

ORACLE®

XFS - The High Performance Enterprise File System

<jeff.liu@oracle.com> Jeff Liu

Agenda

- About XFS
- 2 Design
- Journal
- Self-describing metadata
- Performance
- 6 What's new && in progress

General information

- Created by SGI in 1993, ported to Linux since 2001
- ► Full 64-bit journaling file system, the best choice for >16TB storage
- Extent based and delayed allocation
- Maximum file system size/file size: 16 EiB/8EiB
- Variable blocks sizes: 512 bytes to 64 KB
- Freeze/Thaw to support volume level snapshot xfs_freeze
- Online file system/file defragmentation xfs_fsr
- Online file system resize xfs_growfs
- User/Group/Project disk quota support
- Dumping and Restoring xfsdump/xfsrestore

Linux distributions support

- Available on more than 15 Linux distributions
- SuSE has include XFS support since SLES8
- Will be the default file system on RHEL7
- Premier support on Oracle Linux 6
- Ceph OSD daemons recommend XFS as the underlying file system for production deployment

Community Efforts

The statistics of code changes between Linux 3.0~3.11

git diff --stat --minimal -C -M v3.0..v3.11 -- fs/[btrfs|xfs|ext4 plus JBD2]

Community Efforts

- Totally 719 patches
- Mainly on infrastructure, performance improvements as well as bug fixes

XFS Mainline Progress Between Linux 3.0~3.11

Design – Allocation group

- Allocation group
 - Can be thought as an individual file system
 - Primary AG and secondary AGs
- Each AG contains
 - Super block
 - Free space management
 - Inode allocation and tracking
- Benefits
 - Allows XFS to handle most operations in parallel without degrading performance

Design - AG layout

Design – Generic AG B+Tree Structures

Generic btree header

Data record/key structure

Node pointers

```
typedef __be32 xfs_alloc_ptr_t;
```

Design – AG Free Space Management

- ► Tracks free space in an AG using two B+tree
 - One B+tree tracks space by block number
 - Another by the count of the free space block
 - To quickly find free space near a given block or a give size
- All block numbers, indexes and counts are AG relative
- ► AG Free Space Block 'AGF' locates in the 2rd sector of an AG

Design – AG Free Space B+trees (1 order)

Design – AG Inode Information

- Locates at 3rd sector of AG, known as "AGI"
- ► Inodes are allocated in chunk of 64, and a B+tree is used to track these chunks of inodes as they are allocated and freed
- ▶ B+tree header same as AGF header
- B+tree leaves
- Node's key/pointer pairs

Design – AGI B+tree (1 order)

- Guarantee file system consistency in the event of power failure or system crash
- Need not conventional UNIX fsck
- Logical/physical mixed journaling
 - Log items which are logged in logical format contains changes to the in-core structures rather than the on-disk structures
 - Typical buffer are logged in physical format
- Automatically perform log recovery at mount time
- Quick crash recovery
 - Independent to the size of the storage
 - Dependent to the activities of the file system at the mount of disasters

- Internal log blocks start near the middle of the disk
- External log volume support
- Maximum log size just under 2GB (2038 MB)
- File system update are written into journal before the actual disk blocks are updated
- Incore log and on-disk log
 - Journals metadata are writing to in-core log buffers by first
 - The in-core log buffers are flushed to on-disk log asynchronously
 - Metadata are pinned in memory a transaction is committed to the on-disk log

Delayed logging Is the only mode Beginning from Linux 3.3

Place journal on external faster device to get performance improvements

Dbench Benchmark - Run 600sec Threads 8

AMD FX(tm)-8120 Eight-Core Processor, 16G RAM

External log volume support

- Solution with additional validation information
 - CRC32c
 - File system identifier
 - The owner of a metadata block
 - Logical sequence number of the most recent transaction

The typical on-disk structure

The largest scalability problem facing XFS is not one of algorithmic scalability, but of verification of the file system structure...

- Kernel document

- Primary purpose
 - Minimize the time and efforts required for basic forensic analysis of PB scale file system
 - Detect common types of errors easily and automatically
- Existing XFS forensic analysis utilities
 - * xfs repair (xfs check is effectively deprecated)
 - xfs_db
 - Need pretty much efforts to analysis large storage manually
- Problems with the current metadata format
 - Magic number is the only way
 - Even worse, lack of magic number identifying in AGFL, remote symlinks as well as remote attribute blocks

