composer implements the Unified Method Architecture (UMA) standard,
submitted to the Object Management Group (OMG) as Software Process
Engineering (SPEM) V2.0. With this standard, everyone uses the same
terminology around methods and processes. For example, SPEM defines what
tasks, activities, roles, or guidance are.

Method Composer contents are packaged as plug-ins. A new plug-in can be
based on an existing one. For example, RUP for SOMA is based on RUP, and
32 Building SOA Solutions Using the Rational SDP

provides variations (contributions, extensions, or replacements) for
service-orientation.

The main output of Method Composer is an HTML site (formerly RUP site), with
method and process contents, that is accessible from a Web browser and from
within tools of the SDP, such as Rational Software Architect.

Also, Method Composer bridges the gap between process engineering and
project management by providing the capability to export processes as Rational
Portfolio Manager or Microsoft Project templates.

It is a key product for SOA governance because it supports the formalization of
method and processes defined by SOA governance, which are then made
available to entire teams.

Refer to “References” on page 38 for links to more Rational Method Composer or
Eclipse Process Framework information.

Rational Method Composer plug-in for SOA Governance
The Rational Method Composer plug-in for SOA Governance V1.0 is available for
download on developerWorks®:

http://www-128.ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa
_gov/soa_plugin.html

The plug-in helps identify appropriate best practices, merged with your existing
IT processes, to provide proper governance of the capabilities introduced with
SOA. The end result is a project plan to create your organization's unique
governance framework.

Refer to “References” on page 38 for a link to the developerWorks Web site.

Rational Portfolio Manager

Rational Portfolio Manager is a project portfolio management (hence its name!)
tool targeted at business executives to support them in making decisions.
Portfolio Manager helps make business decisions in the area of (sorted in
chronological order):

� Business priorities, alignment and trade-off: These two activities involve
evaluating initiatives based on internal performance and external demand.
Then, trade-off decisions are made regarding what to pursue and when.
Business alignment is key for SOA, and Portfolio Manager helps select the
right initiatives. For example, Portfolio Manager provides a consistent way to
look at demands with work and proposal templates. It also provides analytical
tools (for example, investment maps and scorecards) to help deciding what
 Chapter 3. SOA governance 33

http://www-128.ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa_gov/soa_plugin.html

the best mix of initiatives makes the best aligned portfolio. Also, initiative
approvals are auditable, which supports compliance.

� Source or resource: Following the prioritization of initiatives, the next
decision is about identifying the solution needed to meet the initiative’s goal.
Typically, a particular initiative may involve multiple projects. Decisions are
made on using internal resources or outside vendors. Portfolio Manager helps
improve resource utilization in geographically distributed teams. Also, it helps
understand forecasted resource capacity (for example, supply and demand
analysis, what-if analysis, demand scheduling, and real-time resource
assignment).

� Build or buy, and deployment-ready: Knowing what resources are
available, a decision maker can then decide whether to build from scratch,
evolve an existing application, or buy a packaged application. Also, because
there is not only a single project running, there is always the need to integrate
(projects, people, ...) so that at the end, a solution can be delivered to support
the identified initiative(s). Portfolio Manager supports this execution through
its integration with Method Composer, which allows project teams to follow
consistent methods and processes. Portfolio Manager also provides access
to all project information (including historical data from past projects) through
its centralized repository. Finally, Portfolio Manager provides an integrated
way of assessing risks, issues, and changes.

� Value analysis: It is then critical to know whether the selected initiative brings
the intended value to the business. Portfolio Manager provides constant
access to measurements and control throughout development. Using
Portfolio Manager, IT can prove to the business how much value it delivers
(for example, calculating earned value to predict project performance,
providing warnings through trends).

� Regulatory compliance: Last but not least, businesses have to ensure
regulatory compliance, and Portfolio Manager helps by providing graphical
workflows that enforce and automate decision rights and responsibilities, as
well as scorecards that show project compliance. Refer to “Compliance” on
page 38 for more information.

Portfolio Manager is important for governance because it helps executives make
business decisions so that an organization’s portfolio is best aligned to business
priorities, as is key to the success of SOA. Also, it helps define and enforce
decisions right, a central part of governance.

Rational RequisitePro

RequisitePro® is a requirements management tool. It stores requirements (and
related information) in an underlying database and provides an easy-to-use
(client or Web) interface to sort, search, filter and track dependencies between
34 Building SOA Solutions Using the Rational SDP

those requirements. RequisitePro allows for the description of requirements in
Microsoft Word, which can then be stored in the RequisitePro database (using
RequisitePro menus from under Microsoft Word). The database stores
requirement details (attributes, links to other requirements, discussions, and
revision history), while documents display the requirement text and context.

Rational Software Architect allows for RequisitePro requirements to be browsed,
modified, or created (from within Software Architect, under the Requirement
perspective). More importantly, design elements can be created from
requirements, or existing design elements can be linked (traced) to requirements.
The idea is to record how design decisions address requirements, and then be
able to analyze requirements trace, including assessing the impact on the design
of a change in requirements.

In addition, RequisitePro can be used in combination with WebSphere Business
Modeler to ensure that the needs of the business are being captured and
understood. When starting a project, the business, including executives, analysts
and architects, can use RequisitePro to record the high-level business needs.
The high-level business needs can take the form of goals, including objectives
and strategy, as well as business rules. As the project moves forward,
WebSphere Business Modeler can be used to add details to the business goals,
modeling them as processes, and then using simulation and cost comparison
reporting to help the business understand the return on investment. RequisitePro
can be used to add business operational details, capturing both functional and
non-functional requirements. A key aspect of capturing these additional details
within RequisitePro is to find a balance between the needs of the business and
the architecture.

RequisitePro supports SOA governance by allowing traceability. from business,
design, implementation, or test elements to requirements, and also between
requirements. It helps ensure that requirements are addressed throughout the
overall development process.

Rational ClearQuest and Rational ClearCase

Rational ClearQuest is a change, test and application life cycle management
application that can be used to manage change activities (such as defects and
enhancement requests), test cases, and test assets.

ClearQuest enables users to manage any type of change request or test artifact
throughout the entire development life cycle. User-defined queries, charts, and
reports provide metrics useful to all roles within a project team. Customization
capabilities enable ClearQuest to adapt to and help enforce any kind of
development process and life cycle.
 Chapter 3. SOA governance 35

Rational ClearCase is a change and configuration management (CCM) solution.

ClearCase provides users with transparent access to versioned artifacts. It
integrates with Microsoft Windows® Explorer as well as with many popular
integrated development environments (IDEs), including Eclipse, the Rational
SDP, and Microsoft Visual Studio® .NET. It enables development teams to
incorporate configuration management seamlessly into their normal, daily
workflow they can work as usual with minimal or no disruption.

ClearCase and ClearQuest support IT governance because they help enforce
the process and life cycle that has been defined through Unified Change
Management (UCM). They allow developers to know what they own, such as
defects or software components. Moreover, it allows developers to make
decisions on the artifacts they own. Senior developers own bigger software
components or more critical defects, which empowers them to make more
important decisions than junior developers can. Also, developers do not have to
be aware of the IT governance process. For example, the ClearQuest queue tells
them what they need to work on. When work is complete, they just deliver their
work on the ClearCase system, and that is it, the ClearQuest state automatically
changes (process enforcement). They just have to worry about what they own,
and ClearCase and ClearQuest support the IT governance process. This is key
to IT governance, and developers usually like to know the boundaries of their
work.

As discussed previously, ClearQuest allows you to track any type of change
request or test artifact. However, we also have to know how those these artifacts
map back to our project requirements. Using the integration between CQ and
RequisitePro, we can create links from requirements in RequisitePro to records
in ClearQuest.

WebSphere Service Registry and Repository

The WebSphere Service Registry and Repository plays a central role in SOA
governance.

The Service Registry and Repository supports the management and governance
of services through their life cycles, and helps ensure services provide value to
the business. It supports storing, accessing, and managing service metadata,
which allows for the selection, management, and invocation of services.

The registry tells what the services are and where they are located. The
repository tells about the nature of service usage, and their interactions.
36 Building SOA Solutions Using the Rational SDP

The Service Registry and Repository capabilities are classified around:

� Publish & Find services to encourage reuse, including a subscription
mechanism that provides dynamic access to service information by runtimes
and users.

� Enrich services to enable dynamic and efficient service interactions at
runtime.

� Manage services to optimize service performance, enable the enforcement of
policies, do impact analysis, versioning, classification, and usage.

� Govern services through their life cycles.

The Service Registry and Repository supports SOA governance as services
progress through their life cycle. For example, it supports services access
control, monitors service vitality, and manages policies for publishing, using, and
retiring services.

Let us explain how the Service Registry and Repository supports service
management and governance.

The Service Registry and Repository provides a simple configurable life cycle
model that can be used to manage governed entities (services) through their life
cycles:

� As explained in “Service life cycle” on page 29, the life cycle is represented as
a state machine, with the states indicating the position of the governed entity
in its life cycle. Transitions are used to validate changes to the governed
entities and apply control (guards) before performing the action represented
by the transition.

� Governance is ensured because actions are constrained by the life cycle
model. Following a successful transition the governed entity then adopts a
new state. Also, changes in states are socialized to users through the
notification mechanism, as well as audited when needed.

When a service is developed, its information (in the form of definition and
metadata) is stored in the Service Registry and Repository:

� As the service moves towards deployment (through testing and approval),
and SOA governance processes start to apply, the Service Registry and
Repository ensures that the service complies with company policies and
follows best practices.

� Once deployed into production, the service is used and reused. At some
point, the governance process in place may determine that the service is no
longer operationally needed, which trigger a retirement state transition in the
repository.
 Chapter 3. SOA governance 37

� This process also enables an assessment of how subscribers are impacted if
the service is retired.

� Finally, a service may be de-provisioned, but only when alternatives are in
place for subscribers.

Note that the list of IBM products that support governance is not exhaustive.
Many products support governance one way or the other, and some of the
products listed in this section (for example, Rational Portfolio Manager and
WebSphere Service Registry and Repository) play a more important role in SOA
governance than others. Also, this section emphasizes the products from the
Rational SDP.

Compliance

IT governance and SOA governance are closely related to compliance. Today,
companies are required to follow key regulations, standards, and policies to
comply with the law in regard to how they conduct their business.

This book does not cover any compliance issues. For information about
compliance, refer to the IBM Redbooks publication Rational Business Driven
Development for Compliance, SG24-7244.

The RUP plug-in for Compliance Management is a RUP-based method for
strengthening the auditability of an organization's software development process
and the work products it produces. The goal of this plug-in is to enhance an
organization's ability to comply with internal and external policies and standards.

References

Visit the Web sites listed here for more information.

� IBM SOA governance page at:

http://www-306.ibm.com/software/solutions/soa/gov/

� Download the IBM Rational Method Composer plug-in for SOA Governance
V1.0 at:

http://www-128.ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa
_gov/soa_plugin.html

� Download the IBM Rational Method Composer plug-in for SOMA at:

http://www-128.ibm.com/developerworks/rational/downloads/06/rmc_soma/
38 Building SOA Solutions Using the Rational SDP

http://www-306.ibm.com/software/solutions/soa/gov/
http://www-128.ibm.com/developerworks/rational/downloads/06/plugins/rmc_soa_gov/soa_plugin.html
http://www-128.ibm.com/developerworks/rational/downloads/06/rmc_soma/

� Download the IBM Rational Method Composer plug-in for Compliance
Management V1.0 Beta at:

http://www-128.ibm.com/developerworks/rational/downloads/v7_0/compl_mgmt/

� Consider the IBM SOA Governance Business Briefing:

http://www-128.ibm.com/developerworks/offers/techbriefings/details/governan
ce.html

� Read the Rational Method Composer developerWorks article series at:

http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/

� Refer to the Eclipse Process Framework site at:

http://www.eclipse.org/epf/

� The CBDI Forum contains resources on SOA governance:

http://www.cbdiforum.com/
 Chapter 3. SOA governance 39

http://www-128.ibm.com/developerworks/offers/techbriefings/details/governance.html
http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/
http://www.eclipse.org/epf/
http://www.cbdiforum.com/
http://www-128.ibm.com/developerworks/rational/downloads/v7_0/compl_mgmt/

40 Building SOA Solutions Using the Rational SDP

Chapter 4. Architecture and design

This chapter explores a central theme of SOA, that of architecture, along with its
companion design.

This chapter addresses these topics:

� Is there still an application in an SOA environment?

� What does a service architecture look like?

� When does architecture end and design start?

� How are the goals of reuse achieved?

� How is software integration addressed in an SOA environment?

� Architectural styles and design patterns

As with the rest of the chapters in the book, we relate this chapter to the JK
Enterprises case study.

4

© Copyright IBM Corp. 2007. All rights reserved. 41

What is an application in an SOA environment?

We take a tour through some important service architecture concepts by
addressing the question “what is an application in an SOA environment?”

Traditional software applications

The term application (as an abbreviated form of application software) has been
used for many years to describe the class of software systems that employ the
capabilities of a computer to directly support a task that the user wishes to
perform. The scale of application we consider in this book are those that exist in
large enterprises (business or organization).

Traditionally applications have been built in a silo fashion. In other words,
standalone applications that meet very specific business requirements with no
inherent integration at either a process or data level (Figure 4-1). This has two
effects:

� These applications do not support business processes well because they
were not designed with business processes in mind.

� Integration between these applications is costly and piece-meal.

Figure 4-1 Traditional silo applications

Silo
Application

Silo
Application

Silo
Application

Functional Area Functional Area
42 Building SOA Solutions Using the Rational SDP

Architecture of software systems

To look at how SOA improves the way applications are built, let us look at the
definitions of two central concepts: Architecture and system.

� Architecture—From Latin architectura and ultimately from the Greek word
for master builder: “The art and science of designing structures where the
structure of something is how the parts of it relate and how it is put together.“

� System—From Latin systema and from the Greek systema: “An assembly of
entities/objects, real or abstract, comprising a whole with each and every
component/element interacting or related to another one.“

So architecture is specifically related to structure—which as we note is itself a
fundamental property of every system—therefore these two terms are related.
Indeed, we cannot talk about architecture without talking about the structure of
the thing being architected. In our case we refer to this thing as the software
system (and also we note that we are talking about software architecture here;
business architecture is discussed in “Business architecture” on page 174).

There are two aspects to the off-the-shelf meaning of system that we have to be
wary of:

� The division/aggregation of objects/entities into systems is a subjective
abstract concept.

� The term system is usually relative, that is, a system may be part of a
super-system and its parts may be sub-systems.

We want the service architecture we create to be clearly and finitely defined.
Therefore, we really want our systems to be less subjective and less relative. To
accomplish this, we make use of proven architecture styles, reference
architectures and patterns, as discussed in “Reusing architecture and design
experience” on page 73.

Note that we consider the terms software system and software application to be
interchangeable. The term software system places more emphasis on the
structure of the software, where as software application emphasizes the usage of
the software—which is to directly support some user task or tasks.

Note: In CMMI the term system is specifically used to include hardware
(computational and non-computational), software and human workers. RUP
for Systems Engineering provides system engineering guidance for this style
of project.

In this book we use the word system in the standard RUP sense to refer to
software systems.
 Chapter 4. Architecture and design 43

Service-oriented IT systems

In SOA, when we discuss architecture, our software is structured in terms of
services, service consumers, and service providers. We define these here:

� Service—A service is a discoverable software resource that executes a
repeatable task, and is described by an externalized service specification.

� Service consumer—A client of a service (or set of services).

� Service provider—A provider or implementer of a service (or, again, set of
services).

So in an enterprise that is practicing SOA, if you peeked under the covers of its
software applications and took a look at its internal structure you would find the
things we have mentioned above: Services, service consumers, and service
providers.

At the enterprise scale if you considered the insides of all of the software
applications, the picture would rapidly become quite complex. To make this more
manageable, we define three levels of software system (Figure 4-2):

Figure 4-2 Three levels of software system

� Enterprise software architecture (super-system)—The sum total of all
service-oriented software in the organization.

Super-system
Level

System
Level

Sub-system
Level

Enterprise
Software Architecture

Service
-Oriented

System

Service
Component

SO System
Part

Service
-Oriented

Part

Service Consumers
and Service Providers
44 Building SOA Solutions Using the Rational SDP

� Service-oriented (SO) system (system)—A set of service-oriented software
assembled to form a composite application. Its parts are called SO system
parts, themselves being created from service-oriented parts (which are
individual pieces of service-oriented software specification that can be used
in multiple SO systems). SO parts come in two flavours: Service consumers
and service providers.

� Service component (sub-system)—An individual atomic piece of service
oriented software design (at least, atomic from an architecturally significant
point of view—see “Architecturally significant services” on page 57).

The service-oriented system (SO system) is about the closest thing in this picture
to what we would traditionally call an application. So we discover that the first
way in which our applications are different in an SOA environment has to do with
what they look like on the inside.

Business-aligned systems

In order to improve the life span of our SOA software, we place more emphasis
on understanding the business context for our applications.

Of primary importance here is an understanding of the functional areas in the
business. The definition of these is the concern of business architecture which is
described in further detail in “Business architecture” on page 174. However, for
the purposes of the discussion here, we note that the business can be viewed as
a set of functional areas. Each of these functional areas comprises (Figure 4-3):

� People: the people (roles) involved in the functional area.

� Process: The business processes that touch the functional area.

� Technology: The technology that supports the functional area. This includes
the software systems (and in our case SO systems) that support this
functional area.

Of interest: There is an entire interdisciplinary field called Systems Theory that
studies the theoretical properties of systems relationships as a whole. This
science seeks to bring together theoretical concepts and principles from
ontology, philosophy of science, physics, biology and engineering and has
found applications in further fields such as organizational theory,
management, economics and sociology. Cybernetics is a closely related.

It is comforting to note that IT systems are relatively simple compared to some
other types of systems out there!
 Chapter 4. Architecture and design 45

Figure 4-3 People, process and technology in functional areas

Besides simply ensuring that our SO systems support the business processes
owned by the functional area, it is common for them to actually be driven by
executable versions of these business processes. These executable business
processes take the form of Business Process Execution Language (BPEL)
artifacts.

These BPEL-implemented executable business processes tie together tasks
performed by people in functional areas across the business, and therefore cross
traditional application boundaries (Figure 4-4). Note two key differences with
Figure 4-1 on page 42:

� There are no integration couplings required as the applications are integrated
due to sharing the same underlying services.

� The workflow of the users is integrated by executable business processes.

Figure 4-4 SOA-style applications

Note it might seem that the applications in Figure 4-4 have more to do with a
perspective on the software from the point of view of a specific set of users rather
than being some tangible software as with our traditional silo applications in
Figure 4-1 on page 42.

Functional AreaPeople

Technology

Process

Services

Executable
Business
Processes

Functional Area Functional Area
46 Building SOA Solutions Using the Rational SDP

To a degree this is true. But as reasoned in the previous section, it is useful to
partition our SOA software into logical systems (which we have termed SO
systems) to make the overall software picture more manageable (both at
development-time and at runtime). Figure 4-5 shows an SO system in the context
of the enterprise software SOA, and shows where the executable business
process would fit in.

Figure 4-5 Business process-driven SO systems

Figure 4-5 shows us:

� Our business architecture is described in terms of functional areas; for more
information refer to “Component business modeling” on page 175 which
introduces component business modeling (CBM).

� We organize our service-oriented software into SO systems which can be
placed in the context of the functional areas that they support (technology).
Note that this is not necessarily a 1-to-1 mapping (although for simplicity the
examples in this book use a 1-to-1 mapping).

� The business processes that we model and that we identify as touching the
functional areas can be used to create executable business processes that
drive our SO systems.

Service
-Oriented
System

Business

IT (Software)

Enterprise
Business Architecture

Functional Area

Enterprise
Software Architecture

Process

Executable Process

Services
 Chapter 4. Architecture and design 47

� Although it is not specifically shown in the diagram, in the same way that
business processes can span across functional areas, executable business
processes can span across SO systems—or to put it another way, the same
executable business process can be a consumer in more than one SO
system.

So the answer is...

So let us get back to our original question: “What is an application in an SOA
environment?“

We answer by summarizing the concepts introduced thus far as statements
about such an application:

� It is architected as a system of services, service consumers, and service
providers.

� It does not exist as a single piece of software, but rather it is composed from a
number of software parts.

� It is aligned with things in the business—specifically a functional area. It
provides automation of parts of the business processes that are supported by
the functional area.

� It is inherently integrated as its parts are shared across applications.

Why did we pose the question in the first place? Well it is a useful way to
introduce a number of the key concepts that we expand on further in the rest of
this chapter.

Modeling service architectures

The primary focus of this chapter (and indeed of the entire book) is on services.
From the point of view of architecture, we care about the service consumers and
service providers, and the applications or systems into which they are assembled
to provide business benefit.

Before we start looking at the detail of how we model these applications or
systems, we have to get a good feel for what the concepts are that these models
are based on. It is of no use describing a model without first providing a
description of the things that it is meant to represent.
48 Building SOA Solutions Using the Rational SDP

Different forms of a service

The first aspect that we look at is the different forms of a service.

It may seem obvious as to what the thing is that we are referring to when we
speak about a service. In reality, what we are referring to as a service can exist in
a number of different forms.

We list the following perspectives to provide context for our forms:

� Architecture specification—In a software context, we use the term
architecture specification to describe the black-box view of the parts of a
software system. It also describes how these parts are joined together to form
a software system.

� Detailed design—In this context we use the word design to describe the
white-box view of a part of a software system. This describes the design
realization of the specification.

� Implementation—Here we use the term implementation to refer to the
source code (and corresponding binary) that implement the software designs.

� Assembly—This is about assembling service implementations in-line with
the original architecture specification and deploying them to the target
environment.

� Runtime—This perspective looks at the running software. In contrast the
previous four perspectives are on development-time—in other words, their
view is on the artifacts of the software development project as opposed to the
running artifacts produced by a development project.

Now that we have listed this set of perspectives, let us examine the forms a
service can take.

As we can see in Figure 4-6, the notion of a service extends across each of the
perspectives (enclosed by the dotted-line box).
 Chapter 4. Architecture and design 49

Figure 4-6 Different forms of a service

Architecture specification
In our architecture specification, services are either consumed or provided by a
service consumer or service provider, respectively. The service itself is specified
using a service specification.

An example service provider with associated service specification is shown in
Figure 4-7 (service provider CustomerAccountMgr at the top providing
CustomerAccount and AccountApplication services; service specification
AccountApplication below, along with associated parameter types and
messages).

The service architecture is specified as a number of service-oriented (SO)
systems, whose parts are based on service consumers and providers.

Serv ice
Prov id er /
Consum er

Serv ice
Com p onent

Serv ice
Com p onent

Im p lem enta t ion

Assem b ly
Pa r t

Serv ice
Com p onent

Insta nce

Architecture
Specification

Detailed
Design

Implementation Assembly Run-time

Serv ice
- Or iented

Sy stem
Assem b ly

Service
50 Building SOA Solutions Using the Rational SDP

Figure 4-7 Example service provider and service specification

An example SO system is shown in Figure 4-8. In this diagram we can see a
service consumer part, accountOpeningProcess, which is based on the service
consumer, AccountOpeningsProcess. Similarly an example service provider part
is salesManagementComposite, which is based on the service provider,
SalesManagementComposite.

Note that the service consumers and service providers exist independently of the
SO system—which is why we differentiate between the parts of the SO system
(SO system parts that are an owned part of an SO system) and the service
consumers or service providers they are based on (SO parts that live
independently of the SO systems).
 Chapter 4. Architecture and design 51

Figure 4-8 An example SO system specification

Detailed design
The service component is the modeling artifact that realizes the architectural
specification of a service. Note we are still modeling our software at this stage
(as opposed to writing code). However, we are modeling at a lower level of
abstraction than that of our service architecture, and we include further design
constraints that we want to place on the implementers of the specification.

An example of a service component detailed design is shown in Figure 4-9:

� Here we have a service component, AccountApplicationSC, which realizes
the AccountApplication service specification provided by the
CustomerAccountMgr service provider.

� The AccountApplication service specification provides our architecture
specification, where as AccountApplicationSC is our detailed design.

Note: There are other elements to design other than service components.
These are outside the scope of this book. An example would be user interface
component design.
52 Building SOA Solutions Using the Rational SDP

� The design elements that form the detailed design (white-box internals) of
AccountApplicationSC are AccountApplicationFacade,
AccountApplicationImpl, and AccountApplication.

� We can see that some sort of facade design pattern has been used in the
design of AccountApplicationSC.

Figure 4-9 Example service component detailed design

Implementation
The service component implementation represents the actual software that
realizes our architecture specification and detailed design models (and respects
the constraints detailed in these models). Normally—but dependent on the
implementation technology used—the service component implementation has
two different forms itself: A source code form and a binary form. These can be
classified as service component source and service component binary.
 Chapter 4. Architecture and design 53

Assembly
Once we have service component implementations for each of the service
consumers and service providers that have been identified in the SO system, it is
time to start putting these pieces together into deployable units.

For each part in our SOA assembly, we take the relevant service component
binary and configure it to form an assembly part. In Java Enterprise Edition the
equivalent is a JAR file containing configuration (including runtime identity) and
executable.

Figure 4-10 shows an example of a model element representing an assembly
part. In this case AccountApplicationAP is the assembly part formed by
configuring and building (in other words, creating a binary) a service component
implementation that corresponds with the AccountApplicationSC service
component.

Figure 4-10 An example of an assembly part

Assembly parts are assembled to form assemblies. These assemblies combine a
number of assembly parts into a larger grained unit for deployment. In Java
Enterprise Edition the service assembly is an EAR file.

An example of this can be seen in Figure 4-11. The service assembly
LocalSharedServicesAssembly assembles the parts BillingAccountAP,
AccountApplicationAP, CustomerAccountAP, and GeneralLedgerAccountAP for
deployment.
54 Building SOA Solutions Using the Rational SDP

Figure 4-11 An example of a service assembly specification

One or more assemblies congregates a number of assembly parts to realize the
original architectural specification as described by the SO system. An example of
this is shown in Figure 4-12, which corresponds to the SO system specification
shown in Figure 4-8 on page 52. The corresponding assembly parts have been
separated into two assemblies, one containing the business process service
consumer and the composite business application service provider, and the other
containing the atomic business application service providers.

Figure 4-12 Example of assemblies realizing a SO system

Runtime
Finally, once the service assembly has been deployed and “started”, the final
form of the service appears—The service component instance. This is literally the
service component as it is manifested at runtime—the process threads and state.
 Chapter 4. Architecture and design 55

Note that the even though from a technology point of view there may be many
threads running deployed on multiple nodes, there is still only one service
component instance for each assembly part (this is described in further detail in
“Decomposition and re-assembly of applications” on page 59).

With reference to Figure 4-13 we note that there are three different scales of
software concepts:

� SO system scale (right column): SO system, deployed as an assembly, and
existing at runtime as an assembly instance (which is a running instance of an
assembly).

� SO part scale (left column): SO part, realized by the detailed design of a
service component, and implemented in the form of a service component
implementation.

� SO system part scale (middle column): SO system part (where we use a SO
part in the context of an SO system), deployed as assembly parts, and
existing at runtime as service component instances (running instances of the
assembly parts).

Figure 4-13 Service forms ordered by UML model and grouped by scale

All of the elements in Figure 4-13 are architecturally significant. We describe in
the next section what we mean by this.

Service- Orien ted
Par t

Service Com p on en t

Service Com p on en t
Im p lem en ta t ion Assem blyAssem bly

Par t

Service- Orien ted
Sys temSO Sys tem Par t

Assem bly
In s t an ce

Service Com p on en t
In s t an ce

Development-time

Run-time

Se
rv

ic
e

D
es

ig
n

Im
pl

em
en

ta
tio

n D
eploym

ent

**1

*1 *

*

56 Building SOA Solutions Using the Rational SDP

Architecturally significant services

As the name would suggest, in SOA we especially care about services at an
architecturally significant level, hence the fact that we orientate our architectural
view in terms of services.

At this point it would be useful to refer to the concepts of black-box versus
white-box views. We make the following two simple definitions:

Black-box view A view of something where the internal parts are not visible

White-box view A view of something where the internal parts are visible

The black-box/white-box paradigm could be recursively applied to elements in a
system as you “open up” its parts. However, the problem with a recursive view is
that it provides no guideline as to when you are moving beyond the boundaries of
architecture as you continue to open up the parts.

We feel strongly that it is necessary to know when the elements you are
modeling are architecturally significant and when they are not. Otherwise:

� How do you show someone a clear and easy to understand picture that
completely describes the system from an architectural level?

� How do you focus on modeling those things that have the most significance
and impact on your software?

� How do you organize your service repository? It is very useful to be able to
separate architecturally significant assets from those assets that are reused
only in implementing architecturally significant assets (otherwise you just end
up with a really big list of software assets and confusion about which assets to
use in combination with each other).

� How do you know when you are finished with your architecture for a given
perspective?

� How do you split up responsibilities/tasks between roles on the team, for
example, between a software architect and a designer?

Preferably, we rather create quite a clear boundary between those elements that
are architecturally significant from those that are not. This view is presented in
Figure 4-14.
 Chapter 4. Architecture and design 57

Figure 4-14 The delineation of what is architecturally significant in our models

� The dotted-line boundary defines which of the model elements are
considered to be architecturally significant. Note that we specifically show
that there are two sets of parts (white box views) that exist but do not fall
within our architectural view—design elements and implementation elements.
However, it is important to note that even though these elements themselves
do not exist in the architecture, they are represented in the architecture by
service component and service component implementation respectively.

� A whole-part relationship exists across each of the perspectives that we
defined in “Different forms of a service” on page 49. Instead of recursively
repeating this relationship to infinity, Figure 4-14 describes a fixed set of
defined whole-part relationships (however in the design perspective, the

Se rv ice
- Orie nte d

Sy s te m

Se rv ice
Com pone nt

Se rv ice
Com pone nt

Im plem entation

As s e m bly

As s e m bly
Ins tance

Parts of SO
system are
usages of service
consumers and
service providers
(SO system
parts).

Parts of service
component are
design
elements.

Parts of service
component
implementation are
implementation
elements. These
occur in both
source and binary
form.

Parts of
deployable
assembly are
assembly parts
(configured service
component
binaries)

Parts of assembly
instance are
service
component
instances.

Arch
ite

ctu
re

Spec
ific

ati
on

Deta
ile

d
Des

ign

Im
plem

en
tat

ion

Ass
em

bly

Run-tim
e

Black box (Whole) White box (Parts)

The whole-part
elements inside this
border are
architecturally
significant

These elements are
not architecturally
significant
58 Building SOA Solutions Using the Rational SDP

design model elements that are parts of the service component can be
nested as whole-part relationships as many times as you may care to).

� Figure 4-14 hints at the architect → assemble workflow (if you follow the
curved arrows). This is further described in “Decomposition and re-assembly
of applications” below.

With these observations as a backdrop, we provide a definition of what we mean
by architecturally significant:

An architecturally significant element has a wide impact on the structure of
the system and on its performance, robustness, evolvability, and scalability. It
is an element that is important for understanding the system [Kruchten].

Architectural significance is also hinted at in the following quotation:

Architecture is what remains when you cannot take away any more things and
still understand the system and explain how it works [Kruchten].

Decomposition and re-assembly of applications

In our brave new SOA world, one of our aspirations is to increasingly satisfy
business requirements by assembling existing software assets instead of having
to build new software.

The key reasons for this are:

� As your organization and software development processes become better
geared towards this style of development, you are able to meet business
requirements faster (as there is less new software that needs to be written).

� There is less software produced (in terms of lines of code or similar) to satisfy
the same set of business requirements. And less overall software means that
less software to maintain, which reduces the total cost of ownership (TCO) for
your applications.

� Systems are integrated out-of-the-box as they share functionality and state.
This is further described in “SO systems and integration” on page 69.

At this point, let us note two points:

1. To assemble a set of parts to create a new application, you have to start with
a view of the parts that you require for the application.

2. To increase the chances of having a suitable component on the shelf to reuse,
you must have a common architectural style that these components adhere
to, and a corresponding set of architectural techniques for identifying
components. By common we mean that they have to be rolled out across the
organization.
 Chapter 4. Architecture and design 59

The first point justifies our focus on architecture specification. The second point
is described more fully in “Reusing architecture and design experience” on
page 73.

Let us now look at the workflow for decomposing and re-assembling applications
(Figure 4-15).

Figure 4-15 Overview of the workflow of part of the model → assemble SOA life cycle

Note: Figure 4-15 only provides a simplified workflow for the purpose of
discussion. Specifically note that:

� The diagram makes the workflow look like a waterfall. In reality, the work
done is sequenced using phases and iterations.

� The diagram only suggest the structural diagrams of the various models.
The models additionally describe software behavior using behavioral
diagrams.

� The diagram only covers part of the Model → Assemble → Deploy →
Manage SOA life cycle.

Service-Oriented
System

Service
Component

Service
Component

Implementation

Assembly

Specify software architecture

Detailed
software
design

Assemble software

Black box White box Black box White box

B
la

ck
 b

ox
W

hi
te

 b
ox

B
lack box

W
hite box

Build/source
software
60 Building SOA Solutions Using the Rational SDP

1. Specify software architecture
Based on the requirements as they have been described for the project, an SO
system is specified that supports these requirements (in some cases more than
one SO system depending on the size of the project). The SO system(s) are
either brand new, or they may be existing SO systems that require modification,
or a combination of both.

For each of these SOA systems we describe their internals with a set of SO
system parts that are based on SO parts (service consumers/providers).

These SO parts are either created or sourced.

Therefore, to summarize, the specification of our service architecture consists of:

� The specification of the structure of our SO system in terms of SO system
parts

� The specification of each of the individual SO parts (service consumers and
providers) that these SO system parts are based on

2. Detail software design
Once the service architecture has been specified, each part specified can now
be designed separately.

We note again that we may be reusing an existing service component’s detailed
design rather than designing one from scratch.

3. Build or source software
Based on the detailed design of our service components, the next step would be
to either create or source a service component implementation.

Each of these service component implementations can be unit tested on its own.
Testing is described further in Chapter 14, “Service testing” on page 483.

4. Assemble software
Now that we have implementations for each of the parts in the SO system, we
can put the pieces back together again as service assembly parts that combine
in the form of a service assembly. These deployable assemblies are the
deployable realization of our SO system specification.

Note: We use the term source here and further in this section to mean
“retrieve from an asset repository.” This is where reuse comes into play and is
a key advantage to the SOA approach, reusing specifications, designs,
implementations and runtime instances in the creation of new systems.
 Chapter 4. Architecture and design 61

Once a service assembly has been created, integration and system testing can
be carried out. Again, testing is described further in Chapter 14, “Service testing”
on page 483.

Referring back to Figure 4-14 on page 58, at runtime we see a service assembly
instance. It is very powerful that we can trace these back to our software models
in such a clear way:

� Running software can be traced back to our business requirements (in their
various forms—business goals, KPIs, process policies, rules).

� Runtime metrics can be traced back to the corresponding business KPIs.

� Runtime problems can be traced back to the corresponding design and
implementation artifacts.

� Communications within the project team between different roles across the
different disciplines is much easier.

Services and reuse

The notion of reuse in the context of services is especially important and
deserves some detailed treatment.

Specifically we describe:

� Some different types of reuse
� What can be reused?
� What needs to be in place to enable reuse?

Some different types of reuse

The following set of figures introduce a few different types of reuse scenarios.

As-is reuse of a service by multiple systems
Figure 4-16 shows probably the most obvious reuse scenario which is where the
same service gets reused as-is by a second SO system.

Note that just because the second system is using the same service provider, it
does not necessarily imply that the same service component design, service
component implementation, service assembly, or service assembly instance is
also reused.

For further information refer to “What can be reused?” on page 66.
62 Building SOA Solutions Using the Rational SDP

Figure 4-16 Reuse of a service provider version in multiple SO systems

Reuse of a service by successive versions of the same system
Figure 4-17 shows the most common reuse scenario, although it is not one which
we would obviously recognize as reuse.

Figure 4-17 Reuse of a service provider version by two versions of the same SO system

This is the scenario when a new version of an existing SO system is created.
Depending on the changes between the two versions of the system, most if not
all of the services used in the original version are used in the new system. This
means that the specifications of the SO system and the service consumers and
providers that it uses can be used, the design of the service components, the
service component implementations, the assemblies, and the assembly
instances.

Service
Provider A

(v1)

Time

SO System 1 (v1)

SO System 2 (v1)

Service
Provider A

(v1)

Time

SO System 1 (v1) SO System 1 (v2)
 Chapter 4. Architecture and design 63

Reuse of a service with modification
Figure 4-18 can be a variation of both of the previous reuse scenarios. In this
case, the service is modified before it is reused. Either the original system is
migrated onto the new version of the service (which should be backward
compatible) or the original version runs alongside the new version to satisfy its
consumers.

Figure 4-18 Modification of a service provider version for reuse in a second SO system

Usage of the same service twice in one system
Figure 4-19 shows one of the less common but still important types of
reuse—that of the same service being used more than once in the same system.

Figure 4-19 Reuse of a service provider by two different parts of the same SO system

Service
Provider A

(v1)

Service
Provider A

(v2)

Time

SO System 1 (v1)

SO System 2 (v1)

Service
Provider A

(v1)

Time

SO System 1 (v1)
64 Building SOA Solutions Using the Rational SDP

This is easiest to explain with an example (Figure 4-20):

� Let us say that you have a contact management service which allows contact
details to be stored and then searched against and retrieved.

� Further assume that contact details have to be held in a system for both
customers as well as suppliers. In this case, the same service could be used
for both—although you do not want your customer data and your supplier data
getting mixed up.

� You could specify two SO parts for the SO system, both based on the same
service provider.

� At deployment time you would have two different assembly parts, based on
the same service component implementation, and being in the same
assembly. Each assembly part would have a different configuration,
specifically their runtime identity and data/state persistence area would be
different in this case.

Figure 4-20 Example of same service used twice in same system
 Chapter 4. Architecture and design 65

Figure 4-20 shows the ContactMgr (providing the Contact service) service
provider being used as both the customerContactMgr and supplierContactMgr
SO system parts in the ABCSystem SO system. The corresponding assembly
parts are CustomerContactAP and SupplierContactAP, which are assembled into
the ABCSystemAssembly. At runtime there would be two service component
instances, one for each of the parts above. Each would have its own runtime
identity and state (with these details being defined as part of their service
assembly part specifications).

What can be reused?

The simple answer to this question is “As much as is sensible!”

A more thorough treatment of the various types of reuse in the context of
asset-based development is provided in Chapter 15, “Creating reusable assets”
on page 533 (especially an explanation of when it is sensible to make something
reusable). In this section we discuss some specific points around the reuse of
different forms of our service software (Figure 4-21).

Figure 4-21 Different service forms that can be reused

Service- Orien ted
Par t

Service
Com p on en t

Service
Com p on en t

Im p lem en ta t ion
Assem blyAssem bly

Par t

Service- Orien ted
Sys tem

SO Sys tem
Par t

Assem bly
In s t an ce

Service
Com p on en t

In s t an ce

Development-time

Run-time

Se
rv

ic
e

D
es

ig
n

Im
pl

em
en

ta
tio

n D
eploym

ent

**1

*1 *

*

66 Building SOA Solutions Using the Rational SDP

The following descriptions relate to the numbers in Figure 4-21, which attempts
to highlight the various forms of services that can be reused:

1. Specification reuse: The first artifact that can be considered for reuse is the
UML package containing the specifications of the SO parts (service
consumers and service providers). These can be reused as SO system parts
in the specifications of new SO systems.

2. Design reuse: Second to reusing specifications, your can also reuse the
UML package containing the service component and its detailed design. This
can be reused instead of creating a new design.

3. Implementation reuse: If you reuse the service component and its detailed
design, then it is likely that you also reuse the corresponding service
component implementation. However in some cases you may have to create
a new implementation for an existing design—possibly because the
non-functional requirements are different (for example the implementation
needs to be faster, or needs to scale more, or has different distribution
characteristics).

4. Runtime instance reuse: If you reuse the implementation then it is likely that
you also reuse the runtime instance. However, this is not always the case as
we described in “Usage of the same service twice in one system” on page 64.

In general, if each of the numbered items in the list is thought of as a level, then
reusing something at lower level implies also reusing each of the higher levels.
However, reuse at a higher level does not automatically imply reusing the
corresponding lower level artifacts.

Outside of the artifacts mentioned above, the following would also be candidates
for reuse:

� Business processes
� Use case specifications
� Test cases (and matching test data)

Our discussions so far have focused on reusing artifacts that have been created
during software development projects. There is also reuse of artifacts which
assist in the creation of new artifacts. For example:

� Patterns (both automated and documented—Support for automated patterns
in the Rational tooling is discussed in “Architectural patterns” on page 74)

� Transformations (transformations in the Rational tooling is discussed in
“Model-driven development” on page 145)

� Templates
 Chapter 4. Architecture and design 67

What has to be in place to enable reuse?

Keep in mind that reuse does not happen by accident. It requires effort and
up-front planning. However once the pattern has been set, reuse should become
part of business-as-usual.

The most common problems preventing reuse are listed here:

� Poor factoring of artifacts
� Ambiguous and bloated specifications
� Lack of interoperability of artifacts
� No summary level for managing artifacts
� No mechanism for publishing/consuming
� Activities are only project focused
� Lack of trust in artifacts: How do we know it works?

From this list of problems we can form a check list that has to be in place to
encourage reuse:

1. Ensure that projects are producing outputs that are appropriate for reuse
(increase reuse positives):

– Shared standards

– Consistent architectural style/design patterns

– Usage of asset-oriented templates to create artifacts

2. Ensure that there are no factors that prevent reuse (decrease reuse
negatives):

– Use technologies that support component integration.

– Ensure that mechanisms are in place to ensure asset stability before they
are reused.

– Ensure that mechanisms are in place that allow assets to change once
they have been published without affecting current consumers.

3. Ensure that there is a desire to produce reusable assets:

– Introduce incentives for producing reusable assets.

– Monitor and then publish productivity increases caused by reuse.

– Encourage projects to take a pragmatic approach to asset creation.
Encourage projects to structure what they would normally create as assets
rather than modeling/implementing a lot of functionality that they do not
require because they think someone might need it in the future. Special
strategic asset-creation projects can be spawned off to pro-actively create
assets before they are required, but this takes special planning and
funding.
68 Building SOA Solutions Using the Rational SDP

4. Ensure that there is a desire to reuse assets:

– Introduce incentives for reusing assets.

– Project development case tasks should include searching for existing
assets.

5. Ensure that there is a mechanism for publishing/consuming:

– Enterprise and project level asset-based method support

– Repositories for storing assets (with publish/consume capabilities)

– Create ownership structures within the organization to manage and
control asset publishing and consumption.

SO systems and integration

Figure 4-4 on page 46 introduced the notion that integration in SO systems
occurs in a special way. We expand a little on that idea here.

First of all, let us look at what we mean by systems integration. In RUP the term
used is enterprise application integration (EAI). The summary definition given
there is as follows:

EAI is the process of integrating multiple software applications that were
independently developed, use incompatible technology, and remain
independently managed. Fundamentally, EAI is about sharing and
exchanging data and business processes among the different applications
and data sources in the enterprise.

From reading the first part of this definition you may think that only externally
bought in applications were the subject of EAI. After all, within an enterprise why
would applications be “independently developed, use incompatible technology,
and remain independently managed?” For anyone that has worked in IT, you
know that this is traditionally more the rule than the exception.

Standard integration levels

RUP defines four main integration levels, which we describe in this section.

Data level
Data level EAI is a database-centric approach that consists of extracting data
from one database and updating it in another. Sometimes the extracted data can
be transformed before entering it into the target database, for example to apply
specific business rules.
 Chapter 4. Architecture and design 69

Data-level integration is commonly done through extract, transform, load (ETL)
tools that can extract, transform, cleanse, and load data from various data
sources to a common enterprise data repository.

Application interface level
This EAI level of integration consists of leveraging the interfaces provided by
custom or packaged applications to access business processes and simple
information. Usually this kind of integration is done in a three-step process:

1. Extract the information from one application through a provided application
interface.

2. Convert the data in a format understandable by the target application.

3. Transmit the information to the target application.

The most common approach to implement this kind of integration is called
message broker, an approach which standardizes and controls the flow of
information through a bus or a hub framework.

Method level
This is similar to application interface level, but at a lower level of granularity. The
idea here is not to share business functions (as in application interface level), but
to share directly the different methods used to compose a given business
function. All other enterprise applications that have to implement the same
methods can use them directly without having to rewrite them.

The ability to share methods and to reuse business logic make this approach
very suited for EAI. But the downside is that it is also the more invasive approach
because it supports the modification of existing applications to allow the sharing
at such a low level.

User interface level
User interface EAI is also commonly called refacing and consists of replacing
existing text-based user interfaces of existing systems with a standardized
interface, typically browser-based.

This kind of integration is less expensive than the other options, as the code of
the existing applications is not modified. However, this approach is also less
flexible for the same reason.
70 Building SOA Solutions Using the Rational SDP

SOA and integration

One of the good features of SOA is that it does not try and reinvent the wheel in
response to every problem. The SOA approach to integration makes use of a lot
of the approaches to integration mentioned in the previous section. However it
brings them to bear in an integrated fashion (integration of our integration
approaches!) and adds further benefit as we describe in this section.

Two types of application/method level integration
There are two different types of application/method level integration evident in the
scenario shown in Figure 4-22.

Figure 4-22 Example SOA integration scenario for discussion

Before we mention these, we provide an explanation of the usage of the terms
internal and external here. These are terms used relative to our service
architecture. Executable business processes, composite services and atomic
services—as shown in Figure 4-22—are all internal to our service architecture.
As can be seen, non-SO systems and third party service endpoints are all
considered external to our service architecture.

Now that we have this definition, let us look at how it applies to
application/method integration:

B
usiness

(People, Process)
Softw

are (IT)

Executable
Business
Processes

Composite
Services

Atomic
Services

“External”
Software

Integration
Components

3rd Party Service Endpoints Non Service-Oriented Systems

Functional Area Functional Area Functional Area
 Chapter 4. Architecture and design 71

� External software integration: We service enable the non-service-oriented
software using integration services. These are special services that are
defined as an exact mapping of the interfaces exposed by the software they
are service enabling. Both the third-party services and the
integration-service-wrapped non-SO software are called from atomic services
in our service architecture. One of the service providers of our atomic
services are chosen to manage the state of each external system, and on this
basis the external software is called from the implementation of the atomic
service. This is further described in the architectural pattern “Pattern 7:
Service enable non-SO systems” on page 92.

� Internal software integration: Inside our service architecture, software is
integrated by the sharing of services between SO systems (SO applications).
As can be seen in Figure 4-22, our atomic services are called from our
composite services and indeed get shared between composite services.
These composite services essentially form our new applications. It is
important to note that as they share atomic services, they are therefore
indirectly sharing state (as our state is either managed directly by the atomic
services or by the external software that they are the proxy for).

Having described these two different types of application/method level
integration, let us note the following:

� Atomic services become the data (state) integration points

� Atomic services are also where “external” software is integrated into our
service architecture.

� We connect non-service oriented software into our service architecture using
integration services

� State is managed by atomic services. This is either because the state is
directly owned by the implementation of the service, or because the state is
managed by some external software that is used from the implementation of
the service.

� No business-relevant state is kept in our composite services.

Portals front-ending business processes give UI integration
Although it is not explicitly shown in Figure 4-22, our scenario uses a business
portal to front-end the executable business processes. Human tasks in the
business process are performed by roles in the various business functional areas
using portlets hosted by the business portal.

Portal/portlet technology is widely recognized as being appropriate for achieving
user interface integration and is increasingly being used to do so in enterprise
implementations.
72 Building SOA Solutions Using the Rational SDP

Note that the type of user interface integration is not as simplistic as just adding a
new user interface directly on top of existing applications. Our portal allows us to
integrate user interfaces supporting both new functionality and also existing
functionality that exists in non-SO applications and systems (that have been
integrated into our service architecture as described in “Two types of
application/method level integration” on page 71).

Executable business processes result in people integration
Besides software and data integration, the scenario described in Figure 4-22
also achieves a more important kind of integration: people integration. The
business roles that exist in the business functional areas shown in the diagram
are all integrated by the executable business processes that they included in. In
other words, the work done by people performing these roles is now integrated
by the business processes that define the workflow.

Reusing architecture and design experience

Besides reusing actual artifacts (specifications, source code, and so forth) on a
project, we also want to reuse experience in building our solutions. For a
software architect or designer, reuse of architecture and design experience is
good for a number of reasons:

� Reuse makes the job easier to benefit from existing solutions.

� Across the enterprise, if architects and designers are producing work
products following a common set of experience, this improves the
interoperability of the work products.

� The overall quality of the work products produced is higher if tried and tested
solutions are used.

The form that architecture and design experience can take is best described by
introducing the two related concepts of architectural styles and patterns.

Architectural styles

RUP introduces the subject as follows:

A software architecture may have an attribute called architectural style, which
reduces the set of possible forms to choose from, and imposes a certain
degree of uniformity to the architecture. The style may be defined by a set of
patterns, or by the choice of specific components or connectors as the basic
building blocks.
 Chapter 4. Architecture and design 73

So the style we choose for our architecture can be dictated by defining a set of
patterns for our software architects to follow. These patterns influence the shape
of our service architectures and ensure that a consist approach is followed by all
projects. Figure 4-23 illustrates how architectural style is applied to service
architectures.

Figure 4-23 Applying architectural style to service architectures

We expand on the notion of what these architectural patterns are in the next
section.

Architectural patterns

A pattern can be defined as “a generally repeatable solution to a commonly
occurring problem in software design”.

Patterns are a useful mechanism for capturing reusable experience. Typically a
pattern has the following parts:

� Pattern name: A unique name for the pattern

� Context: The context in which the pattern exists

� Problem: The problem that the pattern is trying to solve

– Forces: A list of aspects to the problem

� Solution: The solution provided by the pattern

– Rationale: The reasoning of what the pattern achieves

Service
Architectures

Architectural
Style

Architectural
Patterns

service architectures
adhere to an architectural
style

architectural style is
defined using a set of
architectural patterns
74 Building SOA Solutions Using the Rational SDP

– Resulting context: The changes in the original context caused by applying
the pattern

– Examples: Examples showing the pattern in use

We differentiate between two different levels of patterns:

� Architectural patterns—These are patterns that affect architecturally
significant software elements. In the context of this book, these patterns affect
your service architecture (and therefore primarily your service model) and are
used as part of specifying the service architecture (see “1. Specify software
architecture” on page 61).

� Design patterns—These are patterns that affect the design elements that
form the detailed design (insides) of architecturally significant software
elements (and therefore primarily your design model). They are used as part
of detailing the software designs (“2. Detail software design” on page 61).

So therefore architectural patterns shape architectural specifications and design
patterns shape detailed design.

JK Enterprises case study architectural style

We present the architectural style adopted for our JK Enterprises case study in
this section by describing a set of twelve architectural patterns.

But first a word of caution. Patterns have a described context and problem for a
reason—And that is so that you know when to apply them.

A golden rule for using patterns is to never use a pattern unless you:

1. Understand the benefit that it is providing
2. Are sure that it is relevant to your context

Note that part of the value of a pattern is in getting you to think through your
problem from other points of view. This helps you to evaluate a solution that is
right for you.

With these words of warning in mind, we present the patterns illustrated in
Figure 4-24 for your evaluation.
 Chapter 4. Architecture and design 75

Figure 4-24 Twelve architectural patterns used by JK Enterprises

Pattern 1: Factor composition logic away from process logic

Pattern name Factor composition logic away from process logic

Context The emerging de facto standard for building business process-driven
SOA solutions is to use the Business Process Execution Language
(BPEL) to implement the executable process. Let us look at two
specific tasks that BPEL can be used for:

� Create an executable version of a Business Process Modeling
Notation (BPMN) modeled business process (process flow
logic).

� Implement a composite service by orchestrating a set of calls on
atomic services (composition logic).

For any given executable process, both of these tasks can be
achieved using a single BPEL artifact describing a sequenced step of
Web service invocations.
76 Building SOA Solutions Using the Rational SDP

Problem Mixing process flow logic and composition logic together in the same
implementation artifact has problematic side effects.

� Forces � It makes it more difficult to reuse the composition logic.

� It makes it more difficult to understand the process flow by
looking at the BPEL.

� The resulting implementation artifact is more complex and
therefore more difficult to maintain.

� It makes it more difficult to split the roles of process developer
and service developer.

Solution Have distinct architectural layers for service consumers and
composite business application services.

Represent executable business processes in your architecture using
a service consumer. Place it in the service consumer layer. All
business process flow logic exists in the implementation (BPEL) of
this service consumer. From an architectural point of view, any user
interface required to interact with this process is considered to be a
part of this same service consumer SO part.

This service consumer will consumer the services provided by a
service provider which exists in the next architectural layer down -
composite business application services. All composition logic exists
in the implementation of this service provider. This service provider
should provide a separate service specification for each of the
processes (or more likely sub-processes) that it supports. It will also
have required service specifications for each of the services that this
composite service requires (this is what makes it a composite
service).

We note the following:

� If you use “Pattern 5: Manage complexity using SO systems”,
then the same service consumer can appear in multiple SO
systems. This is because a business process can span across
functional areas (and our SO systems are derived from the
defined IT systems in these functional areas that support the
business processes).

� The composition logic need not be implemented using BPEL.
Oftentimes it is simpler to just use plain old Java. This may
depend on the tools and skills of the developer assigned to
implementing these components.

“Pattern 12: Drive applications using business processes” is closely
related to this pattern.
 Chapter 4. Architecture and design 77

Examples
In the example shown in Figure 4-25 we see a service consumer called
AccountOpeningProcess. This can be implemented as a BPEL process
(long-running or short-running depending on whether it needed to retain state)
using WebSphere Integration Developer, based on a BPMN-based process
specification from WebSphere Business Modeler.

We also see a composite business application service provider called
SalesManagementComposite which provides two services: AccountVerification
and AccountActivation. The service provider using BPEL (as a short-running
process) or Java. WebSphere Integration Developer provides tool support for
implementing these types of services in the form of SCA bindings, maps, and
BPEL editor.

� Rationale Keeping the process logic separate from the composition logic
means:

� It is easier to reuse the composition logic across multiple
processes.

� It is easier to understand the process flow BPEL as it only
contains flow logic.

� The resulting BPEL is simpler and therefore easier to maintain.

� It is easier to split the roles of process developer and service
developer. Process developers implement the business process
service consumers. Service developers implement the
composite business application services (and any atomic
business application services they require).
78 Building SOA Solutions Using the Rational SDP

Figure 4-25 Separating composition logic from process logic

Pattern 2: Factor atomic reusable logic into lower reuse layers

Pattern name Factor atomic reusable logic into lower reuse layers

Context Today it is common for IT departments to have software reuse as a
goal.

Problem Without a clear policy for factoring reusable logic, the chances for
reuse are lower.

� Forces � Reuse requires identifiable reusable elements.

� Appropriate reuse factoring does not happen by accident.

Process logic lives in
service consumers

Service composition
logic lives in
composite business
application services
 Chapter 4. Architecture and design 79

Examples
In the example shown in Figure 4-26, there are yellow rectangles for each of our
layers.

From top to bottom we have:

� Service consumers
� Composite business application services (and service providers)
� Atomic business application services (and service providers)

Solution Have a clear policy for factoring reusable logic across your
architectural layers.

Reusable logic can be divided into the following two categories:

� Logic which is strongly relatable to a business object (and
therefore a domain type). An example would be customer
account setup logic which is related to the domain type
CustomerAccount.

� Infrastructure logic. For example, logic that allowed e-mails to be
sent or documents printed.

Both of these types of logic are highly reusable and are respectively
factored into the following two service architecture layers:

� Atomic business application services

� Infrastructure services

The layers that these services live in are lower in the architecture than
service consumers and composite business application services.
These services are generally used from composite business
application services (which explains the name).

Note that although the factoring rules in this pattern are for ensuring
that we end up with reusable services that are appropriate for
plugging into composite services, it should be noted that service
consumers are themselves reusable (specifically across multiple SO
systems).

� Rationale Having clearly identified where the reuse points are in our
architecture, we can now:

� Publish these services to a repository for reusable services.

� Allow the reusable services in this repository to be categorized.

� Ensure that we factor reusable logic into these services when
modeling service interactions (which is when logic gets factored
across your architecture—More on this in “Step 2: Design
service interactions” on page 359.
80 Building SOA Solutions Using the Rational SDP

Below the last layer, we would also have a further layer (which is omitted in the
diagram as there are no infrastructure services in this example):

� Infrastructure services (and service providers)

In our example the following reusable atomic business application services exist:

Address, BillingAccount, AccountApplication, GeneralLedgerAccount

Figure 4-26 Reusable services in the SalesManagement SO system

Pattern 3: Factor application-specific logic out of reuse layers

Pattern name Factor application-specific logic out of reuse layers

Context Software reuse can be a goal for IT departments that are building SO
systems that are driven by executable business processes.

Reusable atomic services
 Chapter 4. Architecture and design 81

Examples
As background to the example shown in Figure 4-27, we have a business
process called Account Opening, which has sub-processes called Account
Verification and Account Activation.

Problem Mixing application-specific logic and atomic reusable logic makes it
more difficult to reuse the atomic reusable logic from composite
services.
Note: In the context of our business process-driven systems, by
application-specific we mean that logic which is unique to the
implementation of a specific process (and is not reusable across
business processes).

� Forces � Where a service operation contains both the logic that you want
to reuse as well as other logic (which therefore causes unwanted
behavior), this reduces the likelihood of that operation being
reused.

� Appropriate reuse factoring does not happen by accident.

Solution Factor application-specific logic into the composite business
application service layer.

This is the layer whose services:

� Are used by service consumers in the higher layer (often, but not
always, these are executable business processes).

� Compose (and therefore use) reusable services in the lower
layers (atomic business application services and infrastructure
services).

Note that the behavior provided by a composite business application
service is now the sum of:

� The application-specific logic that it implements itself,

plus

� The atomic reusable logic that is implemented by each of the
atomic business application services and infrastructure services
that it calls (composes).

As the composite business application services are themselves
reusable, this arguably means that they provide a higher-value level
of reuse.

� Rationale Keeping application-specific logic separate from atomic reusable
logic will:

� Increase the reusability of your atomic reusable services and,

� Provide a further higher-value set of reusable services (the
composite business application services themselves).
82 Building SOA Solutions Using the Rational SDP

In the diagram we see that the business process appears in the form of a service
consumer called AccountOpeningProcess which will most likely be implemented
as a BPEL process in WebSphere Integration Developer.

For each of our sub-processes we find a service in the composite business
application service layer: AccountVerification and AccountActivation. These
are provided by a service provider called SalesManagementComposite. The
implementation of this service provider consists of:

� Some logic which is unique to the sub-process (application-specific logic)
� Orchestration logic that calls reusable services

Figure 4-27 Application-specific logic in composite business application services

Place application-specific logic
into composite business
service providers at this level
 Chapter 4. Architecture and design 83

Pattern 4: Base architecture on business relevant elements

Pattern name Base architecture on business relevant elements

Context A software architecture defines the software in terms of a set of parts
that together make up distinguishable software systems (See
“Architecture of software systems” on page 43).

It is common to have in place a standard for identifying, naming and
scoping these parts to ensure a common approach is followed across
the organization.

Problem Identifying, naming, and scoping the parts in your service
architecture on things that are not part of the business view causes
problems.

Relevant examples of things outside of the business view are:
� Existing software applications
� Component implementation technologies (for example, EJB™)
� Communications “plumbing” between components

� Forces � The service architecture is affected unnecessarily if parts are
based on things outside of the business view and these things
disappear or are changed substantially.

� In general, impacts that cause changes to architectural
specifications are more serious than those that only require
changes to implementations (changes to one architectural
element will typically affect multiple design elements and an
even greater number of implementation elements).
84 Building SOA Solutions Using the Rational SDP

Examples
Examples of the application of this pattern can be found in part in the following
diagrams, ordered by the factoring rules listed above:

� Figure 4-28 on page 89
� Figure 4-25 on page 79
� Figure 4-27 on page 83
� Figure 4-29 on page 91

Solution Derive parts of your service architecture on the following business
relevant things:
� Functional areas (IT system)
� Business processes
� Business sub-processes
� Domain types

Here is a simple set of factoring rules for achieving this:

1. For each service-oriented IT system identified for a functional
area, define a SO system (talked about further in “Pattern 5:
Manage complexity using SO systems”).

2. For each business process, define a service consumer. This
service consumer will consumer any services that support that
business process. If executable business processes are being
built, then the executable business process will form part of the
implementation of the service consumer.

3. For each business sub-process, identify a composite business
application service to provide the services that it requires.

4. For each domain type, identify an atomic business application
service (this is described further in “Pattern 6: Derive atomic
services from domain model”).

� Rationale Deriving parts for your service architecture from business things
provides a solid architecture. This means:

� Your service architecture should no longer be affected by
changes to non-business things (for example retiring and
replacing existing applications or choosing a new component
implementation technology).

� The architecture should “flex” with changes to the business
rather than changes to non-business things.

� This reduces the number of unnecessary specification changes.
Changes to the non-business things listed above still requires
software change, but such change will be to detailed design and
implementation rather than to the architecture. These types of
changes have less overall impact.
 Chapter 4. Architecture and design 85

Pattern 5: Manage complexity using SO systems

Tip: Some words of warning in applying this pattern:

� Depending on how the business entities themselves have been factored,
you may end up with parts that are “too big” if you just apply a simple 1-to-1
derivation. In these cases you may need a further subdivision to create
“smaller” parts.

� A bit of creativity and experimentation may be required to create factoring
rules that work for you. The important point is that these rules have to be
based on things in the business view.

Pattern name Manage complexity using SO systems

Context As SOA practices are adopted and rolled-out across an enterprise,
the amount of service-oriented software created becomes
appreciable.

The number of individual elements in the service architecture
(services, service consumers and service providers) will increase
dramatically over time.

Problem Only having the relatively low-level constructs of service, service
consumer and service provider to represent and understand your
service architectures causes problems as the number of these things
in the enterprise typically becomes large. Some grouping mechanism
is required.

� Forces � Describing and understanding reuse can be difficult without a
context for the usage of services, service consumers and service
providers. In other words, what is the answer to the question
“Where have my service consumers and providers been used?”

� Managing specifications of service behavior (using for example
service collaborations—See “Model element: Service
collaboration” on page 250 for a description) without a sensible
grouping for these specifications would be difficult. Can you
imagine all of the service specification behavior that will exist
across the entire enterprise?

� Understanding (and therefore maintaining) software built by SOA
projects without some higher-level architectural specification
artifact than service, service consumer, or service provider would
be difficult.

� Not having a higher-level system-size artifact to trace back to the
business view means that this traceability is more difficult to
understand.
86 Building SOA Solutions Using the Rational SDP

Solution Use SO systems as a higher level grouping of your service-oriented
software (see “Service-oriented IT systems” on page 44 for an
introduction).

As described in “Pattern 4: Base architecture on business relevant
elements”, factoring rule 1: One way of deriving SO systems is to
create one for each of your identified service-oriented IT systems for
your functional area (this assumes that you have well defined
functional areas).

In the service model we have a single package that contains
everything owned by our SO system. Each of our SO systems owns
a structural architectural specification and a set of behavioral
architectural specifications. These exist in our SO system package
as:

� A service partition named after our SO system that contains the
structure of our SO system. The parts in this structure are based
on service consumers and service providers that can be used as
parts in multiple SO systems.

� A set of service collaborations. If use cases are used then these
correspond to the set of system use cases that have been
defined for the functional area. Each service collaboration has
one or more service interactions which each form a behavioral
specification. Normally these correspond to flows from the
related system use case.

We have now grouped our architectural specifications into:

� SO parts that are usable as parts in a SO system service
architecture. These are our service consumers and service
providers.

� SO systems that own SO system parts based on these SO parts
and own the structural and behavioral specifications of our
service architectures.

Note: Definitions for the service model specific terms used here can
be found in “Service model work product” on page 234.
 Chapter 4. Architecture and design 87

Examples
As background to Figure 4-28, let us note that our example has two business
functional areas: Customer Service and Sales Management.

Based on inspection of the Account Opening and Account Application Inquiry
business processes, we note automation requirements for certain tasks captured
in the following system use cases (organized by IT system):

� Sales Management:

– Determine applicant eligibility
– Verify address
– Activate account

� Customer Service:

– Inquire on application status

In the example we can see that two SO systems exist, one for each of our
functional areas: CustomerService and SalesManagement. Each of these SO
systems owns:

� A service partition describing its parts

� A set of service collaborations corresponding to the system use cases owned
by the corresponding functional area

� Rationale Grouping service architectures by SO systems (derived from
functional areas) provides a scalable way for creating end-to-end
architectural models that span the entire enterprise. We note the
following:

� We now have a manageable context for the usage of our
services, service consumers and service providers. This is
provided by the service partition that represents our SO system.

� We have a way of grouping the service collaborations that makes
it easier to manage them.

� Understanding the enterprise SOA view is easier now that there
is a higher-level architectural specification artifact.

� Traceability to the business view is simple. There is a SO system
providing software to support the automation requirements of
each functional area.
88 Building SOA Solutions Using the Rational SDP

Figure 4-28 Organizing the usage of your service-oriented software using SO systems

Pattern 6: Derive atomic services from domain model

Tip: It is important to heed the warning provided after “Pattern 4: Base
architecture on business relevant elements” which is relevant to this pattern.

Pattern name Derive atomic services from domain model

Context A domain model represents things that exist in the business world
(specific to an identified domain), associations between these things,
and any special rules that constrain instances of these things.

Atomic services (and service providers) do not require any services
(at least architecturally significant ones—See “Architecturally
significant services” on page 57) in their implementation.

It is common for business state (data) to be owned by the
implementations of atomic services.

Problem Not having a standard for identifying, naming and scoping atomic
services causes data ownership issues.

CustomerService and
SalesManagement are two SO
systems that provide software
that supports the Customer
Service and Sales Management
functional areas respectively.
 Chapter 4. Architecture and design 89

Examples
In the example shown in Figure 4-29 we see the following domain types:

� Customer
� Address
� AccountApplication
� Product
� CustomerAccount
� BillingAccount
� GeneralLedgerAccount

Note that this list does not include PricingCode and AccountApplicationState,
which are enumerations. These do not have state but instead describe a fixed set
of possible values.

We derive a service specification for each of the domain types.

� Forces � It is difficult to understand which atomic service owns any given
piece of business data

� Changes to the domain model are not straightforward to
accommodate in the service architecture

Solution Derive atomic business application services from domain types in the
domain model.

For each domain type, there should be a corresponding service that
whose implementation:
� Contains logic acting on instances of the domain type
� Contains logic that persists instances of the domain type

� Rationale Atomic business application services are where data is owned in your
architecture, because it is this business data and the reusable logic
that acts upon the data that should be reusable.

As your domain model provides a view of the business things that
exist and therefore of the data that exists in the enterprise for these
things, the domain model is a first choice subject to use to derive your
atomic business application services from.

Note that:

� It is now easy to see which atomic services own any given piece
of business data.

� The impact of changes/additions to your domain model are more
straightforward to accommodate in your service architecture.
90 Building SOA Solutions Using the Rational SDP

Figure 4-29 Deriving service specifications from domain types

Domain
types

Service
specifications
 Chapter 4. Architecture and design 91

Pattern 7: Service enable non-SO systems

Tip: It is important to heed the warning provided after “Pattern 4: Base
architecture on business relevant elements” which is relevant to this pattern.

In this case an alternative factoring rule would be to first consider domain
types that are closely related (example whole/part relationships like
order/order-line) and only to create a single service that manages both of the
domain types (named after the dominant domain type). It is unusual though
that the domain types are so large that it causes issues.

Pattern name Service enable non-SO systems

Context SOA is a relatively new way of building software systems. All
enterprises have a large amount of software systems that are not
service-oriented (see “SOA and integration” on page 71).

Problem There is no clear way to achieve effective application or method level
integration (see “Standard integration levels” on page 69) with
non-SO systems.

� Forces � The communication technology options for integrating with these
systems may differ wildly and using these technologies requires
specialist development skills.

� Building point-to-point integrations with these systems from each
of the service components that have to integrate with them is
inefficient because integration code is duplicated.
92 Building SOA Solutions Using the Rational SDP

Solution Service-enable non-SO systems using a special kind of
service—Integration services (these are introduced in “Two types of
application/method level integration” on page 71).

Integration services are specified using the same kind of artifacts as
normal services. However they are different from the types of
services we have discussed in our service model. Let us note the
following:

� The service specification for an integration service should be a
service-based interpretation of a distinguishable interface (or
similar) that exists on the non-SO system.

� This interpretation should be as literal as possible. In other
words, it should look as close as possible to the existing interface
as possible.

� The implementation of the integration service uses an
appropriate communication technology to talk to the non-SO
system (for example, CICS). This is hidden from consumers of
the service who only have to deal with the service using the
standard service communications technology in use.

� These services are not architecturally significant and therefore
do not appear in the service model. They are design elements
and should therefore live in the design model (although it might
at first seem as though all services should live in the service
model this is not true).

� The data owned by the non-SO system should be owned by an
atomic business application service provider. This means that
the integration service itself becomes part of the implementation
of the atomic business application service provider that owns its
data (see “Pattern 8: Model data ownership” for more on this).

� Rationale Wrapping non-SO systems using integration services allows us to:

� Isolate the areas in our software that are implemented using the
kind of specialist communication technologies required to
integrate with non-SO systems. Even if these technologies are
not specialist as such, they most are different to the ones used to
communicate inside your service architecture between your
service consumers and providers.

� Define clear reuse points for integration logic.

Note also that the reason that integration services are treated as
different to the other kinds of services that we have looked at (in other
words those in our service architectures) in line with the reasoning
provided in “Pattern 4: Base architecture on business relevant
elements”.
 Chapter 4. Architecture and design 93

Pattern 8: Model data ownership

Pattern name Model data ownership

Context Most software systems that exist in an enterprise store data using
some sort of persistence technology. Normally, but not always, this is
a relational database.

No matter what the persistence technology, there are some
element-level artifacts where the data is stored (for example, a table
in a relational database or an object in an object database). We
consider that element-level artifact to be owned by a software
component if the only thing that is allowed to access the state it
contains is that software component.

Problem Not having clear data ownership makes it impossible to ensure data
encapsulation.

� Forces � It is difficult to know which component has encapsulated a
specific data item.

� It is difficult to know what data items a component is responsible
for.

� For a given component and data item, it is difficult to know
whether the component implementation can access the data
item directly or whether the component has to access it through
the interface of another component.
94 Building SOA Solutions Using the Rational SDP

Solution Assign data ownership to service providers that provide atomic
business application services. Model this data ownership using
information types.

For each atomic business application service provider we create an
information type to represent each of the data items that it manages.

Note the following:

� These information types are black box representations of the
state that the service provider owns.

� By own we mean that the service provider has exclusive access
to the data instances in the data structure (internal, white box)
that matches the information type (external, black box).

� Information types are very useful when using pre-conditions and
post-conditions to describe the behavior of service operations. In
other words, the pre-conditions and post-conditions describe
changes to the state owned by the service provider in terms of
the info types.

� Information types can be (and should be) derived from domain
types.

� It is not uncommon for more than one information type, each
belonging to a different service provider, to be derived from the
same domain type. This is especially common when one service
provider only has to store a reference to the identity of a certain
business thing, while another service provider persists actual
instances of the thing.

The approach for determining info types is described in “Model info
types for the service providers” on page 331.

� Rationale Understanding data ownership is very important in our service
architecture. Modeling info types to represent the data owned by
each service provider means that:

� We can now tell which component has encapsulated a specific
data item by checking to see which info types are derived from
the domain type, and then checking which service provider owns
the info type.

� To understand what data items a component is responsible for,
we look at which info types its service provider owns.

� To determine whether a component implementation can access
a data item directly, verify whether the corresponding info type is
owned by its service provider.
 Chapter 4. Architecture and design 95

Examples
Figure 4-30 shows the data ownership of the CustomerAccountMgr using
information types.

Figure 4-30 Modeling the data ownership of the CustomerAccountMgr service provider
96 Building SOA Solutions Using the Rational SDP

Pattern 9: Keep service operation signatures meaningful

Pattern name Keep service operation signatures meaningful

Context RUP defines the operation artifact as follows:

This artifact represents a service that can be requested from an
object to effect behavior. An operation specifies the name, type,
parameters, and constraints for invoking an associated behavior.

Note that the way in which the term service is used in this definition
in a different way to the way in which it is used in this book.

Problem It is difficult to understand what an operation does if its signature is
not meaningful.

� Forces � Modeling an operation signature using a single input and output
message reduces the amount of meaning of that signature.

� Often on diagrams, only the signature of an operation might be
shown without the structure of the types used in the signature.

Solution Keep operations as meaningful as possible:

� Avoid modeling your operation using a simple request/response
message pair.

� Use meaningful parameter types derived from your domain types
to type your parameters.

� Name parameters helpfully (for example, newCustomer:Customer
for the createCustomer operation.

� Rationale Meaningful operation signatures enable you to convey more meaning
in diagrams that only show service specifications without showing the
structure of the parameters.
 Chapter 4. Architecture and design 97

Pattern 10: Keep architectural elements totally decoupled

Pattern name Keep architectural elements totally de-coupled

Context RUP provides the following definition for coupling:

The degree to which components depend on one another. There
are two types of coupling, tight and loose. Loose coupling is
desirable to support an extensible software architecture but tight
coupling may be necessary for maximum performance. Coupling
is increased when the data exchanged between components
becomes larger or more complex.

Component as it is used in this definition is a piece of software that is
encapsulated and forms a unit of independent deployment and
versioning.

When components share artifacts it increases the coupling between
them.

