
分布式存储的元数据设计
李道兵 <lidaobing@gmail.com> 

七⽜牛云存储 
2015-04 北京

mailto:lidaobing@gmail.com


引⼦子

• ⾯面试新⼈人时最经常被问到的⼀一句话：七⽜牛的云存储真
的是⾃自⼰己写的么，是不是基于 Hadoop 的？



Outline

• ⽆无中⼼心的存储设计: glusterfs 

• 有中⼼心的存储设计：hadoop 

• 基于数据库的存储设计: gridfs, hbase 

• 绕过问题的存储设计: fastdfs



glusterfs
• 设计⺫⽬目标 

• 兼容 POSIX ⽂文件系统: 你的应⽤用程序⽆无需修改就可以
放到 glusterfs 上来运⾏行 

• ⽆无中⼼心节点: 性能瓶颈没有了，单点故障也没有了 

• 扩展能⼒力: ⼤大容量存储都需要这个 

• 我们在这⾥里不讨论 POSIX 兼容的优劣，集中通过 
glusterfs 来讨论⽆无中⼼心节点设计中普遍遇到的⼀一些难点



glusterfs
• glusterfs 是⼀一系列⽆无中⼼心存储的设计的代表 

• ⽆无中⼼心暗⽰示着我们可以通过内容的 key 推算出来这个 key 的存储位置 

• 在绝⼤大部分实践中，在这种设计下如果出现单盘故障，处理模式如下 

• 去掉坏盘，换上新盘 

• 从⽼老盘拷⻉贝数据到新盘 

• 这个模式最⼤大的问题是修复时间，4T盘在 100MB/s 的修复速度下需要
⾄至少 11 个⼩小时，这么⻓长的修复时间会导致数据的可靠性降低（在这
11个⼩小时内另外两块盘的损坏概率） 

• 另外⼀一种修复模式是在读的时候发现有坏块，然后触发修复，在这种模
式下修复只会更糟糕。



glusterfs

• 如何回避掉这个问题呢？ 

• 引⼊入中间层记录分区和物理设备的关系，这样磁盘
损坏不⽤用等换盘就可以开始修复 

• ⼀一个磁盘分成多个区，每个区可以到不同的盘上去
修复，那么可以⼤大幅度缩短修复时间，⽐比如分到 
50 个区（每个区 80GB), 那么修复时间就可以缩
⼩小到 13分钟左右。



glusterfs

• 扩容 

• 在⽆无中⼼心设计中，扩容往往伴随着数据的再平衡，
再平衡会带来如下的挑战 

• ⺴⽹网络拥塞：可以使⽤用独⽴立的迁移⺴⽹网络来改善 

• 迁移时间⻓长且迁移期间数据读写逻辑变得更复杂
：多加测试改善代码质量



glusterfs
• 不⽀支持异构存储 

• ⽐比如⼩小⽂文件经常伴随着很⾼高的 iops 需求，针对⼩小⽂文件我们可
以引⼊入SAS或者SSD盘来得到更⾼高的 iops, 但对于⽆无中⼼心存储
来讲，这种⽅方法很难实施。 

• 类似的异构需求还包括某些客户数据只想存两份，⽽而其他客
户数据则想多存⼏几份的情况，这些在⽆无中⼼心存储中都是很难
解决的。 

• ⼩小⽂文件的问题针对读取的部分可以通过缓存层来改善，但对
于⾼高频率的写⼊入没有太好的解决⽅方案 

• 这⼉儿也存在⼀一个基于 hash 碰撞的攻击⽅方案，不过影响不⼤大。



glusterfs

• 数据不⼀一致的问题 

• ⽐比如我们要覆盖⼀一个 key，但在覆盖过程中出现意
外，导致只覆盖了三个副本中的两个或者⼀一个。这
个时候就很容易读到错误的数据。 

• 在写⼊入⽂文件时，先写临时⽂文件，最后再重命名能改
善这个问题，但仍然不完美。



glusterfs
• 问题总结 

• 坏盘修复问题：元数据+分区可以改善这个问题 

• 扩容动作⼤大: 忍 

• ⼩小⽂文件⾼高IOPS: 劣势，集群⾜足够⼤大的话可以靠规模
来抗住 

• 数据不⼀一致的问题: 复杂度会变⾼高



Hadoop
• 设计⺫⽬目标 

• ⼤大⽂文件 

• offline 使⽤用 

• 可伸缩 

• 元数据(NameNode)设计 

• 主备模式，各⼀一台机器 

• 数据尽量加载到内存，提⾼高性能 

• 放弃⾼高可⽤用，进⼀一步提⾼高元数据的性能 (NameNode 的变更不是同
步更新到从机，⽽而是通过定期合并的⽅方式来更新）



Hadoop 优点
• Hadoop 为⼤大⽂文件服务:  

