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推荐系统是怎样⼯工作的

• ⾼高质量的⽤用户特征是做好推荐的关键之⼀一



什么是好的推荐效果
• 点击率，但不仅是点击率 

• 内容⾼高质量，丰富多样，有惊喜感，能够帮助⽤用
户探索兴趣，快速反馈⼜又不能过度灵敏，etc. 

• ⻓长期⺫⽬目标 

• ⽤用户：有兴趣，有收获，愿意⻓长期使⽤用 

• ⽣生态：⿎鼓励良币，驱逐劣币



需要怎样的⽤用户特征
• ⼈人⼝口学：性别、年龄、地域，etc. 

• 内容特征：category, topic, keyword, entity, etc. 

• 喜欢 & 不喜欢 

• 短期 & ⻓长期 

• 协同特征：相似⽤用户 

• 其它：e.g. 逼格



My Profile



算法
• 点击加权 & 未点击惩罚 

• 热⻔门点击降权 

• 时间衰减 

• 噪声过滤：spam，标题党等 

• 其它精细的调优



System Overview



Our Challenges

• 存量⽤用户量⼤大，⽤用户⾏行为数据量巨⼤大 

• 期望快速反馈 

• Online serving storage: 读写吞吐⾼高，时延低且可
预期



⼀一些数字
• ⽤用户⾏行为数据 

• 历史存量：500TB+ （压缩后） 

• 每⽇日新增：1TB+ （压缩后） 

• ⾼高峰时段：400K msg/s （Overall） 

• Profile Server 

• feature 数量：200+ 

• 容量：单副本 12TB 

• 请求次数：1.2M qps



Batch Approach

• Batch 计算，MySQL 存储 

• Daily Mapreduce Workflow 

• 对每⽇日活跃⽤用户，抽取该⽤用户过去两个⽉月的展
⽰示和动作，从0开始重建该⽤用户的 user profile



问题

• CPU 密集，⼤大量重复计算 

• ⾼高写⼊入吞吐，MySQL 瓶颈 

• 更新不及时，⽤用户动作反馈到 user profile 可能会
⻓长达两天



Streaming Approach
• A Storm Topology 

• mini-batch processing 

• 固定 10 min 时间窗⼝口 

• 获取⽤用户上⼀一次 profile 状态作为 base 

• 做时间衰减 

• 使⽤用新增的展⽰示和动作更新 profile



Pros.

• ⽤用户动作反馈周期⼤大⼤大缩短：2天 -> 10分钟 

• 减少重复计算，节省⼤大量计算资源



Cons.
• 统计类特征会有延迟，即时值 不等于 最终值 

• 点击延迟：⽤用户可能在展⽰示之后⼀一段时间才会点击 

• 热点⽂文章点击降权：热点⽂文章，在⽂文章发布初期点击的⽤用户被
错误的认为点击了冷⻔门⽂文章 

• ⽂文本特征延迟：spam 标题党等特征判定会有延迟 

• 算法上线可能会有异常，需要回滚 user profile 

• batch 更容易，覆盖新数据即可 

• streaming 计算需要 replay ⻓长时间的历史数据，开销反⽽而更⼤大



Hybrid Approach

• 在 Streaming 更新的基础上，引⼊入周级的 Batch 
校准 

• 以上⼀一次 Batch 计算产出的 user profile 快照作为 
base，replay 其后产⽣生的⽤用户展⽰示、动作并更新 
user profile



Data pipeline



算法接⼝口抽象
• Storm & Mapreduce 计算模型有差异，但核⼼心算
法⼀一致 

• 抽象核⼼心算法接⼝口，算法实现保持⼀一致，避免维
护两份不同的 Code 

• update_profile(base_profile, impressions, actions) 
    => new_profile 

• Re-thinking: Spark & Spark Streaming



UserActionStore
• 基于 HBase 实现的，实时、可随机读写、可扩展
的⽤用户⾏行为存储 

• 以 (hash, user_id, timestamp) 为 RowKey 

• 访问接⼝口 
• UAStore.get_impressions(uid, start_time, end_time) 

• UAStore.get_actions(uid, start_time, end_time)



ProfileStore

• 需求 

• 读请求稳定低延迟：serve 在线访问请求 

• ⾼高写⼊入吞吐：batch/流式更新 

• 数据多副本 

• 数据量巨⼤大，需要可⽔水平扩展



Springdb
• twemproxy + rocksdb 

• 主从同步 双副本 

• twemproxy reload 配置实现主从切换 

• 重写 compaction 策略，降低写放⼤大系数 

• latency ⻓长尾调优，减少超时



LSM-Tree Compaction

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/

http://www.benstopford.com/2015/02/14/log-structured-merge-trees/


Fight with Write-Amp
• rocksdb: LSM-Tree, compaction, 写放⼤大10x~, SSD 寿命 

• Our Solution: 

• 限制只使⽤用 L0~L1，减少 compaction 层次 

• Customized Level Style Compaction 

• L0 ⼩小⽂文件 compaction => L0 

• L0 ⼤大⽂文件 full compaction => L1 

• 写放⼤大 10x~ => 2~3x，读放⼤大、空间放⼤大可接受 

• https://github.com/facebook/rocksdb/issues/210

https://github.com/facebook/rocksdb/issues/210


Performance

• 数据量：压缩后 12TB 数据 x 2副本 

• QPS：read 140K，write 55K (cache 后) 

• 时延：avg 500us, pct99 5ms 

• 机器：16台机器，SSD，存储瓶颈



Lessons we learned

• Batch + Streaming 是⼀一种常⽤用的模式 

• 合适的基础设施和业务抽象，减少重复 

• 深⼊入理解 workload，选择合适的存储系统 

• Rocksdb on SSD rocks!



Thanks for listening. 

Joint work with many others. 

Q&A Time