The specification of a component is made up of those artifacts that
describe it from a black-box point of view (see “Architecturally
significant services” on page 57 for a definition of black-box view).
Included in this are the following:
� Service specification
� Parameter types

Even if the implementations of a set of components are totally
decoupled, if any of the components share parts of their specification
then this increases coupling.

Problem Sharing specification artifacts between service providers has some
problematic side effects.

� Forces � Changes to these shared specification artifacts affect multiple
service providers.

� Where specialized versions of parameter types are required,
there is a mixture of shared parameter types and specialized
“local” parameter types, which is slightly more complex than just
having local parameter types.

� The size of the shared service specification artifacts library
quickly grows in size. Factoring these out into separate libraries
based on some factoring rule itself becomes quite complex.
98 Building SOA Solutions Using the Rational SDP

Examples
The example shown in Figure 4-31 shows the parameter types of two service
providers: AddressMgr and CustomerAccountMgr:

� The AddressMgr service provider requires a view of addresses as it stores the
full set of known addresses for verification against.

� The CustomerAccountMgr requires a view of addresses because it stores
customer addresses, and therefore an address is passed as parameter with a
customer account application.

Solution Each service provider should own its:
� Parameter types
� Enumerations
� Messages
� Provided service specifications

Each service provider should also own its info types as well, but this
is by definition as info types are used to model data ownership.

In this way the specification of the service provider is totally
decoupled from other specifications. The only resources shared
between service providers are primitive types.

Note that for composite business application services, where a
service provides service specifications and required service
specifications, there is some coupling between the composite
business application service and the service provider providing the
services that it requires. You could break this coupling by introducing
a local copy of the required service specification.

Note that although it may seem like a lot of additional work to maintain
separate copies of certain specification artifacts (where they look the
same across multiple service providers), this can be reduced (or even
negated in some cases) by using Rational Software Architect
transformations—for example from domain types to parameter types.

� Rationale Not sharing specification artifacts prevents dependency issues as
follows:

� Changes to the specification artifacts mentioned above only has
localized impact.

� It is a lot more clear as to where specification artifacts come from
when they are used as they are all local—in other words there is
no combination of local and shared specification artifacts in use
in a service provider specification.

� No rules are required for when to factor a specification artifact
out as a shared artifact.
 Chapter 4. Architecture and design 99

As can be seen from Figure 4-31, each of these service providers owns their own
Address parameter type, which is used in the specification of their service
operations.

Figure 4-31 Two service providers, each with their own parameter types

Pattern 11: Use shared messages and parameter types

Pattern name Use shared messages and parameter types

Context See the context for “Pattern 10: Keep architectural elements totally
decoupled”.

Problem Keeping separate copies of specification artifacts for each service
provider as suggested in “Pattern 10: Keep architectural elements
totally decoupled” involves additional work.

� Forces � When a change is made to a domain type, that same change
may need to be made to multiple parameter types that are based
on that domain type (we say may because in some cases the
change to the domain type may be outside of the scope of the
parameter type required for a specific service provider).

� Instead of just using a parameter type in a shared library of
parameter types, a new parameter type has to be created for
each service provider that requires it.

AddressMgr’s
Address parameter type

CustomerAccountMgr’s
Address parameter type
100 Building SOA Solutions Using the Rational SDP

Pattern 12: Drive applications using business processes

Solution Create a resource containing specification artifacts that can be
shared between service providers. This can contain shared:
� Parameter types
� Enumerations
� Messages

� Rationale Having shared specification artifacts means:

� You only have to apply changes to shared specification artifacts
in one place rather than having to make certain changes to
multiple identical specification artifacts.

� You do not have to create multiple copies of the same parameter
types.

Pattern name Drive applications using business processes

Context Enterprises adopting SOA commonly also adopt business modeling
practices. A key aspect captured in these business models is
business process.

A de facto standard emerging for implementing business processes
in software is the Business Process Execution Language (BPEL).

Problem It is not immediately apparent where BPEL components should live
in a service architecture. Because of this, they may be introduced in
inappropriate places.

� Forces � Using BPEL components in inappropriate places may cause
future architectural problems.

Solution Represent executable business processes in your service
architecture using service consumers, and place these in the top
layer in your architecture.

Limit the usage of BPEL implementations of process flow logic to
implementations of these service consumers.

These service consumers—acting on triggers from either human
actors (through some user interface) or the workflow infrastructure
(because a previous task has completed and a new one is
starting)—in turn make calls on composite business application
services to provide the required automation behavior.
 Chapter 4. Architecture and design 101

Examples
In the example shown in Figure 4-32 we see our SalesManagement SO system
has a service consumer called AccountOpeningProcess. From the example of
“Pattern 3: Factor application-specific logic out of reuse layers” on page 81 we
know that the Account Opening business process contains two sub-processes:
Account Verification and Account Activation.

The AccountOpeningProcess service consumer drives system behavior at
runtime optionally receiving inputs from the SalesRepresentative actor, and in
turn calling the AccountVerification and AccountActivation composite
business application services.

� Rationale Having a clear guideline for where in your architecture BPEL
implemented process logic should live prevents the usage of BPEL in
inappropriate places:

� Prevent BPEL from being used to implement logic that is best
implemented in Java language.

� Prevent process logic being introduced somewhere
inappropriate in the architecture. It should be driving the
software and therefore should appear in your topmost layer.
102 Building SOA Solutions Using the Rational SDP

Figure 4-32 Business process driving flow of service invocations

AccountOpeningBusinessProcess
service consumer drives flow of
service invocations of consumed
services in response to inputs
from the SalesRepresentative
actor.
 Chapter 4. Architecture and design 103

104 Building SOA Solutions Using the Rational SDP

Chapter 5. Process and methods

This chapter discusses the IBM Rational software development process by
describing the basic of Rational Unified Process (RUP) and UML modeling in an
SOA context.

Moreover, this chapter describes the development case, or software
development process that we follow for this book and JK Enterprises. The
chapter also describes, in detail, how to codify the development case in Rational
Method Composer.

This chapter is structured around:

� Rational Unified Process

� JK Enterprises development case

5

© Copyright IBM Corp. 2007. All rights reserved. 105

Introduction

A fool with a tool is still a fool (anon.)

Every company, project, or team has a method. It may get invented every
morning when the team walks through the door, but they have a method—a way
of working together. The question is, “Is this the appropriate method for the
team?” This chapter introduces the IBM Rational Unified Process and discusses
the importance of modeling and architecture. It explains some of the basic
concepts of UML. It closes with an overview of the tools the architects use in this
book.

IBM Rational Unified Process (RUP)

The IBM Rational Unified Process is an approach that is used to develop
software. It contains information about the type of work we need to perform to
develop software (tasks), the sets of responsibilities we assign to people (roles),
what we have to produce (work products), and assistance in performing this work
(guidance).

The process has been developed over the last 26 years as a collection of IBM
Rational field experience helping customers develop software and IBM Rational’s
experience building their own products. This work has led to the OMG standard
Software Process Engineering Metamodel (SPEM), and the Eclipse Process
Framework project.

� SPEM is a standard way of describing a process1 and was originally
developed by Rational Software, IBM, and other companies.

� The Eclipse Process Framework project is an open-source project that
provides tooling to build development and other processes, and provide basic
content. IBM and others initiated this project. IBM provided both the initial
tooling and content and now uses this open source project as the basis for its
commercial IBM Rational Method Composer product. The Web site for the
Eclipse Process Framework is at:

http://www.eclipse.org/epf

There are a few key definitions we have to understand before we can effectively
understand RUP. Figure 5-1 shows these concepts.

1 The more recent versions of RUP and the Eclipse Process Framework project use an updated
version of the original SPEM specification. This new version is currently being proposed by IBM and
others as SPEM V2.
106 Building SOA Solutions Using the Rational SDP

http://www.eclipse.org/epf

Figure 5-1 Key concepts in RUP [from RUP V7.1]

� Method is the combination of method content along with process (the way we
combine the method content to create an approach we can follow in a
project).

� Method content is the information in the process, the words and pictures.

� Work product “...is something meaningful resulting from a process...” [RUP]

� Role “...a set of related skills, competencies, and responsibilities.” [RUP]

� Task “...describes a unit of work assigned to a Role that provides a
meaningful result.” [RUP]

� Guidance “...is an abstract concept that generalizes all forms of content
whose primary purpose is to provide additional explanations and illustrations
to elements such as Roles, Tasks, Work Products, Activities, or Processes.”
[RUP]

� Process “...defines the structured work definitions that need to be performed
to develop a system.” [RUP]

� Capability pattern “...describes a reusable cluster of Activities in common
process areas that produces a result of observable value.” [RUP]

� Delivery process “...describing a complete and integrated approach for
performing a specific type of project.” [RUP]

� Activity “...define the breakdown as well as flow of work.” [RUP]
 Chapter 5. Process and methods 107

We tend to pick a specific delivery process when we start looking for a process
for our team or project (for example, RUP for small projects) and then adapt it for
our local needs. This local version is called a development case. If we like our
adapted process and want to use it elsewhere, we can use the Rational Method
Composer to create our own delivery process (for example, JK Enterprises
development case).

RUP is delivered as a large set of HTML pages that we use as a library of
information. We pick out the parts of the library we need for our project as a
development case.

RUP follows a set of core principles that are worth understanding as we use RUP.
This forms the motivation for using a process, and specifically for using RUP.

Core principles of RUP

RUP has six core principles that provide the rationale for the process:

� Adapt the process
� Balance competing stake holder priorities
� Collaborate across teams
� Demonstrate value iteratively
� Elevate the level of abstraction
� Focus continuously on quality

Adapt the process
Adapt the process means use the right amount of process for a particular project.
Too much process kills projects, too little can lead to unconstrained chaos. an
interesting side-effect of having a process that is role-base is the process can be
scaled from very small teams to very large teams without changing the core
principles. The work products, tasks and other aspects of the process may vary -
but we should still be able to recognize a RUP-based process.

Balancing competing stakeholder priorities
Balancing competing stakeholder priorities recognizes the need to constantly
balance priorities on a project. Creating a clear set of requirements based on the
real needs of the business, and then regularly checking that these needs and
requirements have not changed, is one example of this balancing act. Build, buy
or reuse of services is another example. There are cost versus time versus
functionality balancing acts in this case.
108 Building SOA Solutions Using the Rational SDP

Collaborate across teams
Collaborate across teams refers to the need to motivate the individuals on the
team, break down the barriers between different teams or parts of the team, and
ultimately extend this collaboration to the business, development and operations.
SOA-enabled solutions extend this collaboration to outside the enterprise.

Demonstrate the value iteratively
Demonstrate the value iteratively has several aspects. The first is that we need
deliver real code regularly, starting right at the beginning of the project. It gives
the stakeholder chance to see what we are doing and provide feedback. The
second aspect is that iterations allow the plan to be adapted as the project
proceeds. The third is the chance to accept and manage change with changing
business priorities and stakeholder expectations. The last aspect is that we drive
out risk continuously from the project by demonstrating working software. We
also constantly reassess the keys risks and adapt the plans accordingly2.

Elevate the level of abstraction
Elevate the level of abstraction is a principle aimed at simplifying how we work
and communicate. We achieve this by the reuse of existing assets, the use of
modeling tools and making use of architecture. A significant benefit of
SOA-based solutions relies on this elevation of the level abstraction—services
being reused, modeling and transformations to translate business requirements
to code as quickly as possible, and the use of SOA as an architectural style.

Focus continuously on quality
Focus continuously on quality emphasizes the need to have quality as a priority
throughout the life cycle. Testing is not the discipline that introduces quality into
our solution - it can only catch the lack of quality in what has gone before. As
each iteration involves some form of testing, we have a regular monitor on quality
throughout the project.

Key concepts

The key concepts of RUP include:

� RUP summary chart
� Iterative development
� Phases (inception, elaboration, construction, transition)
� Architecture-driven
� Use case driven

2 Moving a development team and its stakeholders to an iterative process is hard. Iterative introduces
perceived uncertainties such as lack of a stable set of requirements, difficulty in planning and
costing work, regular rework and challenges scheduling staff requirements. RUP and the
supporting material and training addresses all these issues directly.
 Chapter 5. Process and methods 109

RUP summary chart
The RUP summary chart is shown in Figure 5-2.

Figure 5-2 RUP summary chart

The RUP summary chart captures many of the concepts in RUP in one diagram.
The chart shows a project with time on the x axis, and the disciplines on the y
axis. Each RUP project is divided into four phases (Inception, Elaboration,
Construction, and Transition). Each phase is broken down into zero or more
iterations. An iteration is a vertical slice through the disciplines as shown in
Figure 5-2. This iteration is the first iteration in the Construction phase.

The bumps on the chart indicate the level of effort required for each discipline.
Notice, for example, how the business modeling and requirements disciplines are
biased towards the beginning of the project but still continue into the Transition
phase. One of our favorite questions about this chart is based around testing:
“Why to the bumps on the testing discipline line get bigger and bigger over
time?”3

We now look at some of these terms and ideas in more detail.

3 This is because as we build more and more code, we write more and more tests. Each iteration
runs the tests of the new code and the tests from the previous iteration. If we managed to identify
the really high-risk areas of the project correctly, we will have regression tested these areas to the
full extent by the end of the project.
110 Building SOA Solutions Using the Rational SDP

Iterative development
Iterative development is the concept of breaking a project into a set of iterations.

An iteration encompasses the development activities that lead to a product
release-a stable, executable version of the product, together with any other
peripheral elements necessary to use this release. [RUP]

The project effectively becomes a set of smaller projects. The traditional software
development project life cycle of gathering requirements, designing,
implementing and testing the solution is discarded. However, an iteration
contains these traditional disciplines, hence the idea of an iteration as a mini
project. A project consists of a number of iterations.

This approach has many advantages including:

� Faster feedback on all aspects of the project
� Faster exposure (and consequently faster mitigation) of risk
� Ability to validate any estimation techniques within the project

The focus of each iteration is to produce some form of working, tested code. In
earlier iterations, this code might be a prototype of a certain aspect of the service
or composite services. In later iterations, the working code will be complete
builds of the services or composite services but with reduced functionality. This
reduced functionality could be stubbed out code, no or reduced handling or
simulation of an intended function (for example, a database access and retrieval
may be simulated).

Project managers are concentrating on using the iterations to mitigate or expose
risk. Contrary to natural inclinations, we encourage projects to attempt the
highest risk aspects up front. This in turn allows us to spend the most time on
addressing the risks. Each iteration should start with an assessment of what has
changed since the start of the last iteration. Risks and priorities changes may
steer us to change the plan for this iteration, bring some work forward and
pushing some work back.

Phases
Each RUP project is broken into four phases. The phases in order of execution
are:

� Inception
� Elaboration
� Construction
� Transition
 Chapter 5. Process and methods 111

Inception is the phase where we scope out the project. During the iterations in
this phase we define business use cases (or revise them if some already exist).
We define our business goals, key performance indicators and metrics. We
create initial as-is and to-be business process models. We take initial ideas about
the services required and implement a few (with skeleton code if required). We
test the services

Elaboration is the phase where we make sure we can have a working
end-to-end automated business process or processes. Updates are made to all
the work products created in the Inception phase. Some of the code previously
stubbed out is filled in. Tests from the previous phase are rerun and expanded to
cover the new functionality. Services are automating portions of or whole
business processes so we have some useful business functionality.

Construction is where we complete the coding and testing. Many of the work
products such as the business process models, requirements, service model,
and others are further refined as appropriate and locked down as complete. At
the end of the phase, the software is ready to be released to alpha and beta
testing. Further changes to requirements based on feedback would be scheduled
for future releases, or we could remain in Construction. Given that the
stakeholders have already seen running code during the preceding two phases,
we have bee tracking changes in business processes and business goals, it is
less likely than major changes will surprise us at this point.

Transition is the phase that can vary the most. It entirely depends on what kind
of software you are building. For a product release (like a release of IBM Rational
tools), transition is focused on alpha and beta testing. We are finishing training
materials, marketing materials, deciding on the color of the box or CD, and
checking that the copyright notices appear on the accompanying literature4. We
are fixing any critical defects found in the alpha and beta releases. An internal
project for the business will be working with operations to get system and user
acceptance testing completed, and planning for deployment. Once transition is
complete, further changes to the software require a new project (run iteratively of
course). Maintenance has a slightly different shape of project.

Each phase has strict entry and exit criteria or gates. By the end of each phase
we require that:

� Inception—Scope of the project has been agreed

� Elaboration—Architecturally significant aspects of the project are up and
running as tested code

� Construction—The coding is complete

� Transition—The project is live

4 These tasks can be surprisingly continuous—especially the box color.
112 Building SOA Solutions Using the Rational SDP

It is very important that a project does not proceed to the next phase if these
high-level goals have not been achieved. We can add iterations to the phase to
enable us to achieve the goals of the phase. This has an obvious impact on
schedule, but we may catch up later by accomplishing more in future iterations or
we de-scope the functionality we plan to deliver. Iterative development makes
this easier as at the end of each successful iteration, we have a stable build of
the code and the associated work products that should be suitable for release.

Architecture-driven
RUP is an architecture-driven process. Defining and building an executable
architecture is the focus of the Elaboration phase of any RUP project. An
executable architecture means code that demonstrates and proves the
effectiveness of our architectural decisions.

Use case driven
Prior to the introduction of SOA concepts, RUP focused on aligning iterations to
system use cases. This is still true in that we would expect to take systems use
cases through to implementation during a iteration; there are higher-level drivers
of the goal of an iteration.

Automating a business process or task becomes the new goal of the iteration.
We have to implement system use cases as part of this goal, but now we focus
on implementing a thread of the business process from beginning to end. We
may not handle all cases in the process and we may not cover all exceptions or
branches in the process flow, but we have to implement something useful
end-to-end.

If we use business use case realizations as an alternative to business process
flows, then we are implementing these business use case realizations. Either
way, the focus of the iteration is to deliver some business useful functionality.

How we use RUP in this book

The linear nature of a book means that it looks like we describe a complete
project with no iterations. In practice, we have updated and revised business
process models, requirements analysis, design, code, test and the other
elements as the project has proceeded.

In this book, we are using a new version of RUP V7.1 that incorporates additional
information about building SOA-based solutions. This information is a
combination of SOA material that was part of earlier versions of RUP, and a lot of
content from IBM service-oriented modeling and architecture technique is used
by its consultants. Now let us look at our development case.
 Chapter 5. Process and methods 113

What is a development case?

A development case, as defined by the RUP Environment discipline, consists of a
description of a software development process, tailored for an organization or a
project.

In our case, we are talking about the development case used to develop the
contents of this book, that is the JK Enterprises development case.

The role responsible for creating the development case is the process engineer,
responsible for providing teams with the organization’s development process.

In this chapter, we use the Rational Method Composer tool, as described in
“Rational Method Composer” on page 114, to codify the development case.

JK Enterprises development case

We create a simple development case centered around services and how to
make them evolve through their life cycle. It is based on the following processes:

� Rational Unified Process

� Rational Unified Process for Service-Oriented Architecture (RUP for SOA)

� Rational Unified Process for Service-Oriented Modeling and Architecture
(RUP for SOMA), which replaces RUP for SOA

� Rational Unified Process for Business Modeling

More importantly, most of the content of the development case comes from
proven best practices that we, as the IBM Redbooks authoring team, have
applied successfully in the field. These best practices are not yet documented in
a formal process such as RUP for SOA. (They are documented in our
development case.)

Rational Method Composer

Rational Method Composer is an Eclipse-based framework for process and
method authoring, targeting primarily process engineers who want to tailor or
create method contents and processes. For example, RUP for SOA has been
codified using Method Composer.

Method Composer is the product that replaces Rational Unified Process (RUP)
and RUP authoring products, such as RUP Process Builder.
114 Building SOA Solutions Using the Rational SDP

Method Composer ships with processes, including:

� Classic RUP
� RUP for Business Modeling
� RUP for SOMA

Method Composer is based on the Eclipse Process Framework (EPF). The main
difference between Method Composer and Process Framework is around
process contents, such as the processes listed above. Process Framework only
contains limited content, whereas Method Composer has a lot. Also, Method
Composer provides additional integration capabilities with other Rational
products, such as Rational Portfolio Manager.

Method Composer implements the Unified Method Architecture (UMA) standard,
submitted to the Object Management Group (OMG) as Software Process
Engineering (SPEM) V2.0. With this standard, everyone uses the same
terminology around methods and processes. For example, SPEM defines what
tasks, activities, roles, or guidance are.

Method Composer contents are packaged as plug-ins. A new plug-in can be
based on an existing plug-in. For example, RUP for SOMA is based on RUP, and
provides variations (contributions, extensions, or replacements) for
service-orientation.

The main output of Method Composer is an HTML site (formerly RUP site), with
method and process contents, that is accessible from a Web browser and from
within tools of the SDP, such as Rational Software Architect.

Also, Method Composer bridges the gap between process engineering and
project management by providing the capability to export processes as Rational
Portfolio Manager or Microsoft Project templates.

Refer to the resources section at the end of this chapter for links to more Rational
Method Composer or Eclipse Process Framework information.

The Method Composer Authoring perspective (Figure 5-3) is composed of the
following views: Library [1], Editor [2], Properties [3], and Configuration [4].
 Chapter 5. Process and methods 115

Figure 5-3 Method Composer Authoring perspective

Codify the development case

There are three main activities involved in codifying the development case in
Method Composer:

� Create method content
� Create the process
� Publish and export the process

[1]

[2]

[3]
[4]
116 Building SOA Solutions Using the Rational SDP

Method Composer differentiates method content from process, as described in
the following excerpt from its help system:

Method Composer separates reusable method content from its application in
processes. The primary method content elements are tasks, roles, work
products, and guidance. A process engineer uses Method Composer to
author these elements, define the relationships between them, and to
categorize them. Method content provides step-by-step explanations,
describing how specific development goals are achieved independent of the
placement of these steps within a development life cycle. Processes take
these method elements and relate them into semi-ordered sequences that
are customized to specific types of projects.

We create a new plug-in named Building SOA Solutions to hold the contents of
our development case.

Note that in the case of this Redbooks publication we focus on how you can use
Rational Method Composer to build a process that is unique to JK Enterprises.
The content for this process is created by the authors of the Redbooks
publication to simplify licensing issues and to serve as an example of how you
can create these elements yourself. For a real project we would focus on reusing
content provided by Rational Method Composer and other plug-ins and try to
minimize the amount of content that is custom developed.

Method Composer ships with detailed contents about how to create new
plug-ins, method content packages, and others. In this chapter, we do not cover
all of the Method Composer details, but emphasize about how to create key
elements of our development case.

Create method content

We create the following method content (in order):

� Work products
� Roles
� Tasks
� Steps

Create work products
In this section, we explain how to create the Service Model work product.

� In the Library view, select the Work Products folder and New → Artifact. The
artifact editor opens.

� Type service_model in the Name field, and Service Model in the presentation
name.
 Chapter 5. Process and methods 117

You would enter information about the service model in the Description tab
(Figure 5-4), including the relationship between the artifact and another
artifact (contributes, extends, or replaces) if required.

Figure 5-4 Description tab of the work product editor

The Guidance tab is where refer to guidance elements that pertain to creating or
working on the work product. For example, we could have a Create a service
model using Rational Software Architect guidance. In simplified case, we have
not created guidance elements.

The Categories tab is where you enter information that would classify the work
product, for example under domains or work product kinds.

Finally, the Preview tab is used to view the resulting HTML page.

The service model work product is actually made up of several work products
(which it contains). Next, you create the Service Specification work product under
the Service Model work product.

� Select the Service Model work product in the Library view and New →
Artifact.

� Name the artifact service_specification and Service Specification.
118 Building SOA Solutions Using the Rational SDP

We also create the other work products contained under the Service Model as
well as other work products. The list of work products in shown in Figure 5-5.

Figure 5-5 Work products in the JK Enterprises development case

We have completed the creation of work products for the development case.

Create roles
We now create the roles that work on work products, for example, the software
architect role.

� Select the Roles folder in the Library view and New → Role.

� Name the role software_architect and Software Architect

You would typically describe the role (main description, skills, ...) in the
Description tab.

� Select the Work Products tab and add the service_model work product under
Responsible for (Figure 5-6).
 Chapter 5. Process and methods 119

Figure 5-6 The software architect is responsible for the service model work product

� Select the Preview tab to see the result (Figure 5-7).

Figure 5-7 Preview of the software architect role

For the JK Enterprises development case we also create other roles (Figure 5-8).

Figure 5-8 JK Enterprises roles

We have completed the creation of roles for the JK Enterprises case study.
120 Building SOA Solutions Using the Rational SDP

Create tasks
In this section we create the tasks for the JK Enterprises case study. Tasks have
performing roles and input and output work products. For example, a task for
model service interaction:

� Select the Tasks folder in the Library view and New → Task.

� Name the task model_service_interaction and Model Service Interaction.

� In the Roles tab, select software_architect as the primary performer.

� In the Work Products tab, add service_model as mandatory input and
service_contract as outputs.

� The Preview tab displays the result (Figure 5-9).

Figure 5-9 Model Service Interaction task

For the development case we have the tasks shown in Figure 5-10.
 Chapter 5. Process and methods 121

Figure 5-10 JK Enterprises tasks

Create steps
Steps are detailed instructions contained by tasks:

� Open the structure_service_architecture task, and select the Steps tab.

� Add a step named Validate and Classify Services.

� Make sure the Validate and Classify Service step is selected, and then
enter a description for it (copy and paste from the service specification).

� The result is shown in Figure 5-11.
122 Building SOA Solutions Using the Rational SDP

Figure 5-11 Validate and Classify Services step

We create other steps for the structure_service_architecture task
(Figure 5-12).

Figure 5-12 Steps for the structure service architecture task
 Chapter 5. Process and methods 123

At this stage, we would have to specify the steps for all of the JK Enterprises
activities.

After completing the creation of method content we can start to arrange this
content in a process.

Create the process

As defined in the Method Composer help: A process describes how a particular
piece of work should be done. In our case, the piece of work to be done is the JK
Enterprises Account Opening project.

We create a delivery process for Building SOA solutions, to arrange method
contents into phases and iterations. We perform the following tasks:

� Create phases
� Create iterations
� Create activities
� Create milestones
� Organize tasks in activities

Note that the process elements that we create are heavily influenced by RUP
(described in details in “IBM Rational Unified Process (RUP)” on page 106).

� In the Library view, select Processes → Delivery Processes of the Building
SOA Solutions plug-in project, then select New → Delivery Process.

� In the New Process Component pop-up dialog, name the project Building
SOA Solutions and select new_configuration for the default configuration
(Figure 5-13).

Figure 5-13 New Process Component pop-up window

Note that new_configuration is the configuration we create for the JK
Enterprises method content and process. By selecting it, the method content is
available in the Configuration view.

The delivery process editor should open the new delivery process.

� Type Development case for JK Enterprises in the Brief description field.
� Select the Work Breakdown Structure tab.
124 Building SOA Solutions Using the Rational SDP

Create phases
As defined in the Method Composer help: A phase is a special type of activity
that represents a significant period in a project, ending with a major management
checkpoint, milestone or set of deliverables.

We first create four phases (from RUP): Inception, Elaboration, Construction, and
Transition.

� Select the Building SOA Solutions delivery process and New Child → Phase
(Figure 5-14).

Figure 5-14 Creating a new phase

� Name the phase Inception.

� Repeat the previous two steps to create Elaboration, Construction, and
Transition phases.

� The result is shown in Figure 5-15.

Figure 5-15 Four phases of the Building SOA Solutions delivery process

Create iterations
As defined in the Method Composer help: Iteration is a group of nested activities
that are repeated more than once. Iteration represents an important structuring
element to organize work in repetitive cycles.

We create iterations under the phases. Note that our process is very simple and
only has one iteration per phase:

� In the Work Breakdown structure tab, select the Inception phase and New
Child → Iteration.
 Chapter 5. Process and methods 125

� Name the iteration Inception Timebox.

� Repeat the previous two steps to create one iteration under each phase.

� The result is shown in Figure 5-16.

Figure 5-16 Four iterations for the Building SOA Solutions delivery process

Create activities
As defined in the Method Composer help: Activities represent the key building
blocks for processes. Activities represent a grouping of breakdown elements
such as other activities, task descriptors, role descriptors, work product
descriptors, and milestones.

We create activities under the iterations of our process. The result is shown in
Figure 5-17.

Figure 5-17 Activities for the Building SOA Solutions process
126 Building SOA Solutions Using the Rational SDP

Create milestones
As defined in the Method Composer help: A milestone describes a significant
event in a project, such as a major decision, completion of a deliverable, or
meeting of a major dependency such as the completion of a project phase.

We now create one milestone at the end of each phase (like in RUP).

� Select the Inception phase and create a new milestone named Lifecycle
Objectives Milestone.

� Make sure the milestone is selected, and then select the Documentation tab
in the Properties view. Type this text in the Brief Description field (from RUP):

At the end of the inception phase is the first major project milestone
or Lifecycle Objectives Milestone. At this point, you examine the
lifecycle objectives of the project, and decide either to proceed with
the project or to cancel it.

� Similarly, create milestones (in order) at the end of the other phases:

� Save the process. The result is shown in Figure 5-18.

Figure 5-18 Four milestones for the Building SOA Solutions process
 Chapter 5. Process and methods 127

Organize tasks in activities
We now bring the tasks that we created under the appropriate activity of the
process.

The tasks are available from under the Configuration view, under Disciplines →
Uncategorized Tasks (Figure 5-19).

Figure 5-19 Tasks are available in the Configuration view

� Drag the Structure Service Architecture task from the Configuration view
onto the Elaboration Architecture activity (under Elaboration Timebox).

A new task descriptor is created for Structure Service Architecture. A task
descriptor allows you to modify it without modifying the original task under
method content. For example, you can modify the roles or work products for
this particular process only. Note that to modify a task descriptor, you have to
select it from the Delivery Process Editor, and work in the Properties view.

� We compose the other activities into our process. The result is shown in
Figure 5-20.
128 Building SOA Solutions Using the Rational SDP

Figure 5-20 Building SOA Solutions tasks organized under activities
 Chapter 5. Process and methods 129

Note that because tasks specify performing roles and input and output work
product, Method Composer automatically provides views that show what role is
needed in each phase or iteration (for example, Software Architect), and what
work products are needed. This information is shown under the Team Allocation
or Work Product Usage tabs of the Delivery Process editor. The Consolidated
View tab shows both roles and work products (Figure 5-21).

Figure 5-21 Consolidated tab of the delivery process editor

We have completed the development of the Building SOA Solutions process
(including method content) in Method Composer. The next steps are about
publishing the process to make it is accessible to JK Enterprises staff.

Publish the process as HTML

Method Composer is a content management application. In this section, we
export (publish) the contents that we have produced as a Web (old RUP) site, so
that it is available JK Enterprises staff (who do not have Method Composer).

For the purpose of this exercise, we have created three custom categories under
our plug-in, one for each of tasks, work products, and roles.

We now edit our configuration so that it includes contents from the three
categories:

� Make sure you are in Method Composer in the Authoring perspective. In the
Library view, open new_configuration (in the Configurations folder).

� In the Configuration editor, select the Plug-in and Package Selection tab, and
make sure that Building SOA Solution Plugin is the only selected content
(Figure 5-22).
130 Building SOA Solutions Using the Rational SDP

Figure 5-22 Plug-in and Package Selection tab of the configuration editor

We select what contents to include in the published process. For us, it is the
content from the three categories (roles, work products, and tasks).

� Select the Views tab.

� Click Add View and select the Roles category.

� Repeat the previous step to add a view for tasks and work products.

� Select the roles_category view and click Make Default.

� The result is shown in Figure 5-23.
 Chapter 5. Process and methods 131

Figure 5-23 Views of a configuration

� Save the configuration.

� Select Configuration → Publish.

� Select new_configuration in the Select Method Configuration page of the
Publish Method Configuration wizard and click Next (Figure 5-24).

Figure 5-24 Select Method Configuration
132 Building SOA Solutions Using the Rational SDP

� In the Specify Publishing Options page, select a path on the file system to
publish the Web site, type JK Enterprises Development Case for the title, and
select all options. Click Finish (Figure 5-25).

Figure 5-25 Specifying publishing options

� After a couple of minutes, the favorite Web browser should open with the
publishing log and the result process Web site.

� Close the log page.

� You can now browse the process (Figure 5-26).
 Chapter 5. Process and methods 133

Figure 5-26 Browse the result process

The resulting process site can now be made available to JK Enterprises staff.

Export the process as a project plan

We export the process to Rational Portfolio Manager. Refer to the “Rational
Portfolio Manager” on page 33 for more details on this product.

� Select File → Export.

� Select IBM Rational Portfolio Manager Project Template and click Next
(Figure 5-27).
134 Building SOA Solutions Using the Rational SDP

Figure 5-27 IBM Rational Portfolio Manager Project Template

� Select Delivery Process, Build SOA Solutions, and new_configuration. Name
the project template BuildSOASolutions, and specify a directory on the file
system. Click Finish (Figure 5-28).

Figure 5-28 Select the process and export directory

A BuildSOASolutions.xml file is created by Method Composer. This is a Portfolio
Manager project template.
 Chapter 5. Process and methods 135

Export the development case as a plug-in

To export the method plug-in, select File → Export. In the Export wizard:

� Select Method Plug-ins and click Next (see Figure 5-27 on page 135).

� In the next page, select the plug-in(s) you want to export, in our case, Building
SOA Solutions, and click Next.

� In the next page, review the dependencies and click Next.

� In the next page, review the export information and click Next.

� Finally, specify a directory to export the plug-in to and click Finish.

The directory you selected contains the exported plug-in. If you want, create a
ZIP file of the exported information for distribution.

We provide the Method Composer plug-in of our development case in:

C:\SG247356\sampcode\DevelopmentCase\DevCase-RMC-plugin-export.zip

Refer to “Rational Method Composer plug-in” on page 591 for instructions about
how to import the plug-in.

References

� Read the Rational Method Composer developerWorks article series at:

http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/

� Refer to the Eclipse Process Framework site at:

http://www.eclipse.org/epf/

� IBM developerWorks Rational Unified Process (RUP) and Rational Method
Composer site at:

http://www-128.ibm.com/developerworks/rational/products/rup
136 Building SOA Solutions Using the Rational SDP

http://www-128.ibm.com/developerworks/rational/library/dec05/haumer/
http://www.eclipse.org/epf/
http://www-128.ibm.com/developerworks/rational/products/rup

Chapter 6. Modeling and tools

This chapter describes the importance of modeling, the Unified Modeling
Language (UML), and model-driven development.

After modeling, we describe the importance of architecture and the IBM Rational
products that support modeling and architecture.

6

© Copyright IBM Corp. 2007. All rights reserved. 137

Importance of modeling

Now it is time to answer to the following question:

“Why do we model?”

In any human technical field, we feel the need to represent concepts in a way
easily understandable for our mind; if we are building something small, then the
idea itself is a good and reasonable representation; but, if we have to build
something more complex, then we begin by creating an abstract representation
of its structure and parts by creating pictures, sketches, and blueprints.

Let us consider an example: If we have to build a small paper boat to play with
our child, we would likely take some paper, fold it to get the boat shape, and in a
few minutes we can try to make it float in the bathtub. If the boat does not work
well or it sinks, we could figure out what caused the problem and build another
boat to make our child happy.

Now, suppose we have to build a fishing boat for our family. We could start by
assembling the tools and raw materials: wood, hammers, nails, and so on. We
could then immediately start to build the boat. But maybe this time we want to
first figure out some things; so we make some sketches of how the boat will
appear; perhaps we still have to agree with our family on some characteristic of
the boat: its shape, its dimensions and colors; we may say these are
specifications of the boat. This will affect the list of raw materials, the list of tools
that we need, and also the steps that we need to follow to build the boat. Indeed
creating this specification is a way to reduce the risk of our work ending in failure.

Now imagine that we need a super-customized motorboat. Again we could
attempt to start to build it ourselves immediately but there would be many
risks—not least of which being that we do not know exactly what we want or even
what parts would be required; most probably we will ask a marine engineer to
build it for us. The engineer might use some off-the-shelf blueprint or picture to
achieve agreement with us on what we want. He might then prepare some
scale-model of the motorboat to allow to understand how it will appear, what will
be its shape, colors, seat-configuration, and so on. Notice he uses these models
for different reasons: first is to gain general agreement with us on what we want;
but after this, he will start refining these same models, giving them greater detail
and representing with increasing detail what the motorboat will look like. He
could place these models into a simulation environment that allows him to test
how the motorboat will behave under various conditions, how it will react to
certain wind and sea conditions, and so on. This is very useful for him to
significantly reduce the risk of the building job and achieve his (and our) goal.
138 Building SOA Solutions Using the Rational SDP

You can easily imagine what kind of models, blueprints, and simulations would be
required if we were to build a large supertanker. It would be plain to anyone that
starting from a set of tools and materials would be ridiculous.

So the moral of this story is: the more complex you project, the more you need
models.

In the world of software we still encounter software development organizations
that aim to create complex systems, and are approaching the problem as though
they were building something very simple. It is no coincidence therefore that a
high percentage of software projects fail.1 These failures are often directly related
to the absence of a development process which mandates the creation of
models.

Having models is a recognized practice in many fields: Building architecture,
aeronautics, hardware, biology, economics, and sociology.

So basically, a model is a simplified representation of reality. It is possible to have
different models on different levels of abstraction, views with different levels of
details, and to zoom out or zoom in to a model; it is possible to visualize static or
dynamic aspects of a system. Usually we say a good model is a faithful
representation of the important parts of a system, hiding the insignificant parts;
indeed our mind naturally focuses on the core part of a system when attempting
to understand it. When we have to explain to someone, some complex system
with pen and paper (the original analysis tools!), we make some sketch of the
system representing only core concepts, structure, or main components.

We can see an example of a model and its modeled system in Figure 6-1.

1 Refer to the Standish CHAOS Report, 1994:
http://www.standishgroup.com/sample_research/chaos_1994_1.php
 Chapter 6. Modeling and tools 139

http://www.standishgroup.com/sample_research/chaos_1994_1.php

Figure 6-1 An example model

According to the UML user guide (see “References” on page 168) there are four
reasons for modeling:

1. Visualize—Models allows us to visualize and understand better an existing
system or one to be built.

2. Specify—Models are useful to specify systems characteristic, in terms of
their structure and behavior.

3. Build—Because a model is usually built using software tools, we can often
exploit them to (at least initially) build our solution, by generating other
models, code and configurations from them.

4. Document—Models are definitely used to document our system or solution.

Another important aspect of modeling, particularly using modeling tools, is that
the model itself contains many different types and levels of business context
relevant information. Please refer to other chapters of this book for examples of
that. With the advent of business driven approach and having value added
services in a SOA. There is a need to provide services with business context
relevancy. Automated services may have to process the business contextual
information in the models.

Engineering model: A reduced representation of some system that
highlights the properties of interest from a given viewpoint

Functional ModelModeled system

Modeling: A fundamental technique for coping with complexity
We don’t see everything at once – only the important stuff = abstraction
We use a representation (notation) that is easily understood
140 Building SOA Solutions Using the Rational SDP

Unified Modeling Language

The Unified Modeling Language (UML) is the standard for describing models. We
start with a brief history and a short overview of UML.

A brief history of UML
In the first part of 1990s several object-oriented languages, such as SmallTalk,
C++, Eiffel, and Java were becoming increasingly mainstream. As the software
community began to use a variety of software design tools and languages, there
were a number of notations all representing similar concepts but with several
differences between them. The lack of a standard notation was proving rather
confusing for the software community at large.

Majors notations at that times were:

� Object Modeling Technique (OMT) by Jim Rumbaugh
� Booch Method by Grady Booch
� Object-Oriented Software Engineering (OOSE) by Ivar Jacobson

The three methodologists were collectively referred to as the Three Amigos,
since they were well known to argue frequently with each other regarding
methodological preferences.

In 1996 the Three Amigos decided that a Unified Modeling Language was more
viable than a Unified Method, and redirected their efforts to respond to the Object
Management Group (OMG) Request for Proposal (RFP) for an object modeling
language (Object Analysis & Design RFP-1, OMG document ad/96-05-01),
which was issued in June 1996. Under the technical leadership of the Three
Amigos, an international consortium called the UML Partners was organized in
1996 to complete the Unified Modeling Language (UML) specification, and
propose it as a response to the OMG RFP. The UML Partners' UML 1.0
specification draft was proposed to the OMG in January 1997.

The software community eagerly adopted UML, providing feedback which lead to
a number of revisions. UML became a de facto standard and UML 1.1 was
adopted by OMG in November 1997.

As a modeling notation, the influence of the OMT notation dominates (for
example, using rectangles for classes and objects). Though the Booch cloud
notation was dropped, the Booch capability to specify lower-level design detail
was embraced. The use case notation from Objectory™ and the component
notation from Booch were integrated with the rest of the notation, but the
semantic integration was relatively weak in UML 1.1, and was not really fixed
until the UML 2.0 major revision.

We can see the major UML version history summarized in Figure 6-2.
 Chapter 6. Modeling and tools 141

Figure 6-2 UML evolution

A brief overview of UML

UML is a (visual) language for capturing models about software. As with any
language, it has its own syntax and semantics.

There are two main aspects to software in UML: Static and dynamic. This
categorization can be applied to the various UML diagram types.

Static diagrams
These types are used to represent the things that must be in the system being
modeled. Static diagram types are:

� Class diagram—Represents structures: Cases, properties (attributes and
associations), and all relationships (see Figure 6-3).

� Object diagram—Represents class instances structure.

� Package diagram—Represents package structure.

� Deployment diagram—Represents deployed elements and topology: Nodes
and relations with deployed components, communication association,
network connections and so forth.

Note: Further information about UML can be found at:

http://www.omg.org
http://www.uml.org

1967

Foundations of OO (Nygaard, Goldberg, Meyer,
Stroustrup, Harel, Wirfs-Brock, Reenskaug,…)

Foundations of OO (Foundations of OO (NygaardNygaard, Goldberg, Meyer,, Goldberg, Meyer,
StroustrupStroustrup, , HarelHarel, , WirfsWirfs--Brock, Brock, ReenskaugReenskaug,,……))

3Q2004

UML 2.0 (MDA)UML 2.0 (MDA)UML 2.0 (MDA)

UML 1.1 (OMG Standard)UML 1.1 (OMG Standard)UML 1.1 (OMG Standard)

UML 1.3 (extensibility)UML 1.3 (extensibility)UML 1.3 (extensibility)

UML 1.4 (action semantics)UML 1.4 (action semantics)UML 1.4 (action semantics)
UML 1.5UML 1.5UML 1.5

1996

1997

1998

2001
2003

JacobsonJacobsonHarelHarelBoochBoochRumbaughRumbaugh
142 Building SOA Solutions Using the Rational SDP

http://www.omg.org
http://www.uml.org

� Component diagram—Represents components, their structure,
relationships, and interfaces.

� Composite structure diagram—Represents internal part of a classifier, such
as class or component. There is a deeper discussion of this later in this
section.

Figure 6-3 A sample class diagram

Dynamic diagrams
These types represent what happens in the system being modeled. Dynamic
diagram types are:

� Use case diagram—Represents a system from a requirements point of view;
we may say from a black-box point of view in terms of system use cases and
actors.

� Activities diagram—Represents flows of activities, their sequence,
conditions, concurrent flows and synchronization points.

� Sequence diagram—Represents the sequence of messages that are sent
and received between a set of objects (classifier instances), emphasizing
their chronological order (the sequence). (See Figure 6-4.)

� Communication diagram—Represents communication in a system; they are
semantically equivalent to sequence diagrams but they emphasize
collaborations between objects.

� Timing diagram—Represents timing of events of object(s).
 Chapter 6. Modeling and tools 143

� State diagram—Represents objects state machines: We have states,
transitions from one state to another, events that fires a transition, guard
conditions and so forth.

� Protocol state machine diagram—Represent legal transitions (protocols)
trough states for an abstract classifier, such as interfaces or ports.

� Interaction overview diagram—Represents possible interaction from an high
level point of view. They show groups of interactions and the overall flow.

Figure 6-4 Sample sequence diagram

A combination of these diagrams allow to model software from different
perspectives. For example, a use case diagram allows us to see our system from
a requirement, or black-box point of view and help us understand what value the
system provides to external actors.

A sequence diagram would provide a white-box point of view to help us
understand the sequence of messages between objects required to achieve a
particular goal.

Another important aspect of UML is that it is a very generic and extensible
language. This is one of the primary reasons for the wide-spread adoption and
success of UML.

UML defines a few types (we could call them meta classes or classifiers) such as
class, operation, property, association, message and so forth.

Additionally, UML defines its own extensibility mechanism based on profiles. A
profile is a set of information that constrains, customizes and narrows a particular
classifier. A profile is made up of stereotypes. A stereotype is a way of assigning a
type to a particular classifier. Stereotypes give a greater semantic precision to
our models.
144 Building SOA Solutions Using the Rational SDP

For example, in Figure 6-4 we can notice an object stereotyped as <<service>>,
representing this object will have a service behavior and semantics for whatever it
means in that context.

Until now, we have shown various UML characteristics and advantages. However
today, in some software development organizations there are still practitioners
who doubt the value of modeling. This is often due to considerations related to
the accuracy of models. Obviously the less a model is accurate, the less is
useful.

We have observed several organizations that developed models with the only
goal to document their solutions; this way, models were likely becoming early
inaccurate, going far from the actual meaning of underlying code and
implementation.

Moreover, an inaccurate model is not just useless but it can also be dangerous,
allowing to do assumptions not corresponding to reality. Besides this in software,
problems often comes from a very specific detail of the implementation and this
may be not caught by a model.

Thus, an important and usual need about models is to keep their semantic near
to actual objects (semantic) they represents. However, we have just explained a
model is a simplification of reality so how can a model contain the required
details?

To solve this apparent paradox, UML has evolved and other initiatives have
started such as model-driven architecture (MDA).

Model-driven development

A basic answer on that paradox is to try to have automated tasks that starting
from your models, produce underlying implementation; we call these tasks
transformations.

Considering the historic software engineering evolution, we can notice major
improvements in this field have been about raising the level of abstraction: from
binary languages to high-level procedural languages to object-oriented
languages and so on. Each of these major step have narrowed the gap between
human and machines language allowing us to express more powerful concepts

Note: For additional material, white papers, and courses on UML, refer to the
IBM Rational UML resource center at:

http://www.ibm.com/software/rational/uml/
 Chapter 6. Modeling and tools 145

http://www.ibm.com/software/rational/uml/

and paradigms with a lower coding effort; indeed we say some languages are
more expressive than others.

Representing our software solutions with UML models is, in many cases,
definitively more expressive and meaningful than using programming languages.

Having models and transformations is a solution to tie two different level of
abstraction in a either formal and physical way. This is the point where new
modeling technologies, such as model-driven development (MDD), start from.
OMG has launched the MDA initiative to define a set of standards to support
MDD; these standard include UML, standards to define modeling languages,
such as meta-object facility (MOF), to defines automatic transformations and so
forth.

Essentially MDD shifts the focus from code to models. Models are becoming
primary artifacts representing our solution; they can be transformed to code (or
to other models) in an automatic (or manual) way trough transformations. The
level of automation may vary from generating only skeleton code to having also
some “body” code, structure and so on. This depends on target languages,
models, architecture and development processes. As we show in the section
“UML 2” on page 149, UML 2 has a much more powerful semantic
representation and precision than its previous versions.

We introduced the concept of level of abstraction; however we have not to think
just to model and code levels. We have different models on different level of
abstraction. We may say code is a model on a lower abstraction level. We show
in Figure 6-5 a typical stack of abstraction levels.

Abstraction level: A way to hide implementation details and to emphasize
only relevant elements. Clearly, this is a recursive concept: for example a
model is a level of abstraction higher than the source code and this is higher
than binary code.
146 Building SOA Solutions Using the Rational SDP

Figure 6-5 Transformations across levels of abstraction

Even if it is not necessary to understand each of these level at this time we can
just point out the highest abstraction level is relative to the business. We can say
it is a business model that does not consider any software but just the business
process, its execution, roles, and so forth.

However, this is just an example. What we want to point out here is that when we
are focusing on a certain abstraction level, we are hiding details about lower
levels. Kinds of models that we represent may vary depending on our context,
architecture, organization, and so forth.

Going back to the example, we can expect a use case model is independent from
the underlying solution that we called here design model. In the same way we
can expect a design model is independent from a technological underlying
platform. This way, our organization intelligence is kept and not wasted by
changing the underlying software platform, development languages, and so
forth.

Through automated and customized transformations, platform specific models
are produced. These models usually correspond to code. In that sense we can
say that at this level of abstraction, code is the model. In this way a model like the
design model can be used to generate different code models, trough different
transformations, targeting different platforms.

Business model

Use-case model

Design model

Code (UML visualized)

Transformation

Transformation

Transformation

Transformations
transform the model

from one level of
abstraction to

another
automatically

Traceability in
custom patterns

and transformations
 Chapter 6. Modeling and tools 147

Traceability
As we stated before, the greatest improvements in software history are related to
raising the level of abstraction. Today, as we explain in other parts of this book,
one very important goal for software development organization is
business-driven development (BDD).

This implies having methods and tools that supports changing business needs
(or requirements) to be immediately supported by IT, in a fluent and agile way.
Thus, having models representing business models at an high levels of
abstraction implies to have methods to link these models to the others, at a lower
levels of abstraction.

Traceability is exactly this tool; it is the ability to know and recognize that a
particular model or code at any abstraction level, derives from something else, at
a higher level of abstraction. This is very important to allow realizations to be
consistent with specifications and to allow to analyze the impact of a change in a
business need or requirement.

For example, we can recognize that a change in a requirement specification
potentially impacts a particular set of classes in a more abstract model that are in
turn linked to correspondent classes in a less abstract model.

Beyond modeling, traceability is related to the whole development process, as we
explain in other sections of the book; we can trace from requirements to models,
from models to code, from requirements to test and to change management
activities, reaching a high level of control across all development life cycle. All this
kind of traceabilities are supported by IBM Rational tools.

Transformations
We can have different type of transformations:

� Model to model—These transformations are used (typically) to create (or
update) a model starting from an higher level of abstraction model. Typical
examples are: business to use case model, use case to analysis model.

� Model to code—These transformations are used to generate code starting
from (typically UML) models

� Refactoring—These transformations are used for a particular task on a
single model; examples include changing a class name, moving a package,
changing stereotypes and so forth.

Transformations generally use UML extensions, such as profiles and
stereotypes. These informations can be relevant also to the model they belong or
not. For example, in Figure 6-3 we use the stereotype <<service>> for the
EmployeeController class. In this case this stereotype is significative for the
model itself (because it represent a class “is a service”).
148 Building SOA Solutions Using the Rational SDP

Furthermore, this stereotype is used by a transformation from model to code that
transforms that class in some underlying component implementing a service (for
example, an EJB session bean or a Web service).

In other cases, profile informations are used only by the transformation itself:
These informations are not adding any semantic meaning to the model for which
they apply. For example, suppose we have an <<entity>> stereotype applied to a
persistent class; this stereotype has some additional properties such as
PersistenceMechanism that can be assigned to Hibernate, IBatis, or something
else. This information is not meaningful from the point of view of the design
model from it comes from but it is relevant for a transformation that generates
Java code from that model; a particular generation pattern is used to target
desired persistence mechanism.

UML 2

UML was born to address primary modeling goals: To have a blueprint of the
system to develop and to abstract the system itself keeping in light only important
parts. We explained that this was becoming an issue, considering the growing
need to have precise models, that are formally linked to implementations. This
starts initiatives, such as MDA, and creates the need for a new major release of
UML specifications that includes the new initiative. Thus, new UML 2
specifications have been created to address two main points:

� Service-oriented architectures
� Model-driven development

Generally speaking, UML 2 specifications has been designed to have much more
precise semantic in the language, to have more expressive power, less
ambiguities, to be much more scalable to support large systems and to improve
the extensibility of language itself.

UML is based on a meta model; UML 2 specifications have strongly changed and
improved this meta model, giving it a more precise definition. This meta model is
defined by using:

� Meta-object facility (MOF), an OMG standard to define meta models that
basically is a subset of UML itself

� Object constraint language (OCL), a standard language to define
constraints

Therefore, we can (informally) say UML is defined by using UML!

For a complete definition of the UML2 specification from a user point of view,
refer to the UML 2.0 Superstructure specification at:

http://www.uml.org/#UML2.0
 Chapter 6. Modeling and tools 149

http://www.uml.org/#UML2.0

UML 2 has many improvements and they are about these topics:

� Complex structures
� Activities
� Interactions
� State machines

For the scope of this book, we want just to emphasize two of these topics:
complex structures and interactions.

Complex structures
Complex structures are designed in UML by using composite structure diagrams.
As the name suggests these diagrams belong to the structural part of modeling.

This major UML improvement was necessary because of some limitations in
designing structures with previous UML versions: we were able to represent
static structures, using class diagrams, but this was all at a static (or class) level.

The language was not able to represent structures as they appear at an instance
level, we may say at runtime. In other words, we can have different instances of
the same class (or component) playing different roles and we have to be able to
represent them. Furthermore, we have to represent their relations with the
external world.

Structured classes (classes or components) have now an internal structure to
allow them to represent their internal instances and the relation between them; in
other words we represent internal collaborations.

A few very important concepts have been introduced in this area; these are:

� Part—Represents instances belonging to a structured class. They are basic
structural nodes that have one or more interaction points called ports.

� Port—Represents a structural feature of a classifier that defines interaction
between this classifier and the external world.

� Connector—Specifies a link beween or more instances. This link can be an
instance of an association or can derive from any kind of usage of an
instance.

Knowing previous versions of UML, it is easy to understand how these new
concepts are empowering our modeling notation. With a traditional class
diagram, in many cases, it was possible to see just a dependency between two
classes and not how, from a structural point of view, the corresponding objects
were collaborating. Figure 6-6 shows an example.
150 Building SOA Solutions Using the Rational SDP

Figure 6-6 A composite structure sample

We can easily see how different instances of the Fax class are representing
different roles.

One very important concept is related to ports; a port is a decomposition
element; it is important because it is related to concepts such as decoupling
consumers from providers, it creates a clear separation between an internal
component realization and the external world.

One may think there is a similarity between port and interface. Indeed these two
concept are related; however they are two different concepts: While an interface
is a declarative, abstract representation of a behavior, a port is a real object; it is
bidirectional and it relates to some interface as we can see in Figure 6-7.

FaxCall

receiveCtrlsendCtrl

sender:Fax

remote

receiver:Fax
remote

c c

Structured Classes: Internal Structure
Structured classes may have an internal structure of (structured class)
parts and connectors

Delegation connectorDelegation connector

PartPart
 Chapter 6. Modeling and tools 151

Figure 6-7 Relationships between ports and interfaces

In particular, a port receives messages corresponding to the realized interface(s)
and sends messages corresponding the provided interface(s).

To summarize, ports provide a complete encapsulation of a component from the
external world in both directions.

Interactions
Interactions in UML 1 were represented by sequence or collaboration diagrams
and they were semantically equivalent.

Although they were a useful tool to achieve several task such as to represent use
case scenarios, they were missing some important capabilities such as reuse of
sequences and control flows representation.

UML 2 addresses these issues by defining new interaction elements:

� Interaction occurrence—When the same sequence is re-used across
different contexts, it is possible to define an interaction occurrence to be
reused in each context it is needed.

� Option combined fragment—It is now possible to represent control flows
such as loops, conditions, concurrent flows, and so forth.

In general, a port can interact in both directions

DataBase

adminPort

clientPort

«interface»
DBserver

readDB(recNo)
writeDB(recNo,d)
notifyOfChange(recNo)

«interface»
DBclient

change (d) «uses»

ProvidedProvided interfaceinterface

RequiredRequired interfaceinterface
152 Building SOA Solutions Using the Rational SDP

Moreover, these two capabilities can work together and are recursive; thus it is
possible to define a combined fragment that owns some interaction occurrence
and both can be composed by others interaction occurrences and combined
fragments.

We can see an example of this in Figure 6-8.

Figure 6-8 UML 2 sample sequence diagram

As we can notice, the CheckPin occurrence is reused in this, more general, ATM
transaction interaction. Furthermore we have an alternative fragment that
controls the result of CheckPin and, in the positive case, executes the
DoTransaction interaction occurrence.

We have shown how these new UML 2 capabilities give much more scalability to
the language as it can face very complex project modeling needs.

SOA modeling

Now, we can put things together and define what it means to model SOA
solutions.

Following our thread about software historic evolution, we can say that we are
facing another important step in raising the level of abstraction. Up to yesterday
there were two separated entities in organizations: Business and IT.

sdsd ATMATM--transactiontransaction

client: atm: dbase:
insertCard

CheckPinref

alt [chk= OK]

[else]
error(badPIN)

DoTransactionref

sdsd CheckPinCheckPin

client: atm: dbase:

askForPIN

data(PIN)
check(PIN)
result(chk)

result(chk)

Interaction Frame Lifeline matches a part

Interaction Occurrence

Combined (in-line) Fragment
 Chapter 6. Modeling and tools 153

Business was defining business processes, business rules, optimizations,
organizations, and so forth. IT was trying to create software solutions realizing
business needs. However these two entities and points of view were often
diverging, were doing different things, using different languages, understanding
different goals. So we may say there is a gap between them.

SOA creates a direct connection between business and software solutions. It
raises the level of abstraction by identifying business services that are directly
related to business tasks from one side and to software services from the other
side.

Thus we have to model these services. The SOA modeling life cycle is defined by
IBM Service Oriented Modeling and Architecture (SOMA) and is about three
main phases:

� Service identification—This phase has different approaches, such as
top-down, meet-in-the-middle, and bottom-up. The top-down-approach, as
you can easily imagine, starts directly from the business. We have models
representing business processes that are made of business tasks; we begin
here to identify services (business services, definitely). This phase is mainly
related with business models and you can find further information and
samples in Chapter 7, “Business modeling” on page 169.

� Service specification—This phase is about describing a service: what it
offers, what it request, how it is exposed. It also describes dependencies with
other services, service composition, and service messages. The main model
related to this phase is the service model.
A very important aspect related to SOA is, generally speaking, that we are
talking about loosely coupled business services. This coupling decrease it is
very important to allow reuse of services to adhere to the general SOA
reference architecture. To do this we need models that support this approach;
to reduce coupling it is often related to clearly separate external behavior from
internal realization (or implementation). We usually achieve this result by
seeing services, from the external world, only trough their business interfaces
and this is, generally speaking, what we call a service specification.

Figure 6-9 shows an example of a single service in a service model.
154 Building SOA Solutions Using the Rational SDP

Figure 6-9 Service model sample

� Service realization—This phase is about providing a solution for a particular
service. We represent here, how a service is realized. The model related with
this phase is the design model. This model has to be traced back to the
service model, because it represents its realization.

Figure 6-10 shows an example of a service realization in a design model.

Figure 6-10 A design model sample

Whereas the first example in Figure 6-9 represents the service from a
specification point of view, the example in Figure 6-10 is more related to its
realization.

Importance of architecture

Architecture considers the design of the target from many dimensions,
perspectives, levels, aspects and focus areas. It is driven by the requirements of
the owner of the target architecture. The planners are interested in a broad
overview of the architecture's purpose. This indicates why it is to be constructed,
who is to going to use it, and when it is to be built. The owners supply the
purpose and these other details for planning approval. The owners also have
other requirements to ensure the architecture meets their specific needs.
 Chapter 6. Modeling and tools 155

Enterprise architecture considers the design and operation of an enterprise also
from many perspectives, aspects and focus areas. The catalysts for enterprise
architecture are strategic business plans defined by senior management. These
address the requirements of the planners and owners of the enterprise.

An enterprise defines its strategic business plans in terms of its mission, vision
and values at the highest level. From these, it can establish policies based on
specific constraints. These policies are qualitative guidelines defining boundaries
of responsibility. They are also used to define the organization structure of the
enterprise, made up of business units and functional areas.

Architectural thinking is multi-dimensional, has many levels, perspectives and
focused aspects; such as information, network, infrastructure, integration,
service and user interface. All these dimensions, levels, perspectives, and
aspects are looked at in an interlocking fashion (Figure 6-11).

A successful architecture forms the platform for strategic advantage. Architecture
serves both technical and organizational purposes.
156 Building SOA Solutions Using the Rational SDP

Figure 6-11 Dimensions, levels, perspectives and aspects of architecture
 Chapter 6. Modeling and tools 157

On the organizational side, the architecture helps in:

� Communicating the high-level design: A number of stakeholders need to
understand the system at a fairly gross level. These include higher-level
managers, many of the cross-functional team (for example, marketing, quality
assurance, and learning products or user documentation), and may include
customers too.

Modeling the system at a high level facilitates communication of the high-level
system design or architecture. The reduction in detail makes it easier to grasp
the assignment of significant system responsibilities to high-level structures.
Moreover, it satisfies the constraint that, though seemingly trivial, has
important implications for communication.

� Providing the system context: The developers (and future maintainers)
also have to understand the overall system. In large systems, developers
cannot efficiently understand the details of the entire system. They need a
detailed understanding of the more narrowly-scoped portions of the system
that they work on. But without an understanding of the responsibilities and
interdependencies of the higher-level structures, individual development and
optimization of the substructures tend to result in a sub-optimal system. This
is both from the point of view of system characteristics such as performance,
as well as effort in integration and maintenance.

� Work allocation: Where architectures decompose the system into
substructures that are relatively independent, have clear responsibilities, and
communicate with each other through a limited number of well-defined
interfaces, the development work can be partitioned effectively. This allows
parallel development work to proceed in relative independence between
integration points. This is especially important in large projects, or projects
where the teams are geographically dispersed or subcontractors are used.

Moreover, because these units tend to be centers of specialization of function
or service, they also afford opportunities for skill specialization among
developers. This independence and focus makes development more efficient.
The design of the system architecture can be viewed as the dual of designing
the organization architecture. If this duality is ignored and the organization
architecture is not compatible with the system architecture, then it can
influence and degrade the system architecture.

On the technical side, architecture allows us to design better systems and
services:

� Meet system and service requirements and objectives: Both functional
and non-functional requirements can be prioritized as must have versus high
want versus want, where must have identifies properties that the system and
service must have to be acceptable. An architecture allows us to evaluate and
make trade-offs among requirements of differing priority. Though system and
158 Building SOA Solutions Using the Rational SDP

service qualities (also known as non-functional requirements) can be
compromised later in the development process, many will not be met if not
explicitly taken into account at the architectural level.

� Enable flexible distribution/partitioning of the system and service: A
good architecture enables flexible distribution of the system and service by
allowing the system and its constituent applications and services to be
partitioned among processors in many different ways without having to
redesign the distributable component parts. This requires careful attention to
the distribution potential of components early in the architectural design
process.

� Reduce cost of maintenance and evolution: Architecture can help
minimize the costs of maintaining and evolving a given system and service
over its entire lifetime by anticipating the main kinds of changes that will occur
in the system and service, ensuring that the system's and service’s overall
design facilitates such changes, and localizing as far as possible the effects of
such changes on design documents, code, and other system work products.
This can be achieved by the minimization and control of subsystem and
services interdependencies.

� Increase reuse and integrate with existing or earlier and third-party
software: An architecture may be designed to enable and facilitate the
(re)use of certain existing components, frameworks, class libraries, existing
or earlier, or third-party applications.

Overview of IBM architect tools

Until now we have explained from a conceptual point of view several aspects
related to software development process; a strong emphasis has been put on
modeling and architecture aspects. We introduced modeling discipline and
assets; we explained UML extensibility concepts. Furthermore we have
described how an SOA solution should fit into modeling discipline and how it
relates to architecture.

Now we move on to more practical aspects.

When talking about modeling tools, we have to exploit all the powerful
capabilities of Rational Software Architect and Rational Software Modeler. These
tools are all based on Eclipse.
 Chapter 6. Modeling and tools 159

Eclipse

Eclipse has became a very successful open source platform to host software
development tools and (with the advent of rich client platform), generic
applications.

Eclipse was born in 2001: The proliferation of poorly integrated development
tools, methods, formats, repositories and Rational Software Architect, and so on,
created the need of a common infrastructure, even across vendors. The initial
Board of Stewards of was formed in November 2001 and included: IBM, Borland,
MERANT, QNX Software Systems, Rational Software, Red Hat, SuSE,
TogetherSoft, and Webgain. Today, more than 100 companies are members of
this not-for-profit corporation and all majors and most used development
environment are based on this platform.

In particular, for software development tools, Eclipse provides:

� An open, common environment
� A plug-in based architecture designed for scalability and extensibility
� A common meta model

Beside these fundamentals, today Eclipse is a fervent community that hosts 10
major projects and more than 50 subprojects.

Plug-ins
From an architectural point of view, Eclipse is based on the plug-in paradigm. We
may say in Eclipse Everything is a plug-in. Indeed the Eclipse platform core is
just a plug-in manager. Up from this point, any Eclipse capability, component or
tool is realized by a plug-in (or a set of plug-ins). Any plug-in extends the existing
platform and can, in its turn, be extended by other plug-ins.

Trough its descriptor, a plug-in declares its contribution to the platform and
therefore, the way the platform will use it. Indeed most important part of a plug-in
descriptor are: extensions and extension points; the first are the existing points
the plug-in contributes, where as the seconds (optional) represent the points in
which the plug-in can potentially be extended (by other plug-ins). We can
visualize this concept in Figure 6-12.
160 Building SOA Solutions Using the Rational SDP

Figure 6-12 Eclipse plug-in mechanism

The Eclipse architecture has been refined from first releases and today we are at
Version 3.2 of the platform. Many scalability and performance issues have been
faced and solved to allow very powerful tools to be installed and used without
impacting the agility and responsiveness of the platform itself.

For any additional information about Eclipse, refer to the Eclipse official site at:

http://www.eclipse.org/

Rational Software Architect and Rational Software Modeler

Rational Software Architect and Rational Software Modeler include all
capabilities needed by the software architect, the designer, and the developer.
They are part of a larger picture representing the IBM Rational offering for
software development, as we can see in Figure 6-13.

What is a plug-in?

plug-in–set of contributions
Smallest unit of Eclipse functionality
Big example: HTML editor
Declares its pre-requisites

extension point
Named entity for collecting contributions

extension–a contribution
Extenders make contributions - platform
controlsand manages the contributions

extension
extension point

plug-in

plug-in

plug-in
 Chapter 6. Modeling and tools 161

http://www.eclipse.org/

Figure 6-13 IBM Rational development platform

Rational Software Architect includes:

� Rational Software Modeler—The tool for designers; it offers all UML 2
modeling capabilities, diagrams and MDD features (transformations and
patterns authoring). It is based on some basic Eclipse project such as UML 2
and Eclipse Modeling Framework (EMF).

� Rational Application Developer—The tool for developers; it includes all
development features such as Web development, J2EE development with
EJBs, Web services development, JavaServer™ Faces (JSF) development,
UML visualization, component automated test, and run time test
environments such as WebSphere Application Server.

� Eclipse Web Tools Platform (WTP)—Basic tooling for Web developers; it
includes source editors for HTML, JavaScript™, CSS, JSP™, SQL, XML,
DTD, XSD, and WSDL; graphical editors for XSD and WSDL; J2EE project
natures, builders, and models and a J2EE navigator; a Web service wizard
and explorer, and WS-I Test Tools; and database access and query tools and
models.

Eclipse 3.2

Rational
Software Architect

 Rational
 Application
 Developer

Eclipse
Web Tools
Platform

Rational
Software
Modeler

Rational
Performance Tester

Rational
Functional Tester

Rational
Manual Tester

Analyst Architect Developer Tester
162 Building SOA Solutions Using the Rational SDP

On top of all this, Rational Software Architect offers other features, such as
transformations and patterns ready to use. In Version 7, we have a set of useful
sample design patterns (including the initial set of patterns document in Design
Patterns: Elements of Reusable Object-Oriented Software2) as shown in the
Pattern Explorer of Software Architect V7 (Figure 6-14).

Figure 6-14 Design patterns available in Software Architect V7

Furthermore these transformations are available:

� UML to Java 1.4 and Java 1.5
� UML to EJB
� Java to UML
� UML to C++
� C++ to UML
� UML to WSDL
� UML to XSD
� UML to CORBA

2 Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, et al,
Addison-Wesley, 1995, ISBN 0201633612
 Chapter 6. Modeling and tools 163

Rational Software Architect offers also C++ development, by exploiting a C++
development tool (CDT) from Eclipse; moreover there are proper “architect”
functionality such as architectural analysis features: architect can now analyze
an existing application by using this capability: Rational Software Architect
checks all code for us and discover interesting things such as used patterns,
anti-patterns, architectural rules violated and, by automatically creating
corresponding UML diagrams.

UML profile for software services
UML is very generic language, designed for all possible software systems,
applications and solutions. Although it would be possible to represent services
using only UML itself, it is a better idea to use a specific profile designed for
services; this is because you already have SOA elements available to use.
Therefore when we have to represent, analyze, and design an SOA solution (with
IBM Rational tools) we have to use the UML profile for Software Services.

Referring to “SOA modeling” on page 153, we want to point out now that this
profile, has to be used mainly in conjunction with the service identification and
service specification phases of SOMA, but not with the service realization phase.
Therefore, services are identified and specified here, even if this specification is
well detailed, it does not represent a white-box view or realization of services. For
this goal we use a less abstract model called design model.

As any profile does, it extends some existing UML element (we can call them
meta classes) by defining new stereotypes that provide additional semantic and
visual representation on UML meta classes.

In Figure 6-15, we can observe these stereotypes and which meta classes they
extend.

Note: For information about custom patterns and transformation in Rational
Software Architect, refer to “Pattern-based engineering with Rational Software
Architect .” on page 545.
164 Building SOA Solutions Using the Rational SDP

Figure 6-15 UML Profile for Software Services (for Rational Software Architect Version 6)

Although you can refer to the official documentation to verify formal specifications
of the profile, we provide here an introduction to it, by highlighting most
significative stereotypes and their meanings.

Note: In Version 6 of the Rational Software Architect, this profile was provided
as a tool add-in (through IBM developerWorks), in Rational Software Architect
Version 7 this profile is provided in-the-box, with the product.

For a complete description of the profile refer to:

http://www-128.ibm.com/developerworks/rational/library/05/419_soa/

Note that there are few differences between Rational Software Architect
Version 6 and 7 for this profile; some stereotype (such as <<serviceModel>>)
has been added in Rational Software Architect V7.
 Chapter 6. Modeling and tools 165

http://www-128.ibm.com/developerworks/rational/library/05/419_soa/

Service
This stereotype represents the endpoint of a service interaction (and this is
defined by a corresponding stereotype). This stereotype extends the UML Port
meta class and as a port, it decouples the external world from an internal service
realization and vice versa. A <<service>> element is typed by some interfaces:
usually there are provided and required interfaces. Provided interfaces are those
offered by the service itself, where as required interfaces are used by the service
(see Figure 6-7 for a port sample). For example, a BankingAccount service can
provide some BankingAccount interface and require some SecureBankingUser
interface.

Service specification
This stereotypes represents a specification of a service. We can view it as what
consumers (clients of that service) expect from that service and what it expects
from them to be able to execute. However notice that a service can have multiple
provided interfaces.

We can notice this stereotype extends the UML Interface meta class and indeed,
it acts as an interface. An interface can be informally defined as a set of operation
declarations, without any implementation on it; it represents only an agreement
between elements that want to realize it and external elements that want use it.
See Figure 6-9 on page 155 for an example.

Service provider
A class or a component stereotyped as <<serviceProvider>> represent an
element that realize one or more service specifications. A service provider
should not expose its internal structure but it has to expose its public ports,
stereotyped as <<service>>, trough which, it realizes a (set of) service
specification.

Message
A <<message>> represents the element that is used to communicate with a
service operation; its definition comes directly from WSDL (Web service
definition language) specifications; thus a message is a container of informations
having a common meaning between consumers and providers of a service. A
message can be composed by other classes (typically from a domain model) and
can be used either as an operation input or output parameter.

We can see an example of a <<message>> in Figure 6-16.
166 Building SOA Solutions Using the Rational SDP

Figure 6-16 Message example

As we can notice from the above figure, the message CustomerList is a (UML)
composition of customers that, on its own, has its structure, associations and so
on.

A message can also have a property stereotyped as <<Message Attachment>>
and this is meaning there is a physical attachment on that message such as a
file, an image so on.

Service partition
The stereotype that extends meta class, class is used as a container of services.
Services can be grouped along several dimensions: for example functional area
they belong, different architectural layers and so on. Notice a partition can only
contain services or other partitions as internal parts.

Service gateway
A service gateway act as a proxy for a target service. a gateway has to be used
in conjunction with a partition. It allows internal partition services to be exposed
to external consumers and at the same time, to avoid all internal services are
exposed to external world. Furthermore a gateway allows to mediate between
services interfaces and protocols by introducing a point of decoupling between a
consumer and a provider. Notice a gateway stereotype can only be added to a
partition and not to a service provider.
 Chapter 6. Modeling and tools 167

References

Read The Unified Modeling Language User Guide, by Grady Booch, James
Rumbaugh, Ivar Jacobson, Addison Wesley

Read A Rational approach to model-driven development, by A. W. Brown, S.
Iyengar, and S. Johnston, at:

http://www.research.ibm.com/journal/sj/453/brown.html

Visit the IBM Rational UML resource center at:

http://www-306.ibm.com/software/rational/uml/

Visit the Object Management Group UML Web site at:

http://www.uml.org
168 Building SOA Solutions Using the Rational SDP

http://www-306.ibm.com/software/rational/uml/
http://www.uml.org
http://www.research.ibm.com/journal/sj/453/brown.html

Chapter 7. Business modeling

This chapter describes the use of business models to provide the basis for
business-relevant SOA solutions to real business problems.

