#_-_-—-._

-_—_—-_'_“---..._

.

——
i
. § i

]

ORACLE

XFS - The High Performance Enterprise File System

<jeff.liu@oracle.com> Jeff Liu


mailto:jeff.liu@oracle.com

- Agenda

About XFS

Design

Journal

Self-describing metadata
Performance

What's new && In progress

ORACLE



- General information

Created by SGI in 1993, ported to Linux since 2001

Full 64-bit journaling file system, the best choice for >16TB storage
Extent based and delayed allocation

Maximum file system size/file size: 16 EIB/SEIB

Variable blocks sizes: 512 bytes to 64 KB

Freeze/Thaw to support volume level snapshot - xfs freeze

Online file system/file defragmentation - xfs_fsr

Online file system resize — xfs_growfs

User/Group/Project disk quota support

Dumping and Restoring — xfsdump/xfsrestore



- Linux distributions support

Avalilable on more than 15 Linux distributions
SUSE has include XFS support since SLESS8
Will be the default file system on RHEL7
Premier support on Oracle Linux 6

Ceph OSD daemons recommend XFS as the underlying file
system for production deployment

ORACLE



Community Efforts

The statistics of code changes between Linux 3.0~3.11
git diff --stat --minimal -C -M v3.0..v3.11 -- fs/[btrfs|xfs|ext4 plus |BD2]

00000

00000

W Ext4&&JBD2
B XFS
W Btrfs

00000

The number of files changed, insertions and deletions

Files changed Insertions Deletions

ORACLE




- Community Efforts

XFS Mainline Progress Between Linux 3.0~3.11

100
90
80

» Totally 719 patches
= Mainly on infrastructure,
performance improvements

as well as bug fixes 70
00
50
20
30
20
10
| 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11

ORACLE

The number of patch



Design — Allocation group

Allocation group

Can be thought as an individual file system
Primary AG and secondary AGs

Each AG contains

Super block
Free space management
Inode allocation and tracking

Benefits

Allows XFS to handle most operations in parallel without degrading performance

ORACLE



- Design - AG layout

Primary AG Other AGs
el
AG O AG 1 AG 2 AG 3 AG ...
SB AGF AGlI AGFL ABTB ABTC IABT FreeList Inodes ...
In Sector Size In Block size 4 Block Chunk

- Size " In 64



- Design — Generic AG B+Tree Structures

struct xfs btree block {

: __be32 bb magic; /* magic number for block type */
Generic btree header|  “bheis bb_level; /%0 is a leaf ¥/
__belo bb numrecs; /* current # of data records */

__be32/64 bb leftsib;
__be32/64 bb rightsib;

}

Data record/key structure

typedef struct xfs alloc rec {
__be32 ar startblock; /* starting block number */
__be32 ar_blockcount; /* count of free blocks */

Node p()inters 1} xfs alloc rec t, xfs alloc key t;
typedef be32 xfs alloc ptr t;

ORACLE




- Design — AG Free Space Management

Tracks free space in an AG using two B+tree

One B+tree tracks space by block number
Another by the count of the free space block
To quickly find free space near a given block or a give size

All block numbers, indexes and counts are AG relative
AG Free Space Block — 'AGF' locates in the 2rd sector of an AG

ORACLE



- Design — AG Free Space B+trees (1 order)

AGF
agf roots[2]

agf levels[2] =1
J

y =

[0] xfs_btree_block

bb magic = XFS ABTB MAGIC
bb level = 0 (leaf)
bb numrecs = rec size

[1] xfs btree_block

bb _magic = XFS_ABTC MAGIC
bb level = 0 (leaf)
bb numrecs = rec size

bb_leftsib/rightsib = NULL

bb leftsib/rightsib = NULL

recs[bb _numrecs]

xfs alloc rec t

% startblock blockcount
é startblock | blockcount
o .

A

al

-

recs[bb numrecs]

xfs_alloc rec t

-

% startblock blockcount
A startblock blockcount
o

: .

-

2

ORACLE




- Design — AG Inode Information

Locates at 3rd sector of AG, known as “AGI”

Inodes are allocated in chunk of 64, and a B+tree is used to track these
chunks of inodes as they are allocated and freed

B+tree header — same as AGF header

typedef struct xfs inobt rec {
B+tree leaves be32 ir startino;  /* starting inode number */

' : : be32 ir freecount; /* count of free inodes (set bits) */
Node's key/pointer pairs

beb4d ir free; /* free inode mask */
} xfs_Inobt rec t;

typedef struct xfs inobt key {

__be32 iIr_startino; /* starting inode number */
} xfs_inobt key t;
typedef be32 xfs inobt ptr t;

ORACLE



- Design — AGI B+tree (1 order)

AGI
agf root )

agf level =1 ~

— Chunk of 64 modes

xfs btree block
bb _magic = XFS_ IBT_MAGIC
bb level = 0 (leaf)
bb _numrecs = rec size
bb_leftsib/rightsib = NULL

recs[bb numrecs] xfs inobt rec t

' startino / freecnt / fmask

ORACLE




Journal

Guarantee file system consistency in the event of power
fallure or system crash

Need not conventional UNIX fsck

Logical/physical mixed journaling

Log items which are logged in logical format contains changes to the in-core
structures rather than the on-disk structures

