
微博在大规模、高负载系统中
的典型问题

新浪微博 平台及⼤大数据部
秦迪 @蛋疼的axb

• 有哪些问题

• 如何排查

• 如何预防

关于微博和微博平台

app后端 web后端 开放平台

微博平台

⼿手机客户端 weibo.com 第三⽅方应⽤用展现

适配

服务

http://weibo.com

关于大规模、高负载

• 一些数据
- 8亿注册用户

- 8000万+DAU

- 1.75亿MAU

• 典型场景
- 固定活动

• 吐槽春晚

• 让红包飞

- 突发事件
• #马航370#

• #周一见#

• 《我错了》

关于问题

功能问题
• 发不出微博
• 未读数不准
• 500/502/503
• ……

关于问题

性能问题
• 刷微博慢
• 提醒延迟
• 接⼝口响应时间⻓长
• ……

关于问题

功能问题 性能问题

面对极端流量时的问题

• 功能异常导致性能下降
• 性能问题影响功能可⽤用性

案例一：性能问题影响功能可用性

Proxy

Web

Resource

X10

Web Web
Server

Web
Server

Proxy
Varnish Varnish

Resource
Storage
Server

Storage
Server

Storage
Server

响应时间下降

接⼝口⽆无响应

请求量⼤大幅下降

web后端app后端 第三⽅方

平台
业务⽅方

触发rebalance，集群性
能⼤大幅下降

接⼝口响应时间增加

线程数达到上限，卡死

案例二：功能异常导致性能下降

• 背景：
- docker@春晚红包

- 应对极端流量，应用docker进行快
速服务调度

• 现象：
- SocketTimeout

- Connection Refuse

• 原因：
- nat方式组网时，底层基于iptables

- iptables底层基于netfilter内核模块

- Netfilter模块保持65536个链接做
NAT转换

��A�� ��B�� ��C��

���

典型问题的特点

• 出现场景
- 访问量量级增加

- 引入新组件

• 问题表现
- 一般表现为应用崩溃、服务不可

用或系统雪崩等

• 原因排查
- 量变到质变，低负载经验不适用

- 问题往往牵扯多个领域

为什么我不知道？

• 有哪些问题

• 如何排查

• 如何预防

监控

• Dashboard
- 基于graphite

- 集中展示

- 定量分析

• Trace
- 追踪链路，显示请求调用链

- 分析节点异常：平均值、历史数据

日志

• 信息要完整
- 业务日志：包含关键路径与异常

- 性能日志：性能统计与分步耗时

- 容器日志、系统日志也很重要
• gc log、/var/log

• 分维度过滤
- 时间：出问题的时间点

- 请求：uid、requestid

- 级别：WARN/ERROR

• 集中检索
- ELK/agent(jpool)

- 平衡效率和成本

查看现场

查看现场

• 快照分析
- 功能：观察程序当前的状态

- 场景：程序当前处于整体异常状态

- 举例：gdb、Xmap、mat、jstack

• 调用分析
- 功能：观察调用和调用栈

- 场景：请求出错、请求慢、偶发错误

- 举例：btrace、Xtrace

• 聚合分析
- 功能：按某些维度采样、聚合和对比数据

- 场景：查找性能问题

- 举例：perf、Xstat、Xtop

分析原因

• 问题经常隐藏在：
- 应用：死锁、内存溢出、依赖资源

- 系统：jvm、kernel、tcp

- 硬件：硬件故障、网络

• 联合排查
- 开发 / 运维 / dba / 网络 / 系统 / 硬件

案例：春晚演练时服务出现异常

• 背景
- 演练方案：跨机房迁移用户请求

- 逐渐迁移流量的过程中，web服
务突然僵死，大量返回503

- 接口吞吐量低于理论值2-3倍

nginx(机房1)

web

rpc1

cache

mysql

rpc2

web

rpc1

cache

mysql

rpc2

nginx(机房2)

web

1:30% 1:35% 1:40% 1:45%

QPS$

定位问题

• 监控和日志
- 异常时的现象

• rpc1服务大量超时，处理队列堵塞

• rpc1服务器CPU idle普遍降低至10%

• 后端资源没有波动

rpc接⼝口响应时间

nginx(机房1)

rpc1

cache

mysql

rpc2

web

rpc1

cache

mysql

rpc2

重现问题

• 重现现场
- 直接压测没有重现问题

- 通过tcp copy引流线上流量，问题重现

瓶颈分析

• 瓶颈分析
- 通过perf发现close系统调用消耗了大量cpu

- 通过jstack发现大量线程卡在nio的closeIntFD上

- 通过strace发现close系统调用的处理时间很长

- 通过对比压测发现旧版内核频繁调用close时有性能问
题

解决问题

• 解决方式
- 升级内核

• 确保问题被修复
- 开发环境验证

- 测试环境验证

- 线上环境验证

• 确保没有引入新的问题
- 灰度上线，观察服务状态

• 功能无异常

• 性能未下降

解 决

tips：当心解决问题的陷阱！

• 案例：追查性能问题
- 现象：接口突然开始超时

- 原因：访问量突增，大量读取
静态内容缓存，mc出现带宽
瓶颈

- 解决：增加本地缓存

- 结果：压测时性能仍然有问题 
 web服务器CPU瓶颈 顺便加个统计

1:30% 1:35% 1:40% 1:45%

� ���CPU

小结：在大高系统中排查问题

成本范围

• 有哪些问题

• 如何排查

• 如何预防

高可用架构设计

• 服务隔离
- 按部署隔离

• 分机房部署

• 核心服务独立部署

• 服务独立化部署

- 按调用隔离
• 异步队列

• 快速失败

可靠的系统实现

- 耦合方式：同步 / 异步 /丢弃

调⽤用⽅方 服务⽅方 thread
buffer
queue

thread
buffer
queue

服务⽅方

可靠的系统实现

- 耦合方式：同步 / 异步 /丢弃

- 异常处理的异常处理：不要让事情变得更糟

压测与演练

• 真实流量压测
- 模拟实际请求模型：TCPCopy

- 模拟后端资源异常：TouchStone(tc)

最后再说几句

- Q：如何判断一个系统在大规模、高负载下是否可靠？

- A：没有实际流量验证前一定不可靠，验证后也不一定是可靠的。

- Q：压测压出问题怎么办？

- A：压测压不出问题怎么办？

- Q：处理预案是越多越好吗？

- A：一个演练过的预案要好过十个没有演练过的预案。

- Q：我特别害怕自己做的系统在高负载时出故障，怎么办？

- A：微博平台欢迎你:)

Q&A

秦迪 @蛋疼的axb

@微博平台架构