These topics are described and examples are provided, for:

� Inputs to the business modeling discipline

� Business modeling domain work products

� The tasks required to capture the business use cases, business processes
and various other business-related work products and artifacts

� How to use the tools to create these work products and the integrations
between these tools.

7

© Copyright IBM Corp. 2007. All rights reserved. 169

Introduction

It is an obvious, but often ignored statement that IT systems should support
solutions to business problems. The SOA-led approach aligns IT solutions to
business needs and constraints more directly than traditional techniques. The
service-led approach implicit in any SOA changes the way IT thinks when it looks
to provide automated solutions.

Prior to implementing a solution, the business has to decide what the problem is,
and the business value in solving that problem. This relates back to the wider
problem of business strategy and business alignment. By aligning IT to the
strategic business goals and values, SOA-based solutions can lead to very
focused deliveries from IT.

Many of the tasks described in this chapter run in parallel with the tasks
described in Chapter 8, “Requirements” on page 207. There is a logical
sequence of tasks involving business modeling (for example, understand the
current business) that will precede tasks of the requirements phase (for example,
capture business goals).

Business modeling

The purpose of the RUP business modeling discipline is to:

� Understand the current business.
� Understand areas for improvement and identify what should be improved
� Assess the impact of organizational change
� Ensure a common understanding of the business and establish a glossary
� Maintain business rules

We would also emphasize that we are looking for a solution that meets the
business goals and provides real value to the business. We should understand
and capture the key performance indicators and metrics required to prove that
the goal has been achieved. We emphasize this last point because many
initiatives start without any consideration as to what would be a successful
outcome, and how it could be recognized as a success.

In our development case (see “JK Enterprises development case” on page 114),
we use the following RUP work products to capture these ideas and goals:

� Business vision
� Business use case model
� Business analysis model
� Business goals
170 Building SOA Solutions Using the Rational SDP

� Business glossary
� Business process model

We show these work products and the relationships between these and other
work products in Figure 7-1.

Figure 7-1 The business modeling work products and their relationships

In our JK Enterprises example, we are not starting from scratch. We have
existing systems, existing business process models, there has been work done
on business process optimization. In many cases, we are expanding on work
products that already exist for the system and the enterprise.

Key roles in business modeling

The work products (Figure 7-1) and tasks (Figure 7-3) are performed by different
roles in the project (Figure 7-2).
 Chapter 7. Business modeling 171

Figure 7-2 Key roles in the business modeling discipline and the related work products

Typical steps in business modeling

The workflow we use for business modeling tasks is shown in Figure 7-3.

Figure 7-3 The business modeling discipline workflow with the key tasks

The typical sequence of steps to create the business model are:

� Understand the current business.

� Start the business vision and the business glossary

� Create the as-is business use case model (using Rational Software Architect
and RequisitePro).

� Create the business analysis model in Software Architect.
172 Building SOA Solutions Using the Rational SDP

� Create business process models that correspond to the business use case
realizations created in the as-is model (using WebSphere Business Modeler).

� Extract the business architecture.

� Capture the business vision and goals for the to-be business. Start defining
key performance indicators (KPIs) and metrics against the goals.

� Create the to-be business use case model (it may not have changed).

� Create the business analysis model based on the to-be business use case
model.

� Create the business process models of the to-be business use case
realizations.

� Update the business architecture if required.

Inputs to the business modeling discipline

The business modeling discipline is where our SOA work starts. In our example,
we made use of some work that is outside the scope of this IBM Redbooks
publication. JK Enterprises has already assessed the business, we show how to
document existing (as-is) processes and future business processes (to-be) but
we assume we have performed business process optimization. We have a good
idea of our goals, and the way we might measure our goals have been achieved.

This chapter demonstrates how to capture this existing information in the IBM
tools but we do not describe in detail how to perform these tasks. We have a
defined development case for our development process.

In addition, if we have a business that has a mature SOA approach in place, we
would have additional inputs to our project. These include domain models,
process models, and service models.

A word about tooling

We refer to two IBM RequisitePro projects in this chapter and in Chapter 8,
“Requirements” on page 207.

� The first project is for enterprise-level information. This should be relatively
stable information and contains the business glossary, business use cases
and service policies. All your SOA (and other) projects refer to and contribute
to this RequisitePro project.

This RequisitePro project is named SOA SDP Redbook Enterprise Content.
 Chapter 7. Business modeling 173

� The second RequisitePro project contains information about our particular
piece of work described in our case study. This includes business goals, KPIs,
metrics, and other information, which are the basis for some of the design and
implementation decisions later on in this book.

This RequisitePro project is named SOA SDP Redbook Project Content.

The rationale for having two separate projects, and using the cross-project
traceability in RequisitePro is simple: governance. Access rights to information
including read-only and even visibility of information is better controlled by
splitting this information into different RequisitePro projects.

If governance is less of a concern in your organization in this context, consider
combining the content of these RequisitePro projects. Be aware that good
governance is critical to the success of any long-term move to effective
SOA-based solutions.

Governance is just one advantage of RequisitePro. There are also the benefits of
standardization of templates, the ability to capture and manage information in
one central repository, and complete and auditable version histories.

We have created some new RequisitePro document templates for this book, and
modified others. Instructions for how to install these templates are outlined in
“Loading the RequisitePro projects” on page 577.

We also have various UML and business process models that we refer to and
update during this chapter. This includes a business use case model and a
domain model held in Rational Software Architect (or Software Modeler) and a
business process model held in WebSphere Business Modeler.

Now we discuss the different work products and artifacts from RUP in more
detail.

Business architecture

The business architecture provides an overview of the significant parts of the
business in terms of its products and services, processes, organizational
structure, and locations. It is used to capture key features of a business, and in
term influences application architecture, services, and other more technical
elements of the business.

The business architecture is presented in a business architecture document. This
document is typically assembled from sources of information such as business
process models, organization charts, market reports, and others.
174 Building SOA Solutions Using the Rational SDP

The following view of the business can be found in a business architecture
document:

� Market view
� Business process view
� Organization view
� Human resources view
� Domain view
� Geographic view
� Communication view

Not all views may be relevant to your business. For example, no geographic view
is required if we conduct our business from a single location. At JK Enterprises,
we have already been told that we have many different locations in six countries
(see “An overview of JK Enterprises” on page 18).

We have omitted the business architecture document in our JK Enterprises
example.

Component business modeling

IBM, specifically IBM Global Business Services, has developed a technique
called component business modeling (CBM) to help its customers understand
their business, the capabilities of the business and identify capability gaps. They
break the business down into relatively independent areas to look for potential
opportunities for improvements and innovation. The output of this work would be
an understanding of how improvement in the certain areas of the business would
have maximum positive effect on the business.

A selection of information about CBM can be found at:

http://www.haifa.ibm.com/projects/software/cbm/index.html

http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/a1017906?cn
txt=a1005262

http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/a1018920?cn
txt=a1005266

Looking at the business from a business strategy perspective gives us a map of
the business in terms of domains (for example, Servicing and Sales), levels of
responsibility (for example, Directing), and functional areas of the business (for
example: Sales Management or Customer Service). In CBM these items are
called Business Competencies, Accountability Level, and Business Components
respectively. CBM has three accountability levels: Directing, Controlling, and
Executing (Figure 7-4).
 Chapter 7. Business modeling 175

http://www.haifa.ibm.com/projects/software/cbm/index.html
http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/a1017906?cntxt=a1005262
http://www-935.ibm.com/services/us/index.wss/executivebrief/imc/a1018920?cntxt=a1005266

Figure 7-4 Component Business Model™ map for JK Enterprises

We undertake an assessment of these business components, looking at which
components are potential targets for improvement. We apply criteria such as
costs, revenue potential, strategic fit, alignment between business processes and
applications, depending on the current state of the business and its goals. These
criteria are not predefined, but tend to be defined by what is being assessed.

The result of the assessment is a set of business components that are targets for
improvement. In the JK Enterprises example, the Sales Management business
component is being scoped for improvement.

In the next section in this chapter we drill down into this Sales Management
business component while performing the Functional Area Analysis task. This is
to provide inputs into the business process model.

In the JK Enterprises example, we assume that this process of understanding
which areas of the business need improving and what value it would add to the
business have already been established.
176 Building SOA Solutions Using the Rational SDP

Functional area analysis

This task is aimed at producing a refined partitioning of the business to create
business systems. It is a key step in working out what IT sub-systems might be
required in our SOA-based solution.

The initial partitioning would have been derived from previous work (for example,
using Component Business Modeling as described earlier in this chapter). Then
we break down each functional area into smaller components. Each functional
area has specific responsibilities, and collaborates with other functional areas.
Ultimately, each area of functionality is mapped to a business system. A business
system then supplies services to other business systems. Each business system
is then mapped to an IT subsystem. These IT subsystems can be the systems
described by system use cases later on in the chapter on requirements.

In our JK Enterprises example, we were told that the Servicing and Sales domain
requires our attention.

We also investigate the following initial business components in the Relationship
Management domain:

� Relationship management
� Account planning

Customer Services is part of the Servicing and Sales domain. This is a business
component. One of the responsibilities of this business component is to handle
queries from customers about the status of their account applications. We have
been told that this is an area where improvements can be made, as currently
customers cannot get the status of their account application.

Business vision

The business vision captures the high-level objectives of the business modeling
work. In our case, we have created a business vision aimed at the managers of
the business, the funding authority, the workers in the organization and the
developers of the services so they understand the context and the rationale of
the project.

In our JK Enterprises example, the completed business vision work product
contains positioning, an overview of the stakeholders, the key needs of the
stakeholders and the objectives of the business modeling activities. This content
is built up over time during the project.
 Chapter 7. Business modeling 177

The positioning includes the business opportunity: Improvements in sales and
customer service through increased speed and responsiveness, enhanced
productivity through reduction in total cost of ownership (TCO), and reduction of
regulatory non-compliance.

The business vision material is specific to this project. We may also have a
business vision for the organization.

To create a business vision document, we use Rational RequisitePro. We have a
template for the project information called JK Enterprises Project project. To use
this template, open RequisitePro and select the template from the list of available
templates (Figure 7-5). This creates a blank project with predefined packages,
requirement types and document types.

Figure 7-5 Creating a RequisitePro project from the template

Now, select the Business Vision folder and create a new business vision
document by selecting New → Document (Figure 7-6).

Figure 7-6 Create a Business Vision document
178 Building SOA Solutions Using the Rational SDP

We select the predefined business vision template provided (Figure 7-7).

Figure 7-7 Select the Business Vision (Business Modeling) document type

This allows us to encourage the use of standard templates and formats for
documentation across multiple projects. As we have potentially many different
parts of the organization working on SOA-based solutions, this consistency is
important.

Now we can create the business vision document based on the information
provided in the case study chapter. We create or mark up the requirements by
entering the text in the document, then highlighting the text and selecting
RequisitePro → Requirement → New Requirement or use the shortcut button on
the Microsoft Word toolbar (Figure 7-8).
 Chapter 7. Business modeling 179

Figure 7-8 create a requirement in RequisitePro

After entering values for any attributes (Figure 7-9)1, we can save the document
by clicking the RequisitePro Save icon, which commits the text and its associated
attributes to the RequisitePro database.

Figure 7-9 Editing attributes for a requirement

1 We discuss the use of attributes on requirements in more detail in the chapter on Requirements
Management. Attributes on requirements are additional items of information that relate to that
requirement, for example, the priority of the requirement.

Create new requirement

Commit requirement to database
180 Building SOA Solutions Using the Rational SDP

We capture the following information in the business vision document:

� Business goals
� Business opportunities
� Metrics
� Key performance indicators

These items are captured because they provide both input to other stages in
development, and they provide the proof we need to show that we really have
solved the business problem. We discuss this traceability throughout this book.

Business glossary

The business glossary is the set of common business terms and their definitions.
We create a business glossary for our example, you may find your business has
a glossary already. Common sources of the business glossary include:

� Industry-standards such as Enhanced Telecoms Operations Map (eTOM) by
Telemanagement Forum (www.tmforum.org)

� Business models such as the model included in IBM Information Framework
(IFW) for banking organizations2

� Work from previous projects

� Enterprise or other logical data models

Regardless of the source, we capture the term, and definitions in the following
format:

� Name of term
� Definition of term including any equivalent terms used in the business/

We capture the information in RequisitePro, because this not only enables us to
enter the information quickly and easily, but it also provides a full version history
and easy access by all interested parties. In this case we enter the terms directly
into the RequisitePro database. To enter a requirement into the database directly,
open or create an attribute view (Figure 7-10):

2 IFW includes more than just a business model. It provides comprehensive service models and data
models for any banking organization. For more details on the IBM Integration Framework models
for the financial services industry refer to:
http://www-03.ibm.com/industries/financialservices/doc/content/solution/391981303.html
 Chapter 7. Business modeling 181

http://www-03.ibm.com/industries/financialservices/doc/content/solution/391981303.html

Figure 7-10 Open a View in RequisitePro and click to enter the new glossary term

Click <Click here to create a requirement> and enter the term directly
(Figure 7-11).

Figure 7-11 Entering glossary terms into RequisitePro

We can link these terms to other elements held in RequisitePro (for example,
other text), Rational Software Modeler, and Rational Software Architect.
182 Building SOA Solutions Using the Rational SDP

The main purpose of having these business glossary terms in RequisitePro is to
have a central repository of information that is versioned appropriately; we are
not using all the capabilities of RequisitePro for this part of the business
modeling effort. We can link the glossary to elements to domain models in
Rational Software Architect/Modeler3.

We have a template for the business glossary in our RequisitePro project. If you
want to create a glossary from scratch, you select File → New → Document. In
our case, we can open the prepopulated (already populated) glossary. The
glossary is stored in the Glossary folder and is named JK Enterprises Glossary
of Terms (Figure 7-12). Double-click the document to open it4.

Figure 7-12 Location of the business glossary in the RequisitePro enterprise-level project

To see how a term has changed over time, right-click any of the terms in the
Requirements Explorer and select Properties in the pop-up menu.

In the Requirements Properties dialog (Figure 7-13):

� Select the Revision tab and you can see the current version of the term, when
it was lasted edited by whom, and what the change was.

� Click History to see the full history of all the changes made since the entry
was created. Note that even if we change the term and change it back again,
all the changes are recorded5.

Every element stored in the RequisitePro database has a complete revision
history.

3 We may also link to enterprise data models in Rational Data Architect or business items in
WebSphere Business Modeler.

4 It is not necessary to use a document with the glossary terms, They can be stored directly in the
RequisitePro database if required.

5 Be careful. Any change committed to the RequisitePro database and the change is recorded. A
user cannot remove any entry in the list. We have had customers call the IBM technical support
team and beg for entries to be removed without success!
 Chapter 7. Business modeling 183

Figure 7-13 Revision history of one the terms in the glossary

At this point we may be asked how people who do not have access to
RequisitePro (using the native RequisitePro client or the Web client) can see this
information. RequisitePro can produce CSV or Word-format documents based
on the views. Alternatively, we use other reporting tools such as IBM Rational
SoDA to produce more complex reports that span tools and work products.

Business use cases

Our starting point for thinking about business processes is from the view of the
world in which we operate. Business use cases modeling is a technique that is
used to describe the business from an external viewpoint. More formally, a
business use case is ...a sequence of actions that a business performs that
yields an observable result of value to a particular business actor, or that shows
how the business responds to a business event, to yield a business benefit
[RUP V7.0].
184 Building SOA Solutions Using the Rational SDP

The definition perhaps requires some explanation:

� “...a sequence of actions...” means there is a dialogue between the outside
world and the business; it has an order or sequence and it is not a one-sided
conversation.

� “...yields an observable result of value...” means there must be an outcome,
and it must be visible and of tangible benefit.

� “...to a particular business actor...” means that there is some outside party
(the business actor).

� “...or shows how the business responds to a business event, to yield a result
of business benefit...” means that as an alternative, the business may be the
one deriving the benefit.

The business use case forms the top level view of the business. In practice, this
technique is an easy and quick way to get a high level understanding of the
business: with whom the business interacts and what the business.

Business actor
To expand on the description of a business actor: It is someone or something
outside the business that interacts with the business in some way. Examples
include customer, regulator, supplier, and shareholder. It is a role, in the sense
that the same external party may take on many roles with respect to the
organization or part of the organization under scrutiny. For example, you may
have a customer who also supplies you (the business) with goods, so your
customer is also your supplier: One party, two roles.

When we name the business actor, we try and refer to the role, not the actual
external party. For example, if we have IBM as a supplier of software tools, we
would call the role Software Tools Supplier and not IBM. This means that our
business use case and business actor is still relevant if we change the supplier at
some point in the future.

Business process
Business process analysts typically capture the business process using tasks and
sub-tasks, with flows and decision points. However, these are really what RUP
calls business use case realizations (see “Business use case realization” on
page 188): How the business operates to satisfy its customers and other external
parties.

We think of the business use cases as being the precursor to any business
process modeling with workflows and tasks. This allows us to focus on what the
business does and how it interacts with the outside world rather than how the
process operates inside the business. We show this mapping between a
business process and a business use case realization in Figure 7-14.
 Chapter 7. Business modeling 185

Figure 7-14 Business process to business use case mapping

Practically, we are describing a top-level6 business process where we recognize
that the business has to interact with the outside world (its customers, suppliers,
regulatory bodies, and shareholders) and those interactions should deliver some
value to the outside world. If there is no value delivered, the processes must be in
support of other processes that add value.

The value of using business use cases is that they form a simple expression of
the key abstract business processes.

Our business use case for our JK Enterprises example is represented as a UML
diagram that shows the outside party (Customer) and what the business is doing
for them (setting up an account (Figure 7-15).

Figure 7-15 JK Enterprises key business use case for Account Setup

The diagram in Figure 7-15 is a convenient way of summarizing the situation, but
the real value of a business use case is creating and use the business use case
specification. This specification contains a textual description of how the outside

6 Also known as a level one business process.
186 Building SOA Solutions Using the Rational SDP

world and the business collaborate to complete the process. Internal workings of
the business are not documented here (they go in the business use case
realization or the business process model), only the external interactions. The
emphasis of the specification is on the order in which the interactions take place,
as well as with whom the business interacts for this particular process.

The specification should contain the following information:

� A brief summary of what the business use case is all about

� Any relevant performance goals and what measures are required

� The ordered steps describing the interaction between the outside world and
the business.

� Any exceptions

� Any non-functional requirements relevant to this business use case

� Any risks

� The process owner

You can create a business use case in RequisitePro using a standard template
(similar to the outline above). Select New → Document and select Business Use
Case template as shown in Figure 7-16.

Figure 7-16 Creating a business use case document in RequisitePro

Refining the business use case

As previously noted, the business use case is typically a top level business
process. This is also known as a level one business process. We may have to
refine this business use case into a set of lower-level business use cases.
However, this refinement should be done with care. It is potentially dangerous to
split the business use cases into smaller parts as the temptation is to split the
 Chapter 7. Business modeling 187

business use case into too many pieces. On the other hand, a very high level
business use case is difficult to translate in a set of activities in the business
process model. Refining the business use case into a set of lower level business
use cases should only be done if we have a long running business process, more
than one actor or specialization of the actors, and if and only if there is true value
delivered to a business actor at these lower levels.

In our example. we do have a long running process but any refinement delivers
little or no value to the actor involved (Customer) and there are no other actors
involved. Delivering value only to the business itself is not normally a good
reason to refine the use case. The business is not a business actor in its own
business process.

Business use case realization

A business use case realization describes how the resources, business items and
tasks are combined to deliver the value described in the business use case. The
business use case realization is held in the business analysis model in Rational
Software Modeler or Software Architect.

The operations invoked by the workers on the systems form candidate services
in the service model later on.

There are other routes to deriving services from the business processes, tasks,
and roles, and this is described in the service identification chapter. We do not
use the business use case realization for this purpose in our JK Enterprises
example.

Business rules

A business rule is ...a declaration of policy or a condition that must be satisfied
[RUP]. Business rules are either invariant (they always apply) or merely a
constraint (they apply if certain conditions apply).

We can capture business rules in the form of UML elements in a UML model, text
in RequisitePro, or as part of the business process model. In our JK Enterprises
example, we capture some rules in RequisitePro. We also have some conditions
in our business process model in WebSphere Business Modeler.

Sample business rule we use in the JK Enterprises example are:

� We accept an account application for < 5000 from any customer.
� The Application Date must precede the Loan Date.
188 Building SOA Solutions Using the Rational SDP

Business rules are used to create decision branches in workflows, and as a
source of business logic for service operation implementations. It is considered
best practice to separate the rule, or at least the values of its variables from any
hard-coded routines.7

Business process model

The business process model contains the details of the business process. It
captures the activities tasks and subtasks, the flow of data, the roles or systems
performing the tasks and other information about the business. Tooling such as
WebSphere Business Modeler enables us to capture this information, and run
simulations to explore the effects of changing parameters, such as costs,
durations, number of workers, and other items.

We create two business process models: The as-is model (how the business
works today) and the to-be model (how we want to run the business in the
future).

The to-be business process model is created by examining the current business
processes. We ask questions such as “how is this done today” and document the
answers in our business process model in WebSphere Business Modeler8. We
want to capture the activities, the roles and the information flowing around the
business.

We identify the activities in the organization. In our JK Enterprises example. we
would capture how a customer applies for an account, how customers place
orders, how orders are processed and delivered. There are represented as tasks
in WebSphere Business Modeler.

We then associate the activities with different roles from different parts of the
organization. In JK Enterprises, we have roles such as Account Manager and
Account Coordinator. We have organizational areas such as Sales and Customer
Service.

We want to look at the information that needs to pass around the organization
and add to the business process model. Items such as account details, credit
reports and rejection messages are all kinds of information we should capture.

7 There are many horror stories of companies hard coding data such as tax rates into applications
that would be better separated out as a business rule with configurable data values.

8 In this chapter we show WebSphere Business Modeler as a standalone application. We can also
run Business Modeler in the same Eclipse shell as other IBM products such as Rational Software
Architect among others. This requires we are running the appropriate versions of these products.
As we wrote this book, we used the latest release of Rational Software Architect (V7) and the
current release of WebSphere Business Modeler (V6.0.1 and V6.0.2) that cannot be used in the
same Eclipse shell.
 Chapter 7. Business modeling 189

Working with IBM WebSphere Business Modeler

To create a new business process model launch IBM WebSphere Business
Modeler9 and create a new workspace. This workspace is a file system directory
that holds our business process models for the JK Enterprises example
(Figure 7-17).

Figure 7-17 Opening Business Modeler and creating a workspace

By default, a Quickstart wizard allows you to create a business process model
with a process catalog or folder, and a default process (Figure 7-18).

For example, we enter JK Enterprises Account Opening as the project name
and Account Opening as the process name.

9 This chapter provides basic guidance about how to use WebSphere Business Modeler. For more
details, refer to the publication Business Process Management: Modeling through Monitoring Using
WebSphere V6 Products, SG24-7148.

c:\Workspaces\Modeler60sg247356
190 Building SOA Solutions Using the Rational SDP

Figure 7-18 WebSphere Business Modeler Quickstart wizard

Initial project
We complete the information in the wizard and this creates the initial (blank)
process model (Figure 7-19).

JK Enterprises Account Opening

Account Opening
 Chapter 7. Business modeling 191

Figure 7-19 New business process model

Four-pane screen layout
There are different ways to arrange the screen layout in Business Modeler. Click
the Apply 4-pane layout icon to see the Project Tree and an Outline overview
of the model under construction (Figure 7-20).

We also closed the Welcome tab on the right-hand side to get more drawing
space. The Errors (2 of 2 items) view is reporting errors because we have not
connected the default Start and Stop nodes to anything. We ignore these errors
for the moment.
192 Building SOA Solutions Using the Rational SDP

All the elements we can add to the process flow diagram are available on the
Palette in the middle of the four-pane view in Business Modeler.

Figure 7-20 Business Modeler in 4-pane view and Palette

Adding elements to the process
Add elements to the process flow by selecting the item in the Palette and clicking
on the drawing surface. The property of the element appears in the Attributes
view in at the bottom of Modeler. You can edit the name of the task and add other
details here (Figure 7-21).

Palette
 Chapter 7. Business modeling 193

Figure 7-21 Attributes view

Adding connections
Use the Connections section of the Palette to grab a connector. Connect the
tasks by clicking on the source node and then click again on the destination node
(Figure 7-22). The notation assumes that the source task is the precursor of the
destination task.

Figure 7-22 Drawing a connector between two tasks

Click the source task and click again on the destination task. Note that
Figure 7-22 does not show the cursor (a US-style electrical plug). The cursor
shows a No entry sign until you move across a suitable target element.

Roles, resources, and business items
Roles, resources, and business items are defined in the Project Tree:

� A role or resource represents who or what performs a task. In our JK
Enterprises example, we have an Account Coordinator as a role in the
business. Roles are performed by humans, where as resources are
machines, tools, computers, and so forth.
194 Building SOA Solutions Using the Rational SDP

� A business item is information that is passed around the business. In JK
Enterprises, we have the customer’s account application as one of the
business items.

You create an item in the Project Tree select a folder (Business items or
Resources) and New → <item to be created>. This menu is context sensitive, so
when we select Business items we can create types of business items. Select
Resources and we can create a role or a resource (Figure 7-23).

Figure 7-23 Business items and resources in the Project Tree

A role or resource is usually dragged on to a task to indicate the task is
performed by that role resource. A business item is usually dragged on to a
connector to indicate information flow.

Figure 7-24 shows the expansion of the Account Verification process, which is
the focus of our JK Enterprises example. It also highlights some of the modeling
elements we have discussed, as well as some new items.

Figure 7-24 Some of the Account Verification tasks

Business item

Role

Business item

Task

Role or resource

Decision
Outcome
 Chapter 7. Business modeling 195

The diagram shows some of the account verification tasks:

� Recall that time runs from left to right.

� The large blocks such as Determine applicant eligibility represent the tasks
or sub-tasks.

� Above the task block is the resource or role that is responsible for the tasks
(for example, Account Coordinator performs the task Initial Application
Review).

� The arrows represent the flow of information such as the Customer
Application between tasks.

� The item that flows between tasks is called a business item.

� The diamond Request credit report? represents a decision with a branch.
Note we have assigned percentage probability of the outcomes. These
percentages are used when we run a simulation on this model.

There is one other important modeling element relevant to building SOA-based
solutions. In addition to a task or sub-task, we can model an external service
directly in our model. This is useful when we know that we intend to use an
external service in our process flow. Strictly speaking, this service modeling
element is not intended to model an internal service.

Process simulation

Once we have captured the activities, roles and information, we can add the
costs and durations to the tasks in the model to simulate the business process
and gather meaningful data, such as overall costs and duration. WebSphere
Business Modeler allows us to run simulations showing the costs of running a
process with a certain number of resources and with a certain input load, and
then contrast this to a different usage profile.

The simulations are particularly useful to validate the as-is model against what is
really happening in the business. Wild variations in the model simulations from
real data obtained in the business is an indication that either the model is wrong,
or the data captured by the business today is inaccurate. If a business has no
valid baseline with which it can compare any future changes, it becomes very
difficult to quantify any improvements.

It is also useful to build up a list of key performance indicators (KPIs) and metrics
that can used as to compare the as-is and to-be processes. KPIs and metrics are
discussed later in this chapter.
196 Building SOA Solutions Using the Rational SDP

We can repeat these steps of building a business process model but this time
modeling the to-be process. By simulating this new process, we can then get an
indication of the metrics for the new and hopefully improved, process. We can
see if our improvements meet our business goals (described later in this
chapter).

Account Opening example

Here is a high-level to-be process model that we construct for our JK Enterprises
example (Figure 7-25).

Figure 7-25 Account Opening to-be process

This top-level process in our model is Account Opening. This covers the entire
process of account opening from receiving an application from the customer to
the customer having an account they can use:

� The first step is to receive the account application (Account Sales).

� The next step is for the application to be processed (Account Application).

� Then, the account is verified and the customer receives an acceptance or
rejection notice (Account Verification).

� Finally, the customer’s account is activated and it becomes available for use
(Account Activation).

Each of these processes may have more lower level processes. In Business
Modeler, you can right-click each process and open the sub-process diagram by
selecting Launch Global Process Editor.

Importing the model

Refer to the instructions in “Loading the WebSphere Business Modeler project”
on page 579 to import the sample model into WebSphere Business Modeler.

Note that we only implemented one global subprocess of Account Opening:
01-Account Verification (TO-BE).
 Chapter 7. Business modeling 197

Visualizing a business model as UML

We can visualize the business process model created in WebSphere Business
Modeler in UML. Rational Software Modeler (or Software Architect) accesses the
Business Modeler project and create the UML business use case and skeleton
business use case realizations.

To visualize the business process model:

� Open Rational Software Modeler (or Software Architect).
� Select File → Import.
� Select General → Existing Projects into Workspace.
� Navigate to the WebSphere Business Modeler project that you want to import.
� Click Finish.

This action displays the project in the Project Explorer. To open the model,
expand the project to the models folder and double-click the entry with the same
name as the project. We can drag and drop items such as the business
processes. flow diagrams, resources, and other items in any UML model and
they are displayed as UML (rather than BPMN notation). This is useful to allow
the users of Software Modeler to see the business process models in UML
format.

Business goal

“A business goal is a requirement that must be satisfied by the business.
Business goals describe the desired value of a particular measure at some future
point in time and can therefore be used to plan and manage the activities of the
business” [RUP 7.0].

We use the business goals to make sure that we clearly understand what steps
we have to take to achieve the business strategy. Our goals in our JK Enterprises
example are listed in Figure 7-26.

We captured these goals in RequisitePro, along with any subgoals. Associated
with each goal and subgoal are key performance indicators (KPIs) and the
metrics we need to gather to measure if we have achieved these goals
(discussed in the next section).

We can use IBM WebSphere Process Server, in conjunction with IBM
WebSphere Business Monitor, to capture these metrics directly from the
executing business process. We can then calculate the measures to demonstrate
the achievement of these goals.
198 Building SOA Solutions Using the Rational SDP

Figure 7-26 Business goals in a RequisitePro View. Note the nested sub-goals.

Key performance indicators and metrics

As we identify business goals, we have to establish the specific measures and
the associated values of these measure we are aiming for. The measure is called
key performance indicator (KPI), and the values we need to record are the
metrics. Let us define these terms:

� “Key performance indicators represent quantifiable measurable objectives,
agreed to beforehand, that reflect the critical success factors of an
organization” [RUP].

� “Metrics identify the type of measurements that need to be collected to
assess the state of the KPIs” [RUP].

So, metrics are what we measure, and the KPIs are the numbers we are
measuring against. This implies we should have mechanism for capturing these
metrics; either as part of the service, or the underlying workflow runtime engine
as appropriate.
 Chapter 7. Business modeling 199

JK Enterprises goals

In the JK Enterprises example, we have a goal of cost reduction. The
corresponding KPI is reduce costs by 10% by 1st July 2007. Note the use of a
specific reduction of 10%; otherwise we could reduce by 0.5% and claim
success.

There is also the specification of a time scale (by 1st July 2007). Interestingly we
originally used the date of 2007, but this was too vague. Did we mean at the
beginning of 2007 or the end of 2007? We have to be as specific as possible.

We had this vague date originally by using the Revision History feature of
RequisitePro. We right-clicked on the Goal and selected Properties, then
selected the Revision tab, then clicked History (Figure 7-27).

Figure 7-27 Use of the revision history in RequisitePro
200 Building SOA Solutions Using the Rational SDP

Note that the original author (indicated by the initials ajk) created this goal on the
13th October, and the current corrected version was entered by the same person
on the 18th October. This revision history is an important feature of RequisitePro
as it allows us to track changes to goals including who made the change.

To validate whether have met this KPI, we have to record the costs in some
fashion. This leads to metrics of cost of processing an account application and
the cost of account activation cost. At the moment, the total costs are the sum of
these two numbers.

To perform a meaningful comparison, we also have to understand the current
costs before we deploy the new SOA-based solution. We may have this
information from existing accounting records, or we might use our as-is business
process model to calculate this value.

Connecting goals, KPIs, and metrics

It is important to connect goals to the corresponding KPI and the metrics.
Changes in any of these items (goals, KPIs, or metrics) imply we may have to
change the other items.

RequisitePro provides an effective way to provide this traceability. Every element
we capture in RequisitePro has a the ability to trace to or from one or more other
elements. This trace can be set up through the properties of the RequisitePro
element (Figure 7-28).

Figure 7-28 Traceability tab of an element property in RequisitePro

Alternatively, we use a RequisitePro Traceability view to show the two sets of
elements to be linked, and right-click the intersection of the two elements and
select Trace-to or Trace-from (Figure 7-29).
 Chapter 7. Business modeling 201

Figure 7-29 Establishing traceability between goals and KPIs through a RequisitePro traceabiity matrix

In a similar fashion, we establish a link between the KPIs and metrics. Then we
show the hierarchy from goals to KPI to metrics using the Traceability Tree view
(Figure 7-30).

Note the red marks on items in the view indicate that the item has changed. We
can use the revision history to establish what has changed.
202 Building SOA Solutions Using the Rational SDP

Figure 7-30 Traceability tree view showing goals linked to KPIs to metrics

Defining KPIs and metrics in WebSphere Business Modeler

You can use WebSphere Business Modeler to define the metrics and KPIs that
you want to measure using WebSphere Process Server and WebSphere
Business Monitor:

� Metrics are typically things that you want to measure, such as elapsed time of
the process, number of accounts opened (successful executions), number of
accounts that failed verification, and cost of the process.

� KPIs are the goals, typically calculated from metrics, for example the average
cost of running the process compared to a given limit or range.

In addition, business analysts want to analyze metrics against business items, for
example, failed account opening versus the location of the customers. Such
analysis, called dimensional analysis, can be performed by Business Monitor if
the underlying dimensions (business items) and metrics have been defined in
Business Modeler.
 Chapter 7. Business modeling 203

Measuring a business process in Business Monitor

Calculations of KPIs, metrics, and dimensional analysis can only be performed if
the business process is exported from Business Modeler into WebSphere
Integration Developer for implementation and WebSphere Process Server for
execution.

In this book we did not follow the path from Business Modeler to Integration
Developer and Process Server. Refer to the IBM Redbooks publication Business
Process Management: Modeling through Monitoring Using WebSphere V6
Products, SG24-7148, for an example of such a business process.

Domain modeling

Domain modeling is the task of capturing a subset of the overall business
analysis model, specifically the key business elements and their relationships.
Usually, if we have a business analysis model, we do not have to perform this
task because we already have a domain model. We also would not have to
perform this task if we have already purchased an industry model. Examples of
industry models include the domain model part of IBM IFW and IAA models, or
any of the other IBM industry models. These models have standard domain
models.

In our example, we have a domain model in Rational Software Modeler or
Software Architect. This is discussed in “Study the domain model” on page 320.

What do we have now?

By the end of this chapter, our status is as follows:

� We have a clear idea of what the business goals are and how we can
measure we have met these goals (metric and KPIs).

� We have a business process model indicating the as-is and to-be situations.

� We have a business use case model showing the relevant part of the
business, and with whom that part of the business interacts.

� We have a business process model with process flows, resources and
business.

� We have a domain model that gives us an idea of the key abstractions.
204 Building SOA Solutions Using the Rational SDP

References

For further information consult these sources:

� Learn business process modeling basics for the analyst, developerWorks

http://www-128.ibm.com/developerworks/webservices/library/ws-bpm4analyst/

This paper provides a useful introduction to business modeling using the
notation and techniques used in the chapter.

� IBM Redbooks publication Business Process Management: Modeling through
Monitoring Using WebSphere V6 Products, SG24-7148

This book covers the concepts and many details on the use of the tooling for
IBM WebSphere Business Modeler and related tooling.

� IBM Redbooks publication Continuous Business Process: Management with
HOLOSOFX BPM Suite and IBM MQSeries® Workflow, SG24-6590
 Chapter 7. Business modeling 205

http://www-128.ibm.com/developerworks/webservices/library/ws-bpm4analyst/

206 Building SOA Solutions Using the Rational SDP

Chapter 8. Requirements

This chapter discusses requirements management as applied to SOA-based
solutions. This chapter should be read in conjunction with Chapter 7, “Business
modeling” on page 169 as the two topics are closely related.

These topics are discussed:

� The role of requirements management in SOA-based solutions

� The work products associated with requirements management

� How to use IBM Rational RequisitePro to capture and manage requirements

� Traceability between various work products and the tools

8

© Copyright IBM Corp. 2007. All rights reserved. 207

Requirements management in SOA

The usual definition of requirements management is as follows:

Requirements management is a systematic approach to finding,
documenting, organizing and tracking the changing requirements of a system.
[RUP]

In SOA-based solutions, we need to extend this definition to include “the solution”
rather than the system. Requirements management then encompasses
information captured in the business domain, the services domain and the
system domain. Some of the items that could be termed business requirements
have been discussed in Chapter 7, “Business modeling” on page 169, such as
the glossary, business goals, KPIs, metrics, and business use cases. In this
chapter, we discuss the role of service policies, system features, functional and
non-functional supplementary requirements, and system use cases.

The key work products for the requirements discipline are illustrated in
Figure 8-1.

Figure 8-1 Work products for the Requirements discipline, and the traceability
208 Building SOA Solutions Using the Rational SDP

The traceability of the work products are shown in this figure, as well as their
impact on work products from other disciplines.

The development process is illustrated in Figure 8-2.

Figure 8-2 Workflow in the requirements discipline

It is important to remember that we navigate this workflow every iteration,
expanding on and correcting more of the requirements as we go along.

Figure 8-3 shows the roles involved in the requirements discipline and their
relationship to the work products.

Figure 8-3 Requirements roles and their relationship to the work products

The key practices for effective requirements management remain critical,
including a clear statement of intent, the creation of testable requirements, and
appropriate traceability between requirements, and between requirements and
other work products. The structure of our requirements are captured in a
requirements management plan.
 Chapter 8. Requirements 209

Requirements management plan

The requirements management plan is a reference document for the project. It
captures the following decisions:

� Types of requirements
� Requirement attributes
� Requirement work products
� Traceability between these requirements
� Connection to other work products
� Control mechanisms to manage change of these elements

Generally, this plan can be used from reused from project to project with only
minor alterations.

We store this document in IBM Rational RequisitePro and take advantage of the
standard outline available in RequisitePro (Figure 8-4). We generally customize
this outline to contain our internal standard requirements management plan
populated with content, rather than the base annotated template supplied with
RUP and RequisitePro.

Figure 8-4 Creating a new requirements management plan using the predefined outline

Requirement types and attributes

There are a number of different distinct types of requirements necessary to
capture the full spectrum of requirements in any project. For example, a business
goal captures the aim of a business, while a feature captures the externally
visible capability of a system. We use the requirement types to order and
manage the different kinds of requirements.
210 Building SOA Solutions Using the Rational SDP

We use a UML class diagram in to display these types (Figure 8-5). This diagram
is typically added to the requirements management plan to provide a convenient
view of the types.

Figure 8-5 Requirement types used in RequisitePro

We also document the traceability relationships between types (Figure 8-6). Note
the link to the business use cases in the Enterprise project. This shows the
cross-project reference.
 Chapter 8. Requirements 211

Figure 8-6 Traceability between project-level requirements

Each requirement type has a set of associated attributes. These attributes are
used to capture information about the requirement such as priority or source of
the requirement (Figure 8-7).

Figure 8-7 An example requirement type (feature) with selected attributes
212 Building SOA Solutions Using the Rational SDP

These attributes are very useful to help manage requirements. For example, for
JK Enterprises, the priority of the different business goal helps us decide which
goals considered more important that the others, and this influences our decision
to look at the account opening process (Figure 8-8).

Figure 8-8 Business goals in RequisitePro ordered by priority

Keeping requirements visible

Requirements work products are a combination of requirements, documents and
models. The requirements and document-based work products are held in
RequisitePro. The UML models held in Rational Software Modeler or Rational
Software Architect. Data models are held in Rational Data Architect.
 Chapter 8. Requirements 213

Requirement perspective in development tools

A key feature of the Rational SDP is how we can see requirements in the other
tools. Our requirements projects can be seen in the Requirement perspective in
Software Modeler, Software Architect (Figure 8-11 on page 215), and Data
Architect (Figure 8-12 on page 216).

To open the Requirement perspective in these tools, click the Perspectives icon
on the top right-hand side of the window (Figure 8-9). Select the Requirement
perspective. If Requirement does not appear, click Other and select Requirement
from the complete list of perspectives.

Figure 8-9 Open the Requirement perspective

We should have an empty Requirements Explorer towards the left of the window
(Figure 8-10). Click Open a RequisitePro project (similar to the icon in
RequisitePro) to open the selected project (.rqs file).

Figure 8-10 Empty Requirement Explorer

We have to make sure we know where the .rqs file is stored on our server or local
machine. Typically, the project administrator has set aside space for the
RequisitePro files and informed the team of the location.
214 Building SOA Solutions Using the Rational SDP

Rational Software Architect
Figure 8-11 shows the Requirement perspective in Rational Software Architect.

Figure 8-11 Requirement perspective in Rational Software Architect
 Chapter 8. Requirements 215

Rational Data Architect
Figure 8-12 shows the Requirement perspective in Rational Data Architect.

Figure 8-12 Requirement perspective in Rational Data Architect

The Requirement perspective keeps requirements visible and accessible to the
other roles working on the project. The RequisitePro integration also allows us to
link requirements and model elements to each other as we show later in this
chapter.

We also use the Web interface to RequisitePro for remote users who require
read/write access, or just read access to the project.
216 Building SOA Solutions Using the Rational SDP

For our project we have a project vision document that contains the stakeholders
view of the solution to be developed including the needs and features.

The supplementary specification contains requirements that are not readily
captured in terms of features, needs or use cases. The requirements contained
in a supplementary requirements include non-functional or system requirements,
and functional requirements that do not form part of a system use case.

The system use case is captured textually in a system use case specification,
and has a corresponding model item in the UML system use case model. The
bulk of the information appears in the system use case specification.

An interesting question is: What does the system use case represent in an
SOA-based solution? The system or systems are the underlying applications that
provide the services. The system use case forms part of the ongoing system
documentation as well as a useful item for project management purposes. In our
example, we link the system use cases to business goals. We also verify that
system use cases have a corresponding low-level task in the business process
model. This linkage is only relevant if low-level details have been added to the
business process mode, which is not always the case.

Enterprise-level requirements

As discussed in the Chapter 7, “Business modeling” on page 169, there are two
broad categories of requirements. There are a class of requirements that really
apply to all projects in the organization: Requirements we term enterprise-level
requirements. This is not something unique to SOA-based projects or to
organizations that move to SOA. SOA-based solutions touch many different parts
of an organization and its partners, so there is more opportunities for these
requirements to impact a wider audience.

In our JK Enterprises example, we class the following kinds of requirements as
enterprise-level:

� Glossary terms
� Business use cases
� Service policies

All these items are elements in RequisitePro, with links into the relevant UML and
other models held in tools such as Rational Data Architect.
 Chapter 8. Requirements 217

We connect elements in the enterprise and project-level project. Before we can
do this, we have to give the projects a unique prefix. Select File → Project
Administration → Properties in RequisitePro to set the name as shown in
Figure 8-13. Add an appropriate prefix to your enterprise and any project-level
RequisitePro projects.

Figure 8-13 Set the project prefix to permit cross-project traceability

We also select which requirements can be see from other projects. Select File →
Project Administration → Properties, then select the Requirements Type tab and
select the requirement that should be visible to external projects (Figure 8-14).

Figure 8-14 Enable external traceability. for each requirement type

Now we can provide access to this enterprise-level project (SOAENT) from our
project level project by selecting File → Project Administration → External
projects and adding the enterprise-level project to the list (Figure 8-15).
218 Building SOA Solutions Using the Rational SDP

Figure 8-15 Add a project to enable traceability to that project

Glossary

We discussed the purpose and content of the glossary in “Business glossary” on
page 181. The defined terms in the glossary are linked to any domain model in
Rational Software Architect/Modeler, or any enterprise logical data model held in
Rational Data Architect.

Business use cases

We discuss business use cases in detail. We emphasize that the business use
cases at the enterprise level are the validated and approved descriptions of what
the business does for the outside world.

Business use cases at the project level are used where a new or modified
business process is under consideration. The changes have not yet been
validated as the new to-be process. In our case, we do not change the business
use cases related to account opening or any of the other business use cases. we
have changed how they work internally. This implies there are no business use
cases in the project-level RequisitePro project.

Once a project has validated the project-level business use cases, they should
be copied into the enterprise level project. This is typically a simple export/import
process in RequisitePro. Note that the import/export does not retain the history of
the changes, but we retain attribute values exported in comma separated values
(CSV) format. We also copy across the business use case specification and
import that as a document.
 Chapter 8. Requirements 219

Service policies

Effective service development is all about using standards. Any SOA-based
initiative in the organization requires a set of standards to make sure that each
service provided or consumed by the organization is compatible with other
services. Service policies form the reference for service standards. In
requirements management terms these policies could be classed as
non-functional requirements that apply across the organization, and even outside
the organization. There are design time, deployment and runtime aspects to
service policy. We discuss the design time aspects here.

Service policies can be broken into four broad categories, from:

http://soa-zone.com/index.php?/archives/18-Clearing-up-the-confusion-of-the
-term-policy.html#extended

� Schema policies—Schema policies document requirements related to the
schemas of messages that pass between service providers and consumers.
We may want to refer to standard XML schemas for messages, for example,
Financial products Markup Language (FpML), which is used for complex
financial instruments.

� Communication policies—Communication policies capture any policies that
affect the communication between services. This includes message
encoding, transport, and security.

� Behavioral policies—Behavioral policies relate to the behavior of the service
as a whole. This is in contrast to the other policies which look at the
messages.

We capture these policies in a service policies document held in RequisitePro.
RequisitePro allows us to use a standard template for the document, and
security and version control on the individual policies themselves. It is also useful
for individual projects to trace back to these policies, so that the potential impact
of any changes to these polices can be assessed.

To create a new policy document in RequisitePro, select File → New →
Document and select Service Policies Outline.

We use the service policies later in Chapter 11, “Service specification” on
page 299.
220 Building SOA Solutions Using the Rational SDP

http://soa-zone.com/index.php?/archives/18-Clearing-up-the-confusion-of-the-term-policy.html#extended

Project-level requirements

We create a project in RequisitePro for requirements and other items that are
specific to this project. This project references the enterprise-level project
described in “Enterprise-level requirements” on page 217 where appropriate.
The bulk of the items discussed in this chapter and in Chapter 7, “Business
modeling” on page 169 are held in this project.

Project vision

RUP defines the project vision is the “...the stakeholders view of the product to
be developed...” In this case, we can substitute the term SOA-based solution for
the term product. This document is designed to be an introduction to the solution
and should be written in a way that is accessible to the range of stakeholders
listed in the document.

The project vision uses RequisitePro to provide a standard template for this
document. We create a project vision document by using selecting the relevant
package and New → Document and select the Project Vision outline
(Figure 8-16).

Figure 8-16 Creating a Project Vision document in RequisitePro

A key aspect of the project vision is a list of the key features of the solution. Each
requirement should be related back to a goal and need.
 Chapter 8. Requirements 221

Supplementary requirements

Supplementary requirements is the catch-all term to cover both functional and
non-functional requirements. The functional requirements are ones that are not
readily associated with other types of requirements, such as system use cases.
Non-functional requirements provide constraints to help shape the architecture of
the system, and are of particular interest to the testing community. These
non-functional requirements should be testable and are ideally linked back to test
plans and test cases.

Supplementary requirements can be broadly categorized into six different areas
according to [Grady]. The FURPS+ categories are as follows (along with some
example types of requirements):

� Functional—Any requirements related to functionality of the solution that are
not use cases. Examples include security, printing, and other functions.

� Usability—Focus on user aspects such as user interfaces and training
material.

� Reliability—Acceptable failure rates, recoverability and other factors.

� Performance—Volumes, response times, resource usage

� Supportability—How the solution is installed, maintained and retired.

� +—Represents any design constraints such as operating system, hardware
required or similar.

SOA-based solutions require particular attention to be paid to the reliability,
performance and supportability non-functional requirements. This applies
particularly to the services themselves. One interesting supportability
requirement revolves around how a service might be retired and replaced, or
even just upgraded to a new release. The life cycle issues are discussed in
“Service life cycle” on page 29.

Supplementary requirements are captured in RequisitePro in a document called
the supplementary requirements specification. Each requirement is tagged and
traced back to the features of the SOA-based solution. Relevant requirements
are also traced to a corresponding defect, enhancement request, test case, or
test plan held in IBM Rational ClearQuest (Figure 8-17 and Figure 8-18).
222 Building SOA Solutions Using the Rational SDP

Figure 8-17 Associating a requirement to a defect in ClearQuest1

Figure 8-18 The same defect from ClearQuest connected to the requirement in RequisitePro1

1 These screen captures are from one of the standard samples and not the JK Enterprises project.

Defect and associated requirement
 Chapter 8. Requirements 223

We create a Supplementary requirements document in Registering by selecting
File → New → Document and selecting Supplementary Requirements
Specification outline (Figure 8-19).

Figure 8-19 Creating a Supplementary Specification in RequisitePro

System use cases

A system use case2 “...a sequence of actions a system performs that yields an
observable result of value to a particular actor” [RUP]. Contrast this to the
definition of business use cases in the business modeling chapter, they are very
similar definitions and this is intentional. A system use case documents the
interaction between the world outside the system, and the system itself. It defines
the boundaries of the system because we define the actors of the system as
someone or something outside the system scope. System use cases define the
externally visible functional behavior of the system in a concise and useful way.

In SOA-based solutions, system use cases are used to describe the behavior of
the systems that implement the services and composite services. There are
different ways we might discover these systems:

� Existing asset analysis—We have existing systems (see “Perform existing
asset analysis” on page 292).

� Automating tasks—We decide that certain tasks in the business process or
the business use case realization are candidates for automation. This implies
there is an underlying system or systems involved in providing the services.

2 This definition is actually the definition for a use case instance. In common with many concepts in
UML - a use case is a classifier and we tend to work with an instance.
224 Building SOA Solutions Using the Rational SDP

No matter which way we discover these underlying systems, system use cases
should be used to document the system behaviors. System use cases allow us to
go forward with the design and implementation of service (which might cross
more than one system). System use cases form useful input into test planning
and test cases. System use cases are also useful for project planning and
progress reporting as implementing a use cases and testing it works is a useful
milestone. Finally, system use cases form the basis for documentation of the
service.

One might be tempted to suggest that a use case is itself just another way of
thinking about a service or service operation. However, there are key differences
between a service and a use case. A service is typically stateless, as are the
operations on a service. A service operation call is a single challenge and
response, even though the response is typically asynchronous. Service
operations can be called in no particular order. In contrast, a system use case
has very specific internal state. A system use case defines a sequence of
interactions, a conversation where the sequence of communication is very
important. Poorly-formed use cases that ignore the definition of a use case can
end up looking like services but we try and avoid this. RUP provides extensive
guidelines on use cases, and for even more detailed guidance, we recommend
[Bittner and Spence].

Creating a system use case in RequisitePro

We create a use case in the UML model, or as an entry in RequisitePro. If we
start with RequisitePro, we select the relevant section of the RequisitePro
project, the System Use Case package (or a sub-package if we have already
defined a package for each system). Then we select New → Document and use
the System Use Case Specification document type (Figure 8-20). Make sure the
name of the document is the same as the name the use case. This makes the
document easier to find later on.

Figure 8-20 Creating a System Use Case document in RequisitePro
 Chapter 8. Requirements 225

We have to edit the generated Word document and add the name of the system
use case. The template in RequisitePro uses a Word document property for the
name of the use case. This can be edited in Word:

� Select File → Properties and replacing <Use-Case Name> with the actual use
case name (for JK Enterprises, Inquire on application status).

� We then select the entire document and use the Word Update Field
command to replace the title in all sections of the document.

� One final edit is required in the document. We change the name of the first
section of the system use case template to Inquire on application status.

Now we are able to tag this as a requirement in RequisitePro.

To tag the use case name as a requirement, highlight the text in the document,
click Create new requirement and reenter the name of the use case in the pop-up
dialog in the Name field.

Figure 8-21 Creating a use case: Properties dialog

Click OK and save the use case to commit the use case to the RequisitePro
repository.

Create a use case model element in Software Architect

The next step is to create a use case model element in Software Modeler or
Software Architect.

We open the relevant UML model. In the JK Enterprises example, this is the
model entitled Use Case Model. We use the Project Explorer to expand the
model and open the Customer Service use case diagram. Once the diagram is
open and visible on drawing surface, we switch to the requirements perspective
and open the relevant RequisitePro project if required.
226 Building SOA Solutions Using the Rational SDP

We drag and drop the use case from the Requirements Explorer into the Project
Explorer as shown in Figure 8-22. This creates a new Use Case model element
in the model. We use the same drag and drop technique if we have already
created a use case UML element in the model and we want to link the
RequisitePro and UML use cases.

Figure 8-22 Creating a UML use case from a use case held in RequisitePro

As well as connecting the RequisitePro and UML model elements, we should
complete the specification of the use case in the Word document managed by
RequisitePro. This specification captures the steps of the use case,
pre-conditions and post-conditions, as well as any alternate flows or error
conditions. These are useful later on as input to design, test and user
 Chapter 8. Requirements 227

documentation. The JK Enterprises example project includes a system use case
specification for Determine Applicant Eligibility.

Tooling implications

For the JK Enterprises example we are working at a single location or accessing
the tools from a central location. If the project is distributed, the following
considerations come into play:

� RequisitePro assumes we have a single central repository. Distributed
repositories are not supported.

� ClearQuest may be running MultiSite. There are implications for mastership of
any ClearQuest records that need to be considered when linking
requirements to any ClearQuest records. You have to ensure that you return
mastership to the right site (that also hosts the RequisitePro database) before
you connect a RequisitePro element to a multi-sited ClearQuest record.

RequisitePro has two versioning cycles:

� The first is the general revision history where any changes to the
RequisitePro project are captured.

� The second cycle is called baselining. Baselining takes a snapshot of the part
or all of the project and this baseline can be added to your version control
system (for example, Rational ClearCase). We recommend that backups are
made of the information held in other tools at the same time so that any
restored version has the correct references between other tools.

For more information about software configuration management, refer to the IBM
Redbooks publication Software Configuration Management: A Clear Case for
IBM Rational ClearCase and ClearQuest UCM, SG24-6399.

Where are we now?

At this point, we have:

� A requirements management plan that explains the kind of requirements we
use on this project. We have documented the process to permit changes to
these types, associated attributes and traceability.

� A set of business goals with associated KPIs and metrics.

� Business use cases representing the abstract business processes for the
business.

� A business process model detailing the activities of the to-be process flows.
228 Building SOA Solutions Using the Rational SDP

� A project vision of the SOA-solution we are developing including key features

� A supplementary specification containing the non-functional requirements

� System use cases for the automated tasks required by the service

References

For further information about requirements management, refer to these
resources:

� Use Case Modeling, Kurt Bittner and Ian Spence, Addison-Wesley, 2002,
ISBN 0201709139.

� Practical Software Metrics for Project Management and Process
Improvement, Robert Grady, Prentice-Hall, 1992, ISBN 0137203845.
 Chapter 8. Requirements 229

230 Building SOA Solutions Using the Rational SDP

Chapter 9. Service and design model
work products

This chapter describes two key work products that are used for modeling SOA
software: Service model and the design model.

These topics are covered:

� The purpose of the service model
� The contents of the service model (model elements and model diagrams)
� The relationships from the service model to other models
� The structure of the design model
� The contents of the design model
� Design model traceability

In this chapter we focus on the work products themselves rather than how they
are created and modified. The tasks that touch on the service and design models
are covered in the chapters that follow.

9

© Copyright IBM Corp. 2007. All rights reserved. 231

Introduction

This chapter describes two key work products used for modeling our service
oriented software—the service model and the design model. They are the focus
of the analysis and design discipline.

Figure 9-1 shows these models and their relationships to other artifacts in our
development case.

Figure 9-1 Other models related to the service and design models

A quick run-through of the relationships shown in Figure 9-1:

� Service Model → Use Case Model: Requirements specified as use cases in
the use case model have their associated software realization (at an
architectural level) described in the service model. Specifically, for each use
case in the use case model there is a service collaboration defined in the
service model. For a description of service collaborations see “Model
element: Service collaboration” on page 250.

� Service Model → Domain Model: The domain model provides a
consolidated view of the business’ information. It can be used to influence the
scoping of atomic business application service providers. It can also provides
cues for forming information types and parameter types. For a description of
service providers see “Model element: Service provider” on page 239. For
232 Building SOA Solutions Using the Rational SDP

descriptions of information types and parameter types see “Model element:
Information type” on page 246 and “Model element: Parameter type” on
page 245.

� Service Model → Business Process Model: For business process-driven
software applications, the modeled business processes can provide an
important input into service architecture. The architectural pattern described
in “Pattern 12: Drive applications using business processes” on page 101
derives service consumers in our service model from business processes in
the business process model. Furthermore, we have services exposed on our
composite business application service providers to support the automation
requirements of these processes. For a description of service consumers see
“Model element: Service consumer” on page 240.

� Service Model → Business Architecture Model: The functional areas
defined in our business architecture model provide information to scope both
our service partitions (in our development case we use these to represent
service-oriented systems) and our composite business application service
providers. For a description of service partitions see “Model element: Service
partition” on page 248. For a description of service providers see “Model
element: Service provider” on page 239.

� Service Model → Supplementary Specifications: The supplementary
specifications influences the service policies that we apply to our service
specifications in the service model.

� Design Model → Service Model: The design model provides us with
detailed designs for each of the service-oriented parts in the service
model—namely the service consumers and service providers. The
service-oriented parts are realized by design components that each contain a
detailed design refinement. For instance, the provided services in the service
model will be realized by service components in the design model.

In this chapter, we first cover the service model and then the design model.

Note: The case study and development case in this book are both focused on
business-process-driven IT systems. However most of the core concepts
described extend to other kinds of IT systems as well.
 Chapter 9. Service and design model work products 233

Service model work product

The service model is defined in RUP SOMA as follows (Figure 9-2):

The service model is a model of the core elements of a service oriented
architecture (SOA). The service model is used as an essential input to tasks
in implementation and testing.

Figure 9-2 Service model defined in RUP SOMA

We expand on this by noting the following facts about the service model:

� The service model is defined as an artifact (of type Model) which belongs to
the analysis and design domain.

� The service model is used to fully describe both structure and behavior of
service-oriented software systems at an architecturally significant level.
234 Building SOA Solutions Using the Rational SDP

� The UML 2 profile for software services provides UML profile support for
creating service models. It includes a set of stereotypes for core service
model elements.

Purpose of the service model

The service model is used by the software architect to capture the architectural
form of the software for a given SOA solution. RUP SOMA describes its purpose
as follows:

The service model is an abstraction of the IT services implemented within an
enterprise that supports the development of one or more service-oriented
solutions. It is used to conceive and document the design of the software
services.

It is a comprehensive, composite work product encompassing all services,
providers, consumers, specifications, partitions, messages, service
collaborations, and the relationships between them.

It is needed to:

– Identify candidate services and capture decisions about which services
are exposed

– Specify the contract between the service provider and the consumer of the
services

– Associate services with the components needed to realize these services

Figure 9-3 shows the roles in our development case related to the service model.

Figure 9-3 The roles related to the service model
 Chapter 9. Service and design model work products 235

Contents of the service model

The service model is an essential part of our development case. It is based on
the service model described in RUP SOMA with some extensions. These
extensions take the form of additional model elements and a standard set of UML
diagrams.

The full set of model elements and diagrams contained in our service model are
described in this section. We cover first the model element artifacts, and then the
UML diagram artifacts.

Service model elements in our development case

A conceptual model showing the various model elements in our service model
and the relationships between them is provided in Figure 9-4.

Figure 9-4 A conceptual model showing the service model elements

Each of these model elements is described further below.

Service-oriented
system structure Service-oriented

system behavior

Service-oriented
parts
236 Building SOA Solutions Using the Rational SDP

Note that for those model elements, where there is a stereotype described in the
UML 2 profile for software services, this is mentioned along with the matching
icon and the base UML element that the stereotype can be applied to.

For those model elements that are not covered by this profile, the keyword used
in our case study to annotate these model elements is mentioned along with the
base UML element that this keyword is applied to.

Model element: Service specification
Stereotype: <<serviceSpecification>>

Icon:

Base UML element: Interface

Description
This artifact describes both the structural and behavioral specification for a
service.

It acts as a contract between the service client and service implementer; the
client understands how to interact with the service and the implementer
understands the behavior expected of its implementation.

A service specification also may identify a set of policies governing access to a
service or use of the service.

The use of an interface denotes a set of operations provided by a service. Note
that a service may implement more than one interface.

By convention it is possible to attach a protocol state machine or UML 2
collaboration to such a specification to denote the order of invocation of
operations on a service specification. With such a behavioral specification any
implementing service can be validated against not only a static but dynamic
specification of its structure and behavior.

Although a service specification can be seen as having a life span of its own. In
our case study our service specifications are owned by the service providers that
provide them. Therefore the life span of the service specification is tied to the life
span of its owning service provider.

Note: In our case study there are no constraints to the order in which our
service operations can be called and therefore we have attached state
machines to our service specifications.

We do however have service collaborations with defined service interactions
that specify interaction scenarios that our services need to support.
 Chapter 9. Service and design model work products 237

Note that the service specification may only provide public features. The ability to
include properties on a service specification allows for the modeling of
resources.

Purpose
The following roles use the service specifications:

� Implementers of the services, for an understanding of the interface the
service provides, but also the behavior its clients expect.

� Implementers of service clients, for an understanding of the interface the
service provides, but also how the service expects to be interacted with.

� Designers of services, in understanding the relationship between
specifications and the relationship between services and the specifications
they implement.

� Those who design the next version of the system, to understand the
functionality in the service model.

� Those who test the classes, to plan testing tasks.

The service specification has to provide both the provider (implementer) of a
service and the consumer of a service with a reasonable and complete
specification of the following aspects:

� Interface specification—This specifies the set of operations provided by a
service realizing this specification. Each operation is named and provides a
signature composed of input, output, and exception messages. Alternatively,
parameter types may be used directly to type the parameters in our service
operations.

� Behavioral specification—This specifies the protocol between the service
and the consumer. A service may be stateful (either explicit or implicit) or it
may have certain conversational requirements fulfilled by the client.

� Policy specification—This specifies constraints and policies regarding the
operation of the service. Examples of policies include security, availability,
quality of service and so on; these also represent non-functional
requirements of the solution as a whole.

� Variability specification—This specifies how the service is configured for
deployment and how it can support generic use cases through variability in its
behavior both dynamically (messages at runtime) and statically (through
configuration parameters).
238 Building SOA Solutions Using the Rational SDP

Related diagrams
� Service specification diagram—This is the primary diagram for showing the

structure of the service specification. It shows the service specification along
with its referenced messages, parameter types and enumerations. See
Figure 9-6 on page 254 for an example.

� Service provider specification diagram—This diagram shows how service
specifications are used to specify the services that are exposed by a service
provider. See Figure 9-8 and Figure 9-9 on page 256 for an example.

� Service consumer specification diagram—This diagram shows which
service specifications are required by a service consumer. See Figure 9-7 on
page 255 for an example.

� SOA structure diagram—This diagram shows where service specifications
are used in the overall service architecture. They provide specifications for
endpoints of service channels that link service consumers and service
providers. See Figure 9-11 on page 258 for an example.

Model element: Service provider
Stereotype: <<serviceProvider>>

Icon:

Base UML element: Class, Component

Description
This artifact groups a related set of services that are provided as a unit in a
service architecture.

Service providers can be categorized in any number of ways but the following list
describes the types of service providers used in the JK Enterprises architectural
style:

� Composite business application service provider: Provides composite
business software system-specific services from atomic business application
services and infrastructure services. See “Model element: Composite service
specification” on page 243 for a description of composite service
specifications.

� Atomic business application service provider: Provides reusable atomic
business application services.

� Infrastructure service provider: Provides reusable infrastructure services.
Note that these are normally also atomic services.

The service provider types listed above are introduced by the architectural
patterns described in “Pattern 1: Factor composition logic away from process
logic” on page 76, “Pattern 2: Factor atomic reusable logic into lower reuse
 Chapter 9. Service and design model work products 239

layers” on page 79, and “Pattern 3: Factor application-specific logic out of reuse
layers” on page 81.

The class acting as the service provider may not expose any attributes or
operations directly, only public ports may be provided (stereotyped as service)
and these are typed by either service specifications or composite service
specifications depending on whether the service is atomic or composite.

Purpose
The following roles use the service providers:

� Implementers, for an understanding of the aggregation of services and the
possible impact on deployment choices.

� Designers of services, in understanding the constraints of the grouping of
services.

� Those who design the next version of the system, to understand the
functionality in the service model, and specifically the constraints in moving
services between providers.

� Those who test the classes, to plan testing tasks.

Related diagrams
� Service provider specification diagram—This diagram is the primary

diagram for showing the external view of the service provider. It shows the
services that are exposed by the service provider, along with the provided and
required service specifications for each of these services. See Figure 9-8 and
Figure 9-9 on page 256 for an example.

� SOA structure diagram—This diagram shows where services providers are
used in the overall service architecture. See Figure 9-11 on page 258 for an
example.

Model element: Service consumer
Stereotype: <<serviceConsumer>>

Icon:

Base UML element: Classifier

Description
This artifact represents elements of a service architecture that do not provide
services themselves, but rather are clients of services.

They are those parts of the service architecture that exist at the boundary
between the system and its external users (described as actors in the use case
model).
240 Building SOA Solutions Using the Rational SDP

Service consumers can be seen as the architecturally significant software
elements that actors interact with, and which in turn make calls on the services in
the service architecture (specifically, according to the pattern that we follow in our
case study, they contain executable business processes and make calls on
composite services—see “Pattern 12: Drive applications using business
processes” on page 101).

We model two things on our service consumers:

� The inputs that come from actors interacting with the service consumer.

� The required service specifications that are called in response to these
inputs.

Where service consumers contain executable business processes we note the
following:

� The inputs on these service consumers correspond to tasks that exist in the
business processes.

� Tasks receive their inputs from either human or system actors.

� A business process will have a combination of manual and automated tasks.
By definition, only automated tasks result in calls on services from the service
consumer.

Purpose
The following roles use the service consumers:

� Implementers, for an understanding of what consumers need
implementation in the service architecture.

� Service interaction designers to represent them in service interactions.

� Those who design the next version of the system, to understand the
functionality in the service model.

� Those who test the classes, to plan testing tasks.

Related diagrams
� Service consumer specification diagram—This diagram is the primary

diagram for showing the external view of the service consumer. It shows the
inputs from actors that interact with this service consumer, along with the
required service specifications that are used in response to these inputs. See
Figure 9-7 on page 255 for an example.

� SOA structure diagram—This diagram shows where services providers are
used in the overall service architecture. See Figure 9-11 on page 258 for an
example.
 Chapter 9. Service and design model work products 241

Model element: Service
Stereotype: <<service>>

Icon:

Base UML Element: Port

Description
This artifact represents one of the core elements of a service-oriented
architecture (SOA). A service is provided by a service provider and is either an
instance of a service specification (for an atomic service) or a composite service
specification (for a composite service).

The service provides the end-point for service interaction (in Web service
terminology) whereas the definition of these interactions are provided by the
service specification.

In the case of a composite service, the service not only identifies the provided
service specification but also the required service specifications (see “Model
element: Composite service specification”).

Purpose
The following roles use the services:

� Implementers, for an understanding of the roles the service plays and how
the service specification is used by the service.

� Designers of other services in the understanding of the collaborations in
which services participate.

� Service interaction designers to represent them in service interactions.

� Those who design the next version of the system, to understand the
functionality in the service model.

� Those who test the classes, to plan testing tasks.

Related diagrams
� Service provider specification diagram—This diagram shows the services

exposed by a service provider, along with the provided and required service
specifications involved. See Figure 9-8 and Figure 9-9 on page 256 for an
example.

� Service interaction diagram—This diagram shows the services as they
occur in defined service interactions (which exist as part of the definition of a
service contract). Figure 9-12 on page 259 for an example.
242 Building SOA Solutions Using the Rational SDP

Model element: Composite service specification
Keyword: <<compositeServiceSpec>>

Base UML element: Class

Description
This artifact is used to specify composite services. What makes them composite
services is that they make use of other services in providing their specified
behavior.

Therefore a composite service needs more than just the specification of a
provided service specification. It also requires the specification of one or more
required service specifications. The composite service specification provides the
link between these provided and required service specifications.

It realizes the provided service specification, and uses the required service
specifications. It is used to type a service, thereby making it a composite service.

A pattern for creating these artifacts is presented in “Pattern: Composite service
specifications” on page 260.

Purpose
The following roles use the composite service specifications:

� Implementers of the services, for an understanding of the required service
specifications required for implementation.

� Designers of services, in understanding the relationship between the
provided and required service specifications for a composite service.

� Those who design the next version of the system, to understand the
functionality in the service model.

� Those who test the classes, to plan testing tasks.

Related diagrams
� Service provider specification diagram—This diagram shows the services

exposed by a service provider and additionally the provided and required
service specifications for each of these services. See Figure 9-9 on page 256
for an example.

� SOA structure diagram—This diagram shows where composite service
specifications are used in the overall service architecture. Specifically,
composite service specification are used to type the services provided by
composite business application service providers. See Figure 9-11 on
page 258 for an example.
 Chapter 9. Service and design model work products 243

Model element: Message
Stereotype: <<message>>

Icon:

Base UML element: Class

Description
This artifact is a container which identifies a subset of an information model or
domain model which is passed into or out of a service invocation. A message is
always passed by value and should have no defined behavior.

A message represents the concept as defined in the WSDL specification, that is,
a container for actual data which has meaning to the service and the consumer.
A message may not have operations, it may have properties and associations to
other classes (one assumes classes of some domain model—in our
development case we use parameter types). A message stereotype has a
property to denote its assumed encoding form (SOAP-literal, SOAP-rpc, ASN.1).

The use of this element may be optional in a tool for two reasons.
� Firstly the modeler may simply want to use elements from a domain model

directly as the parameters to an operation rather than specifying a message.

� Secondly the modeler may want to use the convention of specifying a set of
input and output messages on an operation, in which case the modeling tool
would have to construct an input and output message matching the
parameters when generating service descriptions in WSDL.

Purpose
The following roles use the messages:

� Implementers, for the development of schema describing the
implementation-specific message structures.

� Designers, of other services in the understanding of how information is
shared and reused among service specifications.

� Information/data architects, in understanding the relationship between the
implementation-neutral domain model and implementation-specific
representations such as database or message schema.

The message is optional and used to disambiguate message structures from
other elements representing the same domain model.

For example, there may be a technology-neutral domain model used to represent
core business items such as Customer, Product, Order, and so on. This model is
related to a set of technology models that represent the same items in specific
244 Building SOA Solutions Using the Rational SDP

ways, message structures that take into account the hierarchical nature of XML,
database schema that normalize the object model, and so on.

Where there is no separate domain model or where separate models are used
for domain and message definition, the use of the explicit message stereotype is
unnecessary.

Related diagrams
� Messages diagram—This diagram shows the design of the messages.

� Service specification diagram—This diagram shows any messages that are
used by the service specification. See Figure 9-6 on page 254.

Model element: Parameter type
Keyword: <<parameterType>>

Base UML element: Class

Description
This artifact is used to model information structures that are passed into and out
of service operations (as specified as part of service specifications).

They are, as the name implies, used to type the parameters on a service
operation. A parameter type contains a set of attributes which may either be
typed by a primitive type or in turn by another parameter type.

Where there is a domain model, the parameter types are derived from domain
types (the type definitions found in a domain model). Alternatively, they are
based on information types (defined next) that are themselves based on domain
types.

Purpose
The following roles use the parameter types:

� Implementers, in understanding the behavior provided by a service operation
where this behavior is described in terms of pre-conditions and
post-conditions which refer to the parameter types.

� Service interaction designers to understand what gets passed in and out of
a service in a use-case realization.

Note: In our case study we have a separate domain model. Although the
usage of messages is unnecessary in our case as we use parameter types,
we have included them in certain instances in our case study to show how
they can be used.
 Chapter 9. Service and design model work products 245

� Those who test the classes, to plan testing tasks.

Related diagrams
� Service specification diagram—This diagram shows all of the parameter

types used by the service operations of its service specification. The structure
of each of these parameter types is shown here. See Figure 9-6 on page 254
for an example.

� Service interaction diagram—This diagram shows the signatures of each of
the message flows that it specifies. These signatures should include the
names of the parameter types that its parameters are based on. See
Figure 9-12 on page 259 for an example.

Model element: Information type
Keyword: <<infoType>>

Base UML element: Class

Description
Information types are used to describe persisted data structures in a black-box
way (in other words without directly describing the data structures themselves).
An artifact such as a database table is considered to be part of the internal
design of a service provider and therefore not something that you would want to
expose in its specification. Actual data persistence structures may change in
shape (possibly for non-functional reasons such as performance) without
affecting clients of the specification.

Information types are very useful in service operation pre-condition and
post-condition specifications as they provide a mechanism to refer to changes in
state in a black-box fashion.

There are two options for package ownership of information types. The can
either be owned by service specifications, or service providers.

� In the case where they are owned by service specifications they provide a
black-box view of the data managed by that specific service specification.

� In the case where they are owned by service providers, they provide a
consolidated black-box view of the data managed by the service provider
across all of its provided service specifications.

In our case study we have followed the latter of these two options. This is
because it is extremely useful to have a consolidated view of the state owned by
the service provider across all of its service specifications. Also remember that
our service specifications do not have a life span that is separate from the
service providers that provide them (as noted in the Description section of “Model
element: Service specification” on page 237).
246 Building SOA Solutions Using the Rational SDP

Purpose
The following roles use the information types:

� Implementers, in understanding the persistence behavior provided by a
service operation where this behavior is described in terms of pre-conditions
and post-conditions which refer to the information types. In other words, the
information types are used to describe an operation that has persistence
behavior (saves something to a database or similar).