Typical buffer are logged in physical format
Automatically perform log recovery at mount time

Quick crash recovery

Independent to the size of the storage

Dependent to the activities of the file system at the mount of disasters



- Journal

Internal log blocks start near the middle of the disk
External log volume support
Maximum log size just under 2GB (2038 MB)

File system update are written into journal before the actual
disk blocks are updated

Incore log and on-disk log

Journals metadata are writing to in-core log buffers by first
The in-core log buffers are flushed to on-disk log asynchronously
Metadata are pinned in memory a transaction is committed to the on-disk log

ORACLE



Journal

Write Operation

\J
Transaction

y

~

N—

—~

Journal's Metadata

> Metadata
_ A ,\
Pinned

y
@re log buffers

2\ emory
\

—

Storage j

Delayed logging
Is the only mode
Beginning from
Linux 3.3

~

ORACLE




Journal

Throughput MB/sec

Place journal on external faster device to get performance

Improvements
Dbench Benchmark - Run 600sec Threads 8
AMD FX(tm)-8120 Eight-Core Processor, 16G RAM

45
40
35
30
25
20
15
10

5

0

Internal

External SATA External SSD

Max Latency -- mseconds

1600
1400
1200
1000
800
600
400
200
0

Internal

External SATA

External SSD
ORACLE




- Journal

External log volume support

# mkfs.xfs -f /dev/sda7 -1 logdev=/dev/sda8,size=512m
meta-data=/dev/sda7 isize=256 agcount=4, agsize=655360 blks

log =/dev/sda8 bsize=4096 blocks=131072, version=2
= sectsz=512 sunit=0 blks, lazy-count=l

# mount -o logdev=/dev/sda8 /dev/sda7 /xfs
# mount | grep xfs

/dev/sda7 on /xfs type xfs (rw,logdev=/dev/sda8)

ORACLE



Self-describing Metadata

Solution with additional validation information

CRC32c

File system identifier

The owner of a metadata block

Logical sequence number of the most recent transaction

The typical on-disk
structure

struct xfs ondisk hdr ({

___be32
___be32
uuid t
___beb4
___bebd

\_y
}

magic;
crc;
uulid;
owner:;
blkno;

ORACLE




- Self-describing Metadata

The largest scalability problem facing XFS is not one of algorithmic
scalability, but of verification of the file system structure...

- Kernel document

ORACLE



Self-describing Metadata

Primary purpose

Minimize the time and efforts required for basic forensic analysis of PB scale
file system

Detect common types of errors easily and automatically

Existing XFS forensic analysis utilities

xfs repair (xfs check is effectively deprecated)
xfs db
Need pretty much efforts to analysis large storage manually

Problems with the current metadata format

Magic number is the only way

Even worse, lack of magic number identifying in AGFL, remote symlinks as well as

remote attribute blocks



- Self-describing Metadata - CRC enabled inode format

xfs db> inode 67
xfs db> p
core.magic = 0x4

core.version =

next unlinked =
v3i.crc = 0x90bc8
v3.change count
v3.1lsn = 0x10000
v3.flags2 = 0
v3.crtime.sec =
v3i.crtime.nsec =
v3.lnumber = 67

94e

3

null
bba
=1
0002

Thu Oct 10 14:40:53 2013
543419982

v3.uuld = b7232b63-95fc-475e-a454-6£f50e2725053

xfs db> inode 67

xfs db> p
core.magic = 0x494e
core.version = 2

core.filestream = 0
core.gen = 1
next_unlinked = null

ORACLE

CRC increase the v3 inode
size to 512 bytes, while v2
IS 256 bytes by default




Self-describing Metadata - v3 inode format

# blkid /dev/sda8
/dev/sda8: UUID="b7232b63-95fc-475e-a454-6£50e2725053" TYPE="xfs"

xfs db> type text
xfs db> p

000: 49 4e 81 a4 03 02 00 00 00 00 00 00 00 00 00 00 IN.eeweeoeooeesns s CRC
010: 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00 Ol +eveeveoocencens
020: 52 56 4b £5 20 63 ee 4e 52 56 4b £5 20 63 ee 4e RVK..c.NRVK..c.n | ™ LSN

030: 52 56 4b f5 20 63 ee 4e 00 00 00 00 00 00 00 00 RVK..C.Neveoeeeo. INUMBER
040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +veveeveeoenncens = UUID
050: 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 +eveeveeoenonens
060: ff ff ff f£f 90 bc 8b ba 00 00 00 00 00 00 00 0l vveeveeoeennosas
070: 00 00 00 01 00 00 00 02 00 00 00 00 00 00 00 00 weeeeeveooconnes
080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +veveeveeoenncens
090: 52 56 4b f5 20 63 ee 4e 00 00 00 00 00 00 00 RVK. .CoNuveweoo C
Oa0: b7 23 2b 63 95 fc 47 5e a4 54 6f 50 e2 72 50 53 ceeCoe.G..TOP.TrPS