Self-describing Metadata - CRC enabled inode format

```
xfs db> inode 67
xfs db> p
core.magic = 0x494e
core.version = 3
next unlinked = null
v3.crc = 0x90bc8bba
v3.change count = 1
v3.lsn = 0x10000002
v3.flags2 = 0
v3.crtime.sec = Thu Oct 10 14:40:53 2013
v3.crtime.nsec = 543419982
v3.inumber = 67
v3.uuid = b7232b63-95fc-475e-a454-6f50e2725053
```

```
xfs_db> inode 67
xfs_db> p
core.magic = 0x494e
....
core.version = 2
....
core.filestream = 0
core.gen = 1
next_unlinked = null
```

► CRC increase the v3 inode size to 512 bytes, while v2 is 256 bytes by default

Self-describing Metadata - v3 inode format

```
# blkid /dev/sda8
/dev/sda8: UUID="b7232b63-95fc-475e-a454-6f50e2725053" TYPE="xfs"
xfs db> type text
xfs db> p
000:
         4e 81 a4 03 02 00
                                    00 00 00
                              00
                                 00
010:
                                                    01
020:
                                                        RVK..c.NRVK..c.N
030:
                                                        RVK..c.N....
                                                 00 00
040:
050:
                                                    0.0
060:
070:
080:
090:
                                                        RVK..c.N....C
0a0:
            2b 63 95 fc 47 5e a4 54 6f 50
                                                         ...c..G..ToP.rPS
```

- CRC
- LSN
- INUMBER
- UUID

- Runtime Validation
 - Immediately after a successful read from disk
 - Immediately prior to write IO submission

Enable CRC validation

```
# mkfs.xfs -f -m crc=1 /dev/sda8
meta-data=/dev/sda8
                               isize=512
                                            agcount=4, agsize=1402050 blks
                                            attr=2, projid32bit=1
                               sectsz=512
                               crc=1
                               bsize=4096 blocks=5608198, imaxpct=25
data
                               sunit=0 swidth=0 blks
naming =version 2
                             bsize=4096 ascii-ci=0
                              bsize=4096 blocks=2738, version=2
log
        =internal log
                               sectsz=512 sunit=0 blks, lazy-count=1
realtime =none
                              extsz=4096 blocks=0, rtextents=0
Version 5 superblock detected. xfsprogs has EXPERIMENTAL support enabled!
Use of these features is at your own risk!
```

▶ Does it cause noticeable overhead? Basically No

Compilebench	Runs	Non-CRC	CRC
Initial create	30	21.18 MB/s	19.70 MB/s
Create	14	13.91 MB/s	13.09 MB/s
Patch	15	4.85 MB/s	4.72 MB/s
Compile	14	38.14 MB/s	37.29 MB/s
Clean	10	235.85 MB/s	245.28 MB/s
Read tree	11	10.00 MB/s	8.98 MB/s
Read compiled tree	4	16.56 MB/s	16.12 MB/s
Delete tree	10	8.60 Sec	9.23 Sec
Delete compiled tree	4	11.05 Sec	11.82 Sec
Stat tree	11	4.83 Sec	4.52 Sec
Stat compiled tree	7	6.80 Sec	6.97 Sec

Compatibility

- Old file system does not support the new disk format
- Old kernel and userspace can not read the new format
- Kernel and userspace that the support the new format works just fine with the old non-CRC check enabled format
- Support two different incompatible disk formats from this point onwards
- Will not provide tools to convert the format of existing file system?

XFS performs very well with large files but very poor to handle lots of small files - From the Internet

Maybe that's an old story!

Fs_mark ZERO file creation benchmark -- Linux 3.10

Keep: Yes

Sync Method: 0

Directory: 10

File: 1000

Byte Count: 0

■ Thread: 2/4/8/16

Fs_mark Creation/Deletion Benchmark -- Linux 3.10

Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz, 8G RAM, Normal SATA Disk

Keep: No

Sync Method: 0

Directory: 10

File: 1000

Byte Count: 0

Thread: 2/4/8/16

Fio Read Benchmark - Linux 3.10

RW: Random

Block Size: 4K

■ File Size: 1GB

Runtime: 120 Sec

NumJobs: 2/4/8/16

50

Creation

Initial Dir: 10

Makej: Yes

Compile

Read

Fio Write Benchmark -- Linux 3.10

RW: Random

Block Size: 4K

■ File Size: 1GB

Runtime: 120 Sec

NumJobs: 2/4/8/16

A more realistic case of creation/deletion

time/tar/rm
Uncompress Linux
3.10-bz2
package and remove

Creation/Deletion Benchmark for small files -- Linux 3.10

What's new && Wait in progress

- CONFIG_XFS_WARN
 - Less overhead than the old CONFIG_XFS_DEBUG option
 - Suitable to production environment
- Separate project disk quota inode
 - Can be enabled with group quota at the same time
- User namespace support for Linux container (LXC)
- Online file system shrink support (WIP)
- ► The free inode btree (WIP)

Thank You!