� Service interaction designers to understand what gets persisted by a
service in a use-case realization.

� Those who test the classes, to plan testing tasks.

Related diagrams
� Information diagram—This diagram shows all of the information types that

form part of one information model. As noted above, in our case the
information model is owned by a service provider that manages data
instances of that model. See Figure 9-10 on page 257 for an example.

Model element: Enumeration
UML element: Enumeration

Description
This artifact is the base UML Enumeration model element. It is presented here
for completeness of our description of the contents of the service model. It is
used in those cases where a fixed known list of values exist for an attribute on
either a parameter type, information type or message.

Note that where an enumeration has been specified, it is normally shared by
attributes on both the parameter types and information types for a given service
provider (and possibly even its messages as well).

Purpose
The following roles use the enumerations:

� Implementers, in understanding the possible values taken by an attribute on
either a parameter type, an information type or a message.

Related diagrams
� Service specification diagram—This diagram shows any enumerations that

are used to type attributes for either parameter types or messages used in the
definition of the service operations of the service specification. See Figure 9-6
on page 254 for an example.
 Chapter 9. Service and design model work products 247

� Information diagram—This diagram shows any enumerations that are used
to type attributes for the information types on the diagram. See Figure 9-10 on
page 257 for an example.

Model element: Service partition
Stereotype: <<servicePartition>>

Icon:

Base UML element: Class, Component, or Node

Description
This artifact is a model element that provides a logical grouping for elements in
our service architectures. The grouping is logical in the sense that the partition
structure may reflect a system structure that impacts the way the physical system
is deployed, or it may represent a structure that has no impact on deployment,
such as the ownership of services by organizations.

In our development case (and therefore our case study) we use service partitions
to contain the structural representation of a SO system (these are described in
“Pattern 5: Manage complexity using SO systems” on page 86). We furthermore
use specific rules for determining the boundaries of our SO systems (and
therefore service partitions) that are described in “Pattern 4: Base architecture on
business relevant elements” on page 84.

Purpose
The following roles use the service partitions:

� Software architects, to allow for the logical partitioning of a solution.

� Designers of services, in understanding logical organization of the solution.

� Those who design the next version of the system, to understand the
functionality in the service model and specifically the logical architecture.

Note: A part cannot be shared between service partitions. To put it in terms of
the different service forms shown in Figure 4-2 on page 44, this would mean
that in the service model, an SO system part is unique to a given SO system.
This is true even though the service-oriented part can be used to create SO
system parts for multiple SO systems

In the deployment model though, it is quite acceptable (and even desirable in
some cases) for the same deployable part to be shared across deployable
assemblies, with the net result that the same running service component
instance could realize more than one SO system part across multiple SO
systems.
248 Building SOA Solutions Using the Rational SDP

� Those who test the classes, to plan testing tasks.

Related diagrams
� SOA structure diagrams—This diagram shows the structural composition of

a SO system (as modeled using a service partition). See Figure 9-11 on
page 258 for an example.

� Service interaction diagrams—Although not showing the service partition
itself, this diagram shows realizations of service contracts as an interaction of
elements in an SO system (again, as modeled using a service partition). See
Figure 9-12 on page 259 for an example.

Model element: Service channel
Stereotype: <<serviceChannel>>

Icon:

Base UML element: Connector

Description
This artifact is a model element that represents a connection between two
services or between a client and a server over which interaction with the service
takes place. Note that the channel does not represent any interaction in
particular.

In the Web services world, each service denotes the binding(s) associated with it
(so that a client may access it). In a modeling profile, you denote binding either
on the communication between services or between a service and consumers. In
this way, you can be flexible in understanding the binding requirements.

Purpose
The service channel provides the connection between two services or between a
service and a client that allows for communication.

Consider the example of a dedicated telephone line between two parties; the
connection is always there even if it is not used and the connection is distinct
from any conversation that takes place on it. When modeling collaborations
between services and specifically messages being sent between services, these
take place over the connection.

Related diagrams
� SOA structure diagram—This diagram shows the various parts of the

service architecture, along with the service channels between them. See
Figure 9-11 on page 258 for an example.
 Chapter 9. Service and design model work products 249

Model element: Service collaboration
Stereotype: <<serviceContract>>

Icon:

Base UML element: Collaboration

Description
The standard definition provided for a service collaboration is as follows:

This artifact is a representation of some set of communication between two or
more services usually encapsulated as a new service. In this way, the model
can represent services whose implementation is simply the collaboration of a
set of existing services.

In our development case (and therefore in the case study), we have extended the
usage of service collaboration to specify a collaboration that meets a behavior
requirement (in our case this behavior requirement is specified using a system
use case).

The parts in these collaborations are:

� Actors that interact with our SO system
� Service consumers in our SO system
� Services in our SO system

Service collaborations have their behavior described by one or more service
interactions. In our development case, for each service contract we have one
service interaction for each unique flow in the related system use case
(Figure 9-5). Use case flows are described in “System use cases” on page 224.
250 Building SOA Solutions Using the Rational SDP

Figure 9-5 Use cases and use case flows related to service collaborations and service
interactions

Purpose
Service collaborations exist as a grouping for service interactions, themselves
described in “Model element: Service interaction” below. See Purpose in that
section for further details.

Related diagrams
Service collaborations do not appear on any of our standard UML diagrams as
their purpose is to group a set of one or more service interactions. Note though
that it might be useful to create diagrams that show the behavior requirement that
a specific service collaboration traces back to. In our case it is obvious as we give
our service collaboration the same name as the system use case that it traces to.

Model element: Service interaction
Keyword: <<serviceInteraction>>

Base UML element: Interaction

Description
Service interactions are used to specify a realization of a service collaboration in
terms of the parts of a service partition.

A service collaboration has a set of service interactions that together fully specify
the behavior of the service collaboration.

Basic

Alternative 1

Alternative 2

Alternative 3

Use
Case

Service
Contract

Alternative 1

Alternative 2

Alternative 3

Basic

Use Case Flows Service Interactions
 Chapter 9. Service and design model work products 251

These service interactions can be nested, most commonly by having one service
interaction that described the basic flow (the default standard behavior), and this
referencing a set of service interactions that describe the alternative flows
(deviations from the standard behavior). In this way, the service interactions
owned by a service contract map one-to-one with the use case flows owned by a
system use case. See Figure 9-5 on page 251 shows how nested service
interactions relate back to use case flows.

Purpose
The following roles use the service interactions:

� Software architects, to describe the behavior of a service partition, and how
it maps to a requirements artifact that specifies the behavior in a black box
way (where the whole system is a black box).

� Designers of services, specifically composite services, to show both the
context in which the composite service is used, as well as the atomic services
that it calls.

� Those who design the next version of the system, to understand the
functionality in the service model, specifically from a behavioral point of view.

� Those who test the classes, to understand how the requirements have been
realized from an architectural point of view, and therefore to help in planning
testing tasks.

Related diagrams
� Service interaction diagram—This diagram shows the details of the service

interaction, along with references to any referenced service interactions. See
Figure 9-12 on page 259 for an example.

Model element: Service gateway
Stereotype: <<serviceGateway>>

Icon:

Base UML element: Port

Description
This artifact looks very much like a service except that it does not represent an
end-point in terms of implementation of a service specification. It only forwards
messages from the boundary of a service partition to a service enclosed within
the partition. In this way, it allows for partitions to strictly define their interfaces in
terms of service gateways.

Note that we have not used service gateways in our case study as our service
partitions do not expose services to the outside world. Instead, actors interact
252 Building SOA Solutions Using the Rational SDP

with service consumers inside our service partition. The reason that we have
modeled things in this way is so that our service partition completely specifies
our architecture, including service consumers as well as service providers.

Purpose
The following roles use the service gateways:

� Software architects, for an understanding of the communication between
partitions.

� Implementers, for an understanding of mediation requirements between
partitions.

� Those who design the next version of the system, to understand the
composition of partitions and services in the service model.

Related diagrams
Service gateways do not appear on any of the standard UML diagrams that we
have described in our development case.

Service model diagrams in our development case

In this section we present the set of standard diagrams that we have included in
our development case, and which therefore appear in our case study.

Diagram: Service specification diagram
Base UML diagram type: Freeform diagram

This diagram shows all parameter types, enumerations and messages used in
the definition of the service operations of the service specification.

Included elements
The following model elements appear in this diagram (along with a description of
the cardinality with respect to the diagram):

focusServiceSpecification <<serviceSpecification>> [1]
usedParameterTypes <<parameterType>> [0..*]
usedMessages <<message>> [0..*]
usedEnumerations <<enumeration>> [0..*]

Example
A sample service specification diagram is shown in Figure 9-6.
 Chapter 9. Service and design model work products 253

Figure 9-6 AccountApplication service specification diagram

Diagram: Service consumer specification diagram
Base UML diagram type: Freeform diagram

This diagram is the primary diagram for showing the external view of the service
consumer. It shows the inputs that are available to the actors that interact with
this service consumer, along with the required service specifications that are
used in response to these inputs.

Included elements
The following model elements appear in this diagram (along with a description of
the cardinality with respect to the diagram):

focusServiceConsumer <<serviceConsumer>> [1]
requiredServiceSpecifications <<serviceSpecification>> [1..*]

Example
A sample service consumer diagram is shown in Figure 9-7.
254 Building SOA Solutions Using the Rational SDP

Figure 9-7 AccountOpeningProcess service consumer specification diagram

Diagram: Service provider specification diagram
Base UML diagram type: Freeform diagram

This diagram shows the services that are exposed by a service provider, along
with their service specifications.

Included elements
The following model elements appear in this diagram (along with a description of
the cardinality with respect to the diagram):

focusServiceProvider <<serviceProvider>> [1]
exposedServices <<service>> [1..*]

Example
An example of a service provider providing atomic services is shown in
Figure 9-8.

An example of a service provider providing composite services is shown in
Figure 9-9.
 Chapter 9. Service and design model work products 255

Figure 9-8 CustomerAccountMgr service provider specification diagram

Figure 9-9 SalesManagementComposite service provider specification diagram

Diagram: Information diagram
Base UML diagram type: Freeform diagram

This diagram shows all of the information types that form part of one information
model. In our development case, there is an information models for each service
provider that persists state.

Tip: Note that the service provider specification diagrams both have diagram
shortcuts applied to them. There are links for the related service specification
diagrams. And for the composite service provider, there is also a link to the
diagram showing the structure of the composite services.

This is good practice as it makes the model easier to navigate. You can click
through to the detailed specifications using these links in the tool.
256 Building SOA Solutions Using the Rational SDP

Included elements
The following model elements appear in this diagram (along with a description of
the cardinality with respect to the diagram):

ownedInfoTypes <<infoType>> [1..*]

Example
A sample information diagram is shown in Figure 9-10.

Figure 9-10 CustomerAccountMgr information diagram

Diagram: SOA structure diagram
Base UML diagram type: Composite structure diagram

This diagram shows the parts of an SO system and the service channels
between them. The focus is on structure.

In terms of the service forms shown in Figure 4-13 on page 56, the elements in
the diagram are SOA parts and the diagram as a whole exists for an SO system
(the named element in the top-most compartment shown in the diagram).
 Chapter 9. Service and design model work products 257

Included elements
The following model elements defined in the previous section appear in this
diagram (along with a description of the cardinality with respect to the diagram):

focusSOASystem <<servicePartition>> [1]
serviceConsumerParts <<serviceConsumer>> [1..*]
serviceProviderParts <<serviceProvider>> [1..*]
serviceChannels <<serviceChannel>> [1..*]

Example
A sample SOA structure diagram is shown in Figure 9-11.

Figure 9-11 SalesManagement SOA structure diagram

Diagram: Service interaction diagram
Base UML diagram type: Sequence diagram

This diagram shows the details of a service interaction. It shows the service
architecture elements involved, and the sequence of service operation calls
across these service architecture elements that together specify behavior.
258 Building SOA Solutions Using the Rational SDP

Included elements
The following model elements appear in this diagram (along with a description of
the cardinality with respect to the diagram):

primaryExternalActor <<actor>> [1]
secondaryExternalActors <<actor>> [0..*]
serviceConsumer <<serviceConsumer>> [1]
compositeServices <<service>> [1]
atomicServices <<service>> [1..*]

Example
An example service interaction diagram is shown in Figure 9-12.

Figure 9-12 Determine applicant eligibility (Basic flow) service interaction diagram

Service model related patterns

“JK Enterprises case study architectural style” on page 75 describes the
architectural style used for this book’s case study using a set of architectural
patterns.

In this section we present a further pattern that is applicable when creating
service models: The composite service specifications pattern, which is used
when creating composite service specification artifacts (see “Model element:
Composite service specification” on page 243).
 Chapter 9. Service and design model work products 259

Pattern: Composite service specifications

Figure 9-13 UML form of the composite service specifications pattern

Pattern name Composite service specifications

Context Service providers provide (expose) services. In the case of an atomic
service provider, the service provided is fully described by a single
service specification.

However, not all services are atomic. These non-atomic services are
called composite services. They have one or more required service
specifications in addition to their provided service specification.

Problem It is not possible to fully specify a composite service using a single
service specification.

� Forces � There is no link between provided service specifications and
required service specifications for a composite service.

� The standard mechanism for specifying an atomic service is to
use a single service specification, which is insufficient to fully
specify a composite service.

Solution Create composite service specifications to specify composite
services. The UML form for this pattern is shown in Figure 9-13.

The composite service specification:

� Is based on a UML class

� Realizes a single provided service specification

� Uses one or more required service specifications

� Is used to type a service, thereby making it a composite service
(see Figure 9-14)

� Rationale The composite service specification is used to:

� Link the provided service specifications to one or more required
service specifications

� Provide a complete specification for composite services
260 Building SOA Solutions Using the Rational SDP

Figure 9-14 Using the CompositeServiceSpecification to type a CompositeService

Examples
Figure 9-15 shows a usage of the composite service specification pattern. Its
details are:

Name: AccountActivationCompServSpec

Provided service specification: AccountActivation

Required service specifications: BillingAccount, AccountApplication,
GeneralLedgerAccount

Figure 9-15 AccountActivationCompServSpec composite service specification
 Chapter 9. Service and design model work products 261

Tasks affecting the service model

The overview provided by Figure 9-16 shows the following:

� The tasks affecting the service model, along with the sequencing of these
tasks

� The main inputs for these tasks

� The high-level states of the service model caused by these tasks (main
outputs of these tasks)

Figure 9-16 High-level states that the service model moves through

The tasks shown in Figure 9-16 are covered in more detail in the following
sections:

� Identify and associates services to goals: “Identify services from goals” on
page 283

� Perform existing asset analysis: “Perform existing asset analysis” on
page 292

� Perform business process analysis: “Perform business process analysis”
on page 286

� Structure service architecture: “Task 1: Structure service architecture” on
page 307
262 Building SOA Solutions Using the Rational SDP

� Model service interactions: “Task 2: Refine service architecture” on
page 356

Design model work product

In the previous section, we described how the service model is structured and
that its contents come directly from higher level of abstraction models, such as
business models and requirements. In the same way that the service model is
mainly related to service specification, the design model is mainly related to
service realization (refer to Figure 9-10 on page 257).

Purpose of the design model

The design model has several inputs; however the most important, considering
our development case are:

� Service model
� Architecture documents

The main input for the design model is the service model that has to be realized.
In other words, we may say the design model opens the box of services and
represents how individual services are realized. However, this realization has to
keep into account other inputs, such as the architecture to be respected,
non-functional requirements, and design constraints, as shown in the
corresponding RUP work product in Figure 9-17.
 Chapter 9. Service and design model work products 263

Figure 9-17 Design model defined in RUP SOMA

Notice that there are several tasks influencing the design model. However, given
our SOA context and related development case, we want to focus on some of
these tasks that are strongly influencing our design model (highlighted in
Figure 9-17).
264 Building SOA Solutions Using the Rational SDP

Our focus is on these tasks:

� Architectural analysis

� Service specification (coming from the service model)

� Document service realization decisions. (A snapshot from RUP SOMA is
shown in Figure 9-18.)

Figure 9-18 Document service realization decisions in RUP SOMA

The design model is just one step before implementing services. Indeed, we see
later in Chapter 13, “Service implementation” on page 419 how, starting from
these models, we are able to generate the lower level of abstraction (the code)
structure and basic content, in an automatic way, trough transformations.

The design model represents how services are realized: What a service provider
(from service model) becomes, which classes, components, and interfaces are
defined to realize it.

Furthermore, in the design model we introduce detailed solution mechanisms, for
example hierarchies, design patterns, and detailed structures.
 Chapter 9. Service and design model work products 265

Model structure (samples from JK enterprises case study)

We now describe the design model of our case study.

Profiles
As we explained in “Importance of modeling” on page 138, a profile is a way to
extend standard UML elements for a specific domain, trough stereotypes, giving
more precise semantics on model elements.

Any model you create in Rational Software Architect has a set of default profiles,
such as Default, Deployment, and Standard profiles.

If you look at the properties of our design model, you can see there is another
profile already applied: EJBTransformProfile. This is useful because this model
is ready to be transformed to Java or EJB using transformations provided with
Rational Software Architect. In our project we are using UML to WSDL and UML
to Java transformations, but not the UML to EJB transformation (although the
design model is also ready to be transformed to an EJB project).

Type libraries
A model can also have references to type libraries. These are containers of
(UML) types, with which we can extend our model by adding types belonging to
other (non UML) domains. UML has its own primitive types. These are simply:

� String
� Integer
� UnlimitedNatural
� Boolean

The JK Enterprises design model has another type library, named
JavaPrimitiveTypes that includes all Java primitive types, such as int, boolean,
and so forth.

Structure
The (design) model structure depends on the service structure we have in the
service model. In particular, we are expanding the 3 - Atomic Business
Application Service Providers package in the design model because, as we
explain in other sections of the book (for example in Chapter 13, “Service
implementation” on page 419), these are services we are going to develop from
scratch or from existing assets.
266 Building SOA Solutions Using the Rational SDP

Service component
RUP SOMA describe service component as follows:

This artifact is intended for use in describing the realization of a service
specification. A service component may provide the realization for one or
more services by the realization of multiple service specifications. The set of
model elements on the inside of the component represent the concrete
realization of the structural, behavioral, and policy contract described by these
service specifications.

We can describe this artifact as the most visible and external element belonging
to the design model. The designer and the implementer are responsible for
further details, by providing internal component elements, such as classes,
interfaces, properties, and operations, building in this way the component
structure and behavior.

In our initial design model we have one <<serviceComponent>> for each service
specification in the service model, and this component is traced to its provider, as
shown in Figure 9-19.

Figure 9-19 Service component trace to service provider and realize service specification

We can have more than one service specification for each service provider as in
Figure 9-20.
 Chapter 9. Service and design model work products 267

Figure 9-20 A service provider that realizes two service specifications

In this model we focus on the components that are highlighted at the bottom of
Figure 9-21 because the other components are realized as composite services,
by calling atomic services.

Figure 9-21 Service components in the JK Enterprises design model
268 Building SOA Solutions Using the Rational SDP

The <<serviceComponent>> represents a single step down in abstraction levels;
this component is the realization of a service provider and specification.
Moreover, this component is refined in the design model, as we explain later in
this chapter.

Let us go back to the structure of the model. The structure of a model is very
important because it is related to several development process aspects, such as
managing models, team development, and reusable assets. Therefore this
structure is also related to reuse of services; the way we structure a model
impacts how service realizations (components) are structured, which kind of
dependencies a service (component) has and at the end, how reusable that
service is.

With the last argument in mind, we can look at the design model structure
(Figure 9-22).

Figure 9-22 Structure of the JK Enterprises design model

In the design model we have a root package called Service Components and it
represents the set of all components that realize our service model.

Tip: You can notice, as a model information, that this class diagram
encompasses elements from design model as well as elements from the
service model. In Software Architect (and Modeler) elements belonging to
models different from the one the diagram belongs to, are visualized with a
little arrow on top-left of the class.
 Chapter 9. Service and design model work products 269

Under this package, there is a package for each service component, called with
the same name as the service (as it is in the service model) followed by the SC
(service component) suffix. This package represents a container for the
component itself. We point out a component should be as independent as
possible to be reused; therefore we put in this package all architectural elements
needed by the component:

� <<serviceComponent>> itself that represents the component responsible for
realizing the service; this is explained later in this section.

� All internal classes, interfaces and elements that compose the component.

� An Entities package representing entity classes needed by the service
component and that are owned by this component or by a group of
components that belongs to the same service provider. In this way

� An Enumeration package representing utility enumerations that can be used
by internal elements of the component.

Contents of the design model

Now that we have explained the design model structure, let us look at the content
of the model itself.

For the scope of this book we analyze here only the example that realizes the
AccountApplication service specification trough the AccountApplicationSC
service component. This component represents the service that we are
developing from scratch, in a top-down fashion.

Going back to the model root structure (refer to Figure 9-22) we can observe that
there is also:

� A traceability class diagram representing all traces of this component from
internal classes and to elements at higher levels of abstraction.

� The entities package keeps a particular kind of classes, stereotyped as
<<entity>> that represents a basic business item of our solution. It is derived
from the domain model and is owned by the service component.

� A component stereotyped as <<serviceComponent>> representing the direct
realization of a service provider as we can note from traceability diagrams.
This element encompasses all details about the provider realization and
realizes the same business interface that we call Service Specification.

If we expand the component (AccountApplicationSC) in the Project Explorer, we
can observe the structure shown in Figure 9-23.
270 Building SOA Solutions Using the Rational SDP

Figure 9-23 Model structure for the AccountApplicationSC service component

In particular we want to point out the meaning of four diagrams:

� Component classes—A class diagram that represents actual classes that
realize this component.

� determineApplicationEligibility Basic Flow—An interaction diagram that
represents the behavior for the corresponding operation for a basic flow
scenario.

� Facade bindings—A class diagram that represents the application of the
facade design pattern.

� Traceability—A traceability class diagram that represents all traces of this
component from internal classes and to elements belonging to higher levels
of abstraction.

Finally, we are going to see how our service is realized: For this component, a
facade design pattern has been used.

A design pattern is a common solution for a recurring problem. we can describe
facade pattern in this way:

� Problem solved: Dealing with complex subsystem can create too many
dependencies on specific subsystem details, such as different methods with
different parameters types and so on. This does not allow to have a clear and
well defined interface for the subsystem.

� Solution: Facade provides a unified interface that hide a set of interfaces in a
subsystem. A higher level interface, easier to use is defined for clients.

� Parameter facade: This class knows all subsystem details and it delegates
all client requests to appropriate subsystem objects.
 Chapter 9. Service and design model work products 271

� Parameter subsystem: This is the actual subsystem implementation
classes. There is no dependency to the facade.

The pattern has been applied to AccountApplicationServiceFacade and
AccountApplicationServiceImpl classes as the <<Facade>> and <<Subsystem>>
formal parameters of the pattern.

Thus we can see how the <<PatternInstance>> represents the binding between
a pattern and its bound classes (Figure 9-24).

Figure 9-24 JK Enterprises facade pattern instance

We see on this diagram there is a UML collaboration stereotyped as
<<PatternInstance>> that represents the bindings we mentioned.

In our solution we want to decouple the internal implementation of the service
that is owned by the impl class from the external world. This is done typically to
simplify and to unify the interfaces of the different classes involved.

Note: If you are interested in knowing more about pattern theory and
applications, refer to Chapter 16, “Pattern-based engineering with Rational
Software Architect .” on page 545.
272 Building SOA Solutions Using the Rational SDP

Now we can analyze the complete realization, by showing the expected (default)
behavior for the determineApplicationEligibility operation (Figure 9-25).

Figure 9-25 determineApplicationEligibility operation sequence diagram basic flow

We can see the facade pattern in action in Figure 9-25, which shows the basic
flow for the determineApplicationEligibility operation. We notice that the
external world (represented here with an actor named Generic consumer)
expects a very simple interface that directly comes (and is traced to) from the
AccountApplication service specification. This operation simply expects an
AccountApplication (parameter type) as the input and returns an
EligibilityMessage. Notice that both input and output parameters belong to the
service model and not the design model. This is because they are part of service
specification and our services are fully specified in service model.

Note: More details on these tasks, pattern application and how to create the
design model are provided in Chapter 12, “Service realization” on page 387.
 Chapter 9. Service and design model work products 273

Looking at the service model, we can expand the EligibilityMessage and see
how it is structured (Figure 9-26).

An EligibilityMessage is made of one AccountApplication parameter type
and a collection of warnings.

Figure 9-26 Eligibility message from JK Enterprises service model

Going back to Figure 9-25, we notice the internal implementation class,
AccountApplicationServiceImpl, has a different signature that returns simply an
AccountApplication parameter type and not a message. This is where the
facade actually works: By providing the requested interface (service
specification) to the external world and hiding all internal details or more
complicated interfaces. This is done by the facade from steps 1.3 to 1.5 in the
sequence diagram.

Traceability

As we mentioned several times in this book, for an SOA solution, alignment
between business and IT is a key factor. Therefore, traceability becomes very
important.

In particular, we can see the design model as a bridge between service model
and implementation. Thus we have components, classes and elements that
derive from service model and, at the same time, we have implementation work
products such as Java classes, interfaces, WSDLs, and so forth, that derive from
these design elements.
274 Building SOA Solutions Using the Rational SDP

Analyzing our design model, we can show a traceability diagram for the
AccountApplicationSC service component—the component we develop
top-down in this project (Figure 9-27).

Figure 9-27 JK Enterprises traces for AccountApplication service component

Considering Figure 9-27, we can recognize different kinds of (UML)
dependencies. Traceability here is represented by two kind of dependencies:

� <<refine>> dependencies represents a kind of traceability between elements
within the same level of abstraction (and therefore the same model). Indeed
we can see that we have two classes and one interface that refine the
AccountApplicationSC service component. This means this elements
represent the realization of the component itself.

� <<derive>> dependencies represents a kind of traceability between elements
on different level of abstraction. In this case, we have to point out the
component itself is coming from (“derives”) the service provider we defined in
the service model. On the same diagram we can observe as our (design)
component is realizing the service specification that belongs to service model
as well.
 Chapter 9. Service and design model work products 275

The diagram in Figure 9-27 also shows realization relationships:

� AccountApplicationSC directly realizes the service specification.

� AccountApplicationServiceFacade realizes the lower level interface,
AccountApplicationService that is traced to the service specification.

Traceability is important also because it allows us to know what we are doing and
why, from a lower level perspective and to analyze the impact of a change from a
(business) higher level perspective.

Traceability is a general topic that we cover in several sections of this book,
corresponding to several disciplines and abstraction levels.

Directly connected to the design model are the service model (on the higher part)
and the implementation model (on the lower part). We show an example in
Figure 9-28 for the AccountApplicationService interface.

Figure 9-28 Traceability through three different levels of abstraction

Important: Traceability dependencies can be created manually or through
automated transformations. Usually a transformation creates a traceability
dependency from the target element to the source element.
276 Building SOA Solutions Using the Rational SDP

Chapter 10. Service identification

This chapter describes the technique associated with identifying services. It
describes the inputs and outputs of the service identification activity, and it is
structured around these tasks:

� Identify services from goals

� Perform business process analysis

� Perform existing asset analysis

The business modeling and requirements management chapters are very related
to identifying services as they describe major inputs to service identification.

10
© Copyright IBM Corp. 2007. All rights reserved. 277

Introduction

Service identification is critical to the success of SOA, because it is where
IT meets the business. Although service identification leverages existing best
practices, such as classic RUP, it is an area where SOA brings innovative
concepts and ideas that were not addressed by other paradigms.

The goal of service identification is to create an initial set of candidate services
and their associated operations.

These identified services are required by and meaningful to the business. To
realize this business alignment, business process analyst(s) (additional role)
participate in service identification with software architect(s) (main role).

During service identification, the service model work product is created. At the
end of service identification, it is handed off to the software architect(s)
responsible for service specification. You can think of service identification as
producing the analysis level of the service model, and service specification the
design level.

Inputs to service identification

This section introduces the main inputs to service identification.

The most critical input to service identification are the existing services an
enterprise has access to. These services and information about them are
typically stored in a registry and repository such as the IBM WebSphere Service
Registry and Repository. JK Enterprises are currently performing their first SOA
project. Therefore, there are no existing services they can reuse. The services
identified, specified, realized, implemented, tested, and deployed from the
Account Opening project will be an input to the service identification of the next
project.

An enterprise-level business strategy and business architecture effort may have
taken place to identify functional areas that differentiate a business from its
competitors. An example of such a strategic effort is the IBM Component
Business Modeling (CBM) technique.

As described in “Component business modeling” on page 175, enterprises are
made up of business components that are placed on a business architecture
map (CBM map) under a specific business competency (domain) and
accountability (responsibility) level of direct, control, or execute. Business
components own business processes and activities. Also, a key concept of CBM
278 Building SOA Solutions Using the Rational SDP

is that business components interact with each other through services that they
offer (own) or consume, hence its importance for SOA.

For JK Enterprises, the differentiating business components are under the
Servicing & Sales business competency, as shown in Figure 10-1, where dark
blue means differentiated, light blue competitive, and white base. The CBM map
reflects the fact that JK Enterprises is very proud of the services it offers to
customers. Also, other business components such as General Ledger are not
considered strategic for JK Enterprises (as it is often the case for other
companies).

Figure 10-1 JK Enterprises CBM Map

In addition to differentiating business components, the CBM effort also identifies
goals and key performance indicators (KPIs) that are used as input to service
identification. For example, there is a KPI under Sales Management described as
follows:

Increase the volume of online account applications by 25% or more compared
to current volumes.

Note that these KPIs should live in and be managed by RequisitePro, as
described in Chapter 8, “Requirements” on page 207.

The CBM strategic effort looks in detail at what the business components and the
business processes they own are. Service identification takes place in the scope
of a differentiator business component and its business processes. Note that the
 Chapter 10. Service identification 279

activities that make up a business process may span business components. For
example, the Account Opening business process—although owned by the sales
management business component—includes activities from the Account
Administration business component.

Another important point is that other business components on the CBM map are
potential future service consumers of the services you identify, and you should
consider them during service identification. Reuse is fundamental for SOA, and
you have to think about additional requirements from other service consumers
when working on services, so that they can be reused by others.

It is important to note that the CBM enterprise-level strategic effort is not a
mandatory input to identifying services, In practice, the scope of services to
identify may be set by other things, such as a project’s goals and/or a business
process only.

Another key input to service identification is the set of business goals and key
performance indicators (KPIs) stored in RequisitePro. For example, one of JK
Enterprises’s goals is to decrease the cost of credit report retrieval by 20%.
Goals and KPIs provide additional data used to identify services required by the
business.

Last but not least, the existing applications an enterprise owns are its most
valuable assets, and they are inputs to service identification. Existing assets
include transactions, batch processing, or data structures that are running in
production.

These different approaches are visually represented in the SOA solution stack
(described in “SOA foundation reference architecture” on page 6, where services
play a central role, are used by consumers and are supported by providers
(Figure 10-2).
280 Building SOA Solutions Using the Rational SDP

Figure 10-2 SOA solution stack

Tools and models used for service identification

We use Rational Software Architect and its integration features with other tools,
such as Rational RequisitePro, and WebSphere Business Modeler to perform
service identification.

We create a model named Service Model - Identification Level. You can think of
this as the analysis level model of the service model. It is the beginning of the
service model, and it may simply evolve during service specification. For the
purpose of this book, we provide the service model as it is after the service
identification, so that you understand the type of information and level of details
that relate to service identification.

Identify services from goals

In this section, we describe how business-level artifacts such as business goals
and key performance indicators (KPIs) can be refined to a level that is detailed
enough for IT design and implementation.

For the JK Enterprises case study, the focus of service identification is the Sales
Management business component, and the goals from which we are identifying
services support this business component (and other business components used
by Sales Management).
 Chapter 10. Service identification 281

Rational Software Architect and RequisitePro integration

Rational Software Architect’s RequisitePro integration allows you to work on
RequisitePro projects from within the Software Architect IDE. Almost all of the
capabilities provided by the RequisitePro native client are also provided, except
administration capabilities and the ability to create new projects. There is a
Requirement perspective, which supports working with RequisitePro
requirements, and the linkage (traceability) of design elements to requirements.

The Requirement perspective is shown on Figure 10-3. It is made up of three
views: Requirement Explorer [1], Requirement Trace [2], and Properties [3].

1. The Requirement Explorer allows you to open, browse, and explore
requirements stored in RequisitePro. When a specific requirement is
selected, you can see more information about it in the other views.

2. The Properties view provides information about individual requirements, such
as their attributes (for example, assigned to, cost, or priority).

3. A very informative view is the Requirement Trace view, which allows for the
visualization of requirements or model elements traced to and from a specific
requirement.

For JK Enterprises, when the PROJGOAL1.1 is selected, the Requirement Trace
view informs us that KPI1 is traced to it, and METRIC1 is in turn traced to KPI1,
which makes it indirectly traced to PROJGOAL1.
282 Building SOA Solutions Using the Rational SDP

Figure 10-3 Rational Software Architect Requirement perspective

Identify services from goals

In this section, we identify services (model elements), and add traceability links
from these services to the requirements they support. The service model
elements appear under the Requirement Trace view.

TODO: redo
screenshot

[1]

[3]

[2]
 Chapter 10. Service identification 283

Browsing the JK Enterprises goals, and more particularly PROJGOAL1 and its
sub-goals, we notice that they are all related to the activation of customer
accounts.

We now create a service named AccountActivation:

� In the Project Explorer, open the Services Traced to Goals diagram under
Service Model - Identification Level.

� When the diagram opens, mouse over an empty area, wait for the action bar
to pop up, and then click Add Stereotyped Class (Figure 10-4).

Figure 10-4 Create an new instance of a stereotyped class

You are presented with a choice of stereotyped classes to create. Because we
have set up the project so that it uses the UML 2.0 profile for software services,
the list includes SOA stereotypes.

� Select Create <<serviceSpecification>> Class and name the newly created
service specification AccountActivation (Figure 10-5).

Figure 10-5 AccountActivation, as originally identified from business goals

Create traceability from services to goals

We now trace the identified service back to the goals (requirements) they were
identified from:

� Drag PROJGOAL1.1 from the Requirement Explorer view into the diagram.

A new model element is created under the Service Model - Identification
Level project. This new model element is traced to the PROJGOA1.1
RequisitePro requirement.

Note that because the newly created elements do not live in the RequisitePro
project, a new folder is automatically created under the RequisitePro project,
named Eclipse Element Proxies. That folder contains information about traces
to non RequisitePro elements, including the newly created Software Architect
model elements.
284 Building SOA Solutions Using the Rational SDP

� To stereotype this element as a business goal (from the business modeling
profile), make sure the newly created class is selected, and then from under
the Properties view, select the Stereotypes tab. Click Add Stereotypes and
then select BusinessGoal.

The BusinessGoal stereotype is defined by the Business Modeling profile.

� In the diagram, mouse over AccountActivation, click the outbound arrow
(Figure 10-6), then drag the connection to Decrease customer account
activation cost by 50% and release the mouse button. Select Create
Dependency.

Figure 10-6 Adding a relationship to the AccountActivation serviceSpecification

� Make sure the newly created dependency is selected, and then from under
the Properties view, select the Stereotypes tab. Click Add Stereotypes and
then select Supports.

� Drag PROJGOAL1.2 into the diagram and repeat the previous two steps to
create a Supports dependency from AccountActivation to the other project
goal.

The resulting diagram is shown in Figure 10-7.

Figure 10-7 AccountActivation traced to two requirements
 Chapter 10. Service identification 285

Note that if you go back to the Requirement perspective and select PROJGOAL1.1
in the Requirement Explorer, you should see the new CLASS2 model element
traced to PROJGOAL1.1 (Figure 10-8). CLASS2 is in turn traced to the
AccountActivation service specification.

Figure 10-8 Elements traced to the PROJGOAL1.1 business goal

For the purpose of this example, we are done with identifying services from
business goals.

Perform business process analysis

Also referred to as top-down service identification, business process analysis
consists of looking at the set of business processes, their associated
sub-processes, activities and tasks, and identify services that would support the
elements that can be automated.

As previously mentioned, the business processes used during service
identification come from functional area analysis and business process modeling.

One of the first things to do is to look at the business processes and see if they
should be decomposed further, so that the leaf-level activities (tasks) are at a
level at which services and operations can be identified.

Elements of the service model that are identified from business process analysis
include:

� Service consumers—Usually the business processes themselves

� Service specifications—Identified from business processes, sub-processes,
activities, or tasks

� Service specification operations—Usually identified from business tasks

� Operation parameters—Identified for the business items of the business
processes
286 Building SOA Solutions Using the Rational SDP

Identify service elements from business process model

For the JK Enterprises case study, the business process modeling effort
produced an Account Verification business process (a sub-process of the
Account Opening business process), which looks at an application and
determines whether or not the application should be approved (Figure 10-9).

Figure 10-9 Account Opening business process

We identify a service named AccountVerification from the Account Verification
business (sub-)process.

� If not already open, open the Services Identified from Business Processes
diagram under the Service Model - Identification Level.

� Create a new service specification named AccountVerification.

The Account Verification business process has been decomposed into tasks.
The first business task of the Account Verification business process is Determine
applicant eligibility (Figure 10-10).

Figure 10-10 Determine applicant eligibility task

Determine applicant eligibility examines a Customer Application, and looks like a
good candidate operation for the following reasons:

� It performs a logical finite unit of work.
� It can be reused by many consumers.

We identify a service operation from this business task:

� Find the AccountVerification service specification in the Project Explorer.
Right-click and then select Add UML → Operation. Name the operation
determineApplicationEligibility.
 Chapter 10. Service identification 287

Note that the AccountVerification service specification in the Services
Identified from Business Processes diagram now shows the operation you
just added. There is only one model element for AccountVerification, and
that single model element can appear under several diagrams. Diagrams
provide different views to different people. You can also modify a model
element from a diagram, and the change is reflected under the Project
Explorer and any diagram the model element appears in1.

At this stage, it is a good idea to start describing (in English) what the service
operation does:

� Select the determineApplicationEligibility operation, and then enter this
text under the Documentation tab of the Properties view:

Determines whether or not a customer is eligible for a product, based on
an account application that provides information on the customer and the
requested product.

At the identification level, service operations do not need to be rigorously
specified. However, it is important to give service operations and business items
names that are meaningful to the business. These names should be retained
through to code.

It is a recommended practice to follow operations naming standards in your
organization because consistency promotes reuse. For example, you can name
service operations as follows:

� Start with an action (for example, determine or create).
� Then provide the name of a domain element (for example, Claim or Customer).

We now detail the operation to specify that it takes the Account Application
business item as input parameter, and returns a boolean (true or false). We know
that we need the Account Application parameter because we see it as being
passed as the business item in the business process in Figure 10-10.

We use the Software Architect to WebSphere Business Modeler integration
feature, which allows a Business Modeler project to be open as UML in the
Modeling perspective. Refer to “References” on page 298 for more information
about this feature.

� Open the Business Process Model.

� Make sure the Services Identified from Business Processes diagram is
open. Select the Account Application business item under the Business
items folder and drag it onto the Services Identified from Business
Processes diagram (Figure 10-11).

1 This is the advantage of using a model with diagrams as different views, rather than bitmaped
diagrams. Changes in the underlying model are immediately reflected in the diagrams and we can
construct new diagrams based on selected parts of the model without affecting any other diagrams.
288 Building SOA Solutions Using the Rational SDP

Figure 10-11 Customer Application under Services Identified from business processes

� Select the determineApplicationEligibility operation (not the service
specification but the operation itself). In the Properties view, select the
Parameters tab, and then click Insert New Parameter on the right-hand side
(Figure 10-12).

Figure 10-12 Inserting a new operation parameter

� In the Name column, type application.

� Click the cell in the Type column and then click ... (Figure 10-13).

Figure 10-13 Setting a parameter type
 Chapter 10. Service identification 289

� The Select Element for type window opens. Type Account Application into
the entry field (Figure 10-14).

Figure 10-14 Selecting a parameter type

� Make sure Customer Application is selected from the results, and click OK.

� Select the General tab, click Set Return Type, and select the Boolean type
(UMLPrimitiveTypes::Boolean).

� Select the AccountVerification service specification, right-click, and select
Filters → Show signature.

� The resulting diagram is shown in Figure 10-15.

Figure 10-15 Specify determineApplicantEligibility operation parameters

The Account Opening business process is a service consumer for
AccountVerification. We now capture this in the model:

� Open the Identified Service Consumers diagram and create a new service
consumer named AccountOpeningProcess.

The resulting Identified Service Consumers diagram is shown in Figure 10-16.
290 Building SOA Solutions Using the Rational SDP

Figure 10-16 Identified service consumers

Other services and operations are also identified from the business process
analysis. The final list of services is shown in Figure 10-17:

� AccountActivation service

� AccountApplicationInquiry service, with searchAccountApplications
operation

� AccountVerification service, with determineApplicationEligibility and
verifyCustomerAddress operations

Figure 10-17 Services identified from business process analysis

Note that the service specifications do not trace to the business process
elements they were identified from. Two options are available to do so (not
explained in details):

� Enter the business process elements as requirements in a RequisitePro
project. You can think of business process models as being functional
requirements, and as such they could live in a RequisitePro project (probably
with a RequisitePro template that would define new requirement types such
as business activity). Then, you can use the Software Architect RequisitePro
integration feature to trace model elements to business process elements in
RequisitePro.
 Chapter 10. Service identification 291

� Use the Software Architect WebSphere Business Modeler integration feature
to open the WebSphere Business Modeler project in Software Architect as
UML. We do not use it here because we want to trace the identified services
to business process elements (as in Business Modeler), and not their UML
representation.

A significant advantage of identifying services from business goals and business
processes is that the identified services are aligned to the business! Sometimes,
these services may be difficult or impossible to implement (for example, the
service would have to retrieve too much information from too many sources,
making the service too slow). One of the first tasks of service specification is to
validate those candidate services, including how feasible it is to implement them.

Perform existing asset analysis

Also referred to as bottom-up service identification, existing asset analysis
consists of looking at an enterprise’s existing or earlier applications (including
transactions, batch processing, and data structures), and identify services from
these. This is sometimes called exposing legacy application as services.

Note that any application that is deployed into production is considered an
existing or earlier application. Existing or earlier applications are not restricted to
mainframe, and could also include, for example, C++ or Java code.

Existing services?
Looking for existing SOA services that can be reused (instead of re-created) is
very important, although this activity is typically not considered part of existing
asset analysis. Looking for existing services would involve getting information
from service registries and repositories, such as the IBM WebSphere Service
Registry and Repository.

A service can also be thought of as being packaged as a set of assets, and
hosted by a RAS repository. For example, the service and design models would
live in one asset, and the service implementation in another asset. These assets
are key reusable items that should always be considered during service
identification. However, because a lot of organizations do not already have
existing services, it is usually omitted, and a detailed description of this is not
provided in this book.

Bottom-up and meet-in-the -middle
Bottom-up analysis is a very challenging task. Usually, very few people in the
enterprise know what the deployed applications exactly are, how many there are,
and what their names or purpose are.
292 Building SOA Solutions Using the Rational SDP

Although analyzing an enterprise’s existing assets, such as all of the existing or
earlier applications running in production, is a very valuable exercise, reality
forbids a complete enterprise-wide effort, usually because of other business
pressures. In practice, it is often the case that the existing asset analysis takes
place in the context of a business-driven (top-down) exercise. This approach is
sometimes referred to as meet-in-the-middle (where one identifies existing
functionality that can provide what the new (to-be) business goals, processes,
and services need.

Existing asset analysis requires the participation of specialists for the systems
(for example, IMS™ or CICS) or applications (for example, COBOL programs)
being analyzed. Also, it is essential to have appropriate tools that are able to
inspect the systems because nobody really knows what all of the deployed
applications are.

An IBM product that supports existing asset analysis is WebSphere Studio Asset
Analyzer (WSAA). Asset Analyzer provides insight to IT organizations as to what
their distributed and mainframe applications are. It helps with the maintenance,
extension, reuse (this section), and transformation of applications. Asset
Analyzer provides information about applications such as batch jobs, CICS
groups, CICS regions, CICS transactions, DB2® systems, IMS subsystems, or
IMS transactions.

JK Enterprises
From the business process and goal (top-down) analysis, we know that JK
Enterprises requires functionality in the area of Customer. For example, there are
business goals around reducing the cost of customer application, and the
Account Opening business process has to deal with Customer information. In this
section, we analyze existing assets to identify services that would support
customer data, and more specifically the creation of customer data, since the
business process is about new accounts.

We now request the assistance of the JK Enterprises specialist for CICS (a
COBOL programmer). The specialist thinks a program named CUSTDATA handles
customer information. Using Asset Analyzer, we determine that there is a data
set named JK.CUSTDATA. Asset Analyzer also tells us that a CICS file (online data
store) named CUSTFILE refers to this data set. Then, Asset Analyzer tells us that
CUSTFILE only has one program named CUSTPROG. Asset Analyzer allows the
specialist to access the COBOL source code for CUSTPROG (Figure 10-18).
 Chapter 10. Service identification 293

Figure 10-18 CUSTPROG COBOL source code

From the source code, the specialist can tell that CUSTPROG does create, read,
update, and delete on customer entities. At this stage, CUSTPROG is a likely
candidate for an existing application that can be exposed as a service. We now
analyze CUSTPROG in more details. Asset Analyzer also tells us that one of the
source files CUSTPROG uses is CUSTIORQ, and provides access to its source code
(Figure 10-19).

Figure 10-19 CUSTIORQ source code

From the CUSTIORQ source, the specialist can see what the definitions are for
CUSTPROG’s request and response messages. This confirms that CUSTPROG works
on customer data, and more specifically it can create the customer data we
need. From the CUSTRPROG COBOL program, we identify a new service named
CustomerAccount.

� From Service Model - Identification Level, open the Services Traced to
Existing Assets diagram.
294 Building SOA Solutions Using the Rational SDP

� Using the action bar (or another technique), create a new class and name it
CUSTPROG.

� Make sure the CUSTPROG class is selected, and then click the Stereotypes tab
under the Properties view. Specify COBOL Program in the keyword field.

Note that we are not using a stereotype defined by a profile, but simply a
keyword to add a visual clue that the class is a COBOL program. Except for the
visual notation, CUSTPROG is just a class, and as such does not have additional
properties.

� Make sure the CUSTPROG class is selected, right-click, and then select
Filters → Show/Hide Compartments → Name Compartment only.

The resulting diagram is shown in Figure 10-20.

Figure 10-20 COBOL Program keyword for CUSTPROG

� Create a new service specification named CustomerAccount.

� Add a trace association from CustomerAccount to CUSTPROG.

The resulting diagram is shown in Figure 10-21.

Figure 10-21 CustomerAccount traced to CUSTPROG
 Chapter 10. Service identification 295

Note that we add a trace from the service specification to the existing asset. This
may surprise you because usually you would trace to elements that are at a
higher level (for example, service to goal). But what we want to show here is how
(or why) the service was identified.

So, starting from a given service, we want to be able to trace to the element that
made us identify the service:

� Add an operation named createAccount under CustomerAccount.

Note that although the COBOL program supports the creation, read, update,
and delete of customer accounts, we only create a service specification
operation for read, because it is all that is required by the business.

Two other services are also identified. The list of services identified from existing
assets is as follows:

� BillingAccount service, with createAccount operation, identified from the
BILLPROG COBOL program

� CustomerAccount service, with createAccount operation, identified from the
CUSTPROG COBOL program

� GeneralLedgerAccount service, with createAccount operation, identified from
the GL SAP program

The resulting diagram is shown in Figure 10-22.

Figure 10-22 Services identified from existing assets

This completes our example of the identification of services from existing assets.

A risk associated with identifying services from existing assets is to “blindly”
expose as services any functionality that seems “technically” interesting. For
example, existing or earlier applications may provide a lot of functionality around
296 Building SOA Solutions Using the Rational SDP

create/read/update/delete (CRUD) of data (such as Customer in our example),
and services identified from these may be too fine-grained to provide the value
expected of services in an SOA environment. Fortunately, processes such as
RUP SOMA provide prescriptive guidance to avoid this. Also, looking at existing
assets in the context of business goals or processes helps a lot, as described in
this section.

During service identification, we do not look at how services that have been
identified from the top-down approach would be supported by existing
applications. This exercise belongs to service realization and implementation.
After all, in that case, the service has already been identified. Similarly, we do not
look at what external service providers could be used to support a service
identified from the top-down approach.

Output of service identification for JK Enterprises

For our example, the result of the service identification task is a list of six service
specifications and their operations, traced to the artifacts they were identified
from. In our example, we have identified the following services:

� AccountActivation service

� AccountApplicationInquiry service, with searchAccountApplications
operation

� AccountVerification service, with determineApplicationEligibility
operation

� CustomerAccount service, with createAccount operation

� GeneralLedgerAccount service, with createAccount operation

� BillingAccount service, with createAccount operation

Note that not all of the services that make the service-oriented architecture are
listed here. All of the composite services (the ones that call other services) are
identified at this stage. But not all of the atomic services (the ones that do not call
other services) have. Only during service specification do these appear in the
architecture.

We create a diagram named Identified Services with the service
specifications (Figure 10-23).
 Chapter 10. Service identification 297

Figure 10-23 Result of service identification activity

References

Read the article on Business Services Modeling, Integrating WebSphere
Business Modeler and Rational Software Modeler on developerWorks:

http://www-128.ibm.com/developerworks/rational/library/05/1227_amsden/
298 Building SOA Solutions Using the Rational SDP

http://www-128.ibm.com/developerworks/rational/library/05/1227_amsden/

Chapter 11. Service specification

This chapter describes the technique associated with fully specifying the service
model work product.

It describes the inputs, outputs, and tools that are used for the service
specification activity, and it is structured around these two tasks:

� Structure service architecture

� Refine service architecture

The service identification chapter is relevant to this chapter because it is where
we describe how the service model work product is created.

11
© Copyright IBM Corp. 2007. All rights reserved. 299

Introduction

The goal of the service specification activity is to fully specify the elements of the
SOA design that are architecturally significant, that is the elements of the service
model work product. For this reason, service specification is performed primarily
by software architects, optionally with the participation of designers.

Service specification only focuses on the services layer of the SOA solution stack
(Figure 11-1).

Figure 11-1 SOA solution stack

Service specification is about the A of SOA (architecture) and as such is a key
activity without which an SOA effort cannot be successful.

Whereas service identification can be seen as the analysis of the service model,
service specification can be seen as the design of the service model.

During service specification, the service model is fully specified. After service
specification, it is used by the designers responsible for service realization, and
the developers responsible for service implementation.

Tools and capabilities used for service specification

In this section, we describe the artifacts that support service specification.
300 Building SOA Solutions Using the Rational SDP

Rational Software Architect

The tool used to perform service specification is Rational Software Architect.
More specifically, the work is performed in the Modeling perspective of Software
Architect, shown in Figure 11-2.

The modeling perspective includes four views that are helpful in the design of the
service model. They are:

1. Project Explorer: Shows projects, their diagrams, packages, classes and
other model elements.

2. Diagram Editor: Where you can edit diagrams, including creating elements
from the palette or the action bar, and laying out elements on diagrams. When
a diagram is double-clicked in the Project Explorer, the diagram editor opens
the diagram.

3. Properties: Shows information about the artifact selected. The information is
presented in several tabs, depending on the type of artifact selected.

4. Outline: Useful when a diagram is large, the outline shows which part of the
diagram is currently shown in the editor.
 Chapter 11. Service specification 301

Figure 11-2 Software Architect Modeling perspective

[1] [2]

[3]

[4]
302 Building SOA Solutions Using the Rational SDP

UML and the UML 2 profile for software services

The Unified Modeling Language (UML), as described in “Unified Modeling
Language” on page 141, supports the design of the service model. For example,
the JK Enterprises service model is an instance of a UML model. Because we
are working on a specific domain (SOA), we make use of a UML profile for that
domain, that is the UML 2.0 profile for software services (described in “UML
profile for software services” on page 164). For example, we are not using base
UML interfaces, but interfaces stereotyped as <<serviceSpecification>> for
service specifications.

Process guidance

One of the nice things about Software Architect is that it provides integration with
the development process JK Enterprises follows.

The JK Enterprises process engineer used Rational Method Composer (see
“Rational Method Composer” on page 32) to customize RUP for SOA for JK
Enterprises. From Method Composer, the process engineer publishes the
customized process and makes it available to JK Enterprises staff. The software
architect responsible for the service specification sets the Software Architect
process to JK Enterprises. He also specifies that he is performing the role of
software architect, and that he is interested in all topics.

Setting process preferences
The process preferences are set in the Preferences dialog:

� Select Window → Preferences.

� When the Preferences window opens, type process in the filter text field. Then
select Process.

� Select Software Architect under the Developers category of the Roles you are
performing.

� Select Method Content, Process, and General Content under Topics you are
interested in.

� For the purpose of this exercise, we do not point to a customized process
under Process Configurations Location. However, this is where the
developers will point to the JK specific development process.

� Click Apply and OK.

The process preference window is shown in Figure 11-3.
 Chapter 11. Service specification 303

Figure 11-3 Process preferences

Software Architect provides a Process Advisor view and a Process Browser
window.

Process Advisor
The Process Advisor view provides context-sensitive guidance for the task at
hand. It provides an additional filter to what is set under preferences so that it
only displays the contents that pertain to what the user is currently performing.

We display the Process Advisor view by selecting Help → Process Advisor.

The Process Advisor view appears at the bottom of the Modeling perspective
(Figure 11-4). It provides process and method information under categories such
as Tool Mentors or Work Products. When nothing is selected, you can see how
many entries each category contains.
304 Building SOA Solutions Using the Rational SDP

Figure 11-4 Process Advisor

Process Browser
The Process Browser is very similar to the help system, but with process and
method contents. It displays HTML pages and also provides navigation aids,
such as process view, search query and result, and index.

The Process Browser is opened by selecting Help → Process Browser, or by
clicking one of the Process Advisor entries.

In the Process Browser, to go to the RUP welcome page select the Team tab
under Process Views, and then select Welcome (Figure 11-5).
 Chapter 11. Service specification 305

Figure 11-5 Process Browser

Armed with the powerful Software Architect tool, its support for SOA and
integrated process guidance, we are now ready to dive into the details of service
specification.
306 Building SOA Solutions Using the Rational SDP

Overview of the service specification activity

The service specification tasks are shown in Figure 11-6.

Figure 11-6 The service specification tasks

Service specification consists of making most of the architecturally significant
decisions of our design. It mainly consists of architecting our services. For
example, it is during service specification that all service consumers,
specifications, providers, and partitions are specified in terms of their structure
and behavior.

The main input to service specification is the analysis-level service model
resulting from the service identification activity.

Additional inputs include:

� Domain model: Used for the initial structure of the architecture and the
service parameter types and message design.

� System use case model: Optionally used during service interaction design
to determine what behavior is required of the service-oriented (SO) system.

� Business architecture model: Used to describe the business architecture
context, specifically the business functional areas and the processes and IT
systems (including SO systems) that support them.

Task 1: Structure service architecture

This task takes the outputs of service identification (described in Chapter 10,
“Service identification” on page 277) and creates a structured service model in
 Chapter 11. Service specification 307

preparation for modeling service interactions (described in “Task 2: Refine
service architecture” on page 356).

The constituent steps of this task are listed in Figure 11-7. These are described
further in this section.

Figure 11-7 Structure service architecture steps

Step 1: Validate and classify services

The first step in structuring the service architecture involves validating and
classifying the candidate services created during service identification (see
“Output of service identification for JK Enterprises” on page 297).

Validate candidate services
It is always a good idea to validate the input you get from other activities.
Although it can be argued that this should be covered by service identification,
we start our service specification activity by validating that the identified
candidate services are actually services that should be part of our
service-oriented architecture.

Also referred to as service litmus test by the IBM Service-Oriented Modeling and
Architecture (SOMA) technique, validation includes making sure that all services
are:

� Business-aligned: All services should be traceable back to a business
requirement (for example, goal, sub-goal, or KPI), or business activity from a
business process. A very good way to verify business alignment is to ask the
business if they would be ready to fund the service through its life cycle!

� Reusable: Services and their operations should be generic enough so that
they can be used by consumers that were not part of the original
requirements. For example: Can a particular service be reused by other
308 Building SOA Solutions Using the Rational SDP

functional areas (business components)? Would the service be useful for the
projects in plan?

For JK Enterprises, we start by looking at the first criteria, business alignment. In
our case, three out of the six identified candidate services are already traced to a
business goal or were identified from a business task. Therefore, we only have to
look at the other three services, identified from the existing asset analysis
(Figure 11-8).

Figure 11-8 Services identified from the existing asset analysis

For example, let us consider the CustomerAccount service specification with the
createAccount operation. We talk to the business people that own the JK
Enterprises Account Administration business component: They tell us that they
had issues with other business entities because the other entities could not
create a customer account without manual intervention by someone from
Account Administration. They agreed then to fund such a service through its life
cycle, as it will help them to mitigate the issues they had with the other entities.
This is a very good sign, and we have determined that the CustomerAccount
service is business-aligned.

We now consider the reusability criteria for CustomerAccount. We interview
people from the JK Enterprises Customer Account business component: They
tell us about a project planned for next year that is related to the automation of
new account creation. We conclude that the CustomerAccount service is
reusable.

Similarly, we study the GeneralLedgerAccount and BillingAccount services and
conclude that they are business-aligned and reusable as well.

We indicate that the service specifications are validated by changing the status
property from candidate to accepted, which means that they are part of a project.
 Chapter 11. Service specification 309

� Capture this in Software Architect by selecting each of the service
specifications, and from the Stereotypes tab under Properties, change the
value of the status property from candidate to accepted.

Note that we perform this validation with only a set of service specifications, their
operations and descriptions being in plain English, but we also have to perform
this test at the end of service specification when the service providers are
designed.

Classify services by functional area
In this section we classify services under the functional area that owns them.
Ownership here means that functional areas are responsible for meeting
services requirements through their life cycle.

Note that in this section, functional area is synonymous to business component.

The JK Enterprises Component Business Modeling (CBM) map is shown in
Figure 11-9.

Figure 11-9 JK Enterprises Component Business Modeling (CBM) Map

The list of identified service specifications and operations from the service
identification activity is shown in Figure 11-10.
310 Building SOA Solutions Using the Rational SDP

Figure 11-10 List of identified services and their operations

Sales Management was the key functional area being looked at during service
identification. However, only a few of the services belong to Sales Management.
It would make sense, therefore, if other services were owned by other functional
areas.

For JK Enterprises, our classification of services (service specifications) by
functional area is as follows:

Sales Management AccountVerification,
AccountApplicationEnquiry

Customer Accounts AccountActivation, CustomerAccount

Account Administration BillingAccount

General Ledger GeneralLedgerAccount

You may have noticed that the Address service does not belong to any of the
functional areas. Verifying addresses for existence is not part of what JK
Enterprises does and it makes sense for JK Enterprises to use an external
service provider for that.
 Chapter 11. Service specification 311

We now describe the initial service model in Software Architect. For the purpose
of this exercise, we decided to keep the service model (analysis level) work
product, and create a new service model work product. Another option would be
to evolve the analysis level work product into a design level work product.

The UML 2 profile for software services (see “UML profile for software services”
on page 164) has an associated Service Design Model template, which you can
select when you create a UML Modeling project in Software Architect. You get an
initial package structure and a set of building blocks (Figure 11-11).

Figure 11-11 Service Design Model template in Software Architect
312 Building SOA Solutions Using the Rational SDP

In our development case, because of the architectural patterns we follow (see
“Architectural patterns” on page 74) we do not use the default service design
model template, but a different structure, centered on service providers.

We provide the initial structure of the Service Model in the Service Model - Initial
Specification model.

� In the Software Architect Modeling perspective, open the Service Model -
Initial Specification model. Expand the different packages (Figure 11-12).

Figure 11-12 Initial service model

As previously described, we made the decision to use service providers as key
artifacts to structure our service model around. When we perform the next steps
in the structure service architecture task, we structure our service model around
service providers. For example, you do not see service specifications,
enumerations, info types, messages, or parameter types packages under the
initial structure, because these packages will be sub-packages of their service
provider packages.

We have created separate packages for the different types of services and
service consumers:

� Service Consumers
� Composite Business Application Service Providers
� Atomic Business Application Service Providers
� Infrastructure Service Providers
� Service Partitions
� Shared Resources
 Chapter 11. Service specification 313

We made the decision to keep the analysis-level service model, and create a
new model for the (design-level) service model. However, we copied the
identified service consumers and specifications from the analysis-level service
model into the service model. They are currently at the root of the service model
and will be moved to appropriate packages as we perform the next steps in this
task.

Note also that we have created diagrams that will be used to provide different
views of the service model.

Step 2: Identify service partitions

Now that we have an accepted set of service specifications, the next step
involves identifying the service partition (or service partitions) required in our
service model. Let us now look at how we use the tool to achieve this task step.

Find the functional areas
We start by examining the functional areas that are in scope. These are modeled
in our business architecture model, so let us open this in Rational Software
Architect. From the Project Explorer, select the Business Architecture Model
model, right-click, and select Open Model.

Navigate to the JK Enterprises BusinessArchitectureMap diagram under
Business Architectures\JK Enterprises\, and double-click to open the diagram
(shown in Figure 11-13).
314 Building SOA Solutions Using the Rational SDP

Figure 11-13 A partial view of the business architecture map, highlighting the in-scope functional areas

Our two in-scope functional areas can be seen: Sales and Customer Service.

Create a service partition for the SO system
A service partition is used in the service model to model the structure of a
system made up of service-oriented parts. From “Pattern 5: Manage complexity
using SO systems” on page 86, we note that we term an IT system made up of
service-oriented parts as an SO system.

From “Pattern 4: Base architecture on business relevant elements” on page 84
we further note that we can look to the business architecture model to see what
IT systems have been identified as business relevant. This model defines the
various functional areas in the business along with the people, processes and IT
systems that support its business function. Note that for the sake of simplicity in
our example we assume that there is a single in-scope SO system for each of the
functional areas named the same as the functional area.

For each SO system that is in scope, and for which we do not already have one,
we create a service partition to represent the structure of each of these SO
systems. To do this, let us turn the attention back to the service model that we
created during “Step 1: Validate and classify services” on page 308.

Our two in-scope
functional areas,
Sales Management
and Customer
Service
 Chapter 11. Service specification 315

In the Service Model, navigate to the empty Service Partitions package.

Right-click, select Add UML → Package. Name the new package
SalesManagement. This package holds the specification elements of our
SalesManagement SO system.

Selecting this new package, right-click, Add UML → Class. Name the new class
SalesManagement. Selecting this new class first, select the Properties tab, and
then the Stereotypes section. Click Apply Stereotypes and select servicePartition
from the list (see Figure 11-14).

Figure 11-14 Applying the servicePartition stereotype

We have now created a service partition for our SalesManagement SO system.

We now trace this back to the functional area that it is based on by creating a
<<derive>> relationship back to the SalesManagement functional area.

Select the SalesManagement package and Add Diagram → Freeform Diagram.
Keep the default name as this is a temporary diagram.

Drag our SalesManagement service partition from the Project Explorer into the
diagram. Drag the SalesManagement functional area from the Project Explorer into
the same diagram (it lives in BusinessArchitectureModel\Business Functional
Areas\).

Hover the mouse over the SalesManagement service partition in the diagram until
the drag-arrows appear. Click the arrow pointing away from the service partition
and drag the line to the SalesManagement functional area. Select Create Derive
from the menu (Figure 11-15).
316 Building SOA Solutions Using the Rational SDP

Figure 11-15 Creating the <<derive>> relationship

Now that the <<derive>> relationship has been created, you can delete the
temporary freeform diagram.

You can verify that the relationship is there by selecting the SalesManagement
service partition in the Project Explorer and Visualize → Explore in Browse
Diagram. You should see a browse diagram appear as shown in Figure 11-16.

Figure 11-16 Using the browse diagram feature in Rational Software Architect

Create an empty SOA structure diagram
Let us now prepare an empty SOA structure diagram for us to add our service
architecture parts to later.

Select the service partition and Add Diagram → Composite Structure Diagram
(Figure 11-17). Name the diagram SalesManagement SOAStructure.

Figure 11-17 Adding an empty SOA structure diagram
 Chapter 11. Service specification 317

Open the diagram. Add four horizontal sections to the diagram to represent the
standard sections to our service architecture:

� Service consumers
� Composite business application services
� Atomic business application services
� Infrastructure services

The horizontal layers can be added using the Geometric Shapes section in the
palette. Select Rectangle from the Rectangle Types drop-down. The diagram
should be made to look like Figure 11-18.

The rationale behind what goes into each of these layers is described by “Pattern
1: Factor composition logic away from process logic” on page 76, “Pattern 2:
Factor atomic reusable logic into lower reuse layers” on page 79, and “Pattern 3:
Factor application-specific logic out of reuse layers” on page 81.

Figure 11-18 Empty SOA structure diagram with four sections

Create a service partition and diagram for the
CustomerService SO system

Repeat the same steps to create a service partition and empty SOA structure
diagram for the CustomerService SO system.

� Service consumers

� Composite business
application services

� Atomic business
application services

� Infrastructure services
318 Building SOA Solutions Using the Rational SDP

Let us look at what we have now. Figure 11-19 shows us our service model with
the two new service partitions added, along with their SOA structure diagrams.

Figure 11-19 Service model with empty service partitions added for each SO system

Step 3: Model atomic service providers

Having identified our SO systems and created service partitions for them, we
need service architectural elements to add as parts to these service partitions
(see discussion in “Different forms of a service” on page 49). Specifically, we
must have service consumers and service providers.

We start by looking at the atomic service providers.

To recap, these come in two different type depending on the services they
provide:

� Atomic business application services
� Infrastructure services

In this section we focus on service providers that provide atomic business
application services.

First we note the guidance provided by the architectural patterns defined in
“Architectural patterns” on page 74.

The following two patterns describe factoring rules to adhere to when defining
the atomic service providers:

� “Pattern 2: Factor atomic reusable logic into lower reuse layers” on page 79
� “Pattern 3: Factor application-specific logic out of reuse layers” on page 81

The next two patterns describe how to derive these service providers and to
model their data ownership:

� “Pattern 6: Derive atomic services from domain model” on page 89
� “Pattern 8: Model data ownership” on page 94

Let us now look at how we use the tool to achieve this task step.
 Chapter 11. Service specification 319

Study the domain model
First we open the domain model. Select Domain Model model and Open Model.

Navigate to the ServicingAndSales Domain diagram (Domain Model\Domain
Packages\ServicingAndSales\) and open it. You should have a diagram as
shown in Figure 11-20.

Figure 11-20 SalesAndServicing domain diagram for JK Enterprises

Note that this domain model describes the business things that exist in the scope
of SalesAndServicing domain. It is possible that not everything in this domain is
in scope for the SOA solution that we are building. But we do not worry about that
for the moment. The important thing is that it provides a visual representation of
the structure of the information that is important in this domain.
320 Building SOA Solutions Using the Rational SDP

First we make sure that we have reflected aggregation in our domain model
because this can provide useful information about the nature of the relationships
between the domain type. Examining the domain diagram in Figure 11-20 we
make some changes:

� The association between AccountApplication and Customer should be a
composite aggregation as an instance of a customer is part of the instance of
a customer account.

� The same holds true for the association between CustomerAccount and
Customer. Note that it is a composite aggregation, because it has its own
instance of Customer, a separate instance from the snapshot that is a part of
the AccountApplication.

� The association between Customer and Address should be a shared
aggregation as an instance of a customer would have an instance of an
address as a part of it. However more than one instance of customer can be
related to the same Address.

� The association between AccountApplication and Product should be a
shared aggregation as an instance of an account application would have one
or more instances of product as a part of it. However more than one instance
of account application can be related to the same product.

� Again, the same holds true for the association between CustomerAccount and
Product.

We can see the changes that have been made encircled in Figure 11-21.

Figure 11-21 Changes made to association aggregation
 Chapter 11. Service specification 321

Derive atomic services from domain model

Next we identify those domain types that our SOA solution needs to manipulate
some persistent state (in other words, data instances).

Let us go through this list one-by-one:

� CustomerAccount: We know we care about data instances of CustomerAccount
as we are already storing instance of this domain type in the COBOL program
identified during existing asset analysis.

� AccountApplication: At first it may not be clear as to whether we have to
store AccountApplications. We ask someone representing the
SalesAndServicing domain for clarification and they tell us that we have to
store AccountApplications during the application and review process as this
can go on for quite some time. Additionally they must have a process for
dealing with inquiries on account applications, even after the application has
been accepted or rejected.

� Product: We know we have to include a reference to products in the
AccountApplications that we have determined that we have to persist, so for
the moment we can assume that we have to persist products as well.

� BillingAccount: The same argument holds as did for CustomerAccount as we
identified that billing accounts are currently stored in a COBOL existing asset.

� GeneralLedgerAccount: Again, the same argument holds as did for
CustomerAccount as general ledger accounts are currently stored in a SAP
existing asset.

� Address: Addresses are a special case as we know that we require at least
three types of address data instances:

1. We need access to a set of address data instances that describe the set of
possible addresses for validation purposes. When we receive an account
application, it contains a description of the customer and related address.
This address has to be validated to verify that it is a real and correct
address.

2. We have to store the customer address received with an account
application.

3. For those account applications that are successful we continue to create a
customer account for the customer which includes the customer address.

Note: One may argue that what is described in this section belongs to service
identification (we are actually identifying services). However, because the
work involved is at the design level (as opposed to the analysis level), we
describe it as part of the service specification activity.
322 Building SOA Solutions Using the Rational SDP

So for now we accept that we are interested in address state in our solution.

� Customer: Although we are interested in storing information about customers,
we note that this is done as part of storing information of both customer
accounts and account applications. Therefore we do not store any information
about customers separate from these two domain types.

Note that the enumerations defined on the diagram are excluded from our list for
consideration as they only exist to provide a set of possible values to type
attributes on our domain types, and therefore do not have data instances
themselves. This is always true of enumerations.

We now do a simple one-to-one mapping, creating a service specification for
each of the in-scope domain types for our SOA solution. This gives us the
following list:

� Address <<serviceSpecification>>
� CustomerAccount <<serviceSpecification>>
� BillingAccount <<serviceSpecification>>
� GeneralLedgerAccount <<serviceSpecification>>
� AccountApplication <<serviceSpecification>>
� Product <<serviceSpecification>>

We note that CustomerAccount, BillingAccount, and GeneralLedgerAccount
already exist in our service model as they were identified during “Perform existing
asset analysis” on page 292, as part of the service identification activity.

As these three service specifications already exist in our model, all we have to do
is create service specifications for the remaining three. Note that for the moment
we add these to the root of the service model with the other service
specifications—they are moved later on.

Let us start with Address. Select Add UML → Class and name the class
Address.Add the <<serviceSpecification>> stereotype to this new class.
Repeat this for AccountApplication and Product.

Note: As an aside, you may think it fortunate that the names used when
identifying these service specifications exactly match our domain model. This
is not a coincidence! The domain model should become your primary
point-of-reference for names of things that exist in the business. And indeed,
when the existing assets were considered and we had to name the services
that would represent them, the question asked was “which of our domain
types do these existing assets manage data instances of?” If there is no
matching domain type, one should be added at this point as in this case you
have found a hole in the domain model (in other words, there is some
significant business thing not described in the domain model).
 Chapter 11. Service specification 323

Identify domain type encapsulation clusters
Now that we have a set of atomic business application services, we have to
define the service providers that provide these services. To scope these, we
consider the encapsulation boundaries that we want (or are forced into
choosing).

What do we mean when we talk about encapsulation boundaries here?

� Specifically we are interested in ownership of data instances. For any given
data instance we assign ownership of it to a single service provider in our
architecture. And therefore we say that for a given service provider, the data
instances that it owns are inside its encapsulation boundary while any other
data instances are outside. Any access to the data instances inside a service
providers encapsulation boundary can only be via the services provided by
that service provider.

� Note that if two services are provided by the same service provider, we allow
their implementations shared access to the data instances owned by that
service provider. In contrast, if the services were on separate service
providers, then they would each have to go through the other service to
access its state.

There are two factors to consider when determining encapsulation boundaries:

� What encapsulation boundaries are desirable?
� What encapsulation boundaries are forced on us?

We define domain type clusters on our domain diagram to determine our
encapsulation boundaries. See Figure 11-22 for the finished artifact for our
example where the domain type clusters have been super-imposed.
324 Building SOA Solutions Using the Rational SDP

Figure 11-22 Defining encapsulation boundaries using domain type clusters

The reasoning behind creating these domain type clusters is as follows:

� As a starting point, we place each core domain type in its own domain type
cluster.

� The data instances of GeneralLedgerAccount, BillingAccount and
CustomerAccount are all owned by individual existing assets. In our example
we have just a single domain type owned by each. However note that if, for
example, we had a domain type called Posting that was also in-scope for our
solution, then it would have to be included in the same domain cluster as
GeneralLedgerAccount as we have to assume that all state owned by the
COBOL asset is shared, and therefore should be in one domain type cluster.

� CustomerAccount and AccountApplication are closely related. In fact an
AccountApplication turns into a CustomerAccount (although note that we still
have to keep our AccountApplication snapshot in this case). We say that
 Chapter 11. Service specification 325

they have a high affinity with each other and should be included in the same
domain type cluster.

� Further we note that instances of Address form a part of instances of
Customer, and instances of Customer form part of either CustomerAccount or
AccountApplication. Because of this we expand our domain type cluster to
include these as well.