• 意味着 NameNode 不会太⼤大，⽐比如 64M 的块⼤大⼩小, 10PB ⽂文件只
需要存储 1.6亿条数据，如果每条数据 200B, 那么需要 32GB 左右
的内存。 

• 元信息的 qps 也不⽤用太⾼高，如果每次 qps 能提供⼀一个⽂文件块的读
写，那么 1000qps 就能达到 512Gb/s 的读写速度，满⾜足绝⼤大部分
数据中⼼心的需求。 

• Hadoop 为offline业务服务: ⾼高可⽤用可以部分牺牲 

• Hadoop 为可伸缩服务: 伸缩的是存储节点，元信息节点⽆无需伸缩。



Hadoop 为什么不能当公有
云？

• 元信息容量太⼩小：1.6 亿条数据就占掉 32GB，100
亿的数据需要 2000GB 内存，这个完全没法接受 

• 元信息节点⽆无法伸缩: 元信息限制在单台，1000qps 
甚⾄至 15000qps 的单机容量远不能达到公有云的需
求。 

• ⾼高可⽤用不完美: NameNode 问题



其他有中⼼心设计

• WRN算法 

• 写⼊入了 W 份才算成功 

• 读取时成功读取 R 份才算成功 

• W + R > N (其中N 为总副本数）

图片来自：莫华枫的《云存储的⿊黑暗面：元数据保障》



WRN算法

• W,R,N 的选择 

• ⽐比如2,2,3这种情况，写⼊入两份就算成功，但如果
其中⼀一台机器下线，这个数据就可能读不出来了 

• 所以446 或者 669 这样的选择会更好。但机器越
多，响应会越差。



WRN算法
• 失败的写⼊入会污染数据 

• ⽐比如 446 的场景，如果写⼊入只成功了3份，那么这
次写⼊入是失败的，但如果是覆盖写⼊入，那么也就意
味着现在有三份正确的数据，三份错误的数据，哪
⼀一个是正确就⽆无从判别了。 

• 写⼊入数据带版本(不覆盖，只是追加)能改善这个问
题，但带来了⼀一个攻击点：反复覆盖同⼀一个⽂文件，
导致数据库出现性能瓶颈



有元数据的存储
• Hadoop 

• NameNode 不是⾼高可⽤用 

• NameNode 容量不⾜足 

• WRN⽀支持的元数据 

• 响应性差 

• 有丢失数据可能性 (覆盖写) / 有攻击点 (带版本写)



基于数据库的分布式存
储⽅方案

• GridFS (基于 MongoDB) 

• HBase 

• HBase + Hadoop



GridFS
• 基于 MongoDB 

• 分块存储，每块⼤大⼩小为255KB 

• 数据直接放在两个表⾥里边 

• chunks: 存储数据，加上元信息后单条记录在 
256KB 以内 

• files: 存储⽂文件元信息



GridFS 优点

• 两个需求（数据库和⽂文件都需要持久化），⼀一次满⾜足 

• 拥有MongoDB的全部优点: 在线存储，⾼高可⽤用，可伸
缩(*)，跨机房备份，… 

• ⽀支持 Range GET，删除时可以释放空间(需要⽤用 
mongodb 的定期维护来释放空间)



GridFS 的缺点
• oplog 耗尽:  

• oplog 是 mongodb 上⼀一个固定⼤大⼩小的表，⽤用于记录 mongodb 上的每
⼀一步操作，MongoDB 的 ReplicaSet 的同步依赖于 oplog。 

• ⼀一般情况下 oplog 在 5GB-50GB 附近，⾜足够⽀支撑 24 ⼩小时的数据库修
改操作。 

• 但如果⽤用于 GridFS，⼏几个⼤大⽂文件的写⼊入就会导致 oplog 迅速耗尽，很
容易引发 secondary 机器没有跟上，需要⼿手⼯工修复，⽽而且MongoDB 
的修复⾮非常费⼒力。 

• 简单来说就是防冲击能⼒力差，这个跟数据库的设计思路有关。 

• 除了前⾯面提到⼿手⼯工修复的问题外，冲击还会造成主从数据库差异拉⼤大，
对于读写分离，或者双写后再返回的场景带来不⼩小的挑战。



GridFS 的缺点

• 滥⽤用内存 

• mongodb 使⽤用 mmap 来把磁盘⽂文件映射到内存，
对于 gridfs 来说，⼤大部分场景都是⽂文件只需读写⼀一
次，对于这种场景没法做优化，内存浪费巨⼤大，会
挤出那些需要正常使⽤用内存的数据。 