ORACLE




Self-describing Metadata

Runtime Validation |Read Operation > Write Operation
Immediately after | Eoita
a successful read Result
from disk s Pass Update LSN
Validation —

Immediately prior Update Checksum
to write IO /O
submission

- D

Storage
N— -~

ORACLE




- Self-describing Metadata

Enable CRC validation

# mkfs.xfs -f -m crc=1 /dev/sda8

meta-data=/dev/sda8 1size=512 agcount=4, agsize=1402050 blks
= sectsz=512 attr=2, projid32bit=l
= crc=1
data = bsize=4096 blocks=5608198, imaxpct=25
= sunit=0 swidth=0 blks
naming =version 2 bsi1ze=4096 ascii-ci=0
log =internal log bsi1ze=4096 blocks=2738, version=2
= sectsz=512 sunit=0 blks, lazy-count=l
realtime =none extsz=4096 blocks=0, rtextents=0

Version 5 superblock detected. xfsprogs has EXPERIMENTAL support enabled!
Use of these features 1s at your own risk!

ORACLE




- Self-describing Metadata

» Does It cause noticeable overhead? Basically No

Patch . MB/s . MB/s
_———
Clean 235.85 MB/s 245.28 MB/s
_———
Read compiled tree 16.56 MBY/s 16.12 MB/s
_———
Delete compiled tree 11.05 Sec 11.82 Sec

Stat compiled tree 6.80 Sec 6.97 Sec
ORACLE




- Self-describing Metadata

Compatibility
Old file system does not support the new disk format

Old kernel and userspace can not read the new format

Kernel and userspace that the support the new format works just fine with
the old non-CRC check enabled format

Support two different incompatible disk formats from this point onwards
Will not provide tools to convert the format of existing file system?

ORACLE



- Performance && Scalability

XFS performs very well with large files but very poor to handle lots of
small files - From the Internet

Maybe that's an old story!

ORACLE



- Performance && Scalability

Fs_mark ZERO file creation benchmark -- Linux 3.10
Intel(R) Core(TM) i15-3320M CPU @ 2.60GHz, 8G RAM, Normal SATA Disk

m Keep: Yes 16000

» Sync Method: O 14000

» Directory: 10 o 12000
= File: 1000 @ 10000 = Exta
= Byte Count: O ) mXFS
= Thread: 2/4/8/16 T °°%  Birfs

6000

4000

2000

0

Thread 2 Thread 4 Thread 8 Thread 16

ORACLE




- Performance && Scalability

Fs_mark Creation/Deletion Benchmark -- Linux 3.10

Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz, 8G RAM, Normal SATA Disk

= Keep: No 12000
» Sync Method: O
= Directory: 10 10000
= File: 1000 g 8000
= Byte Count: O @ = Extd
= Thread: 2/4/8/16 = 6000 B XFS
M Btrfs
4000
2000

Thread 2 Thread 4 Thread 8 Thread 16

ORACLE




- Performance && Scalability

Fio Read Benchmark - Linux 3.10
Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz, 8G RAM, Normal SATA Disk

= RW: Random #0000

= Block Size: 4K L o000

m File Size: 1GB < 30000
= Runtime: 120 Sec £ 25000 o Exid
N NumJObS: 2/4/8/16 % 20000 B XFS
§ 15000 W Btrfs

10000

5000

0

Thread 2 Thread 4 Thread 8 Thread 16

ORACLE




- Performance && Scalability

Compilebench -- Linux 3.10

Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz, 8G RAM, Normal SATA Disk
300
= Initial Dir: 10

» Makej: Yes 250

W Ext4
HmXFS
M Btrfs

MB/sec

100

50

- T -

Creation Compile Read

ORACLE




- Performance && Scalability

Fio Write Benchmark -- Linux 3.10
Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz, 8G RAM, Normal SATA Disk

32000
= RW: Random 31000
m Block Size: 4K "
m File Size: 1GB ¢ 30000
= Runtime: 120 Sec o 29000 .
= Numjobs: 2/4/8/16 G 500, . XEFS
£ 27000 " s
=
26000
25000
24000

Thread 2 Thread 4 Thread 8 Thread 16

ORACLE




- Performance && Scalability

Creation/Deletion Benchmark for small files -- Linux 3.10
Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz, 8G RAM, Normal SATA Disk

300
A more realistic case
of creation/deletion 250
. 0 200
time/tar/rm 2 :ifg
Uncompress Linux S
3 10 b22 $ 150 H Btrfs
package and remove 100
) -
. T

Creation Compile Read

ORACLE




- What's new && Wait In progress

CONFIG XFS WARN

Less overhead than the old CONFIG_XFS DEBUG option
Suitable to production environment

Separate project disk quota inode
Can be enabled with group guota at the same time
User namespace support for Linux container (LXC)

Online file system shrink support (WIP)
The free inode btree (WIP)

ORACLE



Thank You!

ORACLE



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