� In the same way, instances of Product form a part of instances of
AccountApplication and instances of CustomerAccount so we include them in
the same domain type cluster.

� As well as forming part of instances of Customer, instances of Address have
their own life span as we have to keep track of the set of allowed Addresses as
well as snapshots of Address as used to describe the address of a customer.
Therefore we create a new domain type cluster around Address.

� Product also appears in its own domain type cluster.

We now have the following five domain type clusters describing our
encapsulation boundaries. We have noted in parenthesis the domain core types:

1. Customer, (CustomerAccount), (AccountApplication), Address, Product

2. (BillingAccount)

3. (GeneralLedgerAccount)

4. (Address)

5. (Product)

Identify a service provider for each domain type encapsulation
cluster

For each of the domain type clusters, identify the core domain type in the cluster.
We underline these in the list above to get:

1. Customer, (CustomerAccount), (AccountApplication), Address, Product

2. (BillingAccount)

3. (GeneralLedgerAccount)

4. (Address)

5. (Product)

It is now a simple one-to-one mapping from our underlined domain types to the
set of service providers. As a naming convention, we append Mgr (for Manager)
to the end each of the above to get names for our service providers. As is implied
by this name, the service provider manages the domain type that it is named
326 Building SOA Solutions Using the Rational SDP

after (along with the related set of domain types in the same domain type
cluster). Our resulting list of atomic business application service providers is:

� CustomerAccountMgr <<serviceProvider>>
� BillingAccountMgr <<serviceProvider>>
� GeneralLedgerAccountMgr <<serviceProvider>>
� AddressMgr <<serviceProvider>>
� ProductMgr <<serviceProvider>>

Create service providers along with standard package
structure and diagrams

We start with the CustomerAccountMgr:

� In the Service Model\3 - Atomic Business Application Service
Providers\ package, create a new package (right-click, Add UML →
Package) and name it CustomerAccountMgr. This is the package that holds all
the UML model elements and diagrams for the CustomerAccountMgr.

� Rename the Main diagram (created by default) to CustomerAccountMgr
ServiceProviderSpec. This diagram is our service provider specification
diagram (see Figure 9-8 on page 256).

� In this new package select Add UML → Component and name it
CustomerAccountMgr. Apply the <<serviceProvider>> stereotype to it. This
model element represents our CustomerAccountMgr service provider.

� Create a <<derive>> relationship to the domain type that the service provider
is derived from (and named from). An example of how to do this was provided
in “Classify services by functional area” on page 310.

� Drag the CustomerAccountMgr element onto the CustomerAccountMgr
ServiceProviderSpec diagram.

� Create the remaining standard packages and empty freeform diagrams as
shown in Figure 11-23.

Note: In this example there are no atomic service providers that already exist.
If previous SOA projects had delivered solutions that had already produced
atomic service providers in the same domain, then some of the service
providers that we require would already exist and we would most likely be
adding to them.

The topic of reuse as it is relevant to this case is described in “Reusing
architecture and design experience” on page 73.
 Chapter 11. Service specification 327

Figure 11-23 Standard package structure and diagrams applied to the provider

We do the same for each of the remaining identified service providers:
BillingAccountMgr, GeneralLedgerAccountMgr, AddressMgr, and ProductMgr. The
result is in the Service Model - Structure Service Architecture (1).

In Software Architect, and under the Modeling perspective, open the Service
Model - Structure Service Architecture (1), and explore its packages, model
elements, and diagrams in the Project Explorer (Figure 11-24).

Figure 11-24 Service Model - Structure Service Architecture (1)
328 Building SOA Solutions Using the Rational SDP

Match up service specifications with the service providers
Our list that we created in the previous step allows us to do this easily:

1. Customer, (CustomerAccount), (AccountApplication), Address, Product
2. (BillingAccount)
3. (GeneralLedgerAccount)
4. (Address)
5. (Product)

The service specification that matches each core domain type (in parenthesis) is
assigned to the service provider that was identified from the domain type cluster
that it lives in.

This results in the mapping between service providers and service specifications:

In line with this mapping, we now have to move the service specifications so that
they are under the package of the service provider that it has been mapped to.
Let us do this for the CustomerAccount service specification:

� Open the Service Model - Structure Service Architecture (1) model.

� Create a new package called CustomerAccount under the Service Model\3 -
Atomic Business Application Service Providers\CustomerAccountMgr
\Provided Service Specs\ package.

� Rename the default Main diagram to CustomerAccount
ServiceSpecification. This diagram is our service specification diagram for
the CustomerAccount service specification (see “Diagram: Service
specification diagram” on page 253).

� Move the CustomerAccount service specification to this new package, and
then drag the CustomerAccount service specification from the Project Explorer
onto the service specification diagram.

Service provider Service specifications

CustomerAccountMgr CustomerAccount,
AccountApplication

BillingAccountMgr BillingAccount

GeneralLedgerAccountMgr GeneralLedgerAccount

AddressMgr Address

ProductMgr Product
 Chapter 11. Service specification 329

We do the same for the remaining service specifications: AccountApplication,
BillingAccount, GeneralLedgerAccount, Address, Product. The result is in the
Service Model - Structure Service Architecture (2) model.

Open the Service Model - Structure Service Architecture (2), and explore its
packages, model elements, and diagrams in the Project Explorer (Figure 11-25).

Figure 11-25 Service Model - Structure Service Architecture (2)
330 Building SOA Solutions Using the Rational SDP

Model services for the service providers
The magical link between a service provider and the service specifications that it
exposes is provided by services (see “Model element: Service” on page 242).
Here we explain how to create these for atomic services, using the
AccountApplication service specification on the CustomerAccountMgr service
provider as our example:

� Open the Service Model - Structure Service Architecture (2) model.

� Select the CustomerAccountMgr service provider and Add UML → Port. Select
Select Existing Element and then type AccountApplication in the search box
shown (Figure 11-26). Make sure you select the AccountApplication service
specification that is owned by the CustomerAccountMgr.

Figure 11-26 Selecting the AccountApplication service specification to type the service

� Rename the port that gets created to be AccountApplicationService. Apply
the <<service>> stereotype.

Do the same for the remaining service specification/service provider
combinations:

Model info types for the service providers
As per “Pattern 8: Model data ownership” on page 94 we model the data owned
by each of our atomic business application service providers using info types.

Info types are described in “Model element: Information type” on page 246.

Service provider Service specification Service

CustomerAccountMgr CustomerAccount CustomerAccountService

BillingAccountMgr BillingAccount BillingAccountService

GeneralLedgerAccountMgr GeneralLedgerAccount GeneralLedgerAccountService

AddressMgr Address AddressService

ProductMgr Product ProductService
 Chapter 11. Service specification 331

Let us use the CustomerMgr service provider as an example.

We refer back to the domain type clusters drawn in Figure 11-10 on page 311.
The domain type cluster from which we derived the encapsulation boundary for
the CustomerMgr service provider contains the following domain types:

� Customer
� AccountApplication
� CustomerAccount
� Product
� Address

Before we create info types for these, we note that we require local copies of the
PricingCode and AccountApplicationStatus enumerations. Using the Project
Explorer, copy these from the Domain Model\Domain Packages
\ServicingAndSales package to the Service Model\3 - Atomic Business
Application Service Providers\CustomerAccountMgr\Enumerations\ package.

Now, for each of the domain types listed above, we want to create an equivalent
info type in the Service Model\3 - Atomic Business Application Service
Providers\CustomerAccountMgr\Info Types\ package. The easiest way to do
this is to copy across the domain types and modify those so we do this. Make
sure you do this as a single copy action with all of the types selected otherwise
the info types have relationships back to the domain types in the domain model.

Once you have copied across the domain types, you have to make three
modifications:

� First you have to change their stereotype from <<domainType>> to
<<infoType>>.

� Then you must replace any references to the enumerations in the domain
model with references to the corresponding copies in the CustomerAccountMgr
enumerations package.

� Next, in the Project Explorer, find the Product info type that you have created
and delete its sku and description attributes. This is done because the full
view of a product is not stored in the CustomerAccountMgr. We only store the
names of products that appear on account applications and customer
accounts. Note that the ProductMgr owns the full view of products.

Once you have done this, open the CustomerAccountMgr information diagram and
drag the info types onto it. With a bit of rearranging you should arrive at
Figure 11-27.
332 Building SOA Solutions Using the Rational SDP

Figure 11-27 CustomerAccountMgr information diagram

Let us look at what we have now. In the Project Explorer, we should now have a
set of model artifacts as shown in Figure 11-28 (with detail showed for only the
CustomerAccountMgr service provider).
 Chapter 11. Service specification 333

Figure 11-28 Service model with atomic business application service providers added

We do the same for the other atomic business application service providers. The
result is provided in the Service Model - Structure Service Architecture (3) model.

Step 4: Model composite service providers

Next we model our composite business application service providers.

To recap, these are service providers that provide services which make use of
other services in providing their specified behavior.

First we note the guidance provided by the architectural patterns defined in
“Architectural patterns” on page 74.
334 Building SOA Solutions Using the Rational SDP

The following two patterns describe factoring rules to adhere to when defining
the composite service providers:

� “Pattern 1: Factor composition logic away from process logic” on page 76

� “Pattern 3: Factor application-specific logic out of reuse layers” on page 81

Let us now look at how we use the tool to achieve this task step.

Identify the processes and functional areas
As noted in “Business process model” on page 189, the following two business
processes are in scope for our solution:

� Account Opening
� Account Application Inquiry

Armed with the business architecture model (and specifically the business
architecture map—Figure 11-9 on page 310), we inquire of the business process
analyst as to who the owners are of these processes, and we are told that:

� The Account Opening process is owned by the SalesManagement functional
area.

� The Account Application Inquiry process is owned by the CustomerService
functional area.

Find the sub-processes and locate the services for them
Next we consult the business process models in WebSphere Business Modeler
to see what the sub-processes are for each of these processes.

Taking the account opening process as an example, we find the process diagram
shown in Figure 11-29.

Figure 11-29 Account Opening business process

From here we can see that the sub-processes are Account Sales, Apply for
Account, Account Verification and Account Activation. Of these four, we know
that only Account Activation and Account Verification are in scope for our project.
 Chapter 11. Service specification 335

Taking a look in the root of our service model, this is verified by the fact that those
are the only two of the sub-processes for which we already have identified
service specifications (Figure 11-30). To recap, we have a composite business
application service for business sub-processes (refer to “Pattern 4: Base
architecture on business relevant elements” on page 84, factoring rule 3).

Figure 11-30 Existing service specifications in the root of our service model

Note that we are working on the Service Model - Structure Service Architecture
(3) model at this stage.

Note that the remaining service specification in Figure 11-30
(AccountApplicationInquiry) corresponds to a sub-process in the
AccountApplicationInquiry process, and was identified during the service
identification activity.

Identify a composite service provider for each SO system
As we have determined that the processes that are in scope are owned by the
SalesManagement and CustomerService functional areas, we look to see what SO
systems in those areas we have to support behavior for. This detail will normally
be defined in a use case model where you will have captured system use cases
for each of the SO systems for which some behavior is required.

Now create a composite service provider for each of these SO systems (note that
for the sake of simplicity in our example there is a single service-oriented IT
system for each of our functional areas that is named the same as the functional
area):

� SalesManagementComposite <<serviceProvider>>

� CustomerServiceComposite <<serviceProvider>>
336 Building SOA Solutions Using the Rational SDP

Create service providers along with standard package
structure and diagrams

We follow the same procedure as in Step 3: Model atomic service providers
(“Create service providers along with standard package structure and diagrams”
on page 327). Apply these instructions to the list of service providers above. We
note four modifications to the instructions:

� The service providers we create in this step should go under Service Model\2
- Composite Business Application Service Providers\ instead of Service
Model\3 - Atomic Business Application Service Providers\.

� When creating the sub-packages, do not create an Info Types package
because we do not model info types for composite business application
service providers as they do not own any state.

� When creating the sub-packages, create a Composite Service Specs
package.

� Instead of creating a <<derive>> relationship to a domain type, the
<<derive>> relationship should link the service provider to the functional area
that it was derived from (note that these exist in Business Architecture
Model\Business Functional Areas\).

By way of example, we show the result for the SalesManagementComposite in
Figure 11-31.

Figure 11-31 Package structure and diagrams for SalesManagementComposite

Note: In this example there are no composite service providers that already
exist. If previous SOA projects had delivered solutions that had already
touched one of the functional areas and SO systems that we touch on here,
then the service providers would already exist and we would most likely be
adding to them.

The topic of reuse as it is relevant to this case is described in “Services and
reuse” on page 62.
 Chapter 11. Service specification 337

Match up service specifications with the service providers
We now have to decide what services to expose from each of our composite
service providers. As our composite services providers have been based on SO
systems and the services that we are considering have been based on
sub-processes, we do this by matching the sub-processes to SO systems.

This is done by taking the process diagrams for our two in-scope processes
(account opening and account application inquiry) and reviewing them with their
relevant process owners (as noted previously). What we have to determine is
which SO systems mainly support each of the sub-processes. The owning SO
system for each sub-process should be annotated onto each sub-process.

In our example the mapping turns out to be as follows:

The resulting service model at this stage is provided in Service Model - Structure
Service Architecture (4).

Model services for the service providers
This sub-step is a bit different to what we did for our atomic business application
services. This is because an atomic service is only related to a provided service
specification whereas for a composite service it additionally needs to be related
to the service specifications that it requires.

First we have to determine which service specifications are required for each of
our composite services.

To start it is important for us to point out that you will only know for sure which
service specifications are require once you have completed your service
interaction modeling (as described in “Step 2: Design service interactions” on
page 359). However we take a stab at it now as it makes it easier to draw the
service interactions, and use them to refine our decisions.

To perform the mapping, we have to look at two things:

1. The list of composite services needed along with the service operations from
their provided service specifications.

Service provider Service specifications

SalesManagementComposite AccountActivation,
AccountVerification

CustomerServiceComposite AccountApplicationInquiry
338 Building SOA Solutions Using the Rational SDP

We identify a new composite service for each of the service specifications
listed in the previous sub-step, and note the service operations for each
composite service.

2. The list of atomic service specifications to choose from (these all come from
“Step 3: Model atomic service providers” on page 319):

– Address
– BillingAccount
– CustomerAccount
– AccountApplication
– GeneralLedgerAccount
– Product

We now have to achieve a mapping between our composite service operations to
the atomic services they require. Note this is quite a rough mapping as the
composite service operations actually have to be mapped to atomic service
operations. This will be done when we model our service interactions.

A simple mapping is achieved by considering the composite service operations
one at a time, looking at what business logic or data instances are needed to
support its behavior, and then taking a stab at which atomic service that business
logic or data instance is owned by. Not much more science to it than that at this
stage.

Further hints that would help us do this can be found by looking at the system
use case that matches the service operation (as we do in more detail later when
modeling our service interactions) and also by consulting the information
diagrams for each of our atomic business application service providers (these
were created in “Step 3: Model atomic service providers” on page 319, see the
“Model info types for the service providers” sub-step).

The mapping of the composite services is complete (Table 11-1).

Composite service Composite service operations

AccountActivation activateAccount()

AccountVerification determineApplicantEligibility()
verifyCustomerAddress()

AccountApplicationInquiry searchAccountApplications()
 Chapter 11. Service specification 339

Table 11-1 Mapping of composite services

We capture each row in this table in our model in the form of a composite service
specification (see “Model element: Composite service specification” on
page 243).

Let us use the AccountActivation composite service as an example:

� Navigate to the Service Model\2 - Composite Business Application
Service Providers\SalesManagementComposite\Composite Service Specs\
package.

� Select Add UML → Class. Name the class AccountActivationCompServSpec
and set the keyword of the class to <<compositeServiceSpec>>
(Figure 11-32).

Figure 11-32 Setting the <<compositeServiceSpec>> keyword

� Place this class on the SalesManagementComposite CompositeServiceSpecs
diagram.

� From the Project Explorer, drag the AccountActivation service specification
onto the same diagram. Then drag the three atomic service specifications
onto the diagram as per the mapping table (Table 11-1).

Composite service Composite service operations Atomic service
specifications

AccountActivation activateAccount() BillingAccount,
CustomerAccount,
GeneralLedgerAccount

AccountVerification determineApplicantEligibility() AccountApplication

AccountVerification verifyCustomerAddress() Address

AccountApplication
Inquiry

searchAccountApplications() AccountApplication
340 Building SOA Solutions Using the Rational SDP

� Draw an <Interface Realization> between AccountActivationCompServSpec
and AccountActivation.

� Draw a <Usage> relationship between AccountActivationCompServSpec and
each of the required service specifications. This should result in Figure 11-33.

Figure 11-33 AccountActivationCompServSpec and its service specifications

Now that we have our composite service specifications, we go on to create the
composite services using them:

� Select the SalesManagementComposite service provider and Add UML → Port.
Choose Select Existing Element and type AccountActivationCompServSpec in
the search box shown. Make sure you select the service specification that is
owned by the SalesManagementComposite.

� Note that when we did this for the atomic services, we selected a service
specification (based on an interface) to type the port. Now we use a
composite service specification (based on a class) instead.

� Rename the port that gets created to be AccountActivationService. Apply
the <<service>> stereotype.

Do the same for the remaining service specification/service provider
combinations as shown in Table 11-2.
 Chapter 11. Service specification 341

Table 11-2 Service specification to service provider mapping

Let us look at what we have now.

Looking in the Project Explorer, we should now have a set of model artifacts as
shown in Figure 11-34 (with detail showed for only the
SalesManagementComposite service provider).

Figure 11-34 Service model with composite business application service providers

Similarly, we design the other composite service specifications. At the end, we
have:

� AccountActivationCompServSpec (Figure 11-33)
� AccountVerificationCompServSpec (Figure 11-35)
� AccountApplicationInquiryCompServSpec (Figure 11-36)

Service provider Service specification Service

SalesManagement
Composite

AccountVerification AccountVerificationService

CustomerService
Composite

AccountApplication
Inquiry

AccountApplicationInquiryService
342 Building SOA Solutions Using the Rational SDP

Figure 11-35 AccountVerificationCompServSpec

Figure 11-36 AccountApplicationInquiryCompServSpec

The resulting service model at this stage is provided with Service Model -
Structure Service Architecture (5).
 Chapter 11. Service specification 343

Step 5: Model service consumers

Having modeled the service providers that appear in our service architecture, we
move our attention to the consumers of the services that we have defined.

First we note the guidance provided by the architectural patterns defined in
“Architectural patterns” on page 74. Two relevant patterns are:

� “Pattern 4: Base architecture on business relevant elements” on page 84,
factoring rule 2

� “Pattern 12: Drive applications using business processes” on page 101

Let us now look at how we use the tool to achieve this task step.

Locate the processes identified previously
This is easy to do. They were described in “Step 4: Model composite service
providers” on page 334. The two processes that we are interested in are:

� Account opening
� Account application inquiry

Identify a service consumer for each process
As suggested in “Pattern 4: Base architecture on business relevant elements” on
page 84 and “Pattern 12: Drive applications using business processes” on
page 101, we identify a single service consumer for each of our business
processes. This gives us the following two service consumers:

� AccountOpeningProcess <<serviceConsumer>>
� AccountApplicationInquiryProcess <<serviceConsumer>>

Let us use the AccountOpeningProcess as an example.

In the Service Model\1 - Service Consumers\ package, create a new package
(select Add UML → Package) and name it AccountOpeningProcess. This is the
package that holds all the UML model elements and diagrams for the
AccountOpeningProcess.

Note: In this example there are no service consumers that already exist. If
previous SOA projects had delivered solutions that had already touched the
same business processes, then the service consumers would already exist
and we would most likely be adding to them.

The topic of reuse as it is relevant to this case is described in “Reusing
architecture and design experience” on page 73.
344 Building SOA Solutions Using the Rational SDP

Rename the Main diagram (created by default) to AccountOpeningProcess
ServiceConsumerSpec. This diagram is our service consumer specification
diagram (see “Diagram: Service consumer specification diagram” on page 254).
Open the diagram and drag the AccountOpeningProcess from the Project
Explorer into it.

In this new package select Add UML → Component and name it
AccountOpeningProcess. Apply the <<serviceConsumer>> stereotype to it. This
model element represents our AccountOpeningProcess service consumer.

Do the same for the AccountApplicationInquiryProcess.

Model the required service specifications for the service
consumer

Determining the required service specifications for each of our service
consumers is now very easy. All the work was done in “Step 4: Model composite
service providers” on page 334. From this we know:

1. What the in-scope sub-processes are for each of our processes.

2. What composite services provide automation support for these
sub-processes (these are the services that have the same names as our
sub-processes and which are exposed by our composite business application
service providers).

All we have to do is to create the appropriate links in the tool. These are
summarized below.

Let s use the AccountOpeningProcess as an example:

� Open the AccountOpeningProcess ServiceConsumerSpec diagram. It should
already have the AccountOpeningProcess service consumer on it. From the
Project Explorer, drag the AccountActivation and AccountVerification
service specifications (these can be found in the corresponding sub packages
within the Service Model\2 - Composite Business Application Service
Providers\SalesManagementComposite\Provided Service Specs\ package)
into the same diagram.

Service consumer Required service specifications

AccountOpeningProcess AccountActivation,
AccountVerification

AccountApplicationInquiryProcess AccountApplicationInquiry
 Chapter 11. Service specification 345

� Then draw <Usage> between the AccountOpeningProcess and the two required
service specifications. The result is shown in Figure 11-37.

Figure 11-37 AccountOpeningProcess service consumer and its service specifications

Let us look at what we have now. In the Project Explorer we should now have a
set of model artifacts as shown in Figure 11-38.

Figure 11-38 Service model with service consumers added

The resulting service model at this stage is provided with Service Model -
Structure Service Architecture (6).

Step 6: Assign parts to service partition

Having modeled the various bits and pieces that form a part of our service
architecture, we now model how all these things fit together!

To reiterate what the purpose of the current task is, we took in an unstructured
service model as input and we want to produce a service model that is structured
and ready for further refinement. Note that the structure we produce in this task is
a straw man or candidate architecture, which is verified and refined during the
346 Building SOA Solutions Using the Rational SDP

task “Task 2: Refine service architecture” on page 356. So in this task we are
capturing an initial idea as to what the service architecture looks like.

Let us quickly recapitulate what we have so far (Figure 11-39):

� A set of service consumers, one for each of our business processes

� A set of composite business application service providers, one for each of our
SO systems, and each exposing the service specifications identified for the
sub-processes that they support

� A set of atomic business application service providers that have been derived
from the domain model, specifically supporting those domain types for which
our solution is interested in data instances

� Two SO system (identified from the business architecture model) and a
service partition for each one of these

Figure 11-39 Service model so far...

Note that we are now working with Service Model - Structure Service
Architecture (6).

Before we go any further, we note the following relevant architectural pattern:

� “Pattern 5: Manage complexity using SO systems” on page 86
 Chapter 11. Service specification 347

Let us now look at how we use the tool to achieve this task step.

Allocate composite business application services to the
service partitions

Let us start with the SalesManagement SO system. We model its structure by
adding detail to the SalesManagement service partition.

To do this, we open the SalesManagement SOAStructure diagram. Note that it is
empty at the moment as shown in Figure 11-18 on page 318.

We start adding parts to this diagram (and therefore the service partition
representing the SO system) by dragging on service consumers and service
providers from the Project Explorer:

� We start with the easiest first, the composite service provider. To verify which
composite service provider we require for the service partition, we make use
of the Browse Diagram functionality in Rational Software Architect.

� In the Project Explorer, select the SalesManagement service partition and
Visualize → Explore in Browse Diagram.

� Set the degrees of separation to 2 using the diagram controls at the top (see
Figure 11-40). Then click Apply.

Figure 11-40 Setting the degrees of separation on a browse diagram

� The resulting diagram is shown in Figure 11-41.

Figure 11-41 Browse diagram for the SalesManagement service partition
348 Building SOA Solutions Using the Rational SDP

From this diagram we can deduce that the service provider that provides
composite services to support the sub-processes owned by the SalesManagement
functional area is the SalesManagementComposite service provider.

Therefore, using the Project Explorer, we select the SalesManagementComposite
service provider and drag it onto our SOA structure diagram resulting in
Figure 11-42.

Figure 11-42 Drag-and-drop of the SalesManagementComposite service provider

The first thing we do is clean this up a bit. We resize the text box that the service
name appears in, and rearrange the services themselves to give a result that
looks more like Figure 11-43.

Figure 11-43 Cleaned-up result of the SalesManagement service partition

Allocate service consumers to the service partitions
To determine which service consumer to place on our diagram, we have to know
which processes own the sub-processes that correspond to the composite
services that we have placed on the diagram. In our example the composite
services are the AccountActivationService and the
AccountVerificationService, meaning that the corresponding sub-processes
are AccountActivation and AccountVerification. These are both part of the
account opening process, which means that the service consumer we should be
using is the AccountOpeningProcess service consumer.
 Chapter 11. Service specification 349

Using the Project Explorer we drag and drop this service consumer onto the
diagram. The result is shown in Figure 11-44.

Figure 11-44 AccountOpeningProcess added to our service partition

Allocate atomic business application services to the service
partitions

To determine which atomic services to place on the diagram, we refer to the
composite service specification design performed in a previous step. For
example, we know that the AccountVerificationCompServSpec uses the Address
and AccountApplication service specifications. Therefore, we have to add to the
diagram the atomic service providers for these specifications. In our case, they
are AddressMgr and CustomerAccountMgr. Similarly, we know that we need
BillingAccountMgr and GeneralLedgerAccountMgr for
AccountActivationCompServSpec.

Using the Project Explorer, we drag AddressMgr, CustomerAccountMgr,
BillingAccountMgr, and GeneralLedgerAccountMgr onto the atomic service layer
of the diagram (Figure 11-45).
350 Building SOA Solutions Using the Rational SDP

Figure 11-45 Service consumers, composite, and atomic services for SalesManagement

Create candidate service channels
Before we create the service channel, we look at the graphical notation used to
represent services. Figure 11-46 shows the AccountVerificationService of
SalesManagementComposite.

Figure 11-46 AccountVerification service
 Chapter 11. Service specification 351

The graphical representation used is called lollipop, where a provided interface
is represented as a circle, and a required interface as a semi-circle. In
Figure 11-46 we can see that AccountVerificationService, typed as
AccountVerificationCompServSpec, provides one interface,
AccountVerification, and requires two interfaces, Address, and
AccountApplication.

The AccountOpeningProcess service consumer has AccountVerification as one
of its required interfaces. We now connect AccountOpeningProcess’s
AccountVerification required interface to AccountVerificationService’s
provided AccountVerification interface.

Select the AccountVerification required interface in AccountOpeningProcess
(Figure 11-47).

Figure 11-47 AccountOpeningProcess’s required AccountVerification interface

Drag it into the AccountVerification interface of AccountVerificationService.
Release your mouse button when the lines are highlighted in green
(Figure 11-48).

Figure 11-48 Creating a connector

A connector, AccountVerification1, is created. Stereotype the connector as
<<serviceChannel>> (Figure 11-49).
352 Building SOA Solutions Using the Rational SDP

Figure 11-49 AccountVerification1 service channel

Create the other service channels as shown in Figure 11-50. Alternatively, look at
the solution in Service Model - Structure Service Architecture (7), where we have
created the CustomerService service partition as well (Figure 11-51).

Figure 11-50 Sales Management service partition
 Chapter 11. Service specification 353

Figure 11-51 The CustomerService service partition

Note that you can see the new service channels in the Project Explorer
(Figure 11-52).

Figure 11-52 Service channels under the SalesManagement service partition

Also note that we removed the bottom layer because we do not have
infrastructure service providers in our example.
354 Building SOA Solutions Using the Rational SDP

Step 7: Consider service policies

Service policies are explained in “Service policies” on page 220. In this section,
we discuss how service policy needs are addressed when designing the service
model.

The IBM Systems Journal article on service-oriented architecture (listed under
resources) defines policy as follows:

A policy is a high-level statement of how things are managed or organized,
including management goals, objectives, beliefs, and responsibilities. Policies
are normally defined at an overall strategy level and can be related to a
specific area, for example, security and management policies.

Services have policies associated to them, as well as service-level agreements
and quality-of-service (definitions from the same article):

� Service-level agreement (SLA): A service-level agreement is an agreement
between an IT service provider and the business that includes:

– Performance and capacity (such as user response times, business
volumes, throughput rates, system sizing, and utilization levels)

– Availability (mean time between failure for all or parts of the system,
disaster recovery mechanisms, mean time to recovery, and so on)

– Security (for example, response to systematic attempts to break into a
system)

� Quality of service (QoS): Quality of service addresses all features and
characteristics of a product or service that bear on its ability to satisfy stated
or implied objectives (from International Organization for Standardization
[ISO] 8402)

You can consider these as non-functional requirements that have to be
addressed by your service-oriented architecture.

Note that JK Enterprises has enterprise-level IT policies (defined in the SOA SDP
Redbook Enterprise Content RequisitePro project), as well as business
process-specific policies, derived from the business policy defined by the
Account Opening business process (how different parts of the business process
interact).

One of the service policies that comes the JK Enterprises requirement effort is
described as follows:

All messages must be encrypted.
 Chapter 11. Service specification 355

For example, we add a service policy statement (as defined in the UML 2 profile
for software services) to the SalesManagementComposite service provider:

� Open the Service Model - Structure Service Architecture (7).

� Double-click the SalesManagementComposite package under the 2 -
Composite Business Application Services package. This should open the
SalesManagementComposite ServiceProviderSpec diagram, which shows
SalesManagementComposite.

� On the diagram, select SalesManagementComposite and Add UML →
Constraint.

� Name the constraint Messages must be encrypted.

� Stereotype the constraint as <<policyStatement>>.

The resulting diagram is shown in Figure 11-53.

Figure 11-53 Policy statement of SalesManagementComposite

Note that we have not address the policy in our architecture. We simply captured
the fact that messages to and from SalesManagement must be encrypted.

Task 2: Refine service architecture

This task takes the output of the structure service architecture task and fully
specify the service architecture in terms of structure and behavior.

The constituent steps of this task are listed in Figure 11-54 and are described
further in this section.
356 Building SOA Solutions Using the Rational SDP

Figure 11-54 Refine service architecture steps

Step 1: Design service collaborations

In this section, we design the service collaborations (as described in “Model
element: Service collaboration” on page 250) and interactions between service
consumers and services.

The inputs for service collaboration and interaction design are the system use
case model (as described in “System use cases” on page 224), and the service
partitions created during “Task 1: Structure service architecture” on page 307.

Note that using system use cases is not mandatory, but it has value, as
described in this section.

For JK Enterprises, we have two sets of system use cases, one for each of the IT
systems in-scope (and specifically here for the service-oriented IT systems or
SO systems):

� Sales Management system use cases (Figure 11-55).
 Chapter 11. Service specification 357

Figure 11-55 Sales Management system use cases

� Customer Service system use case (Figure 11-56).

Figure 11-56 Customer Service system use case

One of the first questions to answer about service interaction is: How many
service interactions do we have to create? The technique we use is to create one
service collaboration (as defined in the UML 2.0 profile for software services) per
system use case. We thus have to create four service collaborations for JK
Enterprises.

Then, we detail each service collaboration with service interactions, one for each
use case flow. Detailing service interactions allows us to specify the behavior of
composite services, which act as service providers (usually to a business
358 Building SOA Solutions Using the Rational SDP

process) and also as service consumers (of atomic services). During this
exercise, we are likely to identify new required operations on atomic services.

We now focus on Sales Management’s Determine applicant eligibility system
use case.

We create a service collaboration and interaction for Determine Applicant
Eligibility:

� From the Project Explorer, select the Service Partitions → Sales
Management package and Add Diagram → Sequence Diagram.

Software Architect creates collaboration, interaction, and sequence diagram.

� Rename the collaboration to Determine Applicant Eligibility, the
interaction to Determine applicant eligibility (basic flow), and the
sequence diagram to Determine applicant eligibility (basic flow)
service interaction.

Note that for this exercise, we only design the basic flow service interaction.

� Select the Determine Applicant Eligibility collaboration, and stereotype it as
serviceCollaboration (Properties → Stereotypes → Add Stereotypes...
serviceCollaboration).

Step 2: Design service interactions

As a starting point, we have the initial service partition for Sales Management, as
described in the previous section (Figure 11-57).
 Chapter 11. Service specification 359

Figure 11-57 Initial Sales Management service partition

We drag all of the composite and atomic services and consumers (including
business processes) required to determine an applicant’s eligibility into the
interaction diagram. Note that to be complete, we also include in the service
interaction the workflow that triggers the business process:

� From the use case model, we know that workflow is required. Drag the
workflow actor from the use case model into the diagram.

Software Architects creates an interaction lifeline for workflow (Figure 11-58).

Figure 11-58 Workflow lifeline
360 Building SOA Solutions Using the Rational SDP

� Drag the Account Opening service consumer into the diagram (from the 1-
Service Consumers → AccountOpeningProcess package).

� To improve the layout, we decrease the width of the lifeline. Select the
AccountOpeningProcess lifeline and select Filters → Stereotype and Visibility
Style → Stereotype: Decoration (Figure 11-59).

Figure 11-59 Changing the appearance of a lifeline

From our service identification exercise and the structure of the service
architecture, we know that AccountOpeningProcess is a consumer of the
AccountVerification composite service. Also, we know that
AccountVerification is in turn a consumer of the AccountApplication service.

� Drag the AccountVerification serviceSpecification into the diagram (from
the 2- Composite Business Application Services →
SalesManagementComposite → Provided Services Specs →
AccountVerification package).
 Chapter 11. Service specification 361

� Perform the step described in Figure 11-59.

� Optionally, rename the lifeline to proc (to improve visibility and decrease the
overall width of the diagram.

� Repeat the previous three steps for AccountApplication (located under the 3
- Atomic Business Application Service Providers → CustomerAccountMgr →
Provided Service Specs → AccountApplication package).

The resulting diagram is shown in Figure 11-60.

Figure 11-60 Determine Applicant Eligibility’s lifelines

Note that we have not used the palette to create new lifelines, but instead we
dragged existing model elements onto the diagram. This is very important
because during our next step, we may create new operations on service
specifications, as required by the interaction.

We know that workflow interacts with AccountOpeningProcess, and the initial
service architecture already specified that AccountOpeningProcess invokes the
determineApplicantEligibility operation of the AccountVerification service.
We now capture that in the interaction diagram:

� Select the workflow lifeline, and mouse over the dotted line. You should see
the Click and drag to create a message arrow (Figure 11-61).

Figure 11-61 Creating a message from a lifeline (1)

� Click and hold the small square, then mouse over the AccountOpeningProcess
lifeline (dotted line) and release the mouse button.

� Select Create Message from the contextual menu (Figure 11-62).
362 Building SOA Solutions Using the Rational SDP

Figure 11-62 Creating a message from a lifeline (2)

� When presented with the list of operations, select
determineApplicantEligibility. The resulting diagram is shown in Figure 11-63.

Figure 11-63 determineApplicantElligibility message between workflow and process

� Repeat previous steps to create the determinApplicantEligibility
message between AccountOpeningProcess and AccountVerification
(Figure 11-64).

Figure 11-64 determineApplicantEligibility message

For the previous message, the operation was already available to us because of
how the AccountVerification composite service’s
determinApplicantEligibility operation was identified from the business task.
It is usually the case with composite services identified from business processes
that you have the operations already available at this stage.
 Chapter 11. Service specification 363

For the atomic services, however, operations would typically not be defined yet if
the services are new (not being reused from another project). We now create an
operation on the AccountApplication atomic service from the interaction
diagram:

� Create a new message between AccountVerification and
AccountApplication.

� Select Create new operation. In the pop-up dialog type
determineApplicantEligibility and click OK.

Software Architect creates a new determineApplicantEligibility operation
in the Project Explorer. We specify in details what the operation parameters
and return type are in the next section.

� Save the work. The resulting diagram is shown in Figure 11-65.

Figure 11-65 Determine applicant eligibility (basic flow) service interaction

Note that for Determine Applicant Eligibility, there is only one message
between the composite service and one atomic service. Typically, a composite
service would interact with more than one atomic services, as shown in the
Activate Account service interaction (Figure 11-66).
364 Building SOA Solutions Using the Rational SDP

Figure 11-66 Activate account (basic flow) service interaction

For the Activate Account service interaction, the AccountActivation composite
service invokes three atomic services’ operations (in order):

� createAccountFromAccountApplication (from AccountApplication)
� createAccount (from BillingAccount)
� createAccount (from GeneralLedgerAccount)

Using the same technique, we also design service interactions for the remaining
system use cases. The result is that we have created four service interaction
diagrams, and identified required operations for atomic services. and show the
service interactions for the Verify address (Figure 11-67) and Inquire on
application status (Figure 11-68) respectively.
 Chapter 11. Service specification 365

Figure 11-67 Verify address (basic flow) service interaction

Figure 11-68 Inquire on application status (basic flow) service interaction

Note that we used service specifications for lifelines. Theoretically, we should use
service instead of service specification, as described in “Service model work
product” on page 234. We used service specifications, because it makes it easier
to create new operations on composite services.

Step 3: Fully specify service consumers

Designing service collaborations and interactions also allows us to verify service
consumers, and fully specify how they interact with services. For example, we
identified a service consumers named AccountOpeningBusinessProcess (now
renamed to AccountOpeningProcess) during service identification.
366 Building SOA Solutions Using the Rational SDP

From the Activate account, Determine applicant eligibility, and Verify address
service interactions, we now know exactly what operations it calls
(activateAccount, determineApplicantEligibility, and
verifyCustomerAddress), and what service specifications it requires
(AccountVerification, and AccountActivation). This is shown in Figure 11-69:

1. Called operations
2. Required service specifications

Figure 11-69 AccountOpeningProcess service consumer

Note that in this case, all of the three operations defined in the service
specifications are called by the service consumer. This is not always the case.

For example, the required service specifications could define more operations
than would be triggered by the consumer. Because AccountVerification and
AccountActivation were identified from a top-down business process, the
triggered and defined operations are very much aligned. Also, in the case of non
automated human tasks, triggered operations exist for which there are no
corresponding operation on a service specification, as in the
AccountApplicationInquiryProcess service consumer (Figure 11-70).

[1]

[2]
 Chapter 11. Service specification 367

Figure 11-70 AccountApplicationInquiry service consumer

We have completed the design of service collaborations and interactions. From
this task, we have fully specified the service consumers, and we have identified
all of the required service operations. The next step is to specify what the service
operation parameters, messages, and info types are.

Step 4: Design parameter types, messages, and info types

The inputs to this task are the domain model, service interactions (as described
in the previous section), and initial service specifications.

Design parameter types
As described in “Model element: Parameter type” on page 245, parameter types
are used to model information structures that are passed in and out of service
specifications’ operations.

In this section, we look in details at the CustomerAccountMgr service provider.

From the JK Enterprises service interaction design, we know that the
AccountApplication service specification has a
determineApplicationEligibility operation that takes an application as input
parameter. We also know that determineApplicationEligibility must return a
message containing information about whether or not the customer is eligible to
open the account. At this stage, we start to fully specify what this input
application and output eligibility message are.
368 Building SOA Solutions Using the Rational SDP

JK Enterprises also defines a domain model, from which we derive the
parameter types. It is important to design parameter types, and not just use the
domain types because the information that is passed in and out of service
operations is different from the information defined in a domain model.

The JK Enterprises domain model is shown in Figure 11-71.

Figure 11-71 JK Enterprises’s Servicing and Sales domain model

We can reuse the AccountApplication domain type to design our parameter
types. We design the AccountApplication parameter type, as shown in
Figure 11-72.
 Chapter 11. Service specification 369

Figure 11-72 AccountApplication parameter type

Note that although the AccountApplication parameter type is derived from and
has the same name as the AccountApplication domain type, it is does not have
the same attributes. For example, we define a products attribute, which specifies
which products the customer is applying for.

Note also that parameterType and domainType are not stereotypes (defined in a
profile), but keywords.

The other parameter types for CustomerAccountMgr can be found under the 3-
Atomic Business Application Service Providers → CustomerAccountMgr →
Parameter Types package. Note that patterns and transformations would help
derive parameter types from domain types.

Specify operation parameter types
After designing the AccountApplication parameter type, we specify that the
AccountApplication service specification’s determineApplicationEligibility
operation takes an AccountApplication as input parameter type.

� Open the AccountApplication ServiceSpec diagram from under the 3 -
Atomic Business Application Service Providers → CustomerAccountMgr →
Provided Service Specs → AccountApplication.

� Drag the AccountApplication parameter type from the Project Explorer into
the diagram.
370 Building SOA Solutions Using the Rational SDP

� On the diagram and select the AccountApplication’s
determineApplicationEligibility operation.

� From the Properties view, select the Parameters tab, and click Insert new
parameter (Figure 11-73).

Figure 11-73 Insert new parameter

� Type application in the Name cell.

� Click... in the Type cell.

� In the Select Element for Type window, type AccountApplication, and select
the AccountApplication parameter type. Click OK.

� To see the signature of the operation, select the AccountApplication service
specification, right-click, and select Filters → Show signature.

Design messages
Designing messages is optional.

Message is a stereotype defined in the UML 2.0 profile for software services. As
described in “Model element: Message” on page 244, a message is a container
which identifies a subset of an information model which is passed into or out of a
service invocation. A message is always passed by value and should have no
defined behavior.

During service identification, the return type that was specified for the
determineApplicationEligibility operation was boolean (true or false). By
looking at the Determine applicant eligibility service interactions (Figure 11-74)
we realize that the AccountVerification composite service must have the
AccountApplication returned from the AccountApplication atomic service, and
not just a true or false.
 Chapter 11. Service specification 371

Figure 11-74 Determine applicant eligibility (basic flow) service interactions

Sometimes, an application may be approved, but the application was almost not
approved. In that case, it would be very useful if the
determineApplicationEligibility operation returned a warning message that
would describe that even though it is approved, the application is risky.

Create messages
We design a message for the determineApplicationEligibility operation’s
return type:

� Open the CustomerAccountMgr messages diagram under the 3 - Atomic
Business Application Service Providers → CustomerAccountMgr →
Messages package.

� From the diagram, create a new class stereotyped as Message and name it
EligibilityMessage.

� Drag the AccountApplication parameter type into the diagram.

� Create another Message class named CreditWarning.

� Add an attribute named creditScoreComment of type String to the
CreditWarning message.

The resulting diagram is shown in Figure 11-75.
372 Building SOA Solutions Using the Rational SDP

Figure 11-75 Intermediary EligibilityMessage diagram

We now design EligibilityMessage so that acts as a container of
AccountApplication and CreditWarning.

� Mouse over EligibilityMessage. When the outbound arrow appears, click
the mouse button on the small square, drag over to AccountApplication, and
release the mouse button (Figure 11-76).

Figure 11-76 Creating an association: EligibilityMessage to AccountApplication

� Select Create Composition Association from the pop-up menu.

Creating a composition association from EligibilityMessage to
AccountApplication means that an instance of AccountApplication does not
live without an EligibilityMessage, and is always contained by an
EligibilityMessage. In our case, we want the message to only contain one
AccountApplication. We specify that in the model:

� From the diagram, select the new association. You should see its details in
the Properties view (Figure 11-77).
 Chapter 11. Service specification 373

Figure 11-77 Association details

� On the AccountApplication side (right-hand side), change the value of
Multiplicity from * to 1.

� Using the same technique, create a composition association between
EligibilityMessage and CreditWarning. Make sure that an
EligibilityMessage can contain zero or more warnings.

The resulting diagram is shown in Figure 11-78.
374 Building SOA Solutions Using the Rational SDP

Figure 11-78 Design of EligibilityMessage

Note that designing a message in this case is useful partly because operations
only have one return type (message), and we want to return information about
AccountApplication and CreditWarning.

We also design an ApplicationAndAccountMessage for the
createAccountFromAccountApplication operation of AccountApplication
(Figure 11-79).

Figure 11-79 ApplicationAndAccountMessage
 Chapter 11. Service specification 375

We design the AddressExistenceMessage for the return type of the
validateAddressExistence operation of the Address service specification
(Figure 11-80).

Figure 11-80 AddressExistenceMessage

Now that we have designed the messages, we are ready to use them in the
definition of service specification operations.

Use messages in operation definitions
We specify that the AccountApplication determineApplicationEligibility
operation returns EligibilityMessage:

� Open the AccountApplication ServiceSpec diagram from under the 3 -
Atomic Business Application Service Providers → CustomerAccountMgr →
Provided Service Specs → AccountApplication.

� Drag EligibilityMessage, AccountApplication, and CreditWarning into the
diagram.

� Select the AccountApplication determineApplicationEligibility operation.
From the General tab of the Properties view, click Set Return Type... and
select the EligibilityMessage. The result is shown in Figure 11-81.

Figure 11-81 General properties of the determineApplicationEligibility operation

We also fully specify the other two operations of the AccountApplication service
specification. The resulting AccountApplication ServiceSpec diagram is shown
in Figure 11-82.
376 Building SOA Solutions Using the Rational SDP

Figure 11-82 AccountApplication service specification

Note that in service specification diagrams, we do not represent messages with
associations (as in the messages diagrams), but with attributes instead. This
does not make a difference to the Message model elements; it is a different way
to present the service specification. We use attributes because developers
(implementers) are going to use this diagram and they typically prefer textual to
graphical notations. If you prefer to see the associations, select a message
attribute, right-click, and then select Filters → Show as Association.

We also fully specify the other service specifications. The resulting service
specifications are:

� AccountApplication (Figure 11-82)
� AccountApplicationInquiry (Figure 11-83) -
� AccountActivation (Figure 11-84)
� AccountVerification (Figure 11-85)
� Address (Figure 11-86)
 Chapter 11. Service specification 377

� BillingAccount (Figure 11-87)
� CustomerAccount (Figure 11-88)
� GeneralLedgerAccount (Figure 11-89)

Figure 11-83 AccountApplicationInquiry service specification

Figure 11-84 AccountActivation service specification
378 Building SOA Solutions Using the Rational SDP

Figure 11-85 AccountVerification service specification

Figure 11-86 Address service specification
 Chapter 11. Service specification 379

Figure 11-87 BillingAccount service specification

Figure 11-88 CustomerAccount service specification

Figure 11-89 GeneralLedgerAccount service specification
380 Building SOA Solutions Using the Rational SDP

At this stage, when we have defined all of the service specifications, operations,
parameter types, and messages, we have completed the design of service
specifications.

Design info types
Designing info types is optional.

As described in “Model element: Information type” on page 246, info types are
used to specify a black-box view of information structures that are persisted.

Note that we decided to have info types owned by service providers, so that they
provide a consolidated black-box view of the data managed by a service provider
across all of its provided service specifications. It also means that service
providers are responsible for the state of their info types.

The inputs used to specify info types are mainly the domain model and the
service specifications.

Note that because composite services do not typically persist data, we design
info types for atomic services only.

Note also that info types are not explicitly associated with parameter types and
messages. Parameter types and messages are about the information being
exchanged between service consumers and providers, whereas info types are
about the information that is persisted by service providers. Service
implementers (developers), however, make the connection between parameter
types and info types when they write the code. Code could for example create a
new instance of an info type, populate the info type instance with information
from a parameter type instance, and then persist the info type instance.

In this section, we use a Product info type example to illustrate info types.
Figure 11-90 shows the Product info type for the ProductMgr service provider.

Figure 11-90 ProductMgr: Product info type
 Chapter 11. Service specification 381

Figure 11-91 shows the info types for the CustomerAccountMgr service provider,
including a Product info type as well.

Figure 11-91 AccountApplicationMgr info types

As you can see in Figure 11-90, a product is defined by the domain model as
having three parameters:

name Name of the product

sku Stock-keeping-unit for the product

description Description in English for the product

The Product info type defined under ProductMgr derives from the Product
domain type. In our case, it actually has the exact same three attributes. It makes
sense for the ProductMgr service provider, which is responsible for persisting
products.

The Product info type (Figure 11-91) under the AccountApplicationMgr service
provider, however, only has one parameter (product name). This means that
AccountApplicationMgr does not persist full product information. This makes
382 Building SOA Solutions Using the Rational SDP

sense because AccountApplicationMgr is about account applications and not
products. AccountApplicationMgr only needs to persist the information
necessary to get the full product information from ProductMgr.

We also specify info types for other service providers. To summarize, we have
info types for:

� ProductMgr (Figure 11-90 on page 381)
� AccountApplicationMgr (Figure 11-91 on page 382)
� AddressMgr (Figure 11-92)
� BillingAccountMgr (Figure 11-93)

Figure 11-92 AddressMgr info types

Figure 11-93 BillingAccountMgr info types
 Chapter 11. Service specification 383

As described in “Service model work product” on page 234, we could also define
the persistence behavior provided by a service operation where this behavior is
described in terms of pre-conditions and post-conditions which refer to the info
types. In other words, the info types are used when an operation has persistence
behavior. We are not describing this in details.

Step 6: Validate the final service model

We started the service specification activity by validating the analysis level of the
service model, which is a set of identified candidate services specifications and
their operations. We then created the real service model and fully specified all of
its elements and diagrams. We also created the initial version of the design
model (the service components). We now complete service specification by
validating the service model that we have fully specified.

We have to make sure that all services are:

� Self-contained: Although we have not worked on the deployment model yet,
by looking at our service model and more specifically our services providers
and their services, we have to make sure that the services can be deployed
independently, and that a service provider can be replaced by another service
provider in our architecture.

� Implementable: Are all services operations in the architecture
implementable? For example, is there enough information in the parameter
types or request messages for developers to implement the operation as a
Java method?

Note that validation does not stop here and services have to be validated
throughout their life cycle. For example, we want to make sure that services,
once deployed, meet the non-functional requirements specified by the business
at all times.

Task 3: Model service assemblies

This task populates the deployment model with assemblies and assembly parts
(as introduced in “Different forms of a service” on page 49). These are used to
model the deployable pieces of software (assemblies) and the parts that they are
made up of (assembly parts).

The detail of this task is outside of the scope of this book.
384 Building SOA Solutions Using the Rational SDP

Task 4: Model service deployment

This task models the deployment infrastructure (in terms of physical and logical
nodes), and then models the deployment of assemblies onto these
infrastructures.

The detail of this task is outside of the scope of this book.

Output of service specification for JK Enterprises

The output of service specification is a fully specified and validated service
model work product, with all of its elements and diagrams. The result of the
different service specification activities have been described under each section
of this chapter (as a list and set of diagrams). Refer to “Service model work
product” on page 234 for a complete description of what should be in the service
model.

In Chapter 15, “Creating reusable assets” on page 533 we describe packaging
and publishing the service model as a reusable asset.

Next steps

At the end of service specification, most of the architecturally significant
elements have been specified, and designers and implementers use the output
of service specification to perform their job. The activities that follow service
specifications are:

� Service realization: Designers use the fully specified service model to create
and fully specify the design model. They design how the service providers are
realized.

� Service implementation: Service implementers use the service model to
implement the service binding (typically Web services with WSDL, XML
Schema, and then code implementation such as Java 2 Enterprise Edition or
.NET). They also use the design model to implement the code.

References

Read the IBM Systems Journal, volume 44, number 1, Toward an on-demand
service-oriented architecture:

http://www.research.ibm.com/journal/sj/441/crawford.html
 Chapter 11. Service specification 385

http://www.research.ibm.com/journal/sj/441/crawford.html

386 Building SOA Solutions Using the Rational SDP

Chapter 12. Service realization

This chapter provides a detailed explanation and description about how to fully
specify the design model starting from the service model. This is the service
realization activity.

This chapter is structured around:

� Tools used

� Input to service realization

� Design model creation and structure

� Design service components

� Refine design model

Additionally, this chapter describes the service realization activity for one of the
services in our JK Enterprises case study.

12
© Copyright IBM Corp. 2007. All rights reserved. 387

Introduction

In Chapter 9, “Service and design model work products” on page 231 we showed
the results of the service realization phase, the design model. Thus, we already
know what to expect in term of work product from this activity.

In this chapter we walk through this activity, starting from input work products and
initial tasks, going to core tasks, such as service components design and
realization decisions, and apply patterns. The result is a fully specified design
model that is the input for implementation.

As a reminder, we want to point out that we are following an iterative
development process. Thus, you should not expect that activities described here
happen in a serialized way with respect to other activities (disciplines) for all
services belonging to our SOA solution. However you can expect that, for a
single service, it has already been identified and specified.

Tools and capabilities used for service realization

In this phase we use several Rational Software Architect capabilities:

1. Modeling
2. Patterns
3. Transformations
4. Reusable Asset Specification (RAS)
5. Architectural analysis

Some of these capabilities belong to Rational Software Modeler (such as 1 and
2), others belong to Rational Application Developer (such as 5). Refer to
“Overview of IBM architect tools” on page 159 for a more detailed product
description.

Inputs to service realization

We are supposed to play the designer role in this phase. As a designer we
receive a service model. This model is detailed enough and complete,
specifically for the parts we are interested, which are the services we have to
realize. The service model, by exploiting the Software Services profile, fully
defines all service characteristics:

� Service specifications defined
� Service providers defined
� Services defined
� Messages defined
388 Building SOA Solutions Using the Rational SDP

Note that by having the service specifications defined, all service interfaces are
defined: Operation signatures, input parameters, and return types.

Thus, we can say that we have the service defined from a black-box view. Indeed
we know everything about what to send and to expect from that service, but we
still do not know anything about how it is realized (white-box view). Therefore this
is exactly what we are beginning to face now.

Creating the design model

Although we stressed that we are in an iterative development process, we are
assuming this is the first iteration, and consequently we have to create a design
model from scratch.

With Rational Software Architect (or Modeler in this case) we can create a new
model in several ways and one is:

� In the Project Explorer, select the models project and New → UML Model
(Figure 12-1).

Figure 12-1 Creating a new UML model

� In the next dialog, select Blank model as a template, type Design Model for file
name, and click Finish.

Important: By saying that the service model is ready, we do not exclude that
feedback arises from this phase. Indeed, it is quite normal in an iterative
software development project to have feedback on previous levels when we
move on the realization level.
 Chapter 12. Service realization 389

The design model is added under the Red Book JK Enterprises UML Models
project.

In Rational Software Architect Version 7, depending on your Eclipse setting, you
may see two elements named “Design Model” in the Project Explorer.

� Design Model.emx—Represents the physical resource (file) that keeps your
model.

� Design Model—Represents the real UML model. This is a logical element,
recognized by the tool as a proper UML element.

Create the model structure

As you likely noticed, we did not use a model template when creating the new
model. This is because, for the scope of this book, we want to start from scratch
to better understand all the necessary steps. However, in other cases you may
want to exploit an existing template, such as Enterprise IT Design Model. This
template applies the typical model structure that classical RUP defines for a
design model.

As described in Chapter 9, “Service and design model work products” on
page 231, we have to create a UML package for each service component
identified. Following our traceability strategy, we have one service component for
each service provider specified in the service model.

For the scope of this chapter, we are focusing on service realization for a service
that we completely develop in a top-down fashion: AccountApplication.

Following this approach, we create a package named AccountApplicationSC.
This package contains all UML elements, such as classes, diagrams,
interactions, collaborations, and components, which are necessary to realize the
service component.

We put all the component packages under a root package, named Service
Components.

To create these two nested packages:

� Select the Design Model and Add UML → Package.

� Type Service Components an the package name.

� Select the new package and Add UML → Package.

Tip: You can show only logical models by setting the Project Explorer filter:
click the icon at the top of the Project Explorer, select Filters and then
select UML Model files in the pop-up dialog.
390 Building SOA Solutions Using the Rational SDP

� Type AccountApplicationSC as the package name.

If you want to create all packages for the remaining components, repeat these
steps and create sub-package of Service Components for each service
component, until you obtain the structure shown in Figure 12-2.

Figure 12-2 Package structure for JK Enterprises design model

Prepare the model for transformations

We configure the model to be ready for the next steps, such as transformation to
a Java project. To do this we have to perform a few simple steps:

� Apply a Java transformation profile.
� Import the Java type library for primitive types (from deployed libraries).
� Import the RoseJavaDataTypes (from deployed libraries).

Apply a Java transformation profile
To apply a Java transformation profile, perform these steps:

� Select the Design Model.

� In the Properties view select the Profiles tab.

� Click Add Profile.

� Select Deployed Profile (pre-selected) and select EJBTransformProfile from
the drop-down menu.

� Click OK.

Although in our service development we are exploiting Java transformation and
not EJB transformation, we have chosen this profile because it can be used for
both transformations.

Conceptually, this profile defines all stereotypes necessary to represents in a
design model the classes that can act as EJBs (session, entity, or
message-driven beans). Furthermore, the profile adds all stereotype properties
necessary to create deployment descriptors. Although part of this content
improves the semantic of the model, detailed information are strictly necessary
for the transformation itself.
 Chapter 12. Service realization 391

Import Java primitive type library
To import the Java primitive type library perform these steps:

� Select the Design Model and Import Model Library.
� Select Deployed Libraries (preselected) and select Java Primitive Types
� Click OK.

This operation allows the model to know other UML types, which correspond to
Java primitive types (for example, int or boolean).

Repeat this step for the RoseJavaDataTypes.

Create service components

Now we create all component realization elements for a single component,
AccountApplicationSC. We are decreasing the level of abstraction with respect to
the service model. A key factor is to start from what represents our input, the
service model. We create one service component (in the design model) for each
service specification (in the service model).

Manual creation
In particular we start from two key elements of the service model: service
specification and service provider.

Our component is to be traced to the service provider and has to realize the
service specification.

We create the component using these steps:

� Create a class diagram under the AccountApplicationSC package by
selecting the package and Add Diagram → Class Diagram.

� For the class diagram name, type Traceabilities.

� Expand the Service Model in the Project Explorer and navigate to 3 - Atomic
Business Application Service Providers → CustomerAccountMgr → Provided
Service Specs → Account Application → <<serviceSpecification>>
AccountApplication (Figure 12-3).
392 Building SOA Solutions Using the Rational SDP

Figure 12-3 Navigate to service specification

� Drag and drop AccountApplication service specification to the newly created
diagram in the Design Model. The <<serviceSpecification>> is added to the
class diagram. There is a little arrow in the top left , indicating this element
comes from an external model.

� In the same way, drag and drop the CustomerAccountMgr service provider to
the diagram.

� In the Palette, under Component, select Component.

� Click anywhere on the class diagram to create a component.

� Name the new component AccountApplicationSC (Figure 12-4).

Figure 12-4 Add a component to the class diagram
 Chapter 12. Service realization 393

� Select the component. In the Properties view select the Stereotypes tab and
type serviceComponent for Keywords.

� Next we create the traceability link: Under the Class tab of the Palette select
Dependency → Abstraction. Create a connection from the
AccountApplicationSC component to the CustomerAccountManager service
provider. Select Create Derive when prompted.

� Next we represent the realization: In the Palette, Class tab, select Realization.
Create a connection from the AccountApplicationSC component to the
AccountApplication service specification.

� The resulting diagram is shown in Figure 12-5.

Figure 12-5 Component created, traced, and service specification realized

Conceptually, we have just created what is becoming part of our white-box view
of the service provider. This component directly comes (derive) from it and also
realizes the service specification.

Notes:

� When you draw the realization relationship, the component immediately adds
the service specification in its provided interfaces (this is an UML component
compartment).

� Although CustomerAccountMgr provides two service specifications
(CustomerAccount and AccountApplication) we are only realizing one of the
two specifications. The <<derive>> association does not imply that we are
realizing all of the provided service specifications.
394 Building SOA Solutions Using the Rational SDP

Transformation
In this book we introduced model-driven development (MDD) concepts, such as
patterns and transformations, in “Model-driven development” on page 145.

Another way to achieve what we just explained in the previous section is to use
an automated transformation.

Rational Software Architect provides transformations out-of-the-box, but
furthermore, it provides pattern and transformation authoring tools. Several
software development organizations exploit these model driven mechanisms to
automate the job of creating a model (or code) from another model. This way we
can obtain several benefits, such as:

� Improve productivity by automating all target model creation tasks.

� Enforce standards compliancy by decreasing human errors or
misunderstandings.

� Enforce architecture is respected by service realizations.

� Ensure all traceability links are in place.

Generally speaking, all these points enforce SOA governance.

Going back to our example, we could use automated transformations for all
service components generation, including realization relationship, and also more
detailed realization elements that are explained later in the chapter.

Furthermore, by creating a customized transformation, we can address our
organization (or project) architecture, creating a standard solution for each
service.

Traceability
By creating a <<derive>> relationship between our component and the service
provider, we are ensuring that what we implement is directly related to what the
higher level of abstraction (on its own directly related to business) is expecting
from this service component. At the same time we continue this traceability chain
through lower levels to ensure they also respect the specification.

Refine service components

Next we specify the AccountApplicationSC service component in more details.

Create realization classes
As designers we are identifying two classes and one interface to realize this
component:
 Chapter 12. Service realization 395

� A facade class named AccountApplicationServiceFacade designed to
directly realize the service specification.

� An implementation class named AccountApplicationServiceImpl designed
to realize the detailed structure and tasks of the service component.

� An interface named AccountApplicationService that represent a realization
view of the service specification.

Now we continue with the services class creation. We work with the same
Traceabilities diagram that was open before:

� In the Palette, under the Class tab, select Class → Stereotyped Class.
� Click anywhere on the diagram and select Create <<service>> Class.
� Type AccountApplicationServiceFacade as the class name.
� In the Palette, under the Class tab, select Class → Class.
� Type AccountApplicationServiceImpl as the name.
� Create an interface by selecting Interface under the Class tab.
� Name this interface AccountApplicationService.
� The resulting diagram is shown in Figure 12-6.

Note: On the design abstraction level we are slightly changing class names by
appending the word Service to the original service name. This is because, at
the design level, we also have other classes that reside at a lower architectural
layer. These classes are entity types and they typically represents persistent
information of a service, or a service partition. Typically these (kind of) classes
assume the same name of business items they come from. In this case we
have an AccountApplication entity class as well. Therefore, we (as designers)
decide to have this naming convention: Services classes are named using the
Service suffix, whereas entity classes are named with their proper name.
396 Building SOA Solutions Using the Rational SDP

Figure 12-6 Class diagram

Now, we want to assign appropriate dependency relationships between the
component and these new classes:

� Select Dependency → Abstraction under the Class tab (you may already see
Abstraction directly).

� Create a connection from the AccountApplicationService interface to the
AccountApplicationSC component. When prompted select <<refine>>.

� Repeat this step for the two remaining classes.

� The resulting diagram is shown in Figure 12-7.
 Chapter 12. Service realization 397

Figure 12-7 Class diagram with relationships

Note that by introducing new classes in this diagram, we have put these classes
into the model as well, in the same AccountApplicationSC package.

Tip: In Rational Software Architect (and Modeler) there are several ways or
gestures to create model elements (classes, operations, properties). Besides
the steps we described in this section, you can:

� Right-click any UML element in the Project Explorer and select Add
UML. Only valid UML classifiers for that kind of elements appear on the
context menu.

� Action bar: The modeling surface of Software Architect has a context
graphical menu that is displayed automatically by hovering the mouse on
the diagram or on an element of the diagram. This pop-up menu, the action
bar, shows only UML elements valid for the context, such as diagram type,
selected object, or possible relations for elements.
398 Building SOA Solutions Using the Rational SDP

Refining the interface
The AccountApplicationService interface represents the design level service
specification. Thus we want to add to this interface the operations coming from
service specification:

� Select the interface and Add UML → Operation. Type
determineApplicationEligibility as the operation name.

� Complete operation signature by selecting the operation in the diagram and
Navigate > Show in → Project Explorer.

� Select the operation in Project Explorer and Add UML → Parameter. In the
Properties view, leave the default options. Click Select Type. Select the
parameter type from the service model (Figure 12-8).

Figure 12-8 Select a parameter type

� Select the operation and in the Properties view click Set return type.

� Select EligibilityMessage from Service Model → CustomerAccountMgr →
Messages.

Tip: This gesture can be very useful: it takes you to the model explorer for any
UML element present in a diagram.
 Chapter 12. Service realization 399

� Repeat these steps by adding operations corresponding to the
AccountApplication <<serviceSpecification>> in the service model to
the AccountApplicationService interface.

The interface with all operations is shown in Figure 12-9.

Figure 12-9 Interface refined

All these tasks can be automated by using a transformation from the service
model to the design model.

Apply design patterns
We introduced patterns and their importance in software development.

A pattern is a common solution for a recurring problem. Today, many software
development organizations have their own standard and architecture
customization. By using patterns they enforce those standards, and ensure
greater productivity and quality. Thus patterns can help to achieve better SOA
governance.

For the case study we, as designers, have to follow our SOA architecture. By
reading its definition, we know we have to design a component that has to realize
directly the interface corresponding to the service specification.

Following this constraint we want to apply a facade design pattern to our new
classes. But first we want the facade class to have the same operations as the
interface. To achieve these two goals, we apply two different design patterns that
are available in Rational Software Architect:

� A sample design pattern called Interface
� A design pattern called Facade

To obtain the interface pattern:

� Select menu Help → Sample Gallery.

� Expand Patterns, click patterns to apply.

Tip: To show the complete signature, select the interface and Filters → Show
Signature.
400 Building SOA Solutions Using the Rational SDP

� Click Import the sample.

� Click Finish.

Interface design pattern definition
� Problem solved: If an interface is already present and a class has to realize

it, the class must provide implementation for each operation defined in the
interface. Doing it manually can be less productive and error prone.

� Solution: Interface pattern creates realization relationship and copies all
interface operation signatures to the class.

� Parameter interface: the defined interface.

� Parameter implementation: the class implementing the interface.

Applying a design pattern in Software Architect is straightforward:

� Open the Pattern Explorer by selecting Window → Show View → (Other) →
Modeling → Pattern Explorer.

� In the Project Explorer create a class diagram named Pattern Instances
under the AccountApplicationSC component.

� In the Pattern Explorer, expand Sample Patterns, select Interface and drop it
into the new diagram.

� In the Project Explorer drag and drop the AccountApplicationServiceFacade
into the diagram, to the right of the small Implementation box (it is ok when
the corresponding line becomes gray).

� In the Project Explorer drag and drop the AccountApplicationService into the
diagram to the right of the small Interface box.

After both the facade class and the interface are in the diagram there is a
realization relationship between the two and moreover, the facade class has now
all the interface operations (Figure 12-10).

Important: Please be aware this could be not working, depending on your
Rational Software Architect installation. If you cannot see the sample patterns
in the Pattern Explorer, you can work around this problem by exporting the
imported project (“Patterns to apply sample”) as a RAS asset with deployable
plug-in and then importing the same RAS asset.

You can find detailed instruction about how to do these operations in “Using
the Reusable Asset Specification (RAS) to distribute and manage assets” on
page 573.
 Chapter 12. Service realization 401

Figure 12-10 Interface pattern applied

Facade design pattern definition
� Problem solved: Dealing with complex subsystem can create too many

dependencies on specific subsystem details, such as different methods with
different parameters types and so on. This does not allow to have a clear and
well defined interface for the subsystem.

� Solution: Facade provides a unified interface that hide a set of interfaces in a
subsystem. A higher level interface, easier to use is defined for clients.

� Parameter facade: this class knows all subsystem details and it delegates all
client requests to appropriate subsystem objects.

� Parameter subsystem: this is the actual subsystem implementation classes.
There is no dependency to the facade.

Next we apply the facade design pattern. We want the facade class to realize the
service specification. We already realized the service interface. We want to allow
the external world to access our service with the expected interface and hide all
internal implementation details and interfaces.

Tip: With Rational Software Architect V7 you can also avoid to create all
necessary elements before to apply the pattern. Indeed, you can let the
pattern engine to do it for you, while applying the pattern. By hovering the
mouse on a particular parameter on the pattern instance, you will find a button
that creates an element corresponding to that parameter type.

Note: If you are interested in knowing more about pattern theory and
applications, refer to Chapter 16, “Pattern-based engineering with Rational
Software Architect .” on page 545.
402 Building SOA Solutions Using the Rational SDP

Let us apply the facade design pattern:

� Bind AccountApplicationServiceFacade to the Facade pattern formal
parameter.

� Bind AccountApplicationServiceImpl to the Subsystem pattern formal
parameter.

Figure 12-11 shows the resulting diagram.

Figure 12-11 Facade pattern applied

Using the Reusable Asset Specification (RAS)

Rational Software Architect has powerful features to manage assets through
RAS.

The content of a Reusable Asset Specification (RAS) asset can be a pattern or
group of patterns, but also:

� Transformations
� Models
� Code libraries
� Code samples
� Project configurations
� Network descriptors
� Frameworks
 Chapter 12. Service realization 403

An important part of RAS format is its powerful documentation. You have the
appropriate space and tools to exhaustively document and explain your assets.

Typically organizations use RAS repositories in these basic ways:

� To share, within the organization, internal reusable assets such as project
patterns, transformations, frameworks, and so forth.

� To share internal assets with other organizations, for example, in a
customer/contractor relationship.

� To reuse public assets, such as those IBM Rational provides through the
developerWorks RAS repository.

Software Architect provides you with a perspective to manage RAS repositories.
Select Window → Open Perspective → RAS (Reusable Asset) to open the
perspective.

In the Asset Explorer you find all available repositories. Initially you have one
repository named Patterns Repository. You can click it and browse it. For
example you can expand to Design Patterns → Structural → Facade. Select
Facade and View → Documentation. This way you can learn about any available
design pattern you are interested in.

Furthermore, you can import other repositories, for example from
developerWorks:

http://www.ibm.com/developerworks/

To import developerWorks patterns:

� In the Asset Explorer select New → Repository.
� Select DeveloperWorksRepository and click Next.
� Click Finish.

Browse the new repository in the Asset Explorer and import patterns of interest
by selecting a pattern and Import.

Design class structure

Our design model begins to have its own meaningful structure and content. Next
we improve this model by designing the entity classes, which usually represents
business items used by a service.

Following our architecture we want our service provider to completely
encapsulate structure and behavior of services. Therefore, we provide with this
component (or those components that are part of the same service provider) a
set of entities that are owned by the service provider:
404 Building SOA Solutions Using the Rational SDP

http://www.ibm.com/developerworks/

� Under the AccountApplicationSC package, create a package and name it
Entities.

� Create a class diagram in this package and name it
CustomerAccountMgrEntities.

� In the diagram create a stereotyped <<entity>> class and name it
AccountApplication.

� Navigate to Service Model and drag the <<infotype>> AccountApplication
from the package 3 - Atomic Business Application Service Providers →
CustomerAccountMgr → Infotypes into the diagram.

� Create a <<derive>> traceability from the new AccountApplication
<<entity>> class to corresponding <<infotype>>.

Begin to add attributes:

� Select the entity class and Add UML → Attribute. Name the attribute
applicationDate and select the RoseJavaDatatypes::java::util::Date type.

� Create another <<entity>> class and name it Customer.

� Trace it to corresponding <<Infotype>> in the service model through a
<<derive>> dependency relation.

� Create an association using the Palette, Class tab, Association. Create a
connection from Customer to AccountApplication.

� Select the association and in the Properties view on the AccountApplication
side, select * from the Multiplicity combo box.

In the last step you created an UML association from AccountApplication to
Customer. This association is navigable in both direction and has a *
multiplicity on the AccountApplication side, meaning that for each Customer
instance, there can be many AccountApplication instances.

Figure 12-12 shows the entity diagram.
 Chapter 12. Service realization 405

Figure 12-12 Entity diagram with entities created

You should now continue this task until you have recreated the info types
structure that is in the service model.

Again, please note that all these tasks can be automated through a
transformation.

Design class behavior (interaction diagrams)

Until now we have mainly designed the structural part of the model, meaning
that we have represented static aspects of the solution: properties such as
attributes or associations, dependencies and so on. Indeed we have mainly used
a type of UML diagram, the class diagram, which is a structural diagram.

Remember that we are in the middle of the top-down development of a service
called AccountApplication and we have to develop a particular service
operation, named determineApplicationEligibility.

Now, as designers, after we having designed the service component and its
class structure, we want to represent the realization of this operation. Thus we
can now open this operation and try to figure out how it works. To do this, we use
a sequence diagram that, which belongs to the interaction diagrams family.

Note: We have derived entity classes from info types belonging to service
model. However, in the JK Enterprises case study, info types are considered
optional, and, therefore, we could derive entities directly from our domain
model.
406 Building SOA Solutions Using the Rational SDP

In particular, we want to represent the basic flow of this operation. Basic flow
means the default behavior of the operation in the case everything works as
expected and we follow a default path in the operation execution.

To create a sequence diagram:

� In the project explorer, select the AccountApplicationSC component.

� Add a sequence diagram by selecting ADD UML > Sequence Diagram.

� Name this diagram determineApplicationEligibility - Basic Flow.

� Find the Generic Consumer actor in the model.

� Drag and drop this actor to the sequence diagram.

� Drag AccountApplicationServiceFacade from the Project Explorer and drop it
to the diagram.

� Drag and drop also AccountApplicationServiceImpl into the diagram.

� Locate the EligibilityMessage in the service model from service model →
CustomerAccountMgr → Messages, and drag and drop it to the diagram.

Now you should see the skeleton diagram shown in Figure 12-13.

Figure 12-13 First step of sequence diagram creation

Interaction diagrams:

� Sequence diagram represents the sequence of messages that are sent
from an object to another to achieve a particular goal. Sequence diagram
put more emphasis on chronological order.

� Communication diagrams have same semantic content but they put
more emphasis on collaboration between objects.
 Chapter 12. Service realization 407

Please note a sequence diagram, because it represents a behavior, does not
contain classes, but objects (class instances) and thus the UML representation is
different.

Now we learn how to create messages in a sequence diagram:

� Select the life line (dash vertical line) for the Generic Consumer actor.

� Drag from this line and drop to the life line of
AccountApplicationServiceFacade. Select create message.

� From the operation combo box in the diagram, select the
determineApplicationEligibility operation.