• 设计阻抗失配带来的另外⼀一个问题。



GridFS 的缺点
• 伸缩性 

• 需要伸缩性就必须引⼊入 mongodb sharding 

• sharding 的情况下你需要使⽤用 files_id 作为 sharding key 

• 如果你不修改程序的话files_id 是递增的，也就是说所有的写
⼊入都会压⼊入同⼀一个集群，⽽而不是均匀分散。 

• 在这种情况下你需要改写你的驱动，引⼊入⼀一个新的 files_id ⽣生成
⽅方法。 

• 另外，MongoDB Sharding在⾼高容量⾼高压⼒力下的运维很痛苦（⼤大
家可以参考百度⺴⽹网盘组之前的⼀一些 PPT)



GridFS

• 低压⼒力: 没问题，挺好⽤用的 

• 中压⼒力: 如果单台机器能抗住你的存储，建议分离数
据库和GridFS, 使⽤用独⽴立的机器资源 

• ⾼高压⼒力: 不建议使⽤用 GridFS



HBase

• 前⾯面提到 Hadoop 因为 NameNode 容量问题所以不
合适⽤用来做⼩小⽂文件存储，那么 HBase 是否合适呢？



HBase 的优点

• 伸缩性，⾼高可⽤用都在底层帮你解决了 

• 容量很⼤大,⼏几乎没有上限。



HBase 缺点
• 微妙的可⽤用性问题 

• ⾸首先是 Hadoop NameNode 的⾼高可⽤用问题 

• HBase 的数据放在 Region 上，Region 会有分裂的问
题，在分裂和合并的过程中，这个 Region 会不可⽤用 

• 我们可以采⽤用预分裂来回避这个问题，但这就要求 预
先知道整体规模，并且key 的分布是近均匀的 

• 在多租户的场景下，key 均匀分布很难做到（除⾮非舍
弃掉 key 必须按顺序这个需求）



HBase 的缺点
• ⼤大⽂文件⽀支持 

• 10MB以上的⼤大⽂文件⽀支持不好 

• ⼀一个改良⽅方案是把数据拼装成⼤大⽂文件，然后 hbase 
只存储⽂文件名，offset 和 size 

• 这个改良⽅方案其实挺实⽤用的，不过如果要做到空间
回收就需要补很多开发了。



HBase⽅方案
• HBase存元数据，Hadoop 存数据算⼀一个可⽤用⽅方案，
但是 

• Hadoop是 offline 设计的，NameNode的⾼高可⽤用考
虑不充分 

• HBase的 Region 分拆和合并会造成短暂的不可
⽤用，如果可以的话最好做预拆，但预拆也有问题 

• 如果对可⽤用性要求低的话问题不⼤大



绕过问题也是解决问题的⽅方
式: fastdfs

• fastdfs: 

• hadoop的问题是NameNode 压⼒力过⾼高，那么 fastdfs
的思路就是给 NameNode 减压。 

• 减压的⽅方法就是把 NameNode 的信息编码到key⾥里边 

• 范例URL: group1/M00/00/00/rBAXr1AJGF_3rC-
ZAAAAEc45MdM850_big.txt 

• 也就是说 NameNode 只需做⼀一件事情，把 group1 
翻译成具体的机器名字



fastdfs 的优点

• 结构简单，元数据节点压⼒力低 

• 扩容简单，扩容后数据⽆无需重新平衡



fastdfs 缺点
• 不能⾃自定义 key: 这个对多租户是致命的打击，⾃自⼰己使⽤用也会减
低灵活性 

• 修复速度: 

• 磁盘镜像分布，修复速度取决于磁盘写⼊入速度，⽐比如 4TB 的
盘, 100MB/s 的写⼊入速度，那么需要⾄至少 11个⼩小时 

• ⼤大⽂文件容易造成冲击 

• ⾸首先是⽂文件⼤大⼩小有限制(不能超过磁盘⼤大⼩小） 

• 其次是⼤大⽂文件没有分⽚片，导致⼤大⽂文件的读写都由单块盘来承
担，所以对磁盘的⺴⽹网络冲击很⼤大



优点 缺点

⽆无中⼼心设计 ⽆无⾼高压⼒力节点
修复慢，扩容难 
⽆无异构⽀支持 
数据不⼀一致 

有中⼼心设计 扩容，修复更灵活 中⼼心节点难设计

基于数据库的设计 简单，易上⼿手 设计失配 
容量有限

fastdfs 中⼼心压⼒力⼩小，易扩容 key不能随便重命名 
⼤大⽂文件⽀支持差



Q&A