� Now repeat this step from AccountApplicationServiceFacade object to
AccountApplicationServiceImpl object.

� This time you don’t have a yet ready operation. Select Create new operation
just type the operation name on the message box editing.

� Complete the signature by putting AccountApplication (from service model)
parameter type as either input and return type of this operation. You can find
this class as we showed in Figure 12-8 on page 399.

� Now draw a <<create>> message from AccountApplicationServiceFacade
object to EligibilityMessage. You should see the life line of
EligibilityMessage starts now from the creation message (Figure 12-14).

Figure 12-14 Sequence diagram completed
408 Building SOA Solutions Using the Rational SDP

As designers, we just created the facade pattern and sequence diagram. By
doing this we have put in place an initial solution. As we can note from the
sequence diagram the facade object provides the service interface, where as the
internal impl object does not provide it. Indeed, the facade object creates the
message to be returned to a generic consumer. This is an initial representation of
a facade behavior. However, once developers take ownership of the
implementation, the internal behavior is likely more complicated. The only thing
that does not have to change is, as usual, the facade interface, because it
represents the service interface and directly comes from service model done
during the service specification phase.

Comparison with traditional RUP object-oriented approach

If you already know RUP and the typical object-oriented analysis and design
approach, you may have noticed that we are following a slight different workflow.

In classical RUP approach, the greatest part of the process is driven by use
cases. Indeed if the focus of your software development is an application, this
approach is very consistent and has years of successful experiences in many
development organizations.

Thus, using a classical RUP approach we have different models on different
abstraction levels like:

� Business model
� Use Case model
� Analysis model
� Design model
� Implementation model

During the execution of Analysis and Design discipline, you are expected to
identify initial analysis classes (very abstract classes, as they appear from a
requirement point of view, free of any technological detail). These classes are a
first draft of your use case realization. Design activities will develop these
classes by putting all the necessary details, patterns, and solution requested.

However, in an SOA world, the main focus of your development could not be an
application but, generally speaking, a realization of a business process or part of
it, through services. Therefore, there will be a greater emphasis on services,
along the complete development life cycle. Indeed we already explained—by
introducing services directly linked to business processes—we are raising the
level of abstraction to achieve alignments between business needs and IT
solutions.
 Chapter 12. Service realization 409

Therefore, the development workflow in an SOA RUP development, such as our
case study, there is more emphasis on different models, such as:

� Business (process) model
� Use Case model (optional)
� Service model
� Design model
� Implementation model

As you can see, levels of abstraction are slightly different and this difference
reflects exactly the greater and fundamental emphasis on services we have now.
Although for the JK Enterprises case study, service model seems to replace
analysis model, we want to point out the two are different:

� The service model is less abstract than analysis model, since it defines
precisely all service specifications, including complete and detailed service
operation signatures (operation return and parameter types are completely
defined). Typical RUP analysis model is more generic on this: signatures are
not completed and well defined. Types are not necessary defined.

� The service model does not “open the box” for a single, atomic service.
Instead analysis model, from a use case point of view, creates an initial,
sketched and abstract use case realization.

However these two different models have one similarity: they both represent a
bridge from business requirements to the solution. Going back to our design
model we may say design versus analysis is a similar to design versus service
(model). Indeed, before we were realizing analysis classes and now we are
realizing services.

Finally, service model responsibilities also imply that the design model inherits
more elements: All elements related to service specification, such as operation
signatures, parameter types, and messages. In this sense we may say the
design model has less responsibility, but it always represents service detailed
realization in term of subsystem design, class design, patterns used, internal
structures, and so forth.

From a realization point of view (design and implementation), we want to point
out that we are not loosing characteristics and strength points of component
based and object-oriented development. Moreover, when appropriately used,
these paradigms help and enforce our SOA solution. Thus, at the design level we
can exploit object-oriented characteristics, such as polymorphism,
encapsulation, abstraction, and modularity.

However we have to be careful: We are building services. These are
business-aligned, repeatable, and loosely coupled. Thus we have to pay
attention to architectural dependencies, associations used, and so forth, to
410 Building SOA Solutions Using the Rational SDP

achieve service decoupling. In other words we may say we can fully exploit object
oriented paradigm inside a service component or a group of components that
belongs to the same service provider.

Output of service realization for the JK Enterprises
example

After completing the service realization phase we have produced a refined
design model. We say a refined design model because, being in an iterative
development process, we realize one or a set of services that were already fully
specified by the service model. Therefore we can expect this model will be
further refined by:

� Other service realizations

� Feedback and updates coming from implementation

For a complete description of the design model, refer to “Design model work
product” on page 263.

Therefore our primary output for this phase is the design model and it contains
important realization elements such as:

� Service components

� Classes refining components, their structure and operations.

� Service operations realizations, in terms of detailed structure and behavior.

� Patterns applied for each realized service.

Validate model

Going back to our case study, we may say we have a design model, consistent
and detailed enough to be transformed to initial code for developers.

Thus, the design model is the primary work product that constitutes the output
from service realization phase and the input for implementation activities, as we

Important: For the scope of this document, is important to understand that
our design model is very simple: it contains only one service operation
realization where as other models like service model are spanning the entire
JK Enterprises solution. Although design model is simple, it shows as a single
service operation is realized through detailed design. A complete design
model will include much more classes, details and patterns applied.
 Chapter 12. Service realization 411

described in our development case. The next implementation activities (for
example, transforming the model to code) are formally owned by developers.
However, we are on the boundaries between these two disciplines and many
interactions among designers and developers are expected. For example
designers could informally test transformations to verify they are working on the
design model, and make sure all of the details are there.

An important step, not always emphasized enough, is model validation. Rational
Software Architect allows us to validate models that have different profiles,
constraints and so on. By validating models we ensure:

� Completeness: The model has fully specified UML content.

� Correctness: The model is well formed.

� Integrity: There are no broken or missing references, referenced models are
reachable, and so forth.

� Profile conformance: A model is valid against a particular profile. Profiles
introduce stereotypes and constraints and thus a model has to respect them.

� Transformations-ready: The model is valid for a particular transformation.

We suggest to periodically validate models because it enforces integrity and
consistency among several models owned by different roles. Therefore this is
another task that helps achieve SOA governance.

Transform model and refine design with developers
As we previously stated, we are in an iterative software development process,
and several interactions between developers and designers are expected.

As developers run transformations to code, they begin implementation and
typically, new details arise. It is quite impossible that a designer puts all of the
details before at least one implementation iteration is run on a service
component. As new elements appear we, as designers, have to decide how to
incorporate them (or not). For example, we have to verify that the architecture is
always respected, and that no invalid dependencies have been created.

In the JK Enterprises case study, we are using the following transformations
(among models and code) (Figure 12-15):

� Service model to WSDL
� Design model to Java (and reverse)

Tip: In Rational Software Architect you can explicitly request a model
validation by selecting a model (or a model element) and Validate.
412 Building SOA Solutions Using the Rational SDP

Figure 12-15 JK Enterprises code transformations

Note that the implementation gets the specification part of services directly from
the service model, where as implementation parts are coming from the design
model. Thus, all those parts belonging to specifications, such as operation
names, parameters types, and messages, come from the service model. In other
words all service interfaces are coming from the service model.

Therefore developers can exploit both transformations and have all generated
elements merged and working together as we show in Chapter 13, “Service
implementation” on page 419.

Reverse transformation from Java code

We said that in an iterative development process we have to incorporate what
developers have produced during the implementation phase.

Rational Software Architect Version 6 provides UML to code transformations but
does not provides an (out-of-the-box) reverse transformation.

Over the past two years we have observed an interesting debate in software
development organizations about how to update models and keep them
consistent with code, or generally speaking, underlying abstraction levels.
Someone was saying that a reverse transformation was needed, whereas
someone else disagreed by saying this is not needed in a model-driven
development approach.

UML to WSDL
transformation

UML / Java
transformation
 Chapter 12. Service realization 413

From our experience we say that having accurate models is an important aspect
that can strongly help in respecting software architecture and improving our
solution quality. Non accurate models have very limited value.

Rational Software Architect Version 7 provides a reverse Java transformation.

First of all, we want to point out that having a (Java) reverse transformation does
not necessary mean that you have to update all of the design model with
everything that comes from the code, for several reasons:

� Design model and code are two different abstraction levels and, by definition,
not all the code details are needed in the design model.

� Developers can add something that is wrong or not compliant with the
architecture or with organization standards.

� Assuming that the design model is closer to requirements, developers may
alter requirement interpretation.

For these reasons it is necessary to have capabilities in the tool that allow one to
verify what the model content will be before updating the model itself. Indeed we
may call reverse transformation a reconciliation between code and model.

Going back to our case study, assuming there has been an implementation
iteration of the AccountApplication service, we now want to update our model
with significant elements coming from the first implementation.

At this time your transformation is already configured (developers have already
used it). However, when setting up the transformation, pay attention on the
mapping packages between UML and Java and to transformation configuration
information.

So what we have to do to run the reverse transformation is simple:

� From the implementation EJB project, you can find the transformation
descriptor, named UML to Java V5.0 for JK Enterprises.tc.

� Select this descriptor and Transform → Java to UML.

� The merge model window opens (Figure 12-16).

Note: In Software Architect Version 7 you can setup your UML to Java
transformation and its reverse by selecting Modeling → Transform → New
Configuration → UML to Java V5.0.

Refer to Chapter 13, “Service implementation” on page 419 where you can
find detailed instruction about how to set up this transformation.
414 Building SOA Solutions Using the Rational SDP

Figure 12-16 Merge model during reverse transformation

� Note that something has changed. However, as we already anticipated, many
aspects and elements are different from model to code. For example, some
model element like stereotypes do not exists in the code. All we have to do is
ignore these changes.

The merge window is structured in this way:

– The upper part shows which changes would happen to the model, if
selected.

– The middle-left part show the temporary model, as a UML representation
of parsed Java elements, and what would the corresponding action be in
the target model.
 Chapter 12. Service realization 415

– The middle-right part shows the target model and meaningful icons
representing the potential new model content.

– The bottom part explains the changes of the selected element.

– The space between these two parts shows matching lines between these
two model versions.

� Analyze the major changes coming from the code.

� Select pending changes you want to accept and click OK.

Your model is now up to date!

Architectural analysis

We are talking about interactions with developers. Besides the capability that
allows us to update our model, we want to show here another powerful Rational
Software Architect capability.

Periodically, after developers do their work, we can exploit automated tasks that
allow us to verify code content, structure, dependencies and patterns.

This can be done from two different points of view corresponding to two Software
Architect capabilities:

� Code review: This can be considered a code quality automatic control. It is
related also to quality aspects and the test discipline. Basically it allow us to
define a set of customized rules to verify which classes and methods can be
used, which dependencies are forbidden or from a language point of view, to
define things like naming convention rules or syntax rules.

Important: In our case study we generate WSDL from the service model and
implementation classes from the design model. EJBs are generated from
within Application Developer starting from WSDL. In this way we also obtain all
wrapping code necessary to call EJBs business methods from the Web
service. When the reverse transformation runs, it will find all EJB classes. In
this kind of workflow we can simply avoid to gather them back in the design
model. Additionally, it is a good practice to avoid to launch the reverse
transformation with all of the EJB deployed (generated) code into the project
(this is not necessary and not significative at the design level), so reading
which model elements have to be gathered back to design will be easier.

Finally, if you decide to not always generate a WSDL, you can exploit the UML
to EJB transformation, obtaining also EJBs directly from the design model.
416 Building SOA Solutions Using the Rational SDP

� Architectural analysis: This capability allows us to discover existing patterns
or anti-patterns on our code. We may say anti-patterns are something the
architect wants to verify. Sometimes it is normal to have it or even expected
(for example we have a component that is designed to act as an hub). Instead
sometimes they are a risk or a mistake. This often depends on the
architecture.

In this section we are assuming developers have done their work and we, as
designers, want to verify this work by exploiting this architectural analysis
capability.

For the first time, we have to configure the Software Architect Analysis
functionality for our EJB project.

To configure an analysis set:

� Select any project in your workspace and Analysis.
� A window opens. Create a new configuration by selecting Analysis → New.
� Type JK EJB Architectural analysis in the name field.
� Click Analyze selected project.
� Select RedBook JK Enterprises EJB Project.
� Select the Rules tab.
� Select only Architectural Discovery for Java.
� Click Apply, click Close.

To perform architectural discovery on the EJB project now and in the future:

� Select the project. and Analysis.
� Click JK EJB Architectural analysis.

Rational Software Architect scans your code looking for patterns (and
anti-patterns). At the end it display the results in the Analysis results view. You
can browse this view looking for applied design patterns, object-oriented patterns
(for example, hierarchies), and structural pattern (such as global or local
butterfly).

If you expand component global butterfly and double-click AccountApplication,
you should see the diagram shown in Figure 12-17.

This diagram represents all dependencies to a single component, the
AccountApplication class in this case. These dependencies may be expected or
not. However, the architect should know and with this kind of tool, he can verify
that the code is respecting the architecture.
 Chapter 12. Service realization 417

Figure 12-17 Component Global Butterfly for JK Enterprises architectural analysis
418 Building SOA Solutions Using the Rational SDP

Chapter 13. Service implementation

This chapter discusses the different implementation options for our SOA based
solution. We demonstrate how to use the tools.

This chapter describes these topics:

� Inputs to service implementation

� Implementation options

� Tooling options

� Set up our development environment

� Top down development of a service

� Using a third-party service

� Using an enterprise service indirectly

� Updating your design

� Output of service implementation

13
© Copyright IBM Corp. 2007. All rights reserved. 419

Introduction

In this chapter we describe the options available to implement an atomic service.
Using the JK Enterprises sample, we demonstrate how to build a service
top-down, how to subscribe to an external service, and how to integrate an
existing function based on CICS.

Figure 13-1shows the activities involved in Implementation. This chapter focuses
specifically on the Implement Atomic Services activity.

Figure 13-1 Activities involved in implementation

The output of implementation results in an implementation model, developer test
and build. In this chapter we briefly touch on developer test and build. We provide
links to more information about developer test and build.

The Implementation model consists of three parts (Figure 13-2):

� Business Process Implementation

� Composite Service Component Implementation

� Atomic Service Component Implementation

We focus on the Atomic Service Component Implementation in this chapter.
420 Building SOA Solutions Using the Rational SDP

Figure 13-2 Parts of the Implementation model

The roles involved in implementation are shown in Figure 13-3. The chapter
focuses on the Developer role. The Integrator role is responsible for the
component services and business process implementation, which was briefly
discussed in the Introduction chapter and is out of scope for this book.

Figure 13-3 Roles related to implementation

Inputs to service implementation

We are supposed to play the developer role in this phase. We receive multiple
inputs to produce the services:

� We receive the requirements and system use case requirements which define
the flow and business logic we need to implement.

� We receive the service, design, and deployment models. From the models we
perform transformations, which produce WSDL and skeleton implementation
code.
 Chapter 13. Service implementation 421

� We receive the business process model.

Figure 13-4 show the work products related to the implementation.

Figure 13-4 Implementation related work products

We should now have all the information required to implement the service.

Implementation options

In this section we describe the implementation options available to realize our
services. The flexible nature of a SOA allows for many service implementation
options. The basic service implementation options are:

� Build—Implementing a service from scratch.

� Buy—Purchasing a service implementation from a third-party vendor.

� Integrate—Wrapping an existing system’s function

� Subscribe—Purchasing the capability to use a service or integrating an
existing service.

� Transform—Refactoring existing code to better expose functionality as a
service.
422 Building SOA Solutions Using the Rational SDP

Which implementation of a service is the best? The correct answer is, the one
that best aligns with the business goals. For example, it might not make sense to
spend thousands of dollars building new service implementation when you can
integrate existing system functions. How you implement your service depends on
your business goals. Odds are your SOA solution consists of a combination of
these implementation options.

When you move to an SOA based solution you can do it in stages using existing
systems and functionality, as well as new services or services you obtain from
third-party vendors.

In this chapter we build a service top-down, we subscribe to an external service,
and we integrate an existing function based on CICS.

Now let us look at our different tooling options.

Tooling options

In this section we describe the relationship between Rational Software Architect
and Rational Application Developer. We discuss what roles and capabilities are
available in Rational Application Developer and then provide role examples.

Overview

All the IBM tooling we discuss here is based on the Eclipse platform. This
provides a consistent and common user interface and a common integration
platform for the tools to work together.

In previous chapters we have been using Rational Software Architect. However,
when we get to implementing we have other tooling options available.

Note: For more information about different options for service creation, the
SOA Foundation Service Creation Scenarios provides in-depth, look at:

� Realization options
� How to leverage the e-business patterns in the realization of those options
� Best practices in service creation

Refer to the IBM Redbooks publication SOA Foundation Service Creation
Scenario, SG24-7240.
 Chapter 13. Service implementation 423

Rational Software Delivery Platform (SDP) has a role-based approach to its
tooling offerings. Through the use of roles, we can provide capabilities that are
specific to a user’s role, and we can hide capabilities that are not. This reduces
the cluttering and complexity of the user’s workspace. A user can have multiple
roles enabled at a time, which exposes all the capabilities assigned to each role.

� Rational Software Architect has everything an architect, designer, or
developer needs to complete a SOA solution. We use Rational Software
Architect to visually design a software application using UML models. Based
on our design, we can transform our design into code and continue to develop
our solution. We can also update our design from the final code
implementation.

� Rational Application Developer is a tool for developers. It provides a single
comprehensive development environment designed to meet a variety of
development needs, from Web interface to server-side application, from
individual development to advanced team environments, from Java
development to application integration.

When should you use Rational Software Architect and when should you use
Rational Application Developer? The answer to this question is, it depends on the
roles and capabilities required for the given person to perform their tasks.

Let us look at an example. In an organization you have an architect who is
leveraging model driven development to design an SOA solution. You have a lead
developer that takes the models created by the architects and performs model to
code transformations. The roles and capabilities required to perform these tasks
requires Rational Software Architect. Once the lead developer has the skeleton
code (from the transformation), this can now be passed off to an internal
development team or outsourced to a development team. The roles and
capabilities required by the development team to finish the solution only requires
the capabilities of Rational Application Developer.

Rational Application Developer is a subset of Rational Software Architect and all
the roles and capabilities available in Rational Application Developer are
available in Rational Software Architect.

Rational Application Developer roles and capabilities

In the previous section we talked about roles and capabilities. How do roles and
capabilities work? Capabilities are logical sets of tools that are available in the
workbench. These capabilities can have hierarchical relationships, meaning
some could include other capabilities. Roles are a set of capabilities. You can
enable multiple capabilities at one time by selecting one or more roles. Rational
Application Developer has multiple roles and capabilities.
424 Building SOA Solutions Using the Rational SDP

Below is a partial list of the roles available in Rational Application Developer and
the capabilities they enable. For a complete list of roles and capabilities see the
Rational Application Developer’s Info Center:

http://publib.boulder.ibm.com/infocenter/rtnlhelp/v6r0m0/index.jsp?topic=/c
om.ibm.rational.rad.books/icwelcome_product_rad.htm

� Advanced J2EE: Enables support for developing typical Web applications

� Enterprise Java Developer: Enables support for developing enterprise
applications, Enterprise JavaBeans™ and Application clients

� Java Developer: Enables support for developing typical Java applications

� Team: Enables the use of the supported source-code management systems,
such as CVS and ClearCase

� Web Developer (advanced): Enables support for developing typical Web
applications and adds support for Struts development, Web services
development, and database access

� Web Developer (typical): Enables support for developing basic,
J2EE-compliant Web applications

� Web Service Developer: Enables support for developing and consuming
Web Services

� XML Developer: Enables support for building and incorporating XML
applications, including DTDs, XSLTs, and XML schemas

There are a multiple ways in which we can enable roles and capabilities:

� If we use a resource that requires a role or a capability we are prompted to
add the associated capabilities to our workspace.

� We can add capabilities by selecting Window → Preference → General →
Capabilities.

� We can add sets of capabilities by enabling additional user roles from the
Enable roles menu in the Welcome view.

As an example of how to enable capabilities in the Eclipse-based tools, we
demonstrate how to enable the Web services capabilities in “Enable the Web
services development capability” on page 428.

Note: For a full list of Rational Application Developer features refer to:

http://www-306.ibm.com/software/awdtools/developer/application/features/i
ndex.html
 Chapter 13. Service implementation 425

http://publib.boulder.ibm.com/infocenter/rtnlhelp/v6r0m0/index.jsp?topic=/com.ibm.rational.rad.books/icwelcome_product_rad.htm
http://www-306.ibm.com/software/awdtools/developer/application/features/index.html
http://www-306.ibm.com/software/awdtools/developer/application/features/index.html

Setup the development environment

This section describes the tasks that need to be completed prior to developing
the services for the JK Enterprises application. The tasks defined here apply to
every development section in this chapter. Additional setup task maybe required
in some sections and are called out where appropriate. This enables you to focus
on a section without additional setup tasks which are not required.

Complete the following tasks to prepare for the sample application development:

� Install the model transformation feature
� Download the sample code
� Create a test server within Rational Software Architect
� Enable the Web services development capability

Install the model transformation feature

The model transformation feature is an option feature of Rational Software
Architect. To complete sections in this chapter we have to have this feature
installed. Refer to the Rational Software Architect’s InfoCenter for steps to install
this feature.

Download the sample code

This chapter references files and database scripts supplied with the additional
material. For instructions about how to download the sample code, see
Appendix A, “Additional material” on page 575.

Create a test server in Rational Software Architect

If you already have a test server defined, you can continue to the next section.
After a typical full installation you already have a test server defined.

If you do not have a test server configured, create a test server configuration by
following these steps:

� Open the J2EE perspective.

� In the Servers view right-click a blank area and select New → Server.

� When the Define a New Server dialog appears, select WebSphere V6.1
Server and click Next (Figure 13-5).
426 Building SOA Solutions Using the Rational SDP

Figure 13-5 Create new server

� Accept the default values in the WebSphere Server Setting dialog and click
Finish (Figure 13-6).
 Chapter 13. Service implementation 427

Figure 13-6 WebSphere Server Settings

Enable the Web services development capability

If the Web Service Development capability is already enabled you can skip this
section.

To enable the Web Service Development capability, perform these steps:

� In the Workbench, select Window → Preferences.

� Expand General and select Capabilities.

� Click Advanced.

� In the Advanced dialog select Web Service Developer. Click OK
(Figure 13-7).
428 Building SOA Solutions Using the Rational SDP

Figure 13-7 Enable Web service development

� The Preferences Dialog is shown in Figure 13-8. Click OK.

Figure 13-8 Preferences capabilities
 Chapter 13. Service implementation 429

Top-down development of a service

In this section we describe the process for top-down development of the Account
Application service from the JK Enterprises example (Figure 13-9).

Figure 13-9 Determine Application Eligibility operation of the Account Application Service

Transformations help move from one level of abstraction to another. We use two
transformations to speed up the implementation of the AccountApplication Web
service.

1. The first transformation takes us from the UML service model to the WSDL
that defines the service.

2. The second transformation takes the UML design model and generates
skeleton code that is used to implement the service.

3. From the WSDL that was produced in the model to code transformation, we
use the Web Service wizard to generate the EJB Web service skeleton code.

Figure 13-10 shows the transformations in the order that we perform the
transformations.

Services
atomic and composite

Operational Systems

Service
Components

Consumers

Business Process
Composition; choreography;
business state machines

Account Opening
Process

Billing
(CICS 3.1)

GL
(SAP)

Customer
(CICS 2.x)

Account
Manager

Account
Coordinator

Risk
Assessor

Account
Application Billing Account General Ledger Account

Customer
AccountAddress

Customer
Mgr

Billing Account
Mgr

General Ledger
Account Mgr

Address
Mgr

Atomic Service Composite Service

Determine
Applicant
Eligibility

Account
Verification
430 Building SOA Solutions Using the Rational SDP

Figure 13-10 Steps to generate skeleton code from models

We use the skeleton code that was generated by the Web Service wizard and the
transformations to glue our service together.

� We implement the business logic inside of a plain old Java object (POJO). We
get the business logic from the system use case requirements.

� Using the facade pattern, we wrapper the POJO in an EJB session bean to
isolate any interface discrepancies.

� From there we wrap the EJB with a Web service.

Application that have to use the service can reach the service either by going
through the Web service interface or by talking directly to the EJB.

UML to WSDL
transformation

UML / Java
transformation

Web Services wizard
Top Down EJB

1

2

3

 Chapter 13. Service implementation 431

Figure 13-11 Visual representation of the implementation of the service.

In this section we perform the following:

� Create a configuration for a UML to WSDL transformation
� Create a configuration for a UML to Java V5.0 transformation
� Run the UML to WSDL transformation
� Run the UML to Java V5.0 transformation
� Visualize and modify the WSDL
� Create a skeleton EJB Web service from a WSDL
� Implement the EJB Web service
� Unit test the EJB Web service

Prepare for top-down development

Before we can being implementing the top-down Web service sample, we have
to import the Account Application project interchange file into the workspace and
import two code templates.

Import the project interchange file for the Account Application
To import the project interchange file perform the following steps:

� Select File → Import.

� In the Import dialog, expand Other and select Project Interchange.

Web Service

POJO

EJB Session
432 Building SOA Solutions Using the Rational SDP

� Click Browse to locate and open the file:

c:\SG247356\sampcode\SoftwareArchitect\topdown\AccountApplicationSC.zip

� Select AccountApplicationSC and AccountApplicationSCEJB, and click
Finish.

Import the project interchange file for the UML Models
Repeat the same steps to import the interchange file for the UML Models from:

c:\SG247356\sampcode\SoftwareArchitect\UMLModels.zip

Select the Red Book JK Enterprises UML Models project.

Import code templates
Templates are sections of code that occur frequently enough that we want to be
able to insert them with few key strokes, known as content assist function. In this
section we leverage templates to remove the need for copying and pasting code.
For more information about creating a template refer to the Rational Application
Developer InfoCenter.

Import code templates by performing the following steps:

� Select Window → Preferences.

� In the navigator of the Preferences dialog, expand Java → Editor and select
Templates.

� Click Import and locate and select the file:

c:\SG247356\sampcode\SoftwareArchitect\topdown\daeImpl.xml

Click Open.

� Click Import and locate and select the file:

c:\SG247356\sampcode\SoftwareArchitect\topdown\daeService.xml

Click Open.

� Click OK (Figure 13-12).

Note: The EJB project shows an error because there is no EJB defined at this
point. We do create an EJB in the sections that follow.
 Chapter 13. Service implementation 433

Figure 13-12 Importing code templates

Model transformations

A model transformation is a way to generate output from a source model. The
transformation interprets elements in the source model and based on rules,
generates output to a target model. The source and target models can be text
files, code models, or UML models.

We can have different types of transformations:

� Model to model—These transformations are used (typically) to create (or
update) a model starting from a higher level of abstraction. Typical examples
are business to use case model and use case to analysis model.

� Model to code—These transformations are used to generate code (Java,
XML, XSD, WSDL, and so forth) starting from (typically UML) models. This
transformation is also called model to text.

� Refactoring—These transformations are used for a particular task on a
single model; examples include changing a class name, moving a package,
changing stereotypes, and so forth.
434 Building SOA Solutions Using the Rational SDP

Rational Software Architect has the following transformations available:

� C++ to UML
� Java to UML
� UML to C++
� UML to CORBA
� UML to EJB
� UML to Java V1.4
� UML to Java V5.0
� UML to WSDL
� UML to XSD

Transformations help take you from one level of abstraction to another. Rational
Software Architect provides the capability to perform forward transformations and
reverse transformations. A forward transformation takes us from a higher level of
abstraction to a lower level. A reverse transformation helps us move from a lower
level of abstraction to a higher.

In this section we focus on the model to code forward transformations. We
demonstrate how we cannot only save developers time but ensure developers
implement the design. We provide an example of a reverse transformation in
“Reverse transformation from Java code” on page 413.

How do transformations add value at implementation time? Imagine this: Your
architects have just done a brilliant job designing your SOA solution. They have
produced well defined service and design models. The service model contains
over fifty service specifications and the design model has over a hundred
classes. Now it is time for developers to implement. They could read the design
model and code, by hand, each of the classes defined by the models or they can
use a model-to-code transformation to speed up the process. Using a
transformation saves developer’s time by generating the skeleton code from the
design model and generating WSDL from our service model. These
transformations run in seconds rather than hours.

We use two model to code transformations to generate a WSDL and supporting
code for the JK Enterprises example.

Before we use a transformation, we have to configure the transformation to
specify what to transform and where to transform to. There may also be other
special settings that the transformation requires such as namespace to Java
package mappings.

Note: For more information about transformations, as they relate to
architecture see “Transformations” on page 148.
 Chapter 13. Service implementation 435

Now we configure the transformation for the JK Enterprises example.

UML to WSDL transformation configuration
This section describes how to configure a new UML to WSDL transformation for
the JK Enterprises sample application. We then use the WSDL generated by the
transformation in the Web Service wizard to generate an EJB Web service.

Before we can configure the transformation the following setup must be
completed:

� With Rational Software Architect open, switch to the Modeling perspective by
selecting Window → Open Perspective → Modeling.

We have to open the service model so that its contents is available to the New
transformation configuration dialog.

� From the Project Explorer expand Red Book JK Enterprises UML Models →
Models → Service Model.

� Select the Service Model and Open Model.

To configure a new UML to WSDL transformation perform these steps:

� Open the New Transformation Configuration dialog by selection Modeling →
Transformation → New Configuration.

� In the Name field type: UML to WSDL for JK Enterprises.

� Select UML to WSDL from the list of transformations under IBM Rational
Transformations.

� For the Configuration file destination click Browse and select
/AccountApplicationSCEJB, then click Next (Figure 13-13).
436 Building SOA Solutions Using the Rational SDP

Figure 13-13 New Transformation Configuration: Name and transformation

� Set the transformation source by expanding Red Book JK Enterprise UML
Models → Models → Service Model → 3 - Atomic Business Application
Service Providers → CustomerAccountMgr and selecting
<<serviceProvider>> CustomerAccountMgr.

� Set the transformation target by selecting AccountApplicationSCEJB from the
right pane. Click Next (Figure 13-14).
 Chapter 13. Service implementation 437

Figure 13-14 New Transformation Configuration: Source and target

� In the WSDL options dialog leave the default binding set to
SOAP-DOCUMENT-LITERAL and click Next.

� Leave all the default settings in the Properties dialog and click Next.

� Click Finish.

When the transformation finishes the UML to WSDL for JK Enterprises.tc file
opens. Close the file and verify the new transformation configuration by
expanding AccountApplicationSCEJB in the Project Explorer to locate the UML to
WSDL for JKEnterprises.tc file (Figure 13-15).

Figure 13-15 New transformation configuration: Verification
438 Building SOA Solutions Using the Rational SDP

Run the UML to WSDL transformation
This section describes how to run the UML to WSDL transformation. We use the
resulting WSDL with the Web Service wizard in “Create a skeleton EJB Web
service from a WSDL” on page 451.

To run the UML to WSDL transformation perform these steps:

� From Project Explorer, expand AccountApplicationSCEJB and find the UML to
WSDL for JK Enterprises.tc file.

� Select the UML to WSDL for JK Enterprises.tc file and Transform → UML to
WSDL.

A new folder named _3AtomicBusinessApplicationServiceProviders is created
under AccountApplicationSCEJB and it contains the WSDL and related files
(Figure 13-16).

Figure 13-16 UML to WSDL transformation resulting file structure

The transformation results in three errors in ParameterTypes.xsd in the
ParameterTypes folder. Open the ParameterTypes.xsd file and correct the errors
as follows:

From:
<xsd:element name="requestAmount" type="xsd:Float"/>
<xsd:element minOccurs="0" name="applicationDate" type="xsd:Date"/>
<xsd:element name="applicationDate" type="xsd:Date"/>

To:
<xsd:element name="requestAmount" type="xsd:float"/>
<xsd:element minOccurs="0" name="applicationDate" type="xsd:date"/>
<xsd:element name="applicationDate" type="xsd:date"/>

Errors must be
fixed manually
 Chapter 13. Service implementation 439

UML to Java V5 transformation configuration
This section describes how to configure a new UML to Java V5.0 transformation.
We use this transformation on the design model to generate our skeleton Java
classes. We then use these skeleton Java classes to implement the
determineApplicationEligibility service component in “Implement the
business logic” on page 456.

To configure a new UML to Java V5.0 transformation perform these steps:

� Switch to the Modeling perspective.

� From the Project Explorer expand Red Book JK Enterprises UML Models →
Models → Design Model.

� Select the Design Model and Open Model.

� Open the New Transformation Configuration dialog by selection Modeling →
Transformation → New Configuration.

� In the Name field type UML to Java V5.0 for JK Enterprises.

� Select UML to Java V5.0 from the list of transformations.

� Select Enable reverse transformation.

� For the Configuration file destination click Browse and select
/AccountApplicationSCEJB, then click Next. The Name and Transformation
dialog is shown in Figure 13-17.

Note: You can now jump to “Create a skeleton EJB Web service from a
WSDL” on page 451 to generate the Web service or continue to the next
section.
440 Building SOA Solutions Using the Rational SDP

Figure 13-17 New Transformation configuration: Name and transformation

� Set the transformation source by expanding Red Book JK Enterprise UML
Models → Models and selecting Design Model.

� Set the transformation target by selecting ApplicationAccountSCEJB from the
right pane and click Next (Figure 13-18).
 Chapter 13. Service implementation 441

Figure 13-18 New transformation configuration: Source and target

� Leave all of the defaults in the UML to Java Options dialog and click Next.

� Leave all of the defaults in the Collections dialog and click Next.

� On the Mapping view, select Enable mapping.

The UML to Java V5.0 transformation, by default, uses the package structure
of the model for the Java package names. The package structure of the model
might not make the best Java package name. Because of this, we define
custom mapping of the model elements to Java packages.

� Click New to create a new mapping model file.

� Using the Windows Explorer in the dialog, browse to find
AccountApplicationSCEJB/mappings and type the file name
JKModelMapping.emx.

The Mapping dialog of the New Transformation Configuration is shown in
Figure 13-19.
442 Building SOA Solutions Using the Rational SDP

Figure 13-19 New transformation configuration: Create mapping file

Next we add the packages.

� Click Edit Mapping.

� Expand Red Book JK Enterprises UML Models → Models → Design Model.
Select Service Components, type com.ibm.redbook.jke in the Mapped Name
field and click Apply.

� Expand Red Book JK Enterprises UML Models → Models → Service
Model → 3 - Atomic Business Application Service Providers →
CustomerAccountMgr:

– Select Parameter Types, type com.ibm.redbook.jke.parametertypes in
the Mapped Name field and click Apply.

– Select Messages, type com.ibm.redbook.jke.messages in the Mapped
Name field and click Apply.

� The Edit Mapped Name dialog is shown in Figure 13-20. Click OK.
 Chapter 13. Service implementation 443

Figure 13-20 New transformation configuration: Add package mapping

� Click Next.

� Leave the defaults for Java to UML Options (if Enable reverse transformation
is selected).

� To have traceability of the skeleton classes created by the transformation
back to the design model, select Create source to target relationships in the
Transformation options section as shown in Figure 13-21.
444 Building SOA Solutions Using the Rational SDP

Figure 13-21 New transformation configuration: traceability

� Click Finish.

� Close the generated file. You can find the generated UML to Java V5.0 for
JKEnterprises.tc file in the AccountApplicationSCEJB project.

� The mapping, JKModelMapping, can be found in a new Models folder in the
project (although the JKModelMapping.emx file is in the mappings folder).

Run the UML to Java V5.0 transformation
This section describes how to run the UML to Java V5.0 transformation. We use
the generated skeleton code to implement the Web service in “Implement the
business logic” on page 456.

To run the UML to Java V5.0 transformation select the UML to Java V5.0 for JK
Enterprises.tc file and Transform → UML to Java V5.0.

Figure 13-22 shows the directory structure of the AccountApplicationSCEJB
module after the transformation. You notice there are errors markers on the
module and on some of the packages. There are a few reasons for these errors:

� We do not have an EJB defined in the deployment descriptor.

Note: We could have also used the UML to EJB transformation on our design
model and generated EJBs instead of plain Java objects. We have assigned
the EJB stereotypes to our model elements which the UML to EJB
transformation uses to generate the EJBs. The UML to Java V5.0
transformation just ignores these stereotypes and generates plain Java
objects.
 Chapter 13. Service implementation 445

� Classes in the packages have references to classes which have not been
created yet.

� Import of java.util.Date is required in some of the Java classes.

The errors are resolved by completing “Visualization and traceability of
generated Java classes“ (below) and “Create a skeleton EJB Web service from a
WSDL” on page 451.

Figure 13-22 UML to Java V5.0 transformation resulting file structure and files.

Visualization and traceability of generated Java classes
Rational Software Architect provides the capability to visualize the generated
Java classes and provides traceability back to the models.

We can visualize a class and then show traceability to the design model by
performing the following steps:

� Select com.ibm.redbook.jke.AccountApplicationSC.AccountApplication-
Service and Visualize → Add to New Diagram File → Class Diagram. When
prompted click OK to enable selected activities. This creates a new class
diagram for AccountApplicationService (Figure 13-23).
446 Building SOA Solutions Using the Rational SDP

Figure 13-23 Visual representation of AccountApplicationService

Now we can show traceability.

� Select AccountApplicationService in the class diagram and Filters → Show
Related Elements.

� Click Details.

� Select and then clear All Relationships, to remove all selections.

� Expand Java and select Trace (Abstraction). The configuration is shown in
Figure 13-24.

Figure 13-24 Show related elements in diagram configuration

� Click OK. The resulting diagram shows that the AccountApplicationService
is derived from the AccountApplicationService Java interface defined in the
design model (Figure 13-25).

� Save the class diagram.
 Chapter 13. Service implementation 447

Figure 13-25 Trace of the AccountApplicationService back to the design model

Resolve compilation errors
Now is a good time to resolve some of the compilation errors:

� From Project Explorer, open the AccountApplication class in the Java editor:

com.ibm.redbook.jke.AccountApplicationSC.Entities.AccountApplication

Insert import java.util.Date (Figure 13-26), then save the changes.

Figure 13-26 Import java.util.Date

Note: Rational Software Architect has the capability to visualize the Java
classes in UML and then work with the UML to continue with development.

Tip: To resolve compile errors you can select an error mark and Quick Fix,
then select one of the suggested actions, such as import java.util.Date.
448 Building SOA Solutions Using the Rational SDP

Visualize and modify the WSDL

In this section we utilize the visualization and editing capabilities in Rational
Software Architect. We view and edit the WSDL we generated in “Run the UML
to WSDL transformation” on page 439.

� In Project Explorer, select CustomerAcountMgr.wsdl and Visualize → Add to
New Diagram file → Class Diagram (Figure 13-27).

Figure 13-27 Visual representation of the services found in CustomerAccountMgr.wsdl

� In the class diagram, double-click the AccountApplicationService to open it
in the WSDL editor. Select Detailed from the View pull-down (Figure 13-28).

Figure 13-28 AccountApplicationService in the WSDL editor

� At this point, if we wanted to add a new port, we would select one of the
services and Add Port (Figure 13-29).
 Chapter 13. Service implementation 449

Figure 13-29 Port wizard

� Click Cancel to dismiss the dialog.

We can also use this view to add and configure the messages associated with
the service:

� In the WSDL editor double-click the AccountApplication port type (with the
Interface icon). This opens the port type in a view where we can add
operations.

� Select the AccountApplication port type and Add Operation. A new operation
appears as shown in Figure 13-30.

Name
Binding
Protocol

Protocol options
450 Building SOA Solutions Using the Rational SDP

Figure 13-30 Adding an operation to the service

� Close this editor without saving a new operation.

In this section we described how to visualize a WSDL and modify the WSDL
using the visualization and editing capabilities in Rational Software Architect. In
the next section we use the Web Service wizard to generate code from the
WSDL.

Create a skeleton EJB Web service from a WSDL

In this section we describe how to use the Web Service wizard to create an EJB
Web service top down from the WSDL we created in “Run the UML to WSDL
transformation” on page 439.

� Switch perspective by selecting Window → Open Perspective → J2EE.

� In the Project Explorer expand AcountApplicationSCEJB →
_3AtomicBusinessApplicationServiceProviders → CustomerAccountMgr to
find the CustomerAccountMgr.wsdl file.

� Select the CustomerAccountMgr.wsdl file and New → Other.

� Expand the Web Service directory and select Web Service. Click Next
(Figure 13-31).
 Chapter 13. Service implementation 451

Figure 13-31 Web Service wizard: Launch

Now we begin configuring the Web Service wizard to generate our EJB Web
service.

� For the Web service type field, select Top down EJB Web Service.

� The Service definition field should be automatically filled with the selected
WSDL file /AccountApplicationSCEJB/.../CustomerAccountMgr.wsdl.

� Select Monitor the Web service. This enables us to use the TCP/IP Monitor to
view the request and the response SOAP messages.

� Leave all the other configuration at their defaults. The Web Service wizard is
shown in Figure 13-32. Click Next.

Note: We do not select to generate the Web service client. The client is
usually generated by the consumer of the Web service.
452 Building SOA Solutions Using the Rational SDP

Figure 13-32 Web Service wizard: Top-down EJB Web service configuration

� In the Web Service Skeleton EJB Configuration panel, select Define custom
mapping for namespace to package.

The Web Service wizard uses the namespaces defined in the WSDL to create
package names for the Java classes it generates. These namespaces, as in
our example, can be complex and not well suited for Java package names.
The Web Service wizard enables you to provide a namespace to Java
package mapping to generate meaningful Java package names.

� Leave all the other configuration at their defaults. The Web Service wizard is
shown in Figure 13-33. Click Next.
 Chapter 13. Service implementation 453

Figure 13-33 Web Service wizard: Web Service Skeleton EJB Configuration

� On the Web Service Skeleton namespace to package mapping panel, click
Import.

� We have provided a namespace to package properties file for you. In the
Browse Files dialog, expand AccountApplicationSCEJB → mappings to find
jkemappings.properties file.

� Select jkemappings.properties and click OK.

� The namespace to package mappings have been imported. The Web Service
wizard is shown in Figure 13-34. Click Next.

Figure 13-34 Web Service wizard: Namespace to package mapping
454 Building SOA Solutions Using the Rational SDP

� Be patient, parsing the WSDL file and generating code takes a while.

� In the Start Server panel, we start the test server to deploy and test the Web
service we are creating. Click Start server.

� Once the server has started and the application is deployed, click Next.

� On the Web Service Publication panel, you have the option to publish this
Web service to a UDDI Registry. For this sample, we do not publish the Web
service to a UDDI Registry. Click Finish.

The Web Service wizard created a Web module named
AccountApplicationSCEJBHttpRouter. This module performs the routing of
the Web service calls to the EJB Web service.

� Expand AccountApplicationSCEJB → ejbModule to view the packages and
Java classes that were created by the wizard. The Project Explorer is shown
in Figure 13-35.

Figure 13-35 Project Explorer after EJB Web Service generation

Generated skeleton
classes

Router project
 Chapter 13. Service implementation 455

We have completed the EJB Web service skeleton creation. We implement the
EJB Web service using the Web service skeleton and the skeleton code that we
generated in “Run the UML to Java V5.0 transformation” on page 445.

Implement the business logic

From our service and design models we use transformations from Rational
Software Architect to move from a higher level of abstraction to a lower level of
abstraction:

� We use the UML to WSDL transformation on the service model to generate
the WSDL.

� We then use the WSDL2Java transformation, with the help of the Web
Service wizard, to generate the skeleton interfaces for our Web service.

� For the design model, we use a UML to Java V5.0 to generate skeleton code
that is used for the implementation of the determineApplicationEligibility
operation for the AccountApplication service.

� Now we implement the business logic that will glue these pieces together.

We have been leveraging the capabilities in Rational Software Architect to model
and transform our models. Depending on the transformation, these can either be
executed by an architect or a developer role. We now transition to a pure
developer role and utilize Rational Software Architect to implement the business
logic and glue the pieces together.

We have created code templates with the business logic and miscellaneous code
fragments to limit the amount of copying and pasting we have to do for this
implementation.

Implement the Web service by performing the following steps:

� Open the J2EE perspective (Window → Open Perspective → J2EE).

When we performed the UML to Java V5.0 transformation, Rational Software
Architect put tasks into a task list as reminders to us that we may have to modify
the code. We use the Tasks view to find the methods we must implement. The
Tasks view appears at the bottom of the product window (Figure 13-36).

� If the Tasks view is not visible, open it by selecting Window → Show View →
Tasks.
456 Building SOA Solutions Using the Rational SDP

Figure 13-36 Tasks lists

From the Tasks view we implement the TODO items for the
AccountApplicationServiceImpl class.

To complete the AccountApplicationServiceImpl class perform these steps:

� Double-click the task for the AccountApplicationServiceImpl.java resource
to open the class at the location of the determineApplicationEligibility
TODO method.

� Change the method signature to:

public AccountApplication determineApplicationEligibility
(AccountApplication application, float limit)

� Delete the existing two lines of code.

//TODO Auto-generated method stub
return null;

� Use the code template daeImpl to add code to the method. (Type dae and
press Ctrl+SpaceBar to select the daeImpl template as in Figure 13-37.)

The sample code prints log messages to the Console and decides if a credit
report is required based on company name and requested amount.

Note: We introduce a signature change on the
determinApplicationEligibility method made by the developer. We do this
to simulate the iterative nature of development and the need for reverse
transformation to keep your design model current. More information about
reverse transformation and an example transformation can be found in “Refine
service components” on page 395.
 Chapter 13. Service implementation 457

Figure 13-37 Code template: daeImpl

� Optionally remove the TODO line in the getApplication method.

� Press Ctrl+S to save the changes.

We now link the implementation to the Web service skeleton by performing these
steps:

� Open the AccountApplicationBindingImpl class at the
determineApplicationEligibility method. You can do this by expanding
AccountApplicationSCEJB → ejbModule →
com.ibm.redbook.jke.customeraccountmgr → AccountApplicationBindingImpl
and double-clicking the determineApplicationEligibility method.

� Delete the line of code: return null;

� Use the code template daeService to add code to the method. Type dae and
press Ctrl+SpaceBar to select the daeService template.

The sample code returns an eligibility message with application status and
comment (eligible or credit report required).

� Press Ctrl+S to save the changes.

You have completed the implementation of the Web service. If you have any
compilation errors, you must resolve them before you can continue to testing.

Test the service

Unit testing is traditional performed by the developer. Rational Software Architect
has many features to assist the developer in unit testing. In this section we
describe the following features to assist in unit testing Web services:
458 Building SOA Solutions Using the Rational SDP

� Web Services Explorer
� TCP/IP Monitor
� Component Test
� JUnit

Web Services Explorer
We unit test the determineApplicationEligibility service by using the Web
Services Explorer.

The Web Services Explorer allows you to explore, import and test WSDL
document. You can use this tool to aid in unit testing your own Web service
operations or those of a third-party Web service.

The Web Service Explorer also allows you to publish the business entities and
Web services to a registry. The Web Services Explorer comes populated with
several registries, you can also add additional registries to your list of favorites.

Start the test server
Start the server if not already started, in the Servers view start the WebSphere
Application Server V6.1 test server by clicking the Start icon .

Locate and open the WSDL file
To test the Web service from the WSDL file perform these steps:

� Start Web Services Explorer by selecting Run → Launch the Web Services
Explorer.

� Click the WSDL page icon located in the upper right corner of the Web
Service Explorer.

� In the Navigator pane, select WSDL Main. This opens the Open WSDL view
in the Actions pane.

� Enter the URL of a WSDL document:

– Click Browse.

– For the Category select Workspace WSDL documents.

Note: A unit test plan should be created for unit test. This test plan should
then be reviewed and static testing of the unit test plan should be done to
reveal any missing scenarios. For more information about testing, see the
Rational Unified Process Test discipline.

Note: Refer to the Rational Application Developer InfoCenter for information
about exploring and importing WSDL and for publishing your business entities
and Web services to a registry.
 Chapter 13. Service implementation 459

– For Workspace Projects select AccountApplicationSCEJB.

– For WSDL URL use the pull-down to locate the correct WSDL file:

platform:/resource/AccountApplicationSCEJB/ejbModule/META-INF/wsdl/Custo
merAccountMgr.wsdl

– Click Go (Figure 13-38).

Figure 13-38 Select WSDL file

� Click Go in the Actions pane to work with the selected WSDL file.

Invoke the determineApplicationEligibility WSDL operation
In this section we describe how to test the determineApplicationEligibility
operation using the Web Service Explorer.

� From the Navigator pane, expand AccountApplicationService →
AccountApplicationBinding and select determineApplicationEligibility
(Figure 13-39).

Figure 13-39 Select determineApplicationEligibility operation

Note: The Web Service Explorer enables you to browse the WSDL operations
and set additional endpoints for the service. This is covered in detail in
“Browse operations and set WSDL endpoints” on page 467.
460 Building SOA Solutions Using the Rational SDP

� In the Actions pane, enter the account application test data into the fields, for
example:

– Customer: Laura, Olson, 123-456-7890
– Address: 4400 N First Street, San Jose, CA, USA, 95134
– Request amount: 4444.44
– Credit report needed: true
– Credit score: 777
– Pricing code: Medium
– Application decision: true
– Company name: IBM
– Status: UnderEligibilityCheck

� Click Go.

� The Web service runs and the status window displays the formatted results
(Figure 13-40).

Figure 13-40 Result of the Web service call

Also note the test output of the Web service in the Console view.
 Chapter 13. Service implementation 461

TCP/IP Monitor
TCP/IP Monitor is a simple server that monitors all request and response
between the Web browser and the server. It is another way, besides the Web
Services Explorer, to monitor the SOAP request and response messages.

To use TCP/IP Monitor to test our Web service, we have to send the message to
the TCP/IP Monitor port:

� In the Servers view select the server and Monitoring → Properties. You
should see that the Monitor is started, the server port, and the monitor port.

� In the Web Services Explorer, select AccountApplicationBinding in the
Navigator. In the Actions pane click Add for Endpoints and add an endpoint
using the same syntax but changing the port to the monitor port. Then select
the new port and click Go.

� Select the determineApplicationEligibility method in the Navigator and run the
Web service with some data.

� The TCP/IP Monitor view opens and you can see the input and output
messages. Select XML for both input and output messages to see the
formatted XML messages (Figure 13-41).

� We can also open the TCP/IP Monitor view by selecting Window → Show
View → Debug → TCP/IP Monitor.

Tip: A faster way to run the Web Services Explorer with a WSDL file is to
select the WSDL file in the Project Explorer and Web Services → Test with
Web Services Explorer.
462 Building SOA Solutions Using the Rational SDP

Figure 13-41 TCP/IP Monitor view

Alternatively, we could generate a client for the Web service using the Web
Service wizard and selecting the Monitor service option.

Component test
In software development it is well known that component testing allows us to find
and fix defects early. In a SOA solution it becomes crucial to find and fix defects
early. The impact of a defect can have a cascading effect because the service
could be used by multiple critical systems.

Rational Application Developer comes with automated component testing
features that allow us to create, edit, deploy, and run automated tests of Java
components, EJB components, and Web services.

For an in-depth information about the component test features in Rational
Application Developer refer to IBM developerWorks:
 Chapter 13. Service implementation 463

� Tutorial: DEV341: Essentials of IBM Rational Application Developer:

http://www-128.ibm.com/developerworks/rational/library/05/dev341/dev341.htm
l

� Article: Component testing with IBM Rational Application Developer for
WebSphere Software:

http://www-128.ibm.com/developerworks/rational/library/05/kelly-stoker/

JUnit
Rational Application Developer has support for JUnit testing. JUnit is a simple
testing framework that creates repeatable tests. The JUnit tests are created and
run by the developer to validate their code and also used to perform regression
testing. For more information about how to use JUnit, refer to the Rational
Application Developer InfoCenter.

Summary of top-down development of a service

In this section we described the top-down development of a service:

� We introduced model transformations.

� We configured a UML to WSDL and a UML to Java V5 transformation

� We performed transformations on our service and design models.

� We leveraged the Web Service wizard to generate and EJB Web service from
a WSDL

� We implemented the service from the skeleton code that was produced by the
transformations

� We unit tested our service using the Web Services Explorer.

Third-party service

In the JK Enterprises sample application we are using a third-party service for
the address verification service. We received the WSDL from the third-party and
we have to test the validate operation on AddressVerification service.
464 Building SOA Solutions Using the Rational SDP

http://www-128.ibm.com/developerworks/rational/library/05/dev341/dev341.html
http://www-128.ibm.com/developerworks/rational/library/05/kelly-stoker/

Figure 13-42 Address Verification service

Prepare for sample third-party sample

We have provided an address service to simulate using a third-party service.

Import the project interchange file
To import the project interchange file perform the following steps:

� Select File → Import.

� In the Import dialog, expand Other and select Project Interchange.

� Click Browse to locate and open file:

c:\SG247356\sampcode\SoftwareArchitect\thirdparty\AddrVerification.zip

� Select AddrVerification and AddressVerificationServiceEAR and click Finish.

Note: For this book we have provided a stubbed out sample address
verification Web service. The are multiple address verification services
available today. For a real address verification server, refer to the internet.

Services
atomic and composite

Operational Systems

Service
Components

Consumers

Business Process
Composition; choreography;
business state machines

Billing
(CICS 3.1)

GL
(SAP)

Customer
(CICS 2.x)

Account
Manager

Account
Coordinator

Risk
Assessor

Account
Application Billing Account General Ledger Account

Customer
AccountAddress

Customer
Mgr

Billing Account
Mgr

General Ledger
Account Mgr

Address
Mgr

Atomic Service Composite Service

Validate
Address

Existence

Account Opening
Process

Account
Verification
 Chapter 13. Service implementation 465

Add the project to the test server
We use the WebSphere Application Server to host the third-party service.

Add the project to the test server by performing these steps:

� Open the Servers view.

� Right-click the WebSphere Application test server and select Add and
Remove Projects.

� Select AddrVerificationServiceEAR and click Add. Click Finish.

Start the test server
Start the WebSphere Application Server in the Servers view by selecting the
server and Start.

Validating the WSDL file

When you create a WSDL file through the Web Service wizard the WSDL that is
generated should be valid. However, if you have imported a WSDL file, or if you
are creating a WSDL file, you should validate the WSDL to ensure it is valid.

In the JK Enterprises sample solution we are using a third-party service for the
Address Verification service. We received the WSDL from the third party and we
have to validate the WSDL to make sure it is valid and complies with the Web
Services Interoperability (WS-I) Basic Profile.

WS-I Basic Profile is an outline of requirements to which a WSDL and a Web
service protocol traffic must comply to claim WS-I conformance. Rational
Application Developer allows us to configure the level of compliance that we
require our WSDLs to meet. For more information about how to configure WS-I
compliance, refer to the Rational Application Developer’s InfoCenter.

The WSDL file is stored under:

AddrVerficitionService/WebContent/WEB-INF/wsdl/AddressVerification.wsdl

Validate the WSDL file by selecting the file and Validate WSDL.

Note: WS-I is an organization designed to promote Web service
interoperability across, platforms, operating systems and programing
languages. For more information about WS-I, refer to:

http://www.ws-i.org
466 Building SOA Solutions Using the Rational SDP

http://www.ws-i.org

Testing the third-party Web service

In this section we demonstrate how to use the Web Services Explorer to test the
third-party service.

Locate and open the WSDL file
Locate and open the third-party WSDL by performing the following:

� Select the AddressVerification.wsdl file and Web Services → Test with
Web Services Explorer.

� The Web Services Explorer opens (Figure 13-43).

Figure 13-43 Web Services Explorer for third-party Web service

Browse operations and set WSDL endpoints
You can browse the available endpoints and add additional endpoint to test
through the WSDL Binding Details view. Here are the steps to view the available
endpoints and to add an endpoint.

� Select AddressVerificationSoapBinding in the Navigator pane (Figure 13-44).
 Chapter 13. Service implementation 467

Figure 13-44 Web services Explorer: Selecting the service binding

� You are now able to view the available operations and the endpoints. You can
add an endpoint by clicking Add. A copy of the endpoint is made, which you
can modify to:

http://localhost:9080/AddrVerificationService/services/AddressVerification

� Click Go and the new endpoint is added to the list (Figure 13-45).

Figure 13-45 Web services Explorer: Adding an endpoint

Invoking a WSDL operation
In this section we test the validate operation on the AddressVerification
service. To perform these steps, the WebSphere test server must be started.
468 Building SOA Solutions Using the Rational SDP

� From the Navigator pane expand AddressVeficationSoapBinding and select
validate (Figure 13-46).

Figure 13-46 Web service Explorer: Select the validate operation

� In the Actions pane select the endpoint:

http://localhost:9081/AddrVerificationService/services/AddressVerification

� Enter any values into the address fields (Figure 13-47).

Figure 13-47 Web services Explorer: Validate operation parameter entry
 Chapter 13. Service implementation 469

� Click Go.

� The Status pane displays the Web service operations response
(Figure 13-48).

Figure 13-48 Web services Explorer: Test validation operation status

� Click Source in the Status pane and the SOAP Request and Response
Envelopes are displayed (Figure 13-49).
470 Building SOA Solutions Using the Rational SDP

Figure 13-49 Web services Explorer: Validation operation SOAP envelopes

Summary of third-party service

In this section we simulated the validation and testing of a third-party service. We
looked a the WSDL validation and the Web Services Explorer.

Rational Application Developer’s WSDL validation capabilities enables us to
validated a WSDL we import or that we have created. We can configure the WS-I
level of compliance we want the validator to verify.

The Web Services Explorer tool is a good tool to use when we are supplied with
a WSDL and we need to import and test the Web service. It is also helpful in
testing Web services we have created with the Web Service wizard.
 Chapter 13. Service implementation 471

Indirectly exposing an enterprise service

In this section we show how to indirectly expose an enterprise service. We
illustrate how to create a J2C bean and a Java data binding that is used to call
the CICS Transaction Gateway, which in turn accesses the CICS Transaction
Server. We expose the J2C bean as a Web service endpoint, which receives
SOAP requests.
.

Figure 13-50 Create Account operation on the Customer Account service

We expose an older CICS application (running on CICS 2.3) through a
tightly-coupled J2C adaptor. In this case, the CICS program we are calling
represents the customer master record.

Note: We are demonstrating the techniques to expose enterprise server in
this section. This section does not provide a sample CICS Transaction
Gateway or a CICS Transaction Server. We use a fictitious CICS system and
sample configuration values which would need to be replaced by real CICS
system and configuration values to run the resulting Web service. This section
is here to demonstrate the steps and techniques.

Services
atomic and composite

Operational Systems

Service
Components

Consumers

Business Process
Composition; choreography;
business state machines

Billing
(CICS 3.1)

GL
(SAP)

Customer
(CICS 2.x)

Account
Manager

Account
Coordinator

Risk
Assessor

Account
Application Billing Account General Ledger Account

Customer
AccountAddress

Customer
Mgr

Billing Account
Mgr

General Ledger
Account Mgr

Address
Mgr

Atomic Service Composite Service

Create
Account

Account Opening
Process

Create
Account

Create
Account

Account
Activation
472 Building SOA Solutions Using the Rational SDP

As we open the account in the Open Account business process at JK Enterprises
we must create a customer record. We build the service in this section that will
later be called by the business process.

Preparing for sample

We have to create a new Dynamic Web Project called CICSCustomerWeb, which
we use to build a Web service connecting to our fictitious CICS system. We
highlight in the chapter in which steps the configuration values would need to be
replaced by real configuration values.

To create an Enterprise Application Project perform the following:

� Select File → New → Project → Web → Dynamic Web Project.

� Type CICSCustomerWeb as Project Name.

� Create a new EAR Application by clicking New, and name it CICSCustomer,
Click Finish.

� Click Finish.

We must have the Java Connector Tools installed and the capabilities enabled.

Implementation

In this section, we perform these steps:

� Create a Java data binding
� Create a J2C bean
� Create a Web service to use the J2C bean

Create Java data binding
We use a wizard to create a mapping from a COBOL structure to a Java object,
and vice-versa. This is necessary because the COBOL executing on CICS is
expecting a COBOL record structure, in EBCDIC, whereas our Web application
manipulates Java objects in ASCII.

� In Project Explorer, select CICSCustomerWeb and New → Other. In the Select a
Wizard dialog, under J2C select CICS/IMS Java Data Binding (Figure 13-51).

Note: It is important to note that the techniques we use here can also be used
to expose IMS programs.
 Chapter 13. Service implementation 473

Figure 13-51 CICS/IMS Java data binding

� In the Data Import window perform these steps:

– Chose mapping field: Select COBOL to Java.

– COBOL file:

c:\SG247356\sampcode\SoftwareArchitect\cics\CUSTPROG.cbl

� The Import dialog is where you select the code page conversion:

– For Platform select z/OS®.

– For Data Structures, click Query. When the list has been populated, select
DFHCOMMAREA. Click Next (Figure 13-52).

Figure 13-52 Select data structure

DFHCOMMAREA is the default name giving to the CICS COMMAREA
(communication area).

� On the next page, leave Generation Style as Default. The Project name
should be CICSCustomerWeb. Enter a package name, for this example use:
com.jke.cics. Change the class name to CreateAccount (Figure 13-53).
474 Building SOA Solutions Using the Rational SDP

Figure 13-53 Saving properties

These changes simply make the package names conforming to JK
Enterprises and what the application is actually doing. None of these names
reflect what is exposed in the WSDL file.

� Click Finish. This creates an CreateAccount.java file in the Web project. You
use this class later to pass and receive data from CICS.

Create J2C JavaBean and a Web service to use the J2C bean
Now we use the wizard to create a J2C JavaBean and a Web service to use the
J2C JavaBean, which means you do not have to write any code to use the CICS
Transaction Gateway to call the program on CICS. This wizard uses the Java
data binding we created in the previous section.

� Under Dynamic Web Projects, select the CICSCustomerWeb project and
New → Other. In the wizard select J2C Java Bean. Click Next (Figure 13-54).

Figure 13-54 Select J2C Java Bean wizard

� The Resource Adapter Selection page is where you select the resource
adapter. Select 1.5 > ECIResourceAdapter (IBM:6.0.2). Click Next
(Figure 13-55).
 Chapter 13. Service implementation 475

Figure 13-55 Resource adapter selection

In the Connection Properties page we use a managed connection:

� Next to the JNDI lookup name field click New.

A wizard opens and takes you through creating a connection factory in the
WebSphere Application Server Test Environment.

� In the Server Selection page select WebSphere Application Server V6.1 and
click Next.

� In the New J2C Connection Factory page, you enter the values for the
connection factory that will be created in WebSphere. Expand the window
and click Show Advanced to configure advance properties (Figure 13-56).

Note: Resource adapters are a set of related classes that let an application
access a resource such as data, or an application on a remote server, often
called an enterprise information system (EIS).
476 Building SOA Solutions Using the Rational SDP

– In JNDI Name field type CICS/CustProg.

– Leave the Connection class name as the default value.

– In Connection URL field type tcp://demomvs.itso.ibm.com.

This is the URL for CICS Transaction Gateway with which the Resource
Adapter communicates.

– In the Server name field type CICSACB3.

– For the Port number type 12006.

– For User name type TEAM99.

– For the Password type t6y7u8i9.

– Under Advance Properties, for TPN Name type DSMI.

The above values depend on the installation. The server name should match
the server that is created using the configuration tool, and a Connection URL
of local: means it uses the Gateway in local mode on the local machine. For
more information about these parameters, consult the CICS Transaction
Gateway documentation.

– Click Finish (Figure 13-56).

Note: We have provided example values to complete the wizard. You need
to replace our values with the correct values for your environment.
 Chapter 13. Service implementation 477

Figure 13-56 New J2C Connection Factory

� This step takes some time, because it starts the test server, and then creates
a connection factory. When this has finished it should have filled in the JNDI
lookup name in the Connection Properties window. Click Next.

� The J2C Java Bean Output Properties window enables us to select names for
the generated classes. The Project name should be CICSCustomerWeb. Click
Browse next to the Package Name to select com.jke.cics.

� For the Interface Name type CustProgJ2Bean and the Implementation Name is
filled as CustProgJ2CBeanImpl. Click Next (Figure 13-57).
478 Building SOA Solutions Using the Rational SDP

Figure 13-57 J2C Java Bean output properties

� In the Java Methods page you can add a method for each program you want
to access in CICS:

– Click Add. In the Java method name field type custProg. Click Next
(Figure 13-58).

Figure 13-58 Add Java method

– On the next page, you select the inputs and outputs for the method. These
should be the data type(s) you created earlier. Next to Input type click
Browse.

– In the pop-up dialog select the CreateAccount class you created earlier
(Figure 13-59).

Figure 13-59 Select data type
 Chapter 13. Service implementation 479

– Click Ok. To use the same structure for input and output, select Use the
input type for output. Click Next.

– Select both parameters and click Finish.

� Click Next.

� For J2EE Resource Type, select Web Service. Click Next (Figure 13-60).

Figure 13-60 Deployment information

� In the Web service Creation dialog (Figure 13-61):

– Service Web Project: CICSCustomerWeb

– Click Show Advanced and set the Resource Reference to CustProgRef
and the JNDI lookup name to CICS/CustProg.

Figure 13-61 Web Service creation
480 Building SOA Solutions Using the Rational SDP

� Click Finish to generate the Web service. (If you get an error indicating the
Connection Factory already exists, ignore the error and click Close.)

� This should open the CustProgJ2CBeanImpl.java implementation class that
has been created.

We can now test the Web service by using the Web Services Explorer. The Web
Services Explorer is detailed in “Test the service” on page 458 and “Testing the
third-party Web service” on page 467.

Summary of indirectly exposing an enterprise service

In this section we demonstrated how to indirectly expose an enterprise service by
creating a Java data binding, a J2C JavaBean, and then wrapping the bean with
a Web service.

The techniques we demonstrated here can be applied to expose function in other
systems (such as IMS) as a service.

Updating the design

In this chapter we have covered the service implementation options of top-down
development, third-party outsourcing, and indirectly exposing an enterprise
service. In each of these situations Java code has been changed and created
that is not reflected in the design model. To keep an accurate view of our solution
we have to be able to perform a reverse transformations.

Rational Software Architect provides the capability to perform reverse
transformations. It can perform reverse transformation to update an existing
model in the case of top-down development. It can also perform reverse
transformations to create new model elements in the case of bottom-up
development.

Note: You would require an actual CICS system to run the test.

Note: For more information about the options available to expose existing
enterprise service, refer to the IBM Redbooks publication Patterns: SOA
Foundation Service Creation Scenarios, SG24-7240:

� Realization options
� How to leverage the e-business patterns in the realization of those options
� Best practices in service creation
 Chapter 13. Service implementation 481

Reverse transformations are covered in detail in “Reverse transformation from
Java code” on page 413.

Output of service implementation

In this chapter we described the options available to implement a service. We
demonstrated how to build a service top-down, how to subscribe to an external
service, and how to integrate an existing function based on CICS.

We demonstrated the value of transformations as a way of moving from a higher
level of abstraction to a lower level. We configured a UML to WSDL and a UML to
Java V5 transformation. We ran the transformations to generate a WSDL and the
skeleton Java code, which was used by the developers to implement the Web
service.

We used the Web Service wizard to generate a top-down EJB Web service from
the WSDL that was generated from the UML to WSDL transformation.

We implemented the business logic of the service using the skeleton Java code
from the transformation and the Web service skeleton Java code.

We were introduced to the unit testing features in Rational Application Developer
for Web services.

At the end of service implementation we have as outputs the implementation
model and the developer tests for the service. The next step would be composite
service implementation. In composite service implementing we use WebSphere
Integration Developer to compose our services. Building composite services is
mentioned briefly in the Introduction chapter of this book.

Another important output of implementation is the build. Rational Build Forge™ is
a tool that provides a way for development teams to standardize and automate
repetitive tasks, manage compliance mandates and share information. Rational
Build Forge streamlines the software delivery throughout the development life
cycle.

For more information about build, see the following:

� Rational Build Forge product Web site:

http://www-306.ibm.com/software/awdtools/buildforge/index.html

� White paper: Agile configuration management for Large Organizations:

ftp://ftp.software.ibm.com/software/rational/web/whitepapers/wp-agile-cm4lr
g-orgnzs.pdf
482 Building SOA Solutions Using the Rational SDP

http://www-306.ibm.com/software/awdtools/buildforge/index.html
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/wp-agile-cm4lrg-orgnzs.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/wp-agile-cm4lrg-orgnzs.pdf

Chapter 14. Service testing

This chapter provides a look into testing SOA applications. It is organized into
these sections:

� Introduction

� Testing SOA systems from a technology and architecture perspective

� SOA test strategy

� IBM products for SOA testing

� Test work products

� Test roles

� Test process

� Managing testing artifacts

� Creating reusable test scripts with Rational Manual Tester

� Designing and executing functional tests with Rational Functional Test

� Where to find more information

14
© Copyright IBM Corp. 2007. All rights reserved. 483

Introduction

In this chapter we cover the testing challenges and strategy in SOA. We do not
cover the testing discipline in detail, but we outline the different aspects that an
SOA brings to the table. We introduce the JK Enterprises testing process and
then provide hands on examples using Rational’s testing tools.

Inputs to testing

Test receives input from multiple sources. Figure 14-1, shows the inputs received
from Requirements and Analysis & Design. We use these inputs to generate the
Test Case work product. We describe the key work products of the RUP Test
discipline in “Test work products” on page 507.

Figure 14-1 Testing related work products

The roles responsible for the above work products are shown in Figure 14-2. We
describe these roles and additional roles in the Test discipline in “Test roles” on
page 509.
484 Building SOA Solutions Using the Rational SDP

Figure 14-2 Roles responsible for Test work products

SOA testing from a technology and application
perspective

Testing an SOA application is not just a simple variation of traditional testing.
Testing is no longer just about testing our components, we also need to make
sure they work with all the other layers and components in the business services
space. Figure 14-3, the SOA solution stack, shows the different architectural
layers in an SOA.
 Chapter 14. Service testing 485

Figure 14-3 SOA solution stack: A layered architecture

Below are some characteristics of an SOA that present unique challenges in
testing its solution adequately from a technology and architectural perspective.
Each item by itself may not be entirely unique to SOA, but taken together they
create a unique package of qualities to address.

Loose coupling between services and requesters

What does it mean to have loose coupling between services providers and
requesters? Loose coupling implies that the underlying implementation is hidden
from the application that invokes the service. In a loosely coupled system you are
not required to have the same technological implementation at each end of the
connection. This implies that there is a minimum dependency between service
providers and requesters.

How does this affect our testing? With a loosely coupled system we cannot make
assumptions about the system when it comes to testing, because a service could
be reused in an environment or reused with technologies not originally intended.

Atomic Service Composite Service Registry

Services
atomic and composite

Data and function

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata Architecture (m

eta-data) &
B

usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application

Note: For more information about the SOA foundation, refer to “SOA
foundation reference architecture” on page 6.
486 Building SOA Solutions Using the Rational SDP

Take for example a small job search application which was built for one human
resources administrator when JK Enterprises was a small company of only 40
employees. Today this job search functionality is re-used in a new technology and
exposed as a service to company’s intranet where all employees have access to
perform job searches. The company has now grown to over 11,000 employees.
The service that was designed with a single user base and technology in mind is
now being used by a much larger user base and new technology. With loosely
coupled systems we don’t control both ends of the system as we once did.

Consequence: Test designs have to follow the same coding disciplines (that is,
be loosely coupled). In order for the test cases to be re-used in different
technologies, they need to comply to the same interfaces and coding standards.
Just as the code needs to be used by all technologies, the test, designed to run
that code, needs to be reused by all technologies.

Heterogeneous technologies intertwined in the same solution

SOA systems are often composed of both new and existing services and their
business goals. The system could be a collection of heterogeneous existing or
earlier systems or applications with heterogeneous networks and environments,
distributed across global and geographical cultural boundaries and across
various communication protocols.

Most companies do not have the time or resources to rewrite from scratch,
re-engineer or refactor everything at the same time. Take for example JK
Enterprises, which has CICS and SAP applications. These applications hold
many companies policies, rules, and procedures. It may not be strategical or
economical to replace entire applications to fit the new technologies right now.
SOA allows you to have new and existing or earlier applications in the same
model. The existing or earlier applications are looked at as black-box services.
This allows the company to replace or revamp the existing or earlier applications
when it has the resources by using a phased approach. This leads to
heterogeneous environments.

Consequence: Test cases have to be environment neutral. One of the concepts
behind SOA is the ability to react and to adapt to changes in the future, because
of this, you cannot make the assumption that just because the business is run
like this today, it will always be this way.

Lack of total control over all elements of a solution

An SOA gives applications the flexibility to outsource services to third parties.
This causes an interesting challenge when determining the source of a problem,
it could be within the third party service. Another challenge is when a problem is
 Chapter 14. Service testing 487

found, who is responsible to fix it? An SOA also gives the flexibility to distribute
the services. Distributing the services can bring up issues such as geographical
and cultural differences which result in increased communication and
administrative challenges. It also causes issues when determining who owns the
testing. With SOA the systems need to comply with standards and agreed-upon
interfaces. You now need to be aware of changes in the interfaces and standards.
Overall, the lack of total control over all elements of a solution increases the need
for collaboration.

Consequence: We have to monitor changes at all levels of interfaces whether
service or policy oriented. We also must have service contracts.

New standards and technologies

There are many standards and technologies to understand and to deal with;
WSDL, SOAP, UDDI, HTTP, JMS, and WS-Security, just to name a few. With
these comes many versions and implementations, which raises issues with
interoperability.

Consequence: Every time a new version is released, you have exponentially
increased the testing. You now have to test on the currently released standards
and you need to test on the new version of the standards/API/interfaces.
Customers may or may not be upgraded to the newest version, so you have to
work with both versions.

Asynchronous nature

SOA systems often have multiple activities occurring at the same time which can
result in no single point of failure. SOA system also have a combination of
synchronous connectivity and distributed routing which is difficult to map and
model. This brings up a complex array of integration issues. With this
combination of factors comes an increased difficulty to duplicate a problem. We
see an increase in time and effort trying to reproduce the problem. The problem
cannot be fixed until it can be reproduced consistently.

Consequence: You need test cases that exercise and emulates asynchronous
behavior. Test should be created with serviceability and better diagnostics tools
up-front to help debug these asynchronous and difficult issues.

Application failures

The previous characteristics of loose coupling, lack of control of all elements,
heterogeneous technologies and asynchronous nature can each lead us to
application failure. What happens when the service works on most, but not all
488 Building SOA Solutions Using the Rational SDP

technologies, environments and platforms. What happens when services are
from third parties. What happens when there is no single point of failure? All of
these are good questions but, to fix a bug which causes the failure we need to be
able to consistently duplicate the bug. As mentioned above, the ability to do this
in an SOA takes increased time and effort.

In pre SOA systems, six to seven percent of product failures are marked as
unreproducible. Therefore we are releasing seven percent of our defects to our
customers. Because application failure points in SOA are difficult to find this
unreproducible number increases.

In reality, there are no intermittent bugs. The problem is consistent, you just have
not found the right condition to reproduce it.

Consequence: We need test cases that emulate, diagnose, and self-correct
failures.

Providing serviceability tools that continually monitor performance, auto-calibrate
at the application’s degradation thresholds, and automatically send the proper
data at the time of degradation, prior to the application actually crashing, reduces
both in-house troubleshooting time and customer downtime. Both iterative testing
and iterative serviceability activities reduce the business impact of undiscovered
bugs.

Better diagnostic and serviceability routines increase the customer value of your
product. By proactively monitoring the environment when your product starts to
degrade, you can reduce analysis time and even avoid a shutdown by initiating
various auto-correcting calibration and work around routines. These types of
autonomic service routines increase your product’s reliability, endurance, and
runtime duration, even if the conditions for reproduction of a bug are unknown.

In a sense, autonomic recovery routines provide a level of continuous technical
support. Environment logs and transaction trace information are automatically
collected and sent back to development for further defect causal analysis, while
at the same time providing important data about how your product is actually
being used. If we acknowledge that bugs are inevitable, we also need to realize
the importance of appropriate serviceability routines. These self-diagnostic and
self-monitoring functions are effective in increasing customer value and
satisfaction because they reduce the risk that the customer is negatively affected
by bugs. Yet even though these routines increase customer value, few
development cycles are devoted to putting these processes in place.
 Chapter 14. Service testing 489

SOA: Testing strategy

An SOA poses some challenges when devising a testing strategy. Below are
questions that need to be answered when developing a test strategy.

� At what level to test?

Do you start at the data and function layer, service component layer or do you
only test at the services layer? How do you test end to end?

� Who is in charge of the tests?

Do business analysts own the tests because they defined the requirements
that should be tested? Do developers own the test because they implement
the services? Or how about the tester shouldn’t they be the ones that own the
test since they run the test?

� How to define the right test cases?

SOA is dynamic and flexible in nature which leaves endless possibilities for
test cases.

� What is the integration strategy?

How are you going to handle B2B services? How are you going to handle
testing distributed services across global and geographical boundaries?

� Effective test automation?

Which test can be automated? Which test should be automated?

� What are the test completion criteria?

Is it when you can prove reliability? How about availability? Is it when
performance meets a certain criteria? What is the measurement on security?

By now you are probably thinking, how do I answer these questions and where
do I even begin to define a testing strategy? You need to start off by making
finding defects early a primary goal. Finding and fixing defect closest to when
they are created reduces cost, time and effort. Now you are thinking this is
nothing new, this is the same for every application you test. However, finding
defects early is even more important for SOA applications. SOA solutions involve
many levels, composites and roles. As we mentioned in “SOA testing from a
technology and application perspective” on page 485, it becomes more difficult to
locate and reproduce a bug when there are multiple levels, composites and roles.
You can see the service layers involved in an SOA in Figure 14-3. So find the
defects early.

We can answer the above testing strategy questions by keeping in mind the
testing challenges SOA introduces and the fact we need to find defects early. Let
us begin answering the SOA strategy questions.
490 Building SOA Solutions Using the Rational SDP

At what level do you test?

You have to test at each level: Service components, atomic and composite
services, business composition, and end-to-end. Testing at each level enables
you to locate and fix defects at the point where they were introduced which ties in
with finding and fixing defect early. Testing should be an iterative process that
continues throughout the whole life cycle of the application. Code reviews and
inspections should be done for each code drop along with unit and regression
testing.

Who is in charge of testing?

Because you need to test at each level in the architecture, there is no one role
that is in charge of all testing. Instead, there are multiple roles, each in charge of,
or at least sign-offs on tests within their level. The roles need to coordinate and
communicate with testers at the levels around them. As with the nature of SOA,
this also helps enable alignment of the business with IT because the business
analyst needs to be in sync with the technical tester and so forth.

Defining a test team is critical in testing an SOA. There are testing techniques
that are unique to SOA testing that require a specific set of skills in the test team.
We need to address preparing the test team on both managerial and technical
levels. We also need to make sure that the test targets described in the test
strategy are used to determine the test team objectives and make-up.

We expand on the testing in each level of the architecture and the roles involved
in testing in that level in the following subsections. We must keep in mind the
best practices of testing early, performing code review and inspection, and unit
testing and regression testing for each code drop.

For this section we have defined the following roles for testing:

� Technical and non-technical tester—Expert in testing techniques and test
automation

� Integration and service component developer—Ensures adequate level of
quality of the base services

� Business analyst—Understands the business process

Business composition
The role involved at this level of testing is the technical tester.

In this section we focus on the business composition layer as depicted in
Figure 14-4
 Chapter 14. Service testing 491

Figure 14-4 Testing business composition services

Below is a list of best practices for testing at the business composition level.
Once again there is nothing really novel about this list. They all stem from the
best practices around integration system or product testing. We have testing
across silos or stand-alone applications, interoperability concerns and service
response times when there are failures in the service.

� Test the business logic as soon as possible:

– Do not wait to have all the UIs already built
– Make the project more predictable to deliver
– Test across many different applications
– Leverage business process models to define test cases

� Focus on potential integration problems:

– Requirement misunderstanding
– Error handling
– Interoperability: Web service conformance testing

� Specific case of business-2-business transactions:

– No UI is built for those services consumed by another company
– Validation of both consumed and provided business processes
– Performance test: Validated against service level agreements

� Need to simulate unavailable services.

Services
atomic and composite

Data and function

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata Architecture (m

eta-data) &
B

usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
492 Building SOA Solutions Using the Rational SDP

What complicates this picture is the loose coupling environment. As we
mentioned previously in “Introduction” on page 484, developers cannot make
assumptions about the system on the other end because they do not control both
ends as they once did.

In an SOA it becomes more important to simulate and test error conditions, error
handling and recovery times because we need to better understand and test the
unexpected. We have to insert fault insertions to rate reliance and resiliency. We
have to be able to determine how likely we can recover and come back online.

Atomic and composite services
The roles involved at this level of testing are the technical tester and the
integration and service component developers.

In this section we focus on the atomic and composite services layer as shown in
Figure 14-5.

Figure 14-5 Testing atomic and composite services

An SOA application is only as good as its weakest service. SOA is flexible and
dynamic in nature, it enables and promotes services to be reused. As you can
imagine, because of this service reuse, one small defect in a shared routine
disseminates quickly through the entire system. This may cause failures in
multiple places and critical product cycles.

Services
atomic and composite

Data and function

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata Architecture (m

eta-data) &
B

usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
 Chapter 14. Service testing 493

As mentioned in “Loose coupling between services and requesters” on
page 486, although the original intent of your service was not in the critical path,
it can certainly be reused in a totally different environment than it was originally
intended. So now your service is in the critical path and its causing all kinds of
problems.

Recognizing this important difference in SOA environments, properly aligns the
imperative for diligent unit testing, code inspections, and reviews.

How do we go about testing at the atomic and composite service level? You must
test each individual service thoroughly. For each service you have to exercise all
possible use cases with valid data. For stateless services, your unit tests need to
be very data-driven as opposed to state driven. You do not need to vary the order
you call these services because they are stateless. For each service you have to
perform negative testing to verify the reliability of the service. You also have to
performance test each service.

Because some individual services do not have a user interface, you have to
create test drivers that call the services and verify the responses. IBM Rational
Software Delivery Platform has tool to assist you with your testing. You can find a
list of tools in “IBM products for SOA testing” on page 500.

As we have stated many times in this chapter, developers cannot make
assumptions about the system on the other end because they do not control it.
What does this mean in terms of testing atomic and composite services? It
means you have to create stubs associated with the expected standard
interfaces of the services you are dependent on. By creating stubs or temporary
substitute routines to work around a dependent code area, if the external
component is delivered late or is unavailable, you have an acceptable backup to
support testing. By reducing your dependency, you make it easier to maneuver
past third-party problems.

You can already see that in a multiple-contributing environment like SOA, with
many layers, components and activities, diagnosing or pinpointing a problem is
challenging. We have to acknowledge that up front and design serviceability
directly into our testing framework.

SOA supports the migration to autonomic and on-demand infrastructure by
support metering and billing, self-healing, and dynamic routing among other
things. Implemented correctly it reacts to events to self-configure, heal, and
optimize.

Service component
The roles involved at this level of testing are the integration and service
component developers.
494 Building SOA Solutions Using the Rational SDP

In this section we focus on the service component layer as shown in Figure 14-6.

Figure 14-6 Testing service components

Realistically, there will be many useful levels of service granularity in most
service-oriented architectures. An example of different levels could be as follows:

� Technical functions (logging)
� Business functions (getBalance)
� Business transactions (openAccount)
� Business processes (applyForMortgage)

It is important to test at each level of granularity to make sure that it is reusable.
The most effective way to catch deficiencies and incapabilities among these
various levels is through formal code reviews, static analysis and unit testing

Third party services should be tested only to the extent that their installation,
configuration and implementation of requirements is verified. It is not necessary
to retest the entire service.

The infrastructure (for example, WebSphere) only has to be explicitly tested to
verify that it was correctly installed and configured. Its not necessary to fully
retest the infrastructure.

Services
atomic and composite

Data and function

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata Architecture (m

eta-data) &
B

usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
 Chapter 14. Service testing 495

Here is a list of developer testing activities and a list of the typical service
components to test:

� Developer testing activity:

– Code review and inspections
– Unit testing
– Runtime analysis

� Typical service components:

– EJB
– Java classes
– Utility Web services

End-to-end
The roles involved at this level of testing are the business analyst, the technical
tester and the non-technical tester.

In this section we focus on the consumer as shown in Figure 14-7.

Figure 14-7 Testing end-to-end

The end-to-end testing takes on a new meaning for SOA testing. In traditional
(non-services based) application programming, the end points are well defined
and it is clear what is expected. This is not necessarily the case for SOA
applications. Services are reusable both within an application and across
applications.

Services
atomic and composite

Data and function

Service Components

Consumers

Business Process
Composition; choreography;
business state machines

Service Provider
Service C

onsum
er

Integration (Enterprise Service B
us)

Q
oS

Layer (Security, M
anagem

ent &
M

onitoring Infrastructure Services)

D
ata Architecture (m

eta-data) &
B

usiness Intelligence

G
overnance

Channel B2B

Packaged
Application

Custom
Application

OO
Application
496 Building SOA Solutions Using the Rational SDP

Consider the case where you have existing services that are used by other
applications. Those applications are stable and continue to run in a production
environment. The application you are currently testing is invoking these services
in a new SOA for the first time. This makes it very important to understand and
set your test objectives very carefully to ensure that all possible end-to-end
scenarios are covered.

Tests of the end-to-end system should be performed through the user interface,
Also, test the complete IT system in an environment that mimics real-world use.
For example, all supported browser types and all supported display resolutions
should be tested for the user interface. The end-to-end tests are required to
validate the system functions, to ensure acceptable usability levels, measure the
overall system performance and to verify the system security.

The majority of these testing needs are no different than in traditional testing. But
once again the SOA implementation gives rise to learning different approaches
to cover similar concepts.

The number of messages needed for an SOA is humongous. The messages are
critical to delivering end-to-end service. They must be delivered quickly,
accurately and their arrival has to be guaranteed. Ensuring that the message
correlations are properly handled by the service receiving them is essential. If
this doesn’t happen, then the end-to-end service quickly becomes a lack of
service. To assure serviceability of these messages, we need to measure service
levels, response times and failure frequency.

The only way to know that an application is delivering the service that the
business users require is to define the service level expectations. Then we have
to measure the applications activity to see whether it is achieving it.

Because application interruptions are sporadic, you can either measure service
constantly and then average it out over a period of month or you can simulate a
load by emulating multiple users, and then collecting response times and data at
an accelerated pace prior to your product’s release. This allows you to tune your
performance prior to a release, which increases your reliability and reduces your
outage risk.

You can also emulate faults or system outages to verify resiliency to see how
quickly the product returns to service after a fault is detected.
 Chapter 14. Service testing 497

How to define the right test cases?

To define the right test cases, begin prioritizing test cases in the order in which
the function they test bring the most value add to the customer. There are several
surveys by Gartner that say only 36% of the features in a product are actually
used. The other 64% are rarely or never used. You want to prioritize those
activities that customer use higher on your test matrix.

When developing the test cases, get the customers involved early in the process.
This not only reinforces that you are investing in the correct test cases but it also
reinforces that your requirements are correct.

Where do you get your test cases? You can derive test cases from multiple
places. You can derive test cases from design documents, system use cases,
WSDLs, services specification artifacts (“Service model work product” on
page 234) and business processes. SLA/QoS policy documents are useful in
defining workloads to be tested. In addition, supplementary requirements,
non-functional requirements and all other types of requirements should also be
used to help define the test cases.

For the business processes, the business analysts write or at least review the
test cases. Each of the business processes should be tested.

The test completion criteria is that you have tested each user requirement for all
the business processes.

What is the integration strategy?

In traditional development applications, integration testing is the test phase in
which individual software modules are combined and tested as a group. In
traditional testing, it follows unit testing and precedes system testing.

Integration testing takes, as its input, modules that have been unit tested and
groups them in larger aggregates. Integration testing then applies tests defined in
an integration test plan to the larger aggregates. The output of integration is that
we are ready for system testing.

The purpose of integration testing is to verify the functional, performance and
reliability requirements placed on major design items. These design items, for
example assemblages, are exercised through their interfaces using black box
testing. Success and error case are simulated via appropriate parameter and
data inputs. Simulated usage of shared data areas and inter-process
communication is tested, subsystems are exercised through their input interface.
Test cases are constructed to test that all components within assemblages
interact correctly, for example, across procedure calls or process activations.
498 Building SOA Solutions Using the Rational SDP

The overall idea is a building block approach, in which verified assemblages are
added to a verified base which is then used to support the integration testing of
further assemblages.

In the SOA environment, you do not have control over all the building blocks and
individual subsystems. You now need a practical method to create stubs and
simulate back-end servers, systems, and services to conduct your end-to-end
business-to-business integration testing.

All end-to-end testing falls into integration testing.

What are the test completion criteria?

Test completion criteria identify acceptable product quality and identify when the
test effort has been successfully implemented. Test completion criteria defines
the acceptable level of reliability, availability, performance and security. Test
completion criteria include things such as the exit and entry criteria for the test,
number of defects we allow at each phase, the test that have to be fixed before
we can exit a phase and so forth. If everyone is not on the same page for these
test completion criteria, we could implement a component with an unacceptable
quality and it might be too late to fix it.

In SOA systems, defining the completion criteria becomes even more important.
The service we are implementing can be used in multiple SOA systems that have
different product quality standards.

Test completion criteria are best tracked by metrics and checklists.

Effective test automation

Test automation is a must-have in traditional testing, but again, it is especially
important in an SOA because we are constantly adopting and absorbing
services. To keep pace with rapid deployment of new services and business
processes we need some way to quickly verify our acceptance of these new
services. In traditional testing we are accustomed to automate our acceptance
tests to verify that we are meeting our standards, but in SOA we also have to
acknowledge that we have to meet a certain standard or interface. Because of
the flexible nature of SOA, these standards and interfaces also change, having
upgrades and versions. We can use automation test to detect changes in these
standards early. Once detected we can easily accommodate and track the
changes required in our code.
 Chapter 14. Service testing 499

Identification of appropriate test paths in the presence of multiple
concurrent/synchronization scenarios among the composed services is
particularly problematic in an SOA. The individual services may have been
developed using heterogeneous technologies (languages and frameworks).
Integration testing of such services needs tool support that spans the different
technologies used.

IBM products for SOA testing

The IBM Rational SDP supports SOA testing with a portfolio of modular, open
standard base products. Use the following tables to help determine the tools that
can assist you in unit, functional, and system testing. Descriptions of the
products are found after the tables in alphabetical order.

Tools to assist in unit testing are shown in Table 14-1.

Table 14-1 Tools to assist in unit testing

Note: Refer to “IBM products for SOA testing” on page 500 for tools that help
you with test automation.

Area Tools

Defect management / Metrics Rational ClearQuest

Performance Rational Performance Tester

Code Inspector / Static Analysis Rational Application Developer – Code
Review

Java Runtime Analysis Metrics Rational PurifyPlus™
Rational Application Developer

Test Automation Rational Application Developer with
Rational Component Test Automation
Rational Functional Tester

Test Management Rational ClearQuest
Rational Manual Tester

Change Management Rational ClearCase

Requirements Tracking Rational Requisite® Pro
500 Building SOA Solutions Using the Rational SDP

Tools to assist in functional testing are shown in Table 14-2.

Table 14-2 Tools to assist in functional testing

Tools to assist in system testing are shown in Table 14-3.

Table 14-3 Tools to assist in system testing

Area Tools

Source Control / Change Management Rational ClearCase

Defect Tracking Rational ClearQuest

Test Management Rational ClearQuest
Rational Manual Tester

Test Automation Rational Functional Tester

Code Inspection Rational Application Developer - Code
Review

Metrics Rational ClearQuest
Rational PureCoverage®
Rational Application Developer

Area Tools

Defect Management Rational ClearQuest

Performance Rational Performance Tester

Test Automation Rational Functional Tester

Test Management Rational Test Manager
Rational Manual Tester

Metrics And Reporting Rational Project Console (Dashboard)

Requirements Tracking Rational RequisitePro

Customer Interaction Programs Design Reviews, Residency, Visitations

Change Management Rational ClearCase
 Chapter 14. Service testing 501

Rational Application Developer

Rational Application Developer provides a wide variety of testing tool to enable
the developer to effectively test their parts. We mention just a few of them here.

Component test
In software development it is well know that component testing allows us to find
and fix defects early. In an SOA solution it becomes crucial to find and fix defects
early. The impact of a defect can have a cascading affect because the service
could be used by multiple critical systems.

Rational Application Developer V6 comes with automated component testing
features that allows us to create, edit, deploy, and run automated tests of Java
components, EJB components, and Web services. This feature has been
removed in Version 7.

JUnit
Rational Application Developer has support for JUnit testing. JUnit is a simple
testing framework that creates repeatable tests. The JUnit tests are created and
run by the developers to validate their code and to perform regression testing.

WSDL validation
Rational Application Developer provides interoperability testing for Web Services.
It can validate WSDL conformance to the WS-I standard and also validate SOAP
messages. See “Validating the WSDL file” on page 466 for an example of
validating a WSDL.

Web Services Explorer
The Web Services Explorer allows us to explore, import and test WSDL
documents. We can use this tool to aid in unit testing our Web service operations
or that of a third-party Web service operations. See “Test the service” on
page 458 for an example of using the Web Services Explorer to test a Web
service operation.

TCP/IP Monitor
TCP/IP Monitor is a simple server that monitors all request and response
between the requester Web browser and the provider. It is another way, besides
the Web Services Explorer, to monitor the SOAP request and response
messages.

Note: For more information about Rational Application Developer testing
capabilities, see the product’s Information Center.
502 Building SOA Solutions Using the Rational SDP

Rational ClearCase

IBM Rational ClearCase manages and controls all your software development
assets. including test plans, test cases and test scripts.

Rational ClearCase is integrated with Rational ClearQuest for a complete change
and configuration management solution.

Rational ClearQuest

IBM Rational ClearQuest is the hub of the software development life cycle. It
manages all the tests, defects and change actives that occur during software
development. It also permits users to log defects after the services have been
released into production - either directly1 or via an integration to a help desk
system.

Rational ClearQuest enables configurable and enforceable quality projects.
Rational ClearQuest is an extensible test management ecosystem that manages
your test activities while supporting geographically distributed teams. We provide
a demonstration of Rational ClearQuest in “Managing testing artifacts” on
page 515.

Rational Functional Tester

IBM Rational Functional Tester is an advanced, automated functional and
regression testing tool for testers and GUI developers who need superior control
for testing Java, Microsoft Visual Studio .NET and Web-based applications.

Rational Functional Tester automate end-to-end tests. It can capture or playback
system-user interactions. Because of this automation Rational Functional Tester
is able to keep up with the rapid development of new business processes in an
SOA environment.

Note: More information about Rational ClearCase can be found in “Rational
ClearQuest and Rational ClearCase” on page 35.

1 IBM Rational product development teams and tech support use ClearQuest for this purpose.
Customers may see a reference to RATLC - the name of the ClearQuest database.

Note: More on Rational ClearQuest can be found in “Rational ClearQuest and
Rational ClearCase” on page 35.
 Chapter 14. Service testing 503

Rational Functional Tester minimizes test maintenance with scripts resilient to
the frequent changes of an SOA system. We demonstrate this capability with an
example from the JK Enterprises solution in “Designing and executing functional
tests with Rational Functional Tester” on page 530.

Rational Manual Tester

IBM Rational Manual Tester is a manual test authoring and execution tool that
promotes test step reuse to reduce the impact of software change on testers and
business analysts.

Rational Manual Tester adds organization and control to all activities that
comprise a manual testing effort including:

� Test creation and modification
� Test organization and consolidation for distributed team members
� Test execution and result collection
� Test result reporting

Rational Manual Tester V7 is now fully integrated with Rational ClearQuest. This
enables us to submit, track, and resolve defects from within Rational Manual
Tester. We are also able to associate test results with the defect-tracking system.

Rational Manual Tester V7 adds the capability to publish the test scripts as HTML
files to enable easy viewing of the tests by others.

In an SOA system we use Manual Tester to formalize end-end tests that exercise
the business process. This ensures test consistency when the SOA system
evolves. We also use Rational Manual Tester to assist in unit and system testing.

We implement a sample test script for JK Enterprises’ Determine Eligibility
Service using Rational Manual Tester in “Designing and executing functional
tests with Rational Functional Tester” on page 530.

Note: For more information about IBM Rational Functional Tester features
and benefits, refer to:

http://www-306.ibm.com/software/awdtools/tester/manual/features/index.html

Note: For more information about IBM Rational Manual Tester’s features and
benefits, refer to:

http://www-306.ibm.com/software/awdtools/tester/manual/index.html
504 Building SOA Solutions Using the Rational SDP

http://www-306.ibm.com/software/awdtools/tester/manual/features/index.html
http://www-306.ibm.com/software/awdtools/tester/manual/index.html

Rational Performance Tester

For multi-user Web applicator, reliability efficiency, and performance is a
necessity, not a luxury. IBM Rational Performance Tester is the tool we can use to
test our multi-user Web applications.

Rational Performance Tester can emulate different volumes of traffic on our
system. This enables us to pinpoint bottlenecks of our system before it reaches
production. Simulating the traffic to our system also helps to plan for the
hardware that is to host our system.

Rational Performance Tester can model and emulate diverse user populations.
We need to make sure our test emulated our user base, because the activists
and usage patterns of individual users and groups can vary drastically and have
a huge impact on our system. It is better to find out sooner rather than later.

Rational Performance Tester has an easy to use interface that does not require
any coding knowledge. It has the ability to record our actions and run tests
against the actions we took.

Rational Performance Tester provides real-time reporting capabilities for
real-time performance problem identification.

Rational Tester for SOA

At the time of the publication of this document IBM Rational Tester for SOA2,
which is based on Rational Performance Tester and IBM Rational Performance
Tester Extension for SOA, is in Beta.

Rational Tester for SOA and Rational Performance Tester Extension for SOA
enable testing of SOA applications and Web services and allows teams to:

� Validate SOA system functionality and interoperability
� Ensure system performance
� Determine maximum system capacity
� Identify and resolve performance problems of SOA IT solutions

Note: For more information about Rational Performance Tester’s features and
benefits, refer to:

http://www-306.ibm.com/software/awdtools/tester/performance/features/inde
x.html

2 Note that the product names are tentative and may change
 Chapter 14. Service testing 505

http://www-306.ibm.com/software/awdtools/tester/performance/features/index.html
http://www-306.ibm.com/software/awdtools/tester/performance/features/index.html

More information about these products can be found at:

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/rational/P1656/

http://www-306.ibm.com/software/rational/offerings/testing.html

IBM Rational testing solution for service-oriented architecture applications
automates the creation, execution, and analysis of functional, regression, and
performance tests for services of SOA IT solutions.

Features and benefits include:

� A visual test editor delivering both high-level and detailed test views

No programming knowledge is necessary to create, comprehend, modify, and
execute a functional or performance test. A test is a sequence of invocations
of Web services operations; no code editing is necessary to create a single or
multi-user test. However, deeper detail is available—advanced testers have
access to all aspects of the Web services messages, including HTTP
headers, cookies, and the SOAP envelope.

� Support for testing of services

IBM Rational testing solutions for service-oriented architecture applications
creates, executes, and analyzes tests to validate the reliability of atomic or
composite non-GUI headless services and business composition of those
services. Support for Web services standards, SOAP over HTTP, SOAP over
JMS, and WS-Security.

� Automated data correlation and data-driven testing eliminate need for manual
coding

Functional tests typically have to vary data during playback to properly
simulate true users. IBM Rational testing solutions for service-oriented
architecture applications can automatically detect data entered during test
recording and prepare the test for data-driven testing. Using a
spreadsheet-like data editor, you can then create customized data sets to be
inserted into the script during playback. In this way, you can produce highly
personalized tests without manual coding.

� Flexible modeling and emulation of diverse service consumers

To ensure that your performance testing accurately mirrors your user base,
IBM Rational testing solutions for service-oriented architecture applications
provides a flexible test scheduler that specifies the different groups of service
consumers, as well as the activities and usage patterns of each of the groups.

� Collection and visualization of server resource data

Testers must be vigilant to detect performance and reliability problems that
can be traced to hardware issues rather than to software. IBM Rational testing
solutions for service-oriented architecture applications can collect and display
506 Building SOA Solutions Using the Rational SDP

https://www14.software.ibm.com/iwm/web/cc/earlyprograms/rational/P1656/
http://www-306.ibm.com/software/rational/offerings/testing.html

multiple server resource statistics, thereby exposing bottlenecks responsible
for poor performance.

� Java code insertion for flexible test customization

Advanced testers have the option of inserting custom Java code into their
performance tests to perform activities such as advanced data analysis and
request parsing.

� Test creation from WS-BPEL business processes

IBM Rational testing solutions for service-oriented architecture applications
automatically generates test from business processes defined using the
WS-BPEL standard, using from a range of generation possibilities, and
enables to quickly get started with testing a complex business process and to
make sure all relevant paths are thoroughly tested.

IBM Web Services Navigator

IBM Research has developed a technology called IBM Web Services Navigator
(aka Websight), which is also available through the IBM Tivoli® Composite
Application Manager for SOA product and alphaworks, to help during the
problem diagnosis phase. This technology allows visualization of the traces
which capture dynamic interactions among Web services and provides
sophisticated pattern analysis capabilities to help in identification of potential
bottlenecks.

Test work products

We talk about work products before the test roles and process because these are
the things we need to produce.

in this section, we discuss these key work products:

� Test plan—This artifact defines the goals and objectives of testing within the
scope of the iteration (or project), the items being targeted, the approach to
be taken, the resources required and the deliverables to be produced.

Note: For more information about IBM Web Services Navigator and IBM Tivoli
Composite Application Manager for SOA, refer to:

http://www.alphaworks.ibm.com/tech/wsnavigator

http://www-306.ibm.com/software/tivoli/products/composite-applica
tion-mgr-soa/
 Chapter 14. Service testing 507

http://www.alphaworks.ibm.com/tech/wsnavigator
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/
http://www-306.ibm.com/software/tivoli/products/composite-application-mgr-soa/

� Test case—This artifact defines a set of test inputs, execution conditions, and
expected results, identified for the purpose of making an evaluation of some
particular aspect of a target test item.

� Test result—This artifact summarizes the analysis of one or more test logs
and change requests, providing a relatively detailed assessment of the quality
of the target test items and the status of the test effort.

� Test data—This artifact defines a collection of test input values that are
consumed during the execution of a test, and expected results referenced for
comparative purposes during the execution of a test.

Test plan
The test plan should provide a project context and background. It should
describe the goal of the test, for example reduce defects, or validate a service.
Then the test plan defines what you are going to test, specific hardware, software
or both. The test plan is a high level summary of the planned tests including what
we are not going to test. The test plan documents the deliverables, for example
what logs, quality reports or other deliverables from the test process. In the test
plan we define the specific testing tasks.

In our example, we use the tasks defined in our testing process in “Test process”
on page 511. We should defined testing responsibilities, staffing and training in
the test plan. We should list the key project milestone that impact our testing. The
test plan includes any risks, assumption, dependencies and constraints. And
finally the test plan define management processes and procedures including
approval and sign-off. The test plan may consist of reference to other test plan
and work products. We do not duplicate information here if possible.

Test case
The test case describes the test as well as any condition that is exercised in this
test. The condition includes pre-conditions and post-conditions, test inputs, what
we should observe during the test, control points, and expected results. The
results include correct behavior as well as any error conditions and failures. This
test case acts as an outline for any test scripts, either manual or automated.

Test result
The test result records the detailed findings of the test effort. These results are
used later to help measure the progress of the testing. We expect test results to
show when the test was run, who ran it and in what environment. It should also
show the test cases executed and their results, and an indication of pass or fail.
We may include response times and trace-data, this all depends on what level of
detail we require and the kind of test being executed. For example, test results
on test coverage would not require information about response times.
508 Building SOA Solutions Using the Rational SDP

Test data
The test data plays an important role in testing SOA solutions. For stateless
services we no longer test the order of execution but the response to a range of
inputs. The test data can either be specific values or a range of values. The way
we store the test data varies from test to test and project to project. Certain kinds
of applications might use simple ascii files of input values while more complex
environment might require comprehensive database of data. An example from
our JK Enterprises, is our pricing model. We might change the way we price
items based on real-time sales results. This is a complex situation to simulate.

Test roles

Throughout this book we have defined the roles involved in each phase of the
Rational Unified Process. In this section we describe the role set that RUP has
defined for testers. Testing SOA solutions involves not only the test roles but also
the other roles that produce the work products we are testing.

For the business process model, we want to plan tests to validate that the
business process model is correct. The test analyst role collaborates with the
business analyst to create the appropriate test.

Non-functional requirements include the following kind of requirements:

� Usability
� Reliability
� Performance
� Supportability
� Design constraints

These categories maybe familiar to the reader from Chapter 8, “Requirements”
on page 207.

For each of these kinds of requirements we need to insure we have the
appropriate test. For example if we have a performance requirement of credit
checking 500 applications a day, we should have a test that for that specific
volume of credit checks. The architect has an understanding how critical these
non-functional requirements are and can assist the test analyst in producing the
right tests.

The testing of services, is probably the most critical part of our set of tests. Here
the architect and the test analyst need to work closely to make sure the services
are tested properly. This is because, the services not only impact our SOA-based
solution but potentially other business areas across the enterprise and beyond.
 Chapter 14. Service testing 509

We need to test that the service behaves as expected and fulfills the
non-functional requirements we specified. We also have to verify that the service
complies to our service policies.

If our SOA-based solution has one or more user interfaces, we have to test these
as well. These tests involve GUI designers and implementers working with the
test analyst.

We do not consider here testing the internals of the service implementation.
Testing code is more of a developer’s responsibility that is discussed in
Chapter 13, “Service implementation” on page 419.

In RUP a role is a set of responsibilities that may be allocated to the same person
or team. That person or team may take on multiple roles across the different
disciplines. This is a very important part of RUP because it allows the process to
scale. One possible approach to staffing our testing roles is to have the individual
(or team) who produced the work product we are testing to take on the role of
test analyst, designer, or implementer in addition to their primary role. This is a
logical extension of the write test first, then code, which is popular in agile
methodologies. However, it is essential a professional test person can assist
these other roles in writing good tests.

Note that in addition to tests developed by a developer there should always be
tests developed by business and system analysts to make sure that all the
business requirements are tested.

RUP has defined the following primary role sets for testing:

� Test analyst—“..defines the required tests, monitors detailed testing progress
and results in each test cycle and evaluates overall quality.” The test analyst
role cuts across all lines of test. In our JK Enterprises example, the test
analyst would confirm that the determineApplicationEligibility service
had met the overall quality goals.

� Test designer—”.. leads defining the test approach and ensuring its
successful implementation. This includes identifying the appropriate
techniques, tools and guidelines to implement the required tests, and to
provide guidance to the test effort on corresponding resources requirements.”
For JK Enterprises the test designer has mandated the use of Rational testing
tool to provide automated testing and ClearQuest for test management.

� Tester—“.. conducts tests and logs the outcomes of his/her testing.” For JK
Enterprises, the tester would run the performance tests and feedback the
results to the test analyst.
510 Building SOA Solutions Using the Rational SDP

� Test manager—“.. leads overall test effort. This includes quality and test
advocacy, resource planning and management, and resolution of the issues
that impede the test effort.” In our JK Enterprises, make sure the right test
environment was available to run the tests.

� Test architect—“.. provides technical leadership for the testing effort.” For JK
Enterprises, the test architect would focus on defining the test architecture,
identifying a test strategy and providing leadership to the team particularly in
the area of test design and specification.

RUP also places emphasis on the importance of the test team and the
importance of managing and facilitating the test team. There are testing
techniques that are unique to SOA testing that require a specific set of skills in
the test team.

Test process

The testing life cycle is integrated into the rest of the SOA development life cycle
(Figure 14-8). Testing is not an afterthought but an essential part of developing
any SOA-based solution. The test roles are working in parallel with other
disciplines, taking feeds off work products to start their activities.

Figure 14-8 Test life cycle

The life cycle starts as soon as there are suitable requirements or business
process(es) to be tested. We create a test plan to make sure we define the scope
of the iteration or project. We create test cases with inputs and expected results
and any exception conditions. We implement the tests. We run the tests and
verify the results.

In some cases, the tests themselves are in error, in which case we must fix the
tests, the test case or the plan depending on the nature of the error. If there is an
error in the element we are testing, that is logged and we wait for a response.
The response could range from an updated element to the works as designed
response with many other possible responses in between. An updated element is
retested while a works as designed requires a change to the test or its inputs,
data, or results.
 Chapter 14. Service testing 511

This simple process applies to the different kinds of elements we have to test:

� Business processes
� Non-functional requirements
� Services specifications
� Compliance to service policies
� Service implementations

We do not consider the internals of the code implementing the service. Testing
code is more of a developer responsibility that is discussed in Chapter 13,
“Service implementation” on page 419.

During the project, we report on progress by looking at the realized requirements
that have passed their tests. A realized requirement is the final manifestation of
the requirement, and depends on the kind of requirement. For example, a
functional requirement is realized by working code. A business process from the
business model may be monitored in operation (even if this is running in a test
environment). This strong connection between the requirements and test is very
important to keep track of real project progress.

In addition to the tests we create in the iteration, we also run regression tests at
all levels. Whenever a service is changed (either definition or implementation) it
is necessary to identify all the services that could potentially be changed so that
regression testing of the impacted services can also be performed.

We have to be pragmatic about how much we can test. It is likely that even with
automation of testing, we are unable to run all tests including regression tests.
We have to perform a base level of testing (sometimes called a smoke test) and
then address the areas of highest risk. Having our inputs to test tagged
according to priority and risk helps us decide which are the highest risk areas.

Test tooling

So far, we have discussed the process of testing. Now we discuss the use of
tooling.

We capture our business process models inside WebSphere Business Modeler.
Our requirements such as business goals, service policies, non-functional
requirements and others are stored in RequisitePro. We plan our tests in the test
management schema for ClearQuest. Tests case are constructed in Manual
Tester and either remain in manual tester (for manual tests) or implemented in
Functional Tester and Performance Tester.
512 Building SOA Solutions Using the Rational SDP

Setup the test environment

In reality when you test your SOA solution you would set up an environment that
closely resembles the production environment. For the purpose of simplicity, we
set up the solution in Rational Software Architect’s WebSphere Application
Server test environment.

Download the sample code

In this chapter we reference files and database scripts supplied with the
additional material. For instructions about how to download the sample code,
refer to Appendix A, “Additional material” on page 575.

Import the project interchange file

To import the project interchange file perform the following steps:

� Make sure you have opened the J2EE perspective in Rational Software
Architect or Rational Application Developer Version 7.

� Select File → Import.

� In the Import dialog, expand Other and select Project Interchange.

� Click Browse to locate and open the file:

c:\SG247356\sampcode\SoftwareArchitect\test\PTAccountApplication.zip

� Select all the projects:

– PTAccountApplication
– PTAccountApplicationClient
– PTAccountApplicationClientWed
– PTAccountApplicationEJB
– PTAccountApplicationEJBHttpRouter

� Click Finish.

Stat the server and add the projects

In the Servers view select the server and click the Start icon (Figure 14-9).
Wait until the server is ready.

Figure 14-9 Starting the server
 Chapter 14. Service testing 513

To add the project to the test server perform the following:

� In the Servers view select the test server and Add and Remove Projects.
� Select the PTAcountApplication and click Add.
� Select the PTAcountApplicationClient and click Add.
� Click Finish.

Verify the Open Account Application

To start the test server and verify the Open Account Application perform these
steps:

� Make sure you have opened the J2EE perspective in Rational Software
Architect or Rational Application Developer V7.

� Expand the PTAccountApplicationClientWeb application to WebContent and
accountApplication.

� Select the accountApplication.jsp and Run As → Run on Server. When
prompted, select Set server as project default and click Finish.

� A browser window opens and displays the HTML page (Figure 14-10).

Figure 14-10 Application verification

� Type values into the fields and click Invoke. This returns a result of Eligible
or Requires Credit Check.

� The following field values will result in Eligible:

– Company Name: IBM and Request Amount: Can be any amount
– Company Name: Not IBM and Request Amount: Less than 5000

� The following field values result in Requires Credit Check:

– Company Name: Not IBM and Request Amount: Greater than 5000
514 Building SOA Solutions Using the Rational SDP

Managing testing artifacts

All testing-related artifacts are organized using ClearQuest. Before we start
creating testing assets, we set up ClearQuest to manage these items.

As part of JK Enterprises project, we have use the standard ClearQuest
Enterprise schema. This schema ships with ClearQuest and include the record
types, reports, and other items required for test management. If we had been
using another ClearQuest schema, we would have to use the ClearQuest
Designer tool to include the Test package. The ClearQuest schema is really just a
set of tables and fields and other configuration items that configure ClearQuest to
provide certain database records with specific fields and other information. The
package is a new set of tables and fields and other configuration items that can
be added to an existing ClearQuest schema.

Assuming we now have the right schema configured in ClearQuest, we can start
creating an asset registry for our test assets. There are a few steps in this
process:

� Create an asset registry.

� Create a file location.

� Connect to the actual Manual Test, Functional Test, and Performance Test
projects with the scripts and executables.

� If required, we create a configuration with details of the types of machines we
are using for testing,

Figure 14-11 shows the ClearQuest workspace.
 Chapter 14. Service testing 515

Figure 14-11 IBM Rational ClearQuest, Eclipse-based standalone client3

An asset registry is the storage area for the test assets. To create the registry, we
select File → New → TMAssetRegistry and we then create a new registry
(Figure 14-12).

3 A reader familiar with ClearQuest might notice we have loaded the standard ClearQuest sample defects into our JK
Enterprises example.
516 Building SOA Solutions Using the Rational SDP

Figure 14-12 Create test asset registry in ClearQuest

At this point, we switch to the Test Manager - Planning Explorer tab because it
hides other elements in the Explorer that we may have in our ClearQuest
database. The Test Manager view also list a series of folders where we capture
our test plans, suites, iterations, and file locations for the various test assets
(Figure 14-13).

Figure 14-13 Switch to the Test Manager: Test Planning Explorer

At this point we create Rational Functional Tester, Manual Tester, and
Performance Tester projects in a shared directory on our server. We share the
directory one level above our Functional Tester, Manual Tester, and Performance
projects. We tell ClearQuest where we plan to store our tests.

This allows everyone using ClearQuest for test management to see the test
assets.
 Chapter 14. Service testing 517

We also further segment our tests using another category, Iterations. This allows
us to assign tests to specific iterations of the development project. This is useful
when we have tests that only apply in a specific iteration. We create an Iteration
in the ClearQuest, in the Iterations folder. Select the Iterations folder in the
Planning tab, right-click the folder and select New Iteration.

Figure 14-14 Creating an iteration

We have given the iteration a name, a start and end date as well as associating it
with a specific asset registry.

We have one more set of actions to complete. A test must be associated with a
particular configuration (machine or set of machines). We create a new
configuration attribute (Figure 14-15).

Figure 14-15 Create a new configuration attribute
518 Building SOA Solutions Using the Rational SDP

We can add new possible values to that attribute (Figure 14-16).

Figure 14-16 New configuration attribute dialog

This attribute is used to denote what kind of test configuration we are working
with, for example a Windows XP machine. We create the general category
Windows versions and then add values for Windows XP and Windows 2000.
These are the different machine types we test.

Finally, we add attributes to the configuration value by selecting the configuration
attribute and Add New Configuration Value (Figure 14-17).

Figure 14-17 Add a new configuration value to the Windows versions
 Chapter 14. Service testing 519

We repeat this to add a new Win2000 value. We can create any number of
attributes than helps us understand what kind of machine or other configuration
we are testing.

Finally, we can create a configuration instance with various tests associated with
it. Add the relevant attributes such as the Windows version (Figure 14-18).

Figure 14-18 Create a new configuration

In summary, we have created an asset registry to store the tests, we have linked
to the file server where we are storing our IBM Rational Manual Test, Functional
Test, and Performance Test artifacts and we have a configuration to associate
our test (Figure 14-19). We can start planning our tests.

Figure 14-19 ClearQuest Test Management setup completed
520 Building SOA Solutions Using the Rational SDP

Creating reusable test scripts with Rational Manual
Tester

In this section we create reusable test scripts with Rational Manual Tester to test
the determineApplicationEligiblity operation on the AccountApplication
service. Rational Manual Tester was introduced in “Rational Manual Tester” on
page 504.

To define the test scripts we utilize the Determine Applicant Eligibility system use
case we defined in “Creating a system use case in RequisitePro” on page 225.

We retrieve the system use case from the RequisitePro project. Open the
Determine Applicant Eligibility system use case in RequisitePro by:

� Starting RequisitePro.

� Expanding System Uses Cases → Sale Management and opening Determine
Applicant Eligibility. This opens the Determine Applicant Eligibility system use
case in a word document.

We want to create test scripts that exercise the flow of events for Determine
Applicant Eligibility. We need to test the basic flow and any alternative flows.

The basic flow for Determine Applicant Eligibility is as follows:

� The use case starts when the workflow requests the system check of an
application.

� The system checks the applicant details for completeness.

� The system checks the applicant details against the business rules for credit
limits and confirms or denies eligibility.

� The use case ends when the applicant eligibility is determined.

Determine Applicant Eligibility has two alternate flows which are as follows:

� The applicant is applying for an excessive credit limit

– The system should reject the application and log this excessive
application.

– The use case ends.

� The applicant has not completed all the details in their application form

– The application is rejected and the comment field should indicate that the
application is incomplete.

– The use case ends.
 Chapter 14. Service testing 521

We have to create test cases that exercise each route of the use case. From the
basic flow and the alternate flow we can see there are three possible routes
through the use case.

� The application is approved.

� The application is rejected because of excessive credit limit.

� The application is rejected because of an incomplete application.

We have to create test data which exercise these routes. To do this we look at the
business rules for Determine Application Eligibility. The business rules (in this
case) was captured in RequisitePro in the Business Rules folder. Determine
Application Eligibility has as these business rules:

� We accept an account application for less than $5000 from any customer.

� Accept all account applications for the company IBM.

Now that we have the routes of the use case and the business rules for the use
case, we can see we have four test cases:

� Customer account application for loan amount less than 5000
� Customer account application for loan amount greater than 5000
� Customer is IBM and loan amount greater than 5000
� Incomplete account application

These test cases exercise each route of the system use case and the business
rules of the use case. We demonstrate how to create a test script for the
customer account application for loan amount less than 5000.

We provide the completed solution for all of the above manual test cases in:

c:\SG247356\sampcode\test\manualtest.zip

Create test scripts in Manual Tester

Now that we have the information needed to create the test scripts for the
Determine Application Eligibility system use case. We create the test in Rational
Manual Tester.

Rational Manual Tester makes it easy to create manual executable test scripts.
Using the Text Editor, we type testing instructions, called statements, into a
manual test script. There are four statement types we can use in a manual test
script:

� Steps: Are actions you want the tester to perform when executing the script.

� Verification points: Ask question about the application you are testing.
522 Building SOA Solutions Using the Rational SDP

� Reporting points: Are higher-level verification points whose results often are
included in reports.

� Groups: Signal a block of related statements.

Figure 14-20 shows the Open Account application which leverages the
Determine Account Eligibility use case that we are testing (Figure 14-20).

Figure 14-20 Open Account application

Let us begin creating the test script for the customer account application for loan
request amount less than 5000 test case.

� Start Rational Manual Tester. When Rational Manual Tester opens, it creates
a new untitled test script that is ready to be edited (Figure 14-21).

Figure 14-21 Start Rational Manual Tester
 Chapter 14. Service testing 523

� Delete the text Begin typing test statements here.

We now begin to enter the statements that compose our manual test script.

� Type the test statement:

Launch the application.

� Press Enter. This creates another statement entry.

The next few test statement we create require the tester to enter specific values
into text fields. We can have the tester type the text manually, however, Rational
Manual Tester provides the capability for us to capture the data in the test script.
When the test statement executes, the data required is copied to the tester clip
board. The tester can then paste the data instead of typing the data. This
reduces text entry errors.

� Type the test statement:

Enter the value Laura in the First Name field. Place your curser in the
First Name field and press Ctrl^V.

We now enter the data that is required for the First Name field.

� Have your curser on the statement we created above and select properties
view appears at the lower right of the workspace.

� Select Clipboard.

� In the Paste Data area type Laura (Figure 14-22).

Figure 14-22 Statement clipboard data

Note: If this is the first time Rational Manual Tester is started the Welcome
perspective is first thing we see. The Welcome perspective give us an
overview of the product and guidance about how to use the product. For now
we click the Workbench icon to continue with the JK Enterprises example.
524 Building SOA Solutions Using the Rational SDP

We have completed the steps required to associate entry data required by the
test statement that can be cut and pasted from the clipboard at test execution
time.

We enter the rest of the statements that require paste data by performing the
step we completed above for each field:

� Second Name:

– Test statement:

Enter the value Olson in the Second Name field. Place your curser
in the Second Name field and press Ctrl v.

– Test data: Olson

� Phone Number:

– Test statement:

Enter the value 555-555-5555 in the Phone Number field. Place your
curser in the Phone Number field and press Ctrl v.

– Test data: 555-555-5555

� Company Name:

– Test statement:

Enter the value ITSOWorks in the Company Name field. Place your
curser in the Company Name field and press Ctrl v.

– Test data: Olson

� Request Amount:

– Test statement:

Enter the value 3000 in the Request Amount field. Place your
curser in the Request Amount field and press Ctrl v.

– Test data: Olson

The resulting test script is shown in Figure 14-23.

Figure 14-23 Test Editor with test script
 Chapter 14. Service testing 525

We create a verification step to ensure the tester has the correct values in the
fields before continuing with the test:

� Type the test statement:

Does your Open Account entry form contain the same field values as in
the MTTestVerification.gif file attachment?

� Right-click the test statement, select Statement Type → Set as Verification
Point.

� We include an image of the Open Account entry form in a file attachment in
the statement’s properties view by selecting Attachments and then click Add.
The image is available in:

c:\SG247356\sampcode\test\MTTestVerification.gif

Now we continue to enter test statements:

� Type the test statement:

Click Invoke

Finally, we create a reporting point statement to capture the final output of the
test. It is important to note we can have verification and reporting statements
throughout our test script.

� Type the test statement:

Did the application return with the status ELIGIBLE?

� Right-click the test statement, select Statement Type → Set as Reporting
Point.

The final test script is shown in Figure 14-24.

Figure 14-24 Complete test script
526 Building SOA Solutions Using the Rational SDP

One powerful feature of Rational Manual Tester is that you can create reusable
statements. This feature saves time when creating multiple test scripts that
require similar statements. When the statement requires a change, we change
the original test statement and all test scripts with the statement receive the
change.

To make a statement reusable, we select the statement and Add to Reuse. We
have made the following statements reusable to help with the creation of the
remaining three test scripts for Determine Application Eligibility (Figure 14-25).
To use the reusable test statements we drag and drop the statement into the Test
Editor.

Figure 14-25 Reuse panel

Another powerful feature of Rational Manual Tester is that you can group
statements to help create a logical order for the test script.

With the test scripts created, we can let the testers run them.

Run the test script

To run the test script we created in the previous section, select from the menu
bar Run → Run Script.

This brings up the Run Test Script window as seen in with an gold arrow pointing
to the first step (Figure 14-26).
 Chapter 14. Service testing 527

Figure 14-26 Run test script

When we complete a test instruction we click Apply and the arrow moves to the
next test instruction.

In our test case we have test instructions that require us to enter data into text
field. Because of the way we set up our test script, Rational Manual Tester
provided this data for us on the clipboard. To enter the data in the text field we
paste the data into the field by clicking in the text field and pressing Ctrl-v.

When we encounter a verification point in the test script we must answer by
selecting inconclusive, pass, fail or error (Figure 14-27). If the verification
produced an error or failed, we can open a defect in Rational ClearQuest by
selecting defects in the Properties view and adding a defect. From Rational
Manual Tester we can grab screen capture and attach other information which
can be used for reporting or aiding in solving the defect.
528 Building SOA Solutions Using the Rational SDP

Figure 14-27 Verification test instruction

When we reach a Reporting point instruction, the action is similar to a verification
instruction, except that the answer holds greater significance and often is
included in reports.

When we have completed the execution of manual test script, Rational Manual
Tester prompts us to save the results of the test script. This test script execution
can then later be used for reporting and tracking.
 Chapter 14. Service testing 529

Designing and executing functional tests with Rational
Functional Tester

IBM Rational Functional Tester is an advanced, automated functional and
regression testing tool for testers and GUI developers who need superior control
for testing Java, Microsoft Visual Studio .NET, and Web-based applications.

� Provides novice testers with automated capabilities for activities such as
data-driven testing.

� Offers advanced testers a choice of scripting language and industrial-strength
editor—Java in Eclipse or Microsoft Visual Basic® .NET in Visual Studio
.NET—for test authoring and customization.

We did not have the time to use Rational Functional Tester for our sample
application.

To learn more about Rational Functional Tester refer to:

http://www-306.ibm.com/software/awdtools/tester/functional/

Summary

Software testing an SOA is not that much different than traditional testing. It
encompasses the same best practices, such as:

� Testing at each level
� Testing early, often and continuos
� Code inspection, static analysis and behavior modeling
� Error simulation, fault insertion, recovery and response time measuring
� Load and stress testing to verify performance requirements

SOA does not change what we do, but how we do it. It changes how business
accomplish their goals, how we do our jobs and how we use our tools. Finally,
SOA changes best practices to must practices.

Where to find more information

� Don’t Wait to Test SOA Applications, by Sergio Lucio, at:

http://websphere.sys-con.com/read/98059.htm
530 Building SOA Solutions Using the Rational SDP

http://websphere.sys-con.com/read/98059.htm
http://www-306.ibm.com/software/awdtools/tester/functional/

� Use SLAs in a Web services context, Part 1: Guarantee your Web service
with a SLA, by Judith Myerson, at:

http://www-128.ibm.com/developerworks/webservices/library/ws-sla/index.html

� Use SLAs in a Web services context, Part 2: Guarantee second-generation
Web services applications with a SLA, by Judith Myerson, at:

http://www-128.ibm.com/developerworks/webservices/library/ws-wssla/index.ht
ml

� Performance testing SOAP-based applications, by Frank Cohen, at:

http://www-106.ibm.com/developerworks/webservices/library/ws-testsoap/

� Discover SOAP encoding's impact on Web service performance, by Frank
Cohen at:

http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc/

� Web services programming tips and tricks: Stress testing Web services, by
Chris Wilkinson, at:

http://www-128.ibm.com/developerworks/webservices/library/ws-tip-strstest.h
tml

� Performance Analysis for Java Web Sites, S. Joines, R. Willenborg, and K.
Hygh, Addison-Wesley, 2002, ISBN 0201844540
 Chapter 14. Service testing 531

http://www-128.ibm.com/developerworks/webservices/library/ws-sla/index.html
http://www-128.ibm.com/developerworks/webservices/library/ws-wssla/index.html
http://www-106.ibm.com/developerworks/webservices/library/ws-testsoap/
http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www-128.ibm.com/developerworks/webservices/library/ws-tip-strstest.html
http://www-128.ibm.com/developerworks/webservices/library/ws-tip-strstest.html

532 Building SOA Solutions Using the Rational SDP

Chapter 15. Creating reusable assets

This chapter describes these topics:

� Assets

� Reusable Asset Specification (RAS)

� Asset life cycle

� Package services as reusable assets

In Chapter 16, “Pattern-based engineering with Rational Software Architect .”
on page 545 we also discuss creating reusable assets, such as profiles,
transformations, and patterns.

15
© Copyright IBM Corp. 2007. All rights reserved. 533

Assets, RAS, and asset life cycle

In this section, we describe assets, the standard specification that supports
them, and their life cycle.

Assets

Assets are key to the success of SOA because they enable reuse. In fact,
enterprises that adopt an asset-based business model has tremendous growth
capabilities. They are no longer limited by the productivity or number of their staff,
as in the traditional labor-based business model. The proper use of assets can
dramatically change software investments. Anyone who tried to adopt this model,
however, can say that it is not straightforward, and requires proper governance
and infrastructure support.

Creativity can be counter-productive with SOA. Think for example of people
re-inventing the wheel with each new project. Assets are there to allow the proper
level or creativity: you reuse proven solutions wherever possible, and then focus
all of your time and effort on what needs to be invented.

An asset is a collection of artifacts that provide a solution to a problem in context.

In this context, artifacts can be anything. For example, a requirement, a design
model, implementation code, or a test case. Think of an artifact as a file on the
file system.

Critical to their success, assets include instructions about how to use, customize,
and extend them.

Reusable Asset Specification

Adopted in 2005, the Reusable Asset Specification (RAS) is an Object
Management Group (OMG) standard used to describe the structure, contents,
and description of reusable software assets.

The goal of RAS is to provide best practices around how to package assets in a
consistent and standard way.

As defined in the specification, core characteristics of a RAS asset include:

� Classification—The context in which the asset is relevant
� Solution—The artifacts contained in the asset
� Usage—The rules for installing, using, and customizing the asset
� Related assets—How this asset relates to other assets
534 Building SOA Solutions Using the Rational SDP

Artifacts can have a type, determined by their file name suffix (for example, .xml,
.txt, .doc, .java), or by their purpose (for example, use case model, analysis
model).

Because software asset is a very broad term, RAS also provides profiles used to
describe specific types of assets. This is the same idea as Unified Modeling
Language (UML) profiles. We mentioned that there are UML profiles used to
extend the domain-independent UML. In the same fashion, there are
domain-specific (for example, Web services) RAS profiles, used to extend the
domain-independent RAS.

RAS assets have a .ras file extension, and are packaged like zip files (they have
a manifest and can be open by ZIP programs).

Figure 15-1, from the RAS specification, illustrates what the major sections of a
core RAS asset are.

Figure 15-1 Major sections of core RAS asset

Asset life cycle

The JK Enterprises asset life cycle can be described as follows:

� A solution gap is identified.
� An asset specification is created.
� The specification is reviewed by the JK Enterprises’ asset board.
� The asset is implemented, and the implementation is reviewed by the board.
� The asset is published to a RAS repository.
� The asset may be deprecated in the future.
 Chapter 15. Creating reusable assets 535

Package JK Enterprises services as reusable assets

Several chapters of this book have sections about asset reuse. For example, in
“Services and reuse” on page 62 we discuss what can be reused around
services, and what has to be in place to support service reuse. In previous
sections of this chapter, we describe the concept of an asset, and the RAS
specification. “Using the Reusable Asset Specification (RAS)” on page 403 also
contains a description of how RAS is supported in Rational Software Architect for
browsing, downloading, and using RAS assets.

The JK Enterprises development process includes prescriptive guidance on
working with assets. In Chapter 3, “SOA governance” on page 25 we defined a
life cycle for JK Enterprises assets, as described in the previous section.

Asset or service?

Assets and services both enable enterprise-level reuse, and share common
principles such as the need for description, categorization, life cycle, packaging,
extension, or composition. We relate service to asset by thinking of a service as
a set of related asset. For example, one of the service assets is the service
specification, and another one the service implantation. These services assets
are used by different roles and consumed or produced at different stages of
service life cycle.

We now described how some of these assets can be created and published to
asset repositories.

Package the service model as a reusable asset

In “Service model work product” on page 234 we describe what the service
model is composed of.

In this section we do not discuss the concepts behind reuse of the service model
or assets, but more how the service model is structured to enable reuse, and how
parts of the service model can be packaged as reusable assets.

Structure of the service model
The service model has been structured so that parts of it can be easily packaged
as reusable assets. We use Unified Modeling Language (UML) packages to
structure the service model. A UML package is used to group related model
elements and diagrams, and provide a name space (the name of the package).
536 Building SOA Solutions Using the Rational SDP

Figure 15-2 shows the structure of our service model.

Figure 15-2 Structure of the service model

The first thing that can be packaged as a reusable asset is the complete service
model itself. This asset would describe all of the services for the JK Enterprises
project (Account Opening).

Individual packages of the service model can also be packaged as reusable
assets.

For example, under the 3 - Atomic Business Application Service Providers
package, we created one sub-package per service provider. The
CustomerAccountMgr package is expanded in Figure 15-2. By packaging all of
what is included in CustomerAccountMgr as a reusable asset, we provide all that
is necessary to fully specify what that service provider requires and provides. For
example, its provided service specifications are included, as well as its
parameter types and messages, and also the actual service provider
specification. This can be reused by software architects who would want to
architect a CustomerAccountMgr or similar service.
 Chapter 15. Creating reusable assets 537

Note that the structure that we use for the service model can itself be packaged
as an asset. This type of asset is called model template, and would be reused by
architects who want to specify service models.

Packaging an asset
We now package the CustomerAccountMgr service provider package as a RAS
asset:

� From the Project Explorer, select the Service Model and Export.

� Type ras in the Export window. Select RAS Asset and click Next
(Figure 15-3).

Figure 15-3 RAS asset in the export window

� In the RAS Asset (location and manifest) page of the export wizard, select
Repository, and the JK Enterprises RAS Repository, and click Next
(Figure 15-5).

JK Enterprises has a RAS asset repository, to which we submit the RAS asset.
For the purpose of this exercise, we created a RAS repository. You can also save
to the file system instead.

Note: To create a repository, switch to the RAS perspective, and click Add new
Repository connection (Figure 15-4).

Figure 15-4 Add a new repository connection
538 Building SOA Solutions Using the Rational SDP

Figure 15-5 RAS asset location and manifest

The next page of the wizard is about specifying the information that is used by
the asset repository to produce search results when users looks for assets. Pay
attention to providing precise information, otherwise users never find the asset.
The information you specify eventually lives in the RAS asset manifest file.

� On the RAS Asset Description page, click at the bottom left, and
documentation on assets is displayed on the right-hand side (Figure 15-6).

� Specify information about the asset:

– Name: JKEnterpriseServiceModel

– Short Description: JK Enterprises UML Service Model

– Description:

This asset is the JK Enterprises UML service model. It is composed of
the following artifacts:
- Service Consumers Specifications: AccountApplicationInquiryProcess,

and AccountOpeningProcess.
- Composite Business Application Service Providers:

CustomerServiceComposite, and SalesManagementComposite.
- Atomic Business Application Service Providers: AddressMgr,

BillingAccountMgr, CustomerAccountMgr, GeneralLedgerAccountMgr,
ProductMgr.

- Infrastructure Service Providers
 Chapter 15. Creating reusable assets 539

Note that you could also specify the value of default optional descriptors and
add new optional descriptors.

� Click Next.

Figure 15-6 Export RAS Asset wizard description page

The last page of the RAS Export wizard is about specifying the artifacts that
make up the RAS asset. Artifacts are files on the file system. Software Architect
stores UML models in .emx files. The RAS asset we create is made up of one
artifact, the service model.

� Select Service Model.emx in the RAS Asset Artifact page of the wizard, and
click Finish.

Asset repository
The service model asset is now available in the JK Enterprises RAS asset
repository. Other JK Enterprises staff can now see the asset description and
download it.

Note: If you want to package one of the service model packages as a
reusable asset, you have to perform a preliminary step to create a new model
and then copy the package contents into the new model, or select Package →
Create Model.
540 Building SOA Solutions Using the Rational SDP

Figure 15-7 shows the asset and its description in the Software Architect RAS
perspective.

Figure 15-7 Service Model asset description in the RAS perspective

Publish service to Service Registry and Repository

In this section we describe, at a high level, the steps required to publish a service
to a service registry and repository, specifically the WebSphere Service Registry
and Repository.

At JK Enterprises there are three services registries and repositories:
development, production and archive. Also, the service life cycle as defined by JK
Enterprises SOA governance includes stages such as awaiting approval,
approved, operational, and retired.

Figure 15-8 describes the steps involved in publishing a service.
 Chapter 15. Creating reusable assets 541

Figure 15-8 Publishing a service to the WebSphere Service Registry and Repository

1. At the beginning of service implementation, the developer generates the
WSDL for AccountApplicationMgr using Rational Software Architect.

2. Using the Registry and Repository user interface, the software architect
browses and makes sure the service does not already exist in the Registry
and Repository.

3. The service life cycle management process ensures that the service is tested,
validated and classified.

4. The software architect then publishes the service and its description to the
development Registry and Repository.

5. At this stage, the service moves to the Awaiting approval state of its life cycle.

6. The life cycle management process makes sure that impact analysis,
compliance checks and change policy conformance checks have been
completed.

7. The JK Enterprises SOA governance board approves the
AccountApplicationMgr service.

8. The service moves to its life cycles stage of Approved.

9. The Service Registry and Repository generates notifications to interested JK
Enterprises parties.

Test and classify
2

Production Production
Registry & Registry &
RepositoryRepository

7
Change impact Analysis

Life Cycle Management ProcessesLife Cycle Management Processes

Change impact Analysis
Retirement policy conformance

13

Publish from UI

Publish from
deployment tools

Discover from
deployments and

Publish

Publish from
Development

Tools

2
DevelopmentDevelopment

Registry &Registry &
RepositoryRepository

Archive Archive
Registry & Registry &
RepositoryRepository

Create
1

WSDL
XSD
SCDL

BPEL
Policy
MXSD

1. Service metadata artifacts are created
2. Tools, utilities and users publish

servicemetadata to the Service Registry
& Repository

3. LCM processes enforce testing, classifying
and validation.

4. Service and metadata is Published
5. Service is assigned a state of AWAITING

APPROVAL

6. LCM processes drive
impact analyses,
compliance checks,
change policy conformance
and scheduling.

7. Service is approved
8. Service is assigned a state of

APPROVED
9. Notifications are Generated.

Change impact analysis
Compliance checks

Change policy conformance
Scheduling

6

Test and classify
Validate Artifacts

3

Deployment
Production

configuration

10

10. LCM processes drive:
Deployment
Production configuration

• Service is promoted to
production environment

• Service is assigned an
OPERATIONAL state.

Notifications Generated

13. LCM processes drive:
impact of retiring
retirement policy

• Service is retired
• Service is assigned a

RETIRED state.

Notifications Generated

Publish

Awaiting Awaiting
ApprovalApproval5

4

ApprovedApproved8

9

Approve7

Notify

Promote11

OperationalOperational
12

Notify

Retire

RetiredRetired

14

15

Notify
542 Building SOA Solutions Using the Rational SDP

Steps 10 to 15 (in Figure 15-8) involve promoting the service to the production
registry and repository and finally retiring the service to the archive registry and
repository.

Other assets

For JK Enterprises, other services assets that could be created include:

� The JK Enterprises business architecture (Component Business Modeling,
CBM) map

� The Account Opening business process model

� The RequisitePro requirements projects

� Parts or all of the domain model

� Parts or all of the design model

References

The Object Management Group (OMG) reusable asset specification can be
found at:

http://www.omg.org/technology/documents/formal/ras.htm

The WebSphere Service Registry and Repository page:

http://www-306.ibm.com/software/integration/wsrr/index.html
 Chapter 15. Creating reusable assets 543

http://www.omg.org/technology/documents/formal/ras.htm
http://www-306.ibm.com/software/integration/wsrr/index.html

544 Building SOA Solutions Using the Rational SDP

Chapter 16. Pattern-based engineering
with Rational Software
Architect .

This chapter provides an introduction to pattern-based engineering that uses
Rational Software Architect.

This chapter is structured around these topics:

� Pattern-based engineering
� Extensibility
� UML profiles
� Rational Software Architect transformations
� Rational Software Architect patterns

We briefly introduce basic concepts from a theoretical point of view and we
provide practical samples and instructions.

For the case study, JK Enterprises requested a custom pattern. We walk through
the pattern authoring steps while exploiting the capabilities of Rational Software
Architect Version 7.

16
© Copyright IBM Corp. 2007. All rights reserved. 545

Pattern-based engineering

Over the years we have come to understand that a pattern is a proven, best
practice solution to a known problem within a given context. The industry has
embraced the idea of using patterns as they build software solutions.

Up until recently, the patterns that have been used were based on using pattern
specifications. A pattern specification is the formal written version of a pattern
that has been captured in a book or some other form of documentation. A pattern
specification often contains information about the pattern such as:

� The problem the pattern solves
� The solution it provides
� A strategy for applying the pattern in its context
� Consequences, advantages and disadvantages, or applying the pattern

Over the past decade or so, this was the best approach available in regards to
how one could bring patterns to bear on their project. Pattern specifications
assisted us in better understanding how to best solve a problem and also
assisted us in communicating the solution to others. However, when it came time
to apply the pattern, it was a manual effort to use this knowledge. The way one
person implemented the pattern would often differ from the way another would
implement the same pattern.

To better leverage the power of patterns, we have to take the next step and look
at how we can create and use pattern implementations. A pattern
implementation is an artifact that automates the application of a pattern. In this
way, a pattern becomes a concrete artifact, that is automated, easily applied and
results in the same output whether applied by someone down the hall, or
someone on the other side of the globe.

Software Architect provides us with a number of tools and features that can be
used to build pattern implementations and to further enhance this approach to
software development.

Let us look at the different elements that support the building of patterns in
Software Architect (Figure 16-1).
546 Building SOA Solutions Using the Rational SDP

Figure 16-1 Elements within Software Architect supporting Patterns

The elements supporting pattern implementations include:

� Profiles: The UML, although quite rich in terms of diagrams and notation, is
still only a general purpose modeling language. When we look to use it within
a specific domain, whether business or technology, we find that there is often
a gap between what is provided by UML and what we need to capture
aspects and elements within our domain. Rather than trying to create a
language that is specific to all domains, the creators of the language took the
approach that the it had to be extensible. That is, the UML specification
details the ways in which you can extend the language to be specific to a
domain. This mechanism is known as UML profiles. A UML profile allows you
to extend UML through the use of stereotypes, tagged values, and
constraints.

� Patterns: Within Software Architect, there is a specific type of pattern
implementation known as a pattern. The overloading of the term can be a
little confusing at first, but if we state that we are building a pattern
implementation using Software Architect’s pattern feature, it tends to be much
more clear. A Software Architect pattern is used within the scope of a model
to interactively modify the model and the elements within. This may mean
updating information relating to elements already in the model, adding new
elements to the model, or a combination of both.

Pluglets Model Templates

Help / Documentation RMC Plug-in

Patterns TransformationsProfiles
 Chapter 16. Pattern-based engineering with Rational Software Architect . 547

� Transformations: A transformation within Software Architect acts much like
a Software Architect pattern. It takes elements from a source model and
modifies and embellishes them and puts them into a target model. The key
differences come down to how the user interacts with the transformation and
the scope of its influence. When a user evokes a transformation, its is
primarily run as a batch process. The other difference is that it will work its
way through all of the elements of a model, or a subset.

� Pluglets: Often when creating a pattern or transformation with Software
Architect, we find that we have to interact with one of the provided APIs.
These APIs allow us to work and interact with Software Architect; this
includes query elements in our models, as well as update and create
elements within the model. A pluglet is meant to provide a lightweight
environment that is quick to use as we interact with these APIs. We are
primarily focused on investigation and experimentation when using pluglets.
Once we are satisfied that we have created the correct code, we will transition
that code to an implementation that is more robust and meant for supporting
multiple users, such as an Eclipse plug-in, a transformation or a pattern.

� Model templates: When starting to capture a design within Software
Architect, it can often be intimidating to start. Faced with a blank model, we
are often uncertain about how to structure our model, what information we
have to capture and how we should present that information to the people that
end up consuming the model. A model template is a pre-structured model
project that can be selected by the user as they create a new model. A
number of model templates ship with Software Architect, assisting us in
setting up models targeted to use case analysis, design, and so forth.
Software Architect allows us to create our own model templates which can
then be shared with others.

� Help and documentation: There are two aspects to help and documentation
when looking at pattern implementations. The first way to look at the topic is in
regard to how you can learn to build your own pattern implementations. There
is a great deal of content that ships with Software Architect that helps you in
building your own pattern implementations. The other way to look at this topic
is when you build your own pattern implementations you want to ensure that
you are providing support to the users of your asset. As you build and
package the asset that you create you have opportunities and support for
providing guidance about how your asset is consumed.

� Rational Method Composer plug-ins: When working in a team situation it is
imperative that the team is aware of the roles, activities, and work products
that are required to successfully complete the project. Method Composer
enables you to create and consume content that provides this guidance.
548 Building SOA Solutions Using the Rational SDP

Each of these elements can be used in isolation, however a much higher return
on the investment can be achieved when these elements are brought together in
combination to assist in building a solution. We can see a basic overview of how
features and tools within Software Architect can be brought together in a patterns
based solution (Figure 16-2).

Figure 16-2 Pattern-based solutions in Software Architect

One possible workflow that uses all the elements together is as follows:

� We start by creating a new model. Rather than starting with a blank slate, we
use a model template. As discussed earlier, by selecting to use the template,
the new model that is created has a predefined structure that may include a
set of packages, default diagrams, a set of reusable model building block, and
perhaps some perspective packages. In addition, we often find that model
template are already associated with a profile. So in addition to having some
structure provide for our model, we find that we have a modeling vocabulary
that is particular to the task at hand.

� As we work on the design of our solution, we have to add model elements.
We may find that we need additional domain related elements. To accomplish
this, we attach additional profiles to the model and then manually mark up our
model.

� At this point we are well on our way to modeling our solution. However, we
have seen a very limited way in which we can guide the design of our solution.
To further guide how we model, ensuring that we are adhering to best
practices, we can look to leverage Software Architect patterns. These
patterns are applied within a model, either adding details to existing elements,
adding elements, or a combination. In many cases, as we apply a pattern, it
uses stereotypes from profiles to add information to the model. So in contrast

Profiles Transformations

Source
Model

Model Templates Patterns

Source Model with
Markup, Patterns

Applied

Target ModelSource
Model with

Markup

Supply
with template

Populate
the
model

Manually mark up
the model with
profile elements

Automatically
mark up the model
with profile
elements, and/or
apply best practices

Transform the model
based on rules that
recognize
model markup
 Chapter 16. Pattern-based engineering with Rational Software Architect . 549

to the previous step, where we manually added mark up to the model, we use
patterns to automate how the markup is added.

� After we have spent time elaborating on the model, we reach a point where
we start to focus on the next level of detail. To do so we want to leverage
automation again, in this case we use a Software Architect transformation to
move from the source model to the target model. The transformation is
another pattern implementation. As such it is the automation of a best
practice. In this case, the best practice has a wider scope than the Software
Architect pattern. It is interesting to note that the transformation also works
with the other elements that have been used to this point. A transformation
often looks to find the use of stereotypes from particular profiles within the
source model. It uses this information to make decisions about what it
generates and writes to the target model. In addition, as it writes output to the
target model, it may create elements that use stereotypes from a profile,
setting things up for the next transformation that is run. The transformation
can also leverage Software Architect patterns, expecting input content to
adhere to best practice solutions, or even using patterns as it generates
content for the target model.

All of these features that surface in support of patterns based development are
enabled based on the extensibility that is provided by Software Architect.

Extensibility

As mentioned previously when discussing profiles and UML, a key aspect of the
design of UML is that it has a formal extension mechanism. This allows UML to
be used in many domains. As we look to build pattern implementations, it is
important that there is support to accommodate a wide range or possible pattern
implementations. To this end, we find that Software Architect, and its underlying
Eclipse platform, are highly extensible. This extensibility is key as we look to
support a wide range of domains as we build pattern implementations.

Eclipse extensibility

We already introduced the Eclipse platform in “Overview of IBM architect tools”
on page 159. As we stated in that chapter, Eclipse is designed for extensibility.
Thus, in Eclipse everything is an extension or we may say a plug-in and set of
plug-ins. Even the Java development environment or other basic development
capabilities are extensions of the Eclipse base platform.

Let us look to the Eclipse architecture to better understand this concept
(Figure 16-3).
550 Building SOA Solutions Using the Rational SDP

Figure 16-3 Eclipse architecture

Basically, the platform runtime is a plug-in manager. At startup, this component
discovers all installed plug-ins, their bundles and creates all necessary runtime
configurations (based on XML plug-in descriptors).Through the extension point
mechanism (refer to “Eclipse” on page 160), the platform runtime creates the
plug-in registry that allows the platform to run by finding the extension point
extension, on demand.

With Eclipse you can develop applications in the desired language (for which
there is an Eclipse development environment, such as Java, C++, Cobol and
others).

Plug-in Development Environment (PDE)
Eclipse is also used to develop plug-ins that run on Eclipse.

For this task you use the Plug-in Development Environment perspective. This is
an extension of Java development perspective. PDE provides an Eclipse
perspective that allows you to develop plug-ins by managing different
information, such as plug-in descriptors with extension, extension points,
required plug-in, and plug-in registry.

We can see a snapshot example of the PDE perspective in Figure 16-4.

 Chapter 16. Pattern-based engineering with Rational Software Architect . 551

Figure 16-4 Eclipse PDE perspective within Rational Software Architect 7

In Figure 16-4 we can see some important PDE views:

� On the left we have the Plug-ins view that basically shows you all installed
plug-ins. For each plug-in you can view its descriptor, its dependencies and
so on.

� In the middle there is a plug-in descriptor open within a manifest editor. A
key artifact associated with a plug-in is a manifest file named plugin.xml.

The tabs shown at the bottom of the editor represents different plug-in
information, such as extensions, extension points, dependencies, and
runtime libraries.
552 Building SOA Solutions Using the Rational SDP

In the example we opened the Extensions tab. and we notice that this
particular plug-in (com.ibm.xtools.transform.core.authoring.common)
extends another plug-in through the org.eclipse.ui.newWizards extension
point.

� On the right, we have a typical Outline view, which, in this case, shows basic
content of descriptor itself.

Testing a plug-in
Furthermore, PDE allows also to run and debug the plug-ins under
development.In this phase we test the plug-ins without deployment. Eclipse
starts an instance of itself, which is known as the runtime instance. The Eclipse
instance that was used to launch the runtime instance is known as the host
workbench.

The runtime instance has all the plug-ins under development deployed so you
can test and debug them. Therefore, for the first time run of the plug-ins, you are
expected to configure the runtime instance by specifying:

� Runtime workspace location: This is a directory path in which you want the
runtime workspace resides in.

� List of plug-ins to run: It is not likely that you need all the plug-ins installed
to test your plug-in. Thus you can configure which plug-ins have to run in the
runtime instance. However, if you are not sure, keep all plug-ins selected.

� Virtual machine arguments: Eclipse configuration, enablement of tracing,
and so forth.

You can configure the runtime instance using these steps:

� From the Java or PDE perspective, select Run → Run.
� In the left pane, select Eclipse Application.
� You can now configure the runtime environment.

If you launched the plug-in using Debug, you can use the Debug perspective
within the host workbench to manage the interaction with the runtime workbench.
As such, you can set break points, inspect variables, and walk through the code
as it is running.

Finally, when you think the plug-in is ready to be used in a production
environment, you can deploy it so that it is part of the Eclipse installations. This
deployment can be done in different ways, one of which is by using the reusable
asset specification capability of Rational Software Architect, as we show later in
this chapter.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 553

Eclipse modeling
One part of extensibility we are more interested to deeper analyses, is modeling
extensibility. Eclipse provides several basic API corresponding to several Eclipse
project like:

� Eclipse Modeling Framework (EMF): Provides all the foundation APIs for
meta model implementation. It creates a standard for tools to allow them to
share a common metadata language. Many eclipse-based tools are
depending on this important basic component.

� Eclipse Modeling Framework Technologies (EMFT): Extends EMF by
providing capabilities on query, validation, and transactions on models.

� UML 2: Is the UML 2 meta model implementation based on EMF.

� Graphical Modeling Framework (GMF): Provides the basic API for diagram
and visualization capabilities for models.

Rational Software Architect extensibility

As any other tool on Eclipse, Rational Software Architect is realized by a large
number of plug-ins. The plug-ins leverage the extension points provided by other
plug-ins that are found within the Eclipse platform. In turn, these plug-ins
provided by Software Architect also provide extension points that can be
extended by other plug-ins.

Figure 16-5 shows the basic architecture of Rational Software Architect.

Figure 16-5 Rational Software Architect Version 7

Eclipse PlatformEclipse Platform

Eclipse Modeling ProjectEclipse Modeling Project

GEFGEF

EMFEMF--models models
(EJB, Java, XSD,(EJB, Java, XSD,……))

Diagram PlugDiagram Plug--ins ins
(one per diagram type)(one per diagram type)

UML Modeling & Domain Modeling editorsUML Modeling & Domain Modeling editors

UML2UML2
GMFGMF

EMFEMF

Transformation FrameworkTransformation Framework

Patterns FrameworkPatterns Framework

UML Transformations & PatternsUML Transformations & Patterns

UML2 Domain adaptersUML2 Domain adapters

EMFT JET,EMFT JET,
OCL, OCL, QUERYQUERY
VALIDATION, VALIDATION,
TRANSACTIONTRANSACTION
554 Building SOA Solutions Using the Rational SDP

These extension points are our hooks to extend IBM tools. For example:

� Modeling tools have profile extension points to allow us to create our own
profiles.

� The pattern engine has authoring extensions point that allow us to create new
patterns, extend existing ones and so on.

� The transformation engine exposes several extensions point to allow us to
define our own transformations and to extend the user interface.

In addition Rational Software Architect offers a way to extend the tool without
creating a formal plug-in, by using pluglets. A pluglet can be thought of as a
lightweight plug-in. The key feature of a pluglet is that it runs within the host
workbench; there is no need to launch a runtime workbench to interact with the
pluglet. A pluglet can be used to help you in figuring how to interact with the APIs
provided by the platform. You can also use a pluglet as a scripting tool that can
run in the same eclipse instance against existing models.

Finally, Rational Software Architect provides a full set of public APIs for
manipulating models, developing patterns and transformations, and extending
existing EMF and UML2 APIs.

Creating profiles

A basic extensibility step that we may need is to create an UML2 profile. For an
introduction of profile concepts, refer to “Importance of modeling” on page 138.

Basically, a profile allows us to extend the UML itself, by providing meaningful
“types” for our particular domain through definitions of stereotypes, properties
and constraints.

To create a profile in Rational Software Architect is straightforward:

� From an existing project (typically this is an extensibility project, such as
pattern or transformation authoring), select the project and New → Other.

� Expand Modeling → UML extensibility, and select UML Profile (Figure 16-6).
 Chapter 16. Pattern-based engineering with Rational Software Architect . 555

Figure 16-6 Creating a profile

� Click Next.

� Leave the default options, type a meaningful name for the profile and for the
corresponding file, for example JK Services Profile (put spaces in the
profile name) and click Finish.

Now your profile model exists and you can edit it.

Let us create a simple stereotype. A stereotype is used to extend part of UML
meaning. Therefore a stereotype must be related to a meta class (this is a part of
the UML language), such as Component, Operation, Activity, or Parameter).

� Select the model profile, JK Services Profile.

� Select Add UML → Stereotype.

� As any UML element, type compositeServiceSpec in the name.

� On the properties view, on the Extensions tab, click Add extension.

� Select Class as a meta class and click OK.

Now we have our first stereotype.

Let us assume we want to add a property on this stereotype to represent the
version of the service:
556 Building SOA Solutions Using the Rational SDP

� Select the stereotype and ADD UML → Attribute.

� Name the attribute version.

� Select String for the type of the attribute.

In this way you can add other stereotypes, properties, or constraint to the profile.

As a typical scenario you likely test your profile (in many case this is associated
to a transformation or a pattern) in your development environment, and when you
are confident, you deploy it.

We show how to deploy extensibility assets later in this chapter.

Authoring transformations

We already introduced transformations in “Transformations” on page 148, while
explaining the model-driven development theory of operations and tools.

Basically, transformations are a powerful tool to transform a model related to a
given level of abstraction to a model on a different (typically but not necessary
lower) level of abstraction.

Like patterns, transformations can be very useful for a software development
organization because they:

� Improve productivity by automating many deterministic tasks.

� Enforce standards because a given model always “becomes” a solution that
follows a particular architecture, standard, and so on. Development tasks are
less subject to human errors.

� Improve software quality and maturity of the development process, by
automatically creating traceability links among levels of abstraction.

We may say that all above points help in reaching a more mature SOA
governance.

Transformations are made up of rules that, scanning a source model, recognize
source elements, meta classes and stereotypes, “know” how to transform it into
elements in the target model. Indeed very often transformations are related to
particular profiles.

We show examples of transformation usage in this book in Chapter 12, “Service
realization” on page 387 and Chapter 13, “Service implementation” on page 419.

Note: By saying model we are meaning also the code. Indeed the code is the
model on a low level of abstraction!
 Chapter 16. Pattern-based engineering with Rational Software Architect . 557

In these cases we show transformations from different models to different “code”
artifacts.

The transformation engine of Rational Software Architect provides
transformations authoring capabilities by defining appropriate extension points.

Moreover, wizards are provided to automatically generate all transformation
skeletons, including rules generation.

Where as in Rational Software Architect Version 6, creating a transformation was
done almost by hand-coding the overall transformation behavior; Version 7 offers
new interesting capabilities:

� Model to model authoring support:
� Model to text authoring support:
� Own transformations

Model to model authoring support
The tool now provides a mapping editor that allows to map models through their
meta models. Once this mapping is created, Rational Software Architect is able
to generate the transformation.

This allows the user to forget about the detailed implementation and concentrate
on the mapping. When this mapping changes, the transformation will be
regenerated and ready to use. We can see a sample of this mapping in
Figure 16-7. Mapping happens between meta models and UML profiles.

Figure 16-7 A sample of a mapping model
558 Building SOA Solutions Using the Rational SDP

Model to text authoring support
Also in this case, we have new interesting tool capabilities. By exploiting new,
open source emerging technologies, such as the Eclipse Modeling Framework
Technologies (EMFT) and Java emitter templates (JET2), we can create
model-to-text transformation using the authoring tool. In particular is now
possible to transform from models not in UML/EMF format.

Own transformations
Finally, Rational Software Architect provides a framework to plug-in your own
transformations. In cases where you have more complex transformations to
develop, you complete some (Java) methods to implementing your
transformation logic (these methods are typically called by the framework itself).
To write the logic you have to know basic of some API, such as:

� Basics of Eclipse extensibility
� UML2
� EMF, EMFT
� Software Architect extensibility and transformation API

We can exploit a tool wizard to start the transformation implementation. This
wizard will prompt us for rules that have to be implemented, and then generates
the required plug-in infrastructure.

To browse the API documentation in the product follow these steps:

� Select Help → Help contents.

� Expand Rational Software Architect functionality.

� From here you can have an overview of all of the extensibility tools provided
or you can directly go to transformation informations and API by expanding
Rational Transformation Authoring Developer’s Guide.

If you want to make a first step through transformation authoring, you can also
start from the Software Architect samples. You can obtain a sample of
transformation by selecting menu Help → Samples gallery → UML modeler
Plug-ins → Model-to-text transformation (Figure 16-8).

Note: With this capability we are now able to easily create a transformation
that, for example, copies elements from one model to another, where these
two models represent two different levels of abstraction through two different
UML profiles.

For example, for the JK Enterprises case study, we can think a transformation
that, starting from the service model, creates the initial design model.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 559

Figure 16-8 Rational Software architect transformation sample

Authoring design patterns (JK Enterprises composite service
specification) .

Patterns are a similar concept to transformations. The main difference is while a
transformation is thought to take a model content from an abstraction level to
another (another model), a pattern is executed within the same abstraction level
(same model).

Moreover, a transformation has (typically) a large content to transform and can
be executed in batch mode, where as a pattern is executed through an
interaction with the designer.

In the JK enterprises case study we use three different patterns:

� An Interface design pattern in the design model, imported from pattern
samples (used during service realization).

� A Facade design pattern in the design model, taken from official Rational
Software Architect patterns (used during service realization).
560 Building SOA Solutions Using the Rational SDP

� A CompositeServiceSpecification design pattern in the service model,
explicitly built for our case study (used during service specification).

This is a pattern needed to structure a composite service, by updating
provided service specification for a given composite service, starting from a
composite service specification class. Additionally this pattern creates
realization relationship with provided interface and usage dependencies for
required interfaces.

This pattern is thought to be used during the service specification phase, in
the service model.

So now, we have to author this pattern. Let us go with pattern authoring tools:

� First, create a pattern project by selecting New → Project → Plug-in
development → Plug-in Project.

� Click Next.

� Name the project com.jkenterprises.designpatterns.

� Leave defaults, click Next.

� Leave defaults, click Next.

� Select Plug-in with Patterns (Figure 16-9).

Note: For a complete description of this pattern specification refer to “Service
model related patterns” on page 259.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 561

Figure 16-9 Pattern project creation

� Click Next.

� Leave the defaults, click Finish.

� Open the Pattern Authoring view by selecting Window → Show View →
Other → Modeling → Pattern Authoring.

Now we have a project that acts as a container for our pattern family and we can
see it in the Pattern authoring view.

Now we have to create our pattern:

� In the Pattern Explorer view, select the project and New → Pattern.

� Type CompositeServiceSpecification in the name field.

� Add a new group and name it JK SOA Patterns.

� Optionally, go to Detail tab and type your name as Author and provide a short
pattern description:

This is a pattern needed to structure a composite service, by creating
“provided” service specification operations for a given composite service.
Additionally it creates realization relationship with provided interface
and USAGE dependencies for required interfaces.
562 Building SOA Solutions Using the Rational SDP

� Click OK.

� Now it is time to add pattern parameters. Select the pattern and New →
Parameter.

� In the name field, type CompositeServiceSpecificationClass.

� In the Short Description field, type: This class represents the "type" of a
composite service. This class realizes the provided service
specification and uses the required service specifications.

� For the type, select Class and leave defaults (Figure 16-10).

Figure 16-10 Adding a pattern parameter

� Click OK.

� Add another parameter, name it ProvidedServiceSpecification, select
Interface as type, leave the other defaults.

� In the Short Description field, type: The provided service specification.
Operations of this interface are updated following the Composite
Service specification class (only public operations are copied).

� Select the Parameter Dependency tab.

� Select CompositeServiceSpecificationClass as Supplier parameter.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 563

Figure 16-11 Create a dependent parameter

� Add another parameter, name it RequiredServiceSpecification, select
Interface as type, select 1..* on multiplicity, leave the other defaults.

� In the Short Description field, type: The list of required service
specifications represents all of the service specifications
(interfaces) the composite service needs (can use) during its
execution.

� Select the Parameter Dependency tab.

� Select CompositeServiceSpecificationClass as Client parameter.

� Click OK (Figure 16-11).

Now, you should see the pattern in the Pattern Authoring view (Figure 16-12).

Figure 16-12 The pattern as it appears in pattern authoring view
564 Building SOA Solutions Using the Rational SDP

Figure 16-13 CompositeServicespecification pattern in Project Explorer

As we can observe in Figure 16-13, Software Architect has already created all
the plug-in structure necessary to implement our pattern.

The first two packages (com.jkenterprises.designpatterns and
com.jkenterprises.designpatterns.lib) contain already implemented
structural classes necessary for plug-in activation and pattern library
management.

Important: By creating a dependent parameter, we instruct the framework to
generate necessary code to manage events that impact on the parameter
itself.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 565

Pattern implementation
The real pattern implementation resides in the class
CompositeServiceSpecification. Software Architect has already generated this
class corresponding to the pattern and three nested classes, that correspond to
pattern parameters:

� CompositeServiceSpecificationClass represents the class part of this
pattern.

� ProvidedServiceSpecification represents the provided interface part of this
pattern. Following our pattern requirements, this interface shall “follow” the
above class, by having same operation signatures. In fact, when we visually
created this parameter, we checked this parameter as dependent on the first
one (that is a supplier for this parameter). Thus the framework automatically
created hotspot methods called update when the pattern is applied or
re-applied by the user.

� RequiredServiceSpecification represents a list of interfaces that are
required by this composite service. Indeed a composite service is likely to use
more than one existent service and therefore, to have more than one required
interface. The first parameter, CompositeServicespecificationClass (that
we select as a client), will be dependent on this parameter.

We have to perform two steps in this pattern implementation:

� Update the ProvidedServiceSpecification, as the provided interface of the
composite service.

� Create USAGE dependencies from the
CompositeServiceSpecificationClass class to the required interfaces.

Update the provided service specification
We want the pattern to copy public operations present in the class to the interface
(ProvidedServiceSpecification). There are update methods generated for each
parameter dependency (inner class of the parameter) in the class:

ProvidedServiceSpecification_CompositeServiceSpecificationClassDependency

These methods allow us to manage a change in the supplier parameter
(CompositeServiceSpecificationClass in this case).

Moreover, we want the pattern creates the realization relationship between class
and interface.

Therefore—knowing a basic UML 2 API—we implement this method as shown in
Example 16-1.
566 Building SOA Solutions Using the Rational SDP

Example 16-1 The hotspot update method implementation

public boolean update(PatternParameterValue value,
PatternParameterValue dependencyValue) {

final AbstractPatternInstance instance =
(AbstractPatternInstance)value.getOwningInstance();

final org.eclipse.uml2.uml.Class implValue =
(org.eclipse.uml2.uml.Class)dependencyValue.getValue();

final Interface interfaceValue = (Interface) value.getValue();
instance.ensureInterfaceImplementation(interfaceValue, implValue);
Utility.ensureClassImplementation(implValue, interfaceValue);
return true;

}

This method receives two parameters that represent the interface parameter
itself (corresponding to the class we are implementing) and the parameter this is
depending on.

As we can see in the second and third assignment, these two parameters are
assigned to the local variable interfaceValue and implValue.

The method called on the instance (the instance of the pattern the framework is
currently applying), ensureInterfaceImplementation simply checks if a
realization relationship exists from the class to the interface.

The last method call refers to our actual implementation of this pattern: The
ensureClassImplementation method (Example 16-2) has to ensure that
operations present on the class (CompositeServiceSpecificationClass pattern
parameter) are also on the interface (RequiredServiceSpecification pattern
parameter).

Example 16-2 ensureClassImplementation method from Utility class

public static void ensureClassImplementation(Class implValue,
Interface interfaceValue) {

// retrieve all operations from the class
EList operations = implValue.getAllOperations();
//Iterate over class operations
Iterator iterOps = operations.iterator();
while (iterOps.hasNext()){

Operation classOp = (Operation) iterOps.next();
//if PUBLIC, ensure operation on the Interface
if (classOp.getVisibility() == VisibilityKind.PUBLIC_LITERAL){

Note: Because the two methods ensureClassImplementation and
ensureInterfaceHasOperation have a generic behavior and can be reused,
we put them on a Utility class as static methods.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 567

Operation intOp = ensureInterfaceHasOperation(
 interfaceValue, classOp);

}
}

}

As we note from the code, this method simply loops on the class operations. For
each public operation present on the class, it invokes the (Utility)
ensureInterfaceHasOperation method (Example 16-3) passing the interface and
current operation as parameters. Note that only public operations are copied to
the interface.

Example 16-3 ensureInterfaceHasOperation method from Utility class

public static Operation ensureInterfaceHasOperation(Interface interfaceValue,
Operation classOp) {

// operation to be returned
Operation intOp;
BasicEList listParNames = new BasicEList();
BasicEList listParTypes = new BasicEList();

//We gather all parameters types and names in two Elist
Iterator iterParms = classOp.getOwnedParameters().iterator();
while (iterParms.hasNext()){

Parameter classParam = (Parameter) iterParms.next();
//create ELists for input parameters
listParNames.add(classParam.getName());
listParTypes.add(classParam.getType());

}
//find or create operation on demand
intOp = interfaceValue.getOwnedOperation(classOp.getName(),

listParNames, listParTypes, false, true);

return intOp;
}

As we can see on the provided code, this method:

� Creates two EList to contain parameter types and names.

� Loops over class operation parameters.

� Fills the two lists with all input parameters.

� Using UML2 API on the Interface, invoke getOwnedOperation method that,
when supplied with all necessary parameters, find or create the requested
method.

� Return the (found or created) operation.
568 Building SOA Solutions Using the Rational SDP

Note that although in our example we are not using the returned operation, it is
good practice to return it, because this method is expected to find or create such
an operation.

Create usage dependencies
Now, we have to work on the third parameter. In particular, we have to create an
UML <<use>> dependency from the Class parameter to the required interfaces.
We have to remind that at pattern application time, these interfaces will represent
the basic services that compose our service.

As we did for the first implementation part, we have to work on the update
method of this dependency that is represented by the class:

CompositeServiceSpecificationClass_RequiredServiceSpecificationsDependency

Let us analyze the method implementation (Example 16-4).

Example 16-4 Update method for required interface

public boolean update(PatternParameterValue value,
PatternParameterValue dependencyValue) {

//TAKES PATTERN INSTANCE FROM A PARAMETER
final AbstractPatternInstance instance = (AbstractPatternInstance) value

.getOwningInstance();

Interface requiredIntfc = (Interface) dependencyValue.getValue();
Class compSrvcClass = (Class)value.getValue();

//Create USAGE dependency between class and interface
instance.ensureUsageRelationship(compSrvcClass, requiredIntfc);

return true;
}

First, as we did for the other update method, we retrieve the pattern instance
from one parameter.

We initialize the class (CompositeServiceSpecificationClass) and interface
(RequiredServiceSpecification) to two meaningful local variables.

Finally, the actual body of the method simply calls the Software Architect API
ensureUsageRelationship method on the AbstractPatternInstance (the
instance of our pattern). This method create a <<use>> dependency from a class
to an interface.

The pattern implementation is now completed and we have to go to test the new
pattern.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 569

Pattern test
To test our pattern we have to remind that a pattern is realized as an Eclipse
plug-in (that extends Software Architect). As we already explained in Eclipse
extensibility, to test a plug-in we have to start an Eclipse runtime instance.

First time, you have to configure your runtime instance:

� From Java or PDE perspective, select Run → Run.
� In the left pane, select Eclipse Application.
� You can now configure your runtime environment.

Go to the plug-in tab and be sure the pattern under development is selected
(Figure 16-14).

Figure 16-14 Create, manage and run for Eclipse applications

By clicking Apply you save the configuration where as by clicking Run you save
the configuration and start the Eclipse runtime instance.
570 Building SOA Solutions Using the Rational SDP

In the runtime instance you can show the pattern explorer view. You should find
our newly defined pattern under the miscellaneous patterns group. You can now
test this pattern:

� Create a model.
� Apply the SoftwareServices UML profile to this model.
� Create a class (the Composite Service Specification class).
� Create some operation on the class.
� Create an interface (the provided Service Specification).
� StereoType this interface as <<ServiceSpecification>>.
� Create a set of interfaces (the required service specifications).
� Stereotype these interfaces as <<ServiceSpecification>>.
� Apply the pattern.

As a result of pattern application you should see a realization relationship has
been created from the class to the interface and every operation present on the
class has been copied to the interface. Additionally all required interfaces are
bound to the class through a <<use>> UML dependency.

We can see an example of this pattern application in the context of JK
Enterprises service model in Figure 16-15.

Note: If you have to know how to apply a pattern, you can find examples of
pattern usage in Chapter 12, “Service realization” on page 387.

Tip: With Rational Software Architect V7, you can also avoid to create all
necessary elements before applying the pattern. Indeed you can let the
pattern engine to do it for you, while applying the pattern. By hovering the
mouse on a particular parameter on the pattern instance, you will find a button
that creates an element corresponding to that parameter type.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 571

Figure 16-15 The composite service specification pattern applied

The composite service pattern is now working!

We can think about how to improve it, make all necessary modifications and
when we are satisfied with the pattern structure and behavior we can think to
deploy it. For example, you can notice if you right-click the pattern in the pattern
explorer and select Show pattern documentation, no documentation is displayed
at this point. Going back to development, in the pattern authoring view, you can
right-click the pattern and select Generate Help Files. This automatically creates
all HTML files containing the pattern documentation. You can use the generated
pages as is or improve these pages by writing additional pattern informations.

Note: This pattern does not enforce the user to apply Software services
profile. Indeed, although we are using this profile in this context, the pattern is
more generic and can be used whenever a class has to realize one interface
and requires a set of other interfaces.
572 Building SOA Solutions Using the Rational SDP

We are now going to learn how to deploy, manage and distribute our pattern by
using Reusable Asset Specification (RAS) tools provided by Rational Software
Architect.

Using the Reusable Asset Specification (RAS) to distribute and
manage assets

Reusable asset specification is an Object Management Group (OMG) standard
that defines format, structure of reusable software assets.

An asset may be any software related element like an UML model, a component,
a framework, a service, and so forth.

Being a standard, reusable asset specification ensure that, independently from
tools used the asset will be correctly read, managed and interpreted.

One of SOA key principle is about reuse and a correct asset management helps
and enforce software reuse.

Going back to our SOA pattern, now we want to deploy this pattern using
reusable asset specification.

As we have explained in the asset related chapter, in Rational Software Architect
you can create an asset by using the export functionality:

� Select File → Export.

� Select RAS → Ras Asset.

� Click Next.

� Select a destination ras file (we are creating a repository).

� Click Next.

� Give a significant name and description to the asset. You can add information
related to asset version, author and so on.

� Click Next.

� Select only the pattern project, com.jkenterprises.designpatterns.

� Check only Export as deployable feature, fragment or plug-in.

� Click Finish.

Tip: You can find a more detailed and complete introduction to reusable asset
management in Chapter 15, “Creating reusable assets” on page 533.
 Chapter 16. Pattern-based engineering with Rational Software Architect . 573

This way we have created our RAS asset that, for the moment, contains only one
pattern, but in the future you can add other assets to it.

A client that wants to install this pattern has to import this RAS asset using the
RAS (Reusable Asset) perspective of Software Architect. The reusable asset
that we created is available in the sample code:

SG247356\sampcode\SoftwareArchitect\ras\SOARedbookPatterns.ras

The instructions on how to install the asset are provided in “Installing the sample
pattern RAS asset” on page 588.

References

Eclipse modeling project:

http://www.eclipse.org/modeling/

Eclipse UML2 project:

http://www.eclipse.org/modeling/mdt/?project=uml2-uml

IBM Rational pattern solution Web site:

http://www-128.ibm.com/developerworks/rational/products/patternsolutions/#m
odel

Read A Rational approach to model-driven development, by A. W. Brown, S.
Iyengar, and S. Johnston, at:

http://www.research.ibm.com/journal/sj/453/brown.html
574 Building SOA Solutions Using the Rational SDP

http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/mdt/?project=uml2-uml
http://www-128.ibm.com/developerworks/rational/products/patternsolutions/#model
http://www.research.ibm.com/journal/sj/453/brown.html

Appendix A. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material
The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247356

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the Redbooks form number, SG247356.

A

© Copyright IBM Corp. 2007. All rights reserved. 575

ftp://www.redbooks.ibm.com/redbooks/SG247356
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this book includes the following
files:

File name Description
sg247356code.zip Zipped code samples
correction7356.txt Corrections to the PDF

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: At least 10 GB free space for products
Operating System: Microsoft Windows XP SP2 or greater
Processor: P4-class Pentium®
Memory: 2 Gigabytes RAM

Software requirements
The following tools were used to create the samples. In the case of IBM Rational
Software Architect, IBM Rational Functional Test, IBM Rational Performance Test
and IBM Rational Manual Test, the pre-release build of Version 7 were used:

� IBM Rational RequisitePro V7.0.0.0-IFIX01 or greater

� IBM WebSphere Business Modeler V6.0.1 or greater

� IBM Rational Software Architect V7.0

How to use the Web material
Unzip the contents of the Web material file sg247356code.zip onto your hard
drive. This creates a directory c:\SG247356\sampcode\ with these
subdirectories:

DevelopmentCase Sample code for RMC plug-in

Modeler Sample code for WebSphere Business Modeler

RequisitePro Sample code for Rational RequisitePro

SoftwareArchitect Sample code for Rational Software Architect
576 Building SOA Solutions Using the Rational SDP

Loading the RequisitePro projects
Our sample contain two RequisitePro projects, with cross project traceability and
links to the UML models held in Rational Software Modeler or Rational Software
Architect.

The projects are saved as zipped RequisitePro baseline files. First unzip the files
into a temporary directory:

� Enterprise.zip—This project contains information relevant to all SOA-based
solutions.

� Project.zip—This project contains information specific to the solution
discussed in this IBM Redbooks publication.

To load the files, start RequisitePro Baseline Manager by selecting Start → All
Programs → IBM Rational → IBM Rational RequisitePro → RequisitePro
Baseline Manager (assuming we are using Windows XP and have accepted the
default tool installation options).

Alternatively, start RequisitePro and select Tools → RequisitePro Baseline
Manager.

Figure A-1 shows the RequisitePro Baseline Manager.

Figure A-1 Use the RequisitePro Baseline Manager to load the RequisitePro files

Use the baseline manager to recreate both projects. Both projects must be
recreated to enable the cross-project traceability.
 Appendix A. Additional material 577

Loading the RequisitePro project templates
The RequisitePro material for this book also contains project templates for the
Enterprise project and the Project project. Adding these to our RequisitePro
installation provides two additional project templates when creating a new
Project:

� The RequisitePro-outlines.zip file can be unzipped into the
<installdir>/RequisitePro/outlines directory.

� The RequisitePro-templates.zip file can be unzipped into the
<installdir/RequisitePro/templates directory.
578 Building SOA Solutions Using the Rational SDP

Loading the WebSphere Business Modeler project
The WebSphere Business Modeler project is stored as a WebSphere Business
Modeler project zip file. To import this model, start WebSphere Business Modeler
in a new workspace. We do not have to create a new model, this is done as part
of the import process.

� Select File → Import.

� Select WebSphere Business Modeler Import and click Next (Figure A-2).

Figure A-2 WebSphere Business Modeler file import

� Select WebSphere Business Modeler project (.zip) and click Next
(Figure A-3).
 Appendix A. Additional material 579

Figure A-3 Select WebSphere Business Modeler project (.zip) import

� Click New to create the target project. Enter JK Enterprises Account
Opening as project name and click Finish (Figure A-4).

Figure A-4 Create the JK Enterprises project
580 Building SOA Solutions Using the Rational SDP

� Click Browse to locate the sample code directory:

c:\SG247356\sampcode\Modeler

Then select the ZIP file and click Finish (Figure A-5).

Figure A-5 Enter the import zip files details and create a new model

� When the import is complete, the model is available in the workspace.
Figure A-6 shows the project with the business items and processes
expanded, and one process opened.
 Appendix A. Additional material 581

Figure A-6 WebSphere Business Modeler after importing the sample
582 Building SOA Solutions Using the Rational SDP

Loading the models into Rational Software Architect
We provide the UML models in a ZIP file:

c:\SG247356\sampcode\SoftwareArchitect\JK Enterprises UML Models.zip

To load the models into Software Architect, perform these steps:

� Start Rational Software Architect V7.

� Open the Modeling perspective and close the Resource perspective.

� Select File → Import.

� In the Import dialog, select Other → Project Interchange and click Next
(Figure A-7).

Figure A-7 Select the import type as archive file

� Click Browse and locate the file:

C:\SG247356\sampcode\SoftwareArchitect\UMLModels.zip

Select the project and click Finish (Figure A-8).
 Appendix A. Additional material 583

Figure A-8 Importing the UML models

� The models are imported into the project. Expand the project to see the
Diagrams, Models, and Profiles (Figure A-9).

Figure A-9 Project Explorer after import
584 Building SOA Solutions Using the Rational SDP

Loading the implementation into Software Architect
We provide the finished application for testing as a project interchange file in:

c:\SG247356\sampcode\SoftwareArchitect\test\PTApplication.zip

To load the application into Software Architect perform these steps:

� Open the Web perspective. When prompted click OK to enable Web
development.

� Select File → Import.

� In the Import dialog, select Other → Project Interchange and click Next
(Figure A-7 on page 583).

� Click Browse to locate the interchange file. Select all the projects and click
Finish (Figure A-10).

Figure A-10 Importing the application projects

� The projects are imported and built:

– PTAccountApplication is the Web service enterprise application,
consisting of PTAccountApplicationEJB and
PTAccountApplicationEJBHttpRouter.

– PTAccountApplicationClient is the Web service client enterprise
application, consisting of PTAccountApplicationClientWeb.

� Figure A-11 shows the Project Explorer with the application projects and the
Web services.
 Appendix A. Additional material 585

Figure A-11 Project Explorer showing the application projects

Running the application
To run the sample application perform these steps:

� In the Servers view select the server and click the Start icon
(Figure A-12).

Figure A-12 Starting the server

� Wait until the server is ready.

� Select the server and Add and Remove Projects. In the dialog click Add All
and click Finish (Figure A-13).
586 Building SOA Solutions Using the Rational SDP

Figure A-13 Add the application projects to the server

� Watch the Console view and wait for the messages that the applications are
started:

WSVR0221I: Application started: PTAccountApplicationClient
......
WSVR0221I: Application started: PTAccountApplication

� To test the application follow the instructions in “Verify the Open Account
Application” on page 514.

Loading other projects
We also provide the project interchange files for:

� topdown\AccountApplicationSCSolution.zip—See “Top-down development
of a service” on page 430 (solution after implementing the service).

� thirdparty\AddrVerificationService.zip—See “Third-party service” on
page 464.

� cics\CICSCustomer.zip—See “Indirectly exposing an enterprise service” on
page 472 (solution).

You can import these interchange files in the same way as described for the
PTApplication.zip file.
 Appendix A. Additional material 587

Installing the sample pattern RAS asset
In this section we create a local RAS repository that stores a copy of the asset
developed in Chapter 16, “Pattern-based engineering with Rational Software
Architect .” on page 545.

We install the asset into Rational Software Architect.

Create a local asset repository
First we create the local asset repository that points to the asset ZIP file of the
sample code:

� Start Software Architect.

� Open the RAS (Reusable Assets) perspective.

� In the Asset Explorer click Add a new Repository connection
(Figure A-14).

� Select Local Repository and click Next.

� Specify the repository location where the asset ZIP file is:

C:\SG247356\sampcode\SoftwareArchitect\ras

� Click Finish.

Figure A-14 Creating a local RAS repository
588 Building SOA Solutions Using the Rational SDP

Import the asset
We import the asset into Software Architect:

� Select the new repository and Refresh, then expand the node. The asset
contains both the source project as well as the deployable plug-in.

� Select the SOA Redbook patterns and Import (Figure A-15).

Figure A-15 Creating a local RAS repository

� Click OK in the information panel (attempt to install the feature
com.jkenterprises.designpattern_1.0.0).

� You can go through the dialog panels or click Finish.

� Click Yes to All when messages are displayed, and click OK to the warning.

� Click Yes when prompted to restart the workbench.

Confirm that the plug-in is installed
We can confirm that the plug-in is installed properly:

� Switch to the Modeling perspective and you can find the source project
com.jkenterprises.designpatterns (Figure A-16).

Figure A-16 Project after import
 Appendix A. Additional material 589

� Open the Pattern Explorer view by selecting Window → Show View → Other
→ Modeling → Pattern Explorer.

� Expand JK SOA Patterns and select CompositeServiceSpecification
(Figure A-17).

Figure A-17 Pattern Explorer with the sample pattern

� The pattern is now available for you to use from within the JK SOA Patterns
library.

Tip: If you see errors in the project, you have to change the default JDK.
Select Window → Preferences, expand Java → Installed JREs, and select
either WebSphere V6.1 JRE, or any other JRE that supports Java 5, for
example, the JRE that is installed with the product (C:\IBM\SDP70\jdk).
590 Building SOA Solutions Using the Rational SDP

Rational Method Composer plug-in
We provide our simple development case codified as a Rational Method
Composer plug-in. It is the result of the steps performed in “Codify the
development case” on page 116. Note that it does not represent the development
case completely, but rather includes the elements necessary to understand how
to do this in Method Composer.

To use the plug-in in Method Composer, select File → Import. In the Import
wizard, select Method Plug-ins and click Next. In the next page, select the
location where you have extracted the DevCase-RMC-plugin-export.zip file.
Please note that the plug-in was created using Version 7.0.1 of Method
Composer.

We provide the Method Composer plug-in of our development case in:

C:\SG247356\sampcode\DevelopmentCase\DevCase-RMC-plugin-export.zip
 Appendix A. Additional material 591

592 Building SOA Solutions Using the Rational SDP

acronyms
API application programming
interface

ATM automatic teller machine

BDD business-driven development

BPEL Business Process Execution
Language

BPM business process
management

BPMN Business Process Modeling
Notation

CBD component-based
development

CBDI component based
development and integration

CBM Component Business
Modeling

CCM change and configuration
management

CDT C++ development tool

CEO chief executive officer

CICS Customer Information Control
System

CIO chief information officer

CORBA Common Object Request
Broker Architecture

CRM customer relationship
management

CRUD create/read/update/delete

CSS cascading style sheet

CSV comma separated values

CVS Common Version System

DTD document type definition

EAI enterprise application
integration

EAR enterprise archive

Abbreviations and
© Copyright IBM Corp. 2007. All rights reserved.
EIS enterprise information system

EJB Enterprise JavaBean

EMF Eclipse Modeling Framework

EMFT Eclipse Modeling Framework
Technologies

EPF Eclipse Process Framework

ERP enterprise resource planning

ESB Enterprise Service Bus

ETL extract, transform, load

GB gigabyte

GMF graphical modeling framework

GUI graphical user interface

HR human resources

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines

IDE integrated development
environment

IMS Information Management
System

ISO International Organization for
Standardization

IT information technology

ITSO International technical
Support organization

JAR Java archive

JMS Java Messaging Service

JNDI Java Naming and Directory
Interface™

JSF JavaServer Faces

JSP JavaServer Pages™

KPI key performance indicator

LOB line of business
 593

MDA model-driven architecture

MDD model-driven development

MOF meta-object facility

OCL Object Constraint Language

OMG Object Management Group

OMT Object Modeling Technique

OO object-oriented

OOSE Object-Oriented Software
Engineering

PDE Plug-in Development
Environment

POJO plain old Java object

QoS quality of service

RAS reusable asset specification

RFP request for proposal

RUP Rational Unified Process

SCA service component
architecture

SDP Software Delivery Platform

SLA service-level agreement

SO service-oriented

SOA service-oriented architecture

SOMA Service Oriented Modeling
and Architecture

SPEM Software Process
Engineering

SQL Structured Query Language

TCO total cost of ownership

TCP/IP Transmission Control
Protocol/Internet Protocol

UCM Unified Change Management

UDDI Universal Description
Discovery and Integration

UI user interface

UMA Unified Method Architecture

UML Unified Modeling Language

URL Uniform Resource Locator

WS-I Web Services Interoperability
Organization

WSAA WebSphere Studio Asset
Analyzer

WSDL Web Services Definition
Language

XML eXtensible Markup Language

XSD XML Schema Definition
594 Building SOA Solutions Using the Rational SDP

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbooks publication.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 596. Note that some of the documents referenced here may
be available in softcopy only.

� Rational Business Driven Development for Compliance, SG24-7244

� Business Process Management: Modeling through Monitoring Using
WebSphere V6.0.2 Products, SG24-7148

� Patterns: SOA Foundation - Business Process Management Scenario,
SG24-7234

� Patterns: SOA Foundation Service Creation Scenario, SG24-7240

� Patterns: SOA Foundation Service Connectivity Scenario, SG24-7228

� Web Services Handbook for WebSphere Application Server 6.1, SG24-7257

� Continuous Business Process Management with HOLOSOFX BPM Suite and
IBM MQSeries Workflow, SG24-6590

� Software Configuration Management: A Clear Case for IBM Rational
ClearCase and ClearQuest UCM, SG24-6399

� Rational Application Developer V6 Programming Guide, SG24-6449

Other publications
These publications are also relevant as further information sources:

� Design Patterns: Elements of Reusable Object-Oriented Software, Erich
Gamma, et al, Addison-Wesley, 1995, ISBN 0201633612

� The Unified Modeling Language User Guide, Grady Booch, James
Rumbaugh, Ivar Jacobson, Addison-Wesley, Second Edition, 2005, ISBN
0321267974

� A Rational approach to model-driven development, A. W. Brown, S. Iyengar,
and S. Johnston, IBM Systems Journal, Volume 45, Number 3, 2006
© Copyright IBM Corp. 2007. All rights reserved. 595

� Use Case Modeling, Kurt Bittner and Ian Spence, Addison-Wesley, 2002,
ISBN 0201709139

� Practical Software Metrics for Project Management and Process
Improvement, Robert Grady, Prentice-Hall, 1992, ISBN 0137203845

� Performance Analysis for Java Web Sites, S. Joines, R. Willenborg, and K.
Hygh, Addison-Wesley, 2002, ISBN 0201844540

Online resources
These Web sites are also relevant as further information sources:

� IBM software

http://www.ibm.com/software/
http://www.ibm.com/software/rational

� IBM developerWorks

http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/rational/

� Eclipse

http://www.eclipse.org/

� Object Management Group

http://www.omg.com/

� Uniform Modeling Language

http://www.uml.org/
http://www.ibm.com/software/rational/uml/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
596 Building SOA Solutions Using the Rational SDP

http://www.ibm.com/software/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/developerworks/
http://www.ibm.com/developerworks/rational/
http://www.eclipse.org/
http://www.omg.com/
http://www.uml.org/
http://www.ibm.com/software/rational/uml/
http://www.ibm.com/software/rational

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 597

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

598 Building SOA Solutions Using the Rational SDP

Index

A
abstraction

level 146
access

constraints 4
services 4, 8

account
activation 20
application 20
sales 20
verification 21

activities diagram 143
activity 107
application

failure 488
Application Developer 162, 423

component testing 463
EJB generation 416
features 425
JUnit 502
roles and capabilities 424

architect
tools 159

architectural
analysis 416
discovery 417
elements 98
patterns 9, 74–75
significant 57
styles 73

architecture 43
business 43
importance 155
logical 7
reuse 73
specification 49
styles 43

architecture-driven 113
assemble

phase 4
assembly

part 54
asset 4
© Copyright IBM Corp. 2007. All rights reserved.
analysis 224, 292
life cycle 5, 26, 533
packaging 538
registry 515
repositor 61
repositories 9
resuable 68
stability 68

Asset Analyzer 293
asynchronous 488
atomic

service providers 319
services 72, 89

layer 493
authentication 5
autonomic recovery 489
availability 490

B
baselining 228
behavioral

policies 220
specification 238

best practices 492
black-box 144

view 49, 57
Booch Method 141
Borland 160
bottom-up development 481
BPEL 12, 101
BPMN 78, 198
Building SOA Solutions 117
business

actor 185
analyst 4, 491
application

services 8
architecture 43, 174

model 233, 307
composition 491
context 140
design 3
domain 208
 599

glossary 171, 181
goal 35, 198
improvement 24
innovation 9
items 194
metrics 3
modeling 169

discipline 170, 173
tasks 172

objectives 4
portal 72
process 4, 185

analysis 286
executable 47
flows 4
implementation 12
model 189, 233
optimization 171

relevant elements 84
requirements 3, 35, 42
rules 170, 188
state 89
state machine 29
strategy 198
use case 219

model 174
modeling 184
realization 188

vision 173, 177
Business Modeler 35, 189–190

BPEL 12
project

load 579
Business Process Execution Language 12, 46
BusinessGoal 285

C
C++ development 164
calibration 489
candidate services 308
capability pattern 107
capacity growth 5
CBDI Forum 39
CBM 47, 175, 278
center of excellence 30
change

management 36
choreography 12

CICS 19
communication area 474
Transaction Gateway 472
Transaction Server 472

class
behavior 406
diagram 142

ClearCase 503
baselining 228
configuration management 15

ClearQuest 16, 35
configuration management 15
Enterprise schema 515
governance 35
MulitSite 228
software development life cycle 503
Test Management 520
testing 222

CMMI 43
code

quality 416
review 416, 491
templates 433

collaboration 109, 150
comma separated values 13
communication

diagram 143
policies 220

completion criteria 499
complex structures 150
compliance 34, 38
component 6

business modeling 47, 175
classes 271
diagram 143
testing 502

Component Business Modeling 278
composite

application 4
applications 12
service providers 334
service specifications pattern 259
services 268
services layer 493
structure diagram 143

CompositeServiceSpecification
design pattern 561

composition logic 77
configuration
600 Building SOA Solutions Using the Rational SDP

management 15, 36
conformance testing 492
connector 150
construction 112
consumer 9
content assist 433
CORBA 163
core

components 7
cost 159
coupling 98, 154

loose 486
critical path 494
CRM

system 19
CSV 13
cybernetics 45

D
Data Architect 213

requirements 216
DataPower XML Security Gateway 9
debugging

aids 9
decomposition element 151
defect-tracking system 504
delivery

assurance 9
process 107

deployment 37
phase 4

design
class behavior 406
class structure 404
model 232

creation 389
work product 263

pattern 53
patterns 75, 400
reuse 67

developerWorks 39, 136
development

iterative 109
services 9

development case 114
Building SOA Solutions 117
codify 116
plug-in 136

DFHCOMMAREA 474
diagram 143

class 142
communication 143
component 143
composite structure 143
deployment 142
dynamic 143
interaction overview 144
object 142
package 142
protocol state machine 144
sequence 143
state 144
static 142
timing 143
use case 143

dimensional analysis 203
distributed

repositories 228
routing 488
teams 32

documentation 13
domain

model 89, 232, 307
modeling 204
types 85
work products 169

dynamic routing 494

E
EAI 69
e-business 18
Eclipse 36, 160

architecture 161, 551
Element Proxies 284
extensibility 550
GMF 554
modeling 554

project 574
Modeling Framework 162, 554

Technologies 554
PDE 551
plug-in 160
Process Framework 32, 39, 106, 115, 136
runtime instance 570
Web Tools Platform 162

Eiffel 141
 Index 601

EJB Web service 451
elaboration 112
element

actor 259
compositeServiceSpec 243
derive 275, 317
entity 270
enumeration 253
infoType 246, 257
message 166, 244
parameterType 245
PatternInstance 272
refine 275
service 166, 242
serviceChannel 249, 258
serviceComponent 267, 270
serviceConsumer 240, 258
serviceContract 250
serviceGateway 252
serviceInteraction 251
serviceModel 165
servicePartition 248, 258
serviceProvider 166, 239, 258
serviceSpecification 237, 284
use 569

EMF 162, 554
EMFT 554
end-to-end

methodology 19
testing 497

endurance 489
enterprise

application integration 69
architect 4, 6
architecture 5
information system 476
service 472
software architecture 44

Enterprise Service Bus
see ESB

enumeration 247
EPF 115
ESB 8
eTOM 181
existing or earlier (legacy)

application as services 292
software 159

export
method plug-in 136

project plan 134
extension point 160

F
facade

bindings 271
design pattern 53, 402, 560

flexible distribution 159
functional

area 45, 310
testing 501

Functional Tester
overview 503
using 530

FURPS 222

G
geographically distributed 32
glossary 219
GMF 554
governance 5, 16

importance 26
IT 27
measures 30
metrics 30
SOA 25
vision 30

Graphical Modeling Framework 554
guidance 107

H
human tasks 72

I
IAA 204
identity

management 5
IFW 181
implementation

model 420
options 422
reuse 67

inception 112
info types 331

design 381
information

diagram 247, 256
602 Building SOA Solutions Using the Rational SDP

framework 181
services 8
types 95

infrastructure
logic 80
services 10

innovation 9
instrumentation

tools 9
integrated development environment 36
integration 69

application interface level 70
data level 69
levels 69
method level 70
people 73
services 72
SOA 71
strategy 498
testing 498
user interface level 70

Integration Developer 12, 204
interaction

occurrence 152
overview diagram 144
services 7
UML 152

interface
design pattern 401, 560
refining 399
specification 238

International Organization for Standardization 355
ISO 355
IT

governance 27
infrastructure 10
organization 30
service management 10

iteration 111, 518
iterative

development 109, 111

J
J2EE 12, 162
Jacobson 141
Java

Connector Tools 473
data binding 473

emitter templates 559
primitive type library 392
transformation 414

JavaServer Faces 162
JK Enterprises 18

Account Opening 13
approach 23
architectural style 75
asset life cycle 535
assumptions 24
business problems 20
case study 17
CEO 18
CIO 19
Component Business Modeling 310
composite service specification 560
development case 108, 114
development process 536
domain model 369
Glossary of Terms 183
goals 200
Project project 178
proposed solution 21
RAS asset repository 540
roles 120
service identification 297
service interaction design 368
service model 303
service realization 411
service specification 385
steps 124
tasks 122
testing process 484

JNDI 476
JSF 162
JUnit 459, 464, 502

K
key performance indicators 3, 196, 199, 280
KPI 3

L
level of abstraction 109
life cycle 3

assets 5
service 29
SOA 2

logical
 Index 603

architecture 7
loose coupling 486

M
manage

phase 5
Manual Tester

overview 504
test scripts 522
using 521

market value 26
MDA 145
MERANT 160
message 166

creation 372
diagram 245

Message Broker 9
meta-object facility 146, 149
method

content 107
plug-in 136

Method Composer 15, 32, 106, 114, 303
plug-in 136, 548

load 591
plug-in for Compliance Management 39
plug-in for SOA Governance 27, 33, 38
plug-in for SOMA 38
publishing HTML 130

metrics 199
runtime 62

Microsoft
Project 33
Visual Studio .NET 36, 503

milestone 127
model

implementation 420
structure 266, 269, 390
template 548
transformation 434

feature 426
model-driven

architecture 145
development 145

modeling 3
importance 138
service architecture 48

module
assemblies 7

MOF 146
monitoring 5
MultiSite 228

N
namespace 454

O
object constraint language 149
Object Management Group 32, 534

UML Web site 168
Object Modeling Technique 141
Object-Oriented Software Engineering 141
Objectory 141
OCL 149
OMG 32, 106, 115, 141
OMT 141
OOSE 141
operation 97

parameter types 370
parameters 286
signature 97

organizational
structure 24

P
package

diagram 142
parallel development 158
parameter types 368
partitioning 159
partner

services 8
pattern 9

base architecture on business relevant elements
84
composite service specifications 260
definition 74
derive atomic services from domain model 89
drive applications using business processes
101
factor application-specific logic out of reuse lay-
ers 81
factor atomic reusable logic into lower reuse lay-
ers 79
factor composition logic away from process logic
76
604 Building SOA Solutions Using the Rational SDP

implementation 566
keep architectural elements totally decoupled
98
keep service operation signatures meaningful
97
manage complexity using SO systems 86
model data ownership 94
service enable non-SO systems 92
solution Web site 574
test 570
use shared messages and parameter types 100

pattern-based engineering 545
patterns 67

architectural 75
design 75

PDE 551
people

integration 73
performance 490

monitoring 5
Performance Tester 505
Performance Tester Extension for SOA 505
persistence

technology 94
phase

assemble 4
deploy 4
manage 5
modeling 3

plug-in
descriptor 552
testing 553

plug-in Development Environment 551
plug-in for Compliance Management 39
plug-in for SOA Governance 27, 33, 38
plug-in for SOMA 38
pluglet 548, 555
policies 5, 220
policy

specification 238
port 152
portal 72
Portfolio Manager 14, 33, 134

project template 135
principles

RUP 108
process 107

advisor 304
browser 305

guidance 306
preferences 303
services 8
simulation 196

Process Framework 106
Process Server 204
project

interchange file 432, 465, 513
plan 134
vision 221

ProjectConsole 14
protocol state machine diagram 144
provider 9

Q
QNX Software Systems 160
quality 109
quality of service 355

R
RAS 403

asset repository 540
assets 535
export wizard 540
repository 292, 404

Rational
Application Developer

see Application Developer
Build Forge 482
ClearCase

see ClearCase
ClearQuest

see ClearQuest
Data Architect

see Data Architect
Functional Tester

see Functional Tester
Manual Tester

see Manual Tester
Method Composer

see Method Composer
pattern solution Web site 574
Performance Tester

see Performance Tester
Portfolio Manager 14

see Portfolio Manager
ProjectConsole

see ProjectConsole
 Index 605

RequisitePro 210
see RequisitePro

SDP
see SDP

SoDA
see SoDA

Software Architect
see Software Architect

Software Delivery Platform
see SDP

software development process 105
Software Modeler

see Software Modeler
Tester for SOA

see Tester for SOA
Unified Process

see RUP
realization

classes 395
relationship 394, 571

recovery 489
Red Hat 160
Redbooks Web site 596

Contact us xix
refacing 70
refactoring 148, 422, 434
regression testing 491
regulatory compliance 34
reliability 489–490
reporting 13
requirements 35

explorer 214
management 207

plan 210
types 210

RequisitePro 35, 173, 282
database 180
document templates 174
element 201
project templates

load 578
projects 174

load 577
requirement 180
system use case 225
traceability 201

resource
adapter 475
dependencies 4

utilization 34
reusable

assets 68, 533
logic 79

Reusable Asset Specification 388, 403, 533–534,
573
reuse 62, 67

architecture 73
reverse transformation 414, 457
revision history 183
role 107
Rumbaugh 141
runtime

instance reuse 67
metrics 62
problems 62

runtime instance 571
RUP 32, 105–106, 170

concepts 109
for Business Modeling 32, 115
for Service-Oriented Modeling and Architecture
32
for SOA 114
for SOMA 19, 32, 114
object-oriented approach 409
phases 111
plug-in for Compliance Management 38
principles 108
Process Builder 114
project 111
site 115
SoDA 14
SOMA 235
summary chart 109–110
Test discipline 459, 484

S
SAP 19
SCA

binding 78
scenarios

SOA 10
schema

policies 220
SDP 18, 31, 424
sequence diagram 143
service 536

architecture 43
606 Building SOA Solutions Using the Rational SDP

atomic 72, 89
by functional area 310
candidates 308
channels 351
collaborations 357
component 6, 45, 52, 267

creation 392
implementation 53
instance 55
testing 495

consumer 9
specification diagram 239

gateway 167
identification 154, 277

tools 281
implementation 419
interaction 359

diagram 242, 258
life cycle 29
management 10
model 154, 232, 234

structure 536
validation 384

partition 167, 314
policies 217, 220, 355
provider 9

specification diagram 239, 255
realization 155, 387

tools 388
repository 57
reuse 62
specification 154, 166, 300

diagram 239
tasks 307

testing 483
Service Registry and Repository 37, 292, 541
serviceability 489
service-level agreement 355
Service-Oriented Modeling and Architecture 32
service-oriented system 45
sg247356code.zip 576
Siebel 19
single sign-on 5
SOA

environment 41, 494
foundation 2

life cycle 2
reference architecture 2, 6
scenarios 10

service creation scenarios 423
governance 5, 12, 25, 28

center of excellence 30
life cycle 29

Governance Business Briefing 39
initiative 12
integration 71
life cycle 2
modeling 153
programming model 4
requirements management 208
scenarios 10
solution stack 281, 300, 485
structure diagram 239, 257, 317
testing 485

products 500
strategy 490

SOAP 244, 438
SoDA 184
software

application 42–43
architect 4
configuration management 15
design 61
development

process 59
integration 72
requirements 576
system 43

Software Architect 12, 161, 174
APIs 555
architecture 554
business model 198
Business Modeler integration 288
domain model 204
extensibility 559
implementation

load 585
model

load 583
model validation 412
pattern 547
patterns 546
profile 555
requirements 215
reverse transformation 481
service specification 301
system use case 226
transformations 395, 435, 548, 558
 Index 607

use case realization 188
Software Delivery Platform

see SDP
Software Modeler 22, 159, 161–162, 174

business model 198
domain model 204
use case realization 188

Software Process Engineering 32
Software Process Engineering Metamodel 106
software-oriented architecture

see SOA
SOMA 32, 154
specification

artifacts 100
reuse 67

SPEM 106
stakeholder 24, 108
state

diagram 144
machine 29

stereotype 149, 166
structure

diagram 317
structured classes 150
Struts 425
SuSE 160
system

context 158
outage 497
specification 61
testing 501
use case 224

model 307

T
task 107

model service assemblies 384
model service deployment 385
refine service architecture 356
structure service architecture 307

TCP/IP Monitor 459, 462, 502
view 462

test
analyst 510
architect 511
artifacts 515
automation 490, 499
case 508

completion criteria 498
data 508–509
designer 510
environment 513
life cycle 511
manager 511
matrix 498
plan 507
process 511
result 508
role 509
scripts 522
statement 524
strategy 490
tooling 512
work products 507

Tester for SOA 505
third-party

outsourcing 481
software 159
Web service 467

Three Amigos 141
timing diagram 143
Tivoli Composite Application Manager for SOA 507
TogetherSoft 160
top-down

approach 6
development 430

total cost of ownership 178
traceability 31, 148, 271, 274, 395

dependencies 276
transaction

trace 489
transformation 548

model 434
profile 391

transformations 67, 148, 163
transition 37, 112
type

libraries 266

U
UDDI 488
UMA 115
UML

characteristics 145
class diagram 22, 211
code transformations 413
608 Building SOA Solutions Using the Rational SDP

diagrams 142
EJB transformation 416
extensions 148
history 141
meta classes 164
modeling 105
overview 142
package 536
partners 141
profile for Software Services 164
profiles 547
resource center 168
to EJB transformation 445
to Java V5.0 transformation 440
to WSDL transformation 436
user guide 140
visualization 162

UML 2
profile for software services 312
specifications 149

Unified Change Management 36
Unified Method Architecture 32, 115
Unified Modeling Language 141, 303
unit testing 500
use case 113

diagram 143
model 226, 232
notation 141

user
interaction logic 4
interface

integration 72
provisioning 5

V
variability specification 238
Visio 3
Visual Studio 36
visualization 22

W
Web Service wizard 431
Web Services Definition Language 13
Web Services Explorer 459, 502
Web Services Interoperability 466
Web Services Navigator 507
Webgain 160
WebSphere

Application Server 162
Business Modeler

see Business Modeler
Enterprise Service Bus

see ESB
Integration Developer

see Integration Developer
Message Broker

see Message Broker
Process Server

see Process Server
Service Registry and Repository

see Service Registry and Repository
Studio Asset Analyzer 293

white-box 144
view 49, 57

work
allocation 158
product 107, 118

workflow
lifeline 360
tools 30

WSDL 13
conformance 502
editor 449
endpoint 467
file 459
operation 468
operations 460
validation 466, 502

WSDL2Java 456
WS-I 162, 466

Basic Profile 466
WS-Security 488
WTP 162
 Index 609

610 Building SOA Solutions Using the Rational SDP

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Building SOA Solutions
Using the Rational SDP

®

SG24-7356-00 ISBN 0738486213

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Building SOA Solutions
Using the Rational SDP

SOA service
identification,
specification,
realization, and
implementation

SOA foundation from
modeling to
implementation to
testing

Service-oriented
architecture in
practice

This IBM Redbooks publication explains the concepts and
practice of developing service-oriented architecture
(SOA)-based solutions using the IBM Rational Software
Delivery Platform (SDP). It uses the latest version of IBM
Rational Unified Process (RUP) that includes service-oriented
modeling and architecture (SOMA) content from IBM Global
Business Services.

This book aims to help practitioners that are working on
SOA-based projects. Practitioners can learn the core
concepts behind SOA as well as how to use the tooling to
automate the tasks involved in developing SOA-based
solutions.

The main thread of this book takes business requirements,
business architecture, and existing assets as input, and
derives the elements of a service-oriented architecture that
are needed to realize the business requirements. The book
covers architecture in detail, and shows how the architecture
is realized through service identification, specification,
realization, implementation, and testing. The book is
organized around a practical example case study and
provides tool and process guidance as well as additional
references around key topics.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this IBM Redbooks publication
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	SOA foundation
	SOA foundation life cycle
	Model
	Assemble
	Deploy
	Manage
	Governance

	SOA foundation reference architecture
	Core components of the logical architecture
	Interaction services
	Process services
	Business application services
	Information services
	Access services
	Partner services

	Supporting components of the logical architecture
	Enterprise Service Bus
	Business innovation and optimization services
	Development services
	IT service management
	Infrastructure service

	SOA foundation scenarios
	Out of scope topics with references to other books
	Composite applications and business process implementation
	Reporting and documentation
	Rational SoDA
	Rational ProjectConsole
	Rational Portfolio Manager

	Software configuration management
	Governance

	Summary

	Chapter 2. JK Enterprises case study
	Introduction
	An overview of JK Enterprises
	CEO interview
	CIO interview

	Business problems
	Proposed solution
	Account verification improvements

	An analysis of the business problems and our approach
	Approach

	Assumptions

	Chapter 3. SOA governance
	Importance of governance
	Challenges
	Benefits

	Definitions
	Governance
	Compliance
	Management

	IT governance
	SOA governance

	Service life cycle
	SOA governance life cycle
	IBM products for SOA governance
	Rational Method Composer
	Rational Method Composer plug-in for SOA Governance

	Rational Portfolio Manager
	Rational RequisitePro
	Rational ClearQuest and Rational ClearCase
	WebSphere Service Registry and Repository

	Compliance
	References

	Chapter 4. Architecture and design
	What is an application in an SOA environment?
	Traditional software applications
	Architecture of software systems
	Service-oriented IT systems
	Business-aligned systems
	So the answer is...

	Modeling service architectures
	Different forms of a service
	Architecture specification
	Detailed design
	Implementation
	Assembly
	Runtime

	Architecturally significant services
	Decomposition and re-assembly of applications
	1. Specify software architecture
	2. Detail software design
	3. Build or source software
	4. Assemble software

	Services and reuse
	Some different types of reuse
	As-is reuse of a service by multiple systems
	Reuse of a service by successive versions of the same system
	Reuse of a service with modification
	Usage of the same service twice in one system

	What can be reused?
	What has to be in place to enable reuse?

	SO systems and integration
	Standard integration levels
	Data level
	Application interface level
	Method level
	User interface level

	SOA and integration
	Two types of application/method level integration
	Portals front-ending business processes give UI integration
	Executable business processes result in people integration

	Reusing architecture and design experience
	Architectural styles
	Architectural patterns
	JK Enterprises case study architectural style
	Pattern 1: Factor composition logic away from process logic
	Pattern 2: Factor atomic reusable logic into lower reuse layers
	Pattern 3: Factor application-specific logic out of reuse layers
	Pattern 4: Base architecture on business relevant elements
	Pattern 5: Manage complexity using SO systems
	Pattern 6: Derive atomic services from domain model
	Pattern 7: Service enable non-SO systems
	Pattern 8: Model data ownership
	Pattern 9: Keep service operation signatures meaningful
	Pattern 10: Keep architectural elements totally decoupled
	Pattern 11: Use shared messages and parameter types
	Pattern 12: Drive applications using business processes

	Chapter 5. Process and methods
	Introduction
	IBM Rational Unified Process (RUP)
	Core principles of RUP
	Adapt the process
	Balancing competing stakeholder priorities
	Collaborate across teams
	Demonstrate the value iteratively
	Elevate the level of abstraction
	Focus continuously on quality

	Key concepts
	RUP summary chart
	Iterative development
	Phases
	Architecture-driven
	Use case driven

	How we use RUP in this book

	What is a development case?
	JK Enterprises development case
	Rational Method Composer
	Codify the development case
	Create method content
	Create work products
	Create roles
	Create tasks
	Create steps

	Create the process
	Create phases
	Create iterations
	Create activities
	Create milestones
	Organize tasks in activities

	Publish the process as HTML
	Export the process as a project plan
	Export the development case as a plug-in

	References

	Chapter 6. Modeling and tools
	Importance of modeling
	Unified Modeling Language
	A brief history of UML

	A brief overview of UML
	Static diagrams
	Dynamic diagrams

	Model-driven development
	Traceability
	Transformations

	UML 2
	Complex structures
	Interactions

	SOA modeling

	Importance of architecture
	Overview of IBM architect tools
	Eclipse
	Plug-ins

	Rational Software Architect and Rational Software Modeler
	UML profile for software services
	Service
	Service specification
	Service provider
	Message
	Service partition
	Service gateway

	References

	Chapter 7. Business modeling
	Introduction
	Business modeling
	Key roles in business modeling
	Typical steps in business modeling

	Inputs to the business modeling discipline
	A word about tooling
	Business architecture
	Component business modeling
	Functional area analysis

	Business vision
	Business glossary

	Business use cases
	Business actor
	Business process
	Refining the business use case
	Business use case realization

	Business rules
	Business process model
	Working with IBM WebSphere Business Modeler
	Initial project
	Four-pane screen layout
	Adding elements to the process
	Adding connections
	Roles, resources, and business items
	Process simulation
	Account Opening example
	Importing the model
	Visualizing a business model as UML

	Business goal
	Key performance indicators and metrics
	JK Enterprises goals

	Connecting goals, KPIs, and metrics
	Defining KPIs and metrics in WebSphere Business Modeler
	Measuring a business process in Business Monitor

	Domain modeling
	What do we have now?
	References

	Chapter 8. Requirements
	Requirements management in SOA
	Requirements management plan
	Requirement types and attributes
	Keeping requirements visible
	Requirement perspective in development tools
	Rational Software Architect
	Rational Data Architect

	Enterprise-level requirements
	Glossary
	Business use cases
	Service policies
	Project-level requirements
	Project vision
	Supplementary requirements
	System use cases
	Creating a system use case in RequisitePro
	Create a use case model element in Software Architect

	Tooling implications
	Where are we now?
	References

	Chapter 9. Service and design model work products
	Introduction
	Service model work product
	Purpose of the service model
	Contents of the service model
	Service model elements in our development case
	Model element: Service specification
	Model element: Service provider
	Model element: Service consumer
	Model element: Service
	Model element: Composite service specification
	Model element: Message
	Model element: Parameter type
	Model element: Information type
	Model element: Enumeration
	Model element: Service partition
	Model element: Service channel
	Model element: Service collaboration
	Model element: Service interaction
	Model element: Service gateway

	Service model diagrams in our development case
	Diagram: Service specification diagram
	Diagram: Service consumer specification diagram
	Diagram: Service provider specification diagram
	Diagram: Information diagram
	Diagram: SOA structure diagram
	Diagram: Service interaction diagram

	Service model related patterns
	Pattern: Composite service specifications

	Tasks affecting the service model

	Design model work product
	Purpose of the design model
	Model structure (samples from JK enterprises case study)
	Profiles
	Type libraries
	Structure
	Service component

	Contents of the design model
	Traceability

	Chapter 10. Service identification
	Introduction
	Inputs to service identification
	Tools and models used for service identification
	Identify services from goals
	Rational Software Architect and RequisitePro integration
	Identify services from goals
	Create traceability from services to goals

	Perform business process analysis
	Identify service elements from business process model

	Perform existing asset analysis
	Existing services?
	Bottom-up and meet-in-the -middle
	JK Enterprises

	Output of service identification for JK Enterprises
	References

	Chapter 11. Service specification
	Introduction
	Tools and capabilities used for service specification
	Rational Software Architect
	UML and the UML 2 profile for software services
	Process guidance
	Setting process preferences
	Process Advisor
	Process Browser

	Overview of the service specification activity
	Task 1: Structure service architecture
	Step 1: Validate and classify services
	Validate candidate services
	Classify services by functional area

	Step 2: Identify service partitions
	Find the functional areas
	Create a service partition for the SO system
	Create an empty SOA structure diagram
	Create a service partition and diagram for the CustomerService SO system

	Step 3: Model atomic service providers
	Study the domain model
	Derive atomic services from domain model
	Identify domain type encapsulation clusters
	Identify a service provider for each domain type encapsulation cluster
	Create service providers along with standard package structure and diagrams
	Match up service specifications with the service providers
	Model services for the service providers
	Model info types for the service providers

	Step 4: Model composite service providers
	Identify the processes and functional areas
	Find the sub-processes and locate the services for them
	Identify a composite service provider for each SO system
	Create service providers along with standard package structure and diagrams
	Match up service specifications with the service providers
	Model services for the service providers

	Step 5: Model service consumers
	Locate the processes identified previously
	Identify a service consumer for each process
	Model the required service specifications for the service consumer

	Step 6: Assign parts to service partition
	Allocate composite business application services to the service partitions
	Allocate service consumers to the service partitions
	Allocate atomic business application services to the service partitions
	Create candidate service channels

	Step 7: Consider service policies

	Task 2: Refine service architecture
	Step 1: Design service collaborations
	Step 2: Design service interactions
	Step 3: Fully specify service consumers
	Step 4: Design parameter types, messages, and info types
	Design parameter types
	Specify operation parameter types
	Design messages
	Create messages
	Use messages in operation definitions
	Design info types

	Step 6: Validate the final service model

	Task 3: Model service assemblies
	Task 4: Model service deployment
	Output of service specification for JK Enterprises
	Next steps
	References

	Chapter 12. Service realization
	Introduction
	Tools and capabilities used for service realization
	Inputs to service realization

	Creating the design model
	Create the model structure
	Prepare the model for transformations
	Apply a Java transformation profile
	Import Java primitive type library

	Create service components
	Manual creation
	Transformation
	Traceability

	Refine service components
	Create realization classes
	Refining the interface
	Apply design patterns

	Using the Reusable Asset Specification (RAS)
	Design class structure
	Design class behavior (interaction diagrams)
	Comparison with traditional RUP object-oriented approach

	Output of service realization for the JK Enterprises example
	Validate model
	Transform model and refine design with developers

	Reverse transformation from Java code
	Architectural analysis

	Chapter 13. Service implementation
	Introduction
	Inputs to service implementation

	Implementation options
	Tooling options
	Overview
	Rational Application Developer roles and capabilities

	Setup the development environment
	Install the model transformation feature
	Download the sample code
	Create a test server in Rational Software Architect
	Enable the Web services development capability

	Top-down development of a service
	Prepare for top-down development
	Import the project interchange file for the Account Application
	Import the project interchange file for the UML Models
	Import code templates

	Model transformations
	UML to WSDL transformation configuration
	Run the UML to WSDL transformation
	UML to Java V5 transformation configuration
	Run the UML to Java V5.0 transformation

	Visualize and modify the WSDL
	Create a skeleton EJB Web service from a WSDL
	Implement the business logic
	Test the service
	Web Services Explorer
	TCP/IP Monitor
	Component test
	JUnit

	Summary of top-down development of a service

	Third-party service
	Prepare for sample third-party sample
	Import the project interchange file
	Add the project to the test server
	Start the test server

	Validating the WSDL file
	Testing the third-party Web service
	Locate and open the WSDL file
	Browse operations and set WSDL endpoints
	Invoking a WSDL operation

	Summary of third-party service

	Indirectly exposing an enterprise service
	Preparing for sample
	Implementation
	Create Java data binding
	Create J2C JavaBean and a Web service to use the J2C bean

	Summary of indirectly exposing an enterprise service

	Updating the design
	Output of service implementation

	Chapter 14. Service testing
	Introduction
	Inputs to testing

	SOA testing from a technology and application perspective
	Loose coupling between services and requesters
	Heterogeneous technologies intertwined in the same solution
	Lack of total control over all elements of a solution
	New standards and technologies
	Asynchronous nature
	Application failures

	SOA: Testing strategy
	At what level do you test?
	Who is in charge of testing?
	Business composition
	Atomic and composite services
	Service component
	End-to-end

	How to define the right test cases?
	What is the integration strategy?
	What are the test completion criteria?
	Effective test automation

	IBM products for SOA testing
	Rational Application Developer
	Component test
	JUnit
	WSDL validation
	Web Services Explorer
	TCP/IP Monitor

	Rational ClearCase
	Rational ClearQuest
	Rational Functional Tester
	Rational Manual Tester
	Rational Performance Tester
	Rational Tester for SOA
	IBM Web Services Navigator

	Test work products
	Test plan
	Test case
	Test result
	Test data

	Test roles
	Test process
	Test tooling

	Setup the test environment
	Download the sample code
	Import the project interchange file
	Stat the server and add the projects
	Verify the Open Account Application

	Managing testing artifacts
	Creating reusable test scripts with Rational Manual Tester
	Create test scripts in Manual Tester
	Run the test script

	Designing and executing functional tests with Rational Functional Tester
	Summary
	Where to find more information

	Chapter 15. Creating reusable assets
	Assets, RAS, and asset life cycle
	Assets
	Reusable Asset Specification
	Asset life cycle

	Package JK Enterprises services as reusable assets
	Asset or service?
	Package the service model as a reusable asset
	Structure of the service model
	Packaging an asset
	Asset repository

	Publish service to Service Registry and Repository

	Other assets
	References

	Chapter 16. Pattern-based engineering with Rational Software Architect .
	Pattern-based engineering
	Extensibility
	Eclipse extensibility
	Plug-in Development Environment (PDE)
	Eclipse modeling

	Rational Software Architect extensibility
	Creating profiles
	Authoring transformations
	Model to model authoring support
	Model to text authoring support
	Own transformations

	Authoring design patterns (JK Enterprises composite service specification) .
	Pattern implementation
	Pattern test

	Using the Reusable Asset Specification (RAS) to distribute and manage assets

	References

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	Software requirements
	How to use the Web material

	Loading the RequisitePro projects
	Loading the RequisitePro project templates

	Loading the WebSphere Business Modeler project
	Loading the models into Rational Software Architect
	Loading the implementation into Software Architect
	Running the application
	Loading other projects

	Installing the sample pattern RAS asset
	Create a local asset repository
	Import the asset
	Confirm that the plug-in is installed

	Rational Method Composer plug-in

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

